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ABSTRACT

Structural-acoustic models are used in the industry to determine the natural frequencies of runners and
impellers in hydraulic turbomachinery under construction of the machines. The structural-acoustic
models have to be able to handle the complex boundary conditions and loads experienced. The new
trends in water power production have led to new operating regimes for several hydro power plants. More
time is spent outside Best Efficiency Point (BEP) and frequent adjustment of output is common. These
factors put large stresses on the structure. Especially for high head turbines where forces are high, fatigue
loads could cause serious damage after short time of operation. The fatigue loads are amplified if they
get into resonance with the natural frequency of the runner. Knowledge of the natural frequencies of a
turbine are therefore of great importance. Structural-acoustic models of the turbine and its surroundings
have become an important part of construction to maximize efficiency and safety. Over the last decade
several breakdowns of newly installed turbines have shown that there are challenges to overcome in design,
building and operation of these turbomachines. In this report, a CAD model of a pump-turbine runner
is used in numerical simulations to investigate its structural behavior and natural frequencies in air and
submerged in water. The goal is to find the added mass effect and see how well numerical simulations
match experiments done on the exact same pump-turbine runner at the Water Power Laboratory at NTNU.
ANSYS Mechanical software is used for the simulations. The results obtained in modal analysis showed a
Frequency Reduction Ratio (FRR) in water between 14-34 %, depending on the mode shape. FRR in the
harmonic response analysis showed values from 11-20 %. Comparison with the experimental investigation
showed large deviations for all modes except (2,0).

SAMMENDRAG

Structuranalyse med akustiske modeller blir brukt i industrien for å bestemme egenfrekvensene til van-
nturbiner. Modellen som blir brukt under simuleringene må være kapabel til å håndtere de kompliserte
grensebetingelsene og kreftene som er involvert. Nye trender innen vannkraftproduksjon har ført til nye
produksjonsmønstre. Større del av produksjonstiden blir tilbrakt utenfor punktet for optimal virkningsgrad
og store svingninger i produksjonen er vanlig. Disse faktorene fører til store belastninger på turbinen.
Spesielt for høytrykksmaskiner, der kreftene er store, kan trykkpulsasjoner føre til store skader etter kort tid.
Trykkpulsasjonene blir forsterket hvis de kommer i resonans med egenfrekvensene til turbinen. På bak-
grunn av dette er det viktig å ha kunnskap om egenfrekvensene til turbinen. Strukturanalyse med akustiske
modeller av turbinen og omgivelsene har utviklet seg til å bli en stor del av produksjonsprosessen for å øke
effektiviteten og sikkerheten. Over de siste tiårene har flere tretthetsbrudd i nylig installerte turbiner vist at
det er utfordringer å overkomme i design og produksjonsprosessen. I denne rapporten blir en CAD model
av en pumpe-turbin brukt i numeriske simuleringer for å undersøke bevegelsene og egenfrekvensene i
luft og i vann. Målet er å finne frekvensreduksjonen forårsaket av ekstra-masse effekten og se hvor godt
numeriske simuleringer etterlikner eksprimenter på den samme pumpe-turbinen i Vannkraftlaboratoriet
ved NTNU. ANSYS Mechanical programvare er brukt for å gjennomføre simuleringene. Resultatene funnet
i modal analysen viser en frekvensreduksjon på mellom 14-34 %, avhengig av modalformen. Frekvensre-
duksjonen i harmonisk response analysen er på mellom 11-20 %. Sammenlikninger med eksperimentet
viser store variasjoner for alle moder bortsett fra (2,0).
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1 INTRODUCTION

Water power is one of the largest renewable energy sources in the world. It is highly recognized for its
reliability and flexibility. The production is easy and fast to adjust and, when connected to a reservoir, long
term planning of the production is possible. No other large renewable energy sources have this capability.
In the recent years a gradual development of more renewable energy sources have changed the energy
system. Especially wind and solar power have increased. These sources of energy are unreliable, because
of their hour-to-hour weather dependency. This development increases the need of stable and reliable
energy sources to stabilize the grid. Hydro power plants, with a reservoir, have the ability to produce power
when its needed and thus can counterweight the contribution of the other energy sources. This will ensure
that water power will play an important role in the energy system of tomorrow.

1.1 TRENDS IN WATER POWER PRODUCTION

New trends have altered the way water power turbines are built and operated. This has caused some
challenges. In recent years several high head Francis and pump-turbines have experienced breakdowns
after only a short time of operation. One example is Svartisen Powerplant in Norway [6]. The cause of
the failures is thought to be high pressure pulsations, causing high stresses on the runner [15, 40]. The
reason why these pulsations are getting dangerously high are not clearly understood. One explanation
is resonance between the natural frequencies of the runner and one of the Rotor-Stator Interaction (RSI)
frequencies [5]. No matter what is the reason for these breakdowns, they have become more frequent over
the last decades. Recent trends in turbine manufacturing and operation seem to have made the turbines
more vulnerable to fatigue damage.

1.1.1 NEW OPERATING REGIME

Historically turbines have been operated at, or near, Best Efficiency Point (BEP) and with small changes
in water discharge and power output. This operating regime has altered and many of the turbines today
are constantly adjusting the power output. A North American survey showed that hydro power units that
originally had 100 start/stop sequences each year, had increased to a number of 500 over the last decade
[9]. This is to a large extent caused by the introduction of more intermittent energy sources and better
power grids [9]. In pump-turbine power plants the turbine is reversed in some periods, pumping water
back up into the reservoir, further increasing the load on the machine. High pressure pulsations will often
occur at part load or during start and stop. Operating at these conditions for longer periods of time will
consequently increase the risk of high stresses on the runner and ultimately cause fatigue breakdowns.

1.1.2 NEW BUILDING MATERIAL AND PRODUCTION REGIME

Traditionally Francis turbines were produced using steel castings in the pressure carrying parts [1]. This
made the turbines heavy, difficult to transport and very labour-intensive to make, but they were structurally
solid. As the turbines increased in size and new materials and welding methods were developed, changes in
the manufacturing process made the turbines easier and cheaper to build. Transport costs also decreased.
The drawback of this development was that turbines gave less damping of pressure pulsations and had to
be welded and put together with great care to minimize the risk of faults weakening the structure [1]. The
result of these new materials and new production regime is a less robust turbine, which is more fragile to
the fatigue loads experienced during operation. In addition, even if the turbine is strong, the damping ratio
is low. This means that if excited at the right frequency, there are little damping to prevent high amplitudes
from occurring.
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1.1.3 HIGHER LOADS

In recent years many old power plants have been upgraded. To meet the requirements of today, an increase
in the output and operating range of the turbines is desired. The total energy output over a year is decided
by the amount of precipitation, not by the size of the runner, still power companies want to increase the
output of the turbines to be able to produce more power when the prices are high and thus increase their
revenue. To facilitate this, more water needs to flow through the power plant. Increasing pipe diameters
is often difficult, labour intensive and expensive. Therefore increasing the velocity of the water is the
preferred option. This increases the loads on the runner and the chance of fatigue damage.

1.1.4 COMPUTER SIMULATIONS

Pressure pulsations will increase if the frequency of the pulsations is close to the natural frequency of
the runner. To be able to construct high head Francis turbines that avoids any resonance phenomena,
knowledge of the natural frequency of the structure is important. Before the runner is built a dynamic
analysis of the runner is vital to avoid problems during operation. The calculations are performed by
computer programs using numerical methods, and require high computational resources to get accurate
results. The computer simulations are gradually improving, at the same time is the margin for error
decreasing because materials and operating conditions are pushed to maximize the revenue. Small
deviations can have serious consequences. Even if the computer simulations are correct, the input of
information to the computer model is another element of uncertainty. Which parts of the turbine that
needs to be modelled, the necessity of modelling the flow of water and how to get the best possible mesh
compatibility between fluid and structure on the interface, are only some of the questions to assess [37].
The number of breakdowns of newly installed turbines, likely caused by some sort of resonance in the
runner, highlights the fact that there is something in the process that is not clearly understood.

