
Development and Evaluation of an 
Effective Stress Based Model for Soft 
Clays

Jesper Bjerre

Civil and Environmental Engineering (2 year)

Supervisor: Steinar Nordal, BAT
Co-supervisor: Gustav Grimstad, BAT

Jon A. Rønningen, BAT
Varvara Zania, DTU Byg

Department of Civil and Transport Engineering

Submission date: June 2015

Norwegian University of Science and Technology



 



 iii 

 

 

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

DEPARTMENT OF CIVIL AND TRANSPORT ENGINEERING 

 

 

Report Title: Development and Evaluation of an Effective Stress Based 

Model for Soft Clays 

Date: 10.06.2015 

Number of pages: 278 

Master Thesis x Project Work  

Name:  Jesper Bjerre 

 

Professor in charge/supervisor: Steinar Nordal (NTNU) and Varvara Zania (DTU) 

 

Other external professional contacts/supervisors: Gustav Grimstad (NTNU)  and 

 Ph.D. Candidate Jon A. Rønningen (NTNU) 

 

Abstract: The term, natural soft clay, is commonly used to describe a normal or slightly 

overconsolidated clay. This soil type may be encountered in e.g. Scandinavia, Eastern Canada and South 

East Asia. The mechanical response of natural soft clay may be relatively complex and more research is 

still required to understand the entire process with respect to short and long time aspects. The observed 

mechanical behaviour in the field and in the laboratory has been investigated through a literature study to 

outline the main characteristic features which dominate the mechanical response. This study has shown 

that the viscous and ageing effects are the dominating features in natural soft clay. The observed features 

have made a foundation of a new constitutive model based on effective stresses. The model utilizes the 

theory behind the Modified Cam Clay model and invariants as framework. 

 

The model requires 17 input parameters to access all its implemented features. Three additional input 

parameters are available to switch between different methods of simulating the stress history, evolution of 

anisotropy, and failure criteria in the general stress space. The model assumes associated flow and utilizes 

three hardening laws which introduce eight state (hardening) parameters in total. The model is 

implemented in the commercial software PLAXIS as a user defined soil model through the interface 

between PLAXIS and FORTRAN. The FORTRAN code is supported by additional MATLAB coding 

where the differential equations controlling the mechanical response are assembled. The initializing of the 

state parameters is performed in the FORTRAN code. 

 

The model has been verified against laboratory tests such as constant rate of strain and undraind tri-axial 

tests and shows acceptable performance with respect to the implemented features. The performance of the 

suggested model has been investigated during a full scale boundary value problem for the test 

embankment located at Onsøy, Norway. The model shows fairly good predictions of the soil response and 

the dissipation of excess pore water with respect to field measurements. These predictions have further 

been compared to other known soil models. 
 

 

Keywords: 

1. Natural soft clay 

2. Creep 

3. Anisotropy 

4. Destructuration 

5. Recovery 

_________________________________________ 



iv



Preface

The work presented in this report covers the main outcome of my master thesis attached to my civil
engineering degree at the Technical University of Denmark (DTU). The work was produced in col-
laboration with the Norwegian University of Science and Technology (NTNU) and was conducted
during the period: 14.01-2015 - 10.06-2015. The primary supervision was given by the division
of Geotechnical Engineering at NTNU where the daily work took place. The report including an
oral defence corresponds to a total work load of 30 ECTS points equivalent to one semester of study.

I personally hope that this master thesis may transfer knowledge between the universities. Hence,
the format of the report is constructed in a manner which requires the reader to have a basic
knowledge of soil mechanics.

Acknowledgements

Firstly, I would like to send my respect and deepest gratitude to the division of Geotechnical En-
gineering at NTNU whom has offered excellent supervision and contributed to a pleasant study
environment during my stay in Trondheim.

I would like to give a special recognition to Jon A. Rønningen for his support and guidance, at
a weekly basis, which has been related to his Ph.D. research attached to the GeoFuture project.
Without his encouragement the final product would never have reached this stage. I send my
gratitude to my main supervisor, Professor Steinar Nordal, for all his support and interesting
discussions related to the project. Furthermore, Professor Gustav Grimstad has contributed to
interesting discussions regarding the general stress space and his work related to implementation
of creep in constitutive models which I would like to thank him for.

In addition, the guidance related to interpretation of soil parameters has been given by Assistant
Professor Arnfinn Emdal and Helene Alexandra Amundsen (Ph.D. student) which has been very
helpful during my master thesis and I would like to thank them for their help.

The Norwegian Geotechnical Institute (NGI) was granted access to huge amounts of data related
to the test fill located at Onsøy. This has improved verification of my model and the comparison
process which I am very grateful for. I would especially like to thank Magne Mehli, who has been
the contact person and shared his work related to the embankment at Onsøy.

At the DTU I would like to thank my supervisor, Varvara Zania for her flexibility related to the
working procedure. Furthermore, for her interest in my topic which has encouraged me and en-
sured that I followed the guidelines required by DTU. I would also like to thank Grunde Jomaas1

for helping with the arrangement of the collaboration between NTNU and DTU.

Finally, I would like to express my gratitude to Louis Moe Christoffersen and Katrine Skjelanger
Kvinge for proofreading and correcting the report.

1 Associate Professor and head of studies related to the civil engineering study at DTU.

v



vi



Abstract

The term, natural soft clay, is commonly used to describe a normal or slightly overconsolidated
clay. This soil type may be encountered in e.g. Scandinavia, Eastern Canada and South East
Asia. The mechanical response of natural soft clay may be relatively complex and more research
is still required to understand the entire process with respect to short and long time aspects. The
observed mechanical behaviour in the field and in the laboratory has been investigated through
a literature study to outline the main characteristic features which dominate the mechanical re-
sponse. This study has shown that the viscous and ageing effects are the dominating features
in natural soft clay. The observed features have made a foundation of a new constitutive model
based on effective stresses. The model utilizes the theory behind the Modified Cam Clay model
and invariants as framework.

The model requires 17 input parameters to access all its implemented features. Three additional
input parameters are available to switch between different methods of simulating the stress history,
evolution of anisotropy, and failure criteria in the general stress space. The model assumes associ-
ated flow and utilizes three hardening laws which introduce eight state (hardening) parameters in
total. The model is implemented in the commercial software PLAXIS as a user defined soil model
through the interface between PLAXIS and FORTRAN. The FORTRAN code is supported by
additional MATLAB coding where the differential equations controlling the mechanical response
are assembled. The initializing of the state parameters is performed in the FORTRAN code.

The model has been verified against laboratory tests such as constant rate of strain and undraind
tri-axial tests and shows acceptable performance with respect to the implemented features. The
performance of the suggested model has been investigated during a full scale boundary value prob-
lem for the test embankment located at Onsøy, Norway. The model shows fairly good predictions
of the soil response and the dissipation of excess pore water with respect to field measurements.
These predictions have further been compared to other known soil models.

Keywords: Natural soft clay, creep, anisotropy, destructuration, recovery, Onsøy.
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Sammendrag

Betegnelsen, naturlig blødt ler, er ofte anvendt til at betegne normalt eller svagt konsolideret
ler. Denne jordart kan bl.a. findes i Skandinavien, det østlige Canada og det sydøstlige Asien. I
henhold til Dansk jordartsklassifikationssystem vil jordarten falde ind under jordartstypen ”Sen-
glacialt marint og ferskvand ler”.

De mekaniske egenskaber og reaktioner som følge af p̊aførte laster p̊a blødt normal konsolideret
ler kan være relative komplekse, og supplerende forskning er p̊akrævet for at belyse og forst̊a pro-
cessen mht. kort- og langtids aspekter. De mekaniske egenskaber observeret i felten og gennem
forsøg i laboratoriet er blevet tilegnet igennem et litteraturstudie, med henblik p̊a at opsummere
de generelle karakteristiske egenskaber som dominerer den mekaniske opførsel. Dette studium har
vist at viskos og aldersbetinget effekter er de dominerende karaktertræk i normalt konsolideret
ler. Disse karaktertræk har skabt et grundlag for en ny konstitutiv model baseret p̊a effektive
spændinger. Den generelle struktur af modellen er baseret p̊a teorien bag Modified Cam Clay
modellen samt anvendelsen af invarianter.

Modellen kræver 17 input parametre for at anvende samtlige implementerede egenskaber. Deru-
dover tilbyder modellen et valg om hvordan spændingshistorien skal initialiseres, udviklingen af
anisotropien samt to forskellige brudkriterier i det generelle spændingsrum. Modellen antager as-
socieret flydning og anvender tre hærdnings regler, hvilket medfører otte hærdnings paramtre to-
talt. Modellen er implementeret i det kommercielle program PLAXIS som en bruger defineret jord
model igennem brugergrænseflade mellem PLAXIS og FORTRAN. FORTRAN koden er støttet af
supplerende kodning i MATLAB, hvor de generelle differentielle ligninger, der styrer den mekaniske
opførsel, er opstillet. Initialiseringen af hærdnings parametrene er foretaget i FORTRAN koden.

Modellen er verificeret igennem forskellige laboratorium forsøg, s̊asom konstant tøjningshastighed
og udrænet tri-axial forsøg. Disse tilbage udregneringer viser en acceptabel ydeevne mht. de
implementerede egenskaber. Modellens ydeevne under et fuldskala randværdiproblem er blevet
undersøgt p̊a testfyldning lokaliseret ved Onsøy i Norge. Modellen udviser forholdsvise gode
forudsigelser af jordens opførsel samt af uddrivelsen af det genererede vandovertryk. Disse forudsigelser
er blevet sammenlignet med andre kendte jord modeller.

Nøgleord: Naturlig blødt ler, krybning, anisotropi, ødelæggelse af bindinger, gendannelse af
bindinger, Onsøy.
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Chapter 1

Introduction

1.1 Background

The general understanding of soil behaviour has increased gradually over the last decades. How-
ever, deposits of natural soft clays may still be categorized as a research subject and may lead
to huge geotechnical challenges (Karstunen et al., 2005). The focus on natural soft clay began in
the early 1900’s when the academic society initiated their research of this particular soil. At that
time most of the observed behaviour were related directly or indirectly to the water content of the
clay. However, as the performance of the sample technique and laboratory testing increased the
understanding of natural soft clay improved and it turned out to be very complex.

Nowadays, the main features related to natural soft clay are associated to the viscous and aging
effects which have a dominating influence of the soil response with respect to their reconstituted
equivalents. Some of these effects are known as secondary compression (creep), rate dependence
and the influence of structure in the natural soft clay. All these aspects need to be taken into
consideration if a higher accuracy of estimating the response of natural soft clay is desired.

Additionally, the understanding of the natural soft clay is a growing demand from sectors outside
the academic society caused by the expansion of infrastructure and large structures in areas where
large deposits of natural soft clays are significant and cannot be avoided, (Karstunen et al., 2005).
These deposits are mainly associated to places such as Scandinavia, Eastern Canada and South
East Asia.

Hence, the scope of this master thesis will be to clarify some of the most important features related
to natural soft clay, through a literature study. From the literature study and a study of existing
soil models a constitutive model will be assembled into commercial software which may be used to
estimate a more detailed behaviour of the complex natural soft clay.

1.2 Motivation

Nowadays, geotechnical engineers often design structures through analysis utilizing the Service-
ability Limit State (SLS) and the Ultimate Limit State (ULS) which may be based on conservative
assumptions often supported by traditional practice. The numerical modelling has applied a signif-
icant improvement and has narrowed the high conservativeness. However, the available soil models
in commercial software may not be able to capture all the special features related to, for instance,
natural soft clay due to their simplicity.

Through an advanced soil model the conservativeness may be reduced even more and a better
estimation of the soil behaviour may be given. For instance, it would allow the geotechnical
engineer to design structures utilizing the peak strength instead of the residual strength which

1



1.3. Challenges 2

may be significantly higher. However, one should keep in mind that the maximum strength is
a peak value and it will be progressively reduced towards the residual strength as a function of
strain. If this aspect is taken into consideration, resources may be saved by utilizing a higher design
strength. In general, a potential economical profit may be gained through a better understanding
and modelling of natural soft clay which creates the platform for this master thesis.

1.3 Challenges

The main challenges when designing a constitutive formulation for soil are to design a model which
is able to capture the observed behaviour in laboratory tests and full scale projects. In addition,
to extend the model to general stress space and thereby simulate real soil response in the three
dimensional stress space. The main challenges related to numerical modelling of soil response has
been formulated by Muir Wood (1994) and may be listed as:

(a) General stress space - Appropriate use of invariants

(b) Non-monotonic loading

(c) Anisotropic materials - Deposition process

(d) Structured materials - Strain softening

(e) Non-classical soils

(f) Particulate approaches

(g) Time effects - Viscosity

Various models have been suggested to simulate some of these features. A notable drawback related
to several of the suggested models are related to the numbers of input parameters. Some of input
parameters are missing a direct physical meaning, or are impossible to identify from standard
laboratory tests (Grimstad, 2009). Hence, the suggested model would try to minimize the input
parameters and utilize methods where the input parameters may be determined through standard
laboratory tests.

1.4 Objective

The aim of the study is listed as:

1. Assemble the theory to develop a constitutive model involving the issue (a)
mentioned in Section 1.3.

i Involving the necessary mathematical formulations, procedures and numerical algo-
rithms related to the soil model utilizing continuum mechanics as a platform.

2. Literature study of the characteristics observed in natural soft clay related to
(c), (d), and (g) mentioned in Section 1.3.

3. Develop a user-friendly effective stress based model for natural soft clays.

i An advanced soil model which may be implemented into commercial software using a
suitable finite element approach.

ii The robustness of the implementation should be such that it is possible to effectively
use the implemented model on practical examples.

4. Investigate the performance of the suggested model.

i Model calibration against laboratory test.

ii Full scale boundary value problems involving water dissipation.

The suggested constitutive model would be restricted to monotonic loading conditions. Hence,
cyclic and dynamic loading conditions are not taken into account and the effect of small stiffness
is not considered as well in the model.

Jesper Bjerre (s102905)
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1.5 Outline of Thesis

The main report will consist of the following chapters:

� Chapter 2 - Background theory

– This chapter assembles the theory to develop an effective stress based constitutive model,
similar to the Modified Cam Clay model, which creates a platform for the final consti-
tutive model.

� Chapter 3 - Natural soft clay

– This chapter contains a literature study of natural soft clay and thereby yields the
general understanding of the aims for the constitutive model.

� Chapter 4 - Visco-plastic model

– This chapter describes the chosen methods to implement the features observed in Chap-
ter 3 to the constitutive model assembled in Chapter 2.

� Chapter 5 - Implementation

– This chapter describes how the constitutive model is implemented into commercial soft-
ware.

� Chapter 6 - Verification

– This chapter performs a verification process of the constitutive model to insure that the
model works as expected and that the input parameters may be interpreted from the
output.

� Chapter 7 - Soil parameters

– This chapter contains a interpretation process to determine the necessary input param-
eters from laboratory tests. Furthermore, back-calculations of these laboratory tests are
performed to calibrate the input parameters.

� Chapter 8 - Predictions

– This chapter contain a performance analysis, results and discussion related to the em-
bankment located at Onsøy, Norway.

� Chapter 9 - Conclusion and further work

As a supplement to the main report an appendix report has been constructed. The appendix
report consists of related theory, coding in MATLAB and FORTRAN along with results related
to the embankment at Onsøy. The additional theory is added so that the reader is more capable
of following the utilized approach. The appendix report is attached as an additional report after
the bibliography.

1.6 Used Software

Throughout this master’s thesis the following software have been used:

� MATLAB R2014b

� PLAXIS 2D AE 2.0

� FORTRAN 90

� Latex (Text platform)

Jesper Bjerre (s102905)
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1.7 Onsøy Test Fill

The performance of the suggested constitutive model will be investigated through a boundary value
problem of the test fill located at Onsøy in Norway. The test fill was constructed in 1966 by the
Norwegian Geotechnical Institute (NGI) as a part of an investigation project in Thailand (Berre,
2013). The location of the test site is approximately 4 km north of the centre of Fredrikstad in
Norway, see Figure 1.1. The purpose of the test fill was to investigate the deformations on soft
plastic marine clay (natural soft clay). The test fill was constructed by five layers, yielding a total
height of 2.3 meters, in 14 days. The dimensions of the fill are 20 m x 60 m, see Figure 1.2.

water and about 3% higher than the natural salt water hydrostatic
pressure.

The depth to bedrock in the area varies from about 22 to about
53 m. Below the middle of the fill the depth to bedrock is about
53 m. The bedrock is probably covered by a relatively thin layer of
bottom moraine. Above this layer there is clay up to the ground
surface. Micropaleontological investigations had been performed
in connection with a slide that took place 7 m above sea level
about 6.3 km north of the test fill. According to Hartmark (1962),
the micropaleontological investigations showed that the clay is
postglacial down to a depth of about 14 m. Below a depth of about
17 to 18 m there is Yoldia clay that was deposited 13 000 to
14 000 years ago. This description will probably also apply approx-
imately for the ground below the test fill.

The thickness of the weathered crust below and around the test
fill varies from about 0.8 to 1.5 m, decreasing towards the river.
Down to a depth of about 8 to 10 m there are black spots in the clay
and pores with humus components. The black spots are about
2–10 mm wide and the distances between them are of similar
magnitude. The spots probably indicate high concentrations of
iron–sulfur. In some of the samples horizontal and vertical cracks
were discovered. Below a depth of about 10 m the colour of the
clay is grey with no black spots.

Figure 2 shows a boring profile. The laboratory data were deter-
mined on 54 mm samples from a borehole close to the fill (as
shown in Fig. 3). It is seen that the natural water content varies
between 57% and 67%. The average value of the plasticity index
varies from about 34 in the upper 9 m to about 44 between 9 and
15 m and to about 51 between 15 and 20 m.

The average value of the undrained shear strength, determined
by in situ vane tests, is about 11 kPa just below the weathered
crust. At a depth of about 10 m the average vane strength is about
17 kPa.

Instrumentation under the test fill
The fill was 60 m long and 20 m wide (at the ground surface). It

was believed that there would be approximately plane strain con-
ditions under the middle third of the fill, and therefore most of
the instrumentation was placed within this zone. The instrumen-
tation at large depths was placed as near to the middle of the fill as
possible, because the length of the zone with plane strain de-
creases with depth. The instrumentation outside the middle third
was placed mainly along the longitudinal axis of the fill. A plan of
the instrumentation is shown in Fig. 4. The electrical (vibrating
wire) and hydraulic piezometers were placed at different sections,
because the hydraulic piezometers were also used to determine
the horizontal stress by hydraulic fracturing as described by
Bjerrum and Andersen (1972). Such measurements create cracks
that one did not want to have in the zone where the potential
failure surface under the fill might pass through. The following
instrumentation is in addition to what is shown in Fig. 4:

1. Ring magnets along a horizontal plastic tube in the fill, for
measurements of horizontal deformations. The tube was
placed 0.5 m above the original ground surface at the middle of
the fill, perpendicular to the longitudinal axis.

2. Fifty wooden poles in the area around the fill. On top of each
pole stick a plate (of copper) with a cross mark was mounted.
The distances between the poles were measured, and geodetic
surveys recorded the vertical movements of the cross marks.
The poles were driven down to a depth of about 0.6 m.

3. “Brittle sticks” of wood in the ground for determination of any
developing failure surfaces.

Building up the fill
Before the fill was laid out, trenches were excavated through

the weathered crust to reduce the effect of the strength of the

Fig. 1. Map showing the Onsøy test field in the years 1972 to 1975.
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Figure 1.1: Map showing the location of the test fill at Onsøy. Taken from (Berre, 2013).

The safety factor of the embankment was estimated to 1.35 by undrained strength from in situ
shear vane (Berre, 2013). After 3 years, the test fill was brought to failure by raising the height.
The site was heavily instrumented and high quality samples have been taken by block samplers. An
overview of the different instrumentations and their locations at the site may be seen in Appendix
B.1. For further information regarding the block sampling at Onsøy, see e.g. (Lacasse et al., 1985).
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1.7.1 Site Conditions

The Onsøy clay is a marine clay and was deposited during the deglaciation at the early postglacial
period. The thickness of the clay deposit varies and is measured to 53 m beneath the test fill to
the bedrock. The clay fraction varies between 40% to 60%. The ground water level is located
around 0.2 m to 0.3 m below ground surface and the pore pressure is artesian (ca. 5% at 20 m
depth). The clay is saturated from the dry crust and downwards and the height of the weather
crust varies from 0.8 to 1.5 m. The water content (w) varies between 57% to 67%. The plasticity
index (Ip) varies from 34 in the upper 9 m, to 44 between 9 m and 15 m and to 51 between 15 m to
20 m. Hence, the clay may be classified as highly plastic. The salt content is stable at 30 g/l from
about 8 m and downwards. Black spots in the clay and pores with humus was found down to 10 m.

Figure 8 shows vertical displacements for points along the lon-
gitudinal axis of the fill. These displacements were measured just
below the weathered crust (at depths varying from 0.5 to 1.5 m) at
day Nos. 555, 791, and 1065, i.e., about 1.4, 2.1, and 2.8 years after
the fill had been placed.

Figure 9 shows vertical displacements along an axis normal to
the longitudinal axis at the middle of the fill just below the weath-
ered crust.

Figure 10 plots vertical strain along the vertical centreline un-
der the centre of the fill at various times. The strain values have
been obtained from measurements on ring magnets that are
“floating” in the clay outside a plastic tubing. The positions of the
magnets are accurately measured by a detector that is lowered
inside the tubing. For example, in Fig. 10 there are results from six
ring magnets with distances H1, H2, and so on between them. The
average strain for each layer is computed as the compression
between the magnets, in percent, of the original thickness of the
layer. It is plotted as a horizontal column at the original position
of the centre of the layer although the centres are moving down-
wards as the clay under the fill is compressed. The strain values
are plotted versus initial (not true) depths below the original
ground surface. A continuous curve is then drawn so that the area
below the curve for each column is approximately the same as

below the column. Figure 10 shows the tops of the columns in
addition to the continuous curves.

Figure 11 shows the same type of plot for a set of ring magnets
5 m east of the centreline of the fill.

Figure 12 shows plots of horizontal displacements 5 m west and
5 m east of the vertical centreline versus true (i.e., current) depth
below original ground surface at various times. The displacement
value, in millimetres, divided by 50 is equal to the average hori-
zontal strain, in percent, for the clay mass between the point
where the horizontal displacement is measured and the middle of
the fill. At day No. 1120 a 0.5 m thick layer of sand was placed on
top of the fill as a start of the incremental loading for the failure
stage. The measurements at day No. 1120 should have been taken
before placing this layer; however, this layer does not seem to
have had any significant influence on the horizontal displace-
ments at that time.

Figure 13 plots the ratio between horizontal and vertical
strain (–�H/�V) versus depth (i.e., initial depth below original
ground surface) at day No. 36 and at day No. 556. The �H-values
are the average strain values over a 10 m wide distance below
the middle of the fill. For an undrained plane strain condition
one would expect this ratio to be close to 1 (no volume change)
and then gradually decreasing with time as drainage takes

Fig. 3. Plan showing the dimensions of the fill, trenches through the weathered crust (depth 0.75 m, width 0.15 m), and positions of the 54
and 95 mm boreholes where piston samples were taken prior to the filling.
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Figure 1.2: Plan view of the embankment showing trenches through the weathered crust, and positions of
the boreholes for sampling. Figure 7.5 shows the bore profile taken by a 54 mm piston sampler.

For further information about the test fill and the field measurements, please see (Berre, 2013).
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Chapter 2

Background Theory

The purpose of this chapter is to present the Modified Cam Clay (MCC) model and the elasto-
plastic theory which is utilized to assembled it. The MCC model will establish a platform for the
final constitutive model.

2.1 General

In order to predict the material behaviour, constitutive models that relate stresses and strains
must be established. Several material models have been develop over the last decades aiming to
increase the accuracy when predicting the stress-strain relationship of real materials.

To develop an visco-plastic model, it is necessary to have a basic understanding of the general
elasto-plastic theory and the continuum mechanics behind constitutive models. Additionally, the
concept and methodology of the critical state soil mechanics have underlined the majority of the
isotropic soil models within the framework of elasto-plastic (Dafalias, 1986) and will also be the
case in this work. Hence, the main concepts in critical state soil mechanics and the Modified Cam
Clay (MCC) model will be presented in this chapter.

2.2 Continuum Mechanics

In order to describe the soil response, it is common to utilize the theory of continuum mechan-
ics. Applying continuum mechanics, when estimating the soil response, may be considered as an
assumption since the term soil consist of three phases: Particles, liquid, and gas which do not de-
scribe a continuum. Furthermore, each of these phases will consist of atoms and molecules which
may not be described as a continuum themselves. However, regarding the macro behaviour for a
soil the assumption of continuum mechanics is often utilized (Grimstad, 2009). The general con-
cept of continuum mechanics utilize four basic principles which are used to establish the kinematic
relation between stresses and strains (Grimstad and Benz, 2014):

� Conservation of mass

� Linear momentum

� Moment of momentum

� Conservation of energy

A short summary of continuum mechanics and the associated invariants may be found in Ap-
pendix C.1. In addition, Appendix C.1.8 shows a compact format of the utilized tensors: stresses,
strains and fabrics in the principle and deviatoric format.
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2.3 Elastic Theory

Elastic materials are characterized by reversible deformations meaning no dissipation of mechanical
energy, path independence, and rate independence. In other words, the material will return to its
original shape if an applied load is removed. If any work is performed on the material it will be
stored as internal energy in the material without loss. Considering a unit cube the internal work
per unit volume may be formulated as:

dW = σ′11ε11 + σ′22ε22 + σ′33ε33 + σ′12ε12 + σ′23ε23 + σ′13ε13 = σdε (2.1)

where σ represent the stresses and ε represent the strains. Notice that the first index refer to
the surface where the stress/strain component acts and the second index refer to the direction
of the stress/strain component according to the Cartesian coordinate system, see Appendix C.1
for further explanation. Furthermore, bold letters will indicate vectors or matrices1. Through
the specific internal energy density (U(ε)) it is possible to represent the internal energy per unit
volume, at a deformed state, by the strain component ε. If a change in the state of strain occurs
then the external work must be equal to the change in internal work:

dW = dU(ε) =
∂U

∂ε
dε (2.2)

Combining Eq. (2.1) and Eq. (2.2) a relationship between the stress components and the partial
derivative of the internal energy function can be found as:

σT =
∂U

∂ε
(2.3)

Note, that the symmetry of the stresses and strains are the same, i.e. the stresses and strains have
the same orientation. The relation between a small change in stress and the corresponding change
in strain is found by differentiation:

dσ = d

(
∂U

∂ε

)
=

∂2U

∂εT∂ε
dε −→ dσ = Ddε (2.4)

where D is a 6 × 6 component elastic stiffness matrix. It should be mentioned that since matrix
D is a double derivative of the internal energy potential (U(ε)) it implies symmetry, meaning:

DT = D (2.5)

With respect to symmetry, the stiffness matrix consists of 21 independent stiffness components.
In a linear elastic material the stiffness will be constant and the stress-strain relationship is simply
found by integrating from an incremental relation to a relation between current stress and strains:

σ = Dε ,




σ′11

σ′22

σ′33

σ′12

σ′13

σ′23




=




D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66







ε11

ε22

ε33

2ε12

2ε13

2ε23




(2.6)

Note, several engineers prefer to rename the shear strain into γij = 2εij , where i and j indicate
different directions. This will not be the case here.

1 This have been chosen instead of Einsteins notation see Appendix C.1
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2.3. Elastic Theory 9

2.3.1 Linear Isotropic Elasticity

Isotropic materials are characterized by material properties which are independent of the particular
orientation of the material relative to the load and deformation states. The material stiffness given
in Eq. (2.6) may be reduced to only two independent elastic parameters in an isotropic condition.
Firstly, considering a small cube which is affected only by normal stresses. According to the
symmetry of the material properties about the coordinate planes the cube must deform without
any increasing shear strains or shear stresses. To satisfy that requirement Eq. (2.6) can be reduced:




σ′11

σ′22

σ′33

σ′12

σ′13

σ′23




=




D11 D12 D13 0 0 0

D21 D22 D23 0 0 0

D31 D32 D33 0 0 0

0 0 0 D44 D45 D46

0 0 0 D54 D55 D56

0 0 0 D64 D65 D66







ε11

ε22

ε33

2ε12

2ε13

2ε23




(2.7)

Next step in reducing Eq. (2.7) is done by considering a pure uniaxial tension and pure shear case.
Through a uniaxial tension (for instance σ′33 6= 0, σ′11 = σ′22 = 0) and as a result of symmetry the
following relation can be obtained:

ε11 = ε22 = −νε33 (2.8)

where ν is Poisson’s ratio. This may be used to reduce the upper block of 3×3 stiffness parameters.
Lastly, by considering a shear state, the shear stress and deformation must be symmetric with
respect to the same plane. Therefore, by considering shear individually in each of the coordinate
planes the lower block of 3 × 3 stiffness parameters may be rewritten. Thereby, Eq. (2.7) can
finally be reduced to:




σ′11

σ′22

σ′33

σ′12

σ′13

σ′23




=




1

E
− ν
E
− ν
E

0 0 0

− ν
E

1

E
− ν
E

0 0 0

− ν
E
− ν
E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G







ε11

ε22

ε33

2ε12

2ε13

2ε23




(2.9)

Note that this relation is known as Hooke’s law. In soil mechanics it is preferred to use the bulk
(K) and shear (G) modulus (see Appendix C.1.7 for explanation) which are defined by:

K =
E

3 (1− 2ν)
and G =

E

2 (1 + ν)
(2.10)

In respect to K and G, Eq. (2.9) may be formulated as:

D =




K + 4
3G K − 2

3G K − 2
3G 0 0 0

K − 2
3G K + 4

3G K − 2
3G 0 0 0

K − 2
3G K − 2

3G K + 4
3G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G




(2.11)
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2.4. Elasto-Plastic Theory 10

Anisotropic elasticity will be discussed in Section 3.5. An elastic material model and solution based
on elastic theory may be used in geotechnical engineering for small deformations (Nordal, 2014c).
However, for larger deformations the soil response will leave the elastic region. Therefore, the elastic
model needs to be more advanced to describe the response of the soil if major overestimations are
to be avoided. It should be mentioned that Section 2.3 has been created by inspiration from Nordal
(2014c) and Krenk and Hoegsberg (2013).

2.4 Elasto-Plastic Theory

In elasto-plastic theory the material response is partly reversible and partly irreversible. Hence,
the strains can be decomposed into recoverable elastic strains (εe) and irrecoverable plastic strains
(εp). Note that e denotes elastic and p denotes plastic. Thus, the total strains in elasto-plastic
theory can be rewritten as (Nordal, 2014a):

dε = dεe + dεp (2.12)

This may also be illustrated for a one-dimensional linear elastic perfect-plastic material model as
illustrated on Figure 2.1(a). One could argue how good a linear elastic perfect-plastic material
model will represent a real soil response. Figure 2.1(b) shows how a real stress-strain response
from a soil may look like.XXXXX Technical University of Denmark

σ

ε

εp εe

Elastic

Loading Elastic
Unloading

Deformation
Plastic

1

(a) Decompostion of total strains for a linear elastic
perfect-plastic material model.

XXXXX Technical University of Denmark

A

B

D

C

O

Unloading
Reloading

σ

ε

1

(b) Stress-strain path for a real soil.

Figure 2.1: Soils model vs. real soil response.

Comparing Figure 2.1(a) and Figure 2.1(b) it can be seen that a such a model may lead to
under/over estimation of the soil response. Analysing the stress-strain path in Figure 2.1(b)
following observations may be made:

A : The yielding point or the first yielding point (Permanent strains starts to occur)

B : Unloading reloading (Often assumed to be purely elastic process)

C : Failure at maximum stress

O→ A : Initial part of the curve is linear (Linear elastic)

A→ C : Elasto-plastic response, Hardening process (Plastic stiffness is continuously reduced)

C→ D : Elasto-plastic response, Softening process (Negative stiffness)

These characteristics will be explained in the following sections to give a better understanding of
the soil response with respect to critical soil mechanics.
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2.5. Plasticity and Yielding 11

2.5 Plasticity and Yielding

As mentioned in Section 2.4, elastic strains are recoverable and plastic strains irrecoverable. The
transition between the elastic and plastic region is defined as yielding. In plasticity theory, a sim-
plification is utilized to define the yielding, as a single point between the elastic and plastic region.
In reality, it may be expected to observe a gradual transition from the elastic region to plastic
region (Wong, 1975).

In contrast to elastic theory, plasticity is characterized by path dependence and energy dependence.
The physical meaning of plastic yielding, with respect to geotechnical engineering, represent a slip-
page of grain contacts to obtain a closer or more loose packing of the grain structure. These phe-
nomena are described as dilative or contractive soil behaviour. With respect to the terms softening
and hardening, each of them occur in the plastic domain and are strain controlled processes. The
theory of plasticity was originally developed for metals but despite the many differences relative
to soil it may still be applied in geotechnical engineering (Roenningen et al., 2014). The definition
of a yielding soil can be rather complex since a soil may yield in several stress combinations. An
investigation of the yielding behaviour may be done by different soil tests and observing the soil
response. Figure 2.2 shows the soil response from three different soil tests; Isotropic compression,
one-dimensional compression, and conventional undrained compression (typically tri-axial testing).

XXXXX Technical University of Denmark

1

2
3

1

A

2

A

3

A

qq
Y1

Y1

Y2

Y2

Y3

Y3

vv

p′p′ σ′
11

εq

1

Figure 2.2: Investigation of yielding behaviour from three different soil tests. (1) Isotropic compression
test: Specific volume (v) and mean effective stress (p′), (2) One-dimensional compression test: Specific
volume (v) and vertical effective stress (σ′v), (3) Undrained tri-axial compression test: Deviatoric stress
(q) and deviatoric strain (εq). Inspired by (Wood, 1990).

It appears from Figure 2.2 that yielding may occur for different stress combinations. These yield
points may be referred to as a surface boundary which separates the elastic and plastic region.
The boundary is typically named as the yield surface but other names such as yield envelope or
yield locus may be found in other literature. A general definition of a yield surface has been given
by Wood (1990):

Definition 1. A yield surface marks the boundary between the region of purely elastic strain to
the region with combined elastic and plastic strain.

Yielding may be divided into different categories. It has been suggested by Leroueil and Vaughan
(1993) to divide yielding into three types as indicated on Figure 2.3.

XXXXX Technical University of Denmark

q

p′
Swelling Yield

Shearing Yield

Shearing Yield

Compression Yield

CSL

CSL

1

Figure 2.3: Different types of yielding. Inspired by (Leroueil and Vaughan, 1993).
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2.6. Elasto-Plastic Model 12

The shape and location of the yield surface in the (p′ : q)-space will be explained in Section 2.9 and
Section 3.4.1, respectively. It should be mentioned that in reality, plastic deformation may occur
inside the yield surface (Graham et al., 1982). This phenomena will often appear during cyclic
loading. Still, the phenomena is often neglected and purely elastic response is assumed inside the
yield surface for simplicity reasons.

2.6 Elasto-Plastic Model

An elasto-plastic model combines the concepts of elasticity, plasticity and yielding to predict the
relationship between stresses and strains. The main concept in the model is to separate the
relationship into two regions:

� Any stress changes inside the yield surface are associated by pure elastic strains.

� Any stress changes at edge of the yield surface are associated by a combination of elastic and
plastic strains.

As a result of plastic strains the yield surface will change in shape. To establish an elasto-plastic
constitutive soil model three ingredients are required (Nordal, 2014c):

� Yield Criterion

� Flow Rule

� Hardening rule(s)

To understand the elasto-plastic model in details, it is necessary to formulate the responses of elastic
and plastic strain. In the following subsections, the strain development due to stress changes will
be explained and the three ”ingredients” will be described in Section 2.7.

2.6.1 Elastic Volumetric Strain

According to Section 2.4 and Section 2.5, deformations inside the yield surface are purely elastic.
If the elastic properties are known the relationship between stresses and strains can be found by:

[
dεp
dεq

]
=

[
K ′ 0
0 3G′

]
=

[
dp′

dq

]
(2.13)

where εp are strains associated to changes in effective mean stresses (p′) and εq are strains asso-
ciated to changes in deviator stresses (q). Notice that changes in the volume are only associated
with changes in p′ and changes in shape are only associated to changes in q which explains the
chosen notation. The prime on G′ and K ′ refers to drained condition. Eq. (2.13) represents
an isotropic situation and for convenience it is assumed that the soil behaves isotropically during
elastic loading or unloading. It should be mentioned that since the deformations inside the yield
surface are reversible, moving from one stress state to another is dependent of the stress path. In
other words, in elastic region the change has no memory and only uses the change in stress not
the current stress state.

The concept of elastic volumetric strain can be derived by looking at the compression plane from an
arbitrary sample during a compression test, see Figure 2.4. In the compression plane (p′ : v), the
Normal Compression Line (ncl) is obtained when loading past the effective pre-consolidation stress
(p′c), hence yielding. Plotting the volumetric response against the logarithmic to the effective mean
stress (ln p′), the response will approach linearity. The change in specific volume (v) beyond the
yielding point may be associated to the compression parameter (λ) corresponding to the inclination
of the ncl line:

v = vλ − λ ln(p′) (2.14)
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2.6. Elasto-Plastic Model 13

XXXXX Technical University of Denmark

1

1

url

ncl
v

ln p′

vλ

vκ

p′ = 1

λ

κ

1

Figure 2.4: Normal Compression Line (ncl) and Unloading-Reloading Line (url) on the compression
plane (ln p′ : v).

For the Unloading/Reloading Line (url), the response was entirely elastic and the relationship
between volume and effective mean stress can be described by the unloading parameter κ2 which
represent the inclination of the url:

v = vκ − κ ln(p′) = ve (2.15)

Note that vλ and vκ are defined as the volume by intersection with the line of p′ = 1, see Figure 2.4.
These values (vλ, vκ) depend on the on the unit of p′ and is chosen to be 1 kPa as suggested by
Wood (1990). Rewriting Eq. (2.15) into its increment format the incremental change in volume,
in the elastic region, may be formulated as:

dve = −κ−dp
′

p′
(2.16)

As stated in Eq. (2.13) the change in volume is only associated to the change in effective mean
stress in the elastic region. Therefore, the incremental relationship between the effective mean
stress and volume may be written as:

dεp =
−dv
v

(2.17)

Combining Eq. (2.16) and Eq. (2.17) the volumetric elastic strain may be formulated as:

dεep = κ
dp′

vp′
(2.18)

The bulk modulus can be determined by combining Eq. (2.18) with Eq. (2.13) in the elastic region:

K ′ =
vp′

κ
−→ dεep =

dp′

K ′
(2.19)

Changes in deviatoric stress may occur inside the yield surface and create deviatoric strain. There-
fore, the shear modulus is needed but it can be discussed if it is able to assume a constant value
in the elastic region (Wood, 1990). In practice, a constant Poisson ratio is often assumed and a
relationship between the bulk modulus and the shear modulus can be expressed:

G′ =
3(1− 2ν)K ′

2(1 + ν)
(2.20)

The associated deviatoric strains may be determined as:

dεeq =
dq

3G′
(2.21)

2 Also called the swelling parameter.
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2.6. Elasto-Plastic Model 14

2.6.2 Plastic Volumetric Strain

The generation of plastic strains, as a result of changing the yield surface, is a function of the
pre-consolidation pressure. As mentioned earlier, the expansion of the yield surface consists of
both elastic and plastic deformation:

dv = dve + dvp (2.22)

The permanent deformation (plastic strains) can be found by visualizing the same compression
plane as in Section 2.6.1 and adding one more unloading/reloading loop. It can be observed from
Figure 2.5 that changing the stress state from point A to C and then unloading to point B with
the same stress state as in point A would lead to a change in volume.XXXXX Technical University of Denmark

ncl

A

B
C

v

ln p′

∆vp

p′01 p′02

url1

url2

1

Figure 2.5: Concept of plastic deformation.

The change in volume corresponds to the plastic deformation and can be found as the total volume
change minus the elastic contribution:

dvp = dv − dve (2.23)

Using Eq. (2.14) and Eq. (2.15) along with the stress states p′01 and p′02 representing point A and
point B, respectively, the change in plastic volume can be determined as:

dvp = −λ ln

(
p′02

p′01

)
+ κ ln

(
p′02

p′01

)
= −(λ− κ) ln

(
p′02

p′01

)
(2.24)

The incremental form of Eq. (2.24) may be found by utilizing the limit states:

dvp = −(λ− κ)
dp′c
p′c

(2.25)

Using Eq. (2.17) the change in incremental plastic strain may be expressed by:

dεpp = (λ− κ)
dp′c
vp′c

(2.26)

According to the assumption that volumetric changes are only associated to changes in the effective
mean stress the total strain can be determined by:

dεp = dεep + dεpp (2.27)

Thereby, the total strain cause by volumetric strains may be determined by Eq. (2.27).

Jesper Bjerre (s102905)



2.6. Elasto-Plastic Model 15

2.6.3 Plastic Devitoric Strain

The plastic volumetric strains are only a part of the total plastic deformation since the contribu-
tion from plastic deviatoric strains should be taken into account. In order to fully understand the
concept of the plastic deviatoric strains, it is important to realize that the direction of the plastic
strain vector is path independent in contrast to the elastic strains which are stress dependent.
The direction of the plastic strain vectors are determined from the specific combination of stresses
at the specific yield point and not the stress path of which the yield point was reached. Hence,
plastic strain vectors depend on the magnitude of the actual stress state where elastic strains are
determined from stress increments. To describe the plastic shear strain an example of a frictional
block is used. It should be mentioned that this example is inspired from (Wood, 1990).

A frictional block is subjected to an increasing shear load in both horizontal directions (Tx, Ty) as
illustrated on Figure 2.6 and the necessary forces for sliding are analysed. In elasto-plastic terms,
sliding of the block will correspond to yielding of the soil. In order for the block to slide, the
applied shear forces must equal the friction force. In the situation of two shear forces the resultant
force to obtain sliding is given by:

√
T 2
x + T 2

y = µfP (2.28)

where µf is the coefficient of friction for the rough interface3. From Eq. (2.28) it can be observed
that the left hand side of the equation will represent a circle in the (Tx : Ty)-space with center at
origo and the periphery symbolizes the limit to sliding (similar to the yield surface), see Figure 2.8.
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(a) Plan view.
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(b) Vertical view.
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(c) Tx : Ty-space.

Figure 2.6: (a) Frictional block under normal load P and shear load Tx. (b) Frictional block under normal
load P and shear loads Tx and Ty. (c) Interpretation of sliding in (Tx : Ty)-space. Inspired by (Rouainia
and Muir Wood, 2000).

From Figure 2.6(c) it can be seen that for any combination of Tx and Ty (causing sliding) the
resulting force will always be perpendicular to the yield surface. The taken path to reach failure
has no influence on the direction of the resulting force. The relative amount of sliding in each
direction can be determined by introducing the plastic potential (Q) as:

Q = T 2
x + T 2

y − k2 = 0 where k = µfP (2.29)

The relative amount of sliding can be found by differentiating Q with respect to each of the loads:

dx = dλ
∂Q

∂Tx
, dy = dλ

∂Q

∂Ty
, dz = dλ

∂Q

∂Tz
(2.30)

where dλ is a scalar multiplier also referred to as the plastic multiplier. This representation of the
plastic strains is directly transferred to the (p′ : q)-space, hence:

3 Static and dynamic friction is assumed to be equal.
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dεpp = dλ
∂Q

∂p′
(2.31)

dεpq = dλ
∂Q

∂q
(2.32)

Plastic potential

Yielding is associated with the occurrence of plastic irrecoverable volumetric and deviatoric strains.
Plotting the magnitude of these components, as defined in Eq. (2.32), in a graph having parallel
axes to a (p′ : q)-plot, the plastic potential to a given stress state can be observed. As indicated on
Figure 2.7, yielding may occur under many combinations. If the magnitude of the created plastic
strains are drawn for these stress combinations a surface may be drawn which is referred to as
the plastic potential. Notice that the plastic strain increment vectors always are orthogonal to the
plastic potential.

Figure 2.7: Plastic strain increment vectors normal to the plastic potential surface: Plastic potential (- -)
yield surface (-). Taken from Graham et al. (1984) and notice notation difference (δ = d).

As indicated in Figure (2.7) the plastic potential surface may be different from the yield surface.
This phenomenon will be explained in Section 2.7.1.

2.7 Three ingredients

As mentioned in Section 2.4, three ingredients are needed to define a constitutive model. These
three ingredients will be described in the next sections.

2.7.1 The Flow Rule

The flow rule describes the relationship between the plastic strains to the plastic potential as
introduced in Section 2.6.3. In general, two types of flow rules will be exist:

� Associated flow

� Non associated flow

The associated flow was postulated by Drucker in year 1951 and represent material stability of
work hardening material. The non associated flow was postulated by Von Mises in year 1928 and
represents ”unstable” materials (Nordal, 2014c).
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The associated flow rule is fulfilled if:

� The stress increment vector, which takes the sample beyond yielding, and the corresponding
plastic strain increment is directed perpendicular to the yield surface.

In other words, the yield and the plastic potential surface should have the same shape and size. If
associated flow may be assumed the number of equations to describe the plastic response can be
reduced to one:

dεp = dλ
∂Q

∂σ
= dλ

∂F

∂σ
(2.33)

where F represent the yield surface. If the yield surface and plastic potential is equal for a material
it is said that the material obey the postulate of normality. The normality and associated flow are
defined by Wood (1990) as:

Definition 2. Normality: The plastic strain increment vector is in the direction of the outward
normal to the yield surface.

Definition 3. Associated flow: The nature of the plastic deformations, or flow, is associated with
the yield surface of the material.

The practical method of visualizing and examining if associated flow is a suitable choice for the
soil response is performed by the following method.

1. Aligning the dεp and p′ axes and the dεq and q axes, respectively.

2. Plotting the plastic strain increments (dεpp and dεpq) as a strain vector from the corresponding
stress field.

3. If the strain vector is orthogonal to the yield surface the requirements for the associated flow
rule are fulfilled.

A theoretical example of non associated flow may be seen in Figure 2.7 utilizing the approach men-
tioned above. Figure 2.8 shows the normalized yield surface and the direction of the plastic strain
increments for test data presented by Graham et al. (1984). For this test data, the assumption of
associated flow would be a suitable choice since the plastic strain vectors are almost orthogonal to
the yield surface.
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FIG. 11. Normalized yield envelope and plastic strain increment directions 

from Figs. 6 and 7 .  This implies that there is no large 
difference in elastic stiffness of this clay before and just 
after yielding occurs. 

( a )  Directions of plastic straining 
The "associated flow rule" or "normality rule" postulates 

that irrespective of the stress increment vector which 
takes the sample beyond yield, the corresponding plastic 
strain increment vector should be normal to the yield 
surface. This assumption is essential to the validity of 
the limit or bound theorems (see, for example, Calladine 
1969) which provide the framework for most soil 
mechanics analyses, and it is incorporated in critical 
state predictive models (Schofield and Wroth 1968; 
Wroth and Houlsby 1980). 

It is common to examine normality by aligning the 
6uP and p' axes and the 6eP and q axes rspectively, and 
then plotting plastic strain increments Sup and 6eP as a 
strain vector from the corresponding yield stress. Thus 
the yield envelope and plastic strain increments can be 
examined together. If normality is observed, then the 
yield envelope becomes a plastic potential for the soil 
(Roscoe and Burland 1968). When experimental evi- 
dence is reviewed, however, most soils appear not to 
conform precisely to the associated flow rule (for 
example, Wong and Mitchell 1975). 

