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Abstract 

The Fibo Car is a game interface consisting of a kit of car parts. A virtual model of 

the assembled parts is generated on a computer and used in a physics engine based 

gameplay. This product vision is the source of this master’s thesis task where the 

main goal was to develop a critical function prototype of the physical/virtual 

interface. The challenge of this task was to create a prototype that contained 

integrated technology from multiple engineering disciplines. 

After six weeks, a functioning prototype was completed using an incremental style of 

product development process. Based on this prototype and process, two papers were 

submitted and accepted for publishing at a conference on entertainment computing. 

The prototype was then further improved and shown at a live demonstration for 

potential investors. The final prototype is a complete set where external car parts can 

be attached to a central part and a rotating 3D model will appear on-screen with the 

corresponding structure. A list of process related learnings form the conclusion of the 

project.   
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1 Project overview 

This introductory chapter describes the major outlines of the project; where it came from, how 

it was developed, related topics, and various results. 

1.1 Topic introduction 

This document contains the explicit results from a master project undertaken at the 

Department of Engineering Design and Materials (IPM) at the Norwegian University of 

Science and Technology (NTNU) spring of 2015. The project stems from the start-up 

company Metis Games that approached TrollLABS at IPM for the development of a 

prototype of their product idea. This document aims to serve as a framing for the major 

outcomes of that project: 1) a critical function prototype using tangible programming and two 

minor prototypes, 2) various digital material, 3) one demonstration paper describing the 

development of the first prototype during the first six weeks (Reime et al., 2015), 4) one paper 

on the process used to develop the first prototype (Gerstenberg et al., 2015), and 5) findings 

and lessons from the entire project. Both papers were accepted for publishing at the ICEC 

2015
1
. 2) consists of code scripts, 3D models, and digital footage and pictures that will be 

made available online (Appendix A: Digital Material). This thesis concerns early project 

phase product development where specifications are not predetermined but found through an 

incremental style of development inspired by wayfaring (Steinert & Leifer, 2012). 

Technology from multiple engineering disciplines was integrated in a flexible, modular 

architecture (Sanchez & Mahoney, 1996, p. 65) and is described in detail here. As such, this 

thesis should be relevant to any reader interested in the following: incremental product 

development; multidisciplinary and/or simultaneous prototyping; product specifications 

emerging from experimentation and low resolution prototypes; abductive learning; tangible 

programming. 

1.2 Project assignment 

The main goal of the project was to create a basic, functioning prototype for presenting the 

concept to investors. During an initial meeting, the product vision was described: a toy kit 

consisting of multiple car parts that users select and assemble to design their own car. Upon 

combining parts, a virtual model of the car would be generated and presented in a game on a 

PC or tablet. The gameplay should incorporate physical principles to simulate real-world 

                                                 
1
 http://icec2015.idi.ntnu.no/  

http://icec2015.idi.ntnu.no/
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effects on the car. Utilizing these simulations would create an immersive learning platform fit 

for STEM
2
 education. This principle of a virtual response to a physical action is called 

tangible programming. The prototype would be made to include the most critical 

specifications and functions. In addition, additional functions were to be included if 

applicable and within time constraints.  

1.3 Technology challenge 

The main challenge of this master project was to integrate solutions from multiple engineering 

disciplines into one functioning prototype, within a set timeframe. In this specific example of 

a tangible programming based product, the technology included elements from material 

science, mechanics, electronics, mechatronics, computer science, and user interface design. 

The resulting system of components had to function in unison and convey the concept of the 

product to a user or potential investor. This portrayal of the end product meant that the 

prototype did not necessarily have to include the same functions as the end product, but rather 

give a synthesis of the technology. This function synthesis was critical to the success of the 

project: developing the actual technology would require far more time than available in this 

project. The final prototype functioned similarly to already existing tangible programming 

products (Danli Wang, Wang, & Liu, 2014). It was therefore not a direct representation of the 

patentable IP of the end product vision. Most notable of these similarities is the use of a 

central module that performs all the identification and communication with a computer. But 

during the development, measures were taken to accommodate potential expansion of the 

prototype for better distinction of between existing products and our patent. Due to the project 

deadline, the prototype was further developed rather than focusing on developing new, 

patentable technology. But key aspects and learnings about the technology are sure to become 

relevant when a patentable solution is developed.   

1.4 Timeline 

The prototype was developed over a total of 14 weeks, of which ca. four were spent writing 

the two papers for publishing. In retrospect, four major milestones were distinguishable in the 

project: first critical function prototype; submission of papers for publishing; investor day 

with live demonstration; final project prototype. The selection of functions and sequence of 

their prototyping was based on the project owner’s input regarding IP (Intellectual Property), 

input from mentors, and experience from previous project courses focused on concepts in the 

                                                 
2
 Science, Technology, Engineering, and Mathematics. 
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fuzzy front end. The process was incremental and flexible in nature and used probing of ideas 

to test concepts, make decisions and reiterations. This process was the topic of (Gerstenberg 

et al., 2015), as an example of using wayfaring mindset for simultaneous prototyping in a 

solution space related to multiple engineering principles.  

The first prototype to achieve actual, tangible programming was complete after six weeks 

(first milestone). It was then suggested that two papers on the development process and the 

prototype itself, should be submitted for publishing at a conference on entertainment 

computing. Four weeks were spent writing and submitting these papers before work on the 

prototype was continued (second milestone). Both papers went through review and were 

edited before final submission until mid-July. The first submissions marked the transition into 

the improvement phase where work was primarily focused on improving and adding new 

functions to the existing prototype. Thus, there was a change in process: probing in an 

undefined space was used in the first phases to sense how the system would interact and 

develop thereupon; in the final phases, defined boundaries were established by the solutions 

that the prototype utilized.  

In week 12, Metis Productions took part in an ‘investor day’ where the company would 

present the product idea for a panel of investors. A live demonstration of the prototype was 

requested, and the prototype was further improved to be made fit for this occasion (third 

milestone). At this point, the prototype included a satisfying number of critical functions, and 

work on developing new critical functions was halted. In the last two weeks before ceasing 

work on the prototype, efforts were focused on making the prototype ready for handing over 

(fourth milestone), as well as creating various short prototype presentation movies for Metis 

Productions. This marked the transition into the documentation phase for this master thesis.  

1.5 Final prototype 

The final prototype included one central car part called coupe, and eight external car parts to 

be connected to the coupe. Two of the parts also had potentiometers for changing appearance 

of the virtual model. The coupe contained a microcontroller with a BLE (Bluetooth Low 

Energy
3
) unit and a circuit board, while the external parts contained resistors of different 

values. For a detailed description of the circuit board, see section 4 in (Reime et al., 2015). 

The coupe was able to identify the external parts by measuring the resistors through electric 

connectors on all four sides and sending a string of data via Bluetooth to a computer. The 

                                                 
3
 www.bluetooth.com/Pages/Bluetooth-Smart.aspx  

http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
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computer read the string and processed the data in an algorithm that identified the structure of 

the assembled parts. The structure was then presented by loading premade 3D models that 

resembled the physical parts. Thus, tangible programming was achieved by this real time, on-

screen construction of the virtual model depending on the physical assembly.  

 

Figure 1.1 Left: All physical objects of final prototype. Right: Exploded view of 

virtual model. 
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2 Technology background and development 

The product vision belongs in the domain of Tangible Programming, and this serves as a 

preface for the technology background. The following sections describe facets of the final 

prototype and the most important functions developed. The prototype development up to the 

first milestone is described in detail in (Reime et al., 2015). The project task is of a highly 

interdisciplinary nature with important relations to and between multiple engineering 

disciplines. Concrete developments are divided among these disciplines to give an overview 

of their interrelations and the reasoning behind the decisions taken in the process of achieving 

tangible programming. It is very important to note that the gameplay knowledge domain was 

unavailable during the entire length of the project. It was initially assumed that gameplay 

would become relevant at some point during the project. However, due to the product being in 

its infant state, no gameplay had yet to be developed. Gameplay will naturally become an 

integral part in the future prototypes of the Fibo Car.  

2.1 Tangible programming 

The key feature that sets the Fibo Car game aside from any other car game is the use of a 

tangible interface that correlates directly to the gameplay. This principle of game control is 

called tangible programming. (Sapounidis et al, p. 226) suggest this interpretation: “TUIs 

(Tangible User Interfaces) in general may be considered as physical objects whose 

manipulation may trigger various digital effects, providing ways for innovative play and 

learning for children or novice”. The fundamental goal appears to be utilizing the potential of 

tangible tools for learning, especially in STEM related education: “A tangible environment 

can potentially remove both of these obstacles (requirement of computer literacy or letteracy 

(sic) from the user)” (Smith, 2014, p. 430). Following the interpretation of Sapounidis et al., it 

appears that products need not conform to any specifications other than those mentioned. This 

means tangible programming can include a vast variety of solutions, something Wang et al. 

confirm in their review of tangible programming products (Danli Wang et al., 2014).  But 

while the idea of tangible programming for STEM education is sound, there is general 

consensus that more research is still needed to confirm the positive effects of such tools: “In 

recent years, educational robotics has become an increasingly popular research area. 

However, limited studies have focused on differentiated learning outcomes based on type of 

programming interface” (Strawhacker & Bers, 2014). Sapounidis et al. add the need for 

design guidelines to the research need: 
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Despite the various design efforts and the theoretical frameworks related to 

Tangible User Interfaces and children education, there is a lack of (a) 

empirical research investigating the possible advantages of TUIs against 

graphical interfaces and (b) design guidelines and available tools that combine 

tangible and graphical programming capabilities. 

          Sapounidis et al., 2014 

Wang et al. attempt to establish such design guidelines, and present a study of how their own 

T-Maze can improve programming skills (Danli Wang et al., 2014). The T-Maze functions 

similar to the Fibo Car in that the interface is a screen, but it differs by using a camera and 

pattern recognition to identify the 2D structure of assembled objects on a desktop. There is no 

mention of the perhaps more popular LEGO Mindstorms
4
 and LEGO MyBot

5
, likely because 

Wang et al. prioritize tools for learning programming skills. Similar to the LEGO products, 

the Fibo Car aims to use immersive learning through engineering rather than solving 

problems on an equational level. In fact, Toque is the only real-world based product 

mentioned by Wang et al., and they found it to not include adequate programming features. 

This may in fact suggest that the research into tangible programming educational tools may 

not apply to the Fibo Car simply because it is based on real-world scenarios and engineering, 

similar to Toque, LEGO Mindstorm, and MyBot. Games have long since been accepted as 

positive for developing children’s task solving skills, but more dedicated research into games 

with the goal of immersive learning is required in order to determine if the Fibo Car can 

actually be used in STEM education. 