Originally, the plan was to use a circular disk for the simulations in this report, but after discussions with my
supervisor Torbjørn Nielsen and master student Frode Kristoffer Amundsen Kjøsnes, which will perform
similar experimental work at the Water Power Laboratory, a pump-turbine runner was yet chosen as
the basis for the thesis. The reason for this choice is because a pump-turbine runner is closer to a real
operating turbine than a circular disk and that CAD drawings of the turbine existed, making it possible
to do numerical simulations on the same structure. The numerical simulations will try to replicate the
experimental setup and make comparisons of the results possible. Yet first, a general view of the foundation
of natural frequencies, resonance and pressure pulsations within a turbine are presented together with its
implementation in ANSYS Mechanical Software. In Section 7, the results from the numerical simulations
are presented and compared with experiments on the pump-turbine runner executed by Frode Kristoffer
Amundsen Kjøsnes at the Water Power Laboratory.
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2 NATURAL FREQUENCY OF STRUCTURES

The natural frequency of a system is the frequency at which the system will oscillate when excited in
absence of any driving or damping forces [14]. Figure 1 shows a simple spring-mass system. When put into
motion it will oscillate at its natural frequency, which is a property of the system. Newtons second law of
motion is the governing equation. When the spring-mass system is in its equilibrium position, the spring
force pulling up equals the gravitational force pulling down.

Figure 1: Spring-mass system

k∆x = mg (1)

We can now use Newton’s second law of motion:

mẍ =∑
F = mg −k(∆x +x) (2)

because k∆x = mg , we obtain:
mẍ =−kx (3)

By defining a frequency parameter

ω2 = k

m
(4)

Equation 3 can be written as
ẍ +ω2x = 0 (5)

This equation is a homogeneous second order linear differential equation [36] and has the following
solution:

x = A sinωt +B cosωt (6)

A and B are two constants which can be evaluated from the initial conditions x(0) and ẋ(0). The natural
frequency of the spring-mass system can then be found:

f = 1

2π

√
k

m
(7)
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The frequency of which the system tends to oscillate is only depending on the mass and stiffness. The
same physics is the basic for all natural frequency calculation. When plucking a guitar string, the frequency
of the vibrations is the natural frequency of the string. As an example, the A tone string on a guitar has a
natural frequency of 440 Hz.

2.1 RESONANCE

When there is applied force, the frequency of this force has a great impact on the behavior of the system. If
the applied force is close to its natural frequency, the energy will add up for every period. A simple example
of this is a swing. Small pushes applied over time at the right frequency creates a large amplitude of motion,
but if the same pushes are not synchronized with the natural frequency of the swing, no large amplitude
will be achieved. In many applications resonance is important, for example in microwave ovens, lasers
and musical instruments. In other areas resonance can be a problem. In many structural engineering
situations avoiding resonance phenomena is crucial because of the dangerous build up of energy, which
could ultimately cause failure and breakdowns. It could be high buildings, air plane wings or bridges
(see Figure 3). To avoid resonance, knowledge of the natural frequency of the system is important. By
knowing this frequency it is possible to make sure that the applied force not coincides with the frequency
of the system. When it comes to water power turbines, having complicated boundary conditions and
experiencing high loads at high frequencies, calculation of the natural frequencies can be difficult. In
addition, as illustrated in Figure 2, the response of a system is not only a matter of keeping away from one
frequency. Also frequencies close to the resonance frequency could induce higher pressure amplitudes.
As a water turbine is experiencing a high number of load cycles (about 109 cycles per year) only small
increases in these amplitudes could potentially be damaging.

Figure 2: The response of a structure at the frequencies in and around resonance [25].
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Figure 3: The Tahoma bridge in Washington, USA was brought down by wind gusts with the same frequency
as the bridge natural frequency only months after opening [7].

2.2 MODE SHAPES

The vibration of a body can be split up into basic patterns or modes. To describe the movement of these
modes each one is characterized by the number of nodal diameters and nodal circles. They are formed by
the points on the object which remain stationary as it vibrates (see Figure 4). When a body vibrates the
summation of each mode adds together to create the ”total” vibration of the body. Each mode has its own
frequency which, if excited by a force with the same frequency, could start resonating with increasingly
higher amplitude. When impacting a structure with a range of frequencies some modes will at certain
points respond more than others. The vibration of the body will at this frequency be dominated by the
mode vibrating at its resonance frequency. This means that to avoid resonance in for instance water
turbines, it is not enough to keep away from one frequency only. Each mode shape has its own frequency
which can get into resonance with the applied force. The modes of a string have the special feature that
all the modes are integer multiples of each other. The nth mode has a frequency of n times the frequency
of the first node [21]. However this is not the general feature of modes. A bar for instance does not follow
this rule, as seen in Figure 4. Neither will more complex structures. The mode shape frequencies must be
calculated separately for each structure.
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Figure 4: Mode shapes of a bar with 1 degree of freedom

Figure 4 shows the shape of the first 5 nodes of a vibrating bar (without twisting). Along the bar there are
nodal points. These spots remain stationary as the bar vibrates. Detecting all vibrating modes can be
difficult. If measuring the first 5 modes of the bar in Figure 4 with one sensor, placing it at approximately
1/4 of the distance from one end of the bar, the first and the fifth mode will be difficult to detect because the
deflection of these modes are small that close to the sensor [21]. The sensor is placed close to the modes
nodal point. This shows the importance of correct sensor placement when measuring natural frequencies
of vibrating structures. The notation for describing different modes of a 3-D body is (nodal diameters,
nodal circles). Figure 5 shows 6 different mode shapes of a circular disk.

(a) Mode (0,0) (b) Mode (1,0) (c) Mode (1,1)

(d) Mode (2,0) (e) Mode (3,0) (f ) Mode (4,0)

Figure 5
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2.3 EXCITATION FORCES ON TURBINES

The natural frequency of a turbine is determined by the material and mass of the structure in addition to
the boundary conditions. The natural frequency can be obtained by suspending the turbine in free air
and hitting it with a hammer. What makes it more complicated is the fact that a turbine in operation is
not suspended in free air. The turbine is connected to a generator through a shaft and confined within a
small space with high water pressure and velocity. These factors severely complicates the task of precisely
calculating the natural frequencies. The excitation forces on the turbine are easier to find and are caused
by pressure oscillations.

2.3.1 RUNNER FREQUENCY

The runner frequency would appear if there is damage to a runner blade or if the runner or flow is
unbalanced [10].

fr = nr

60
(8)

Where:
nr = Runner rotational speed in RPM
fr = Runner frequency [Hz]

2.3.2 BLADE PASSING FREQUENCY

The blade passing frequency is created each time a runner blade passes a guide vane [10].

fg v = Zr nr

60
(9)

Where:
Zr = number of runner blades

This frequency is usually the dominant frequency during steady state operation. The turbine produces a lot
of noise when high amplitudes of this frequency occur [39]. The amplitude of the blade passing frequency
is affected by the distance between the guide vanes and the runner blades.

2.3.3 GUIDE VANE FREQUENCY

The guide vane frequency is created by the runner blades passing through the guide vane wakes, see Figure
6.
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Figure 6: Wake created by the guide vanes which the runner blades hit as they rotate [39].

fb = Zg v nr

60
(10)

Where:
Zg v = number of guide vanes [Hz]

There are two essential parameters which can decrease the amplitude of this pulse. First, the distance
between runner blade and guide vane. Second, the guide vane geometry [39]. This frequency is thought to
be the one creating the highest pressure pulsations in Francis turbines [10, 15].

