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Abstract

Surface roughness is of great relevance in most engineering applications, as very few
surfaces can be regarded as perfectly smooth. Investigation of the effects on the
mean flow, as well as the near wall turbulence is therefore of interest.

In the present study, all scales of the turbulent motions are resolved using Direct
Numerical Simulation (DNS). Transverse square ribs are introduced as a surface
roughness model in a pressure driven channel flow at Reynolds number Reτ = 395
to establish a streamwise inhomogeneity. The principal aim of the study is to see
whether a specific in-house pseudo-spectral DNS-code developed for plane channel
flow performs, even though it is, in principle, not suited for this specific application.

The results from the rough channel simulation are compared to both a smooth
and rough channel reference case. The results are found to be almost identical to
that of the rough channel reference. For the mean velocity profile, the logarithmic
shape is maintaned, but the profile has a downwards shift due to the increased drag.
Streamwise dependency for the mean velocity, as well as turbulence quantities, is
found to be limited to the roughness sublayer, stretching out to z+ ≈ 5r+, where
r+ is the non-dimensionalized height of the roughness elements, indicating that the
flow is unaware of the surface conditions in the outer region. Compared to the
smooth channel data, roughness effects are mainly found to affect the flow inside
the roughness sublayer.

It is proven that the pseudo-spectral DNS-code works well with the relatively small
roughness elements, and despite the fact that streamwise homogeneity is removed,
the results suggests that the quasi-homogeneity of the velocity field is sufficient for
the pseudo-spectral code to deliver accurate results. Further, when accounting for
reduced domain size, the grid point resolution is 43% less than in the reference case
of Ashrafian [4]. This is motivated by reduced computational cost, but also serves
as a check on the spectral-method’s superior accuracy and reduced demand for grid
point resolution. The results indicates that a relatively high level of accuracy is still
delivered.
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Sammendrag

Effekten av veggruhet er av høy relevans når det kommer til industrielle strømninger,
siden de fleste flater ikke kan antas å være perfekt glatte. Å undersøke hvilke
konsekvenser veggruhet får for den midlere strømningen og turbulensen er derfor
av interesse.

I oppgaven løses alle skalaer av den turbulente strømningen opp ved hjelp av direkte
numerisk simulering (DNS). Tversgående, kvadratiske ribber implementeres som en
ruhetsmodell i en trykkdrevet kanalstrømning med Reynoldstall Reτ = 395 for å
etablere inhomogen strømning i hovedstrømsretning. Hovedintensjonen er å under-
søke om et "in-house" simuleringsverktøy utviklet for turbulent strømning i glatt
kanal fungerer, selv om koden i prinsippet ikke er ment å fungere for slik strømning.

Resultatene fra kanalstrømningen med veggruhet sammenlignes med to referanse-
simuleringer, én for glatt kanal og én for ru kanal. Resultatene er nærmest identiske
med de som er funnet for den rue kanalen. Den logaritmiske profilen til det mi-
dlete hastighetsprofilet opprettholdes, men får et vertikalt skift på grunn av høyere
strømningsmotstand. Avhengighet i hovedstrømsretning er funnet å være begrenset
til det veggnære ruhetssjiktet som strekker seg ut til z+ ≈ 5r+ for både hastighet-
sprofilet og ulike turbulensvariabler. Her er r+ den veggnormaliserte høyden til
ruhetselementene. Dette indikerer at strømningen er upåvirket av forholdene på
veggen i det ytre området. Sammenlignet med strømning i glatt kanal, er effektene
fra ruhet funnet å påvirke strømningen hovedsaklig bare i dette rue sjiktet.

Det er altså vist at den pseudo-spektrale DNS-koden virker med de forholdsvis små
ruhetselementene som er undersøkt. Selv om strømningen ikke lenger er homogen i
hovedstrømsretning, indikerer resultatene at periodisiteten som oppstår i denne ret-
ningen er nok til at koden gir nøyaktige resultater. Tatt den reduserte domenestør-
relsen i betraktning, er tettheten av gridpunkter redusert med 43% sammenliknet
med det som er benyttet i Ashrafian [4]. Dette er motivert av redusert behov for
datakraft og lagringskapasitet, men også som en sjekk på spektral-metodens høye
nøyaktighet og begrensede krav til gridpunkt-tetthet. Resultatene indikerer at en
relativt høy nøyaktighet fortsatt leveres.
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Nomenclature

Roman symbols

dij Diffusion terms in transport equation for RST (m2 s−3)

dk Diffusion terms in transport equation for TKE (m2 s−3)

fi Body forces in xi direction (kg m s−2)

g Gravitational acceleration (m s−2)

h Channel height (m)

k Turbulence kinetic energy (m2 s−2)

k Wavenumber ()

ks Equivalent sand-grain roughness (m)

L Characteristic length of bounding geometry (m)

l0 Integral length scale (m)

Ma Mach number ()

p Pressure (kg m−1 s−2)

Pij Production rate tensor of Reynolds stress (m2 s−3)

Pk Production rate of TKE (m2 s−3)

r Roughness height (m)

Reb Reynolds number based on bulk velocity and channel half-height ()

Re0 Reynolds number based on integral scale ()

Ret Reynolds number based on turbulence length scale ()

Reτ Reynolds number based on shear velocity and channel half-height ()

Reτ,h Reynolds number based on shear velocity and channel height ()

Sij Strain-rate tensor (s−1)
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xii Nomenclature

T Temperature (K)

t Time (s)

U Characteristic flow velocity scale (m s−1)

u0 Integral velocity scale (m s−1)

Ub Bulk velocity (m s−1)

uCL Channel centerline velocity (m s−1)

uη Kolmogorov velocity scale (m s−1)

ûk Discrete Fourier coefficients of the function u ()

uτ Friction velocity / wall shear velocity (m s−1)

u Streamwise velocity component, u1 (m s−1)

v Spanwise velocity component, u2 (m s−1)

w Wall-normal velocity component, u3 (m s−1)

x Streamwise coordinate, x1 (m)

y Spanwise coordinate, x2 (m)

z Wall-normal coordinate, x3 (m)

Greek Symbols

δ Channel half-height (m)

δij Kronecker delta function ()

ε Rate of dissipation (m2 s−3)

εij Dissipation tensor (m2 s−3)

η Kolmogorov length scale (m)

κ von Kármán constant ()

λ Height-to-pitch ratio ()

µ Dynamic viscosity (kg m−1 s−1)

µT Dynamic turbulence viscosity (kg m−1 s−1)

ν Kinematic viscosity (m2 s−1)

νT Kinematic turbulence viscosity (m2 s−1)

φ Scalar transport-variable ()

Φij Pressure-strain tensor (m2 s−3)

ρ Density (kg m−3)

τ0 Integral time scale (s)
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τη Kolmogorov time scale (s)

τij Stress tensor (kg m−1 s−2)

τw Wall shear stress (kg m−1 s−2)

Sub- and superscripts

• Averaged quantity; alternatively < • >

•′ Fluctuating quantity

•∗ Non-dimensionalized quantity

•+ Wall-normalized quantity

Abbrevations

AB2 Adams-Bashforth (2nd order accurate)

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

DES Detached Eddy Simulation

DNS Direct Numerical Simulation

FDM Finite Difference Method

FEM Finite Element Method

FFT Fast Fourier Transform

FORTRAN FORmula TRANslation

FVM Finite Volume Method

HPC High Performance Computing

LES Large Eddy Simulation

RANS Reynolds Averaged Navier-Stokes equations

RSM Reynolds Stress Modelling

RST Reynolds Stress Tensor

SEM Spectral Element Method

SMC Second Moment Closures

TKE Turbulence Kinetic Energy
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1 Introduction

As very few surfaces in real life applications can be regarded as perfectly smooth,
roughness is of great importance in engineering. The introduction of surface rough-
ness has a significant impact on the near wall flow structure and overall character-
istics of the flow. By generating irregular turbulent motion in the very near-wall
region, and extending the surface into the flow, heat transfer rate is enhanced.
At the same time however, flow resistance, that is the drag force exerted by the
walls, increases. This is of special interest regarding pressure loss in pipes and long
pipelines. Small devices, that in effect produces a rough surface, can also be used to
suppress or promote transition from laminar to turbulent flow. Further, the effect
of rough walls is highly relevant in high Reynolds number applications, such as flows
over ship hulls and aircraft fuselage, as the roughness becomes large compared to
the near-wall viscous length scales.

In an engineering computation perspective, however, the details of the roughness
cannot be represented without extreme computational cost, and models are used in
most engineering problems where roughness is believed to be of significance. Thus,
increased understanding of turbulence modifications for use with statistical closure
models is highly needed.

Direct Numerical Simulation is the most computer demanding approach used to
deal with the complexity of turbulence, but on the other hand, it allows for very
detailed and accurate investigation of small scale flow behaviour. It also allows for
specific types of roughness to be studied efficiently. In the present case, spanwise
rectangular ribs is investigated. Such rod roughness provides a considerable rough
boundary for the flow, and many studies on this specific type of roughness has been
conducted. Despite a great amount of research, there are still controversy in how,
and to what extent events in the very near-wall layer affects the turbulence in the
outer flow.

1.1 Motivation

As mentioned, computer demanding direct simulation is used to resolve all scales
of the turbulent motions. Naturally, this demands a great deal of available compu-
tational power, but also efficient numerical procedures to handle the large number



2 1 Introduction

of required computational operations. Dealing with partial differential equations,
spectral methods offers superior accuracy and performance, as the variables are
replaced with Fourier-series representations, and by use of computer efficient Fast
Fourier transform- algorithms (FFT), calculation of exact derivatives is performed
in Fourier space, where differentiation is a straight forward multiplication operation.
Thus, many DNS-codes for simple flows use spectral numerics.

In spectral methods, the basis functions, the complex Fourier series, has a global
support, which means they are non-zero over the whole domain. This requires the
variables being represented to be periodic functions, which effectively implies that
the flow must be homogeneous in the specified direction. Further, such methods
implies restrictions on the boundary conditions, which must be periodic, as well as
the grid spacing, which must be uniform. In addition, the solution must be smooth,
as the method is not capable of capturing discontinuities such as shock-waves. Thus,
spectral methods, at least in the beginning, were most suited for simulation of very
simple homogeneous and isotropic turbulence. Later, advances has been made in
expanding its applicability to cover flows with multiple inhomogeneous directions.
One class of such methods is Spectral Element Methods (SEM), where the basis
functions are restricted to only having a local support on a small part of the domain,
similar to that in Finite Element Methods (FEM). This allows for both complex
geometries to be represented and the use of more flexible numerical grids.

The aim of the present study is, however, to introduce rod roughness in a DNS-code
developed for plane channel flow. The code uses a spectral-method in homogeneous
directions, spanwise and streamwise direction, and finite differences in the inho-
mogeneous wall-normal direction. The primary motivation is to see whether the
spectral method still performs, despite the fact that streamwise homogeneity now
is removed due to the presence of obstacles. The results, and how the flow is af-
fected by the roughness will be compared to available data from the previous work
of Ashrafian [4].

1.2 Outline

The basic outline of the thesis is that chapter 2, 3 and partly 4 gives a theoretical
foundation, while chapter 5, 6 and 7 are concerned with the simulations.

In chapter 2, governing equations for fluid motion is presented. Fundamental theory
and mechanisms of turbulence is discussed to gain knowledge on the treatment of
such flows. Strictly speaking, there is perhaps somewhat more focus on turbulence
fundamentals included here, than what is actually necessary. Further, chapter 3
gives an introduction to wall-roughness, and how this affects the mean flow field,
as well as the turbulence. Also, a brief overview on findings from literature on the
topic is included. As a proceeding from chapter 2, numerical aspects is discussed
in chapter 4. Solution strategies and computer implementation of the equations,
together with the numerical setup of the simulation is given. In chapter 5 and 6, the
results from the smooth- and rough-wall simulation are presented, complemented
by a discussion in chapter 7.



2 Turbulence

For a start, a short introduction to some fundamental theory on fluid mechanics
and turbulence are given. This includes the governing equations for fluid motion,
mathematical tools used to describe a turbulent flow field and equations giving a
more detailed insight into important mechanisms of turbulence.

From a computational point of view, numerous approaches to handle the complexity
of turbulent flows exists. Most engineering computations are based on averaged
equations (RANS), which requires a high degree of modelling. As computational
resources has become more available, simulation techniques that partially resolves
the turbulent eddies are also used to a wider extent. This is called Large Eddy
Simulation (LES). In recent years, advances has also been made in formulations
of hybrid approaches such as hybrid LES-RANS (e.g. DES). DNS, however, fully
resolves the turbulent motion, and is maybe the most straightforward way to solve
the Navier-Stokes equations numerically. However, due to computational cost, this
is in great contrast to engineering computations, and it should be emphasized that
DNS as a numerical tool is a pure research tool for solving simple flows, and not "a
brute force solution to the Navier-Stokes equations for engineering problems" [40,
p.539].

To obtain a compact and efficient writing of equations, Cartesian tensor notation
is used. For a three-dimensional coordinate system this yields i, j, k = 1, 2, 3, such
that u1 = u, u2 = v, u3 = w for the velocities, and x1 = x, x2 = y, x3 = z for the
spatial coordinates.

2.1 Turbulent flows

Most flows encountered in engineering applications and more generally in every-day
life are turbulent. Qualitatively, this is easily recognized by a highly irregular na-
ture, seemingly random and chaotic motions and vortices, all of which are spanning
over a large range of temporal and spatial scales. In this unpredictable flow state,
viscous effects are no longer able to damp instabilities and small perturbations.
An important dimensionless parameter, the Reynolds number, Re, can be used to
identify flow regime. Basically, this is just a measure of inertia to viscous forces,
and as a consequence, turbulent flows are characterized by high Reynolds numbers.
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The physics of turbulence is not yet fully understood, thus a formal definition may
not exist. However, there are some properties that are always present when a flow
is classified as turbulent.

Three-dimensional and time dependent
The velocity fluctuations will always be in all spatial directions, varying in time.

Range of scales
The flow contains a whole spectra of scales in both time and space. The largest
scales, the integral scales, is of the order of the limiting geometry in space, and the
smallest, the Kolmogorov scales, is almost at a microscopic level.

Diffusive
Transport and spreading of momentum and scalars such as heat and mass will
always be higher in turbulent flow due to fluctuations and irregularity.