2.2 Material science 

The car parts were made from 5mm acrylic plastic sheets, laser cut into pieces that would fit 

similar to cogged works. The plan was initially to 3D-print all parts in order to make the 

prototype look as much like an actual car as possible. However, it was pointed out that 

making the technology visible could be beneficial when presenting to investors. None of the 

3D printers available could print with transparent material such as acrylic. Additionally, using 

3D printing is very time consuming compared to laser cutting, the parts would likely be 

fragile due to their size, and drilling holes or cutting away material posed a significant risk to 

the structural integrity. The choice therefore fell on staying with acrylic plastic, in spite of the 

challenge of using 2D elements to build 3D shapes.  

                                                 
4
 http://www.lego.com/nb-

no/mindstorms/?domainredir=mindstorms.lego.com  
5
 http://brickset.com/sets/2916-1/MyBot  

http://www.lego.com/nb-no/mindstorms/?domainredir=mindstorms.lego.com
http://www.lego.com/nb-no/mindstorms/?domainredir=mindstorms.lego.com
http://brickset.com/sets/2916-1/MyBot


7 

 

Initially, clear tape was used to hold the pieces together because it provided a simple, cheap, 

and easily modified way of fastening pieces. Later, hot glue was used to get a more 

permanent, professional looking, and robust solution that also had ability to be reformed. For 

the sake of safe failing, permanent glue was only applied in the very final prototype before the 

parts were painted. It proved to be very important to be able to modify, improve, or redo the 

fastenings: pieces got broken, fastenings had to be strengthened, and access to electrical 

components often required that parts were disassembled. Choosing the ‘prototyping friendly’ 

tape and hot glue in the first stages, and permanent glue only in the very end, was in line with 

the mindset of incremental prototyping. Additionally, they were accessible, seemingly 

seamless, and quick to use when compared to using lock pins in holes, or bolts and nuts.  

 
Figure 2.1 Painted glue seam around connector 

 

2.3 Mechanics 

Due to the size of the prototype and choosing to use pieces of acrylic plastic for construction 

material, structural integrity was not an issue apart from when making sure the pieces stay 

connected. This was solved in unison with developing the part interface for electrical 

connection: the pin connectors held enough weight to support all parts except the F1 front and 

rear parts. Magnets had been previously looked into for aiding the orientation of the 

connectors (section 2 in (Reime et al., 2015)), but were deemed unnecessary when it was 

decided to not allow orientation of parts. When it became clear that the F1 front and rear parts 

could not be sustained by the pin connectors alone, magnets became relevant again and were 

embedded in the coupe sides and on the F1 front and rear walls. Originally, the idea was not 

to use magnets as a tool for avoiding wrong orientation, but rather for structural integrity not 

depending on mechanical connection. T-Maze uses the repulsion and attraction of magnets to 

let users know if the objects are connected with correct orientation (D. Wang, Zhang, & 
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Wang, 2011, p. 130) (Danli Wang et al., 2014). LittleBits Bitsnaps
6
 uses the same principle to 

avoid wrongful connection of electrical components, as described in section 2 in (Reime et al., 

2015). The final prototype contains the same function in that the magnets in the F1 front and 

rear parts repulse each other, making it impossible to combine these two parts. This it clearly 

out of line with the end product vision’s requirement of complete freedom in combination of 

parts. But because the prototype only has one ‘smart’ unit and the F1 front and rear parts 

serve no function when connected with each other, I deemed magnets for structural integrity 

to be a permissible solution for this prototype.  

 

Figure 2.2 Magnets on sides of center and F1 parts 

 

Even though the connectors in the final prototype served the desired specifications (easy 

assembly, structural integrity, and electrical connection), some ideation was done to improve 

upon the design in future prototypes: free orientation between parts was always assumed to 

become a requirement in the future. Note: this must not be mistaken with ‘free combination’ 

in the previous paragraph. Various concepts were sketched out during the length of the 

project, and some proved interesting for future development. Materials were ordered for 

prototyping, and a low resolution prototype was made: diametrically magnetized ring magnets 

were glued to a piece of bread board material with three soldered points. The points were 

connected to three wires on a slip ring so that the rings and points could rotate freely. Two 

identical prototypes were made to test the connection, but I underestimated the loss of 

magnetic force when the rings were suspended by the bread boards. In the end, it was decided 

to keep the old pin connectors in the prototype because the kit would not be able to benefit 

from a rotatable connection. New sketch designs were made based on the same components, 

                                                 
6
 www.littlebits.cc/accessories/bitsnaps   

http://www.littlebits.cc/accessories/bitsnaps
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but there were no more physical prototypes of free orientation. This minor prototype is 

included in the delivery of the final prototype. 

 

Figure 2.3 Left: Single magnetic ring connector. Right: Two magnetic ring connectors connected 

 

To design the structure of the physical car parts and the virtual models, Autodesk Inventor
7
 

was used for 3D modelling. As mentioned, the physical car parts came with the challenge of 

creating a 3D object from 2D pieces, namely the 5mm acrylic sheets. By making all the 2D 

pieces and assembling them in Inventor, it was possible to verify that each part could be 

assembled as intended, before printing any pieces with the laser cutter. It was also possible to 

create assemblies of all the car parts in various combinations to get a preview of what the 

physical kit would look like.  

 

Figure 2.4 3D model of assembled physical 

shells 

 

The most critical constraint regarding the parts was that the coupe needed to be able to house 

the circuit board, wires, and four connectors. Detailed 3D models of the circuit board and 

                                                 
7
 http://www.autodesk.com/products/inventor/overview  

http://www.autodesk.com/products/inventor/overview
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connectors made it possible to verify the size and placement of the components inside the 

coupe. After the second milestone, a LightBlue Bean
8
 was added to achieve wireless 

communication. This would not fit inside the coupe, and removable supporting brackets were 

made (figure 2.5).  

 

Figure 2.5 Supporting brackets and LightBlue Bean 

 

2.4 Electronics 

At the very heart of the prototype was the ability to identify car parts. During initial ideation, 

resistors came up as a means of creating a passive, measurable size for identification. The idea 

was to use thresholds to identify the parts. E.g. if the measured resistance in a given part was 

between 20 and 25kOhm, the system would recognize this as a specific car part. Other 

suggestions, such as RFID and various 3D scanning methods were discarded for the sake of 

simplicity and personal knowledge about the technology. (See Appendix A – document 

named ‘Prototype 1.0: Concept repository’) After some promising prototyping, I decided to 

move forward with this solution, and it remained throughout the project. Not looking into 

other ways of identification may seem out of line with the exploratory nature of the wayfaring 

mindset, but ‘never go home to early’ is another rule that certainly applied in the case of 

resistors. Later in the project, work was done on exploring other ways of identification, 

specifically how to send data directly between parts (see section 2.5).  

Ability to interact with car parts to enhance appearance or performance in the gameplay was a 

key part of the product vision. This was an optional function to be included in the prototype 

only if appropriate. It turned out that resistors were ideal for this: using potentiometers and 

switches as part of the identification of resistors, they would bring the measured resistance 

                                                 
8
 https://punchthrough.com/bean/ 

https://punchthrough.com/bean/
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from one threshold to another, effectively swapping car parts virtually while keeping the same 

physical part. A side-version of the first prototype used a switch to change the 3D model of 

the engine, while potentiometers changed from small to large wheels (figure 2.6). In the final 

prototype, only the wheel-changing attribute was kept because there were no more available 

resistor thresholds. It is noteworthy that the original decision to base the system on something 

as physically basic as resistance was partly reason why the system had such a flexible nature. 

If a more ‘high tech’ solution had been chosen, modification and improvement of the 

prototype might have proven significantly more difficult. 

 

Figure 2.6 Wheels changing size by tangible input of turning 

potentiometer (arrows) 

 

One of the first priorities of the project, after having decided to go forward with resistors, was 

how to develop a connection between parts. I developed a principle for measuring resistance 

across a three pin connection, and the first physical prototype built on LittleBits connectors 

(figure 2.7). The principle was designed so that other ‘smart’ parts could be created based on 

the exact same connectors, but the coupe remained the only car part with ability to recognize 

other parts (i.e. measure the resistance in a neighboring part). This was an important finding 

early in the project, and a result from using simple and fast probing. One of the earliest 

prototypes was built on this principle and is described more in detail in week two in (Reime et 

al., 2015). The remaining components of this prototype are included with the final prototype.  
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Figure 2.7 LittleBits Bitsnaps over paper drawing showing 

principle for measuring resistors 

 

A key aspect of the system was using only one analogue port for measuring the resistors in all 

connected parts. This required the ability to decide which connector was active at any point. 

The solution was to make a circuit board containing a shift register and transistors. Detailed 

description of the board is found in (Reime et al., 2015). The entire solution of the electrical 

system was made to fit an eventual combination with the LightBlue Bean, which it did 

successfully after significant modification (see section 2.6).  

2.5 Mechatronics and computer science 

There were two major components in the prototype related to computer science: the code used 

to program the microcontroller for measuring resistors and sending data; and the code used to 

receive data from the microcontroller, process the data, and present the structure of the car in 

a 3D model format.  The first prototype used an Arduino Uno
9
 connected by wires to all 

components inside the coupe. Processing 2.2.1
10

 was used to receive and analyze data from 

the coupe, and display the 3D models corresponding with the physical structure.  

After the first prototype was finished, the project owner made a list of prioritized functions 

that were to be attempted to include in the prototype before the Investor Day, i.e. the third 

milestone. The function of highest importance was wireless communication with a computer, 

and this posed some major challenges for the identification system: a LightBlue Bean was 

chosen as wireless microcontroller platform, while the first prototype used Arduino Uno with 

USB connection directly to a computer. The major advantage of using a Bean was that it 

contained the same type of microcontroller (ATmega328p
11

) and was programmable in 

Arduino Java program. Thus, the specified interface between microcontroller and computing 

unit would require minimal change to the modular architecture (Sanchez & Mahoney, 1996, 

                                                 
9
 http://www.arduino.cc/en/Main/HomePage 

10
 https://processing.org/ 

11
 http://www.atmel.com/devices/atmega328p.aspx  

http://www.arduino.cc/en/Main/HomePage
https://processing.org/
http://www.atmel.com/devices/atmega328p.aspx
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p. 66). Other ways of wireless communication were briefly explored (transceivers, XBee
12

), 

but the Bean was deemed superior for its prototyping friendliness and compatibility with the 

system. The first major challenge presented itself when it turned out that Windows 8.1 OS 

(Operating System) protocols did not allow setting up virtual COM ports (Communication 

port). The solution was to switch to a computer with OS X. As a consequence, the prototype 

became unable to function on a Windows OS. This posed a limitation in presentation of the 

prototype because any computer using Windows could not run the software. The time cost of 

developing a system with a different way of wireless communication would likely have been 

exceedingly higher.  

