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Abstract

This thesis contributes to the understanding of mechanisms for mass transport in alu-
minium electrolysis cells. Fundamental studies are undertaken of flow patterns and mass
transport in the interpolar region under various operating conditions. A coupled model
predicting the turbulent electrolyte flow, under the influence of both electromagnetism
and forces from buoyant gas bubbles, crucial for better prediction of mass transfer mech-
anisms and voltage oscillations, has been developed from first principles. The model is
validated against experiments performed on a lab scale electrolysis cell. Both modelling
and experiments are performed within the scope of this thesis.

Experiments on lab- and industrial scale cells have been conducted in order to study the
behaviour of anodic gas bubbles under various operating conditions. On industrial scale,
bubble related signals show typical frequencies in the range 0.5 to 2 Hz, with amplitudes
up to ±5% around the mean voltage. Results indicate that the bubble related voltage
oscillations increase in both frequency and magnitude with increasing anode age, the latter
of which due to the diminishing influence of slots. No significant correlation between anode
pairs is identified, suggesting that models treating individual anodes are meaningful also
on an industrial scale.

Due to challenges related to multiple simultaneous phenomena occurring on industrial
scales, a series of lab scale measurements have been performed, in order to obtain quan-
titative data for model validation. The lab scale experimental cell allowed for different
current densities, interpolar distances and inclination angles, thus spanning ranges typi-
cally encountered on the industrial scale. Lab scale frequencies are found to be in the range
0.25 to 0.65 Hz, with magnitude of up to ±4% around the mean voltage. The magnitude
of the oscillations decreases with increasing anode age, due to increased rounding of the
initially sharp anode edges.

The traditional voltage measurements have been supplied with high-speed video record-
ings of the bath surface showing a good correspondence between voltage fluctuations and
escaping gas bubbles. On average, 0.5 and 2 bubbles were observed per second on lab
and industrial scales, respectively, significantly higher than frequencies obtained by a FFT
of the voltage signal. It is shown that this discrepancy can be due to large variations in
the bubble release times, thus violating the assumption of a periodic signal required for
an FFT. For industrial anodes, the possibility of overlapping bubbles is investigated as an
alternative effect resulting in the mismatch between observed and calculated frequencies.

A phenomenological, coupled, model for the creation and transport of anodic gas bubbles
is developed from first principles. The proposed model is a multiscale approach in which
molecular species are produced by Faraday’s law and transported by diffusion and advec-
tion through a supersaturated electrolyte. Sub grid bubbles are allowed to form through
nucleation on the anode surface and the resulting bubble population evolves through mass
transfer and coalescence. As sub grid bubbles reach a certain size they are transferred
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to a macroscopic phase which evolution is governed by the volume of fluid method, thus
allowing for the treatment of complex bubble topology.

The model is validated against results from the lab scale experiments in a 2D model,
showing that essential features of the voltage signal can be reproduced by the proposed
approach. The influence of various parameters such as bath properties, anode microstruc-
ture and mass transfer properties are investigated by means of a factorial design analysis.
The factorial design indicates that the contact angle, Sherwood number (and molecular
diffusivity) and the porosity of the anode that have the most significant influence on the
frequencies of the resulting bubble induced voltage fluctuations. Furthermore, resulting
frequencies appear to be dominated by these selected factors, as coupling is present only at
low significance. Considering the amplitude of the signal, the dominating factors are the
bath viscosity, contact angle and pore diameter. Although the influence of these factors is
large, significant coupling between factors is observed, indicating that the physics deter-
mining the amplitude of the signal is of a more complex nature than that of the frequencies.
The mean voltage is relatively insensitive to the factors studied in this analysis.

Simulations are able to reproduce the essential behaviour found experimentally on the
lab scale cell, that is: increasing frequencies with increasing current densities and anode
inclination, increasing amplitudes with decreasing anode inclination and increasing current
densities and finally increasing mean voltages with increasing ACD and current density.

Considering individual bubbles, the influence of electromagnetic forces is small when com-
pared to other forces such as buoyancy and surface tension. However, when considering the
system as a whole, the Lorentz forces are found to yield enhanced gas departure rates due
to favourable pressure gradients in the bath. This feature is necessarily enhanced further
by the significantly elevated current densities found in the proximity of large bubbles, as
the influence of the Lorentz forces is found to increase with increasing current densities.

Simulations indicate that steady state bubble production on the anode does not imply
a direct transfer of all the molecular gas to bubbles. Instead, a balance between bubble
production and transport by diffusion and advection away from the anode appears to
describe this state, resulting in a CO2 supersaturated region greatly extending the bubble
layer. The presence of a CO2 enriched region yields a possible explanation to the observed
reduction of current efficiency if the anode-cathode distance is reduced beyond a critical
limit.
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Chapter 1

Introduction

1.1 On the production of aluminium

Today more aluminium is produced than all other non-ferrous metals combined (IAI [54]).
Due to attractive properties such as low weight and nearly 100% recyclability, the alu-
minium industry has grown to an international multibillion business since the discovery
of the element some 200 years ago. The production of primary aluminium is carried out
in aluminium reduction cells by the Hall-Héroult process, named after its inventors who,
independently of each other, in 1886 developed and patented an electrolytic process by
which alumina (Al2O3) is dissolved in an electrolyte consisting mainly of molten cryo-
lite (Na3AlF6) (Thonstad et al. [116]). The Hall-Héroult process is the only method by
which aluminium is produced industrially today and according to Thonstad et al. [116],
no other process appears to threaten its position for the next twenty years. A sketch of a
Hall-Héroult electrolysis cell is given in figure 1.1.

In the Hall-Héroult process, cryolite acts as a dissolvent for alumina, yielding complex ions
of oxide and aluminium. By passing an electrical current through the system, positive
complexes are transported to the negative electrode (the cathode) where they are reduced
whereas negative complexes are transported to the positive electrode (the anode) where
they are oxidized. The anode is made of carbon, which when reacting with oxide containing
complexes yields carbon dioxide.

The net reaction in the Hall-Héroult cell can thus be written as

1

2
Al2O3,d +

3

4
Cs → All +

3

4
CO2,g, (1.1)

where s , l and g represent solid, liquid and gaseous phases of state, and d represents
dissolved species. By means of gravity, liquid aluminium, which in general is denser than
the cryolite bath, remains in the lower regions of the cell, forming an interface between the
electrolyte and liquid metal as sketched in figure 1.1. The produced gas is lighter than the
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Figure 1.1: Sketch of the Hall-Héroult process. The figure shows an industrial reduction cell
consisting of an anode, a cathode and an electrolyte (bath). Electrochemical re-
actions of the raw-material (alumina) occur within the electrolyte yielding liquid
aluminium. The cell is powered by an external DC energy source.

other phases, and is set in motion due to buoyancy. The motion of gas bubbles induces
a flow field in the cell, as gas is evolved and escapes through a side channel at the anode
edge.

A higher current flow in the cell means that more electrons will be passing through it at
any given moment. This implies a higher reaction rate at the electrodes and thus a greater
number of moles of product. High current cells are thus sought by the aluminium industry
in order to increase productivity.

The energy necessary to produce aluminium is one of the main factors when evaluating
the economy of the total process (Thonstad et al. [116]). The specific electric energy
consumption, Wel, is typically given as

Wel ∝
U

χAl
, (1.2)

where U is the cell voltage and χAl is the corresponding current efficiency fraction1, with
respect to aluminium. As equation 1.2 shows, the energy consumption can be reduced
either by a reduction in cell voltage, or by an increase in current efficiency. Considering a
simple Ohmic law for the system

U = RI, (1.3)

1The current efficiency is the ratio of produced aluminium to the (ideal) value predicted by Faraday’s
laws.
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where R is the resistance of the cell and I is the electrical current, it is obvious that an
increased amperage will increase the cell voltage U , and thus energy consumption, if the
resistance is kept constant.

Cell resistance can be reduced by decreasing the distance between anode and cathode
(the interpolar region), as the main contribution to resistance is due to the cryolite bath.
However, a direct reduction of the interpolar distance can have negative consequences for
the current efficiency.

In commercial aluminium reduction cells waves and disturbances of the bath-metal inter-
face, especially vertical oscillations, have a great influence on efficiency (Tang et al. [114]
and Bearne et al. [4]). The influence of the interpolar region upon current efficiency has
been studied by several authors, cf. Grjotheim et al. [44], Fellner et al. [37] and Alcorn et
al. [101], showing how current efficiency drops abruptly if the interpolar regions becomes
smaller than a certain value, thus increasing energy consumption. This effect is explained
by means of the so-called back-reaction, which can occur if molten aluminium comes in
contact with CO2, which is produced at the anode.

Another important point related to the cell voltage is the contribution to the electrical con-
ductivity from the (essentially) non-conductive gaseous bubbles, effectively screening the
active anode area and increasing the cell voltage (cf. Cooksey et al. [21]) and consequently
increasing the energy consumption by as much as 10%.

According to Grjotheim and Kvande [47], energy costs have increased more than other
manufacturing costs since 1973 and for most smelters in the world, energy is neither cheap
nor plentiful. Thus, in order to improve existing designs with respect to energy efficiency,
detailed knowledge of the physics governing the flow in the interpolar region is imperative,
motivating the present work.

1.2 Modelling the Hall-Héroult process

The large scale motion of the bath and molten aluminium is due to the joint effect of
buoyant bubbles and so called Lorentz-forces, arising from the electrical currents passing
through the cell and its surroundings. Thus, the Hall-Héroult cell can essentially be de-
scribed as a turbulent, magnetohydrodynamic three-phase system where complex chemical
reactions occur. Combined with the dynamical nature of the governing phenomena and
strong dependence upon cell geometry, it is evident that the Hall-Héroult cell is a highly
complex system to study. Because of the harsh environment of a Hall-Héroult cell, quan-
titative experimental data of relevant phenomena are not easily obtained. One thus relies
upon extensive modelling to describe the system.

Broadly speaking, the system can be divided into four sub-systems, each of these being
governed by
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• Chemical reactions (CH)

• Electromagnetism (EM)

• Thermodynamics (TD)

• Hydrodynamics (HD)

Furthermore, the dynamic nature of the boundaries of the system yields an additional sub-
system to be studied, the nature of which necessarily is inherently coupled to the other
four. This inherent coupling between phenomena yields an additional level of complexity to
the system, as it a priori is difficult to determine to what degree phenomena can decouple.
The coupling between the five described sub-systems is shown schematically in figure 1.2.

Figure 1.2: Principal coupling diagram. The figure sketches the coupling between different
phenomena in Hall-Héroult cells; chemical reactions (CH), electromagnetism (EM),
boundary conditions (BC), thermodynamics (TD) and hydrodynamics (HD) for
the Hall-Héroult cell. Diagonally opposite systems (i.e. TD-EM and CH-BC) are
coupled via the Joule effect (green arrow) and chemical reactions (red arrow), re-
spectively.

Practical models are often based on judicious decoupling of some parts of the physics,
treating these as separate phenomena. The importance of this uncoupling can be checked
and rectified to some extent a posterior (Evans and Ziegler [36]).

The focus of this thesis will be on the computation of the coupled bubble driven magneto-
hydrodynamic system in a nontrivial geometry. Due to the importance of hydrodynamics,
determining the overall mass- and heat transfer processes, it is evident that a model which
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combines the electrolyte flow and resulting transport mechanisms is of fundamental inter-
est.

1.3 Significance

Increasing the knowledge of transport phenomena in the Hall-Héroult cell by advanced
numerical techniques will be decisive for further improvements of the process. This thesis
will aid to identify state of the art models and algorithms and determine whether or not
these can be coupled to describe the process as a whole.

The vision is that this thesis will contribute to the fundamental knowledge of transport
processes in the Hall-Héroult cell in such a way that future design choices, and current
operational decisions, are taken in such a way that the aluminium industry can contribute
further to a sustainable future.

The thesis is multidisciplinary, as it involves scientific computing, fluid dynamics, electro-
magnetism, non-equilibrium thermodynamics and experimental work.

1.4 Objectives and scope

The main goal of this thesis is to simulate transport processes in the Hall-Héroult cell using
advanced numerical techniques in order to obtain a deeper fundamental knowledge of the
process. The basis for these simulations are the Navier-Stokes equations. As the problem
is multiphase by nature, multiphase modelling will be of major concern.

The hydrodynamic model will be restricted to the incompressible case with simplified
species transport, in which thermoelectric effects and detailed treatment of chemistry is
neglected. Furthermore, the outer boundaries of the system will be assumed to be fixed
for each case considered. The influence of different (fixed) geometries will however be
considered. Finally, most physical properties such as density, solubility, viscosity etc. are
assumed to be constant for a given simulation, in order to isolate the influence of the
phenomena of interest.

As the large scale dynamics in the Hall-Héroult cell arise mainly due to buoyant gas bubbles
and Lorentz forces, these phenomena will be studied in detail, especially concerning bubble
generation and evolution.

As experimental measurements are crucial to validate essential parts of the model, new
experiments will be performed within the scope of the thesis. Due to time limitations, the
main focus of the thesis will however be on modelling and simulations, and not on the
experiments.
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The main objectives of the thesis are

• To present a review of the current knowledge and possible modelling approaches.

• To obtain quantitative data regarding bubble evolution on lab and industrial scales.

• To develop a framework for the treatment of electromagnetic forces in Hall-Héroult
cells.

• To develop and validate a framework for the treatment of anodic gas bubbles.

• To investigate the effect of bubbles and electromagnetic forces in Hall-Héroult cells.

1.5 Research method

The model of hydrodynamics in the Hall-Héroult cell is based on the 2D/3D incompressible
Navier-Stokes equations. Due to the complexity of the system and high degree of coupling,
numerical simulations are sought rather than simplified analytical solutions, an approach
denoted as Computational Fluid Dynamics (CFD) .

There are several ways to obtain a numerical simulation for a given fluid flow. One possi-
bility is to develop an entirely new code, often combined with multipurpose software such
as for instance MATLAB [80]. This strategy is of often adopted by researchers focusing
on the development of discretization methods, new solution algorithms or the study of
convergence.

For simulating the Hall-Héroult process, the software should, as a minimum, be able to
handle

• Complex geometries.

• Transient phenomena.

• Multiphase flows.

• Turbulence.

In addition, suitable post-processing tools are required in order to visualize the results.
Needless to say, the development of a new code covering all the above points in addition to
the study of new phenomena is neither feasible within the allocated time, nor required, as
several software packages such as openFOAM [88], COMSOL [20] and ANSYS FLUENT
[1] already exist and have been extensively used and validated for many CFD applications.

Due to previous experience and the ability to include additional models through user
defined subroutines, scalar fields and functions, the commercial CFD package ANSYS
FLUENT [1] is used throughout this thesis. The multiphase nature of the flow will be
treated by means of the Volume of Fluid (VOF) method, allowing for direct simulations
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of interfacial behaviour, rather than relying upon empirical exchange laws required for
alternative multiphase models.

The default models available in FLUENT will be extended through the development of
models treating electromagnetism and evolution of bubbles. In order to keep the formalism
on a comprehensible level, the models for each of the two phenomena are developed in a
modular fashion, allowing for coupled simulations only where required. Furthermore, the
modular approach allows for simple integration of further extensions, such as for instance
heat balance calculations, if required. Finally, the modular approach allows for extensive
verification of each sub-routine before a complete validation is performed.

Validation is performed with comparison to existing numerical results and/or experimental
data where these exist. As gas evolution is of a major concern in the current thesis, new
experiments based on optical methods and voltage measurements are performed in order
to yield further means for validation.
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1.6 Organization of thesis

This thesis is organized in the following five parts:

Part I: Background and Theory This part gives an introduction to the five nodes
shown in the principal coupling diagram. Heat balance is considered to be out-
side the scope of the current work, so the discussion related to thermodynamics is
restricted only to kinetics. Finally, a review of previous modelling approaches and
experimental results is given.

Part II: Experimental work This part describes the setup and results from experi-
ments related to gas bubble evolution on industrial- and lab scale electrolysis cells.
Lab scale results are used extensively for the validation of the bubble evolution model
presented in Part IV.

Part III: Electromagnetism This part gives an extensive introduction to various elec-
tromagnetic approaches. Following the introduction, various case studies are pre-
sented in order to verify the features of the proposed model. Results from this part
are used further in Part IV.

Part IV: Gas generation and evolution of bubbles This part describes the underly-
ing theory for a multiscale approach for the treatment of anodic bubbles. Following
the theoretical part, verification and validation studies are presented. Validation is
performed by comparison to lab scale experiments presented in Part II.

Part V: Concluding remarks and issues for further work The final part of the the-
sis provides general conclusions from the previous parts and describes points relevant
for future research.

Each of the above parts begins with a brief outline and description of following chapters.
Following main part of the thesis, a list of references and an appendix is given.
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1.7 List of publications

This thesis is organized as a monograph. Parts of the thesis have been published at
international conferences and peer reviewed journals. The papers with a brief outline as
well as an explanation of the co-authors’ role is given in the following. In all the below
papers, professors Stein Tore Johansen and Iver H. Brevik have contributed with initiating
ideas, support, recommendations and suggestions to increase the scientific level of the
publications.

1.7.1 Primary publications

[35]: K. E. Einarsrud and E. Sandnes (2011). Anodic Voltage Oscillations in Hall-Héroult
Cells. Light Metals, pages 555–560.

This paper describes experiments on lab- and industrial scale cells in order to study the
behaviour of anodic gas bubbles under various operating conditions. Traditional voltage
measurements have been supplied with high-speed video recordings of the bath surface
showing a good correspondence between voltage fluctuations and escaping gas bubbles.
For industrial anodes, the possibility of overlapping bubbles is investigated.

The first author (Kristian Etienne Einarsrud) planned and performed the experiments to-
gether with E. Sandnes, evaluated and analysed the results, wrote the paper and submitted
it to TMS2011, where he gave a presentation of the findings.

[32]: K. E. Einarsrud and S. T. Johansen. On the Modelling of Anodic Bubbles in Hall-
Héroult cells (2011). Proceedings of the 8th Int. Conf. on CFD in Oil & Gas,
Metallurgical and Process Industries, SINTEF/NTNU, Trondheim, Norway.

This paper describes a new approach to the modelling of gas evolving anodes in the pro-
duction of primary aluminium, based on a multiscale approach. A preliminary verification
study is presented, showing the potential of the suggested approach.

The first author (Kristian Etienne Einarsrud) developed and wrote the model, planned
and performed simulations, wrote the paper and submitted it to CFD2011, where he gave
a presentation of the findings.

[29]: I. Eick, A. Klaveness, C. Rosenkilde, M. Segatz, H. Gudbrandsen, A. Solheim, E.
Skybakmoen and K. E. Einarsrud (2011). Voltage and Bubble Release Behaviour
in a Laboratory Cell at Low Anode-Cathode Distance. In: Proceedings of the 10th
AASTC, Launceston, Tasmania.

This paper describes the bubble release and overvoltage in a laboratory cell setup. By
means of video equipment, bubbles escaping from the anode where recorded in parallel
to voltage measurements, allowing for additional interpretation of the bubble release be-
haviour.
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The current author (Kristian Etienne Einarsrud) participated in all the measurements and
performed high speed video recordings of the bath surface in order to study bubble release
behaviour and was involved in the interpretation of the results. The final section of the
paper (“Bubble release”) was written by the current author.

[33]: K. E. Einarsrud and S T. Johansen (2012). Modelling of bubble behaviour in alu-
minium reduction cells. Progress in Computational Fluid Dynamics, Vol. 12:2/3,
pages 119-130.

This paper is an extension of publication [32], where the influence of the various parameters
of the model is investigated by means of factorial analysis. Based on the parameters
investigated, it is found that the supersaturation concentration and pore density of the
anode contribute significantly to gas evolution.

The first author (Kristian Etienne Einarsrud) developed and wrote the model, planned and
performed simulations, wrote the paper and submitted it to Progress in Computational
Fluid Dynamics.

[34]: K. E. Einarsrud, S. T. Johansen and I. Eick (2012). Anodic bubble behaviour in
Hall-Héroult cells. Light Metals, pages 875–880.

This paper is an extension of publication [33], where the influence of Lorentz forces are
investigated. Lorentz forces are found to have an increasing importance with increasing
current densities, increasing the mean bubble release frequencies due to favourable pressure
gradients arising in regions with several bubbles.

The first author (Kristian Etienne Einarsrud) developed and wrote the model, planned
and performed simulations, wrote the paper and submitted it to TMS2012, where he gave
a presentation of the findings.

1.7.2 Secondary publication

[31]: K. E. Einarsrud (2010). The effect of detaching bubbles on aluminium-cryolite in-
terfaces: An experimental and numerical study. Metallurgical and Materials Trans-
actions B, Vol. 41:3, pages 560-573.

This paper is an extension of the authors Master’s Thesis [30]. Using dimensional analysis
it is found that similarity could be claimed for the original experimental setup for the ranges
studied. Furthermore, an extension to 3D allowed for an explanation of discrepancies found
in the 2D simulations performed in [30].



Part I: Background and Theory

Outline of Part I

Part I of this thesis describes the background and selected theoretical issues relevant to the
Hall-Héroult process, and thus serves as an extensive review. It is divided into six chapters
which cover:

• Introduction to hydrodynamics and multiphase flows.

• Introduction to CFD.

• Introduction to electromagnetism.

• Kinetics and chemical reactions.

• Typical boundaries and properties of the Hall-Héroult cell.

• Review of mathematical and physical modelling.

In addition to the review, this part thus treats the five nodes shown in the principal
coupling diagram, figure 1.2, with the exception of heat balance calculations, which details
are outside the current scope.

Part I includes several figures and graphs of data found elsewhere in the literature which
have been digitally re-mastered for use in this thesis. The original source of the figure (or
data, where applicable) is referenced in the caption of the corresponding figure as “..as of
Author [reference]”.
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Chapter 2

Introduction to hydrodynamics

The governing equations for a general fluid flow are the equation of continuity (mass con-
servation), the Navier-Stokes equations (momentum conservation) and the energy equation
(conservation of energy). An excellent derivation of and introduction to these equations
can be found in for instance Oertel [86], while more advanced subjects can be found in
for instance Landau and Lifshitz [71]. Considering a Newtonian fluid with density ρ and
constant viscosity µ, the equation of continuity is given as

∂ρ

∂t
+∇ · ρu = 0, (2.1)

while the Navier-Stokes equations take the form

∂

∂t
(ρu) +∇ (ρuu) = −∇p+ µ∇2u+ f , (2.2)

where u and p represent velocity and pressure fields, respectively, and f represents external
force densities. For the Hall-Héroult cell, the principal external force densities are gravity
and Lorentz forces (equation 4.3), that is

f = ρg + fL = ρg + j ×B. (2.3)

The Hall-Héroult cell consists of different phases, meaning that the above (single phase)
equations must be modified if the multiphase nature of the cell is to be captured. The
following sections give an introduction to multiphase flows and flows containing species.
Parts of the following sections are based on previous work [30], but are included here for
completeness. The energy quation is not treated, as heat balances are considered to be
outside the current scope.
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2.1 Multiphase flows

Multiphase flows occur frequently in nature. The word phase is to be understood in a
thermodynamic sense, being a solid, liquid or gas like state that can occur simultaneously
in one- or multicomponent systems (Oertel [86]). Multiphase flows can fundamentally
be described in two different ways. One approach is to describe the multiphase flow as
a continuum where the different constituents form a perfect mixture. Modelling these
systems is straight forward, as the equations basically are reduced to single phase equations,
where the single phase now has the properties of the mixture. These models are useful
if the large scale behaviour of the multiphase flow is to be described. However, these
mixed fluid models fail to describe the dynamics between the phases, as the interactions
are “mixed out”. Such interactions must thus be introduced by some suitable sub-model.

The motion of each phase can also be described separately with a coupling term between
phases. This approach is frequently referred to as a two-fluid model (or more generally an
N-fluid model). The two-fluid models are useful if the interactions between the phases are
of special importance, for instance if mass transfer is present due to dissolution. Besides
the fact that N-fluid models have N times more equations to solve than the mixed fluid
equations, they are necessarily more complex as they need sub-models to describe the
interaction between phases.

Micro structural and interaction effects complicate the theory of multiphase flows to an
almost overwhelming level. In order to simplify the formalism, the presence of more than
one phase is modelled with the concept of phase fractions (Drew [28]). Definitions vary in
the literature, but one intuitive definition is

αk ≡
Vk
V

(2.4)

which states that the phase fraction of the k-th phase is the total volume, Vk, occupied
by this phase divided by the total volume, V . The phase fraction can in other words
be interpreted as a relative volumetric fraction. The concept is easily understood from
two-phase flow in a pipe of unit volume πr2dz as shown in figure 2.1.

In the geometry of figure 2.1, the phase fractions are found to be

αg =
Vg
V

=
Agdz

Adz
=

Ag
Ag + Al

(2.5)

and equivalently

αl =
Vl
V

=
Al

Ag + Al
, (2.6)

where indices g and l represent the gas and liquid phase, respectively. For simple geometries
or two-dimensional systems, the void fraction can thus be interpreted as the relative area
fraction. The phase fraction is subject to the constraint∑

k

αk = 1, (2.7)
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Figure 2.1: Two phase flow (stratified flow) through a pipe of radius r and length dz.

where the sum is taken over all phases present.

2.1.1 The N-fluid model

Interpreting the phase fraction as a weighting function between phases, it is possible to
formulate a set of transport equations for the system, analogous to the transport equations
for a single phase fluid. Details of the derivation can be found in for instance Drew and
Passmann ([28]), and only key results are presented here.

The mass balance equation of the k-th phase can be expressed as

∂(αkρk)

∂t
+∇ · (αkρkuk) = Ṙk. (2.8)

where uk represents the velocity and Ṙk is the rate of production of component k per unit
volume, due to phase changes or chemical reactions. For a system consisting of N phases,
N − 1 equations on the form of equation 2.8 are solved, the final phase fraction being
governed by the constraint given in equation 2.7.

The Navier-Stokes equations of the k-th phase can be expressed as

∂(αkρkuk)

∂t
+∇ · (αkρkukuk) = Ṙkuki +∇ · (αkT k) + αkfk +M ki, (2.9)

where M ki is the force per volume acting on the k-th phase due to interactions with other
phases and Ṙkuki is a momentum source due to mass sources. The velocity uki represents
the velocity at the interface at which mass transfer occurs. Finally, T k represents the stress
tensor acting on the phase in question, i.e. pressure and viscous stresses. One momentum
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equation on the form of equation 2.9 must be solved for each of the phases, yielding a total
of 4N − 1 equations for the system as a whole.

In addition to involving all the complexity related to solving the full Navier-Stokes equa-
tions, an N-fluid model necessarily involves constitutive relations in order to describe in-
teractions between phases. For the momentum equations, this could for instance be done
by introducing a Drift Flux model (cf. Brennen [10] chapter 14) to treat momentum ex-
change between phases. Constitutive relations rely to some degree on empirism and/or
idealizations, for instance assuming spherical particles in order to obtain a simplified drag
law.

2.1.2 The mixture model

An alternative to the N-fluid models is the mixed fluid model, motivated by the fact that
the complicated internal interactions should cancel when considering the fluid as a mixture
of the phases present. The mixed fluid model is obtained by using the following averaging
convention from Drew and Passmann [28]

ρ =
∑
k

ρk, (2.10)

ρu =
∑
k

αkρkuk, (2.11)

T − ρuu =
∑
k

αkT − αkρkukuk (2.12)

and
f =

∑
k

αkfk. (2.13)

The assumption of cancelling internal interactions yields∑
k

Ṙk = 0 (2.14)

and ∑
k

M k + Ṙkuki = 0 (2.15)

Summation over the k phases in equations 2.8 and 2.9 results in

∂ρ

∂t
+∇ · ρu = 0 (2.16)

and
∂ρu

∂t
+∇ · ρuu = ∇ · T + f . (2.17)
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The mixed fluid equations are analogous to the classical Navier-Stokes equations for single
phase flows, differing only in the physical meaning of the properties, representing average
values of all phases present in the mixed fluid formalism.

As the name suggests, the mixed fluid formalism is especially useful in systems where
mixing of phases is significant or in cases where a gross balance is needed. However, by
definition, internal interactions cancel, yielding the full mixed formalism unsuitable if such
interactions are of interest.

2.1.3 The VOF model

In order to avoid the somewhat complex N-fluid model described previously, but still be
able to differentiate between phases, a compromise is met by means of the Volume of
Fluid method, first introduced by Hirt and Nichols [50]. The VOF model is designed
for free-surface and interface tracking between two or more immiscible fluids. As for the
mixture model a single set of momentum equations is solved and a special routine is used
to compute the shape of the interface (Troshko and Mohan [121]). In the VOF formalism
the calculation of momentum exchange is based on first principles, i.e. the actual flow
field around some immersed body, and constitutive momentum exchange laws are thus not
necessary.

The fields for all variables and properties are shared by the phases and represent volume-
averaged values as long as the phase fraction, αk, is known at each location. Variables and
properties in any given control volume are thus purely representative for one phase or for
a mixture of phases.

Phase fraction equation

In the VOF-formalism, the phase fraction is used as a weighting function when determining
average fluid properties. Given some fluid property, ψk of the k-th phase, the volume
average of this property, ψ, is given by the sum1

ψ =
N∑
k=1

αkψk (2.18)

where the sum is to be taken over the N phases present in the volume. The phase fraction
αk is determined from the transport equation

∂

∂t
(αkρk) +∇ · (αkρku) = Ṙk, (2.19)

analogous to the N-fluid model.

1Provided that arithmetic averaging is applicable.
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Momentum equation

The momentum equation of the VOF model is equivalent to that of the mixture model. As-
suming that the mixed flow field is incompressible, the incompressible continuity equation
must be satisfied by the flow field, i.e. the following constraint must be met:

∇ · u = 0. (2.20)

Under this assumption, the VOF momentum equation is reduced to

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂

∂xi
p+

∂

∂xj

(
µ
∂ui
∂xj

)
+ fi, (2.21)

for the i-th momentum component. The momentum equation (shared by all phases) is
dependent on the phase fractions of all present phases through the (volume averaged)
properties ρ and µ, defined by equation 2.18.

The main challenge of the VOF method is that of representing interfaces in an adequate
way. This can be considered to be a numerical issue, and is treated further in chapter 3.

2.1.4 Euler-Lagrange models

An alternative to the mixture model, allowing for phase interaction, denoted the Euler-
Lagrange model has been developed and extensively used for dispersed or particulate flows.
An introduction to this formalism can be found in Johansen et al. [56] and further topics
are treated in Clift et al. [19].

The momentum equation for the fluid is in the Euler-Lagrange formalism obtained by a
volume averaging of the momentum equation over a domain containing particulates. Let-
ting 〈. . .〉 denote volume averaged fields in a volume V , the resulting momentum equation
is

∂

∂t

(
αfρf 〈uf〉i

)
+∇ ·

(
αfρf 〈uf〉i 〈uf〉i

)
= αff f −∇ · 〈T 〉

i − 1

V

∑
p∈V

F I , (2.22)

where index f refers to fluid properties and

F I =

∫
Ap

T · npdA, (2.23)

is a fluid-particulate interaction force for a particulate with area Ap and normal vector np.
The final term on the right hand side of equation 2.22 is the sum over all particles present
in the volume V .

Several models exist for the fluid-particulate forces, covering for instance
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• Drag forces.

• Virtual mass and Basset forces.

• Pressure forces.

• Lift forces.

As the name suggests, particulates are in this formalism treated in a Lagrangian framework,
i.e. their motion is governed by (the classical form of) Newton’s 2nd law. Thus, the velocity
of a particle with mass mp is determined by

mp
dup
dt

= F I + Vpf p, (2.24)

which is solved for each individual particle, resulting in particle streamlines as time evolves.

Depending upon features such as for instance particulate phase fraction, Lagrangian models
can be one-, two- or four-way coupled. One-way coupling (valid for low particulate phase
fractions) signifies that that the influence from the particles on the fluid can be neglected,
opposed to a two-way coupling where such effects are important. Four-way coupling implies
that particle-particle interactions are important.

As for the N -fluid model, the Lagrangian models necessarily involves constitutive relations
in order to describe the particle-fluid interactions, often involving simplifying assumptions
such as spherical particles.

2.2 Flows containing species

The final class of multiphase models involves the treatment of species. As details regarding
chemistry (and thus also species transport) is beyond the scope of this thesis, only a
simplified treatment is given here. Detailed descriptions are found in for instance Bird et
al. [6].

Considering a concentration Ci, the mass conservation of species can be written as

∂Ci
∂t

+∇ · (Ciui) = Ṙi, (2.25)

where ui is the velocity and Ṙi is the production rate of species i. The computation of
each of the i-th velocity is a task with challenges similar to those related to the N -fluid
model. In order to simplify the formalism, the i-th velocity is assumed to be given by the
fluid velocity, u, and some drift velocity δui:

ui = u+ δui, (2.26)
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so that the mass balance can be written as

∂Ci
∂t

+∇ · (Ciu) +∇ · (Ciδui) = Ṙi. (2.27)

The final term on the left hand side can be interpreted as the divergence of a diffusive mass
flux vector

J i = Ciδui, (2.28)

resulting in
∂Ci
∂t

+∇ · (Ciu) +∇ · J i = Ṙi. (2.29)

The mass diffusion flux can be arbitrarily complex and is in principle dependent upon
gradients of all fields present (cf. Callen [13]). The formalism can however be simplified,
assuming a generalized Fick’s law,

J i = −Di,eff∇Ci, (2.30)

stating that the mass flux is proportional to the gradient in concentration, the factor of
proportionality being the effective diffusivity Deff . The above assumption results in an
advection-diffusion equation for the i-th species concentration,

∂Ci
∂t

+∇ · (Ciu)−∇ · Di,eff∇Ci = Ṙi, (2.31)

which serves as a basis for species transport in the current work.

2.3 Turbulence

Turbulent phenomena are readily observed in Hall-Héroult cells (cf. for instance Dernedde
and Cambridge [25], Tørklep et al. [119], Bilek et al. [5]) and needs to be modelled in order
to capture the important features of the flow. A brief discussion of turbulence modelling
is given in the following. Extensive treatments of turbulence modelling can be found in for
instance Tennekes and Lumley [115] and Davidson [24].

The k − ε model has previously been successfully adopted by several authors in the field
(Solheim et al. [111], Hua and Wang [52], Doheim et al. [26]) and is the standard approach
for turbulence modelling in many industrial applications. The basic idea behind the k − ε
model is that of eddy viscosity. In brief, this simply asserts that, as far as the mean flow (i.e.
the flow field where turbulence is averaged out) is concerned, the net effect of turbulence is
to increase the molecular viscosity and replace it with a larger “eddy viscosity” (Davidson
[24]).

Due to turbulence, the molecular viscosity µ in the momentum equation is substituted for
an effective viscosity, µeff , given by:

µeff = µ+ µt, (2.32)
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where µt is the eddy viscosity defined by

µt = Cµ
ρk2

ε
(2.33)

where k and ε are the turbulent kinetic energy and turbulent dissipation rate, respectively,
and Cµ is a model parameter.

Three different variants of the k− ε model are found in the literature, differing in the way
the transport equations for k and ε as well as how the parameter Cµ is defined. In the
standard k− ε model Cµ is taken as an empirical constant (Davidson [24]), whereas in the
RNG (Renormalization Group Theory) (Yakhot et al. [140]) and Realizable k − ε models
(Shih et al. [109]), Cµ is allowed to depend on flow features.

Although the (standard) k − ε model appears in many publications, it has some short-
comings (cf. Davidson [24]). Alternative formulations such as the k − ω model (Wilcox
[136]), Reynolds stress model (Launder et al. [72]) or filtered URANS (Johansen et al.
[55]) could in principle resolve some of the problems related to the k − ε approach, but
require additional modelling and validation.

Ultimately, for realistic predictions of the turbulent flow, a Large Eddy Simulation (LES,
cf. for instance Sagaut [104]) is sought. The LES approach is not extensively used for Hall-
Héroult modelling, possibly due to relatively high computational requirements. Piovic and
Lakehal [75], [76] and Piovic et al. [77] treats both stratified and bubbly flows by means of
a LES model and the techniques developed for those purposes could possibly be used for
simulations of the Hall-Héroult process, provided computational facilities are available.
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Chapter 3

Introduction to CFD

Applying the fundamental laws of mechanics to a fluid continuum gives the governing
equations of a flow as described in the previous sections. Unfortunately, the coupled set of
non-linear differential equations has no analytical solutions for most engineering problems.
It is possible, however, to find approximate solutions to the problem at hand with help of a
computer. Broadly speaking, this is the subject of matter in computational fluid dynamics,
CFD.

A detailed study of CFD in general is well beyond the scope of the present work and
should be sought in comprehensive text books such as Versteeg and Malalasekera [124]
while specific details on CFD treatment in FLUENT can be found in the FLUENT User
Guide [2]. In the following a brief introduction to the concepts behind CFD will be given.
This section is in essence a summary of the corresponding chapter found in Einarsrud [30],
included here for reference purposes.

3.1 Introduction to the finite volume method

As a computer performs operations in a discrete manner, the first challenge of a CFD
simulation is to replace the continuous problem with a discrete domain. In the continuous
domain, all variables are defined at every point, whereas in the discrete case, variables are
represented only in discrete grid points. Thus, in a CFD code one would solve for the
relevant flow variables only at these points and use some interpolation scheme to obtain
intermediate values.

In the present work, a finite volume scheme is used. In the finite volume formalism, the
computational domain (i.e. the grid) is represented by means of cells, faces and nodes, as
sketched in figure 3.1.

The main feature of the finite volume method is that the governing equations are solved
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Figure 3.1: The figure shows a computational domain (solid black lines) divided into four cells
that are defined by their boundaries (solid blue lines), denoted as faces. Intersections
between cell-boundaries are denoted as nodes.

in integral form. As an example, the integral form of the steady incompressible continuity
equation is considered: ∫

CV

∇ · udV =

∫
CS

u · ndA = 0, (3.1)

where the divergence theorem has been used to obtain a surface integral. The last integral
is taken over the control surface CS enclosing the control volume CV and n is the outward
normal of the surface.

Figure 3.2: Sketch of a typical 2D cell. The cell center is surrounded by four faces denoted 1-4
with dimensions ∆x and ∆y in respective directions.

Representing equation 3.1 in a 2D-flow field with a grid as sketched in figure 3.2, and
assuming that the velocity at the i-th face is given by

ui = uii+ vij, (3.2)
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equation 3.1 can be rewritten as

− u1∆y − v2∆x+ u3∆y + v4∆x = 0, (3.3)

which is an algebraic expression for mass conservation for the cell in question. One can
think of the finite volume method as a code which finds solutions such that relevant quan-
tities are conserved for each cell. It is clear that a domain consisting of more than one cell
will yield a system of coupled algebraic equations, as each face is shared by at least two
cells.

In a general situation one would apply discrete equations to grid points or cells in the
interior of the domain and a combination of discrete equations and boundary conditions
for grid points or cells near the boundaries. This yields a system of simultaneous algebraic
equations, with the number of equations being equal to the number of discrete variables.
The general problem can thus be reduced to a simple matrix equation of the form

A · x+ b = y (3.4)

where A is the system matrix and x is a vector containing the unknown parameters.
In a finite volume formalism, the task of solving the integral conservation equations is in
principle reduced to that of inverting the system matrix. However, in a practical application
of CFD one would typically have millions of unknowns in the discrete system, yielding a
direct inversion method like Gaussian elimination at best useless.

Fortunately, most system matrices are sparse, meaning that most entries in the matrix
are zero. Several iterative procedures for sparse matrices exist and an introduction to the
theory is given in Press et al. [98]. In the present work, matrices are inverted iteratively
using the Gauss-Seidel method in conjecture with FLUENT’s algebraic multigrid (AMG)
solver. A review of the AMG scheme is given in Stüben [112].

3.2 Spatial discretization of steady governing equa-

tions

The steady conservation law for the transport of a scalar quantity ψ (the steady advection-
diffusion equation) can be written as

∇ · (ρuψ) = ∇ · (D∇ψ) + Sψ (3.5)

where D is a diffusion coefficient and Sψ is a source term. Setting D and Sψ equal to zero
and ψ = αk, the phase fraction equation (equation 2.19) is obtained. Equivalently, the
transport equations for momentum and turbulent quantities can be obtained by choosing
D, Sψ and ψ appropriately. Equation 3.5 thus serves as the generic form for all simulated
equations.
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Figure 3.3: Domain for solving 2D scalar transport equation. The figure shows the grid (black
solid lines) and five nodal points (marked with blue dots) denoted with capital
letters. The central node P is enclosed by a volume (red dashed lines) defined
by four faces denoted with lower-case letters. The sketched control volume has
dimensions ∆x and ∆y in respective directions.

Integrating equation 3.5 over the control volume enclosing the central node P (sketched in
figure 3.3) one obtains∫

CS

(ρuψ)ndS =

∫
CS

(D∇ψ)ndS +

∫
CV

SψdV (3.6)

where the divergence theorem is used to express volume integrals as surface integrals. The
surface integrals are easily discretized∫

CS

(ρuψ)ndS = (ρeueψe − ρwuwψw) ∆y + (ρnunψn − ρsusψs) ∆x (3.7)∫
CS

(D∇ψ)ndS =

(
De

∂ψ

∂x

∣∣∣∣
e

−Dw
∂ψ

∂x

∣∣∣∣
w

)
∆y +

(
Dn

∂ψ

∂x

∣∣∣∣
n

−Ds
∂ψ

∂x

∣∣∣∣
s

)
∆x (3.8)

where faces Ae and Aw are set to ∆y and An and As are set to ∆x for simplicity. Source
terms are represented by their volume average

S̄ψp =
1

∆V

∫
CV

SψdV . (3.9)

The discretized version of the scalar transport equation for the cell surrounding node P
can further be written as∑

f

ρfufψfAf =
∑
f

Df∇ψfAf + S̄ψp∆V, (3.10)

where the sums are taken over all faces surrounding node P . The values at the faces need
to be determined in order to obtain discretized equations of a useful form. Face values can
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typically be obtained by linearly interpolated values. For instance, the value of D at the
west face w can be approximated by the average of adjacent nodal values DW and DP , i.e.

Dw =
DW +DP

2
. (3.11)

An obvious approximation of the gradients at the faces is obtained by central differencing

∂ψ

∂x

∣∣∣∣
w

=
ψP − ψW

∆xPW
(3.12)

where ∆xPW is the distance between nodes P and W .

In practical situations, the source term S may be a function of the dependent variable. In
such cases it is useful to approximate the source terms by means of a linear function

S̄ψp∆V = Su + Spψp (3.13)

By substitution of equations 3.11 - 3.13 in equation 3.10 and carrying out some algebra,
the following algebraic equation for the scalar quantity ψ at node P is obtained:

aPψP =
∑
n

anψn + Su (3.14)

where the sum is to be taken over all neighbouring nodes. Coefficients a depend of nodal
values of D, ρ and u, face areas A and the spacing between the nodes.

As shown in Versteeg and Malalasekera [124] the general form of equation 3.14 can be
obtained for the steady convection-diffusion problem for all discretization schemes, differing
only in the way the coefficients a are defined.

3.3 Pressure-velocity coupling

Considering the phase fraction equation (equation 2.19) and momentum equation (equation
2.21) one observes an apparent paradox. The gradient of the pressure field appears on the
right hand side of the momentum equations, but evidently there is no equation for it.
For compressible flows, the pressure can be obtained by some suitable equation of state,
p = p(ρ, T ), by solving the continuity equation for density and the energy equation for
temperature. However, if the flow is incompressible, the density is constant and hence not
coupled to pressure. In this case the pressure field introduces a constraint on the flow-
field: If the correct pressure field is applied to the momentum equation, then the obtained
velocities should satisfy the incompressible continuity equation (equation 2.20) (Versteeg
and Malalasekera [124]). The pressure field can thus be interpreted as a correction to the
momentum equation, forcing the velocity field to satisfy continuity. The basic idea behind
pressure-velocity coupling is to introduce guessed values of pressure and velocity fields and
to progressively improve the guessed values using an iterative scheme as sketched in figure
3.4, until an acceptable solution is obtained.
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Figure 3.4: Simplified flow diagram for pressure-velocity coupling. Superscripts g signify
guessed values.
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3.4 Convergence

A CFD simulation relies heavily on iterative procedures in order to obtain a representation
of the flow field. This is the case for handling non-linearities, pressure velocity coupling
and matrix inversions. In all cases, the discretized equations are solved until convergence
is achieved. Considering a discretized equation of the form

aPψP =
∑
f

anψf + b, (3.15)

the unscaled residual Rψ is defined as

Rψ =
∑
cells

∣∣∣∣∣∑
f

afψf + b− aPψP

∣∣∣∣∣, (3.16)

where
∑

cells is to be taken over all cells in the computational domain. The residual is
thus an indication of how far the current solution is from the correct one. In general, this
formulation makes it difficult to judge if overall convergence is achieved. This is especially
evident if conserved quantities are small, yielding small residuals even if the relative error
is large. A scaled residual is thus adopted, defined by

Rψ =

∑
cells

∣∣∣∑f afψf + b− aPψP
∣∣∣∑

cells |aPψP |
. (3.17)

A CFD simulation is converged when the residuals of all transported properties fall below
a user defined limit.