Figure 7: RSI phenomena and sequence of interaction. Runner rotating clockwise.[15]

There are also other phenomena capable of causing vibrations in and around the runner. Examples of
these are vortices, vibrations caused by transient flows in the penstock, vortex ropes in the draft tube,
self-excitation vibration among others. In this report the main focus will be on the RSI frequencies.

The shape of the pressure pulsations originating from the RSI shows an almost regular sine wave. Figure
7 displays a sequence from the rotation of a turbine consisting of 7 blades and 16 guide vanes. The first
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interaction happens when blade 1 interacts with guide vane 1. When the runner rotates a little clockwise
blade 4 meets guide vane 8, then blade 7 faces guide vane 15 and so on. Each blade receives the same
pressure pulsations, but with a phase shift. The number of guide vanes and runner blades determine which
mode is excited. The amplitude of the pressure pulsations depends, as mentioned above, on the head,
operating conditions and design of the runner and guide vanes [15].

The shape of the pulsations generated by the RSI can be determined by the following equation [18]:

mzg v ±k = nzr (11)

Where:
m,n = integers
k = diametrical mode

The pump-turbine, which was used in this experiment, consists of 6 blades and 28 guide vanes. Using
Equation 11, the main diametrical mode of excitation is k = 2, rotating in the same direction as the runner,
or k = 4, rotating opposite to the runner rotation.

The frequency of which the turbine is forced to vibrate under the influence of the RSI is [18, 15]:

fr = nZg N (12)

Where:
N = Runner rotations per second

The pump-turbine runner in our case rotates with 10,8 rps at BEP (see Table 4). Using Equation 12 a
RSI frequency of n ∗28∗10,2 = 302,4n[H z] will be generated. It means that the induced frequencies,
observed from a stationary point of view will be 302,4 Hz, 604,8 Hz, 907,2 Hz and so on. To build a Francis
turbine without high fatigue loads, it is important to keep the natural frequencies of the turbine away from
the excitation frequencies created during operation. Therefore, as mentioned, being able to accurately
determine the natural frequencies of a new runner is therefore important to ensure safe operation.
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3 STRUCTURAL ANALYSIS

Structural analysis is the determination of the effects of loads on physical structures [26]. It is a way of
testing materials in order to find out how much they can withstand, without doing full scale tests. It can be
used to calculate the effect of wind on a bridge, a cars behaviour over a bump, the load a vein is feeling from
the flowing blood inside it, the natural frequencies of a structure, etc.. To perform an accurate structural
analysis, determination of the geometry of the structure, environment, loads, supports and material
properties are essential. There are three approaches to solve a structural analysis. The "mechanics of
materials"-approach is the simplest. It applies to simple geometries and can be solved by hand. The elastic
theory-approach applies to an elastic body of any shape. Simple geometries can be solved by hand, more
complex geometries must be solved with a numerical solution method [26]. The most advanced method
for doing a structural analysis is with numerical approximation techniques. The basis of the analysis is
the numerical approximation of the differential governing equations (equation of motion, Navier-Stokes
equation, continuity equation etc.). Obtaining a solution requires computer power. The advantage of this
approach, compared to the simpler methods, is its ability to handle complex geometries and boundary
conditions, which often is essential. There are developed different numerical solution methods including
the finite difference method, the boundary element method, the finite volume method, meshless method,
the assumed-modes method and the finite element method (FEM) among others [31, 32, 37]. The basic
concept of all these methods is to replace continuous models with discrete models. That means to replace
the partial differential equations (PDEs) of the model and transfer them into ordinary differential equations
(ODEs). Each of the methods has its pros and cons, but the most common used method is the FEM. It is
also the method implemented in ANSYS software, which will be used in the simulations in this report.

3.1 FINITE ELEMENT METHOD

The birth of the FEM originates from the need to solve complex structural analysis problems in civil and
aeronautical engineering [29]. The method was developed by a number of different scientists in the 1960s.
The first book was published by Zienkiewicz in 1967 [32]. The concept is to divide the structure into a finite
number of elements interconnected at a finite number of nodes [27]. An analogy that is used to describe
this network is a "sea of springs".

Figure 8: "Sea of springs" [32]

The springs are the edges of the elements, while the masses are the nodes within the FEM. Loads are
applied at the nodes. These loads are caused by external or internal forces. Material properties decide the
stiffness and damping of the springs. An applied load will put stresses on the springs and they will deflect
according to their stiffness. By removing some of the springs, the geometry of the model is changed. The
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deflection of the nodes and springs will also change altering the response of the structure. Dividing the
structure into smaller elements increases the accuracy of the calculations.

All engineering phenomena can be expressed by governing equations and boundary conditions. The
FEM approximates the equations and boundary conditions to a set of algebraic equations which can be
solved numerically. These equations dictates the physical behavior inside the elements. The Navier-Stokes
equations, continuity equation, Newtons second law or momentum equation is used based on the problem
to solve. These sets of equations are then solved, one element at a time [33]. For models of useful size,
the number of equations and unknowns are large and solving them by hand is not an option. Fortunately,
computers are excellent for such jobs, but the governing equations need to be discretized in order to be
solved. The general pattern for these algebraic equations are [32]:

[Pr oper t y]{Behavi or } = {Acti on} (13)

In case of the simple spring system in Figure 9b, the property is the stiffness of the spring, the behaviour is
the displacement and the action is the load applied to the spring.

(a) (b) Spring system

Figure 9

As mentioned above, the big advantage of the FEM, and the main reason why it is the most commonly used
method of structural analysis today, is its ability to handle complex geometries and loading situations [32].
This is an important attribute in many engineering applications.

3.2 FEM IN ANSYS

The general equation of motion for a structural system, used in ANSYS, is given as [28]:

[M ]{ü(t )}+ [C ]{u̇(t )}+ [K ]{u(t )} = {F (t )} (14)

Where:
[M ] = Structural mass matrix
[C ] = Structural damping matrix
[K ] = Structural stifness matrix
{ü(t )} = Nodal acceleration vector
{u̇(t )} = Nodal velocity vector
{u(t )} = Nodal displacement vector
{F (t )} = Applied load vector

Compared to Equation 13, the [M ], [C ] and [K ] matrices are the property of the system, {u} is the behaviour
and {F (t )} is the action.
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As mentioned, solving a FEM can be extremely computer demanding. Based on the complexity of the
simulations, some of the parameters in Equation 14 are often omitted because they are zero or so small that
they do not impact the solution. ANSYS has developed different modules, specialised for solving various
problems. In the field of acoustic and vibration investigation, several different modules are available. For
frequency analysis, which will be performed in this report, the Modal and Harmonic response analysis will
be used. Because of limitations of computer power the Transient analysis module, which is more complex
and gives more possibilities for user customization, will not be used.

The [C ]-matrix contains the damping coefficients. In natural frequency simulations of structures in air,
the damping values are believed to be neglectable [11]. Submerged in water the damping ratio increases,
but the values are still small. When the submerged structure is placed close to a solid wall, the effect of
damping increases further. Valentin (2014) [11] reported that walls close to a submerged turbine doubled
the Frequency Reduction Ratio (FRR) compared to a situation without any surrounding walls [11]. In these
cases, being able to accurately calculate the damping effects, gets important. In the simulations performed
in this report, without any near-by walls, the exclusion of damping should not impact the results that much.
On real operating turbines however, were distances to solid walls are small, damping effects are important
and should be accounted for when doing simulations. In this report the modal analysis simulations are
calculated without damping effects, while in the harmonic response analysis, damping effects are included.