The first prototype used direct link from car parts to computer, which meant that the sending 

and receiving of data was stable and fast. Although the codes in the first prototype and the 

Bean were identical at first, they measured different resistance values on identical resistors. 

Additionally, there was a vast reduction in the number of resistor thresholds available for 

different parts. The most harmful effect, however, was that some car parts affected the 

measured resistance in other car parts, thus making some specific combinations malfunction. 

(It was later suggested that this was because the analogue gates were not automatically 

grounded in the Bean, something I had no knowledge of at the time.) As a consequence, major 

modifications were needed in the Processing code, Bean code, in-part resistors, and even 

circuit board: a new series of algorithms in the Processing code  actively changed the received 

data before going through the ‘part recognition’ algorithm; the Arduino code in the Bean was 

changed from continuously measuring and sending data to only sending data at timed 

intervals if three sequential measurements were identical, thus filtering out spikes or 

individually different measurements; new wires on the circuit board bypassed critical 

components in the first prototype; new resistors with larger span between resistance values 

were placed in the external car parts. The wires were made from jumper wires with headers so 

that the bypass could be removed by hand if it became necessary to go back to Arduino 

(figure 2.8, left). But although the system worked after all these modifications were done, it 

became impossible to completely revert to the old setup from the first prototype in case the 

Beans failed. This was a significant risk that involved much time spent developing the 

algorithms and lacked the option to fail safely. It was nevertheless necessary to achieve the 

critical function of wireless communication. Also, at the time, it was seen as creating a totally 

new prototype that happened to use some of the same components as the first prototype.  

                                                 
12
 http://www.digi.com/lp/xbee/  

http://www.digi.com/lp/xbee/
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Figure 2.8 Left: Circuit board bottom side. Right: LightBlue 

Bean. 

 

After having confirmed that the LightBlue Beans were suitable as wireless platforms, time 

was taken for a digression into an alternate way of intercommunication between car parts. 

While resistors proved to be a successful means of identification, its limitations in terms of 

available thresholds meant that it was likely unsuitable to be a part of the end product. Direct 

sending of data between parts appeared to fit well with the learnings from the resistor based 

prototypes, and it was decided to explore using Inter-Integrated Circuit, also known as I2C, 

for data exchanging between microcontrollers. I2C utilizes a ground port and two specific 

analogue ports called SDA (Serial Data) and SCL (Serial Clock). SDA and SCL can be found 

on both Arduino Uno and Bean. To avoid the risk of I2C failing on Beans, Arduino Uno was 

first used to learn how to use I2C: two Arduinos were connected and used I2C to 

communicate with each other (figure 2.9 left). Each Arduino was connected to a computer for 

monitoring the data transfer on their serial monitors. If implemented in the prototype, the 

connectors between objects would require three pins similar to the resistor connectors. But 

orientation of the pins would not be the same, which pointed out how symmetry also needed 

to be taken into account in the future.  

The first test using Arduinos and I2C was successful, and the next step was to start using 

Beans. One of the Arduino Uno’s was switched with a Bean (figure 2.9 middle). The Bean 

sent the serial data over Bluetooth for monitoring, and the system worked just like before. 

Another Bean was promptly added, removing the Arduinos from the setup (figure 2.9 right). 

The data exchanging worked flawlessly there as well, confirming that I2C could be used for 

inter component communication on the Beans. In addition, the Beans used principally 

identical codes. This was necessary in order to deviate from the ‘master component-slave 
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components’ relationship found in other tangible programming products. This deviation in 

development of the final prototype served mostly as a probing into future possibilities, but it 

also pointed out potential challenges in the future. E.g., how to cycle between which 

connectors are active at any point. The scalability of I2C was not a coincidence, and again 

prototyping with safety to fail and ability to scale led to success. Much of the ideation and 

development that followed was based on using I2C or a similar technology for 

intercommunication. At the end of the project, this concept remained the most promising for 

future development.  

 

Figure 2.9 Iterations of I2C. Left: Two Arduino Unos. Middle: Arduino plus Bean. Right: Two Beans 

 

2.6 User interface design 

While most of the solutions developed during this project are invisible to most users, the core 

goal of the whole project was still to convey a concept to a user or investor. Therefore, certain 

decisions that may seem arbitrary to this point were in fact ultimately made to accommodate 

the user experience. The three pin connectors supplied electrical connection and structural 

integrity, but they were also designed for simple assembly of car parts. Apart from the script 

initializations, the part of the Processing code needed to import and convert the data from 

Arduino is only nine lines: 

while ( StrFromArd.available() > 0) { 

  myInts = StrFromArd.readStringUntil('\n');  

   

  if (myInts != null) {  

    //Splits myInts into array of strings 

    String[] SplitMyInts = split(myInts, ";");      

     

    for (int i = 0; i <= 3; i++) { 

      //Converts the array of strings into array of ints 

      float floatVal = Float.parseFloat(SplitMyInts[i]); 

      intVal = int(floatVal); 

      Base[i] = intVal; 

    } //for i 

  } //if 

  println(Base); 

} //while 
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The remaining 76 lines of the Processing code consist of algorithms for placing the correct 3D 

models in a presentation window (Appendix C); the algorithm for receiving data was simple 

and small by comparison. If the goal was to create a prototype able to receive simple raw data 

from the physical prototype and not a presentation friendly prototype, the project would never 

have required these algorithms to be made. The two sets of 3D models (one to make the 

physical car parts and one loaded in Processing to present structure) did in no way affect the 

core technology apart from how the components would fit in the car parts: the models and 

parts could just as easily have been of boats, cities, molecules, or anything module based. The 

very last modifications to the prototype were focused on making the final prototype 

presentable: a removable supporting bracket for the Bean was needed for simple battery 

replacement; a coat of red paint (issued by the project owner) with silver and black details 

made the previously transparent prototype look more like an actual toy car.  

The only facet of the final prototype that I was unable to improve the user experience in, was 

the interaction with the necessary software on the computer: the Bean required the Bean 

Loader
13

 application for accessing the Bean. This did not integrate with Processing, and both 

programs had multiple ‘bugs’ that could make interaction with the prototype very difficult for 

an untrained user.  

2.7 Final Prototype vs. Product Vision 

The vision for the end product describes a complex system of car parts that all communicate 

with each other and a computer simultaneously (Appendix E: Initial Product Vision). As 

explained in section 2.1, this is a new concept compared to other tangible programming 

products, which are primarily based around a central module that does all the identification of 

parts and communication with computer; without the central module, the system has no 

function. On the surface, the final prototype is identical with such existing solutions in that 

the coupe is the only ‘smart’ part that identifies other objects and communicates with the 

computer; the other parts only contain resistors, making them passive. What differentiates this 

prototype from existing products is that it contains features intended to give all the parts 

ability to identify and communicate: the connectors and electrical connection principle were 

initially designed for having an ohmmeter and resistor on each side of the connection (figure 

2.7). This was a deliberate design meant to make it easier to create new ‘smart’ car parts in 

the future. Naturally, one such part had to be made before an entire system could be in place. 

                                                 
13
 https://punchthrough.com/bean/bean-ios-loader/  

https://punchthrough.com/bean/bean-ios-loader/
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But the project progressed always with the expectation that additional ‘smart’ parts would 

require too much time for developing and integrating with the existing prototype. Thus, the 

prototype was deliberately designed for potential expansion, even though it seemed unlikely 

that it would occur. Clear distinctions can be made between how the final prototype works 

and which functions that are needed in the end product. This can in fact be seen as an 

advantage when presenting to investors: sharing and showing off technology before a patent is 

secured can give investors the impression that the company does not sufficiently protect its 

interests.  

2.8 Design flaws in final prototype 

While the system operated at a satisfactory level upon completion, mistakes were made 

during the process, and some design flaws deserve to be commented on. 

When designing the placement of the pin connectors on the car parts, the assumption was that 

they would have enough strength to support all suspended parts through this connection only. 

This was true for the first set of car parts, but the F1 engine and rear needed extra support. If 

the connectors had simply been oriented vertically instead of horizontally or placed higher on 

the walls (given enough room for the circuit board), I believe they would have supported all 

parts. However, it did lead to the inclusion of magnets in the parts, which answered the 

concern of if magnets would interrupt the electrical or Bluetooth signals. They did not, and it 

proved a valuable opportunity to explore using magnets in the future. Another design flaw 

regarding the connectors was that car parts can be attached up-side-down without the virtual 

model changing the orientation of the part. This could have been avoided by making it 

physically impossible to attach parts up-side-down, although I believe it is a negligible fault.  

As mentioned in section 2.4, when modifying the prototype to use Beans, the circuit board 

needed new wires to bypass certain components. The wires were made with headers for easy 

removal of the bypass, which made it necessary to place them on the visible side of the circuit 

board. These visible wires do not contribute to the appeal of the prototype, and a more elegant 

solution should have been found.  

The very last modification of the final prototype was the painting. The Project Owner wanted 

a more toy-like look on the final prototype, and the prototype received coat of red and black 

paint with silver details. This task was saved for the very last because any other task would 

have to wait until the paint had dried. In the end, the prototype did look more realistic, but the 

paint job could have been improved greatly if more time had been available.  



18 

 

  



19 

 

3 Publications to ICEC 2015 

3.1 Preface for papers 

The following two chapters contain the papers accepted for publishing at the ICEC 2015. The 

first is a demonstration paper where concepts related to entertainment computing is described. 

The second paper is a poster paper where the process used in the six weeks is described in the 

paper along with a poster (Appendix B). Both the physical prototype and the poster will be 

shown at the conference. Both papers function as subchapters of this chapter 3.   

The papers are presented as similar as possible to their original Springer format, though some 

minor alterations in paragraph length may occur due to formatting differences.  
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Abstract. The Fibo Car is an example for a game interface that allows a user to 

modify a virtual car in a racing game through assembling tangible car parts. 

This paper describes the 6 week development journey towards a fully functional 

proof of concept prototype, reflections on the process as well as the technical 

details of the prototype. 

1 Introduction 

The basic idea of the Fibo Car game project is that the player can construct a real 

world car model out of tangible building blocks. The structure of the model is 

digitally recognized and it influences the properties of the virtual model in the car 

racing game.  