3.5 Numerics of the VOF-method

Given the fully discretized equations of previous sections, the solutions of single phase flow
field can in principle be obtained. In the present work additional equations need to be
solved due to the multiphase nature of the flow.

In general, a VOF algorithm solves the problem of updating the phase fraction αk (i.e.
equation 2.19) based on the velocity field and the phase fraction αk obtained at the previous
iteration. It is clear that the description of cells that are entirely filled by one single phase
is given by the formalism described in previous sections, as the multiphase nature of the
flow is present only at cells that are close to an interface. Broadly speaking, the goal of
the VOF model is to describe the behaviour of these interfaces. The interface propagation
is simulated in two separate steps:

• The advection step.
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• The reconstruction step.

The advection step involves the (discrete) solution of equation 2.19, advecting the phase
fraction according to local fluid velocities, while the second step involves the reconstruction
of a (sharp) interface based on local gradients in phase fraction. In two dimensions, an
interface can be considered to be a continuous, piecewise smooth line. The problem at
hand is thus to find an approximation to the section of the interface present in each cell,
given information of the phase fraction in that and neighbouring cells only.

The scheme used in the present work is based on a piecewise linear reconstruction (PLIC).
The idea behind the PLIC method of Youngs [142] is to use a piecewise linear reconstruction
of the interface at each cell, as sketched in figure 3.5.

Figure 3.5: Piecewise linear interface reconstruction. The figure shows an actual interface (a)
and a piecewise linear reconstruction of the same interface (b). The reconstructed
interface is emphasized by red line segments in (b).

As figure 3.5 shows, the line segments representing the interface are not joined. This is
the main simplifying feature of the PLIC scheme; one does not attempt to reconstruct the
interface as a chain of joined segments. Whenever curvature is relatively small (i.e. the
radius of curvature is large when compared to the size of the cell) the method is accurate.

The essential part of the reconstruction step is to determine the orientation of the segment,
that is the unit normal vector n of the surface. The normal vector of the interface and the
phase fraction α uniquely determine a straight line, which gives the approximated interface
in the cell in question (cf. Scardovelli and Zaleski [105]).
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3.6 Time advancement

For transient simulations, the governing differential equations must be discretized in both
space and time. The spatial discretization for transient flows is identical to that of the
steady flows described in previous sections, yielding the temporal discretization rather
simple. The prototype time-dependent equation for some quantity ψ can be written as:

∂ψ

∂t
= F (ψ) (3.18)

With a first order discretization of the derivative on the left hand side, equation 3.18 can
be written as

ψn+1 − ψn

∆t
= F (ψ) (3.19)

where ∆t is the discrete time-step, ψn+1 and ψn are the values of ψ at the next time level
t+ ∆t, and current time level t, respectively.

3.6.1 Explicit schemes

In an explicit scheme the function on the right hand side of equation 3.19 is taken to be
at the current time level, yielding:

ψn+1 − ψn

∆t
= F (ψn). (3.20)

As discussed thoroughly in Versteeg and Malalasekera [124], explicit schemes are only
conditionally stable making them prone to oscillations if time steps are chosen inadequately.
Implicit schemes (as described in the following) are thus preferred in order to avoid this
problem.

To the author’s best knowledge, there exists no general implicit VOF scheme yielding
sharp interfaces, and time integration of stepping of the phase fraction equation is thus
done following an explicit scheme. The fully discretized, explicit version of equation 2.19
for a node (node indices dropped for clarity) is given by:

αn+1
k ρn+1

k − αnkρnk
∆t

∆V +
∑
f

ρnku
n
fα

n
k,f = Ṙn

i (3.21)

where the sum is to be taken over neighbouring faces.
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3.6.2 Implicit schemes

In implicit schemes, the value of ψ is taken at the next time level, i.e.

ψn+1 − ψn

∆t
= F (ψn+1). (3.22)

The benefit of the implicit scheme is that it is un-conditionally stable (Versteeg and
Malalasekera [124]). The drawback, however, is that the equations need to be solved
iteratively, as the unknown value φn+1 is present on both sides of equation 3.22.

A fully implicit scheme is in the present work chosen for time advancement of the momen-
tum, turbulent kinetic energy and turbulent dissipation equations in order to obtain stable
solutions. The fully discretized, implicit version of equation 3.14 for a node P is given by:

ψn+1 − ψn

∆t
∆V + an+1

P ψn+1
P =

∑
f

an+1
f ψn+1

f + Sn+1
ψ (3.23)

where the first term on the left hand side represent volume averaged quantities and the
sum is to be taken over all (relevant) neighbouring cells. The source term Su will depend
on which scalar property is transported, and must thus be chosen appropriately.

3.7 Accuracy in time and space

The numerical solution of any continuous problem necessarily introduces a limit to its
accuracy, due to discretization. Considering for instance the above explicit time integration,
equation 3.20, and comparing to the corresponding Taylor expansion of the continous
derivative,

∂ψ

∂t
∆t = ψ (t+ ∆t)− ψ (t)−

(
∂2ψ

∂t

)
∆t

2
− . . . , (3.24)

it is evident that equation 3.20 is an approximation of the derivative, with first order
accuracy:

∂ψ

∂t
=
ψ (t+ ∆t)− ψ (t)

∆t
+O (∆t) . (3.25)

Correspondingly, higher order discretizations (for instance the QUICK for spatial dis-
cretization) have a lower discretization error and are consquently more accurate. As seen
from equation 3.25, besides increasing the order of the method, the accuracy of a solution
can be improved by choosing a smaller time step (for time accuracy) or by mesh refinement
(for spatial accuracy), at the cost of increased CPU time and memory consumption. In
addition, time and spatial resolution must be chosen in such a way that the numerical
solution is stable, a requirement given by the so-called CFL-condition

u∆t

∆x
≤ C, (3.26)
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where C is the Courant-number, depending upon which equations are solved and what
numerical schemes are used.

For practical engineering problems, commonly involving several simultaneous phenomena,
the resolution requirements typically become more involved and no well-established theory
exists on necessary conditions to maintain a specified space-time accuracy. Hence, the
grid and time-step are often chosen based on intuition or expert knowledge, allowing for
phenomena of interest to be resolved in both time and space, while maintaining numerical
stability and restricting CPU-time.

3.8 On verification and validation

The literature defines an error as a recognisable deficiency in a CFD model that is not
caused by lack of knowledge, whereas uncertainties are potential deficiencies in a CFD
model that are caused by the lack of knowledge (Versteeg and Malalasekera [124]). Typi-
cal causes of errors are numerical errors, coding errors and user errors. Typical causes of
uncertainties are input uncertainties (e.g. limited knowledge of geometry, boundary con-
ditions, properties etc.) and physical model uncertainties (i.e. discrepancies between real
flows and CFD due to inadequate representations of physical processes).

Errors are quantified by verification of the model, a process determining that the imple-
mentation of the model accurately represents the conceptual description of the problem
(i.e. “solving the equations right”). Uncertainties are quantified by validation, a process
determining to which degree a model is an accurate representation of the real world (i.e.
“solving the right equations”).

Validation is traditionally carried out by means of comparison with experimental data,
comparing some key features of the flow that also are obtainable from the CFD model,
while verification traditionally is performed by evaluating global and local conservation
equations and comparing simplified parts of the model to analytical solutions.
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3.9 Hardware and software used in the thesis

Hardware and operative system

The majority of the calculations performed in this thesis were computed on a Hewlett-
Packard Z800 workstation. The workstation was equipped with two Intel Xeon W5590
processors, running at 3.33 GHz and 24 GB of Random Access Memory. The operating
system was Windows Vista Enterprise, 64-bit.

ANSYS FLUENT

ANSYS FLUENT is a state-of-the-art computer program used for modelling of fluid flow
and heat transfer in complex geometry, and has for many applications become the industry
standard. The ANSYS FLUENT environment provides all the tools needed to implement
a finite volume problem, ranging from mesh-generation and discretization of the governing
equations to detailed options concerning turbulence models.

FLUENT is based on a graphical user interface (GUI), allowing the user to choose various
models, set boundary conditions, solver options, post process results etc. More advanced
options are available through a text user interface (TUI) allowing users to tweak models
so that they fit their needs. Further extensions are available through the C or C++
programming language combined with FLUENT’s built in compiler to include user defined
functions (UDF). In a UDF, calculated values can be stored in a user defined memory
(UDM). In addition to user defined functions, FLUENT allows the user to specify a number
of user defined scalar (UDS) functions, given by the general advection-diffusion equation

∂

∂t
(ρψk) +

∂

∂xi

(
f(ui)ψk − ρDk

∂ψk
∂xi

)
= Sψk

, (3.27)

where f(ui) is a general advection function and Sφk is a general source term, both specified
by an appropriate UDF.

For the UDS equations, one essentially has the choice between Dirichlet or Neumann
boundary conditions, i.e.

ψ is known. or n · Dk∇ψ is known, (3.28)

where n is the boundary normal pointing into the computational domain.

Two points should be noted regarding the use of UDFs:

1. Although the possibility to use UDFs provides a certain flexibility, they must be spec-
ified within the frame of special macros provided by the software. Thus, the source
code of the software is not accessible to the user.
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2. For cells in the interior of the computational domain, only cell centred values are avail-
able to the user. Node and face values can thus be obtained only by means of an
appropriate interpolation scheme. On boundaries, the face values are however acces-
sible in order to specify for instance boundary conditions.

Grid generation

The grids (or meshes) used in this thesis have been constructed using GAMBIT [39] and
ANSYS Workbench [1]. Both tools provide a large range of grid generation techniques as
well as boundary value specification for multi-purpose CFD solvers such as FLUENT.

Meshing can be performed following a “bottom up” or “top down” approach. The top
down approach allows to automatically design a mesh for some given geometry. However,
this approach tends to generate unstructured grids (cf. Versteeg and Malalasekera [124])
which are prone to high skewness and low quality for non-trivial geometries. A bottom up
approach is thus chosen in order to maintain control of grid quality. An overview of the
bottom up approach is given in figure 3.6.

Figure 3.6: Overview of bottom up approach for mesh generation.

Most grids used in the present work are structured (cf. Versteeg and Malalasekera [124]) for
computational efficiency. Structured grids are characterized by topologically rectangular
cells, meaning that all grid lines continue from one boundary to the next (as opposed to
unstructured grids where this needs not be the case). Curved edges are meshed by means
of a non-orthogonal meshing technique, allowing grid lines to intersect at angles different
from 90◦.
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Chapter 4

Introduction to electromagnetism

The principal chemical reactions in the Hall-Héroult cell rely upon the transfer of electrical
charge, that is, an electrical current must pass through the cell for the reactions to occur.
An electromagnetic field is induced in the cell as a result of the electrical current, which
gives rise electromagnetic forces causing fluid flow. In the following sections, the basis for
these phenomena is treated. A more comprehensive treatment is given in Part III of the
thesis.

4.1 Electromagnetic fields and the electrical current

Electric and magnetic fields (denotedE andB) are governed by the Maxwell equations (cf.
Griffiths [43]) and constitutive closure relations. The closure relation used in the present
work is the continuum form of Ohm’s law, stating that the electrical current density j is
given as

j = σ (E + u×B) . (4.1)

where u is the velocity of the substance considered, i.e. the fluid velocity, and σ is the
corresponding electrical conductivity.

The electrical current density is of fundamental importance to the Hall-Héroult cell as it
dictates the electromagnetic force density (the Lorentz force) and serves as a driving force
for electrochemical reactions, as described in the following two sections.

4.2 The Lorentz force

A fluid through which an electrical current passes is subject to a Lorentz force given as

fL = j ×B − %e∇φ, (4.2)
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where %e is the density of free charges. For a fluid with zero net charge, as in the present
case, the Lorentz force term is simply

fL = j ×B, (4.3)

where j is given by equation 4.1 andB is calculated from the Maxwell equations or given as
an external field. The inclusion of electromagnetic forces is the prime requisite of a special
field of fluid mechanics, denoted magnetohydrodynamics or more commonly, MHD.

4.3 Faraday’s law of electrolysis

As stated by Grjotheim and Kvande [47], when current passes from the anode to the cath-
ode through an electrolyte, the following laws apply for the amount of electrode products
formed:

1. The amount of products formed at each electrode will be proportional to the number
of charges passing through the cell.

2. The amount of each electrode product will be proportional to the equivalent mass of
the product.

In electrolytic production, where an electrical current density j passes through a surface
with area A, the laws of Faraday can be combined to

ṁi =
Mij ·A
ziF

, (4.4)

where ṁi is the mass production rate of species i, with molar mass Mi , zi is the valency
number for ionic species i and F=96483C/mol is Faraday’s constant.



Chapter 5

Chemical reactions

The chemistry of the Hall-Héroult cell is highly complex and at the present time not fully
understood. However, relatively simple reaction mechanisms can be constructed, capturing
the essence of the process. Considering these simplified reaction mechanisms, two limiting
factors arise; the presence of reacting species and the rate at which the reaction occurs.

5.1 Species in the cell

Cryolite (Na3AlF6) is the dominant constituent of the electrolyte. The cryolite has to main
functions; acting as a solvent for alumina (Al2O3) and acting as a medium for passing an
electrical current. In addition, cryolite provides a physical boundary between aluminium
produced at the cathode and gas produced at the anode. Cryolite is not consumed during
normal operation.

While the electrolyte essentially is molten cryolite, certain additions are present. As dis-
cussed in Prasad [97], a typical electrolyte contains excess AlF3 and CaF2. The role of
the additives is to increase the conductivity of the electrolyte and lower the liquidus tem-
perature, resulting in favourable energy conditions. The additives however decrease the
solubility of alumina. In addition to the mentioned additives, several further additions
are made, both for operational reasons and as impurities from alumina and the anode.
Due to the increased complexity of involving further species, only the primary system
Na3AlF6-Al2O3 will be considered in the present work.

According to Thonstad et al. [116] and Evans [36], 2 - 3 wt% of alumina is dissolved in
the cryolite. This ratio is kept close to constant by continuous feeding of alumina to the
cell. As cryolite is not consumed during operation, the overall (net) reaction in the cell in
the cell affects only alumina. As previously stated, the overall reaction can be written as

1

2
Al2O3,d +

3

4
Cs → All +

3

4
CO2,g. (5.1)
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As pointed out by Popov et al. [95], there is no experimental data suggesting that alumina
disassociates into free ions of aluminium and oxygen. It is however postulated [95] that
aluminium is present as a mixture of oxy-fluoride complexes.

5.2 Dissolution of alumina

The primary ionization of cryolite melt is represented by

Na3AlF6 → 3Na+ + AlF3−
6 . (5.2)

According to Popov et al. [95], the hexafluoraluminate ion dissociates further by the
following reaction

AlF3−
6 → AlF−4 + 2F−. (5.3)

The cryolite melt is thus believed to contain mainly Na+, AlF−6 , F− and AlF−4 .

The nature and number of ionic species formed as alumina dissolves in the melt is still not
completely understood [95], though it is believed that dissolution occurs with the formation
of complex oxyfluoroaluminates. According to Grjotheim and Kvande [47], species with
bridging Al-O-Al bonds are more important. At low alumina concentrations, the following
complexes are suggested

4AlF3−
6 + Al2O3 → 3Al2OF4−

8 (5.4)

4AlF3−
6 + Al2O3 → 3Al2OF4−

6 + 6F−. (5.5)

Grjotheim and Kvande [47] suggest further possible complexes at higher alumina concen-
trations. Other sources however present other plausible complexes. For instance, Evans
and Ziegler [36] suggest the following two to be formed during dissolution

F− + 2AlF3−
6 + Al2O3 → 3AlOF2−

3 + AlF−4 (5.6)

3F− + 4AlF3−
6 + Al2O3 → 3AlOF4−

5 + 3AlF−4 . (5.7)

Even further suggestions are given by Popov et al. [95]. The discrepancies in the literature
concerning oxyfluoroaluminates yield an obvious challenge for modelling the species in the
Hall-Héroult cell.

5.3 Anode reaction

At the anodic current densities used in industrial cells, gaseous CO2 is the primary product
at the anode (Popov [95]). While carbon is supplied by the anode, oxygen is transported
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to the anode through oxyfluoroaluminates. Considering the suggested complexes for low
alumina concentrations, the anode reactions may be written as

2Al2OF4−
8 + C→ CO2 + 4e− + 4AlF−4 (5.8)

4F− + 2Al2OF2−
6 + C→ CO2 + 4e− + 4AlF−4 . (5.9)

Following Thonstad et al. [116], the complexes suggested by Evans and Ziegler [36] could
react by the following steps

AlOF1−x
x + C→ COads + AlF3−x

x + 2e− (5.10)

AlOF1−x
x + COads → CO2 + AlF3−x

x + 2e−, (5.11)

where COads is an intermediate adsorbed species and AlOF1−x
x is an oxyfluoride complex

ion.

5.4 Cathode reaction

Following Thonstad et al. [116], the cathode process can be written as
Diffusion towards the electrode

AlF−4,bulk → AlF−4,surf . (5.12)

Charge transfer reaction
AlF−4,surf + 3e− → Al + 4F−surf . (5.13)

Counter transport of charge
4F−surf → 4F−bulk, (5.14)

with corresponding steps for AlF3−
6 .

5.5 Loss reactions

An important source of lost efficiency is due to CO2 coming in contact with aluminium.
It has been suggested that metal droplets can separate from interfacial waves and be
suspended in the bath, yielding the back-reaction

2Al + 3CO2 → Al2O3 + 3CO, (5.15)

thus lowering the amount of produced aluminium. Assuming that the back reaction is the
main contribution to current efficiency loss, the following expression can be obtained for a
cell operating at a current efficiency χAl

χAl
2

Al2O3 +
3

4
C→ χAlAl +

3

4
(2χAl − 1)CO2 +

3

2
(1− χAl)CO. (5.16)

A model allowing for the formation of CO can thus also be used for an estimate of the
current efficiency.
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5.6 Kinetics

Kinetics deal with the determination of reaction rates for chemical processes. The main
factors influencing the reaction rate are the thermodynamical states of the reactants, their
concentrations, temperature and whether or not catalysts are present. In general terms,
the change in Gibbs potential determines whether or not a reaction is thermodynamically
favourable, while the kinetics determines how fast a reaction occurs. In the following a
brief review of the kinetics for the relevant reactions presented in the previous chapter is
given.

Following Bird et al. [6], two types of reactions are distinguished. For homogeneous
reactions, reactions are allowed to take place within the entire system volume, while het-
erogeneous reactions take place only at surfaces.

For a homogeneous first order reaction, the rate of production of species i , is given by an
expression of the form

Ṙi = k′′′Ci [kg/m3·s], (5.17)

where Ṙi is the volumetric production rate, k′′′ is a first order reaction rate and Ci is the
concentration of the reacting species . For a heterogeneous first order reaction, the rate of
production at the reaction surface can be expressed as

ṀM
i = k′′CM

i

∣∣
surf

[kg/m2·s], (5.18)

where Ṁi is the mass flux of species i and k′′ (m/s) is a first order (mass) transfer coefficient.

As the exact chemistry of the Hall-Héroult process at the present time is unknown, “all
kinetic aspects have still to be clarified” (Grjotheim et al. [44]). As a consequence, the
kinetic parameters are based on processes assumed to take place within the cell. The
following data is taken from chapter 7 in Thonstad et al. [116].

5.6.1 Disassociation of cryolite and dissolution of alumina

Considering the homogeneous reaction 5.3, the reaction rate is found to be in the range
2000 - 8000 s−1 (Thonstad et al. [116]).

As the formation of oxyfluoraluminates remains an open question, no data is found for
the kinetics of complex formation. However, a great deal of work has been conducted
concerning alumina dissolution due to its high impact on cell operation. As pointed out by
Kvande and Grjotheim [47], alumina may take three distinct paths when in contact with
the bath

1 It rapidly disperses as discrete grains and dissolves easily.

2 It can agglomerate as a clump and freeze bath around it, which can either float or sink.
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3 It can sink without dispersing.

If feeding is done in such a way that alumina is dispersed effectively in the bath, the
condition for rapid dissolution is very favourable, yielding dissolution times of the order of
seconds. As discussed in Kvande and Grjotheim [47], large variations in dissolution times
can occur as a consequence of varying operational conditions.

As there are no experimental indications of free aluminium ions in the melt, it is reasonable
to believe reaction rate to form complexes is fairly high, whatever the complex is, suggesting
that its reaction time can be neglected when compared to the longer dissolution time of
alumina.

An extensive study of the dissolution kinetics of alumina has been done by Kobbeltvedt
[67], carrying out work on both the kinetics of dissolution and coupling to the bubble driven
convection in the cell. Kobbeltvedt [67] concludes that magnetic compensation of the cells
weaken the bath flow loops at the expense of alumina transport, possibly influencing the
current efficiency in a negative way due to additional sludge formation. As a consequence,
the bubble driven flow becomes more important for the dissolution kinetics.

5.6.2 Anode reaction

Due to the large uncertainties in the exact anode process, several kinetic parameters are
suggested in the literature. A common feature is however a fairly large dependence of
alumina concentration. Kisza et al. [64] and [65] study the kinetics of mechanisms on
the form of 5.8 and 5.9 finding rate which point to relatively large Damköhler numbers
(cf. Bird et al. [6]), suggesting that the reaction rate can be taken to be instantaneous,
compared to the hydrodynamic scales of interest in the present work, which are of the
order of 1 second (cf. for instance Keniry et al. [59]).

5.6.3 Cathode reaction

Thonstad et al. [116] give results for the charge transfer reaction of the type sketched in
equation 5.13, split into a two-step process. The slower of these two processes is shown
to have a relaxation time of a few microseconds, again suggesting a fairly fast reaction
comparing to time scales of interest.
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Chapter 6

Typical geometry and properties of
the Hall-Héroult cell

In order to make realistic predictions for industrial cells, models should incorporate relevant
physics within a relevant geometry using relevant parameters. As these factors influence
all the phenomena presented previously, this chapter will treat geometry and parameters
as a whole.

6.1 Geometry and boundaries of the cell

Although the sketch shown in figure 1.1 is instructive, the geometry of a real cell is some-
what more involved. Whereas figure 1.1 shows only one anode, modern prebaked cells
typically have two anodes in the cross section. Furthermore, a complete cell consists of
10-20 such anode pairs. A realistic cross section of an industrial Hall-Héroult cell is given
in figure 6.1. Based on information provided in Prasad [97] and Paulsen [90], typical cell
dimensions are summarized in table 6.1.
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Figure 6.1: Realistic cross section of an industrial Hall-Héroult cell as of Prasad [97].

Table 6.1: Typical cell dimensions as of Prasad [97] and Paulsen [90]

Property Typical value Unit Comments
Anode distance (between rows) 10 to 20 cm Center channel size

Anode distance (in row) 3 to 18 cm Side channel size
Anode height 20 to 60 cm Depending on time
Anode width 70 cm In paper plane
Anode length 140 to 170 cm In cross section

Anode to side ledge (end channel) 10 to 40 cm
Anode to side ledge (side channel) 10 to 30 cm

Interpolar distance (anode to metal) 2 to 5 cm
Bath height 15 to 25 cm
Metal height 10 to 30 cm Depending on time
Cell length 10 to 20 m Depending on number

of anodes
Cell width 3 to 5 m Depending on

anode length
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6.1.1 The side ledge

Considering the phase diagram of the NaF-AlF3 system (cf. Grjotheim and Kvande [47]),
in the operational range of modern cells, one observes that the first solid phase to form is
cryolite. The heat loss is significant at the side walls of the system, yielding a freezing of
cryolite at this boundary. The exact form of this side ledge will necessarily depend upon
the temperature distribution at the side wall as well as the local velocity distribution.

Due to the importance of the overall cell energy balance, the side ledge has been studied
extensively using various approaches. Considering the thermal problem alone, a rough
shape of the side ledge can be obtained by studying the predicted isotherms of a cell
geometry. A sketch of such isotherms is given in figure 6.2.

Figure 6.2: Isotherms for different cathode blocks and insulation in the same cell. Inner
isotherms (a) are at 950◦C, middle ones (b) at 850◦C and outer ones (c) at 550◦C.
The light brown region shows where frozen cryolite is formed. Figure as of Gr-
jotheim and Kvande [47].

As seen from figure 6.2, the 950◦C isotherm forms a curved surface above the side insulation.
As seen from the phase diagram of the NaF-AlF3 system (cf. Grjotheim and Kvande [47]),
this isotherm is close to the liquidus of the system and one should thus expect that the
region between the isotherm and the cell side (light brown region in figure 6.2) is frozen.

6.1.2 The cathode and metal pad

Ideally, the carbon cathode is not consumed during operation. However, due to mechanical
wear (erosion) and chemical reactions, the cathode is gradually deteriorated. This process
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is however slow, compared to the inner dynamics of the cell, and the expected life time of
the cathode is of order of 2000 days (Vasshaug [123]).

During operation molten aluminium is deposited on the cathode and thus acts as an ef-
fective cathode for the process (due to its high conductivity). Several elements however
produce perturbations of varying magnitude on the metal pad, the most important of these
being Lorentz forces arising from uneven current distribution and waves due to bubble and
bath motion. In addition, the height of the metal pad varies during operation due to pro-
duction and tapping of aluminium, the latter having a typical frequency of 24-48 hours
(Grjotheim and Kvande [47]).

Though the cathode is “inactive” in the sense of reactions producing aluminium, it is
important when determining the current distribution in the molten aluminium. An im-
portant factor impeding current transport at the cathode boundary is the formation of
sludge, typically consisting of undissolved alumina which sinks to the cathode surface. An
uneven current distribution in the molten metal gives rise to additional Lorentz forces that
in principle could disrupt the stability of the cell. The formation of sludge is strongly
dependent on local thermodynamic properties and its transport is necessarily coupled to
the flow field.

6.1.3 The anode

The anode is consumed during operation and is typically exchanged after 22-26 days (Gr-
jotheim and Kvande [47]). Initially, the anode has a rectangular shape with sharp corners,
but due to the nonuniformity of the current density the anode corners eventually become
rounded. Zoric et al. [149] modelled the evolution of the anode shape, by means of a 2D
computation of the current distribution around an anode, as shown in figure 6.3.

In addition, as pointed out by Fortin et al. [38], the anode burns off parallel to the
average cathode surface (i.e. the metal-bath interface), resulting in a permanent anode
tilt, promoting gas evolution in a preferred direction. To the author’s best knowledge, the
literature lacks studies on anode shapes leaving the exact geometry of the anode an open
question.

The anode is typically made from a petroleum coke aggregate and a pitch binder, resulting
in an inhomogeneous porous structure, with a (volumetric) porosity of up to 20% (Gr-
jotheim and Kvande [47]). The irregular porous structure of the anode surface allows for
nucleation of gaseous bubbles and possibly diffusion of species on a molecular level. The
pore size spans a large range, typically from 1-1000µm, as shown by Rørvik and Øye [102],
cf. figure 6.4.

As seen from figure 6.4, although the measured pore radii span a large range, the majority
of the pores have a radius in the range of 10-50µm, accounting for approximately half of
the total observed porosity.
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Figure 6.3: Results of the computations of Zoric et al. [149] for the evolution of anode shape
over several days of electrolysis.

Figure 6.4: Anode pore size distribution as of Rørvik and Øye [102].
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6.2 Physical properties

In the following sections a summary of the physical properties of the substances in the Hall-
Héroult cell is given. As seen in chapter 5 the composition of the bath is a complicated
issue, an issue necessarily transferred to its physical properties. It is thus not expected
that the models for physical parameters presented here give an accurate description in all
conditions and their use should thus be considered with some care.

Density

The density of the phases in the system is important for two reasons, it separates the
aluminium from the bath and it allows bubbles to be buoyant. According to Grjotheim et
al. [44], the density of molten aluminium can be expressed as

ρAl = 2560.976− 0.272T, [kg/m3] (6.1)

where T is the temperature in ◦C. Thus, for a cell operating at a temperature of 960◦C,
the density of molten aluminium is typically 2300 kg/m3.

The density of (pure) cryolite is given as [44]

ρcry = 3032− 0.937T, [kg/m3], (6.2)

yielding a density of approximately 2100 kg/m3 at 960◦C. However, as discussed in preced-
ing sections, pure cryolite is not the working substance in a Hall-Héroult cell. For a bath
of “general” composition, several models exist in the literature (cf. chapter 5 in Thonstad
et al. [116]). One such model, including effects of the most common additives and tem-
perature variations is given by Solheim [110], suggesting a linear temperature dependence
of the form

ρbath = ρbath,1000 − (T − 1000)b, [kg/m3], (6.3)

where the density at 1000◦C, ρbath,1000, and b are composition dependent parameters. The
most important additive in this context is alumina, which in all cases will reduce the density
of the bath (Grjotheim et al. [44]).

Little information is found regarding the state of gaseous CO2 bubbles. According to
Moran and Shapiro [83], the critical temperature and pressure of CO2 is 304 K and 73.9
bar, respectively. Generalized compressibility charts (cf. Moran and Shapiro [83]) show
that CO2 behaves close to ideally during normal cell operation and the density can thus
be modelled as

ρCO2 =
p

RCO2T
, [kg/m3], (6.4)

where RCO2 is the specific gas constant, 189 J/(kg K). At 960◦C, the gas density is 0.435
kg/m3.
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Viscosity

Viscosity is important as it is one of the parameters governing the hydrodynamic processes
in the Hall-Héroult cell. In spite of the importance of this parameter, reported data on
viscosity is relatively scarce and independent data is often scattered (Grjotheim et al. [44]).
The temperature dependent viscosity of liquid aluminium is given by

µAl = 0.2567 exp
1527

T
. [10−3kg/(m · s)] (6.5)

According to Grjotheim et al. [44], the viscosity is strongly influenced by impurities. The
extent of this statement is however not quantified.

The temperature dependence of viscosity on cryolite is given by

µcry = 28.88− 42.09 · 10−3T + 15.99 · 10−6T 2, [10−3kg/(m · s)]. (6.6)

As for the density, additives need to be considered for a realistic model, the most important
being alumina, shown in figure 6.5.

Figure 6.5: The influence of Al2O3 on bath viscosity. Solid line shows results as of Tørklep and
Øye [120].

As seen in Grjotheim et al. [44], values for the viscosity obtained by Tørklep and Øye [120]
are considerably lower (up to 15%) than corresponding measurements performed by other
researchers, although the trend is similar; higher concentrations of alumina yielding higher
viscosities.
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Surface properties

Surface properties of the electrolyte can influence many aspects of the electrolytic process
and is important when considering bubbles and deformations of the bath-metal interface.
According to Grjotheim et al. [44], the surface tension at the bath-metal interface can be
estimated from the corresponding surface tensions to air by

γbath,Al = γair,bath − γair,Al, (6.7)

This estimate is however rather crude, and one should not expect to obtain results better
than correct order of magnitude using this approach.

Grjotheim et al. [44] suggest the following model for the surface tension for air-aluminium

γair,Al = 500− 0.135(T − 660), [10−3N/m], (6.8)

where T is the temperature in ◦C. Similarly, for molten cryolite, the surface tension is given
by

γair,cry = 208.63− 0.108T, [10−3N/m]. (6.9)

Little information is found regarding surface tensions at a bath-CO2 interface. However, as
both air and CO2 behave approximately as ideal gases, it is plausible that their behaviour
at interfaces is similar as well, at least in order of magnitude, i.e. of order 0.1 N/m.

As for the other properties of the bath, the surface tension is strongly dependent on com-
position, as observed in the number of models presented in Thonstad et al. [116]. Ex-
perimentally, it is found that the common additives Al2O3, CaF2 and LiF increase the
interfacial tension, whereas an increasing bath ratio (NaF to AlF3 mass ratio) yields a
decrease. Based on a regression analysis, the following relation for typical operational
temperatures is given by Thonstad et al. [116].

γbath,Al = 700− 88(BR)2 + 7.3w(Al2O3) + 4.6w(LiF), [10−3N/m], (6.10)

where BR is the bath ratio and w(Al2O3), 4.6w(LiF) represent wt % of Al2O3 and LiF,
respectively.

Based on the above models, the bath-aluminium surface tension is of order 0.5 N/m.

It should be stressed that the above models are based on zero current density. As pointed
out by Thonstad et al. [116], experiments show a dependence upon current density, possibly
due to the accumulation of ions at interfaces during electrolysis.

Local imbalance of surface tension that may result from surface active agents at the in-
terface can change the heat and mass transfer rates and alter flow patterns. This is the
so called Maragoni effect, which causes convection close to the interface, cf. Utigard and
Toguri [122].
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The wetting or contact angle θ is a measure of the degree of wetting of a solid surface by
a liquid phase in contact with a gaseous phase. It is determined by the surface tension of
the three phases and defined by

cos θ =
γs,g − γs,l

γl,g
, (6.11)

Small wetting angles signify that the solid surface is wetted well by the liquid phase. No
general model of wetting is found in the literature, though Thonstad et al. [116] present
several experimental studies of carbon wetting. Wetting is found to be influenced by
several parameters such as carbon type, alumina content, gaseous species and temperature.
Typical experimental values for cryolite lie between 140◦ to 110◦ for graphite anodes and
130◦ to 100◦ for amorphous anodes.

A strong dependency upon alumina is identified by Dorward [27], indicating that the
contact angle of cryolite on graphite changes from 115◦ for pure cryolite to 65◦ for cryolite
saturated with alumina. For typical operating conditions, i.e 5wt% Al2O3, the apparent
contact angle is found to be approximately 70◦, i.e. significantly lower than that identified
for pure cryolite.

A summary of the experimental findings related to wetting is shown schematically in figure
6.6.

Figure 6.6: Sketch of the influence of parameters on the contact angle.

CO2 properties

Molecular CO2 is formed on the bath side of the anode and the transport properties of CO2,
i.e. diffusivity and solubility, are thus of importance for gas evolution. The literature is
unfortunately scarce with respect to experiments and measured values span a large range.
According to Poncsak et al. [93], the diffusivity of CO2 is of order 10−9−10−13 m2/s, while
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the solubility typically is in the range 0.1-0.2 kg/m3. As shown by Numata and Bockris
[85], the solubility is strongly dependent upon alumina concentrations.

The combination of low diffusivity and solubility indicate that the regions in proximity of
the anode are likely to be supersaturated with molecular CO2, allowing for nucleation of
bubbles on the anode surface.

Electrical conductivity

The electrical conductivity of the system is of prime interest as it essentially governs the
cell voltage. As a result, a great deal of literature is available on this subject. A review of
available data and models is given in Thonstad et al. [116] and Grjotheim et al. [44].

Wang et al. [132] present a model for conductivity in cryolite with additives based on a
regression equation from experimental data, given by

lnσbath = 1.9105 + 0.3240BR− 1745.7

T
−

− (17.38w(Al2O3) + 3.955w(CaF2) +

+ 9.227w(MgF2)− 21.55w(LiF)) · 10−3, (6.12)

where σ is the electrical conductivity in Ω−1cm−1, BR is the bath ratio, T is the tempera-
ture and w is the wt% of the additives. Thus, for typical operational ranges, the predicted
conductivity is in the range of 2 to 3Ω−1cm−1. These values are somewhat lower than the
conductivity measured in industrial electrolytes, being in the range of 1.75 to 2.05Ω−1cm−1

(Grjotheim et al. [44]).

Temperature data for the resistance of molten aluminium is provided by Grjotheim et al.
[44], indicating a constant value

σAl = 33333, if 930◦C < T, [Ω−1cm−1] (6.13)

Little information is found concerning the conductivity of CO2. However, as long as it is
non-ionized, the conductivity is expected to be very low and thus negligible compared to
the bath and metal.



Chapter 7

Review

Because of the high temperature, highly corrosive and opaque environments of the Hall-
Héroult process, quantitative data of phenomena occurring are not easily obtainable. One
thus relies on modelling to describe processes in the cell. Due to the complexity of the
system, a large amount of literature is available covering various subjects relevant to the
process, both from a theoretical and experimental point of view. While the goal of the
previous chapters was to describe the theory that in principle could describe the processes
in the Hall-Héroult cell, this chapter will review some essential modelling activities over the
last decades. The main focus will be on the central node in figure 1.2, i.e. hydrodynamics
and its coupling to other phenomena.

In addition to experimental work on physical models of the cell, models can broadly be
placed in two categories:

• Fundamental models based on idealized cells.

• Computationally intensive investigations solving the governing equations in realistic
geometries.

In the former of these two approaches, it is necessary to make sufficient idealizations of the
cell in order to obtain a problem that is simple enough to solve. Even though such models
provide valuable qualitative insight, the necessary idealizations may not be applicable to
an actual cell. Increased computational capability has made it possible to relax the high
degree of idealization, thus favouring the latter approach.
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7.1 Experimental work

7.1.1 Physical model experiments

Physical models have been used extensively since the 1970’s and have to a large extent
been used to validate computational models. The focus of the early studies in physical
models was mainly related to gas induced circulation and deformations of the bath-metal
interface. Early experiments were carried out by Dernedde and Cambridge [25] in a two-
dimensional water-oil model. Waves with wavelengths up to 47 cm, periods up to 3 seconds
and amplitudes up to 16 mm were observed on the interfaces. Waves in the side channel
are also reported by Chenosis and LaCamera [15], having a period of 0.5-1.0 s. The wave
heights were found to depend on the interpolar distance, current densities and the shape
of the anode. The bath height was also reported to influence the amplitudes.

A more recent study by Bearne et al. [4] report wavelengths 200-400 mm in the side
channels of the cell. These travelling waves were reflected on the side walls allowing for
interference, yielding amplitudes up to 50 mm. As the distance between anode and side
wall was decreased, the interfacial deformations became less regular, reduced in amplitude
and altered in appearance to more irregular localised disturbances, rather than waves.

The work of Fortin et al. [38] was done in a full scale room-temperature water model with
a fixed, rigid “cathode” of Plexiglas. The objective of the study was to explore the effects
of cell operation conditions and geometrical parameters on the gas layer at the anode.
Small bubbles were found to coalesce into large bubble sheets, travelling to the edge of
the anode where, when released, induced rigorous mixing in the side channel. The bubble
sheets observed are sketched in figure 7.1.

Figure 7.1: Bubble sheets as observed by Fortin et al. [38]. Longitudinal dimensions, L, ranged
from 2-128 cm and front widths, w, varying from 0-14.5 cm. Bubbles formed a thick
bubble front, h, with dimensions 0.8-2.5 cm, followed by a thin trailing portion of
thickness around 5 mm.

Bubbles were found to travel with velocities ranging from 8-40 cm/s, being released at the
anode edge with frequencies of 0.2-3 Hz, consistent with findings of Chenosis and LaCamera
[15], reporting periodic gas release with a frequency of 1 Hz.
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The experiments of Fortin et al. [38] did not allow for deformations of the bath-metal
interface, as this was modelled as a fixed boundary. However, it is interesting to note that
the authors observed that the detachment of large bubbles from the anode, caused enough
disturbances to shake the 9 mm thick Plexiglas sheet representing the cathode. This effect
suggests that a significant amount of momentum is transferred to the bath-metal interface
due to the detaching bubbles. Fortin et al. [38] noted that the disturbance increased with
decreasing interpolar distances.

Solheim et al. [111] used a 2D physical model to investigate the bubble driven convection,
concluding that the bubble driven effects were of the same magnitude as those due to
magnetohydrodynamics in the bath. The results from the physical model were used to
validate a computational model for interfacial deformations. The coupling of bubbles
and interfacial deformations was further studied by Einarsrud [30], identifying a distinct
(geometry dependent) bubble induced deformation on the interface.

The discrepancies in observed average wave patterns in Dernedde and Cambridge [25],
Bearne et al. [4] and Chenosis and LaCamera [15] strengthen the notion that gas induced
circulation and interfacial waves are dependent of geometry and flow rates, consistent with
the findings of Fortin et al. [38] and Einarsrud [30]. This observation stresses the need of
exact knowledge of geometry and flow rates used in experiments, if the results are to be
used to validate a computational model.

The various flow regimes of bubbles under anodes has been studied by Perron et al. [91],
using a room temperature water model. Two distinct flow regimes were identified and
classified as creeping and free motion. The authors argue that bubbles initially move in
the creeping regime, where buoyancy and surface forces are in equilibrium. After a certain
time (typically 1 second in Perron et al.’s setup) the buoyancy at the nose overcomes the
surface forces and causes the nose to “climb” the liquid. In this transition region, the front
and rear of the bubble are subject to different forces, causing an elongation of the bubble
much like the ones observed by Fortin et al. [38]. Depending on bubble size and velocity,
the entire bubble can either detach, and slide along a wetting film to the anode edge, or
split into two smaller bubbles, one creeping and one free.

Detailed information on the distribution of velocity and turbulence in physical models
can be obtained by means of Particle-Image-Velocimetry (PIV), as shown by for instance
Cooksey and Yang [22] and Yang and Cooksey [141]. Yang and Cooksey [141] conclude
from their measurements that the flow field is strongly dependent upon the cell geometry,
confirming the more qualitative observations of previously published material. It is however
pointed out that further investigations are needed in order to fully describe the physical
phenomena that can be directly applicable to a real aluminium reduction cell.

The above point is of great importance, as traditional physical models have used water and
oil to simulate bath and metal. Though water-oil models have several positive features,
the obvious drawback is that the materials used in physical models are not the same as
those encountered in an industrial cell. Despite differences in specific parameters, it is
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the combination of these parameters that determine whether or not similarity between
physical models and a real Hall-Héroult cell can be claimed. Following Zhang et al. [148],
the bubble Froude number Frbub is critical for an accurate representation of the bubbles.
Fortunately, the Froude number can be defined from geometrical considerations as

Frbub =
u2
g

gL
, (7.1)

where ug is the gas velocity, g is the acceleration of gravity and L is the typical anode size.
Hence, by choosing a 1:1 representation of the anode and realistic gas rates, similarity
can be claimed for Frbub. As noted by Zhang et al. [148], the effects of the other non-
dimensional groups are of secondary order.

7.1.2 Experiments on actual cells

Although similarity can be claimed for physical model, the possibility for discrepancies ad-
vocates the use of experimental data from actual cells in order to validate computational
models. The literature is very scarce on data from industrial measurements, the reason
for this being either that results are unpublished due to industrial secrecy or due to the
challenges related to obtaining reliable and accurate data from industrial cells. Some pro-
cedures that in principle could yield useful data from industrial cells are however described
in the open literature.

In order to visualize the flow in the bath and metal radioactive tracers (cf. Grjotheim
et al. [45]) could be used, yielding, at least in principle, velocity data of the same type
as that obtained by PIV measurements. The metal motion can furthermore be visualized
by means of erosion of iron rods as discussed in Grjotheim et al. [46]. Furthermore, the
method proposed by Kobbeltvedt and Moxnes [68], monitoring temperature depression
which follows the addition of alumina, could provide further information on the flow field.
Finally, the interfacial deformations could in principle be determined by means of the probe
presented by Olsen et al. [87].

The control of aluminium reduction cells relies almost exclusively on the continuous sensing
of potline current and cell voltage (Keniry et al. [59]). The value of the voltage as well as its
changes are the key input to vital cell functions such as alumina feeding, anode positioning
and instability control (cf. Grjotheim and Kvande [47]). There are several sources to
the voltage variations, both internal (i.e. related to flow phenomena) and external (for
instance anode replacement and metal tapping). The three principal internal sources to
voltage variations are summarized schematically in figure 7.2.

