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Abstract

The objective of this master thesis is to increase the understanding of fluid flow and heat
transfer development across a finned tube heat exchanger with help of Computational
Fluid Dynamics (CFD). Three different geometries of finned tube bundles are considered.
The finned tube bundles are made similar to existing experimental test rigs at NTNU
carried out by Holfeld [11]. The purpose is to present a detailed comparison of the exper-
imental data available and the result from a numerical model. Heat transfer and pressure
drop performance is compared. The results are also compared with semi-empirical corre-
lations from the published literature.

This master thesis is a continuation of the project work [7]. A main goal has been to
expand the numerical model developed in the project work to include conjugate heat
transfer. This has been successfully implemented by coupling the conduction and convec-
tion on the fins. Further a calculation method to predict the heat transfer on a row-to-row
basis has been developed. The heat transfer coefficient and the fin efficiency are compared
with the experimental data at each tube row for varying turbulent Reynolds numbers.
The results shows that the heat transfer is predicted fairly good, but with some devia-
tions. Generally the heat transfer is under-predicted for the two geometries having solid
fins. The numerical model over-predicts the heat transfer for the geometry having ser-
rated fins. The pressure drop performance is compared by looking at the pressure drop
from the inlet to the outlet in the finned tube bundle. Larger deviations are seen between
the numerical and experimental data for the pressure drop performance. Surprisingly,
the pressure drop from the numerical model seems to be in better agreement with semi-
empirical correlations from the published literature.

The effects of uneven heat transfer distribution has been investigated. An uneven heat
transfer distribution is first of all reflected in the fin efficiency. Fin efficiencies found from
the experiments and fin efficiencies calculated from the numerical model are therefore
compared to theoretical fin efficiencies and reputable corrected fin efficiencies from the
literature.

A qualitative analysis is performed by investigating relevant visualizations of the flow
through the finned tube bundle. This analysis revealed several important effects happen-
ing in the finned tube bundles, affecting the heat transfer. This include boundary-layer
development across the fins, horseshoe vortexes at the junction of the fin and tube and
flow separation downstream of the finned tube rows. It is concluded that the use of CFD
has a big potential for improving the prediction of heat transfer and pressure drop in
fin-tube waste heat recovery units. Suggestions for further work on how the numerical
model could be expanded are presented.
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Sammendrag

Målet med denne masteroppgaven er å øke forst̊aelsen av hvordan strømningen utarter
seg og varmevekslingen gjennom en ribberørs varmeveksler ved hjelp av numeriske simu-
leringer (CFD). Oppgaven tar for seg tre forskjellige geometrier for ribberørs varmevek-
slere. Varmevekslerene er laget lik varmevekslere fra eksisterende eksperimentelle rigger
p̊a NTNU gjennomført av Holfeld [11]. Hensikten er å presentere en detaljert sammen-
ligning av varmeovergang og trykktapsytelse mellom tilgjengelig eksperimentelle data og
resultat fra en numerisk modell av varmeveksleren. Resultatet er ogs̊a sammenlignet med
semi-empiriske korrelasjoner fra publisert litteratur.

Masteroppgaven er en fortsettelse av prosjektarbeidet [7]. Et hovedmål har vært å utvide
den numeriske modellen fra prosjektoppgaven til å inkludere varmeveksling. Dette har
vellykket blitt implementert ved å koble termisk konduksjon og konveksjon sammen p̊a
finnene. Videre har en beregningsmetode blitt utviklet for å predikere varmevekslingen
fra rør-rekke til rør-rekke.

Varmeovergangstallet og finnevirkningsgraden er sammenlignet med eksperimentelle data
for hver rørrekke med varierende turbulente Reynolds-tall. Resultatet viser at varmevek-
slingen er predikert ganske bra, men med noe avvik. For de to geometriene med solide
finner er varmevekslingen under-predikert. Det motsatte er tilfelle for geometrien med ser-
raterte finner. Trykktapsytelsen er sammenlignet ved å se p̊a trykktapet mellom innløp
og utløp p̊a varmeveksleren. Større avvik mellom numeriske og eksperimentelle data op-
pleves for trykktapsytelsen. Overraskende nok ligger trykktaptsytelsen tettere opp mot
semi-empiriske korrelasjoner fra litteraturen.

Effektene fra ujevn varmevekslingsfordeling er undersøkt. En ujevn varmeveklsingsfordel-
ing kommer først og fremst til syne i finnevirkningsgraden. Finnevirkningsgradene fra
eksperimentene og fra den numeriske modellen er derfor sammenlignet med teoretiske
finnevirkningsgrader og anerkjente korrigerte finnevirkningsgrader fra litteraturen.

En kvalitativ analyse er gjennomført ved å undersøke relevante visualiseringer av strømningen
gjennom varmeveksleren. Analysen avdekket flere viktige fenomener som oppst̊ar i varmevek-
sleren som p̊avirker varmeveklsingen. Dette inkluderer grensesjiktsutvikling p̊a finnene,
hestesko-virvlinger i krysningen mellom rørveggene og finnene samt separasjon av strømningen
bak rørrekkene. Det konkluderes med at bruk av CFD har et stort potensial i arbeidet med
å forbedre predikeringen av varmeveklsing og trykktaptsytelse i ribberørs varmevekslere.
Forslag til videre arbeid p̊a hvordan den numeriske modellen kan utvides foresl̊as.
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Chapter 1

Introduction

Production of oil and gas have a high power demand, and gas turbines are used for power
generation. The most key requirements for offshore power generation have traditionally
been high power to weight ratio and easy maintenance. Combined cycle gas turbines are
being introduced as more importance is directed towards power efficiency. Currently work
is being done to develop new, compact heat exchangers solutions for gas turbine exhaust
gases. Because of the low heat transfer coefficient of the exhaust gas, finned tubes have
been selected as good candidates, due to the high specific heat transfer surface.

At NTNU tests have been performed on finned tube bundles, and experimental data are
available [11]. This thesis focuses on creating a numerical model which corresponds to
these experimental tests. First of all the results from this model can help validate the
experimental results. An important aspect of a numerical model is that visualizations of
the fluid flow and heat transfer can be made. These visualizations can be used to inves-
tigate qualitatively the different characteristics effects happening in a compact fin-tube
heat exchanger.

The ultimate goal of this thesis is to further increase the understanding of fluid flow and
heat transfer in finned tube bundles. This will be done by setting up a CFD-model for fluid
flow through a finned tube bundle and analysis will be performed. Further the numerical
results will be compared with the experimental data available, as well as semi-empirical
correlations found in the literature.

1.1 Report structure

• Firstly, an introduction to the theory of finned tube heat exchangers is given in
chapter 2. The variables that characterizes a finned tube bundle is given, as well as
relevant dimensionless numbers.

• In chapter 3 the theory on numerical modeling of finned tube bundles is presented.
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2 CHAPTER 1. INTRODUCTION

• Chapter 4 gives a walk-through of the numerical model created in this study.

• In chapter 5 the results from the simulations are presented and compared with the
experimental data and semi-empirical correlations from published literature.

• In chapter 6 conclusions from the study are drawn. Chapter 7 gives suggestions for
further work.



Chapter 2

Theory on Finned Tube Heat
Exchangers

Finned tube heat exchangers are a good option to exchange heat between a liquid and a
gas. The biggest thermal resistance in these cases is the gas-side heat transfer coefficient.
It is therefore important to increase this value in order to efficiently extract the heat from
the flue gas, which in this study will be taken as dry air. This is done by attaching metal
fins to the pipes.

There are two types of fins, namely solid and serrated fins (see fig. 2.1). A solid fin is made

Figure 2.1: Tubes with serrated fins (left) and solid fins (right). Courtesy: Delfintubes

by winding a piece of metal around the tube. For a serrated fin, the metal is partially
split before it is winded around the tube. There are three different welding methods for

3
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attaching the fins to the tubes. Fin attachments can be of type I-foot, L-foot or U-foot
(see fig. 2.2). In the present study only I-foot fins will be considered.

(a) I-foot (b) L-foot (c) U-foot

Figure 2.2: Attachment methods for fins (taken from ESCOA [8])

2.1 Basic variables

Figure 2.3: Finned tube layout (taken from Næss [20])

Geometry variables

Fig. 2.3 shows the geometrical variables that affects the heat transfer and pressure drop
in a serrated finned tube bundle according to Webb and Kim [24]. The same variables are
used for solid fins, except that the fin segment width wf is dropped out. In the present
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study the fin pitch s in fig. 2.3 will be denoted pf . The fin spacing is denoted sf .

Flow variables

Further Webb and Kim [24] identified five flow variables which to be taken in to consid-
eration:

• Air density, ρair

• Air dynamic viscosity, µair

• Air thermal conductivity, λair

• Air specific heat capacity, Cp,air

• Air velocity, uair

2.2 Dimensionless numbers

Dimensionless numbers are used to characterize the heat exchanger. In order to char-
acterize the flow conditions, the Reynolds number is introduced. The Reynolds number
(Re) is based on the outer diameter of the tube, and the mass flux through the narrowest
free flow area within the tube bundle. This is consistent with the relevant literature.

Re = ṁ′′air · do
µair

(2.1)

For the geometries considered in the present study, the narrowest free flow area is the
area between two tubes in the transversal direction, and can be defined as

Ff,min = Ft = pf · (Pt − do)− 2hf · tf (2.2)

For heat transfer correlations, the Nusselt number (Nu) is used.

Nu = αodo
λair

(2.3)

Here αo is the air-side, actual heat transfer coefficient. See section 4.6 for how the gas-side
heat transfer coefficient is derived.

According to Næss [20] the total pressure drop across a horizontal tube bundle may be
obtained from

∆P = ∆Pf + ∆Pa (2.4)
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Here ∆Pa is the pressure change due to flow acceleration/deceleration associated with
changes in flow area and fluid density. ∆Pf is the core frictional pressure loss. For
pressure drop correlations, the Euler number (Eu) is used.

Eu = 2∆P · ρair
NL · (ṁ′′air)2 (2.5)

Nl is the number of tube rows in the longitudinal direction.

2.3 Tube bundle arrangement

Figure 2.4: Arrangements of tubes in bundles. Taken from Mon [16]

There are two arrangements of tube bundles to consider, namely in-line and staggered
arrangement, see fig. 2.3. Note that in the present study St and Sl are referred to as Pt and
Pl. Earlier studies like Weierman [25], Mon [16] and Hofmann [10] have shown how the
tube arrangement influence heat transfer and pressure loss in a tube row. Generally the
finned tube rows creates a wake zone behind the row which then affects the consecutive
rows. Mon [16] found that the heat transfer coefficient for all in-line rows was lower
than compared to the staggered arrangements. This is mainly due to the by-pass effect
of the flow experienced in an in-line arrangement. In the present study only staggered
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arrangements will be considered.