Figure 1 1  shows plastic strain increment vectors from 
the Winnipeg results plotted at the data points for the 
normalized yield envelope. Although the results indicate 
some scatter, several tests which yielded at about the 
same normalized stress have similar plastic strain 

increment directions. Figure 1 1  suggests that the devia- 
tion from normality in this clay may not be large. 

This is further examined in Fig. 12a. Here the 
u 

deviation angle between the plastic strain increment 
vector and the normal to the yield envelope is plotted 
against the direction 0 of the stress probe, where 
0-= arctan ( A q / A p l ) ,  the direction of the stress probe 
originating from the in-situ stress state. Thus, 0 becomes 
essentially a measure of where the stress probe intersects 
the yield- envelope. No systematic attempt has been 
made in these tests to investigate how the plastic strain 
increment vector varies with direction of the stress 
increment vector at a single point on the yield surface. 

Normality corresponds to zero deviation, and clock- 
wise deviations are considered positive. Because of the 
scatter in the yield stresses in Fig. 11, some care must be 
taken in determining the "normal" directions. Two 
methods can be usedy~n the first, lines perpendicular to 
the neighbouring yield envelope are used. In the second, 
the scatter is considered due to small variations in u,,,' . . - 
Lines are therefore drawn from zero stress through the 
yield stresses to intersect the yield envelope, and the 
normal is taken at this latter point. The two methods 
produce broadly similar resulis. Figure 12a has been 
prepared using the second method. 

The average deviation of the test data shown in Fig. 
12a is - 1 .OO. At first sight, this might be considered 
insignificantly small. However, close examination sug- 
gests evidence of systematic behaviour which refutes 
this conclusion. To the right of the critical state line 
(CSL) in Fig. 11 where the yielding is normally stable 
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Figure 2.8: Normalized yield surface and plastic strain increment. Taken from (Graham et al., 1984)
notice notation difference (σ′vc = p′c).

Jesper Bjerre (s102905)



2.7. Three ingredients 18

It have been shown from experimental data that the assumption of normality yields relatively
minor deviations for several natural soft clays (Wood, 1990). However, it has been proved from
other experimental data, that other soils (sand for instance) the assumption of associated flow is
not a suitable choice (Wong, 1975). The purpose of this work is to create a model which should be
able to simulate the soil response of natural soft clay. Hence, the associated flow rule is assumed
to be sufficient.

With respect to the assumption of associated flow, the plastic deformation is purely associated to
the stress ratio (η) at which yielding occurs and changes continuously as the stress ratio changes.
Thereby, several points on the plastic potential surface are of interest and are marked on Figure 2.9.
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Figure 2.9: Associated flow rule illustrated by yield patterns in plane strain.

The marked points in Figure 2.7 illustrate different phenomena where the soil response is dominated
by the magnitude of the stress ratio and the inclination of the CSL M (Wood, 2004):

Table 2.1: Influence of η with respect to the plastic response.

Point Criteria Dilation Response Condition

A η = 0 dεpp/dε
p
q =∞ Compression without distortion (Isotropic compression)

B η < M (2) dεpp/dε
p
q > 0 Compression and distortion (Oedometer)

C η = M (1) dεpp/dε
p
q = 0 Distortion without compression (Critical state)

D η > M (1) dεpp/dε
p
q < 0 Expansion plus distortion (Dilative)

∗High value
(2)Low value

The these points will be utilized in the report and be referred to as: isotropic compression, one-
dimension compression, critical state and dilative behaviour as seen in Table 2.1.

2.7.2 Yield Criterion

The yield criterion will decide if any plastic strains will develop according to an incremental stress
change relative to the plastic potential surface. Hence, three scenarios may be listed in Table 2.2:

Table 2.2: Definition of the current state by the yield criterion.

Situation State Development of strains

F (σ,κ) > 0 Is not allowed (-)

F (σ,κ) < 0 Purely Elastic (dε = dεe)

F (σ,κ) = 0 Elasto Plastic (dε = dεe + dεp)

Notice that associated flow is assumed (Q = F )

where κ is a suitable set of material variables also known as state variables. During yielding
the surface may move along by the induced incremental stress change by either isotropic or/and
kinematic hardening.
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2.8. The General Elasto-Plastic Model 19

2.7.3 Hardening Rule

The hardening rule is the last ”ingredient” which is required to assembled an elasto-plastic model.
The hardening rule is associated to the development of plastic strains with respect to the evolution
of the yield surface through the plastic multiplier (dλ). In terms of evolution, the yield surface
may either expand, do a kinematic translation, behave rotationally, or a combination of these
phenomena. The relation between plastic strain and evolution in the plastic potential is given by:

dεp = dλ
∂Q

∂σ
(2.34)

As mentioned in Section 2.7.1, utilizing the associated flow, the development of plastic strains may
be associated to the yield surface and the stress increment through the plastic multiplier. Recalling
the yield criterion F (σ, κ) = 0, the statement must be true for the given stress state and for any
stress state introduced by incremental stresses:

F (σ, κ) = 0 (2.35a)

F (σ + dσ,κ+ dκ) = 0 (2.35b)

Utilizing the above condition during hardening, the consistency equation may be formulated as:

dF =

{
∂F

∂σ

}
dσ +

{
∂F

∂κ

}
dκ = 0 (2.36)

Eq. (2.36) may also be referred to as the consistency condition and may be rewritten to:

{
∂F

∂σ

}
dσ −Adλ = 0 (2.37)

where A is the plastic resistance number also known as the plastic modulus:

A = −
({

∂F

∂κ

}T
·
{
dκ

dλ

})
= −

({
∂F

∂κ

}T
· h(σ,κ)

)
(2.38)

Notice, the plastic multiplier may be found analytically if all the derivatives in Eq. (2.38) are
constant or linear functions in stress (Grimstad and Benz, 2014). Another way to express plastic
resistance is by extending the term h(σ,κ):

h(σ,κ) =

{
dκ

dεp

}{
dεp

dλ

}
(2.39)

Utilizing Eq. (2.34), the term
dεp

dλ
=

{
∂Q

∂σ

}
may be used. Thereby, the plastic resistance can be

rewritten as:

A = −
({

∂F

∂κ

}T {
dκ

dεp

}{
dεp

dλ

})
= −

({
∂F

∂κ

}T {
dκ

dεp

}{
∂Q

∂σ

})
(2.40)

2.8 The General Elasto-Plastic Model

Utilizing the theory outlined in Sections 2.3-2.7.3 a constitutive model may be assembled to esti-
mate the soil response as a result of elastic and plastic strains. Recalling the definition of strains
in an elasto-plastic model:

dε = dεe + dεp (2.41)
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2.8. The General Elasto-Plastic Model 20

To summarize, the delimiter between the elastic and plastic behaviour is associated by the yield
surface and the development of plastic strains are governed by the plastic potential surface. The
yield and plastic potential surface are functions of:

Q(σ,β) = 0 , F (σ,κ) = 0 (2.42)

where σ expresses the stress state, and κ and β are two state parameters controlling the size of
the yield and plastic potential surface, respectively. Utilizing the flow rule along with an assumed
relationship between the elastic strains and corresponding stresses, the strain response in Eq. (2.41)
may be formulated as:

dε = D−1dσ + dλ

{
∂Q

∂σ

}
Using





dεe = D−1dσ

dεp = dλ
∂Q

∂σ

(2.43)

Rewriting the consistency conditions (see Eq. (2.37)) the plastic multiplier may be formulated as:

dλ =
1

A

{
∂F

∂σ

}T
dσ (2.44)

Substituting the expression for plastic multiplier, see Eq.(2.44), into Eq. (2.43) yields:

dε = D−1dσ +
1

A

{
∂Q

∂σ

}{
∂F

∂σ

}T
dσ (2.45)

Which may be formulated in compact form as:

dε = D−1
ep dσ where D−1

ep = D−1 +
1

A

{
∂Q

∂σ

}{
∂F

∂σ

}T
(2.46)

where A it the plastic resistance given in Eq. (2.40). With respect to numerical models it is often
favourable to determine the incremental stresses through the strain and stiffness matrix:

dσ = Depdε (2.47)

where

Dep = D −
D

{
∂Q

∂σ

}{
∂F

∂σ

}T
D

A+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

} (2.48)

The deriveration of Dep may be seen in Appendix C.4. In terms of p′ and q Eq. (2.46) may be
written as

[
dεep

dεeq

]
=




1

K ′
0

0
1

3G′



[
dp′

dq

]
where K ′ =

vp′

κ
(2.49a)

[
dεpp

dεpq

]
=

−1

∂F

∂κ

(
∂κ

∂εpp

∂Q

∂p′
+
∂κ

∂εpq

∂Q

∂q

)




∂F

∂p′
∂Q

∂p′
∂F

∂q

∂Q

∂p′

∂F

∂p′
∂Q

∂q

∂F

∂q

∂Q

∂q




[
dp′

dq

]
(2.49b)

The reason to introduce Eq. (2.46) in terms of p′ and q is done since next section will represent
the well known MCC model. This model is an elasto-plastic model originally designed for tri-axial
tests. The feature of axis symmetry is associated to tri-axial testing which makes the use of p′ and
q favourable.
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2.9. Modified Cam Clay 21

2.9 Modified Cam Clay

The MCC model is a elastic-plastic model developed to estimate the soil response during tri-axial
test. The original Cam Clay (CC) model was introduced back in 1963 by Roscoe and Schofield and
was modified in 1968 by Roscoe and Burland (Wood, 1990). The difference between the CC and
MCC will be described in Appendix C.2. The concept behind the MCC will be presented here.

2.9.1 General

The MCC model utilize the three ingredient required by an elasto-plastic model along with elas-
tic properties of the medium (Wood, 1990). The model is formulated by utilizing fundamental
principles and assumptions for simplification, where the main assumptions are listed here:

1. Recoverable volumetric strain due to change in p′ may be determined by Eq. (2.18).

2. Recoverable shear strains due to changes in q can be expressed by Eq. (2.21).

3. Combination of Eq. (2.18) and Eq. (2.21) implies a variation of Poission’s ratio with the
mean effective stress but is assumed to be a constant value.

4. The law of associated flow (Q = F ) is a fundamental part of the model.

The state parameters in the MCC model are purely associated to the pre-consolidation pressure,
thereby κ = p′c. Hence, the yield function may be written as:

F (σ, p′c) = 0 or F (p′, q, p′c) = 0 (2.50)

A derivation of the yield surface related to MCC model may be seen in Appendix C.2.1 and may
be formulated as:

0 = F = q2 −M2(p′(p′c − p′)) (2.51)

Notice that the yield surface illustrates an ellipse in the (p′ : q)-space.

2.9.2 Stress Strain Relationship

Applying the assumption of associated flow (G = F ), the plastic strains may be determined from
the yield function using Eq. (2.32):

dεpp = dλ
∂Q

∂p′
= dλ

∂F

∂p′
= dλM2(2p′ − p′c) = (λ− κ)

dp′c
vpc

(2.52a)

dεpq = dλ
∂Q

∂q
= dλ

∂F

∂q
= 2qdλ (2.52b)

According to the consistency equation (see Eq. (2.37)) the current stress state must be within the
yield surface or at the boundary and may be formulated in terms of p′ and q as:

dF =
∂F

∂p′
dp′ +

∂F

∂q
dq +

∂F

∂p′c
dp′c = 0 (2.53)

Recalling the definition on the hardening law, the change in pre-consolidation pressure was asso-
ciated by the development of plastic strains:

dκ =
∂κ

∂εp
dεp −→ dp′c =

∂p′c
∂εpp

dεpp +
∂p′c
∂εpq

dεpq (2.54)
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2.9. Modified Cam Clay 22

By comparing Eq. (2.54) to the ellipse shape of the yield surface, it may be concluded that the
contribution of plastic deviatoric strains must be equal to zero since the plastic deviatoric strain
will be equal to zero at p′c during hardening. Therefore, only the purely plastic volumetric will
contribute to the hardening. Hence, the MCC is known as a volumetric hardening model. By
rearranging Eq. (2.52) yields:

dp′c
dεpp

=
vp′c

(λ− κ)
and

dp′c
dεpq

= 0 (2.55)

It is common to reformulate the yield function by use of the parameter η which is the ratio between
the shear stress and effective mean stress (η = q/p′):

p′

p′c
=

M2

M2 + η2
(2.56)

Combining Eq. (2.56) and (2.54) and substituting this into the general plastic constitutive relation
(see Eq. 2.49) the plastic constitutive relation may be expressed by:

[
dεpp

dεpq

]
=

(λ− κ)

vp′(M2 − η2)




(M2 + η2) 2η

2η
4η2

(M2 − η2)



[
dp′

dq

]
(2.57)

The input parameters, M, v, λ and κ are constants in the (p′ : q)-space. It should be mentioned
that the compliance matrix is symmetric due to the assumption of associated flow.

Three scenarios may have interest regarding Eq. (2.57): η < M , η = M , and η > M due to
the term in the numerator. For the case, η −→ M , the development of plastic volumetric strains
reduces. Since the plastic hardening only depends on development of plastic volumetric strains the
change in pre-consolidation pressure may reduces. The shear stiffness will go to zero, as defined in
the critical state. This may be formulated as:

η −→M , dεpp −→ 0 , dp′c −→ 0 ,
dεpq
dq
−→∞ (2.58)

This may relate the soil parameter M to the ultimate value of the angle of shearing resistance ϕcs
which is given in Section 4.6. For the case η < M , a stable response is observed and an expansion
of the yield surface will occur which may be driven by stress changes or strain changes (Wood,
2004). For the case η > M the distortional compliance is negative and continuing shearing will
occur:

dεpq > 0 , dεpp < 0 , dq < 0 (2.59)

This implies strain softening. These scenarios may be seen on Figure 2.10.
XXXXX Technical University of Denmark

Softening:

η > M

Hardening:

η < M

M

p′

q

1

Figure 2.10: MCC: Hardening and softening of the yield surface.

Hence, the evolution of the yield surface depends on the magnitude of η related to M . A discussion
of drained and undrained response associated to tri-axial scenarios may be found in Appendix C.3

Jesper Bjerre (s102905)



Chapter 3

Natural Soft Clay

The purpose of this chapter is to provide information regarding the observed behaviour in natural
soft clays with respect to laboratory testing and field measurements. The chapter will explain the
main observations and the coupled processes between these. The characteristic features which have
been chosen to be implemented in the constitutive model will be described in greater detail.

3.1 General

In order to establish a unified framework for a constitutive model it is necessary to describe
the special characteristics which dominate the mechanical response for a natural soft clay. To
understand the essence of these features, one may go back to the deposit process to investigate
the initial structure of the natural soft clay. During the deposit several physical, chemical, and
biological processes may influence the initial structure. Figure 3.1 yields an overview of several
processes influencing the mechanical response of a natural soft clay deposit in a fjord.
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Fig. 1. Physical and biological processes controlling sedimentation and strength development 
with burial during early diagenesis. 
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et al. 1987). During subsequent settling some particles or 
flocs may be ingested by plankton and transformed into 
pellets (pelletization), or they may simply be agglomerated 
by organic substances. These aggregates upon reaching 
the sea floor will be integrated into the sedimentary 
sequence and possibly subjected to biological reworking 
(bioturbation) by benthic organisms (Rhoads 1974). In 
response to an increase in the vertical overburden stress, the 
sediment will experience consolidation with an accompa- 
nying increase in the strength. However, some chemical 
processes like cementation (Kelly et al. 1974) or organic 
processes (Richards 1976; Reimers 1982) as  well as 
thixotropic strengthening (Leonards and Ramiah 1960) can 
influence and even oppose consolidation. Occasionally, 
the sedimentary sequence may be remobilized as episodic 
events take place, as in the case of submarine slides. 

This article examines various processes controlling the 
development of strength in fine-grained sediments of the 
Saguenay Fjord, Quebec, a site well known for its physical, 
sedimentological, and biological characteristics (Sundby 
and Loring 1978; Smith and Walton 1980; Schafer and 

Smith 1988). In particular, both the role of organic matter 
and the mode of deposition of sediment will be evaluated 
as it relates to the origin of overconsolidation. 

Geological setting and sedimentary 
dynamics 

The Saguenay Fjord is located about 200 km northeast of 
QuCbec City (Fig. 2). It is a typical fjord, 90 km long, 
between 1 and 6 km wide, and flanked by sheer walls 
reaching elevations of 350 m. Water depths range from 
about 50 m near the head of the fjord and rapidly increase 
to 275 m in the central basin. The water body is well strat- 
ified with a warmer surface layer having a salinity of 
0.5 ppt (parts per thousand) near the fjord head increas- 
ing to about 28 ppt at the mouth. With depth, the salinity 
increases to 31 ppt and the temperature reaches a stable 
1°C (Syvitski et al. 1987). 

According to Shepard's classification (1954), the grain 
size distribution evolves from a sand mode near the head 
of the fjord to a silty clay mode downstream (Fig. 3; 
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Figure 3.1: Physical, chemical and biological processes which may influence the mechanical response of
natural soft clay. Taken from (Perret et al., 1995).
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3.2. Characteristics of Natural Soft Clays 24

After the deposition, the time-dependent effects initiate which may be divided into two different
main categories; viscous and ageing effects. These categories may further be divided into several
phenomena. These phenomena are rather complex and may dominate the mechanical response of
a soft natural soft clay.

Explaining the entire cycle on Figure 3.1 will be beyond the scope of this work. Hence, the chemical
and biological processes have been left out and the physical processes will be the main focus.

3.2 Characteristics of Natural Soft Clays

The mechanical response of most natural sedimentary clays may differ from their reconstituted
equivalents with respect to the observed behaviour in the laboratory (Leroueil and Vaughan, 1993).
The additional strength and stiffness in natural clays have been defined, by many researchers, as
the structure. A definition of the structure has been suggested by Burland (1990):

Definition 4. The structure of a natural soil consist of the combination between the fabric, rep-
resenting the arrangement of the particles and pore space, and the bonding representing the inter-
particle forces between the clay particles and the water.

Comparing the additional strength and resistance gained by the structural effect to their recon-
stituted equivalents, significant differences may be observed (Karstunen et al., 2005). It has been
stated that the structural effect for natural clays has the same importance, when determining
engineering behaviour, as the effects of initial porosity and stress history (Leroueil and Vaughan,
1993). Hence, it was of great importance to understand these features in order to incorporate them
into a constitutive model which may predict the mechanical response of a natural clay.

The evolution of the structure may be effected by several time effects and the newest research
has shown a possible coupling between these time effects (Sorensen, 2006). In addition, the fabric
may contribute with significant influence to the soil response as a part of the structure. Before
describing the structure in further details it is important to understand the term, reconstituted
equivalents which may be used as a measure of the amount of structure in the soil.

3.3 Reference State

A reference state has been suggested by Burland (1990) through the term, reconstituted soil
and may be defined as:

Definition 5. A reconstituted soil is defined as one which has been thoroughly mixed at a water
content equal to or greater than the liquid limit (wl).

See (Burland, 1990) for further details. Hence, this stage will not represent any additional stiffness
or strength from the sedimentation or the time-dependent effects, since the structure and stress
history are completely destructed1. The soil properties at this particular stage may be referred
to as the intrinsic properties since they are independent of the state of the soil. It was originally
denoted by the symbol, asterisk (∗) see Eq. (3.1). However, to avoid confusion with other notation,
subscript i will refer to intrinsic properties as indicated on Figure 3.2(a). Hence, by comparing the
intrinsic and natural properties it is possible to evaluate the amount of structure in the soil.

Plotting the response for a reconstituted clay with respect to an one-dimension compression test,
a linear relationship between the void ratio (e) to the logarithm of effective vertical stress (ln(σ′v))
may be found. This line is referred to as the Intrinsic Compression Line (ICL), see Figure 3.2(b).
Burland (1990) presented the void index (Iv) whereby the compression characteristics of various
reconstituted clays may be presented by the same ICL. The void index is determined through the
intrinsic properties as:

1 According to the definition: A reconstituted soil has isotropic stiffness.
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3.4. Fabric 25

Iv =
e− e∗100

e∗100 − e∗1000

(3.1)

where e∗100 and e∗1000 refers to the intrinsic void ratio at 100 kPa and 1000 kPa. Testing a natural
clay, in the same manner, the response will most likely deviate from the ICL due to the additional
mechanical properties gained from the sedimentation and/or the viscous effects. A Sedimentation
Compression Line (SCL) may be drawn parallel to ICL, as indicated on Figure 3.2(b). The SCL
will be located above the ICL caused by the fabric which has been created during the deposition.
Notice, the SCL is not associated to any viscous effects (no bonding effects).

XXXXX Technical University of Denmark

1

1

Natural Soil

Reconstituted Soil

NCL

λ∗
i

λ∗

ln p′

v

1

(a) Different inclination of (λ∗) for reconstituted and natu-
ral clay. Notice that (∗) refers to modified MCC parameter.

rates vary during a test are rarely done and not common

in literature. In Figs. 11 and 12, two such test series on

non-localized natural Norwegian and Finnish clays are

presented. The dashed line represents test results when a

constant strain rate is adopted throughout the test, whereas

the solid line represents soil response when the strain rate is

varied between different strain rates. It can be observed

from the experiment that, for the tests with varying rate, the

stress–strain curve jumps between the curves correspond-

ing to constant rate. The test clearly demonstrates that even

in post peak regime, the undrained response can vary

depending on the applied shearing rate.

4 Simulations and discussions

The proposed model was implemented as a user-defined

model in a commercial finite element code PLAXIS.

Incremental oedometer and undrained compression triaxial

tests have been simulated to assess the capability of the

model and illustrate some of its potential. Table 1 gives the

input parameters used for the simulations. The parameters

are selected such that they can represent typical clays.
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.
(b) Undisturbed and reconstituted clay. Taken from
(Grimstad et al., 2010), original by (Burland, 1990).

Figure 3.2: One-dimensional compression showing the difference between reconstituted and natural soil.

As seen on Figure 3.2(b), the path of the natural clay starts to bend down towards the ICL
when approaching the SCL. The physical meaning of this tendency is a rearranging of the fabric,
created by the sedimentation, towards a reconstituted state corresponding to isotropic properties.
If the response from the natural sample goes above the SCL it is caused by inter-particle bondings
between the soil particles. Hence, the existence of structure in the soil yields a higher effective
stress for a given void ratio which is allowed according to the unique relationship presented by
Bjerrum (1967). This will be discussed more in Section 3.8. As seen on Figure 3.2(b), the fabric
may contribute to a significant influence regarding the one-dimensional compression. The next
section will explain the fabric and the initial fabric created under the deposit process.

3.4 Fabric

The term, fabric is associated to the orientation, distribution and shape of the individual clay
particles in the clay deposit. The clay particles are normally assumed to have a plate-like shape in
order to describe the fabric of the clay deposit in a relatively simple manner. Hence, the contact
between the clay particles may either be Edge to Edge (EE), Edge to Face (EF ), or Face to
Face (FF ), (Sides and Barden, 1970). Some of the first attempts to classify the fabric have be
done by dividing the fabric into flocculated and dispersed structures. These terms refer to the
condition during the deposition where the net electrical force between the adjacent particles could
either be attraction or repulsion. A flocculated structure will normally be associated with an open
structure where the contact between the clay particles would be EE and EF . The compaction
would normally be in a relatively dry condition during a net attractive force. On the other hand,
a dispersed structure would rather have a denser structure and tend to have a more orientated
tendency. The net electrical force between adjacent particles during deposition has been repulsion
which requires a large or expanded double layer effect. The typical rearrangement will be FF for a
dispersed structure. Another classification has been formulated by Sides and Barden (1970) which
suggests six possible types of fabric, see Figure 3.3. The ideal clay structures may be defined as:
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� Cardhouse: Single particles in an open structure (EE + EF ).

� Bookhouse: Arranged particles in an open structure (EE + EF ).

� Honeycomb: Large open structure with a significant slit/sand content (EE + EF ).

� Dispersed: Orientated single particles in a dense structure (FF ).

� Turbustratic: Orientated arranged particles in a dense structure (FF ).

� Stack: Highly oriented particles and dense structure (FF ).

47

Figure 2.1: Structure of the main clay units (Veniale, 1983; Cotecchia, 1996)

Figure 2.2: Classification of fabric (Sides & Barden, 1970)
Figure 3.3: Idealized clay structures. Taken from (Sides and Barden, 1970).

As seen on Figure 3.3 the three lower cases of fabric would yield higher tendency of anisotropic
stiffness relative to the three upper cases. To understand the creation of fabric, the deposition
process much be clarified in greater detail.

3.4.1 Deposition Process

During deposition of clay particles, two main aspects will influence the creation of fabric. These two
main aspects have been classified as: (1) The rate of deposition and, (2) The stillness (kinematic
motion) of the water. Burland (1990) stated the following scenarios with respect to the creation
of the fabric:

� Still water + slow deposition: Open and random fabric with high magnitude of void
index laying. Thereby, the soil would be located on or above the SCL.

� Current + fast deposition: Orientated fabric yielding a more compact state with low
void index.

The initial fabric formed during the deposition is often termed as the primary fabric. The fabric
may change during the geological time though several effects. However, according to Burland
(1990) the fabric does not change easily by a pure changes in overburden stresses but other phe-
nomena are required if major changes will happen.

The influence of the fabric may be so significant that it violates the common assumption of isotropic
response. Hence, the consequence of fabric may yield the necessity of implementing anisotropic
conditions to ensure a more realistic soil response. The anisotropic stiffness has been observed
for a wide range of soft soils as a rotated and/or skewed yield surface in the (p′ : q)-space which
may be seen on Figure 3.4. This tendency is commonly associated to typical natural clays found
in Norway. However, the rotation of the yield surface may only describe the anisotropic response
in the plastic domain with respect to a constitutive model. The approach of incorporating elastic
anisotropic response will be discussed in Section 3.5.
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Fundamental aspects of clay behavior

8

Figure 2.4 Yield curves of natural clays grouped according to their friction angles (Diaz-
Rodriguez et al. (1992), Wong and Mitchell (1975), Larsson (1981), Hight et al.
(1992b), Leroueil (1994) and Länsivaara (1995b)).
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Figure 3.4: Experimental data showing a rotated and/or skewed yield surface of different natural clays
collected and presented by Länsivaara (1999). Notice notation difference (σ′vc = p′c).

As a last comment on the term fabric, it should be known that two clays may have the same fabric
and stress history but different mechanical properties. This may be caused by the inter-particle
forces which are associated to time-effects and will be explained in Section 3.8.1.
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3.5 Anisotropy

Section 2.3 presented an ideal case where the soil response was associated to pure isotropic elastic
response. In reality, the response of natural soft clay may not behave isotropic and the assumption
may be crucial according to the fabric, see Section 3.4. Hence, an anisotropic elastic stiffness matrix
may be utilized to estimate a more realistic response of the natural soft clay. The general stiffness
matrix consists of 36 moduli and may be reduced through different assumptions, see Table 3.1.

Table 3.1: Number of moduli in the stiffness matrix.

Scenario Number of moduli Characteristic feature

General 36
Full Anisotropy 21 Symmetry associated to strain energy
Orthotropic 9 Three mutually perpendicular planes of symmetry
Transverse-anisotropy(1) 5 Equal stiffness in two directions(2)

Isotropic 2 Equal stiffness in all directions
(1)Also known as axis- or cross anisotropic
(2)Assuming the same stiffness in the horizontal plane

The deposited history and the shape of the clay particles may have a great influence with respect
to the stiffness matrix. As mentioned in Section 3.4, the shape of the clay particles may be
assumed to have a plate-like shape with a large specific area. During the deposition, the particles
often tend to move downwards with relatively little lateral movement. Hence, the soil deposit
would obtain different properties in the vertical and horizontal direction. The tendency would be
a smaller stiffness in the vertical direction relative to the horizontal direction. Hence, transverse
anisotropy may represent a natural soft clay deposit in a fairly good manner. Figure 3.5 illustrates
five different soil samples taken with respect to a Cartesian Coordinate system. With respect to
transverse anisotropy it may be assumed that the stiffness in sample B,C,D and E will be equal.XXXXX Technical University of Denmark

x
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A
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1

Figure 3.5: Five soil samples taken with respect to a Cartesian Coordinate system.

This may be assemble into a stiffness matrix given as:




ε11

ε22

ε33

2ε12

2ε13

2ε23



=




1

E′H
−νHV
E′H

−νHH
E′H

0 0 0

−νHV
E′H

νHV
E′HνV H

−νHV
E′H

0 0 0

−νHH
E′H

−νHV
E′H

1

E′H
0 0 0

0 0 0
1

G′HV
0 0

0 0 0 0
2(1 + νHH)

H ′H
0

0 0 0 0 0
1

G′HV




︸ ︷︷ ︸
DTransverse




σ11

σ22

σ33

σ12

σ13

σ23




(3.2)
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where H and V denote horizontal and vertical direction, respectively. Implementing of anisotropic
stiffness yields no coaxiality response. The term, coaxiality refers to the fact that the principal
directions of stress and strain are coinciding for isotropic elasticity, see Figure 3.6.XXXXX Technical University of Denmark
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Isotropy

Coaxiality

Anisotropy

No Coiaxiality

Layering

1

Figure 3.6: Coaxiality of principal stresses and principal strains.

Hence, the decomposition of the soil response into a purely volumetric and a deviatoric contribu-
tion cannot be done according to anisotropic conditions since a cross coupling term in the stiffness
matrix will be present.

A method to incorporate the influence from fabric was presented by Houlsby and Graham (1983).
Utilizing a normal sampling and testing approach only sample A, see Figure 3.5, would be tested
in the laboratory. As stated by Houlsby and Graham (1983), only three elastic parameters may be
interpreted from the sample in the laboratory. Two of these parameters are needed to determine
the isotropic elastic response. Hence, Houlsby and Graham (1983) choose to incorporate the
anisotropic response by utilizing the last parameter to increase/decrease the stiffness in either the
horizontal or the vertical direction by an anisotropy factor αh defined as:

αh =

√
νHV
νV H

=

√
E′H
E′V

=
νHH
νV H

=
νHV
νHH

=
E′H

2(1 + νHH)GHV
(3.3)

Thereby, the elastic relation between stresses and strains may be formulated as:




ε11

ε22

ε33

2ε12

2ε13

2ε23




=
1

E′H




1 −αhνHH −νHH 0 0 0

−αhνHH α2
h −αhνHH 0 0 0

−νHH −αhνHH 1 0 0 0

0 0 0 2αh(1− νHH) 0 0

0 0 0 0 2(1− νHH) 0

0 0 0 0 0 2αh(1− νHH)







σ11

σ22

σ33

σ12

σ13

σ23




(3.4)

A modified version of the anisotropic stiffness is given by Grimstad (2009) through a more complete
formulation utilizing a general rotated orthotropic fabric matrix. The method utilizes the same
principle as Houlsby and Graham (1983) and extends the formulation by an additional fabric
matrix (α), see Appendix C.7 for further details. Hence, the orthotropic stiffness matrix may be
found through:

Dort = αDisoα (3.5)

Where ort refers to orthotropic and iso refers to isotropic. The orthotropic stiffness matrix may
be assembled as:
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Dort =
E∗

(1 + ν∗)(1− 2ν∗)




α2
1D11 α1α2D12 α1αzD13 0 0 0

α2α1D21 α2
2D22 α2α3D23 0 0 0

α3α1D31 α3α2D32 α2
3D33 0 0 0

0 0 0 α1α2
1

2
(D11 −D12) 0 0

0 0 0 0 α1α3
1

2
(D11 −D12) 0

0 0 0 0 0 α2α3
1

2
(D11 −D12)




(3.6)

where (∗) denotes the reference direction and α1, α1, and α1 refer to fabric directions. Transforming
into the principle axis of the fabric may be done through:

D = A−1DortA (3.7)

where A is a rotational matrix containing elements of the rotation tensor α, see Appendix C.7. As
a demand for introduced the fabric tensor, following requirement must be fulfilled:

α1 + α2 + α3 = 3 (3.8)

In the case of transverse anisotropic an additional parameter may be introduced to simplify the
relation which is similar to the anisotropic factor suggested by Houlsby and Graham (1983):

αe = α1 − α3 and α2 = α3 (3.9)

Notice that αe is not exactly the same as αh since αe = 0 would yield isotropic conditions, whereas
αh = 1 would yield isotropic conditions. Thereby, the relationship between stresses and strains
with respect to (p′ : q)-space may be assembled as:

[
dp′

dq

]
=

[
Kani Jani

Jani 3Gani

][
dεv

dεq

]
(3.10)

where ani refers to anisotropic conditions and Jani represents the coupling term yielding no coax-
iality. Eq. 3.10 may be rewritten in the full form as:


dp

′

dq


 =




Kiso +
4

27
α2
eGiso αe

(
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2

3
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(
1 +

1

3
αe

))

αe

(
Kiso +

2

3
Giso

(
1 +

1

3
αe

))
α2
eKiso + 3Giso

(
1 +

1

3
αe

)2





dεp
dεq


 (3.11)

Recalling that αe = 0 yields isotropic conditions. The elastic anisotropic stiffness parameter (αe)
may be determined through the pore pressure parameter (D) suggested by Janbu (1985):

du = dp−Ddq −→ D =
dq

dp′
(3.12)

where du is the change in pore pressure. The relationship may be assembled though Eq. (3.11)
during undrained tri-axial testing. Hence, no volume change may occur and thereby the following
expression may be obtained:

D =

αe

(
Kiso +

2

3
Giso

(
1 +

1

3
αe

))

α2
eKiso + 3Giso

(
1 +

1

3
αe

)2 =

αe

(
1 + ν∗

1− 2ν∗
+ 1 +

1

3
αe

)

α2
e

1 + ν∗

1− 2ν∗
+

9

2

(
1 +

1

3
αe

)2 (3.13)

The relationship is illustrated graphically on Figure 3.7(a) where it may be seen that αe = D = 0.
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where the index i is introduced to indicate an intrinsic soil

parameter. This implies that the intrinsic parameters should

be determined and used. Figure 1 illustrates some of the

different terms in Eq. (13). The additional term on the end

of Eq. (13) is added to ensure that, under oedometer con-

dition, the resulting viscoplastic volumetric strains corre-

spond to Eq. (8). Note that for unstructured soil, x = 0.

In Fig. 6, the time-stress–strain relationship is plotted

with parallel lines that represent a constant creep rate.

These lines are referred as isotaches [44]. As can be seen in

the Fig. 6, the progress of destructuration decreases the

distance between the isotaches (higher rs) and the incli-

nation of the isotaches (higher msec). One should note that

the model assumes that rs � f remains constant.

The Anisotropic Creep Model (ACM) [22] is an exten-

sion of the SSC model [42]. ACM incorporates anisotropy

by a rotational surface. In Fig. 7, the ACM is compared to

the proposed model in p0 - q space, by plotting curves of

constant rate of the plastic multiplier, for two specific vi-

scoplastic strain rates applied with both models. As seen

from Fig. 7, the proposed model is able to simulate the

‘‘dry’’ side of critical state, while ACM only incorporate a

state of zero viscoplastic volume strain at zero mean stress.

Equation (14) gives the isotropic hardening rule for the

intrinsic reference stress. The formulation is identical to

that of MCC model [37]; however, as part of the extension

to viscoplastic model, the hardening rule is expressed in

terms of viscoplastic volumetric strain.

dp0mi

dk
¼ p0mi �

1

fi

� opeq

op0
ð14Þ

where fi is an internal compressibility parameter defined in

the ‘‘Appendix’’.

The destructuration rule is given by Eq. (15). In a sim-

ilar manner to the rotational rule, the destructuration rule

involves both the volumetric and deviatoric irrecoverable

strains.

dx

dk
¼ �x � av �

opeq

op0

����

����þ aq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

opeq

ord


 �T
opeq

ord

s0

@

1

A ð15Þ

where av and aq are destructuration parameters.

The hardening rule and the method for incorporating

structure are similar to that of Gens and Nova [12]. How-

ever, the proposed work does not include effects such as

loss of attraction or tensile strength, which were part of the

original formulation [12].
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(a) Relationship between the elastic stiffness pa-
rameter (αe), Poisson’s ratio (ν) and Janbu’s pore
pressure parameter (D). The illustration is taken
from (Grimstad et al., 2010) and αD is equal to αe.

XXXXX Technical University of Denmark
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Figure 3.7: Determining the elastic elastic anisotropic stiffness parameter and its influence on the stiff-
ness.

Figure 3.7(b) shows how the elastic anisotropic stiffness parameter (αe) influence the ESP in the
(p′ : q)-space with respect to the horizontal and vertical stiffness.

3.5.1 Stress Induced Anisotropy

It has been shown through experimental data that the small-strain stiffness of soils tend to be a non-
linear function of stress. In addition, other aspects such as the void ratio and the pre-consolidation
pressure may influence the stiffness (Houlsby et al., 2005). Thereby, if the non-linearity is neglected
it may yield a significant violation of the thermodynamic laws regarding the storage of energy.

The MCC introduce the non-linearity by adopting a hypo-elastic formulation by varying the tan-
gent moduli. The relationship between the bulk and shear modulus is determined by assuming
a constant Possion’s ratio (ν). The relationship yields a non-conservative elastic response and
may generate continuous production of energy during multiple cycles. Houlsby et al. (2005) have
suggested an approach without violating the thermodynamic laws by combining the hypo-elastic
approach and the existence of an energy potential. The suggested method assembles the compliance
matrix as:

[
dεep

dεeq

]
=

[
c1 c3

c3 c2

][
dp′

dq

]
(3.14)

where:

c1 =
3G

3KG− J2
=
∂εp
∂p′

=
∂2U

∂p′2
(3.15a)

c2 =
K

3KG− J2
=
∂εq
∂q

=
∂2U

∂q2
(3.15b)

c3 =
−J

3KG− J2
=
∂εp
∂q

=
∂εq
∂p′

=
∂2U

∂p′∂q
(3.15c)

where U represents the internal energy mentioned in Section 2.3 and J to the coupling stiffness.
Isotropic stiffness may be found by utilizing an internal energy function of:
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U =
1

pa

(
1

2k
p′2 +

1

6g
q

)
(3.16)

where k and g are dimensionless constants and pa is a reference pressure. The relationship to the
bulk and the shear modulus is given by:

K = kpa (3.17a)

G = gpa (3.17b)

Experimental data has shown that the relationship between the bulk modulus and the effective
mean pressure for some soil may be presented better by the power function suggested by Houlsby
et al. (2005). Thereby, stress induced anisotropy may be generated through the power function:

K

pa
= k

(
p′

pa

)n
(3.18)

where n is the pressure exponent. In addition, Houlsby et al. (2005) stated that the previous stress
history experienced by the material contributed to the internal energy. Hence, the internal energy
will therefore be a function of:

U(σ, ε) = U(q, p′, ε) (3.19)

Introducing a coupling term through the pre-consolidation pressure. Thereby, in terms of p′ and q
(tri-axial conditions) the relation between the stresses and strains may be found by:

dεep =
∂2U

∂p′2
dp′ +

∂2U

∂p′∂q
dq +

∂2U

∂p∂p′c
dp′c (3.20a)

dεeq =
∂2U

∂q2
dp+

∂2U

∂q∂p′
dp′ +

∂2U

∂q∂p′c
dp′c (3.20b)

where the last term in Eq. (3.20) corresponds to the elastic-plastic coupling. The suggested
extended hypo-elastic potential energy for clays is given as:

U =

(
pa
p′c

)r [
p2−n

1

p1−n
a k(1− n)(2− n)

− p′

k(1− n)

]
(3.21)

where r is the pre-consolidation pressure exponent and p1 is given by:

p2
1 = p′2 +

k(1− n)q2

3g
(3.22)

This secondary effect of stress induced anisotropy will not be incorporated in the model but has
been chosen to be highlighted so the limitations for the suggested model is clear. In addition, if
n 6= 1 the model will not be consistent and will yield a logarithmic function where issues regarding
the subtraction of λ∗ − κ∗ will occur.
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3.6 Time dependent Behaviour

The time dependent behaviour is rather complex and the phenomenon has been investigated over
the last decades. The attention began during the 1950s where the sensitivity and time dependent
structuration of natural soft clays became of interest to the researchers. Other aspects of the time
dependent behaviour, such as the time-delayed deformation, took off after the presentation by
Bjerrum (1967) in the seventh Rankine lecture regarding the long time settlement of foundations.
Today, the understanding of time dependent behaviour is still in a stage where further research is
needed to fully understand the influence of time with respect to the soil response.

3.6.1 Classification of Time Dependent Behaviour

By reviewing the literature some confusion of terminology has occurred during the last decades
caused by the lack of knowledge and limitations of testing equipment. However, nowadays the
understanding of time-effects in natural soft clay have improved so the majority of researchers agree
on the terminology and aspects associated to time-effects (Sorensen, 2006). The time dependent
behaviour may be divided into viscous and ageing effects as seen on Figure 3.8.
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Figure 3.8: Classification of common time effects in natural soft clays. The dashed part of this figure and
the temperature effect are beyond the scope of this work.

As indicated on Figure 3.8 the viscous and ageing effects may be divided into several other processes
and will be described in the following sections.
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3.7 Viscous Effects

The term, viscosity will normally be associated with liquids and gasses by symbolizing the measure
of shear resistance to an applied shear force. Hence, the relationship between resistance and shear
force may describe the characteristics of the matter. With respect to soil mechanics, a granular
material yields a higher resistance to shear forces compared to clay for a given strain rate. Hence,
granular materials would be defined as more viscous materials relative to clays. However, it is well
known that the magnitude of creep is significant in clays relative to granular materials. Clays may
therefore be characterised by a reducing viscosity with increasing shear rates and may be classified
as a pseudoplastic or shear thickening matter (Sorensen, 2006). A shear thickening behaviour may
be seen on Figure 3.9. 800 CAN. GEOTECH. J. VOL. 25, 1988 

TABLE 1. Viscometer characteristics 

Sensors MV-I MV-I1 MV-I11 

Shear stress 
Max. (Pa) 
Min. (Pa) 

Shear rate 
Max. (s-I) 1198 46 1 225 
Min. (s-I) 0.023 0.009 0.004 

Viscosity 
Max. (rnPa.s) X 10' 1.4 4.2 14.0 
Min. (mPa . s) x lo-' 0.89 2.7 8.0 

Shear rate 

FIG. 1. Major types of fluids: (1) Newtonian; (2) thickening; 
(3) fluidizing; (4) Casson; (5) Bingham. 

given water content, it became possible to use the fall cone for 
that purpose (Garneau and LeBihan 1977). However, the 
lower strength limit of the fall cone is at 73 Pa (equivalent to a 
liquidity index of about 3); this is too high for many sensitive 
clays having liquidity indexes between 3 and 6,  or more. 
Recently, Demers and Locat (1985, 1986), Torrance (1987), 
and Locat et al. (1988) started using a viscometer on a more 
routine basis and have presented positive relationships between 
yield stress and remolded undrained shear strength (measured 
by the fall cone). 

The liquid limit of a soil varies with salinity (Torrance 
1975). Kerr and Drew (1965, 1968), Bentley (1976, 1979), 
Dixon (1982), Torrance (1984), and Torrance and Pirnat 
(1984) have discussed the effect of salinity on the flow behav- 
ior of clay slurries. They observed that increasing the salt con- 
tent of the pore water from low (less than 2 g/L) to high (above 
5 g/L) values resulted in an increase in the yield stress. 

Investigating the microfabric of clay slurries, Osipov et al. 
(1984) have shown that the yield stress can decrease with 
increasing shear rate, as the interaggregate links are broken 
near the zone of shearing. Moore (1965) has indicated that, for 
partially deflocculated suspensions, the hysterisis loop is very 
large, as the restructuration rate is very slow. As for Bingham 
fluids, these soils show linear shear stress - shear rate rela- 
tionships at values above their yield stress. 

In this paper, efforts are directed towards the understanding 
of the flow characteristics of remolded soils to relate viscosity, 
yield stress, remolded shear strength, and liquidity index in 
order to provide a simple first approximation of the rheological 
parameters of clayey soil. 

Methodology 
The viscometer used in this study is a rotational rheometer 

(Haake-Rotovisco, model RV-12), which is run in a steady 
state regime. Sensors are composed of two coaxial cylinders. 
The inner one, the rotor, is the mobile part, which is linked to a 
gauge measuring the torque applied on the fluid. The outer 
cylinder is fixed and insures the temperature control by means 
of a liquid cooling system. The main specifications of the 
apparatus are given in Table 1. The procedures followed for 
viscometric measurements are described in Bentley (1976) and 
Torrance (1987), and included three types of tests: (1) dynamic 
response, (2) constant shear rate, and (3) hysteresis (Fig. 2). 
The hysteresis test is the last one to be carried out. At the 

beginning of this test, the shear rate is set to maximum and 
then reduced, in regular steps, to a shear rate of 0 ,  and 
increased again, in steps, to the maximum. At each step, after 
15 s at a particular shear rate, a torque reading is taken, and at 
the end of the test a hysteresis loop is traced (Fig. 2c). 

Six different samples (Table 2) were tested for this work. 
Four samples come from specific sites in the Champlain Sea 
basin; they were tested at their natural pore-water salinity. The 
fifth sample (Saint-Alban-2) is a subsample of Saint-Alban-1 
for which the pore-water salt content was increased from 0.5 to 
30 g/L. The sixth sample, named QuCbec, is a mixture of 
several marine clay soils from the St. Lawrence Valley that is 
frequently used in our laboratory as an internal standard for 
various types of testing. These soils were selected to provide a 
good range of plasticity index (1 1 - 37 %), sensitivity (8 - 82), 
and clay fraction (19-75%). Table 2 summarizes their physi- 
cochemical characteristics. All samples were stored for less 
than 2 years in a room at 95% relative humidity at 7°C; they 
showed no evidence of physicochemical modification due to 
storage. 

Work was done in four steps. First, natural geotechnical 
parameters were determined for the various soils (Table 2). 
Pore-water extraction was conducted according to the method 
used by Torrance (1976): about 50 g of wet soil is placed in a 
plastic cell and the water squeezed out by an air pressure 
system and collected in a test tube. The salt content is measured 
as NaCl equivalent, and is maintained constant during all the 
tests on a given sample. Second, the liquidity index was slowly 
increased while maintaining the salinity of the pore water con- 
stant by adding water of the same salinity. Third, after each 
water content increase, a viscometric test was run (including 
all the three phases described previously, as shown in Fig. 2) 
and water content measurements taken before and after the 
tests to detect evaporation or sedimentation of the mixture; no 
significant variation was measured. Fourth, in parallel with the 
viscosity measurement, the remolded undrained shear strength 
was measured, whenever possible, and the salinity checked at 
the end of the last test. All tests were run at a controlled tem- 
perature of 7 "C. 

Although the behavior of some mixtures departs from that of 
a Bingham fluid to that of a Casson fluid (Fig. I), calculations 
for the viscosity were always done by taking the slope of the 
last portion of the shear stress - shear rate curve (Figs. 2a and 
2d). This portion normally corresponded to the portion of the 
curve between shear rates of 58 and 512 rpm (Torrance 1987). 
Resu!ts obtained with MV-I and MV-I1 sensors have shown no 
evidence of a slippage plane developing within the soil mate- 
rial in the annulus located between the cylinder walls. Such a 
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Figure 3.9: Major types of fluids. (1) Newtonian (2) Thickening (3) Fluidizing (4) Casson (5) Bingham.
Taken from (Locat and Demers, 1988).

The general understanding of viscous effects are related to the consequence of sliding at inter-
particle contacts and thereby associated to a rearrangement of particles in the soil medium. It has
been shown that the presence of water in the soil medium only contributes by minor effects to the
rearrangement process related to the viscous effects (Sorensen, 2006).