Keniry et al. [59] identify distinct frequencies credited to the release of gaseous bubbles.
The measured voltage signals show a dependence upon anode age; young anodes having
a spectrum concentrated around 1Hz, while older anodes have a larger spread over an
interval of 1–3 Hz, consistent with typical values obtained in oil-water physical models. As
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Figure 7.2: Principal internal sources of voltage variations as of Keniry et al. [59].

there exists a correlation between voltage oscillations in the cell and bubble release under
the anode (bubble noise), this could in principle be used to map the bubble behaviour in
a cell without the need for invasive techniques.

7.1.3 Experiments on bubble evolution

A thorough review of this subject is given by Cooksey et al. [21], and only selected papers
are treated here.

Experiments on bubble evolution is traditionally limited to lab-scale cells. Though re-
stricted to (relatively) small geometries, the results obtained are instructive as bubbles are
allowed to form within a realistic environment. A detailed description of the growth and
evolution of single bubbles is given by Xue and Øye [139], performing experiments on a
see-through lab cell with a cylindrical anode with diameter 1 cm. Three distinct stages
where identified based on both visual observations and measured voltage signals:

1 Initial stage: Nucleation and growth of spherical or semi spherical bubbles with diameter
in the range 0.4-0.6 mm. Bubbles formed predominantly on specific nucleation sites,
although some bubbles were found to be detached from the anode. This stage is
characterized by a linear growth in voltage, credited to the increasing Ohmic screening
with increasing bubble number and size, bubbles growing in a diffusion controlled
regime as Dbub(t) ∼

√
t.

2 Coalescence and growth stage: Smaller bubbles merge creating larger bubbles while con-
tinuing to grow due to mass transport. Bubbles in this stage are no longer spherical,
instead forming flattened spheroids. This stage shows random fluctuations in voltage
(with small magnitude), although the average behaviour is a linear increase with a
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rate slightly lower than that found for stage 1. In parallel to the increasing voltage,
the contact angle of the bubbles is found to increase from 30 to 130◦.

3 Escape stage: The final stage of the bubble is its detachment and escape from the anode,
characterized by a sudden decline in the voltage signal. The detachment was found
to be periodic, the period being strongly dependent upon the average current density
at the anode. The diameter of the bubble upon escape was found to be comparable
to the size of the anode.

Voltage signals obtained by Xue and Øye show similar properties to that found by Keniry
et al. [59], albeit a far more regular pattern is observed, due to the more controllable
environments on a small anode. Xue and Øye identify frequencies in the range of 0.03 to
0.33Hz, monotonously increasing as the current density is increased from 0.1 to 1.0 A/cm2.

The influence of various parameters has been studied in detail by Wang and Taberaux [133]
on an intermediate size lab scale anode with diameter 15.2 cm. Anode consumption allowed
the initially cylindrical anode to evolve to a hemisphere over the time of the experiment,
significantly altering the overall voltage pattern as shown in figure 7.3.

Figure 7.3: Anodic voltage variation as of Wang and Taberaux [133]. Frames a and b show
typical voltage behaviour at 1200 and 12460 amp-hours into the electrolysis, re-
spectively.

Consistent with industrial measurements, Wang and Taberaux [133] show that the (aver-
age) frequency increases, while the average magnitude of the fluctuations decreases with
increasing anode age, voltage fluctuations being inversely proportional to frequency. As
expected from Ohm’s law, the cell voltage is found to increase with current density. Fre-
quencies and the average volume of detaching bubbles are however found to both increase
and decrease with increasing current density, depending upon the anode age.

The voltage curves for the young anode of Wang and Taberaux [133] (figure 7.3) are less
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regular than those obtained on the smaller anode of Xue and Øye [139]. A distinct pattern
corresponding to small scale anodes is however visible, an effect not easily observed on the
industrial measurements of Keniry et al. [59]. This is believed to be a geometrical effect;
larger anodes being able to sustain several large bubbles simultaneously, yielding a regular
pattern only if some degree of self-organization is present.

Cassayre et al. [14] set out to compare the gas behaviour between inert and consumable
carbon anodes by means of several experimental techniques. Experiments show that several
bubbles form underneath the anode, occurring at specific nucleation points. The growth
rate, release frequency as well as the number of nucleation sites was found to increase with
increasing current density. Regarding bubble evolution, smaller bubbles where found to
coalesce into larger bubbles, finally covering a large area of the anode before being released,
as expected from Xue and Øye [139]. The rate of coalescence was found to decrease with
increasing current density, thus yielding a release of smaller bubbles. The results are shown
in figure 7.4

Figure 7.4: The evolution of average bubble diameter before release under graphite anode as of
Cassayre et al. [14]

Similar studies by Wang et al. [134] and Gao et al. [40] confirm the dependence of bubble
size upon current density, but also provide data showing a dependence upon anode size.

7.1.4 MHD experiments

The literature on physical modelling of MHD phenomena in reduction cells is scarce. This
is probably due to the difficulties of obtaining fields as strong as those present in industrial
cells, running with currents up to 400 kA (Evans [36]). Some experiments (Banerjee and
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Evans [3]) have been performed, using woods metal to simulate molten aluminium. Due
to the small scale of the experiment, Lorentz forces were measured to be one order of
magnitude less than those expected in industrial cells.

Zhang et al. [144] study the effect of DC magnetic fields on single bubbles moving in a
molten metal. Though the experimental set up is different from that of a Hall-Héroult cell,
it is worthwhile to note that the magnetic field influences the overall bubble behaviour. For
small bubbles, the drag force increased with increasing magnetic interaction parameters,
the opposite was however observed for larger bubbles. Furthermore, the measurements
revealed a distinct damping of the bubble induced velocity in the surrounding liquid as
well as a rectification of bubble trajectories. Moreover, significant modifications were found
in the wake behind the bubbles, increasing magnetic fields yielding larger eddies. Finally,
as shown in Zhang [143] and Zhang et al. [145], MHD effects tend to increase the local
Reynolds number, possibly enhancing mass transfer phenomena. As conductivities in the
bath are several orders of magnitude smaller than in molten metals, the coupling is however
believed to be less pronounced in a Hall-Héroult setting.

7.2 Joint steady state models

Purdie et al. [100] present results from a research programme into reduction cell hydro-
dynamics, with the aim of developing a three-dimensional computational model of the
electrolyte flow field, considering transport of alumina. The model was constructed in a
customized version of FLUENT based on a two-fluid model with turbulence treated by
means of the k − ε model. Bubbles were modelled as spherical particles of uniform size (1
cm diameter) and were generated at 100 randomly chosen injection sites at a rate equiv-
alent to a current density of 1 A/cm2, solved as a steady state problem. The model is
validated by data obtained in a gas-water model with similar geometry.

Purdie et al. [100] illustrate mechanisms of gas bubble release and show that the electrode
inclination angle and current density affect bubble behaviour significantly and indicate
that gas evolution is the single most important driver of the electrolyte flow.

Bilek et al. [5] propose the first model simulating the reality of industrial electrolyte flow
with combined gas driving and MHD forces, based on the approach of Purdie et al. [100].
The model presented simulates the electrolyte flow field in a full reduction cell, with both
gas and MHD driving forces, and predictions for mass transfer at the bath-metal interface.
Simulations were carried out for four cases in order to study the physics of each phenomena
separately and joint. The following main conclusions were drawn from the study:

• The distribution of turbulence is dictated by gas release.

• MHD drives heat transfer at the ends of the cell while gas drives it at the side walls.

• Mixing is determined by the gas driving force, MHD giving rise to an asymmetry.
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• Convective transport and turbulent diffusion contribute to current efficiency loss.
These processes are dominated by the bubble driving force.

• Design changes which impact the gas driving force, rather than the MHD forces,
have a greater impact on the transport processes considered. The design improve-
ment process is however not straightforward due to competing requirements to each
process.

A similar (though restricted to two dimensions) recent study by Doheim et al. [26] focuses
on the joint effects of gas- and MHD driven flows on mass transfer coefficients, using an
Euler-Lagrange model, concluding that the flow in the electrolyte is dominated by the
motion of bubbles. The work of Doheim et al. [26] did however not incorporate effects of
interface deformations, as only the gas-electrolyte system was considered.

The above modelling approaches allows for insight in the relative importance of the two
main driving forces in the Hall-Héroult cell and can at the same time be used to study
alternative designs of the cell. If a global approach as the one presented above is to pro-
duce realistic output, realistic input must however be provided. Such input is for instance
size-distributions of bubbles and bath-metal interface deformation, both depending upon
local (transient) factors such as varying current densities and species concentrations. Fur-
thermore, several possibly important phenomena are necessarily neglected, such as the
complex bubble sheet topology and coupling to the cell voltage.

These details have received increased attention over the last years and selected contribu-
tions are discussed in the following sections.

7.3 Pure MHD models

Early contributions to transient computations in Hall-Héroult cells were related to MHD
driven flows. For instance, Wahnsiedler [131], Potocnik [96] and Segatz et al. [107] have
all presented three-dimensional transient models, considering the bath and metal flow, in
order to predict instabilities on the bath-metal interface.

Different multiphase models have been investigated by Severo et al. [108], providing a
benchmark case for the prediction of MHD-related bath-metal deformations using a con-
stant turbulent viscosity turbulence model. Realistic geometries and electromagnetic fields
are provided and typical deformations and velocity distributions in the molten aluminium
are simulated. Severo et al. [108] predict a (steady) dome-shaped interface, shown schemat-
ically in figure 7.5.

As expected from the classical paper of Givry [42], the internal (symmetric) contribution
to the Lorentz force yields a quadratic surface, while the inclusion of an external magnetic
field results in a asymmetric contribution, highly dependent upon geometrical features such
as cell alignment (cf. for instance Grjotheim an Kvande [47]).
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Figure 7.5: Sketch of typical bath-metal interface as of Severo et al. [108].

The bath-metal deformation predicted by Severo et al. [108] has been successfully repro-
duced by Bojarevics and Pericleous [7], using a shallow water model (Moreau and Ziegler
[84]). Bojarevics and Pericleous point that although the electromagnetic fields given are
representative when considered alone, they do not appear to be compatible with each
other when considering the Maxwell equations. In addition, the accurate prediction of the
bath-metal interface is found to be dependent upon several additional features, such as the
anode profile being altered corresponding to the local interface deformation, an effect not
mentioned by Severo et al. [108].

Further aspects related to modelling of the bath-metal interface can be found in the recent
textbook of Gerbeau et al. [41].

7.3.1 Bubble-MHD interactions

The details of MHD interactions with one single bubble have been described in a recent
study by Bojarevics and Roy [8], showing that MHD forces become important for a bubble
exceeding 2 mm in size, when the fields from the entire cell is considered. The forces
identified by Bojarevics and Roy [8] can become sufficiently large to overcome the typical
drag forces associated with the electrolyte flow and can thus oppose the buoyant force
driving the bubbles. Further studies are however required to quantify the effect of MHD
forces on a population of bubbles varying in both size and position.
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7.4 Pure gas bubble models

Several important contributions have been made over the last decades by Vogt,[125]–[129],
providing analytical models for gas and bubble behaviour in the boundary layer of gas
evolving electrodes. The main parameter of Vogt is a gas evolution efficiency, defined as
the fraction of (molecular) gas produced at the electrode which is evolved as bubbles. As
shown in [127], less than 30% of the gas produced by Faraday’s law is evolved as bubbles at
the electrode. The remaining gas is transported to the bulk of the electrolyte in dissolved
form, thus supersaturating the surrounding liquid.

A detailed model of the two phase flow and current distribution along a vertical electrode
is given by Dahlkild [23]. The two phase model considers transport of species and existing
empirical models for particle transport in sheared and sedimenting suspensions are adopted
for the bubble mixture to close the two phase equation system. Dahlkild [23] shows that
ionic species concentrations are essentially homogenous, due to the mixing effect of bubbles
and electrophoresis. Moreover, the effect of non-uniform current density due to non-uniform
bubble coverage is captured by the model.

Although the above modelling approaches provide valuable insight in the fundamental pro-
cesses occurring at the electrode, they fall into the class of fundamental models based on
idealized cells, and extensions are thus required in order to treat the complete hydrody-
namic picture.

As found in experimental studies (cf. Xue and Øye [139]), gas bubbles pass through several
stages, which all need to be captured by a realistic model. The various stages are:

• Nucleation

• Growth

• Detachment

• Motion

• Coalescence

The order of the above stages is not chronological, for instance, two growing bubbles can
coalesce and creeping motion can induce detachment as described by Perron et al. [91].

A mathematical framework, based on microscopic modelling of the bubble layer has been
developed by Kiss et al. over the last decades [62], [63], [60], [94], following the above
sequence with the overall goal of determining the covering factor of the bubbles. The model
is motivated by the fact that advanced CFD models such as the VOF, that in principle can
yield an exact solution, become exceedingly computationally demanding if a large number
of bubbles are to be simulated. While a simpler multiphase model would treat coalescence
by means of a kinetic expression for the average rate, the model of Kiss et al. [62] treats
each coalescence event individually (i.e. a Euler-Lagrange model). Bubbles are assumed to
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have diffusion controlled growth after nucleation, with molecular gas transported through
porous structures in the anode rather than through the surrounding electrolyte.

Kiss [60] shows that the nature of the bubble noise is highly dependent on the number
of bubbles present. A regular pattern in the bubble covering factor is observed for single
bubbles (figure 7.6a), corresponding to its growth. When many bubbles are present, the
combined effect of growing, coalescing and detaching bubbles results in random like fluc-
tuations as shown in figure 7.6b. However, under certain conditions, bubbles can manifest
a concerted movement due to very big gas pockets ‘sweeping’ along the anode, engulfing
lesser bubbles in its motion. The effect of this self-organisation on bubble coverage is shown
in figure 7.6c. .

The model of Kiss et al. [94], shows good agreement with data from air-water experiments.
The results indicate that a large number of small bubbles can coexist with a few medium
and large gas bubbles. Despite their low numbers, big gas bubbles dominate the bubble
layer due to their significant fraction of total gas present.

Besides the limitations of the Lagrangian formalism, the main drawback of the model of
Kiss et al. [62] is that the generation of bubbles is essentially decoupled from effects related
to local current densities, as only the gas coverage factor is predicted. As shown by Perron
et al. [92], the Ohmic resistance in the electrolyte can be found using semi-empirical
relations for conductivity and predicted gas coverage fractions as of Kiss et al. [62]. A two
way coupled approach, i.e. allowing for bubbles to alter the local current density and thus
production, using the above models has however yet to be published.

Recent studies involving the group of Kiss et al. [12] adopt a VOF model to validate single
bubble behaviour in new oil-water experiments. As shown also by Einarsrud [30], the VOF
model is an adequate approach for treating the complex topology of the (large) anodic
bubbles, a feature which is not easily obtained by a more traditional Lagrangian approach.
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Figure 7.6: Typical time series of gas coverage for each of the bubble flow regimes described by
Kiss [60].
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7.5 Summary

Modelling tools and experimental work has shown a great advance over the last decades
and various phenomena in complex geometries have been studied.

Due to the harsh environments of a Hall-Héroult cell, several experiments have been per-
formed using room temperature physical models. Although instructive, some care should
be issued in transferring the results to an actual cell, as similarity cannot always be claimed.
Although several experimental procedures have been proposed to obtain quantitative data
on industrial cells, the literature is limited to studies of the cell voltage.

Several investigations have been performed on lab-scale electrolysis cells with focus on
bubble generation. On small anodes, bubbles are found to follow a sequence of nucleation,
growth and coalescence events before departing from the anode, yielding a (quasi) peri-
odic variation in cell voltage. On intermediate sized anodes, the typical behaviour is less
periodic, approaching the full complexity found on industrial scales. Although lab scale
systems typically are several orders of magnitude smaller, bubble departure rates appear
to be similar for a given current density, the typical range being 0.3-3Hz. A common factor
for all of the experimental procedures is a strong dependence upon geometry. This obser-
vation stresses the need of detailed knowledge of the geometry in question, if the results
are to be used for a quantitative validation of a computational model.

Computational models are either global models, seeking to describe global properties based
upon realistic input, or detailed models seeking to produce the input required in a global
approach. Global approaches indicate that convection in the bath mainly is due to bub-
bles, while MHD forces give a strong contribution to convection in the metal, resulting in
deformations of the bath-metal interface.

Bubble-MHD interactions have been considered only recently, indicating that this, under
certain conditions, can produce forces comparable to buoyancy; the only force considered
in traditional approaches.

Traditional bubble models are almost exclusively based on a Euler-Lagrange formalism
in which bubbles have a specified shape, which in turn dictates their interaction with
their surroundings. Despite its limitations, Lagrangian models appear to well reproduce
experimental data from room temperature models and to some extent also electrolysis cells.
However, the Lagrangian models fail to capture the details of large anodic bubble sheets,
for which interface tracking and reconstruction is required, a requirement which can be
met by for instance the VOF-method.

The open literature appears to lack the description of a fully coupled model for the flow and
electromagnetic behaviour in the interpolar region. In particular, the prediction of voltage
fluctuations due to the production and evolution of gaseous bubbles does not appear to be
fully described, even though this parameter is the prime output from several experimental
investigations.



Part II: Experiments

Outline of Part II

Part II describes the procedures and results from experimental studies performed as a part
of this thesis. It is divided into two chapters which cover:

• Industrial measurements.

• Lab-scale measurements.

The industrial measurements presented in the following describe the behaviour of bubble
related voltage oscillations, with particular attention to the possibility for interanode com-
munication and age dependent effects on the voltage signal. Following the traditional ex-
periments, a novel experimental method combining voltage measurements with high speed
video recordings of the bath surface is described, allowing for a detailed interpretation of
the voltage signal.

Although industrial measurements provide insight to the actual process at hand, data
obtained cannot easily be used for quantitative validation, due to the sheer size of an
industrial cell and the multitude of simultaneous phenomena.

In order to obtain data for validation purposes, a set of lab scale experiments are performed,
mapping bubble behaviour under various conditions, as described by Eick et al. [29]. The
proposed combination of voltage measurements and high speed video recordings of the bath
surface identify a strong correlation between the release of anodic bubbles and observed
voltage fluctuations, indicating that the voltage fluctuations on the lab scale electrolysis
cell are due to single detaching bubbles.

The results from the lab-scale experiments serve as a basis for the validation of the numer-
ical model developed in parts III and IV of this thesis.



70



Chapter 8

Industrial measurements

As discussed in Part I, the variations in the voltage signal are due to different internal
phenomena such as gas bubble release and metal pad instabilities. On small and inter-
mediate lab scale cells, a correlation is found between bubble detachment and peaks in
voltage, while the signal originating from an industrial cell is believed to be composed of
the collective behaviour of several anodic bubbles. However, as pointed out by Wang and
Taberaux [133], no direct studies have been reported regarding the bubbling phenomena
occurring in commercial cells.

Over the last decades, the control of gas evolution has been enhanced by the introduction
of slots on the anode surface, forcing large anodic bubbles to depart from the anode in a
preferred direction. As the anode is consumed, the slots decrease in depth before disap-
pearing entirely towards the end of the anode life cycle. The altered anode topology can in
principle introduce significant age effects, which are important if industrial measurements
are to be used for model validation.

Due to the preferred direction for bubble escape, a large transfer of momentum occurs in
the centre channel between the anodes. In water model experiments (cf. Einarsrud [30]),
this results in a resonance between centre and side channels, which in principle can trigger
a coupled bubble detachment between two anodes facing each other. If such a coupling is
present (and strong), the bubble behaviour under an anode can thus not be considered as
a local phenomenon; bubble behaviour on surrounding anodes would also contribute.

The above three points motivate the industrial scale experiments described in the following.

8.1 Experimental setup

The following experiments were performed at the Hydro aluminium plant in Årdal, Norway
on the 26th - 29th of October, 2009. All measurements presented in the following sections
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were done on cells L29 and L32. Each individual anode rod was fitted with two bolts,
placed 10 cm from each other (20 cm on L32), with an insulated wire which was stretched
alongside the cell to a Faraday cage, where a multilogger was placed. All measurements
where done with a CR23X multilogger from Campbell Scientific, UK, and were restricted
to ±50mV, with resolution 1.6 µV.

A 50 Hz Low-pass filter was applied in order to remove high frequency noise, while actual
measurements were done at a sampling frequency of 10 Hz.

The anode numbering for L29 is sketched in figure 8.1

Figure 8.1: Sketch of cell L29. Anodes within the red square were instrumented. Anodes 7,8
and 9 where instrumented first after the anode change on October 27th.

8.1.1 Experiment 1: Voltage measurements

With the introduction of slotted anodes, gaseous bubbles are dominantly transported in the
direction of the slots and into the centre channel. In order to identify a possible coupling,
various anode configurations were investigated, as sketched in figure 8.2.

Figure 8.2: Sketch of the four different anode configurations where resonance will be investi-
gated.

Configuration (ii) is expected to give the least correlated signal, as gas bubbles in this case
are transported away from the interanode gap. Configurations (i) and (iv) are expected to
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behave similarly, as slots are not present (no preferred direction for gas). Anode inclination
due to metal heaving could however create some correlation in (iv) as the metal pad is
expected to have a parabolic shape in this plane (cf. figure 7.5). Configuration (iii)
is expected to have the most dominant correlation, if present, as both slots and metal
curvature is believed to drive most of the gas into the centre channel.

The measurements from this experiment will also be used to determine the frequency spec-
trum of slotted and worn anodes in order to detect any shifts in frequency with increasing
anode age.

8.1.2 Experiment 2: Video assisted voltage measurements

With the aid of a high speed camera, bubbles escaping through the bath surface can
be counted and a bubble release frequency determined, which should correspond to the
frequency spectrum of the measured signal, if the low frequency oscillations in industrial
cells indeed are due to anodic bubbles.

The high speed recording of the bath surface was done with a PHOTRON 1024PCI FAST-
CAM digital camera, controlled by a laptop PC by means of a PCI bus. The camera was
supplied with a Nikon 28-85 mm zoom-lens and mounted on a tripod. Due to the risk of
damage from the magnetic fields to the laptop, it was placed in a mobile Faraday cage, as
shown in figure 8.3.

Figure 8.3: Mobile Faraday cage for transport of computer.

In order to observe escaping anodic bubbles, the bath must necessarily be visible. For the
current experiments, the bath was made visible by enlarging the tap hole at the end of the
cell (cf. figure 8.1) and the camera was placed so that bubbles in the centre channel between
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anodes 15 and 30 could be recorded1. The two anodes in question were instrumented as in
experiment 1, allowing for simultaneous voltage measurements and bubble observations.
The positioning of the camera is shown in figure 8.4.

Figure 8.4: Positioning of camera at L32. The distance from the camera to the cell is 2 meters.

8.1.3 A remark on signal analysis

As seen from figure 7.2 signals from industrial Hall-Héroult cells typically include several
long and short term effects. A direct Fast Fourier Transform (FFT) of a raw signal thus
includes all these effects. In order to obtain spectral information on anodic bubbles, a
“clean” signal with zero mean is sought, which can be achieved by means of smoothing.

The basic idea behind smoothing is to use a moving average along the raw signal to capture
the (relatively) long term variations. The smoothened signal is then subtracted from the
original data, producing a signal which includes only the rapid, bubble related, fluctuations.
For the current data, smoothing performed by replacing each point in the raw signal with
the average of n adjacent points, where n is a positive (odd) integer called the smoothing
width. As an illustration, a three point smooth of the raw signal φ at point j is

φ̄j =
φj−1 + φj + φj+1

3
. (8.1)

Close to the ends of the data set a full n-point smoothing is not possible. In order to
deal with this, the number of points are gradually reduced towards the ends, i.e. the first

1Recording the bath surface during anode replacement was also considered. This approach was however
impractical due to the limited time available during anode replacement and the risk of doing experiments
under the cranes transporting heavy and hot material.
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and final points of the smooth signal are identical to the points in the raw signal, while
the second and second last points are determined by a 3-point smoothing etc. A 21-point
smoothing is used for the current data, ensuring a sharp representation, and hence removal,
of peaks with period 10 seconds and larger (i.e. the low frequency components).

8.2 Results from voltage measurements

The voltage measurements were done on October 27th, from 08:58 to 09:31, and on October
29th, from 09:20 to 09:40. Measurements were done with a 10Hz sampling frequency, over
3 and 4 minute intervals on the respective days.

8.2.1 Anode communication

Due to the anode changing pattern at Årdal, the idealized situations sketched in figure 8.2
were not obtainable. Instead, an attempt was made to combine anodes in such a way that
the general features of a typical cell were captured. A summary the various experiments
is presented in table 8.1.

Table 8.1: Measured anode configurations

Measurement Date Anode 1 Age Anode 2 Age Comment
(#) (#) (days) (#) (days)
1 27.10.09 5 18 6 18 Close to case (ii)
2 27.10.09 20 2 21 2 Case (ii)
3 27.10.09 6 18 21 2 Close to case (iii)
4 27.10.09 6 18 27 9 Opposite anodes
5 27.10.09 12 25 27 9 Between

case (iii) and (iv)
6 29.10.09 5 20 6 20 Close to (i)
7 29.10.09 11 12 12 27 Close to case (ii)
8 29.10.09 5 20 20 4 Close to case (iii)
9 29.10.09 6 20 21 4 Close to case (iii)

The correlation coefficient between the signals in each measurement is given in table 8.2.

Considering that the second highest correlation is found in measurement 4, where anodes
are situated in opposite sides of the cell, table 8.2 does not give any definite conclusions
regarding the correlations between anode pairs. As correlation coefficients at best give
a linear correlation between two data sets, the analysis is extended to a graphical one,
comparing the bubble signals in the measurements.
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Table 8.2: Correlation coefficients between anode pairs

Measurement Anode pair Correlation coefficient
1 5 and 6 0.4641
2 20 and 21 0.0865
3 6 and 21 0.2587
4 6 and 27 0.3896
5 12 and 27 0.2747
6 5 and 6 -0.0371
7 11 and 12 -0.1408
8 5 and 20 0.0413
9 6 and 21 0.1657

Figure 8.5: Sample bubble related voltage signal from measurements 1, 3, 4 and 6 for each of
the anodes considered.



8.2. RESULTS FROM VOLTAGE MEASUREMENTS 77

In figure 8.5, sample signals from measurements 1, 3, 4 and 6 are shown. Measurements 1
and 6 are performed on anodes located on the same side (at different times), measurement
3 is on anode pairs which are facing each other(correlation expected), while measurement 4
is on anodes at opposite sides of the cell (reference measurement, no correlation expected).

As seen from figure 8.5 (and table 8.2) the current data does not indicate that any form of
correlation between anodes, suggesting that coupling between anode pairs due to bubble
detachment is insignificant.

8.2.2 Frequency analysis of data

Sample FFT spectrums are shown in figure 8.6, while a summary of essential results for
all the measurements are given in tables 8.3 and 8.4. The signal domain is defined as 4ΣU ,
ΣU being the standard deviation of the voltage signal, representing the typical amplitude
of the signal2.

Table 8.3: Summary of frequency analysis for measurements done on 27.10.09. 1st and 2nd
frequency denote the most dominant and second most dominant frequency found in
the signal, respectively.

Meas. Anode Mean 1st 2nd Signal domain
Voltage frequency frequency (4ΣU)

# # mV Hz Hz mV
1 5 3.65 0.55 0.65 0.47
1 6 3.92 0.77 0.37 0.23
2 20 2.84 0.81 0.86 0.20
2 21 3.71 0.51 0.54 0.14
3 6 3.82 0.73 0.82 0.23
3 21 3.77 0.67 0.58 0.18
4 6 3.91 0.73 0.84 0.22
4 27 3.46 0.47 0.61 0.35
5 12 3.53 0.71 0.56 0.57
5 27 3.46 0.38 0.77 0.32

Evidently, as seen from the tables and figure 8.6, the measured voltage signal has dominant
frequencies in the range 0.5-1.5 Hz.

2Thus based on (minimum) 94% of the measured points, assuming a normal distribution around the
mean.



78 CHAPTER 8. INDUSTRIAL MEASUREMENTS

Figure 8.6: Spectra of signals to anodes 12 and 27 (measurement 5, top) and anodes 11 and 12
(measurement 7, bottom).
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Table 8.4: Summary of frequency analysis for measurements done on 29.10.09. 1st and 2nd
frequency denote the most dominant and second most dominant frequency found in
the signal, respectively.

Meas. Anode Mean 1st 2nd Signal domain
Voltage frequency frequency (4ΣU)

# # mV Hz Hz mV
6 5 3.45 1.59 0.76 0.22
6 6 3.83 1.88 1.82 0.17
7 11 3.39 0.57 0.85 0.09
7 12 3.70 0.78 0.67 0.39
8 5 3.45 1.50 1.76 0.26
8 20 3.01 0.64 0.77 0.10
9 6 3.81 1.79 1.98 0.17
9 21 3.56 0.63 0.83 0.10
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8.2.3 Age dependent effects

Figure 8.7 shows the mean voltage, signal domain and dominating frequencies plotted
against anode age.

Figure 8.7: Summary of age dependent effects in industrial measurements. The figure shows
the evolution of mean voltage (top left), signal domain (top right), 1st frequency
(bottom left) and 2nd frequency (bottom right) as a function of anode age. A trend
line is given in each plot.

As seen from the above figure, all parameters considered here appear to increase with
anode age. The large increase in mean voltage is strongly influenced by the two outliers
seen in the lower left corner, which correspond to the measurements on anode 20. The
lower voltage suggests that the anode is drawing less current, i.e. it is set too high initially.
Omitting these outliers yields a mean voltage which is close to constant, as expected. The
influence of these two points on the other graphs shown in figure 8.7 is minimal.
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As expected from the findings of Keniry et al. [59], the spread in frequencies appears to
increase with anode age, yielding, on average, higher frequencies for older anodes. Opposed
to the results of Keniry et al. [59], the signal domain (figure 8.7, top right) increases with
increasing anode age. This effect is credited to diminishing influence of the slots, allowing
for larger projected bubble areas and hence a greater effective resistance as anodes grow
older.

8.2.4 Short term variations

The variation in bubble frequency is visible both on a long and short term perspective.
As pointed out by Wang and Tabereaux [133]; the bubble release time and magnitude of
the voltage oscillation are not constant even at the constant electrolysis current, indicating
that the frequencies and amplitudes of the voltage signal varies within a certain range.
This variation becomes evident when splitting a given signal into segments and analysing
each segment individually. Such an analysis is shown in figure 8.8, where the signal from
measurement 9, anode 21 is split into 12 segments of 20 seconds.

Figure 8.8: Variations in 1st and 2nd most dominating frequencies over segments of 20 seconds
for measurement 9, anode 21. Red lines represent frequencies obtained by a FFT
of the complete signal.

As seen from the above figure, the dominating frequencies vary significantly over the time
the voltage signal is measured. Frequencies presented in tables 8.3 and 8.4 should thus be
interpreted as representative mean frequencies for a given measurement.
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8.3 Results from video assisted voltage measurements

The camera was positioned as shown in figure 8.4 at L32, in such a way that anodes 15 and
30 were visible, as shown in figure 8.9. Anode 15 was relatively young, 5 days old, while
anode 30 was 22 days old. The slots of anode 30 where not visible above the bath surface,
resulting in massive bubble release through the bath in the centre channel. Approximately
5 cm of the slots of anode 15 were visible above the bath.

Figure 8.9: View of bath surface through tap hole in L32.

Both of the anodes shown in figure 8.9 were connected to the multilogger, which had the
same setup as in experiment 2, allowing voltage to be logged simultaneously to the high
speed recording3. The camera was set to record at 250 fps, yielding 25.6 seconds of footage
(6400 frames). Only two recordings were performed, due to the slow transfer of files from
the camera buffer to the laptop.

Essential results from voltage measurements to anodes 15 (two measurements) and 30 (one
measurement)4 are given in table 8.5. Spectra for measurement 11 are shown in figure
8.10.

3The higher mean voltage seen in table 8.5 is due to a larger distance between the bolts where the
logger was attached.

4The reason for having only one measurement to anode 30 is that the contact between the logger and
anode 30 unfortunately was broken during the first measurement.
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Table 8.5: Summary of frequency analysis for video assisted measurements done on 29.10.09. 1st
and 2nd frequency denote the most dominant and second most dominant frequency
found in the signal, respectively.

Meas. Anode Mean 1st 2nd Signal domain
Voltage frequency frequency (4ΣU)

# # mV Hz Hz mV
10 15 7.92 0.77 0.69 0.26
11 15 7.64 0.56 0.68 0.28
11 30 6.72 0.56 0.64 0.14

Figure 8.10: Spectra from measurement 11, anodes 15 and 30.

The frequency values obtained from the FFT consistent with measurements from L29,
with dominant peaks in the range 0.4-1.0 Hz and lesser peaks in the range 1-2 Hz. Though
both signals from measurement 11 show very similar frequencies, there appears to be little
correlation between the signals (correlation coefficient of 0.23).
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8.3.1 Results from recordings

A detailed analysis of each frame reveals a total of 99 and 110 bubbles for each of the
recordings, respectively.

Evidently, the total number of bubbles counted in the centre channel originate from both
anode 15 and 30, while the measured voltage signal is related to each individual anode.
Detailed observations of the recordings reveal that escaping bubbles have a tendency to
leave the bath in preferred directions as shown in figure 8.11.

Figure 8.11: Sequence showing bubble leaving bath with dominant left bound motion.

This preferred direction of the escaping bubbles is due to the (“horizontal”) momentum
accumulated by the bubble during its travel under the anode. This notion is strengthened
further by noting that most bubbles escape through the centre of the centre channel,
suggesting that they move in a diagonal trajectory from the anode edge, rather than
creeping alongside the anode. Hence, by observing the preferred direction of the escaping
bubbles, it is possible to relate individual bubbles to each individual anode. The bubble
distribution for each anode is given in table 8.6. The unaccounted bubbles in table 8.6 (15
for measurement 10 and 10 for measurement 11) did not have any preferred direction and
could in principle originate from any of the two anodes.

In addition to the distinction between right bound and left bound bubbles, the influence
of the slots was clearly visible as shown in figure 8.12.

As seen from the number of bubbles in table 8.6, typical frequencies are almost a factor
2 higher than those found by a FFT of the corresponding signal. As noted by Kiss and
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Figure 8.12: Distinction between bubbles originating from lower and upper slots. Colours have
been inverted for clarity.

Table 8.6: Distribution of bubbles between individual anodes and slots.

Measurement Anode Total number Upper slot Lower slot
of bubbles

10 15 48 30 18
10 30 36 22 14
11 15 50 27 23
11 30 50 24 26

Poncsak [62], the frequencies of individual bubbles are difficult to observe. Besides the
influence from their release at the anode edge, interactions between moving bubbles and
their coalescence dominate the spectrum of the voltage fluctuations.

Based on these findings, a hypothetical collective bubble signal is reconstructed based on
the observed bubble release. The procedure used is as follows:

1 The time from which a bubble appears on the surface to it escapes is registered.

2 The bubble time, combined with the extent of the splashing give an indication of the
bubble size, which is divided into three classes (0.25, 0.5 and 1).

3 The residence time under the anode is approximated from the bubble escape time.

4 Based on the approximated residence time and the size class, a time dependent coverage
factor is obtained for each individual bubble.

5 The total signal is computed from the sum of each individual bubble.

6 The reconstructed signal is normalized and a FFT is applied in order to determine
dominating frequencies.

Figure 8.13a shows the time of escape for bubbles originating from anode 15, measurement
11. The magnitude of the signal is determined from the size of each bubble. The escape
time of the bubbles is found to be somewhat irregular, bubbles appearing as bursts, rather
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than at a distinct frequency. This is as expected, as measured frequencies also vary with
time as shown in figure 8.8. Furthermore, several of the peaks are separated by very
small time intervals, close to the sampling time used in the voltage measurements. This
overlap becomes even more visible when a linear relation between the first appearance of
the bubble and its time of escape is plotted (assuming the appearance of the bubble has
zero magnitude), as in figure 8.13b.

Figure 8.13: Observed time and estimated size for bubbles escaping from anode 15, measure-
ment 11 (a), and observed bubble residence time (b).

As noted by Kiss and Poncsak [62] and observed in water models and simulations (cf.
Einarsrud [30]), the nature of the bubble changes dramatically when detaching at the
anode edge; from an elongated flat bubble under the anode to a more spherical shape
in the center channel. In effect, this increases the residence time of the bubble under
the anode, compared to its residence time in the centre channel (i.e. the time from its
appearance to its escape). The bubble residence time for an equivalent volume bubble
under the anode can be approximated by the simple relation

tanode = tchannel
Ūchannel
Ūanode

Lanode
Lchannel

, (8.2)

where Ūchannel and Ūanode represent average bubble velocities in the channel and under
the anode and Lanode and Lchannel represent typical length scales. The velocity in the side
channel is comparable to that under the anode, cf. Einarsrud [30], the length scales are,
however, significantly different; the typical anode length being of order 100 cm, while the
typical bath height is 20 cm. Hence, the approximated bubble residence time under the
anode is

tanode ≈ 5tchannel, (8.3)
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resulting in reconstructed bubble coverage curves as shown in figure 8.14a. The sum of each
individual bubble gives an indication of the bubble coverage under the anode, as shown in
figure 8.14b, which in turn should correspond to the observed variations in voltage.

Figure 8.14: Estimated residence time under anode 15, measurement 11 (a), and resulting col-
lective bubble coverage (b).

Comparing the reconstructed signal in figure 8.14b to actual voltage measurements a good
qualitative agreement is found. A FFT of the reconstructed signal yields dominating
frequencies of 0.47 and 0.70 Hz, which is close to that of the measurements (cf. table 8.5),
suggesting that the measured frequency indeed is due to the collective behaviour of the
anodic bubbles, although individual bubbles are found to release at significantly higher
frequencies.

The influence of bubble residence time

The most critical parameter in the above analysis is without doubt the approximation of
the bubble residence time. Figure 8.15 shows the spectrum of the reconstructed signal for
three different ratios of tanode/tchannel.

Evidently, the bubble residence time has a large impact on the resulting spectrum; lower
residence times yielding higher frequencies. Recalling how the bubble residence time is
defined (equation 8.2), a reduced residence time is equivalent to a shortening of the anode
in the bubble flow direction. A similar frequency increase is predicted by Kiss [62], showing
an increase in the dominating frequency of a factor 4 when the aspect ratio of the anode
is changed correspondingly. This strong influence stresses the need for detailed knowledge
of the geometry in question, if experimental results are to be used for validation purposes.
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Figure 8.15: Spectrum of reconstructed bubble signal for anode 15, measurement 11. Influence
of varying bubble residence time.
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8.4 Summary of industrial scale measurements

Experiments have been performed on an industrial cell, identifying bubble related signals
with frequencies in the range 0.5 to 2 Hz responsible for as much as ±5% of the voltage
variation. Results indicate that the bubble related voltage oscillations increase in both
frequency and magnitude with increasing anode age, the latter of which is believed to be
due to the diminishing influence of slots as anodes age.

With aid of high speed video recordings of the bath surface, it is shown that the mea-
sured voltage signal is due to the collective behaviour of several anodic bubbles, which
individually are found to release at frequencies significantly larger than those present in
the measured signal.

No significant correlation is found between anode pairs in different configurations, sug-
gesting that interanode communication, if present at all, is a second order effect. This,
combined with the observations regarding the huge impact of the collective motion of bub-
bles suggests that bubble models for individual anodes are meaningful, also with respect
to industrial applications, given that the geometry is adequately described.
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Chapter 9

Lab scale measurements

As seen from the previous chapter, industrial measurements are challenging due to the
inherently complicated processes occurring in a cell. Although quantitative data and in-
terpretations are obtainable, uncertainties related to geometry, localized effects and coupled
phenomena makes the use of these data at best suited for only a qualitative validation of
a numerical model.

In order to obtain data on anodic bubbles under controllable conditions with known geome-
try, a series of lab-scale experiments were conducted with objective to study bubble release
and voltage behaviour under varying current density, anode inclination and anode-cathode
distance (ACD), down to very low values.

In the following sections, the setup as of Eick et al. [29] is discussed for reference, followed
by an analysis of selected cases. Finally, a detailed analysis of bubble phenomena using
high speed video recordings is given.

9.1 Experimental setup

An anode with an active area of 10 by 10 cm was made from industrial carbon and placed
in a cylindrical graphite crucible lined with Si3N4-SiC with inner diameter 28 cm. The
anode was fixed to a steel rod so that the anode-cathode distance could be varied. By
means of a jack, the heating furnace containing the graphite crucible could be lifted on one
side, allowing for inclination angles up to 10 degrees. The long-sides of the anode where
fitted with Si3N4-plates in order to force gas bubbles to escape from either of the short
sides.

The inclination forces bubbles to be released at a specified side, where a gas collection
chamber allowed for analysis of gaseous species.
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To avoid phenomena related to the metal pad, a wettable cathode element was used, as
proposed by Haarberg et al. [48], allowing for operations at very low ACD without influence
of metal droplets on the cathode.

Initially, 6.7 kg of bath ( 11wt% excess AlF3, 5wt% CaF2 and 4wt% Al2O3) was melted
and standard industrial alumina was added at regular intervals. The typical alumina
concentration during operation was in the range of 8–9 wt%.

The anode was connected to a power supply (type LAMBDA ESS) allowing for currents up
to 500 A. The cell voltage was logged at 50Hz using a CR23X multilogger from Campbell
Scientific, UK, with resolution 1.6 µV. The motion of the bath interface due to escaping
bubbles was recorded using a PHOTRON 1024PCI FASTCAM digital camera, controlled
by a laptop PC by means of a PCI bus. The camera was supplied with a Nikon 28-85 mm
zoom-lens and was mounted on a tripod. The experimental setup is shown schematically
in figure 9.1.

Figure 9.1: Overview of laboratory cell as of Eick et al. [29]

The process parameters were changed in a randomized way during the experiments, fol-
lowing a planned schedule. The range of the parameters were:

• Current density (CD): 0.8, 0.95 and 1.1 A/cm2.

• ACD: 1.5, 2.0, 3.0 and 4.0 cm.

• Inclination angle (inc): 0, 2, 4 and 10◦.
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9.2 Selected results on voltage behaviour

Detailed results concerning the influence of the various parameters investigated in the
experiments can be found in Eick et al. [29] and only a selected set of data is included
here for reference.

A summary of the influence of the various experimental parameters on the frequencies and
magnitude of the voltage signal is given in figure 9.2. As seen from the figure, the large
span in experimental parameters produce a corresponding span in the output, dominating
frequencies varying from 0.2 to 1.0 Hz and signal domain varying from 0.03 to 0.43 V.

Measurements with 4◦ inclination are omitted from figure 9.2 as these were performed with
constant ACD=3cm and CD=0.95 A/m2, cf. Eick et al. [29].

Both frequencies and amplitudes increase with increasing current densities, as expected
due to increased gas production rates. No general trend is however identified regarding the
ACD and its influence on the voltage oscillations. Considering variations in the inclination
angle, the mean current density is constant (CD=0.95 A/m2) for each set of experiments,
thus enabling a direct comparison between mean frequencies and signal domain for each
inclination, as shown in figure 9.3. As seen from the figure, increasing inclination angles
tends to increase the frequencies of the signal, as buoyancy becomes increasingly important,
while the signal domain decreases, indicating changes of the bubble topology.

For validation purposes, a subset of the lab scale experiments are chosen, focusing on se-
lected points. As the main concern of the current thesis is bubble generation and MHD,
the current density (CD) is of major interest as it governs the Lorentz forces (as of equation
4.3) and gas generation (as of equation 4.4). All three current densities from the experi-
ments are thus considered. The ACD and anode inclination (inc) are restricted to typical
industrial values, i.e. 2-5 cm and 1-4◦, respectively.

As noted by Eick et al. [29] (and expected from Wang and Taberaux [133] and Keniry et al.
[59]), the voltage behaviour changes with time as the initially sharp corners of the anode
become rounded. In order to capture this variation, each selected setup is considered at
different times.

Essential results for experiments meeting the above requirements are given in table 9.1,
while sample voltage curves are shown in figure 9.4. These data are to be used for validation
of the bubble model presented in Part IV.