Dissipative
From the smallest scales, where viscous effects are significant, energy is dissipated
into heat. This is why turbulent flows have increased energy losses.

2.2 Governing equations for fluid motion

Three fundamental physical principles on which all fluid dynamics is based upon is
conservation of mass, balance of momentum, and conservation of energy, where the
two latter are Newtons 2. law and the first law of thermodynamics. When these
principles are applied to a bounded, three dimensional space in the continuous fluid,
mathematical statements expressing the physics can be derived. Here, this space,
the control volume, is chosen to be an infinitesimal fluid element fixed in space.
Thus, the governing equations are written in differential and conservative form1.

Continuity, equation (2.1), states that mass is conserved, while Newtons 2. law,
equation (2.2), expresses a balance of momentum. In fluid dynamics, the latter is
known as the Navier-Stokes equations.

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

∂

∂xj

(
−pδij + 2µSij −

2

3
µ
∂uk
∂xk

δij

)
+ ρfi (2.2)

The left side in equation (2.2) is simply the acceleration term, while the right side is
a summation of all the forces acting on the fluid element. For a Newtonian fluid, the
viscous shear stress is written as a linear function of the strain rate, as can be seen
in the second term on the right side. The third term expresses dissipation linked

1Similarly, equations on integral form can be derived from a control volume of finite size. This
forms the basis for the Finite Volume Method (FVM) widely used in CFD. Both forms are equally
valid.
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to change of volume of the element. The constant −2
3
µ is simply given by Stoke’s

hypothesis [49], while δij is the Kronecker delta function. fi is the body forces acting
on the entire mass of the fluid element and Sij is the strain rate tensor, which is
symmetric for isotropic fluids [49].

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (2.3)

Until now, conservation of energy has not been addressed. The flow considered in
this thesis is both isothermal and at low speed (Ma < 0.3), which greatly simpli-
fies the analysis due to the assumptions of incompressibility2 and constant density.
By definition, incompressibility means that density is independent of pressure. It
can, however, vary with temperature or composition of substances. At low speeds,
Ma < 0.3, the fluid will behave as if it was incompressible, since the isentropic
density change, ρ/ρ0, is less than 5% [2]. For a general flow problem, the equation
of state expresses the change in pressure as a function of density and temperature,
thus providing a linkage between the momentum and energy equations. With the
assumptions of incompressible and isothermal flow, however, the density can be
treated as constant, and the energy equation is decoupled from the system. The
flow field can then be solved from continuity and momentum equations alone. Fi-
nally, neglecting gravitational acceleration and other body forces, the result is the
following set of equations:

∂ui
∂xi

= 0 (2.4)

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

(2.5)

The kinematic viscosity is by definition ν ≡ µ
ρ
. To summarize, the analysis yields

four equations for four unknown primitive variables; u, v, w and p.

The continuity equation and the Navier-Stokes equations expresses the physics that
governs a fluid in motion, independent of the flow pattern or regime. Thus, both
laminar and turbulent flow can be described by the above equations. In this sense,
turbulence is, despite its chaotic nature, also a deterministic, yet complex solution
to these equations. For laminar flow, only a few analytical solutions to extremely
idealized cases exists. To solve for more complex flows involving turbulence, in
practice all engineering computations, one must rely on numerical analysis.

2In the field of aero- and fluid dynamics, the term incompressibility is frequently used to express
constant density. This is accepted practice, despite being technically incorrect.
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2.3 A statistical approach

The instantaneous flow field will in this thesis be solved directly from equation
(2.4) and (2.5) by means of DNS. This means that no assumptions or models are
introduced in the equations being solved. However, to produce useful results and
obtain statistically steady state quantities along with associated fluctuations, the
flow field must be averaged in time (optionally in space for homogeneous directions).
Exact transport equations for important turbulence quantities (see section 2.4) are
also based on a statistical description of the flow field. Using such a decomposition
of each flow variable is motivated by the fact that the practical interest in most cases
lies in the large scale events, and not the small details. Hence, a formal definition
of averaging is given.

2.3.1 Reynolds decomposition

As indicated before, the flow variables are decomposed into a mean and a fluctuating
value. In a Reynolds decomposition, density is non-fluctuating, and the dependent
variables, ui and p, are decomposed as follows:

ui = ui + u′i (2.6a)

p = p+ p′ (2.6b)

Here, the mean is defined in time3. That is, the mean value over a finite interval
in time, ∆t. This interval must be greater than the time scale of the smallest
fluctuations, but at the same time smaller than the time scale of deviations in the
mean value [20, p.35]. Here, φ is a general variable.

φ(xi) =
1

∆t

∫ t+ 1
2

∆t

t− 1
2

∆t

φ(xi, t)dt (2.7)

If the decomposed variables from equation (2.6) are inserted into the incompressible
continuity and momentum equations, equation (2.4) and (2.5), governing equations
for the mean flow will be obtained. These are called the Reynolds Averaged Navier
Stokes equations (RANS). After some manipulation, the result yields that the mean
flow properties satisfies continuity in the same way as before, but for the momentum
equation, a new term occurs.

∂

∂t
(ui) +

∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − u′iu′j

)
(2.8)

The new term, −ρu′iu′j, is called the Reynolds stress tensor (RST)4. It is symmetric,
and contains six unknown Reynolds stresses. These stresses represents the mean

3A Reynolds decomposition can also be an ensemble average.
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transport of fluctuating momentum by turbulent velocity fluctuations [51, p.32].
Since the effect of turbulence on the mean flow field is now isolated into this term,
it is of significant importance in the field of turbulence research and turbulence
modelling.

Figure 2.1: The effect of looking at the instantaneous or averaged
flow field, respectively. From Durbin & Petterson-Reif [19].

2.3.2 Single-point closure methods

The vast field of turbulence modelling is concerned with closing the system of aver-
aged equations for flow statistics, and basically it all comes down to different ways
of handling the Reynolds stresses. Many models use an assumption which linearly
relates RST to the mean strain rate, −ρu′iu′j ∝ µTSij. This is in pure analogy to
the linear stress-strain relationship in a Newtonian fluid. A so-called eddy viscosity,
µT, is introduced as a proportionality factor. Another approach is to solve modelled
transport equations for the Reynolds stresses alongside the continuity and momen-
tum equations. Such second-moment closures5 (SMC), however, suffers from both
an extreme increase in computational expense, and uncertainties in modelling of
unclosed terms, especially the pressure-strain term, see equation (2.9).

2.4 Equations of turbulence

From the governing equations, presented in section 2.2, and by use of the introduced
concept of Reynolds decomposition, equations for important turbulence quantities
can be derived. Despite introducing averaged quantities into the derivation of the
equations, the resulting equations are still exact, as they are only manipulated
by mathematical operations [20, p.49]. However, they are unclosed, as correlations
that are not exactly determinable occurs. Also, information about the instantaneous
motions is filtered out and lost in the averaging process.

Even though this text is not concerned with solving these equations, nor the nec-
essary modelling of terms, they describe fundamental mechanisms of turbulence

4It is consistent with literature that both −ρu′iu′j and u′iu′j are referred to as RST.
5Also known as Reynolds Stress Modelling (RSM).
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and highlights factors that govern the evolution of the mean flow. For DNS to be
useful, post-processing of results is also highly concerned with calculating different
terms so the importance and relevance of the different effects they represent can be
quantified.

2.4.1 Second-moment equations

One way to derive an equation for the Reynolds stresses is to construct an equation
for the fluctuation, u′i = ui−ui, from the momentum equations for the instantaneous
and averaged velocities, ui and ui respectively. The equation for u′i is multiplied
with u′j, and a corresponding equation for u′j is multiplied with u′i. The two resulting
equations are then added together and averaged [20, p.95]. The resulting transport
equation is given as follows [20, p.95]:

∂

∂t
(u′iu

′
j) +

∂

∂xk
(u′iu

′
juk) = −

(
u′iu
′
k

∂uj
∂xk

+ u′ju
′
k

∂ui
∂xk

)
︸ ︷︷ ︸

Pij

+
∂

∂xk

(
ν
∂u′iu

′
j

∂xk
− u′iu′ju′k −

1

ρ

(
p′u′jδik + p′u′iδjk

))
︸ ︷︷ ︸

dij

+
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
︸ ︷︷ ︸

Φij

− 2ν
∂u′i
∂xk

∂u′j
∂xk︸ ︷︷ ︸

εij

(2.9)

The left side consists of a time derivative and an advection term, which is transport
by the bulk flow. Terms on the right side are split into the effects they represent,
production, diffusion and dissipation respectively. The production term, Pij, de-
scribes transfer of energy from the mean flow to the fluctuations. From this term,
it is easy to see that turbulence is only caused by, or generated from, shear in the
mean flow. For most flows the production term is positive [19, p.50].

The second bracket, dij, is the diffusion and consists of four terms. The first and
second are viscous (molecular) and turbulent diffusion respectively, while the two
latter are pressure-diffusion. Their effect is to promote a spatial redistribution [37,
p.13], but for many flows these terms are very small, or even negligible. For a
channel flow, where there is no mean velocity gradient in the channel center, the
contribution from this term provides turbulence to the center section.

The pressure-strain term, denoted Φij, together with the pressure-diffusion terms
originates from a term, which by terminology is called redistribution6 [19, p.53].
The pressure-strain is still redistributive, since the trace of Φij is zero (due to
continuity [17, p.77]). Hence, the term expresses a distribution of energy between

6In homogeneous turbulence, the redistribution- and pressure-strain terms are equal [19, p.53].
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the Reynolds stress components, without affecting the overall energy balance. To
be more precise, it can be shown that the effect is to make the turbulence more
isotropic by transporting energy from the largest normal stresses to the ones being
smaller [37, p.23-30]. Also, it acts as a sink, or a loss of correlation, on the Reynolds
shear stresses [18, p.95].

The dissipation tensor, εij, represents decay of turbulence, in other words dissipation
due to viscous forces. For the normal stresses, u′iu′i, we can say a drain of energy,
but for the shear stresses, it is more precise to refer to a loss of u′iu′j-correlation.

It can be noted that the term being interpreted as dissipation in equation (2.9) is
not equal to the exact viscous dissipation. This is also true for equation (2.11).
However, the second part of the correct dissipation term has a much lower order of
magnitude.

2.4.2 Turbulence kinetic energy budget

For a fluid in motion, the kinetic energy per unit mass is 1
2
uiui. By subtracting the

mean value of this quantity, and then take the average, the mean kinetic energy of
the turbulent fluctuations, k, is obtained.

k ≡ 1

2
u′iu
′
i =

1

2
(u′u′ + v′v′ + w′w′) (2.10)

By use of k, an energy budget for the turbulence can be established. Note that the
turbulence energy is equal to half the trace of the Reynolds Stress Tensor, and by
taking half the sum of the normal stresses from equation (2.9), the exact transport
equation for the turbulence kinetic energy (TKE) is easily obtained [20, p.49]:

∂k

∂t
+

∂

∂xj
(kuj) = −u′iu′j

∂ui
∂xj︸ ︷︷ ︸

Pk

+
∂

∂xj

(
ν
∂k

∂xj
− 1

2
u′iu
′
iu
′
j −

1

ρ
p′u′j

)
︸ ︷︷ ︸

dk

− ν ∂u
′
i

∂xj

∂u′i
∂xj︸ ︷︷ ︸

ε

(2.11)

Naturally, this also implies the following relations; Pk = 1
2
Pii and ε = 1

2
εii. On the

left side of equation (2.11), the transient- and advection terms can be found. As for
the RST equation, the effects of production, diffusion and dissipation are separated
on the right side, but notice that the pressure strain term, Φij, has vanished due to
its redistributing property (Φii = 0). The first, Pk, is turbulence production. More
precisely, what is actually meant by production is transfer of energy from the mean
flow into the turbulence.

The three terms inside the bracket denoted dk describes transport through diffu-
sion. The first gradient term is transport of energy through viscous (molecular)
mechanisms, thus called viscous diffusion. The two latter terms are connected to
the turbulence motion, thereby called turbulent diffusion. In literature, they are
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commonly referred to as a velocity-triple correlation and a pressure-velocity fluc-
tuation. The last term is the viscous dissipation, ε, which still represents a loss of
energy, or a decay of turbulence. From the smallest scales, energy is dissipated into
heat.

2.5 The energy cascade and range of scales

In the so far presented theory on turbulence, some basic observations concerning the
overall energy balance have been made. Terms describing production, or extraction
of energy from the mean flow, different transport mechanisms, and losses due to
dissipation have been identified. This whole process of transferring energy from
large scales to small scales, across the intermediate scales, can be modelled as a
cascade process. Commonly, this is referred to as the energy cascade of turbulence.
The spectrum of eddies ranges from the largest integral scales, all the way down to
the Kolmogorov micro scales, see figure 2.2.

Figure 2.2: Through breakup and various processes such as vor-
tex stretching of larger scale eddies, energy is transferred to con-
tinuously smaller scales. The breakup of eddies continues until
viscous forces become dominant.

Now, characteristic scales for length, velocity and time are introduced for the larger
energy-carrying eddies. A length-, velocity- and time-scale are denoted l0, u0 and
τ0 = l0/u0 respectively. Here, the dimension of l0 is comparable to the length of the
bounding geometry, L, and u0 is comparable to the flow velocity scale U . Often, the
square-root of the turbulence energy, k1/2, is used to approximate u0. The Reynolds
number for these eddies is therefore large, which means viscosity is negligible.

Under the assumption that mainly dissipation are important at the smallest scales,
Kolmogorov developed expressions for the micro scales based purely on dimensional
arguments. The assumption implies that the only influential quantities are the
viscosity, ν, and the dissipation rate, ε. Different combinations of these quantities
yields the Kolmogorov length-, velocity- and time scale respectively.
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η =

(
ν3

ε

) 1
4

uη = (νε)
1
4 τη =

(ν
ε

) 1
2 (2.12)

If the above expressions are used to form a local Reynolds number, the result yields
Re = 1. Hence, inertia is balanced by viscous effects. At the end of the cascade-
process, viscous stress dominates, and the mechanical energy is lost to heat.