As indicated on Figure 3.8 it has been chosen to divide the viscous effects into four parts. Other
aspects which may influence the viscous effects will not be presented in this work.

3.7.1 Creep

One of the first to encounter long-term deformation was Bjerrum (1967) during a research project
regarding the soft clay found nearby Drammen in Norway. Bjerrum (1967) suggested to divide the
deformation into two separate stages known as the instant and delayed compression:

Definition 6. An ’instant compression’ which occurred simultaneously with the increase in effective
pressure and caused a reduction in void ratio until an equilibrium value was reached at which the
structure effectively supported the overburden pressure.

Definition 7. A ’delayed compression’ representing the reduction in volume at unchanged effective
stresses.

The two terms ’instant’ and ’delayed’ are more known as primary and secondary consolidation/-
compression in modern literature. In addition, Bjerrum stated that the age of natural soft clays
may have great importance with respect to its strength and stiffness properties. To distinguish
between a young and aged normally consolidated clay Bjerrum (1973) defined a young clay as:

Definition 8. A clay which has been recently deposited and has just reached equilibrium under its
own weight can be classified as a young normally consolidated clay. Such a clay is characterised
by the fact that it is just capable of carrying the overburden weight of soil, and additional load will
result in relatively large settlements.
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Hence, after sedimentation, deformation in the clay deposit will initiate during constant effective
stresses which will influence the mechanical properties due to a reduction in the void ratio (e).
Bjerrum (1967) suggested a concept of isochrones or time lines in the one-dimensional compression
plane to represent the increase in the apparent yielding point caused by the changed void ratio,
see Figure 3.10.

Figure 3.10: Geological history and compressibility of a ”young” and an ”aged” normally consolidated
clay (Bjerrum, 1973).

Bjerrum’s concept of unique parallel lines represents an equilibrium void ratio for specific times at
various stress levels. Hence, a young normal consolidated clay may be located at the sedimentation
line by p′0 which corresponds to overburden weight (effective stress) of the overlaying soil. Associ-
ated to secondary compression, an increase in the apparent yielding stress will occur as illustrated
in Figure 3.10 by moving down to another isochrone which is parallel to the virgin curve. The
increased yield stress is often referred to as the quasi-overconsolidation (pc). This phenomenon
may be referred to as the apparent structuration related to creep caused by the expansion of the
yield surface as a function of time. The expansion of the yield surface over time may be very
similar to the ageing effects which will be discussed in Section 3.8. The unique relationship of
isochrones has later been shown by Tavenas et al. (1978) to be extended to the entire yield surface.
In other words, a unique stress path may be found. The undrained shear strength would increase
as a consequence of the decrease in void ratio (e). The increasing strength is a function of the
plasticity index (Ip) which may be seen on Figure 3.11.XXXXX Technical University of Denmark
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Figure 3.11: Typical values of
(
pc
p0

)
and

(
su
p0

)
observed in normally consolidated late glacial and post

glacial clays. The solid lines are associated to the left axis and the dashed are associated to the right axis.
Notice, that the young dashed line is placed at the x-axis since pc

p0
= 1.0. Inspired by (Bjerrum, 1973).
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Creep is often assumed to be the same as the secondary compression, but is not entirely correct.
The importance of distinguishing between secondary compression and creep has been stated by
Tavenas et al. (1978). It is true that secondary compression is caused by pure creep. However,
creep may also occur outside the secondary compression. The term creep is defined2 as:

Definition 9. A process in which deformation of the soil will happen as a function of time and
the rate of creep is controlled by the viscous resistance.

The reason why creep often is referred to as the secondary compression is because of the minor
contribution of creep strains relative to the total strain during the primary consolidation. Thereby,
people tend to neglect the creep strains in the primary consolidation. The viscous resistance,
controlling the rate, is mainly governed by the effective stress level along with the soil properties
such as the plasticity and water content. An increase of these factors would lead to a reduction in
viscous resistance, resulting in larger deformations. The general characteristics of creep behaviour
have shown to be similar for all types of soils, irrespectively of the grain size, mineralogy, degree
of saturation and type of soil structure (Sorensen, 2006). It is common to divide the creep process
into three separate stages to differentiate the contribution from creep with respect to the total
strain:

� Primary3: The main deformation is associated to dissipation of excess pore water pressure
where the contribution from creep is minor. The total strain rate decreases rapidly with
time.

� Secondary4: A steady evolution of creep strain which reduces with time and is only asso-
ciated to pure creep.

� Tertiary Stage: Approaching failure yielding an acceleration in the creep rate. If failure
occurs it is known as creep rupture.

The total strain and its rate are presented for the three stages on Figure 3.12.

 54

 

Figure 2-15 Illustration of creep characteristics 

 

 

 

Figure 2-16 Influence of deviator stress in drained triaxial creep tests on undisturbed London Clay 
(Bishop, 1966) 

 

 

Strain rate, ε&  

time log time 

Strain, ε  

P: Primary consolidation 

P S T 
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S: Secondary compression 
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Figure 3.12: Illustration of creep characteristics. Notice that the total strain is plotted which should not
be confused with the pure creep strain. Taken from (Sorensen, 2006).

The secondary compression shown on Figure 3.12, indicates a steady evolution of creep strains
which is often approximated as linear with respect to a logarithmic time-scale. The linear re-
lationship is commonly utilized when determining the magnitude of the secondary compression.
However, the linear relationship may not be suitable for all kinds of soils, see Figure 3.13(a).

2 The same terminology as in (Sorensen, 2006) will be utilized in this thesis.
3 Also known as the primary consolidation/compression
4 Also known as the secondary consolidation/compression
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Figure 2-17 General creep characteristics (Mitchell et al., 1997)  

 

 

Figure 2-18 Strain rate vs. time relationships during drained triaxial creep of London Clay (Mitchell et al., 
1997, replotted data from Bishop, 1966)  

 

 

(a) General creep characteristics. Taken from (Singh
and Mitchell, 1968).
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Figure 2-17 General creep characteristics (Mitchell et al., 1997)  

 

 

Figure 2-18 Strain rate vs. time relationships during drained triaxial creep of London Clay (Mitchell et al., 
1997, replotted data from Bishop, 1966)  

 

 

(b) Strain rate vs. time relationships during drained
tri-axial creep of London Clay (Mitchell et al., 1997,
replotted data from Bishop, 1966).

Figure 3.13: Characteristic features of creep strain related to time.

Figure 3.13(b) shows the relationship between the logarithm of strain rate to the logarithm of
time where a linear relationship may be observed. It may be observed that the inclination of the
relationship is essentially independent of the creep stress and an increase in stress only results in
shifting the line vertically upwards (Singh and Mitchell, 1968). In addition, Singh and Mitchell
(1968) has shown a linear relationship between the deviatoric stress and the logarithm to the strain
rate for several clays subjected to loadings within the range of engineering interest, for instance
30% to 90 % of its strength, which are illustrated on Figure 3.14.
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Figure 3.14: Influence of creep stress intensity on creep rate.

The rupture creep has been investigated by Yoginder et al. (1977) during isotropic consolidated
tri-axial tests. The investigations showed that the occurrence of creep rupture was dependent on
the normalized deviatoric stress which was defined as:

q∗ =
σ′1 − σ′3
σ′1c

(3.23)

where σ′1c represents the isotropic consolidation pressure. Figure 3.15 shows the experimental data
and shows a transition region between q∗ = 0.500− 0.518 going from no rupture to rupture, where
a further increase ensured creep rupture.
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Figure 2-19 (a) Variation of creep rate with time in constant stress creep and (b) influence of deviator 
stress level on the rupture life in undrained triaxial compression of undisturbed Haney clay (Vaid & 
Campanella, 1977) 

 

 

Figure 2-20 Concept of isochrones “time lines” in one-dimensinal compression of soft clays (Bjerrum, 
1967) 

 

 

(b)

(a) 

Figure 3.15: Constant stress creep showing the variation of creep rate with time. Notice, that Yoginder
et al. (1977) utilized q for the symbol of normalized deviatoric stress. Taken from (Yoginder et al., 1977).

The phenomenon, creep rupture may not occur in one-dimensional compression or in isotropic
compression since it requires relatively high magnitude of deviatoric stress to initiate. This phe-
nomenon will not be simulated by the suggested model, but is highlighted to inform the user of
the limitations of the model.

3.7.2 Stress Relaxation

The term, stress relaxation represent a situation where a time dependent reduction in stress
occurs during constant shape and volume. In general, the stress relaxation shows similar patterns
as for the creep deformation during constant effective stress and for cases not close to failure5.
Hence, a link between stress relaxation and creep at fixed effective stress states may be assembled.
During a creep test the elastic strains would be zero since the effective stresses are kept constant
during the test. Thereby, the total strain may be associated to the visco-plastic strains:

ε̇ = ε̇e + ε̇vp = ε̇vp since ∆σ′ = 0 −→ ∆εe = 0 (3.24)

During a relaxation test the change in total strain is equal to zero. However, creep strains may still
contribute by positive visco-plastic strains and should be counteracted by the same magnitude of
negative elastic strains. Thereby, the change in total strain is kept zero. Negative elastic strains
would be associated to a negative change in effective stress and thereby the rate of stress reduction
may be linked to the creep rate.

Figure 3.16 shows the difference between creep during constant effective stresses and stress relax-
ation for a normal consolidation soil during an undrained tri-axial test. The strain effect will be
discussed in Section 3.7.3.

5 The creep rupture deviates from any observed behaviour with respect to stress relaxation.
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Figure 3.16: Behaviour of creep and stress relaxation during undrained tri-axial testing for a NC soil.

It may be concluded from Figure 3.16 that point B may be achieved through a stress relaxation or
a creep phase when initiating the test with a constant strain rate of ε̇1.

3.7.3 Strain Rate Effects

Laboratory experiments have shown that the chosen strain rate influences the soil response. During
undrained tri-axial testing, the strain rate will influence the stress path which has been reported for
Norwegian clays by Lunne et al. (2006). The general tendency may be concluded as: An increase
in strain rate may be associated to an increase in the undrained shear strength, see Figure 3.17(a).

Behaviour of soft soils 

 

19 

For undrained triaxial compression test, the peak strength varies with the 

strain rate, i.e. the faster the strain rate the higher the peak strength, see 

Figure 2.14 for typical behaviour of strain rate effects in p´- q plot. This is 

more noticeable for lightly over - consolidated clays with low OCR than for 

over - consolidated clays with high OCR values as shown by e.g. Sheahan 

et al. (1996). This difference in stress-strain path in undrained triaxial 

compression tests is similar to the results found in the one-dimensional 

oedometer tests, see Figure 2.3 and Figure 2.4. 

 

In Figure 2.15 results from undrained triaxial compression test with varying 

strain rates are presented by Länsivaara (1999). 

 

 

Figure 2.14. Typical strain rate effects for normally consolidated clays. 
(a) Effective stress path.

rates vary during a test are rarely done and not common

in literature. In Figs. 11 and 12, two such test series on

non-localized natural Norwegian and Finnish clays are

presented. The dashed line represents test results when a

constant strain rate is adopted throughout the test, whereas

the solid line represents soil response when the strain rate is

varied between different strain rates. It can be observed

from the experiment that, for the tests with varying rate, the

stress–strain curve jumps between the curves correspond-

ing to constant rate. The test clearly demonstrates that even

in post peak regime, the undrained response can vary

depending on the applied shearing rate.

4 Simulations and discussions

The proposed model was implemented as a user-defined

model in a commercial finite element code PLAXIS.

Incremental oedometer and undrained compression triaxial

tests have been simulated to assess the capability of the

model and illustrate some of its potential. Table 1 gives the

input parameters used for the simulations. The parameters

are selected such that they can represent typical clays.

0.4

0.6

0.8

1.2

1.4

1.6

1.8

2.2

1 10 100 1000 10000

σ'v[kPa]

V
oi

d 
ra

tio
 [-

]

Undisturbed sample
In situ state
Reconstituted at wL
Predicted ICL
SCL

2.0

2.0

Fig. 9 Oedometer results on undisturbed and reconstituted Bothken-

nar clay [4]

0 200 400 600 800 1000 1200
0

1000

2000

3000

σv'

r s

Eberg clay, 6.47 m

Eberg clay, 6.13 m

Fig. 10 The value of the time resistance number, rs, for two

incremental oedometer tests as a function of effective vertical stress

[5]

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

p'/σv0'

q/
σ v0

'

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

εq

q/
σ v0

'

dε /dt = 6.39e-8 s-1

dε /dt = 9.72e-5 s-1

varying dε /dt

dε/dt = 6.39e-8 s-1

dε /dt = 9.72e-5 s-1

varying dε/dt

Fig. 11 Undrained triaxial compression tests on Drammen clay with varying rate (data from NGI)

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

ε1

q 
[k

P
a]

dε1/dt = 4.0e-4 s-1

dε1/dt = 1.0e-5 s-1

dε1/dt = 2.5e-6 s-1

dε1/dt = 6.67e-7 s-1

Fig. 12 The effect of strain rate in undrained triaxial compression

tests on Finnish clay [30]

76 Acta Geotechnica (2010) 5:69–81

123

(b) Deviatoric strain vs. deviatoric stress.

Figure 3.17: Experimental data from undrained tri-axial testing showing the effect of changing the strain
rate. Taken from (Länsivaara, 1999).

Casagrande and Wilson (1951) suggested that the strain rate effect may be related to the evo-
lution of excess pore pressure which is generated by the shearing in a undrained tri-axial test.
Richardson and Whitman (1963) has verified this hypothesis by collecting experimental data from
other researchers and by themselves by introducing a technique where the strain rate was changed
during testing. The Step-wise change in the Rate of Strain (SRS) may be used to investigate
the immediate strain rate effect, see Figure 3.17(b). Hence, it was concluded that the change in
undrained shear strength of both NC and OC clays were associated to creep driven pore pressure.
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Several studies have shown a unique relationship between void ratio and effective stresses for a
given strain rate for clays. Thereby, the concept of isochrones suggested by Bjerrum (1967) may
be replaced by the concept of isotach (same rate). Hence, by increasing the strain rate the apparent
yielding point increase. However, other materials such as sand and gravel may not show isotach
tendency (Augustesen, 2006). Figure 3.18 shows the characteristics for soil under one-dimensional
compression with and without isotach behaviour.
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Figure 3.18: Illustration of isotach and non-isotach behaviour for CRS.

Figure 3.18 shows the characteristics for soils in tri-axial tests with and without isotach behaviour.
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Figure 3.19: Illustration of isotach and non-isotach behaviour for undrained tri-axial testing. The two
upper Figures show the behaviour of creep and stress relaxation. The two lower figures show the effect of
changing the strain rate during the test.

It may be observed from Figure 3.19 that the SRS method is a fairly good tool to investigate
the isotach behaviour of a soil. Yoginder et al. (1977) investigated the soil response of natural
soft clays and concluded that the increase in undrained shear strength, induced by an increase in
strain rate, is more pronounced in clays with higher plasticity index (Ip). In addition, the axial
strain at the peak deviatoric stress and the critical state were essentially independent of the rate of
the strain. Furthermore, Yoginder et al. (1977) stated that a lower limit regarding the undrained
strength (named the upper yield) was approached when lowering the strain rate. At this stage,
further reduction in strain rate did not result in additional loss in strength.

Jesper Bjerre (s102905)



3.8. Ageing Effects 41

3.8 Ageing Effects

As indicated on Figure 3.8 the ageing effects may consist for several different phenomena. As
presented by Sorensen (2006), these phenomena may be divided into two categories depending on
the influence of the surroundings which may influence the intrinsic properties:

� Inherent: Does not require any interaction with the surrounding environment and may not
necessarily lead to any significant changes in the intrinsic properties.

� Environment: Requires interaction with the surroundings and may lead to changes in the
soil composition and most likely to changes in the intrinsic properties of the soil.

Concerning the scope of this thesis, only the inherent phenomenon will be explained in greater
details. The ageing effects is a function of time as well as the viscous effects. Hence, in most cases
a coupling between these two phenomena may be present. The viscous effects are a consequence
of sliding at inter-particle contact. Thereby, if ageing effects induce a stronger bond between the
particles over time a relationship must be present between the two effects. As mentioned in Section
3.7.1, the viscous effects would give rise to apparent ageing effect in form of extending the yield
surface by drained creep strains. Several studies confuse the phenomenon of apparent ageing effects
with the real ageing effects such as bonding, thixotropy and cementation. The confusion arise since
many conclusions related to real ageing effects have been drawn without normalising their results
with respect to the change in void ratio that occurs under the sustained stress (Sorensen, 2006).
In other words, the influence of creep has not been removed when analysing the effect of ageing.
Figure 3.20 shows two samples of the same reconstituted clay which has been tested in undrained
tri-axial compression. A waiting period of either 3 or 20 days before shearing distinguish the
samples. During the shearing phase, a larger brittleness and higher undrained shear strength may
be observed for the 20 days sample relative to the sample of only 3 days of waiting.
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Figure 2-43 Influence of undrained creep and deviatoric stress level on subsequent stress-strain behaviour 
in triaxial compression of undisturbed samples of Haney clay (Vaid & Campanella, 1977) 

 

 

 

Figure 2-44 Influence of drained creep on subsequent undrained stress path in triaxial compression of 
reconstituted Magnus clay (Burland, 1990; after Jardine, 1985) 

 

 

Figure 3.20: Influence of viscous effects and ageing effects on the effective stress path in undrained
tri-axial compression of reconstituted Magnus clay. Taken from (Burland, 1990 after Jardine, 1985).

Figure 3.20 shows a clear difference between the sample of 3 and 20 days which are related to time
dependent effects. However, it is not possible to measure the magnitude of either the viscous and
ageing effects since the results have not been normalised with respect to the changes in void ratio.
Another approach to investigate the ageing effects has been proposed by Leroueil et al.(1996) in
one-dimensional compression through a conventional 24 hrs. incremental loading and two CRS,
see Figure 3.21.
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Figure 2-52 Effect of slow rate of straining on the one-dimensional compression behaviour of artificially 
sedimented Jonquière clay (Leroueil et al., 1996) 

 

 

      
Figure 2-53 Influence of drained creep after one-dimensional compression on the subsequent drained 
triaxial compression behaviour of reconstituted Bothkennar clay (Allman & Atkinson, 1992) 

 

Figure 3.21: Effect of slow rate of straining on the one-dimensional compression behaviour of artificially
sedimented Jonquiere clay. Taken from (Leroueil et al., 1996). Notice notation difference ε̇v = ε̇p.

The strain rate at the end of the last loading step was measured for the conventional 24 hrs in-
cremental loading to approximate 10−7 s−1. Hence, the CRS test with a strain rate of 10−7 s−1

should approach the same volume at the same effective stress according to the unique relation-
ship. However, a clear difference may be observed when comparing the conventional 24 hrs. and
the CRS. This phenomenon is caused by time effects where the ageing effects have increased the
stiffness in the CRS, i.e. a smaller void ratio at higher effective stresses. The unique relationship
is only true for pure viscous effects without any influence from the ageing effects. Hence, it may
be concluded that during the slow CRS test, ageing effects have time to develop and influence the
mechanical response.

In general, the inherent ageing effects will result in an expansion of the yield surface as indicated
by an increase in the apparent yielding point in one-dimensional compression. Several studies have
further shown that the critical state and the failure strain do not appear to be dependent on the
ageing effects (Sorensen, 2006).

3.8.1 Bonding and Cementation

The term, bonding includes all the inter-particle forces which are not generated by pure friction
between the grains. These forces may consist of electrostatic or electromagnetic nature, Van der
Wall forces and viscous stresses within the absorbed water layers (Gasparre, 2005). Additional
forces from instance organic content or non-clay minerals may be defined within the term cemen-
tation. Several of these effects are associated to the tiny dimension and large surface area which
characterise the clay particles. By definition, clay particles are categorized as particles below 2 µm
(Emdal et al., 2014) which allow these bondings to develop between the particles.

The bonding phenomenon in natural soft clay may initiate just after the deposition and develop
over the geological life time of the clay until it reaches an equilibrium. During deposition the
chemistry of the water may have a significant influence since particular ions tend to react more
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with the clay minerals than others. The evolution of the bondings is a function of the mineralogy,
electrostatic and magnetic interactions between the crystals, ion concentration, osmotic pressure,
temperature and organic content (Gasparre, 2005).

It has been stated by Karstunen et al. (2005) that the natural inter-particle bonding, which orig-
inates from the type of minerals and pore water composition at the time of deposition, gives the
soil extra strength and additional resistance to apparent yielding. However, after yielding the
additional strength may be lost as a function of strain. It was stated by Leroueil and Vaughan
(1993) that the characteristics of bonded structure are similar to those of porous weak rocks. The
concept of combined creep and bonding effects for one-dimensional compression may be seen on
Figure 3.22. XXXXX Technical University of Denmark
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Figure 3.22: Combined effect of bonding and creep.

Figure 3.22 shows a young clay at point A which moves down to point B with a lower void ratio
as a consequence of creep. At the same time ageing effects, in form of bondings between the clay
particles, increase the apparent yield stress even further. However, if the clay is tested beyond
the apparent yielding point it would loose the strength which it has gained from the bonding as a
function of strain.

Destructuration

The term, destructuration is associated to destruction of the bondings in the soil. The bondings
are not removed immediately after the apparent yielding but rather as a progressive process which
is associated with the development of strains (Leroueil and Vaughan, 1993). The process is mainly
driven by the development of plastic strains since the magnitude of elastic strains is relative small
with respect to plastic strains.

Leroueil and Vaughan (1993) has investigated the destructuring process of the structure in one-
dimensional compression for natural and reconstituted clay. Recalling that the structure consists
of the bondings as well as the fabric. The oedemeter curves clearly indicated that the natural
soft clays had a higher void ratio which is possible for soils without structure. In addition, during
apparent yielding, natural soft clay has a higher compressibility compared to the reconstituted
clay as a consequence of the structure. At the stage where the bondings are completely removed
the compressibility of the compressed natural soft clay may still not have the same compressibility
as the reconstituted soil. Further strains may be required to establish similar fabric and particle
packing which is gained approaching the critical state (Leroueil and Vaughan, 1993). Carter and
Liu (1999) have stated that in a theoretical point of view: Two samples (natural and reconstituted)
should be identical when enough strains have been applied to the sample with respect to critical
state soil mechanics. This conclusion is supported by the observations of the critical state strengths
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and the critical state void ratios, for both natural and reconstituted soils, which only depends on
the effective stress at the critical state. In general, the behaviour of a natural soft clay moves
closer to the reconstituted clay as a function of the destructuring process. Figure 3.23 shows three
Norwegian natural soft clays which have been sampled with either a block sampler6 or a 95 mm
piston sampler. All three clays have been tested in undrained tri-axial testing.

Figure 3.23: Testing three Norwegian clays in tri-axial testing. Taken from (Lacasse et al., 1985).

The samples disturbance will be discussed in Section 3.9. The magnitude of the structure may
roughly be seen as the difference between the peak and residual undrained shear strength for the
block samplers. The destructuration is associated with the path from the apparent yield towards
the residual strength. The peak strength is associated with the structure and yields very brittle
response. At larger strains the material tends to go towards the critical state where no structure
is presented. The Emmerstad clay indicates a relatively high amount of structure which may also
may be seen on the ESP which forms a special ”hook” path. The Onsøy clay also indicates some
amount of structure which will be analysed further in Section 7.3.2.

3.8.2 Thixotropy

Thixotropy is a phenomenon occurring as a consequence of remoulding the clay and thereby de-
stroying the structure of clay also known as softening. After remoulding, the fabric may be in
chemical disequilibrium and would approach equilibrium by changing the fabric as a function of
time, see Figure 3.24. This phenomenon is known as thixotropy hardening and is essentially a
reversible effect.

6 This sampling technique is most likely the best to give high quality samples in natural soft clays.
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Figure 3.24: Thixotropy hardening as a function of time for a reversible situation.

After remoulding, the fabric will tend to be flocculated and gradually rearranged itself due to the
attractive forces from the clay particles, and generate a structure until an equilibrium state is
obtained, see Figure 3.25.

Figure 3.25: Principle of thixotropic in a fine grained soil. Taken from (Mitchell, 1960).

The recovery of the strength may either be partially or fully regained depending on the structure
of the undisturbed clay and the contribution from micro- and macrostructure processes (Seng and
Tanaka, 2012). Skempton and Northey (1952) investigated the thixotropic regaining effect and
concluded that moderate sensitive clays may regain all the lost strength while it is most unlikely
that sensitive and extra-sensititive clays regain the whole unremoulded strength back by thixotropic
hardening. The following expression was proposed regarding the thixotropic regaining:

SThi,t =
SA
SR

(3.25)

where SA and SR is the shear strength at the aged and at the remoulded state, respectively. It
has been shown by Seng and Tanaka (2012) that the magnitude of thixotropy is a function of
water content regardless of the soil type. They concluded that the influence of thixotropy is great-
est around the liquid limit state (wl) and the effect is less remarkable at lower and higher water
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contents. As a matter of fact, thixotropic regaining will almost be insignificant in clays at water
contents approaching the plastic limit. It has been proposed that the energy imbalance within the
soil structure (thixotropy effect) takes place in the primary consolidation (Seng and Tanaka, 2012).

Sorensen (2006) stated that the thixotropic hardening will be less significant in natural soft clays
at typical foundation stress levels (defined as σ = 50 kPa to 1000 kPa) due to the reduction in void
content. The rearrangement of particles will be restricted at the low void ratios, and therefore the
thixotropic hardening may be insignificant at higher stress levels and lower void ratios. Thereby,
it may be concluded that the primary ageing effect is associated with bonding and cementation of
the soil structure.

3.9 Sample Disturbance

Natural soft clay is very sensitive to sample disturbance. The sample disturbance may yield a
significant change in soil properties obtained by laboratory tests. Therefore, the effect of sample
disturbance will shortly be discussed since the constitutive model will utilize laboratory data to
interpret the input parameters.

It has been proven that even for the best tube sampling technique the structure may suffer sig-
nificant damage which results in a major difference in the mechanical properties (Lacasse et al.,
1985). Hence, the destructuration phenomenon will only be present in high quality samples or in
the field. Figure 3.26 shows three different Norwegian clays where sampling have been done by a
95 mm piston and a 300 mm diameter block sampler. The response during tri-axial testing may
be seen on Figure 3.23.

Figure 3.26: Comparing the degree of disturbance in tube sampling relative to block sampling for three
different types of Norwegian clays. Taken from (Lacasse et al., 1985)

Depending on the type of clay, the tube sampler indicate various degrees of disturbance compared
to the high quality block sampler. The degree of disturbance may be related to the higher plas-
ticity, but sand and gravel particles may also have a negative influence since lateral straining may
occur during sampling. The mechanical disturbance is the primary source of the destruction of
the original structure in the natural soft clay. The aspects such as, overstressing and overstraining
related to the penetration of the sampler, cutting of the sample along with the withdrawal of the
sampler, and removal of the sample from the sampler should be minimized to obtain high quality
samples. The clay samples are generally more sensitive to disturbance for low plasticity index and
high sensitivity.

In general, disturbed samples tend to show a lower pre-consolidation pressure and smaller amount
of structure than less disturbed samples. The disturbance may be compensated by the effect of
higher strain rates in laboratory testing. However, the sample disturbance may change the soil
response completely as it may lead to a lower void ratio after reconsolidation (Grimstad, 2009).
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3.10 Temperature

As mentioned in Section 3.7.3 the strain rate may influence the soil response. It has been stated
by Laloui et al. (2008) that for a non-organic clay-like soil an increase in the apparent yielding
pressure of 10 % may be expected if the strain rate is changed by one order of magnitude. However,
the same increase may be found if the temperature is increased by 12oC (in the range of 5oC to
40oC). Hence, a coupled effect between the strain rate and the temperature will be present through
the viscosity of pore water. The main aspects regarding temperature effects may be divided into
two topics (Leroueil and Marques, 1996):

� The viscosity of water.

� The thermal expansion of solid particles and liquid particles.

However, the thermal expansion may be ignored in several types of soils, see (Tsutsumi and Tanaka,
2012). The amount of organic content in the soil would normally tend to increase the temperature
sensitivity. Figure 3.27(a) shows two CRS tests with different rates and temperature.sults obtained by Boudali et al. (1994) and were used to pre-

pare Fig. 3. The following remarks can be made:

(1) The vertical strain generated by a change in temperature
of 30 8C under a constant effective stress in the overcon-
solidated range remained small, on the order of 0.5%.

(2) In the normally consolidated range and at the vertical
yield stress, a temperature change of 30 8C has a signifi-
cant effect on the compressibility of the clay. At a given
strain rate, the smaller the temperature, the higher the ef-
fective stress at a given strain or void ratio (Fig. 9a).

(3) Temperature effects combine with the effects of strain
rate to influence the viscous nature of the clay. For this
reason, the stress–strain curves obtained on the Berthier-
ville clay at (T = 5 8C and _3v = 1.6 � 10–7 s–1) and at
T = 35 8C and _3v = 1.0 � 10–5 s–1 coincide
(Fig. 9a). As shown in Fig. 3a, this result comes
from the fact that the effects of temperature and strain
rate balance to give the same vertical yield stress of
60–61 kPa.

(4) The excess pore pressures generated during the CRS
tests are small in the overconsolidated ranges (where the
coefficient of consolidation is relatively high) or at the
small strain rate of 1.6 � 10–7 s–1 (full and open circles).
On the other hand, at a strain rate of 10–5 s–1, significant
excess pore pressures start to be generated when the soil
becomes normally consolidated, at an effective stress of
60 kPa at a temperature of 35 8C and at an effective
stress of 80 kPa at a temperature of 5 8C (Fig. 9b). How-
ever, because the viscosity of water at 5 8C is 2.1 times
larger than that at 35 8C, the hydraulic conductivity of
the clay at 5 8C is smaller than that at 35 8C by the
same ratio, and the excess pore pressures generated at
5 8C (full diamonds) are larger than those generated at
35 8C (open diamonds). These excess pore pressures
measured at the strain rate of 10–5 s–1 thus reflect the in-
fluence of temperature on both the soil skeleton and the
hydraulic conductivity.

As indicated by Fig. 3a and confirmed by the other stud-
ies performed on clays from the province of Québec by
Boudali et al. (1994), Marques (1996), and Marques et al.
(2004), the slope of the log s 0v � log _3v relationships, CA, is

Fig. 8. Soil parameter CA as a function of liquid limit.

Fig. 9. Typical CRS oedometer test results obtained at different
strain rates and temperatures (after Boudali et al. 1994).
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(b) Development of excess pore pressure. Notice that
the x-axis is the same as in Figure 3.27(a).

Figure 3.27: Experimental data from a CRS test illustrating the similarities of changing the temperature
or strain rate. Taken from (Laloui et al., 2008).

The tested Berthierville clay indicates that a change of temperature of 30oC yields similar response
as for a change in strain rate by two orders of magnitude. However, as seen on Figure 3.27(b) the
excess pore pressure does not show the same tendency. This is caused by the difference in viscosity
of pore water at each temperature. The viscosity of water at 5oC has a viscosity which is 2.1 larger
than for 35oC. Hence, the hydraulic conductivity of the clay at 5oC is smaller than the hydraulic
conductivity at 35oC at the same void ratio. The relationship between the hydraulic conductivity
(k) and the viscosity of pore water (νwater) at different temperatures may be formulated as:

k50

k10
=
νwater,10

νwater,50
(3.26)

Laloui et al. (2008) has proposed a model to simulate the coupled effect of strain rate and temper-
ature effects for one-dimensional compression utilizing the proposed coupling formulation:

σ′y,εvp
v ,T = σ′y,εvp

v ,T0

(
ε̇vpv
ε̇vpv0

)CA
(

1− γ log

(
T

T0

))
(3.27)

where CA is a soil parameter which may be related to λ, and κ, T is the temperature, and γ are
thermal soil parameters, which have been shown to vary with the liquid limit.

The constitutive model will not incorporate the temperature effect. However, it has been high-
lighted to inform the user about the limitations of the proposed model.

Jesper Bjerre (s102905)



3.11. Environment 48

3.11 Environment

The environment effects are not included in the scope of this thesis, but the reader should be aware
of these processes. A common environment effect in Norway is the leaching phenomenon, which
creates a weakness of the bonds in the soil skeleton. The leaching process is often associated with
the creation of quick clay. Leached clay will be very sensitive to soil disturbance since the swelling
index is increased and a reduction in the structure is present. In addition, leached clay tend to
change the fabric to a dispersed structure during consolidation (Kim and Do, 2010).
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Chapter 4

Visco-Plastic Model

The purpose of this chapter is to provide general information regarding the development and imple-
mentation of the visco-plastic model. The chapter gives a detailed description of the mathematical
formulations associated to the special features in natural soft clay and how the model is initialized.
In addition, comparison to similar models found in the literature will shortly be discussed.

4.1 Introduction

From this point, the visco-plastic model will be known as the SCA-R model which has the ability to
simulate some of the features regarding natural soft clay (Structure Creep Anisotropic - Recovering
of structure). The model is based on principles similar to those used in: CREEP-SCLAY1S, n-
SAC and MAC-s suggested by: Karstunen et al. (2005), Grimstad and Degago (2010), and Olsson
(2013), respectively. A short description of these soil models among others may be found in Olsson
(2013). The SCA-R model can be very similar to CREEP-SCLAY1S1 where it deviates from the
n-SAC and MAC-s by assuming associated flow2. The feature of recovering structure over time is
an extension from the three models which yields a side effect of one extra feature to control the
development of creep through the recovering of structure over time.

The SCA-R model is based on the MCC model and utilizing the theory given in Section 2.6 to
assemble an elasto-plastic model which is extended to a visco-plastic model by introducing viscous
effects described in Chapter 3. The model can use up to 15 input parameters3 if all four features
must operate. The model is able to simulate MCC behaviour utilizing six input parameters. In ad-
dition, two additional input parameters are available in the model which allows the user to choose
between three different rotational hardening laws and two different failure criteria in the general
stress space. In Chapter 8 another two input parameters are added to the model to preform better
predictions. These additional parameters will not be highlighted here.

The SCA-R model is implemented into the commercial software PLAXIS as a user-defined soil
model. The code is generated in FORTRAN supported by coding from MATLAB and utilize a
simple explicit scheme to determine the stress-strain-time relationship. Further details may be
found in Chapter 5.

1 Selecting the same rotation law and failure criteria.
2 Other minor deviations such as difference in the formulation of the yield surface may be found.
3 16 if the reference time is taken into account.

49



4.2. How to Model Anisotropy 50

4.2 How to Model Anisotropy

The existence of anisotropy in the natural soft clay has been discussed in Section 3.4 and Section
3.5. In respect to modelling the effect of anisotropy in the plastic region various suggestions have
been given of how to incorporate anisotropy into an elasto-plastic or visco-plastic model. The
traditional approach is dividing the anisotropy into an initial anisotropy caused by sedimentation,
and an evolution law describing the change of anisotropy during loading. One of the first sugges-
tions was given by Sekiguchi and Ohta (1977) through an initial rotated yield surface without any
kinematic hardening. This method is similar to a rotated CC model. Afterwards, other similar
approaches have been suggested of how to model the yield and the plastic potential surface with
respect to initial anisotropy and how the evolution of these surfaces should behave. In general,
the majority of the proposed models are based on the MCC model and tends to go back to a
standard MCC model by setting the anisotropic parameters to zero. The modelling of the initial
fabric is generally accepted by a rotation of the yield and plastic potential surface, see Figure 4.14.
However, the formulation regarding the evolution differs from several models.

Dafalias (1986) proposed an extension of the MMC from isotropic to anisotropic response. The
proposal is often applied to various models today since it may be the simplest possible energetic
extension of the MCC model. The formulation introduce the rate of plastic work through a coupling
between the volumetric and deviatoric plastic strain rates (Dafalias et al., 2006). The formulation
of the yield surface was originally formulated as:

F = p′2 − p′p′c +
1

M2

[
(q − p′α)

2
+ (p′c − p′) pα2

]
= 0 (4.1)

but is more commonly recognisable by the format presented by M. Koskinen, M. Karstunen (2002):

F = (q − αp′)2 −
(
M2 − α2

)
(p′c − p′) p′ = 0 (4.2)

In general, the yield surface consists of a rotated and distorted ellipse, where the degree of rotation
and distortion is determined by the value of α. The rotation parameter (α) is a scalar and the
value corresponds to the rotation in radians utilizing standard rotation with respect to a Cartesian
Coordinate system. Notice that the above formulation requires that |α| < M in order to have
real roots for q. In addition, compression corresponds to q/p′ ≥ α and extension q/p′ ≤ α. Do to
its simplicity, Eq. (4.2) will be used to model the anisotropic response. According to the general
space Eq. (4.2) may be reformulated to:

F =
3

2

{
σd − p′αd

}{
σd − p′αd

}T −
(
M2 − 3

2
αd

Tαd

)
(p′m − p′) p′ = 0 (4.3)

where p′m refers to the apparent yielding pressure with incorporated structure (bondings)5 , αd
refers to the deviatoric fabric tensor, and σd is the deviatoric stress tensor. The initializing of the
anisotropy will be described in Section 4.7.1. It should be mentioned that the initial rotation and
evolution law only describes the anisotropic conditions during plastic strains. Applying anisotropic
conditions in the elastic region will be described in Section 4.2.2.

4.2.1 Second Hardening Law

The next step is to define the evolution law for the yield and plastic potential surface. It has
been stated by Dafalias and Taiebat (2013) that the rotational hardening (evolution of α) is a
constitutive feature of anisotropic clay plasticity models. The purpose of the law is to introduce
a rotation of the yield and plastic surface to simulate more realistic material response relative to
isotropic models. These models should be verified under various loading scenarios to ensure that
the response fulfils all requirements. The rotational hardening law should fulfil the following three
requirements:

4 Associated flow is assumed.
5 Will be discussed in Section 4.3.
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� The rotational hardening yields an unique critical state line in (e : p′)-space.

� Restrictions of the model parameters to prevent unrealistic rotation of the yield and plastic
potential surface.

The evolution of anisotropy is normally represented by changes in the inclination or position of
yield and potential surface with respect to rotational and/or kinematic hardening. The evolution
is driven by the development of plastic strains and are commonly assumed either to be purely
volumetric or purely deviatoric plastic strains (Karstunen et al., 2008). In reality, both volumet-
ric and deviatoric plastic strains contribute to the change in anisotropy and should therefore be
incorporated in the model.

To simplify the model one could choose to set the evolution of anisotropy to zero and still keeping
the initial anisotropy. By this, the input parameters will reduce by two6. The effect of this can
be discussed, but some results have shown better fits to experimental data by setting the change
in rotation to zero (Leoni et al., 2008). However, as stated by Dafalias and Taiebat (2013) these
conclusions are often drawn without investigating the true influence of the evolution and the error
may be introduced by for instance the choice of yield surface or assumptions regarding associated
flow. Dafalias and Taiebat (2013) stated the great importance of incorporating the evolution law
if a better estimate of natural soft clay is wanted.

In Appendix C.9 four rotational laws are listed up and they are briefly discussed according to
the above mentioned characteristics7. Three of the four evolution laws have been chosen to be
implemented in the SCA-R model. The three evolution laws are suggested by Wheeler et al.
(2003), Dafalias (1986), and Dafalias and Taiebat (2013). These evolution laws will be described
shortly in the next subsections.

Wheeler 2003

The rotational hardening presented by Wheeler et al. (2003) is a function of both plastic volumetric
and plastic shear strains. The evolution of α is based on an assumption regarding a specific
combination of the plastic strains to fulfil the criteria of a unique critical state line. The evolution
of rotation is given by:

dα

dλ
= µ

[(
χp(η)− α

)
〈dεpp〉+ β

(
χd(η)− α

)
|dεpq |

]
(4.4)

where β controls the relative effectiveness of deviatoric and volumetric plastic strains by determin-
ing the boundary value (αb), and µ controls the absolute rate at which α approaches its boundary
value (αb). The brackets 〈〉 are Macaulay brackets8 and χ is targets values.

As stated by Wheeler et al. (2003), the plastic volumetric strains will attempt to drag the value of
α towards an instantaneous target value (χp(η)) which is dependent on the current stress ratio η.
The physical meaning represent a slippage of the inter-particles contacts between the grains and
may result in rearrangement of the soil fabric associated to the development of plastic volumetric
strains. Thereby, the rearrangement regarding the fabric will change towards a structure which
has a degree of anisotropy controlled by the stress state under which this plastic straining is
occurring. Simultaneously, plastic shear strains are assumed to attempt to drag α towards a
different instantaneous target value (χd(η)). It is assumed that volumetric and deviatoric plastic
strains results in a different rearrangements of the fabric. Hence, a procedure to determine the
target values χp(η) and χd(η) may be assembled as:

Plastic volumetric strains dominate (low η) −→ α very close to χp(η)

Plastic shear strains dominate (high η) −→ α very close to χd(η)

6 If one parameter is determined theoretically it would only reduce by one, see Section 4.7.1.
7 The discussion is a summary of the discussion presented by Dafalias and Taiebat (2013).
8 Meaning: 〈dεpp〉 = dεpp for dεpp ≥ 0 else 〈dεpp〉 = 0.0
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It should be mentioned that for a stress path where η is varying, α would continuously vary as
well. Näätänen et al. (1999) have utilized this procedure mentioned above to estimate the values
of χp(η) and χd(η). Näätänen et al. (1999) suggested the values on the basis of the experimental
data:

χp(η) =
3

4
η and χd(η) =

η

3

The soil parameter β and µ in Eq. (4.4) may be determined through calibration during laboratory
testing. If laboratory testing is not possible, empirical and theoretical relations can be used to
determine the two soil parameters, see Section 4.7.1. In respect to the general stress space Eq.
(4.4) may be rewritten into:

dαd
dλ

= µ

[(
3σd
4p′
−αd

)
〈dεpp〉+ β

(
σd
3p′
−αd

)
|dεpq |

]
(4.5a)

This evolution law has been utilizing in CREEP-SCLAY1S, n-SAC and MAC-s suggested by:
Karstunen et al. (2005), Grimstad and Degago (2010), and Olsson (2013), respectively.

Dafalias 1986

The evolution law suggested by Dafalias (1986) is the simplest of the three implemented laws. The
evolution law ensure the correct stress ratio (K0) during one-dimensional compression and may be
formulated as:

dα

dλ
= cpat

p′

p′c
(αb − α) where αb =

η

xα
(4.6)

where pat is the atmospheric pressure introduced for dimensional consistency9, c is a model param-
eter controlling the pace of evolution, and xα is another model parameter defining the equilibrium
or boundary value αb under fixed stress-ratio η loading. The boundary value depends of the earth
coefficient (KNC

0 ). In the general stress space dα = dαd and η = σd

p′ .

Dafalias 2013

The third evolution law presented by Dafalias and Taiebat (2013) is a modification of the evolution
law suggested by Dafalias (1986). The boundary value of αb is substituted by an exponential
function implemented through the parameter xα:

xα = |η|
(
M

z

[
1− exp

(
−s |η|

M

)])−1

(4.7)

By introducing the exponential dependence of xα it has been shown that the output fit better to
experimental data, see Appendix C.9. Hence, the formulation may be given as:

dα

dλ
= cpat

p′

p′c
(αb − α) where αb = ±M

z

[
1− exp

(
−s |η|

M

)]
(4.8)

where z and s are positive model constants defining the equilibrium or boundary value αb under
fixed stress-ratio η loading. Furthermore, M will take the value either of Mc or Me

10 and the ±
sign becomes positive or negative for η ≥ 0 or η ≤ 0, respectively. The boundary value depends of
the earth coefficient (KNC

0 ). In the general stress space dα = dαd and η = σd

p′ .

9 See Appendix C.9
10 c refers to compression and e refers to extension

Jesper Bjerre (s102905)



4.3. How to Model Bondings 53

4.2.2 Anisotropy in Elastic Domain

The anisotropy in the elastic region is modelled by implementing Eq. (3.6) in the SCA-R model.
Assuming transverse anisotropy the fabric may be determined by one anisotropy parameter:

α1 = 1 +
2

3
αe (4.9a)

α2 = 1− αe
3

(4.9b)

α3 = 1− αe
3

(4.9c)

where α1 symbolizes the direction with different stiffness with respect to other directions. As
mentioned in Section 2.6.1, the elastic bulk modulus in clays shows a tendency of stress dependency
which is incorporated in the model by:

K =
(1 + e0)p′

κ
(4.10)

where e0 is the initial void ratio. Regarding anisotropy conditions, the bulk modulus is associated
to K = Kani. Hence, utilizing the expression for Kani given in Eq. (3.11), a stress dependent
formulation may be assembled as:

Kani =
(1 + e0)p′

κ
= Kiso +

4

27
α2
eGiso (4.11)

According to Eq. (3.6), the reference E∗-modulus is needed which may be found by inserting
the formulations for the Kiso and Giso given by Eq. (2.10) into Eq. (4.11) and rearranging with
respect to E∗. Thereby a stress dependent stiffness in terms of the E∗-modulus may be given by:

E∗ =
27

4

(1 + e0)p

κ
· (1 + ν)(2ν − 1)

4α2
eν − 2α2

e − 9(ν + 1)
(4.12)

Notice, if αe = 0 yields isotropic conditions. In addition to the simplified transverse anisotropy,
the model could easily be extended to simulated a more complex condition of anisotropy since it
has been chosen to implement Eq. (3.6) in the SCA-R model. However, this requires more input
parameters and has therefore been omitted.

4.3 How to Model Bondings

The existence of bondings in the natural soft clay has been discussed in Section 3.8, and the
destructuration has been mentioned in Section 3.8.1. The MCC model may be extended to included
bonded materials and thereby be able to simulate the destructuration phenomenon by introducing
intrinsic properties (Wood, 2004). The intrinsic properties refers to the soil properties without any
structure, see Section 3.3. A relation between the intrinsic yields surface and the apparent yield
surface associated to the amount of bondings may be formulated as:

p′m = (1 + x)p′mi (4.13)

where x refers to amount of structure (bonding) as the ratio between the yield surface of the
natural soft clay and the yield surface of the reconstituted clays (notice that i denotes intrinsic).
Eq. (4.13) may be visualized in the (p′ − q)-space and may be seen on Figure 4.1.
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q

p′

Mc

α

1

1

p′mi p′m

xp′mi

1

Figure 4.1: Incorporating bondings in the MCC model. Notice that the rotation of the yield surface is
associated to the fabric (anisotropy) and the expanded yield surface is caused by bondings.

Introducing bondings in the MCC model yields a modification regarding the first hardening law.
The isotropic hardening rule may be rewritten into intrinsic properties by:

dp′mi =
vp′mi
λi − κ

dεpp (4.14)

Notice that only λ is substituted to λi since the structure does not influence the reloading.

4.3.1 The Third Hardening Law

The third hardening law describes the degradation of bondings in the clay due to plastic straining.
It is convenient to ignore the elastic strains since plastic strains are dominating in normal and
slightly overconsolidated clay11. An expression related to the degradation of structure has been
suggested by M. Koskinen, M. Karstunen (2002):

dx

dλ
= −ax

[
|dεpp|+ b|dεpq |

]
(4.15)

where a controls the absolute rate of destructuration and b controls the relative effectiveness
of plastic volumetric and deviatoric strains in destroying the bonding. Eq. (4.15) was original
proposed by Gens and Nova (1993) in a modified format including the loss of attraction or tensile
strength. However, since natural soft clay is not capable to withstand tension strength the simpler
version given by Eq. (4.15) has been implemented. This hardening rule is commonly used in
many advanced soil models which simulate the destructuration phenomenon: n-SAC (Grimstad
and Degago, 2010) and S-CLAY1S (Karstunen et al., 2005). However, some slightly modifications
may be seen in some of the other models through the location of the destructuration constants.
Other methods to simulate the destructuration has been proposed by Liu and Carter (2002) in
The Structured Cam Clay model. The utilized method (Eq. (4.15)) has been chosen due to its
simplicity and its existence in the newest proposed models.