In this paper we focus solely on the development of the tangible objects, the 

structure recognition, and a virtual representation without any gameplay. The game 

idea is related to games like Kerbal Space Program [1] or Besiege [2] except that the 

constructing takes place tangibly like in LEGO Mindstorms [3]. 

The solution presented here has one central part that can detect the attached 

neighboring parts. The identification is realized by measuring and identifying part-

specific resistances with an Arduino Uno microcontroller board [4] wired to a PC. A 

virtual representation of the identified tangible model is then shown on a screen. The 

latest version of the prototype is shown in figure 1. 

The upcoming section describes the development journey of the first 6 weeks. It 

includes failures, dead ends, and gives reasons for the actions taken.  We concentrated 

on development speed using a process with rapid iteration cycles in favour of fast 

learning and quick improvement without project control by predefining requirements 

and a priori budgeting. 



 

 

Fig. 10. Latest proof of concept prototype showing the tangible model in a) and the 

corresponding virtual representation in b). All available tangible car parts of the latest prototype 

are shown in c). 

2 Development Journey  

The project started with a presentation of the basic game idea by the problem owner 

to the developers. The aim was to reach a common ground on the project vision and 

the reasons behind the idea. This initiated a brainstorming about possible solutions. 

The main challenge was perceived to be the structure recognition. Therefore, we 

started by exploring possible technical solutions on paper. When considering radio 

communication and information through light signals, measuring resistances turned 

out to be the easiest to develop and cheapest alternative. Concerning the algorithm for 

structure recognition, we realized that it is simpler if each car part is only detecting its 

nearest neighbor instead of all parts detecting the entire structure.  Therefore, 

resistance identification and neighbor detection were chosen to be pursued. The 

resistor solution was tested with resistors on a solderless prototyping board measured 

with ohmmeters. The principle was confirmed as functional. The idea here was to 

make sure as early, simple and fast as possible that principles worked with 

components already available in the lab in order to minimize the amount of time 

wasted in case it did not work. In the beginning of the second week of the 

development journey, we determined that we require three electrical connection 

points for connecting two car parts. This fit with the already existing BitSnap 

connectors [5] that had three electric connection points. They used magnets and their 

own shape to ensure a consistent and non-ambiguous electrical connection. Those 

BitSnap connectors were designed to be soldered onto a circuit board, and solderless 

prototyping boards were too large to fit into the car parts. Knowing that the principle 

worked, we decided that spending time for manufacturing a soldered circuit board 

version was a safe investment. The result is shown in figure 2 on the left. From this 

prototype we learned that the BitSnap connectors were mechanically not rigid enough 

to support the weight of the car parts. Furthermore, the connectors were not 

symmetrical, meaning that only matching pairs were combinable. This was in conflict 

to the fundamental idea of allowing any given car piece to connect. Anyhow, the 

structure recognition technically worked. Therefore, we continued developing the 

remaining critical functions such as measuring the resistors with a microcontroller, 

sending this data to a PC and displaying the measurement on a screen. We decided to 

not bother with improving the connectors at this point in time to save time towards 

achieving the critical functions of our envisioned game idea. The microcontroller 



 

measurement was prototyped using an Arduino Uno because it is easy to develop, 

immediately accessible in the lab, and already offers the software to display the 

results of the measurement on a computer screen. After merging the existing 

development stages and fulfilling the critical functions as early as possible (digitally 

recognizing a structure of mechanically attached objects, transferring this data to a 

PC, and displaying it) we could now focus on improving the existing solution. During 

week three, we intended to focus on shrinking the Arduino microcontroller solution 

to a size that is suitable for embedding in a car part. Light Blue Beans [6] appeared to 

be a suitable solution that is already available in the lab. They also had the advantage 

of replacing the wire connection between the Arduino and the PC by wireless 

Bluetooth communication. One upcoming problem with Light Blue Beans was that 

they only have two analogue inputs. This lead to the use of shift registers to channel 

many measurements through few input pins on the microcontroller. The shift register 

also work in combination with the Arduino Uno and the Arduino was kept because it 

is more convenient to program. 

 

Fig. 11. Left: the resistances on the connected circuit boards in the middle are unique for each 

connection and measured by ohmmeters. Right: two sequent designs of a mechanically more 

stable connector. 

Week four started with developing mechanically stronger and symmetrical 

connectors. This was implemented by using larger and stronger magnets and using pin 

connectors to further stabilize mechanically. The first design is shown in figure 2 in 

the top right. However, this design turned out to be impossible to connect to an 

identical connector because the magnet orientation would not match. It required a 

matching counter piece and was thus no improvement to the previous solution with 

the BitSnaps. The bottom right design solved this problem. This design flaw was 

discovered by building and testing the design in a very rough way instead of 

technically drawing and machine producing the parts. This decreases the risk of 

design errors and thereby saves more costly resources at a later development stage 

when such errors have more profound implications. 

 All electrical components were now on two large breadboards that required a lot 

of space. The components had to be merged on one platform so that they would all fit 

safely inside a physical shell. This was accomplished by soldering all components 

(transistors to control a shift register, reference resistors and header connectors) 

compactly onto a custom circuit board. 



 

The next issue to be tackled was to advance the virtual representation from a line 

of text to a car look-a-like representation. We took two approaches into account:  The 

first was a photograph based version where the PC would display a corresponding 

picture for every possible combination of parts.  The second was using 3D models for 

representation of the car structure. We decided to develop the second option because 

the number of pictures needed for the first was inconveniently large when scaling up 

the number of car parts. We used Processing [7] to process the data coming from the 

Arduino, determining the structure and displaying the models on the PC screen. The 

system was first tested by displaying a rocket and a chair as substitutes for the virtual 

car model. Only after verifying the concept, we continued to make virtual 

representations of the car parts using a CAD software and importing those models to 

Processing. After confirming that Processing was a reasonable option for displaying a 

digital representation, week five began by drawing the car model parts and 

implementing them within Processing. At the same time, we also pursued the 

implementation of Light Blue Beans to make the physical model wireless. However, 

we experienced that Windows 8.1 did not allow importing serial data via Bluetooth. 

We could not instantly resolve this problem with the resources at hand and therefore 

decided to move back to the proven technology to not lose more time with this issue. 

During week six we explored switches, buttons and potentiometers as extra tangible 

inputs to alter the car parts. Since the gameplay did not yet exist, the visual 

representation was the only possibility to make adjustments to. We showed that this 

extension was technically functional and could also be used to change non-visual 

properties in the game later on. But there was no meaningful reason to develop 

something further that had no use at the current development stage. Therefore, we 

stopped after the proof of concept and continued to make a laser cut physical car 

model in acrylic. The acrylic car model was combined with the existing technology 

and combined all aspects from physical model to structure recognition and virtual 

representation. Figures 1 show the prototype after these six weeks of development.  

3 Reflections on the development process  

It turned out that our process was very similar to the wayfaring process described by 

Steinert and Leifer [8]. Both processes are largely based on rapid iteration cycles of 

design, build and testing ideas as early and quickly as possible. We tested the most 

critical functions with the resources that are readily available in the lab to fail early 

and mitigate the risk of losing advances that become unusable due to a later design 

changes. The early testing lead to learnings that shaped the development journey; the 

design emerged over time.   

4 Detailed description of the latest prototype  

The final prototype consists of one central part connected to a PC, and four external 

objects that can be attached to the central part. The central part has four connectors, 

one on each vertical side, on which external parts can be attached; each external part 

has only one connector. When no external parts are attached to the central part, a 3D 

model resembling the central part is displayed on the connected PC screen. Upon 



 

attaching an external part to the central part, a virtual 3D model resembling the 

attached part is automatically updated. 

The identification of the neighboring car parts is achievedby the measurement of 

resistors through the connectors on the sides of the car parts. All connectors are made 

from 4 pin headers where two alternating pins are pulled out (see figure 2, bottom 

right). In the external parts’ headers, a resistor is placed with one pin hole between its 

two legs. In the central part headers, two wires are connected to the female pins that 

the external connectors will fit into. Thus, when an external part connector is 

connected to a central part connector, we get a closed loop that runs through one wire 

into one of the central part header pins, through the male pin on the external part 

header, through the resistor, and back across to the other wire. This design is made 

with the intention of having multiple ‘central parts’ in the future that can measure 

each other’s resistors. So far in this prototype, the central part pins that connect to the 

external header serve only for structural integrity.  

The connector wires are connected to an analogue gate and ground on an Arduino 

Uno. The Arduino is able to calculate the resistance between ground and the analogue 

gate by comparing it to a reference resistor between its 5 volt supply and ground. 

Because there are four connectors and we use only one analogue gate, a shift register 

is used to control which connector has current at any time. The shift register is placed 

on a custom made circuit board along with the reference resistor, four transistors, two 

rows of headers for the connector wires, and a series of headers for easy connection of 

wires from the Arduino. Three wires connect three digital pins on the Arduino to the 

shift register. The shift register is connected to the gate pins on the transistors which 

open the current through the various connectors. Thus, the loop through ground, 

resistor, and analog gate is controlled. The circuit board is placed inside the central 

part and connected to the Arduino through a total of six wires (three digital, 5V, 

ground, and analogue). 

When measuring the resistors, the Arduino uses as sequence of North, West, South, 

and East when the central part is seen from above. For each measurement, the value is 

serial printed, and a semicolon is added between the values. Processing 2.2.1 imports 

the string through the COM port on a PC. Before Processing can use the data for 

anything, it must convert the string into integers and store them in an array. The 

semicolons act as delimiters for the values. Processing then takes each value in the 

array and compares it to a set of thresholds.  

Processing displays a rotating 3D model resembling the central part in a window. 

Depending on which interval between thresholds a certain measured value is, 

Processing displays a corresponding 3D model next to the central part. The correct 

position is acquired by the position of the value in the array, thus the reason for the 

compass sequence in the Arduino.  

All 3D models are made in Autodesk Inventor [9] and converted into an .obj 

format. Processing loads the models in the setup of the script, and only displays them 

when receiving not NULL values from the Arduino.  

The physical objects are made from laser cut pieces of 5mm thick acrylic plastic 

sheets. All pieces are modeled and assembled in Inventor before converting to a 2D 

format fit for cutting. The pieces are then assembled together with circuit board, 

central part connectors, and external connector. The pieces are held together with hot 

glue and clear tape so that broken pieces can be removed and retrofitting is easier. 