2.4 Fin efficiency

When dealing with heat transfer for extended surfaces or fins it is important to account
for the conductive resistance of the fin material. The ideal situation would be to have a
large thermal conductivity in the fin material to minimize temperature variations from
the fin base to the fin tip. The maximum possible heat transfer enhancement would occur
if the fin had infinite thermal conductivity which would mean that the entire fin would be
at the temperature of the base surface. Incropera et al. [12] presents how the theoretical
fin efficiency can be calculated from the solution of a heat conduction equation for uniform
extended surfaces:

d2Tf
dx2 −m

2(Tf − T∞) = 0

m2 ≡ αoP

λfAc

(2.6)

Here α is the actual heat transfer coefficient, k is the fin thermal conductivity, P is the
fin perimeter, Ac is the cross sectional area of the fin, Tf is the fin temperature and T∞

is the gas-side fluid temperature. As can be seen from eq. (2.6), Incropera et al. [12]
assumes that the heat transfer coefficient is uniform across the fin. Further it is assumed
that there is no resistance between the fin and the tube and that the heat transfer at the
fin tip is negligible. The boundary conditions can then be specified:

Tf (x = 0) = T0 (2.7)
d

dx

(
Tf − T∞
T0 − T∞

) ∣∣∣∣∣
x=hf

= 0 (2.8)

Here T0 is the fin root temperature.

According to Incropera et al. [12] the fin efficiency can be defined as

η ≡ Q̇f

Q̇max

= Q̇f

αAf (Tb − T∞) (2.9)

In order to solve the fin efficiency for plain fins the use of Bessel functions is required. In
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Incropera et al. [12] the fin efficiency for an annular fin is given as

ηth = C2
K1(mr1)I1(mr2c)− I1(mr1)K1(mr2c)
I0(mr1)K1(mr2c) +K0(mr1)I1(mr2c)

(2.10)

C2 = 2r1/m

r2
2c − r2

1
(2.11)

Here r1 is the tube outside radius. r2c = Df/2 + tf/2. I0 and K0 are modified, zero-order
Bessel functions. I1 and K1 are modified, first-order Bessel functions. Hashizume et al. [9]
similarly gives an analytical solution of the fin efficiency for serrated fins using the same
assumptions as Incropera et al. [12]. This solution also requires modified Bessel functions.
The Bessel functions can easily be implemented in Microsoft Excel.

Uneven heat transfer and corrected fin efficiency

Due to the formation of vortices and boundary layers, the assumption that the heat
transfer coefficient is uniform across the fin does not hold in actual situations. Experiments
have shown lower heat transfer coefficients than predicted theoretically. Weierman [25]
found a nonuniform heat transfer correction to correct for this. Weierman [25] found that
the “actual”/corrected fin efficiency differs from the theoretical fin efficiency by a factor
E. The actual fin efficiency can then be expressed:

ηc,W = E · ηth (2.12)

Weierman [25] found that the factor can be approximated as Esol = 0.7 + 0.3 · ηth for
solid fins and Eser = 0.9 + 0.1 · ηth for serrated fins. As seen from the expression, these
correction factors do not consider the geometry of the fins or flow parameters. Hashizume
et al. [9] performed experiments on serrated tubes in a staggered arrangement to develop
a correction factor for the fin efficiency. This resulted in a correction factor dependent on
the geometry of the finned tube, the fin parameter m as well as the Reynolds number.

ψH = 1−
[
0.016

(
hs
wf

)
+ 0.14

(
Df

do

)2.7
· (1− 0.097 lnRe)

]
·mhf (2.13)

The corrected fin efficiency is then calculated

ηc,H = ψH · ηth (2.14)

It should be noted that Hashizume et al. [9] defines the applicable range as 1.80 ≤ df

do
≤

2.15, 0 ≤ hs

h
≤ 0.86, 0 ≤ hs

wf
≤ 2.60, 5 · 103 ≤ Re ≤ 5 · 104 and 0 ≤ (mhf ) ≤ 2.5.
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2.5 Correlations from the literature

Various different semi-empirical correlations exist for estimating the Nusselt number as
well as the Euler number for a finned tube bundle. These correlations generally do not
agree with each other, and can vary as much as 30 percent from each other [6]. How-
ever, the correlations can give an indication on the validity of the numerical results, and
are therefore included in this study. See Appendix B for the correlation used in this study.



Chapter 3

Numerical Considerations

For the numerical model set up in this study the software package ANSYS Fluent is used.
FLUENT uses the Finite Volume Method (FVM). In order to solve a problem the relevant
geometry needs to be put in a grid system of small control volumes. The FVM solves
the relevant partial differential equation on these finite volumes. For this study the flow
in the finned tube bundle is considered to be turbulent, since higher Reynolds numbers
are considered (5000 ≤ Re ≤ 30000). This means a turbulence model is required. This
chapter presents the background theory on the models and sub-models used in this study.
The chosen models will be justified based on characteristic traits of the models as well as
results from earlier studies found in the relevant literature. The first three sections are
modified versions from the project work (Eide [7]).

3.1 Turbulence models

Unfortunately there is no single turbulence model which is universally accepted as being
the best model for all classes of problems. Important factors when choosing a model are
physics of the flow, level of accuracy required, available computational resources and time
available for the simulation. Each model has its capabilities and limitations. According to
Mon [16] two types of turbulence models are relevant for numerical modeling of a finned
tube bundle, namely Large Eddy Simulation (LES) and Reynolds averaging (RANS). [16]
points out that the LES model requires extremely fine grids and therefore a much longer
computing time than RANS. Tab. 3.1 gives an overview on the turbulence models used
in the earlier relevant studies on numerical modeling of finned tube bundles. As can be
seen [16], [15], [10], [5] and [6] uses a variant of the RANS turbulence model. [14] does
not implement a turbulence model since the flow is considered to be laminar. Based on
the findings in the relevant literature as well as limitations to computational capacity and
time, it is decided to use a RANS turbulence model for this study.

10
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Study Solid or ser-
rated fins?

Inline or stag-
gered layout?

Reynolds range Turbulence
model

Near-wall treatment

Mon [16] Solid Both 5, 000 ≤ Re ≤ 70, 000 RNG k − ε Standard wall functions
Mcllwain [15] Solid Both 4, 000 ≤ Re ≤ 16, 000 Realizable k− ε Enhanced wall

treatment
Hofmann [10] Both Both 3, 500 ≤ Re ≤ 35, 000 RNG k − ε Enhanced wall

treatment
Bharathan et al.
[5]

Serrated Staggered 5, 000 ≤ Re ≤ 35, 000 RNG k − ε Enhanced wall
treatment

Cleirigh and
Smith [6]

Both Staggered 5, 000 ≤ Re ≤ 30, 000 SST k − ω Low-Re
(near-wall model)

Lemouedda et al.
[14]

Both Staggered 600 ≤ Re ≤ 2, 600 - -

Table 3.1: Overview of the setup of the relevant studies
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3.1.1 Reynolds Averaged Navier-Stokes (RANS) Turbulence Model

According to [2] RANS models are often used for computing complex turbulent industrial
flows and is considered to be the most economic approach. In Reynolds averaging, the
variables in the Navier-Stokes equation are decomposed in to averaged components and
fluctuating components. For the velocity components:

ui = ūi + u′i (3.1)

Here ū is the averaged velocity, while u′i is the fluctuating velocity component. Inserting
the averaged components in to the continuity equation and Navier Stoke equation yields
the RANS equations. Here, the bar notation ū is dropped for simplicity.

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0 (3.2)

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ∂

∂xj

[
µ

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3δij
∂ul
∂xl

)]
+ ∂

∂xj

(
−ρu′iu′j

)
(3.3)

New terms now appears, namely the Reynold stresses, −ρu′iu′j. These terms represent
the effects of turbulence. It is these terms which must be modeled in the turbulence
models in order to close eq. (3.3) [3]. This is done by introducing various transport
equations, as well as turbulent viscosity, µt. Turbulent viscosity differs from molecular
viscosity in the way that it is a property of the flow, not the physical property of the fluid.

Even though simplifications are done, the models often provide the required level of ac-
curacy [3]. None of the models are universal, so it is necessary to do evaluations on which
of the models that are the best fit for a given application. Both Mon [16] and Hofmann
[10] uses the RNG k − ε model. Both studies point out that while the standard k − ε

model fails to predict the wake created behind the tubes, the RNG modification performs
well for finned tube bundles. The RNG k − ε model is reported to also predict well low
Reynolds effects near the walls. For theory on the RNG k − ε model see [3].

Cleirigh and Smith [6] is the only study that uses the SST k−ω turbulence model. Cleirigh
and Smith [6] states that “the SST k−ω turbulence model more accurately predicts flow
separation in the presence of adverse pressure gradients, when compared to the Wilcox
k − ω model and the k − ε model.” In the start of the present study both the RNG k − ε
model and the SST k−ω model were tested. It was found that the SST k−ω turbulence
model more accurately predicted the pressure loss in the tube bundle when compared to
the experimental data and semi-empirical correlations. It was therefore decided to use
the SST k − ω model.
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The SST k − ω model

The k − ω models are two-equation models. According to [3] the standard k − ω model
is based on transport equations for turbulence kinetic energy, k (3.4) and the specific
dissipation rate, ω (3.5). The turbulence kinetic energy is defined as the mean kinetic
energy per unit mass associated with turbulent eddies in the turbulent flow [18].

∂

∂t
(ρk) + ∂

∂xi
(ρkui) = ∂

∂xj

(
Γk

∂k

∂xj

)
+Gk − Yk + Sk (3.4)

∂

∂t
(ρω) + ∂

∂xi
(ρωui) = ∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω + Sω (3.5)

These equations are implemented in the FLUENT software-package and are taken from
the Fluent Theory Guide [3]. Gk represents the generation of turbulence kinetic energy
due to mean velocity gradients. Gω represents the generation of ω. Γk and Γω represent
the effective diffusivity of k and ω, respectively. Yk and Yω represent the dissipation of k
and ω due to turbulence. Sk and Sω are user-defined terms. It was decided for this study
to retain the standard values for the coefficients used in ANSYS Fluent.

Further, the effective diffusivities are given by:

Γk = µ+ µt
σk

(3.6)

Γω = µ+ µt
σω

(3.7)

σk and σω are turbulent Prandtl numbers. The turbulent viscosity is computed by com-
bining k and ω:

µt = α∗
ρk

ω
(3.8)

Without going into further detail, the coefficient α∗ damps the turbulent viscosity, causing
a low-Reynolds number correction. For high Reynolds number, α∗ = α∗∞ = 1. For a more
detailed description, see the Fluent Theory Guide [3].