3.2.1 MODAL ANALYSIS

Modal Analysis is used to calculate natural frequencies and mode shapes of structures. The module is
subjected to certain restrictions. These are constant stiffness and mass effects, no damping effects and no
time varying forces or other loads [28]. Under these restrictions Equation 14 can be simplified:

[M ]{ü}+ [K ]{u} = 0 (15)

The free vibrations of the structure will be harmonic [27, 28]:

{u} = {φ}i cos(ωi t ) (16)

Where:
{φ}i = eigenvector representing the mode shape of the ith natural frequency
ωi t = ith natural circular frequency
t = time

Substituting Equation 16 into Equation 15 gives:

(−ω2
i [M ]+ [K ]

)
{φi } = 0 (17)

The trivial solution is {φi } = 0, while the solution of interest looks like this:

∣∣[K ]−ω2[K ]
∣∣= 0 (18)

This is a standard eigenvalue problem and is solved to find the natural frequencies (eigenvalues) ωn and
the mode shapes (eigenvectors) {φn} of the system. In Modal analysis solver control option, there are 4
choices for how to solve this eigenvalue problem.
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3.2.1.1 Direct solver

In the direct solver option Block Lanczos method is used to extract the eigenvalues at each iteration.
Without being too detailed, this method is a specialised form of the classical Lanczos algorithm. The
Lanczos recursions are performed using a block of vectors, as opposed to a single vector, which is the basis
of the classical Lanczos algorithm [28]. As described in Section 3.1 and by Equation 13 the problem to solve
consists of a set of matrices:

[K ]{u} = [F ] (19)

The different solver options represent different methods for solving these sets of equations. The direct
method is primarily a Gaussian elimination process and direct elimination of the equations. The [K ] matrix
is decomposed into lower and upper triangular matrices, [K ] = [L][U ]. Then forward and back substitutions
using [L] and [U ] are made to compute the solution vector {u} [28]. The direct solver in ANSYS uses the fact
that the finite element matrices often are sparsely populated to minimize the number of equations that
need to be solved. Because of the direct procedure, the method has large disk and memory requirements
[24].

3.2.1.2 Iterative solver

An iterative solver is based on an initial guess, which through an iterative process is refined until the
solution is within a pre set tolerance value. When choosing the iterative solver, ANSYS will use the PCG
(Preconditioned Conjugate Gradient) Lanczos method to extract the eigenvalues. The basis of the extraction
procedures is the same as for the Block Lanczos method but there are some small differences, which among
others, makes PCG Lanczos only available in modal calculations. At every iteration step an iterative solution
procedure is used. The advantage of the iterative solution compared to the direct solver is that it normally
will be faster as each step is less computer demanding. On the other hand, convergence is not guaranteed
and an iterative solver is less robust and may need many iterations to reach a solution [24].

3.2.1.3 Unsymmetric solver

The unsymmetric eigensolver is used when the system of matrices are unsymmetric, which is the case in
Fluid Structure Interaction (FSI) problems. The solver uses a method capable of handling the unsymmetric
matrices which arises in models containig FSI boundaries. The method is called Frequency Derivative
Method and uses an orthogonal set of sequence vectors to get rid of the unsymmetric matrices. The solver
process is done by a direct solver method. A transformation equation is applied to obtain the converged
eigenvectors [28]. An unsymmetric solver generally has longer solution times and requires more computer
power than the direct solver.

3.2.1.4 Supernode solver

The Supernode method is used to solve large, symmetric eigenvalue problems for many modes (up to
10000 and beyond). The solver uses methods comparable to the Block Lanczos and PCG Lanczos, but is
faster if the requested number of modes is in excess of 200 [28]. In this report the number of requested
modes will not be so high that the supernode solver will be used.

13



3.2.2 HARMONIC RESPONSE ANALYSIS

The other module from the ANSYS Mechanical workbench which will be used in this report is the Harmonic
response analysis. The main difference between the harmonic response analysis and the modal analysis
module is the possibility of applying harmonically time-varying loads to the structure. As the exciting forces
from the RSI also varies harmonically [19, 15], the simulations offer the possibility of applying pressure
forces on the runner similar to what it would experience in operation. All applied loads vary sinusoidally.
Unlike modal analysis, harmonic response analysis take the effect of damping into account. Based on these
restrictions, Equation 14 can be written:

[M ]{ü}+ [C ]{u̇}+ [K ]{u} = {F a} (20)

Where:
F a = applied load vector, varies sinusoidally.

All the points in the structure are moving at the same frequency, but not necessarily in phase. Therefore the
displacement may be defined as [28]:

{u} = {umax e iφ}e iΩt (21)

Where:
umax = maximum displacement
Ω = imposed circular frequency (radians/time)
φ = displacement phase shift (radians)

This equation can be rewritten as [28]:

{u} = ({ur }+ i {ui mg })e iΩt (22)

Where:
ur = real displacement vector
ui mg = imaginary displacement vector

In the same manner, the force vector is specified [28]:

{F } = ({Fr }+ i {Fi mg })e iΩt (23)

Where:
Fr = real force vector
Fi mg = imaginary force vector

Substituting Equation 22 and Equation 23 into Equation 20 gives:

(−Ω2[M ]+ iΩ[C ]+ [K ])({ur }+ i {ui mg })e iΩt = ({Fr }+ i {Fi mg })e iΩt (24)

Time dependency is the same on both sides and can be removed, leaving:

([K ]−Ω2[M ]+ iΩ[C ]){ur }+ i {ui mg } = {Fr }+ i {Fi mg } (25)
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Equation 25 is expressed in the form of Equation 13 and then solved directly using primarily a Gaussian
elimination approach [28]. The possibility of time varying forces in the harmonic response analysis makes
it possible to plot the results in form of a Bode plot. As opposed to the modal analysis, where the results
only contains the natural frequencies of the different modes, the harmonic response gives the structural
deformations for the whole range of frequencies.

3.2.2.1 Solution method

In Harmonic response analysis there are two different options. The Full analysis and the Mode-Superposition
analysis. The difference between the two methods is the treatment of the damping ratios. In the full analysis
option the damping matrix is calculated explicitly in the model using this expression for [C ] [28]:

[C ] =α[M ]+(β+ 1

Ω
g )[K ]+

Nma∑
i=1

αm
i [Mi ]+

Nm∑
j=1

[(
βm

j + 2

Ω
m j+ 1

Ω
g E

j

)
[K j ]

]+ Ne∑
k=1

[Ck ]+
Nv∑

m=1

1

Ω
[Km]+

Ng∑
l=1

[Gl ]+ 1

Ω

N∗
e∑

k=1
[K ∗

k ]

(26)
Where:
α = mass matrix multiplier, β = stiffness matrix multiplier, g = constant structural damping coefficient, Nma

= number of materials, am
i = stiffness matrix multiplier for material i, Mi = portion of structural mass matrix

based on material i, Nm = number of materials with damping input, βm
j = Stiffness matrix multiplier for

material j, m j = constant structural damping coefficient for material j, g E
j = structural damping coefficient

for material j, [K j ] = portion of structural stiffness matrix based on material j, Ne = number of elements with
specified damping, [Ck ] = element damping matrix, Nv = number of elements with viscoelastic damping,
[Km] = element viscoelastic damping matrix, Ng = number of elements with Coriolis of gyroscopic damping,
[Gl ] = element Coriolis or gyroscopic damping matrix, N∗

e = number of elements with specified imaginary
stiffness matrix, [K ∗

k ] = imaginary element stiffness matrix

Substituting this into Equation 25 yields the harmonic response equation of motion, which is solved in
the simulation, when the full analysis option is used. When using the Mode-superposition analysis the
damping matrix is not explicitly computed, but rather defined directly in terms of a damping ratio [28]:

ζd
i = ζ+ζm

i + α

2ωi
+ β

2
ωi (27)

Where:
ζ = constant modal damping ratio, ζm

i = modal damping ratio for mode shape i, ωi = circular natural
frequency associated with mode shape i = 2π fi , fi = natural frequency associated with mode shape i

In the simulations in this report the Full analysis solution is applied.
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4 STRUCTURAL ACOUSTICS

Structural acoustics are the study of the mechanical waves in structures and how they interact with and
radiate into adjacent media [30]. That translate, for the purpose in this report, to the interaction between
vibrations in fluids and solids.