From these expressions, useful scale relations can be obtained. First, the dissipation
must be expressed by length and velocity scales of the large scale turbulence. Since
the energy transfer is modelled as sequence of processes, it is argued that the rate of
dissipation should be equal to the supply rate of energy from the large-scale eddies
[51, p.20]. The kinetic energy per mass of the large scales is proportional to u2

0,
and the rate of transfer of energy is assumed to be proportional to uo/l0 (=τ−1

0 ).
Hence, the dissipation rate is of the order u3

0/l0. Using equation (2.12), with the
above dissipation rate, ε, the following can easily be obtained:

η

l0
= Re

− 3
4

0

uη
u0

= Re
− 1

4
0

τη
τ0

= Re
− 1

2
0 (2.13)

Here, Re0 = u0l0/ν is the integral scale Reynolds number, which is comparable to
the more familiar Re = UL/ν. These relations can be useful parameters for the
determination of required grid size and time step size in a DNS simulation. See e.g.
Pope [46, p.347].

From the above dimensional argumentation, two features of turbulence can be em-
phasized. Firstly, the dissipation rate is primarily determined from large-scale dy-
namics. Secondly, the Kolmogorov scales are much smaller than the integral scales,
as their relationships are all inverse proportional to Re0. Further, if Reynolds num-
ber is increased and the bounding geometry is kept constant (same integral scales),
the only difference will be that the size of the smallest eddies will decrease and the
fluctuations will become smaller and more rapid.

From a computational point of view, direct simulations has a very limited appli-
cability, as the grid resolution should be smaller than the smallest effects in the
flow, the Kolmogorov scales. As a consequence, DNS is limited to low or moderate
Reynolds numbers.

2.6 Isotropic and homogeneous turbulence

Isotropic homogeneous turbulence is perhaps the simplest turbulent flow, but is
rarely encountered in real-life applications. Isotropic turbulence means that the
flow is statistically invariant to rotation of the coordinate system, while homogeneity
means statistical invariance to translation of the coordinate system. For modelling
applications, isotropy is important as the high Reynolds number hypothesis states
that fine scale motions are unaware of the nature of the mean flow and large scale
turbulence, thus the fine scale structure in any kind of turbulent flow is similar to
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what is found in isotropic turbulence. In parallel shear flows, such as channel flow,
the main source of anisotropy is the shear stress [19, p.155]. Near the walls, the
Reynolds stresses, i.e. the velocity fluctuations, exhibits large anisotropy due to the
presence of the wall.

A plane channel flow is homogeneous in streamwise and spanwise directions, and
in terms of statistics, the flow field has a one-dimensional solution. When obstacles
such as roughness elements is introduced, however, the flow becomes inhomogeneous
also in the streamwise direction. Thus, statistical means are also dependent on
streamwise location, and the solution becomes two-dimensional.



3 Channel flow with roughness

The following section contains a brief overview on rough-wall turbulence. Natu-
rally, the introduction of surface roughness will have consequences for the near-wall
boundary layer, and the structure of the turbulence in the region just above the
roughness. Roughness is often encountered in practice, and many engineering prob-
lems cannot be regarded as hydraulically smooth.

From numerical studies, as well as laboratory experiments, turbulence- and flow
data have been gathered over the recent years, and main findings for the relevant
type of roughness is presented here. First, however, general concepts and theory
on the effects of rough walls are given, together with a classification of roughness
types.

3.1 A historical overview

In the field of fluid mechanics, surface roughness is a phenomena that has been
subject to extensive research for almost two centuries. Some of the earliest studies,
by Hagen and Darcy in the mid 19th century, was concerned with pressure loss in
pipes. It was evident that the pressure drop increased drastically above a certain
mass flow range, a finding that could indicate the presence of a different flow regime.
In this regime, laminar theory was inadequate, and the problem was to link the
friction factor to surface roughness.

In the beginning of the 20th century, Ludwig Prandtl and various students7 at the
University of Göttingen, developed mathematical theories and identified phenom-
ena related to aerodynamic lift, boundary layers, turbulence and laminar-turbulent
transition. From this formidable group of researchers, Nikuradse [43] was left to
evaluate the friction factor in pipes with wall roughness. The findings from his
early sand-grain experiments are still considered to form the basis for rough-wall
theory. For a given wall roughness, the correlation between flow Reynolds number
and friction factor can bee seen in [43, fig.9]. Now, such correlations can be found
in the well-known Moody chart. Based on the work by Nikuradse, Schlichting [48]
later introduced a concept of an equivalent sand-grain roughness parameter. For
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engineering purposes, this quantity is widely in use today.

At NTNU, surface roughness has been a subject to experimental investigation
over the last two decades, a lot of which has been published by professor Per-
Åge Krogstad. In Krogstad & Antonia [35] and Antonia & Krogstad [3], different
surface roughness geometries were investigated. In 2004, more effort was made to
investigate a specific type of roughness. Both computational and experimental work
on channel flow with transverse rib roughness was published in the doctoral theses
of Ashrafian [4] and Bakken [8]. A comparative study between the results from
DNS and experiments can be found in Krogstad et al. [34].

Reviews and comparative studies has also been published by Raupach et al. [47]
and Jiménez [29].

3.2 Flow regimes

As mentioned above, Schlichting introduced the concept of an equivalent sand-grain
roughness, ks, which is the size of a sand-grain giving the same flow resistance as the
surface geometry being investigated, at the same Reynolds number. This parameter
then becomes a single descriptor for surface roughness, accounting for size, shape
and density of the roughness elements [8, p.6], and is considered to be a standard
roughness.

To characterize flow behaviour, two parameters are important: the roughness Reynolds
number, k+

s , and the relative roughness [29, p.173], which is the ratio of rough-
ness height to the characteristic boundary layer thickness. For a channel flow,
the channel half-height is used. The roughness Reynolds number is introduced as
k+
s = ksuτ/ν, where uτ is the wall shear velocity, and ν the kinematic viscosity.

Based on observations, different flow regimes can be identified [55, p.347]:

k+
s < 5 : hydraulically smooth

5 ≤ k+
s ≤ 70 : transitional roughness
k+
s > 70 : fully rough flow

(3.1)

These regimes are identified in the Moody chart, see figure 3.1. The hydraulically
smooth line can be found in the bottom center of the diagram. Here, f is dependent
on Re, but not on the relative roughness. In between this line and the dashed line
to the right, the transitional roughness range is found. The friction factor depends
on both Reynolds number and relative roughness, and both viscous and form drag
are significant. For increasing Reynolds numbers to the right of the dashed line, the
fully rough flow range is found. Here, friction factor is only dependent on relative
roughness. This corresponds to a roughness Reynolds number of k+

s > 70, and flow
resistance in this range is dominated by form drag.

7H. Schlichting, T. von Kármán, P. R. H. Blasius, W. Tollmien and J. Nikuradse are all well
worth mentioning.
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Note that the above flow regimes and corresponding limits, equation (3.1), is for the
case of sand-grain roughness. In general, the critical limit depends on the geometric
configuration [28, p.236], which means that a two-dimensional rod-roughness can
have a critical limit significantly smaller. In Bandyopadhyay [9], it is shown that
r+ ' 10 is the critical limit for the fully rough state.

Figure 3.1: Moody chart for pipe friction factors. Here, the rela-
tive roughness is given by the roughness height, ε and the diameter
of the pipe, D. Re is the Reynolds number based on bulk velocity.

3.3 Mean velocity profiles

Based on simple dimensional argumentation [19, p.59-60], some general considera-
tions regarding the flow in the near-wall region can be made. First, suitable velocity
-and length scales are chosen to normalize quantities. These are the wall shear ve-
locity, uτ , and the viscous length scale ν/uτ . Using these wall units results in a set
of inner scaled non-dimensionalized variables:

u+ =
u

uτ
z+ =

uτ
ν
z uτ =

√
τw
ρ

(3.2)

3.3.1 The wall region

The region z+ . 100 is considered the wall region, and is divided into different layers
based on which forces are dominating. The region adjacent to the wall, z+ < 5,
is relatively insensitive to the outer flow, and viscous forces are dominating. In
this viscous sublayer the velocity is simply a linear function of the wall distance;
u+ = z+. Further away, in the so-called logarithmic region, z+ > 30, turbulent
shear is dominating. The velocity is found to vary logarithmically according to the
log-law, or law of the wall:
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u+ =
1

κ
ln z+ + A (3.3)

The constant κ is determined from experiments, and takes the universal value κ ≈
0.41 [54, p.417]. For a smooth wall, Nikuradse [43] suggested A ≈ 5.5 based on his
experiments, but later correlations suggests A ≈ 5.0 to be used instead [54, p.417].

In between the two above mentioned regions, both viscosity and turbulence ef-
fects are influential, and none of the above relations holds entirely. This regions
is called the buffer layer, and the velocity profile smoothly connects the regions.
For a smooth wall, figures 5.2 and 5.5 in chapter 5 shows the velocity profile and
distribution of shear respectively.

3.3.2 The outer layer

For y+ > 100, we normally speak of an outer layer. Here, uτ together with the
channel half-height, δ, is used to form an outer scaling. The velocity profile is
described by the velocity defect law, given as:

u+
CL − u

+ = −1

κ
ln
(z
δ

)
+K (3.4)

u+
CL is the channel centerline velocity, the term u+

CL − u+ is the retardation of the
flow due to wall effects [54, p.416] and K is a constant. In contrast to equation (3.3)
which must be modified for wall roughness, equation (3.4) is valid for both smooth
and rough surfaces [15, 34]. This indicates some similarity between smooth- and
rough wall boundary layers in the outer layer. This has however been questioned by
Krogstad et al. [36], where it was observed that the constant K was not the same
for smooth and rough boundary layers (see wall similarity hypothesis, section 3.5).

3.3.3 Mean velocity scaling

From the previously mentioned experiments of Nikuradse, it was found that there is
a shift outwards and downwards in the velocity profile, as illustrated by figure 3.2.
The logarithmic slope, however, remains the same. In a channel flow with a given
pressure drop, the mass flux must decrease due to the increased drag force, and
thus the constant Bs in equation (3.3) must decrease [19, p.63]. Thus, the smooth
wall relation is modified to the form [34, p.328]:

u+ =
1

κ
ln
(z
r

)
+B(r+) , B(r+) = A−∆u+ +

1

κ
ln r+ (3.5)

Here, subscript r in Br indicates that the additive constant is for the rough surface.
r is the roughness length scale, in the case for sand grain-roughness equal to ks
and for rod- roughness the height of the roughness elements, r. r+ is the roughness



3.4 Roughness classifications 17

Reynolds number, non-dimensionalized using the viscous length scale ν/uτ (same
as for k+

s ). Also note that the length scale used to normalize z, is different from
what is used in the smooth-wall relation, equation (3.3). The new variable, B(r+),
is dependent on the roughness Reynolds number, and is expressed by introducing
the so-called roughness function, ∆u+, as equation (3.5) shows. For sand-grain
roughness, the shift is given by [34, p.328]:

∆u+ = +
1

κ
ln k+

s + A− C (3.6)

Nikuradse reported that C ≈ 8.5 for the fully rough flow regime. For other rough-
ness types, it might be useful to relate the roughness length scale r to the equivalent
sand-grain roughness length scale ks. Once ∆u+ is known, the relation is given by
[34, p.328]:

ks
r

=
exp[κ(∆u+ − A+ C)]

r+
(3.7)

Figure 3.2 shows the shift, ∆u+, in mean velocity profile produced by the surface
roughness.

Figure 3.2: Shift in mean velocity profile. Figure from Ashrafian
[4].

3.4 Roughness classifications

In real life, surface roughness has a highly random and complex shape, which for
engineering purposes is represented by the one descriptive parameter, ks. In numer-
ical simulations and partly laboratory experiments, efforts can however be made to
study particular shapes of roughness. For the present case, spanwise rectangular
ribs are appended to the walls as a simple roughness model. This thesis, and the
results discussed in this chapter will from here on mostly be concerned with this
configuration.
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(a) d -type.

(b) k -type.

Figure 3.3: Surface roughness classification. Figures from
Ashrafian [4].

In Raupach et al. [47] the above mentioned roughness model is classified as a 2-D
roughness case. Further, for such a configuration, two types of roughness exists, one
allows for formation of stable vortices in the cavities, while the other is characterized
by unstable eddies behind the elements, see figure 3.3. The terminology d- and k-
type roughness are used respectively. For d-type roughness, the spacing between the
ribs, denoted w, is in the order of the element height, while for k-type the spacing
is somewhat larger, w/r > 3 is suggested by Bandyopadhyay [9]. The roughness
height, in this case the height of the elements, is denoted r.

For this two-dimensional roughness, the pitch-to-heigh ratio, λ = p/r, is an impor-
tant parameter. See figure 4.2 in section 4.4.1. The effect of roughness is found
to be largest for 5 < λ < 9 by Furuya et al. [23] and also in a DNS-study by
Leonardi et al. [39]. Hence, the largest shift in velocity profile is found in this range
of λ-ratios. For λ > 10, the roughness effect was found to decrease.

The generation of stable vortices, or pockets of recirculating fluid in the cavities
in the d -type case effectively results in a decrease in overall drag force compared
to a smooth wall [39]. The main flow now partly interacts with the fluid in the
cavities and partly the top of the roughness elements, hence the total shear force
resistance is reduced. Further, if the height of the roughness elements becomes to
high, and at the same time, spacing is sufficiently large, the object will no longer be
considered as roughness, instead the case will be a flow around an obstacle (bluff
body). Comparing the roughness height to the characteristic length of the boundary
layer, the ratio r/δ should not exceed 0.025 [29]. Keeping the ratio below this value
will eliminate direct effects on the outer flow.

3.5 The roughness sublayer and wall similarity

In general, the effect of roughness is well understood for the mean velocity profile
in near-wall layers, but how other turbulence features and structures are affected,
especially in the outer layer, has been more controversial [10, p.463], and perhaps
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not fully understood.

Adjacent to the wall, there exists a roughness sublayer, typically stretching out to
a distance of 3 to 5 roughness heights [34]. However, as stated by Bhaganagar et al.
[10], this distance depends on the shape and density distribution of the introduced
roughness. In this inner layer, the dominant flow structures have length scales of
the order of the roughness elements, and the intensity of velocity and vorticity fluc-
tuations are significantly increased by the roughness. Also, the elements interacts
strongly with the near-wall streamwise vortices.