According to the Fluent User’s Guide [2], these models offer several advantages to the
ε-equation. The most important one is that the ω-equation can be integrated without
additional terms through the viscous sublayer. The models are also considered to bet-
ter predict adverse pressure gradient boundary layer flows and separation. The major
challenge with using these models is the strong sensitivity of the solution, depending on
the free-stream values of k- and ω- outside the shear layer. The Fluent User’s Guide [2]
therefore generally does not recommend using these models in ANSYS Fluent.



14 CHAPTER 3. NUMERICAL CONSIDERATIONS

A specific k − ω model, namely the Shear-Stress Transport (SST) k − ω model has been
developed to avoid the free-stream sensitivity. The idea behind the SST-model is to
effectively blend the robust and accurate formulation of the k− ω model in the near-wall
region (viscous sublayer) and at the same time get the freestream independence of the
k− ε model in the far field. This is done by combining elements of the ε- equation and the
ω-equation. Compared to the standard k − ω model, the transport equation for kinetic
energy, k (3.4) is unchanged. (3.5) is modified to (taken from [3]):

∂

∂t
(ρω) + ∂

∂xj
(ρωui) = ∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω +Dω + Sω (3.9)

Dω is the damped cross-diffusion derivative term. This term is a result of blending the
standard k− ω and standard k− ε models together. All modeling constants are different
compared to the standard model.

Furthermore the standard k−ω model and the transformed k−ε model are both multiplied
by a blending function which activates the k−ω model in the near-wall regions and then
activates the transformed k−ε model away from the walls. The definition of the turbulent
viscosity is modified, in order to account for the transport of the turbulent shear stress [3].

The SST model is one of the most widely used model for aerodynamic flows [2]. It is
considered to better predict the details of the boundary layer characteristics than the
Spalart-Allmaras model. Within the k − ω model family the Fluent User’s Guide [2]
recommends using the SST-model.

3.2 Near-wall treatment

When modeling turbulent flows, proper near-wall treatment is of great importance. The
no-slip condition always applies, but the turbulence is also changed by the presence of the
wall in non-trivial ways.

3.2.1 Near-wall regions for turbulent flows

Very close to the wall, viscous damping reduces the tangential velocity fluctuations. This
region is called the viscous sublayer. Here the flow is almost laminar and the molecular
viscosity plays a dominant role in momentum and heat transfer. Toward the outer part of
the near-wall region, the turbulence rapidly plays a bigger role. A fully turbulent region
occurs because of this production of turbulent kinetic energy due to the large gradients
in mean velocity.
Between the viscous sublayer and the fully turbulent region there is an interim region,
where the effects of molecular viscosity and turbulence are equally important. Fig. 3.1
shows an overview of the different regions which must be treated in a correct manner.
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Figure 3.1: Subdivision of the near-wall region. Taken from [3]

Here, y+ is the dimensionless distance from the wall. It is based on the distance from the
wall to the first node as well as the wall shear stress, and is defined as:

y+ = ρuτy

µ
, uτ =

√
τw
ρ

(3.10)

Here uτ is the friction velocity. τw is the absolute value of the wall shear stress. y is the
distance from the wall to the first node [3].

3.2.2 Wall functions vs. near-wall model

According to [3] There are normally two way of handling the near-wall effects, namely
wall functions and near-wall modeling, see fig. 3.2.

Near-wall modeling

According to [3] this approach modifies the turbulence models to enable the viscosity-
affected region to be resolved with a mesh all the way to the wall, including the viscous
sublayer. Normally this means that y+ ≈ 1 is required. Also it is important to have an
adequate number of cells in the buffer and sublayer (20 cells are considered to be desirable
[3]). A good way to ensure this is to create prism layers under the grid generation. To
check if the buffer and sublayer are properly covered, looking at the turbulent viscosity
after obtaining a solution can give the answer. Turbulent viscosity has a maximum in
the middle of the boundary-layer, which can give an indication of the thickness of the
boundary-layer (twice the location of the maximum gives the boundary-layer edge).
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Figure 3.2: Near wall treatments (applied in ANSYS FLUENT). Taken from [3]

Wall functions

This approach does not resolve the viscosity-affected buffer and sublayer. Semi-empirical
formulas called “wall functions” are used in stead. Traditionally the numerical results
deteriorate if the mesh becomes to fine near the wall (y+ < 15) when using wall functions
[3]. This is because of unbounded errors in wall shear stress and wall heat transfer. Dur-
ing the last years, actions have been taken to offer more advanced wall functions, offering
y+-independent formulations. This new method has become default for ω-equation based
turbulence models. This method is called the Enhanced Wall Treatment (EWT). EWT
is special by way of it combining wall functions with a two-layer model. If the near-wall
mesh is fine enough to be able to resolve the sublayer, near-wall modeling will be applied.
If this is not the case, wall functions are used [3].

Since the SST k−ω turbulence model is used in the present study, EWT will be applied.

3.3 Solver methods

In FLUENT, two numerical methods can be chosen: Pressure-based solver and density-
based solver. Traditionally, the pressure-based solver was developed for low-speed in-
compressible flows and the density-based solver for high-speed compressible flows. Today
the solvers have been extended and reformulated to operate for a wider range of flow
conditions. Both solvers obtain the velocity field from momentum equations. The main
difference between them is how the density and pressure field is obtained [3].

The density-based solver uses the continuity equation to obtain the density and the equa-
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tion of state for the pressure field. For the pressure-based solver the pressure field is
obtained by solving a pressure correction equation which originates from continuity and
momentum equations [3].

Both solvers use the Finite-Volume Method (FVM), but the method used to linearize
and solve the discretized equations is different. For the present study the pressure-based
solver is chosen. This solver is chosen because the flow in the finned tube bundle can be
considered to be compressible, which is what the solver was originally designed for.

3.3.1 Pressure-based solver

Figure 3.3: Overview of the pressure-based solution methods. Taken from [3]

Two algorithms for the pressure-based solver are available in FLUENT; a segregated and a
coupled algorithm. Fig. 3.3 gives an overview of the major differences. These algorithms
each have their own pros and cons. For the segregated algorithm, the discretized equations
only need to be stored in the memory one at a time, which makes this algorithm memory-
efficient. However this method causes a slower convergence. The opposite situation is the
case for the coupled algorithm. Typically the memory requirement increases by 1.5 − 2
times that of the segregated algorithm. For the current study it was decided to use
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the coupled algorithm, since enough memory was available at the computer used for the
simulations.

Spatial discretization scheme

FLUENT gives the option to choose among several upwind schemes for the spatial dis-
cretization. Generally a first-order upwind scheme gives faster convergence than a second-
order upwind scheme. However, a second-order upwind scheme naturally gives better
accuracy of the solution [2]. Further [2] states that first-order schemes especially yield
less accurate results on tri/tet meshes. Since this is the type of mesh that will be used in
this study, a second order upwind scheme was chosen for all calculations.

Under-relaxation factors

The under-relaxation factors are kept at default values, as these values gave good conver-
gence of the solution:

Pressure: 0.3

Density: 1

Body forces: 1

Momentum: 0.7

Turbulent kinetic energy: 0.8

Turbulent dissipation rate: 0.8

Turbulent viscosity: 1

Energy: 1

3.4 Ensuring convergence of the solution

An important aspect when performing numerical simulations is to judge whether the
simulation is complete and converged, or not. There are several different ways to check
this and ensure convergence. The most used method is to look at the residuals for each
variable being solved. Residuals can be understood as the absolute error in the solution of
a solved variable. In ANSYS FLUENT the default convergence criterion is defined using
globally scaled residuals [2]. The residuals are scaled to easily judge convergence. The
globally scaled residuals in FLUENT are defined as:

Rφ =

∑
cellsP

[∑
nb
anbφnb + b− aPφP

]
∑

cellsP
[aPφP ] (3.11)
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This equation is valid for a general variable φ at a cell P . aP is the center coefficient,
while anb are the influence coefficients for the neighboring cells. b is the contribution of
the constant part of the source term Sc in S = Sc + SPφ [3].

The default convergence criterion in FLUENT states that (3.11) needs to be reduced to
10−3 for all solved equations, except the energy equation for which the criterion is set
to 10−6 [2]. For most problems, the default convergence criterion is sufficient [2]. This
criterion is therefore enforced for the simulations performed in this study.

It should be noted that the default convergence criterion may not always be appropriate
[2]. The residuals are scaled based on the first initial guesses of the flow field. If a good
initial guess is made the initial residual will be small, leading to large scaled residuals.
This is typically a problem for the continuity residuals [2]. This also holds the other way
around: A poor initial guess of the flow field will lead to high scale factors which means
low scaled residuals. Scaled residuals may therefore not give the full picture. A good
indicator to judge convergence is to look at how the residuals develop with the iterations.
A good indication that convergence is reached is if the residuals continue to decrease or
remain low for several iterations



Chapter 4

Numerical Modeling of Staggered
Fin-Tube Bundles

The purpose of this chapter is to develop a numerical model for fluid flow through a finned
tube-bundle. To make the model, five steps must be performed:

1. Create three dimensional geometry of the problem.

2. Define outer boundaries of the geometry and make a discrete representation of the
geometry by generating a mesh.

3. Apply sub-models, boundary conditions and solution method.

4. Perform simulations

5. Post-process the result.

In this chapter steps 1. through 4. will be described. The data reduction necessary to
process the data will also be presented.

4.1 Geometry

All geometries are made in the software package Solidworks. When creating the geome-
try the main focus was to make it similar to the geometry used in the experimental tests
[11]. This means that eight longitudinal tube rows are made. According to Næss [20]

Geom. Fin type do[mm] pf [mm] tf [mm] hf [mm] hs[mm] wf [mm] Pl[mm] Pt[mm]
1 (6) Solid 13.5 3.32 0.5 10 - - 33.5 38.7
2 (2) Solid 31.75 3.72 1 18 - - 60.41 69.75
3 (5) Serrated 19.05 3.61 1 10 5 4.5 34.58 44.05

Table 4.1: The geometries considered in this study

20
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this is sufficient to obtain representative heat transfer and pressure drop data. In order
to reduce the computational calculation time, only one fin pitch is modeled when creat-
ing the geometry. This is consistent with earlier numerical investigations on finned tube
bundles ([16],[10], [6]) and has proven to give good results. Further two tube rows are
modeled in the transversal direction with half tubes at the boundaries, in order to portray
the staggered arrangements. This setup is consistent with [6] and [14]. See tab. 4.1 for
the geometrical parameters and fig. 4.1 for the computational domain. In the geometry
row in tab. 4.1 the numbers in parenthesis are the numbering of the geometries used
in the experimental tests [11]. All three geometries have an arrangement angle β = 30◦.
Geometry 1 is made out of aluminum, while geometry 2 and 3 is made out of carbon steel.