A fluid has the ability to greatly effect the frequencies of a submerged structure [2, 3, 4, 19, 8]. When a
submerged structure vibrates, energy is dissipated to the surrounding fluid. It means that some of the
energy in the vibrations of the structure is being consumed by setting the surrounding fluid in motion.
Based on the density and viscosity of the fluid, the vibrations are reduced compared to the structure
vibrating in vacuum. If the fluid has a high viscosity and density, thus needing more energy to be set in
motion, more energy is dissipated in comparison to a less dense or less viscous fluid. The effect can be
viewed as adding mass to the vibrating structure and consequently lowering its natural frequency. The
reduced natural frequency observed is called the added mass effect. Air is a medium with low density and
viscosity compared to metal and the added mass effect is negligible. Water however, has a much higher
density and viscosity and has a large effect on the natural frequencies of structures submerged in it. To be
able to accurately calculate the phenomena, the added mass effect must be accounted for. A measure of
how much the frequency is reduced is given by the Frequency Reduction Ratio (FRR) [13]:

δ= fai r − fw ater

fai r
(28)

The FRR caused by the added mass effect has been reported to be as high as 0,8 for turbine runners [20],
but this number is highly dependent on the the shape and properties of the submerged material.

4.1 FLUID SOLID INTERACTION

Numerical simulations of structures in fluid environments are called Fluid-Structure Interaction (FSI)
simulations. To be able to solve them correctly, the influence of the fluid must be taken into account
and the governing equation for fluid motion must be utilized. To model the behavior of the fluid, the
Navier-Stokes and continuity equations is considered. These equations are extensive and detailed. To make
the simulations more manageable some assumptions are being made. The fluid is slightly compressible,
where density changes are due to pressure variations and there is no mean flow of the fluid [28]. The
Navier-Stokes equation and the continuity equation can then be simplified, giving the acoustic wave
equation [28]:

∇( 1

ρ0
∇p

)− 1

ρ0c2

∂2p

∂t 2 +∇[ 4µ

3ρ0
∇( 1

ρ0c2

∂p

∂t

)]=− ∂

∂t

( Q

ρ0

)+∇[ 4µ

3ρ0
∇( Q

ρ0

)]
(29)

Where:
c = speed of sound in fluid
ρ = mean fluid density
µ = dynamic viscosity
p = acoustic pressure
Q = mass source in the continuity equation
t = time

This differential equation describes the motion of the fluid that surrounds the structure. As mentioned in
Section 3.1, the equation needs to be discretized to make it usable for numerical calculations. After some
manipulation and by using the Galerkin procedure [28], the discretized wave equation is obtained [28]:
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[MF ]{p̈e }+ [CF ]{ṗe }+ [KF ]{pe }+ρ0[R]T {üe } = { fF } (30)

Where:
[MF ] = acoustic fluid mass matrix
[CF ] = acoustic fluid damping matrix
[KF ] = acoustic fluid stiffness matrix
[R]T = acoustic fluid boundary matrix
{ fF } = acoustic fluid load vector
ρ0 = acoustic fluid mass density constant
pe = nodal pressure vector
ue = nodal dispacement vector

This equation handles the fluid part of the model. To complete the system, we need a part in the equation
of motion for the structural system able to handle the boundary between the solid and fluid domain. The
coupling conditions on the interface can be expressed as [28]:

σ(−→u S )−→n +p−→n = 0 on FS (31)

−→n ·−→u S −−→n ·−→u F = 0 on FS (32)

Where:
σ(−→u S ) = solid stress tensor−→u S = displacement in acoustic fluid−→u F = displacement in acoustic fluid−→n = outward normal unit vector of fluid domain
F S = fluid-solid boundary

The combination of equation of motion for the structural (Equation 20) and fluid (Equation 30) parts of the
system and applying the boundary coupling conditions on the interface (Equations 31 and 32) give:

[
[MS ] [0]

[ρ0[R]T [MF ]

]{ ¨{u}
¨{p}

}
+

[
[CS ] [0]
[0] [CF ]

]{ ˙{u}
˙{p}

}[
[KS ] −[R]
[0] [KF ]

]{
{u}
{p}

}
=

{
{ fS }
{ fF }

}
(33)

Which is solved to give the natural frequencies. As mentioned in Section 3.2.1.3, unsymmetric matrix
systems requires more computer resources to solve. By introducing the transformation u̇ = jω the displace-
ment and pressure differentials are removed in the system of Equation 33 and we obtain this discretized
equation [27]:

[−ω2[MS ]+ jω[CS ]+ [KS ] −[R]
−ω2ρ0[R]T −ω2[MF ]+ jω[CF ]+ [KF ]

]{
{u}
{p}

}
=

{
{ fS }
{ fF }

}
(34)

This matrix on the left hand side is unsymmetric. Solving it for nodal pressures and displacements demands
the inversion of this unsymmetrical matrix. This process needs a significant amount of computer power.
For matrices having the right attributes, ANSYS offers a way of transforming the unsymetric matrices into
symmetric ones before initiating solving procedures. For the harmonic response analysis this is performed
by introducing a transformation variable for the nodal pressures [27]:

˙[q] = jω[q] = p (35)
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By using this transformation there is possible to transform the unsymetric Equation 34 into a symmetric
matrix [27]:

−ω2[MS ]+ jω[CS ]+ [KS ] − jω[R]

− jω[R]T ω2[MF ]

ρ0
− jω[CF ]

ρ0
− [KF ]

ρ0

{
{u}
{q}

}
=


{ fS }
j

ωρ0
{ fF }

 (36)

Which can be solved, obtaining the nodal displacement u and the transformation variable for the nodal
pressures q . The nodal pressure p can then be calculated using Equation 35. For the modal analysis module
this transformation is not possible because of the involvement of frequency [22]. To solve this problem a
displacement potential,Φ, is introduced. This leads to [22]:

−→u F = ρ0

ρF
∇φ (37)

Introducing this transformation in the continuity and momentum equations and in the coupling conditions
in Equation 31 and 32 the following lossless symmetric eigen matrix equation can be derived [22]

−ω2

MS 0 0
0 0 0
0 0 ρ0KF


{ue }
{pe }
{φe }

+


KS −R 0

−RT − 1

ρ0
MF − 1

ρ0
SF KF

0 K T
F 0




{ue }
{pe }
{φe }

= 0 (38)

This matrix system is then solved in the modal analysis module when doing FSI analysis with a symmetric
solver. Even if the transformation demands extra computer power, the fact that the system now is symmetric
may give time savings that exceeds the losses during transformation.

There are different FSI simulations available. In 1-way FSI the results from the fluid pressure are transferred
to the solid body only when the simulations starts. After that no response from the structural movement
is returned to the fluid. In 2-way FSI the results from the structural movement are transferred back to
the fluid at every iteration. In the case of vibration of turbines, the displacement of the structure is small
and no separation of the flow occurs at the boundary. Consequently, the influence of the structure on the
water is very little. In addition, to be able to detect the high frequency vibrations of above 1000 Hz, the
time steps must be very small and the computer resources needed are very high. Dompierre and Sabourin
(2010) [34], using a 12 GB RAM computer on a 799900 node model of a turbine runner, used 95 days on the
numerical calculations with a 2-way FSI model. The results obtained by the 2-way FSI method were more
or less similar to those obtained by the 1-way FSI simulation. Zhu et al. (2012) [35] confirms this, stating
that if deformation is low, which is the case for vibrating turbines, 1-way FSI produces results similar to
those obtained by 2-way FSI simulations. Based on the computer power available, 1-way FSI is used in this
report.