Generally, it has been assumed that the roughness will have no or little influence on
the outer layer turbulence. This was first posted by Townsend [52], then modified
by Perry & Abell [44], as the wall similarity hypothesis. It states that turbulent
motions are independent of the details of the wall roughness at sufficiently large
Reynolds numbers, i.e. that smooth and rough wall turbulence is similar outside
the roughness sublayer. This has been confirmed and used by many researchers,
for both 2-D and 3-D roughness. Among these are the experiments of Perry et al.
[45] and laboratory and atmospheric data from Raupach et al. [47]. However, the
hypothesis has been questioned by Krogstad et al. [36] for boundary layer flow. They
found several structural differences also in the outer region. Experimental results
from Krogstad & Antonia [35] also questions whether the hypothesis actually holds.

To proceed, a note on boundary layer flow (external flow) and channel flow (internal
flow) should be given. In rough-wall turbulence research, both flow-types have
been thoroughly investigated. Despite displaying many of the same features, there
are however some fundamental differences pointed out by various researchers that
partly can explain discrepancy from the wall similarity. It is noted that issues
in determining friction velocity correctly in the experimental results of Krogstad
et al. [36] and Krogstad & Antonia [35] could lead to a high degree of uncertainty
[34]. Length scales associated with channel flows are constant in the streamwise
direction, while characteristic lengths in external flows are changing with boundary
layer thickness. Also, channel flows are always driven by a favourable pressure
gradient, which in turn leads to a reduced wake strength. This makes the velocity
defect profile more likely to be similar for rough and smooth walls in channel flows
[34]. Jiménez [29] also notes that there are differences in wall normal transport
of TKE. In channel flow, turbulence energy is transported to the channel center
by diffusion, where it counteracts the dissipation (as noted in section 2.4.1). In
boundary layer flow, other mechanisms are present, and part of the energy is also
used to support boundary layer growth. All together, these differences might suggest
that internal and external flows over rough walls behave different [34].

Having the above mentioned differences in mind, it is suggested by some that rough-
wall boundary layers can be categorized according to whether the surface roughness
affects the outer layer or not [10, p.465]. Further, it may be that the nature of
some surfaces are that they "communicate" with the outer layer, while others do
not. This difference in layer-interaction can still exist, even though two surfaces
share the same characteristics such as height or density, and even if they produce
the same lower-order statistics (e.g. shift in mean velocity profile). Jiménez [29]
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also concludes in his review that the matter of turbulent structure and interaction
between layers is far from understood, as there are conflicting experiments in almost
all cases.

3.6 Numerical simulation

Over the recent years, channel flow with transverse rib roughness has been investi-
gated using both DNS and LES. As mentioned, Bandyopadhyay [9] suggests that
critical value for the fully rough flow regime is r+ ' 10 for 2-D rod-roughness,
hence most of the results are obtained for fully rough flow. Further, many of the
below simulations are motivated by the experiments of Hanjalic & Launder [27],
and produces an asymmetric flow field, due to roughness elements used only at
one wall. The roughness heights are all in the range of 10% − 20% of the channel
half-height, δ, thus there may be a significant blockage effect. Roughness heights in
this range are also much higher than what was proposed as a maximum by Jiménez
[29]; r/δ ≤ 2.5%.

Ikeda & Durbin [28] performed DNS of a channel having transverse ribs mounted
on one side, while the other wall remained smooth. The Reynolds number was
Reτ = 460 based on the smooth wall friction velocity, and for the k -type roughness,
a pitch-to-height ratio of 10 was used. The height of the elements corresponded
approximately to r+ = 110. Their study was aimed at the investigation of TKE-
flux in the roughness sublayer. For surface roughness, the wall-normal coordinate
origin, z = 0, can be defined at the mean height of the roughness elements [28,
p.235], which means that the turbulent kinetic energy is not zero at z = 0. In
this sense, the rough surface acts as a sink or source for TKE. Ikeda & Durbin
[28] found a significant turbulence energy flux in the roughness sublayer, and that
vortical structures is responsible for a high energy production in this region.

Leonardi et al. [39, 38] used a similar setup with square bars on one wall in a tur-
bulent channel flow using DNS. Here, several pitch-to-height ratios (λ = 2, 4, 8, 20)
were investigated. The bulk Reynolds number was held constant at 4200, which
means a constant flow rate was used. Reτ ranged between 190 (λ = 1) and 460
(λ = 8). r+ was in the range 40 to 90. They verified that the roughness function,
∆u+, was only dependent on r+, and not the Reynolds number for r+ ≥ 10, which
means that this corresponds to the fully rough flow regime. This supports what
was suggested by Bandyopadhyay [9] as a critical limit for this particular roughness
type.

Simulations using LES has, among others, been performed by Cui et al. [16], at a
bulk Reynolds number of Reb = 10 020, based on channel half-height. Both d - and
k -type roughness were investigated, where the k -type had a pitch-to-height ratio of
10, and roughness height was 20% of the channel half height. They observed a limit
for d -type roughness at λ = 5, and found that roughness having pitch-to-height
ratios just above this limit led to strong interaction between the inner and outer
layer.



3.6 Numerical simulation 21

Bhaganagar et al. [10] used DNS to simulate flow over a one side three-dimensional
"egg carton" shape. Different roughness heights were simulated; r+ = 5.4, 10.8, 21, 6
at Reτ = 400. They found that the downwards shift in mean velocity profile
corresponded well with what was reported by Raupach et al. [47]. Also, the strength
of the inner and outer layer interaction was greatly affected by the size of roughness
elements.

For two-side rib-roughness, DNS and experimental results are available from Ashrafian
[4] and Bakken [8], who were among the first to study such a configuration. The
Reynolds number was Reτ = 400 in the DNS, and Reτ = 600 in the experiment.
Here, the wall shear velocity could be calculated from the mean pressure gradient
due to the symmetric channel configuration. The roughness height in the DNS was
0.034 of the channel half-height, which corresponds to r+ = 13.6 (r+ = 20.4 in
the experiment). In the outer region, the velocity defect plot indicated that there
is no influence of surface roughness. Thus, the results generally supports the wall
similarity hypothesis [34, p.23]. Further, the Reynolds stresses was similar outside
z+ = 5r+, but the turbulence structure seemed to be somewhat more affected in
this outer region. Compared to the study of Leonardi et al. [39], the low value of
r+ = 13.6 explains why the results are rather different, despite having the same
pitch-to-height ratio.
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In chapter 2, equations governing the fluid motion were presented. This chapter
addresses the issues of solving the equations on the computational domain and
employing the correct physical constraints on the boundaries. Further, full structure
of the code is not presented in detail, but main features such as solution techniques
and numerical schemes are discussed briefly.

A pseudo-spectral DNS computer code originating from Prof. Boersma and Dr.
Gillisen at TU Delft is used in the simulations [24, 26]. The code is written in
FORTRAN language, and parallelizised using Message Passing Interface (MPI).
Originally, it was used to study fibre-induced drag reduction in plane channel flow.
The code has been verified, validated and used extensively by various researchers
[24, 26, 25, 56] for the above mentioned purpose. Later, a small extension to include
wall roughness was made by Dr. Zhao at NTNU, but the code was never properly
tested for this.

Note that i and k in the present chapter can have various meanings to be consistent
with common practice in literature.

4.1 Direct Numerical Simulation

In a direct simulation, all turbulent scales are resolved. The computational cost
is highly dependent on both spatial grid resolution and the required number of
time steps, two parameters that are directly related to the Reynolds number, Re.
Using the relations from equation (2.12) and (2.13), it can be shown that the total
number of required grid points, N = NxNyNz, grows with Re3/4. At the same time,
the number of time steps grows with Re1/2 [19, p.307]. This means that a total
approximation of floating point operations required scales to Re11/4. Obviously,
this makes DNS limited to quite moderate Reynolds numbers.

In the beginning, direct simulations were limited to fully isotropic, homogeneous
turbulence, using spectral methods for efficiency. Now, finite difference schemes, or
a combination of finite difference and spectral schemes, such as the code used in this
thesis, are typically used. As computational resources has become more available,
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DNS is also used to simulate more complex flows involving compressibility and
combustion.

In the present DNS, the governing equations are solved in a non-dimensionalized
form:

∂u∗i
∂x∗i

= 0 (4.1)

∂u∗i
∂t∗

+
∂

∂x∗j
(u∗iu

∗
j) = −∂p

∗

∂x∗i
+

1

Reτ

∂2u∗i
∂x∗2j

(4.2)

where the non-dimensionalized variables are defined as follows:

u∗i =
ui
uτ

x∗i =
xi
h

t∗ =
tuτ
h

p∗ =
p

ρu2
τ

(4.3)

Note that in all following sections in the present chapter, we are still solving for non-
dimensionalized variables, but the star superindex is not written to avoid writing
too many indices.

4.2 Pressure-velocity coupling

The Navier-Stokes equations is a coupled system of equations for the velocities and
pressure, and main difficulties in solving these equations arises from the fact that no
explicit equation for the pressure exists. For the incompressible case, the continuity
equation also lacks both a dominant variable and a time-derivative, thus it acts as
an additional kinematic constraint on the velocity field instead of being a dynamic
equation [22, p.167]. In an unsteady calculation, the pressure at each time-step
must then adapt in such a way that mass conservation is satisfied.

The system can be solved as a fully coupled problem, explicit, implicit or semi-
implicit in time, but a more efficient method for the case of incompressibility is
to use a fractional step method8. This is a variant of pressure projection methods
commonly used in fluid dynamics, and implies that the velocity and pressure fields
are decoupled and solved separately. For each time step, simpler sub-problems are
solved. The basis for such solution methods is a Helmholtz decomposition of the
vector field into the sum of one part with zero curl and one part with zero divergence
[14, p.746].

The fractional step method used in fluid dynamics, originally proposed by Chorin
[14] and Temam [50], first estimates an intermediate, non divergence-free velocity
field at the beginning of each new time-step without taking pressure into account.
Then, pressure is calculated from a constructed Poisson equation that, in addition

8Also called operator splitting methods or segregated methods in various literature.
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to provide the pressure, also enforces mass conservation. Finally, velocities are
updated using the calculated pressure.

4.3 Discretization

The equations are discretized and solved on a Cartesian grid that is non-uniform in
wall-normal direction. In streamwise and spanwise directions, velocities u and v are
stored in the cell-center point. This is also the case for the pressure. In wall-normal
direction, a staggered configuration is used, which means velocities w are stored
at cell faces. Such a configuration is often advantageous due to stronger coupling
between velocity and pressure [22, p.166].

Further, a pseudo-spectral method is used for the streamwise and spanwise deriva-
tives. This is primarily motivated by efficiency, as computation of derivatives in
Fourier space9 is highly accurate and simple. Also, the Fourier coefficients converges
exponentially when the number of collocation points approaches infinity. Compared
to the central differencing scheme, it can be shown that a spectral method with N
collocation points is more accurate than the former using 2N points [21, p.85].
However, use of this particular method requires FFT-algorithms to be used, which
in turn is only available to equi-spaced points [21, p.87].

For the discretized Navier-Stokes equations, all spatial derivatives in the x- and y-
momentum equations are approximated around the u, v velocity point (cell center),
while the z-momentum equation is approximated around the w-velocity point (cell
face).

As pointed out in various literature, e.g. by Ferziger [21, p.86], the error resulting
from spatial and temporal discretization should be balanced, i.e. of the same order.
If this is not the case, the simulation is probably run at a too high cost. In the
present case, the time advancement scheme and the wall-normal central differencing
scheme is second order accurate.

4.3.1 Time advancement

Temporal discretization, or time stepping, is carried out using the methodology de-
scribed in section 4.2 with an explicit second-order Adams-Bashforth (AB2) scheme.
In general form, this two-step method is given as

yn+1 = yn + h

(
3

2
f(tn, yn)− 1

2
f(tn−1, yn−1)

)
(4.4)

The two constants can easily be found from Taylor expansion. n denotes the current
time step, yn+1 is the approximation of the solution at time-step n + 1 and h is
the time step-size. The above scheme is employed for the time derivatives of the

9Fourier -, spectral - and wavenumber -space are used interchangeably in literature.
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velocities, both for advection and viscous terms10. The same cannot be done for
pressure, since no time derivative exists. The pressure is simply chosen to be treated
implicitly in time, that is, evaluated at the next time-step. Approximation of spatial
derivatives can be of any order and any type, but for now they are simply denoted
as δi (= δ/δxi) and δ2

i (= δ2/δx2
i ). Inserting the above scheme into equation (4.2)

yields the time-discretized Navier-Stokes equations:

un+1
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(4.5)

By rewriting the above equation, an expression for the intermediate, non divergence-
free velocity field can be constructed. This velocity field, un+1

i? , is only dependent
on previous time-step velocities.
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i

)] (4.6)

To proceed further, one can take the numerical divergence of equation (4.6). Mass
conservation at the next time-step is enforced by δiu

n+1
i = 0 (follows from the

continuity equation). Pressure at the new time-step can then be calculated from
the following, discrete, Poisson problem:

δ

δxi

(
δpn+1

δxi

)
=

1

∆t

δ

δxi

(
un+1
i?

)
(4.7)

The Poisson equation results in a linear system of equations (a three-band matrix),
which is solved using a conventional tri-diagonal matrix solver [24, p.39]. Updated,
end-of-step velocities are finally found by going back to equation (4.6) using the
pressure from equation (4.7). As stated earlier, a Fourier basis is used to compute
derivatives in x and y directions, hence equation (4.7) is transformed, and solved
in Fourier-space in these directions [24, p.30].

The introduction of equation (4.7) also demands one additional boundary condition
for the pressure than what was originally required by the system. Thus, equation
(4.7) should be supplemented by a Neumann boundary condition. This, however,
can lead to issues concerning the behaviour of the pressure at the walls. This
topic has been addressed by many authors, most recently a review was given by

10For stability reasons [13, p.148], it can be favourable to treat viscous terms implicitly, e.g. by
a Crank-Nicholson scheme, as in the fractional step method by Kim & Moin [31].
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Vreman [53]. For this particular code, it can be shown that the introduced boundary
condition leads to a correct velocity field, while no further effort is paid to precisely
compute the pressure [24, p.31].

At last, note that the two-step AB2 scheme is not self starting because of the un−1
i

terms.