10d_o 3d_o 

Periodic conditionInlet Outlet

(a) Staggered arrangement

Symmetry condition

(b) Top view

Figure 4.1: Computational domain

There is one important difference in geometry from the experimental setup. The fins in
the experimental setup are twisted helically around the tube (case b. in fig. 4.2). In the
simulations the geometry is simplified to annular fins around the tube (case a. in fig. 4.2).
This will have an impact on pressure drop. More on this in the next chapter.
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Figure 4.2: a. Individual annular fins; b. Helically wound fins (according to PFR [22])

4.2 Grid generation

For the grid generation, the geometry files were imported from Solidworks to the meshing-
software program ICEM CFD. First the outer boundaries were defined, see fig. 4.3. The
distance from the inlet to the first tube was set to 3 · d0. The distance from the last tube
to the outlet was set to 10 · d0 (see fig. 4.1(a)). The distance of 10 · d0 to the outlet proved
to be a sufficient distance for all three geometries to prevent back-flow at the outlet. An
unstructured grid was chosen for the whole domain for all geometries.

4.2.1 Surface mesh

For the surfaces, a quad dominant mesh was chosen, see fig. 4.4. This mesh allows for
several transitional triangles [1]. Since the given set-up contains sharp corners and edges
this type of mesh is considered to deliver better result than a pure quad mesh [1]. Fig.
4.4 shows that ICEM mainly meshes the surfaces with triangles.

4.2.2 Volume mesh

For the meshing of volume elements (air-side volume and volume inside the fins) the mesh
type Tetra/Mixed was chosen. For the volume in between the finned tubes a hexa-core
is generated. According to [1] “a hexa-core retains the tri surface or prism mesh, deletes
the existing tetra mesh, and remesh the volume interior with Cartesian meshing.” Hexa-
core allows for a reduction in number of elements for quicker solver run time. Faster
convergence is also experienced because of the structure of the Cartesian meshing. See
fig. 4.5 for a cut plane of the air-side volume mesh. The inside of the tubes are not
meshed.
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(a) Top/bottom

(b) Inlet (dark blue), outlet (orange), sides (red/cyan)

Figure 4.3: Outer boundaries of mesh (for geometry 1)

4.2.3 Prism layers

In order to capture the near-wall effects (see section 3.2), prism layers are created near
the finned tube surfaces. Based on the mesh sensitivity study (see section 4.7) six prism
layers are created near the surfaces. First three layers were generated when creating the
surface and volume mesh. Then the prism layers were split up in to six prism layers.
This method proved to give the best quality of the mesh. See fig. 4.6 for a representation
of the prism layers. Prism layers were not generated for tube bundle with serrated fins
(geometry 3). Several attempts were made in order to grow prisms, but the quality of the
mesh were insufficient to run simulations on. The main reason for the poor quality is the
narrow areas between the fin serrations. A high quality mesh without prism layers was
therefore chosen in stead. See fig. 4.7 for the near-wall meshing for geometry 3 without
prism layers.
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Figure 4.4: Surface mesh on tube wall and fin (geometry 1)

Figure 4.5: Cut plane of the air-side volume mesh (geometry 1
)
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Figure 4.6: Prism layers near the finned tube surface (geometry 1)

Figure 4.7: Near-wall meshing of serrated geometry (geometry 3)
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4.3 Boundary Conditions

Top and bottom

The top and bottom outer boundary are set as symmetry boundary conditions. This
means a zero flux of all quantities in the normal direction to the boundaries. As seen
from tab. 4.2 symmetry conditions at the top/bottom have been used in earlier studies.
Since most flow effects occur in the transversal and longitudinal direction, symmetry
conditions at the top/bottom are considered to be adequate.

Left- and right-side

The left- and right-side boundaries are set as periodic. This means that the left- and right-
side boundary must have an identical surface mesh. This is taken care of when meshing in
Ansys ICEM. Periodic boundary conditions means that the conditions from the left-side
boundary are reflected to the right-side boundary. This means that in theory an infinite
sequence of fin-arrays are modeled. All fluid variables are conservative across the two
boundaries. As seen from tab. 4.2 only Cleirigh and Smith [6] uses periodic conditions for
the left/right side. Cleirigh and Smith [6] points out that the use of symmetry condition
for these boundaries is unrealistic since that would mean the heat and mass flow normal
to the boundaries would be constrained to zero.

Inlet and outlet

The inlet is chosen to be a velocity-inlet with inlet velocity uin = constant, varying with
different Reynolds numbers. Further, the inlet temperature is set to be Tin = 400K,
which is approximately the inlet temperature of air used in the experimental tests at
NTNU. The turbulent intensity at the inlet is set to Tu = 5%. This is the default value
in ANSYS Fluent and is characterized as medium intensity. Few investigations are done
in the literature on the influence of upstream turbulence. In an earlier master thesis at
NTNU by Klynderud [13] it was found that “the experimental results show no influence
of the upstream flow conditions on the heat transfer coefficient development through the
tube bundle”. It was further emphasized that there is a need for further investigations on
the topic. The outlet is set as a pressure-outlet. The gauge pressure at the outlet is set
to zero. This corresponds to atmospheric conditions. The backflow temperature is set to
350K in case of separation of the flow. Backflow was experienced sometimes during the
calculations, but no backflow was present in the converged solutions.

Tube walls and fins

The tube walls were set as walls with no slip condition. Further, the tube wall temper-
ature was set to Tw = 300K = constant. The fins were also set to no slip walls, but
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with temperature dependent on the flow conditions and coupling between conduction and
convection.

4.4 Physical properties

The gas-side fluid was modeled as dry air, using the incompressible ideal gas law for
calculating the density. According to Hofmann [10] the ideal gas law can be used since
the pressure variations are small enough, but the flow is temperature dependent. For the
thermo-physical properties of the air, polynomial functions are used, see Appendix A. For
the materials of the finned tubes the thermal conductivity is considered using functions
found in the literature. See Appendix A.

4.5 Standard procedure for running simulations

After doing initial test simulations a systematic procedure was developed for running
simulations for varying Reynold numbers. The procedure goes as follows.

1. Start FLUENT with 3D solver, double precision and parallel processing with all
available processors.

2. Load the mesh in to FLUENT. Scale down the mesh from meter to millimeter. Check
the mesh, concerning the dimension of the calculation domain, minimum/maximum
volumes and number of nodes. Also see if the quality of the mesh is acceptable, by
checking the minimum orthogonal quality.

3. Set the solver options, physical properties, turbulence model and solution method
as described.

4. Under models, turn energy on, in order to solve the energy equations.

5. Set the boundary conditions as described. For varying Reynolds numbers only the
inlet velocity is changed.

6. Initialize the solution by choosing hybrid initialization.

7. Set convergence criteria: Scaled residuals are set to 0.001, while the energy residual
is set to 1e−6.

8. Calculate the solution and save the result.

In average a simulation took between 10-14 hours to reach the desired convergence cri-
teria. The simulations were ran on a laptop with an i7-4600 CPU @ 2.10GHz 2.70GHz
processor and 16 GB of RAM.
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Study Inlet Outlet Left/Right Top/Bottom Tube walls

Mon [16] Tin = 308.15K,
Tu = 1%

Atmospheric pressure Symmetry Symmetry Tw = 283.15K = constant

Mcllwain [15] Tin = 373.15K,
Tu = 30%

Mass flow outlet Symmetry Symmetry Unknown

Hofmann [10] Tin = 480K,
Tu = 5%

Atmospheric pressure Symmetry Periodic
interfaces

Tw = 330K = constant,
αi = 3860W/m2K

Bharathan
et al. [5]

Tin = 373K,
Tu = 5%

Atmospheric pressure Symmetry Symmetry Tw = 293K = constant,
αi = 3226W/m2K

Cleirigh and
Smith [6]

Tin = 673.15K,
Tu unknown

Atmospheric pressure Periodic
interfaces

Periodic
interfaces

Tw = 333.15K = constant

Lemouedda
et al. [14]

Tin = 300K Atmospheric pressure Adiabatic slip
walls

Adiabatic slip
walls

Tw = 350K = constant

Table 4.2: Boundary conditions of the relevant studies (taken from Eide [7])

All inlets are velocity inlets. uin = constant for varying Reynolds number
All outlets are pressure outlets, except for Mcllwain [15] which have a mass flow outlet
All tube walls and fin walls are no-slip walls.
The fins have varying temperature dependent on the flow conditions. Conduction and convection are coupled in all cases.
αi is the inner heat transfer coefficient (liquid-side) of the tube.
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4.6 Data reduction

4.6.1 Calculation of relevant parameters

All relevant data is gathered using the function calculator in CFD-post. For the calcula-
tion of the necessary flow variables (φ) at boundaries (for example at inlet and outlet),
mass flow averaging was used. In ANSYS CFD-Post the massF lowAve function was
used. According to [4] this function is evaluated with the formula:

massF lowAve(φ) =
∑(mφ)∑

m
(4.1)

Here φ represents the flow variable being averaged. m represents the local mass flow. Each
summation term is evaluated on and corresponds to, a node on the 2D locator/boundary
[4]. Relevant temperatures and pressures were acquired using this function.

Some of the parameters needs to be evaluated with integrals. In ANSYS CFD-Post this
data was obtained using the areaInt function. According to [4] the areaInt function
integrates a variable over the specified 2D location. No specific axis is specified, so the
integration is performed over the total face area.

To calculate the average fluid temperature of the fluid in the finned tube bundle, the ave
function is used. According to [4] the ave function calculates the arithmetic average of a
variable or expression on the specified location [4].

The mass flow at the inlet is gathered using the massF low function which computes the
mass flow through the specified 2D location [4].

4.6.2 Evaluation of physical properties

The thermal conductivity of air is evaluated at the arithmetic mean gas temperature of
the air using the ave function. This is consistent with the semi-empirical correlations used
in this study. This method is also used to find the average thermal conductivity of the
finned tube material. The density, molecular viscosity and specific heat capacity of air is
calculated by taking the arithmetic between the inlet and outlet using the massF lowAve
function.