As seen from table 9.1, the typical frequencies obtained are in the range 0.25-0.6 Hz,
lower than that found on industrial scales, but within the range found on other lab scale
experiments. As the anode used in the current experiments was unslotted, the expected
behaviour of a decreasing signal domain with increasing anode age is found (cf. Eick et al.
[29] for further details). Results indicate that elevated frequencies are to be expected with
increasing anode age, although the trend is not as clear as for the signal domain.
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Figure 9.2: Summary of results from laboratory cell described in Eick et al. [29]. Figure shows
dominating frequencies (a-c) and signal domain (d-f) (symbols) as a function of
amperage for various operating conditions. A trend line (solid lines) is added for
each data set.
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Figure 9.3: Influence of inclination on dominating frequencies (a) and signal domain (b) on
laboratory cell described in Eick et al. [29]. The data (symbols) is represented as
the average of all values measured at a given inclination.

Table 9.1: Results from selected lab scale experiments. 1st and 2nd frequency denote the most
and second most dominant frequency found in the signal, respectively. Results are
sorted by replicates.

Exp. Time CD ACD inc Mean 1st 2nd Signal domain
voltage frequency frequency (4ΣU)

(#) (hh:mm) A/cm2 (cm) (◦) (V) (Hz) (Hz) (V)
3 10:24 0.95 3 4 3.36 0.42 0.29 0.13
25 14:24 0.95 3 4 3.31 0.49 0.39 0.08
5 10:51 1.10 2 2 3.29 0.37 0.32 0.24
28 14:47 1.10 2 2 3.18 0.49 0.34 0.16
8 11:23 0.80 4 2 3.26 0.29 0.20 0.16
31 15:07 0.80 4 2 3.27 0.29 0.37 0.11
14 12:23 0.80 2 2 2.78 0.34 0.27 0.13
37 16:00 0.80 2 2 2.77 0.24 0.66 0.06
22 13:46 1.10 4 2 3.93 0.39 0.54 0.22
44 16:43 1.10 4 2 4.02 0.61 0.53 0.14
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Figure 9.4: Sample voltage variation from lab scale experiments corresponding to table 9.1.
Voltage variation defined as (U − Ū)/Ū , where Ū is the mean voltage.
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9.3 Bubble release behaviour

For a horizontal anode (i.e. zero inclination), bubbles could release at either of the short
sides of the anode, allowing for their observation with a high speed camera as indicated in
figure 9.1. Eight experiments were performed, summarized in table 9.2.

Table 9.2: Summary of conditions for video assisted lab-scale measurements.

Experiment Time CD ACD
(#) (hh:mm) (A/m2) (cm)
1 08:51 0.80 4
2 10:07 0.80 4
19 13:37 1.10 1.5
20 13:46 0.80 4
27 14:48 1.10 4
41 16:23 1.10 1.5
42 16:31 0.80 4
43 16:39 0.80 1.5

As for the inclined experiments presented previously, the cell voltage was monitored during
the experiments. In parallel with the voltage measurements, the motion of the bath surface
was recorded in order to relate voltage events to escaping bubbles. A typical evolution of
the bath surface due to an escaping bubble is shown in figure 9.5.

Two uncertainties exist when comparing observed events (i.e. visual observation of escaping
bubble) and events in the measured signal (i.e. a sharp drop in voltage)

• Both the camera and multilogger where started manually at a given time.

• The (size dependent) rise time of the bubble through the side channel results in a
mismatch in the times between its detachment from the anode (measured event) and
escape-time at the surface (observed event).

Due to the size of the bubbles and the large density difference, the rise time is expected
to have little influence compared to the uncertainty due to the manual operation of the
equipment, which is estimated to ± 0.25s.
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Figure 9.5: Bubble escape during horizontal cell operation, resulting in a perturbation the bath
surface. Resulting surface wave is emphasized with solid red line.
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The time of observed bubble events are compared to sample measured voltage signals in
figure 9.6.

Figure 9.6: Variation in voltage signals (solid lines) and observed bubble events (red circles) for
selected experiments. The uncertainty in observed events, ±0.25s is indicated by
the size of the red circles. Voltage variation defined as (U − Ū)/Ū , where Ū is the
mean voltage.

As seen from figure 9.6, there is a good correspondence between observed and measured
events, observed events accounting for approximately 95% of the fluctuations with ampli-
tude larger than ±0.5% of the average voltage.
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9.3.1 Frequency analysis

Essential results from the measured voltage signals and estimated frequencies from obser-
vations1 are given in table 9.3.

Table 9.3: Results from video assisted lab scale experiments. 1st and 2nd frequency denote the
most and second most dominant frequencies found in the signal, respectively.

Exp. Mean 1st 2nd Signal domain Observed
voltage frequency frequency (4ΣU) frequency

(#) (V) (Hz) (Hz) (V) (Hz)
1 3.37 0.20 0.29 0.28 0.39
2 3.38 0.15 0.34 0.27 0.31
19 3.15 0.39 0.34 0.22 0.43
20 3.31 0.22 0.17 0.19 0.39
27 4.04 0.24 0.56 0.33 0.47
41 3.03 0.71 0.56 0.09 0.90
42 3.33 0.37 0.24 0.15 0.70
43 3.09 0.55 0.45 0.07 0.66

As seen from table 9.3, there are some discrepancies between observed frequencies and
those obtained by a FFT of the signal, although not as large as those found on industrial
scale. Due to the smaller size of the lab scale anode, it is unlikely that the influence of
overlapping bubbles is as significant as on an industrial scale.

Considering for instance the measurements and observations from experiment 2 (cf. figure
9.6, top left), the average time between each bubble release is 3.1s, with standard deviation
1.7s, signifying a large spread in bubble residence time under the anode. Hence, the signal
is not truly periodic, thus violating the main purpose of the FFT.

The influence of aperiodicity

Consider two idealized representations of the measured signal from experiment 2, one with
a fixed period of 3.1 s and amplitude 0.27 V (corresponding to the mean values of the
original signal) and one with fixed amplitude and period corresponding to the original
signal, as shown in figure 9.7a and b, respectively.

1Frequency estimated as fOB = NOB/TOB , NOB being the number of bubbles observed over the
measurement time TOB = 25.6s.
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Figure 9.7: Idealized lab scale voltage signals with fixed (a) and actual (b) period.

In the above idealized cases, nine (full) bubble events occur in the time span of the exper-
iment, corresponding to an observed frequency of 0.32 Hz. The resulting FFT spectrum
for the idealized cases is shown in figure 9.8.

Figure 9.8: Spectra of idealized lab scale voltage signals with fixed (a) and actual (b) period.
The spectra of the original signal is shown in red in (b) for comparison.

As expected, the dominating frequency for the idealized case shown in figure 9.7a is 0.32Hz,
identical to the observed frequency. The dominating frequency is however reduced to
0.17Hz for the signal shown in figure 9.7b, corresponding well to the frequency of the
actual signal (0.15Hz).

Hence, the discrepancy in observed and calculated frequencies is not a physical effect,
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rather a question of how frequencies are defined and whether or not a FFT of an aperiodic
signal is meaningful.

9.4 Summary of lab scale experiments

A series of lab scale experiments have been performed in order to obtain data for model val-
idation. Experiments were performed with various current densities, interpolar distances
and anode inclination in order to cover ranges typically encountered on an industrial scale.
Typical bubble frequencies in the signal were found in the range 0.25–0.6 Hz, with corre-
sponding amplitudes as large as ±4% around the mean voltage.

Increasing current densities and inclination angles are found to increase the typical fre-
quencies found in the voltage signal. Increased inclination angles tend to decrease the
signal domain, while the opposite behaviour is identified for increasing current densities.

The signal domain is found to decrease with increasing anode age, along with elevated
frequencies, although the trend is not as clear as for the signal domain.

With help of high speed video recordings of the bath interface, voltage fluctuations are
matched with the departure of anodic bubbles, observed bubbles accounting for 95% of
large voltage fluctuations in the corresponding measured signal. The departure of bubbles
is found to be (somewhat) irregular, yielding the physical information contained in the
resulting FFT spectrum questionable. A numerical model being able to reproduce the
sought spectrum should thus be closely assessed, in order to ensure that the full complexity
of the bubble signal is captured, in addition to the “mean” values obtained from the
FFT.



Part III: Electromagnetism

Outline of Part III

This part deals with the development and essential verifications of the primary functions
of the electromagnetism model and is divided into four chapters which cover:

• Theory and background

• Verification studies

• MHD forces on single bubbles

• MHD effects in lab scale geometry

Following the (generic) theoretical derivations and verification of essential features (i.e.
conservation of electrical current and boundary conditions) presented in the first two chap-
ters, specific cases related to bubble-MHD and MHD effects on a lab scale geometry are
investigated.

MHD effects derived in this part are coupled to the anodic bubble flow described in part
IV of this thesis.
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Chapter 10

Theory and background

Lorentz forces and gas production are two essential features of the Hall-Héroult process,
which are governed by electromagnetic fields. In the following, the underlying theory
for electromagnetic fields is given and a model is developed from first principles in order
to retain control over what physics that are included and excluded as well as allowing
for a tailored approach for the physics present in the Hall-Héroult cell, thus ensuring
compatibility with other models developed.

10.1 Background and assumptions

In an industrial setting, the current density can be separated into two parts, an internal
current density passing through the cell in question and an external, which typically is the
current density passing to other cells in the aluminium plant. Letting Λ denote a specific
cell, the current density is thus defined as

j =

{
jext in Λ̄
jint in Λ

(10.1)

Electrical charge is assumed to be conserved, leading to the constraint∫
A

j · ndA = 0 ⇒ ∇ · j = 0, (10.2)

which holds both for internal and external currents.

The continuum form of Ohm’s law

j = σ (E + u×B) (10.3)
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and Maxwell’s equations

(i) ∇ ·E =
1

ε0
%e (ii) ∇ ·B = 0

(iii) ∇×E = −∂B
∂t

(iv) ∇×B = µ0j + µ0ε0
∂E

∂t

are assumed to hold in the entire domain.

The two sources of electrical current density in equation 10.3 are denoted potential and
induced currents, i.e.

j = jpot + jind, (10.4)

where
jpot = σE and jind = σu×B. (10.5)

Interpreting Amperes law (iv) as a result of Lenz’ law, i.e. a current induces a magnetic
field, and assuming negligible displacement currents, we have

∇×B =

{
∇×Bext = µ0jext in Λ̄
∇×Bint = µ0jint in Λ

(10.6)

Hence, in Λ, we require

∇×Bext = 0 (10.7)

∇×Bint = µ0j, (10.8)

that is, the external magnetic field is unaffected by the internal current density. It should
be noted, that by addition of equations 10.7 and 10.8, the original form of Amperes law is
obtained. Consequently, the total magnetic field is given as

B = Bint +Bext. (10.9)

Fluids are assumed to be electrically neutral so that the Lorentz force density term is of
the form

fL = j ×B. (10.10)

Electromagnetic fields adapt at a timescale which is much smaller than the typical time-
scales in the system (i.e. inertial time scales) and are thus assumed to be stationary.

For the purpose of book-keeping, Ohm’s law and the Lorentz force is split into different
contributions:

j = σE︸︷︷︸
O(0)

+σu×Bext︸ ︷︷ ︸
O(1)

+σu×Bint︸ ︷︷ ︸
O(2)

. (10.11)

fL = j ×Bext︸ ︷︷ ︸
O(0)

+ j ×Bint︸ ︷︷ ︸
O(2)

(10.12)
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10.1.1 Dimensional considerations

Considering the form of Ohm’s law (equation 10.3) it is evident that the current arises due
to two sources, which may change in different regions of the cell. Due to the large difference
in conductivity in bath and molten aluminium (cf. Grjotheim et al. [46]), the potential loss
is far greater in the bath than in the molten aluminium. Considering a simplified Ohm’s
law for the potential drop

∆Ui = RiI, (10.13)

and assuming a constant current density across the phases, the potential drop in each
liquid phase is related by

∆UAl = ∆Ub
σbathlAl
σAllbath

. (10.14)

Inserting typical values for conductivities (σbath ≈ 200 Ω−1m−1, σAl ≈ 3000000 Ω−1m−1)
as well as for the interpolar distance and metal height (3 cm, 20 cm), one obtains

∆UAl ≈ 10−5∆Ubath. (10.15)

Further, approximating the electrical field as

E ≈ ∆Ui
li
, (10.16)

and inserting typical values for ∆Ubath, u and B (1.5 V, 0.5 m/s, 0.01T), it is evident
that the potential currents dominate in the bath, while contributions are of comparable
magnitude in the molten metal.

10.2 Modelling approaches

As seen from the discussion in the introductory section, the general MHD system is rela-
tively complex, even at a strictly formal level. It is thus not surprising that several different
methods have been developed to model the system, taking into account effects of leading
importance. In the following, three different modelling approaches are presented, denoted
zero, first and second order models, referring to the separation of terms given in equations
10.11 and 10.12.

10.2.1 Zero order model

The zero-order model is based on the assumption of negligible induced currents, as is the
case for the bath. In this case, Ohm’s law reads

j = σE. (10.17)



108 CHAPTER 10. THEORY AND BACKGROUND

Assuming steady electromagnetic fields, it is evident from Maxwell equation (iii) that the
electric field can be expressed as a gradient of a potential, i.e.

j = −σ∇φ (10.18)

Assuming the existence of derivatives of j, and that current is conserved, the local form of
equation 10.2 is given as

∇ · j = 0

⇒ ∇σ∇φ = 0, (10.19)

i.e., the electrical potential φ is determined by a Laplace equation.

In order to compute the Lorentz force, a magnetic field is needed. Staying with zero order
terms, the Lorentz force is given as

fL = j ×Bext, (10.20)

where Bext is a known external magnetic field.

The zero-order model is, as the name suggests, an approximation of reality, as the assump-
tion of negligible induction currents will not hold in the molten metal. Its simplicity is
however its strength as even analytical solutions are obtainable, for reasonable boundaries.

10.2.2 First order model

A natural extension to the zero order model is to include the induction currents arising
from external magnetic fields. Equation 10.11 then reads

j = −σ∇φ+ σu×Bext, (10.21)

while the Lorentz force is given as

fL = j ×Bext. (10.22)

As current is conserved, the potential equation reads

∇σ∇φ = ∇ · (σu×Bext) , (10.23)

where σ and u are determined from the flow equations andBext, again, is a known quantity.

Analytical solutions are in principle obtainable for the first order model as well, given some
flow-field and distribution of conductivity.
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10.2.3 Second order models

Second order models involve the full complexity of equations 10.11 and 10.12. Assuming
that the external magnetic field is known, the challenge of the second order model is to
adequately predict the electrical current density and the internal magnetic field.

The classical MHD-approach is to develop a transport equation for the magnetic field.
Combining the Ohm’s law and the Ampere equation

∇×B = µ0j = µ0σ (E + u×B) (10.24)

and dividing by µ0σ before taking the curl, one obtains

∇×Dmag (∇×B) = ∇×E +∇× (u×B) = ∇× (u×B) , (10.25)

where Dmag = 1/µ0σ is the magnetic diffusivity and ∇ × E term is neglected due to
the assumption of stationary fields. Expanding the RHS and using the assumptions of
divergence free velocity and magnetic fields, the B transport equation is finally written as

(u · ∇)B +∇×Dmag (∇×B) = (B · ∇)u. (10.26)

With a known magnetic field, the current required to compute the Lorentz force is easily
obtained from Ampere’s law

∇×B = µ0j. (10.27)

Boundary conditions are somewhat complicated using this approach, as they are to be
provided for B, while one in a real case knows only the current and potential distribution.
The potential distribution is of practical interest and must be derived by some additional
relation, for instance Ohm’s law.

The inclusion of an external magnetic field is challenging when a model of this type is used
due to the inverse interpretation of Ampere’s law; Here, the magnetic field induces the
current. Hence, for this model to be used in the context of a Hall-Héroult cell, a splitting
of the magnetic field must be treated formally.

Retaining the Ohm’s law for the description of the current density, i.e.

j = −σ∇φ+ σu×B, (10.28)

the magnetic field must be calculated by an alternative approach. A classical approach in
this context is obtained by means of the Biot-Savart law, yielding a magnetic field on the
form

B =
µ0

4π

∫
Λ

j(y)× r
‖r‖3 dy +Bext, (10.29)

where r is the displacement vector from a current element to the point where the field is
to be computed.
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In this approach, there is no need for boundary conditions for B as it is a quantity derived
from the electrical current. Though appealing, the Biot-Savart law is somewhat problem-
atic as it involves an integral over the entire fluid domain, i.e. a sum over all cells in
the computational domain. Needless to say, such a procedure could significantly impede
computational efficiency in the case of a fine mesh.

An alternative approach is obtained by introducing a magnetic vector potential A , defined
by

B = ∇×A. (10.30)

Introducing the definition in Maxwell equation (iv), yielding

∇×∇A = µ0j (10.31)

and choosing the Coulomb gauge
∇ ·A = 0, (10.32)

(cf. Griffiths [43]), the following simple equation is obtained for A

∇2A = −µ0j. (10.33)

From the above definitions, the complete magnetic field in Λ is

B = ∇×A +Bext. (10.34)

In total, the above model consists of four transport equations (φ and A) and three consti-
tutive relations (j), written as

∇ (σ∇φ) = ∇ · (σ [u× (∇×A +Bext)]) (10.35)

∇2A = −µ0j (10.36)

j = σ (−∇φ+ u× (∇×A +Bext)) . (10.37)

TheA−φ approach incorporates all relevant physics through two simple Poisson equations,
which is a clear advantage over the more complex transport equation for B. Furthermore,
as seen from equation 10.33, the magnetic vector potential is parallel to the electrical
current making it straightforward to relate conductor/insulator boundaries to the magnetic
vector potential. Finally, the A− φ model yields a direct decoupling of the induced- and
external magnetic fields. Consequently, this model is chosen for the current work in cases
where full coupling is required.
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Verification studies

As the proposed MHD model is developed from first principles, a verification of its essential
features is required, as described in the following sections.

11.1 General properties

For the various simulations, three different fluids are used, which all are assumed to be ho-
mogeneous. Properties of relevance are summarized in table 11.1 and are used throughout
the following sections, unless otherwise noted.

Table 11.1: Main properties of simulated fluids for MHD cases

Property Symbol Cryolite Gas Aluminium Dimension
Phase # 1 2 3 -

Density ρi 2070 0.435 2270 kg/m3

Conductivity σi 300 1 · 10−12 3 · 106 (Ω m)−1

The electromagnetic transport equations are implemented as user defined scalars (UDS)
(cf. equation 3.27), with no advection function and transient term due to the assumption
of steady fields. For the electrical potential, the diffusivity is taken to be the electrical
conductivity, while it is taken to be unity for the magnetic vector potential. As these
equations are of a Poisson-Laplace form, the AMG aggregative W-cycle is used for these
equations in order to enhance convergence.

Equations are assumed to be converged at an absolute residual of 1 · 10−10. The strict
requirement for the residual of the UDS is due to uncertainties arising in computed electrical
currents if residuals are too high. The high degree of convergence is easily obtained by
using a W-type AMG cycle.
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11.2 Prediction of electrical potential

As the electrical potential φ is to be used extensively throughout the case studies presented
in the following, its accurate prediction is essential in order to obtain sensible results. Three
simple cases are computed in order to validate the compatibility of the FLUENT UDF
structure and the Laplace equation obtained from the Maxwell equations. The following
calculations are performed with cryolite as working material.

11.2.1 Electrical potential between infinite parallel plates

Figure 11.1 shows two parallel plates with fixed electrical potential (φ1 and φ2 at y = b
and y = 0, respectively), enclosed by non-conducting walls (at x = 0 and x = b) yielding
zero current across these interfaces.

Figure 11.1: Sketch of geometry and solution for electrical potential between infinite parallel
plates.

The solution of the Laplace equation

∇2φ = 0, (11.1)

in the geometry sketched above is

φ(x, y) = φ1
y

b
. (11.2)

Evidently, the equipotential lines are horizontal. Figures 11.2 a and b show the solution
obtained by FLUENT on a 60 by 60 Cartesian mesh and comparison with the analytical
solution in a corresponding geometry.
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Figure 11.2: FLUENT solution for electrical potential (a) and comparison to analytical solution
(b).

An important result of the linear electrical potential is that its gradient (i.e. the current)
is constant and equal to

∂φ

∂y
=
φ2 − φ1

∆y
=
φ1

b
. (11.3)

For the geometry used in figure 11.1, the gradient is 12.5 V/m, which as seen from figure
11.2 is accurately predicted by FLUENT.

11.2.2 Electrical potential for given current distribution

In order to determine if FLUENT is able to handle Neumann boundary conditions and still
predict the correct electrical potential, the above case is modified so that current density
is known at y = b. The chosen current distribution is

jy = −σ∂φ
∂y y=b

= −x, (11.4)

i.e. a linearly growing current entering the domain through the upper surface. Retaining
all other properties, the resulting electrical potential is

φ(x, y) =
a

2
y −

∞∑
n=1

10a3

n3π3

sinh nπy
a

cosh nπb
a

cos
nπx

a
. (11.5)
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Figure 11.3 shows the predicted electrical potential for various heights, compared to the
analytical solution.

Figure 11.3: Comparison of FLUENT and analytical solution for parallel plates with Neumann
boundary conditions.

As for the infinite parallel plates, the difference between the two solutions is negligible.

11.2.3 Electrical potential between finite parallel plates

The final case related to the electrical potential is a combination of the two previous, which
is boundaries with combined Dirichlet and Neumann boundary conditions. A sketch of the
problem domain is shown in figure 11.4.

As no known analytical solution is found to this problem, the solution obtained by FLUENT
is compared to the solution obtained by the PDEtools package in MATLAB (based on
FEM).

As seen from figure 11.5, the two solutions are in good agreement, although some minor
discrepancies exist between the two solutions. These discrepancies are due to different
meshing techniques (PDEtools using a trigonal mesh, while the FLUENT solution is ob-
tained on a Cartesian mesh) and different procedures for interpolating the solution. The
two procedures predict the same electrical potential with an average absolute error of less
than 5%.
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Figure 11.4: Sketch of geometry and equipotential lines between finite parallel plates modelled
by a mixture of Neumann and Dirichlet boundary conditions.

Figure 11.5: Comparison of solutions to the finite plate problem obtained by MATLAB and
FLUENT.
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11.3 Current across sharp interfaces

As seen from table 11.1, the value of the electrical conductivity σi varies with several
orders of magnitude within the system considered. This is particularly problematic with
the (sharp interface) VOF-model, as properties then are discontinuous across interfaces,
possibly resulting in a wrong representation of transported properties (i.e. the electrical
potential and current).

Consider the zero order model, summarized as

∇ · σ∇φ = 0 (11.6)

j = −σ∇φ, (11.7)

where σ represents the electrical conductivity of the mixture. By default, the mixture
conductivity in a given computational cell is given as

σ =
∑
i

αiσi, (11.8)

where i represents the phase index.

A subtle problem arises from the way gradients are calculated in a finite volume code.
Considering the gradient of the scalar field φ and using the divergence theorem, we obtain∫

∇φdV =

∫
φndA, (11.9)

where A is the area with normal vector n enclosing the volume dV . Assuming that the
variation of ∇φ is small over dV , the gradient can be approximated as

∇φ ≈ 1

∆V

∑
f

φfnfAf , (11.10)

i.e. a flux of φ across the faces f enclosing the control volume ∆V 1. A problem arises here
due to the cell based structure of UDS equations in FLUENT, that is, only cell centred
values are accessible to users. Hence, in order to compute the gradient of the electrical
potential by equation 11.10, the face values of the scalar field must be found by means of
some interpolation scheme.

The default scheme used to find the face value φf is a distance weighted interpolation,
written as

φf =
φ0d1 + φ1d0

d0 + d1

, (11.11)

1This approximation of the gradient is commonly denoted as the reconstruction gradient
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where d0 and d1 are the distances from the center of cells with values φ1 and φ2, to the
face f between them. For an equidistant grid, the face value is simply the average value

φf =
φ0 + φ1

2
, (11.12)

which is easily verified by setting d0 = d1 in equation 11.11. The concept is further
illustrated in figure 11.6.

Figure 11.6: Geometry used to define reconstruction gradient.

As will be shown, the distance based gradient yields faulty results when computing a
current across a sharp interface. The alternative to this scheme is a conductivity weighted
interpolation defined as

φf =
φ0σ0d1 + φ1σ1d0

σ0d1 + σ1d0

. (11.13)

In the following, the influence of these schemes will be investigated for two distinct scenarios
of practical importance, namely a non-conducting bubble in a conducting fluid (cryolite)
and a stratified system of two conducting fluids (cryolite and aluminium). The initial setup
for the two scenarios is shown in figure 11.7.

Figure 11.8 shows the magnitude of current density along the center line calculated with
default and conductivity weighted gradients for the two cases shown in figure 11.7. As seen
from the figure 11.8, although currents far from the interface are consistent, the default
distance based gradient yields large and unphysical current densities close to the interface.
Hence, the conductivity weighted gradients are used for current density calculations in all
simulations.
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Figure 11.7: Setup for non-conducting bubble in cryolite (a) and stratified cryolite-aluminium
system (b). Figure is coloured by phase fraction. Geometry consists of 60x60
quadrilateral cells.

Figure 11.8: Influence of gradients for currents across sharp interfaces for non-conducting bub-
ble in electrolyte (a) and stratified electrolyte-aluminium system (b). Position of
interface is shown with green line.
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11.4 Magnetic boundary conditions

Consider the magnetic field arising from a uniform, circular conductor with infinite length,
as sketched below.

Figure 11.9: Sketch of current carrying conductor and resulting magnetic field.

Assuming that the current density is in the z-direction (j = jẑ, j = j(x, y)), the induced
magnetic field is restricted to the x, y-plane, i.e. Bind = Bx(x, y)x̂+By(x, y)ŷ. Using the
(general) integral form of Ampere’s law, the magnetic field is given as

Bind =

{
µ0j
2

(xŷ − yx̂) if
√
x2 + y2 < r0

µ0jr20
2(x2+y2)

(xŷ − yx̂) if
√
x2 + y2 ≥ r0

(11.14)

where r0 is the radius of the conductor, assumed to carry a uniform current distribution j.

Given a magnetic vector potential model and the current distribution, one essentially has
the choice between Dirichlet or Neumann boundary conditions, i.e.

A is known or
∂

∂n
A is known, (11.15)

where the Neumann condition can determine the solution up to some constant. With
correct boundary values, both of the above boundary conditions should result in a vector
potential which curl is identical to the magnetic field given by equation 11.14.

As the analytical magnetic field is known, the magnetic vector potential and hence the
exact boundary conditions can be determined. From definition, the Neumann boundary
condition is given as

∂Az
∂n

= [−By, Bx] · n, (11.16)
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where n is the normal vector of the boundary.

For the Dirichlet boundary condition, assuming continuity across the conductor boundary,
the magnetic vector potential is given (up to an additive constant) as

Az =

{
−µ0j

4
(x2 + y2) if

√
x2 + y2 < r0

µ0jr20
4

(
ln

r20
x2+y2

− 1
)

if
√
x2 + y2 ≥ r0

(11.17)

Clearly, the exact boundary conditions given by equations 11.16 and 11.17 are significantly
different from the commonly encountered academic boundary conditions, where constant
values are chosen at the boundaries. The influence of the different choices for boundary
conditions on the predicted magnetic field is studied in the following.

11.4.1 Planar 2D-system

Assume that the current is known and uniform within the conductor as for the analytical
case. As A||j, equation 10.33 reduces to

−∇2Az(x, y) = µ0jz(x, y), (11.18)

which can be solved through the UDS-framework in FLUENT with µjz(x, y) as a source
term.

The computational domain is made up by 100x100 quadrilateral cells and only the UDS
equation is solved. For simplicity, the parameter µ0j is given a value of unity.

In order to test the possible cases encountered in a realistic situation, the following three
cases are simulated:

1 The boundaries are “far” from the conductor periphery.

2 The boundaries are close to the conductor periphery.

3 The boundaries are within the conductor, i.e. the entire computational domain has a
finite current density.
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Boundaries far from conductor

Figure 11.10: Magnitude of magnetic field in radial direction r for various boundary conditions
(symbols), compared to analytical solution (dashed line). Conductor is given
a radius r0 = 1 m, while the distance from the center of the conductor to the
boundary is 7 m.

Figure 11.10 shows that all four boundary conditions give reasonable results up to r ∼ 3
m. This is as expected, as the boundaries are relatively far from the conductor and the
solution thus depends more on the source term rather than the boundary condition. Closer
to the boundary, the academic Neumann boundary condition enforces a zero magnetic field
which yields a large error, while the corresponding Dirichlet boundary condition appears to
asymptotically approach some constant value, approximately 20% larger than the analyti-
cal result. The exact boundary conditions reproduce the analytical result with a maximal
error of 3%.
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Boundaries close to conductor

Figure 11.11: Magnitude of magnetic field in radial direction r for various boundary conditions
(symbols), compared to analytical solution (dashed line). Conductor is given
a radius r0 = 6 m, while the distance from the center of the conductor to the
boundary is 7 m.

As seen from figure 11.11, the academic Dirichlet boundary condition behaves physically
reasonable and is able to accurately predict the magnetic field up to some limit from which
it over predicts the field by as much as 30 %. The Neumann solution however poorly
represents the actual field, which is as expected as we enforce a zero (tangential) magnetic
field at the boundaries which now are very close to the conductor. The exact boundary
conditions predict the analytical result with a maximal error of 3%.

Observing the vector plots shown in figure 11.12 reveals another problem with the academic
Neumann boundary condition, namely a radial component of the magnetic field. Further-
more, the expected circulating field around the origin appears to be off-centre. This is
possibly due to inaccuracies in the undetermined constant in the magnetic vector poten-
tial, originating from the inadequate choice of the boundary value. The predicted field
from the academic Dirichlet boundary conditions on the other hand appear to behave in a
more physically sensible way, at least considering the field in the wall-normal direction.
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Figure 11.12: Predicted magnetic field with academic (a) and exact (b) Dirichlet and academic
(c) and exact (d) Neumann boundary conditions. The direction of the current is
out of the paper plane, with centred origin. Vectors coloured by the magnitude
of the magnetic field.
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Boundaries within conductor

Figure 11.13 shows the final case where the entire computational domain carries a current.
As expected, the academic Neumann condition fails completely in this situation. However,
the academic Dirichlet condition yields a surprisingly good prediction, at least for the (far)
interior of the domain. As for the two previous cases, the academic Dirichlet solution over
predicts the value of the magnetic field with as much as 30%, while analytical boundary
conditions yield a maximal error of less than 3%.

Figure 11.13: Magnitude of magnetic field in radial direction r for various boundary conditions
(symbols), compared to analytical solution (dashed line). Conductor is given a
radius r0 = 10 m, while the distance from the center of the conductor to the
boundary is 7 m.
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11.4.2 Planar magnetic field due to 3D current tube

Consider a generalization of the planar case to a quasi-3D problem, meaning that the
current and magnetic vector potential still are restricted by j = j(x, y)ẑ andA = A(x, y)ẑ,
but the problem is solved in a 3D geometry as sketched in figure 11.14.

Figure 11.14: Current tube in 3D, shaded in dark blue. Geometry consists of 60x60x24 cells
and the size of the box is 1x1x0.4 m. The central current tube has a radius of
0.1 m.

The main difference between the quasi-3D and the planar case is the presence of surfaces
through which current passes. As these boundaries are of practical importance (as this
would be typical behaviour at the electrodes), any differences in the boundary conditions
should be identified.

In this specific case the academic and exact Neumann boundary conditions are identical
on the horizontal surfaces, i.e.

∂A

∂z
= 0, (11.19)

as A = A(x, y). The exact Dirichlet boundary condition for the conducting surfaces is
identical to that of the parallel walls, which differs significantly from the academic Dirichlet
boundary condition, imposing a “no slip” condition on the magnetic vector potential along
horizontal surfaces. The influence of the six different combinations of boundary conditions
on the magnetic field parallel to the conductor is shown in figures 11.15 and 11.16.

As seen from figure 11.15a, academic Dirichlet boundary conditions on all surfaces grossly
under predicts the magnetic field even in close proximity of the current tube. This effect is
most visible close to the conducting surfaces (z=0 and z=0.4) and is due to the “no slip”
condition imposed on the magnetic vector potential. The academic Neumann boundary
conditions behave similarly to the plane case, somewhat under predicting the magnetic
field far from the conductor (cf. figure 11.10). As expected, the exact boundary conditions
reproduce the analytical magnetic field with good accuracy.
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Figure 11.15: Computed magnetic field (circles) as a function of height (z) for various radial
distances r from the current tube, compared to the analytical result (solid lines),
with academic (a) and exact (b) Dirichlet and academic (c) and exact (d) Neu-
mann boundary conditions on all surfaces.
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Figure 11.16: Computed magnetic field (circles) as a function of height (z) for various radial
distances r from the current tube, compared to the analytical result (solid lines),
with academic (a) and exact (b) boundary conditions. Dirichlet and Neumann
conditions are applied to insulating and conducting surfaces, respectively.

Figure 11.16 shows the effect of combining Dirichlet and Neumann boundary conditions.
As clearly seen from figure 11.16a, the predicted magnetic field from the academic bound-
ary conditions is significantly improved when using this combination, the difference when
compared to the analytical result being less than 15%. The result using the mixed exact
boundary conditions does not change the result as the two formulations are equivalent.

Numerical remark

Although the exact Dirichlet and Neumann boundary conditions have similar predictive
power, the computational time varies significantly. On average, the magnetic field using
Neumann boundary conditions converged in an average of 500 iterations, while the Dirichlet
boundary conditions converged in only 5 iterations. The same tendency is found when using
academic boundary conditions. Usage of the mixed boundary conditions (as seen in figure
11.16) reduced the number of iterations to an average of 10. This slow convergence is
due to the undetermined constant arising from the pure Neumann boundary condition,
impeding convergence as there is no reference point for the magnetic vector potential.
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11.5 Magnetostatic pressure

The final verification of the basic MHD functionality of the proposed model is related to
the Lorentz force,

fL = j ×B (11.20)

which is coupled to the Navier-Stokes equation. The Lorentz force can be Hodge decom-
posed, i.e. split into a irrotational and divergence free part. If known prior to a calculation,
the irrotational part is commonly combined with the (irrotational) pressure gradient, re-
sulting in the magnetostatic pressure

−∇p̃ = −∇p+ (j ×B)irrotational . (11.21)

Assuming a stationary fluid and a purely irrotational Lorentz force, a pressure gradient
will form exactly balancing the Lorentz force, i.e.

∇p = (j ×B)irrotational . (11.22)

Assuming, for simplicity, j = j0ŷ and B = B0ẑ, the resulting pressure is

∂p

∂x
= j0B0

→ p = j0B0x+ C. (11.23)

Figure 11.17 shows a comparison between the analytical result (equation 11.23) and the
result obtained by FLUENT for a stationary liquid, on a 60 by 60 computational mesh.

Figure 11.17: Computed magnetostatic pressure (circles) compared to analytical solution (solid
line).
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MHD forces on a single bubble

Due to the negligible conductivity of CO2, electrical currents passing in a conducting
medium surrounding a bubble will become deflected, resulting in a force distribution along
the bubble surface. In the following the effect of this is studied, first for a non-conducting
solid sphere, as the analytical solution for this problem known, and then for a deformable
object, i.e. a bubble.

12.1 Forces on a non-conducting solid sphere

Consider a non-conducting sphere suspended in a conducting fluid, carrying a uniform
charge density j0 as sketched in figure 12.1, together with definitions for the chosen spher-
ical coordinates.

The boundary conditions for the problem are that the electrical current is tangential to
the surface of the sphere while it remains unchanged at large distances. As the sphere
is non-conducting, the normal current on the sphere surface is zero. This is equivalent
to solving the problem of a uniform, incompressible and inviscid fluid flow past a sphere,
provided that induced currents can be neglected.

From the above observation, it is clear that there exists a current stream function Ψj,
relating to the current density by

jr = − 1

r2 sinφ

∂Ψj

∂φ
, jz =

1

r sinφ

∂Ψj

∂r

⇒ j =
1

r sinφ

[
−1

r

∂

∂φ
,
∂

∂r
, 0

]
Ψj. (12.1)

The current stream function is obtained by a superposition of a uniform current −j0ẑ and
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Figure 12.1: Sketch of the problem geometry and definition of coordinate axes.

a doublet at the origin, yielding

Ψj =
1

2
j0r

2 sin2 φ

(
1− R3

r3

)
, (12.2)

where j0 is the free current density and R is the radius of the sphere.

Using equation 10.8 and the above relations, the magnetic field is easily identified as

B = −µ0
Ψj

r sinφ
θ̂, (12.3)

yielding a Lorentz force contribution of the form

j ×B = −µ0
Ψj

r2 sin2 φ
∇Ψj. (12.4)

Assuming non-zero, but sufficiently small velocities so that the assumption of a negligible
magnetic Reynolds number still holds, the momentum equation to leading order in velocity
reads

∇p = µ∇2u+ j ×Bind

⇒ ∇p = −µ∇×∇× u+ j ×Bind, (12.5)

where the assumption of an incompressible fluid has been used to express the Laplacian
as a curl. Equation 12.5 resembles a fluid undergoing creeping Stokes motion under the
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influence of an electromagnetic field. As noted in section 11.5, the Lorentz force in general
consists both rotational and irrotational parts, the former resulting in a flow field, the
latter in a pressure gradient. The contribution from the rotational part of the Lorentz
force is found by taking the curl of equation 12.5, yielding

µ∇×∇×∇× u = ∇× (j ×Bind) = −3

2
µ0j

2
0 sinφ cosφ

R3

r3

(
1− R3

r3

)
θ̂ (12.6)

Assuming that the fluid velocity has the same symmetry properties as the electromagnetic
fields, together with the assumption of incompressibility, the fluid velocity can be derived
from a stream function for the fluid flow:

u =
1

r sinφ

[
−1

r

∂

∂φ
,
∂

∂r
, 0

]
Ψf . (12.7)

The triple curl of equation 12.6 can, after some tedious algebra, be expressed as

µ∇×∇×∇× u =
µ

r sinφ

[
∂2

∂r2
+

sinφ

r2

∂

∂φ

(
1

sinφ

∂

∂φ

)]2

Ψf θ̂, (12.8)

i.e. a fourth order, inhomogeneous PDE for the fluid stream function. Following the ansatz
of Chow [17], the stream function describing the fluid flow can be written as

Ψf = R(r) sin2 φ cosφ, (12.9)

resulting upon substitution in equation 12.6 in an ODE for the radial function, with solution
easily obtained by power series:

Ψf =
µ0j
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sin2 φ cosφ. (12.10)

The constants ci are determined from the requirement of physical velocities when r is large
and zero velocities on the surface of the sphere (i.e. a no-slip condition is imposed), yielding

c1 = 0 c2 = 0 (12.11)

c3 =
1

2
c4 = −5

2
(12.12)

It should be noted that this yields finite velocities at large r, resulting from the neglected
inertia term in the Navier-Stokes equations. It is suggested by Chow [17] that this could
be corrected by using an Oseen approach, as done by Chow and Billings [18]. Nevertheless,
the Stokes approximation should hold within the vicinity of the sphere.

Given Ψf , the expression can be substituted in equation 12.5 to find the pressure field. On
the surface of the sphere, the pressure is

psurf = p0 −
9

16
µ0j

2
0 sin2 φR2, (12.13)
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i.e. it has its minimum along the equator of the sphere. Considering a sphere of radius
1 cm situated in a fluid carrying 104A/m2, the pressure difference between the top and
equator is 0.0071 Pa.

Figure 12.2 shows the steady state pressure distribution and velocity field along the sphere
obtained by FLUENT as well as a comparison to the analytical solution. For simplicity, the
magnetic field is specified directly as of equation 12.3. Geometry and boundary conditions
are as in figure 12.3, except for the sphere which, necessarily, is treated as a no-slip solid
surface.

Figure 12.2: Flow field coloured by velocity magnitude and pressure on sphere surface (a) and
comparison with analytical solution (b).

The FLUENT solution yields a pressure difference of 0.0072 Pa between the top and equator
of the sphere, i.e. an absolute error of 1.4%.
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12.2 Forces on a non-conducting bubble

Consider an initially spherical bubble of non-conducting gas placed in a medium carrying
an electrical current. As shown in the analysis of a solid sphere, the current deflection of
current around a non-conducting sphere yields a pressure field which is minimal along the
equator of the sphere. For a deformable object, such as a gaseous bubble, this pressure
field results in a compression of the bubble in the direction parallel to the current.

The problem is set up in FLUENT as a two-phase VOF problem, using the full A − φ
model for MHD in a cylindrical geometry (cf. figure 12.3). The bubble is assumed to have
an initial radius of 1 cm and situated in cryolite, carrying a uniform current density of
104 A/m2. A constant current density is specified at the bottom of the system, while the
reference potential is given at the top.

The top and bottom surfaces are treated as solid walls, while the outer cylinder in treated
as a zero gauge pressure outlet. Pressure is discretized by the PISO scheme, while the
equations for momentum and UDS equations are discretized using the QUICK scheme.
Transient behaviour is treated by the first order implicit method with a constant time step
of 1 · 10−4 s. The mesh, consisting of 568512 quadrilateral cells is shown in figure 12.3.

Figure 12.3: Computational mesh, geometry and boundary conditions for non-conducting bub-
ble.

Considering a point far from the bubble (i.e. the outer surfaces), the current field can be
approximated by −j0ẑ, which is identical to that of section 11.4.2. Hence, the boundary
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conditions for Az can be approximated by equation 11.17. The deflected current along
the bubble surface yields a source for the remaining components of the magnetic vector
potential. The influence of these components on the outer surfaces can however be con-
sidered as a perturbation, so that academic boundary conditions can be used as a first
approximation. As all fields are shared in the VOF formulation, no boundary conditions
are needed for the bubble-cryolite interface.

Figure 12.4 shows the converged current and resulting magnetic field for a bubble with no
deformation.

Figure 12.4: Comparison of analytical solution for solid sphere (solid line) and FLUENT so-
lution for non-deformed bubble (circles) for magnetic field (a) in zx-plane along
x-axis and electrical current (b) in zx-plane along z-axis.

As seen from figure 12.4, both the electrical current and resulting magnetic field correspond
well to the expected analytical behaviour of a solid non-conducting sphere, the average
absolute error being less than 5%. Figure 12.5 shows the evolution of a 1 cm bubble over
5 seconds flowtime under the influence of the resulting MHD-forces.
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Figure 12.5: Evolution of bubble surface under influence of MHD-forces. Surface shown at 1, 3
and 5 seconds flowtime.

As expected, the bubble is flattened due to the pressure imbalance along its surface.

The resulting pressure due to the deflecting currents is of order 10 mPa, which is small
compared to other forces present. For instance, the overpressure in a gaseous CO2 bubble
in cryolite of radius 0.01m due to surface tension is approximately 10 Pa; four orders of
magnitude larger. The case with surface tension is not treated here due to the (inadequate
for this case) CSF-treatment of surface tension (cf. Appendix A), yielding spurious veloci-
ties along the bubble surface effectively screening out effects of the (low magnetic Reynolds
number) physical velocity field.

Disregarding surface tension effects, the time scales required to obtain a noticeable defor-
mation are of the same order as a full bubble cycle. Hence, the local MHD effects, that
is, effects owing to fields produced by a single bubble, discussed in this chapter are not
expected to have a significant influence on the overall bubble behaviour.



136 CHAPTER 12. MHD FORCES ON A SINGLE BUBBLE



Chapter 13

MHD effects in a lab scale cell

Results from the previous chapter indicate that local MHD effects are small when com-
pared to other forces acting on a bubble. Global MHD effects can however, under certain
conditions, be significant, as proposed by Bojarevics and Roy [8]. As the principal val-
idations on the bubble model of this thesis are performed on a lab-scale electrolysis cell
(Eick et al. [29]), which magnetic fields are unknown, these are estimated in the following
sections using the proposed A− φ model.

13.1 Geometry and setup

In order to simplify meshing, the laboratory cell of Eick et al. [29] is represented by
cubes with dimensions corresponding to that of the real cell, as shown in figure 13.1. The
essential features of the anode and cathode are well represented by this simplification, but
the outer cylindrical casing is not. This is however not a critical issue, as the electrical
current is nonzero only in the proximity of the interpolar region. Hence, outside this
region the magnetic field will decrease in magnitude, rendering MHD effects in this region
insignificant.