4.2 FLUID ELEMENTS

In structural acoustic simulations there are both fluid and structural elements involved. The fluid elements
can be formulated in two different ways, either displacement formulated or pressure formulated. The
pressure formulated elements use acoustic nodal pressure for the calculations, as in Equation 30, while
displacement formulated elements are based on the physical movement of the nodes, as in the equation of
motion for the structure. When using displacement formulated elements for the acoustic part of the model
the underlying material behavior is altered, compared to structural elements. To reflect the behavior of a
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fluid, the stiffness terms associated with shear stresses are set to near zero and the Young’s modulus is set
equal to the bulk modulus. This means that the element has no ability to resist shear stress [27]. There are
some advantages of the displacement formulated elements. Because the elements have similar degrees of
freedom as the structural elements, all the elements on the FSI can be directly coupled, without needing
any coupling matrix. Without this coupling matrix the system is symmetric and thus facilitate a faster
solving process. Figure 10 shows how displacement formulated elements work.

Figure 10: Displacement formulated acoustic elements [27]

When using pressure formulated elements the model will be more complex. Figure 11 illustrates the
concept. The acoustic elements have only pressure degrees of freedom. The structural elements have only
displacement degrees of freedom. At the interface between the acoustic fluid and the structure there is a
layer of elements having both pressure and displacement degrees of freedom, which enables the coupling
between vibrations in the structure and the pressure response in the fluid. To get accurate results, it is
important to carefully construct the FSI [27].

Figure 11: Pressure formulated acoustic elements [27]

Even though displacement formulated acoustic elements have its advantages, pressure formulated el-
ements are the most used method today. The only drawback of the method is the unsymmetric set of
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equations, but this problem can in many cases be resolved by using the transformation in Equation 35 or
be solved with an unsymmetric solver. In ANSYS, fluid elements using displacement formulated acoustic
elements are termed legacy elements and are not recommended to use. All simulations in this report will
be performed using pressure formulated acoustic elements. As the structural elements used in the FSI
simulations only have displacement degrees of freedom a transfer matrix is used to connect the structural
and acoustic elements:

Figure 12: Visualization of the transfer matrix coupling the structural (Ω1) and acoustic domian (Ω2) [22]

{
vn1

vn2

}
=

[
Y11 Y12

Y21 Y22

]{
p1

p2

}
(39)

Where:
p1, p2 = pressure at part 1 and 2
vn1, vn2 = normal velocity at port 1 and 2
Y11, Y22 = self-admittance
Y12, Y21 = mutal admittance
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5 PREVIOUS WORK DONE ON NUMERICAL SIMULATIONS OF SUBMERGED

STRUCTURES

The problem of failure of turbine runners is not a new concern and much work has been put down trying
to understand why these breakdowns happen. In this section some of the work that has been done
on numerical simulations of turbines and FSI coupling is presented. Liang et al. (2007) [3] performed
a numerical simulation to analyse the influence of the surrounding water on a turbine runner. The
simulations were linked to experiments performed in Rodriguez et al. (2006) [2]. The results from the
simulations were similar to those obtained in the experiment. All deviations remained within a range
of ± 3,5 %. The FRR was in the range of 0,10-0,39 depending on the mode shape of the structure. Lais
et al. (2009) [19] did numerical and experimental tests on three different turbines. Both modal analysis
and harmonic response analysis were performed. For the harmonic response analysis a CFD simulation
were performed upfront to determine the pressure distribution on the blades. The numerical results
showed accordance with the experimental results (± 5 %). The report concludes that even if the numerical
results of the turbine submerged in water were close to the experimental results, they were not tested with
any nearby structures which could significantly alter the natural frequency of the turbine. Egusquiza et
al (2009) [20] did both numerical and experimental investigations on a prototype impeller. Using FEM,
there were found accordance between the experiment and the numerical simulations. A FRR of 0,5-0,8
were found. Flores et al. (2012) [13] did perform both experiments and numerical simulations on a 38,5
MW Francis runner. The report finds good agreement between the experiments and the simulations, a
difference of ±3,5 % between numerical and experimental results are found. A frequency reduction ratio of
0,152-0.324 was observed. In Hübner et al. (2010) [8] an investigation into the application of fluid-structure
coupling was performed. Further, structural simulations comparing the impact of flowing water to still
water revealed that simulations with stagnant water usually are sufficient and give good results as long as
damping effects is low. Rodriguez et al. (2012) [4] tested the capability of a structural-acoustic FSI model
to predict the natural frequencies of submerged structures with nearby rigid surfaces. The simulations
were performed on cantilever plates. The findings suggested that the natural frequency of a submerged
plate is significantly impacted by a nearby solid wall. It also showed that structural-acoustic coupling of
the numerical simulations was able to predict the reduced natural frequencies of the plates. Valentin et al
(2014) [17] investigated the dynamic response of a circular disk in a confined space. The results showed
that the numerical simulations could predict the natural frequencies of the disk both in water and in air.
The report also concludes that radial confinement has a significant impact on the vibrations of the disk and
that the numerical simulations were able to detect this. The error of the numerical simulations were no
more than ± 6 %. Presas et al (2014) [16] did experimental analysis on the natural frequencies of a rotating
disk spinning at 8 Hz. The results showed that the natural frequency of the disk was altered by only a very
small margin.

Even though most of the research on fatigue damage on turbine runners have been concerning the
investigation of the natural frequencies of the turbine and the possible resonance that can arise, as
mentioned in Section 2.3, there are other sources of vibration in the system. Brekke (2010) [1] is claiming
that the breakdowns are not caused by resonance between the natural frequency and the RSI, but instead
by sound waves caused by the pressure shock originating from the runner blades passing the guide vane
wakes. These waves are propagating through the system and reflects, causing vibration and noise. This
underlines the fact that the dynamics of what happens in a turbine during operation and what is causing
the vibrations that leads to failure, is not fully understood.
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6 NUMERICAL SIMULATIONS

Figure 13: Above: 10-node tetrahedral ele-
ment used in the simulations [28]. Below:
Quadratic displacement behavior between
nodes [27]

The numerical simulations were carried out on a computer
with Intel Core i7-2600 processor and 16 GB RAM. ANSYS Me-
chanical software with Acoustic ACT (Application Customiza-
tion Toolkit) Extension was used, which enabled acoustic fea-
tures to be accessible by GUI. A CAD model of the pump-
turbine runner, made during construction of the turbine, was
used in the simulations, see Figure 15. The CAD geometry
had earlier been used in fluid flow analysis, therefore modifi-
cations had to be done in order to get it ready for mechanical
analysis. This work consisted of cleaning the structure of un-
necessary details, seal small holes between faces and repair
other inaccuracies. To enable the simulation of a submerged
turbine, a cylindrical-shaped enclosure was created surround-
ing the structure. The size of the enclosure was chosen to
avoid any wall effects, which can strongly influence the nat-
ural frequencies. Prior to the simulations a mesh was created.
As the computer resources are limited, the density of the mesh
was chosen to give the best possible balance between accu-
racy and time consumption. The pump-turbine was made up
of 573301 tetrahedral elements of type SOLID187. This is a
10-node tetrahedral element with three displacement degrees
of freedom and quadratic displacement behavior [28], see Fig-
ure 13. The fluid domain is meshed with 340006 tetrahedral
elements of type FLUID221. This is also a 10-node tetrahedral element with one pressure degree of freedom
and quadratic pressure behavior between nodes. At the defined FSI, a layer of Acoustic FSI Interface 180
elements were created with both displacement and structural degrees of freedom, coupling the structural
and fluid parts [23]. Because of limited computer resources, the mesh used in the simulations was made
as fine as possible without making simulation time consumption to high. A fixed support simulating an
attached shaft, was used. The pump-turbine runner is a model that is used for tests at the Water Power
Laboratory at NTNU. It is made of bronze with a density of 7640 kg /m3 (see Table 1) and has six blades.
The speed of sound in water was set to 1447 m/s, which is the speed of sound at 10 ◦C. The simulations
in air was conducted in vacuum. Air is less dense than bronze and will not impact the vibrations of the
turbine compared to vacuum. In the results section, "air" will be used instead of "vacuum". The mode
shapes compared in the result chapter is (1,0), (0,0), (2,0), (3,0), (1,1) and (4,0) (see visualization of the
modes in Figure 5). The transverse modes, those without any nodal radius, are the ones thought to have the
highest risk of experience resonance with the RSI. By using the Equation 11, developed by Tanaka (1990)
[18], the modes that are most likely to be excited by the RSI from this particular pump turbine runner (6
blades, 28 guide vanes), is mode (2,0) and (4,0).