4.6.3 Heat transfer

To calculate the Nusselt number and fin efficiencies it was decided to use a method similar
to the one used by Cleirigh and Smith [6]. The calculations are performed at each tube
row.
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Figure 4.8: Planes at inlet/outlet of each tube row to calculate temperatures.

The heat transfer from the hot gas to the finned tubes was calculated using the integral
of heat flux over the finned tubes.

Q̇tot =
∫

Fintube

~q ·~ndA (4.2)

To calculate the overall heat transfer coefficient (U), the log-mean (LMTD) method was
used. The logarithmic mean temperature difference for counter-current flow was chosen.
According to Næss [20] this method has proven to be accurate to within 0.1% of the actual
cross-counter-current arrangement mean temperature difference.

∆TLMTD = Trow,in − Trow,out
ln
(
Trow,in−Tw

Trow,out−Tw

) (4.3)

Here Trow,in and Trow,out is the bulk temperature evaluated at planes right before/after
the respective tube rows. See fig. 4.8 for a representation of the planes. Tw = 300K is
the constant temperature of the tube walls.

The overall heat transfer coefficient is then calculated:

U = Q̇tot

Atot∆TLMTD

(4.4)

Here Atot is the total external heat transfer surface area of the finned-tubes.
In the numerical model, the tube walls are modeled as thin walls. This means that



4.6. DATA REDUCTION 31

conduction through the tube walls are neglected. The effective/apparent gas-side heat
transfer coefficient is simplified to

αe = 1

1
U
− Atot

ln

(
do
di

)
2πLλf

≈ U (4.5)

Here L is the total length of tube.

In order to calculate the actual average gas-side heat transfer coefficient, αo, the fin
efficiency η is needed. Based on the standard definition of fin efficiency, the fin efficiency
can be calculated directly, assuming a constant mean bulk temperature at each tube row.

ηsim = Q̇actual

Q̇ideal

=

∫
fin

(Ts − T∞)dA

Afin(Tbase − T∞) ≈

∫
fin

TsdA− T∞Afin

Afin(Tbase − T∞) (4.6)

Here Ts is the surface temperature on the fin. T∞ is the mean bulk temperature at each
tube row, and is taken to be Trow,in+Trow,out

2 . It should be noted that this assumption might
give slightly wrong results since the mean gas temperature varies within each row. The
assumption is however consistent with the method used by Cleirigh and Smith [6].

The theoretical fin efficiency is also calculated using eq. 2.11 for the solid fins and the
theoretical fin efficiency found by Hashizume et al. [9] for the serrated fins. In these cal-
culations, αe is used from the simulations to calculate the fin parameter m. An iterative
procedure is performed in Excel in order to obtain αo and ηth since the two parameters
are dependent on each other.

Having calculated the theoretical fin efficiency, the fin efficiency correction using the
method proposed by Weierman [25] can be found. The actual heat transfer coefficients
from the experimental tests is calculated using this method [11]. It therefore makes sense
to calculate the actual heat transfer coefficients from the simulations based on this fin
efficiency. The corrected fin efficiency proposed by Hashizume et al. [9] is also calculated.
It should be noted that the fin diameter ratio df

do
for geometry 1 equals 2.45 which exceeds

the applicable range defined by Hashizume et al. [9]. For completeness the corrected fin
efficiency is included anyway. For all the calculated fin efficiencies the overall fin efficiency
of the finned tube bundle is taken to be the averaged fin efficiency from the eight tube rows.

The actual average gas-side heat transfer coefficient is defined as

αo = αeAtot
Abare + ηc,WAf

(4.7)
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The Nusselt number can then be calculated

Nu = αodo
λair

(4.8)

4.6.4 Pressure loss

The total pressure loss ∆P = Pin − Pout is obtained using the massF lowAve function
in CFD-Post at the inlet and outlet of the tube bundle. The relevant parameter is the
Total Pressure, which includes both frictional pressure loss and pressure change due to
acceleration/deceleration. The Euler number can then be calculated.

Eu = 2∆P · ρair
NL · (ṁ′′air)2 (4.9)

4.7 Mesh sensitivity study for geometry 1

An important goal when performing a CFD study is to minimize the numerical errors of
the solution. First of all it is a requirement that the solution is independent of the mesh
resolution. A good way to ensure this is to perform a mesh sensitivity study. The main
principle behind this study is to keep refining the grid until changes in the solution are
negligible. To reduce the simulation time, the smallest mesh that gives a mesh independent
solution should be used. In this study, two characteristic numbers of the flow are used to
compare the changes in the solution, namely the Nusselt and Euler number. The numbers
are obtained by looking at the overall system. Because of a limited time frame of this
project, a mesh sensitivity study is done just for geometry 1. An attempt is then made to
make similar meshes for the two other geometries, based on the decided mesh for geometry
1.

4.7.1 The tested meshes

# Nodes # Prisms Volume element size Surface element size

Case 1 211600 0 1.04 units 0.52 units
Case 2 436758 6 1.20 units 0.60 units
Case 3 736725 12 1.20 units 0.6 units
Case 4 1692818 12 0.80 units 0.40 units
Case 5 1694663 6 1.20 units 0.30 units

Table 4.3: The tested meshes for the mesh sensitivity study

See tab. 4.3 for the layout of the tested meshes. Case 5 is considered to be the bench-
mark. Each mesh is tested for three different Reynolds numbers (5000, 10000 and 25000).
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The smallest mesh consisting of 0.21 million nodes has no prisms to resolve the near-wall
effects. For the other meshes, prism layers are used. The only difference between case 2
and case 3 is that 6 additional prism layers are added. For case 4 the volume element size
and surface element size is made smaller. In case 5 the surface elements are made even
smaller and 6 prism layers are applied.

The boundary conditions are set as described in section 4.3. Due to human error the
pressure at the outlet was mistakenly set to twice the atmospheric pressure for all simula-
tions in the mesh sensitivity study. It was considered that this mistake would not impact
the mesh sensitivity study itself. New simulations were of course ran with the correct
pressure for the decided mesh.



Chapter 5

Results and Discussion

Firstly in this chapter the results from the mesh sensitivity study will be presented. It is
crucial to ensure that the numerical solution is independent of the mesh resolution. In the
rest of the chapter the main focus will be to compare heat transfer and pressure loss in the
tube bundle from the simulations to the available experimental data. Both the numerical
and experimental data will be compared to well-known semi-empirical correlations from
the literature. The effects of uneven heat distribution will be investigated by comparing
the simulated and experimental fin efficiencies to corrected efficiencies from the literature.
Visualizations of the flow will then be presented in order to explain the characteristic
effects happening in the finned tube bundle.

5.1 Results from the mesh sensitivity study

As can be seen in fig. 5.1 and 5.2 the 0.21 million-node mesh deviates considerably from
the more refined meshes. The most likely explanation to this is the insufficient mesh
resolution within the boundary-layer. This results in a higher predicted Nusselt number
and a lower predicted Euler number. This observation is consistent with the findings of
Cleirigh and Smith [6].

As can be seen on fig. 5.1 a considerable higher Nusselt number is observed for case
3 compared to the benchmark mesh for Re = 25000. One possible explanation to this
deviation could be the aspect ratio for the elements closest to the wall. Because of the
extra prism layers added, the cells closest to the walls gets stretched out, resulting in
bad aspect ratios. Bad aspect ratios for a mesh can result in interpolation errors of
unacceptable magnitude. In Ansys ICEM The aspect ratios are scaled, so that an aspect
ratio of 1 corresponds to a perfectly regular element, while an aspect ratio of 0 indicates
that the element has zero area/volume [1]. Investigations showed that for case 2, 0.25%
of the elements had a aspect ratio lower than 0.1. For case 3 0.96% of the elements had
a aspect ratio lower than 0.1.

34
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Figure 5.1: Nusselt number versus number of nodes for three different Reynolds numbers.
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Figure 5.2: Euler number versus number of nodes for three different Reynolds numbers.
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Re [-] Case 1 Case 2 Case 3 Case 4

5000 35.88% -1.66% -2.98% 0.33%
10000 35.24% -0.16% 0.17% 0.80%
25000 12.09% 1.08% 4.76% -2.07%

Table 5.1: Deviations in Nusselt number from the benchmark mesh, Nucase−Nubench

Nubench
· 100%

Re [-] Case 1 Case 2 Case 3 Case 4

5000 -13.06% -1.91% 0.29% -1.75%
10000 -26.34% 0.00% -4.61% -0.55%
25000 -44.45% -2.43% -3.39% -4.66%

Table 5.2: Deviations in Euler number from the benchmark mesh, Eucase−Eubench

Eubench
· 100%

Therefore for the final cases, it was decided to have one case with 6 prism layers and
one case with 12 prism layers. For case 5 with 6 prism layers the focus was to improve
the aspect ratios by making the surface elements smaller. After looking at the results
it is seen that case 5 predicts a higher Euler number than case 4. Since the simulations
generally under-predicts the Euler number compared to experimental data, it is decided
to use case 5 in the further calculations. Six prism layers near the walls are therefore
considered to be enough to resolve the near-wall effects.

Fig. 5.3 shows the y+ values at the fin walls for the decided mesh (case 5). As discussed
in section 3.2, y+ ≈ 1 is required in order for the viscosity-affected region to be resolved
adequately. As can be seen from the figure this holds for a case with low Reynolds num-
ber. For the case with a high Reynolds number y+ > 1. Since the SST k − ω turbulence
model uses Enhanced Wall Treatment (EWT) the numerical model should still be able to
provide decent results.

It should be noted that it was considered to further refine the mesh. When this was tried
the the computer used lacked the necessary memory. For further work a more refined grid
should be tested in order to verify that case 5 provides a good enough result.

Similar meshes are made for geometry 2 and 3 based on the conclusions drawn from the
sensitivity analysis. As mentioned earlier, prism layers are not created for geometry 3.
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Figure 5.3: y+ values for the decided mesh (for geometry 1) at Re = 4397 (top) and Re = 26086 (bottom)
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5.2 Geometry 1 (solid fins)

5.2.1 Nusselt number
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Figure 5.4: Nu ·Pr− 1
3 vs. Re for geometry 1

The Nusselt number is based on the actual heat transfer coefficient obtained using the fin
efficiency according to Weierman [25]. The Nusselt number is calculated at each row and
then averaged to give a Nusselt number for the entire tube bundle. Fig. 5.4 compares
the numerical case to the experimental case, as well as three semi-empirical correlations
for heat transfer in finned tube bundles. See appendix B for the equations used. Here
the Prandtl number is taken to be constant Pr = 0.7. As can be seen from the figure,
the numerical result seems to under-predict the experimental result and the correlations.
The correlations from Stasiulevicius et al. [21] seems to be the best fit for both the
numerical and experimental result. The numerical result exhibits a similar sensitivity to
the Reynolds number as the correlations and experimental data. Also for higher Reynolds
numbers where the flow is highly turbulent, the numerical model is able to provide decent
results. This strengthen the use of the SST k − ω turbulence model.