11 In OC soil the stress path in the elastic region may be dominant and even if the contribution is small.
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4.4 How to Model Creep

As mentioned in Section 3.7.1, creep is associated to deformation over time. Hence, a elasto-plastic
model do not incorporate any times aspects and a visco-plastic model must be assembled. How-
ever, the SCA-R model would be assembled in a way where the time effects may be neglected and
thereby converge towards an elasto-plastic model.

The traditional way of implementing viscous effects is commonly split into two different approaches
depending on the utilized theory. The two methods known as the ”rate” or ”creep” model:

� Rate: Models the viscous behaviour directly and thereby model creep indirectly based on
the theory suggested by Perzyna (1963).

� Creep: Models creep directly and may be categorized by non-stationary flow surface theory,
see e.g. (Liingaard et al., 2004).

The development of visco-plastic strains in the ”rate” model is restricted and may be seen as a
disadvantage. The ”rate” model utilizes over-stress theory which only generate visco-plastic strains
for stress conditions above a static yield surface. On the other hand, the ”creep” model generates
visco-plastic strains on both sides of the yield surface and may be seen as an advantage. The two
models have been discussed by Grimstad (2009) where the main conclusion was that the ”creep”
model is better suited to predict the behaviour of normal consolidated clay.

Several models have implemented viscous effects by utilizing the concept behind ”rate” model. For
instance: Soft Soil Creep (SSC), S-CLAY1S and ACM12 suggested by Vermeer and Neher (1999),
M. Koskinen, M. Karstunen (2002), and Leoni et al. (2008). These models experiences a numerical
problem when approaching the critical state caused by the method to determine the visco-plastic
strains in the general stress space:

dεvp

dt
=

dεvpp
∂peq

∂p′

∂peq

∂σ
(4.16)

The term
∂peq

∂p′
−→ 0 for q/p′ −→M . Hence, Eq. (4.16) goes towards infinity. This is solved in a

practical way by utilizing a smaller inclination relative to M for obtaining failure (Olsson, 2013).
This restricts the ”rate” models to simulate visco-plastic strains in the wet region. Grimstad
(2009) introduced the time evolution of plastic multiplier which utilizes the theory within the
”creep” model. Hence, by utilizing the time evolution of the plastic multiplier one may simulate
creep swelling and thereby the model would not be restricted to wet side of the CSL. The difference
between the two formulations may be seen on Figure 4.2 where method using the time evolution
of the plastic multiplier allows the model to simulate creep strains above the CSL. One drawback
of utilizing the visco-plastic multiplier is with respect to the undrained shear strength in OC soil.
It may suffer to overpredict the undrained shear strength as for the MCC model (Olsson, 2013).
Nevertheless, the advantage of simulating swelling creep and the relative easy implementation are
seen as huge advantages. Hence, it has by chosen to simulate viscous effects through the visco-
plastic multiplier. The formulation suggested by Grimstad et al. (2010) may be formulated as:

dλ

dt
= λ̇ =

1

rsiτ

(
peq

(1 + x)p′mi

)rsiζi
mKNC

0
where mKNC

0
=
M2
c − αKNC

0

M2
c − ηKNC

0

(4.17)

where ζi = λi−κ
1+e0

represent the internal irrecoverable compressibility, Mc represent the critical state
line in compression, peq is the equivalent stress condition see Eq. (4.19), rsi refers to the intrinsic
creep parameter associated by no structural effects see Figure 4.9, and τ is the reference time see
Figure 4.4. The parameter mKNC

0
defines the plastic flow during one-dimension compression where

αKNC
0

and ηKNC
0

is associated to KNC
0 , see Appendix C.8.

12 The ACM model is a combination of SSC and S-CLAY1S
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The time evolution of the plastic multiplier is based on the time resistance concept presented
by Janbu (1969). The time resistance concept is based on one-dimensional compression which is
extended to the general stress space. Notice that Eq. (4.17) does not depend on the time itself
but rather an evolution in pre-consolidation pressure.

where the index i is introduced to indicate an intrinsic soil

parameter. This implies that the intrinsic parameters should

be determined and used. Figure 1 illustrates some of the

different terms in Eq. (13). The additional term on the end

of Eq. (13) is added to ensure that, under oedometer con-

dition, the resulting viscoplastic volumetric strains corre-

spond to Eq. (8). Note that for unstructured soil, x = 0.

In Fig. 6, the time-stress–strain relationship is plotted

with parallel lines that represent a constant creep rate.

These lines are referred as isotaches [44]. As can be seen in

the Fig. 6, the progress of destructuration decreases the

distance between the isotaches (higher rs) and the incli-

nation of the isotaches (higher msec). One should note that

the model assumes that rs � f remains constant.

The Anisotropic Creep Model (ACM) [22] is an exten-

sion of the SSC model [42]. ACM incorporates anisotropy

by a rotational surface. In Fig. 7, the ACM is compared to

the proposed model in p0 - q space, by plotting curves of

constant rate of the plastic multiplier, for two specific vi-

scoplastic strain rates applied with both models. As seen

from Fig. 7, the proposed model is able to simulate the

‘‘dry’’ side of critical state, while ACM only incorporate a

state of zero viscoplastic volume strain at zero mean stress.

Equation (14) gives the isotropic hardening rule for the

intrinsic reference stress. The formulation is identical to

that of MCC model [37]; however, as part of the extension

to viscoplastic model, the hardening rule is expressed in

terms of viscoplastic volumetric strain.

dp0mi

dk
¼ p0mi �

1

fi

� opeq

op0
ð14Þ

where fi is an internal compressibility parameter defined in

the ‘‘Appendix’’.

The destructuration rule is given by Eq. (15). In a sim-

ilar manner to the rotational rule, the destructuration rule

involves both the volumetric and deviatoric irrecoverable

strains.

dx

dk
¼ �x � av �

opeq

op0

����

����þ aq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

opeq

ord


 �T
opeq

ord

s0

@

1

A ð15Þ

where av and aq are destructuration parameters.

The hardening rule and the method for incorporating

structure are similar to that of Gens and Nova [12]. How-

ever, the proposed work does not include effects such as

loss of attraction or tensile strength, which were part of the

original formulation [12].
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Figure 4.2: Difference between the ”rate” and ”Creep” model where the dashed line represent the ”Creep-
swelling”. Taken from (Grimstad et al., 2010).

Eq. (4.17) may be applied by utilizing the chain rule:

dεvp

dt
=
dεvp

dλ

dλ

dt
(4.18)

Introducing the viscous effects it is common to formulated the stress conditions by a reference
surface presenting the equivalent stress condition:

peq = p′ +

3

2
{σd − p′αd}T {σd − p′αd}
(
M2 − 3

2
αTdαd

)
p′

(4.19)

Hence, the yield surface and the Over Consolidation Ratio (OCRτ ) may be defined as:

F = peq − (1 + x)p′mi︸ ︷︷ ︸
p′m

, OCRτ =
p′m
peq

(4.20)

Notice that OCRτ is determined as the ratio between the equivalent stress and the stress condition
representing the apparent yielding point associated with the chosen reference time (τ), e.g. the
OCRτ is rate dependent. The associated flow rule may be rewritten into visco-plastic strains
utilizing the reference surface:

dεvp = dλ
∂peq

∂σ′
(4.21)

The reference, intrinsic and its associated surface with respect to the bondings may be visualized
in the (p′ : q)-space and may be seen on Figure 4.3.
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1

1

q

p′m = (1 + x)p′mipeqp′mi

M

KNC
0

p′

1

Figure 4.3: The intrinsic yield surface, its associated surface through the structure and the reference
surface representing the stress condition.

In addition, the three hardening rules should be reformulated with respect to the new reference
surface and with respect to the general stress space:

dp′mi
dλ

=
vp′mi
λi − κ

∂peq

∂p′
(4.22a)

dαd
dλ

= µ



(

3σd
4p′
−αd

)〈∂peq
∂p′

〉
+ β

(
σd
3p′
−αd

)√
2

3

{
∂peq

∂σd

}T
∂peq

∂σd


 (4.22b)

dx

dλ
= −ax



∣∣∣∂p

eq

∂p′

∣∣∣+ b

√
2

3

{
∂peq

∂σd

}T
∂peq

∂σd


 (4.22c)

Extending the model to a viscous-plastic model will modify the method to assemble the incremental
change in the visco-plastic multiplier which will be explained in Section 5.3. The concept of
isotaches affected by structure may be seen on Figure 4.4.
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Figure 4.4: Concept of isotaches effected by structure. Notice difference in notation εv = εp.
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4.5 How to Model Recovery

The creation of structure (bondings) is associated to ageing effects and has be discussed in Section
3.8. The destruction of the initial amount of bondings may be simulated through various models
through the destructuration phenomenon. However, the regaining of structure over time or cre-
ation of structure for a young clay are not covered by any visco-plastic model known by the Author.

The initial structure found in natural soft clays is developed over its geologic life time and may have
been influenced by physical and chemical factors. However, tri-axial testing on reconstituted clay
have shown a comparable increase in undrained shear strength due to ageing effects of few days
before shearing the sample13 (Sorensen, 2006). It should be mentioned that the deviatoric stress
has been normalized with respect to the changed void ratio to remove the effect of creep. Hence, an
attempt to capture the ageing effects through a recovering of the structure over time has been made.

Due to simplicity reasons, it has been chosen only to simulate the recovery of destroyed structure
and not the development of structure in young clays14. It is expected that various factors such
as: plastic index, overburden stress, temperature, chemical composition etc. would influence the
recovery process. However, for the sake of simplicity a simple procedure has been chosen which
requires two additional input parameters. The recovery is implemented as a differential equation
utilizing the same principle as the anisotropic evolution suggested by Dafalias (1986). The idea is,
after the destruction process the recovery initiates as an exponential function towards a boundary
value. The boundary value is controlled by the initial amount of structure and a new input
parameter determining how much recovery is allowed with respect to the initial amount. Such a
formulation may be formulated as:

dx

dt
= (Rx0 − x)Rt ·

〈
Rx0 − x

〉
(4.23)

where R represent the amount of recovery allowed15 and Rt is associated to the pace of recovery.
To ensure that the recovery does not initiate before the amount of structure is below the boundary
value (x0 · R) the macauley brackets are used. The recovery process may influence the creep rate
caused by the increase in x which yields a lower creep rate, see Eq. (4.17). This effect has been
verified, see Section 6.3.10 and introduces an extra tool to control the creep rates.

4.6 General Stress Space

As mentioned in Section 2.9, the MCC model was original formulated to conventional tri-axial
testing. Thereby, the intermediate principle stress (σ2) is either equal to the minor (σ3) or major
(σ1) principle stress dependent on the type of test. The extension to a general stress space is done
by introducing some assumptions according to the shape of the yield and plastic potential surface
with respect to the deviatoric plane:

� Replacing the deviatoric stress (q) by the second deviatoric invariant (J2) in the yield surface.

� Introducing another failure criterion which is more appropriate to represent soil failure.

Notice that the replacement of q means that the yield surface corresponds to a circle in the
deviatoric plane, hence the failure surface. According to the poor representation of the soil failure
by J2 it may be changed to another failure criterion which is more appropriate. It have been proven
experimentally that both the yield surface and the critical state is a function of the Lode angle
(Coombs et al., 2009). The definition on the Lode angle, it was assembled through a combination
of the second deviatoric stress invariant (J2) and the third stress variant (I3) to determine the
principle stresses, see Appendix C.1.6 for further details. The Mohr-Coulomb failure criteria is a
function of the Lode angle which may be seen on Figure 4.5.

13 After the consolidation process.
14 Generation of x may be simulated through a manual value implemented in initializing of the state parameters.
15 From 0.00 to 1.00.
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deviatoric plane) yield surfaces should be used
combined with a Mohr-Coulomb failure
criterion. This implies, however, that critical
state conditions can only be reached under
triaxial compression conditions (F2N= F3N).

In order to obtain a Mohr-Coulomb hexagon for
the yield surface in the deviatoric plane, MJ in
Equation (2) must be replaced by g(2):

where 2 is the Lode’s angle (=tan-1[(2 (F2N!F3N)/(F1N!F3N)!1)//3]), NcsN is the critical state
angle of shearing resistance which replaces MJ as an input parameter. This expression gives
the hexagon shown in Figure 5. Equation (2) then becomes:

Critical state conditions then occur with a constant NcsN. The discontinuity of the Mohr-
Coulomb expression at 2 = !30o and  2 = +30o requires, usually, some ad hoc rounding of
the corners. Although sufficient as a first approximation, and certainly superior to a circle,
the Mohr-Coulomb criterion does not achieve a perfect agreement with observed soil failure
conditions.

Other failure surfaces have been suggested which are continuous and agree better with
experimental results in the deviatoric plane. Matsuoka and Nakai’s [8] and Lade’s [9] are
the best known, see Figure 5. In terms of g(2) Matsuoka and Nakai’s surface can be
expressed as:

where J20
f can be obtained for a specific value of Lode’s angle, 2, by solving the following

cubic equation:

Figure 4.5: Failure surface in the deviatoric plane. Taken from (Potts and Zdravkovic, 1999).

It has been chosen to implement the Mohr-Coulomb criteria as the default option in the SCA-R
model. The Mohr Coulomb failure criteria represent a hexagon in the deviatoric stress space and
is given by (Grimstad, 2009):

M(θ) =
3 sinϕcs√

3 cos θ − sin θ sinϕcs
(4.24)

where ϕcs is the friction angle at the critical state and the Lode angle (θ) is given by:

θ =
1

3
cos−1

(
3

2

√
3J3√
J3

2

)
=

1

3
cos−1

(
27

2

J3

q3

)
(4.25)

where J3 is the third deviatoric stress invariant and see Appendix C.1.6 for derivation of Eq. (4.25).
It should be mentioned that the critical state condition occurs with a constant ϕcs (Potts and
Zdravkovic, 1999). In a simple tri-axial test the inclination of the critical state can be determined
by:

Mc =
6 sinϕcs

3− sinϕcs
(4.26a)

Me =
6 sinϕcs

3 + sinϕcs
(4.26b)

Note that c denotes compression and e denotes extension.

4.6.1 LMN Dependence

In addition to the Mohr-Coulomb failure criteria another criteria has been implemented in the
SCA-R known as the LMN dependence. The LMN dependence has been proposed by Bardet
(1990) and is based on the failure surfaces suggested by Lade and Duncan (1975) and Matsuoka
and Nakai (1974), see Figure 4.5. The formulation is given by:

f(θ) =

√
3

2

β√
β2 − β + 1

1

cos(Φ)
where β =

3− sin(ϕcs)

3 + sin(ϕcs)
=
Me

Mc
(4.27)

where
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Φ =





1

6
cos−1

(
−1 +

27

2

β2(1− β)2

(β2 − β + 1)3
sin2(3θ)

)
if θ ≤ 0

π

3
− 1

6
cos−1

(
−1 +

27

2

β2(1− β)2

(β2 − β + 1)3
sin2(3θ)

)
if θ > 0

(4.28)

In contrast to the Mohr-Coulomb criteria, this formulation yields a smooth surface. The formu-
lation is rather complex since it must satisfied the convexity requirement for all friction angles.
In contrast to the LMN dependency the Mohr-Coulomb criteria gains a more conservative failure
stress and a softer stress-strain response (Bardet, 1990). A three dimensional view of the Mohr-
Coulomb criteria and the LMN dependency may be seen on Figure 4.6 and Figure 4.7, respectively.

Figure 4.6: Mohr-Coulomb criteria in the general stress space.

Figure 4.7: LMN dependency in the general stress space.

4.6.2 Effect of Fabric in the Lode angle Dependency

The fabric yields a rotation of the yield surface. Hence, the Lode angle must be defined relative to
the α-line and not the isotropic axis. This correction may be introduced by following expression:

σαd = σd −αdp′ (4.29)

where αd is the deviatoric fabric tensor. Introducing the deviatoric stress with respect to the
fabric, the deviatoric stress invariants will be associated to the fabric as well. Thereby, the Lode
angle may be determined by:

θα =
1

3
cos−1

(
3

2

√
3Jα3

(Jα2 )3/2

)
=

1

3
cos−1

(
27

2

Jα3
(qα)3

)
(4.30)

where α refers to the fabric.
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4.7 Initializing

The initial anisotropy (α0) along with the rotation parameters (β, z, s, x) associated to the evolution
may be determined through a theoretical approach. Utilizing a theoretical determination the
amount of input parameters will be reduced.

4.7.1 Initial Anisotropy

Dafalias (1986) suggested a method to determine a theoretical link between the lateral earth
pressure ratio in the NC-region (KNC

0 ) and the initial rotation of the yield surface (α0). The
method is based on one-dimensional compression where the ratio between deviatoric and volumetric
strains is equal to 2/3. Throughout the literature, it has been common either to neglect the elastic
deviatoric strain or all elastic strains. These methods are acceptable since the plastic strains are
dominant during this scenario. However, Dafalias and Herrmann (1986) suggested an expression
which incorporates the elastic strains and has been implemented in the SCA-R model. The initial
rotation may be determined as:

αKNC
0

=
η2
KNC

0
+ 2cαKNC

0
−M2

2c
(4.31)

where:

c =

3

(
1− κ

λi

)
ε

3− ε
(
K

G

)(
κ

λi

)
ηKNC

0

,
K

G
=

2(1 + νur)

3(1− 2νur)
, ε =

3

2︸ ︷︷ ︸
Oedometer conditions

(4.32)

where subscript ur refers to un-reloading. The stress ratio during one-dimensional conditions may
be determined as:

ηKNC
0

=
3(1−KNC

0 )

1 + 2KNC
0

(4.33)

In Appendix C.8 the derivation of Eq. (4.33) along with the derivation of the expressions neglecting
either elastic deviatoric strain or all elastic strains may be found. These expressions may be
compared with respect to input parameters (KNC

0 ) and the resulting initial inclination of the yield
surface, see Table 4.1.

Table 4.1: Value of KNC
0 to find zero initial rotation for different methods.

Scenario Eq. KNC
0 = 0.7481 KNC

0 = 0.7083 KNC
0 = 0.7154

Neglecting all elastic strains (C.77) 0 -0.076 -0.063
Neglecting deviatoric elastic strains (C.82) 0.073 0 0.014
Neglecting none (4.31) 0.059 -0.014 0

Utilizing λi = 0.25, κ = 0.05, νur = 0.15, and M=1.0.

From Table 4.1 it may be concluded that the initial inclination is slightly influenced by the elastic
strain and therefore acknowledge the decision to implement Eq. (4.31). A normal Norwegian clay
may have a KNC

0 in the range of 0.55-0.65 (Berre and Bjerrum, 1973) yielding a rotation of 0.516-
0.142 with respect to Eq. (4.31).

The deviatoric fabric tensor may be initialized by assuming one-dimensional compression condi-
tions. Hence, the deviatoric fabric tensor should obtain a different magnitude in vertical direction
relative to the horizontal directions. A common approach to initialize the deviatoric fabric tensor
may be formulated as:

α
KNC

0

d = αKNC
0

[
−1

3

2

3

−1

3
0.0 0.0 0.0

]T
(4.34)
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To satisfied the definition of a deviatoric tensor the sum of the tensor’s components should be zero
which is fulfilled by Eq. (4.34). A coupling between the deviatoric fabric tensor and the scalar
magnitude which describes the rotation in the (p′ : q)-space may be formulated as:

α2 =
3

2
αTdαd (4.35)

4.7.2 Rotational Parameter β

Wheeler et al. (2003) suggested to determine the shear rotation parameter (β) by setting the
evolution of rotation to zero (dα = 0), see Eq. (4.4). Thereby, in combination with the flow
rule related to the plastic potential, the initial inclination, and the demand of zero rate for α, an
expression for β may be found:

β =
3(3ηKNC

0
− 4αKNC

0
)(M2 − η2

KNC
0

)

8(3αKNC
0
− ηKNC

0
)(ηKNC

0
− αKNC

0
)
≈

3(4M2 − 4ηKNC
0
− 3η2

KNC
0

)

8(ηKNC
0
−M2 + 2ηKNC

0
)

(4.36)

It should be mentioned that β is determined by utilizing the initial inclination neglecting the elastic
deviatoric strains. The approximation made in Eq. (4.36) neglects all elastic strain by assuming
κ ≈ 0. The left hand side of Eq. (4.36) has been implemented in the SCA-R model.

The rotational parameter β may obtain unrealistic values for some input parameters. Hence, the
evolution law suggested by Wheeler et al. (2003) must be investigated for its limitations. Figure
4.8 shows how β behave for different values of the friction angle (ϕ) and the lateral earth coefficient
in NC region.

Knc
0

0.55 0.6 0.65 0.7 0.75 0.8

β

-10

-5

0

5
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ϕ = 20

o

(a) β as a function of KNC
0 where ϕ = 20o.

35
30

ϕ
25

20
0.7

0.65
Knc

0

-20

-10

0

10

0.6

β

(b) β as a function of KNC
0 and frictional angle ϕ.

Figure 4.8: Value of β using νur = 0.20, λi=0.25, and κ=0.05.

From Figure 4.8(a) it may be concluded that β do not predict any unrealistic values since the
maximum value of KNC

0 is 0.7154, see Table 4.1. However, changing the input parameters, the
value of β may go towards a singular point, see Figure 4.8(b). During the verification of the model,
a scenario is assembled where the model yields unrealistic values, see Section 6.3.2.
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4.7.3 Rotational Parameter µ

The rotation parameter controlling the absolute rate of the rotation is rather complex compared
to the other rotation parameters. A simple approach is suggested by Zentar et al. (2002) where
the parameter is associated to the compression index (λ). Thereby, typical values of µ is found in
the range of: µ = 10

λi
to 15

λi
. This method is based on simulations and experience where calibration

is needed to ensure the correct value of µ.

Leoni et al. (2008) suggested a more theoretical approach by assuming that the anisotropy is
practically erased when α decreases to 1/10th of its initial value (α0

α = 10). Leoni et al. (2008)
presented the following formulation:

µ =
1 + e0

λi
ln

(
10M2 − 2βαKNC

0

M2 − 2βαKNC
0

)
(4.37)

However, the most correct method to select µ would be to generate model simulations of laboratory
tests which involve a large amount of rotation (Pestana, 1999). Laboratory tests involving a large
amount of rotation may be isotropic consolidation or undrained tri-axial extension tests. The
determination of the rotation parameter (µ) has not been implemented in the code but the method
suggested by Pestana (1999) has been utilized.

Dafalias (1986) suggested to determine the rotation parameter xα by utilizing one-dimensional
compression and the demand of zero rate of α. Thereby, the boundary inclination (αb) should be
equal to the initial inclination during one-dimensional compression. Thereby, following formulation
may be assembled:

αb =
η

xα
−→ αKNC

0
=
ηKNC

0

xα
−→ xα =

ηKNC
0

αKNC
0

(4.38)

Substituting back into the general expression the boundary value of α may be defined as:

αb = η
αKNC

0

ηKNC
0

(4.39)

4.7.4 Rotational Parameter s and z

Dafalias and Taiebat (2013) suggested to utilize the same procedure, as for the case when determin-
ing the parameter xα, to determine s and z. Thereby, through the one-dimensional compression
following expression may be assembled:

α = αb = αKNC
0

= ±M
z

[
1− exp

(
−s
|ηKNC

0
|

M

)]
(4.40)

Dafalias and Taiebat (2013) stated that one must have s ≤ z to satisfied Eq. (4.40) and suggested
that a very good default assumption may be z = s. Hence, this assumption has been utilized and
the parameters s and z may be determined explicitly from the initial conditions.
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4.7.5 Destructuration Parameters a and b

The destructuration parameters (a, b) may be chosen through an optimisation procedure. A rec-
ommended procedure has been given by M. Koskinen, M. Karstunen (2002):

� Selecting a value for a: Simulations of tri-axial tests with a very low value of η.

– Utilizing a very low value of η, the shear strains would be limited and their effect can
be ignored. Hence, the parameter b was negligible.

� Selecting a value for b: Simulations of tri-axial tests with a high value of η

– Utilizing a very high value of η, the volumetric strains would be limited and their effect
can be ignored. Hence, the parameter a was negligible.

Through this optimisation procedure the destructuration parameters (a, b) may be selected.

4.7.6 Amount of Structure x0

M. Koskinen, M. Karstunen (2002) recommended two approaches to determine the initial amount
of bounding (x0). The simplest and most practical approach to determine x0 is done through the
sensitivity of the soil:

x0 = St − 1 where St =
su
sr

(4.41)

where su refers to the fully mobilised undrained shear strength and sr represent the remoulded
undrained shear strength. Hence, the initial amount of bounding x may easily be determined
by standard shear vane testing. However, it should be mentioned that this approach should be
referred to as a lower bound value (M. Koskinen, M. Karstunen, 2002). Regarding destruction of
initial bonding when installing and testing to determine the sensitivity of the natural soft clay.
The second method is based on measuring the initial void ratio (e0) and the corresponding in situ
effective mean pressure (p′0) for the natural soft clay together with the position of the ICL. Another
approach to define the initial amount of structure is presented by Grimstad and Degago (2010)
through the intrinsic creep number:

x0 =
ris − ris,min
ris,min

(4.42)

where ris is the intrinsic creep number and ris,min is the minimum measure creep number deter-
mined by a incremental oedemeter test, see Figure 4.9.

(9) is proposed as a destructuration rule for the n-SAC
model.

Isotropic hardening of the intrinsic reference stress,
p′

mi, is given by equation (10).

where ζi = a hardening parameter determined via
{Eref

oed}i, Eref , ν and pref as given in equation (11).

where λi and κ are alternative input parameters to
the model, which is in accordance with the notation
commonly used for the modified cam clay model
(MCCM), Roscoe & Burland (1968)

The value for the internal parameters βK0NC and
αK0NC , determined from steady state rotation under
KNC

0 loading, are given by equation (12) and (13).

Equation (14)–(16) gives more details on the calcula-
tion of some of the other internal parameters.

where ϕcs is the critical state friction angle

where ϕp is the friction angle at the peak of the
reference curve.

Figure 1. concept of destructuration – effect on time resis-
tance number.

The mobilization under virgin loading in oedome-
ter, ηK0NC is given by:

Table 1 gives a summary of the user input parameters
to the model. In addition to these parameters the initial
state variables must be given. This includes the stress
vector, σ ′, the initial value of the intrinsic reference
stress, p′

mi0 and the initial rotation vectors α0 and β0.
Note that p′

mi0 can be found from the OCR and α0
and β0 from αK0NC and βK0NC . The initial structure is
defined in equation (17).

where rsi = the intrinsic time resistance number and
rsmin = the minimum measured time resistance num-
ber, see sketch in Figure 1.

In practice 11 external parameters are then left to
be determined. This can be accomplished from only
two laboratory tests. First an incremental oedometer
tests to determine rsmin and rsi has to be executed (rsi
can also be found from an incremental oedometer test
on a remolded sample). The normalized oedometer
stiffness in the NC region for a remolded sample,
{Eref

oed}i/pref , and the normalized stress dependent
isotropic Young’s modulus, Eref /pref , should also be
established from this test.

The second test is one undrained triaxial compres-
sions test at a OCR in the interval of 1.0-OCRmax to
determineω (deviatoric destructuration parameter),ϕp
(friction angle at peak of the reference curve) and ϕcs
(the critical state friction angle). Note that the normal-
ized stiffness, Eref /pref , could also be found from this
undrained test.

The Poisson ratio, ν, is set by default to 0.15. How-
ever, if one for instance has radial stress measurement
in the oedometer test it can be determined from the
stress path in the OC region. The reference time, τ, is
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Figure 4.9: Concept of destructuration with
respect to the creep number. Taken from (Grim-
stad and Degago, 2010).

rates vary during a test are rarely done and not common

in literature. In Figs. 11 and 12, two such test series on

non-localized natural Norwegian and Finnish clays are

presented. The dashed line represents test results when a

constant strain rate is adopted throughout the test, whereas

the solid line represents soil response when the strain rate is

varied between different strain rates. It can be observed

from the experiment that, for the tests with varying rate, the

stress–strain curve jumps between the curves correspond-

ing to constant rate. The test clearly demonstrates that even

in post peak regime, the undrained response can vary

depending on the applied shearing rate.

4 Simulations and discussions

The proposed model was implemented as a user-defined

model in a commercial finite element code PLAXIS.

Incremental oedometer and undrained compression triaxial

tests have been simulated to assess the capability of the

model and illustrate some of its potential. Table 1 gives the

input parameters used for the simulations. The parameters

are selected such that they can represent typical clays.
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123

Figure 4.10: Incremental oedometer test for Eberg
clay verifying Figure 4.9. Taken from (Grimstad
et al., 2010).

The method proposed by Grimstad and Degago (2010) has been implemented in the SCA-R model.
To incorporate creep the intrinsic creep number is needed. This parameter may also be determined
in an incremental oedomenter. Thereby, ris and ris,min may be determined in the same test
reducing the amount of necessary laboratory testing to determine the input parameters.
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4.7.7 Intrinsic Effective Pressure p′mi

The intrinsic effective pressure is initialized from the amount of structure, the equivalent stress
condition and the magnitude of OCRτ :

p′mi =
peqOCRτ

1 + x
(4.43)

where OCRτ is determined as the ratio between the equivalent stress and the stress condition
representing the apparent yielding point associated with the chosen reference time (τ). For a
normal consolidated sample, without any influence from bondings and strain rates effects, the
intrinsic effective pressure would be equal to the equivalent stress condition:

p′mi = peq since OCRτ = 1.0 , x = 0.0 (4.44)

Recalling the equivalent stress condition, the fabric and critical state frictional angle will influence
the intrinsic effective pressure:

peq = p′ +

3

2
{σd − p′αd}T {σd − p′αd}
(
M2 − 3

2
αTdαd

)
p′

(4.45)

The principle when initializing the intrinsic pressure may be seen on Figure 4.11.

XXXXX Technical University of Denmark
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OCRτ =
p′m
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≈ σ′
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σ′
v0

peq(M,α)

1

Figure 4.11: Concept of initializing the SCA-R model. Notice that peq is a function of M ,α and the
initial stresses.

The concept of initializing the SCA-R model may be seen on Figure 4.11. As seen on Figure 4.11,
the magnitude of OCRτ is associated to chosen rate of strain and may be approximated to be the
same as the standard definition of OCR if the strain rate effect is negligible. The initial stresses
and the parameters, M and α, define the equivalent stress condition (peq). The intrinsic effective
pressure may be determined through this information and the amount of structure.
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Chapter 5

Implementation

The purpose of this chapter is to provide general information regarding the implementation of the
constitutive model into commercial software. A detailed description of the procedure and alter-
native solution methods will be discussed. The implementation is performed by creating routines
in FORTRAN supported by MATLAB coding. The general procedure is developed by Roenningen
et al. (2014) related to his work with GeoFuture. The implementation is done with great assistance
and effort from Roenningen (2015).

5.1 General

The main aim is to create a constitutive model which may be implemented into commercial soft-
ware and take part in the Finite Element Method (FEM). Hence, the effort may be placed in the
constitutive model itself instead of writing a new program which utilizes the FEM. The commercial
software has been chosen to be PLAXIS caused by its long time experience with FEM with respect
to geotechnical engineering. In addition, PLAXIS allows the user to implement their own consti-
tutive models through a Digital Link Library (DLL). Explanations and examples of implementing
a User Defined Soil Model (UDSM) may be found in (PLAXIS, 2015). The code may be written
in different programming languages only restricted by the capability of the compiler to generate a
DLL-file which establish the interface between the code and PLAXIS. PLAXIS recommends FOR-
TRAN as the preferable programming language and libraries containing different subroutines and
functions, which may be beneficial during the coding, is offered by PLAXIS (2015). Other possible
programming languages could be: C, C++, COMSOL ect. It has been chosen to use FORTRAN
as programming language and further recommendations for utilizing FORTRAN as programming
language may be found in (Grimstad and Benz, 2014).

The constitutive model estimate the soil response (stress-strain-time relationship) in a single stress
point, i.e. the constitutive model returns a stress increment due to an applied strain and time
increment. Hence, the constitutive model provides information regarding the current stresses and
state variables and PLAXIS provides information about the previous stresses and state parameters
along with the strain and time increment:

� σt+∆t
ij , κt+∆t Current stresses and state variables (Constitutive model)

� σtij , κ
t Previous stresses and state variables (PLAXIS)

� ∆εij , ∆t Strain and time increments (PLAXIS)

where the superscript (t + ∆t) refers to the current stage and (t) refers to the previous stage
in PLAXIS notation. This procedure is known as the local iterative procedure. The computed
stresses, in each stress point, are afterwards incorporated in the global iterative process and is
governed by the FEM implementation in PLAXIS.
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In order to understand the general structure of the constitutive model it would be beneficial
to understand how a constitutive model is incorporated in the finite element code and how the
constitutive model works together with the FEM.

5.2 PLAXIS

The concept of FEM is a numerical approach by which partial differential equations may be solved
approximately (Fish and Belytschko, 2006). Thereby, complex systems may be analysed by dis-
cretizing the infinite global system into finite element representations. The principle of FEM may
be seen on Figure 5.1. Notice that the the constitutive model contributes as the stress-strain
relationship where time may influence the relationship.XXXXX Technical University of Denmark

Displacements Loads

StressesStrains

Soil Model

B BT

D−1

1

Figure 5.1: The global iterative procedure in a FE analysis.

where D is the stiffness matrix and B is the strain interpolation matrix. The general procedure
and related equations will be highlighted in the following subsection.

5.2.1 Field Equations

Considering an arbitrary soil body as seen on Figure 5.2 where ui refers to the displacement field,
γi represent the three body forces, and τi denotes the boundary traction components. V and S
refer to the volume and external surface boundary, respectively. The internal static equilibrium of
this continuum, the relation between the stresses to their spatial derivatives, is given as:

∂σij
∂xj

+ γi = 0 (5.1)

where xj are the Cartesian coordinates and σij denotes the Cauchy stress tensor. Notice, Einstein
notation is used in consistency with the notation in the Scientific Manual given by PLAXIS (2014b).
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XXXXX Technical University of Denmark

Initiate Stage

Deformed Stage

Loads (τi) at surface S

Fixed (ui = 0)

V

γi

ui(x1, x2, x3)

1

Figure 5.2: An arbitrary body affected by a load.

For the same body, the static equilibrium for the external boundary S is given as:

τi = σijnj (5.2)

where nj represent the directions of the stresses. The equilibrium equation may be reformulated
into a formulation representing the weak form by utilizing the Galerkin’s variational principle
followed by integration by parts (Grimstad and Benz, 2014):

∫

V

σij
∂δui
∂xj

dV =

∫

V

γiδuidV +

∫

S

τiδuidS (5.3)

where δui represents a virtual displacement. The evolution of stresses in the body may be regarded
as an incremental process (∆σij) and the stress at an actual state (σn+1

ij ) may be considered as
the previous plus the incremental change:

σn+1
ij = σnij + ∆σij where ∆σij =

∫
σ̇dt (5.4)

where σnij represent the previous state of stress. Notice that n is an integer corresponding to
the load step. The mentioned procedure is known as time stepping. However, most quasi static
problems are time independent in which case full load application is often associated with a pseudo
time of 1 (Grimstad and Benz, 2014). The approach to determine ∆σij in PLAXIS is done by
implicit integration, see PLAXIS (2014b). Substituting Eq. (5.4) into Eq. (5.3) yields:

∫

V

∆σij
∂δui
∂xj

dV =

∫

V

γiδuidV +

∫

S

τiδuidS −
∫

V

σnij
∂δui
∂xj

dV (5.5)

According to the principle in FEM, the continuum may be divided into a number of elements where
each element consists of a number of nodes. This process is called discretisation and each node has
a number of degrees of freedom representing the discrete values of the unknown variables in the
boundary value problem (PLAXIS, 2014b). With respect to deformation theory, the displacement
field (u) is determined by these discrete nodal values though interpolation functions which may be
assembled in a matrix N . The change in the displacement field may be formulated as:

∆u = N(ξ, η, ζ)∆v (5.6)

where ∆v is the nodal displacement and the matrix N consist of shape functions depending on
ξ, ζ and η which are the local element coordinates. The shape functions are used to interpolate
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between the nodal values and the interior of an element. A relation between the strains and nodal
values may be found by substituting Eq. (5.6) into the kinematic relation:

∆ε = L∆u = LN∆v = B∆v where L =




∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x




(5.7)

where B denotes the strain interpolation matrix. Hence, the equilibrium may be reformulated into
discretised form as:

∫

V

(Bδv)
T

∆σdV =

∫

V

(Nδv)
T
γdV +

∫

S

(Nδv)
T
τ −

∫

V

(Bδv)
T
σndV (5.8)

Eq. (5.8) is true for any virtual displacement and may thereby be simplified to:

∫

V

BT∆σdV =

∫

V

NTγdV +

∫

S

NT τ −
∫

V

BTσndV (5.9)

During a load application, the stress increment ∆σ balances the difference between external load
and internal forces within the finite element mesh. Hence, a strain increment has to be determined
such that the above equation is satisfied, i.e. the global iterative procedure supplies strain and
time increments for each stress point. The spatial coordinates of the stress point are defined by
the mesh’s geometry wherein the number of elements and the chosen element type yields the total
number of stress point. The relationship between the stresses and strains may not be linear and
requires a global iterative process to satisfy the equilibrium condition for all material points.

5.2.2 Global Iterative Procedure

Utilizing the relation between increment stress and strain (∆σ = Dε), Eq. (5.9) may be formulated
in terms of the response from an external force:

Ki∆vi = f iex − f i−1
in (5.10)

where K represents the global stiffness matrix, ∆v is the incremental displacements, fex the
external force and f in the internal reaction vector. Furthermore, superscript i refers to the step
number. In the case of non-linear relation between stresses and strains it must be treated as an
iterative procedure to obtain equilibrium:

Kjδvj = f iex − f i−1
in where ∆vi =

n∑

j=1

δvj (5.11)

where δv is a vector assembled by the sub-incremental displacements and n is the number of
iterations within the step i. Notice, the stiffness matrix K is often referred to as the tangential
stiffness matrix in non-linear scenarios and may be assembled by the constitutive matrix as:

K =

∫
BTDBdV (5.12)

Recall that D is a function of stresses and state parameters.
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5.2.3 Local Iterative Procedure

The global iteration needs to incorporate the stresses in all the stress points. Therefore, in each
global iteration, the stresses in at each stress point must be determined by another iteration
procedure known as local integration. Hence, in a FEM two types of iterations are required:

� Global integration - Estimation of the displacement

� Local integration - Estimation of stresses and state parameters

The local integration may be solved through varies incremental updating schemes which may be
divided into two general categories:

� The explicit scheme - Direct method

� The implicit scheme - Indirect method

The best approach to solve the differential equations depends on the numerical analysis. One could
argue, that the explicit method is generally more stable since it always yields an answer, normally
requires less computation power and is relatively simple to implement compared to the implicit
method. However, this procedure may not involve any error evaluation1 and utilizes the previous
stresses and state parameters to determine the current stresses and state parameters. Hence, the
explicit procedure may lead to inaccurate results associated to the step size. On the other hand,
the answer given by an implicit scheme will be restricted by a chosen tolerance insuring an accuracy
chosen by the user. This tolerance may be very computation demanding and the implicit scheme
do not insure convergence.

Explicit Integration

The explicit integration schemes represent a direct integration procedure, where a finite strain
increment (∆ε) is given as a constant value. The explicit approach utilizes a linear stress-strain-
time relationship yielding an error caused by the non-linearity. However, by utilizing a small
incremental step the error may be minimized to an acceptable limit. The simplest explicit method
is known as the forward Euler scheme, where the stress increment is evaluated by the finite strain
and time increment:

∆σn+1 = D(σn, κn)∆εn+1 (5.13)

where D(σn, κn) is the tangential stiffness determined by the previous iteration and n refers to
the previous stage and n+ 1 refers to the current stage2. The accuracy of the explicit integration
scheme may be increased by switching to a more advanced explicit method such as a higher order
Runge-Kutta, e.g. second order (Midpoint Method) or the classic fourth order, see (Grimstad
and Benz, 2014) or (Grimstad, 2009) for further details. The suggested constitutive model would
simply implement the forward Euler scheme to solve the local integration.

Implicit Integration

The performance of the local integration should be analysed against other solution methods to com-
pare its accuracy and computational demand. To deviate from the explicit integration methods it
has been chosen to utilize an implicit integration scheme. Roenningen (2015) has granted access
to his work related to implicit integration which utilized a modified Newton-Raphson’s method to
solve the differential equations. Hence, a new DLL-file may be assembled through some modifica-
tions in the MATLAB code and by utilizing the Newton-Raphson method given by Roenningen
(2015). A short description of the approach will be highlighted here and further details regarding
the implicit integration may be found in (Roenningen et al., 2014).

1 In this case, control of the consistency criterion.
2 Notice notation difference with PLAXIS: n+ 1 = t+ ∆t and n = t
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The implicit integration method requires the collection of the differential equations in a numerical
residual which may be formulated as:

r =
[
r1 r2 r3

]T
= 0 (5.14)

where the physical meaning of these differential equations describes the general constitutive re-
sponse whereby the update of stresses, state parameters and visco-plastic multiplier are determined
through Eq (5.14). The differential equations may be formulated as:

r1 = σ′n+1 − σ′n −D
(

(εn+1 − εn)− (λn+1 − λn)
{∂Q
∂σ

}
n+1

)
(5.15a)

r2 = κn+1 − κn −
{dκ
dλ

}
n+1
· (λn+1 − λn) (5.15b)

r3 = λn+1 − λn −
{dλ
dt

}
n+1
· (tn+1 − tn) (5.15c)

The vector (κ) contains the eight state variables:

κ = [p′mi αd x]
T

and
κ

dλ
=

[
dp′mi
dλ

dαd
dλ

dx

dλ

]T
(5.16)

Newton-Raphson’s Method

The Newton-Raphson’s method is an iterative approach to solve non-linear equations. The solution

for a system of equations
(
r(v) = 0

)
may be formulated as:

vi+1 = vi −
(
J i
)−1 · r

(
vi
)

(5.17)

where J =
∂r

∂v
is the Jacobian matrix and i refers to the number of iterations. The method requires

a defined criterion or tolerance to stop the iteration loop. The tolerance used in Roenningen et al.
(2014) is given by:

rTr ≤ tol ∼ 10−12 (5.18)

It should be mentioned that the Newton-Raphson’s method does not guarantee convergence and
a maximum number of iterations should be implemented in the coding. Inverting the Jacobian
matrix given in Eq. (5.17) may be a quite computationally demanding task which may be avoided
by transforming into a linear system of equations:

(
∂r

∂vn+1

∣∣∣∣∣

)
∆vi+1

n+1 = −ri (5.19)

where ∆vi+1
n+1 = vi+1

n+1 − vin+1. The system of linear equations may be solved using Gauss elimina-

tion and adding the increment ∆vi+1
n+1 to the previous iteration solution, see (Roenningen et al.,

2014) for further details.

The modifications in the MATLAB code3 are associated with assembling the numerical residual
(5.14) and the Jacobian Matrix given in Eq. (5.17), see Appendix E.1.3.

3 Required by the swap from explicit to implicit.
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5.3 Constitutive Model

The constitutive model is implemented into PLAXIS using the software: MATLAB and FORTRAN
and the computational framework for the chosen procedure may be seen on Figure 5.3.
XXXXX Technical University of Denmark

Soil Model

Strain step
Time Step

Stresses

FORTRAN

PLAXIS

MATLAB

DLL-File

(One stress point)

Run simulation for all stress points

(Setup of IDTask 1 to 6)

(Boundary value problem)

Demand of 
small step

D and v

1

Figure 5.3: Principle of the computational framework.

The elastic stiffness matrix (D) and the differential equations (v) determining the constitutive
behaviour of the soil model are assembled in MATLAB using symbolic differentiation. The code
is afterwards transformed automatically into FORTRAN code and pasted into the FORTRAN
framework. Through the interface between PLAXIS and FORTRAN, the FORTRAN code may
be complied into a DLL-file containing the soil model. The initializing of the state parameters are
defined in the FORTRAN code. The stresses are determined in the local integration through the
strain and time increments restricted by an upper limit of their magnitude, see Eq. (5.27).

The elastic stiffness matrix is assembled as given in Eq. (3.6) and the vector (v) contains the six
Cartesian stresses, the eight state parameters and the plastic multiplier is assembled as:

v =
[
σ11 σ22 σ33 σ12 σ23 σ13 λ p′mi αd11 αd22 αd33 αd12 αd23 αd13 x

]T
(5.20)

The MATLAB code for assembling these mathematical formulations may be seen in Appendix E.1.2
utilizing the theory given in Chapter 4. The local integration in the stress points is determined
through a forward Euler scheme which may be formulated as:

vn+1 = vn + dv (5.21)

where dv is the change in Eq. (5.20) and is given by:
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dv =




D

(
∆ε−∆λ

∂Q

∂σ

)

∆λ

∆λ
∂κ

∂λ
+ ∆t

∂κ

∂t




(5.22)

where the change in the plastic multiplier may be approximated as:

∆λ ≈
λ̇+

{
∂λ̇

∂σ

}
Ddε

1

∆t
−
{
∂λ̇

∂κ

}
h+

{
∂λ̇

∂σ

}
D

{
∂Q

∂σ

} (5.23)

where D refers to the elastic stiffness matrix, λ̇ =
∂λ

∂t
and h is a vector containing the derivative

state parameters with respect to the plastic multiplier:

h =

[
∂pmi
∂λ

∂αd
∂λ

∂x

∂λ
=
∂κ

∂λ

]T
(5.24)

Further details regarding Eq. (5.23) may be found in Appendix C.6. Notice that in contrast to
an elastic-plastic model, a visco-plastic model does not need to control the yielding function (F )
since the intrinsic yielding surface is sensitive to time. Hence, it would expand even if the stress
condition lies inside the yield surface. An elastic-plastic model would determine the change in
stresses as:

dσ = Depdε (5.25)

where

Dep = D −
D

{
∂Q

∂σ

}{
∂F

∂σ

}T
D

A+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

} (5.26)

In an explicit integration it must be checked if Dep = D (pure elastic and inside the yield surface)
or a contribution from plastic strains caused by the expansion of the yield surface should be taken
into consideration during the calculation.

The next section will explain the details related to the FORTRAN framework and its interface to
PLAXIS.

5.4 PLAXIS - User Defined Soil Model

In order to create an UDSM in PLAXIS, one may satisfy the requirements related to the calculation
approach. The calculation procedure is defined in a subroutine called User Mod, and may be divided
into four main operations (PLAXIS, 2014a):

� Initialization of state variables.

� Calculation of constitutive stresses.

� Creation of effective material stiffness matrix.

� Creation of elastic material stiffness matrix.
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The subroutine (User Mod) is governed by its 31 input parameters where the UDSM mainly influ-
ences the first argument, the IDTask-parameter. The IDTask-parameter is associated to the above
four mentioned main operations. The modified subroutine (User Mod) related to this work may be
found in Appendix E.2.1. A more detailed description of the general User Mod subroutine and a
definition of all the input parameters may be found in Appendix D.3. During a calculation phase
in PLAXIS, the individual IDTasks may be called several times for each global iteration. It should
be noted that the IDTasks are not chronologically called by PLAXIS and one task may be called
several times during a computation.