 

5 Future plans 

In the near future, we will focus on improving the existing prototype by including 

wireless communication, universally orientable connectors, alternate modes of inter-

object communication, more than one ‘smart part’, and how to merge our tangible 

programming prototype with actual gameplay. We will continue to use a wayfaring 

mind set as we are satisfied with the results it has yielded so far. Looking further 

ahead, developing and testing of real gameplay is needed before we can undergo user 

testing and subsequent reiterations. 
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Abstract. This paper proposes a wayfaring approach for the early concept 

creation stage of development projects that have a very high degree of intended 

innovation and thus uncertainty. The method is supported by a concrete game 

design example involving the development of a tangible programming interface 

for virtual car racing games. We focus onto projects that not only have high 

degrees of freedom, for example in terms of reframing the problem or iterating 

the final project vision, but are also complex in nature. For example, these can 

be projects that allow for the exploration and exploitation of unknown 

unknowns and serendipity findings. Process wise we are primarily focusing 

onto the early stage that precedes the requirement fixation, which we see as 

more dynamic and evolutionary in nature. The core conceptual elements that we 

have derived from the development experiences are: simultaneous prototyping 

in multiple disciplines (such as computer science, electronics and mechanics 

and engineering in general, abductive learning based on the outcome of rapid 

cycles of designing, building and testing prototypes (probing), and the 

importance of including all the involved disciplines (knowledge domains) 

from the beginning of the project on.  

1   Introduction 

To innovate incrementally is hard, to innovate “radically” harder still. Many an 

engineering project is fixating their requirements very early and then focus onto 

executing these predefined (and often unproven) specs as fast, as good, and as cost 

effective as possible. The usual outcome is a cost and/or time overrun if the 

innovative specs are to be met or a decrease in result quality. In a sense people 

perceive the innovation game often as a game under certainty with fixed variables and 

attribute values, fixed rules and thus predictable outcomes, hence it can be modeled, 

simulated and optimized. We argue that the innovation game is a game under 

uncertainty, with unknown unknowns that need to be discovered, evaluated and then 

discarded or embodied. The game is also played in a dynamic environment 

(opponents may counter and react) and even the rules are technically not fixed  - take 

the Kobayashi Maru test situation as an example. 

We argue that the development of highly innovative/uncertain and products is 

rather like an exploration journey. You have a vision where you want to end up and a 



 

general idea where your project is heading. However, neither can you know all the 

“moves” required to get there, nor can you accurately anticipate the effects and 

responses that one move will have in the future. Your expertise is your toolbox and it 

greatly helps in “playing your way through the project”. Nevertheless the project is 

dependent on many unforeseeable events. In fact unknown unknowns (variables that 

are part of your problem/solution that you are neither aware off nor do you know their 

value) arise, serendipitous events present themselves, turning a complicated problem 

into a complex one - too complex to be planned out beforehand. We subsequently 

argue that sequential process models are not fitting for any innovative projects. [1,2]. 

The reference case [3] of designing a tangible game interface for racing games is 

used to extract reoccurring patterns during the design process and propose a method 

based on the experiences [4,5] 

Our proposed method is based on abductive learning [6,7,8] and includes all 

involved disciplines from day one. This wayfaring model based on Steinert & Leifer 

[9] aims to allow the rapid requirement dynamics that become necessary during the 

development process. 

2   Use of Wayfaring in the Example Case 

Our example case is based on the vision of developing a physical car model as a 

tangible interface for manipulating/shape a digital car model in a virtual car racing 

game. A description of the project and the technical solution can be found in [3] This 

vision as an overarching goal was given to the developers instead of a precise list of 

requirements on how the technical solution is supposed to look like and the project 

architecture was allowed to emerge. This meant that the space of possible solutions is 

open, ambiguous and uncertain. In our example case, the problem became to identify 

car parts in the physical model that are attached to each other and to recognize the 

assembled structure. We explored the solution space by trying to come up with as 

many possible solutions to the problems as possible (divergent thinking). Possible 

ideas for solutions included measuring resistance, power dissipation of wireless 

communication devices or pulsed light communication for identifying connected 

pieces. For determining the structure we looked into a centralized structure with one 

central part that collects the data from all assembled parts and a decentralized 

structure that only required the detection and identification of neighboring parts. 

However, with no, or only little, experience it is unknown to us which of the 

suggested ideas was feasible to pursue. We call these unsolved uncertainties 

unknown unknowns because these open questions emerged during the development 

process and were in itself unknown to us before engaging the problem. We argued 

that resistors were the cheapest, simples and most reliable proposition and that just 

detecting neighboring car parts simplified the algorithm. Furthermore, having to use a 

specific center part restricted the liberty of freely using any car part separately in the 

virtual game. However, these are only arguments based on limited experience and in 

order to converge on the most promising proposal one has to build and test ideas to 

gain new knowledge. This repeating cycle of divergent and convergent thinking with 

designing, building and testing ideas is called probing. The probing cycles lead to 

abductive learning where the test result leads to design requirement changes and 



 

ideas for the next probing cycle. In our case, we realized that the measurement of the 

resistors fluctuates significantly. This lead to changes in the programming of the 

microcontroller that processes the measurement. The abductive learning from 

repeating cycles of probing leads to a wayfaring of opportunistically finding one’s 

way through the project. This means that the test results of the last probing cycle 

shape the future development. Figure 1a) shows the first test of the resistor principle. 

There we discovered that the idea is feasible and that three electrical connections 

between car parts are needed. This lead to the development of the setup shown in 

figure 1b) that uses BitSnap connectors that serendipitously already had exactly three 

electrical connections and allow the user to easily manipulate the physical car model. 

Testing these BitSnap connectors revealed that these are mechanically not sufficiently 

robust and not genderless, thus limiting the combinations of mountable car parts. This 

learning resulted in the development of the customized connectors shown in figure 1 

c) and d) where the first version in figure 1c) turned out to be also not genderless and 

subsequently lead to the development of the second version in figure 1d). This train of 

subsequent probing cycles showcases the wayfaring journey that can be successive or 

dead ended. 

Progress is achieved by the emergence of new ideas as a result of previous probing 

cycles. Therefore, it is important to minimize the time spent and to maximize the 

learning outcome for each probing cycle. This accomplished by concentrating on just 

testing the critical functions by building a low resolution prototype that is reduced 

to the properties that are necessary to only test the critical function. An example for 

this is the testing of the resistor principle as it is shown in figure 1a). The critical 

function was to find out how resistors can be used to identify connected parts 

unambiguously. To save time we compromised robustness, automation of the 

measurement, looks and compactness of the system to focus only on the critical 

function and thus used prototyping boards, header wires and ohmmeters that were 

readily available in the lab.  

 

 

Fig. 1. a) first test of the resistor concept, b) testing with the BitSnap connectors, c) 

failed version of universal connector, d) successive version of a universal connector. 

 



 

Imposing this train of thought to the entire project yields that prototypes that fulfill 

critical functions within different disciplines are merged as soon as they are available 

to test the system at large. The aim is to test and discover interdependencies. In our 

case, we combined the resistance measurement with a microcontroller, the 

information transmission to a PC and the virtual representation on the PC screen as 

soon as they were available in their most rudiment form. This means that all 

components from possibly different disciplines need to be prototyped 

simultaneously. Testing the entire system creates an interlaced knowledge between 

different disciplines. The structure recognition algorithm for example influenced the 

shape of the connectors and these changes had to be made in agreement with 

mechanical design of the car parts. This was possible because the developers of all 

disciplines were integrated from day one. 

3   A wayfaring approach to early stage concept creation 

In this part we describe a method that we derived from the project described above. 

The method has potential when finding and tackling previously unsolved engineering 

design problems that have no known existing solution. These problems are not 

necessarily complicated but rather complex according to Snowden and Boone [10]: 

they cannot be solved by asking experts to plan the final solution because they require 

the use of previously unproven and maybe even unknown concepts. In this context the 

development process becomes a wayfaring journey where the path towards fulfilling 

the vision emerges from making educated guesses and testing concepts, rather then a 

navigation journey along predefined waypoints. An optimum solution cannot be 

predicted when doing things that have never been done before. This method concerns 

only the early part of product development, the fuzzy front-end of concept creation, 

where the requirements of the product are not yet fixed. Figure 1 depicts such a 

wayfaring-inspired product development journey. This is a systematic and heuristic 

approach to developing something radically novel. The path to the end result will only 

be explored and discovered during the project. The journey consists of many probes. 

A probe is a circle of designing, building and testing of an idea or a prototype. In the 

figure 2, probes are depicted as multiple circles and may contain branching of ideas 

and prototypes on a multidisciplinary level or even dead ends. Each circle level 

corresponds to a role or a discipline in the project. At first, the team takes the best-

guess direction based on the initial vision. Through multiple probing and prototype 

cycles the team then tries to find the big idea worth implementing. This journey can 

be long or short, but the main point is to learn fast with low-resolution prototypes. 

Through these prototypes one develops the requirements dynamically as perception of 

the problem and the vision of the solution will change during the journey. In a 

nutshell, we increase the degrees of freedom in the early design phase, develop 

requirements dynamically, and only then switch into classical engineering/project 

management mode. 

While researching radical innovation projects, our chess analogy is lacking because 

in chess it is theoretically possible to calculate the move with the highest probability 

of winning the game. However, in the product design “game” the possible future 

moves, players, even the boundary conditions are often neither comparable nor 



 

foreseeable. There are unknown unknowns that create opportunities for extremely 

innovative solutions but also prevent us from predicting or simulating an optimum 

solution. In this analogy, the rules of the chess game can change without notice and 

we can only provide a journey overview in hindsight, roadmaps do not apply. The 

Hunter-Gatherer model by Steinert and Leifer [9] and Ingold [11] inspired this 

wayfaring concept. 

 

Fig. 1. Wayfaring journey in product development.  

 

Many of our engineering problems are multidisciplinary and require 

interdependent knowledge between disciplines that cannot be covered by individuals 

or homogeneous teams. Two or more disciplines of the project are interdependent 

when design changes in one discipline lead to requirement adaptation in at least one 

other discipline. We argue that including team members or at least domain 

perspectives from all involved disciplines early in the project helps to reveal desirable 

and undesirable interdependencies already in early decision making phases. Even if 

actual deliverable input from every member is dispensable early on, the benefit of 

learning early overcomes the cost of participation. One of the greatest threats in new 

product development is the fear of failure [12]. According to Snowden [10] safe 

failing is identified as one of the cornerstones while innovating in the complex 

domain. The interlaced knowledge, developed through sense-making and 

justification of ideas to the other involved disciplines, is also beneficial when 

designing within one discipline while having the entire system in mind and thereby 

knowing when the other disciplines need to be taken into account and their input is 

needed [13]. This is a skill that can only be learned when combining all involved 

disciplines from the first day of the project. 