4.3.2 Spatial derivatives- streamwise and spanwise directions

Streamwise and spanwise derivatives are computed in Fourier space using a pseudo-
spectral method. The velocities, ui, are replaced with a Fourier series expansion,
and fast Fourier transform algorithms (FFT or FFT−1) are used to transfer the
variables between physical space and Fourier space.

Since we are dealing with numerical computer computations, the values are evalu-
ated at n discrete grid points, or collocation points. A complex Fourier series for
the function u(xn, t) (physical space) then becomes [12, p.47-48]:

u(xn, t) =

N
2
−1∑

k=−N
2

ûk(t)e
ik 2π

L
xn , n = 0, 1, 2, ..., N − 1 (4.8a)

ûk(t) =
N−1∑
n=0

u(xn, t)e
−ik 2π

L
xn , k = −N

2
, ...,

N

2
− 1 (4.8b)

where ûk(t) (Fourier space) is the Fourier coefficients calculated by the FFT-algorithm,
i is the imaginary number, k the wavenumber (k = L/λ) and L the period, i.e. the
domain length. Note that the highest wavenumber that can be represented (cap-
tured) by N grid points is kmax = π/∆x = N/2 [46, p.345].

A key property of the Fourier transform [33, p.522]11 is that evaluation of first-
and higher order derivatives in Fourier space is a straight forward multiplication
operation, due to the Fourier-basis eikx. Effectively, this creates a new set of Fourier-
coefficients for the derivatives, i.e. û′k = ikûk. From this it follows that the exact
derivatives in the collocation points can be calculated from the following [12, p.52]:

d

dx
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N
2
−1∑
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2

2π

L
ikûk(t)e
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L
xn , n = 0, 1, 2, ..., N − 1 (4.9a)

d2

dx2
u(xn, t) =
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2
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2

−(
2π

L
k)2ûk(t)e

ik 2π
L
xn , n = 0, 1, 2, ..., N − 1 (4.9b)

In the above equations, the time-dependency can also be removed since time ad-
vancement is carried out in physical space, see section 4.3.1.

11Theorem 3: F{u′(x)} = ikF{u(x)}. F is the Fourier-transform.
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Most algorithmic complexities in spectral methods comes from non-linear terms [13,
p.99], which in this case is the advection term in the Navier-Stokes equations. The
name "pseudo-spectral" refers to a special way of computing this term. Evaluating
this in Fourier space is extremely computer demanding due to the number of oper-
ations required to evaluate the convolution sum, O(n2) [12, p.132]. To avoid this,
non-linear terms are solved by going back to physical space where multiplication is
straight forward. This means that the individual coefficients, say ûk, v̂k, are first
transformed back into physical space (FFT−1), multiplied to form a new function,
sn = unvn, and finally transformed back to Fourier space (FFT) where differentia-
tion is performed as described above, ŝ′k = ikŝk. By doing this, the required number
of operations for one spatial direction is reduced from the order O(n2) to that of
FFT, namely O(n logn) [12, p.133].

4.3.3 Spatial derivatives- wall-normal direction

In z-direction, second order accurate central differencing schemes are used to calcu-
late first- and second order derivatives. The schemes account for both the staggered
configuration and the non-uniform grid spacing. Note that the schemes are written
in general form, which means that the variable u in the schemes can either be u, v,
w or p. Further, i is used as grid cell index, and indices f and c denotes cell face
and center respectively (see figure 4.4). Schemes for first-order derivatives reads as
follows:

∂u

∂z

∣∣∣∣
zci

≈
ufi − u

f
i−1

zfi − z
f
i−1

(4.10a)

∂u

∂z

∣∣∣∣
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≈
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(4.10b)

A central, second order accurate scheme for the second derivative is found by suc-
cessive use of the above schemes:
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(4.11b)

For the calculation of first derivatives and non-linear terms, velocities need to be
interpolated between cell faces and centres. A simple linear interpolating scheme
reads:

ufi =
1

2
(uci+1 + uci) (4.12a)
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uci =
1

2
(ufi + ufi−1) (4.12b)

The nonlinear terms are evaluated in the same way as given by equation (4.10),
but uw, vw and ww must of course be evaluated in the same grid point. For the
z-derivatives of non-linear terms in x- and y-momentum equations, approximations
are around the cell-center point, which means u and v are first interpolated to the
cell faces using equation (4.12). As an example, for uw, the resulting scheme can
be written:

∂

∂z
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1
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)
zfi − z
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(4.13)

Note that in the code [11], zfi and zci are stored in the vectors Rw and Rp respectively.

4.3.4 Stability

The explicit AB2 scheme is only conditionally stable, which means stability can only
be achieved for some values of ∆t for a given spatial resolution. Construction of a
stability criterion for the entire Navier-Stokes equations is not straight forward, but
a basis can be formed by evaluating inviscid terms (advection-equation; hyperbolic)
and viscous terms (diffusion-equation; parabolic) independently. For either of these
time-dependent modelling equations, the standard CFL-conditions read [1, p.68,85]:

CFLadv = ∆t
|u|
∆x
≤ C1,max , CFLdiff = ∆t

1

ν∆x2
≤ C2,max (4.14)

where the Courant numbers C1,max and C2,max are dependent on spatial and tem-
poral discretization schemes. By combining the above expressions, a maximum
allowed ∆t is calculated as follows for the fully three-dimensional case [11]:
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Reτ
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(4.15)

where Cmax = 0.3 [11]. Note that the condition expressed by equation (4.15) is
necessary, but may not be sufficient for the numerical discretization to be stable.
To monitor the stability, ∆tmax is calculated for each cell at each time-step, and
the limiting value, max ∆tmax, is written to a monitor file.

4.3.5 Aliasing error

An issue arising from using the pseudo-spectral method for the non-linear terms is
the generation of an aliasing error. A calculation of a convolution sum, where two
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Fourier-coefficients are multiplied, generates wavenumbers higher than what can be
resolved on the grid (k > N/2) [19, p.320]. The highest wavenumber generated,
kmax, is equal to N . Thus, this sum should be truncated, so high wavenumbers are
left out. However, using the pseudo-spectral evaluation, no truncation of the sum
occurs. Instead, these high wavenumber signals can be misinterpreted as having a
lower wavenumber similar to those within the computational range, see figure 4.1.
This can significantly corrupt the simulation by causing numerical instability or
excessive turbulence decay [40, p.545], as observed by Kim et al. [32]. Especially,
this is the case for wavenumbers just above N/2, while aliasing from high N might
not be harmful, since the turbulent energy spectrum has a low amplitude for high
wavenumbers [19, p.321].

Figure 4.1: The high wavenumber signal (dashed line) has
a lower-frequency alias (continuous line), since the two signals
are indistinguishable at the collocation points. From Durbin &
Petterson-Reif [19, p.321].

The simplest way to de-alias results, is to use a standard 3/2 rule [19, p.321]. In
Fourier space, the series are first extended by adding Fourier-coefficients in the range
N/2 to 3/4N . Then, the product is formed in physical space on a grid with a spacing
of 2/3∆x, i.e. at 3/2N collocation points. When transformed back to Fourier-space,
modes beyond N/2 is deleted [19, p.321]. In this way, the computational range is
uncontaminated.

4.4 Simulation setup

In the simulations, the approach of keeping the wall friction Reynolds number con-
stant is used. Hence, for both the smooth and the rough channel, the wall friction
Reynolds number Reτ = uτδ/ν, is prescribed. For the smooth channel, Reτ = 180,
and for the rough channel Reτ = 395 is set. These Reynolds numbers are chosen
based on what is available for comparison. Here, it can also be noted that in the
code, different variables scales with the channel height, h, while most literature use
the channel half-height, δ. The code input is therefore Reτ,h = 360, Reτ,h = 790,
and −dp∗/dx∗ = 2, where Reτ,h is the friction Reynolds number based on channel
height, h.
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For a symmetric channel configuration, such as the channel having two side rough-
ness, uτ is directly related to the pressure drop through the wall friction [34]:

−dp
∗

dx∗
=
τw
δ

=
u2
τρ

δ
(4.16)

At the same time, this friction velocity used for scaling is the same for both walls.
The symmetric channel implies that the mean velocity field and turbulence statistics
are symmetric as well. Other parameters are density, ρ = 1, kinematic viscosity,
ν = 1/Reτ,h and channel height, h = 1. These values scales the friction velocity to
uτ = 1.

Due to the increased drag from the roughness elements, the flow rate, i.e. bulk
velocity, will be reduced, when compared to a channel with smooth walls. The bulk
velocity Reynolds number, Reb = Ubδ/ν, will therefore decrease.

4.4.1 Roughness geometry

The transverse square rods are implemented on both upper and lower walls in the
computational domain. As figure 4.2 shows, the cross section is r × r, and pitch-
to-height ratio is λ = p/r = 8. The roughness height is 0.017h (0.034δ), which is
just above the maximum height proposed by Jiménez [29] for the roughness to be
different from bluff bodies.

Figure 4.2: Definitions of roughness height (r), pitch (p) and
roughness spacing (w) are indicated.

Non-dimensionalized, the roughness height corresponds to r+ = ruτ/ν = 13.4.
Further, as stated in section 3.2, the equivalent sand-grain roughness height should
be k+

s > 70, for the flow to be in the fully rough regime. In Ashrafian [4], a relation
k+
s ≈ 5r+ is given, based on data from other authors. By using the the roughness

Reynolds numbers (see section 3.2), k+
s and r+, a critical Reynolds number can be

found:

Reτ,h,crit =
huτ
ν

=
hr+

r
=
hk+

s /5

r
=

h70/5

0.017h
= 824 (4.17)

Based on the presented theory and proposed relations, using Reτ,h = 790, will cause
the flow to be in the upper transitional regime.
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4.4.2 Computational domain

Figure 4.3 shows a schematic overview of the orientation of the coordinate system,
and the implemented square rods in the domain. The streamwise and spanwise
coordinates are x and y respectively, while z denotes wall-normal direction. The
lengths, (Lx, Ly, Lz), of both the smooth- and rough channel domain are given in
table 4.1. Details on the roughness elements are also included.

Figure 4.3: Schematic channel overview. Flow in positive x-
direction. Note that this does not correspond exactly to the domain
used, as the channel length, Lx, implies that only 11 spanwise ribs
have to be used on each wall.

Table 4.1: Domain parameters for the smooth and rough case.
Here, lengths are given in terms of channel height, h.

Case Lx, Ly, Lz r p/r
Smooth 1.5h, 0.75h, h - -
Rough 1.632h, 0.75h, h 0.017h 8

4.4.3 Grid resolution

The code uses a Cartesian grid with a staggered configuration in wall-normal di-
rection, and a collocated arrangement in streamwise and spanwise directions. In
wall-normal direction, the mesh is stretched to yield a finer resolution close to the
walls (i.e. non-equidistant grid), while the other two directions use a uniform grid
spacing. Cell face locations in z-direction are given by:

zfi (k, s) =
1

2

arctan(s( k
Nz
− 1

2
))

arctan(1
2
s)

+
1

2
, k = 0, 1, 2, 3, ..., Nz (4.18)

where s is a grid stretching factor. Accordingly, cell center coordinates, zci , can be
found as:

zci =
1

2
(zfi + zfi−1) , i = 1, 2, 3, ..., Nz (4.19)
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Coordinates for the nodes inside the layer of ghost cells are also needed to provide
boundary conditions. Two grid points, zc0 and zcNz+1, are added on the wall-outside
at the same distance as the adjacent nodes inside the computational domain. Figure
4.4 provides an overview on the wall-normal direction indices. zc0 and zcNz+1 are the
position of the ghost cell-centres.

Figure 4.4: Orientation of cell faces and centres in z-direction.
Bottom wall at z = 0, and top wall at z = 1.

In wall-normal direction, the cell-sizes are calculated as follows:

∆zi = zfi − z
f
i−1 , i = 1, 2, 3, ..., Nz (4.20)

The stretch factor in equation (4.18) is set to s = 3, which, together with Nz = 192
wall-normal grid points, yields a maximum cell growth ratio of 1.0157. In wall-
normalized coordinates, lengths becomes:

z+ = z
uτ
ν

= z
uτ
ν

h

h
=
z

h
Reτ,h (4.21)

A summary on cell-sizes, ∆x+, ∆y+ and ∆z+, and grid details is given in table 4.2.
The parameters ∆z+

min and ∆z+
max denotes cells adjacent to the channel wall, and

in the channel center respectively.

Table 4.2: Some relevant grid parameters. Domain lengths are
given in terms of channel half-height, δ.

Case Lx, Ly Nx, Ny, Nz ∆x+ ∆y+ ∆z+
min ∆z+

max

Smooth 3, 1.5 48, 48, 192 11.25 5.6 0.88 2.86
Rough 3.264, 1.5 288, 48, 192 8.95 24.7 1.94 6.28

4.4.4 Boundary conditions

For the stream- and spanwise directions, periodic boundary conditions are used for
all variables [24, p.29]. For the plane channel, the flow is homogeneous in these
directions, which means periodic boundary conditions is preferred. This implies
that the velocity field in the channel inlet is set equal to the velocity field in the
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channel outlet at each timestep. Even though the streamwise homogeneity is lost
in the rough channel, the roughness elements are placed periodically, so periodic
boundary conditions are used also for the rough channel simulation.

For the walls, the no-slip condition is used. As figure 4.4 indicates, a layer of ghost
cells outside the computational domain is used to define the boundary conditions
for cell-center variables at the walls. To ensure a zero value at the wall the following
is used:

u(zc0) = −u(zc1) , u(zcNz+1) = −u(zcNz) (4.22)

For the cell-face values, the wall boundary condition is simply w(zf0 ) = 0 and
w(zfNz) = 0. To ensure a zero wall-normal derivative for cell-center values, the
following is used:

u(zc0) = u(zc1) , u(zcNz+1) = u(zcNz) (4.23)

To implement the square rods, velocities are set to zero inside the roughness ge-
ometry. The number of grid points, and domain length in streamwise direction is
chosen so the sides of the roughness elements coincides with the grid. In this way,
the no-slip condition is enforced exactly at the roughness surface, as the surface
of the roughness elements follows the cell-center points, shown in figure 4.5. In
wall-normal direction, however, due to the grid stretching prescribed by equation
(4.18), the cell-center points does not necessarily coincide perfectly with the given
roughness height. The cell center points closest to the specified roughness height is
therefore chosen as the top surface.