The purpose of IDTask 1 is related to the initializing of the state parameters: initial stresses
(peq), intrinsic effective pressure (p′mi), initial structure (x0), anisotropy (α0) and the parameters
associated to the rotational hardening. These parameters are determined by the input parameters
and will be stored in the vector StVar0. After one calculation the vector will be overwritten by the
previous stresses and state parameters. The initializing procedure could be moved to IDTask 2

but would require more computational power since the state parameters only need to be initialized
once. The additional features in IDTask 1 is related to some simple debugging aspects.

The purpose of IDTask 2 is associated to the constitutive modelling and thereby the explicit
integration. Hence, the maximum time and strain increment are chosen by a reference parameter
(n) insuring a maximum time and strain increment. The time and strain increment are associated
to the time reference (τ) and a chosen reference strain (x), respectively:

nε = nint

(
dεmax
x

)
dε =

dε

n

−→ n = max(nε, nt) −→ (5.27)

nt = nint

(
dtmax
τ

)
dt =

dt

n

where x = 10−4(4) and τ is an input parameter in SCA-R model. The function nint is a FORTRAN
command finding the closest whole number. The parameters dεmax and dtmax are the increments
given by PLAXIS. The additional features in IDTask 2 are related to some simple debugging
aspects and the updating scheme of the new stresses and state parameters into the vector StVar.
Furthermore, if the argument IsUndr=1 yields undrained conditions5 and the change in excess
pore pressure is determined through:

∆pw︸︷︷︸
Swp-Swp0

= Kw∆εp︸ ︷︷ ︸
BulkW*(dEps(1) + dEps(2) + dEps(3))

(5.28)

where Kw is the bulk modulus of water and the notation below Eq. (5.28) is FORTRAN code.

The purpose of the remaining tasks are less important for the UDSM. The only modifications in
these tasks are related to IDTask 5 where the stiffness matrix must be changed to be stress and
time dependent. This is done by changing NonSym and iTimeDep from zero to one. The subroutines
governing the IDTasks related to this work may be found in Appendix E.2.2.

5.4.1 Modular Programming

The general framework in FORTRAN may be seen on Figure 5.4. The framework consists of:
Modules, subroutines and functions. Theses elements have different abilities and are utilized
to obtain a modular structure of the code. The advantage of utilizing a modular structure is a
relatively simple and straightforward main code which may be easier for others to read. Each task
is written in subroutines and called upon when they are needed.

4 This value has shown accurate results without any extreme computational demands.
5 Drained conditions is equal to zero.
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Figure 5.4: General framework in FORTRAN. Notice that some less necessary subroutines and all the
functions are left out for simplicity.

Modules:
The framework contains two modules: Module-vars and Module-map. The Module-vars contains
all the global variables presented in the main code. Hence, the subroutines which activate/call
this module gain access to all the global variables. The Module-vars contains five functions which
mainly are associated to the location of the input parameters, the Cartesian stresses and the state
parameters along with their units. The Module-map contains the subroutines: update, mapping
and Lode angle. Hence, calling the Module-map activates all these subroutines. In this module,
the majority of the local variables are defined. The module also contains three other subroutines
related to rotational hardening suggested by Dafalias and Taiebat (2013).

Subroutines:
Each subroutine contains a part of the total calculation process. Hence, by dividing the code into
subroutines a more efficient program may be written since the subroutines only are called when
they are needed. The subroutines either define the local variables they need or call the global
variables through the modules.

Functions:
Functions are very small pieces of calculation which are used both in the subroutines and in the
modules. Functions normally use few local variables which are defined in the function itself. The
function requires a number of input parameters in order to compute the output. An example of a
function may be the Heaviside-function yielding either: 1, 1

2 or 0 depending on the input. Notice,
the functions are left out from Figure 5.4 for simplicity.

The location of the DLL-file in the installation folder, issues related to the calculation kernel and
choosing the DLL-file in PLAXIS are described in Appendix D.3.1.
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Chapter 6

Verification of the Model

The purpose of this chapter is to provide general information regarding the verification of the SCA-
R model. The verification process is necessary to guarantee high reliability and ensure that the soil
model behaves according to the implemented theory. In addition, the verification process reduces
the number of bugs and possible mistakes related to the coding procedure.

6.1 General

The verification process is divided into three
parts. The first part will verify the basic input
parameters by creating scenarios whereby the
basic input parameters may be interpreted
from the different graphs. The purpose of
the second part is to investigate the extended
features related to the mechanical response
of natural soft clay to ensure that these
features behave as expected. However, some
of the advanced input parameters cannot be
interpreted directly. Hence, different scenarios
where the influence of these parameters may
be observed are assembled to investigate
their effect. The third part contributes with
additional verification related to the MCC
response.

The general verification process is mainly asso-
ciated to one-dimensional compression and tri-
axial testing. The theoretical response during
one-dimensional compression may be seen on
Figure 6.1. Point A illustrates the sample be-
fore testing which has been unloaded from the
in situ stresses. Point B illustrates the appar-
ent yielding point where the stiffness response
from the material changes from elastic to plas-
tic, point C describes the new yielding surface
before unloading the sample to point D. Point
D represents the stress condition associated to
the unloading loop. It should be noted that the
effective stress path in the (p′ : q)-space follows
the KNC

0 -line after the apparent yielding.
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Figure 6.1: Theoretical oedometer path. See
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Throughout the whole verification process, standard input parameters have been utilized to simu-
late all the scenarios. However, in some of the scenarios, deviations from the standard parameters
are necessary. These deviations will be highlighted for the particular scenario. The verification
procedure is preformed by Soil Test in PLAXIS utilizing the general option where simulations of
either a one-dimensional compression or tri-axial test are preformed. Figure 6.2 shows the layout
for the one-dimensional compression scenario where the standard input parameters and loading
conditions are shown.

Figure 6.2: General option in Soil Test showing the standard input parameters.

The undrained tri-axial scenarios are performed by keeping the volume constant in each phase to
avoid the default assumption of νu = 0.495 related to the bulk modulus of the water1.

6.2 Basic Input Parameters

The basic input parameters are related to the MCC model where five parameters are needed along
with a stress history. An overview of how to interpret the parameters may be seen in Table 6.1.

Table 6.1: Basic input parameters and methods associated to interpretation.

Input Parameter Scenario Evaluated from:

λi, κ, and e0 One-dimensional compression Compression plane (p′ : εp)

νur One-dimensional compression Stress plane (p′ : q) (Elastic region)

ϕcs, and OCRτ Tri-axial compression Stress plane (p′ : q)

The following three sections will shortly describe how these parameters are interpreted and verified.

1 Drained tri-axial simulations are preformed by the tri-axial option available in Soil Test.
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6.2.1 Inclinations of the NCL and URL

The input parameters, λi, κ, and e0 may be verified through the inclination of the NCL and
the URL in the compression plane with respect to a one-dimensional compression test. The one-
dimensional compression scenario is simulated by utilizing the standard input parameters and the
loading conditions given by Figure 6.2. The obtained NCL and URL in the compression plane may
be seen on Figure 6.3.
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Figure 6.3: Interpretation of the inclination of the NCL and URL to verify λi, κ, and e0 from the
compression plane. The standard input parameters may be seen on Figure 6.2.

Recalling the theory given in Section 2.6.1, λi may be verified by the NCL and κ by the URL.
Notice that the inclinations are influenced by the initial void ratio (e0). Thereby, the observed
inclinations should be reformulated as:

κ = (1 + e0)κ∗ and λi = (1 + e0)λ∗i (6.1)

Using the interpreted inclinations, Eq. (6.1) and the void ratio (e0 = 1.0) yields following values:

κ = (1 + 1.0) · 0.060− 0.051

ln(752)− ln(632)
= 0.25

λ = (1 + 1.0) · 0.085− 0.041

ln(937)− ln(660)
= 0.05

The interpreted values are similar to those which have been utilized in the simulation, see Figure
6.2. Hence, it may be concluded that the compression and swelling parameters may be interpreted
correctly from the SCA-R model and the influence of void ratio seems correct.

6.2.2 Inclination of the Critical State Line

The Critical State Line (CSL) is a function of the critical state friction angle (ϕcs). Hence, the
input parameter (ϕcs) may be verified by performing several simulations approaching the critical
state. The CSL should be drawn through the end points of these simulations in the (p′ : q)-space
and thereby verify the utilized friction angle. Utilizing the standard input parameters given by Fig-
ure 6.2, several tri-axial simulations in compression have been preformed for drained and undrained
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scenarios. The simulations differ from each other from each other by isotropic/anisotropic consoli-
dation2 along with different magnitudes of OCRτ . Thereby, the influence of the input parameter,
OCRτ may be verified as well. Seven simulations have been performed and may be seen on
Figure 6.4.
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Figure 6.4: Interpretation of the inclination of the CSL to verify ϕcs for tri-axial simulations in compres-
sion. The standard input parameters may be seen on Figure 6.2. Notice that ϕcs = 25.38 −→M = 1.0.

It may be observed that a straight line starting from Origo and going through all the end points
of the effective stress paths may be drawn representing the CSL. The inclination of the CSL has a
value of M = 1.0 which corresponds to the utilized critical state friction angle (ϕcs).

Analysing the effective stress path for the drained scenario, the well known 1:3 inclination is ob-
tained. The undrained effective stress path for the NC and slightly NC simulations indicate the
expected response towards the CSL in the wet region. The OC simulations indicate the correct
pattern by going straight up into the dry region and afterwards dilate towards the CSL. Lastly,
the effect of anisotropic consolidation seems to be correct but will be verified further in Section 6.4.1.

Hence, it may be concluded that the critical state friction angle may be interpreted correctly from
the SCA-R model and the effect ofOCRτ and anisotropic consolidation yield the expected response.

6.2.3 Unloading Reloading

In an unloading/reloading loop the soil response is implemented to be elastic. Hence, the input
parameter νur may be verified by interpreting the inclination of the unloading/reloading3 part of
the effective stress path in the (p′ : q)-space. The verification of νur is performed by simulating
a one-dimensional compression scenario utilizing the standard input parameters and loading con-
ditions given by Figure 6.2. The effective stress path in the (p′ : q)-space may be seen on Figure
6.5(b). Notice that the parameter, q, in Figure 6.5(b) deviates from the normal definition of q by
being the vertical effective stress minus the horizontal effective stress which allows negative values.
This is done to get a better illustrative picture of the effective stress path.

2 In the case of anisotropic consolidation a value of K′0 = 0.65 is utilized.
3 Before yielding to ensure elastic response.
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Figure 6.5(a) shows the theoretical expected response during one-dimensional compression which
may be used to compare the response from the SCA-R model. Point A indicates the in situ
stresses, B defines the apparent yielding point and C is the KNC

0 -line. It may be observed that
the theoretical and predicted responses are similar.XXXXX Technical University of Denmark
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Figure 6.5: ESP in the (p′ : q)-space to verify the input parameter νur during one-dimensional compres-
sion. The standard input parameters may be seen on Figure 6.2.

According to elastic theory, the ratio between the incremental deviatoric stress (q) and the incre-
mental effective mean stress (p′) may be determined by:

∆p

∆q
=

K ′

3G′
dεep
dεeq

(6.3)

Simulating a one-dimensional compression scenario, it is known that the ratio between the devia-
toric strains and volumetric strains are uniquely defined as:

dεq
dεp

=
dεeq
dεep

=
2

3
(6.4)

Notice, that only elastic strains will be present since no plastic strains are created in the elastic
region. Using the definition of the shear modulus and substituting Eq. (6.4) into Eq. (6.3) yields:

∆q

∆p
=

3(1 + νur)

1 + νur
since G′ =

3K ′(1− νur)
2(1 + νur)

(6.5)

The implemented value of Poisson’s ratio was 0.15 which yields an inclination of:

νur = 0.15 −→ ∆q

∆p
= 1.826 (6.6)

This is similar to the inclination found in the unloading/reloading part of the ESP, see Figure
6.5(b). Hence, it may be concluded that Poisson’s ratio can be interpreted correctly by the model.

The standard input parameters have been verified and the following sections will discuss the input
parameters related to the SCA-R model.
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6.3 Advanced Features

The advanced features are listed in Table 6.2 with their associated input parameters.

Table 6.2: Overview of the advanced features and related parameters.

Feature Parameter Remarks

Anisotropy (Elastic) αe Indirectly interpreted
Anisotropy (Plastic)(1) KNC

0 Indirectly interpreted
Evolution of Anisotropy µ/c and RH Observed behaviour
Destructuration a, b and x0 Observed behaviour
Creep rsi and rsi,min Indirectly interpreted(2)

Recovering R and Rt Observed behaviour
(1)Rotation of yield surface. (2)rsi,min is related to x0.

In addition to the highlighted aspects in Table 6.2, the coupling effect between recovering of
structure and creep rate will be investigated.

6.3.1 Anisotropy in the Elastic Region

The implementation of anisotropic elastic stiffness may be verified through an undrained overcon-
solidated tri-axial scenario. The tri-axial simulation is simulated by utilizing the standard input
parameters given by Figure 6.2 and an OCRτ = 4.0. The influence of anisotropic elastic stiffness
may be seen for different magnitudes of αe on Figure 6.6.
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Figure 6.6: Transverse anisotropic elastic response in undrained tri-axial scenario to verify the input
parameter αe. The standard input parameters may be seen on Figure 6.2 and OCR = 4.0 has been utilized.
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It may be observed from Figure 6.6(b) and Figure 6.6(c) that for αe = 0.0 yields isotropic stiffness
with respect to the horizontal and vertical line, respectively. In addition, Figure 6.6(a) and Figure
6.6(b) show that a negative αe causes a reduction in stiffness and a positive αe is associated to an
increase in stiffness as a result of changes in effective mean pressure (p′). The ESP seen in Figure
6.6(c) indicates how the effective mean pressure is affected by the anisotropy by an inclined ESP
either to the left or right. It should be noted that the magnitude of q associated to the yielding
point is affected by the elastic anisotropy caused by the ellipse shape of the yield surface.

The elastic stiffness parameters (αe) may be interpreted through Figure 6.6(c) by utilizing Janbu’s
pore pressure parameter (D). The interpreted pore pressure parameters are determined to:

D0.1 =
∆p′

∆q
=

109.11 kPa− 100 kPa

164.09 kPa− 0 kPa︸ ︷︷ ︸
αe=0.1

= 0.056 and D−0.1 =
∆p′

∆q
=

90.114 kPa− 100 kPa

159.92 kPa− 0 kPa︸ ︷︷ ︸
αe=−0.1

= −0.061

Recalling the definition on Janbu’s pore pressure parameters it may be calculated as:

D =

αe

(
Kiso +

2

3
Giso

(
1 +

1

3
αe

))

α2
eKiso + 3Giso

(
1 +

1

3
αe

)2 =

αe

(
1 + ν∗

1− 2ν∗
+ 1 +

1

3
αe

)

α2
e

(
1 + ν∗

1− 2ν∗

)
+

9

2

(
1 +

1

3
αe

)2 (6.7)

Utilizing the Poisson ratio (νur = ν∗ = 0.15) and the elastic anisotropic parameter (αe) Janbu’s
pore pressure parameter may be determined analytical to:

D0.1 = 0.055 and D−0.1 = −0.062 (6.8)

These values are similar to the values interpreted from the model. Hence, it may be concluded that
the elastic stiffness parameter may be interpreted correctly from the SCA-R model and the change
in elastic stiffness associated to the changes in effective mean pressure yields expected responses.

6.3.2 Anisotropy Evolution

The three evolution laws related to the rotational hardening of the yield surface may be relative
complex to verify. A complete verification would include a control of the boundary values (the
initial starting point and ending point of the rotation), the rotational path and pace of the ro-
tation. These aspects will be controlled for different scenarios such as: critical state, isotropic
compression, and one-dimensional compression. However, it has not been possible to interpret the
input parameter which controls the pace of the rotation (µ or c) but it is assumed if all the other
aspects satisfy the theory the pace, may be seen as reliable. Before the verification, the rotational
hardening laws are recalled:

Wheeler 2003
dα

dλ
= µ

[(
3η

4
− α

)
〈dεpp〉+ β

(η
3
− α

)
|dεpq |

]
(6.9a)

Dafalias 1986
dα

dλ
= cpat

p′

p′c
(αb − α) , αb =

αKNC
0

ηKNC
0

η (6.9b)

Dafalias 2013
dα

dλ
= cpat

p′

p′c
(αb − α) , αb = ±M

z

[
1− exp

(
−s |η|

M

)]
(6.9c)
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One-dimensional Compression

In a one-dimensional compression scenario the yield surface should align with the KNC
0 -line beyond

yielding. Hence, following three requriements must be satisfied:

σ′3
σ′1

= KNC
0 ,

q

p′
= η = ηKNC

0
, α = αKNC

0
(6.10)

The one-dimensional compression scenario is simulated by utilizing the standard input parameters
and the loading conditions given by Figure 6.2. Several simulations of each rotation law, for dif-
ferent magnitudes of KNC

0 , have been performed and the interpreted values may be seen in Table
6.3. Notice, the interpreted values are determined beyond yielding to ensure that the stress state
lie on the yield surface.

Table 6.3: Extracted values of the rotated yield surface during oedometer conditions.

Wheeler 2003 Dafalias 1986 Dafalias 2013

Input: KNC
0 0.55 0.60 0.64 0.65∗ 0.55 0.60 0.65 0.55 0.60 0.65

KNC
0 0.55 0.60 0.65 0.76 0.55 0.60 0.65 0.55 0.60 0.65

Output: ηKNC
0

0.642 0.546 0.474 0.289 0.644 0.546 0.457 0.642 0.546 0.457

αKNC
0

0.414 0.269 0.166 0.142 0.414 0.269 0.142 0.414 0.269 0.142

∗Error: Caused by the limitations of the RH law.

The interpreted parameter, αKNC
0

is taken as an output parameter in FORTRAN. The remaining

parameters (KNC
0 and ηKNC

0
) are determined by Eq. (6.10) from each simulation. The analytical

values of ηKNC
0

and αKNC
0

may be seen in Table 6.4.

Table 6.4: Analytical values for the rotated yield surface for different KNC
0 related to oedometer conditions.

KNC
0 Eq. 0.55 0.60 0.65

ηKNC
0

4.33 0.643 0.546 0.457

αKNC
0

4.31 0.414 0.269 0.141

*For ϕcs = 25.43o −→M = 1.0

By comparing Table 6.3 and Table 6.4 it may be concluded that all three rotational hardening
laws satisfied the oedometer scenario. The limitation with respect to evolution law suggested by
Wheeler et al. (2003) at high KNC

0 is caused by unrealistic values of β, see Section 4.7.2.

Critical State

The critical state is defined by following statements:

dεpp −→ 0 (dp = 0) Constant Volume (6.11a)

dεpq −→∞ (dq = 0) No dilatancy effect (6.11b)

dα −→ 0 (dη = 0) Unique State (6.11c)
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The rotational hardening suggested by Wheeler (2003) utilizes all three Eqs. (6.11). Hence, the
boundary value with respect to critical state may be determined as:

0 = µ

[(
3η

4
− α

)
〈0〉+ β

(η
3
− α

)
|dεpq |

]
−→ 0 =

η

3
− α −→ αb =

M

3
(6.12)

recalling that η = M at the critical state. The rotational hardening laws suggested by Dafalias do
not obtain a unique magnitude at critical state such as the rotational hardening rule suggested by
Wheeler et al. (2003). They are dependent on the stress ratio and the input parameter KNC

0 , see
Eq. (6.9). The parameters, z and s related to the rotational hardening law suggested by Dafalias
and Taiebat (2013) are assumed to be equal and are determined through an oedometer scenario4.
Two undrained tri-axial simulations of each rotational hardening law are performed with different
magnitudes of KNC

0 utilizing the standard input parameters given by Figure 6.2 and a loading con-
dition ensuring critical state. The interpreted boundary values along with the analytical boundary
values may be seen in Table 6.5.

Table 6.5: Controlling the boundary value of αb towards critical state.

αb (Wheeler 2003) αb (Dafalias 1986) αb (Dafalias 2013)

Analytical(1):
KNC

0 = 0.55 0.334 0.645 0.521

KNC
0 = 0.60 0.334 0.493 0.312

Output(2):
KNC

0 = 0.55 0.334 0.646 0.521

KNC
0 = 0.60 0.334 0.493 0.317

(1)See Section 4.7.1 for determination of the analytical values. (2)See Figure 6.7.

The evolution of α may be seen for all six scenarios on Figure 6.7.
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Figure 6.7: Simulations of the rotation towards critical state in an undrained tri-axial test. Notice that
the sample is compressed 100% to ensure theoretical critical state. The rate of rotation (µ and c) is set to
200. The standard input parameters may be seen on Figure 6.2.

It may be observed from Figure 6.7 that the evolution suggested by Wheeler et al. (2003) is
independent on the magnitude of KNC

0 regarding the boundary value but influence the initial
value and thereby the path. Each law suggested by Dafalias are very sensitive to the KNC

0 value
with respect to the boundary value. From Table 6.5 and Figure 6.7 it may be concluded that all
three rotational hardening laws satisfy the implemented theory approaching critical state.

4 η = ηKNC
0
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Isotropic Compression

The rotation law suggested by Wheeler (2003) may also be verified by isotropic compression.
During isotropic compression, only volume change should be expected meaning dεpq −→ 0. Hence,
using the same method as in the critical state, following expression may be found for an isotropic
compression:

αb =
3η

4
−→ αb = 0 (6.13)

since η −→ 0.0 approaching isotropic conditions. The isotropic compression is simulated by the
general option in Soil Test by applying the same strain increment in all directions. The same input
parameters as in the critical state are utilized. The evolution of α for two different KNC

0 values
may be seen on Figure 6.8.
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Figure 6.8: Evolution of α during isotropic compression (Wheeler 2003).

In each case, α approaches zero which corresponds to the theory. Hence, through these verifications
of the one-dimensional compression, critical state and isotropic compression, it may be concluded
that the three rotational hardening laws behave as expected regarding the limitations of the laws.
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6.3.3 Destructuration

The destructuration phenomenon may be controlled by investigating the effect of changing the
destructuration parameters a and b during simulations of one-dimensional compression. The one-
dimensional compression scenario is simulated by utilizing the standard input parameters given by
Figure 6.2 and a magnitude of rsi,min = 100 yielding an initial structure of x0 = 9.0. Figure 6.9
shows different combinations of a and b for several oedometer tests.
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Figure 6.9: Effect of destructuration parameters a and b during oedometer conditions. The standard soil
parameters may be seen in Figure 6.2. Note, OCR = 2.0 and rsi,min = 100.

It may be observed from Figure 6.9(a) and Figure 6.9(b) that the effect of changing a has larger in-
fluence compared to the same change in b. This behaviour is expected during oedometer conditions
and may be explained by looking at the implementation of destructuration:

dx

dλ
= −ax

[
|dεpp|+ b|dεpq |

]
(6.14)

Hence, b is associated to purely deviatoric strains and in the case of b = 0 yields that a will be
associated to purely volumetric strains. During oedometer conditions the ratio between deviatoric
and volumetric strains are given by:

dεq
dεp

=
2

3
(6.15)

The observed response of a larger destruction for the destructuration parameter a relative to the
same magnitude in b may be explained by Eq. (6.15). Figure 6.9(c) shows three scenarios where
the effect from both a and b in collaboration may be seen. The destructuration parameters are
only associated to the pace of the destructuration. Hence, all scenarios should therefore converge
towards the same intrinsic state which may be seen on Figure 6.9(d) which have similar simulations
as in Figure 6.9(c) just with a higher axial strain. It may be concluded that the non-linear response
after the yielding point may be simulated through the destructuration parameters a and b and the
destructuration phenomenon approaches intrinsic properties.
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6.3.4 Amount of Structure

The amount of structure in the soil influences the apparent yielding point relative to the intrinsic
properties if the intrinsic pressure is kept constant. The intrinsic pressure is defined as:

p′mi =
peqOCRτ

1 + x
−→ p′mi

peq
=
OCRτ
1 + x

(6.16)

where peq is associated to the initial stresses and should not influence the investigation. Hence, to
keep p′mi constant a change in x will result in a change of OCRτ :

OCRinitial
1 + xinitial

=
OCRnew
1 + xnew

(6.17)

Hence, the intrinsic pressure may be kept constant by changing the magnitude of OCRτ . Table 6.6
shows different values of OCRτ associated to the different amount of structure as a consequence
of keeping the intrinsic pressure constant.

Table 6.6: OCR values demanding p′mi constant with a change of x. Reference: x = 0.0 and OCR = 1.0

rsi,min [-] xnew [-] OCRnew [-]

10.0 9.0 10.0

12.5 7.0 8.0

25 3.0 4.0

*For rsi = 100

The influence of structure is verified by one-dimensional compression scenarios by utilizing the
standard input parameters given by Figure 6.2 and the values in Table 6.6. Four simulations
have been performed and the output may be seen on Figure 6.10. Notice, the destructuration
parameters (a, b) are both set to 15.0.
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Figure 6.10: Influence of x0 with respect to the yielding point during oedomenter conditions keeping p′mi
constant. The standard soil parameters may be seen on Figure 6.2 and Table 6.6. Notice, a = b = 15.0.

The solid line in Figure 6.10 corresponds to the intrinsic compression line (ICL) suggested by Bur-
land (1990). The other three scenarios show an increase in the apparent yielding point associated
to the increase in the amount of initial structure (x0) and keeping the magnitude of p′mi constant
to the reference level. All three scenarios converge towards the ICL beyond yielding. The pace of

Jesper Bjerre (s102905)



6.3. Advanced Features 89

the destructuration is associated to the destructuration parameters (a, b) and the amount of initial
structure (x0). This behaviour has been confirmed in greater details in Section 6.3.3. Hence, it
may be concluded that the influence of structure relative to a constant magnitude of p′mi yields
the expected response.

6.3.5 Creep

The input parameter associated to creep (rsi) may be verified by a one-dimensional compression
scenario in a fixed effective stress condition (drained conditions). The one-dimensional compression
test is simulated by utilizing the standard input parameters given by Figure 6.2 and keeping
the stress increment in all directions constant at zero. During constant stresses, deformations
would develop as a function of time. Hence, the deformation would be associated to pure creep.
Eight simulations have been performed over a period of 1095 days (3 years) and may be seen on
Figure 6.11.
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Figure 6.11: Oedometer condition under constant effective stresses for a period of 1095 Days (3 years).
Notice that rsi = rsi,min and the standard input parameters may be seen on Figure 6.2.

The tendency of increasing deformation associated to a reduction in the magnitude of rsi is ob-
served on Figure 6.11(a) which corresponds to the theory. It may be seen from Figure 6.11(b) that
an increase in the magnitude of OCRτ is associated to a reduction in deformation which satisfies
the theory. In addition, the rsi may be interpreted by plotting the resistance number (R) against
the time, see Appendix C.5. Hence, a linear relationship should be formed between the time and
the resistance number. The inclination of this relationship corresponds to the magnitude of rsi.
This has been computed for the eight scenarios and may be seen in Table 6.7.

Table 6.7: Verifying the creep parameter in oedometer scenario during constant effective stress.

Input:
OCRτ 1 1 1 1 1.1 1.2 1.3 1.5
rsi 100 200 300 500 200 200 200 200

Output: rsi 99.60 199.65 299.33 499.27 199.67 199.73 199.84 199.97

Hence, it may be concluded that the creep parameter (rsi) may be interpreted correctly from the
model. Furthermore, the effect of OCR follows expected behaviour.

6.3.6 Influence of Creep on Yielding Point

The apparent yielding point may be influenced by the intrinsic creep number. For relative small
creep numbers the intrinsic yield surface may expand so quickly with time that it will affect the
apparent yielding point. The mathematical meaning of this may be explained as the intrinsic
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yield surface expand so fast with time that it goes beyond the surface representing equivalent
stress condition. The phenomena have been investigated by changing the intrinsic creep number
and keeping the amount of structure constant by change the minimum creep number relative to
intrinsic creep number. This have been done for four cases which may be seen on Figure 6.12.
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Figure 6.12: Influence of intrinsic creep number on the apparent yielding point by keeping the structure
constant (x = 5.0). The solid line represent a scenario where rsi = 100 and rsi,min = 16.66. The standard
soil parameters may be seen in Figure 6.2 besides the initial stress condition (σ′11 = σ′22 = σ′33 = 100 kPa).

It can be observed from Figure 6.12 that a lower intrinsic creep number is associated to a higher
apparent yielding point. Increasing the intrinsic creep number reduces the apparent yielding point
and further increase yields minor reduction in the apparent yielding pressure. This effect is similar
to the strain rate effect where an increase in strain rate yields a higher apparent yielding pressure,
see Section 6.3.7. Hence, the influence of small magnitudes of rsi yields the expected response.

6.3.7 Strain Rate

Strain rate effects may be investigated in Soil Test by changing the time step (∆t) relative to
the associated deformation (∆ε). Hence, the strain rate during a simulation may be determined.
The strain rate is normally given in strain/hour with respect to standard laboratory procedure.
However, the time step in PLAXIS is associated with days which should be remembered when com-
puting the strain rate. The following formulation may be used to transform a chosen deformation
and strain rate into the correct time step in Soil Test:

ε̇Day =
∆ε

∆t
−→ ∆t =

∆ε

ε̇Day
(6.18)

This has been done for five different strain rates with a chosen deformation of 10 %, see Table 6.8.

Table 6.8: Convention of strain rate into PLAXIS’s time step for a chosen axial deformation of 10 %.

Strain rate (ε̇) Time step (∆t in PLAXIS)

5.00 %/h 2.0833 days

2.00 %/h 0.8333 days

1.00 %/h* 0.4167 days

0.50 %/h 0.2083 days

0.05 %/h 0.0208 days

*Standard rate for Norwegian clays (Emdal et al., 2014).
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These five strain rates have been simulated in an undrained tri-axial compression test and a one-
dimensional compression test, see Figure 6.14. Notice, a simulation without creep have been
plotted as a reference level. The reference level corresponds to elasto-plastic response which may
be obtained from the visco-plastic model by setting to rsi = 6000. Hence, the visco-plastic model
converge towards elasto-plastic response for high magnitudes of rsi.
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(a) Undrained tri-axial test.
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Figure 6.13: Strain rate effects from viscous-plastic response. rsi = 100 and OCR = 1.2. The rest of the
parameters may be seen on Figure 6.2. Notice, the test without creep corresponds to elasto-plastic response.

It may be observed that an increase in strain rate yields a larger undrained shear strength, see
Figure 6.13(a). In addition, slow strain rates approach the elasto-plastic response. It may be
observed from Figure 6.13(b) that higher strain rates yield an increase in the apparent yielding
point. The strain rate does not influence the inclination of the one-dimensional curve before the
apparent yielding point. These observations correspond well to the theory explained in Section
3.7.3. Hence, it may be concluded that the model is able to simulate strain rate effects.

6.3.8 Change Strain Rate

The phenomenon of changing the strain rate during loading should be verified. The verification has
been done by simulating an undrained tri-axial compression test and a one-dimensional compression
test utilizing the standard input parameters given by Figure 6.2.
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Figure 6.14: Effect of changing the strain rate in different tests. rsi = 100 and OCR = 1.2, the rest of
the parameters may be seen on Figure 6.2.

Figure 6.14(a) shows how a loop occurs as a result of changing the strain rate. Figure 6.14(b)
shows the behaviour of changing isochors by changing the strain rate. This behaviour corresponds
to the theory. Hence, it may be concluded that the model is able to simulate the effect of changing
the strain rate.
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6.3.9 Recovering of Structure

The verification related to the recovering of structure may be investigated through the same prin-
ciple as for the verification of creep. The recovering of structure is implemented through an
exponential function where the pace is controlled by the magnitude of Rt. The boundary value is
dependent on the initial structure (x0) and the allowed recovering determined by the magnitude
of R. Figure 6.15 shows four scenarios for different magnitudes of the allowed recovering with the
recovery pace (Rt = 0.001). The first part (Reference time = 0..100) of the curves symbolize a
shearing phase where destroying the initial structure occurs were executed in one day. The other
part (Reference time = 101..200) illustrates the recovering of structure during constant effective
stresses over a period of 2000 days.
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Figure 6.15: Recovering of structure (x) over time. Notice, Reference time 0..100 symbolize a shearing
phase of 1 day destroying the structure. Reference time 101..200 symbolize constant effective stresses over
a period of 2000 days. For all four cases, Rt=0.001. The soil parameters may be seen in Figure 6.2.

The behaviour of all scenarios follows the expected response of the exponential function towards
the boundary value defined by R and the initial structure, see Figure 6.15. The chosen way of
implementing the recovering of structure yields a different local recovering pace depending both
on the recovering pace and the boundary value. This is an assumption made by the author to
describe the recovery of structure.

Hence, it may be concluded that the implemented recovering of structure follow the expected re-
sponse.
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6.3.10 Coupling Effect

The recovering of structure induces a coupling term between the recovering of structure and imple-
mented time evolution of the visco-plastic multiplier. Figure 6.16 shows four scenarios illustrating
the coupling effect for a drained creep test at fixed effective stresses. The utilized soil parameters
may be seen in Figure 6.2.
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Figure 6.16: Influence of recovering of structure with respect to creep under constant stress conditions.
The standard soil parameters may be seen in Figure 6.2. The initial structure of the test is equal to x0 = 1
going towards the boundary value of xb =

rsi−rsi,min

rsi,min
R = 9R, since rsi,min = 100 and rsi = 1000.

It may be observed that the initial part of the curves are unaffected by the recovering. Hence, it
may be concluded that the destruction phenomenon dominate this phase for the given magnitude
of recovering. However, after ε11 ≈ 0.05 the effect shifts and a clear influence of the structure
recovering may be seen. The recovering of structure contributes to an increase in OCRτ and
thereby reduces the rate of creep strains:

dλ

dt
= λ̇ =

1

rsiτ

(
peq

(1 + x)p′mi

)rsiζi M2 − αKNC
0

M2 − ηKNC
0

−→ OCRτ =
(1 + x)p′mi

peq
(6.19)

It may be observed that magnitude of OCRτ increases to a level where creep strains are negligible.
Hence, introducing the recovering of structure yields an additional feature to control the creep
strain rate is given. It should be mentioned that this particular test cannot be made in Soil Test
without manually setting the structure (x) to a lower value than the initial structure. Hence, an
initial structure of x0 = 1.0 is manually chosen in FORTRAN. However, the test could be per-
formed through a boundary value problem by creating a finite element scenario in PLAXIS which
yields more degrees of freedom regarding the loading conditions.

The coupling effect influences the creep rate as expected. Hence, this concluded the verification of
part 2. The next part will verify the MMC response against analytical values.
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6.4 Additional Verification

The additional verification is associated to MCC behaviour during drained and undrained condi-
tions for NC and OC scenarios. This response will be compared to a created MATLAB model, see
Appendix D.1, and analytical results. In addition, the response during extension and compression
will be investigated to ensure that the model yields the expected behaviour.

6.4.1 Compression vs. Extension

Testing a soil in compression or extension yields different mechanical responses. This effect is
caused by the Lode angle dependence with respect to the magnitude of the intermediate principle
stress. In addition, introducing an inclined yield surface, as a consequence of the anisotropic con-
ditions of the soil, the mechanical response will be influenced.

These aspects may be verified by simulating several undrianed tri-axial simulations by utilizing
the standard parameters given by Figure 6.2. An undrained tri-axial compression and tension
simulation, during isotropic consolidation, may be seen on Figure 6.17. Notice, KNC

0 = 0.7154
yields isotropic stiffness which has been utilized in these simulations5.
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Figure 6.17: Setup to control the soil response during compression and extension in undrained tri-axial.

The Lode angle dependency may be seen from the difference between the compression and extension
test. Hence, the ratio of the undrained shear strength may be determined to:

su,P
su,A

=
130.6 kPa

174.1 kPa
= 0.75 (6.20)

Notice that, A refers to Active and P refers to Passive meaning compression and extension,
respectively. The inclination of the critical state line for pure compression and extension is given
by Eq. (6.21)6. The utilized friction angle is ϕcs = 25.43o yielding a ratio between active and
passive as:

M =
6 sin(ϕcs)

3± sin(ϕcs)
−→ Mcs,P

Mcs,A
=

3− sin(ϕcs)

3 + sin(ϕcs)
= 0.75 (6.21)

Hence, it may be concluded that the different response regarding compression and extension during
undrained tri-axial testing may be interpreted correctly from the model since the analytical ratio
of the inclination of the CSL and the measured ratio of the undrained shear strength is equal.

5 The rotation of the yield surface is zero utilizing KNC
0 = 0.7154 for M = 1.0. Be aware that the input parameters

do not cause a negative angle of the yield surface which cause errors in the code.
6 Positive for tension and negative for compression.
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The anisotropic response may be verified by changing the magnitude of KNC
0 . Recalling that

KNC
0 = 0.7154 yields zero inclination of the yield surface for a frictional angle of ϕcs = 25.43o.

Lowering the magnitude of KNC
0 causes a higher inclination of the yield surface. Investigating the

effect of anisotropy, with respect to tri-axial testing, the initial stress condition should be changed.
Hence, anisotropic consolidation must be used, KNC

0 = K ′0 meaning that the horizontal effective
stresses are lower than vertical before shearing the sample. Figure 6.18 shows four undrained
tri-axial simulations using the same vertical consolidation pressure (300 kPa).
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Figure 6.18: Influence of KNC
0 with respect to compression and tension during undrained tri-axial con-

ditions. The standard soil parameters may be seen on Figure 6.2. Notice that q becomes negative since it
is computed as the vertical minus the horizontal effective stress.

In general, the compression simulations yield a stiffer response compared to their associated ex-
tension simulation. It may be observed from Figure 6.18(a) that lowering the KNC

0 yields a higher
compression and lower extension magnitude of the undrained shear strength. This yields a more
brittle response of the soil with respect to compression. Figure 6.18(b) shows the ESP for the four
simulations where the vertical lines represent the less stiff response during tension. The vertical
line is caused by the elastic region. Lowering the magnitude of KNC

0 yields a larger inclination of
the yield surface which may be seen on Figure 6.18(b).

It may be observed that the size of the initial yield surface is different. This is caused by the mag-
nitude of K ′0 which influences the reference surface presenting the stress condition (peq). Thereby,
the intrinsic pressure is changed through:

p′mi =
peq ·OCR

1 + x
(6.22)

Utilizing the values as for Figure 6.18 yields

KNC
0 = 0.55 p′mi = 222.36 kPa

KNC
0 = 0.60 p′mi = 237.09 kPa

The tendency of changing the KNC
0 may be verified from the above section. Thereby, it may be

concluded that the model is able to simulate anisotropic behaviour during tri-axial conditions.
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6.4.2 Modified Cam Clay Response

The purpose of this section is to compare the MCC part of the visco-plastic model programmed
in FORTRAN to a constitutive model programmed in MATLAB, see Appendix D.1. In addition,
during the comparison some analytical values will be determined to ensure reliability of each model.

To compare the models it is necessary to eliminate the viscous effect since it would affect the
mechanical response. The visco-plastic model should converge towards an elasto-plastic model if
the magnitude of rsi go towards infinity. Hence, using a high magnitude of rsi, the time effects
would be negligible, see Figure 6.11. However, the model is not able to handle unrealistic numbers
of rsi. Therefore, a value of rsi = 6000 has been chosen7. Furthermore, to obtain similar models,
the inclination for the yield surface in the visco-plastic model must be set to zero which is done
by KNC

0 = 0.7154 for the utilized friction angle. The comparison is done by a drained and
an undrained tri-axial simulation of both NC and OC (OCR = 4.0) utilizing the standard soil
parameters given by Figure 6.2. The mobilizing of shear strength may be seen on Figure 6.19

The mobilizing of shear strength:
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Figure 6.19: Comparing the mobilisation of shear strength in a tri-axial test from MCC models. Red line
symbolise MATLAB model, blue line symbolise visco-plastic model in PLAXIS.

In general, an acceptable fit between the two models may be seen on Figure 6.19. In addition,
the models are capable of capturing the soil response regarding NC and OC behaviour for both
drained and undrained scenarios according to the theory. Table 6.9 shows the peak and end value
of the mobilized shear strength.

Table 6.9: Theoretical and numerical results to verify the MATLAB model and visco-plastic model.

Method Drained, NC Drained, OC ()∗ Undrained, NC Undrained, NC

Constitutive model (MATLAB) 450.0 kPa 591.0 kPa (450.1) 172.5 kPa 525.5 kPa
Visco-plastic model (PLAXIS) 449.5 kPa 591.1 kPa (450.2) 172.2 kPa 523.7 kPa
Theoretical 450.0 kPa 591.1 kPa (450.0) 172.3 kPa 522.3 kPa
∗Continue expansion after reaching the pre-consolidation surface (Softening)

It may be seen from Table 6.9 that the mobilized shear strength predicted by each model is similar
to the theoretical values which have been determined in Appendix C.3.1. However, as mentioned
in Chapter 5, the accuracy of the visco-plastic model could be increased by reducing the step size
associated to the explicit scheme.

7 A number of 3000 or even less would have been enough.
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Volumetric strain and development of excess pore pressure:
The theoretical change in volume may be determined to εp = 12% and εp = 1.8% for NC and
OC scenario, respectively. The theoretical change in excess pore pressures may be determined to
∆u = 185.1 kPa and ∆u = 48 kPa for NC and OC scenario, respectively. From Figure 6.20 it
may be concluded that the models yield similar response with respect to the development of pore
pressure and change in void ratio and the boundary values correspond to the theoretical values.
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Figure 6.20: Comparing the volumetric change and development of excess pore pressure for the drained
and undrained cases in tri-axial simulation. Red line symbolise MATLAB model, blue line symbolise visco-
plastic model in PLAXIS.

Effective stress path in (p′ : q)-space:
Figure 6.21 shows a similarity in the ESP in both models. However, some deviation may be
observed in the OC undrained scenario. In the undrained scenarios, the water is assumed to be
incompressible (νu = 0.5). The numerical computation in PLAXIS cannot use the value of νu = 0.5
caused by a division with zero when computing the bulk modulus of water. Therefore, it is set to
νu = 0.495 as default in PLAXIS unless otherwise specified which explains the deviation.
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Figure 6.21: Comparing the stress path in (p′ : q)-space in tri-axial simulation from MCC models. Red
line symbolise MATLAB model, blue line symbolise visco-plastic model in FORTRAN.

Hence, it may be concluded that the SCA-R is capable of simulating the MCC behaviour.
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Chapter 7

Soil Parameters

This chapter will clarify the selection of input parameters which have been utilized to perform the
numerical simulations at the embankment located at Onsøy, Norway. The input parameters are
chosen through an initial estimate determined by laboratory data and afterwards calibrated by a
back-calculation procedure to obtain similar response as the laboratory tests.

7.1 General

The procedure for choosing the input parameters is based on standard practice used in Scandinavia
which may be summarized as:

1. Run laboratory tests and interpret the soil parameters from relevant stress domains.

2. Simulate the laboratory tests in a numerical software. The back-calculation is used to adjust
the input parameters to obtain the best fit of the laboratory results.

The soil parameters may be divided into two individual groups depending on their characteristics:

� Stiffness parameters: Essential for settlement calculations. Generally interpreted by oe-
dometer tests.

� Strength parameters: Essential for stability calculations. Generally interpreted by tri-
axial tests.

The above definition deviates slightly from the truth since the soil strength determines the degree
of mobilization which is associated to the deformation. Furthermore, the SCA-R model utilize
input parameters which do not fit into two main groups. Hence, an additional group must be
defined and will be referred to as the advanced input parameters. The SCA-R model requires 15
input parameters1 to access all its features. An overview of the 15 input parameters, their physical
meaning along with the standard method to interpret them may be seen in Table 7.1.

1 16 if the reference time is taken into consideration and two additional parameters added in Chapter 8.
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Table 7.1: An overview of the input parameters used in the SCA-R model and related laboratory tests
associated to interpretation methods.

Type Test type Parameter Unit Physical meaning

S
e
tt

le
m

e
n
t

Index Test e0 - Initial void ratio

1-D Compression test
λi -

Compression index evaluated

(Tri-axial, IL oedometer or CRS) from (ln p′ : εv)-space

1-D Compression test
κ

- Swelling index evaluated

(Tri-axial, IL oedometer or CRS) from (ln p′ : εv)-space

1-D Compression test p′c kPa Apparent yield pressure

(IL oedometer or CRS) (OCRτ )(1) - (Over Consolidation Ratio)

1-D Reconstituted compression
rsi - Intrinsic creep number

(IL oedometer)

1-D Reconstituted compression
x0/rsi,min - Initial amount of bonding

(IL oedometer or CRS)

K0-oedometer or K0-tri-axial νur - Poisson´s ratio at un/reloading

(Radial strains with unloading stage) KNC
0 - K ′0, Normal consolidated region

S
(2

)

Tri-axial ϕcs
o

Frictional angle at critical state

A
d

v
a
n

c
e
d

Tri-axial Undrained αe - Elastic anisotropy

Tri-axial
µ or c -

Control the volumetric and devia-

(Different stress paths) toric rate of rotation

Tri-axial Drained a - Control the rate of degradation of

(Different stress paths) b - bonding due to volumetric and

deviatoric creep strains

Tri-axial/Compression
R - Amount of recovering of x

Rt - Pace of x-recovery

(1) 24 hours.

(2) S=Strength.

The parameters: a, b, R, Rt, and µ/c will not be determined through any experimental data. No
experimental data is available to interpret these input parameters directly. However, the parame-
ters a, b, and µ/c are calibrated through the back-calculation procedure. The magnitude of R and
Rt will be investigated in Section 8.10.
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7.2 Available Data

Norwegian Geotechnical Institute (NGI) has granted access to a great amount of high quality data
consisting of several laboratory tests and some field measurements related to embankment located
at Onsøy. The field measurements are presented by Berre (2013) and may be seen on Figure 7.5.
The entire laboratory data is collected in one report named: Additional Tests on Block Samples
in Connection with Onsøy Test Fill (Berre, 2010). In addition to the experimental data made by
Berre (2010) his report contains additional data from four earlier reports[2,3,4,5]. An overview of
available data may be seen in Table 7.2.

Table 7.2: List of available data related to the test fill at Onsøy.

Source Oedometer Tri-axial*

Berre (2010) 3 10
Wichtmann (2010) 0 5
Lunne et al. (2009) 2 2
Lunne et al. (2010) 2 3
Bamberg (2009) 2 0

*Undrained 9 20

It should be mentioned that the sampling has been done by utilizing a block sampler to obtain
the highest quality samples as possible. The CRS tests have incorporated a creep period of ap-
proximately 10-24 hours between two compression stages. Thereby, a creep parameter may be
interpreted. The tri-axial tests contain both compression and extension tests. The Author sends
his gratitude to NGI allowing access to this high quality data.

7.3 Interpreted Parameters

The interpreted parameters will be divided into four parts: permeability, compression, initial
stresses and strength parameters. For each parameter, an example of how to interpret the pa-
rameter for the sample Block-19-A1-O1 or Block-28-B-11 will be shown and the additional
interpretations are summarized in Appendix F. Notice, in addition to the input parameters re-
quired by the SCA-R model, PLAXIS requires further input parameters which will be described
in Sections 7.3.1-7.3.3.

7.3.1 Permeability Parameters

In PLAXIS, the parameters related to permeability6 are the hydraulic conductivity in horizontal
and vertical direction (kx and ky) along with the change in hydraulic conductivity (ck). The per-
meability and its evolution during loading has been measured through the pore pressure in the
CRS tests given by Berre (2010).