The nature of trying out new concepts entails that outcomes cannot be guaranteed 

and some problems, opportunities and interdependencies are difficult, if not 

impossible, to foresee. When trying out something never attempted before we can no 

longer base our assumptions on past experiences and unexpected discoveries can 

arise. Snowden calls these discoveries unknown unknowns because we unknowingly 



 

discover something previously unknown [10]. In order to achieve these unexpected 

discoveries new experiences must be created from probing ideas. One of the ideas of 

probing is therefore to build and test prototypes that create completely new 

knowledge – knowledge that is impossible to accurately anticipate regardless of what 

our expectations may be. The concept of probing is depicted in Figure 2. Each probe 

is a prototype where new knowledge is deductively, inductively and/or abductively 

created and tested. The vision and requirements are then evolving dynamically until 

they are locked. The development cycle is executed through different roles of 

disciplines. Each probe is ideated through divergent thinking where open questions 

are asked in order to stimulate the creative process followed by convergent thinking, 

that evaluates and analytically benchmarks the ideas through proof-of-concept 

prototypes. The interesting interlaced knowledge lies in the boundaries of the 

different disciplines and presents the potential for serendipity discoveries. 

 

 

Fig. 2. Probing cycle  

 

To continue with the chess analogy, we do not expect to win if we must plan all 

our moves (and anticipate the opponent’s) in the beginning. However, if allowed to 

experiment and revert moves a thousand times during the game, it will quickly 

become a game of probing (or prototyping) multiple moves. Through not following an 

optimal game strategy, this will eventually lead to overall winning the game in case of 

a complex game scenario. Because the cost of probing is minimal, it allows us to 

explore opportunities that are not immediately perceived as profitable. It leads to 

moves that would normally not be taken, to discoveries that are normally not found, 

and may potentially lead to surprising and highly innovative ways of winning the 

game. Therefore, the aim must be to make the probing and the learning of ideas as 

low-risk (i.e. fast and cheap) as possible in order to create the experience needed to 

reflect, to understand the outcome, and then abductively reason and opportunistically 

choose the next step [14].  



 

 The notion is to put the focus on testing the most critical functions, thus leaving the 

development of the “nice to have” add-ons for later. It is preferable to utilize the 

resources for discovering the essentials and preferably fail there early. The probing 

removes uncertainty and an undiscovered problem is revealed before it forces 

undesired requirement changes at a later stage [15]. The testing usually involves 

building a low resolution prototype with the intention to either find the critical 

function or to build a prototype for user testing in order to avoid developing into an 

unnecessary direction. Low-resolution prototypes can be anything from cardboard 

models to Arduino hacks to proof-of-concept prototypes. Often developers have 

major problems in failing. Low-resolution prototypes in very fast iteration rounds do 

not resemble the finished object and are thus one way to allow and speed up 

experimentation. It seems to be inherent to human nature to fear failure, thinking it 

will cost too much. This can lead to a non-willingness to take risks and make 

cooperation hard with people from other disciplines. This skill of creative competence 

[16,12] does not come naturally. This is why changing the mindset into one that 

favors building prototypes with the option of failing safely before planning is critical 

while developing new concepts. Hence, despite the natural fear of failing, the mindset 

should be biased towards building low-resolution prototypes in order to gain 

experience instead of thinking the idea through and remaining with doubt.  

Another finding is to merge system components as soon as possible in order to 

tackle potential integration issues very early on. This follows the same line of thought 

as aiming to discover unknown interdependencies as early as possible. Whenever a 

component individually fulfills its critical function, it ought to be integrated with 

other components to test its critical function in the context of the whole system. So, 

even when the system can and is divided into modules, integration should be tested 

while changes to the system are still easily possible. We believe that there is no point 

in fully developing one component and then risking requirement changes in other 

components that would endanger the previous development. This requires quasi-

simultaneous prototyping to ensure that components can be merged. Thus in our 

context, simultaneous prototyping means understanding and probing ideas from 

multiple disciplines at the same time. 

The main purpose of probing is to find solutions to the evolving problem by 

abductive reasoning and to continuously update the understanding of the problem. 

While probing different paths for the project one of the most important mindsets is to 

be opportunistic, to find, recognize and take chances that present themselves. Another 

benefit is the possibility to abandon disadvantageous concepts, “dead ends”, in an 

early stage at the lowest cost and involvement possible. All in all, the wayfaring 

model calls for a bias towards action and learning in action. 

 

5.   Conclusions of wayfaring 
 

We propose a method suitable for developing new products with a high degree of 

uncertainty. It is largely based on including all disciplines related to the product from 

the beginning on and iterative cycles of probing ideas by designing, building and 

testing prototypes. The intent of this approach is to discover unknown unknowns and 

unexpected interdependencies early in order to minimizing losses due to failure and to 

spot opportunities and hitherto unknown potentials. Both, the initial problem 



 

statement and the targeted project vision remain in flux much longer than usually. The 

relatively early requirement fixation stage becomes a delayed dynamic requirement 

evolution process. The decisions to fix the dynamic requirements are made based on 

gained and tested information, based on learning cycles trough low-resolution 

prototyping and probing. We believe the headway and learnings, both in terms of 

breadth and depths have been superior to pre-planned or more traditional process 

models. We thus invite the community to deploy and test this approach in the early, 

pre-requirement definition phase and to share their insights. 
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4 Learnings and reflections 

The process undergone during this project was incremental as a consequence of the multiple 

interdependencies between functions and features from different engineering disciplines. 

According to Snowden, a complex system has traits that make predetermining outcomes 

impossible (Snowden & Boone, 2007, p. 3). Consequently, it becomes necessary to probe an 

environment before taking action. As explained in (Gerstenberg et al., 2015), a wayfaring 

approach was used to probe in an open solution space during the first six weeks; this being a 

complex system, only specifications that were vague and dynamic could be established in the 

beginning to allow for the flexible modularity. The learnings thereof were process related and 

qualitative, where becoming aware of traits, tools, and mindset was perhaps the most 

personally valuable learning. 

4.1 From complex to complicated 

After submitting the papers, i.e. reaching the second milestone, the process changed by not 

being entirely focused on probing new solutions. Instead, focus was on improving the existing 

system. The main reason for this change of process was that the third milestone required a 

prototype ready for demonstration, not more probing of concepts. A complete critical function 

prototype was now in place, and it came with concrete technology constraints (resistors, 

LightBlue Beans, Processing, etc.). But to make it ready for a live demonstration, 

improvements on a full system level were needed. This gave the challenge more traits similar 

to that of a complicated system rather than a complex one. E.g. the development has known 

unknowns, and relations can be predicted. In Shar’s description of the wayfaring model, this 

seems to correlate to the ‘transportation’ phase that comes after the ‘kill’: “transporting is 

more of a convergent, cognitive skill requiring a sense of geometry; the shortest distance 

between two goals, where the parameters are known and efficiency is the goal” (Schar, 2011, 

p. 51). This describes the nature of the third milestone better than the unchartered nature of 

the wayfaring phase. Note: some probing into other concepts was still conducted during this 

phase, e.g. using I2C (section 2.5) and new connectors with free orientation (section 2.3). I 

found the process change was surprisingly educational as well: it forced development of final 

solutions rather than solutions on which new work had to be done. Rather than remaining on 

the conceptual or visionary level of the first prototype, it was brought down to earth through a 

more holistic solution.  If it had not been for the third milestone, the code for stabilizing the 

system may not have been created (section 2.5). This could in turn have made me unaware of 
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challenges that must be tackled when the product specifications are defined. Thusly, a more 

convergent phase proved to be healthy for the sake of the functionality of the low resolution 

prototype. In other words: the first prototype confirmed the feasibility of certain solutions and 

made educated assumptions regarding what the future prototype could be. The third milestone 

was about converging on a more holistic solution from predefined specifications, i.e. bringing 

it home.  My personal take on this is that the ‘transportation’ phase may have the ability to 

uncover unknown unknowns on a deeper level than the divergent phase; it forces the concrete 

application of solutions found in the divergent phase, and unwanted interdependencies not 

discovered in our probing cycles will then come to light.  

4.2 Input from all domains was not included 

After the initial project task had been given and preliminary goals were set, work on the first 

prototype commenced. During this project, never was there such a close call as when it was 

discovered that communication between all parts was not required in terms of IP. As 

described in (Reime et al., 2015), the initial principles regarding identification was based on 

all parts intercommunicating. This lesson was commented on in (Gerstenberg et al., 2015) as a 

finding that underlined the importance of including input from all domains from the 

beginning of the project. Had this simple piece of information not been declared, the 

following decision making would be based on a totally different knowledge base, and the 

outcome of this project could have been radically different.  

While the project owner supplied us with this the critical information regarding IP, there is an 

absolute absence of input from gameplay developers and interface design for children. These 

knowledge domains are capable of making an entire concept void because they are, more than 

most domains in this thesis, directly tied to the users’ needs. Knowingly excluding them can 

only be justified by clearly stating that the initial goal of the project was not to make a 

solution ready for user testing, but to make a prototype able to convey the concept to 

investors. Only later, after significant modification, could the prototype potentially become 

ready for user testing. This allowed me to greatly simplify the design of the prototype. In the 

beginning, merging with gameplay was thought to become possible late in the project. 

However, the 2
nd

 and 3
rd

 milestone did not allow for time to include gameplay or more user 

friendly designs, leading to finalizing the prototype meant for investors’ eyes only.  
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4.3 Take measures to protect IP 

When making a prototype with the purpose of showing off a concept, it may be an advantage 

to use low resolution solutions for the simple sake of protecting IP. If a prototype containing 

patentable technology was used for demonstration, investors may actually take this as a sign 

of higher risk. The same goes for publications that may contain detailed description of the 

prototype. To avoid this in the future, any prototypes used for demonstration or in published 

material should either a) not include sensitive technology, b) make the technology invisible to 

the viewer, or c) demand a declaration of confidentiality. 

4.4 Detours yielded important results 

Throughout the 14 weeks of development, minor detours were taken to explore other options. 

E.g. I2C for inter component communication, presenting structure by loading premade 

pictures instead of real time loading of 3D models, and using ring magnets to get a universal 

self-aligning connector. These detours opened up a larger library of possibilities, some of 

which can have a real impact on the end product. I found that the detours were not only useful 

for exploring other technologies in themselves, but also to get a more distanced view of the 

prototype. Detouring appears to be a part of the wayfaring model where constant search for 

potential “gold nuggets” can yield solutions that radically improve the original design. 