Table 1: Material properties of the bronze pump-turbine
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Table 2: Mesh info

Figure 14: Visualization of the turbine and the surrounding fluid

(a) Turbine with mesh (b) View from below

Figure 15
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In the modal analysis the direct solver with Block Lanczos method was used for the extraction of the
eigenvalues, see Section 3.2.1.1. The matrices solved were symmetric, using the displacement potential
transformation of Equation 37 for modal analysis and the transformation of nodal pressures, Equation
35, for the harmonic response analysis. Damping effects are neglected in modal analysis. This should not
have influence on the results, because damping ratios are low for these kind of simulations [19]. The full
solution method was used in the harmonic response analysis, calculating the damping matrix explicitly
(see Section 3.2.2.1). As mentioned in Section 3.2.2 the RSI induces a nearly sinusoidally force on the
turbine. In harmonic analysis, a sinusoidally varying pressure forces with different phase angles for each
blade are defined to emulate the forces put on a real turbine. The force is placed on the pressure side of
each blade and a frequency sweep from 0 to 2300 Hz is performed. This frequency range was chosen to
encapsulate all the frequencies observed in the modal analysis simulations. To simplify the calculations,
the blade loading was assumed constant along the blade. The structural response of the pump-turbine is
plotted against the frequency of the force in Figure 18.

The simulations were performed in still water and without any rotation to replicate the experiment executed
by Frode Kristoffer Amundsen Kjøsnes in the Water Power Laboratory at NTNU. A fixed support was defined
at the surface normally in contact with the shaft. This locks the displacement of the nodes on this surface
and replicates the impact a shaft would have on the structure. In the experiment the runner is hanging
from a rope and is not attached to a shaft. Valentin (2014) [11] investigated the difference between the
natural frequency of a runner hung from a rope and a runner attached to a shaft. Deviations of less than 2
% for all transversal modes, except (1,0), were found. (1,0), (0,0) and (1,1) was highly dependent on the
presence of the shaft. The difference in setup should, for most modes, not play an role on the results. The
time consumption of the various simulations are listed in Table 3.

Table 3: Time consumption of the simulations

Table 4: Pump-turbine specifications in turbine mode [38], * = at BEP
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7 RESULTS AND DISCUSSION

In this section the results from the numerical simulations are presented.

7.1 MODAL ANALYSIS

The results from the modal analysis are shown in Table 5. The frequencies in air are found between 260 and
2257 Hz. The frequencies in water are found between 208-1825 Hz. A FRR between 14-34 %, depending on
the mode-shape, is observed. The results are consistent with results obtained in other reports.

Table 5: Results from the modal analysis, all frequencies in Hz

Figure 16: Comparison of frequencies in air and in water, all numbers in Hz

25



Figure 17: FRR

From the results, the added mass effect is clearly affecting the vibrations. When the turbine is submerged in
water, the observed frequencies are significantly lower than the vibrations of the turbine in air. From Figure
17 variations in the reduction ratio between the different modes can be observed. The four transverse
modes seem to have about the same FRR. (0,0) seems to be impacted to a higher degree by the water.
Egusquiza (2009) [20] states that the highest added mass effect is observed in the modes with a relative
motion between crown and band. This relative motion is not present in any of these modes. The high FRR
could also mean that the displacement is higher for this mode. More movement means that more energy is
dissipated to the water compared to modes with smaller displacement.

7.2 HARMONIC RESPONSE ANALYSIS

The frequency response from the harmonic response analysis is presented in Figure 18. The structural
deformation is plotted against the frequency of the applied force.
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Figure 18: Comparison of the frequency response in air and in water

(1,0) is found at 208 Hz in water and 260 Hz in air. These are the same for both modal analysis (MA) and
harmonic response analysis (HR) simulations. The amplitude of the deformation at 260 Hz in air is the
largest of any mode inside the frequency sweep from 0 to 2300 Hz. At 342 Hz (0,0) in water is found. This
frequency is more or less the same as in modal analysis. (0,0) in air is not found in the frequency response
plot. The next spike is found at 752 Hz, having a shape shown in Figure 19a. This frequency has a large
amplitude, but is difficult to identify. It shows signs of (1,0), but with sideways (torsion) movement. It is
not to far away from the third harmonic of (1,0), which is at (3∗260 =) 780 Hz. At 754 Hz (2,0) in water is
found. This is a bit higher than in MA. (2,0) in air is found at 860 Hz. The higher frequency obtained for
(2,0) in water leads to a lower FRR in the HR analysis compared to the MA, see Table 6. At 1080 Hz a mode
in water is observed, see Figure 19b. This mode is similar to (0,0) and was not detected in MA. It has a large
displacement. The mode at 1275 Hz in air is showing signs of (3,0), especially on the ring, see Figure 19c.
(3,0) in water is found with a very small amplitude at 1310 Hz. This is close to the observed amplitude from
the modal analysis. At 1430 Hz another unidentified mode appears. It has a similar pattern as the mode at
1080 Hz. One explanation of these two unidentified modes with similarities of (0,0), might be that they are
the third and forth harmonics of the basic (0,0) at 342 Hz. 342∗4 = 1368, are not that far away from 1430 Hz.
The difference between the spikes is 350 Hz. The high structural deformation of these modes can possibly
be related to the high frequency reduction of (0,0) in MA. When the structural displacement is high, more
water is moved and more energy is dissipated when the pump-turbine is submerged in water, compared to
air. At 1566 Hz, (3,0) in air is found at exactly the same frequency as in modal analysis. At 1900 Hz, (1,1) in
air is found. This mode is not observed in water. (4,0) in water is found with a very small amplitude at 1980
Hz. This is a higher frequency than calculated in MA (1825 Hz). (4,0) in air is found at the same frequency
as in MA. The FRR for (4,0) is consequently reduced from 19 to 12 %. Besides the four frequencies marked
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in Figure 18 without any clear modes, several other spikes are also present in the frequency plot. They can
be harmonics, other unidentified modes or errors from the numerical simulations.

To summarize the findings HR and MA seems to match very well in air. The simulations coincide for all
modes, except that (0,0) is missing. In water the observed natural frequencies are generally a little bit higher
than in MA, which are not expected. (1,1) is not found. The results from MA showed that (0,0) had a high
FRR. This could indicate a high displacement. It is strange that (0,0) is not to be found from the frequency
plot in air. Why it disappears is difficult to say. It might be a possibility that the result from either MA or HR
concerning (0,0) is wrong or that it is shifted towards higher frequencies, either as the unidentified modes
at 1080 Hz and 1430 Hz or above 2300 Hz. The experimental results from the Water Power Laboratory, listed
in Table 8, found (1,0) at 1493 Hz. It might be that this is the frequency which are found at 1430 Hz in the
simulations.

In water, the frequencies from HR simulations have a tendency to be higher than in MA. Table 6 shows the
frequencies and FRR for the HR simulations. Table 7 shows the deviations between MA and HR simulations.
For the setup of these simulations, without any nearby walls, damping ratios should be low and not impact
the natural frequencies much. Even if damping effects contributes to alter the frequencies, they should be
lowered and not increased as the case in these simulations. Beside the difference in excitation method,
which should not alter the natural frequency of the structure, it is difficult to find any good explanation for
this behavior. Sources of error include, numerical errors, input errors, model errors or similar. A complex
geometry and limited computer resources may also play a role.