In essence, the system considered is similar to that studied in section 11.4.2 (with inverted
direction), provided that the influence of horizontal currents is small. Hence, in the in-
terpolar region, the dominating contribution to the Lorentz force is expected to be of the
form

fL = −µ0j
2
0

2
(xx̂+ yŷ) , (13.1)

i.e. directed towards the center of the interpolar region, with resulting magnetostatic
pressure

p = p0 −
µ0j

2
0

4

(
x2 + y2

)
. (13.2)
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For the following simulations, cryolite is assumed to be the working material. Simulations
are performed with the steady state solver in FLUENT. User defined scalars are discretized
using a Power Law scheme and are solved using a W-cycle for increased convergence rate.
All other solver settings are kept at default values. Academic boundary conditions as
of section 11.4.2, i.e. Dirichlet and Neumann conditions to insulating and conducting
surfaces, respectively, are applied to the magnetic vector potential on all internal surfaces,
while exact Dirichlet boundary conditions as of equation 11.17 are used for Az on the outer
boundaries.

Figure 13.1: Side (a) and top (b) view of geometry and mesh used for lab-cell MHD simulations.
The anode potential is fixed while the cathode carries a uniform current density.
All other walls (black lines) are considered to be non-conductive. Geometry con-
sists of 117440 cells.
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13.2 Electric and magnetic fields

Figure 13.2 shows the converged current density field in the y = 0-plane and the magnitude
of current density along the line z = y = 0 compared to the ideal case of uniform current
density, with a prescribed current density of 8000 A/m2 at the cathode.

Figure 13.2: Predicted current density field in the y = 0-plane (a) and magnitude (solid line)
compared to uniform current density (circles) (b).

As seen from the above figure, the actual current density is smeared outside the interpolar
region compared to the idealized case. Hence, given a loop with area corresponding to the
electrode, less current will pass through it than in the uniform case, resulting in smaller
magnetic fields along the periphery of the loop. Due to the smearing of the electrical field,
the resulting magnetic field outside of the interpolar region is expected to decline at a lower
rate than in the idealized case.

Figure 13.3 shows the predicted magnetic field in the z = 0-plane and its magnitude along
the line z = y = 0 compared to the field obtained from a uniform current density.

The calculated magnetic field in the interpolar region (cf. figure 13.3b) is on average 5%
lower than that found in the idealized case.

As for the idealized case, the main contribution to the Lorentz force is radial and directed
towards the centre of the interpolar region. The resulting (gauge) pressure in the z = 0-
plane and along the line z = y = 0 compared to that obtained by equation 13.2 is shown
in figure 13.4.
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Figure 13.3: Predicted magnetic field in the z = 0-plane (a) and magnitude (solid line) com-
pared to field from uniform current density (circles) (b).

Figure 13.4: Contours of predicted magnetostatic pressure field in the z = 0-plane (a) and along
line z = y = 0 (solid line) compared to field from uniform current density (circles)
(b).
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The imbalance of pressure between the interpolar region and the outer regions of the cell
necessarily results in a motion of the bath. The steady state solution of this motion is
shown in figure 13.5.

Figure 13.5: Steady state velocity field in y = 0- (a) and z = 0-plane (b). Vectors are coloured
by velocity magnitude.

As seen from the above figure, the MHD-induced pressure field results in a jet-like motion
of bath across the sides of the interpolar region, with velocities in the order of 1 mm/s.

Although the resulting pressure and velocity fields are small in magnitude, their direction
is such that they lead to enhanced transport to either of the anode edges. The significance
of this enhanced transport is studied further in connection with the full bubble model,
treated in Part IV of this thesis.
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13.3 Bubble-current interactions

The previous section describes the behaviour of the electromagnetic fields in the lab scale
cell of Eick et al. [29] without any bubbles present. As seen from figure 11.7, the presence
of a non-conductive bubble significantly alters the distribution of electrical current, thus
increasing the cell voltage for a given current density.

For simplicity, consider a cylindrical bubble with diameter Dbub and thickness h placed on
the centre of the anode, as shown in figure 13.6.

Figure 13.6: Side (a) and top (b) view of geometry for bubble-current interactions. A cylindrical
bubble with diameter Dbub and thickness h is placed in the interpolar region with
length LACD. Mesh is identical to that shown in figure 13.1.

The classical view of bubble resistance (cf. Hyde and Welch [53]) is that bubbles contribute
to the electrical resistance through a reduced interpolar space (LACD − h) and a coverage
factor

θcov =
Abub
Aanode

, (13.3)

where Abub is the projected bubble area on an anode with surface Aanode. Detailed cal-
culations by Zoric and Solheim [150] and Thonstad et al. [117] show that the influence
of current deflection can be as large as 30% of the total resistance, thus extending the
classical view. The total resistance of the cell is as of Thonstad et al. [116] given as

RT

R0

= 1 +

(
1

1− θcov
− 1

)(
h

LACD
+

1− h
LACD

1 + 10(LACD−h)
Dbub

√
θcov

)
, (13.4)
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where R0 is the electrical resistance when no bubbles are present. Figure 13.7 shows a
comparison between the above equation and the cell voltage predicted by FLUENT for
LACD = 4cm for various values of Dbub and h, at a current density of 8000 A/m2.

Figure 13.7: Predicted cell voltage (solid lines) compared to equation 13.4 (symbols) for various
bubble sizes.

The average difference between simulated voltage and that obtained by equation 13.4 is
less than 10% for the cases considered.

As shown by Zoric and Solheim [150], the presence of a bubble results in a local maxima
of current density close to the bubble edge, while the local current density in the bubble
should be zero. In addition, a local minima in current density occurs in the shadow of the
bubble. As seen from figure 13.8, the proposed model reproduces the expected behaviour.

As a result of the altered current density, the distribution of magnetic fields and the
resulting Lorentz forces necessarily change. As seen from figure 13.9, this is indeed the
case; the magnetic field is effectively suppressed within the bubble, as no current density
passes through this region. The far-field is however identical, as the total current density
is the same for both cases considered.

The inclusion of bubbles thus introduces localized, temporal, MHD effects which in prin-
ciple can alter global bubble behaviour, the dynamics of which will be treated in Part IV
of this thesis.
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Figure 13.8: Distribution of current density with bubble present (symbols) compared to case
without bubble (solid line) along lines passing through bubble y = 0, z = 1.5 (a)
and close to cathode y = 0, z = −1.5 (b), for j=8000 A/m2, Dbub=3 cm, h=1 cm
and LACD=4 cm.

Figure 13.9: Prediction of magnetic field bubble present (symbols) compared to case without
bubble (solid line) along lines passing through bubble y = 0, z = 1.5 for j=8000
A/m2, Dbub=3 cm, h=1 cm and LACD=4 cm.



Part IV: Gas generation and bubble
evolution

Outline of Part IV

Part IV describes a phenomenological model for the creation and transport of anodic gas
bubbles. It is divided into four chapters which cover:

• Theory and background

• Verification studies

• Validation studies

• 3D case study

Following the derivation of the proposed model and essential verification studies, the model
is validated against the lab scale experiments described in part II of this thesis.

The proposed model is a new multiscale approach in which molecular species are produced
and transported through a supersaturated electrolyte. Sub grid bubbles are allowed to form
through nucleation and the resulting bubble population evolves through mass transfer and
coalescence. As sub grid bubbles reach a certain size they are transferred to a macroscopic
phase which evolution is governed by the VOF method.
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Chapter 14

Theory and background

A realistic model of gas evolving anodes in a Hall-Héroult cell should treat the following
issues:

• Generation and transport of molecular CO2.

• Nucleation of gaseous bubbles.

• Growth and coalescence of bubbles.

• Dynamic evolution of the bubbly flow and coupling to flow- and MHD fields.

The final stage, termed the macroscopic stage, is treated by means of the VOF model
and MHD effects are governed by the models presented in Part III of this thesis. In the
following sections, a formalism treating each of the remaining above issues is developed.

14.1 Microscopic gas generation and transport

14.1.1 Generation of microscopic gas fractions

It is an undisputed experimental fact that small gaseous bubbles predominantly form on
specific nucleation sites, a phenomena which relies upon the presence of CO2, which is
formed on the anode surface by some chemical reaction. Considering the following, sim-
plified, half reaction on the anode

3

2
O2− +

3

4
C → 3

4
CO2 + 3e−, (14.1)

where oxygen is supplied from the raw material (alumina), carbon is supplied from the
anode and electrons are supplied from the imposed external current (passing through the
carbon anode). Although reaction 14.1 is the most simple form of the anode reaction, it
introduces four effects which influence the overall picture;
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1 The anode is consumed during operation.

2 Oxygen (in some form) must be present in order to produce CO2.

3 The reaction rate can be a limiting step.

4 Electrons must reach the specified reaction site (i.e. a site with non-zero local current
density) in order to produce CO2.

As the anode is consumed, the (average) anode-cathode distance (ACD) is adjusted so that
it is constant in order maintain stable operational conditions (cf. Grjotheim and Kvande
[47]). Furthermore, the anode consumption rate is small compared to typical bubble time
scales, typically on the order of 1–2 cm per 24 hours. Hence, the anode consumption can
as a first approximation be neglected.

The presence of oxygen containing species depends upon the dissolution and transport
of Al2O3. Throughout operation, alumina is fed from specific sites to the cell at regular
intervals in order to keep the concentration within a given band (cf. Grjotheim and Kvande
[47]). Hence, the concentration of oxygen containing species in the bath can be assumed to
be close to the sought operational concentration band. Furthermore, as shown by Dahlkild
[23], concentrations of ionic species are essentially homogeneous close to the electrodes
due to the mixing effect of bubbles and electrophoresis. Based on these arguments, it can
thus be assumed that the concentration of oxygen containing species is homogeneous and
constant.

The consequences of the two above assumptions is that

a Anode properties such as pore-distribution and local height remain constant.

b The anode effect (cf. Grjotheim and Kvande [47]) cannot be handled.

c The dynamics of alumina dependent properties cannot be treated.

Regarding the reaction rate, several kinetic parameters are suggested in the literature due
to the large uncertainties in the exact anode process. A common feature is, necessarily, a
fairly large dependence of alumina concentration. Kisza et al. [64] and [65] study plausible
reactions and find reaction rates pointing to relatively large Damköler numbers (cf. Bird
et al. [6]), suggesting that the reaction rate can be taken to be instantaneous, compared
to time scales of interest, as a first approximation.

Neglecting the influence of the first three issues presented above leads to the readily en-
countered assumption that the generation of CO2 is dependent only upon local current
density. That is, the CO2 production (kg / s) on the anode surface is given by Faraday’s
law

ṁCO2,d =
MCO2I

νeF
. (14.2)
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14.1.2 Transport of molecular gas species

The produced CO2 is transported away from the anode surface by molecular diffusion and
superimposed advection. As described by Vogt [126]; If the interfacial concentration exceeds
a certain value (depending on the properties of the electrolyte, the gas and the surface
morphology of the electrode) nuclei at the electrode surface become active and molecular
gas is transformed into a gaseous phase. The electrode starts working as a gas evolving
electrode. Hence, the distribution of molecular CO2 is governed by two processes;

a Convective and diffusive transport of CO2.

b Mass transfer of molecular CO2 to nuclei and growing bubbles.

Figure 14.1: Sketch of the two possibilities for transport of molecular CO2.

Although the literature agrees upon that molecular CO2 is produced on the anode surface,
the path taken by gaseous species following production is somewhat disputed. As sketched
in figure 14.1, two possibilities exist:

• CO2 is transported through pores in the anode.

• CO2 is transported through the bath.

Both processes rely on the fact that either the anode or the bath operates as a gas reservoir.
Although both transport mechanisms have been used for general electrolysis applications,
it appears as though the anode transport scenario has become the most common approach
when it comes to the Hall-Héroult process, possibly due to the conclusion of Poncsák et al.
[93] stating that storage and diffusion of gas through the electrolyte plays a negligible role
in the aluminium reduction cell. This conclusion is based upon the fact that CO2 has a
relatively low solubility in the bath, ranging from 1 to 5 mol/m3 (depending upon alumina
concentrations, Numata and Bockris [85]), and low diffusivities, ranging from 10−9-10−5

cm−2/s (Poncsák et al. [93]).
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The anode commonly used in the Hall-Héroult process is known to have a volumetric poros-
ity of 10-30% (Grjotheim and Kvande [47]), suggesting that it can contain a corresponding
amount of gas. Poncsák et al. [93] estimate the molecular diffusivity of CO2 in the carbon
anode to be 1.5·10−2 cm2/s; significantly higher than in the bath. An analysis based exclu-
sively on a comparison of the diffusivities of (pure) CO2 clearly favours the anode transport
model, as this mode will allow for faster evolution of bubbles. However, considering the
broader picture, effects reported in the literature indicate that this transport mechanism
has some shortcomings.

First and foremost, a direct consequence of the anode transport model is that a non-porous
anode cannot develop into a gas evolving electrode. Nevertheless, successful electrolysis
experiments have been performed using so-called glassy anodes (cf. for instance Leistra
and Sides [73]). Secondly, no plausible mechanism explaining the physics resulting in a
saturated anode is given, i.e. by which physical principles the gas moves through the anode
and back to bubble nuclei, rather than leaving the anode altogether. In addition, the mass
transfer coefficient from the anode to bubble nuclei is unknown and must be estimated.
Poncsák et al. [93] determine the mass transfer coefficient by means of a parametric study
in order to match the model to experimental values1.

The low diffusivity and resulting slow mass transfer pointed out by Poncsák et al. [93] is
not necessarily as important as it at first might appear, as this, in combination with the
low saturation concentration, indicates that the bath in proximity of the anode rapidly
becomes supersaturated, thus allowing for bubble nucleation and further mass transfer.
Although the low diffusivity would suggest that mass transfer would be slow, high levels
of supersaturations could in principle compensate for this, thus evolving bubbles at rates
comparable to the anode transport mode.

Due to the large uncertainty in factors influencing the mass transfer, both transport modes
are left with the same degree of uncertainty. In a real process (excluding glassy anodes),
both bath and anodic gas transport are most certainly present and the dominating mode
will vary depending upon operational parameters and local hydro- and thermodynamical
conditions. From a modelling perspective one mode can be included in the other by
adjusting the mass transfer parameters accordingly, yielding the two transport mechanisms
equivalent. The choice of model thus becomes of a practical nature based on predictive
power, numerical stability, compatibility with other models and computational cost.

As the main goal of the present work is to describe transport phenomena in the interpolar
region (i.e. the bath) and due to a somewhat higher predictive power (possibility to treat
glassy anodes), the bath transport model is chosen. In this case, the mass fraction of
dissolved (molecular) CO2 is governed by the following advection-diffusion equation

∂ρXCO2

∂t
+∇ · (uρXCO2 − ρDeff∇XCO2) = SpCO2

− SnCO2
− SdmtCO2

, (14.3)

1Which results in a somewhat unfair comparison to the bath transport model
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where XCO2 is the local mass fraction of CO2, ρ is the local fluid density, u is the bath
velocity and Deff is the effective diffusivity. The source- and sink terms on the right hand
side represent production (as of equation 14.2), nucleation of gaseous bubbles and direct
mass transfer to existing bubbles, respectively. The corresponding local concentration of
CO2 is given as CCO2 = ρXCO2 .
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14.2 Nucleation of gaseous bubbles

Nucleation is a broad term covering the generation of particles, for instance bubbles or
crystals, from supersaturated and/or superheated fluids. As expected from the broad
definition, nucleation processes occur in numerous applications ranging from carbonated
beverages to cavitation on a propeller of a submarine. Somewhat related to the first exam-
ple is nucleation in electrolysis cells, where chemical reactions produce a supersaturated
state from which bubbles are created. Hence, in order for nucleation to proceed, the lo-
cal species molar fraction Yi (or concentration) must exceed the (local) saturation molar
fraction (solubility) Ys. That is,

S =
Yi
Ys
− 1 > 0, (14.4)

where S is the supersaturation, must be fulfilled.

A classical estimate of the degree of supersaturation needed is obtained from Henry’s law,
relating pressure to molar fractions through a linear relation. Using Henry’s law, the
pressure elevation due to supersaturation is given as

∆p = pi − ps = H (Yi − Ys) = psS, (14.5)

where H is Henry’s constant for this particular system. From a mechanic perspective the
pressure elevation ∆p is due to surface tension, σ acting in the (curved) surface of the
bubble and is given by

∆p =
γ

Dbub

, (14.6)

where Dbub is the diameter of the bubble. Evidently, the required supersaturation can be
significant if nucleated bubbles are small, which typically is the case.

As argued by Jones et al. [57], the nucleation events observed in most instances occur
at low to moderate degrees of supersaturation, leading to a new classification of different
modes of nucleation.

14.2.1 Nucleation modes of Jones et al.

Jones et al. [57] use the term nucleation to generically denote any process that leads
autogenously to the formation of a bubble. Due to the generic nature of the term and
confusion in the literature, the authors make an effort to mechanistically define four types
of nucleation, described in the following sections, thus extending the classical picture based
on homogeneous and heterogeneous nucleation.
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Bubble generation by classical homogeneous nucleation (type I)

Classical homogeneous nucleation involves nucleation of bubbles in the liquid bulk of a
homogeneous solution. Prior to the nucleation event, there are no gas cavities present,
meaning that bubbles are created at seemingly random places as sketched in figure 14.2.

Figure 14.2: Classical homogeneous nucleation where bubbles are nucleated in the bulk of a
liquid.

For a classical nucleation event to occur, a (bubble) surface must be formed in a region
where no gas was present, thus “tearing apart” the surrounding fluid. This motion of the
surrounding fluid requires a significant amount of energy, available only at high partial
pressures, i.e. high levels of supersaturation. As shown by Jones et al. [57], homogeneous
nucleation requires supersaturation levels of 100 or more and nucleation of an additional
bubble at the same site (after bubble departure) is highly unlikely.

Bubble generation by classical heterogeneous nucleation (type II)

Heterogeneous nucleation is similar to the homogeneous case, except that nucleation occurs
on some irregularity in the system, for instance a crevice on a surface as shown in figure
14.3.

As for type I nucleation, no gas is present in the system prior to the nucleation event,
suggesting that the level of supersaturation required is comparable in the two cases. Upon
departure of the bubble, a small portion of gas may remain at the surface enabling nucle-
ation of type III and IV, as described in the following.
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Figure 14.3: Classical heterogeneous nucleation where bubbles are nucleated on imperfections
of a surface.

Bubble generation by pseudo-classical nucleation (type III)

Pseudo classical nucleation involves the generation of bubbles at pre-existing gas cavities
in the system, as shown in figure 14.4.

Figure 14.4: Pseudo-classical nucleation where bubbles are generated on pre-existing gas cavi-
ties with curvature less than the classical stable radius.

The pre-existing cavities are metastable in the sense that their curvature is less than the
stable radius predicted by the classical theory (equation 14.6). Hence, there exists a finite
energy barrier that must be overcome in order for further growth (nucleation) to occur.
According to Jones et al. [57], local fluctuations in supersaturation are responsible for
bringing nucleation sites to life. This is similar to the classical nucleation theory, although
much lower levels of supersaturation are needed as a surface already is present.
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Bubble generation by non-classical nucleation (type IV)

Type IV nucleation is denoted non-classical by Jones et al. [57] because there is no nucle-
ation energy barrier to overcome. Such a process is possible on pre-existing gas cavities
with curvature larger than the classical stable radius, as shown in figure 14.5. Hence, this
mode is entirely different from the classical notion of nucleation.

Figure 14.5: Non-classical nucleation where bubbles are generated on pre-existing gas cavities
with curvature larger than the classical stable radius.

The pre-existing gas cavities are present from prior nucleation events (type II or III) or
as residues from the preparation of the system. As no energy barrier is present, type IV
nucleation is essentially equivalent to bubble growth in a supersaturated solution, i.e. mass
transfer driven by a concentration difference between the bulk fluid and bubble surface. As
the supersaturation decreases, the critical radius of a given cavity increases until bubble
production ceases. In this case, a new type III nucleation event is required before bubble
generation by type IV nucleation continues.

The quasi-steady state picture of a bubble evolving system is thus an alternation between
pseudo- and non-classical nucleation. However, the observed steady cycle of bubble produc-
tion in for instance carbonated beverages is, as postulated by Jones et al. [57], accounted
for by the non-classical nucleation theory. As shown in the following, this theory can also
serve as a basis for treating bubble generation in Hall-Héroult cells.
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14.2.2 Bubble generation in Hall-Héroult cells

On a fundamental level, little is known regarding generation of bubbles in Hall-Héroult
cells. A phenomenological description can however be extracted from the overall informa-
tion found in the literature. Experimental observations indicate that large to moderate
voltage oscillations are due to a (quasi) periodic release of large bubbles. Large bubbles
are created in a semi-continuous fashion through the successive coalescence and growth of
smaller bubbles down to some minimal bubble size (typical diameter of 0.4-0.6 mm) found
to originate from the anode surface in a steady manner (cf. Xue and Øye [139]). The
formation of these microbubbles is in the following denoted as nucleation, following the
general definition of Jones et al. [57].

Xue and Øye [139] find a linear relation between voltage and time during the initial growth
of bubbles (before coalescence occurs), which corresponds to a linear increase in the pro-
jected bubble area, as of equation 13.4 for small values of θcov. This suggests that the
bubble diameter, Dbub should follow a growth-law of the form

Dbub ∝
√
t, (14.7)

which essentially is the classical result of Scriven [106], describing the growth of bubbles in
supersaturated solutions, analogous to the model adopted by Jones et al. [58], to describe
type IV nucleation.

As shown in figure 14.6, the linear voltage regime starts shortly after the release of a (large)
bubble.

Figure 14.6: Measured voltage signal (solid line) and observed escaping bubbles (circles) for lab
scale experiments described by Eick et al. [29].

The short time between release and generation of new bubbles suggests that low to mod-
erate levels of supersaturation are sufficient to initiate bubble nucleation. Furthermore,
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the characteristic growth curves indicate a smooth increase in bubble coverage following a
release event.

The above observations indicate that nucleation in Hall-Héroult cells relies upon a steady
production of gas, rather than an abrupt flashing of bubbles requiring high levels of su-
persaturation. That is, non-classical nucleation appears to phenomenologically describe
steady state bubble generation in Hall-Héroult cells.

The main requirement for bubble generation by type IV nucleation is that gas cavities exist
prior to the nucleation event. Considering the porosity of industrial anodes (Grjotheim
and Kvande [47]), the surface roughness is expected to be significant. Measurements of the
surface roughness reveal large variations in pore size, the majority of the measurements
yield pore diameters in the range of 20 to 100 µm (cf. for instance Rørvik and Øye [102]).
This results in a high density of sites where gas in principle could be trapped.

A detailed review of mechanisms leading to gas entrapment in cavities is given by Jones et
al. [57]. In general, the literature agrees that gas entrapment depends upon the geometry
of the crevice and the contact angle between fluid and gas. Specifically, the requirement

θ > 2β, (14.8)

where θ is the contact angle and β is the half angle of the crevice, is needed for gas to
remain trapped in the pore. That is, the depth hp of a pore with diameter Dp must be
such that

hp >
Dp

2 tan θ
2

. (14.9)

Considering typical contact angles of 100 to 140◦ (cf. Grjotheim et al. [46]), the depth of
the pore should be of order 10% or greater than the corresponding pore diameter, if gas
is to remain trapped in it. Typically, as seen from the permeability studies of Rørvik and
Øye [102], the pores present on the anode surface appear to meet this requirement.

14.2.3 A simple model for pore distribution

As the typical pore diameter is the µm-range, it is evident that in a practical calculation
of even a lab scale anode (10 by 10 cm), the detailed porous structure cannot be resolved
by the computational mesh. Hence, the current section sets out to describe a model which
transforms the essence of the sub-grid porosity to a macroscopic property, namely the
effective pore density.

As a simplified model, the following is assumed

a Only one pore diameter is present (the mean pore diameter).

b The effective pore density (ρpore = Apore/Atot) is given by a random distribution.
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As a basis for the effective pore density, consider figure 14.7, showing the surface of a 5 by
5 cm piece of anodic material.

Figure 14.7: Segment of anode surface (a) divided into 100 cells (b). White regions represent
pores and cavities. Image courtesy of Lorentz Petter Lossius [78]

Considering figure 14.7, it is evident that the anode surface has a significant microstructure.
In order to transfer the above detailed information to a macroscopic pore density, the given
anode surface is divided into 100 cells, each with area 5 by 5 mm2, as shown in figure 14.7b.
The division into 100 cells is used in order to obtain a dataset of sufficiently large size and
corresponds roughly to the finest resolution used in practical calculations.

The (total) pore density (i.e. white area divided by total area) in each of the cells depicted
in figure 14.7, results in the distribution shown in figure 14.8.

As seen from figure 14.8, the distribution of the porosity is clearly biased towards the
low porosity regions. For the given sample (and resolution), all cells are found to have
a porosity between 2 and 25%. In order to simulate the observed properties, the pore
distribution is for simplicity modelled as a linear distribution on the form

ρpore = (1−
√

1− ϑ)(ρp,max − ρp,min) + ρp,min, (14.10)

where ϑ is a uniformly distributed random number between 0 and 1, and ρp,min and ρp,max
respectively represent the lower and upper bands of the distribution. Figure 14.8 shows the
resulting pore density distribution using equation 14.10 with ρp,min = 2% and ρp,max = 24%.
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Figure 14.8: Distribution of porosity from anode sample (histogram) and reconstructed linear
distribution (solid red line).

Given the pore distribution, the number of active pores in one unit area, A, is given as

Npore = γaρpore
A

Ap0
, (14.11)

where Ap0 is the area of one single pore (assumed to be given by the mean pore diameter)
and γa is an activation parameter, defined by equation 14.91.
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14.3 Mass transfer to bubbles

Mass transfer can essentially occur by means of two modes: diffusion and advection. The
term advection is here used broadly to describe all flow related modes of mass transfer, i.e.
mass transfer which is not based on pure diffusion. Mass transfer is formally analogous to
heat transfer, where heat conduction and convection correspond to the two modes treated
here. In practical applications, both modes may occur simultaneously.

14.3.1 General treatment of mass transfer

In the following the essential features of mass transfer are described, based on a corre-
sponding discussion related to heat transfer found in chapter 7 of Johansen et al. [56].

Mass transfer by diffusion

The phenomenological law for diffusive mass transfer, Fick’s law, gives the mass flux for a
species i as

Ṁi = −Di∇Ci, (14.12)

where Di is the diffusivity of the species in question. For non-stationary cases, the concen-
tration of species is governed by Fick’s 2nd law,

∂Ci
∂t

= ∇ · (Di∇Ci) (14.13)

Mass transfer by advection

For mass transfer by advection, the transfer rate is proportional to the concentration
difference between the surface and the bulk of the surrounding fluid. The constant of
proportionality is the mass transfer coefficient, k′i, defined by

Ṁi = k′i(Ci,b − Ci,s). (14.14)

The physical justification for applying the mass transfer concept is that the fluid is well
mixed with a uniform bulk concentration, except for within a concentration boundary layer
with thickness δ surrounding the particle where diffusion occurs, that is

Ṁi = −Di
(
∂Ci
∂n

)
≈ Di

δ
(Ci,b − Ci,s) . (14.15)

Since the boundary layer thickness in the general case is unknown, it is common practice
to use equation 14.14 instead of 14.15. Unlike the diffusivity, the mass transfer coefficient
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is merely given by the definition and depends upon flow conditions such as average fluid
velocity and in particular whether the flow is turbulent or laminar. As for convective heat
transfer, the complexity of most situations precludes an exact analysis and semi-empirical
correlations must be used in engineering applications. In practice, the correlations are given
by the Sherwood number (Sh), which acts as a dimensionless mass transfer coefficient,
corresponding to the Nusselt number in heat-transfer problems.

Quasi-steady mass transfer to a particle

Consider an instantaneously rigid particle with diameter Dp at rest in a quiescent fluid
which is supersaturated with concentration Ci,b outside the concentration boundary layer.
The particle surface is in equilibrium, having concentration equal to the saturation concen-
tration, Ci,s, as sketched in figure 14.9. Assuming quasi-steady state, that is considering

Figure 14.9: Concentration distribution outside particle at rest.

only the instantaneous conditions, the transient term in Fick’s second law is dropped,
resulting in

1

r2

∂

∂r

(
r2D∂Ci

∂r

)
= 0, (14.16)

in spherical coordinates. With the boundary conditions

Ci = Ci,s, r =
Dp

2
Ci → Ci,b, r →∞, (14.17)

the resulting concentration field is given as

Ci =
Dp

2r
(Ci,s − Ci,b) + Ci,b. (14.18)

From the above concentration distribution, the mass flux at the particle surface is obtained
from Fick’s law

−D ∂Ci
∂r

∣∣∣∣
r=

Dp
2

=
2D
Dp

(Ci,s − Ci,b) , (14.19)
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which describes the mass transfer from the particle to the fluid. In most cases, the flux
in the opposite direction is of primary interest and the mass flux to the particle is thus
defined as

Ṁ =
2D
Dp

(Ci,b − Ci,s) . (14.20)

Comparing to equation 14.14, it is evident that a mass transfer coefficient

k′ =
2D
Dp

, (14.21)

can be defined also in the case of pure diffusion. Introducing the Sherwood number, defined
as

Sh =
k′Dp

D
, (14.22)

the final form of equation 14.20 is

Ṁ =
D
Dp

Sh (Cb − Cs) , (14.23)

where Sh = 2 for the case of diffusive mass transfer in a quiescent fluid. Equation 14.23
is the general result for combined modes of mass transfer as the Sherwood number can
incorporate advective effects through dependence on the Reynolds number. Typically, as
seen in chapter 12 of Kolev [69], the Sherwood number is given as a relation of the form

Sh = a+ bRecScd, (14.24)

where Sc is the Schmidt number, defined as

Sc =
µi
ρiDi

, (14.25)

which typically is of the order of 103 to 107 in a Hall-Héroult cell depending on the value of
the diffusivity of CO2 in the bath. The various models presented in the literature provide
significantly different values for the exponent of the Schmidt number, ranging from 0.3
to 1, resulting in large variations in the corresponding Sherwood number. Vogt [127],
[128] indicates that d = 1/2 (i.e. Boussinesq) overpredicts mass transfer, while d = 1/3
(i.e. Ranz-Marshall) adequately represents mass transfer to adhering bubbles, typically
encountered in the current application.

In addition to the uncertainties related to the diffusivity and large variations in semi-
empirical models, the presence of other phenomena influencing the advection and concen-
tration boundary layer complicates the matter further. For instance, the Marangoni effect,
MHD-induced flow and thermo-, turbo- and electrophoresis are all examples of phenomena
which could have significant effect on mass transfer, but which are not considered directly
in conventional models.
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14.3.2 Bubble growth

The classical description of spherically symmetric bubble growth in a supersaturated solu-
tion is due to Scriven [106], describing the bubble radius as

Dbub(t) = 4β
√
Dt, (14.26)

where the growth factor β is defined implicitly by

ρb (Ci,b − Ci,s)
ρg (ρb − Ci,s)

= φ (β, ε) ≡ 2β3 exp
(
β2 + 2εβ2

) ∫ ∞
β

x−2 exp
(
−x2 − 2εβ3x−1

)
dx, (14.27)

where ε = 1−ρg/ρl. Equation 14.26 is valid for bubble growth in an infinite medium where
the bulk concentration Cb is constant and incorporates the enhanced mass transfer due to
the moving bubble interface.

A corresponding growth law can be obtained by considering an isobaric expansion of an
ideal gas, as shown by Jones et al. [58]. Considering a bubble with surface area Abub =
f1D

2
bub, the rate of mass transfer is given by

ṁ = f1D
2
bubk

′ (Ci,b − Ci,s) = f1DbubShD (Ci,b − Ci,s) = f1DbubShD∆Ci. (14.28)

From the isobaric expansion of a bubble with volume Vbub = f2D
3
bub, the rate of mass

transfer can also be written as

ṁ = ρg
dVbub
dt

= 3ρgf2D
2
bub

dDbub

dt
. (14.29)

Combining equations 14.28 and 14.29, the bubble diameter is described by

Dbub(t) =
√
K∆Cit+Dbub,0, (14.30)

where

K =
2

3

ShD
ρg

f1

f2

, (14.31)

which corresponds to the results of Scriven [106] if the Sherwood number is defined as

ShS = 2.0 +
√

2.0ReSc, (14.32)

where the velocity in the Reynolds number is dDbub/dt, that is, the only source for advection
is due to the expanding bubble.
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Relation to non-classical nucleation

As indicated in section 14.2.1, non-classical nucleation is essentially equivalent to bubble
growth in a supersaturated solution. This analogy is used by Jones et al. [58] to predict
the nucleation time for a bubble of a given diameter. Considering a bubble growing from
initial diameter Dbub,0 = 0, the time required to reach a detachment diameter Dbub,d is
given by equation 14.30 as

td =
D2
bub,d

K∆Ci
. (14.33)

Qualitatively equation 14.33 contains the required effects, that is; large bubbles require
longer times to form than smaller ones and enhanced mass transfer or increased super-
saturation reduces the overall time required. As noted by Jones et al. [58], the bulk
concentration Cb and the Sherwood number can change significantly over time. However,
for the brief period of time required to produce one single bubble, Jones et al. [58] consider
the values as being constant. The same assumption is made in the current model due to
a significant numerical advantage; the update of relevant properties is needed only at the
beginning of each time-step.

The typical detachment diameter depends upon the forces acting on the growing bubble.
Jones et al. [57] perform an analysis for a bubble growing from a crevice on an other-
wise flat surface whose normal vector is antiparallel to gravity. From this assumption,
the detachment condition is obtained from a balance of the two most dominating forces;
buoyancy and contact forces.

For anodic bubbles in a Hall-Héroult cell, the picture is somewhat more complicated. Con-
sidering a flat anode, gravity is parallel to the anode normal vector resulting in bubbles
being forced towards the anode. In reality, the anode is inclined due to uneven consump-
tion and local irregularities, promoting bubble detachment. These are however transient
phenomena from which general properties are challenging to extract. The same is the case
for momentum exchange with the surrounding bath flow (i.e. drag forces), which is highly
dependent upon local, a-priori unknown parameters.

Considering experimental observations, the term bubble detachment appears to be used
both for nucleation events and for macroscopic bubbles departing from the anode. The
latter case appears to be well documented (cf. for instance Wang and Tabereaux [133]) due
to its relation to global voltage fluctuations. The former is described, to the author’s best
knowledge, only briefly by Xue and Øye [139] as detached (but not departing) microbubbles
moving randomly in the immediate neighbourhood of the anode, with typical size 0.4-0.6
mm. The presence of detached bubbles are accredited to the combination of buoyancy,
reaction forces, surface tension, bath flow and turbulence. No attempt is however made to
quantify the relative importance of each of the suggested phenomena.

Jones et al. [58] argue that the nucleation time, tn, is proportional to the detachment time,
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described by equation 14.33. That is;

tn =
ND2

bub,d

K (Cb − Cs)
, (14.34)

where N is a unknown factor of proportionality. The factor N is included to account for
the fact that a region partially depleted of dissolved gas exists in the surroundings of the
cavity after bubble detachment. For the system studied by Jones et al. [58], the factor is
approximated to

N ≈ 10h

Dbub,d

, (14.35)

where h is the distance from the solid surface to the position of the bubble in the crevice.
The derivation of equation 14.35 depends upon knowing the typical boundary layer thick-
ness as well as the partial gas pressure in the cavity; information which is not easily
obtainable for anode cavities. Assuming that the approximation of Jones et al. [58] is
valid and that h is of the same magnitude as the pore diameter, N is of order unity.

The inclusion of the factor N is crucial in the analysis of Jones et al. [58], as the bulk
concentration Cb is assumed to be constant. In the current model, however, the bulk
concentration is governed by equation 14.3 meaning that the effect of gas depletion is
treated implicitly, updating the (local) bulk concentration field at each time step. Thus,
N is taken to be unity and the nucleation time for a single bubble is identical to its
detachment time, td.

The nucleation time combined with the number of active pores (equation 14.11) yields the
nucleation frequency

fnuc =
Np

tn
=
NpK∆Ci
D2
bub,d

. (14.36)

Challenges related to resolved bubbles

The preceding phenomenological description of bubble growth is a global treatment (as
seen from the bubble), as the mass transfer relies entirely on the assumption that the
macroscopic properties of the bubble (i.e. its diameter) and representative averages of
surrounding fields are known. Consequently, this description is primarily used for dis-
persed type flows with a known size distribution or single bubbles with special symmetry
properties.

In the general case of a large, non-spherical bubble, a detailed local description of mass
transfer is required. From a numerical perspective, a local description requires that the
scales involved (that is the bubble and its surrounding boundary layer) are sufficiently
resolved.
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Assuming that no nucleation sites are present and that production is negligible, initially
supersaturated gas can be freed only at the interface of an already existing bubble. In this
case, the transport equation for dissolved gas reads

∂CCO2

∂t
+∇ · (uCCO2 −Deff∇CCO2) = −SdmtCO2

. (14.37)

The source term on the right hand side is recovered in the continuity equation for the
(continuous) gas phase

∂αgρg
∂t

+∇ · (αgρgug) = SdmtCO2
, (14.38)

ensuring mass conservation of CO2. The challenge is thus to transfer the phenomenological
global laws described in the previous section to local (volumetric) mass-sources. Consider
a resolved bubble in a supersaturated solution as sketched in figure 14.10.

Figure 14.10: Resolved bubble (blue) in supersaturated solution (sketched by green line). Given
a small volume dV , the gas surface enclosed within the volume, dS, has a normal
vector ng.

Assuming that concentration boundary layer is stagnant, i.e. mass transfer is diffusion
based2, Fick’s law describes the mass flux (in kg/m2s) as

Ṁ = −Deff (n · ∇CCO2) , (14.39)

2This is easily extended to a general mass flux by extending equation 14.39 so that sought phenomena
are included.
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where n is the (unit) normal of the surface element, dS, on which the transition occurs.
Using equation 14.39, the (volumetric) source term in equation 14.38 can be written as

SdmtCO2
=
ṀdS

dV
, (14.40)

where dV is the volume element in which the transition occurs. From the Slattery-Whitaker
theorem, the unit normal vector of the surface is given as

ng = − ∇αg
|∇αg|

. (14.41)

Furthermore, the gradient in phase fraction is related to the surface by

|∇αg|dV = dS. (14.42)

By substitution, the volumetric source term is finally written as

SdmtCO2
= Deff (∇αg · ∇CCO2) , (14.43)

which is nonzero only in regions that contain an interface.

A source term of the form of equation 14.43 provides a formidable numerical challenge.
First and foremost, the challenge is related to accurately predicting the relevant gradients
in the immediate neighbourhood of the interface. As the shape and extent of a macroscopic
bubble is time dependent and highly variable, a (non-adaptive) mesh capable of resolving
all involved scales would have to be exceedingly fine.

An additional challenge is related to the nature of equation 14.43, resulting in a source
term distribution localized in a narrow region at the interface. As shown by Hardt and
Wondra [49], this can lead to instabilities.

Returning to the detailed description of Xue and Øye, it is evident that the relative impor-
tance of bubble growth by means of mass transfer declines as bubbles grow in size, resulting
in a coalescence dominated regime. That a regime transition occurs is based upon the ob-
servation that the average voltage rate decreases past some point prior to macroscopic
bubble departure, as shown in figure 14.11.

Due to the apparent presence of two different regimes as well as the challenges related to
growing macroscopic bubbles, mass transfer is treated only for sub-grid spherical particles
(described in the following chapter), while macroscopic bubbles are allowed to grow only
by interaction with sub-grid entities. The advantage of such a division is that the essentials
of the governing phenomena are included, but only on the scale at which they are relevant.

14.4 Sub-grid treatment of bubbles

All scales related to bubble dynamics cannot be resolved in a practical calculation, as this
will involve at least 7 orders of magnitude; ranging from microscopic bubble nuclei to large
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Figure 14.11: Measured voltage signal (blue) and linear fit to the growth regime (red) and
coalescence regime (green). Data from lab scale experiments described by Eick
et al. [29].

scale bubbles covering the whole anode surface. Hence, a model is needed to treat sub-grid
phenomena as well as a transfer mechanism to resolved scales. Two approaches appear as
viable candidates, the first being a discrete particle model (DPM), the second a population
balance model (PBM). To the author’s best knowledge, neither of the two models have
previously been adopted in a coupled multiscale manner, as simulations traditionally have
focused on either a pure particle type of approach (cf. Solheim et al. [111]) or a pure
interface tracking approach (cf. Einarsrud [30]).

Both the DPM and PBM are implemented in ANSYS FLUENT. Unfortunately, neither
of the two implementations are adequate for the current application, primarily due to
excessive computational time and incompatibility to the VOF-method. Due to this, a
tailored sub-grid model based on the PBM is developed, described in the following sections.

14.4.1 Basics of the PBM

A population balance model is, as the name suggests, a model which deals with the in-
teraction of entities forming a population. For instance, the population can represent a
dispersed bubbly flow, in which case the entities represent distinct bubble classes, for in-
stance based on volume or diameter. Assuming that Ni bubbles of class i are present in a
volume V , the conservation of the i-th bubble number density reads

1

V
dNi

dt
=
dni
dt

= bi − di, (14.44)

where bi and di respectively represent birth- and death rates for the i-th bubble class.
The birth and death of bubbles are coupled in the sense that an event in one class has
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consequences for another. For instance, a collision between two bubbles of classes i and j
can result in the birth of a bubble in class k, while bubbles in classes i and j are removed.
Determining the birth- and death rates and how these influence the population as a total
is the core of any PBM.

An additional factor defining the PBM is the discretization chosen for the entities of the
population, that is, how classes are defined and related. In order to span a large number of
bubble sizes without solving an exceeding amount of equations, an exponential discretiza-
tion of volume is chosen. The choice of volume as internal coordinate rather than diameter
is made as it is easily related to the large scale bubbles through a volume fraction.

In the exponential discretization, neighbouring classes are related by a constant factor,

Vi+1 = qVi, (14.45)

where q > 1, as shown in figure 14.12.

Figure 14.12: Sketch of discrete PBM distribution.

As seen from figure 14.12, the i-th bubble class represents all bubbles with volume Vi− 1
2
≤

V < Vi+ 1
2
. Within the i-th class, all bubbles are however considered to have volume Vi,

that is, the bubbles can only take on discrete volumes, given as the arithmetic mean of
the bounding values of the class in question. A large value of q allows for a large range of
classes at the expense of accuracy, as unresolved bubble classes and their interactions are
lost. Considering a population of M bubbles in the range V0 to 64V0, the population can
be described by 7, 4 or 3 classes if q=2, 4 or 8, respectively, as shown in figure 14.13.

Evidently, the coarse discretization results in fewer classes and hence fewer possible inter-
actions3.

3As shown by Outsuki et al. [89], this results in an accelerated growth of the population towards larger
classes, as accumulation in intermediate classes is absent, as discussed in appendix B
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Figure 14.13: Bubble classes for three different discretizations, q=2, 4 and 8. All discretizations
have the same mean minimal and maximal volume (V0 and VM = 64V0), but the
range of each class (indicated in green) varies significantly.

14.4.2 Bubble birth and death due to coalescence

The net evolution of the bubbly flow in a Hall-Héroult cell can in essence be described as
a one way process; lesser bubbles coalescing and growing to form larger ones. Hence, a
simplification can be made for the population balance, assuming that effects due bubble
breakup (on the subgrid level) is negligible. Following Hounslow et al. [51], the birth and
death rates are, considering only binary interactions, under this assumption given as

bi ≡ b(Vi) =
1

2

∫ Vi

0

Γ(Vi − Ω,Ω)n(Vi − Ω)n(Ω)dΩ (14.46)

di ≡ d(Vi) = n(Vi)

∫ ∞
0

Γ(Vi,Ω)n(Ω)dΩ, (14.47)

where Γ(Vi,Ω), the coalescence kernel, is a measure of the frequency of collisions between
bubbles of volume Vi and Ω which successfully results in a bubble of volume Vi + Ω. In
discrete form for a finite number M of bubble classes (i = M signifying the largest class)
equation 14.44 takes the form

dni
dt

=
1

2

M∑
j

M∑
k

Γkjnknjξ
′
ijk − ni(1− δiM)

∑
j

Γijnj, (14.48)

where Γij is the discrete coalescence kernel and ξ′ijk, defined as

ξ′ijk =

{
1 if Vi− 1

2
≤ Vk + Vj < Vi+ 1

2

0 otherwise,
(14.49)

assures that colliding bubbles result in the creation of a new bubble in the correct class.
The factor 1/2 in the birth term is included to counter the effect of counting each collision
twice, while 1 − δiM , δiM being the Kronecker delta function, ensures conservation of the
largest bubble class.
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The interaction between two arbitrary bubbles j and k does not necessarily result in a
bubble volume which is present in the discrete distribution, as shown in figure 14.14. As a
consequence, equation 14.48 does not ensure mass conservation.