4.5 Use ‘big pictures’ and assumptions when applicable 

The process described in the (Gerstenberg et al., 2015) aims to identify interdependencies 

between domains. This enabled a ‘big picture’ to emerge; a rough, mental sketch of how all 

major components would interact. Built into this ‘big picture’ was a multitude of assumptions 

regarding minor facets of each component: it did not include detailed solutions to every 

aspect, but rather assume that the simplest solution would work or that another would be 

found with ease. These assumptions were not taken lightly and only when deemed simple 

enough to not require prototyping or unlikely to include unknown unknowns. An example of 

this is the first prototype where the ‘big picture’ in was ‘Arduino measures resistors and sends 

data to Processing’. In this case, Arduino and Processing were the big, critical components. 

Previous experience with these allowed me to assumed that the sending to and analysis of data 

in Processing would either be done by direct reading of the string, or by some simple data 

conversion. The measured resistances are treated as values by Arduino. However, it turned 

out that Processing reads the data from Arduino as individual characters in a string, and so the 

data needed to be converted before Processing would interpret the data as actual numbers. 

Two lines of conversion code were added to the Processing script (see code below), and the 
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system worked as envisioned in the ‘big picture’. This assumption would not have been made 

if I did not feel secure that a solution would be found.  

      float floatVal = Float.parseFloat(SplitMyInts[i]); 

      intVal = int(floatVal); 

 

Another example that did not fare as well was the assumption that data could be sent from a 

Bean to any computer with a Bluetooth. The assumption was wrong because of OS protocols 

that I assumed were irrelevant, and it led to the need for a computer with OS X. Nevertheless, 

I believe such assumptions save considerable amounts of time because they allow for the 

more critical parts of the system to be prototyped first. Assuming that Processing could read 

the data sent from a Bean was another assumption that proved correct, but it was only 

prototyped after it was confirmed that the Bean could run the electrical components. 

Consequently, another major learning was to always prototype the most important functions 

first.  

4.6 Favor a ‘moldable’ concept 

Use of resistors led to it being possible to highly modify and mold the prototype. Because the 

microcontroller took simple measurements, it was easy to manipulate those measurements and 

create solutions that fit, e.g. the thresholds for resistor values. Additionally, it made it possible 

to make adjustments for future solutions: when improving the code before the third milestone, 

the use of numbers made it possible to perform mathematical operations on the raw data. E.g., 

if I had chosen to use letters instead of numbers, then the system would rely completely on 

perfect signal transmission, and signal manipulation would be impossible. I2C would perhaps 

be even more moldable because the communication is easily redefined. The lesson is that the 

solution that opens for multiple options should be favored over one that has only specific 

uses. 

4.7 Interdependencies increase exponentially with addition of domains 

Adding the needs just one more domain will create consequences for all the original domains. 

As explained in 2.6, this is especially clear the case of user interface, which would not 

necessarily have been a part of the task had this been a “standard” engineering problem. The 

inclusion of this domain led to a multitude of changes in the other engineering disciplines. 

This is also where the exclusion of the gameplay domain potentially had its advantage: to 

establish a way of sending data into a game could potentially have had massive repercussions 

all the way down to how the resistors are measured. Naturally, including this interface 
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prototype with a game engine would likely require the game itself to be radically changed 

also, showing the two-way challenge of including knowledge domains.  

4.8 Prototype as many things simultaneously as possible 

This was one of the key topics of (Gerstenberg et al., 2015) and it is duly added as a major 

finding. It proved useful to prototype as many things simultaneously as possible when 

applicable and if effects were discernable. The probing cycle described how interlaced 

knowledge appears when multiple domains regard one aspect simultaneously, thus allowing 

both a multitude of solutions and potential pitfalls to be discovered. The perhaps best example 

of simultaneous prototyping is the prototype described in week four in (Reime et al., 2015): 

an entire system of modules was integrated, but the functionalities in each module had low 

resolution. Nevertheless, it not only proved that the principle technologies in each module 

worked, but it also, and more importantly, proved that they worked in total unison, thus 

establishing interfaces between modules of a complete system. The magnetic connector 

prototype in figure 1-c and -d in (Gerstenberg et al., 2015) is an example of simultaneous 

prototyping that found a pitfall: the header connectors were the original focus of the probe, 

but I decided to add prototyping of magnets as well. This led to an interesting discovery 

regarding symmetry of magnetic connectors, and it could potentially have been quite 

damaging if the two components had not been simultaneously prototyped early in the process.  

4.9 Favor experimentation – tacit vs. explicit knowledge 

Most of the knowledge about the use and functions of the technologies in the final prototype 

was acquired through experimentation; doing rather than reading about doing. This was 

especially useful in the earliest part of the project when I experimented with resistors and 

programming. Naturally, some background research was eventually needed when Arduino, 

Processing, and LightBlue Beans were used. However, I found that searching online for 

specific terms often gave answers that required me to search for more terms to get a complete 

understanding. In fact, I found myself searching for “can it be done” more often than “how is 

it done”. This often led to discarding options when assuming them to be too demanding. An 

alternative noteworthy approach was the use of examples in the libraries of the mentioned 

programs: opening a script and working with the code yielded fast learning about e.g. loading 

of 3D models in Processing. In the end, I strongly felt that this approach was effective for fast 

learning of tacit know-how. The great risk is that great opportunities were missed because I 

decided to not spend much time reading. As such, I found that this ‘double-edged sword’ 

certainly triumphed in this prototyping challenge, but it seems clear that its use should be 
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strictly limited. I propose that this “skimming the surface” approach is only suited when a) the 

problem appears to not require very deep knowledge in its field but b) extracting the tacit 

knowledge from the explicit is still difficult and c) time is an important factor. In its essence, 

this suggests favoring experimentation of principles. Examples of this can be found 

throughout the project: developing the resistor principle; learning to program Arduino, shift 

registers, and Processing; communication between Arduino and Processing; instead of spray 

painting, spray into a cup and use a brush.   
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5 Personal remarks 

This master project was centered on developing a radically new product where the starting 

point only contained a vision and loosely defined functions. As such, I believe it was a good 

challenge for an engineer who aims to specialize in early stage product development. I found 

the openness liberating compared to previous projects with set parameters, timeline, 

deliverables, and milestones. However, I was only working on my own; mentors, project 

owner, and other students only contributed with input. Therefore, there was never any team 

dynamics or discussions about options. This poses some uncomfortable questions regarding 

whether the end results reached its maximum potential or not: did working alone contribute 

by having less time consuming team dynamics, or did it counteract by not having as much 

knowledge and ideation power as possible? Naturally, the answer to both is yes. But when 

comparing with previous projects, I believe that if there had been one or two more team 

members, at least one more milestone towards achieving patentable technology could have 

been reached.  

Regarding learning outcomes, I found that this way of constantly searching, experimenting, 

and adapting allowed me to quickly learn what I needed. The problem with this self-

governing is that I might have stopped short because I decided for myself what was important 

to spend time doing. As such, it was a healthy exercise in completing a race where I had to 

motivate myself to get over some chores and obstacles. 

Retrospectively, I find it hard to evaluate my own performance when there is nothing to 

compare with. But I feel satisfied with the positive response given by project owner, mentors, 

and other students. I look forward to applying the culminated experience of my five year 

education and this master project in a real world setting.  
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Appendix A: Uploaded Material 

Various digital material have been uploaded to this Google Drive folder for easy access to 

videos, 3D models, sketches, code scripts, etc. Due to the size of the 3D models and various 

material, the size of the compressed folder exceeded the size available for uploading on 

DAIM. Therefore, a Google Drive folder is provided containing all material in one location. 

https://drive.google.com/folderview?id=0B50n3O86Q7UGfnEyandpdDR3QUpaTFk1ZHVw

YmZVU2VqbmVFVmtPaW1MZDFVNC1YS3FTalE&usp=sharing 

https://drive.google.com/folderview?id=0B50n3O86Q7UGfnEyandpdDR3QUpaTFk1ZHVwYmZVU2VqbmVFVmtPaW1MZDFVNC1YS3FTalE&usp=sharing
https://drive.google.com/folderview?id=0B50n3O86Q7UGfnEyandpdDR3QUpaTFk1ZHVwYmZVU2VqbmVFVmtPaW1MZDFVNC1YS3FTalE&usp=sharing


 

Appendix B: Poster 

 



 

Appendix C: Processing code 

import processing.serial.*; 

Serial StrFromArd; 

String myInts; 

float floatVal; 

int intVal; 

String[] SplitMyInts; 

int[] Base = new int[4]; 

int i; 

 

PShape Cupe; 

PShape Engine; 

PShape WheelsLeft; 

PShape WheelsLeftMon; 

PShape WheelsRight; 

PShape WheelsRightMon; 

PShape FuelTank; 

PShape F1Front; 

PShape F1Rear; 

PShape F1Right; 

PShape F1Left; 

 

 

float ry; 

   

public void setup() { 

  size(1500, 1000, P3D); 

  background(0); 

  lights(); 

   

  //String portName = Serial.list()[2]; 

  StrFromArd = new Serial (this, "/dev/cu.LightBlue-Bean", 57600);  

  StrFromArd.clear(); 

  StrFromArd.bufferUntil('\n'); 

   

  Cupe = loadShape("Cupe.obj"); 

  Engine = loadShape("Engine.obj"); 

  WheelsLeft = loadShape("WheelsLeft.obj"); 

  WheelsLeftMon = loadShape("WheelsLeftMon.obj"); 

  WheelsRight = loadShape("WheelsRight.obj"); 

  WheelsRightMon = loadShape("WheelsRightMon.obj"); 

  FuelTank = loadShape("FuelTank.obj"); 

  F1Front = loadShape("F1Front.obj"); 

  F1Rear = loadShape("F1Rear.obj"); 

  F1Left = loadShape("F1WheelsLeft.obj"); 

  F1Right = loadShape("F1WheelsRight.obj"); 

   

  i = 0; 

} 

 

 

public void draw() { 

  background(230,230,255); 

  pointLight(255, 255, 255, width/2, height/2, 200); 

  translate(width/2, height-500, -400); 

  scale(-0.5,0.5,0.5); 

  rotateX(0.35*PI); 

  rotateZ(ry); 

  ry += 0.015; 

   



 

  pushMatrix(); 

  scale(120); 

  shape(Cupe); 

  popMatrix(); 

   

   

while ( StrFromArd.available() > 0) { 

  myInts = StrFromArd.readStringUntil('\n');  

   

  if (myInts != null) {  

    //Splits myInts into array of strings 

    String[] SplitMyInts = split(myInts, ";");      

     

    for (int i = 0; i <= 3; i++) { 

      //Converts the array of strings into array of ints 

      float floatVal = Float.parseFloat(SplitMyInts[i]); 

      intVal = int(floatVal); 

      Base[i] = intVal; 

    } //for i 

  } //if 

  println(Base); 

} //while 

 

// CONVERSIONS 

for (i = 0; i <= 3; i++) { 

   

// If Base[i] oposite to FuelTank is 247 or 329, change it to 170. 