5.2.2 Euler number

Fig 5.5 compares the numerical case to the experimental case, as well as three semi-
empirical correlations for pressure drop. As can be seen the numerical results tend to
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Figure 5.5: Eu vs. Re for geometry 1

undershoot the experimental values. It is believed that a major reason for the deviation
between the numerical and experimental result is the fact that for the experimental finned
tubes the fins are twisted helically around the tube. In the numerical model the fins are
circular around the tubes. For the helical fins an additional drag effect on the fins is
expected to cause an increase in pressure drop.

Also for the pressure drop the numerical result exhibits a similar sensitivity to the
Reynolds number as the correlations, which is a good sign. Large variations can be
seen between the correlations. This indicates that predicting the pressure loss in a finned
tube bundle is a complicated and difficult procedure.

5.2.3 Heat transfer

Fig. 5.6 shows the actual heat transfer coefficient αo for four different Reynolds numbers,
including both simulated and experimental values at each tube row. Since the simulated
Reynolds numbers did not exactly match the experimental Reynolds numbers, the exper-
imental heat transfer coefficients are interpolated between two nearby experimental tests
in order to match the simulated case. This is also done for geometry 2 and 3. First of all
it can be seen from fig. 5.6 that the simulation generally under-predicts the experimental
heat transfer coefficient. However the numerical model seems to predict the first and last
row fairly well for the whole range of Reynolds numbers. A clear tendency for both the
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Figure 5.6: Comparison of the heat transfer coefficients for geometry 1 with four varying
Reynolds number

numerical and experimental heat transfer coefficients is that the heat transfer drastically
increases from row 1 to row 2. This phenomena is also generally observed in the relevant
literature. According to Sparrow and Samie [19], which investigated staggered finned tube
arrangements for different Reynolds numbers and tube pitches, the most likely explana-
tion to this phenomena is the higher turbulence and velocity provided by the jet stream
of the preceding row (row 1).

Fig. 5.7 plots the deviations in simulated values to the experimental ones. As can be
seen from the figure, the case with Re = 4397 predicts better the experimental data than
the other three cases with higher Reynolds number. A tendency for the simulations is
that the first row has small deviations on heat transfer. With increasing row number
the deviation increases. A possible reason for this could be that the flow becomes more
complex to model because of the row to row effects like flow separation after the rows for
example.

An interesting topic to investigate is the stabilization of the heat transfer coefficient in
the finned tube bundle. Fig. 5.8 shows the ratio between the heat transfer coefficient
for each single row and the average value found for row 4-8. According to a literature
study performed by Klynderud [13], it can be generally be observed that the heat transfer
coefficient seems to stabilize around the fourth row and only have a minor increase towards
the eight and final row. Based on fig. 5.8 this tendency can be seen for the numerical case
at a high Reynolds number. Also for the experimental case the heat transfer coefficient
stabilizes after the fourth row, but unlike the simulation, the value decreases towards the
final row. At a low Reynolds number however, no clear tendency can be seen. There is
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no good explanation to why the heat transfer coefficient increases and decreases from row
to row.
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ficient for row 4-8 (geometry 1)

5.2.4 Fin efficiencies

As can be seen from fig. 5.9, the fin efficiency found from the simulations lies closest to
the theoretical fin efficiencies. It can also be seen that Weierman [25] better predicts the
fin efficiency at a low Reynolds number. The opposite is the case for the fin efficiency
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calculated from Hashizume et al. [9]. The most likely reason to why [9] deviates consid-
erably for low Reynolds number is that the case is outside the defined applicable region.
Keep in mind that the theoretical fin efficiency and the corrected fin efficiencies calculated
from Weierman [25] and Hashizume et al. [9] uses the effective heat transfer coefficient,
αe calculated from the simulations using eq. 4.5.
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5.3 Geometry 2 (solid fins)

5.3.1 Nusselt number
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Figure 5.10: Nu ·Pr− 1
3 vs. Re for geometry 2

Fig. 5.10 compares the numerical case to the experimental case, as well as three semi-
empirical correlations for heat transfer in finned tube bundles. When compared to ge-
ometry 1 (fig. 5.4), larger deviations are seen between the numerical and experimental
result for geometry 2. The numerical result lies closes to Stasiulevicius et al. [21]. The
prediction of the Nusselt number worsen with increasing Reynolds number.

5.3.2 Euler number

Fig 5.5 compares the numerical case to the experimental case, as well as three semi-
empirical correlations for pressure drop. As can be seen the numerical result under-shoots
the experimental result. This is probably due to the same reason as explained for geometry
1 (circular versus helical fins). The numerical result exhibits a similar sensitivity to the
Reynolds number as the correlations and the experimental data. As can be seen the
numerical result is right in alignment with Weierman [25].
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Figure 5.11: Eu vs. Re for geometry 2

5.3.3 Heat transfer

Fig. 5.12 shows the actual heat transfer coefficient αo for four different Reynolds num-
bers, including both simulated and experimental values at each tube row. Similarly to
geometry 1, the numerical model tends to under-predict the experimental data. The ex-
perimental heat transfer coefficient at tube row eight for Re = 5793 is believed to be an
outlier caused by experimental error and should be neglected.

When comparing fig. 5.13 with fig. 5.7 it can be seen that the deviation between simulated
and experimental data is larger for geometry 2 than for geometry 1. The longitudinal and
transversal pitch relative to the finned tube size is smaller for geometry 2 than for geom-
etry 1. In other words, geometry 2 is a narrow and densely packed finned tube bundle
and therefore a more challenging task to model numerically. This is probably one of the
reasons as to why larger deviations are seen for geometry 2.

Fig. 5.14 shows that for the case with a high Reynolds number the heat transfer coeffi-
cients stabilizes after the fourth row for both the numerical and experimental data. For
the case with the low Reynolds number the experimental data follows a pattern where
the heat transfer coefficient oscillates up and down. This is not the case for the numerical
data. A possible reason can be that the flow effects happening in the tube bundle be-
haves differently for the numerical and experimental setup. In such a densely packed tube
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Figure 5.12: Comparison of the heat transfer coefficients for geometry 2 with four varying
Reynolds number

bundle there is no guarantee that the numerical model manage to simulate the separation
effects happening behind each tube row for example.

5.3.4 Fin efficiencies

Fig. 5.15 shows that the simulated fin efficiency over-predicts the experimental fin effi-
ciency. This is the same tendency as seen for geometry 1. The geometry of the finned
tubes for geometry 2 lies within the applicable range defined by Hashizume et al. [9]. As
can be seen from the figure the fin efficiency by Hashizume et al. [9] is in better alignment
with the simulated fin efficiency for the case with a high Reynolds number. For a low
Reynolds number the simulated efficiency lies closest to the theoretical fin efficiency. The
numerical model seems to predict the experimental fin efficiency better for a low Reynolds
number than for a high Reynolds number. Bear in mind that the experimental fin effi-
ciency is found using the method from Weierman [25]. It therefore makes sense that these
two fin efficiencies lay close together.
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Figure 5.15: Fin efficiencies for geometry 2
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5.4 Geometry 3 (serrated fins)

5.4.1 Nusselt number
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Figure 5.16: Nu ·Pr− 1
3 vs. Re for geometry 3

Fig. 5.16 compares the numerical case to the experimental case, as well as four semi-
empirical correlations. Since the geometry consists of serrated fins the correlations are
different than from geometry 1 and 2. The figure shows a surprising result. For geometry
1 and 2 the numerical result under-shoots the experimental result. As can be seen from
fig. 5.16 the opposite is the case for geometry 3. As mentioned earlier, [6] pointed out
that an insufficient mesh resolution within the boundary-layer can result in a higher pre-
dicted Nusselt number. Since geometry does not have prism layers close to the walls, this
is exactly the case for geometry 3. There might be other unknown numerical issues as
well that arise when modeling serrated fins instead of solid fins. Another possible reason
could be that the finned tubes used experimentally for geometry 3 have a lower quality
of welding than geometry 1 and 2.

Interestingly, the experimental result agrees fairly well with the correlations. This might
just be a coincidence, in the future different geometries with serrated fins should be
considered. As can be seen from fig. 5.16 the numerical result lies closest to PFR [22].
This is the simplest correlation, only considering Re, Pr and the geometry of the finned
tubes, not the layout of them in the bundle. The numerical result exhibits a similar
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sensitivity to the Reynolds number as the correlations.

5.4.2 Euler number
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Figure 5.17: Eu vs. Re for geometry 3

Fig. 5.17 shows large deviations between the numerical and experimental Euler number,
but the numerical and experimental exhibits a similar sensitivity to the the Reynolds
number. Large variations exists between the correlations, which indicates the complexity
and difficulty of predicting the Euler number. One of the reasons to the deviation between
the experimental and numerical result is most likely due to how the fins are twisted around
the tubes (circular versus helically).

5.4.3 Heat transfer

Fig. 5.18 shows that the numerical heat transfer over-predicts the experimental case with
increasing Reynolds number. For the case with the lowest Reynolds number the numerical
and experimental result are in good agreement.
Fig. 5.19 shows the clear tendency where deviations increase as the Reynolds number
increase. This clear tendency can not be seen in fig. 5.7 and 5.13. In other words:
Geometry 1 and 2 better predict the heat transfer coefficient for increasing Reynolds
numbers than geometry 3 does when compared to experimental data. Geometry 3 does
not have prism layers close to the walls. A possible reason could therefore be that the
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Figure 5.18: Comparison of the heat transfer coefficients for geometry 3 with four varying
Reynolds number

numerical model for geometry 3 fails to predict the heat transfer coefficients for highly
turbulent flows because of the insufficient mesh resolution close to the walls.
Fig. 5.20 shows that the heat transfer coefficients stabilize after the fourth row for the
numerical case. This differs from the experimental case, where oscillating values are seen
for the heat transfer coefficients.