In a standard CRS test the dissipation of pore water would be limited to the upper part of the
sample caused by the impermeable side boundaries and the requirement of measuring the pore
pressure at the bottom of the sample. Hence, the initial hydraulic conductivity (k0) and its evo-
lution from the CRS tests are associated with the vertical hydraulic conductivity. The horizontal
hydraulic conductivity may be higher with respect to the deposition process and the shape of the
clay particles. The PLAXIS models related to Onsøy and made by Mehli (2015a) has utilized a
factor of 1.5 between the horizontal and vertical hydraulic conductivity and for comparison reasons,
the same factor has been chosen in this work.

2 NGI project No 20092109 (Wichtmann, 2010).
3 NGI project No 20091764 (Lunne et al., 2009).
4 NGI project No 20081088 (Lunne et al., 2010).
5 Master Thesis at NTNU (Bamberg, 2009).
6 General input parameters in PLAXIS which are not related to the SCA-R model.
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The change in hydraulic conductivity with respect to the formulation used in PLAXIS is given as:

log

(
k

k0

)
=

∆e

ck
(7.1)

where k is the changed hydraulic conductivity. PLAXIS relates the change in void ratio (∆e) to
the change in volumetric strains by:

∆e = (1 + e0)∆εp (7.2)

where e0 is the initial void ratio associated to stress condition under in situ stresses. The initial
void ratio may be estimated by:

Sr =
wds
e

−→ e = wds︸ ︷︷ ︸
Sr=100 %

where ds =
ρs
ρw

(7.3)

where Sr is the degree of saturation, w is the water content, ds is the relative density, ρs and ρw is
the solid grain and water density, respectively. The assumption of 100 % saturation is common in
Norwegian clays which also appears from the data given by Berre (2010). However, it may occur
due to limitations in the experimental equipment, that the magnitude of Sr exceeds 100 % and
should be corrected, see Appendix F.3. Hence, the change in hydraulic conductivity may be found
by substituting Eq. (7.2) and Eq. (7.3) into Eq. (7.1) which yields:

ck =
(1 + e0)∆εv

log

(
k

k0

) (7.4)

Figure 7.1 shows how the change in hydraulic conductivity behaves during one-dimensional com-
pression test (CRS) for sample Block-28-B-11.
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Figure 7.1: Procedure to interpret hydraulic conductivity and its evolution from Block-28-B-11.

The water content, degree of saturation and grain density is given by Berre (2010). The initial
void ratio may be determined for sample, Block-28-B-11 as:

e0 = wds = 0.6737 · 2.825︸ ︷︷ ︸
(Sr=101.3%)

= 1.90 −→︸︷︷︸
Correction forSr

e0 = 1.88 (7.5)
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The change in hydraulic conductivity may be determined by Eq. (7.4) as:

ck = − (1 + 1.88) · (0.30− 0.024)

log

(
2.3 · 10−10 m/s

1.7 · 10−9 m/s

) = 0.92 (7.6)

This procedure has been done for all available oedometer data which may be seen in Appendix F.
The initial hydraulic conductivity and its evolution (ck) may be seen in Table 7.5 along with the
computed initial void ratios.

Table 7.3: Interpreted permeability parameters from CRS tests.

Block
Depth(1) σ′v0

(1) e0 ki
(1) ck

[m] [kPa] [-] [·10−4 m/day] [-]

3-A1-O1 1.01 10.1 1.28 (1.28) 1.39 0.53(3)

10-A2-O1 3.87 28.6 1.66 (1.64) 3.47 0.58(3)

19-A1-O1 7.45 50.6 2.05 (1.99) 3.59 0.73(3)

22-B-1-CRS 8.86 58.9 2.04 (1.99) 1.50 1.04
22-B-2-CRS 8.91 59.2 2.06 (2.03) 1.62 1.14
26-B1-0-B1-35 10.82 69.9 1.95 (-)(2) 1.16 0.89
26-B1-0-B1-50 10.82 69.9 1.94 (-)(2) 1.16 0.95
28-B-11 11.65 74.5 1.90 (1.88) 1.97 0.92
28-B-12 11.65 74.5 1.91 (1.88) 1.85 0.95
(1)Taken directly from Berre (2010).
(2)The saturation is not available from Berre (2010).
(3)Taken from Mehli (2015a).

When interpreting ck it should be noted that a sudden jump in the linear relationship may be
expected near the pre-consolidation pressure. However, the interpretation should be made for
relevant stress regions as stated by Mehli (2015a).

7.3.2 Compressibility Parameters λ,κ and rsi

The compressibility parameters (λ∗i and κ∗) are related to the MCC model and were defined as the
slope of the NCL and the URL in the (ln(p′):εp)-space, see Section 2.6.1. These compressibility
parameters are commonly interpreted through a CRS or a 24-hour IL oedometer test. However,
the modified parameters need to be transformed into the standard Cam Clay parameters (λi and
κ) to suit the SCA-R model which may be done by:

Compression index: λ = λ∗(1 + e0) =
Cc

ln(10)
=

1

m
(7.7a)

Swelling index: κ = κ∗(1 + e0) ≈ 2Cs
ln(10)

(7.7b)

where Cc and Cs are the compression and swelling index used in other literature and m is the
secant modulus which may be used to determine the creep number (rs)

7. The CRS for Block-19-
A1-O1 may be seen on Figure 7.2 showing the method to interpret the parameters by utilizing a
(ln(σ′11):ε11)-plot. However, the inclination of URL may be affected by using the effective vertical
stress instead of the effective mean pressure. Mehli (2015a) suggested to multiply the inclination
of URL by a factor of two as an assumption of isotropic state during loading. The factor of two
may also be seen in Eq. (7.7).

7 Will be explained later in this section.
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Vertical Effective Stress, σ11‘ [kPa]
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Figure 7.2: Interpreted compression and swelling parameter from Block-19-A1-O1 through the CRS.

From Figure 7.2 the compression and swelling parameter may be determined by:

λ∗i =
∆ε11

ln

(
σ′11,2

σ′11,1

) =
(0.300− 0.000)

ln

(
570 kPa

12 kPa

) = 0.078 −→ λi = 0.232

κ∗ =
∆ε11

ln

(
σ′11,2

σ′11,1

) = 2 · (0.131− 0.107)

ln

(
1000 kPa

1 kPa

) = 0.007 −→ κ = 0.021

The swelling parameter could also be interpreted through the inclination of the initial part of the
stress-strain curve towards yielding. This swelling parameter may be preferable for calculations in
the elastic region where yielding has not occurred. However, one should keep in mind that sample
disturbance will have a larger influence on the initial stress-strain curve compared to the unloading
loop. Regarding the unloading reloading loop, it is of great importance that the loop is not too
short since it may yield a too stiff response. Notice that the intrinsic compression parameter is
interpreted through the inclination of stress-strain curve after all bondings are destroyed and not
the inclination just beyond yielding. This procedure has been done for all available oedometer data
which may be seen in Appendix F. The interpreted intrinsic compression and swelling parameters
may be seen in Table 7.5.

The intrinsic creep number (rsi) may be interpreted through an incremental oedometer, see Section
4.7.6. However, no incremental oedometer data is available. Therefore, it may be approximated
through the creep number (rs). It has been shown through various experimental data in the
literature (see for instance (Leroueil and Marques, 1996)) that the ratio between the compression
parameter and creep number may be assumed as a constant:

λ

rs
≈ Constant (7.9)

Thereby, knowing the creep number (rs), and the compression parameters (λ and λi) the intrinsic
creep number may be estimated. The creep number may be interpreted by the CRS test utilizing
the time resistance concept suggested by Janbu (1969). Hence, rs may be determined as the
inclination of the curve shown in Figure 7.3 which represents the region where development of
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deformation occurs as a function of time under constant effective stresses for sample Block-19-
A1-O1, see Figure 7.2. A more detailed description of the principle suggested by Janbu (1969)
may be found in Appendix C.5.
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Figure 7.3: Interpreted creep number from Block-19-A1-O1 through the CRS.

The creep number may be determined as:

rs =
∆R

∆t
=

1157 min− 326 min

917 min− 0 min
= 126

The compression parameter (λ) associated to the determined creep number (rs) and the intrinsic
compression parameter (λi) need to be determined to approximate the magnitude of rsi. This may
be done through the secant stiffness modulus (m)8 concept suggested by Janbu (1969). The secant
modulus may be determined as the inclination on Figure 7.4 representing the constrained stiffness
(M) during the CRS test for sample Block-19-A1-O1. According to the theory suggested by
Janbu (1969), after yielding a linear relationship between the constrained stiffness and the effective
vertical stresses should be found. However, regarding the structure and the destructuration the
initial part of the relationship has a larger inclination compared to the intrinsic part. Hence, secant
stiffness modulus (m) with structure may be interpreted through Figure 7.4(a) and the intrinsic
secant stiffness modulus (mi) through Figure 7.4(b).
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Figure 7.4: Interpreted compression and swelling index from CRS.

8 See Eq. (7.7) for how to relate m to λ.
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The secant modulus may be determined as:

mNC =
∆M

∆σ′
−→ mNC =

4000 kPa− 0 kPa

210 kPa− 65 kPa
= 27.59 mNC,i =

45000 kPa− 0 kPa

2900 kPa− 65 kPa
= 15.87

The intrinsic creep number for Block-19-A1-O1 may be approximated as:

rsi =
m

mi
rs =

27.57

15.87
· 126 ≈ 219 (7.10)

This procedure has been done for all available oedometer data which may be seen in Appendix F9.

The minimum creep number:
The minimum creep number (rsi,min) which determines the amount of structure relative to the
value of the intrinsic creep number (rsi) may also be approximated. The approximation has been
done through the sensitivity of the soil (St) which is another method to determine the amount of
structure:

x0 = St − 1 and x0 =
rsi − rsi,min
rsi,min

−→ rsi,min =
rsi
St

(7.11)

The sensitivity may be estimated though the bore profile shown on Figure 7.5 utilizing the
undrained shear strengths (undisturbed and remoulded). Figure 7.5 may be divided into four
layers and the dry crust as suggested by Mehli (2015a). For these four layers an average undis-
turbed and remoulded undrained shear strength may be estimated to determine the sensitivity of
the soil, see Table 7.4.

Table 7.4: Determined sensitivity of the clay at Onsøy.

Layer sur suu S∗t

0.6 - 2.0 m 2.5 kPa 11.5 kPa ≈ 4.5
2.0 - 5.0 m 3.0 kPa 16.5 kPa 5.5
5.0 - 10.0 m 3.0 kPa 18.5 kPa ≈ 6.2
10.0 - 25.0 m 6.0 kPa 30.0 kPa 5.0
∗The fallen cone has been utilized to determine St, see Figure 7.5.

The subscript r refers to remoulded and u refers to undistributed. The sample, Block-19-A1-O1,
is taken at a depth of 7.45 m which yields a sensitive of 6.2. Thereby, the minimum creep number
may be determined as:

rsi,min =
rsi
St

=
219

6.2
≈ 35 (7.12)

The determined creep numbers may be seen in Table 7.5 along with other relevant information
regarding each sample. Notice, the magnitude of rsi for Block-22-B-1-CRS have not been
possible to interpret. The method to determine the unit weight of the soil may be seen in Appendix
F.3.

9 The secant modulus was not determined for block-10-A2-01 since it yields unrealistic values.
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Table 7.5: Interpreted data from the laboratory curves for the nine CRS oedometer tests.

Test
Depth(1) σ′v0

(1) ε
(1)
a at σ′v0 ε̇

(1)
a OCR(2) γ λi κ(3) rsi rsi,min

[m] [kPa] [%] [%] [-] [kN/m3] [-] [-] [-] [-]

3-A1-O1 1.01 10.1 0.26 0.6 4.01 17.57 0.129 0.026 270 60
10-A2-O1 3.87 28.6 2.03 0.6 1.84 16.41 0.181 0.020 295 54
19-A1-O1 7.45 50.6 1.95 0.5 1.32 15.64 0.232 0.021 350 56
22-B-1-CRS 8.86 58.9 2.08 0.4 1.32 15.68 0.233 0.034 - -
22-B-2-CRS 8.91 59.2 1.98 0.5 1.31 15.65 0.252 0.034 219 35
26-B1-0-B1-35 10.82 69.9 2.24 0.5 1.31 15.88 0.228 0.026 153 31
26-B1-0-B1-50 10.82 69.9 2.52 0.5 1.39 15.91 0.232 0.025 419 84
28-B-11 11.65 74.5 2.59 0.5 1.17 15.98 0.221 0.026 280 56
28-B-12 11.65 74.5 1.88 0.5 1.25 15.97 0.224 0.031 334 67
(1) Taken directly from Berre (2010).
(2) The pre-consolidation pressure is determined through an average of Janbu and Cassagrande method given by Berre (2010).
(3) κ is measured at the URL part of the stress-strain curve.

Figure 7.5: Bore profile from a 54 mm standard tube sampler. The locations from the sampling may be
seen on Figure 1.2. The bore profile is taken from (Berre, 2013). The black solid lines seperates the strata
and the red dashes lines yields an average undrained remoulded and undistributed shear strength from the
fallen cone in each layer.

Jesper Bjerre (s102905)



7.3. Interpreted Parameters 108

7.3.3 Initial Stresses

The Over Consolidation Ratio (OCR) is normally defined as the apparent yielding pressure divided
with the effective in situ stresses:

OCR =
p′c
σ′v0

(7.13)

The effective in situ stresses and the apparent yielding pressure are given by Berre (2010) for the
different soil samples. The determined OCR may be seen in Table 7.5. It should be mentioned that
the SCA-R utilized the OCRτ parameter where the apparent yield surface is seen as an surface
determined by an intrinsic yield surface and the structure in soil, see Section 4.4 for further details.
These values is assumed to be the same. PLAXIS determines the initial horizontal stresses by the
apparent lateral earth coefficient (K ′0)10. Utilizing a standard soil model in PLAXIS the lateral
earth coefficient would automatically be determined as:

K ′0 =
σ′0xx
σ′0yy

= KNC
0 OCR− νur

1− νur
(OCR− 1) (7.14)

where the formulation in Eq. (7.14) may be graphically illustrated by Figure 7.6.XXXXX Technical University of Denmark

σ′
yy

σ′
p

σ′0
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σ′0
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0

1− νur
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1

Figure 7.6: Overconsolidation stress obtained from primary loading and unloading.

where σ′0xx and σ′0yy are horizontal and vertical effective in situ stresses and σp is the yielding pressure
utilizing PLAXIS notation. However, since a UDSM11 is used the influence of OCR must be set
manually. If not, PLAXIS would assume K ′0 = KNC

0 by default settings. The magnitude of KNC
0

is often assumed to be determined through the frictional angle as suggested by Jaky (1944) which
is also the case in PLAXIS:

KNC
0 = 1− sin(ϕ′) (7.15)

Utilizing the SCA-R model and default settings of K ′0 in PLAXIS it is important to know that
the frictional angle controlling the magnitude of K ′0 is the frictional angle inset in the ”Interfaces”
window and not the frictional angle inset in the window ”Parameters”. The KNC

0 may also be
determined experimentally through for instance a tri-axial compression test with a K ′0-stage. This
has been done for sample Block-19-A2-O1 and Block-10-A3-O1 which may be seen on Figure
7.7. It may be seen that K ′0 = 0.60 and KNC

0 = 0.53 yielding a fiction angle of 28o utilizing
Eq. 7.15. The frictional angle from undrained tri-axial tests will be determined in Section 7.3.4.

10 K′x,0 in PLAXIS notation.
11 User Defined Soil Model.
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Figure 7.7: Evolution of K′0 during CAK0UC testing.

No experimental data is available to determine the unloading value of Poisson’s ratio. Practical
experience has shown that a value of νur = 0.15 yields a good approximation (Nordal, 2014a).
This value has also been suggested by Mehli (2015a) for predicting the soil response at Onsøy.

7.3.4 Strength Parameters

The strength parameter related to the SCA-R model is simply the frictional angle at critical state
(ϕcs). The model has not been extended to incorporate the attraction (a). The frictional angle
may be determined through several undrained tri-axial compression tests which are available by
Berre (2010). However, the data has been modified by removing all data after passing 10% of
vertical strain. It is of the Author’s conviction that data beyond 10 % vertical strain is not reliable
according to the unknown deformation pattern. Seven of the available tri-axial tests in compression
have been used to interpret the friction angle and may be seen on Figure 7.8.
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Figure 7.8: ESP for seven tri-axial tests approaching critical state. K0 means CAK0UC (K0-stage).
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A critical state line and consolidation line (K0−line) has been drawn on Figure 7.8. Utilizing the
CSL, the strength parameters may be interpreted through the inclination (M) and the intersection
with the x-axis. Hence, it yields following values:

Mc =
6 sinϕcs

3− sinϕcs
−→ ϕcs = 36o , a = 5 kPa , K ′0 = 0.53 (7.16)

Sample block-19-A2-T1 and block-10-A3-T4 seems to have been consolidation wrongly by
deviating from the K0−line. However, this is caused by the testing approach (CAK0UC). Hence,
the K ′0 value corresponds to the value found in Section 7.3.3 where the K ′0 = 0.60. Two undrained
tri-axial tests in compression have been performed near the surface and may be seen on Figure
7.9. These tests have been omitted from Figure 7.8 due to their disturbance of the phenomena
happing in or near the dry crust. It has been chosen to visualize strains beyond 10% to see if any
correlation may be found.
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Figure 7.9: ESP for two tri-axial tests near the surface.

The two ESP show some relation but yields a very large frictional angle. However, the relation only
occurs when showing large strains for sample block-3-A3-T212. Furthermore, sample block-3-
A3-T2 is a CAK0UC tri-axial test which explains the deviation from its in situ stresses. It has
been chosen to use the frictional angle interpreted in Figure 7.8 since it yields a more realistic value.

In addition to the strength parameter, the elastic anisotropy parameter (αe) may be interpreted
through Janbu’s pore pressure parameter (D). Thereby, the inclination of the ESP in the beginning
of each test has be measured and the elastic anisotropy parameter has been determined through
Eq. (3.13), see for the interpreted values Table 7.6.

Table 7.6: Interpreted values of the elastic anisotropy parameter (αe).

Block 10-A1-T1 10-A3-T4 18-A-30 19-A2-T1 22-B-9 26-A-2 28-A-5

Depth [m] 3.91 3.91 7.00 7.58 8.89 10.00 11.50
D [-] 0.0 -0.04 -0.12 -0.16 -0.05 -0.11 -0.09
αe [-] 0.0 -0.07 -0.19 -0.24 -0.08 -0.17 -0.14
∗Utilizing νur = 0.15.

12 The testing for sample block-3-B1-T4 stops at ε11 = 10%.
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7.4 Back-calculation

The next step in the procedure of selecting the final input parameters is associated to the calibration
of the interpreted parameters through several back-calculation simulations of the experimental
data. The performance analysis presented in Chapter 8 will mainly focus on how good the SCA-R
model may predict the settlement of the embankment located at Onsøy. Therefore, the aim will be
to calibrate the input parameters in a manner so that the SCA-R model may fit the CRS curves
as accuracy as possible. The calibrated parameters may afterwards be utilized to simulate the
tri-axial tests in the same depth as the CRS tests. Applying this approach some deviation may be
expected due to the chosen calibration method with respect to the back-calculation of the tri-axial
tests. However, the input parameter µ/c is mainly associated to the failure criteria and may be
changed to fit the tri-axial tests as good as possible.

Back-calculation of CRS

Performing back-calculations for available soil models in PLAXIS may be done either through the
oedometer option in Soil Test or through a FEM in PLAXIS. However, the SCA-R model is not ca-
pable of utilizing the oedometer option in Soil Test since the SCA-R model uses the initial stresses
to generate the intrinsic pressure (p′mi) where other models may use the option tab “vertical pre-
consolidation stress”. However, one may use the general option in Soil Test by applying the in situ
stresses which results in correct pre-consolidation pressure (apparent yielding point) but initiate
from a wrong stress condition (does not start from zero)13. Utilizing a FEM in PLAXIS would
remove the limitations related to the Soil Test and the SCA-R model would be able to simulate
the correct soil response in a CRS simulation.

Finite Element Model:
The boundary value problem is assembled through an axisymmetric model utilizing 15-node ele-
ments. The model dimensions are 2 x 2.5 cm referring to the height and radius, respectively. The
unit weight of the sample is ignored since its influence will be negligible. The vertical boundaries
are fixed against any horizontal displacement caused by axisymmetric conditions and as default in
PLAXIS the bottom boundary will be fixed against any vertical and horizontal displacement. The
pore water is free to dissipate through the top boundary while the other boundaries are closed for
dissipation, see Figure 7.10.

XXXXX Technical University of Denmark

Closed

2.5 cm

2.0 cm Consolidation
Boundary

Load

Axis

1

Figure 7.10: Principal sketch of the boundary value problem setup in PLAXIS used to back-calculate the
CRS oedometer tests.

It should be mentioned that the water level is located at the bottom boundary of the sample and
drained conditions are utilized.

13 One may use the general option by initiating the test very close to zero (5-15 kPa) and by manipulation of the
OCR to obtain a “correct” apparent yielding pressure.
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The CRS test may be divided into four stages: 1) Loading stage, 2) Creeping stage, 3) Unloading
stage, and 4) Loading stage. The procedure for the back-calculation may be assembled as:

� Create the in-situ stresses by applying a thin layer (0.01 cm) of linear elastic material above
the test sample. Adjust the unit weight of the linear elastic material so it corresponds to the
in situ effective stress created by the overburden soil14. Remember that K ′0 influences the
initial stress condition and should not be confused with KNC

0 .

� Unload the sample by changing the unit weight of the overburden material to obtain a vertical
effective stress below 10 kPa.

� Reset the displacement to zero and initiate the CRS through the described displacement
function in PLAXIS towards the creep stage.

� During the creep state, the boundary criteria must be changed to a line load which magni-
tude should correspond to the effective stresses in the soil body generated by the described
displacement.

� The unloading phase is created by changing the magnitude of the line load.

� The last loading step is applied by removing the line load and activating the described
displacement towards the final displacement.

During the whole procedure it should be remembered to adjust the time interval so it corresponds to
laboratory strain rate. The calibration procedure is an iterative process since a change in material
properties would change the effective stresses induced by the first described displacement. Thereby,
the magnitude of the line load during the creep phase must be changed as well. Figure 7.11 shows
a back-calculation curve calibrated to a laboratory curve for the sample Block-19-A1-O1.
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Figure 7.11: Back-calculation of the CRS response for Block-19-A1-O1.

From Figure 7.11 a clear deviation from the initial part of the stress-strain path approaching yield-
ing may be observed. This is caused by the decision of fitting the curve to the unloading/reloading
part instead of the initial part. The SCA-R model treats these regions by the same elastic re-
sponse using the same parameter and therefore only one area can be fitted. Another reason why
the unloading/reloading has been chosen is due to the fact that the sample disturbance would in-
fluence the stress-strain curve before yielding in a greater manner compared to the rest of the soil
response. A more smoother bend at the apparent yielding point may be determined by increase
the rate of visco-plastic strains which are associated to time step. This procedure has been done
for all available oedometer data which may be seen in Appendix F.6. The utilized parameters may
be seen in Table 7.7.
14 Remember to choose a high permeability of the linear elastic material to ensure free water dissipation.
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Table 7.7: Overview of the input data used in the back-calculations of the CRS tests. The second row
shows the interpreted values from laboratory tests.

Test Depth ˙ε11
(1) ˙ε11

(2) λi κ e0 OCRτ rsi rsi,min x a b

0.131 0.015 1.30 4.20 700 700 0 0 0
3-A1-O1 1.01 m 0.60 0.62

0.129 0.026 1.28 4.10 270 60 3.50 - -
0.180 0.030 1.70 1.70 550 90 5.11 12 10

10-A2-O1 3.87 m 0.60 0.72
0.181 0.020 1.70 1.83 295 54 4.46 - -
0.240 0.033 2.02 1.23 600 110 4.45 12 9

19-A1-O1 7.45 m 0.52 0.55
0.232 0.026 1.99 1.32 350 56 5.23 - -
0.255 0.034 1.99 1.19 575 100 4.75 12 9

22-B-1-CRS 8.86 m 0.52 0.57
0.233 0.034 1.99 1.32 - - - - -
0.254 0.034 2.03 1.19 575 100 4.75 12 9

22-B-2-CRS 8.86 m 0.58 0.67
0.252 0.034 2.03 1.31 219 35 5.26 - -
0.219 0.034 1.95 1.18 600 104 4.77 12 10

26-B1-0-B1-35 10.82 m 0.51 0.53
0.228 0.026 1.95 1.31 153 31 3.94 - -
0.219 0.034 1.94 1.18 600 104 4.77 12 10

26-B1-0-B1-50 10.82 m 0.50 0.56
0.232 0.025 1.94 1.39 419 84 3.99 - -
0.220 0.027 1.88 1.01 600 110 4.45 14 9

28-B-11 11.65 m 0.34 0.58
0.221 0.026 1.88 1.17 280 56 4.00 - -
0.217 0.027 1.88 1.12 600 104 4.77 12 9

28-B-12 11.65 m 0.34 0.58
0.224 0.031 1.88 1.25 334 67 3.99 - -

(∗) KNC
0 = 0.53, K ′0=0.60, ϕ = 36o, νur = 0.15, R = Rt = µ = αe = 0.0. Layer 0.6 - 2.0 m

(∗∗) Utilizing Mohr-coulomb failure criteria and RH suggested by Wheeler. Layer 2.0 - 5.0 m
(1) First compression rate (%/h) Layer 5.0 - 10.0 m
(2) Second compression rate (%/h) Layer 10.0 - 25.0 m

The input parameter αe is set to zero in these calculations. The influence of this input parameter
is more clear in the (p′ : q)-space during undrained conditions. Therefore, the parameters will be
selected in Section 7.4. However, a magnitude which differs from zero will influence the stress-strain
curve in the oedometer calculation. A positive αe would reduce the inclination of κ and a nega-
tive would increase it. The effect has been investigated in Appendix F.6.1 and the effect is minimal.

It appears from Table 7.7 that most of the interpreted parameters are very similar to the input
parameters used in the back-calculation. However, the intrinsic creep number deviate from this
conclusion. Recalling the approximate method to interpret the ris yields two reasons why this
deviation occurs. Firstly, the assumption that the ratio between λ and rs is constant is only an
approximation and is not true if any organic content is present in the soil. As mentioned in Section
1.7.1 some organic content has been found down to 10 m below surface. The next reason may be
caused by the rs and the λ∗. The interpreted value of λ∗ is done at a stage where the structure
more or less is the same as in situ where the rs is interpreted in a stage where some structure is
destroyed. The utilized values (rsi) have been compared to the values used in the n-SAC model
presented in (Mehli, 2015a). Comparing these values a similar magnitude may be observed.

Back-calculation of Tri-axial Tests

The back-calculations of the tri-axial tests are performed to see how accurate the SCA-R model
may capture the soil response towards critical state. The same input parameters determined in
the back-calculations of the CRS simulations will be used to see how good these parameters suits
the soil response. However, the input parameters, µ and αe will be chosen to obtain a better fit.
The utilized input parameters may be seen in Table 7.8.

Table 7.8: Calibrated values of µ and αe from the tri-axial tests. Brackets are the interpreted values.

Layer Block Depth µ αe

2.0 - 5.0 m 10-A1-T1 3.91 m 8.0 0.0 (0.00)
18-A-30 7.00 m 4.0 -0.12 (-0.19)

5.0 - 10.0 m
22-B-9 8.89 m 12.0 -0.1 (-0.08)
26-A-2 10.00 m 8.0 -0.2 (-0.17)

10.0 - 25.0 m
28-A-5 11.50 m 8.0 -0.1 (-0.14)
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The back-calculations have been performed in the tri-axial option in Soil Test. To compare to the
performance of the SCA-R model it has been chosen to show how accurate the Soft Soil Creep
(SSC) soil model in PLAXIS may capture the response. The input parameters for the SSC have
been taken from Mehli (2015a) associated to his first prediction. Figure 7.12 shows the output
from the simulated undrained tri-axial test for sample Block-18-A-30.
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(a) Effective stress path.

Vertical Strain, ε11 [%]
0 5 10 15 20

D
ev
ia
to
ri
c
S
tr
es
s,
q
[k
P
a]

0

10

20

30

40

Measurement
SAC-R
SCC

(b) Stress-strain relationship.
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(c) Development of pore pressure.

Figure 7.12: Comparison of tri-axial measurements from Block-18-A-30 to the SCA-R model and the
SSC soil model. Utilizing µ = 4.0 and αe = -0.12.

From Figure 7.12 it can be observed that the SCA-R model predicts the soil response in a relatively
accurate manner with the input parameters calibrated to the CRS laboratory curves. The SCA-R
model is able to capture the inclined ESP during the first part of the ESP where the SSC only
is able to simulate a vertical response, see Figure 7.12(a). Each model yields a too high apparent
yielding compared to the measured values. However, this could be adjusted if the input parame-
ters were calibrated to fit the tri-axial tests. From Figure 7.12(b) it can be seen that the SCA-R
may capture the effect of destruction of structure whereas the SSC yields a response which is very
inaccurate due to its limitation regarding destruction of structure. The SCA-R seems to capture
the pore pressure in a fairly good manner, see Figure 7.12(c) whereas the SSC model only captures
half of the maximum excess pore pressure. This procedure has been done for five tri-axial tests
which may be seen in Appendix F.6.3.

It may be concluded that the SCA-R model is able to capture several of the features observed in
natural soft clay with respect to the back-calculations of the CRS and tri-axial tests. This may be
seen as an advantages relative to the SSC soil model which may either over- or underestimate the
soil response depending on the case.
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Chapter 8

Predictions and Performance

The purpose of this chapter is to present the predictions and the performance of the SCA-R model
associated to the test fill located at Onsøy. A first prediction utilizing the input parameters given in
Chapter 7 and a final prediction with some few modifications will be presented. The performance of
the SCA-R is analysed by comparing these predictions to field measurements and similar predictions
computed by other soil models. Access to similar predictions from five other soil models has been
granted by Mehli (2015b) from NGI. This chapter corresponds to a combined results and discussion
chapter with a discussion regarding the recovering effect in the end. It should be mentioned that
the SCA-R model has been slightly modified through some early analysis which will be highlighted
during this chapter.

8.1 Finite Element Model in PLAXIS

The finite element model of the embankment located at Onsøy is assembled in the same manner as
suggested by Mehli (2015a). The performance of the SCA-R model will be compared to other soil
models in Section 8.5. Hence, the influence from the finite element model itself should be minimal
if the performance of these soil models should be compared. A detailed geometric description of
the embankment and the surrounding strata, which have been used by Mehli (2015b), may be
found in (Berre, 2013). The strata may be divided into four clay layers and a dry crust. Four
trenches are located in the dry crust. These are man-made to speed up the dissipation of excess
pore pressure. The water level is located 0.2 m below terrain, assuming constant hydrostatic head
through the strata.

Only half of the embankment is modelled utilizing symmetry around the centreline of the embank-
ment to reduce the computational time. The model is assembled by 15-noded triangular elements
and assumes plane strain condition with respect to the shape of the embankment. The discretiza-
tion of model is assembled through a fine mesh utilizing a higher refinement in the three upper clay
layers. In total, 1629 elements (13383 nodes) are presented in the model and may be seen on Figure
8.1. The finite element model uses the default fixities in PLAXIS, i.e. fixed against any horizontal
movement in the vertical boundaries and constraints for any movement in the bottom boundary.
The left vertical boundary is closed for dissipation of excess pore pressure due to symmetry and
the rest is left open. One could argue why the bottom boundary is left open. This discussion will
not be presented here and it is chosen to open the boundary to be able to compare the different
soil models, see Mehli (2015b) for further details.

The default numerical control parameters are utilized during the calculation phases. As a conse-
quence of large deformation, it has been chosen to activate the updated mesh and water pressure
function during the computation. A short discussion regarding the advantages of utilizing updated
mesh and water pressure is given by Mehli (2015a) with respect to the site at Onsøy. In gen-
eral, the theory behind FEM is made for small deformations. Therefore, significant deformation
would violate the assumptions related to the theory used in FEM. However, an updated mesh may
compensate for the significant deformation and permit to utilize the FEM for huge deformations.
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8.1. Finite Element Model in PLAXIS 116

Updated water pressure will consider the buoyancy effect, i.e. soil elements which move below the
water level will change unit weight and the water level will follow the deformed surface.

Figure 8.1: Finite element model in PLAXIS of the embankment at Onsøy.

8.1.1 Staged Construction

An overview of the construction phase and the associated duration of each task may be seen in
Table 8.1. A ”Real time” is introduced to compare the PLAXIS predictions to measured field data.
The calculation types are plastic and consolidation for construction of the embankment and for
the waiting phases, respectively.

Table 8.1: Overview of the construction process and measured readings (Mehli, 2015b).

Phase Description
Phase duration Accumulated time Real time

[days] [days] [days]

0 Initial phase - K0-Procedure - - 22
1 Fill (0.5 m) 1 1 23
2 Wait 1 2 24
3 Fill (0.5 m) 1 3 25
4 Wait 3 6 28
5 Fill (0.5 m) 1 7 29
6 Wait 3 10 32
7 Fill (0.5 m) 1 11 33
8 Wait 2 13 35
9 Fill (0.3 m) 1 14 36
10 Wait 6 20 42
11 Wait 24 44 66
12 Wait 38 82 104
13 Wait 43 125 147
14 Wait 37 162 184
15 Wait 145 307 329
16 Wait 227 534 556
17 Wait 235 769 791
18 Wait 274 1043 1065
19 Wait 43 1086 1108
20 Wait 12 1098 1120
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8.2 General Observations

Early analysis have shown that the implemented time evolution of the plastic multiplier generates
visco-plastic strains in areas far away from the constructed embankment where the magnitude of
visco-plastic strains should be negligible. This may be observed by analysing the development of
excess pore pressure which is associated to undrained creep (undrained conditions). To avoid the
unrealistic predictions, a limitation associated to the time evolution of the plastic multiplier is
implemented as suggested by Grimstad and Degago (2010):

λ̇ =
1

τrsi

〈(
peq

(1 + x)p′mi

)ζirsi
− τ

tmax

〉
mKNC

0
(8.1)

where tmax is a new input parameter yielding a restriction to the time evolution of the plastic
multiplier through the Macaulay bracket and the reference time.

However, introducing Eq. (8.1) does not satisfy the excess pore pressure beneath the test fill with
respect to the field measurements. The variation may be explained by the utilized permeability
parameters ki and ck, which yield a dissipation pace far from field measurements, see (Berre,
2013). The permeability parameters are determined by measuring the change of pore pressure in
the bottom of the oedemeter test. Hence, the permeability parameters representing the site are
linked to small samples with a dimension of 20 mm x 50 mm (height and diameter, respectively)
and may not capture the real permeability conditions for the site. An investigation of the ratio
between the vertical and horizontal strains gives an idea of the drainage conditions associated to
the constant volume during undrained conditions and may be seen on Figure 8.2.

the factor of safety is reduced from 1.35 to 1.20. The shear strength
of the sand fill was found from drained compression triaxial tests
assuming that the friction angle that will be mobilized in the fill
is equal to the minimum angle found from the tests at large
strains, i.e., equal to 39.1°.

If the strength values from the triaxial and the DSS tests pre-
sented in Fig. 19 are used for the slip circle in Fig. 24, a factor of
safety of 1.14 is obtained. If it is required that all shear resistance
values along the slip circle be defined at the same magnitude of
shear strain, the factor of safety for the slip circle in Fig. 24 is
reduced to 1.06. The mobilized shear strain is then equal to 9%.

For the middle third of the fill, plane strain triaxial tests will be
more relevant than axially symmetric tests. According to tests
reported by Ladd et al. (1971) on re-sedimented Boston Blue Clay,
the ratio between axisymmetric and plane strengths were 0.97
and 0.815 for compression and extension triaxial tests, respec-
tively. If such ratios are taken into account for the slip circle in
Fig. 24, the computed factor of safety will increase from 1.06
to 1.10.

According to Berre and Bjerrum (1973), the undrained shear
strength from compression triaxial tests on plastic Drammen clay
when time to failure is about 10 weeks (i.e., about 105 min) is about
15% lower than found by standard tests where time to failure is
about 2 h. The plasticity index is about the same for the plastic
clay from Drammen and the Onsøy clay down to a depth of about
8 m. If the long-term undrained strength for the Onsøy clay is
assumed to be 15% lower than for tests performed with conven-
tional laboratory rates, the calculated factor of safety will be re-
duced to 1.10(0.85) = 0.94. According to a summary given by Lunne
and Andersen (2007), the rate effect on the undrained shear
strength is likely to be about the same for triaxial (compression
and extension) and DSS tests.

Another factor that has to be considered is the temperature
effect on the undrained shear strength. Preliminary tests on the
Onsøy clay indicate that the strength at ground temperature, i.e.,
at about 7.5 °C, may be about 10% higher than the strength mea-
sured at room temperature. This will increase the calculated fac-
tor of safety to 0.94(1.10) = 1.03.

This means that according to the laboratory tests, the ground
below the Onsøy fill would have been very close to failure if no
drainage had taken place. It might have failed if the test fill
build-up had been more rapid (it took 15 days), the maximum
drainage path down to the critical slip surface had been longer
(more than about 4.5 m), and (or) the minimum values of the
coefficients of consolidation had been lower (lower than about
0.9 × 10−7 m2/s). This view is supported by Figs. 14 and 15, which
show that the excess pore pressure for depths smaller than about
10 m continues to increase up to about 30 days after end filling.
This is considered to be due to “creep strains”, which is a type of
strain that will take place with time at constant effective stresses.
This type of strain will also take place when the effective stresses
change, and in this case leads to a temporary increase in excess
pore pressure after end of filling.

In this connection it should be noted that the coefficients of
consolidation from oedometer tests just above the apparent pre-
concolidation stress, pc

′, is about 10 times lower for the Bangkok
than for the Onsøy clay. Therefore the increase in computed fac-
tor of safety at failure with increasing plasticity, as reported by
Bjerrum (1973), is not only due to the increasing rate effect on the
undrained strength, but also due to the decreasing amount of
drainage with increasing plasticity.

Settlement calculations
The strain contours in Figs. 10, 11, and 12 and the curves in Fig. 13

show that the horizontal strains in the field are relatively small
compared to the vertical ones below the longitudinal axis of the
fill. For an undrained plane strain condition the two strains
should be approximately equal. Below the longitudinal axis the
horizontal strains probably are even smaller compared to the
vertical ones shown in Fig. 13.

It was therefore decided to base the drained interpretation on
oedometer and drained triaxial tests, and limit the analysis to
what is going on under the longitudinal axis of the fill. Figure 25
shows a plot of vertical strain versus depth, calculated from
oedometer tests, as the difference between the strain at �v0

′ +
(��V)final according to the 24 h virgin compression line minus the
strain at �v0

′ (this implies that in Fig. 25, in the three figures intro-
duced in the section titled “Comparison of stress–strain-time re-
lationships obtained from measurements in the field and from
laboratory tests”, and in Table 2 all strain values are zero at �v

′ =
�v0

′ ). The increase in total vertical stress with depth when the fill is
completed, (��V)final, has been calculated from charts from the
theory of elasticity for a strip load, as presented by Lambe and
Whitman (1979). Figure 25 also shows strain values obtained from
the three Ko-triaxial tests, which are seen to agree quite well with
the values obtained from the oedometer tests. The strain values
from the Ko-triaxial tests are all after 24 h and therefore directly
comparable with the values from the 24 h virgin compression line
for the oedometer tests. The deepest oedometer test is for a sam-
ple from a depth of 10.8 m. Below this depth the plot is extrapo-
lated down to about 18 m. The strain versus depth curve from the
oedometer tests in Fig. 25 should represent the final strain, �final,
when all excess pore pressures have dissipated. The distribution
of �final corresponds to a total settlement at the ground surface of
1.2 m while the observed settlement at day No. 1116 is about
0.68 m. The difference between 1.2 and 0.68 m is interpreted to be
mainly due to incomplete consolidation.

Below, an attempt has been made to estimate the degree of
consolidation, U, at day No. 1116, assuming one-dimensional con-
solidation. All retardation in the compression is assumed to be

Fig. 13. Ratio between horizontal and vertical strain versus depth
below the centreline of the fill. The strains are calculated from field
measurements.
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Figure 8.2: Ratio between the horizontal and vertical strains below the centreline of the embankment from
field measurements. Taken from (Berre, 2013).

The construction of the embankment is finished at day No. 36 where undrained conditions may
be expected regarding the permeability for a natural soft clay. However, it may be observed from
Figure 8.2 that the upper part of the strata clearly represent a scenario where significant dissipation
of pore pressure has occurred. Berre (2013) has suggested that the difference in permeability may be
explained by remnants of vertical root holes which have been found in the upper part of the strata.
These roots may have a large influence associated to field measurements and minor influence in a
CRS test. To compensate for this phenomenon the permeability parameters suggested by Mehli
(2015a) will be utilized in the first prediction.
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8.3 First Prediction

The dry crust (0.00 - 0.60 m) differs from the remaining part of the strata. This is a consequence
of the distance to the ground surface. The dry crust is affected by temperature fluctuations and
other natural phenomena which lead to a weathering and hardening effect on the soil. Thereby, the
main features associated to natural soft clay, i.e. structure, anisotropy, and creep may have minor
influence to the mechanical soil response. Therefore, the soil model for the dry crust is chosen
to be the Soft Soil model and utilizing the soil properties given Table 8.2 as suggested by Mehli
(2015a).

Table 8.2: Input data for material layer modelled with Soft Soil.

Dry crust
γ e0 λ∗ κ∗ µ∗ ky ·10−4 kx ·10−4 ck OCR POP

[
kN/m3

]
[-] [-] [-] [-] [m/day] [m/day] [-] [-] [kPa]

0.0 - 0.6 m 17.80 1.2 0.065 0.005 - 100.0 100.0 1 1.0 170

ϕ = 28o, c′ref = 3 kPa, ψ′ = 0o, νur = 0.15, KNC
0 = 0.55, and K′0,x = Auto.

The embankment and the trenches consist of the same material which may be classified as sand.
The soil model for the fill material is chosen to be Mohr-Coulomb and the properties may be seen
in Table 8.3 which have been suggested by Mehli (2015a).

Table 8.3: Input data for material layers modelled with Mohr-Coulomb.

Sand fill
γ e0 ϕ′ c′ref ky ·10−4 kx ·10−4 ck ·1015 E′ ν’ K ′0,x[

kN/m3
]

[-] [o] [kPa] [m/day] [m/day] [-] [kPa] [-] [-]

20.30 0.50 39.0 0.01 100,000 100,000 10 20 000 0.30 Auto

The remaining part of the strata is simulated through the SCA-R model. The soil parameters for
the first prediction may be seen in Table 8.4 which is assembled through the information given in
Chapter 7, see Table 7.1. The input parameters are chosen as an overall judgement for the inter-
preted values from the laboratory tests and the values used in the back calculations. Hence, the
magnitude of OCRτ in layer 2 (2.0 - 5.0 m) is relatively higher than the sample taken at level 3.91
m. This is caused by the assumption that the upper part of the layer is affected by the magnitude
of OCRτ associated to the sample taken at level 1.01 m. This procedure has been performed when
selecting all the input parameters through linear interpolation.

Table 8.4: First prediction of input data for material layers modelled with SCA-R.

Layer
γ λi κ e0 OCRτ rsi rsi,min x a b αe kx ·10−4 ky ·10−4 ck

[kN/m3] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [m/day] [m/day] [-]

0.6 - 2.0 m 17.80 0.130 0.025 1.29 4.00 660 150 3.40 12 9 0.00 20.0 15.0 0.50

2.0 - 5.0 m 15.60 0.180 0.030 1.70 2.10 550 90 5.11 12 9 -0.10 20.0 15.0 0.50

5.0 - 10.0 m 15.60 0.240 0.030 2.00 1.40 600 100 5.00 12 9 -0.12 2.0 1.5 1.00

10.0 - 25.0 m 16.00 0.220 0.030 1.90 1.30 900 150 5.00 12 9 -0.15 0.5 0.03 1.00

KNC
0 = 0.53, K ′0,x = 0.60, tmax = 300.000 days, τ = 1 day, νur = 0.15, ϕcs = 36o, µ = R = Rt = 0, and MC failure criteria.
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It may be observed that the evolution of the anisotropy (µ) is set to zero caused by the high friction
angle which violates the criteria from the rotational hardening suggested by Wheeler et al. (2003).
The two other rotational hardening rules could have be activated but it has been chosen to inves-
tigate the performance of the SCA-R model without any evolution of anisotropy. The recovering
of the structure (R) and its pace (Rt) are set to zero. It has not been possible to estimate the
magnitude of these parameters. Hence, it has been chosen not to take the recovering of structure
into account during the first prediction. However, if the predictions requires a reduction in creep
strains they may be activated.

The settlement just beneath the center of the embankment may be seen on Figure 8.3(a). The first
prediction seems to fit the measured field data in an acceptable manner. However, a tendency of
undershooting the settlement in the early primary consolidation and overshooting the settlement for
the long term may be observed. The settlement is directly coupled to the excess pore pressure and
the settlement should be analysed simultaneously with the excess pore pressure. The undershooting
may be explained by the deviation of the excess pore pressure just after finishing the embankment
(day No. 36). After construction the model estimates a too high pore pressure with respect to the
field measurements, see Figure 8.3(b). The overshooting of settlement may again be associated to
the dissipation of pore pressure where the model estimates a smaller magnitude of the excess pore
pressure with respect to the field measurements. Hence, more water has been pressed out of the
clay resulting in higher deformation.
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(b) Excess pore pressure at the centreline.

Figure 8.3: Measurements and predictions of the embankment (SCA-R: First prediction).

As observed in Figure 8.3(b), the PLAXIS prediction and the measured field data for the long term
deviates with four days (1116 vs. 1120). The performance of the SCA-R model will be compared
to other soil models in Section 8.5. These soil models compares their predictions of day No. 1120
to the field measurements of day No. 1116. To be consistent, the same procedure is used. The
deviation of four days is assumed to be insignificant for the long term.

The horizontal displacement 5.0 m away from the centreline of the embankment may be seen on
Figure 8.4(a). Notice the inexplicable difference in field measurements between East and West side
of the embankment, see (Berre, 2013) for further details. The SCA-R model has trouble to capture
the horizontal deformation in the layers 2.0 - 14.0 m for the short term. This may be associated
to the undrained deformation where the undrained stiffness is too small. However, another effect
could be associated to the relative permeable layers in the upper part of the strata. Hence, the
condition would deviate from the undrained condition and the volume will not be constant which
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may reduce the horizontal displacement. The long term predictions seems to capture a more
correct tendency in the upper part of the strata. In general for the short and long term, the model
overshoots the horizontal deformation in the lower part of the strata (from 10.0 m and below).
This is caused by the effect of small stiffness which is not incorporated in the SCA-R model. The
vertical strain at the centreline may be seen on Figure 8.4(b).
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(a) Horizontal displacement 5.0 m from the centreline.

Vertical Strain, ε11 [%]

0 5 10 15

D
ep

th
,
d
[m

]

0

2

4

6

8

10

12

14

16

18

20

Day 36
Day 1116
Day 36 (PLAXIS)
Day 1120 (PLAXIS)

(b) Vertical strain at the centreline.

Figure 8.4: Measurements of the embankment (SCA-R: First prediction).