Figure 14.14: Bubble-bubble collision with discretization Vi+1 = 2Vi. A collision between two
bubbles a with volume V1 results in an existing bubble class, but an interaction
between bubbles a and b with volumes V1 and V2 does not. Transferring the
volume of the resulting bubble c to class V3 does not conserve mass.

Mass conservation is obtained by appropriate weighting of the birth term. As shown by
Suttner and Yorke [113], the appropriate weighting is obtained by substituting ξ′ijk with

ξijk =

{
Vk+Vj
Vi

if Vi− 1
2
≤ Vk + Vj < Vi+ 1

2

0 otherwise.
(14.50)

Considering the example sketched in figure 14.14, the corrected weighting coefficient for
collisions between particles a and b is ξ312 = 3/4. As a more extensive example, consider a
population of four bubble classes with q = 2. The population balance reads:

dn1

dt
= −Γ11n

2
1 − Γ12n1n2 − Γ13n1n3 − Γ14n1n4

dn2

dt
=

1

2
Γ11n

2
1 − Γ12n1n2 − Γ22n

2
2 − Γ23n2n3 − Γ24n2n4

dn3

dt
=

3

4
Γ12n1n2 +

1

2
Γ22n

2
2 +

1

4
Γ13n1n3 − Γ23n2n3 − Γ33n

2
3 − Γ34n3n4

dn4

dt
=

1

2
Γ33n3n3 +

3

4
Γ23n2n3 +

1

8
Γ14n1n4 +

1

4
Γ24n2n4 +

1

2
Γ34n3n4

The resulting population, initialized with n = [0.5, 0, 0, 0] and kernel Γij = 0.5(1 + δij), is
shown in figure 14.15, as obtained by the ODE45 solver in MATLAB.
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Figure 14.15: Evolution of number densities for four bubble classes (solid lines) and total vol-
ume fraction (black dashed line) using equation 14.50. The green dash-dot line
shows the predicted volume fraction using equation 14.49.

Clearly, as seen from figure 14.15 the total volume fraction is conserved throughout the cal-
culation, showing that the overall mass is conserved, opposed to the unweighted expression
(using equation 14.49).
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Coalescence kernel

According to Luo [79], bubble coalescence can be considered as a three step process. First,
bubbles collide, trapping a small amount of liquid between them. The trapped liquid drains
until the liquid film separating the bubbles reaches a critical thickness at which it ruptures,
allowing for coalescence. Hence, the coalescence kernel will depend upon the frequency of
collisions and the probability for collision resulting in coalescence, i.e.

Γij = ΩijP
C
ij , (14.51)

where Ω and PC are the collision frequencies and coalescence probabilities, respectively.
Following Chesters [16], the collision frequency can be expressed as

Ωij = kvijb
2
ij, (14.52)

where vij is a characteristic, relative velocity between two points a distance bij apart.

As an example, consider two spherical particles with diameter Di and Dj and relative
velocity vrel as sketched in figure 14.16. For this situation, all incoming particles contained

Figure 14.16: Path of collision between two particles.

in the collisional cross section Ac = πb2
ij will collide with particle j. Hence, the collision

frequency is in this case given as the relative flux of incoming particles, i.e.

Ωij = πvrelb
2
ij, (14.53)

from which the interpretation of the terms in equation 14.52 is evident.

The value of k as well as the interpretation of the typical velocity depends upon the features
which are believed to be characteristic for the flow in question. A common assumption
made is that the coalescence process is driven by turbulence in the carrier fluid. In essence,
the literature differentiates between two cases; microscopic bubbles interacting with fine
scale turbulence and micro- to moderate sized bubbles interacting with inertial subrange
turbulence.

The first case, introduced by Saffman and Turner [103], assumes a particle velocity given
by

vi = Di

√
εt
νf

(14.54)
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where εt is the turbulent dissipation rate and νf is the kinematic viscosity of the carrier
fluid. Assuming that the characteristic velocity between particles i and j is given by the
RMS velocity, i.e.

vrel =
√
v2
i + v2

j =

√
εt
νf

√
D2
i +D2

j , (14.55)

the collision frequency is given as (cf. Chesters [16])

ΩFST
ij =

√
π

15

εt
νf
b2
ij

√
D2
i +D2

j . (14.56)

The case dealing with inertial subrange turbulence, introduced by Kuboi et al. [70] and
later extended by Prince and Blanch [99] and Luo [79], assumes a particle velocity on the
form

vi = 1.43 (εtDi)
1
3 . (14.57)

Again assuming that the RMS velocity is representative, the collision frequency for inertial
subrange turbulence is

ΩIST
ij = 1.43

π

4
ε
1
3
t b

2
ij

√
D

2
3
i +D

2
3
j . (14.58)

Although turbulence without doubt has a significant influence upon bubble collisions, large
scale effects such as MHD and buoyancy could also contribute. Considering buoyancy and
assuming Stokes-flow for the bubbles, the terminal velocity of a bubble with diameter Di

is

vi =
1

18

ρggD
2
i

µf

(
ρf
ρg
− 1

)
. (14.59)

Hence, the relative velocity between bubbles i and j is

vrel =
1

18

ρggD
2
i

µf

(
ρf
ρg
− 1

) ∣∣D2
i −D2

j

∣∣
≈ 1

18

g

νf

∣∣D2
i −D2

j

∣∣ , (14.60)

with resulting collision frequency

ΩB
ij =

π

18

g

νf
b2
ij

∣∣D2
i −D2

j

∣∣ . (14.61)

The distance bij is chosen to be the mean diameter

bij =
Di +Dj

2
, (14.62)

as shown in figure 14.16. This serves as a maximal estimate of the collisional cross section
as particle trajectories in reality can deviate significantly from the streamlines of the basic
fluid flow. However, as a first approximation, the above formulation is retained.
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Table 14.1: Maximal and minimal collision frequencies obtained from different models. εt is
assumed to be unity where applicable and viscosity is set to 1.3 mm2/s.

Model Minimum Min. interaction Maximum Max. interaction
(m3/s) (m3/s)

ΩFST
ij 7.1·10−8 (Dmin, Dmin) 7.1·10−5 (Dmax, Dmax)

ΩIST
ij 6.5·10−8 (Dmin, Dmin) 1.3·10−5 (Dmax, Dmax)

ΩB
ij 0.0 (Di, Di) 2.5·10−4 (0.5Dmax, Dmax)

For a bubble population in the range of 0.5-5 mm, the maximal and minimal collision
frequencies for each of the above models are given in table 14.1.

As seen from table 14.1, all three models predict collision frequencies with approximately
the same order of magnitude. The path taken is however different for the buoyancy driven
model as bubbles of equal size cannot collide. From a practical point of view, this means
that an initially monodispersed population will remain in its initial state, which is clearly
unphysical. In a realistic setting, the actual collision frequency is likely to be a combination
of the above models.

The coalescence probability

According to Chesters [16], coalescence will follow a collision event if the interaction time,
tI , of two bubbles exceeds the coalescence time, tC , required for the liquid film between
them to drain and rupture. The function describing the coalescence probability is unity
for small ratios of these two times and goes to zero in the opposite case. A simple model
with these features is suggested by Chesters [16], reading

PC = exp

(
−tC
tI

)
. (14.63)

Using an analogy to parallel films, Luo [79] suggests a coalescence probability on the form

PC
ij = exp

−c1

√
0.75

(
1 +

(
Di

Dj

)2
)(

1 +
(
Di

Dj

)3
)

(
1 + Di

Dj

)3√
ρg
ρf

+ ϑ

√
Weij

 , (14.64)

where c1 is a positive constant of order unity and ϑ is a virtual mass coefficient, for inertial
subrange turbulence. The Weber number, Weij, is defined as

Weij =
ρfDiv

2
rel

γ
, (14.65)
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where γ is the gas-fluid surface tension and vrel is the relative velocity introduced earlier.

Using the suggested coalescence probability and collision frequencies of table 14.1, the
maximal and minimal coalescence kernels are

ΓISTmax = 4.60 · 10−6m3/s

ΓISTmin = 2.75 · 10−10m3/s,

for a bubble population with diameters in the range of 0.5-5 mm, coalescing due to inertial
subrange turbulence, with corresponding reductions for the other collision modes. Hence,
in all cases, the coalescence kernel is expected to be lower than the ideal collision frequency.

14.4.3 Bubble birth and death due to mass transfer

The above discussion relies upon the assumption that sufficient amounts of bubbles are
present so that collisions and coalescence can occur. Early in the bubble-cycle, this is
however unlikely as individual bubbles nucleate at specific sites which in principle can be
separated by distances far greater than typical bubble radii. As described by Xue and
Øye [139], single bubbles grow individually until reaching a size at which collisions and
coalescence occur.

The initial growth of bubbles following nucleation can only be explained by mass transfer
from a reservoir, either the anode or the bath. Following the discretization of Hounslow et
al. [51],

∂ni
∂Vi
≈ ni
Vi+1 − Vi

, (14.66)

a growing population can be described as

dni
dt

=
Gi−1
V ni−1

Vi − Vi−1

− Gi
V ni

Vi+1 − Vi
, (14.67)

where the first term represents growth into- and the second term represents growth out
of the i-th bubble class and Gi

V is the corresponding growth rate. Assuming an isobaric
expansion of an ideal gas, the growth rate can be expressed as

Gi
V =

dVi
dt

=
ṁi

ρg
= K2∆CCO2V

1
3
i , (14.68)

where the rate of mass transfer is given by equation 14.28 and the prefactor K2 is defined
as

K2 =
f1

f
1
3

2

Sh
D
ρg

=
3

2
f

2
3

2 K, (14.69)
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for a bubble with area f1D
2
bub and volume f2D

3
bub. Hence a discrete population undergoing

growth is described by

dni
dt

= K2∆CCO2

ni−1

 V
1
3
i−1

Vi − Vi−1

− ni( V
1
3
i

Vi+1 − Vi

) . (14.70)

14.5 Coupling to macroscopic bubbles

Macroscopic (resolved) bubbles are in the present work treated directly by means of the
VOF model, to which the above models for coalescence and phase growth do not apply
directly. From a PBM point of view, macroscopic bubbles can be created by two processes,
namely coalescence or growth of microscopic bubbles into the resolved continious gas phase.
From a coupled point of view, the continous gas phase can grow by engulfing lesser bubbles
(cf. Fortin et al. [38]), a process similar to that of coalescence between discrete entities.

Hence, as the formation of resolved bubbles, at least in principle, does not differ from the
formation of a population balance bubble, the PBM formalism described above is used to
couple the two models involved.

Considering a population of M bubble classes, the transition to the continuous phase can
be treated by extending the population with an additional bubble class, which represents
the smallest possible concentration of the continuous phase. As the additional bubble class
is not a true entity of the population it is denoted a ghost class, with subscript G. The
volume of a ghost bubble is determined by the PBM as

VG = qVM = VM+1. (14.71)

The number density of ghost bubbles is not determined (directly) by a transport equation,
but from the volume fraction of the continuous phase, i.e.

nG =
αg
VG
. (14.72)

From the above two definitions, the hybrid nature of the ghost class is evident. Its rate of
change is analogous to that of the PBM, and is given as

ṅG = K2∆CCO2nM

(
V

1
3
M

VG − VM

)
+

1

2

M∑
j

G∑
k

ΓkjnknjξGjk, (14.73)

where the first term is due to mass transfer and the second is due to coalescence and
engulfment, including both bubble-bubble- and bubble-continous phase interactions.
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The growth term in equation 14.73 is identical to the positive term in equation 14.70,
i.e. pure growth from bubble class M to the ghost class G. The coalescence kernel,
however, consists of two different phenomena, depending on the nature of the interaction.
Considering bubble-bubble interactions, for instance the interaction between two bubbles
of class M , the resulting source term is of the form

ṅMM
G =

1

2
ΓMMnMnM , (14.74)

where ΓMM is given by one of the models given in section 14.4.2. The remaining source
terms in equation 14.73 are due to interactions between discrete (PBM) bubbles and the
continous bubble phase and are of the form

ṅGiG = ΓGininGξGGi, (14.75)

where the index i is on the interval [1, . . . ,M ], which is analogous to the overall PBM
treatment. Experiments show, however, that the coalescence kernel is not.

Considering water model experiments (cf. Fortin et al. [38] and Einarsrud [30]), the
lab scale experiments of Xue and Øye [139] and numerical experiments by Kiss [60] it
is clear that there is a significant difference in the behaviour of micro- and macroscopic
bubbles. While small bubbles remain close to stationary in the immediate neighbourhood
of the anode surface (moving randomly due to coalescence and secondary fluid flow), large
bubbles sweep alongside the anode with velocities in the order of 0.3 m/s, engulfing smaller
bubbles as they move, as sketched in figure 14.17.

Figure 14.17: Sketch of typical behaviour for microscopic and macroscopic bubbles. The macro-
scopic bubble typically has a larger velocity, engulfing smaller bubbles in its path.

An additional feature increasing the relative velocities further is the presence of a (turbu-
lent) boundary layer on the anode. Assuming that the anode can be approximated by a
flat plate, the turbulent boundary layer thickness is given as (cf. White [135], pp. 466)

δ ≈ 0.16x

Re
1/7
x

, (14.76)

where x is the distance parallel to the flow. Assuming a typical velocity of 0.3 m/s, the
average boundary layer thickness on a 1 m long anode is 1.5 cm, significantly larger than
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the typical microbubble diameter. Hence, it is reasonable to assume that microbubbles
reside deep within the boundary layer, as illustrated in figure 14.18, and thus have a lower
velocity than the resolved velocity in the proximity of the anode.

As for conventional coalescence, the coalescence kernel between PBM and ghost bubbles is
assumed to be of the form

ΓGj = πvrelb
2
GjP

C
Gj, (14.77)

with the distance bGj chosen as in equation 14.62. Based on the above arguments, the
collision velocity is as a first approximation taken to be equal to the velocity of the continous
phase.

Observations from water models indicate that macroscopic bubbles are efficient at engulf-
ing smaller ones, leaving a clean surface after passing along it. This suggests that the
coalescence probability is large. For simplicity, PC

Gj is thus set to unity.

Figure 14.18: Boundary layer profile, resolved velocity and typical velocity where microbubbles
are present.

The rate of change for the ghost class serves as a mass source for the continous gas phase,
defined as

SPBMg = ρgVGṅG. (14.78)

Thus, once an entity of the population has evolved to the ghost class, it is transferred to
the continous gas phase from which the VOF model handles further evolution.
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14.6 Coupling to external fluid flow

Equation 14.44 describes the population balance as a standalone model, that is, there is
no explicit coupling to external features. Considering coupling to the surrounding flow
field, the most simple approach is the so called one-way coupling, meaning that the fluid
influences the motion of the bubbles, but the bubbles’ explicit effect on the fluid flow may
be neglected. In this case, equation 14.44 is generalized to a advection-diffusion equation
of the form

∂ni
∂t

+∇ · (f (u)ni −DPBM,i∇ni) = bi − di, (14.79)

where f (u) is an advection function and DPBM,i is a diffusion tensor. The advection
function serves as the principal mode of coupling to fluid flow, simply by transport, while
the diffusion tensor will serve as a secondary source of bubble motion, preventing unphysical
local accumulation of several bubbles.

The scalar form of equation 14.79 is a significant numerical advantage compared to a two-
way coupling approach, in which the velocity field of each bubble class must be solved for,
thus involving three times more equations compared to the scalar approach.

14.7 Complete model

In the preceding sections a comprehensive introduction to the underlying principles for
three principle parts of the complete model is given, namely dissolved CO2, microscopic
bubbles and their coupling to macroscopic ones. In addition to these three features, the
fluid flow and evolution of electromagnetic fields must be treated. As illustrated in figure
14.19 all phenomena are to some extent coupled, mainly through the principal node denoted
as flow fields. In the following, the governing equations are presented in a coupled form
for reference.

14.7.1 Governing equations

The evolution of macroscopic fluid-fields is governed by the VOF model, where (macro-
scopic) phase fractions αk are determined by a transport equation of the form

∂

∂t
(αkρk) +∇ · (αkρku) = Sk, (14.80)

for the k-th phase, where Sk is a source term (with units kg/(m3s)). The source term is
non-zero for the (continous) gaseous phase and given by

Sg = SPBMg = ρgVGṅG. (14.81)
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Figure 14.19: Specific coupling diagram. Figure shows the elements of the complete model
and their interaction. Continuous fields are treated by the VOF method while
remaining outer nodes are treated as scalar fields. Dissolved and dispersed (mi-
croscopic bubbles) gas evolves in the electrolyte and transfer to the continuous
gas field occurs through ghost-bubbles.
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The source term depends upon the rate of change of the ghost class (cf. section 14.5) and
thus to the PBM. The rate of change for the ghost class is given by equation 14.73.

In the VOF model a single momentum equation is solved for a mixture fluid, with properties
given by appropriate weighting (section 14.7.2). Assuming that the mixed flow field is
incompressible, the resulting momentum equation is on the form

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂

∂xi
p+

∂

∂xj

(
µ
∂ui
∂xj

)
+ βi. (14.82)

The above equation is equivalent to the single phase Navier-Stokes equation, with velocity
and pressure fields (u and p) and properties (density ρ and viscosity µ) equal to the
mixture in question. The final term, βi, represents volumetric body forces. In the present
case, the body forces are buoyancy (due to density differences) and Lorentz-forces (due to
electromagnetic fields, where applicable). The body force is thus written as

βi = ρgi + (j ×B)i , (14.83)

where gi is the gravitational acceleration, j is the local current density and B is the local
magnetic field. The current density is given by Ohm’s law

j = σ (u×B −∇φ) ≈ −σ∇φ, (14.84)

assuming negligible induction currents in the bath, where σ is the electrical conductivity
of the mixture and φ is the electrical potential. The electrical potential is determined from
conservation of electrical charge, which under the above assumption reads

∇σ∇φ = 0, (14.85)

while the magnetic field is given by the magnetic vector potential

B = ∇×A, (14.86)

or specified as an external field. The magnetic vector potential is obtained by solving
equation 10.33, where applicable.

As shown in section 14.1.2, the transport and evolution of dissolved CO2 is given as

∂ρXCO2

∂t
+∇ · (uρXCO2 − ρDeff∇XCO2) = SpCO2

− SnCO2
− SdmtCO2

. (14.87)

The source term is the volumetric form of equation 14.2, i.e.

SpCO2
=
MCO2j ·∆A
νeF∆V

, (14.88)

where ∆A and ∆V respectively are the surface and volume in which gas is being pro-
duced. If the bath is supersaturated, bubbles can be nucleated as described in section
14.2, resulting in a sink term written as

SnCO2
=
NpK (Cb,CO2 − Cs,CO2)

D2
1

ρgV1

∆V
=
NpK∆CCO2

D2
1

ρgV1

∆V
, (14.89)
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where ∆CCO2 = Cb,CO2 − Cs,CO2 = ρXCO2 − Cs,CO2 , with a corresponding term present in
the population balance equation for the smallest bubble class, i = 1. The number of active
pores, Np is given by equation 14.11 as

Npore = γaρpore
∆A

Apore,0
, (14.90)

where the activation parameter is given as

γa =

{ (
1− n1∆V Apore,0

ρpore∆A

)
if n1∆V < ρpore

∆A
Apore,0

0 otherwise,
(14.91)

that is, nucleation stops if all pores have a microbubble attached to it.

For convenience, equations 14.88 and 14.89 are implemented as volumetric sources present
only in the computational cells adjacent to the anode. This is equivalent to a flux boundary
condition on the anode surface, but allows for 2D-planar studies as performed in chapter
15.

The final term in equation 14.87, also coupled to the PBM, is the sink term due to direct
mass transfer, provided that the bath is supersaturated. Considering the theory of section
14.4.3, it is clear that the total mass transferred from the dissolved phase should be pro-
portional to the sum of either negative or positive terms in equation 14.70. Choosing the
negative terms for convenience, the final source term in equation 14.87 is written as

SdmtCO2
=

M∑
i=1

K2,i∆CCO2ni

(
V

1/3
i

Vi+1 − Vi

)
ρg (Vi+1 − Vi), (14.92)

where K2,i is the mass transfer factor defined in equation 14.69 and indices i refer to one
class of the PBM.

The PBM consists of M bubble classes and one ghost class (index i = M + 1) responsible
for the coupling to macroscopic gas bubbles. The bubble classes are described by an
exponential discretization in volume,

Vi+1 = qVi. (14.93)

For bubble classes i = 1 . . .M , the number density of bubbles is governed by the general
advection-diffusion equation

∂ni
∂t

+∇ · (f (u)ni −DPBM,i∇ni) = bi − di, (14.94)

where bi and di are birth and death rates for the i-th bubble class. For bubble classes
i = 2 . . .M , the birth and death rates are due to coalescence (equation 14.48) and mass
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transfer (equation 14.70) and are given as

bi − di =
1

2

M∑
j

M∑
k

Γkjnknjξ
′
ijk − ni

G∑
j

Γijnj︸ ︷︷ ︸
coalescence

+ K2∆CCO2

ni−1

 V
1
3
i−1

Vi − Vi−1

− ni( V
1
3
i

Vi+1 − Vi

)
︸ ︷︷ ︸

mass transfer

, (14.95)

where Γkj is a coalescence kernel (cf. sections 14.4.2 and 14.5).

The smallest bubble class (i = 1) differs from equation 14.89 as bubbles are created only
by nucleation. In this case, the birth and death rates are given as

b1 − d1 =
SnCO2

ρgV1

− n1

G∑
j

Γ1jnj −K2∆CCO2n1

(
V

1
3

1

V2 − V1

)

=
NpK∆CCO2

D2
1∆Vcell

− n1

G∑
j

Γ1jnj −

− K2∆CCO2n1

(
V

1
3

1

V2 − V1

)
. (14.96)

The bubble population evolves according to equation 14.94 until reaching the ghost class
(see section 14.5) with number density

nG =
αG
VG

. (14.97)

A PBM equation is not solved for the ghost class, but its rate of change is computed as

ṅG = K2∆CCO2nM

(
V

1
3
M

VG − VM

)
+

1

2

M∑
j

G∑
k

ΓkjnknjξGjk, (14.98)

which serves as the source term in equation 14.80 for the continous gaseous phase and thus
closes the system.

14.7.2 Fluid properties

The material properties of the pure VOF model are shared through a mixture phase. The
properties of the mixture phase are obtained through an appropriate weighting by the local
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volume fraction of the k-th phase. Density and viscosity are calculated using an arithmetic
mean

ρ = ρgasαgas + ρbathαbath = ρgasαgas + ρbath (1− αgas) , (14.99)

where subscripts gas and bath refer to macroscopic gas and bath phases, respectively. Cor-
respondingly, the electrical conductivity of the mixture, i.e. a computational cell partially
filled with bath (with or without microscopic bubbles) and resolved gas, is given as

σ = σgasαgas + σ̄bath (1− αgas) , (14.100)

where σ̄bath is the mean bath conductivity, which in the present case is allowed to depend
upon the local concentration of microscopic bubbles. As shown by Cooksey et al. [21],
several models exist for calculating the electrical conductivity of the bath. Defining the
phase fraction of sub-grid bubbles as

αPBM =
M∑
i=1

niVi, (14.101)

the theoretical maximum in conductivity is obtained by the arithmetic mean, i.e.

σ̄bath = σgasαPBM + σbath (1− αPBM) , (14.102)

which corresponds to the case in which the bubbles are arranged in a homogeneous column
parallel to the direction of the current (Cooksey et al. [21]). A lower estimate is obtained
by Maxwell [81]

σ̄bath = σgasαPBM + σbath
1− αPBM
1 + αPBM

2

(14.103)

for a uniform dispersion of spherical bubbles and the Bruggeman equation [11]

σ̄bath = σgasαPBM + σbath (1− αPBM)
3
2 (14.104)

for spheres of unequal size. The mean conductivity calculated by each of the above models
is shown in figure 14.20. As seen from figure 14.20, each of the above models predict similar
behaviour for the mixture conductivity, a gas phase fraction of 50% resulting in at least a
50% increase in resistivity. The literature is inconclusive on which model yields the best
results, other than the statement that all the proposed models yield reasonable results for
bubbles attached to an electrode (Cooksey et al. [21]). Due to the polydisperse nature of
the system at hand, equation 14.104 is used in the following chapters.
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Figure 14.20: Mixture conductivity as a function of gas phase fraction.
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14.8 Treatment in FLUENT

Each of the necessary additional equations are solved as user defined scalars (UDS) in
FLUENT, while their coupling and the determination of properties is performed by means
of a library of user defined functions (UDF). The flow is initialized by means of the
DEFINE INIT()-macro, where all initial parameters and anode properties are fixed.

Source terms are updated either at the end of each iteration using the DEFINE ADJUST()-
macro or at the end of each time step (for increased stability and convergence rate) using
the DEFINE EXECUTE AT END()-macro. Properties are updated in the following order

1 Update phase fractions stored in memory.

2 Calculate electromagnetic fields.

3 Calculate gas sources due to nucleation.

4 Calculate source and sink terms due to mass transfer.

5 Calculate source and sink terms due to coalescence.

Calculated source and sink terms are passed to the governing equations through the
DEFINE SOURCE()-macro, while fluid properties are updated by DEFINE DIFFUSIVITY()-
and DEFINE PROPERTY()- macros, based on stored phase fractions.

By default, FLUENT solves the following equation for an arbitrary scalar ψ

∂ρψ

∂t
+

∂

∂xi

(
ρuiψ − Γk

∂ψ

∂xi

)
= Sψ. (14.105)

As density does not enter in the scalar equations for the PBM, the default equation is
modified by the DEFINE UDS FLUX()- and DEFINE UDS UNSTEADY()-macros to the form

∂ψ

∂t
+

∂

∂xi

(
f(ui)ψ − Γk

∂ψ

∂xi

)
= Sψ. (14.106)
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14.9 Parameters of the model

Three classes of parameters are introduced in the proposed model, each related to a specific
phenomenon but at the same time strongly coupled to the overall picture. The three classes
are

1. The number of active pores (i.e. mean pore density and -diameter).

2. Bath properties (i.e. diffusivities, saturation concentration, contact angle, viscosity).

3. Transfer properties (i.e. Sherwood number, coalescence kernel and detachment diameter
of the smallest bubbles).

The above parameters can in principle be measured for a given setup, although non-
equilibrium properties would be highly challenging to quantify. As seen from part I of
this thesis, this is also true for the bath properties, being highly dependent upon local
properties such as species concentration. Finally, as seen by Rørvik et al. [102], the pore
diameter of a given anode sample spans two orders of magnitude.

Evidently, the mean (constant) values required for the proposed model, although not en-
tirely free, are allowed to span a large set of possible values. The parameters are all to
some degree coupled and two different sets of parameters can thus in principle result in
qualitatively similar global behaviour, with subtle local differences. These differences as
well as the overall influence of each of the above parameters can be determined only by
comparison with experimental data, as performed in chapter 16.

The first class is believed to be critical as it governs the nucleation of microscopic bubbles
and is thus to a great extent responsible for the overall future bubble distribution. A large
number of active pores will allow the anode to become flooded with gas, thus impeding
the passage of electrical current and thus increasing the cell voltage. Hence, the number
of active pores should be such that both the average voltage and bubble generation rate
fall within reasonable values.

Nucleation is also related to the diffusivity of CO2 in the bath and the local Sherwood
number, the latter of which also governs bubble growth. Small values for the diffusivity
will retard nucleation and growth of bubbles, resulting in a slow evolution of macroscopic
bubbles, if the overall number density of microscopic bubbles is small. If the number
densities are large, mass transfer will be critical only for the formation of the smallest
bubble class as the overall evolution is handled by coalescence. In a real case, coalescence
and mass transfer will compete in the creation of macroscopic bubbles and the choice of
the respective parameters will determine which part of the cell is governed by each of the
phenomena.



Chapter 15

Verification studies

The proposed gas generation and evolution model is fairly complex and involves intricate
coupling between several sub-models. Hence, as for the MHD mode, a verification of its
essential features is required, as performed in the following sections.

15.1 Setup for verification studies

The first three verification cases deal with issues related to the PBM alone and are per-
formed in a 2D geometry with dimensions 1 by 1 meter and a resolution of 1 cm.

Up to five bubble classes are used, treated as user defined scalars as described in section
14.8, which are discretized using a first order upwind scheme. PBM variables are given
a convergence criterion of 10−6 on corresponding residuals. Gradients are computed with
a Green-Gauss cell based method and pressure velocity coupling (where applicable) is
performed by the PISO algorithm with default correction factors for neighbour-skewness.
In the final verification case, the multiphase nature of the flow is treated by means of
the explicit VOF model, discretized using the PLIC-scheme. For increased stability, the
flexible cycle is used for the pressure AMG cycle.

Time advancement is in all cases performed using a first order implicit scheme, with con-
stant time step 0.01s. All other settings are kept at their default values.

Values for the various parameters used in the simulations, unless otherwise noted, are given
in table 15.1. The discretizaton factor is given the value q = 2, in order to simplify the
terms coalescence kernel and to allow for a relatively large span in bubble classes without
the need for excessively large values of M , while the detachment diameter D1 is the mean
diameter observed experimentally by Xue and Øye [139]. The mass transfer factor K is
given a constant value based on preliminary calculations. It should be noted that the exact
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values of the parameters in the following verification study is not critical, as the goal is to
confirm that the “equations are solved right” (cf. section 3.8).

Table 15.1: Values for various parameters used in verification studies

Parameter Unit Value
ρgas kg/m3 1.2
ρbath kg/m3 2070
Ap0 m2 2.25·10−8

Vcell m3 1·10−6

Acell m2 1·10−4

j A/m2 1·104

D1 m 5·10−4

q - 2
K m5/kg·s 1.1·10−6

Cs,CO2 kg/m3 0.1

Simulated properties are compared based on their mean relative difference to either an
analytical- or numerical solution obtained by MATLAB. The relative difference for a prop-
erty ϕ is defined as

ε =
|ϕf − ϕa|
|ϕa|

, (15.1)

where ϕf and ϕa represent FLUENT and alternative solutions, respectively.

15.2 Case 1: Supersaturation and nucleation

The first case deals with supersaturation of the bath and nucleation of the smallest bubble
class (index 1), in absence of any other phenomena. In this case, assuming that the bath
is supersaturated, the CO2 concentration is governed by

∂CCO2

∂t
= SpCO2

− SnCO2

=
MCO2jAcell
νeF∆Vcell

− NpK∆CCO2

D2
1

ρgV1

∆Vcell
, (15.2)

where the first term represents production as of Faraday’s law (equation 14.2) and the sec-
ond term represents transfer to the smallest bubble class through nucleation as of equation
14.36.

For convenience, equation 15.2 is written on the form

∂CCO2

∂t
= η − κ1CCO2 , (15.3)
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with analytical solution

CCO2(t) =
η

κ1

[1− exp (−κ1t)] + CCO2(0) exp (−κ1t), (15.4)

CCO2(0) being the initial (dissolved) CO2 concentration.

The smallest bubble class is governed by nucleation alone:

∂n1

∂t
=
SnCO2

ρgV1

=
κ1

ρgV1

∆CCO2 (15.5)

with analytical solution

ρgV1n1(t) =

[
η

κ1

(κ1t+ exp (−κ1t))− CCO2(0) exp (−κ1t)

]
− Csκ1t+

κ1CCO2(0)− η
κ1

,

(15.6)
again, provided the bath is supersaturated and that no bubbles exist initially.

15.2.1 Case 1a: Uniform production and nucleation

Assuming that production and nucleation is uniform and homogeneous, the behaviour in
each computational cell is given by equations 15.4 and 15.6. Figure 15.1 shows a compar-
ison between the dissolved gas concentration and the number density of bubbles obtained
by FLUENT and the above analytical solutions for a system at initial supersaturation
CCO2(0) = 0.1 kg/m3 and initial number density of bubbles n1(0) = 0 #/m3.

The mean absolute error for each of the cases in figure 15.1 is 0.3% and 3.3%, respectively.
The relatively large error is due to the first order time formulation and relatively large
time-steps. Reducing the time step to 0.005 s, the error is in each case reduced to 1.5 ·10−4

and 0.9%, respectively. Compared to results obtained by the ODE45 solver in Matlab
(which is 4th order in time) the corresponding error is 1 · 10−9 and 1.9%, that is, from a
numerical point of view, the error in the FLUENT solution is acceptable and as expected.

The total mass in the system should, in this case, at all times correspond to the mass being
produced by Faraday’s law, that is a straight line with a slope equal to the first term in
equation 15.2. Figure 15.2 shows the total gas mass in the system (i.e. dissolved gas and
bubbles), compared to that predicted by Faraday’s law.

The mean absolute error for the total system mass is 0.4% (with the large time step),
which is as expected from the above error estimates.
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Figure 15.1: Comparison of analytical- (solid line) with numerical solution (dashed line) for
dissolved gas concentration (a) and bubble number density (b).

Figure 15.2: Comparison of analytical- (solid line) with numerical solution (dashed line) for
total mass in system.
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15.2.2 Case 1b: Non-uniform nucleation from supersaturated so-
lution

In the case of no gas production on an inhomogeneous anode, nucleation will proceed
only as long as the bath is supersaturated and only at active pores. For a system with
pore distribution given by equation 14.10 with ρmax = 0.35 at initial supersaturation
CCO2(0) = 0.11 kg/m3 and initial number density of bubbles n1(0) = 0 #/m3, the evolution
of CO2, n1 and total mass is shown in figure 15.3.

Figure 15.3: Evolution of dissolved CO2 mass (solid line) and total mass of gas (dashed line)
in system (a) and number density of bubbles (b).

As seen from figure 15.3, the total mass of gas in the system is constant, as expected.
Figure 15.4 shows the local CO2 concentration and local number of bubbles at t = 10 s.
Evidently, the two are strongly correlated.
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Figure 15.4: Local CO2 concentration, kg/m3, (a) and local number of bubbles, #, (b).

15.3 Case 2: Growth model

The second case deals with the growth of bubbles in a supersaturated solution, in absence
of other phenomena. In this case, each of the bubble classes is governed by equation 14.70,
which in the case of two bubble classes results in the system

∂n1

∂t
= −K2∆CCO2n1

(
V

1/3
1

V2 − V1

)
= −κ2(Cb − Cs)n1 (15.7)

∂n2

∂t
= K2∆CCO2n1

(
V

1/3
1

V2 − V1

)
= κ2(Cb − Cs)n1 (15.8)

The mass of dissolved CO2 declines with rate

∂CCO2

∂t
= −

M−1∑
i=1

K2∆CCO2ni

(
V

1/3
i

Vi+1 − Vi

)
ρg (Vi+1 − Vi) = −

M−1∑
i=1

κi,i+1∆Vi,i+1ni, (15.9)

as mass gradually is transferred to the bubbles. In the case of two bubble classes, the rate
of CO2 removal is simply

∂CCO2

∂t
= −κ2∆CCO2n1ρg (V2 − V1) (15.10)
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No analytical solution is found for the above system of equations and results are thus
compared to solutions obtained by the ODE45 solver in MATLAB and known global pa-
rameters.

Consider two bubble classes in an initially supersaturated system with homogeneous con-
centration CCO2(0) = 0.11kg/m3. No gas production is present. Initially, the number
density of the smallest bubble class is homogeneous and equal to 1·109 #/m3, while no
bubbles are present in the second class.

The growth process requires that the total number of bubbles is conserved and that mass
removed from the dissolved phase is gained in the largest bubble class. Figure 15.5 shows
a comparison between the evolution of the two bubble classes and the mass in the system
obtained by MATLAB and FLUENT. The mean relative differences between the two so-

Figure 15.5: Mass in system (a) and total number of bubbles (b). Solid lines show solutions
obtained by MATLAB while dashed lines show solutions obtained by FLUENT.
The dash-dot line shows the total mass (minus the initial bubble mass) in the
system and the total number of bubbles in figures (a) and (b), respectively.

lution methods are 1.1 · 10−4, 1.6 · 10−4 and 0.9%, for each of the fields CCO2 , n1 and n2,
respectively. The differences are comparable to those found for case 1 and is due to the
different numerical scheme used for each of the solution methods.
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15.4 Case 3: Coalescence model

The third case deals with coalescence of bubbles, in absence of other phenomena. In this
case, each of the bubble classes is governed by equation 14.48, i.e.

dni
dt

=
1

2

M∑
j

M∑
k

Γkjnknjξ
′
ijk − ni(1− δiM)

∑
j

Γijnj. (15.11)

As for the growth-case, the solution obtained by FLUENT is compared to solutions ob-
tained by the ODE45 solver in MATLAB.

Consider a system in which the initial number density of the smallest bubble class is
homogeneous and equal to 1·109 #/m3, while no bubbles are present in the remaining
four classes (i.e. M = 5). Assuming (for simplicity) that the coalescence probability is
unity and that the collision frequency is given by equation 14.58, multiplied with a factor
105 in order to achieve sensible results within reasonable time scales. In absence of other
phenomena, the total mass of bubbles is conserved throughout the calculation, while the
total number density declines. Figure 15.6a shows a comparison between the evolution of
bubble classes 1,3 and 5 obtained by MATLAB and FLUENT, while figure 15.6b shows
the total system mass and number of bubbles.

Figure 15.6: Selected population curves (a) and total system mass (blue) and bubble count
(green) (b). Solid lines show solutions obtained by MATLAB while dashed lines
show solutions obtained by FLUENT. Population lines (a) are normalized for
visibility and global values are normalized to initial values.

As seen from figure 15.6b, the total number of bubbles declines and approaches the value
n1(0)/8 as expected. The mean relative difference for each of the respective population
bins shown in figure 15.6a is 1.4, 3.6 and 6.5%, while the mean relative difference for the
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total number density (figure 15.6b) is 0.3%. The somewhat large differences in individual
particle bins is mainly due to points where one of the two methods reaches zero, resulting
in a large relative difference. Considering only nonzero values, the mean relative difference
is less than 1% for each of the cases.

15.5 Case 4: Macro to micro coupling

The final verification case deals with coupling to and generation of macroscopic bubbles
with special attention to mass conservation. The two modes of gas generation, i.e. coales-
cence and mass transfer, are considered separately for clarity. A special 2D-geometry, as
shown in figure 15.7, consisting of 6000 cells with a uniform resolution of 5 mm is used for
the simulations.

Figure 15.7: 2D geometry used for phase transfer verification. The system is bounded by solid
walls except for the upper right horizontal surface which is a pressure outlet.
Gravity is set to work in the −y-direction. The system is assumed to have unit
length in the z direction for volume calculations.

As shown in figure 15.7, the system is initialized to consist entirely of bath, except for
a 20 cm region in the upper part of the right leg which is filled with (macroscopic) gas.
A corresponding region in the left leg is initialized to have a large quantity of dissolved
gas, while all other regions are depleted. The rationale for the proposed geometry is that
(macroscopic) gas generated in the reaction zone will be trapped (due to gravity), thus
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moving the bath up in the right leg. As both phases are considered to be incompressible,
the conservation of bath mass is verified by a height difference.

Five bubble classes (in addition to the ghost class) are used for the following simulations.
The fluid flow is assumed to be laminar as flow features are of no interest for the current
case.

15.5.1 Case 4a: Coupling by mass transfer

Consider 109 bubbles with diameter D1 = 0.5 · 10−4 m located in the reaction zone, which
in addition has 1.5 kg/m3 dissolved CO2. Thus, 2.63 · 10−2 m3 of sub-grid gas is available
for transfer, corresponding to a macroscopic gas height of 0.263 m in the left leg of the
system (if transfer is complete). Growth is assumed to be described by equation 14.70 and
transfer to the macroscopic phase is treated as of section 14.5.

A time step of 0.001 s is used and simulations are run for 5 s flowtime. Figure 15.8 shows
the initial and final distribution of macroscopic phases. The average height difference ∆h

Figure 15.8: Initial (a) and final (5 s flowtime) (b) phase distribution for growth model. Red
signifies the bath phase.

is 0.133 m on both sides, showing that the bath-mass is conserved during the process.
Comparing to the maximal height, ∆h = 0.263m, the obtained value suggests that some
sub-grid gas is still present in the system. Table 15.2 shows the volume integral and
corresponding (total) volume of sub grid properties at t = 5 s.

As 1.33·10−2 m3 gas has been evolved, the final result is a total of 2.60·10−2 m3 of gas
in the system; 1% lower than the mass available. This is however expected from the
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Table 15.2: Integral values of sub grid properties

Property Volume integral Corresponding volume (m3)
CCO2 2.39·10−3 kg 1.99·10−3

n1 1.26·103 8.25·10−8

n2 6.58·104 8.62·10−6

n3 1.07·106 2.80·10−4

n4 4.82·106 2.52·10−3

n5 7.55·106 7.91·10−3

sum - 1.27·10−2

uncertainty of the VOF model where the uncertainty in the interface position is at least
one computational cell, i.e. 5 mm for the current case.

Case 4b: Coupling by coalescence

Consider 1 · 109 bubbles with diameter D1 = 5 · 10−4 m and 1 · 108 bubbles with diameter
D2 = 6.3 · 10−4 m located in the reaction zone. Thus, 1.57 · 10−3 m3 of sub-grid gas
is available, corresponding to a macroscopic gas height of 0.0157 m in the left leg of the
system (if transfer is complete). For this simulation, coalescence is assumed to be governed
by the coalescence kernel of Luo [79], i.e. collision frequencies given by equation 14.58 and
collision probabilities by equation 14.64. The turbulent dissipation rate ε is assumed to be
0.1 m2/s3.

The simulations are performed with a time step of 0.002 s and simulations are run for 5 s
flowtime. Figure 15.9 shows the initial and final distribution of phases.

The height difference ∆h is 0.0153 m in both legs, showing that the bath mass is conserved.

Comparing to the maximal height, ∆h = 0.0157m, the obtained value suggests that only
small amounts of sub-grid gas is still present in the system. Table 15.3 shows the volume
integral and corresponding (total) volume of sub grid properties at t = 5 s, confirming that
the transfer is almost complete.

Table 15.3: Integral values of sub grid properties

Property Volume integral Corresponding volume (m3)
n1 3.94·103 2.58·10−7

n2 1.48·103 1.94·10−7

n3 1.87·103 4.88·10−7

n4 1.36·103 7.13·10−7

n5 1.79·103 1.88·10−6

sum - 3.53·10−6
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Figure 15.9: Initial (a) and final (5 s flowtime) (b) phase distribution for coalescence model.
Red signifies the bath phase.

The predicted interface height (taken to be at αgas = 0.5) is lower than the maximal value,
suggesting a mass loss of approximately 2%, which is consistent with the uncertainty of
the interface position due to the coarse mesh.
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Parametric validation studies

The previous chapter indicates that the constituents of the proposed model behave as
expected, and the model can thus be assumed to be verified. In the following sections, the
complete model is analysed further and validated against the experimental data given in
chapter 9. The validation study is performed in conjecture with a parametric, factorial
design study (cf. Montgomery [82]) in order to determine a set of realistic parameters
which adequately describe observed phenomena, in addition to provide insight into how
strongly simulated results depend upon the choice of these parameters.

Following the preliminary parametric study, the influence of MHD-forces is investigated.
Finally, given a set of viable parameters, simulations are performed on various configura-
tions of the lab cell (cf. table 9.1) in order to verify that the obtained parameters are valid
over a wide range of cases.

The goal of the current validation study is to reproduce the experimentally measured
voltage fluctuations (i.e. frequencies and amplitude). It should however be noted that
there are variations in measured results, even with identical (controllable) experimental
configurations (cf. table 9.1) and results should thus be considered as being typical, rather
than exact for the given setup, i.e. the following validation will attempt to reproduce the
range of the given experiments, rather than the absolute numbers.