5.4.4 Fin efficiencies

Fig. 5.21 shows that the simulated fin efficiencies under-predicts the experimental fin
efficiencies. The deviation is largest for the case with a high Reynolds number. In
5.21(b) the experimental fin efficiency is higher than the theoretical fin efficiency. This
is unrealistic/not possible and further indicates that the numerical models fails at higher
Reynolds numbers. The corrected fin efficiency from Hashizume et al. [9] lies closer to
both the simulated and experimental fin efficiencies for a high Reynolds number. This is
the same tendency as seen for the two other geometries.
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Figure 5.21: Fin efficiencies for geometry 3
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5.5 Fin efficiencies at varying thermal conductivities
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Figure 5.22: 1/λf vs. fin efficiencies η for geometry 1 (Re = 9430)

In order to investigate the impact thermal conductivity has on the prediction of fin ef-
ficiency, each of the geometries are simulated with three different fin materials for a
case with Re ≈ 10000. The materials considered are Aluminum, Carbon Steel and
Steel. For Aluminum and Carbon Steel the thermal conductivities are set with the
polynomial function given in appendix A. For Steel a constant thermal conductivity of
ks = 16.27W/(m ·K) is set. Since the experimental rig only considers one material for
each geometry, experimental fin efficiencies are not included.

The results are given in fig. 5.22, 5.23 and 5.24. In the plots Aluminum which has the
highest thermal conductivity is to the far left on the x-axis and Steel with the lowest
thermal conductivity is to the far right. In the figures it can be seen that as the thermal
conductivity decreases, the spread between the simulated and corrected fin efficiencies
increases. For geometry 1 and 2 the simulated fin efficiency lies closest to the theoretical
fin efficiency. For geometry 3 with serrated fins the corrected fin efficiency from Hashizume
et al. [9] is the best fit.
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Figure 5.23: 1/λf vs. fin efficiencies η for geometry 2 (Re = 9818)
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Figure 5.24: 1/λf vs. fin efficiencies η for geometry 3 (Re = 9000)
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5.6 Qualitative analysis of the finned tube bundles

This section focus on qualitatively describing the different local fluid flows and heat trans-
fer phenomenas happening in the finned tube bundles. While the previous sections focused
on quantifying the relevant data, visualizations of the finned tube bundles will be pre-
sented here. Because of the complex geometry, investigating all the different phenomenas
is a rather difficult task. An attempt is made to describe the most important phenomenas
affecting the fluid flow and heat transfer.

5.6.1 Fluid flow behavior

Hofmann [10] states that the most important effects occurring in a finned tube bundle is
the three-dimensional boundary-layer development and the subsequent flow separation ef-
fects. Based on the definition of the Reynolds number the boundary layer thickness must
be thinner for higher Reynolds numbers, as this means the viscous effects are smaller than
for lower Reynolds numbers. Fig. 5.26 shows the velocity distributions in the stagnation
plane upstream of the second tube row between two adjacent solid fins (symmetry con-
dition applies between the two fins). As can be seen from both subfigures, a turbulent
boundary layer starts to grow at the fin tip. As the fluid streams down the fin surface,
the velocity reduces. As expected, the boundary layer is thinner for the case with the
higher Reynolds number. Another important flow phenomena is seen from fig. 5.26. At
the junction of the fin and tube, the formation of horseshoe vortexes takes place.

Figure 5.25: Schematic explaining formation of horseshoe vortex at the leading part of
the tube (taken from Hofmann [10])

Horseshoe vortexes develop as a result of the negative pressure gradient towards the fin
surface. Close to the tube wall, the flow can not stand this pressure gradient. The flow
rolls backwards and form a horseshoe vortex. This effect is shown schematically in fig.
5.25. The same effect is seen downstream of the finned tube, although in less magnitude.
The horseshoe vortexes causes an increase in the heat transfer rate due to the increased
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mixing of the flow. Horseshoe vortexes are also observed in the studies performed by
Hofmann [10] and Mon [16]. Also for geometry 2 and 3 (see fig. 5.27 and 5.28) horse-
shoe vortexes can be seen. The horseshoe vortex seems to be less prominent in geometry 3.

Fig. 5.29, 5.30 and 5.31 show the velocity profiles in the mid-plane between the fins for a
low and high Reynolds number for the three geometries respectively. For all cases except
for geometry 1 at a high Reynolds number, dead-zones appear behind row two through
eight, where there is little to no circulation of the flow. These dead-zones definitely af-
fects the heat transfer in the finned tube bundle in a negative manner since such a low
portion of the hot air flows directly downstream of the finned tubes. For geometry 1 with
the high Reynolds number swirls/circulation zones appear behind row two through eight.
Since the simulations in the present study is steady and not transient it is hard to tell
the amount of mass transfer between the circulation zones and the main flow taking place.

The flow pattern from row one to two seen for all three geometries could explain the
enhanced heat transfer happening at the second row, discussed in section 5.2.3. The flow
effects, made by the first row causes the air to enter the second rows with a much higher
velocity than the inlet velocity of the tube bundle which increases the convective heat
transfer.

Fig. 5.32 and 5.33 shows the turbulent activity for a low and high Reynolds number for
geometry 1 and 3. The parameter visualized is turbulent kinetic energy, k introduced in
section 3.1.1. From the two cases with high Reynolds numbers it can be seen that the
flow is highly turbulent between the finned tube rows. No clear differences can be seen
between the geometry 1 with solid fins and geometry 3 with serrated fins, although the
turbulence seems to be more consistent over the whole finned tube bundle for geometry
3 with serrated fins. The peak of turbulence seems to be higher directly downstream of
the tube rows for geometry 1 than for geometry 3.
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(a) Re = 4397

(b) Re = 26086

Figure 5.26: Velocity distributions between the fins of second row in symmetry plane at
low and high Reynolds number for geometry 1
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(a) Re = 5793

(b) Re = 26017

Figure 5.27: Velocity distributions between the fins of second row in symmetry plane at
low and high Reynolds number for geometry 2
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(a) Re = 4802

(b) Re = 25090

Figure 5.28: Velocity distributions between the fins of second row in symmetry plane at
low and high Reynolds number for geometry 3
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(a) Re = 4397

(b) Re = 26086

Figure 5.29: Velocity profile in mid-plane between fins for geometry 1
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(a) Re = 5793

(b) Re = 26017

Figure 5.30: Velocity profile in mid-plane between fins for geometry 2



5.6.
Q

U
A

LITAT
IV

E
A

N
A

LY
SIS

O
F

T
H

E
FIN

N
ED

T
U

BE
BU

N
D

LES
63

(a) Re = 4802

(b) Re = 25090

Figure 5.31: Velocity profile in mid-plane between fins for geometry 3
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(a) Re = 4397

(b) Re = 26086

Figure 5.32: Turbulence in the finned tube bundle for geometry 1
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(a) Re = 4802

(b) Re = 25090

Figure 5.33: Turbulence in the finned tube bundle for geometry 3
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5.6.2 Heat transfer behavior

Thermal boundary layer formation, the temperature distribution over the fins and the
wall heat flux are important parameters to investigate when looking at heat transfer be-
havior in a finned tube bundle. Fig 5.34, 5.35 and 5.36 shows the temperature distribution
over the fins for the three geometries. A non-uniform temperature profile over the fins
can be seen for all cases. The dead-zones/circulation zones behind each tube row (seen
in fig. 5.29-5.31), cause the fins to have a much lower temperature in the back of each
finned tube than in the front. Remember that one of the assumptions when finding the
theoretical fin efficiency is uniform heat transfer coefficients across the fins. Based on
the temperature distribution this assumption clearly does not hold even for a fin-material
like Aluminum with high conductivity. It is therefore surprising that the simulated fin
efficiencies lies close to the theoretical fin efficiencies (see fig. 5.9 for example).

Fig. 5.37 shows the thermal boundary layer development at a low and high Reynolds
number for geometry 1 at the stagnation plane upstream of the second finned tube row.
As expected the boundary layer is thicker for the low Reynolds number where the viscous
effects are more prominent. For both cases the boundary layers clearly break up close to
the junction of the fin and tube. This is most likely caused by the horseshoe vortexes
shown in 5.26. Clearly the break-up of the boundary-layer is a positive effect since more
of the hot air gets in contact with the fin walls. For geometry 1 with a high fin pitch
the thermal boundary layers between two fins are never in danger of touching each other.
Geometry 2 has a smaller fin pitch relative to the fin thickness than geometry 1. As can
be seen from fig. 5.38 this affects the temperature distribution. Although the thermal
boundary-layers do not touch each other, the temperature between the fins for geometry
2 is generally lower than for geometry 1. Break-up of the boundary-layer at the junction
of the fin and tube can be seen also for geometry 2. Geometry 2 is a compact finned
tube bundle with a fin tip clearance of only 2mm. In fig. 5.38(a) upstream of the fin it
can be seen that the entering flow has an uneven temperature distribution caused by the
preceding row. This effect is not seen for geometry 1.
Fig. 5.39, showing the temperature distribution between the fins for geometry 3 clearly
differs from 5.37 and 5.38. As discussed in the previous chapter, geometry 3 lacks prism
layers close to the walls. As can be seen from the figure this results in a worse near-wall
modeling. Especially the modeling of the thermal boundary-layer is disrupted. This is
most likely a part of the reason to why the numerical model over-predicts the heat transfer
when compared to the experimental result (see section 5.4.3). Fig. 5.40, 5.41 and 5.42
displaying the heat flux from the walls to the hot air for the three geometries, shows as
expected that the heat flux is lower in the back of each finned tube. The case with the
highest Reynolds number for geometry 1 (fig. 5.40(a)) shows a notable heat flux taking
place downstream of the fins. This effect is not seen for geometry 2. This heat flux is
probably caused by the circulation zones seen in fig. 5.29.
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Figure 5.34: Wall temperature for Re = 4397 (top) and Re = 26086 (bottom) for geometry 1
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Figure 5.35: Wall temperature for Re = 5793 (top) and Re = 26017 (bottom) for geometry 2



5.6.
Q

U
A

LITAT
IV

E
A

N
A

LY
SIS

O
F

T
H

E
FIN

N
ED

T
U

BE
BU

N
D

LES
69

Figure 5.36: Wall temperature for Re = 4802 (top) and Re = 25090 (bottom) for geometry 3
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(a) Re = 4397

(b) Re = 26086

Figure 5.37: Temperature distributions between the fins upstream of second row in sym-
metry plane at low and high Reynolds number for geometry 1
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(a) Re = 5793

(b) Re = 26017

Figure 5.38: Temperature distributions between the fins upstream of second row in sym-
metry plane at low and high Reynolds number for geometry 2
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(a) Re = 4802

(b) Re = 25090

Figure 5.39: Temperature distributions between the fins upstream of second row in sym-
metry plane at low and high Reynolds number for geometry 3
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(a) Re = 4397

(b) Re = 26086

Figure 5.40: Wall heat flux at the fins for geometry 1
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(a) Re = 5793

(b) Re = 26017

Figure 5.41: Wall heat flux at the fins for geometry 2
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(a) Re = 4802

(b) Re = 25090

Figure 5.42: Wall heat flux at the fins for geometry 3



Chapter 6

Conclusions

The pressure drop performance and heat transfer in three finned tube bundles have been
determined with a CFD-analysis and compared to equivalent finned tube bundles used in
experimental tests at NTNU performed by Holfeld [11].