The vertical strain shows a tendency of overestimating the field measurements which may be caused
by the assumption of plain strains in PLAXIS. In reality, the embankment cannot be explained
by plane strains and would reduce the vertical strains if deformation into the plane was allowed.
The sudden jump in the vertical strain for the short term may be explained by the stiffness in the
upper layers. The restrained stiffness modulus may be determined as:

M = mσ′v (8.2)

where m is the secant modulus and σ′v is the vertical effective stress. The upper part of the layer
would have a lower stiffness yielding a higher strain. Another explanation could be the discretiza-
tion of the finite element model. Utilizing a too coarse mesh yields predictions which are very
sensitive to refinement. A mesh analysis will be given in Section 8.8 for the predictions associated
to the SCA-R model.

Each plot in Figure 8.4 shows a curious tendency for the long term (day No. 1120) regarding
the PLAXIS predictions by missing the top part of the data. The plotted data is taken from a
vertical cross section through a chosen x-coordinate in the output window in PLAXIS for both
the short and long term. The plotted data should initiate from approximately 0.7 meter below
the initial surface as a result of the settlement but for some reason it initiates lower. This is most
likely caused by an error in the plotting approach in PLAXIS when utilizing the updating mesh.
It is concluded that the predicted data at the given level is correct and the missing upper part is
caused by some communication issue internal in PLAXIS. The same tendency may be observed
for standard soil models in PLAXIS and the tendency is therefore not associated to the SCA-R
model, see Section 8.5.
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8.4 Final Prediction

The input parameters may be calibrated to obtain a better fit of the field measurements by
analysing the output of the first prediction. The calibration procedure may be relatively complex
since many input parameters are linked together and an output value (for instance, settlement)
may be reduced or increased though several input parameters. Hence, to obtain a clear and rela-
tively simple optimization process, guidelines should be assembled through the knowledge of the
limitations of the soil model along with the coupling between the input parameters.

8.4.1 Sensitivity Analysis of Creep

The purpose of the optimization process is to adjust the input parameters in order to minimize
the difference between the field measurements and the predictions from PLAXIS without violating
the input parameters or the soil model. It has been shown that the visco-plastic strains have a
significant influence for the long term with respect to the deformation and excess pore pressure.
Hence, the scope of this section is to investigate the sensitivity of the creep strains to obtain a
better understanding of the development of creep strains. Furthermore, to analyse the contribution
from each input parameter to perform at better optimization process. The development of creep
is mainly controlled by three parameters, OCRτ , rsi and the internal irrecoverable compressibility
(ζi) which is defined as:

ζi =
λi − κ
1 + e0

(8.3)

A sensitivity analysis may be performed by keeping two parameters constant and the last parameter
variable. Hence, the sensitivity of visco-plastic strains may be associated to one single parameter
in each analysis. Figure 8.5 shows a sensitivity analysis related to the time evolution of the plastic
multiplier for the three parameters and the input parameters may be seen in Table 8.5.

Table 8.5: Standard input parameters used in the sensitivity analysis for creep development.

1. Analysis 2. Analysis 3. Analysis

ζi [-] 0.067 0.067 Variable
OCR [-] 1.10 Variable 1.10
ris [-] Variable 300 300
∗In all analysis the reference is set to τ = 1 day.
∗∗ζi = 0.067 (Typical value).

It may be observed from Figure 8.5(a) that the development of visco-plastic strains are very sensi-
tive to changes in OCRτ . A minor increase in OCRτ would cause a major reduction in creep rate,
see Figure 8.5(b). The intrinsic creep number may be defined as the second most dominant input
parameter with respect to the sensitiveness, see Figure 8.5(a). The third parameter (ζi) may be
a bit complex to analyse. Figure 8.5(c) indicates that the time evolution of the plastic multiplier
is less sensitive to changes in ζi which may be changed by either, λ, κ or e0. However, a change
in each of these parameters would influence the effective stresses. Hence, a change may indirectly
influence the development of visco-plastic strains which cannot be seen from Figure 8.5(c). The
contribution of this parameter is still seen as less compared to the others.

It should be mentioned that the sensitivity analysis does not incorporate the destruction of the
structure (x). The evolution of the plastic multiplier with time would destroy the structure and
change the magnitude of OCRτ through the change in x by:

1

OCRτ
=

peq

(1 + x)p′mi
(8.4)

Hence, the analysis where the OCRτ is kept constant is only true for cases where no destruction
occurs. Still, the sensitivity analysis gives an idea of the input parameters related to development
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of visco-plastic strains. It should be remembered that changes in ζi, OCRτ and ris would yield a
change in the initial deformation during the construction of the embankment.
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Figure 8.5: Sensitivity analysis of the input parameters related to time evolution of the plastic multiplier.
The utilized parameters may be seen in Table 8.5

8.4.2 Modifications

It has been chosen to optimize the input parameters by fitting the settlement just beneath the
center of the embankment. Recalling that the settlement is directly coupled to the excess pore
pressure and should be taken into consideration when fitting the settlement. The dissipation of the
excess pore pressure is determined by the permeability, its evolution during volume changes and
the boundary conditions (drainage path). Furthermore, undrained creep strains contribute to ex-
cess pore pressure during undrained conditions. The first modification is the vertical permeability
which is increased in the two top layers to reduce the excess pore pressure after the construction
phase of the embankment. In addition, the evolution in permeability is increased by reducing the
value of ck in the two top layers. Hence, a decrease of the excess pore pressure in the initial part
and increase at the long term should be expected and may be seen on Figure 8.10(a). In addition,
it has been chosen to close the bottom boundary for dissipation of pore water caused by the Author
comprehension of reality.

The stress history and creep rate are controlled by the value of OCRτ in each layer. By recalling
the definition of OCRτ , the layer would feel a different overburden stress throughout the layer. The
top part would feel a lower overburden compared to the bottom part, see Figure 8.6. Therefore, an
average value of OCRτ has been utilized for each layer in the first prediction. As a consequence,
the top part of each layer would experience a lower apparent yielding stress and the bottom part
would be more resistant to creep strains. Hence, the uneven distribution of overburden stress may
be handled by defining the overconsolidation through the overconsolidation pressure (POP ). The
difference between the OCRτ formulation and the POP formulation may be seen in Figure 8.6.
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Figure 8.6: Definition of OCRτ and POP .

Extending the SCA-R model to incorporate POP requires some simple modifications in the code
related to the definition of the intrinsic effective pressure. The modification is performed in the
initializing task where following changes are made:

p′mi =
peqOCRτ

1 + x
−→ p′mi =

peqOCRτ + POP

1 + x
(8.5)

When using sing POP the SCA-R model would automatically set OCR = 1.0. The stress history
for the three upper layers (0.6 - 10.0 m) is changed from OCR to POP to obtain a more even
distribution. A POP = 20 kPa has been chosen to account for the previous overburden stress or
the consequence of creep. However, the bottom layer would still utilize the OCR value to insure
that no creep strains would occur in this layer. The removal of unwanted creep strains are ensured
through the limitations incorporated by Eq. 8.1. A graphical illustration of this effect (changing
the three upper layers from OCR to POP ) may be seen in the magnitude of the plastic multiplier,
see Figure 8.14(b) and Figure 8.17.

The model does not take small stiffness into account. This may be compromised by increasing
the elastic stiffness in regions where the effect of small stiffness is significant. Hence, the value
of κ is reduced in the bottom layer as an attempt to manipulate the model to take some kind of
small stiffness into account. Thereby, the horizontal displacement should be reduced. In addition,
the value of κ is increased in the top layer (0.6 - 2.0 m) to increase the horizontal displacement.
These effects may be seen on Figure 8.9(a). Another method to control the horizontal displace-
ment directly would be to change the value of KNC

0 , however it has been chosen to keep this value
constant since it also would affect the amount of creep which is a function of the stress condition.

An early analysis of the first prediction states that the recovering effect would cause an unwanted
effect. The recovering of structure would influence the creep strains by slowing it down at the long
term. By analysing Figure 8.3(a) it may be concluded that no further reduction in creep strains
are necessary if the excess pore pressure is corrected. Hence, the recovering of structure is still
kept equal to zero during the final prediction as well as the evolution of anisotropy.

The κ value in layer (2.0 - 5.0 m) has been changed to fit the settlement just beneath the em-
bankment. the parameters rsi and rsi,min are changed in layer 3 to obtain the same amount of
initial structure as the layer above. These modifications complete the calibration from the first to
the final prediction. The chosen procedure justifies one way of calibrating the model and other
parameters may be adjusted to fit the predictions to the field measurements. Another method to
adjust the deformation may be done through the magnitude of λi. Increasing λi would contribute
to a higher initial deformation but cause a reduction of creep strains. A sensitive analysis of the
λi related to creep strains may be found in Section 8.4.1. The new input parameters may be seen
in Table 8.6.
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Table 8.6: Final prediction of input data for material layers modelled with SCA-R. Number in brackets
shows earlier values.

Layer
λi κ OCRτ POP rsi rsi,min x kx ·10−4 ky ·10−4 ck

[-] [-] [-] [kPa] [-] [-] [-] [m/day] [m/day] [-]

0.6 - 2.0 m 0.130 0.035 (0.025) 1.00 (4.00) 20.0 660 150 3.40 20.0 30.0 (15.0) 0.19 (0.50)

2.0 - 5.0 m 0.180 0.035 (0.030) 1.00 (2.10) 20.0 550 90 5.11 20.0 30.0 (15.0) 0.19 (0.50)

5.0 - 10.0 m 0.240 0.030 1.00 (1.40) 20.0 550 (600) 90 (100) 5.11 2.0 1.5 1.00

10.0 - 25.0 m 0.220 0.02 (0.030) 1.30 0.0 900 150 5.00 0.5 0.03 1.00

∗KNC
0 = 0.53, K ′0,x = 0.60, tmax = 300.000 days, τ = 1 day, νur = 0.15, ϕcs = 36o, and R = Rt = µ = 0.0.

∗∗Notice, the magnitude of e0, a, b and αe is the same and the failure criteria, see Table 8.4.

The following three subsections contain the final predictions of the SCA-R model: 1) Settlement
and displacement 2) Pore pressure 3) State parameters.

8.4.3 Settlement and Displacement

The settlement just beneath the center of the embankment may be seen on Figure 8.7, and the
surface settlement may be seen on Figure 8.8.
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Figure 8.7: Estimated settlement just beneath the center of the embankment (SCA-R: Best-fit).
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Figure 8.8: Estimated surface settlement of the embankment (SCA-R model best-fit).
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The modified input parameters yield a prediction of the settlement just beneath the center of the
embankment which is very similar to the field measurements. Hence, through some simple cor-
rections the SCA-R model may estimate the settlement in a relatively accurate manner. A slight
deviation from the field measurements may still be observed between 45 to 80 days. However, the
excess pore pressure is too high after the construction and further modifications of permeability
parameters could reduce this deviation, see Section 8.4.4. The predictions of the surface settlement
fits fairly good with respect to the field measurements. Notice that the dots symbolize measured
values.

Figure 8.9(a) shows the horizontal displacement 5.0 m away from the centreline and Figure 8.9(b)
shows the vertical strain at the centreline of the embankment. The modifications of κ to adjust
for the missing capacity of the small stiffness seems to give better estimate of the horizontal
displacement in the bottom layer (10.0 - 25.0 m) for the short and long term. Increasing κ in
the top layer (0.0 - 2.0 m) also yields a better fit since it is location between the East and West
measurements. However, the layer (2.0 - 5.0 m) yields a slightly worse estimate which could be
changed through another modification of κ.
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(a) Horizontal displacement 5.0 m from the centreline.
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(b) Vertical strain at the centreline.

Figure 8.9: Estimated displacement and strain of the embankment (SCA-R: Best-fit).

The modifications only cause slight changes for the vertical strain for the short term. However, the
sudden jumps going from one soil layer to another soil layer are reduced for the long term. This is
caused by the change from OCRτ to POP which yields a more even distribution of creep strains.
Figure 8.14(b) and Figure 8.17 show the magnitude of the plastic multiplier at day No. 1120 for the
first and final prediction. Recalling that the plastic multiplier is associated to visco-plastic strain
it may be concluded that the final prediction yields a more even distribution of the magnitude of
the visco-plastic strains compared to the first prediction.
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8.4.4 Pore Pressure

The excess pore pressure at the centreline of the embankment may be seen on Figure 8.10(a).
Through the modifications of the permeability parameters and the change of how to initialize the
stress history, a slightly better prediction in the short term is obtained. The model still overshoots
in the upper part (0.0 - 8.0 m) of the strata which may be associated to undershooting in settle-
ments. The long time prediction yields a fairly good estimate which is very close to the measured
field data. The effect of changing the bottom boundary from open to closed may be discussed. It
most likely has an insignificant impact in the short term. However, in the long term it may have
large influence. Utilizing the new input parameters the excess pore pressure in the bottom part of
the strata is captured quite accurately and the decision of closing the boundary is assumed to be
more realistic.
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(a) At the centreline.
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Figure 8.10: Estimated excess pore pressure of the embankment (SCA-R: Best-fit).

The excess pore pressure 5.0 m away from the centreline may be seen on Figure 8.10(b). Again
it may be concluded that the SCA-R model overshoots the pore pressure at this location of the
short term. However, the general pattern of the pore pressure distribution seems to follow the field
measurements. An interesting observation of the field measurements are related to the maximum
excess pore pressure which is measured for day No. 147 at a depth of 8.0 m. This is most likely
caused by undrained creep strains and it would have been interesting to have more observations
near this time. Another tendency which should be observed is how measurements behave in each
layer. The maximum excess pore pressure and the reducing tendency may be listed as:

4 m : 36 day −→ 147 day −→ 555 day −→ 1116 day
8 m : 147 day −→ 555 day −→ 36 day −→ 1116 day
12 m : 147 day −→ 555 day −→ 36 day −→ 1116 day
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This observation may justify the very permeable layer in the upper part of the strata since the
excess pore pressure generated by creep strains is dissipated and the maximum excess pore pressure
is measured just after construction of the embankment in contrast to the other layers. Figure 8.11
shows the excess pore pressure 8.0 m below the surface. It can be observed that the model shows
the correct pattern but deviates from the field measurements.
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Figure 8.11: Excess pore pressure 8.0 meters below the ground surface (SCA-R: Best-fit).

Figure 8.12 and Figure 8.13 shows the excess pore pressure distribution for the whole finite element
model for day No. 36 and No. 1200, respectively. These plots indicate a reasonable distribution of
the excess pore pressure with a concentration a few meters below the center of the embankment
which is moving down with time.
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Figure 8.12: Excess pore pressure distribution at day No. 36 (SCA-R: Best-fit).

Figure 8.13: Excess pore pressure distribution at day No. 1220 (SCA-R: Best-fit).
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8.4.5 State Parameters

The state parameters1 are plotted as 2-D plots in the area of interest for day No. 36 and day No.
1120. Figure 8.14 shows the evolution of the plastic multiplier, Figure 8.15 the destruction of the
structure and Figure 8.16 the increase in the intrinsic pressure.

(a) Day No. 36

(b) Day No. 1120

Figure 8.14: Evolution of plastic multiplier (dλ) - (SCA-R: Best-fit).

1 The state parameters related to the fabric are left out since the evolution is set to zero.

Jesper Bjerre (s102905)



8.4. Final Prediction 130

(a) Day No. 36

(b) Day No. 1120

Figure 8.15: Destruction of structure (x) - (SCA-R: Best-fit).
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(a) Day No. 36

(b) Day No. 1120

Figure 8.16: Increase in intrinsic pressure (p′mi) - (SCA-R: Best-fit).

These state parameters are linked together and the same pattern should be expected which may
be seen on the above Figures 8.14-8.16. The link between the state parameters is as follows: The
magnitude of the plastic multiplier indicates the development of visco-plastic strains. The visco-
plastic strains will result in a destruction of the structure and an increase in the intrinsic pressure
for this case. Notice that the embankment, the trenches and the dry crust do not incorporate any
state parameters since other soil models are utilized.
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The plastic multiplier at day No. 36 may be seen on Figure 8.14. Firstly, it may be concluded
that no unwanted creep strains are generated in areas far away from the embankment. Secondly,
the largest evolution is associated to the upper part of the layer (0.6 - 2.0 m) with a maximum
magnitude of 68·10−3 which is reduced towards the middle of the layer below. Notice, that the
magnitude of the plastic multiplier is not influenced by the magnitude of elastic strains. Fig-
ure 8.14(b) shows the magnitude at day No. 1120. The additional development of creep strains
may be investigated by comparing the magnitude of the plastic multiplier at day No. 36 and
No. 1120. Hence, the development of visco-plastic strains during construction of the embankment
may be subtracted. The majority of creep strains are generated in the second layer (2.0 - 5.0 m)
with a maximum value of 150·10−3. This development of visco-plastic strains may be associated to
the excess pore pressure which obtains largest value in the lower part of this layer for the long term.

Figure 8.15(a) shows the amount of structure at day No. 36. It can be observed that the structure
only is destroyed in the first layer which is reduced to half of the initial magnitude in the upper
part of this layer. Recalling that the structure is only destroyed by visco-plastic strains. One could
argue that this assumption may be relatively crucial since the top layer is deformed approximately
12 cm at the centreline after construction of the embankment and only half of the structure is
destroyed. The structure is almost completely destroyed beneath the embankment towards the
long term as a function of creep strains, see Figure 8.15(b).

The evolution of the intrinsic pressure may be seen on Figure 8.16(a) and Figure 8.16(b). It may
be concluded that the intrinsic yield surface is expanded in the same regions where the magnitude
of the plastic multiplier is high and the largest values are found just beneath the center of the
embankment as expected.

Figure 8.14(b) and Figure 8.17 show the plastic multiplier for the first and final prediction. The
influence of using POP instead of OCR may clearly be seen by a concentration of the plastic
multiplier yielding a more realistic pattern.

Figure 8.17: Plastic multiplier at day No. 1120 using OCRτ .

The general performance of the SCA-R seems quite accurate, although the model has a slight
difficulty in capturing the excess pore pressure after construction of the embankment (day No.
36). However, the performance should be compared to other available soil models to investigate
its advantages and disadvantages.
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8.5 Comparison with other Soil Models

The performance of the SCA-R model has been compared to other available soil models to identify
its advantages and disadvantages with respect to capturing the soil response in a full scale boundary
value problem. Previous performance analyses for different soil models have been performed by
Mehli (2015a) with respect to the embankment at Onsøy. Access to this previous work has been
granted and the Author of this thesis sends his gratitude. The constitutive models and their main
characteristics may be seen in Table 8.7.

Table 8.7: Constitutive models and their characteristics. Modified version of (Ashrafi, 2014).

Model Author

Elasticity Plasticity

Small Strain
Creep Anisotropy Destructuration Lode Angle

Shear Stiffness

SS Roscoe and Burland (1968) - - - - -

SSC Stolle et al. (1999) - Vol. Creep - - -

CS-SSCG Ashrafi (2014)
√

Pl. Multiplier - - -

n-SAC Grimstad and Degago (2010) - Pl. Multiplier
√ √ √

Kryton Svanoe (1986) - ”Vol. Creep” - ”
√

” -

SCA-R - Pl. Multiplier
√∗ √ √

∗In elastic and plastic domain.

A short description of the listed soil models in Table 8.7 is given by Mehli (2015a) where further
details of these performance analysis may be found. Hence, information regarding the utilized
parameters, calibration of the models and general model set-up will not be highlighted here. It
should be mentioned that some models are left out in particular plots in the following section due
to missing data. The performance analysis will contain following elements:

� Figure 8.18: The settlement just beneath the center of the embankment.

� Figure 8.19: The surface settlement at different time stages.

� Figure 8.20: Pore pressure distribution beneath the centreline at different time stages.

� Figure 8.21: Horizontal displacement 5.0 m away for the centreline at different time stages.

� Figure 8.22: Vertical strain at the centreline at different time stages.

Figure 8.18 shows the settlement just beneath the center of the embankment.
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Figure 8.18: Comparison of soil models to estimate the settlement just beneath the center of the embank-
ment.
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Four models are able to capture the final settlement: SCA-R, n-SAC, Kryton and SSC. However,
only the SCA-R and the SSC models are able to capture the path towards the final settlement.
Notice, the SS model does incorporate any creep. An approximation of creep strains may be found
by comparing the SS to the other models caused by the same framework of utilizing MCC. It may
be observed that the contribution from creep strains are significant. The amount of visco-plastic
strains are investigated in Section 8.7 for the SCA-R model.

Figure 8.19 shows the surface settlement at different time stages. In general every model capture
the surface settlement in a fairly good manner. However, trouble of estimating the settlement after
the construction of the embankment (day No. 36) may be observed.
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(a) Day No. 36.
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(b) Day No. 184.
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(c) Day No. 555.
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(d) Day No. 1116.

Figure 8.19: Comparison of different soil models ability to estimate the surface settlement.

It should be mentioned that the solid lines on Figure 8.19 are drawn by the spline-function in
MATLAB. This function fits a line to particular points though piecewise polynomial interpolations.
Hence, the regions where the curves are bending should be analysed by knowing this particular
fitting method.

The excess pore pressure at the centreline of the embankment may be seen on Figure 8.20. In
general, each soil model overshoots the excess pore pressure in the upper part of the strata after
the construction phase. However, the models still capture the correct pattern of the excess pore
pressure distribution. Notice that, the SCA-R uses a closed boundary for dissipation in the bottom
compared to an open one used in the other models. All models seems to capture the excess pore
pressure fairly good for the long term besides the SS caused by the missing creep strains. The
SCA-R captures the pore pressure in the upper layer slightly better caused by other permeability
parameters.
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(a) Day No. 36.

Excess Pore Pressure, [kPa]

0 10 20 30 40 50

D
ep

th
,
d
[m

]

0

5

10

15

20

25

Measured
SS
SSC
CS-SSCG
n-SAC
Kryton
SCA-R

(b) Day No. 1120.

Figure 8.20: Comparison of different soil models ability to estimate the excess pore pressure at the
centreline of the embankment.

The horizontal displacement may be seen on Figure 8.21. The CS-SSCG model, which incorporates
small stiffness, yields fairly accurate estimations of the horizontal displacement. The other models
tend to overshoot the early stages where the SCA-R model yields better estimations compared to
the other models. At the long term the accuracy of the models improve.
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(a) Day No. 36.
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(b) Day No. 147.
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(c) Day No. 1116.

Figure 8.21: Comparison of different soil models ability to estimate the horizontal displacement 5.0 m
from the centreline of the embankment.
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The vertical strain at the centreline of the embankment may be seen on Figure 8.22. The early
stage of each model shows a peak value. The CS-SSCG again prove quite accurate responses in
the lower part of the strata where the Kryton also yields fairly good response. The models tend to
improve in the long term. In general, the SCA-R yields slightly less accurate estimations compared
to the other models.
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(a) Day No. 36.
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Figure 8.22: Comparison of different soil models ability to estimate the vertical strain at the centreline
of the embankment.

In general, each model produces quite accurate predictions with respect to the field measurements.
The SCA-R model shows relatively high performance with respect to the settlement compared to
several of the other models. It may be argued that the SCA-R captures the excess pore pressure
and the horizontal displacement2 in a slightly more accurate manner, although it is very similar
to the best predictions of the other models. However, the SCA-R is less accurate at predicting the
vertical strain than the other models.

2 Besides the CS-SSCG.
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8.6 Evolution of OCRτ

The magnitude of OCRτ is associated with the development of visco-plastic strains over time.
Hence, the evolution of OCRτ is interesting to investigate to see if the magnitude corresponds to the
development of visco-plastic strains and to obtain a general understanding of the model behaviour.
OCRτ is defined as the ratio between the reference surface, representing the stress condition (peq),
and the surface associated to the intrinsic pressure through the amount of structure, see Figure 4.3.

OCRτ =
p′m
peq

where p′m = (1 + x)p′mi (8.6)

The magnitude of OCRτ is sensitive to state parameters x, p′mi, and α3 and to the excess pore
pressure through the reference surface. Hence, an increase in the excess pore pressure caused by
undrained creep strains can result in an increase in OCRτ by reducing peq.

The FORTRAN code needs to be modified to visualize the magnitude of OCRτ during a PLAXIS
simulation. The vector containing the state parameters (v) is extended by adding two rows (num-
ber 16+17) containing OCRτ and peq at each stage4. Figure 8.24 shows the evolution of OCRτ , x,
p′mi, p

eq, the excess pore pressure, and the total mean pressure (p) during the construction phase
for the centreline of the embankment.

The investigation of OCRτ is made for the final prediction. It may be observed that for the in
situ case, a steady decrease in OCRτ occurs in the three upper layers towards layer 4 which has a
constant magnitude, see Figure 8.23(a). This is caused by the initializing of p′mi by POP in the
three upper layers and by OCRτ in the bottom layer.

During construction of the fill layers, the total stress increases which is mainly carried by an increase
in the excess pore pressure, see Figure 8.23(e) and Figure 8.23(f). The effective stresses increase
as a consequence of dissipation of the excess pore pressure. Hence, the magnitude of peq increases
as seen on Figure 8.23(d). However, an increase in the excess pore pressure caused by visco-plastic
strains would not increase the total stresses and reduce the magnitude of peq. Therefore, it should
be investigated if any development of visco-plastic strains occurs during construction. The devel-
opment of visco-plastic strains are associated with time evolution of the visco-plastic multiplier
and changes in the stress condition bringing the soil outside of the elastic domain. An investiga-
tion may be done through an analysis of the structure (x), see Figure 8.23(b). A small change in
the upper part of layer 1, with respect to in situ structure, occurs after raising the height of the
embankment to 1.5 m. This is caused by the time evolution. This has not occurred before due to
the restriction of time evolution caused by tmax. Raising the height to 2.3 m yields a major change
in the structure of layer 1 mostly caused by leaving the elastic domain but also the time evolution.
The changes in x in the remaining part of the strata is caused by the time evolution. Leaving
the elastic domain affects the intrinsic pressure significantly which may be seen on Figure 8.23(c).
Notice, small changes in p′mi occurs in the same location as where the reduction of structure occurs
but is relatively small compared to the magnitude of p′mi. Thereby, it may be concluded that some
of the excess pore pressure is caused by visco-plastic strains but are counteracted by the dissipation
yielding no net reduction in peq.

The magnitude of OCRτ is reduced placing the first two layers caused by the increase in peq.
Raising the embankment to 1.0 m yields a significant change in the peak value of OCRτ . Placing
the next layer (1.5 m in total) yields further reducing in OCRτ and the evolution with time in
the strata initiates. Hence, the reduction in x and increase in p′mi contributes to minor changes in
OCRτ . Raising the height to 2.3 m yields approximately an OCRτ ≈ 1.0 from the surface to level
12.0 m.

3 Recalling that α is utilized to determine peq .
4 These values are determined in each step where the remaining part of vector v is added from the current and

previous step.
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Figure 8.23: Evolution of OCRτ and its associated parameters during construction of the fill (centreline).
Note the black, violet, cyan, and green are located on top of each other or very close in Figure b and c.

It should be noted that OCRτ reaches values below 1.0. in the upper part of layer 1. This is pos-
sible according to the theory and depends on the magnitude of the chosen reference time (τ). The
mathematical meaning yields that the reference surface (peq) is larger than the surface represented
by the intrinsic pressure and the amount of structure.

The same investigation is executed for the long term which may be seen on Figure 8.24. The
excess pore pressure decreases as a function of time even though visco-plasticity is generated, see
Figure 8.24(e). This is caused by higher dissipation relative to the generated pore pressure from
the undrained creep strains. However, the excess pore pressure increases in the bottom part of the
strata as a consequence of the lower hydraulic head. This increase influences the reference pressure
which takes a value below the original in situ stresses, see Figure 8.24(d). This results in an artificial
and apparent increase in OCRτ which disappears with time. The evolution in x (reduction) and
p′mi (increase) are very similar and major changes occurs from level 8.0 m and above. Visco-plastic
strains develop over time from level 18.0 m and above which may be seen on the destruction of
the structure, see Figure 8.24(b). The strata below is restricted by tmax. The significant difference
in x and p′mi at level 5.0 m is caused by switching from layer 2 to layer 3. Each layer has the
same intrinsic creep parameter (rsi) but the internal irrecoverable compressibility (ζi) is different
(0.055 vs. 0.070, respectively). Hence, a larger amount of visco-plastic strain develops over time in
layer 3 which causes larger destruction of x and expansion in p′mi relative to the layer above. The
sudden jump at level 8.0 m in peq, x and p′mi has not been possible to explain in a physical manner.
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Figure 8.24: Evolution of OCRτ and its associated parameters at the long term.

The magnitude of OCRτ steadily increases as a function of time. This is a consequence of a higher
increase in p′mi relative to the reduction in x with respect to Eq. (8.6). The rate of OCRτ may be
associated to the rate of visco-plastic strains.

The above analysis of the model response in a boundary value problem describes the behaviour
of the SCA-R model during a loading and time perspective. The observed response verify the
expected behaviour of the SCA-R model.
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8.7 Visco-Plastic Strains

The amount of visco-plastic strains may be investigated by increasing the magnitude of rsi. Ac-
cording to the theory, when ris −→ ∞ the visco-plastic model yields elasto-plastic response. The
model is restricted to an upper magnitude of ris depending on the combination of the other input
parameters. However, simulating the soil response of the embankment utilizing a magnitude of
ris = 5000 in each layer the major part of the visco behaviour should be removed. The settlement
just beneath the center of the embankment may be seen on Figure 8.25(a) utilizing the input pa-
rameters related to the final prediction, ris = 5000 and a magnitude of ris,min yielding the same
structure in each layer as in the final prediction.
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(a) Settlement just beneath the center of the embankment.
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Figure 8.25: Comparing elasto-plastic and visco-plastic response (SCA-R: Best-fit).

It may be observed that the soil response during the construction phases is approximately the
same for the two predictions. The deviation of the settlement increases when approaching the
long term with a final difference of 15 %5 lesser deformation for the elasto-plastic response. This
should be compared to the associated excess pore pressure which may be seen on Figure 8.25(b).
The excess pore pressure is quite identical for both models in the short term which confirms the
similar settlement response during the construction. A small deviation may be seen in level 8.0
- 15.0 m showing a smaller magnitude of the excess pore pressure for the elasto-plastic response
caused by minor contribution of the visco-plastic strains. A greater deviation for the whole strata
may been seen for the long term. The development of visco-plastic strains over time are associated
to excess pore pressure and a minor contribution may be seen as smaller excess pore pressure
for the elasto-plastic response. Hence, the difference of 15 % lesser settlement will increase as a
function of dissipation of the excess pore pressure. The predictions for the SS model are shown
on Figure 8.25 to compare the predictions for the models. It may be concluded that the SS model
yields a response which is very different with respect to the elasto-plastic response when com-
paring the settlement and excess pore pressure at the same time. This may be caused by the
additional features which are incorporated in the SCA-R model and the utilized input parame-
ters where the difference in permeability in the upper part of the strata may have a major influence.

It may be concluded for the short term that the visco-plastic impact is minor for this particular
case. However, the magnitude of rsi may influence the apparent yielding point and may have a
greater influence in other cases. The visco-plastic strains have a major impact on the long term
where neglecting the creep strains would be a crucial simplification with respect to the predictions
of the soil response performed by the SCA-R model.

5
(
678.4−577.8

678.4

)
· 100 ≈ 15%
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8.8 Mesh Analysis

The mesh utilized in the first and final prediction has been chosen to match the finite element model
suggested by Mehli (2015a) to make the predictions comparable to other soil models. However, a
mesh analysis should be performed to investigate the sensitivity of the predictions related to the
chosen mesh. A new mesh containing 3086 elements (25017 nodes) has been created and may be
seen on Figure 8.26.

Figure 8.26: New mesh for the finite element model used to model the embankment at Onsøy.

The mesh dependency will be analysed through the old and new mesh by utilizing the input
parameters associated to the final prediction. The settlement settlement just beneath the center
of the embankment may be seen on Figure 8.27(a), the excess pore pressure at the centreline may
be seen on Figure 8.27(b), the vertical strain at the centreline may be seen on Figure 8.28(a), and
the horizontal displacement 5.0 m away from the centreline may be seen on Figure 8.28(b).
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(a) Predictions of settlements just beneath the center.
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(b) Excess pore pressure at the centreline.

Figure 8.27: Mesh analysis I of the embankment.
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The settlement and the excess pore pressure yields very similar predictions and an insignificant
mesh dependency can be observed relative to the mesh used in the final prediction. It should be
mentioned that the prediction of the settlement for the course mesh is so identical to the fine mesh
that it is hard to distinguish between them. The same conclusion can be drawn for the horizontal
displacement, although a slight deviation can be seen in the upper 7.0 m of the strata for day No.
147 and day No. 1120. The vertical strain shows the biggest mesh dependency, especially for the
long time. The deviation in the vertical strain may be explained through the small stiffness in the
top of each layer.
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(b) Horizontal displacement 5.0 m away from the CL.

Figure 8.28: Mesh analysis II for the embankment.

It may be concluded that further refinement of the mesh utilized in the final prediction does not
make any significant changes with respect to the predictions shown in this section. Therefore, the
predictions given in Section 8.4 and Section 8.5 may be considered as mesh ”independent”, i.e.
further refinement only yields minor changes.

8.9 Implicit vs. Explicit

The SCA-R has incorporated an explicit scheme to solve the differential equations in the local
iteration. The performance of this method will be analysed through an implicit Newton Raph-
son’s method developed by Roenningen (2015), see Chapter 5 for further details. To clarify, the
FORTRAN code which has been used to generate the dll-file has been made by Roenningen (2015)
with some modifications to handle the input from the MATLAB code developed to the explicit
scheme. The Author sends his gratitude to Roenningen (2015) for sharing this part of his work.
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The performance is investigated by comparing the settlement just beneath the center of the em-
bankment utilizing the input parameters for the final prediction. The computational time was
approximately the same for the two approaches with respect to the chosen step size, tolerance and
maximum number of iterations, see Chapter 5 for exact values. The settlement may be seen on
Figure 8.29(a) and the associated excess pore pressure on Figure 8.29(b).
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(a) Settlement just beneath the center of the embankment.
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Figure 8.29: Performance for an explicit and implicit scheme in the local iteration.

A significant difference may be observed in the settlement with respect to the two approaches. The
long term settlement yields a difference of 3.7 cm where 1.8 cm is associated to the construction
phase. The excess pore pressure has some similarities in the strata. This observation yields a
hypothesis that the amount of visco-plastic strains which are generated are approximate the same.
The implicit method has a larger excess pore pressure in the upper part of the strata for the long
term which may explain some of the deviation in settlement for the long term. However, this
cannot explain the general difference in the response and an investigation of the accuracy of each
method should be performed.

The explicit scheme may be investigated through a sensitivity analysis of the predictions associated
with the utilized step size. Recalling the restrictions on the step size in the explicit method, the
reference time τ and a chosen parameter x are associated with the time and strain increment,
respectively. A combination of these parameters control the utilized step size. However, reducing
or increasing the magnitude of x by one order of magnitude has not shown any improvement or
reduction in the prediction of settlement. Neither has changes by one order of magnitude in the
reference time showed any sensitivity. Notice, the modifications of τ related to the time increment
has been modified in FORTRAN so the evolution time of the plastic multiplier was not effected
by changes in τ . Hence, it may be concluded that the explicit method uses a too conservative step
size with respect to the simulation of the embankment.

The implicit scheme utilizes a chosen tolerance and only yields an output if the error is below the
chosen tolerance with respect to a maximum number of iterations. The utilized tolerance is chosen
to be: rrT = 10−12 where r is the residual vector. This tolerance should insure a high accuracy
with respect to the predictions if the implicit scheme converge. Hence, no obvious evidence related
to the accuracy of each method may explain the difference. Further investigation may be done by
assembling different test scenarios and analysing the estimate soil response. Four scenarios in Soil
Test are assembled to investigate the soil response:
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1. Undrained tri-axial compression σ′11 = σ′22 = σ′33 = 99 kPa︸ ︷︷ ︸
Initial stress

a. ∆ε11 = 10 %

2. One-dimensional compression σ′11 = 100σ′22 = σ′33 = 99 kPa︸ ︷︷ ︸
Initial stress

a. ∆ε11 = 10 %

b. ∆ε11 = 50 % and a = b = 30

3. One-dimensional compression + creep σ′11 = 100σ′22 = σ′33 = 99 kPa︸ ︷︷ ︸
Initial stress

a. ∆σ′11 = 100 kPa ∆σ′22 = ∆σ′33 = 50 kPa

b. ∆σ′11 = ∆σ′22 = ∆σ′33 = 0 kPa

4. Drained creep σ′11 = 200 kPa, σ′22 = σ′33 = 149 kPa︸ ︷︷ ︸
Initial stress

b. ∆σ′11 = ∆σ′22 = ∆σ′33 = 0 kPa

All compression phases are performed in 1 day and the creep phases are simulated for 1000 days.
Furthermore, test four is assembled in a manner so that the development of creep strains occur
for the same stress condition as for the creep test in scenario three after the compression. These
scenarios have been tested for all four layers in the strata associated with final prediction. The
response from layer 2 may be seen on Figure 8.30 and the response of the other layers in the strata
may be seen in Appendix G.3.

Tri-axial: The undrained tri-axial scenario yields approximately the same response for all four
cases and may be seen on Figure 8.30(a) for layer 2. The explicit method shows a tendency of a
slightly smaller residual strength for all cases. However, the method which determines the maxi-
mum peak strength depends on each layer. Similar response has been observed in extension and
drained conditions. The same conclusion may be drawn if the simulation was continued to 100 %
vertical strain.

One-dimensional compression: The elastic response and the location of the apparent yield
point are similar for the one-dimensional compression test for all cases and may be seen on Figure
8.30(c) for layer 2. However, beyond the yielding point the soil response deviates. The explicit
method can be distinguish from the implicit method by a tendency of smaller void ratio for a given
effective stress. This behaviour may be investigated through the compression index which should
approach the intrinsic input parameter (λi) as a function of destruction of the structure. Hence,
extending the compression to ε11 = 50 % and increasing the destruction parameters a = b = 30
should ensure x −→ 0.0. Hence, the interpreted compression index should converge towards the
intrinsic compression index. This has been done for all layers in the strata and may be seen on
Figure 8.30(d) for layer 2 where the compression index has been determined for each increment
strain step. Notice, only the evolution beyond yielding is shown and the x-axis symbolizes each
increment step. It may be observed that each method shows the expected behaviour of reducing λ
as a function of compression. Each method shows a steady decrease towards a boundary value close
to the input. The explicit method shows a tendency of overestimating the magnitude which is the
consequence of utilizing the previous stresses and state parameters. The implicit method shows
a tendency of undershooting the magnitude where a reduction in the tolerance to rrT = 10−24

will move the magnitude slightly closer to the input value but still on the opposite side to the
input parameter relative to the explicit. Hence, it may be concluded that some of the difference in
settlement during the construction phase is caused by a lower compression index for the implicit
method causing a stiffer response.

Drained creep: The drained creep simulation may be see on Figure 8.30(b) for layer 2. The
initial part of the curve shows similar response. The explicit method shows a general tendency
of a larger development of visco-plastic strains for the long term. One explanation may be found
in the amount of structure at a given time. As seen in the one-dimensional compression, the
destruction process seems to be faster for the explicit method which will influence the rate of
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visco-plastic strains through the magnitude of OCRτ . However, further investigation has shown
the same tendency for simulations without any structure.
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(a) Undrained tri-axial compression.
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(b) Drained creep.
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(c) One-dimensional compression (∆ε11 = 10 %)
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(d) One-dimensional compression (∆ε11 = 50 %)

Time, t [Days]

0 500 1000

V
ol
u
m
et
ri
c
S
tr
ai
n
,
ε
p
[-
] 0

0.02

0.04

0.06

0.08

0.1

Implicit
Explicit

(e) Compression + drained creep.
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(f) Compression + drained creep test.

Figure 8.30: Investigation of explicit and implicit scheme for layer 2 (2.0 - 5.0 m).

One-dimensional compression + creep: This scenario is assembled since it illustrates a more
similar loading scenario as in the boundary value problem. It may be observed on Figure 8.30(e)
that the explicit method yields a larger deformation relative to the implicit method. The difference
in volumetric strain between the explicit and the implicit method is 0.37 % after the compression
phase. However, the first step in the creep test (10 days step) yields a difference of 4.46 % and
the difference will reduce towards the long term to a final difference of 2.66 %. The explanation
for the difference during the compression was a consequence of a lower magnitude of λ in the im-
plicit method. The significant difference during the creep test could be found by investigating the
stress level. According to the set-up in Soil Test the stress level should be constant during the sim-
ulation which is verified by Figure 8.30(f). Hence, it has not been possible to explain the difference.
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The general performance for the explicit scheme and the credibility of the predictions presented
earlier in this chapter may be discussed as a consequence of Figure 8.29(a). The settlement predic-
tion has shown insignificant sensitivity when changing the magnitude of the x parameter associated
to the maximum step size by one order of magnitude. This may be a consequence of the strain and
time increment given by PLAXIS which may have a magnitude yielding a high accuracy without
the restrictions to the step size in the code. The explicit scheme shows similar response during
undrained tri-axial simulations as for the case when utilizing the implicit scheme. The evolution of
λ during one-dimensional compression follows the expected behaviour towards the intrinsic input
value. These aspects acknowledge the reliability of the explicit scheme. However, the difference
between the schemes during the creep tests requires more investigation before it may be concluded
that the explicit scheme yields the correct response. It should be recalled that the incremental
change in the plastic multiplier is assembled through a Taylor expansion in the explicit method,
see Eq. (5.23). This may lead to minor deviations and may be associated to some of the deviation
between the methods. This aspect will not be investigated in this thesis. Further investigation
of the implicit method, related to the boundary value problem, has shown negative values of x.
According to the theory, the structure should decrease exponentially towards zero as a function of
visco-plastic strains and never become zero or below. This may be seen as an error in the implicit
scheme and increase the uncertainty of this method. Hence, it is concluded that this tendency
occurs as a consequence of combining the coding from the explicit scheme with the Newton Raph-
son’s scheme made by Roenningen (2015) which causes some kind of numerical errors. However,
due to time limitations it has not been possible to investigate this phenomenon in greater details.

To sum up, the deviation in the settlement predictions is quite interesting since several of the
scenarios in Soil Test states that the soil response yields the correct pattern and are approximately
the same for both methods. It may be concluded that a careful and detailed verification of the
constitutive model is required to ensure that the model yields the correct response. Furthermore,
the utilized soil parameters, in the first and final prediction, have been calibrated by the explicit
scheme. Hence, if further investigations indicate that the explicit scheme yields an incorrect re-
sponse the calibrated parameters would have obtained others values through the implicit scheme.
It is assumed that the implicit model would be able to simulate a similar response with some
modifications in the input parameters if its shows to be correct.

8.10 Prediction - Recovery

The recovery of x over time should be investigated to see its influence in a boundary value problem.
The effect has been discussed for a single stress point in Section 6.3.9 but further investigation will
be shown here. Recalling, R refers to maximum recovery of the initial structure and Rt refers to
the pace of the recovery. Seven creep tests are executed utilizing the input parameters similar to
soil layer 2 (2.0 - 5.0 m) at an isotropic stress condition of σ′ = 100 kPa, see Figure 8.31.
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Figure 8.31: Effect of recovery of structure during creep test. The utilized input parameters are similar
to the properties of layer 2 (2.0 - 5.0 m) and an isotropic stress condition of σ′ = 100 kPa.
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It may be observed that high values of R and Rt yields a significant reduction in the rate of creep
strains and may completely stop the development of creep strains for the long term. This is caused
by a high recovery of x which may be associated to a higher value of OCRτ . The initial path
for all the scenarios is similar to the test without recovery. The deviation from the test without
recovery depends on the magnitude of R and Rt. The case, R = 0.8 and Rt = 1 · 10−5, yields
approximately the same response as for the case without recovery. This case has been controlled
for each layer in the strata related to the final prediction and the same conclusion may be drawn.
The same behaviour should be expected during a boundary value problem. Three scenarios are
assembled and may be seen in Table 8.8.

Table 8.8: Different scenarios with recovery of structure. The input parameters (R and Rt) are used for
all layers.

Scenario
Rt R

Comments(1)

[-] [-]

1 1 · 10−5 0.8 Minor deviation (approx. same creep).
2 1 · 10−4 1.0 Influence of recovery (less creep).
3 1 · 10−3 1.0 High influence for recovery (lesser creep).
(1)According to Figure 8.31.

The effect of recovery will be compared to the settlement just beneath the center of the embankment
and may be seen on Figure 8.32. Notice, the other input parameters which are not presented in
Table 8.8 are similar to those utilized in the final prediction. The excess pore pressure for day No.
36 and No. 1220 along with the state parameters x, p′mi and the plastic multiplier for day No.
1120 may be seen in Appendix G.2 for the three scenarios.
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Figure 8.32: Influence of recovery on the settlement just beneath the center for the embankment.

The boundary value problem yields the same conclusion of the single stress point. Scenario 1 yields
a final settlement of 674 mm which should be compared to the final prediction without recovery of
676 mm and the field measured value of 676 mm. Increasing the rate of recovery (Rt), as in scenario
2, yields a final settlement of 650 mm and a further increase yields an even lower settlement, see
Figure 8.32. The recovery effect is associated to the development of visco-plastic strains. Hence,
the effect may be coupled to the excess pore pressure of each scenario where scenario 3 has the
lowest magnitude. The phenomenon regarding the initial path, as for the single stress point, is also
present in the boundary value problem. Scenario 3 yields the largest recovery of x and its evolution
of x may be investigated. The lowest amount of x may be observed at day No. 329, see Figure
8.33. After this day, the structure initiate to regain itself as a function of time, and day No. 329
may be defined as the transition where the recovery feature overtakes the destruction feature. The
final amount of structure may be seen on Figure 8.33(b) where a significant amount of structure
is regained with respect to day No. 329. However, it should be noted that the affected area is
increased. Hence, some regions have suffered a loss in structure. This effect may be explained by
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the equilibrium criteria between the destruction and recovery phenomena where recovering cannot
initiate until after some structure has been destroyed.

It may be concluded that the recovery element in the SCA-R model yields an extra parameter to
control the creep strains at the long term. The recovery effect works as expected for a single stress
point as well as for a boundary value problem. The final prediction does not benefit when activating
the recovery effect for the given time. However, one should keep in mind that the input parameters
have been calibrated to fit the settlement without the recovery effect. Another argument could
be that the influence of recovery is minor for a period of 1200 days for this particular case. The
structure observed in natural soft clay is developed over thousands of years. Hence, the regaining
during 1120 days could be insignificant.

(a) Day No. 329.

(b) Day No. 1120.

Figure 8.33: Structure (x) for scenario 3.
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8.11 Coupling Effect - Reconstituted Response

The coupling effect between the recovery of structure and the evolution of the plastic multiplier
with respect to time may be further investigated through a reconstituted sample. A reconstituted
sample represent a stress history and structure (bonding) which are completely removed (x = 0.0,
OCRτ = 1.0 and POP = 0.0). Utilizing these specifications to simulate a compression scenario
in continuation of a drained creep test the coupling effect may be analysed. The drained creep
phase is executed in 30 days with an associated stress condition of: σ′11 = σ′22 = σ′33 = 100 kPa
and the compression phase is executed in 1 day by the stress change of: ∆σ′11 = 100 kPa and
∆σ′22 = ∆σ′33 = 50 kPa. The remaining soil parameters are similar to soil layer 3 (5.0 - 10.0 m)
in the final prediction. Five simulations may be seen on Figure 8.34(a) for different magnitudes of
the recovery pace (Rt) and a constant value of R = 1.0.
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(a) Coupling effect between recovery of x and creep.
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(b) Reset volumetric strain after creep period.