In order to handle this vast set of numerical experiments, all simulations presented in this
chapter are performed in a simplified 2D geometry.
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16.1 Computational domain and mesh

The proposed model is applied to the lab scale electrolysis cell described in chapter 9. A
sketch of a 2D cross section of the experimental setup is shown in figure 16.1 for reference.

Figure 16.1: Sketch of experimental cell. A gas conduit forces bubbles to escape through a
designated gas escape channel. The active electrode regions with dimensions 100
by 100 mm is shown in red.

A simplified representation of the above geometry is shown in figure 16.2. The 2D geometry
is simplified compared to the full cross section shown in figure 16.1. In particular, a large
portion of the regions of electrolyte surrounding the electrodes is neglected as this region is
not electrochemically active. This restricts the bath flow somewhat, as the bath is forced
to recirculate into the interpolar region after bubble detachment, but is not believed to
be essential for the current validation. In addition, only the anode part to the left of the
gas escape channel is assumed to carry an electrical current as this is the part to which
the anode rod is connected (green line shown in figure 16.2). Furthermore, the part of the
anode to the right of the gas channel is (relatively) far from the cathode, suggesting that
only a small part of the electrical current would pass through this region, if it were active.

In order to facilitate meshing, the corners of the anode are assumed to be sharp, thus
simulating a new anode.

The mesh used is shown in figure 16.3, consisting of 7700 quadrilateral cells.

This resolution results in a phase fraction of 0.23 for one ghost bubble and 0.12 for a
bubble of class M , provided D1 = 0.5mm, q=2 and M=5, as in the verification studies.
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Figure 16.2: Simplified 2D geometry for preliminary analysis with dimensions given in mm.
Initial gas and bath distribution is shown in blue and red, respectively.

Figure 16.3: 2D mesh used for preliminary study. Geometry is enclosed by solid walls (coupled
boundaries where applicable) and one single pressure outlet (red upper line). The
resolution on the flat part of the anode is ∆x=3mm, ∆y=1mm.
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16.2 Setup for validation studies

16.2.1 Fluid properties and model parameters

Default values for the various parameters used in the simulations are given in table 16.1,
with default bath properties reflecting elevated alumina content, cf. Eick et al. [29].

Table 16.1: Values for various parameters used in simulations

Parameter Unit Value
ρgas kg/m3 0.435
ρbath kg/m3 2070
µgas kg/m·s 6.43·10−5

µbath kg/m·s 3.30·10−3

σgas Ω−1m−1 1·10−12

σbath Ω−1m−1 200
σanode Ω−1m−1 3·106

Di m2/s 5·10−10

γgas,bath N/m 0.1
θgas,bath

o 110
Cs,CO2 kg/m3 0.4
Ap0 m2 5.03·10−9

ρp,max % 22
ρp,min % 2
j A/m2 8000
D1 m 5·10−4

q - 2
M - 5
γa - 1

ACD m 0.04
gx m/s2 -0.3424
gy m/s2 -9.8040

pgauge atm 0

The default choices for the current density, ACD and inclination correspond to experiments
8 and 31 as of table 9.1.

The effective diffusivity of CO2 (cf. equation 14.3) is assumed to be given as

Deff = DCO2 +
νt
Sct

, (16.1)

where DCO2 is the molecular diffusivity, νt is the turbulent viscosity and Sct = 0.90 is a
turbulent Schmidt-number.
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For mass transfer, a Ranz-Marshall type correlation is used (cf. Kolev [69] chapter 12 and
Vogt [127], [128]), given as

Sh = 2.0 + 0.6
√
ReSc1/3, (16.2)

with Schmidt and Reynolds numbers defined as

Sc =
µb

ρbDCO2

Re =
ρb |u| D̄bub

µb
, (16.3)

where D̄bub is the mean bubble diameter in the cell in question, and u is the local fluid
velocity. For nucleation, the Reynolds number is based on the diameter of the smallest
bubble class, i.e. D1.

As the turbulent dissipation rate for the system considered typically is of the order 0.05
m2/s3, microbubbles considered here are typically larger than the resulting fine scale tur-
bulence, scaling as (ν3

b /ε)
1/4. Hence, coalescence is assumed to be governed by inertial

subrange turbulence, i.e. coalescence is assumed be given by the coalescence kernel of Luo
[79], collision frequencies given by equation 14.58 and collision probabilities by equation
14.64.

As a computational cell becomes filled with microbubbles, the molecular CO2 sees a smaller
effective volume in which it can be dissolved. In order to model this behaviour, the (effec-
tive) bulk concentration Cb,CO2 is written as

Cb,CO2 =
CCO2

1− αPBM
, (16.4)

where CCO2 = ρXCO2 is the concentration of dissolved CO2 (governed by equation 14.87)
and αPBM is the local volume fraction of microscopic bubbles.

As seen in Appendix A, the default CSF-formulation for surface tension has considerable
numerical challenges, especially for under-resolved bubbles, typically arising in the cur-
rent model as microbubbles transition to macroscopic ones. One possible improvement is
the continuum surface stress model (CSS) introduced in FLUENT 14 (released Q1-2012),
which does not require an explicit calculation of surface curvature. It is thus expected to
perform more physically in under-resolved regions [2]. Hence, the CSS-model is used for
the following simulations.

Although improving results (and allowing for variable surface tension), the CSS-model is
still prone to spurious velocities on (under-resolved) interfaces, resulting in an unphysical
detachment of isolated, under-resolved, bubbles. In order to avoid unphysical detachment,
a limiter of the form

γbath,gas (N/m) =

{
0.1 if αgas (x) and αgas (x±∆x) > 0.01

0.1αgas (x) otherwise,
(16.5)

is introduced, where αgas (x) is the local phase fraction of resolved (macroscopic) gas and
αgas (x±∆x) is the phase fraction of (any) neighbouring cell, i.e., the full value of the
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surface tension is applied only for pairs of (neighbouring) cells with phase fractions above
0.01, that is, the interface must span at least two computational cells, as sketched in figure
16.4.

Figure 16.4: Sketch of surface tension limiter. Cells a and b not limited as they both have
a neighbouring cell with finite phase fraction, while cell d has no neighbours,
resulting in a lower (numerical) surface tension. Cells c and d contain no interface
and thus have no surface tension.

Due to the wettable properties of the cathode (cf. Part II, section 9.1) and the resulting
lack of a (significant) bath-metal interface in the interpolar region, phenomena related to
the metal pad are neglected in all of the following simulations.

16.2.2 Solver settings

All of the following simulations are performed using the 2D, double precision, pressure
based, transient solver. The five microbubble classes, discretized using the QUICK scheme,
and the electrical potential, discretized by a Power-law scheme, are treated as UDS-
equations (cf. section 14.8). Momentum equations are discretized using the QUICK
scheme, while the PRESTO!-scheme is used for pressure. Turbulence is discretized using a
first order upwind-scheme. Pressure-velocity coupling is performed using the PISO-scheme,
with default corrections for skewness-neighbour coupling. Gradients are calculated based
on a Green-Gauss cell based scheme and the transient formulation is first order implicit,
with a constant time step of 0.002 s, in order to keep the global Courant number below
unity thoughout the simulation.

The macroscopic multiphase flow is treated with an explicit two-phase VOF method, with
an implicit body force formulation for enhanced convergence, discretized using the PLIC
(GEO-reconstruct)-scheme. Turbulence is modelled with the realizable k-ε-model with
enhanced wall functions.

The flexible AMG-cycle is employed for the pressure correction for increased stability and
the V-cycle is used for the UDS equations for increased convergence rate. All other cycles
are left at default values.

Residuals and under-relaxation factors are summarized in table 16.2
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Table 16.2: Under-relaxation factors and residuals for validation studies

URF Residual
Equation Value Equation Value

p 0.3 Continuity 1 · 10−4

ρ 0.5
|f b| 0.5
ρu 0.5 u 1 · 10−3

ρv 0.5 v 1 · 10−3

k 0.5 k 1 · 10−3

ε 0.5 ε 1 · 10−3

µt 0.7
XCO2 0.8 XCO2 1 · 10−6

n1 0.8 n1 1 · 10−6

n2 0.8 n2 1 · 10−6

n3 0.8 n3 1 · 10−6

n4 0.8 n4 1 · 10−6

n5 0.8 n5 1 · 10−6

φ 1.0 φ 1 · 10−12

γbg 0.7
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16.2.3 Boundary and initial conditions

The boundary conditions applied to the system considered are shown in figure 16.5.

Figure 16.5: Schematic of boundary conditions used for preliminary 2D studies.

A zero reference potential is specified to the anode connection (W,C,φ in the above figure),
whereas a uniform current density corresponding to experimental settings is specified to
the active cathode region (surface denoted NSW,C,j in figure 16.5). A zero flux bound-
ary condition for the remaining UDS equations is used on all surfaces, for simplicity, as
generation and evolution is handled by means of volumetric source and sink terms.

The pressure outlet is set to zero gauge, with a backflow volume fraction of gas equal to
unity.

Initial simulations, cf. [33], indicate that significant amounts of CO2 can be dissolved in
the bath. Consequently, long simulation times (t>200 s) are required in order to achieve
steady bubble production, if the system is initialized from zero. Hence, in order to enable
steady bubble production within reasonable simulation times, the concentration field is
initialized to 10Cs,CO2 for all of the following simulations. Remaining UDS and flow fields
are initialized to zero. Initial bath and gas volume fractions (cf. figure 16.2) are specified
using the patching command in ANSYS FLUENT, with 6 cm initial bath height, relative
to the anode bottom. Finally, the tilting of the system is simulated by specifying the
components of g accordingly.
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16.3 Factorial design and results

As seen in section 14.9, the proposed model involves several classes of parameters which
exact value are unknown. Hence a parametric study must be performed in order to de-
termine a set of parameters which adequately reproduce the experimental data given in
Part II of this thesis, while at the same time being within the expected ranges presented in
Part I. In addition to determining a set of adequate parameters, the sensitivity of a given
parameter is of interest, as this gives an indication of how robust the proposed model is.

In the following, the parametric study and sensitivity analysis is combined through a
factorial design, as described by Montgomery [82]. In a factorial design, each of the m
parameters considered are investigated at n-levels, resulting in a set of nm experiments (or
simulations in this case) from which the influence of each parameter as well as their joint
effect can be determined. For simplicity, the parameters in the following factorial design
are restricted to two levels, designated “+” and “-”, i.e. each parameter is allowed to take
a high and a low level. Results are thus restricted to a linear response to a given factor.

As an example, assume that two factors, A and B, are considered. In order to span all
combinations, a total of 22 experiments are required. The setup and response for each of
the experiments is given in table 16.3.

Table 16.3: Summary of factors and results for factorial design example. The response is in this
case the outcome of the given experiment.

Experiment Factor Response
(#) A B (-)
1 - - 20
2 + - 35
3 - + 17
4 + + 29

Using the methodology described in Montgomery [82], chapter 6, the magnitude (% con-
tribution) and direction (sign) of each of the factors can be computed. For the responses
given in table 16.3, the result of the factorial design is given in table 16.4.

Table 16.4: Sign and percent contribution for the factors shown in table 16.3.

Factor A B AB
Sign + - -
% 89.0 10.0 1.0

As seen from table 16.4, factor A has the strongest influence on the response. The posi-
tive sign indicates that an increase in factor A, increases the response, as expected when



210 CHAPTER 16. PARAMETRIC VALIDATION STUDIES

comparing experiments 1 and 2 in table 16.3. Correspondingly, the influence of factor B is
negative, indicating that an increase in B decreases the response, although to a smaller ex-
tent than factor A. The small contribution from AB suggests that the interaction between
A and B is negligible compared to the influence of the main factors, i.e. A and B alone.

The analysis presented in the following sections will be based upon the three main features
of the global voltage fluctuations, namely the frequency, signal domain and mean voltage.
In order to capture the spread in frequencies, both 1st and 2nd most dominating frequencies
of the signal, f iv, are considered. In addition, due to the close correlation between gas
coverage and voltage fluctuations, the 1st and 2nd most dominating frequencies in the
gas coverage fraction, f ig are included in the analysis. Hence, a full factorial design for a
given set of properties will consist of four frequency- and one amplitude and mean voltage
replicate.

In order to ensure that results are representative, simulations are run for 120 s flowtime,
where the first 80 s are rejected in order to avoid any start-up effects. Thus 20 full bubble
cycles are analysed for each case, assuming a frequency of 0.5Hz. As for the lab-scale
experiments, the signal domain, ∆U , is calculated as ∆U = 4ΣU , while frequencies are
calculated based on a FFT of the signal segment considered. Finally, the mean voltage is
calculated as the arithmetic mean over the given segment.

The high and low levels of the factors used in the following simulations are chosen based on
the corresponding ranges of values reported in the literature (cf. Part I), and thus reflect
the level of uncertainty related to this parameter.

16.3.1 Class 1: Pore properties

Factors related to pore properties as well as levels considered are summarized in table 16.5.
The levels of the pore area chosen assuming a mean pore diameter of 80 µm (low) and
120 µm (high), while the high level of ρp,max corresponds to the typical porosity given in
Grjotheim et al. [46]. The low estimate of the minimum pore density corresponds to the
lowest value obtained from figure 14.8, i.e. 2%.

Table 16.5: Factors and levels related to pore properties.

Factor Coded name High level Low level Unit
Minimum pore density, ρp,min A 0.07 0.02 -
Maximum pore density, ρp,max B 0.22 0.17 -

Pore area, Ap0 C 1.13·10−8 5.03·10−9 m2

A summary of the factor levels as well as the resulting signal properties obtained from each
of the eight cases simulated in this 23 experiment are given in table 16.6.

The estimated effect of each of the factors are shown in tables 16.7, 16.8 and 16.9.
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Table 16.6: Summary of factors, frequencies, signal domain and mean voltage obtained when
varying pore-properties.

Name Factor Frequency Signal Mean
replicate domain voltage

A B C f 1
v f 2

v f 1
g f 2

g ∆U Ū
(Hz) (Hz) (Hz) (Hz) (V) (V)

Case 1 - - - 0.49 0.51 0.49 0.51 0.24 1.37
Case 2 + - - 0.47 0.57 0.47 0.61 0.27 1.38
Case 3 - + - 0.47 0.41 0.41 0.47 0.22 1.37
Case 4 + + - 0.70 0.61 0.70 0.74 0.28 1.39
Case 5 - - + 0.25 0.20 0.20 0.23 0.16 1.34
Case 6 + - + 0.27 0.31 0.28 0.31 0.22 1.35
Case 7 - + + 0.27 0.33 0.27 0.33 0.18 1.35
Case 8 + + + 0.33 0.43 0.33 0.25 0.18 1.36

Table 16.7: Sign and percent contribution on frequencies for each of the factors shown in table
16.5.

Factor A B C AB AC BC ABC
Sign + + - + - + -
% 11.22 3.93 75.15 2.43 2.17 0.04 5.05

Table 16.8: Sign and percent contribution on amplitudes for each of the factors shown in table
16.5.

Factor A B C AB AC BC ABC
Sign + - - - - - -
% 21.14 0.80 68.97 0.33 0.32 0.26 8.18

Table 16.9: Sign and percent contribution on mean voltage for each of the factors shown in
table 16.5.

Factor A B C AB AC BC ABC
Sign + + - + + + +
% 16.71 1.45 80.95 0.00 0.87 0.01 0.01
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Discussion

As seen from table 16.6, calculated frequencies correspond well to that obtained in the
corresponding experiments, f 1

v,exp = 0.29. As expected from the nature of the voltage
fluctuations, there is a close correspondence to simulated variations in gas coverage. Figure
16.6 shows sample voltage and gas coverage curves for cases 2 and 6, as well of the resulting
FFT spectra for each of the cases.

Figure 16.6: Voltage, U, (blue) and gas coverage (of anode bottom), θcov, (red) variations for
different pore properties, case 2 (a) and case 6 (c) and corresponding spectra (b)
and (d).

Figure 16.8 shows the evolution of anodic bubbles and resulting redistribution of current
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density for a single voltage cycle shown in figure 16.7.

Figure 16.7: Details of single voltage cycle, case 6. Red circles indicate times depicted in figure
16.8.

Figure 16.8 confirms the close relation between high voltages and large gas coverage frac-
tions. As seen from the figure, macroscopic bubbles form at certain cites and block the
current density in this region. The local current density around the bubbles is however
significant, up to three times greater than the nominal current density of 8000 A/m2 (frame
t=70.20 s).

The behaviour depicted in figure 16.8 is typical for all simulations; macroscopic bubbles
form at regions where the local concentration of microscopic bubbles is high (due to local
flow and pore conditions) and grow by engulfing microbubbles in their proximity. Once
macroscopic bubbles have reached a sufficient size, they are set in motion by buoyancy,
growing further by means of coalescence, before being released at the anode edge. As the
creation of a macroscopic bubble and the following motion of the bath alters the local flow
conditions beneath the anode, the next bubble cycle can be initiated at different positions,
cf. figure 16.8 frames t=67.00 s and t=71.00 s, thus allowing for shorter or longer paths
required for a bubble to escape, resulting in variable bubble residence times under the
anode, as seen in figure 16.6 and observed in experiments (cf. figure 9.7).
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Figure 16.8: Sample evolution of anodic bubbles (greyscale) and redistribution of current den-
sity, coloured by magnitude, for voltage cycle shown in figure 16.7.
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Table 16.6 indicates that the signal domain is slightly higher than that obtained in ex-
periments, ∆Uexp = 0.11− 0.16 V. The discrepancy between simulations and experiments
is believed to be a 2D-effect, arising due to the large redistribution of current required
as the bubble rounds the anode corner, where the current density is high. Furthermore,
2D bubbles necessarily span (infinitely) into the paper plane, thus yielding larger regions
inactive than that expected in 3D. Finally, as the anode is modelled with sharp corners,
this is expected to increase the bandwidth compared to experiments, where anode corners
were (gradually) rounded.

As seen from table 16.6, it is evident that the mean voltage predicted by the simulations
is significantly lower than that measured in experiments, Ūexp = 3.26 V. This is however
as expected, as the current simulations consider only voltage losses within the anode and
the bubble containing bath, while the voltage obtained in the experiments was measured
between the anode connector rod and the current collector at the cathode and thus includes
additional sources of electrical resistance not considered in the simulations. Considering
the main contributions for the given setup, i.e. the reversible voltage (approximately 1.2
V, constant), anodic activation potential (approximately 0.5 V, close to constant) and
cathodic losses (approximately 0.3 V, Ohmic), the total mean simulated voltage is of order
3.4V, which is close to that measured.

Evidently, the distribution of pores alters the detachment behaviour of the bubbles. The
largest variation is found in frequencies and amplitudes, while the mean voltage is relatively
insensitive to the pore properties, as expected, as the main contribution to the mean voltage
is due to the conductivity of the (bubble free) bath. Frequencies show a positive response
to increasing porosities (factors A and B), as this increases the number of active pores
and thus potential nucleation sites. Similarly, increasing the mean pore diameter (factor
C) reduces the overall frequencies in the signal, as this yields less active pores for a given
porosity. For the simulations presented in table 16.6, the pore diameter has the strongest
influence on the results. The strong influence of the pore diameter is partially due to
the (relatively) large difference between high and low levels. The pore diameter also has
the strongest influence upon the domain of the signal, for the same reasons as for the
frequencies.
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16.3.2 Class 2: Bath properties

Following the experiments described in Part II, the spent bath was analysed, showing that it
was saturated with alumina. As seen in Thonstad et al. [116], this influences the properties
of the bath, in particular viscosity (increased by increased alumina content) and wetting
properties (increased wetting with increased alumina content). In addition, as shown by
Numata and Bockris [85], the solubility of CO2 increases with increasing alumina content.
Although knowledge of alumina levels during the electrolysis experiments is unknown, the
possibility of alumina saturation and its influence on the global flow features should be
considered. Factors related to bath properties as well as levels considered are summarized
in table 16.10. High (default) values are chosen in such a way that properties reflect
elevated alumina content, while low values correspond to low alumina content.

Table 16.10: Factors and levels related to bath properties.

Factor Coded name High level Low level Unit
Bath viscosity, µbath A 3.30·10−3 2.69·10−3 kg/m·s

Contact angle, θgas,bath B 110 90 ◦

CO2 saturation conc., Cs,CO2 C 0.4 0.2 kg/m3

CO2 diffusivity, DCO2 D 5 · 10−10 1 · 10−10 m2/s

A summary of the factor levels as well as the frequencies, signal domain and mean voltages
obtained from each of the four cases simulated in this 24 experiment are given in table
16.11.

The estimated effect of each of the factors are shown in tables 16.12, 16.13 and 16.14.
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Table 16.11: Summary of factors, frequencies, the signal domain and mean voltage obtained
when varying bath properties.

Name Factor Frequency Signal Mean
replicate domain voltage

A B C D f 1
v f 2

v f 1
g f 2

g ∆U Ū
(Hz) (Hz) (Hz) (Hz) (V) (V)

Case 1 - - - - 0.25 0.33 0.25 0.33 0.16 1.34
Case 2 + - - - 0.27 0.14 0.14 0.27 0.15 1.33
Case 3 - + - - 0.18 0.20 0.18 0.20 0.16 1.34
Case 4 + + - - 0.20 0.18 0.20 0.16 0.23 1.35
Case 5 - - + - 0.16 0.27 0.27 0.25 0.22 1.33
Case 6 + - + - 0.25 0.16 0.25 0.16 0.14 1.33
Case 7 - + + - 0.20 0.14 0.20 0.14 0.15 1.33
Case 8 + + + - 0.20 0.18 0.20 0.18 0.20 1.34
Case 9 - - - + 0.76 0.35 0.76 0.82 0.22 1.37
Case 10 + - - + 0.68 0.72 0.59 0.68 0.22 1.37
Case 11 - + - + 0.53 0.57 0.57 0.59 0.22 1.37
Case 12 + + - + 0.47 0.61 0.61 0.49 0.24 1.37
Case 13 - - + + 0.64 0.76 0.64 0.57 0.20 1.37
Case 14 + - + + 0.61 0.59 0.61 0.59 0.22 1.37
Case 15 - + + + 0.53 0.63 0.53 0.41 0.22 1.37
Case 16 + + + + 0.47 0.41 0.41 0.47 0.22 1.37

Table 16.12: Sign and percent contribution on frequencies for each of the factors shown in table
16.10.

Factor A B AB C AC BC ABC D
Sign - - + - + + + +
% 0.75 5.69 0.10 0.92 0.02 0.00 0.02 90.50

Factor AD BD ABD CD ACD BCD ABCD
Sign - - - - - - +
% 0.03 0.92 0.31 0.28 0.38 0.08 0.00

Table 16.13: Sign and percent contribution on amplitudes for each of the factors shown in table
16.10.

Factor A B AB C AC BC ABC D
Sign + + + - - - + +
% 2.03 3.47 16.63 0.94 2.78 3.85 0.04 47.93

Factor AD BD ABD CD ACD BCD ABCD
Sign + - - - + + -
% 0.11 0.40 13.45 0.51 2.63 2.36 2.87
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Table 16.14: Sign and percent contribution on mean voltage for each of the factors shown in
table 16.10.

Factor A B AB C AC BC ABC D
Sign + + + - + + + +
% 0.72 0.96 0.81 2.11 0.06 0.01 0.00 92.82

Factor AD BD ABD CD ACD BCD ABCD
Sign + + - + + - +
% 0.04 1.56 0.58 0.15 0.00 0.00 0.17

Discussion

The properties listed in table 16.11 are comparable to those given in table 16.6, although
greater variations are observed, in particular with respect to frequencies, with a factor of
six when comparing the smallest and largest calculated values. This is mainly due to the
large influence of the diffusivity of CO2, factor D, which is closely coupled to nucleation
and mass transfer rates and thus to the following formation and evolution of macroscopic
bubbles. As seen from table 16.11, increasing diffusivities yield higher bubble departure
rates.

Both the bath viscosity (factor A) and saturation concentration (factor C) have a negative
influence upon the frequencies, as these factors decrease the driving force for mass transfer
through the Sherwood number (scaling as µ

−1/6
b ) and the concentration difference ∆CCO2 ,

respectively. Furthermore, increased bath viscosity increases the viscous drag on macro-
scopic bubbles, thus reducing the departure rates and corresponding frequencies in voltage
and gas coverage.

In addition to the diffusivity, the contact angle (factor B), has a significant influence upon
the resulting frequencies1. Table 16.11 shows that increasing contact angles (measured in
the gas phase), i.e. increased bath wetting, decreases the overall frequencies. Although
increased wetting by the bath is expected to facilitate bubble detachment, the simulations
shown in table 16.11 indicate that the dynamic setting is different. Figure 16.9 shows the
mean velocity of a 20ml gas bubble rising in the bath under an inclined surface (cf. Zhang
et al. [147] for corresponding setup) as in the preceding simulations, for various values of
the contact angle. It should be noted that data shown in figure 16.9 is for a pure bubble
rising from rest due to gravity, and no additional phenomena (i.e. mass transfer, PBM,
etc.) are included in order to isolate the effect of the contact angle. Evidently, increasing
contact angles yield lower bubble velocities, thus resulting in a negative influence as of
table 16.12.

Equivalently to the frequencies, increased diffusivities increase the bandwidth of the signal.
Significant coupling between the various factors is however observed, indicating that the

1In particular considering the (relatively) small difference between high and low levels
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Figure 16.9: Influence of contact angle, θgas,bath, (measured in gas phase) on bubble velocity.

nature of the amplitudes of the signal is more complex than that of the frequencies, which
is fully dominated by the main factors.

16.3.3 Class 3: Transfer properties

The final class of free parameters is related to the transfer properties of the proposed
model, i.e. mass transfer and the coalescence kernel. Mass transfer is likely to be over
predicted in the current model as the Reynolds number is based on the local (mixture)
velocity, thus assuming that microbubbles are at rest in the fluid. Although this is close to
what expected from experiments (cf. Xue and Øye [139]), the cell averaged velocity used
to determine the local Reynolds number is higher than the typical velocities experienced
by the bubbles, which typically reside deep within the boundary layer, cf. figure 14.18.
In addition, local (unphysical) velocities arising due to surface tension (cf. Appendix A)
contribute to further over prediction of local velocities. For simplicity, the flow dependent
part of the Sherwood number is considered at a level corresponding to a twofold reduction,
compared to the default case, thus simulating a fourfold reduction of the local Reynolds
number.

The coalescence kernel is also likely to be over predicted by the default kernel as bubble
streamlines can deviate significantly from those of the fluid. In addition, breakup of mi-
crobubbles is neglected in the current study. Again, for simplicity, the low value of the
coalescence kernel is taken to be half of the default kernel, corresponding to a reduction of
approximately 30% of the default collision cross section.

Another factor which is of importance is the detachment diameter of nucleated bubbles
(cf. Jones et al. [58], Kloucek and Romerio [66] and Kiss et al. [61]), D1, here treated as
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a constant based on the experimental observations of Xue and Øye [139]. The detachment
diameter enters in the nucleation frequency analogously to the pore density and saturation
concentration. Hence, its influence is expected to be of the same order as these parameters.
Furthermore, the detachment diameter determines the size distribution of the PBM, thus
altering coalescence and growth rates accordingly. The low value of D1 is taken to be the
lower band of that which was observed by Xue and Øye, 0.4 mm, while the high value is
the default, mean, value, i.e. 0.5 mm.

Factors related to transport properties as well as levels considered are summarized in table
16.15.

Table 16.15: Factors and levels related to transfer properties.

Factor Coded name High level Low level Unit

Mass transfer, Sh A 2.0 + 0.6
√
ReSc1/3 2.0 + 0.3

√
ReSc1/3 -

Coalesence kernel, Γij B ΓIST 0.5ΓIST m3/s
Detachment diameter, D1 C 0.5·10−3 0.4·10−3 m

A summary of the factor levels and resulting properties are given in table 16.16. The
estimated effect of each of the factors on frequencies and amplitudes are shown in tables
16.17, 16.18 and 16.19.

Table 16.16: Summary of factors, frequencies, signal domain and amplitudes obtained when
varying transfer properties.

Name Factor Frequency Signal Mean
replicate domain voltage

A B C f 1
v f 2

v f 1
g f 2

g ∆U Ū
(Hz) (Hz) (Hz) (Hz) (V) (V)

Case 1 - - - 0.27 0.14 0.27 0.33 0.27 1.35
Case 2 + - - 0.57 0.53 0.57 0.53 0.23 1.37
Case 3 - + - 0.20 0.21 0.25 0.20 0.19 1.34
Case 4 + + - 0.45 0.43 0.45 0.43 0.21 1.36
Case 5 - - + 0.29 0.35 0.29 0.35 0.19 1.36
Case 6 + - + 0.53 0.49 0.49 0.53 0.21 1.38
Case 7 - + + 0.29 0.31 0.29 0.31 0.21 1.35
Case 8 + + + 0.47 0.41 0.41 0.47 0.22 1.37
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Table 16.17: Sign and percent contribution on frequencies for factors shown in table 16.15.

Factor A B C AB AC BC ABC
Sign + - + - - + +
% 85.01 6.62 1.66 1.65 4.60 0.41 0.05

Table 16.18: Sign and percent contribution on amplitudes for factors shown in table 16.15.

Factor A B C AB AC BC ABC
Sign + - - + + + -
% 0.65 10.57 12.01 8.13 7.80 41.46 19.37

Table 16.19: Sign and percent contribution on mean voltage for factors shown in table 16.15.

Factor A B C AB AC BC ABC
Sign + - + + + + +
% 48.97 22.65 26.69 0.09 0.54 0.92 0.12

Discussion

Simulated values obtained for different transfer properties correspond to those obtained
for pore- and bath properties. As seen from table 16.17, the frequencies are most strongly
influenced by the Sherwood number, comparable to the influence of the diffusivity of CO2,
as expected, as both factors contribute to the same physical process. The value of the
detachment diameter propagates throughout the whole PBM, finally resulting in the ghost
class, and thus determines the smallest possible volume fraction of macroscopic gas. Larger
detachment diameters thus result in larger (initial) macroscopic phase fractions and thus
initially greater buoyancy and increased departure rates.

The negative influence of the coalescence kernel appears counter intuitive, as one would
expect increased coalescence rates to enhance the production of macroscopic bubbles and
thus increase the corresponding frequencies. In this case, however, coalescence cannot be
considered alone, as the evolution of bubbles in addition is strongly coupled to growth
due to mass transfer. Consider two bubbles of volume Vi. If coalescence dominates, the
two bubbles will coalesce into a single bubble of volume 2Vi before any (significant) mass
transfer occurs. On the other hand, if mass transfer dominates, and sufficient amounts of
supersaturated gas exists in the proximity of the bubbles, both bubbles will grow so that
each attains a volume 2Vi. As collision frequencies increase with increasing particle size (cf.
table 14.1), a coalescence event now becomes more likely, now resulting in a single bubble
with volume 4Vi. Hence, reducing the coalescence kernel allows for additional mass transfer
for the smallest microbubbles and thus a faster evolution towards the macroscopic phase,
thus increasing the overall frequencies. Consequently, simulations with large coalescence
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kernels should, on average, show elevated concentrations of dissolved CO2, as less gas is
being transferred to the microbubbles. Figure 16.10 confirms that this indeed is the case.

The amplitude of the signal is not dominated by a single factor. In fact, the two largest
influences are due to coupled effects, again illustrating the complexity behind the amplitude
of the voltage fluctuations.

Figure 16.10: Influence of coalescence kernel on concentration levels. Thick lines (red and
green) show mean CO2 concentrations on anode surface for low values of the
coalescence kernel, while thin lines (blue and black) indicate levels at high values
of the kernel. Case names correspond to those given in table 16.16.

16.3.4 Time dependence

A statistically steady state is (approximately) obtained for all of the current simulations,
based on integral mean values of selected parameters,

ψ̄ =
1

T

∫ T

0

ψ(t)dt, (16.6)

i.e. the time average of the quantity ψ over the simulation time T . Four properties are
considered; velocities in right, vr, and left, vl, channels (at position x = ±60mm and y = 35
mm), the concentration of dissolved CO2 on the anode surface, CCO2, and the cell voltage
U . Figure 16.11 shows the integral mean and arithmetic averages2, of these parameters for
case 7 for each of the previous factorial designs.

As seen from figure 16.11, a statistically steady state is reached after approximately 80
s when considering voltage variations and velocities. Mean concentrations on the anode

2As the integral mean value approaches this value at a statistically steady state.



16.3. FACTORIAL DESIGN AND RESULTS 223

Figure 16.11: Integral mean values (solid lines) and arithmetic averages (dashed lines) for ve-
locity in right channel (vr) ,(a), velocity in left channel (vl), (b), mean CO2

concentration on anode surface (CCO2), (c), and voltage (U), (d), for three se-
lected cases.
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surface have not reached a fully steady state for the time interval considered (80-120 s),
values increasing steadily, although at a rate slower than that observed at earlier stages.
Increased concentrations at the anode surface will enhance the driving force for mass
transfer, ∆CCO2 , comparable to the influence of the saturation concentration (cf. table
16.11). Hence, frequencies presented in previous sections are expected to increase (slightly)
as the concentrations reach a statistically steady state.

16.3.5 Grid dependence

The macroscopic gas bubbles generated in the current simulations are resolved only to a
minimal level; typically each bubble consists only of 6-12 cells with phase fraction unity.
As a result, phenomena such as wall adhesion are resolved only to a minimal level. Also,
as seen in Appendix A, the action of the surface tension is also greatly influenced by the
mesh density. Hence, a grid dependency study is required in order to determine if this is
critical for the global properties of the voltage signal.

For a multiscale approach such as the one presented here, mesh refinement is not straight
forward as sub-grid models necessarily are inherently coupled to the grid, as this determines
whether an entity is sub-grid or not. Some grid dependence is thus expected and the fol-
lowing simulations are performed to determine how sensitive results are to grid resolution,
compared to other factors.

Case 7 of the pore property study is considered for reference and the mesh in the proximity
of the anode is refined on three levels, with properties summarized in table 16.20.

Table 16.20: Mesh size in proximity of anode. Case (+,+) is the original mesh.

Case ∆x ∆y
(mm) (mm)

(+,+) 3 1
(-,+) 1.5 1
(+,-) 3 0.5
(-,-) 1.5 0.5

Figure 16.12 shows sample voltage curves for each of the cases given in the above table.
Details regarding frequencies, amplitudes and mean voltages are given in table 16.21.

As expected, the resolution influences both local and global features of the voltage signal.
However, as seen from table 16.21, the difference between the various resolutions is not as
significant as one might expect, averaged properties differing by less than 10% for cases
(-,-) and (-,+). Case (+,-) shows the greatest difference from the default case, averaged
frequencies being 20% lower. Considering the mesh quality, this particular case is the worst
of the four cases considered, due to the considerable aspect ratio of the cells close to the
anode, a critical issue for successful VOF-simulations.
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Figure 16.12: Sample voltage curves for three different levels of resolution corresponding to
table 16.20.
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Table 16.21: Summary of factors, frequencies, signal domain and mean voltages obtained when
varying grid resolution.

Name Factor Frequency Signal Mean
replicate domain voltage

∆x ∆y f 1
v f 2

v f 1
g f 2

g ∆U Ū
(Hz) (Hz) (Hz) (Hz) (V) (V)

Case (-,-) - - 0.22 0.43 0.22 0.27 0.19 1.39
Case (+,-) + - 0.22 0.33 0.22 0.20 0.19 1.36
Case (-,+) - + 0.27 0.25 0.27 0.33 0.20 1.39
Case (+,+) + + 0.27 0.33 0.27 0.33 0.22 1.35

For all the cases considered, frequencies and amplitudes tend to decrease with increasing
resolution, the dependency upon wall normal resolution (∆y) being the strongest. The
mean voltage show the strongest dependency upon the horizontal resolution (∆x), due to
the improved prediction of horizontal currents entering the cathode through its corners (cf.
figure 16.8).

16.3.6 Sensitivity analysis

Data provided in tables 16.7, 16.8 and 16.9, and corresponding tables for other properties,
give the influence of a given factor when it is allowed to vary between high and low levels.
Hence, it gives an indication of the sensitivity related to the uncertainty of a given factor
and not the sensitivity to the factor itself, for which a relative percentwise change is
required.

Consider for instance the minimum pore density and maximum pore density, i.e. factors
A and B. Table 16.7 indicates that the influence of factor A is greater than that of factor
B, average frequencies from A+ -cases being 26% higher than the corresponding A–cases,
while the relative change between high and low levels is only 15% when considering factor
B. The relative change in the factors is however different, high levels being 250% and 29%
higher, respectively, than the corresponding low levels for factors A and B. Hence, the
sensibility to the two factors cannot be compared directly.

Assuming a linear response and negligible coupling between factors, the relative percentwise
change, βRPCi , is introduced to enable direct comparison of factors, defined as

βRPCi =
F−
(
R+
i −R−i

)
R−i (F+ − F−)

, (16.7)

where R+
i , R−i , F+ and F− respectively represent the response to high and low values of a

factor F , for a property (i.e. frequency or amplitude) i. A relative percentwise change of
unity thus indicates that 1% change in the parameter in question, yields a corresponding
change in the response of the property.
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The relative percentwise change, and thus sensitivity, for the factors described in the
factorial design is given in table 16.22 and corresponding results for grid sensitivity are
shown in table 16.23.

Table 16.22: Relative percentwise change in frequency f , domain ∆U and mean voltage Ū due
to different properties.

Pore Bath Transport
properties properties properties

Factor βRPCf βRPC∆U βRPC
Ū

βRPCf βRPC∆U βRPC
Ū

βRPCf βRPC∆U βRPC
Ū

A 0.11 0.08 0.00 -0.37 0.21 0.01 0.77 0.02 0.01
B 0.51 -0.11 0.01 -0.96 0.29 0.01 -0.14 -0.07 -0.01
C -0.37 -0.22 -0.02 -0.09 -0.03 0.00 0.32 -0.32 0.03
D - - - 0.45 0.06 0.01 - - -

Table 16.23: Relative percentwise change in frequency f , domain ∆U and mean voltage Ū due
to different mesh resolution.

Factor βRPCf βRPC∆U βRPC
Ū

∆x -0.04 0.05 0.03
∆y 0.10 0.09 0.00

As seen from tables 16.22 and 16.23, the frequencies of the simulated signals show the
greatest sensitivity to the various factors considered. The most significant factors are the
contact angle, Sherwood number and maximal pore density. As measured values of these
factors reported in the literature show considerable variation, extensive experiments are
required in order to reduce the uncertainty of the proposed model.

Considering the domain of the signal, the bubble detachment diameter, contact angle and
pore diameter appear to have the strongest influence. However, due to the strong coupling
between the various factors (cf. tables 16.8, 16.13 and 16.18), this result is only indicative.

As indicated previously, the mean voltage is relatively insensitive to the factors considered
here, as it is governed by other conditions (cf. section 16.5).



228 CHAPTER 16. PARAMETRIC VALIDATION STUDIES

16.4 Influence of MHD-forces

As seen in section 13.2, the current passing through the lab scale cell results in a tangential
magnetic field and corresponding radial Lorentz-force. As a full 3D simulation is required to
capture the complete MHD picture, the following 2D approximation serves as an estimate
to determine the importance of MHD-forces.

Assuming a uniform current density −j0ŷ in the interpolar region, the magnetic field in
the xy-plane is given as

Bind =

{
−µ0j0

2
xẑ if |x| < r0

−µ0jr20
2x2

xẑ if |x| ≥ r0

(16.8)

for a anode with diameter 2r0, where ẑ is a unit vector pointing into the paper plane, as
shown schematically in figure 16.13.

Figure 16.13: Sketch of 2D lab scale geometry with magnetic field given by equation 16.8,
resulting from a uniform current density −j0ŷ in the interpolar region. The unit
vector ẑ points into the paper plane.

The Lorentz force is calculated as
fL = j ×B, (16.9)

where j is the local current density obtained from the simulation at every time step.
This 2D approximation is thus a zero order approach, as the magnetic field is specified and
induction currents are neglected. As both the local current densities and the magnetic field
are strongly related to j0, the resulting Lorentz force, and thus its action, is expected to
scale as fL ∼ j2

0 . For simplicity, only the linear part of the magnetic field is considered, as
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the current density and hence the Lorentz forces outside the interpolar region is negligible,
as seen in chapter 13.

Experiments 8 and 31 and 22 and 44 (cf. table 9.1) are chosen for comparison, as these
cases have the largest difference in current density and also the largest ACD, thus allowing
for MHD related bath flow in a larger region.

Pore-, bath- and transport properties correspond to Case 7 of the pore property study.
Figure 16.14 shows sample voltage curves as well as dominating frequencies for each of the
two current densities, with and without Lorentz forces enabled.

As seen from figure 16.14, the inclusion of Lorentz forces shows a considerable influence
upon the voltage curves, particularly when considering the most dominating frequencies
of the signal, which increase for both of the cases considered with 22 and 32%, respec-
tively, compared to the simulations without MHD. The enhanced bubble departure can
be understood by comparing figures 13.4 and 16.8, showing an enhanced (MHD-induced)
pressure gradient at the right edge of the anode (figure 13.4) which corresponds to the
region typically having the highest density of macroscopic bubbles (cf. figure 16.8), owing
to the tilting of the anode. The Lorentz forces thus behave as an additional buoyancy
force, allowing large bubbles to round the anode corner more easily.

The enhanced motion of the bath also influences other features, such as mass transfer,
allowing the system to reach a statistically steady state faster than corresponding simula-
tions without Lorentz forces present, as shown in figure 16.15.

Comparing the most dominating frequencies provided in figure 16.14, it is evident that
increasing current densities increases the bubble departure rates, as expected from the
enhanced production of gas on a molecular level. Considering the cases without Lorentz
forces (frames a and c), the increase in the most dominant frequencies is 14%, while the
increase in current density is 37%. Correspondingly, the increase in dominant frequencies
is 25% for cases with Lorentz forces activated, that is, the contribution due to MHD on
bubble departure frequencies is comparable to that of increased gas production.
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Figure 16.14: Influence of Lorentz forces on voltage signal. Figure shows voltage signal for
current densities j0 = 8000 A/m2, with and without Lorentz forces (a and b)
and corresponding curves for current densities j0 = 11000 A/m2 (c and d) and
first and second most dominating frequencies, f1

v and f2
v , respectively.
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Figure 16.15: Integral mean values (solid lines) and arithmetic averages (dashed lines) for ve-
locity in right channel (a) and CO2 concentration on anode surface (b) for sim-
ulations at j0 = 8000 A/m2 with and without Lorentz forces, red and blue lines,
respectively.

16.5 Full validation study

The final validation of the proposed (2D) model is based on the experimental results
given in table 9.1. In addition, extended simulations are performed in order to further
investigate the influence of anode inclination. Pore-, bath- and transport properties are
chosen corresponding to case 7 in the study of pore properties, while operational parameters
are varied according to experiments. Lorentz forces are simulated for each of the cases
considered, following the same procedures as described in section 16.4, i.e. a zero order
approach.

Conditions for each of the simulations as well as essential results (corresponding to those
given in table 9.1) are given in table 16.24. Selected voltage curves are shown in figure
16.16.

As seen from table 16.24, the typical frequencies for the cases considered correspond well
to those obtained experimentally. Higher frequencies are found at higher current densities
and greater anode inclinations.

Considering the voltage losses neglected in the current simulations (of order 2 V), mean
voltages are within the expected order. Evidently, the mean voltage changes according to
the ACD and current densities. For cases 3 and 4, operating with a current density of
8000 A/m2, the mean voltage increases with 0.54 V with a 2 cm increase of the ACD. The
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Table 16.24: Results from simulations corresponding to lab scale experiments, table 9.1, cases
1–5, and simulations related to increasing inclination angle, cases 6 and 7.

Case CD ACD inc Ū f 1
v f 2

v ∆U
(#) A/cm2 (cm) (◦) (V) (Hz) (Hz) (V)
1 0.95 3 4 1.25 0.45 0.37 0.14
2 1.10 2 2 1.11 0.37 0.35 0.35
3 0.80 4 2 1.35 0.33 0.22 0.19
4 0.80 2 2 0.81 0.29 0.39 0.32
5 1.10 4 2 1.86 0.41 0.43 0.29
6 0.80 4 4 1.32 0.35 0.45 0.10
7 0.80 4 6 1.31 0.25 0.51 0.06

experimental result (cf. table 9.1) is 0.48 V. Analogously, for a current density of 11000
A/m2, simulated and experimental values both give 0.75 V. Considering an increase in
current density of 37% (as for instance between cases 2 and 4), the corresponding increase
in mean voltage is 37%, as expected, as the simulated voltage consists only of Ohmic
contributions.