Using the grid parameters given in table 4.2, the roughness element is resolved using
3 grid points in streamwise direction, and 6 grid points in wall-normal direction. For
comparison, Ashrafian [4] used 4 and 8 grid points in these directions respectively.

Figure 4.5: Schematic sketch of the top of one roughness element.
The dots are the cell-center pressure points, the dashed lines are the
grid cells, and the solid, red line is the roughness element surface.
The arrows represents streamwise and wall-normal velocity vectors.

4.4.5 Turbulence initial condition

The initial condition for the velocities and pressure can either be set as a random
velocity field, or a fully developed turbulent velocity field from a previous simu-
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lation. For the smooth channel simulation, a fully developed flow field from an
earlier simulation was used, but for the rough channel however, no flow data, either
from DNS or LES was available, so the simulation started from a random set of
disturbances.

4.4.6 Computation and parallelization

The FORTRAN code is fully parallelized, which means that the domain is split into
multiple sections in wall normal direction12, so multiple processors can be used si-
multaneously. The top and bottom grid point variables must then be communicated
to the adjacent slices using MPI. Computational time was available from the High
Performance Computing (HPC) centre at NTNU, using the Vilje supercomputer.

4.4.7 Time sampling and statistics

For the smooth, and relatively small channel simulation, a fully developed flow field
from an earlier simulation was used as initial condition. Thus, samples could be
included to form statistical data from the very first calculated time steps. The
simulation was run using a timestep of ∆t = 10−4 on 16 processors. This is the
same as used by Gillissen [24] (∆t = 3.6 × 10−2 ν/u2

τ ). The maximum allowed ∆t
was reported to be ∆tmax = 1.7× 10−4, which implies that the time step used was
appropriate. From the already fully turbulent flow field, about 3 hours was needed
to get 300 samples in time. Here, the velocity field was stored for each 1000 time
steps, and the computational time was about 0.045 s for each time step.

The rough-wall simulation was first advanced forward, using 32 processors, from
the initial set of random disturbances, until a realistic turbulent flow field had
developed. This, in general, requires a smaller time step in the beginning, so ∆t =
10−5 was used. In this state, maximum allowed ∆t from the CFL-criterion, equation
(4.15), was reported to be ∆tmax = 7.3×10−5. The simulation was run for 12 hours,
and the bulk velocity was used as an indicator to check whether a statistically steady
state was reached. During this time, the bulk velocity was reduced from U+

b ≈ 15
to U+

b ≈ 11. Now, time step was set to ∆t = 2 × 10−5, and the simulation was
advanced forward another 120 hours. The velocity field was stored each 5000 time
steps, and 400 samples in time was obtained. In this statistically steady state, the
computational time was about 0.15 s per time step, and the maximum allowed ∆t
was reported to be ∆tmax = 8.8× 10−5.

12To solve the Fourier transformed Poisson equation, the domain is split in streamwise direction
as well [24, p.31].





5 Smooth channel results

The following chapter presents the results from the smooth channel simulation. To
save computational cost, a relatively small domain is chosen. Despite being very
short in streamwise and spanwise directions, this is the same domain size as used by
Gillissen [24] and Jiménez & Pinelli [30]. The results are compared with the DNS-
results from Kim et al. [32] at Reτ = 180 (Reb = 2800). Their data is thoroughly
verified and has been used as a solid reference over the years. Note that the domain
used in the present case is roughly 18 times smaller than in the case of Kim et al.
[32].

The domain size and grid resolution is summarized and compared in table 5.1.
As can be seen, the resolutions are almost identical, perhaps apart from the wall-
normal direction, where a relatively cautious grid stretching is used in the present
case. The grid point resolution results in a total number of 442 368 grid points in
the present simulation, compared to 3 962 880 points in the case of Kim et al. [32].

Table 5.1: Relevant parameters for the smooth channel. Domain
size is given in terms of channel half-height, δ.

Case Lx, Ly Nx, Ny, Nz ∆x+ ∆y+ ∆z+
min ∆z+

max

Smooth 3, 1.5 48, 48, 192 11.25 5.6 0.88 2.86
Kim et al. [32] 4π,2π 192, 160, 129 12 7 0.1 4.4

The data is averaged in in the homogeneous directions after reaching a statistically
steady velocity field. In this statistically steady state, the simulation is run long
enough in time so that averaging is performed over a total number of 300 samples.
Since all flow statistics are symmetric, only one half of the channel is presented
here.
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5.1 Mean velocity profiles

Figure 5.1 shows the mean velocity profile over the channel half-height. The mean
bulk velocity, defined in equation (5.1), over the time sampling interval is equal to
U+
b = 15.624, which corresponds to a bulk Reynolds number of Reb = 2812. This

is essentially the same as U+
b = 15.63 in Kim et al. [32].

U+
b =

1

h

∫ h

0

u+ dz (5.1)

Here, u+ is the normalized mean velocity, defined from equation (3.2). The profile
corresponds well with the data from [32], but a slightly underestimate can be ob-
served from z/δ = 0.3 and outwards. The channel centreline velocity is u+

CL = 18.17,
compared to u+

CL = 18.20 in [32], which is only 0.16% less.

***
*
*
*
*
*
*
*
* * * * * * * * * * * * * * * * * * * * * * *

δ

Figure 5.1: Mean velocity in global coordinates, compared to
data from Kim et al. [32] (∗).

Looking at figure 5.2, the velocity profile is compared to the law of the wall, which
describes the velocity in the viscous sublayer and logarithmic layer according to
equation (5.2).

u+ =

{
z+ for z+ < 5
1
κ
ln z+ + A for z+ > 30

(5.2)

The constants are the same as given in section 3.3, κ = 0.41 and A = 5.5. The profile
is in good agreement with the law, and smoothly connects the viscous sublayer to
the logarithmic layer in the region 5 < z+30.
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Figure 5.2: Mean velocity in wall coordinates compared to data
from Kim et al. [32] (∗), and the law of the wall.

5.2 Turbulence intensities

Figure 5.3 shows the root mean square (r.m.s.) of the velocity fluctuations in all
three coordinate directions across the channel half-height. Here, the r.m.s. is defined
as follows:

u+
i,rms =

√
u′2i

uτ
(5.3)

Clearly, it can be seen that the results deviates from the data of Kim et al. [32]
in magnitude, while the shapes are in good agreement. The streamwise profile
is overestimated near the wall, while the spanwise and wall-normal profiles are
underestimated. The peak in u+

rms is about 4% higher than in [32]. It is also
interesting to compare with Gillissen [24, fig.5.1,p.49], who used the same channel
dimensions as in the present simulation. In his data, the streamwise profile peaks at
about u+

rms = 3, but collapses with the Kim et al. [32] data at z+ = 70 and outwards.
This is relatively consistent with the present results. Further, the spanwise and wall-
normal profiles has a lower magnitude than the Kim et al. [32]-data throughout the
channel height. This is in agreement with the data of Gillissen [24] for z+ < 50,
but from here and outwards, his profiles for v+

rms and w+
rms has a slightly larger

magnitude compared to Kim et al. [32].
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Figure 5.3: R.m.s. of velocity fluctuations in global coordinates,
and data from Kim et al. [32] (∗).
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Figure 5.4: R.m.s. of the velocity fluctuations in wall coordinates,
and data from Kim et al. [32] (∗).
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5.3 Reynolds shear stress

For a plain channel flow, the mean wall-normal velocity is zero, w = 0, and due to
homogeneity, streamwise derivatives are also zero, ∂/∂x = 0. From the averaged
Navier-Stokes equation, equation (2.8), what is left of the stress term is:

τtotal = ν
du

dz
− u′w′ (5.4)

The two terms are plotted in figure 5.5 across the channel half-height. The −u′w′
profile does not show noticeable deviation from the Kim et al. [32] data, and follows
a straight line through the channel center. For the viscous stress, some discrepancy
can be seen from z+ = 30 and outwards. Even though deviation can also be seen
for the mean velocity profile, figure 5.2, the viscous stress is only dependent on the
shape of u+(z), thus the deviation indicates that the shapes of the mean velocity
profile are somewhat different.

*****
*

*

*

*
*
* * * * * * * * * * * * * * *

*
*

*
*

*
*

*
*

*****
*

*

*

*

*
*

* * * * * * * * * * * * * * * * * * * * * *

τ
τ

τ
τ
τ

Figure 5.5: Viscous and turbulent shear stress across the channel
half-height. Data from Kim et al. [32] (∗).

5.4 Vorticity

The r.m.s. of the vorticity fluctuations are shown in global and wall coordinates in
figure 5.6 and figure 5.7 respectively. ω+

i,rms is defined according to equation (5.5):

ω+
i,rms =

√
ω′2

ν

u2
τ

(5.5)
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Figure 5.6: R.m.s. of the vorticity fluctuations in global coordi-
nates, compared to data from Kim et al. [32] (∗).
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Figure 5.7: R.m.s. of the vorticity fluctuations in wall coordi-
nates, compared to data from Kim et al. [32] (∗).
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Mathematically, the vorticity, ω, is defined as the curl of the velocity field, and
represents the rotation of fluid particles. Vorticity is always present in turbulence,
both in the structures of the large energy carrying scales, and the small dissipative
scales.

As can be seen from the figures, the three components are highly anisotropic near
the walls, while in the outer region, they are more or less identical. The streamwise
vorticity has a its maximum value at the wall, then a local minima and maxima
at z+ ≈ 5 and z+ ≈ 20 respectively, the same as in the data of Kim et al. [32].
The magnitude of the peak values are however 20% less. The wall-normal vorticity,
ω+
z,rms, goes to zero at the wall, and the profile almost overlaps the data from [32]

throughout the channel. The spanwise vorticity, ω+
y,rms, also overlaps the data from

Kim et al. [32], but only out to z+ ≈ 8. From here, a relatively large discrepancy
can be observed all the way to z+ ≈ 50.





6 Rough channel results

This chapter present the results from the rough channel simulation together with
relevant data for comparison. A Reynolds number of Reτ = 395 is used, which is in
the range of which many researchers have performed DNS of both smooth and rough
channel flow. The smooth channel comparison is the mid-Re case of Moser et al. [41],
Reτ = 395, and the rough channel comparison is of Ashrafian [4], Reτ = 400. Other
relevant comparisons are the square-rib roughness simulation of Narasimhamurthy
& Andersson [42], Reτ = 400, and Leonardi et al. [39], Reτ = 180. The two latter
cases, however, use much larger roughness elements.

Relevant domain and grid details for the different cases are compared in table
6.1. As can be seen, the streamwise and spanwise domain length in the present
simulation is about half the lengths of Moser et al. [41] and Ashrafian [4]. The
number of grid points is also reduced, except for the wall-normal direction, to save
computational cost. The total number of grid points is 2 654 208, compared to
19 660 800 and 9 486 336 for the rough and smooth channel comparisons respectively.
Compared to the rough channel of Ashrafian [4], the domain size is about four times
smaller, and number of grid points is about seven times less. Looking at the grid
resolution, however, the wall-normal grid spacing is comparable, while the spanwise
grid resolution is about three times than what is used in the other two cases. Also,
comparing the streamwise resolution for the rough channels, the spacing in the
present simulation is about three times larger.

Table 6.1: Parameters for some relevant cases. The smooth chan-
nel case of Moser et al. [41] is for the Reynolds number Reτ = 395.
Channel lengths given in terms of channel half-height δ.

Case Reτ Reb Lx, Ly Nx, Ny, Nz ∆x+ ∆y+ ∆z+
min ∆z+

max

Present 395 4070 3.264,1.5 288, 48, 192 8.95 24.7 1.94 6.28
Ashrafian [4] 400 4200 6.528,π 768, 160, 160 3.4 7.85 1.7 15.6
Moser et al. [41] 395 6900 2π,π 256, 192, 193 10.0 6.5 - 6.5

Figure 6.1 shows the instantaneous and averaged contour plots of the streamwise
velocity, u+. The mean velocity field is averaged, first in spanwise direction, then
over 400 samples in time. After averaging in time, a periodicity equal to the pitch
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length, p, can be observed. Thus, to obtain better statistics, we take advantage
of this streamwise quasi-homogeneity by averaging unit-wise at two characteristic
locations. One is at the roughness element center-point (mid crest), and one in the
center between two roughness elements (mid cavity). These locations are indicated
in figure 6.6b, at x/p = 1.0 and x/p = 0.5 respectively. For the domain used, this
corresponds to a total of 11 unit-wise samples for each location. Further, averaging
is performed over both sides of the channel, benefiting from the channel symmetry.
This is with the exception of some figures, included to show the symmetry of the
solution over the full channel height. From figure 6.1, it can be seen that the
roughness elements are very small compared to the channel height, and for both
cases the flow pattern in the very near wall region is quite similar, and shows a
periodicity also for the instantaneous flow field.

(a) (b)

Figure 6.1: Instantaneous and averaged contour plot of stream-
wise velocity, u+.

Figure 6.2 shows the evolution of the bulk velocity, U+
b , in time, i.e. the flow

development from the initial random disturbances to a statistically steady turbulent
state. The bulk velocity is defined from equation (5.1). The largest decrease in bulk
velocity at the beginning of the simulation, where the bulk velocity decreased from
U+
b ≈ 15 to U+

b ≈ 11, is not shown in this plot. Samples are averaged in the interval
between t = 20 to t = 60. For details regarding time steps and data collection, see
section 4.4.7.

Figure 6.2: Evolution of the bulk velocity, U+
b , in time.
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6.1 Mean velocity profiles

Figure 6.3 shows the mean velocity profile normalized with the channel centerline
velocity. u+ is defined from equation (3.2). The centerline mean velocity is u+

CL =
12.83, and bulk velocity is U+

b = 10.307 (at both streamwise locations), which results
in a bulk Reynolds number of Reb = U+

b δ/ν = 4070. This corresponds to a decrease
of ≈ 40% compared to the smooth channel of Moser et al. [41]. For comparison,
the centerline mean velocity is u+

CL = 20.13 and bulk velocity U+
b = 17.54 in Moser

et al. [41]. The velocity profile shows a clear deviation from the smooth channel
profile due to the increased drag. Compared to the rough channel of Ashrafian [4],
the mid-crest velocity profile almost overlaps in the near-wall regions, but it can
be seen that the profile in the present simulation is not perfectly symmetric, as the
profile from Ashrafian [4] is.