Table 6: Frequencies of modes from the harmonic response analysis

There are several other spikes, beside the ones shown in Figure 19. They are not possible to characterize
with nodal lines and symmetry. Some have similarities with symmetric modes, but are not complete or
show signs of torsion, others have large blade deflections. One question is if these unsymmetric modes may
get into resonance with the RSI frequencies, even if the excitation forces is symmetric. The complicated
nature of the pump-turbine makes it difficult to characterize all the modes. In general, the complexity of
the simulations may contribute to several of the unexpected results seen.

Table 7: Deviations of frequencies between modal analysis and harmonic response in water
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(a) Mode in air at 752 Hz (b) Mode in water at 1080 Hz

(c) Mode in air at 1275 Hz (d) Mode in water at 1430 Hz

Figure 19: Deformation of modes without any clear modal patterns

7.3 EXPERIMENT

The results of the experiment at the Water Power Laboratory is shown in Table 8. The most difficult part of
the experiment was to identify the different modes from the frequency response plot, see Figure 20. There
are several spikes in the plot, but identifying which spike is belonging to which mode is challenging. In
water they were not possible to separate.

Table 8: Experimental results of the pump-turbine in air
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Figure 20: Frequency plot from the experiment with the pump-turbine in air

Overall, the results show poor agreement. (3,0) is far from the frequency found in the simulations. (1,0)
is also far of, but this is probably not the same mode as the one observed in the numerical simulations
because the difference is so big. It might be a higher harmonic of the basic mode. Or as Valentin (2014) [11]
reports, (1,0) is totally dependent on the shaft. As the shaft is connected in the simulations, but not in the
experiments, this might explain why the frequency for this mode does not match. (2,0) is in accordance
with the numerical simulations having a deviation of only 6 %. From Equation 11, it was calculated that
(2,0) and (4,0) are the frequencies which are excited by the RSI for this particular turbine. (2,0) is vibrating
with much higher amplitude than (4,0) and is the main mode that may get into resonance with the RSI.
The fact that the experimental and numerical results match, may indicate that the numerical simulations
concerning this mode is correct.
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8 CONCLUSION

In this thesis numerical simulations of a pump-turbine runner in air and in water has been performed.
Using ANSYS 15 software, a CAD drawing of the pump-turbine was modified and surrounded by water to
replicate an experiment performed in the Water Power Laboratory at NTNU. The goal of the simulations
were to find the natural frequencies and displacements of the pump-turbine in air and in water using
different simulation modules. The results of the simulations have been compared. For the simulations in
water FSI coupling was used.

First, a modal analysis was performed. The results from the simulations showed a FRR of 16-34 %. The
highest FRR is observed from (0,0). A harmonic response analysis were then performed. The structural
deformation was plotted against the frequency. The highest displacements were found for (1,0) and (2,0)
in air, and for two unidentified modes in water. The results of the harmonic response analysis in air
were exactly the same as the results obtained in modal analysis simulations. The results in water showed
deviations of up to 8 %. Damping is included in the calculations of the harmonic response and it is therefore
strange that the observed frequencies are higher for the harmonic response analysis. Damping should
increase the added mass effect thus lowering the frequencies. Simulations carried out in the Water Power
Laboratory gave results that showed variable coherence. (2,0) is only off by 6 %, but both (1,0) and (3,0) is far
from the simulated frequencies. The reason why (1,0) is different is probably caused by the shaft. Why (3,0)
is of by such margin is more difficult to explain, but there are a number of factors in both the numerical
and experimental setup that could cause this. The fact that (2,0), the mode with the highest energy content,
the highest displacement and a frequency which could be excited by the RSI, is at approximately the same
frequency for both experimental and numerical results indicates that this might be correct.

At BEP, the induced frequency of the RSI is 302,4∗3 = 907,2 Hz, which are some way of (2,0)’s natural
frequency in water at 732 Hz. (2,0) should, based on these calculations, not give any resonance problems.
(4,0) is at 1825 Hz in modal analysis. The RSI frequency is given by 302,4∗6 = 1814,4 Hz and this frequency
could possibly get into resonance with the natural frequency. Operation at other loads than BEP would
induce other RSI frequencies which could potentially create resonance problems. The natural frequencies
obtained in this report shows mixed conformity. Results from the numerical simulations are within
reasonable error margins, but the fact that the harmonic response analysis gives higher frequencies in
water than the modal analysis is strange and undermines the trust of the implementation of damping in
the simulations. Experimental results in air are only matched for (2,0).

From these numerical simulations, all the natural frequencies of the pump-turbine is not possible to obtain
within certain margins of error. Operating turbines are experiencing more complicated boundary condi-
tions and excitation forces, compared to this numerically studied pump-turbine. Further investigation
should be conducted to determine the natural frequencies.

In my project thesis I worked with the natural frequencies of a circular disk. Results from the experiment
in air showed good conformity with numerical simulations (deviations of ± 2 %). The experimental and
numerical results in this report shows greater deviations. Based on my experience there is a big difference
between a circular disk and a real turbine. The complicated geometry and boundary conditions clearly
hampers the task of correctly calculating the natural frequencies. Adding flowing water, nearby walls
and more realistic excitation forces will complicate it even more. Based on the results of this report,
structural-acoustic simulation of complicated submerged structures can not guarantee a correct answer.
Other sources of information should be used to confirm the numerical results.

By working with natural frequencies of this pump-turbine runner, the complexity of the machine and
the calculations have become apparent. The runner is made from several parts welded together, each
with its own natural frequencies. Each blade have the possibility to be excited with a force at resonance
frequency. In addition, there are many other phenomena which are capable of causing pressure pulsations.
The solution to the problem of fatigue damage in turbine runners may be more complex than that of being
able to calculate the natural frequencies of the structure.
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9 FURTHER WORK

Even though much effort has been put into solving the problem and many reports finds good agreement
between numerical and experimental results, turbines continues to break down after short time in oper-
ation. Generally, the aim should be to create models that better replicates the operating conditions of a
turbine. This includes the investigation of close wall behavior and the impact on the added mass effect
and FRR. Another interesting field of study is the influence of flowing water on the natural frequencies and
the effect of rotation. Rotation of the turbine adds rigidity just like a spinning top. Both centrifugal and
gyroscopic resistance forces will oppose movement and add stiffness to the structure (even if Presas et al
(2014) [16] does not find any big impact of rotation). This could impact the natural frequency of the runner.
The influence of small damages on the turbine could be investigated. Often, turbines will have some sort
of imperfections. It could be manufacturing faults, sediment erosion or cavitation damage created by
several years of operation. How does these damages alter the frequency response of a turbine and its ability
to withstand resonance phenomena? With computers gradually getting more powerful, new and more
detailed models can be developed. By utilizing simulations of models which more accurately replicates
the operating conditions of a real turbine, important information on the vibration behavior can be gained.
Even if numerical simulations can give important contributions to the construction process of a turbine,
full scale experiments and experienced constructors and operators will still be of big importance.

The fact that not all researches believe that resonance with the natural frequencies of the turbine is causing
the breakdowns (ref Brekke (2010) [1]) and instead is blaming other effects, should be taken seriously. There
are several harmonically varying forces, beside the RSI, in a turbine runner. When they coincide resonance
could occur. Maybe the breakdowns are not caused by one factor only, but rather that each turbine is
experiencing damaging fatigue loads from one of a series of different sources, each needing its own local
fixes. The building strength of new turbines should also be investigated. Problems with fatigue damage
have risen significantly in the last decades, in the mean time new and lighter turbines have been sat in
operation. The turbines might have become to fragile to withstand the fatigue loads experienced during
modern day-operation.
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