Similarly to simulations presented previously in this chapter, the magnitude of the voltage
oscillations are somewhat over predicted, particularly for the low ACD cases.

The trend of the fluctuations is however similar to that found in experiments, higher current
densities promoting higher amplitudes, while greater anode inclinations significantly reduce
the bandwidth of the signal, as seen from cases 3, 6 and 7. The simulations also indicate
a strong dependency upon ACD, amplitudes increasing as the ACD decreases. As this
effect is not (clearly) seen in the experiments, it is possible that this effect is a numerical
artifact arising due to the uniform current density enforced on the cathode, impeding the
redistribution of electrical current expected to occur in reality.

Increasing anode inclinations tend to increase the frequencies of the signal, although the
trend is not as strong as for the bandwidth, as seen from table 16.24. As seen from
the data provided for case 7, the most dominating frequency decreases significantly when
compared to cases 3 and 6, as opposed to the expected behaviour. Considering the actual
voltage curve, figure 16.16d, it is however evident that the signal in fact is fluctuating more
significantly than cases with lower inclination (i.e. case 6). The voltage curve from case 7
also shows low frequency oscillations superimposed on the faster fluctuations, indicated by
the moving average in figure 16.16d, possibly shifting dominating frequencies in the FFT
(which assumes oscillations around a constant mean) towards lower values.



16.5. FULL VALIDATION STUDY 233

Figure 16.16: Voltage curves from selected simulations presented in table 16.24.
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16.6 Mass transport in the interpolar region

As seen from figures 16.11c and 16.15b, the CO2 concentration on the anode surface,
which governs nucleation and mass transfer to the majority of the microbubbles, is close
to a statistically steady state. Hence, bubble production can assumed to be steady, as
indicated by the corresponding steady state curves for voltage. A statistically steady state
is however not reached when considering the system as a whole. Figure 16.17 shows the
total mass of dissolved CO2 in the bath, compared to that produced by Faraday’s law, i.e.
expected mass of CO2 if no bubble production is present.

Figure 16.17: Total mass of dissolved CO2 for case 3, table 16.24 (red line), compared to that
predicted by Faraday’s law (black line).

As seen from the above figure, the total mass of dissolved CO2 in the bath is increasing
steadily, although at a lower rate than that predicted by Faraday’s law. The rate of
the simulated curve is approximately 40% of Faraday’s law, indicating that 60% of the
(molecular) gas produced is evolved as bubbles. Hence, the present simulations indicate
that a statistically steady state on the anode surface does not imply a complete transfer
of dissolved gas to bubbles, rather an equilibrium between gas and bubble generation and
transport away from the anode by means of diffusion (mainly turbulent) and advection, as
indicated in figure 16.18.

The steady state behaviour illustrated in figure 16.18 corresponds well to the analytical
predictions of Vogt [125]-[129]. Vogt [127] indicates that 30% (or less) of the molecular
gas is evolved at the anode surface, i.e. by nucleation. The higher gas evolution efficiency
indicated in figure 16.17 is due to mass transfer to microbubbles in the proximity of the
anode, an effect not considered in [127].
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Figure 16.18: Sketch of steady state bubble production. The total amount of produced CO2

by Faraday’s law (brown) is separated between bubble evolution (red), occuring
in the bubble layer with close proximity to the anode, and transport into the
remaining (essentially bubble free) bath by advection and diffusion (green).

Figure 16.19: Snapshot of dissolved CO2 distribution for case 3, table 16.24, at t=120 s. The
uniform initial value (CCO2=4 kg/m3) has been subtracted from the result for
visualization purposes.
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Figure 16.19 shows the distribution of CCO2 for case 3, table 16.24, at t=120 s. Although
the greatest (and smallest, due to local production) concentrations are present in close
proximity of the anode, figure 16.19 indicates that the remaining bath contains considerable
amounts of CO2, typically greater than the saturation concentration.

Evidently, reducing the ACD brings the CO2 enriched region closer to the cathode, thus
increasing the typical CO2 concentrations in this region, as shown in figure 16.20.

Figure 16.20: Concentration of CO2 on cathode at t=120 s for cases 3 and 4, table 16.24, with
ACD 4 and 2 cm, respectively.

The presence of CO2 in proximity of the cathode could in principle initiate the back reaction
(equation 5.15), thus lowering the overall current efficiency. As CO2 concentrations in this
region increase with reduced ACD, as indicated in figure 16.20, the bath-transport mode of
CO2 appears to yield a possible explanation to the significantly reduced current efficiency
observed experimentally, if the ACD is reduced below a certain limit.

In a real setting, the bath cannot absorb unlimited amounts of CO2, as is the case in the
current simulations. The presence of alumina particles, dust and the remaining boundaries
of the system are likely to provide sufficient porous structures for heterogeneous nucleation
of bubbles to occur. Additionally, the dissolved gas can be freed at the interface of large
bubbles (as of equation 14.43), further depleting the surrounding bath. The concentrations
shown in figure 16.20 are thus expected to be greatly exaggerated compared to reality.
Nevertheless, it is interesting to note that the rigourous mixing arising due to the bubbles
allows the concentration field of dissolved CO2 to extend far outside the typical bubble
layer thickness, possibly allowing for the back reaction (equation 5.15) without (resolved)
bubbles coming in contact with the metal pad.
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3D case study

Although the simulations presented in the previous chapters adequately reproduce the
sought experimental behaviour, the 2D approach has some shortcomings, besides the (ob-
vious) fact that a 2D-simulation always is an idealization of the real 3D problem. The
main shortcomings of the 2D approach are:

• Bubbles in a 2D simulation are neccessarily represented as cylinders, spanning in-
finitely into the paper plane, as sketched in figure 17.1 An aritificial self-organization
is thus enforced on the bubble flow due to the 2D approximation.

• Owing to the cylindrical shape of the bubbles, a stronger redistribution of the elec-
trical current is expected, as it cannot pass through a plane parallell to the bubble.

• Surface and contact forces are neccessarily different in 2 and 3 dimensions, again
owing to the cylindrical shape imposed by the 2D-approximation.

• The MHD phenomena occuring in the cell are 3D, due to the tangential direction of
the magnetic field. In addition, the reduced redistribution of current density in 3D
will result in a different distribution of Lorentz forces, compared to 2D cases.

The first three of the above points are illustrated further in figure 17.1.

Despite the above shortcomings, the proposed model is able to adequately reproduce the
essential properties of the voltage signal in 2D. This is expected to be due to the particular
geometry used in the lab scale experiments, essentially forcing all the gas in one direction
due to inclination and the plates fixed to the sides of the anode (cf. figure 16.1), resulting in
bubble behaviour much similar to that observed in water model experiments (cf. Einarsrud
[30]), which is well represented by a 2D approach.

For the general case, however, a 3D validation of the model is required. Due to limited
computing capacity, the following 3D-study is restricted to a simplified case, rather than
a full validation.
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Figure 17.1: Comparison of single bubble in 3D (a) and 2D (b). Although the side view (top
frames) is identical for both approaches, the top view is not. For the 3D bubble,
the electrical current can circumvent the bubble in the z-direction. As this is not
possible in 2D, a stronger redistribution of the electrical current is expected.

17.1 Geometry and setup

Considering the 2D cases presented previously, typically consisting of 6000–8000 cells, the
typical simulation time (on a single CPU) to reach 120 s flowtime is 72 hours. A pure
extrusion of the geometry presented in figure 16.3, will typically involve 30 times more
cells with the given resolution, indicating that long term 3D simulations of the full lab cell,
with the current hardware, is impractical. Furthermore, preliminary simulations indicate
that significantly lower time-steps are required for 3D simulations than in 2D, due to the
complex motion of the top bath-gas interface as bubbles are released. While this results
in a Courant number just below unity in 2D, Courant numbers above 10 are observed in
3D, seriously impeding convergence and leaving the time accuracy of the solution highly
questionable.

Consequently, in order to reduce the computational cost of the 3D-simulations, the lab-cell
geometry is simplified further, as shown in figure 17.2.

The cross section shown in figure 17.2 is extruded ±5 cm in the z-direction in order to
represent the full lab scale anode surface. The anode connection rod, with a specified
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Figure 17.2: Cross section of simplified 3D model showing mesh and essential boundary condi-
tions. Outlet surfaces are inclined corresponding to experiments in order to have
equal gauge pressure.

reference potential of 0 V, spans ±1.5 cm. Mesh properties under the anode correspond to
those used in the 2D simulations. The resolution in the z-direction is identical to the x-
direction, i.e. ∆x = ∆z=3 mm. All bounding surfaces are treated as in the 2D-simulations,
i.e. zero flux, no-slip walls, except for the active cathode, where a current density of 8000
A/m2 is specified. Solver settings and model parameters correspond to those used in section
16.5.

As MHD is expected to be of importance, the full second order formulation based on the
magnetic vector potential is adopted. Analytical Dirichlet boundary conditions, equation
11.17, are used on all external surfaces for the main component of the magnetic vector
potential (Ay), while appropriate academic boundary conditions (cf. section 11.4 for def-
inition) are imposed on internal surfaces and for the remaining components, analogously
to simulations performed in chapter 13.

The simplified geometry described in figure 17.2 imposes two constraints on the bath flow.
As the free surface is not present, the typical recirculation pattern observed in the side
channel (cf. figure 17.3 and [30], [31]) is expected to be limited. In addition, the presence of
two outlets will increase the “rigidity” of the system, as opposed to the (full) 2D simulation,
where a pressure imbalance in one channel can be equalized by moving the interface in the
other channel accordingly.

In order to save additional CPU-resources, the following study is performed with an ACD
of 2 cm. Results should thus correspond to those obtained for case 4, table 16.24.
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Figure 17.3: Typical velocity distribution in gas escape channel, case 4, table 16.24, and position
of pressure outlet in simplified geometry.

17.2 Validity of simplified geometry

As the geometry is slightly different for the simplified 3D case compared to that used in
case 4, table 16.24, a 2D simulation is performed on the geometry shown in figure 17.2
in order to ensure that the simplfied geometry (qualitatively) yields the expected results.
Figure 17.4 shows voltage curves obtained from simulations on the simplified geometry
compared to the one obtained from case 4, table 16.24.

The voltage curved shown in figure 17.4 indicate that the simplified geometry influences
the resulting voltage curve, which necessarily is expected from the strong dependency upon
geometry reported in the literature. Due to the additional constraints on the bath flow,
the signal obtained from the simplified geometry shows lower frequencies (f 1

v = 0.22 Hz,
f 2
v= 0.37 Hz) than the corresponding data given in table 16.24. The mean voltage (Ū=0.81

V) and amplitudes (∆U = 0.31 V) correspond well to that expected.

Qualitatively, the expected behaviour is sufficiently reproduced, suggesting that a 3D sim-
ulation on the simplified geometry also should correspond to that obtained for case 4, table
16.24.
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Figure 17.4: Comparison between voltage signal in default (blue) and simplified geometry (red).
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17.3 Results from 3D simulation

Figure 17.5 shows the evolution of voltage (a) and gas coverage fraction (b) for the 3D
simulations, compared to results obtained on the corresponding simplified 2D geometry.
Due to limited computer resources, the 3D simulation is limited to 60 s flowtime1. Although
not sufficient to obtain a statistically steady state, representative fluctuations are obtained
on this interval for 2D simulations and thus gives a strong indication of future bubble
evolution.

Figure 17.5: Comparison between voltage signal (a) and gas coverage fraction (b) for 2D (blue)
and 3D (red) simulations on simplified geometry (figure 17.2).

Evidently, as seen from figure 17.4, there is a significant difference between the behaviour
obtained in 2- and 3D simulations. While the typical bubble fluctuations are achieved al-
ready in the first cycle in 2D, 3D simulations show random-like, low amplitude fluctuations
throughout the whole time interval, corresponding to that shown in figure 7.6b for multiple
bubbles failing to reach a self-organised state.

Figure 17.6 shows the details of the voltage signal and gas coverage for the first bubble
cycle.

It is clear that the initial behaviour (up to t ≈ 6 s) is similar in 2 and 3D. However,
bubbles appear to detach and slide along the anode surface more easily in the 3D simula-
tions, allowing for less gas to accumulate under the anode and consequently resulting in
significantly lower amplitudes. That the 2 and 3D approaches produce similar results up
to the point at which the presence of macroscopic bubbles becomes significant indicates
that the challenges in 3D are related to the macroscopic VOF bubbles, possibly due to

1Even on the simplified geometry, this simulation requires approximately 2000 CPU-hours to complete.
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Figure 17.6: Comparison between first voltage (a) and gas coverage (b) cycle for 2D (blue) and
3D (red) simulations on simplified geometry (figure 17.2).

surface tension (and resulting surface forces), which, as shown in appendix A, is strongly
influenced by whether the simulation is run in 2 or 3D.

Figure 17.7 shows the evolution of bubbles under the anode for a selected 4 s interval. As
seen from the figure, macroscopic bubbles form several small clusters, typically extending
4x4 cells, which evolve more or less independently of other clusters present. This behaviour
is significantly different from that obtained in corresponding 2D simulations, where small
clusters remain close to stationary until sufficient amounts are present, resulting in the
formation of a single large bubble which is released in the gas escape channel (cf. figure
16.8).

Although the 2D simulations impose an artificial self-organised state, likely to be extreme
compared to that occuring in a real cell, results indicate that this at least is closer to
reality than the lack of self-organisation observed in the current 3D simulation. Whether
the lack of a self-organised state in 3D is a transient phenomenon, inadequate choice of
parameters or due to some unknown factor enforcing self-organisation (or a combination)
can be determined only by extended simulations.
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Figure 17.7: Sample evolution of anodic bubbles (blue) in 3D simulation.



Part V: Conclusions

Outline of Part V

Part V provides a conclusive summary and states the most important limitations of the
models presented this thesis. Finally, suggestions for future research are given.
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Chapter 18

Concluding remarks and limitations

This thesis contributes to the understanding of mechanisms for mass transport in alu-
minium electrolysis cells. Fundamental studies are undertaken of flow patterns and mass
transport in the interpolar region under various operating conditions. A coupled model
predicting the turbulent electrolyte flow, under the influence of both electromagnetism
and forces from buoyant gas bubbles, crucial for better prediction of mass transfer mech-
anisms and voltage oscillations, has been developed from first principles. The model is
validated against experiments performed on a lab scale electrolysis cell. Both modelling
and experiments are performed within the scope of the thesis.

The control of aluminium reduction cells relies almost exclusively on the continuous sensing
of potline current and cell voltage. Voltage oscillations arise due to several sources, both
internal and external. One such source is the continuous production and departure of
anodic bubbles, typically yielding frequencies in the order of 1 Hz. As bubbles influence
the voltage signal, the voltage could thus in principle be used to map the bubble behaviour
in a cell, without the need for invasive techniques.

Voltage measurements have been performed on both lab and industrial scales, supplied
with high speed video recordings of the bath surface in order to relate the measured voltage
signal to bubble departure on the anode.

The following conclusions can be drawn from the industrial scale experiments:

• Voltage signals have distinct low frequency components in the range 0.5 to 2.0 Hz,
with amplitudes up to ±5% around the mean voltage, due to bubbles departing from
the anode.

• The frequency and magnitude of the bubble induced oscillations are found to increase
with anode age, due to the rounding of the anode edges and diminishing influence of
slots.

• No significant correlation in the voltage signal between anode pairs is identified,
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indicating that stand alone models of bubble phenomena on industrial anodes are
meaningful, provided that the global bath and metal flow is adequately described.

• Bubbles are found to depart from the anode at a higher rate than the typical fre-
quencies found in the voltage signal. The measured fluctuations can qualitatively be
reproduced from observed departure rates by accounting for the time a bubble spends
beneath the anode. This procedure indicates that several large bubbles can coexist
under the anode and that the measured voltage signal thus is due to the collective
behaviour of several bubbles, rather than single bubbles as commonly described in
physical model experiments.

• Due to the multitude of simultaneous phenomena occurring on an industrial scale,
results can at best be used for qualitative validations of a numerical model.

A series of lab scale experiments have been conducted in order to obtain data from which
a quantitative validation can be performed. The following conclusions can be drawn from
the lab-scale experiments:

• Voltage signals show distinct low frequency components in the range 0.2 to 1.0 Hz,
with amplitudes up to ±4% around the mean voltage.

• Increasing current densities increases the frequency and amplitudes of the voltage
signal, as expected from increased production rates.

• Increased inclination angles increases the frequency and decreases the domain of
the voltage signal, indicating a complex interaction between bubble topology and
governing forces.

• No general dependence upon the ACD is identified with respect to the signal prop-
erties considered, other than the expected reduction in mean voltage with reducing
ACD. It should be noted that this result is greatly influenced by the wettable cathode
used in the experiments, resulting in negligible bath metal interface effects.

• The signal domain is found to decrease with increasing anode age due to rounding of
initially sharp edges. Results indicate that higher frequencies also are to be expected
with increasing anode age, although the trend is not as clear as for the signal domain.

• There is a good correspondence between observed bubble departure and voltage fluc-
tuations, observed events accounting for approximately 95% of the fluctuations with
amplitude larger than ±2.5% of the average voltage. In can thus be concluded that
the measured fluctuations are directly related to bubbles departing from the anode.

• Large variations in bubble release times are observed, resulting in an aperiodic signal,
thus leaving the physical interpretation of the FFT questionable.

• Due to the aperiodic nature of the voltage curves a description of the signal based
solely on FFT-frequencies is not sufficient. Consequently, simulations should be
closely assessed in order to ensure that the full complexity of the signal is captured.
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Chemical reactions in the Hall-Héroult cell are driven by an imposed electrical current,
which, due to the dual nature of electromagnetism, induces a magnetic field in the sur-
rounding medium. Interacting electromagnetic fields yield Lorentz forces, resulting in
pressure gradients and motion in the medium; magnetohydrodynamics (MHD). In order
to ensure compatibility with other models, a MHD framework is developed from first prin-
ciples. The main conclusions from the development of the MHD framework are:

• A formalism based the magnetic vector potential A and the electrical potential φ
incorporates all relevant physics through two simple Poisson equations. As the mag-
netic vector potential is parallel to the electrical current, determining boundary con-
ditions is more straightforward than for an approach based directly on the magnetic
field.

• The A−φ model yields a direct decoupling of induced- and external magnetic fields
for cases in which this is important.

• Implementing the governing equations through the UDS framework in FLUENT
reproduces expected behaviour, provided that an appropriate weighting is used for the
interpolation of the electrical field across sharp interfaces. A conductivity weighted
interpolation ensures conservation of electrical charge.

• For cases in which boundary conditions for the magnetic vector potential are un-
known, academic boundary conditions (i.e. Ai = 0 or ∂nAi = 0) yield a good
approximation, with absolute error less than 15% compared to analytic results, if
Dirichlet and Neumann boundary conditions are applied to insulating and conduct-
ing surfaces, respectively.

• For an isolated bubble, the influence of MHD is negligible compared to other forces
present.

• The presence of a bubble does however have a significant influence on the voltage of
the system. The resulting voltage is due to a complex interaction between Ohmic
screening and current deflection, i.e. both the projected area of the bubble and its
typical thickness is important.

• Considering MHD effects on the lab scale cell, the presence of Lorentz forces result
in a slightly favourable pressure gradient and flow field, enhancing bath and bubble
transport towards the anode edges. The magnitude of the MHD induced velocities
is typically 1-10% of that obtained by buoyant bubbles, indicating that the flow in
the bath is mainly controlled by the bubbles.

A phenomenological, coupled, model for the creation and transport of anodic gas bubbles
has been developed from first principles. The proposed model is a multiscale approach
in which molecular species are produced by Faraday’s law and transported by diffusion
and advection through a supersaturated electrolyte. Sub grid bubbles are allowed to form
through non-classical nucleation on the anode surface and the resulting bubble population
evolves through mass transfer and coalescence. As sub grid bubbles reach a certain size
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they are transferred to a macroscopic phase which evolution is governed by the volume of
fluid method, thus allowing for the treatment of complex bubble topology.

The model is validated against results from the lab scale experiments in a 2D geometry,
showing that essential features of the voltage signal can be reproduced by the proposed ap-
proach. The influence of various parameters such as bath properties, anode microstructure
and mass transfer properties are investigated by means of a factorial design analysis.

The following conclusions can be drawn from the coupled bubble model:

• Bubble evolution by means of CO2 transport through a supersaturated bath is both
possible and plausible, despite very low molecular diffusivities in the bath.

• Due to the low diffusivity, the bath in proximity of the anode surface quickly becomes
supersaturated. Expected levels of supersaturation are significant, typically five to
ten times the saturation concentration.

• Voltage fluctuations correspond well to variations in gas coverage under the anode.

• The main factors influencing the gas release frequencies are the contact angle, the
Sherwood number (i.e. the mass transfer coefficient) and the porosity of the anode.
Considering operational parameters, the gas release frequency is found to increase
with increasing current densities and anode inclination.

• The amplitudes of the voltage signal are most sensitive to the bubble detachment
diameter, contact angles and the mean pore diameter on the anode. Amplitudes how-
ever show significant dependence upon coupling between different factors, indicating
that the amplitudes of the voltage oscillations is more complex than the frequencies.
Regarding operational parameters, amplitudes are found to increase with increasing
current densities, while decreasing with increasing anode inclination.

• The mean voltage is relatively insensitive to the (non-operational related) factors
investigated in the current study. As expected by Ohm’s law, it increases with
increasing current densities and ACD.

• Magnetohydrodynamics appear to have a considerable influence upon the bubble
evolution, the inclusion of Lorentz forces yielding enhanced gas departure rates com-
parable to that arising due to increased current densities. The enhanced bubble
departure rates appear to be due to slightly favourable pressure gradients at the an-
ode edges, where the concentration of large bubbles is most significant, thus acting as
an additional source of buoyancy, allowing bubbles to round the anode corners more
easily. The enhanced dynamics of the interpolar region also influence concentration
fields, indicating that MHD is highly relevant, also in the bath.

• Simulations compare well to experimental results and appears to handle different
operational parameters reasonably for a given set of properties. The amplitudes of
the voltage oscillations are however over predicted compared to experiments. The
qualitative behaviour is however consistent, indicating that the elevated amplitudes
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are due to some systematic error such as system geometry (for instance the lack of
rounded corners) or 3D effects not accounted for.

• Steady state bubble production on the anode does not imply a direct transfer of all
the molecular gas to bubbles. Instead, a balance between bubble production and
transport by diffusion and advection away from the anode appears to describe this
state, resulting in a CO2 supersaturated region greatly extending the bubble layer.
The presence of a CO2 enriched region yields a possible explanation to the observed
(significant) reduction of current efficiency if the ACD is reduced beyond a critical
limit.

The main constraint of the model is that alumina concentrations are assumed to be con-
stant during each simulation. Hence, important features such as alumina dependent bath
properties (which is the case for almost all properties) and the anode effect have not been
modelled at the present time. The presence of sufficient amounts of alumina is, necessarily,
also crucial for the formation of CO2. Although the assumption of homogenous (and con-
stant) alumina concentrations is likely to be valid for short time intervals, it cannot be the
case in the long run. The current model is thus limited to relatively short time intervals,
typically a fraction of the alumina feeding cycle.

As seen in Thonstad et al. [116], the contact angle is strongly dependent upon local alumina
content and current densities. The lack of a general model incorporating these effects is
most certainly a critical issue, as simulations show a strong dependence upon the contact
angle, here treated as a constant value.

Owing to the current focus, i.e. the formation and evolution of bubbles on the anode
surface, the bath outside the immediate neighbourhood of the anode is allowed to absorb
unlimited amounts of CO2, if flow conditions are such that advection and diffusion away
from the anode are favourable. The proposed model will however (greatly) over predict the
CO2 concentrations outside the bubble layer, as secondary mass transfer to macroscopic
bubbles and nucleation on particles suspended in the bath is neglected in the current
implementation.

Microscopic bubbles are in the current approach, for simplicity and (numerical) stability
reasons, only allowed to influence the conductivity of the bath. However, the presence of
bubbles will most definitely influence other parameters as well, most notably the density
and also the viscosity, corresponding to the shear induced turbulent viscosity (cf. for in-
stance Zhang et al. [146]). Considering the density and assuming a homogeneous mixture,
a sub-grid bubble volume fraction of 0.1 (essentially the largest allowed value) will, ap-
proximately, reduce the density of the bath by a corresponding factor, thus allowing for
additional buoyancy, not considered in the current approach.

Due to the multiscale nature of the proposed model and challenges related to surface
tension, grid dependence is observed. As grid convergence is not achieved at the current
time, successive refinements of the mesh does not guarantee that the numerical solution
approaches the physical solution, whatever it may be. Until these challenges are resolved,
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parameters will have to be adjusted according to experimental observations for a given
computational mesh.

Although validated for a selected range of parameters, extended validation studies are re-
quired to determine the influence of additional parameters such as for instance different
models for electrical conductivity, number of classes in the PBM, turbulence models, differ-
ent approaches for surface tension, different models for the Sherwood number and altered
anode topologies, in particular rounded anode corners. In addition, long term simulations
are required in order for all simulations to reach a statistically steady state, provided that
this state can be reached without violating the time constraints due to the assumption of
constant alumina levels.

Another important limitation is that the proposed model is relatively CPU-intensive, due
to the strong coupling between the various fields, resulting in slow convergence, and the
long simulation times required to reach a statistically steady state. Considering the 2D
cases, typically consisting of 7000–8000 cells, the typical simulation time (on a single
CPU) to reach 120 s flowtime is 72 hours. A 3D-model of the (simplified) lab-scale anode
will typically consist of approximately 30 times more cells (with the current resolution),
making 3D-parametric studies highly time consuming. A 3D extension to a full scale
electrolysis cell (or even a full anode) is thus (at best) impractical, at least without access
to a supercomputing facility.

Due to the above limitation, a full 3D validation of the lab-scale cell has not been performed
in this thesis. Instead, a time limited 3D simulation is performed on a simplified geometry.
A self-organized state is not achieved for this simulation, voltage curves showing seemingly
random, low amplitude fluctuations. Comparing to experimental voltage curves, however, a
form of self-organisation is most definitely present. The 2D simulations induce an artificial
self-organised state as bubbles essentially are formed on lines passing into the paper plane.
Although this is believed to be somewhat extreme compared to the phenomena occuring
in a real cell, results indicate that this at least is closer to reality than a complete lack
of self-organisation. Whether the lack of a self-organised state in the 3D simulations is a
transient phenomenon, inadequate choice of parameters or due to some unknown driving
force (or a combination) can be determined only by extended simulations. Consequently,
until these exist, the proposed model remains unvalidated for 3D applications.

Despite the above limitations, the proposed model is able to adequately reproduce essen-
tial properties of the voltage signal (for 2D simulations), thus providing the basis for a
framework in which the evolution of anodic bubbles and their interaction with, and impact
on, other phenomena can be studied.
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Topics for further research

1. Fractal analysis: Both experimental and simulated voltage curves deviate from peri-
odicity, thus leaving the physical interpretation of an FFT questionable. Advanced
signal processing tools such as for instance fractal analysis (cf. for instance Wornell
[138]) could provide additional useful information regarding the nature of the signal,
as these methods are not limited to periodic signals. However, fractal signal analysis
requires larger datasets and significantly higher sampling rates than those considered
here.

2. Extended experiments I: Simulations reveal a strong dependency upon parameters
for which values reported in the literature vary significantly. This is in particular the
case for wetting properties and the diffusivity of CO2 in the bath (i.e. mass transfer).
If a model such as the one presented in this thesis is to be used as a tool for future cell
design, extensive experimental work is required to reduce the uncertainty of governing
parameters, and consequently the uncertainty of model output.

3. Extended experiments II: The successful simulations performed in this thesis indi-
cate that bubble evolution by means of gas transport through the bath is possible.
However, the anode transport mode (cf. Kiss et al. [62]) also provides plausible
results. In order to determine the dominating mode of gas transport, dedicated
experiments must be conducted. Comparable to the supersaturation required in
the bath transport mode, gas transport through the anode would require elevated
pressures within the anode pore system, which in principle can be measured. Corre-
spondingly, for the bath transport mode, the supersaturation concentrations should
be determined by some appropriate measuring technique. Evidently, measuring these
non-equilibrium quantities in the harsh environment of the Hall-Héroult cell will pose
tremendous experimental challenges. These must however be met, if the true nature
of gas evolution is to be determined.

4. Extended experiments III: If experiments reveal that gas transport through the
bath dominates the process, the influence of CO2 concentrations upon bath proper-
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ties, if any, should be determined, either by classical or numerical experiments.

5. Extension of model I: As the main constraint of the proposed model is that alumina
concentrations are assumed to be constant and homogeneous, a natural extension of
the model is to include transport of alumina. As a first approach, alumina transport
can be simulated by means of a UDS, similarly to the current treatment of dissolved
CO2. For a complete description, however, more advanced models dealing with for
instance dissolution of alumina must be included.

6. Extension of model II: The influence (or presence) of secondary nucleation and mass
transfer should be investigated in detail, in order to determine realistic CO2 concen-
trations outside the bubble layer. Combined with an implementation of the back-
reaction, the extended model will allow for an estimate of the current efficiency and
consequently an additional experimental parameter to which the model can be vali-
dated. A model allowing for accurate predictions of the current efficiency would also
necessarily be a useful tool for the industry, in order to determine the influence of
alternative cell and process design.

7. Extension of model III: With access to a high performance computing facility a full
3D-validation of the model should be performed, as 2D cases are limited in the sense
of MHD effects and impose artificial conditions for self-organization of the bubbles.
Extended simulations will also allow for studies on the factors which govern the onset
to a self-organised state in 3D, a critical issue not resolved in the current thesis.

8. Modelling a full cell: Owing to the relatively high computational requirements of
the proposed model, a direct application to a full scale cell (or even a full size an-
ode) is unrealistic. Details obtained from the proposed model can however be used
to determine realistic input parameters for a full scale model, for instance typical
time-scales, momentum and mass transfer rates, bubble distribution and mean con-
centration fields. On the other hand, the output from a full scale model would provide
typical (global) flow conditions, which in turn can serve as realistic boundary condi-
tions for a smaller scale model used to describe features on a selected portion of the
anode.

Ultimately, a model allowing for a (semi) continuous coupling between small and large
scale phenomena should be developed, thus allowing for detailed interpretations and
potential improvements of the process as a whole.
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Appendix A

Surface Tension in FLUENT

Several industrial immiscible flows are at an initial stage dominated by surface tension,
for instance the formation of bubbles in metallurgical flows (Thumfart [118]) and capillary
effects in microfluidics (Linnerud [74]). A common approach to these kinds of problems
is to use a Volume of Fluid (VOF) method, with sharp interfaces (Hirt and Nichols [50]),
in conjecture with a Contiuum Surface Force (CSF) as propsed by Brackbill et al. [9].
Although the VOF-CSF model has successfully been adopted to problems where surface
tension effects are secondary, surface tension driven flows appear to be prone to instabilities
and inaccuracies as shown by for instance Thumfart [118].

One possible explanation for the observed discrepancies are the so called parasitic currents
(cf. Williams et al. [137]) originating from the CSF formulation, in which the surface
tension is represented as a continuous volumetric force which acts in the immediate neigh-
borhood of the interface. The CSF formulation relies upon an accurate representation of
the interface curvature, typically determined by means of the gradient in volume fraction.
Hence, a well resolved interface is crucial in order for surface tension to behave as expected.
As shown by Williams et al. [137], the resolution requirement can be relaxed by describing
the curvature by means of a higher order method. However, at the current time, these
high order methods are unavailable in FLUENT.

In practical calculations, the computational domain typically consists of more than one
bubble and simulations are often run for long times in order to obtain average properties.
In order to minimize the computational cost, the required resolution is often relaxed,
resulting in the inaccuracies reported in the literature. In the following, the influence of
the various parameters and models available in FLUENT, for a surface tension dominated
system, are investigated.
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A.1 Model setup

All of the following simulations are performed in a rectangular geometry as sketched in
figure A.1. Gravity is disabled, so that a (stable) cavity placed in the domain should retain
its original position and shape. Three different mesh densities are used; a = 20, 40, 60.

Figure A.1: Sketch of rectangular geometry used in simulations. A gas cavity (blue) with radius
0.1L is patched into the domain 0.5L above the bottom surface. The z-direction is
used only in 3D-simulations. For all cases, L = 10 cm.

Simulations are run using the transient formulation with a constant time step of 0.001 s
until a final time of 1 s is reached. The multiphase nature is modeled by the explicit, two-
phase VOF model, using the implicit body force formulation, to increase stability further.
The phase fraction equation is discretized by means of the Geo-reconstruct (PLIC) scheme
of Hirt and Nichols [50]. The gaseous phase (secondary phase) is patched into the domain
and the RP-command (rpsetvar ′patch/vof? #t) is used in order to initially obtain a
smooth surface. All other settings are kept at their default values, unless otherwise noted.

The liquid phase is assumed to have a density of 2000 kg/m3 and viscosity 2.5·10−3 Pa·s,
while the gaseous phase is given a density of 1 kg/m3 and viscosity 2·10−5 Pa·s. The surface
tension is set to 0.1 N/m.
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A.2 Results

A.2.1 The influence of resolution

Figures A.2 and A.3 show the evolution of the bubble surface over time using different
resolution in 2 and 3D, respectively, compared to the bubble surface when surface tension
is deactivated (using a=40).

Figure A.2: Results from 2D simulation. Simulated bubble surface at three different time in-
stances for three different mesh densities, a = 20, 40 and 60 shown in figures a-c,
respectively, compared to the case of no surface tension (figure d).

Evidently, as seen from figures A.2 and A.3, the mesh density has a significant impact
on the predicted bubble surface. For the 2D simulations, the case with a=40 appears to
predict a stable bubble surface. The finest resolution (a=60) does however show some
tendency to instability. Considering the simulations shown in figures A.2a and A.2b, the
(global) CFL number is (on average) in the range of 0.01, while it is 0.1 in figure A.2c.
Reducing the time-step for the 2D simulations, in order to obtain similar CFL numbers,
does not change the predicted surface significantly. The interfaces shown in figure A.2
show some discrepancies, they are all in of the same order of the grid resolution and thus
acceptable.
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Figure A.3: Results from 3D simulation. Simulated bubble surface at three different time in-
stances for three different mesh densities, a = 20, 40 and 60 shown in figures a-c,
respectively, compared to the case of no surface tension (figure d).
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Considering the 3D simulations shown in figure A.3, the discrepancies are large and bubbles
become strongly deformed as time passes. Allowing the simulation to evolve further entirely
disrupts the bubble, hence violating mass conservation.

Although the current time step is thought to be acceptable, simulations are performed
with a reduced time step, ∆t = 0.0001s, for comparison. Figure A.4 shows the evolution
of the interface on the a=40 mesh.

Figure A.4: 3D simulation of bubble on medium mesh (a=40) using reduced time-step (∆t =
0.0001s).

As seen from figure A.4, the predicted interface is somewhat improved by using a smaller
time-step (compared to figure A.3b). However, non-physical deformations persist, in addi-
tion to increased computational time.

A.2.2 The influence of discretization

Figure A.5 shows the final surface of a 3D-bubble using the a = 40 mesh using the four
different discretization schemes available for the VOF-model in FLUENT.

As seen from figure A.5, the choice of VOF-discretization has a huge impact upon the
predicted interface. The diffusive nature of the non-sharp schemes is clearly visible as
the bubbles appear to contract (i.e. the volume-fraction is smeared across more cells).
Although the shape of the bubble is somewhat better represented using the non-sharp
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Figure A.5: 3D simulation of bubble on medium mesh (a=40) using different discretization
schemes for VOF, compared to the initial bubble surface (black).

schemes, the position of the interface becomes less accurate; a critical issue for the appli-
cation of mass transfer and force distribution on the surface.

A.2.3 The continuum surface stress model

A promising improvement to the above CSF-model is the continuum surface stress model
(CSS) introduced in FLUENT 14 (released Q1-2012), which does not require an explicit
calculation of surface curvature. Hence, it is expected to perform more physically in under-
resolved regions [2]. Figure A.6a shows the evolution of a bubble on the a=20 mesh (in
3D).

Evidently, as seen from the figure, the CSS formulation greatly improves the stability of
the interface. Spurious currents are however still present, but reduced by approximately
40% compared to the CSF formulation.

Figure A.6b shows the evolution of the bubble with both the CSS-method and the surface
tension limiter introduced in equation 16.5 enabled. As seen from the figure, the final state
is comparable to that of the pure CSS-approach. The intermediate interphase position,
i.e. t=0.5 s, is however better, only deviating slightly from the initial value. Moreover,
spurious velocities are reduced by 50% compared to the CSF formulation.
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Figure A.6: 3D simulation of bubble on coarse mesh (a=20) using the CSS-method (a) and a
combination of the CSS-method and the surface tension limiter defined in equation
16.5 (b).

A.3 Closing remarks regarding surface tension

It is shown that the stability of the interface is coupled to the spatial and temporal reso-
lution as well as the number of dimensions used in the simulation. The deformation of the
interface is most strong for 3D simulations, even when these are run with identical settings
as the 2D cases.

As expected, 3D simulations are improved with a finer resolution, but necessarily comes
with a higher computational cost. The choice of discretization schemes for the phase
fraction influences the overall shape of the interface, but neither of the schemes investigated
here stand out as being superior.

The newly released CSS-model provides a significant improvement over the traditional
CSF, both with respect to interface stability and reduction of spurious velocities. As the
CSS-model can handle variable surface tension, additional improvements can be made by
introducing limiters on the surface tension, ensuring that it is active only in regions of
interest.
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Appendix B

Enhanced PBM evolution due to
discretization

As shown by Outsuki et al. [89], studying the evolution of galaxies by means of a PBM,
the choice of the discretization factor q, (cf. equation 14.45) can severely influence the
accuracy of a calculation. The system studied by Outsuki et al. [89] is of astronomical
proportions; particle classes spanning 20 orders of magnitude and time scales of the order
105 years. In this case, the typical time required to form the largest particle class differed
by a factor of 10 when comparing a q =

√
2 distribution to a coarse q = 8 distribution.

Based on their findings, Outsuki et al. [89] conclude that the ratio should be
√

2 at most.

Although the above astronomical system is somewhat extreme, enhanced evolution due to
discretization is believed to occur in the current system as well as it is a mathematical,
rather than a physical effect. However, due to the typically smaller system size and shorter
time intervals its relative importance is expected to be smaller than that observed by
Outsuki et al. [89], as seen from results obtained using a q = 2 distribution on small
systems (cf. Hounslow et al. [51] and Waghmare et al. [130]), obtaining good accordance
with experimental results.

For the current PBM model, a discretization factor of q =
√

2 is inadequate when dealing
with coalescence, as it results in idle bubble classes. For instance, considering a population
with volumes Vi=1,

√
2, 2 . . ., an interaction between two bubbles of volume V1 results

in a bubble of volume V3, thus leaving the class with volume V2 idle. Hence, the finest
distribution used in the present case is q = 2. In the following, the q = 2 distribution is
compared results obtained with q = 4 in three separate cases.

In order to investigate acceleration in cases relevant to coupled simulations, the number of
bubble classes is kept relatively low; 9 classes in the q = 2 and 5 classes in the q = 4 class,
resulting in a maximal bubble volume VM = 256V0 in both cases. The smallest bubble
class is given a diameter of 0.5 mm, corresponding to the smallest bubbles observed by
Xue and Øye, [139]. Although both distributions start and end with the same mean values,
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the internal boundaries of each class is different as shown in figure 14.13. This neccesarily
results in a different internal distribution of bubbles.

All results presented in the following are obtained using the ODE45 solver in MATLAB,
with initial bubble distribution n1 = 0.9. All other bubble classes are initialized to zero.

B.1 Evolution by coalescence with contant kernel

Consider first a system which evolves as a result of coalescence. Assuming a constant
coalescence kernel given as Γ = 10−6 m3/s with no other interactions, the overall behaviour
of the system should be similar to that shown in figure 14.15, that is, the global number
density should decrease as time increases, while the system mass should be constant. Figure
B.1 shows a comparison between the total number density with fine and coarse distribution.

Figure B.1: Comparison between total bubble number density obtained by fine (solid line) and
coarse (dashed line) discretization.

As seen from figure B.1, the evolution of the coarse distribution is only slightly enhanced
compared to the fine one, with an average difference of 3% for intermediate times shown in
the figure. Both distributions neccesarily approach the same asymptotic value of n1/256,
but again at slightly different times. Figure B.2a shows a comparison between the mass
contained in the final bubble class. Evidently, the difference is larger than for the total
number density and the accumulation in the largest bin is significantly faster for the coarse
distribution.

The reason for this apparent discrepancy is that the largest class in the q = 4 class actually
covers 80% of the second largest class in the q = 2 distribution (in addition to the largest
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Figure B.2: Comparison between total mass in final bin (a) and equivalent bins (b) obtained
by fine (solid line) and coarse (dashed line) discretization.

class, cf. figure 14.13). Figure B.2b shows a comparison of the mass in the largest bin for
the coarse case to the corresponding mass distribution in the fine case, i.e. 0.8n8V8 +n9V9.
The difference between the two cases is comparable to that of the total number density
(figure B.1).

The uncertainties related to discretization are considered to be negligible in the case of
a constant coalescence kernel, as it is of a smaller magnitude than the sensitivity of the
coalescence kernel itself.



278 APPENDIX B. ENHANCED PBM EVOLUTION

B.2 Evolution by coalescence with physical kernel

For the next case, consider a physical kernel on the form

Γij = ΩijP
C
ij , (B.1)

where the coalescence probability is set to unity and the collision frequency of Luo [79]
(equation 14.58) is chosen for comparison. The turbulent dissipation rate is set to unity
for all cases. With a physical coalescence kernel, the bubble diameter is coupled directly to
the collision frequency and the effect of enhanced evolution is expected to be stronger than
in the constant kernel case. In figure B.3a, the total number density is compared using a
fine and coarse distribution.

Figure B.3: Comparison between total bubble number density (a) and total mass in final class
(dashed line) and its equivalent (solid line) (b) obtained by fine (solid line) and
coarse (dashed line) discretization.

The mean average difference between the two discretizations is 6%, which is higher than
the sensitivity on the value of εt (cf. equation 14.58), which results in an average difference
of 2% with an change of 10%. The mean average difference between the total mass present
in the final class with the coarse- and fine discretization is 3%.



B.3. EVOLUTION BY MASS TRANSFER 279

B.3 Evolution by mass transfer

Finally, consider a population evolving due to mass transfer from a reservoir with constant
saturation ∆C = 0.1 kg/m3. The proportionality coefficient, K2 is assumed to be 2.3·10−6

m5/(kg·s). In such a system, the total number of bubbles is constant, but the total mass (for
the bubbles) increases as long as the surrounding fluid is supersaturated. As ∆C is constant
in this case, the population will evolve until it reaches a total mass of 256n1(0)V1. Figure
B.4a shows a comparison between the total mass attained by coarse and fine discretizations,
while figure B.4b shows the fraction of the maximal attainable mass present in the largest
bubble class (for the coarse distribution) and its equivalent for the fine distribution.

Figure B.4: Comparison between total mass, ΣniVi/256n1(0)V1, (a) and total mass in final
class, nMVM/256n1(0)V1, (dashed line) and its equivalent (solid line) (b) obtained
by fine (solid line) and coarse (dashed line) discretization.

As seen from the above figures, the coarse distribution is accelerated compared to the fine
one, with mean average difference of 10%. This is comparable to the sensitivity of the
coefficient K2; a 10% change resulting in a 7% average difference.

B.4 Closing remarks regarding acceleration

As seen from the above cases, a coarse distribution does indeed lead to an artificial enhanced
evolution of the population towards the largest classes. The effect is however significantly
smaller than that found by Outsuki et al. [89]. The effect is larger, the stronger the
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governing equations are coupled to the discretization. Changing the discretization from
q = 2 to q = 4 changes the solution by 10% in the case of mass transfer. Compared
to the large uncertainty in the mass transfer coefficient, the error introduced by a coarse
distribution can be neglected.
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