Figure 6.3: Mean streamwise velocity normalized by the channel
centerline velocity in global coordinates. Symbols are rough chan-
nel data, at mid crest, x/p = 0.0 (•) and mid cavity, x/p = 0.5
(◦). Solid line is smooth channel data from Moser et al. [41], and
dashed line is mid crest data from Ashrafian & Andersson [5].

Figure 6.4 shows the velocity profile in wall coordinates. The vertical shift in the
velocity profile is clearly shown. Going back to equation (3.5), and rewriting, the
modified law of the wall can be given as:

u+ =
1

κ
ln (z+) + A−∆u+ (6.1)

where the constants κ and A are the same as given in section 3.3, κ = 0.41 and
A = 5.5, and the downward shift, ∆u+, is ≈ 7.1. This is the same as reported by
Ashrafian [4]. From equation (3.7), an equivalent sand-grain roughness can be found
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from the observed ∆u+, corresponding to k+
s = 63, which is in fact in the upper

transitional regime. Further, both mid crest and mid cavity data from Ashrafian
[4] are compared to the present simulation, and the profiles are in good agreement,
almost overlapping in both the inner and outer region.

Figure 6.4: Mean streamwise velocity in wall coordinates. Legend
as in figure 6.3, except that here, dashed lines represents both mid
crest and mid cavity data from Ashrafian & Andersson [5]. Dash-
dot line are the log-law, equation (3.3), and dash-dot-dot line are
the modified log-law for roughness, equation (6.1), with ∆u+ = 7.1.

Further, from figure 6.4, it can be seen that the mid crest and mid cavity data
overlaps outside z+ ≈ 60. This indicates that the velocity profile is unaware of the
surface details outside the roughness sublayer, z+ ≈ 5r+, as the profile is indepen-
dent of streamwise position in this outer layer. It is also shown that the logarithmic
profile is maintained in this region. This is in agreement with the wall similarity
hypothesis.

The spanwise and wall-normal mean velocities, defined as v+ = v/uτ and w+ =
w/uτ respectively, are shown in figure 6.5. For a smooth channel, both velocities
should essentially be zero across the channel height, and for the spanwise velocity
this should also be the case for the rough channel. As the figure shows, this is
clearly not the case. Integrated over the channel height, v+ results in a spanwise
bulk velocity of V +

b = 0.0152, which is 0.14% of U+
b . The peaks of the spanwise

velocity have a magnitude of ±0.04, which corresponds to 0.3% of the streamwise
maximum velocity, u+

CL. The spanwise domain length, Ly, poor grid resolution,
Ny, and the time sampling are three different factors that can possibly lead to this
behaviour. Thus, the mean spanwise velocity can be seen as an indicator of the
quality of the above mentioned parameters. The wall-normal velocity, however, is
in good agreement with what is indicated in Ashrafian et al. [7, fig.4a]. In the



6.1 Mean velocity profiles 49

mid-cavity section, there is maximum negative velocity at the same height as the
roughness element, and mid crest, the maximum velocity is found to be r/2 away
from the top surface. Towards the channel center section, the velocity decreases to
zero, as it should.

Figure 6.5: Mean spanwise and wall-normal velocities in global
coordinates. Filled symbols (�,H) are mid crest data, while open
symbols are mid cavity (�,O) data.
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(a) Present simulation. (b) Ashrafian & Andersson
[5].

Figure 6.6: Streamlines between two roughness elements. Com-
parison between present simulation, and figure from Ashrafian &
Andersson [5, fig.5].

Figure 6.6a shows the streamlines, based on u+ and w+, between two roughness
elements. As can be seen, the flow never reattaches to the wall, as it was indicated
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for k -type roughness in section 3.4. A large separation bubble that consists of two
vortexes of equal sign, fills each cavity. Comparing the flow with the results from
Ashrafian [4], shows an almost identical flow pattern, with the center of the vortices
being almost at the same locations. The saddle point is indicated in figure 6.6b.
It seems that the streamlines becomes parallel around z/h = 0.05, but figure 6.5
suggests that this is not the case entirely until z/h = 0.15 is reached. Compared to
Leonardi et al. [39, fig.2], who used the same height-to-pitch ratio, the pattern is
relatively different. They observed that the flow reattached to the surface about 4.8r
behind the square rod. However, their rods were much bigger; r+ = 90, compared
to r+ = 13.4 in the present case.

6.2 Turbulence intensities

The turbulence intensity in streamwise direction, I = u+
rms/u

+, is shown in figure
6.7. The root mean square of the velocity fluctuations is defined from equation
(5.3). Compared to the smooth channel data, the roughness generates much higher
turbulence levels, particularly in the near wall region, but the turbulence level is
also higher throughout the channel height. The results are also in good agreement
with Ashrafian [4], as the profiles collapses both for the mid crest and mid cavity
region.

Figure 6.7: Turbulence intensity across the channel half-height.
Mid crest (•) and mid cavity (◦) data. Solid line is smooth channel
data from Moser et al. [41], while dashed lines are rough channel
data from Ashrafian [4].

The r.m.s. of the velocity fluctuations are shown across the full channel height in
figure 6.8 for all three directions. The largest variations are found in the region
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very near the roughness elements, while the profiles more or less collapses with the
smooth channel data in the outer region. This figure also shows that the second
order statistics are not fully symmetric at both sides of the channel. At the bottom
wall (0 < z/h < 0.5) the streamwise and wall-normal profiles are somewhat smaller
in magnitude compared to the top wall (0.5 < z/h < 1), while the spanwise profile
seems to oscillate around the smooth channel data, showing a relatively large devi-
ation at the channel center. Thus, the results will benefit from averaging over the
two sides. The peaks are, however, relatively symmetric, except for the wall normal
profile, which has a peak that collapses with the smooth channel data in the top
half of the channel, while being slightly less at bottom half.

Figure 6.9 are given in wall coordinates, with each gridline corresponding to the
height of the roughness element. Note that all following results are averaged over
both sides of the channel. As can be seen, the mid cavity and mid crest profiles
collapses between z+ = 3r+ and z+ = 4r+ for all components. The peak in mid
cavity streamwise fluctuation is reduced by approximately 17% compared to smooth
channel data, while the mid crest fluctuations has a much flatter profile, with a
smaller peak that is shifted one roughness height outwards relative to the mid
cavity peak. For the spanwise mid crest fluctuation, a sharp peak, can be observed.
As stated in Ashrafian & Andersson [5] and Ikeda & Durbin [28], the spanwise
fluctuation is intensified, due to the blocking of the streamwise fluctuation. The
wall-normal fluctuations are most unaffected by the presence of roughness, and the
profiles have a very similar shape to that of the smooth channel.

Figure 6.8: R.m.s. of velocity fluctuations in global coordinates.
Filled symbols (•,�,H) are mid crest data, while open symbols are
mid cavity (◦,�,O) data. Solid lines are smooth channel data from
Moser et al. [41].

As mentioned in section 3.5, the results indicates, that for the fluctuations, the
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effect of roughness is most pronounced in the roughness sublayer, stretching out to
a distance between 3 to 5 roughness heights. This corresponds to z/h = 0.051−0.085
or z+ = 40.2 − 67 in wall units. The data of Ashrafian [4] is given for comparison
in figure 6.10, and here, the profiles overlaps almost perfectly with the smooth
channel data outside z+ = 5r+. For the present results, this is the case as well.
However, small discrepancies can be observed for the spanwise profiles. Comparing
the present results to that of Ashrafian [4], figure 6.9 and 6.10, the exact same trends
in all profiles can be seen, and the results are in general in very good agreement.
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Figure 6.9: R.m.s. of velocity fluctuations in global coordinates.
Legend as in figure 6.8.

Figure 6.10: Figure from Ashrafian & Andersson [5] for compar-
ison. R.m.s. of velocity fluctuations in global coordinates. Solid
lines are from a smooth channel DNS at Reτ = 400 [5]. Note that
the coordinate system is different, as the spanwise and wall-normal
direction is interchanged compared to the present simulation.
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6.3 Reynolds stresses

The following section presents the three Reynolds normal stresses, as well as the
Reynolds shear stress, in global coordinates. The terms are normalized with u2

τ ,
that is: u′iu′i

+
= u′iu

′
i/u

2
τ . The cross-channel symmetry of the normal stresses is

indicated in figure 6.8, as the stresses, essentially, are equal to u+2
i,rms.

Figure 6.11: Streamwise normal stress, u′u′+ in global coordi-
nates. Mid crest (•) and mid cavity (◦) data. Solid line is smooth
channel data from Moser et al. [41], and dashed line is mid crest
data from Ashrafian & Andersson [5].

The streamwise stress is shown in figure 6.11. It can be seen that the peak value
is severely decreased by the introduction of roughness. Krogstad et al. [34] states
that this is due to the breakup of the streamwise vortices. The roughness effect is,
however, only felt very close to the wall, as the mid crest and mid cavity profiles
collapses at z+ = 3r+. Compared to the mid crest data of Ashrafian [4], the results
are in very good agreement, as the profiles overlaps perfectly.

The spanwise mid crest stress profile is characterized by two distinct peaks in the
vicinity of the roughness element, which is the exact same trend as in [4]. The
first peak has a slightly higher magnitude, while the second is almost identical.
The profiles at the streamwise locations collapses at z+ = 4r+. Compared to the
smooth channel data (as well as the rough channel data), the magnitude of v′v′+ is
slightly less in the region 0.05 < z/h < 0.2 and in the channel center.
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Figure 6.12: Spanwise normal stress, v′v′+ in global coordinates.
Mid crest (�) and mid cavity (�) data. Line legend as in figure
6.11.

For the wall-normal direction, Krogstad & Antonia [35] suggested that rib roughness
will have a strong effect on w′w′+, and showed that this stress was most affected by
the roughness in both the inner and outer layer. This was for boundary layer flow,
however, and is not found in the present case. Here, the roughness effect is very
small, as the profiles for the two streamwise locations collapses already at z+ = 2r+.
In magnitude, the peak at z/h = 0.09 is reduced by approximately 10% compared
to the smooth channel data, and matches the rough channel data perfectly. For all
the plots, it is observed that only the streamwise stress follows the smooth channel
profile smoothly, as both the spanwise and wall-normal stress profiles crosses the
smooth channel profiles at approximately z/h = 0.2 and z/h = 0.4.

Figure 6.14 shows the shear stress, -u′w′+. The mid crest and mid cavity profiles
collapses at ≈ 0.07, or z+ ≈ 4r+ in wall coordinates, and forms a straight line, as
expected. The small discrepancies that can be observed between the two locations
are likely to be related to the statistical averaging. The rough wall profiles from
Ashrafian [4] collapses at z+ = 5r+ [5, fig.13], and more or less overlaps the smooth
channel data from Moser et al. [41]. The peak in the mid crest profile matches
the data of [4] exactly. The mid cavity profile is also in good agreement with [4]
(comparison not shown here), having to local near-wall maxima at z+ = 20 and
z+ = 40. The inner maxima is overestimated by 6%, while the outer has the same
magnitude as in Ashrafian [4].
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Figure 6.13: Wall-normal normal stress, w′w′+ in global coordi-
nates. Mid crest (H) and mid cavity (O) data. Line legend as in
figure 6.11.

Figure 6.14: Reynolds shear stress, -u′w′+ in global coordinates.
Mid crest (♦) and mid cavity (�) data. Line legend as in figure
6.11.
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6.4 Reynolds shear stress

The near wall behaviour of viscous and turbulent shear stress at the mid crest
location is shown in 6.15. The viscous stress is τviscous = ν du+/dz, normalized
with uτ , and the shear stress is, as before, τturbulent = −u′w′+. The viscous part is
in good agreement with the smooth channel data, as it is only dependent on the
shape of u+(z). The shear stress data from Ashrafian [4] are perfectly collapsed
with smooth channel data at z+ = 5r+, which is also the case for the turbulent
shear stress in the present case. However, it must be said that the shear stress
profile was not perfectly symmetric across the full channel height. The peak at the
bottom and top half were in magnitude ≈ |0.74| and ≈ |0.88| respectively, making
the average in good agreement with the smooth and rough channel data.

τ
τ

τ
τ

Figure 6.15: Near wall behaviour of shear stress at mid crest
location. Solid lines are the smooth channel data of Moser et al.
[41].

6.5 Turbulence kinetic energy

The turbulence kinetic energy is an important quantity in CFD, as most statistical
closure models use a transport equation for the TKE to approximate the Reynolds
stress term in equation (2.8) through the Boussinesq eddy viscosity assumption.

Figure 6.16 shows the instantaneous contour plot of the turbulence kinetic energy.
The TKE is defined by equation (2.10), and in the figure, darker areas are associ-
ated with higher levels of TKE. Clearly, the region close to the roughness elements
has much higher energy levels than the channel center. Also the cavity in between
the elements has very low energy levels. The instantaneous plot also shows that
the energy level around each roughness element in streamwise direction is rather
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different. The averaged contour plot, however, shows smooth and streamwise pe-
riodic energy levels, according to what should be expected. This is perhaps with
the exception of the first two ribs, where a higher peak can be observed at the top
corner in the vicinity of the first rib, and a lower level for the second.

(a)

(b)

Figure 6.16: Instantaneous and averaged contour plot of turbu-
lence kinetic energy.

Figure 6.17 shows the level of TKE at the mid crest and mid cavity locations,
compared to the smooth channel data of Moser et al. [41]. The TKE peaks at
almost the same level at both streamwise locations, but the position of maximum
TKE for mid crest location is shifted one-half roughness height outwards. Outside
z+ = 3r+, the profiles collapses for the two locations. The rough channel profiles
converges smoothly to, and overlaps, the smooth channel data towards the channel
center from z+ ≈ 150 (outside the range shown in figure 6.17), as was also indicated
by the Reynolds normal stress plots.

Ashrafian [4] found that the point of maximum production and dissipation were
z+ ≈ 18 and z+ ≈ 13.6, respectively, and that they are balanced (Pk/ε ≈ 1) in
the region 100 < z+ < 200. The peak in TKE was found to be k ≈ 3.3 for both
streamwise locations [5, fig.21], which is in good agreement with the present results.
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Figure 6.17: TKE in wall coordinates, normalized with uτ . Mid
crest (N) and mid cavity (4) data. Solid line is smooth channel
data from Moser et al. [41].