//Also, if Base[i] oposite to FuelTank is 164, change it to 145. 

if (Base[i] == 2) {  

         if (i == 0) { 

            if (Base[2] == 247 || Base[2] == 329) { Base[2] = 170; } 

            if (Base[2] == 164 || Base[2] == 197) { Base[2] = 145; } 

         } 

    else if ( i == 1) { 

            if (Base[3] == 247 || Base[3] == 329) { Base[3] = 170; } 

            if (Base[3] == 164 || Base[3] == 197) { Base[3] = 145; } 

         } 

    else if ( i == 2) { 

            if (Base[0] == 247 || Base[0] == 329) { Base[0] = 170; } 

            if (Base[0] == 164 || Base[0] == 197) { Base[0] = 145; } 

         } 

    else if ( i == 3) { 

            if (Base[1] == 247 || Base[1] == 329) { Base[1] = 170; } 

            if (Base[1] == 164 || Base[1] == 197) { Base[1] = 145; } 

         } 

} 

 

// If fuel tank is connected and a neighbor is F1 Right, 

// make the other neighbor automatically F1 Left. 

    if (Base[0] == 2) {  

           if (Base[1] == 495) { Base[3] = 991; } 

      else if (Base[3] == 495) { Base[1] = 991; } 

    } 

    if (Base[1] == 2) {  

           if (Base[2] == 495) { Base[0] = 991; } 

      else if (Base[0] == 495) { Base[2] = 991; }  

    } 

    if (Base[2] == 2) { 

           if (Base[3] == 495) { Base[1] = 991; } 

      else if (Base[1] == 495) { Base[3] = 991; } 

    } 



 

    if (Base[3] == 2) { 

           if (Base[0] == 495) { Base[1] = 991; } 

      else if (Base[1] == 495) { Base[0] = 991; } 

    }       

 

// If the left wheel is connected and a neighbour is F1 wheel, 

// make the F1 Wheel into F1 Rear. 

    if (Base[0] >= 22 && Base[0] <= 55) { 

      if      (Base[1] == 247) { Base[1] = 164; } 

      else if (Base[3] == 247) { Base[3] = 164; } 

    } 

    if (Base[1] >= 22 && Base[1] <= 55) { 

      if      (Base[0] == 247) { Base[0] = 164; } 

      else if (Base[2] == 247) { Base[2] = 164; } 

    } 

    if (Base[2] >= 22 && Base[2] <= 55) { 

      if      (Base[1] == 247) { Base[1] = 164; } 

      else if (Base[3] == 247) { Base[3] = 164; } 

    } 

    if (Base[3] >= 22 && Base[3] <= 55) { 

      if      (Base[0] == 247) { Base[0] = 164; } 

      else if (Base[2] == 247) { Base[2] = 164; } 

    } 

    

// If F1 Front and Rear have a S Wheel between, add 5 to get monster. 

if (Base[0] >= 100 && Base[0] <= 200 || Base[2] >55 && Base[2] <= 200) { 

         if (Base[1] >= 32 && Base[1] <= 35 ) { 

           Base[1] = 50; } 

    else if (Base[3] >= 22 && Base[3] <= 55 ) { 

           Base[3] = 50; } 

} 

if (Base[1] >= 100 && Base[1] <= 200 || Base[3] >55 && Base[3] <= 200) { 

         if (Base[1] >= 32 && Base[1] <= 35 ) { 

           Base[1] = 50; } 

    else if (Base[3] >= 32 && Base[3] <= 35 ) { 

           Base[3] = 50; } 

} 

 

 

} // for i 

 

//PLACING OBJECTS 

for (i = 0; i <= 3; i++) { 

  pushMatrix(); 

  scale(120); 

   

  // Orients to correct position.   

  rotateZ(i*0.5*PI);  

  if (i == 0 || i == 2) { translate(0,5,0); } 

  else                  { translate(0,3,0); } 

   

   

// THRESHOLDS  

  if (Base[i] == 0) {} 

  else if (Base[i] < 4) { shape(FuelTank); } 

  else if (Base[i] < 10) { shape(WheelsRight); } 

  else if (Base[i] < 22) { shape(WheelsRightMon); } 

  else if (Base[i] < 38) { shape(WheelsLeft); } 

  else if (Base[i] < 55) { shape(WheelsLeftMon); } 

  else if (Base[i] < 100) { shape(Engine); } 

  else if (Base[i] < 150) { shape(F1Front); } 



 

  else if (Base[i] < 200) { shape(F1Rear); } 

  else if (Base[i] < 500) { shape(F1Right); } 

  else if (Base[i] > 500) { shape(F1Left); } 

 

/* 

  if (i == 2) { shape(FuelTank); } 

   

if (ry < 1.2*PI && ry > 0) { 

  if (i == 0) { shape(Engine); } 

  if (i == 1) { shape(WheelsLeft); } 

  if (i == 3) { shape(WheelsRight); } 

} 

if (ry > 1.2*PI && ry < 1.7*PI ) { 

  if (i == 0) { shape(Engine); } 

  if (i == 1) { shape(WheelsLeftMon); } 

  if (i == 3) { shape(WheelsRight); } 

} 

if (ry > 1.7*PI && ry < 2.1*PI) { 

  if (i == 0) { shape(EngineBumper); } 

  if (i == 1) { shape(WheelsLeftMon); } 

  if (i == 3) { shape(WheelsRight); } 

} 

if (ry > 2.1*PI) { 

  if (i == 0) { shape(EngineBumper); } 

  if (i == 1) { shape(WheelsLeftMon); } 

  if (i == 3) { shape(WheelsRightMon); } 

} 

if (ry > 4*PI) { ry = 0; } 

*/ 

 

  popMatrix(); 

//Done placing objects 

 

} //for i 

 

}  // draw 

  



 

Appendix D: Arduino Code 

int DS_pin = 1; 

int STCP_pin = 2; 

int SHCP_pin = 3; 

int analogPin = 0; 

 

float sensorValue = 0; 

int myInts[4]; 

int oldInts1[4]; 

int oldInts2[4]; 

int newInts[4]; 

float Vin; 

float Vout = 0; 

float Rref = 970; 

float R; 

 

void setup() 

{ 

Vin = Bean.getBatteryVoltage(); 

Serial.begin(57600); 

pinMode(DS_pin,OUTPUT); 

pinMode(STCP_pin,OUTPUT); 

pinMode(SHCP_pin,OUTPUT); 

pinMode(analogPin, INPUT); 

writereg(); 

} 

 

boolean registers[4]; 

 

void writereg() 

{ 

digitalWrite(STCP_pin, LOW); 

for (int i = 3; i>=0; i--) 

{ 

digitalWrite(SHCP_pin, LOW); 

digitalWrite(DS_pin, registers[i] ); 

digitalWrite(SHCP_pin, HIGH); 

} 

digitalWrite(STCP_pin, HIGH); 

} 

 

 

void loop() 

{ 

    for (int i = 0; i<=3; i++) 

    { 

    delay(200); 

    registers[i] = LOW; 

    writereg(); 

    sensorValue = analogRead(analogPin); 

    registers[i] = HIGH; 

    writereg(); 

     

    Vout = (Vin * sensorValue) / 1023;    // Convert Vout to volts 

    R = Rref * (0.001 / ((Vin / Vout) - 1));  // Formula to calculate 

tested resistor's value 

     

    oldInts1[i] = oldInts2[i]; 

    oldInts2[i] = newInts[i]; 

    newInts[i] = R; 



 

    if (oldInts1[i] ==  oldInts2[i]) { 

      if (oldInts2[i] == newInts[i]) { 

         myInts[i] = newInts[i]; 

      } 

    } 

     

    } //for i 

 

Serial.print(myInts[0]); Serial.print(";"); 

Serial.print(myInts[1]); Serial.print(";"); 

Serial.print(myInts[2]); Serial.print(";"); 

Serial.println(myInts[3]); 

 

/* 

Serial.print(myInts[0]); Serial.print(";"); 

Serial.print(myInts[1]); Serial.print(";"); 

Serial.print(myInts[2]); Serial.print(";"); 

Serial.println(myInts[3]); //Serial.println(Vin); 

*/ 

 

/* 

for (int i = 0; i <=3; i++) { 

  if (myInts[i] == 0 ) { Serial.print("Nothing"); } 

  else if (myInts[i] < 4) { Serial.print("S Fuel Tank"); } 

  else if (myInts[i] < 10) { Serial.print("S WL small"); } 

  else if (myInts[i] < 22) { Serial.print("S WL mon"); } 

  else if (myInts[i] < 38) { Serial.print("S WR mon"); } 

  else if (myInts[i] < 55) { Serial.print("S WR small"); } 

  else if (myInts[i] < 100) { Serial.print("S Engine"); } 

  else if (myInts[i] < 150) { Serial.print("F1 Engine"); } 

  else if (myInts[i] < 200) { Serial.print("F1 Rear"); } 

  else if (myInts[i] < 500) { Serial.print("F1 R"); } 

  else if (myInts[i] > 500) { Serial.print("F1 L"); } 

   

  if (i == 3) { Serial.println(); } 

  else if (i != 3) {Serial.print(" ; "); } 

} 

*/ 

 

/* 

Serial.print("          ");   

  for (int i = 0; i<=3; i++) 

  { 

   if (myInts[i] == 0)       {Serial.print("Nothing "); } 

   else if (myInts[i] < 7)   {Serial.print("Wheel "); } 

   else if (myInts[i] < 12)  {Serial.print("Transmission "); } 

   else if (myInts[i] < 25)  {Serial.print("Gear-box ");} 

   else if (myInts[i] >= 25) {Serial.print("Engine ");} 

    

   if (i == 0) {Serial.println(); Serial.println("            |");} 

   if (i == 1) {Serial.print(" - Gear-box - ");} 

   if (i == 2) {Serial.println(); Serial.println("            |"); 

                Serial.print("          ");} 

//   if (i != 3) {Serial.print("| "); } 

    

  } 

  Serial.println(); Serial.println(); 

*/   

 

 

} 



 

Appendix E: Initial Product Vision from Project Owner 

The following pages are scanned from the originals given by the project owner during the first 

meeting with project participants. 