The numerical model predicts the experimental data best for geometry 1 which consists
of solid fins. The numerical model is able to calculate the overall Nusselt number of the
finned tube bundle with a maximum deviation of 6.5% at Re = 13916. The maximum
deviation for the Euler number between the numerical and experimental result for geome-
try 1 is 17.5% also at Re = 13916. The higher variations within the different correlations
for the Euler number suggests that predicting the pressure drop performance is a more
difficult task than predicting the heat transfer in a finned tube bundle.

For geometry 1 and 2 with solid fins the experimental and numerical development of the
Nusselt number with increasing Reynolds number are in a fairly good agreement with the
correlations from published literature. For geometry 3 with serrated fins the numerical
Nusselt number differs from the experimental Nusselt number, but seems to be in better
agreement with the correlations.

The results from section 5.5 shows that the simulated fin efficiencies lies closer to the
theoretical fin efficiencies for solid finned tubes than for serrated finned tubes. This is in
contradiction to the corrected fin efficiency developed by Weierman [25]. According to
[25], serrated finned tubes are less influenced by non-uniformities in the heat transfer dis-
tribution. It can be concluded that the simulated fin efficiencies are in better agreement
with the corrected fin efficiencies for materials with high conductivity.

Based on fig. 5.9, 5.15 and 5.21 it can be concluded that the simulated fin efficiency is
in best agreement with the corrected fin efficiency from Weierman [25] at low Reynolds
numbers. For high Reynolds numbers the simulated fin efficiencies lies closest to the cor-
rected fin efficiency from Hashizume et al. [9].

76
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From the visualizations it is clearly seen that the heat transfer distribution across the
fins can be considered to be uneven for all three geometries having different fin materials.
Important flow effects like horseshoe vortexes and flow separation can also be observed.



Chapter 7

Suggestions for Further Work

• Based on the prediction of the pressure drop performance for all three geometries
(see fig. 5.5, 5.11 and 5.17) the simplification of making the fins annular around
the fins does not hold. In the future the fins should be twisted helically around the
tubes in a similar manner like the experimental setup.

• If the fins are to be helically twisted around the tubes, the symmetry condition
would not hold at the top/bottom outer boundary. Periodic interfaces should be
applied in order for the fluid variables to be conservative across the top and bottom
boundary.

• Fig. 5.39 clearly shows that prism layers needs to be grown close to the walls for all
geometries.

• Based on fig. 5.3 a further refinement of the mesh should be considered also for
geometry 1 and 2. Fig. 5.37 and 5.38 gives a clear indication on how thick the
boundary-layer is expected to be. In order to improve the near-wall modeling more
prism layers could be put in this region and in the transition region between the
boundary-layer and the turbulent core. In order to ensure good aspect ratios the
surface mesh at the finned tube walls needs to be made smaller accordingly. All in
all this would result in a substantial increase of the mesh size and would require
more computational capacity.

• The simulations should be made transient. Most of the earlier studies on finned
tube bundle considers the steady-state approach to be adequate. However, if the
simulations were to be transient, it would be possible to investigate the development
of the circulation zones behind the tube rows for example. It would be interesting to
investigate the rate of mass transfer happening between the main flow and the cir-
culation zones. Making the simulations transient would require more computational
capacity.

• An uneven temperature distribution can be seen on the fins for all cases in the
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numerical model. It is therefore surprising that the simulated fin efficiencies for
geometry 1 and 2 lies so close to the theoretical fin efficiencies. Deviations are seen
between the existing corrections for the fin efficiencies. A further study should be
done on how uneven heat distributions affects the fin efficiency.



Appendix A

Thermo-Physical Properties

A.1 Air

In the simulations the thermo-physical properties of dry air are considered with the help of
polynomial functions. For the thermal conductivity and dynamic viscosity the polynomial
functions were taken from VDI (2010). This is the same functions as used under the
experimental studies performed in the laboratory at NTNU. The thermal conductivity
and dynamic viscosity is calculated according to eq. A.1, using the coefficients given in
tab. A.1. The specific heat capacity is found in a similar way, but the coefficients are
taken from Principles of Engineering Thermodynamics [17].

λair/µair/CP,air = A+B ·T + C ·T 2 +D ·T 3 + E ·T 4 (A.1)

Thermal conductivity Dynamic viscosity Specific heat capacity

λair[W/m ·K] µair[Pa · s] CP,air[J/kg ·K]
A −0.908 · 10−3 −0.01702 · 10−5 1048.5066
B 0.112 · 10−3 0.79965 · 10−7 −0.3838
C −0.084333 · 10−6 −0.72183 · 10−10 9.4546 · 10−4

D 0.056964 · 10−9 0.046960 · 10−12 −5.4908 · 10−7

E −0.015631 · 10−12 −0.01388 · 10−15 7.9305 · 10−11

Table A.1: Coefficients for eq. A.1

A.2 Aluminum

Thermal conductivity for Aluminum is considered using the function made by Lundberg
(1997). This is the same function as used under the experimental studies performed in
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the laboratory at NTNU.
λAl = A+B ·T (A.2)

Here, A = 190 and B = 0.074.

The specific heat capacity is considered to be constant and is set to CP,Al = 871[J/kg ·K].
This is the default value set in ANSYS Fluent.

A.3 Carbon Steel

For the thermal conductivity and specific heat capacity for Carbon Steel, polynomial
functions from Hofmann [10] are used. See eq. A.3 and A.4 and tab. A.2.

CP,cs = A+B ·T + C ·T 2 +D ·T 3 (A.3)

λcs = A+B ·T + C ·T 2 (A.4)

Thermal conductivity Specific heat capacity

λcs[W/m ·K] CP,cs[J/kg ·K]
A 66.17504949 185.8537793
B −0.03482879 1.272598818
C 0.0000233 −0.0017157
D 9.1 · 10−7

Table A.2: Coefficients for eq. A.3 and A.4



Appendix B

Heat Transfer and Pressure Drop
Correlations for Finned Tube Heat
Exchangers Taken From Literature

Note: [20] argues that the variable-property correction,
(
Tb

Tw

)0.25
used in the correlations

from ESCOA [8] is not neccessary. The term is therefore left out. In the correlations from
Næss [20], de is swapped with do since the present study considers I-foot fins, not L-foot
fins.

For all correlations and cases the Prandtl number is taken be constant Pr = 0.7.

B.1 Heat transfer correlations

B.1.1 Solid fins

ESCOA [8]

Nu = 0.091 ·Re0.75 ·Pr1/3 ·
[
0.35 + 0.65 · e−0.25 · hf

pf

]
·

[
0.7 +

(
0.7 + (0.7− 0.8 · e−0.15 ·N2

l

)
· e−

Pl
Pt

]
·
√
Df

do

(B.1)

Stasiulevicius [21]

Nu = 0.044 ·
(
Pt
Pl

)0.2
·
(
pf
do

)0.18
·
(
hf
do

)−0.14

·Re0.8 (B.2)
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Weierman [25]

Nu = 0.25 ·Re0.65 ·Pr
1
3 ·
(

0.35 + 0.65 · e−0.25
hf
pf

)
·

[
0.7 +

(
0.7− 0.8 · e−0.15 ·N2

l

)
· e−

Pl
Pt

]
·
(
Df

do

)0.5 (B.3)

B.1.2 Serrated fins

ESCOA [8]

Nu = 0.091 ·Re0.75 ·Pr1/3 ·
[
0.35 + 0.65 · e−0.17 · hf

pf

]
·

[
0.7 +

(
0.7 + (0.7− 0.8 · e−0.15 ·N2

l

)
· e−

Pl
Pt

]
·
√
Df

do

(B.4)

Næss [20]

Nu = 0.197 ·Re0.65 ·Pr
1
3 · 0.758 ·

(
Pt
do

)0.35
·
(
hf
pf

)−0.14

·
(
pf
do

)−0.2
(B.5)

PFR [22]

Nu = 0.195 ·Re0.7 ·Pr1/3 ·Ar−0.17 (B.6)

Ar = Atot
Abare

Weierman [25]

Nu = 0.25 ·Re0.65 ·Pr
1
3 ·
(

0.55 + 0.45 · e−0.35
hf
pf

)

·
[
0.7 +

(
0.7− 0.8 · e−0.15 ·N2

l

)
· e−

Pl
Pt

]
·
(
Df

do

)0.5 (B.7)

B.2 Pressure drop correlations

B.2.1 Solid fins

Stasiulevicius [21]

Eu =
6.55 ·

(
1− pf

do

)1.8
·Re−0.25(

Pt

do

)0.55
·
(
Pl

do

)0.5 (
1− hf

do

)1.4 (B.8)

Ward and Young [23]

Eu = 0.256 ·Re−0.264
(
t

Df

)−0.377

·
(
pf
do

)−0.396
·
(
Pl
do

)
(B.9)
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Weierman [25]

Eu =
(

0.28 + 32
Re0.45

)
· 0.11 ·

(
0.05 · Pt

do

)−0.7 · hf
pf

0.2

·
[
1.1 +

(
1.8− 2.1 · e−0.15 ·N2

l

)
· e−2 Pl

Pt −
(
0.7− 0.8 · e−0.15 ·N2

l

)
· e−0.6 · Pl

Pt

]
·
(
Df

do

)0.5

(B.10)

B.2.2 Serrated fins

Næss [20]

Eu =
(

0.2 + 6.75
Re0.5

)
·
(
hf
do

)−0.61

·
(
hf
sf

)0.33

·
(
min(Pt, Px)

Df

)−0.165

·

min
(

1.0, 0.52 + 964 · e−3.2 · Pt
Pl

) (B.11)

PFR [22]

Eu =
(

19.04
Re0.3

h

)
·
(
Pl
dh

)−0.42
(B.12)

dh = 4 ·L ·
(
Ft
Ao

)
L = (Nl − 1) ·Pl + (do + 2 ·hf )

Weierman [25]

Eu =
(

0.28 + 32
Re0.45

)
· 0.11 ·

(
0.05 · Pt

do

)−0.7 · hf
pf

0.23

·
[
1.1 +

(
1.8− 2.1 · e−0.15 ·N2

l

)
· e−2 Pl

Pt −
(
0.7− 0.8 · e−0.15 ·N2

l

)
· e−0.6 · Pl

Pt

]
·
(
Df

do

)0.5

(B.13)
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