6.6 Vorticity

Figure 6.18 shows the r.m.s. of the vorticity fluctuations, where ω+
i,rms is defined

from equation (5.5). The vorticity statistics is of relevance, as it reflects the small
scale structures of the flow. The figure can be compared to Ashrafian & Andersson
[6, fig.2]13.

The streamwise component, ω+
x,rms, shows a minima at z+ = 5 and a maxima at

z+ = 15, at the mid cavity location, which is in good agreement with both smooth
channel data from Moser et al. [41], and data from Ashrafian & Andersson [6]. The
magnitudes of the extrema is the same as in [6]. Mid crest, the profile has a distinct
minima at z+ ≈ 18 in between two maxima, which is identical to [6]. But here, the
values of the extrema differs about 5 − 15% compared to [6]. The spanwise ω+

y,rms

profiles collapses at z+ = 35 with a magnitude of 0.14, which is identical to [6]. Mid
cavity, the location and magnitude of the maxima is the same as [6], while the mid
crest profile in [6] decreases more abrupt from the wall and out to z+ = 20. Also,
the extrema is overestimated by ≈ 40% in the present simulation. The profiles for
ω+
z,rms shows the same trend as in [6] with the mid cavity and mid crest profiles

collapsing around z+ ≈ 30, and location of the maxima at z+ = 18 and z+ = 25
respectively. The magnitudes of both maxima is, however, about 15% less.

13Or even better, Ashrafian [4, fig.2; article 2], but this figure is not included in the published
article.
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From z+ = 40 and outwards, all profiles smoothly decrease to approximately the
same magnitude. Further, at the mid cavity location, the difference between the
components are smaller than in the smooth case, suggesting that the turbulence
is more isotropic. Also, the profiles collapses with smooth channel data [41, fig.5]
outside z+ ≈ 50, indicating that the vortical motions in the outer region are the
same.

ω

ω
ω
ω

Figure 6.18: R.m.s. of vorticity fluctuations in wall coordinates.
Filled symbols (•,�,H) are mid crest data, while open symbols are
mid cavity (◦,�,O) data.



7 Discussion

The smooth channel simulation is included in the thesis with the primary focus of
getting familiar with DNS. Different aspects of these results will therefore not be
thoroughly discussed, as the code has been used extensively by others for smooth
channel simulations. Moreover, the primary focus from the rough wall simulation
is not to discuss roughness effects, as this is more than well covered in the work of
Ashrafian [4]. The following discussion serves more a supplement to the results and
addresses some of the observed discrepancies, as well as numerical issues encountered
during the work.

7.1 Statistics

At first, averaging was only performed in spanwise direction and in time. The first
order statistics, i.e. mean velocity profiles, were smooth and in good agreement with
available data from Ashrafian [4], but the profiles of second order statistics were
not perfectly smooth, despite showing the same trends. To obtain better statistics,
unit-wise averaging was performed, resulting in much smoother profiles. Further,
figure 6.3 and 6.8 show that the solution is not fully symmetric about the channel
centreline. Averaging was therefore performed over both sides, finally resulting in
statistics being in agreement with the available data from literature. In the rough
channel reference case [4], the same averaging is performed, both unit-wise and over
the channel height. Due to a longer streamwise domain length, unit-wise averaging
could, however, be performed over 24 samples, 13 more than the present case.

Moreover, the post processing code had to be modified to remove mean spanwise and
wall-normal velocities in the calculation of fluctuations in these respective directions,
as the plane channel code did not account for mean velocities in any other directions
than in the streamwise direction.

7.2 Domain size

The results from the smooth channel simulation indicates that domain size influ-
ence is significant, as the grid point resolution was sufficient, being approximately



62 7 Discussion

the same as used by Kim et al. [32]. Even though mean velocity profiles are quite
accurate, the second order statistics reveals noticeable deviations from the data of
Kim et al. [32]. The results from the rough channel is also believed to be influ-
enced by the domain size, as it is shown by Ashrafian [4] that the lengths of the
computational domain used in his study was necessary.

To ensure the adequacy of the domain size, two-point correlation coefficients can
be calculated. In effect, this is a measure of how the flow at one point in the
domain affects the flow in another point of the domain. In a domain of sufficient
size, the coefficients should decrease to zero. Kim et al. [32] also use two-point
correlations to prove that the domain size is sufficient. Ashrafian [4] started from
(Lx, Ly) = (3/4π, 3/4π), but the correlation factors were not sufficiently small until
the lengths (Lx, Ly) = (2π, π) were chosen, which essentially corresponds to the size
of the smooth channel of Moser et al. [41]. This was despite the fact that roughness
was believed to shorten the coherence, which would allowed for a smaller domain to
be used. Further, the periodic boundary conditions used implies, effectively, that
the box is infinite in size. In other words, that it has no surface.

7.3 Grid resolution

The grid point resolution is important, as it determines which scales are repre-
sented. In a direct simulation, all scales must be resolved, including the smallest
scales, which are important regarding the dissipation of turbulence energy, i.e. the
Reynolds normal stresses.

Moin & Mahesh [40, p.544] states that actually using a grid size equal to, or less
than the Kolmogorov scale is too stringent. It needs to be of the order O(η), as
spectral DNS has proved to be accurate, even though the Kolmogorov scale is not
fully resolved. Kim et al. [32, p.135] also used a spectral-method, and notes that
the grid spacing used was 2 wall units larger than the estimated Kolmogorov length
scale. Using modified wavenumber error analysis, it can be shown that for a specific
wavelength of 3η to be represented with at least 5% accuracy, a central second order
finite difference scheme needs a grid spacing of 0.26η, while a Fourier representation
needs 1.5η [40, p.545]. Also, a previously mentioned rule of thumb is that a spectral
method with N collocation points is more accurate than a finite difference scheme
using 2N points [21, p.85]. Clearly, the level of accuracy, resulting from the exact
computation of derivatives in Fourier space, is different. Having this in mind, when
accounting for reduced domain size, the grid resolution is 43% less than in the case
of Ashrafian [4], all of which are in the spanwise and streamwise directions, where
the more accurate spectral-method is used. As indicated by the results, about the
same level of accuracy seems to be delivered.

Regarding the resolution of the roughness elements, 6 and 3 grid points resolves
the roughness in wall-normal and streamwise directions respectively, compared to
8 and 4 in [4]. Also, out to a distance of z+ = 3r+ inside the roughness sublayer,
Ashrafian [4] use 24 points compared to 18 in the present study. More intensive grid
stretching or a finer grid with constant height in the roughness sublayer could have
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been used. For the streamwise direction, grid stretching, such as used by Ikeda &
Durbin [28], cannot be implemented in the present study, but this was not used by
Ashrafian [4] either.

Further, using the spectral-method revealed that the number of grid points had to
be wisely chosen to be able to run the code. With Nx = 144 or Nx = 240 for
example, the code did not work. In streamwise direction, number of points also had
to coincide with the given roughness size and spacing, putting some restrictions on
the choice of grid resolution and domain length. As Pope [46, p.345] states, N is
often chosen to be in powers of 2. Nx = 288 was used, and the domain length was
adjusted accordingly to coincide with the roughness.

For the rough channel, noticeable deviation from the results of Ashrafian [4] is only
found in some of the vorticity statistics (r.m.s. of vorticity fluctuations), in addition
to the existence of a mean spanwise velocity, v+. This is likely to be related, first of
all, to the poor spanwise grid resolution, then to the inadequate spanwise length, Ly.
Having more statistical samples in time could possibly also have improved this. The
presented results in this thesis are also quite limited compared to what is possible
to extract from a DNS-simulation. Larger deviations in higher order statistics,
compared to the data of Ashrafian [4], may exist, but this remains unknown.

7.4 Roughness elements

The roughness elements is implemented as described in section 4.4.4, by setting the
three velocity components to zero inside the roughness. For the boundaries, the
streamwise grid point locations coincides with the prescribed roughness size, which
is the same method as used by Narasimhamurthy & Andersson [42]. This is easy to
implement, and implies that more advanced immersed body methods, such as used
in the studies of Ikeda & Durbin [28] and Leonardi et al. [39], does not have to be
used.

For the wall normal direction however, the calculation of wall-normal grid point
locations is the same as used in the original code, equation (4.18). Thus, caution
regarding both the prescribed roughness height and cell growth ratio had to be
taken, as aggressive grid stretching may lead to numerical instabilities. A stretch
factor of s = 3 in equation (4.18) was found to be suitable, as the grid stretching is
quite moderate, and at the same time caused the grid points to coincide best with
the wanted height of the roughness. As a consequence of doing so, the roughness
height is not perfectly r = 0.017h, but rather r = 0.0167h, which in wall coordinates
corresponds to r+ = 13.2.

Further, the staggered wall-normal configuration causes the top boundary specifi-
cation in the code to be non-physical, as the wall normal velocity is set to zero
at the cell face, which is essentially outside the roughness surface. However, this
was not found to affect the results in the vicinity of the surface. The grid has a
high resolution at this location, so the effect will be limited anyway. Inspection
of the velocity data files in Tecplot, where cell-face variables are interpolated to
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cell-centres, confirmed that all velocity components were zero inside, and exactly
on the surfaces of the roughness.

Despite having these known flaws, using the code as it is described here was mo-
tivated by ease of implementation, and the fact that it did not seem to affect the
solution at all. In retrospective view, however, wall-normal grid point locations
should have been chosen to coincide perfectly with the roughness height, by replac-
ing or modifying equation (4.18) to better suit this specific application.

7.5 Inhomogeneity

As Pope [46, p.353] states, there are some principal differences when applying DNS
to inhomogeneous flows. Some are that Fourier representations cannot be used,
physical boundaries are required, and additional grid resolution requirements arises
near walls. Clearly, for the very inhomogeneous wall-normal direction all of this
applies, and a finite difference scheme is used. For the present case, the inhomo-
geneous streamwise direction is not related to walls, and moreover, using periodic
boundary conditions is justified, or preferred even. The streamwise direction is by
definition inhomogeneous, but still, a quasi-homogeneity exists, as the flow pat-
tern is repetitive. Also, the inhomogeneous flow pattern is very restricted to the
roughness sublayer, stretching out to approximately z+ = 5r+ = 67. Considering
both sides, this is 17% of the channel height. The results may indicate that this
periodicity, or quasi-homogeneity is sufficient, as the variables, represented by com-
plex Fourier-series, will still have some degree of periodicity. For comparison, all
comparable DNS-studies of surface roughness, e.g. [39, 28, 7, 42], use staggered
finite-difference schemes in all directions.

Also, a simulation was run using rectangular ribs having a height four times the
width. The bulk velocity rapidly decreased below 8, but the simulation was not run
long enough for a statistically steady state to be obtained. The already low bulk
velocity may indicate the need for a higher Reynolds number, in effect a higher
pressure gradient, for the turbulence to be sustained. There was, however, not
enough time for proper investigation of this simulation, but at least the code run
without numerical issues, even though the level of inhomogeneity in streamwise
direction increased significantly compared to the small roughness elements used
originally.

7.6 Further work

As it is shown that the code works when a small streamwise inhomogeneity is
introduced, larger roughness elements should be implemented. The simulations of
Leonardi et al. [39] and Narasimhamurthy & Andersson [42] use considerable larger
ribs, r = 0.2δ and r = 0.1δ respectively, and can be used for comparison. Further,
it would be interesting to see whether the presence of uneven roughness elements
affects code performance. A variable height-to-pitch ratio or uneven height of the
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elements can be imposed to remove some of the streamwise quasi-homogeneity.
Ikeda & Durbin [28] performed simulations where roughness height was increased
and decreased by 15% compared to the original height.

Details concerning grid resolution and domain size should also be addressed. It is
evident that this influences the results, thus the dependency should be investigated.
Further studies can definitely benefit from more grid points in spanwise direction,
as well an implementation of a better suited grid stretching i wall-normal direction.
More effort can also be paid regarding the roughness top surface boundary condition
for the staggered wall-normal velocity. The Kolmogorov micro scale can also be
computed from the dissipation rate, and then be compared to the grid resolution
used. Further, correlation coefficients can be calculated to check the adequacy of
the streamwise and spanwise domain lengths.

Regarding the post processing, the budgets, e.g. for the TKE and second moment
equations, as well as higher order moments can be obtained.





8 Conclusion

Direct Numerical Simulations of pressure driven channel flow has been performed
for a smooth channel at Reynolds number Reτ = 180 and rough channel at Reynolds
number Reτ = 395.

Despite having sufficient grid resolution, effectively the same as the reference case of
Kim et al. [32], the smooth channel simulation indicates that there is a substantial
effect of reduced domain size, especially for the second order statistics.

The presented results from the rough channel flow is almost identical to what is
found by Ashrafian [4]. With the exception of the vorticity statistics, maximum
deviations is found to be about 5%. The results supports the wall similarity hy-
pothesis, which implies there is no streamwise dependency in the outer layer, i.e.
that the flow is unaware of the surface conditions outside the roughness sublayer.
The shift in mean velocity profile is found to be ∆u+ = 7.1, and in terms of stream-
wise dependency, u+ is affected out to z+ ≈ 60. The root mean square of the
velocity fluctuations and the Reynolds normal stresses is found to be influenced by
roughness out to z ≈ 5r+, while streamwise dependency is found to exist out to
z+ ≈ 3r+, as the mid crest and mid cavity profiles collapses at this location.

The results obtained from the pseudo-spectral code, using a grid resolution reduced
by 43% compared to Ashrafian [4], indicates that a high level of accuracy is still
delivered. The reduction of domain size and grid points is of course motivated
by reduced computational cost, but also to check the spectral method’s superior
accuracy and reduced demand for grid resolution. The results, however, are still
believed to be influenced by two different effects, the very poor spanwise grid reso-
lution and the size of the computational domain, as indicated by the presence of a
mean spanwise velocity.

It is proven that the pseudo-spectral DNS-code works well using roughness elements
of the height r = 0.017h, with a spacing of 7r. The spectral method’s Fourier-
basis demands that the variables being represented are periodic, and the results
suggests that the quasi-homogeneity of the velocity field is sufficient for the code
to deliver accurate results. However, only a small part of the flow field, effectively
in the roughness sublayer, is quasi-homogeneous, while the core flow is more or less
unaffected, still being homogeneous.
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