Figure 8.34: Reconstituted response during drained creep and compression affected by recovery. The
utilized input parameters are similar to soil layer 3 (5.0 - 10.0 m) in the final prediction.

Notice, the initial amount of bonding (x0) is manually set to zero in FORTRAN to activate the
recovery without any destruction. Analysing the drained creep part, it may be observed that
the visco-plastic strains causes an apparent yield point relative to the elasto-plastic response ()no
creep. The consequence of the coupling effect may be observed through change in volume where
the magnitude of the recovery pace is directly associated to the visco-plastic strain. Hence, a
higher recovery pace give rise to a smaller amount of visco-plastic strains. Figure 8.34(b) shows
the additional strength gained by recovery where the volume change caused by creep is removed.
The recovery of x induces a higher apparent yielding point with respect to simulation without
recovery. The evolution of x may be seen on Figure 8.35.
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Figure 8.35: Evolution of x during drained creep and compression for a reconstituted sample. The soil
parameters is similar to layer 3 (5.0 - 10.0 m) in the final prediction and POP = x = 0.0.
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Notice that the ”Reference Time = 0..100” symbolize the drained creep phase and ”Reference Time
= 101..200” symbolize the compression phase. As marked on Figure 8.35, the structure increases
during the creep phase as a function of time and the magnitude of Rt. During the compression,
the structure slightly increase in the elastic region. The destruction is pure associated visco-plastic
strains. Hence, the recovery is larger than the destruction of x in the elastic region for the compres-
sion phase. However, other scenarios could show an opposite phenomenon if the loading condition
and the combination of input parameters causes a higher rate of visco-plastic strains. Beyond the
yielding point, the structure is destructed where the pace is controlled by the destruction parame-
ters a and b along with the magnitude of x. Hence, the destruction rate of x is larger for the green
curve on Figure 8.35 caused by a higher magnitude of x even though it has the largest recovery pace.

This analysis shows that the SCA-R model is capable to of simulating creep as the proposed time
line suggested by Bjerrum (1967) and how the recovery effect reduces the creep rate and influence
the apparent yield point.

8.11.1 Ageing Effect during Loading

As presented in Section 3.8, a CRS test with a strain rate of ε̇p = 1.0 · 10−7s−1 was affected by
ageing effects relative to a conventional 24 hrs incremental loading. The feature of recovering the
structure in the SCA-R model may influence the compression path and show some of the observed
behaviour as presented in Section 3.8. Figure 8.36(a) shows six compression simulations executed
over 50 days for different values of Rt on a reconstituted sample (OCR = 1.0 and POP = x0 = 0.0).
The remaining soil parameters are similar to soil layer 3 (5.0 - 10.0 m) in the final prediction and
R = 1.0.
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Figure 8.36: Reconstituted response during compression affected by recovery. The utilized input parame-
ters are similar to soil layer 3 (5.0 - 10.0 m) in the final prediction.

It may be observed that a higher recovery is associated to a stiffer soil response. The evolution
of x may be seen on Figure 8.36(b) which shows the expected exponential patten. Notice that
destruction of x also occurs during the simulation but the net evolution of x is positive. However,

x converged towards a lower boundary value than
(
rsi−rsi,min

rsi,min
·
)

caused by the destruction. The

boundary value would be an equilibrium between the recovery and destruction effects.

From this analysis it may be concluded the SCA-R model is able to effect the compression path
through the recovery of x. However, further investigation is necessary to decide if the observed
response from the SCA-R model is similar to the observed behaviour in laboratory tests.

In general, further research and testing is required before the recovery effect may be dismissed or
acknowledged. The mathematical formulation, see Eq. (4.23), should also be reconsidered to see
if another approach yields better predictions. The investigation of the recovery of structure will
end here due to time limitations.
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Chapter 9

Conclusion

This chapter contains the final conclusion of the work related to this master’s thesis. Suggestions
for further work will be given at the end of this chapter.

9.1 Summary and Conclusion

The objective of this master’s thesis has been related to natural soft clay and the characteristic
features which dominate its mechanical behaviour.

The mechanical behaviour of natural soft clay has been studied through a literature study to
identify the characteristic features which have been observed in the field and in the laboratory.
These features are mainly associated to viscous and ageing effects and may dominate the mechanical
response with respect to natural soft clay. The main characteristics have been outlined as:

� Structure

� Creep

� Rate-dependency

Where the term, structure, consist of the fabric representing the arrangement of the particles and
pore space, and the bonding representing the inter-particle forces between the clay particles and
the water. These characteristics have created the framework for a new constitutive model known
as the SCA-R which stands for: Structure Creep Anisotropy – Recovering. The constitutive model
is based on effective stresses, utilizes the Modified Cam Clay (MCC) model and invariants as a
framework. The MCC response may be obtained by setting the additional input parameters, re-
lated to the natural soft clay response, to zero.

The anisotropy is introduced as an initial rotated and skewed yield surface. The evolution in
anisotropy corresponds to rotation of the inclined yield surface. The elastic anisotropy is imple-
mented through an elastic anisotropic parameter which increase or decrease the stiffness in vertical
or horizontal direction similar to a modified version of Houlsby and Graham (1983) anisotropy
factor. The creep and rate-dependency are simulated through a time evolution of the plastic mul-
tiplier suggested by Grimstad (2009). The evolution is based on a time resistance concept suggested
by Janbu (1969) which utilizes one-dimensional evolution in the general three-dimensional space.
The bonding between the clay particles is implemented through an intrinsic yield surface and an
associated surface represented by the intrinsic properties and the amount of bonding. The model
introduces a method to regain the lost structure (bonding) over time. This feature yields an ad-
ditional parameter to control the visco-plastic strains through a induced coupling term. However,
more testing is required to ensure its capability to capture real soil response.
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The model requires 17 input parameters to access all of its implemented features. Three additional
input parameters are available to switch between different methods of simulating the stress history,
evolution of anisotropy, and failure criteria in the general stress space. The model assumes associ-
ated flow and thereby introduces eight state (hardening) parameters in total. The SCA-R model
is implemented as a user defined soil model in PLAXIS through the interface between PLAXIS
and FORTRAN. It utilizes a simple forward Euler scheme to solve the local integration required
by PLAXIS.

The necessary soil parameters associated to the SCA-R model have been interpreted from several
laboratory tests with respect to the relevant stress domain. These parameters have been calibrated
by performing several back-calculations of the CRS and undrained tri-axial tests which have been
used to interpret the initial input parameters. These back-calculations have shown that the SCA-R
model is capable of capturing the main characteristics which have been observed in natural soft
clay and only minor modifications of the interpreted laboratory parameters were necessary.

As a final test, a full scale boundary value problem for the embankment located at Onsøy in Norway
has been performed. The SCA-R model has shown capability to capture the soil response and the
dissipation of excess pore water as expected and yields fairly acceptable results compared to field
measurements. The predictions of the settlement, excess pore pressure and horizontal displace-
ment have been compared to predictions from five other soil models. The main conclusion states
that the SCA-R model yields quite accurate results according to the predictions of settlement and
excess pore pressure. However, because of its limitation to small stiffness, the SCA-R model yield
less accurate results compared to soil models which have incorporated this feature. However, the
prediction is still relatively fair compared to the field measurements.

The performance of the forward Euler scheme has been tested against an implicit scheme utilizing
a Newton-Raphson iteration to solve the differential equations in the local integration. During the
performance investigation complications arose and the predictions of the two integration schemes
were not similar. However, it is believed that this is a consequence of an error when combining
the code from the explicit scheme to the implicit scheme. This conclusion is supported by unre-
alistic predictions of the structure in the implicit scheme. The step size associated to the explicit
scheme has been investigated. Changing the restrictions, which control the maximum time and
strain increment, by one order of magnitude have showed no sensitivity in the final predictions of
the embankment. It is believed that PLAXIS applied a time and strain increment, for the given
case, which yields an accurate result without the restrictions. However, more verification is needed
because of some unexplained observations when comparing the explicit and implicit schemes.

The recovery of structure has not been activated in the final prediction of the embankment. How-
ever, the effect of activating the recovery on the final prediction has been investigated. It may be
concluded that lesser visco-plastic strains were generated and a higher amount of structure were
left at the long term, as expected. In addition, the recovery of structure has been investigated on a
reconstituted sample. The implemented feature is able to simulate a similar response as observed
by laboratory tests. However, this has not been compared to any specific laboratory test and fur-
ther research and testing are required before the recovery effect may be dismissed or acknowledged.

It may be concluded that a user friendly soil model which is able to capture the main character-
istic features in natural soft clay has been created. The models seems quite robust with similar
computational time as for other available soil models in PLAXIS. However, further verification is
necessary before the model finally can be acknowledged.

9.2 Suggestions for Further work

The implemented feature, related to the recovering of structure, should be investigated in greater
detail to verify whether the model is capable of capturing more of the behaviour observed in the
laboratory and in the field. For the short term, laboratory tests performed on reconstituted clays
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have shown that a waiting period of a few days change the mechanical behaviour during tri-axial
testing which is not associated to creep (Sorensen, 2006). Regarding the long term, during larger
infrastructure projects a huge amount of natural soft clay may be removed and seen as a waste
of material. However, this material could be utilized if the initial mechanical properties and its
evolution over time were known.

The SCA-R model may be further extended to capture the soil response in greater details:

� Predictions from the embankment located at Onsøy have shown that the lack of small stiffness
causes large strains in areas where the strains should have a minor magnitude. Hence, the
performance in the small strain domain (i.e. shear strains below 10−5) should be optimized
to obtain more realistic predictions. In addition, the SCA-R assumes a constant Poisson’s
ratio which may trigger a too large stiffness during cyclic loading.

� The assumption of associated flow could be changed so that the SCA-R model uses non-
associated flow as e.g. the n-SAC or the SANICLAY model. Hence, the model will contain a
separate yield and plastic potential surface which are controlled by different inclinations and
evolution laws, see Figure 9.1(a). Hence, one may apply the rotational hardening suggested
by Wheeler et al. (2003), which is restricted by high friction angles, to the plastic potential
and utilize another approach for the yield surface.

� With respect to the recovery of structure for the long term, the model could be extended to
simulate ground improvement in form of cementing the soil. This has been done in the MCC
model by (Horpibulsuk and Liu, 2009) and the principle may be seen on Figure 9.1(b).

Other improvements or extensions of the SCA-R may be suggested. However, one should keep
in mind that the majority of these aspects require additional input parameters. Increasing the
number of input parameters would most likely not be beneficial if the SCA-R should be utilized
outside the research society.
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The idealization of the mechanical behavior of cemented clays is illustrated in Fig. 2.  In 
this figure e represents the void ratio for a cemented clay, e* is the void ratio for the soil 
with the same mineralogy in a uncemented state at same stress state, p�y,i is the mean 
effective stress at which virgin yielding of the cemented soil begins, and �e, the 
additional void ratio, is the difference in void ratio between a cemented soil and the 
corresponding ideal state of the soil at the same stress state.  Hence, the virgin 
compression behavior of a cemented soil can be expressed by the following equation, 
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It is found that the additional void ratio for cemented clays can be described by the 
following equation,  
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where b is soil parameter, describing the additional void ratio sustained by cementation.  
�ei is the value of the additional void ratio at the start of virgin yielding (Fig. 2a).  
 
By consideration of the effect of cementation structure in the yield surface, the proposed 
yield function, f, of the MSCC model in q - p�plane is given by (Fig. 2b), 

(b) Material idealization for the MCC model suggested by
(Horpibulsuk and Liu, 2009)

Figure 9.1: Suggested extensions to the SCA-R model.

Another improvement, which does not requires any additional input parameters, is related to the
solution technique of the local integration. The forward Euler scheme could be changed to a more
advanced explicit scheme or the implicit approach suggested by Roenningen et al. (2014). In
addition, it is suggested to develop a software which may be used to interpret and calibrate the
input parameters since it may be confusing for people who are inexperienced in natural soft clay
and how these features are modeled.
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N. Janbu. Sediment Deformations. A Classical Approach to Stress-Strain-Time Behaviour of Gran-
ular Media as Developed at NTH over a 50 Year Period. NTNU, Geotechnical division, Trond-
heim, 1. edition, 1998.

Jesper Bjerre (s102905)

http://www.eng.hokudai.ac.jp/labo/soilmech/lectures/SM_nishimura/Week5.pdf
http://www.eng.hokudai.ac.jp/labo/soilmech/lectures/SM_nishimura/Week5.pdf


Bibliography 157

M. Karstunen, H. Krenn, S. Wheeler, M. Koskinen, and R. Zentar. The Effect of Anisotropy and
Destructuration on the Behaviour of Murro Test Embankment. Soil Mechanics and Foundations
Division, 5(2):87–97, 2005. doi: 10.1061/(ASCE)1532-3641(2005)5:2(87).

M. Karstunen, M. Koskinen, and U. of Strathclyde. Plastic Anisotropy of Soft Reconstituted Clays.
Canadian Geotechnical Journal, 45(3):314–328, 2008. doi: 10.1139/T07-073.

Y. T. Kim and T. H. Do. Effect of Leaching on the Compressibility of Busan Clay. KSCE Journal
of Civil Engineering, 14:291–297, 2010. doi: 10.1007/s12205-010-0291-5.

S. Krenk and J. Hoegsberg. Statics and Mechanics of Structures (Book). 2013. ISBN 978-94-007-
6112-4. doi: 10.1007/978-94-007-6113-1.

S. Lacasse, T. Berre, and G. Lefebvre. Block Sampling of Sensitive Clay. In Eleventh International
Conference on Soil Mechanics and Foundation Engineering, volume 2 and 3, pages 887–892,
907–912, 1003–1006 and 1401–1406 , 1589–1, 1985.

P. V. Lade and J. M. Duncan. Elastoplastic Stress-Strain Theory for Cohesionless Soil. Geotechnical
Engineering Division, ASCE, 101:1037–1053, 1975.

L. Laloui, S. Leroueil, and S. Chalindar. Modelling the Combined Effect of Strain Rate and
Temperature on One-Dimensional Compression of Soils. Canadian Geotechnical Journal, 45:
1765–1777, 2008. doi: 10.1139/T08-093.
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Appendix B

Test fill - Onsøy

This appendix contains additional information regarding the test fill located at Onsøy.

B.1 Instrumentation

place. The curves in Fig. 13 indicate that consolidation has
taken place due to high initial permeability, especially in the
weathered crust, down to a depth of about 3 m followed by
some decrease in permeability in this depth interval as consol-
idation takes place.
Figure 14 plots excess pore pressures below the centre of the fill

versus depth (i.e., initial depth below original ground surface) at
various times. The excess pore pressures (i.e., change in pore pres-
sure since start of loading) have been corrected for changes due to
the settlements of the piezometer tips (change in the excess pore
pressure, corrected for the settlement of the piezometer, is equal
to the change in elevation of the top of the water level in the
piezometer).

Figure 15 shows the same type of plot along a vertical line, 5 m
west of the centre of the fill.
Figure 16 plots excess pore pressures at various times below the

middle of the fill at various distances from the central axis at an
initial depth of 8 m below the original ground surface.
It should be noted that the excess pore pressures increased for

several days after end of loading before dissipation started.
Values of in situ minor principal stress may be obtained by

induced hydraulic fracturing around hydraulic piezometers using
the method described by Bjerrum and Andersen (1972). Hydraulic
fracturing tests performed prior to building up the test fill gave
Ko-values (i.e., ratio between horizontal and vertical effective
stress) equal to 0.60 ± 0.05 in the depth interval 2 to 20 m. Using

Fig. 4. Instrumentation for measuring displacements and pore pressures. All dimensions in metres.
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Figure B.1: Overview of the instrumentation in the test fill located at Onsøy, see legend on the next page.
Taken from (Berre, 2013).
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Figure B.2: Legend for Figure B.1. Taken from (Berre, 2013).
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Appendix C

Mathematical Derivations

This appendix contains additional theory and derivations which have been left out of the main
report.

C.1 Continuum Mechanics

A short introduction to continuum mechanics will be given to minimise the confusion regarding the
utilized notation, references and definitions which may vary with respect to the field of knowledge
and the background of the reader. For instance, in geotechnical engineering compression will be
considered as positive compared to structural engineering where tension normally is considered as
positive.

Soil as a material may be regarded as a relatively complex material. For simplicity reasons, soil
is divided into two phases: solid particles and pores. However, soil is often considered as a three
phases material since the pores may contain water and/or gas (normally air). The saturation
degree in the soil may vary and three states are commonly defined as: dry, partly saturated or
fully saturated. These states are very important with respect to stiffness and strength of the soil
since these properties are associated with the effective stresses (stiffness of the grain skeleton). The
concept of effective stresses was introduced by Terzaghi in 1923 (Nordal, 2014c) and relates the
total stresses (σ), pore pressure (u) and effective stresses (σ′) for fully saturated soils as:

σij = σ′ij + δiju where δij =

{
1 if i = j

0 if i 6= j.
i, j = 1, 2, 3 (C.1)

Notice, the water only influences the principle directions through Kronecker’s delta (δij) since
water cannot withstand any shear forces. The indices in Eq. (C.1) refers to the three Cartesian
axes (x1, x2, x3).

C.1.1 Stress State

Regarding the stress state in a soil body, it is common to analyse an infinitesimal cubic element
orientated with respect to a Cartesian coordinate system, see Figure C.1. Hence, the stress com-
ponents may be written in matrix from as:

σ =



σ′11 σ′12 σ′13

σ′21 σ′22 σ′23

σ′31 σ′32 σ′33


 (C.2)

where the first index refers to the surface where the stress component acts and the second index
refers to the direction of the stress component according to the Cartesian coordinate system.
Eq. (C.2) becomes symmetrical with six independent stress components with respect to moment
equilibrium around the three axes.
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σ11
σ12

σ13

σ22

σ21

σ23

σ33

σ31 σ32

x1

x2

x3

1

Figure C.1: Stresses acting on a unit cube of soil orientated according to a Cartesian reference system

C.1.2 Principal Stresses

Principal stresses represent a stress situation where stresses acting perpendicular (as normal vec-
tors) to the plane without any shear stresses (σ′12 = σ′23 = σ′13 = 0). Hence, considering a unit
cube exposed to an arbitrary stress field it is possible to determine the principle stresses by use of
Cauchy’s law through an Eigenvalue problem:

(σ − σ′I)n = 0 or (C.3a)

(σ′ij + σ′δij)n = 0 where δij =

{
1 if i = j

0 if i 6= j.
i, j = 1, 2, 3 (C.3b)

where I is the identity matrix and n is a normal vector (n = [n1, n2, n3]). To obtain non-trivial
solutions from Eq. (C.3) it requires:

det (σ − σ′I) = 0 (C.4)

which may be rewritten to:

σ′3 − I1σ′2 − I2σ′ − I3 = 0 (C.5)

where:

I1 = σ′11 + σ′22 + σ′33 (C.6a)

I2 = −σ′11σ
′
22 − σ′11σ

′
33 − σ′22σ

′
33 + σ′212 + σ′213 + σ′223 (C.6b)

I3 = det(σ′) = σ′11

(
σ′22σ

′
33 − σ′223

)
− σ′12 (σ′12σ

′
33 − σ′13σ

′
23) + σ′13 (σ′12σ

′
23 − σ′13σ

′
22) (C.6c)

It can be proved that Eq. (C.5) has three real roots since the matrix is real and symmetric.
Therefore, the solution yields three eigenvalues with three orthogonal eigenvectors (n1,n2,n3).
These eigenvalues are the principle stresses denoted as σ′1, σ

′
2, σ
′
3 and are often referred to as the

major, intermediate and minor principle stress, respectively. The coefficients in Eq. (C.5) are often
called the stress invariants. In the principal directions, the stress invariants can be rewritten as

I1 = σ′1 + σ′2 + σ′3
I2 = −σ′1σ′2 − σ′1σ′3 − σ′2σ′3
I3 = det(σ) = σ′1σ

′
2σ
′
3

It should be mentioned that the stress matrix (σ) will vary depending on the chosen reference
system or basis but the principle stresses will remain the same for a given stress condition.

Jesper Bjerre (s102905)



C.1. Continuum Mechanics 9

C.1.3 Mean and Deviatoric Stresses

The deviatoric stress is defines as:

s = σ − p or (C.7a)

sij = (σ′ij − pδij) where δij =

{
1 if i = j

0 if i 6= j.
i, j = 1, 2, 3 (C.7b)

where p is the mean stress tensor containing the mean stress in the diagonal. The mean stress is
defined by:

p =
1

3
(σ′11 + σ′22 + σ′33) =

1

3
(σ′1 + σ′2 + σ′3) =

I1
3

(C.8)

As for the principle stresses, the deviatoric stresses can be solved by an Eigenvalue problem:

(s− sI)n = 0 (C.9)

Yielding a third order equation:

s3 − J1s
2 − J2s− I3 = 0 (C.10)

where:

J1 = s11 + s22 + s33 = s1 + s2 + s3 = 0

J2 = −s11s22 − s11s33 − s22s33 + s2
12 + s2

13 + s2
23

J3 = det(s) = s11

(
s22s33 − s2

23

)
− s12 (s12s33 − s13s23) + s13 (s12s23 − s13s22)

As for the principal stresses, the principle deviatoric stresses are independent of the reference
system. Therefore, J1, J2 and J3 are often referred to as the deviatoric stress invariants. It can be
shown that

J1 = 0

J2 =

(
1

6

){
(σ′1 − σ′2)2 + (σ′1 − σ′3)2 + (σ′2 − σ′3)2

}

J2 = I2 +
I2
1

3

J3 = I3 +

(
1

3

)
I2I1 +

(
2

27

)
I3
1

Note, the deviatoric stresses are functions of the full stresses and can therefore be written as shown
above. Furthermore, the principle deviatoric stresses are called: s1, s2, s3.

Jesper Bjerre (s102905)
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C.1.4 Stress Spaces

As mentioned in section C.1.1 the stress tensor consists of 6 independent components. To visualize
the stress state one may use one of following planes indicated in Figure C.2(a).

XXXXX Technical University of Denmark

σ2 = σ3

σ1

σ2

σ3

Triaxial Plane σ2 = σ3

Hydrostatic Plane σ1 = σ2 = σ3

π-Plane, Normal to σ1 = σ2 = σ3

Figure 1: Plan view with dimension of fill (Berre, 2013)

1

(a) Principal stress space indicating location of: Tri-
axial, hydrostatic and π-plane.

XXXXX Technical University of Denmark

σ1

σ2

σ3

J2 = Constant

Figure 2: Plan view with dimension of fill (Berre, 2013)

2

(b) The second deviatoric stress invariant forming a
cylinder in the principle space with

√
2J2 as radius.

Figure C.2: Stress spaces.

Utilizing these planes, a three-dimensional stress state is easier to imagine. A geometric interpre-
tation of a stress state can be done through the hydrostatic and the deviatoric contribution. The
hydrostatic contribution will locate the π-plane and the deviatoric contribution would determine
the size of a circle as a function of J2. Furthermore, it can be shown that the second devia-
toric stress invariant (J2) simply will form a circle on the π-plane and a cylinder in the principle
coordinate system, see Figure C.2(b).

C.1.5 Strains and Strain Invariants

Utilizing the conventional engineering strain, the infinitesimal strain tensor for a unit cube exposed
to the displacement field (u) with the reference system (x) is given as:

εij = −1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
i, j = 1, 2, 3 or ε =



ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


 (C.11)

Where ui is the displacement in the direction xi. The negative sign is a consequence of considering
compression as positive. As for the strain tensor, an eigenvalue problem may be assembled as:

(ε− εI)x = 0 (C.12a)

det(ε− εI) = 0 Non trivial solutions (C.12b)

where x is the orthonormal bases for the eigenvectors. In other words, the principal axes of the
strains. As for the principle and deviatoric stresses, it yields a third order equation:

ε− Iε1ε2 − Iε2ε− Iε3 = 0 (C.13)

Jesper Bjerre (s102905)



C.1. Continuum Mechanics 11

where the strains invariants are defined as:

Iε1 = ε11 + ε22 + ε33 = εp (C.14a)

Iε2 = −ε11ε22 − ε11ε33 − ε22ε33 + ε2
12 + ε2

13 + ε2
23 (C.14b)

Iε3 = det(ε) = ε11

(
ε22ε33 − ε2

23

)
− ε12 (ε12ε33 − ε13ε23) + ε13 (ε12ε23 − ε13ε22) (C.14c)

Notice, the first strain invariant is the same as the volumetric strain. This is an assumption caused
by neglecting the multiplication of the three principle strains. The deviatoric strain tensor is
defined as:

e = ε− εp
3
I or (C.15a)

eij = εij −
εp
3
δij where δij =

{
1 if i = j

0 if i 6= j.
i, j = 1, 2, 3 (C.15b)

Where the deviatoric strain invariants are defined as:

Je1 = e11 + e22 + e33 = e1 + e2 + e3 = 0 (C.16a)

Je2 = −e11e22 − e11e33 − e22e33 + e2
12 + e2

13 + e2
23 (C.16b)

Je3 = det(e) = e11

(
e22e33 − e2

23

)
− e12 (e12e33 − e13e23) + e13 (e12e23 − e13e22) (C.16c)

Notice that Jε1 ≡ 0 by the definition of the deviatoric strains.

C.1.6 The Lode Angle

As shown in Section C.1.2 the principal stresses (Eq. (C.5)) is a third order equation making
an explicit solution impossible. However, using the definition of the deviatoric stresses the first
deviatoric invariant is zero and can be used to find an explicit solution. From Eq. (C.10) and
using J1 ≡ 0 yields:

s3 − J2s− J3 = 0 (C.17)

The explicit solution is found by use of trigonometric relations. It can be shown that the sine and
cosine relations are given by:

sin(α± β) = sinα cosβ ± cosα sinβ (C.18a)

cos(α± β) = cosα sinβ ∓ sinα cosβ (C.18b)

Using trigonometric identity and some algebra it may be shown that a relation (function of θ) can
be obtained in the same form as the deviatoric principal stress in Eq. (C.17):

cos(θ2 + θ) = cos θ cos(θ + θ)− sin θ sin(θ + θ) (C.19a)

= cos θ (cos θ cos θ − sin θ sin θ)− 2 sin θ sin θ cos θ (C.19b)

= cos2 θ − 3 sin2 θ cos θ (C.19c)

= 4 cos2 θ − 3 cos θ (C.19d)

Jesper Bjerre (s102905)
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The last step is to remove the constant in front of the term (cos2 θ) by division:

cos2 θ − 3

4
cos θ − 1

4
cos(3θ) = 0 (C.20)

Recalling the definition of the π-plane. Any vector drawn in this particular plane will represent the
deviaoric part of a given stress state. Defining a vector ρ in the π-plane the length (magnitude)
can be found by:

ρ =
√
ss =

√
s2

1 + s2
2 + s3

3 =
√

2J2 (C.21)

A relationship between Eq. (C.17) and Eq. (C.21) may be done utilizing polar coordinates which
is done by s = r cos θ. By use of some algebra it can be shown that:

cos3 θ − J2

r2
cos θ − J3

r3
= 0 (C.22)

Now, by substituting an expression of J2 from Eq. (C.21) into Eq. (C.22) and combining this with
Eq. (C.20) yields:

cos(3θ) =
4J3

r3
=

3
√

3J3

2
√
J3

2

where r = 2

√
J2

3
=

√
2

3
ρ (C.23)

According to (Nordal, 2014c), it may be verified that the term: cos 3θ or d 3
√

3J3
2
√
J3
2

varies between

-1 to 1 for all values of J2 and J3. Since cosine is a periodic function there will be more than
one solution to Eq. (C.24). Hence, all solutions may be found by any angle equal to 3θ + 2πn
where n is a positive integer with the increment of 1. According to the definition of the major and
minor stresses (σ′1 > σ′2 > σ′3) and substituting the relation of s = r cos following expression for
the principle stresses may be found for n = 1, 2 and 3:




σ′1

σ′2

σ′3


 = 2

√
J2

3




cos θ

cos

(
θ − 2π

3

)

cos

(
θ +

2π

3

)




+
I3
3




1

1

1


 for θ ∈

[
0,
π

3

]
(C.24)

It is possible to find the corresponding tri-axial plane in terms of the Lode angle. If implementing
an angle of θ = 0o it corresponds to compression and an angle of θ = 60o corresponds to extension.

C.1.7 Bulk and Shear modulus

Bulk Modulus: The reason for using the bulk modulus (K) in soil mechanicss, during isotropic
elasticity, can be seen by introducing the mean stress:

p′ =
1

3
(σ′11 + σ′22 + σ′33) (C.25)

Utilizing the constitutive matrix the stresses can be rewritten into stiffness and strains and by
some algebra it can be shown that:

p′ = K (ε11 + ε22 + ε33) = Kεp (C.26)

Hence, it can be seen that the volumetric strain is proportional to the mean effective stress through
the bulk modulus for isotropic elastic conditions.
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Shear Modulus: The shear modulus (G) can be determined by looking at the definition of the
deviatoric stresses:

s = σ − Ip′ = D(ε+
εp
3

)− Ip′ (C.27)

where ε is the strain tensor and D the elastic stiffness matrix. By some algebra it can be shown
that

sij = 2Geij (C.28)

Meaning, the deviatoric stress (sij) is proportional to the deviator strain (eij) by a factor of 2.

C.1.8 Tensors

It is common to write the tensors presented in Section C.1 in vector format as:

Stress and strain tensor:

σ =




σ′11

σ′22

σ′33

σ′12

σ′23

σ′13




, ε =




ε11

ε22

ε33

ε12

ε23

ε13




Deviatoric stress, strain, and fabric tensor:

σd =




σ′11 − p
σ′22 − p
σ′33 − p√

2σ′12√
2σ′23√
2σ′13




=




1
3 (2σ′11 − σ′22 − σ′33)

1
3 (−σ′11 + 2σ′22 − σ′33)
1
3 (−σ′11 − σ′22 + 2σ′33)√

2σ′12√
2σ′23√
2σ′13




, εd =




ε11 − 1

ε22 − 1

ε33 − 1√
2ε12√
2ε23√
2ε13




, αd =




α11 − 1

α22 − 1

α33 − 1√
2α12√
2α23√
2α13




=




αd11

αd22

αd33

αd12

αd23

αd13




Note that the fabric tensor has not been presented in Section C.1 but follows the same principle.
The deviatoric tensors may be presented by the second deviatoric invariant as:

J2 =
1

2
σTd σd , Jε2 =

1

2
εTd εd , Jα2 =

1

2
(σd − p′αd)T (σd − p′αd) (C.29)

The fabric may also be presented by a single factor as:

α =

√
3

2
αTd αd (C.30)
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C.2 CC vs. MCC

The difference between the original and the Modified Cam Clay (MCC) is the shape of the yield
surface. In the original formulation the yield surface was theoretically derived based on an energy
equation. The shape has a logarithmic spiral format compared to the ellipse shape in the MCC, see
Figure C.3. However, the inconvenient shape in the CC model leads to numerical issues at the tip
of the yield surface where unrealistic plastic shear strain increments during isotropic compression
were predicted (Hokkaido).

Figure C.3: Difference between CC and MCC. Notice notation difference, p0 = p′c.

The evolution of the dilatation is associated to a linear relationship between the volumetric strain
and the stress ratio in the original whereas the MCC uses a logarithmic behaviour, see Figure C.4
(Ohta, 2007).
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Figure C.4: Difference between the original CC and the MCC. Notice notation difference, εv = εp.

C.2.1 Derivation of Yield Surface

The shape of the yield surface in the MCC model is defined as an ellipse in the (p : q)-space
(Ellipsoid in the principle space). The yield surface is governed by the material parameter M
which defines the Critical State Line (CSL). The CSL is associated to the Critical State (CS). For
more details about the CS see Appendix C.3. As a characteristic feature, the top point of the
ellipse would always touch through the CSL, see Figure C.5.
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CSLq

p′

p′c
2

p′c

Mp′c
2

1

Figure C.5: Elliptical yield surface for the MCC.

Notice, the ellipse is passing through zero regarding that cohesion is assumed to be negligible. It
has been stated that this assumption is reasonable to propose except for soil particles which have
been cemented together. Soil itself cannot withstand an all round effective tensile stress which will
develop irrecoverable volumetric deformation (Wood, 1990). A formulation of the yield surface
may be assembled as a function of: p′, q,M and p′c. The first step is to recall the mathematical
expression of an ellipse which is given by:

(x
a

)2 (y
b

)2

− 1 = 0 (C.31)

Eq. (C.31) can be rewritten by substituting x and y with p′ and q, respectively, and choose values
for a and b corresponding to the dimension of the ellipse:

F =


 p′

p′c
2




2

+


 q

M
p′c
2




2

− 1 = 0 (C.32)

It may be observed in Eq. (C.32) that the center of the ellipse is located at origo. In order to
eliminate the tension part the ellipse must be moved to the right to obtain the location as shown
in Figure C.5. The translation is done by subtracting a from x in Eq. (C.32). Furthermore, to
achieve a more simplified solution, Eq. (C.32) is multiplied by b = (Mp′c/2)2. Utilizing some
algebra it may be reduced to the known form given in Eq. (C.33c).

0 =

((
x− a
a

)2

+
(y
b

)2

− 1

)
b2 (C.33a)

0 = F =






p′ − p′c

2
p′c
2


+


 q

M
p′c
2




2

− 1



(
M
p′c
2

)2

(C.33b)

0 = F = q2 −M2(p′(p′c − p′)) (C.33c)

With respect to the MCC model, it is common to express the yield surface in another manner, see
Eq. (2.56).
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C.3 Critical State

The Critical State (CS) may be formulated as suggested by (Nordal, 2014a):

Definition 10. A Critical State (CS) is a state where large shear strains may be applied without
any change in effective stresses or in volume.

The CS represents a state where the soil is completely remoulded and may be seen as homogeneous.
The state is emerged since the plastic potentials are assumed to have a slope in the (p′ : q)-plane
of dq/dp′ = 0, at the a particular stress ratio (Wood, 1990):

qcs = Mpcs and ηcs =
qcs
p′cs

(C.34)

To each specific volume (v), a critical state may be found by the effective mean pressure at CS:

vcs = Γ− λ ln p′cs (C.35)

where:

Γ = N − (λ− κ) ln(2) (C.36)

The soil response is associated to the OCR when approaching the CSL. For large OCR the soil
will show dilate behaviour and the contractive behaviour for small OCR. Introducing the CSL it
may be drawn in a three-dimensional space along with the NCL, see Figure C.6.

Figure C.6: State boundary surface. Taken from (Hokkaido).

As illustrated in Figure C.6, the CSL and the yield surfaces generate a boundary surface, often
known as the State Boundary Surface (SBS). The inside of SBS represent the elastic domain and
on the surface of SBS the plastic domain is represented. Notice, outside of the SBS is impossible.
Furthermore, the plastic potential will be normal to the SBS. The SBS may be used as a graphical
tool to easily see the effect of compacting regarding to the shear strength of a soil.
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Drained vs. Undrained

A drained or undrained condition are two very different scenarios which will dominate the soil
response. Hence, general understanding of how the constitutive model behave in these conditions
must be assembled.

Drained
In a conventional drained tri-axial test, the Effective Stress Part (ESP) and the Total Stress Path
(TSP), in the p′ : q space, will be known since the cell pressure will be kept constant during the
test. According to the definition of drained condition, the ESP and TSP will be equal. It may be
derived that the inclination would be 1:3 in the (p′ : q)-space. Thereby, the stress increment can
be formulated as:

1

3
=
dp′

dq
, dσ =

[
dq
3
dq

]
(C.37)

When the ESP approaches the yield surface the following two situations may occur:

� Approaching in the dry region: Plastic expansion will occur resulting in a shrinking
yield surface. The ESP will follow the same path back until it reaches the CSL.

� Approaching in the wet region: Plastic compression will occur resulting in a expansion
of the yield surface. The expansion will stop approaching the CSL.

The demanding criteria, if the ESP will approach the yield surface in the wet or dry region, is
determined by the OCR. These two scenarios may be seen in Figure C.7(a) and C.7(b).

Undrained
In a conventional undrained tri-axial test no dissipation of pore water will occur since the pore
water will be trapped inside the sample by closing the valve during shearing. Thereby, the volume
will be kept constant and no volumetric strain will occur:

dεp = 0 (C.38)

Notice that it has been assumed that full saturation is achieved prior to shearing, and water and
soil particles are incompressible. According to Eq. (2.57) and Eq. (C.38) the incremental stress
will only be dependent on the incremental shear strain:

dε =

[
0
dεq

]
(C.39)

The ESP may be estimated utilizing the criterion of constant volume. In the elastic domain the
volumetric change will only be related to effective mean stress. Hence, no volumetric change will
result in a vertical ESP until it reaches the yield surface. As in the drained case, the TSP will still
have an inclination on 1:3 and the difference between ESP and TSP corresponds to the developed
excess pore pressure. In the plastic domain a change in effective mean pressure may occur since
a change does not result in a change in volume in contrast to the elastic domain. Recalling the
definition of change in strain caused by effective mean pressure:

dεp = dεep + dεpp =

(
κ
dp′

vp′

)
+

(
(λ− κ)

dp′c
vp′c

)
= 0 (C.40)

From the definition of strain it is observed that a change in p′c yields a change in p′ in the opposite
direction to satisfy the equation. Utilizing Eq. (C.40) the following conclusion may be drawn:

� Approaching in the dry region: Plastic expansion will occur resulting in a shrinking
yield surface (decrease in p′c and increase in p′). The ESP will be directed to the right until
it reach the CSL.
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� Approaching in the wet region: Plastic compression will occur resulting in an expansion
of the yield surface (increase in p′c and decrease in p′). The ESP will be directed to the left
until it reaches the CSL.

The ESP for these two cases may be seen on Figure C.8(a) and C.8(b).
XXXXX Technical University of Denmark

qq

δεpq

Q

Q

R

R

S
S

P

T

T

F

F

yl Q

yl R

yl S

yl T

yl F

p′
K

δεpp
εq

1

(a) Slightly over consolidated.

XXXXX Technical University of Denmark

qq

δεpq QQ

RR
S

S

PP

T
T F

F

yl Q

yl R

yl S

yl T

yl F

p′
K

δεpp
εq

1

(b) Over Consolidated.

Figure C.7: Theoretical MCC: Drained tri-axial compression.
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Figure C.8: Theoretical MCC: Undrained tri-axial compression.
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C.3.1 Hand Calculations to Verify the MCC in MATLAB

Theoretical calculation of the four scenarios given in Section 6.4.2.

Drained scenarios

The drained shear strength:

τf =
p′c
2

=
900kPa

2
= 450kPa

The change in volume in each step:

∆νAB = λ ln
p′c + ∆p′0

p′c

= 0.25 · ln
(

900kPa

300kPa

)
= −0.275

∆νBF = −κ ln
p′ + ∆p′

p′

= 0.05 · ln
(

450kPa

900kPa

)
= 0.035

The final specific volume:

vF = 2− 0.275 + 0.035 = 1.76
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Figure C.9: Hand calculation MCC: Drained, nor-
mal consolidated

The maximum shear strength:

q =
√

(p′(1200kPa− p′)) = 591.1kPa

The residual shear strength:

τf =
900kPa

2
= 450kPa

The change in volume in each step:

∆vAB = −0.05 ln

(
1200kPa

300kPa

)
= −0.069

∆vBC = −0.25 ln

(
900kPa

1200kPa

)
= 0.072

∆vCF = −0.05 ln

(
450kPa

900kPa

)
= 0.035

The final specific volume:

vF = 2.000− 0.069 + 0.072 + 0.035 = 2.0373

εp =
∆V

V0
=

0.0373

2.0
= 1.87%
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Figure C.10: Hand calculation MCC: Drained, over
consolidated
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Undrained scenarios

Change in volume during each step:

∆v = ∆vAB + ∆vBF = 0

0 =− λ ln

(
p′0,A + ∆p′0,A−→B

p′0,A

)

− κ ln

(
p′0,B + ∆p′0,B−→F

p′0,B

)

The new preconsolidation pressure:

0 = −0, 25 ln
P ′x
300
− 0.05 ln

P ′x/2
P ′x

P ′x = 344.6kPa

The undrained shear strength:

su =
P ′x
2

= 172.3kPa

∆u =

(
300− 344.6

2

)
+

1

3

344.6

2
= 185.1 kPa
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Figure C.11: Hand calculation MCC: Undrained,
normal consolidated

No change in volume:

∆v = ∆vAB + ∆vBC + ∆vCF = 0

The change in volume from A −→ B:

∆vAB = −0.05 ln
1200kPa

300kPa
= −0.0069315

vB = 2− 0.069315 = 1.93069

New consolidation pressure:

0 = −0.069315− 0.25 ln

(
P ′x

1200kPa

)
− κ ln

(
P ′x/2
P ′x

)

P ′x = 1044.66kPa

∆u = 522− 300− 522

3
= 48 kPa

The change in volume from B −→ C:

∆VBC = −0.25 ln

(
1044.66kPa

1200kPa

)
= 0.034658

VC = 1.93069 + 0.034658 = 1.95535

∆VCF = −0.25 ln

(
1044.66kPa

1200kPa

)
= 0.034658

VF = 1.95535 + 0.034658 = 2
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Figure C.12: Hand calculation MCC: Undrained,
over consolidated
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C.4 Constitutive matrix

The theory to assemble the constitutive matrix has been given in Section 2.3-2.7.3. The first step
is to recall the reformulated expression of the strain given in Eq. (2.43):

dε = D−1dσ + dλ
∂Q

∂σ
(C.41)

Next step is to multiply by,

{
∂F

∂σ

}T
D, which yields:

{
∂F

∂σ

}T
Ddε =

{
∂F

∂σ

}T
DD−1dσ +

{
∂F

∂σ

}T
D

{
∂Q

∂σ

}
dλ (C.42)

Utilizing the relationship between stresses and strains in Eq. (C.42) it may be reduced to:

{
∂F

∂σ

}T
dσ

︸ ︷︷ ︸
Adλ

=

{
∂F

∂σ

}T
Ddε+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

}
dλ (C.43)

Using the consistency equation as shown in (C.43) it may be further reduced to:

0 =

({
∂F

∂σ

}T
Ddε+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

}
dλ

)
−Adλ (C.44)

Where the plastic multiplier may be found by:

dλ =

{
∂F

∂σ

}T
Ddε

A+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

} (C.45)

Substituting back into Eq. (C.41), the general stress strain relationship may be expressed by:

dσ′ =


D −

D

{
∂Q

∂σ

}{
∂F

∂σ

}T
D

A+

{
∂F

∂σ

}
D

{
∂Q

∂σ

}


 dε (C.46)

Which may be written in compact form by:

dσ = Depdε (C.47)

where

Dep = D −
D

{
∂Q

∂σ

}{
∂F

∂σ

}T
D

A+

{
∂F

∂σ

}T
D

{
∂Q

∂σ

} (C.48)

Notice that the term

({
∂Q

∂σ

}{
∂F

∂σ

}T)
yields a full symmetric matrix for associated plasticity

and a non symmetric matrix for non associated flow.
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C.5 Time Resistance Concept

The time resistance concept was suggested by Janbu (1969) which is a method to determine the
influence of creep by a single creep parameter. The definition of resistance is normally defined as:

Resistance =
Cause

Effect

Transforming this principle into creep methodology, the resistance parameter may be defined as:

R =
dt

dε
=

Increment in time

Increment in strain
(C.49)

Recalling that creep is associated to deformation over time corresponding to effect and cause,
respectively. The time resistance concept is a simplification of the reality since the method as-
sumes one-dimensional compression. However, the majority of deformation caused by creep occurs
vertically during normal scenarios (ageing of young deposits). Through the assumption of one-
dimensional, the magnitude of creep may be determined by one single parameter determined from
a one-dimensional testing equipment. The principle of Janbu’s stress-strain-time behaviour may
be seen on Figure C.13.

Figure C.13: Janbu’s stress-strain-time concept. Taken from (Janbu, 1998).

As seen on Figure C.13, the time resistance number (rs) may be determined as the inclination
during the secondary compression.

rs =
dR

dt
=

d

(
∂t

∂ε11

)

dt
=

∂t

∂ε11(t)
−Rref

t− τ (C.50)

where ε11 is the axial strain in an oedometer and Rref is the time resistance at a certain reference
time, τ . Eq. (C.50) may be rewritten into:

dt

dε
(t) = rs(t− τ) +Rref = rst since rsτ = R (C.51)
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Time Evolution in Volumetric Strain

To determine the change in volume with respect to time Eq. (C.51) may be formulated as:

dεvpp
dt

=
1

rst
−→ ∆εvpp =

1

rs
ln

(
t

τ

)
(C.52)

The change in the equivalent one-dimensional pre-consolidation stress (pc) caused by a change in
volumetric strain (∆εp) may be found through an integration of the isotropic hardening rule:

dpc
dεvpp

=
vpc
λ− κ −→ ∆εvpp =

λ− κ
v

ln

(
pc,ref
peq

)
(C.53)

where pc,ref is the effective one-dimensional reference preconsolidation stress for the corresponding
Rref . Combining Eqs. C.51, C.52, and C.53 where the t is eliminated yields:

dεvpp
dt

=
1

Rref

(
peq

pc,ref

)rsζ
where ζ =

λ− κ
v

(C.54)

The concept of Eq. (C.54) has been suggested by Grimstad et al. (2010) and may be illustrated
graphically as seen on Figure C.14.

cases, the general concepts found in this paper could also be

used in connection with critical state models using non-

associated flow rule.

3.1 Time resistance concept

The time resistance concept was first introduced by Janbu

in 1969 [17, 18]. Generally, resistance is defined as:

Resistance = Cause/Effect. Hence, time resistance, R, is

defined as in Eq. (1).

R ¼ increment in time

increment in strain
¼ dt

de
ð1Þ

For 1D oedometer case, the time resistance number can

be found by numerical differentiation, following the

procedure of Eq. (2).

rs ¼
d ot=oeað Þ

dt
¼ dR

dt
¼

ot=oeaðtÞ � Rref

� �

t � s
ð2Þ

where ea is the axial strain in an oedometer test and Rref is

the time resistance at a certain reference time, s. Figure 2

illustrates the graphical determination of the time resis-

tance, R, and time resistance number, rs, for an idealized

incremental oedometer test [17, 18].

In similar manner, Janbu [16] defined the stiffness

number, m, as shown in Eq. (3).

m ¼
d or0a=oea

� �

dr0a
¼ dEoed

dr0a
ð3Þ

where r0a is the effective axial stress and Eoed is the oe-

dometer stiffness.

In some cases, the secant stiffness number has greater

importance, since it can be linked to the compressibility

parameter k*. The secant stiffness number is defined as:

msec ¼
or0a=oea

r0a
¼ Eref

oed

pref
¼ 1

k�
ð4Þ

where Eref
oed is the oedometer stiffness at the chosen refer-

ence stress, pref (= 100 kPa) and k* is the modified com-

pression index (i.e. compressibility in vertical strain-ln(p0)
space).

Rearranging Eq. (2) into the differential Eq. (5) (valid

for constant effective stress) and solving the differential

equation from t = s to t gives Eq. (6).

dt

de
ðtÞ ¼ rs � ðt � sÞ þ Rref ¼ rs � t ð5Þ

devp
v

dt
¼ 1

rs � t
) Devp

v ¼
1

rs
ln

t

s
ð6Þ

The change in the equivalent 1D pre-consolidation

stress, pc, due to a change in volumetric strain can be found

from integration of the hardening rule. Integration from the

constant equivalent effective stress peq, for which the creep

is acting at t = s, to the stress pc,ref that corresponds to the

same increase in strain due to time t, is given in Eq. (7).

dpc

devp
v
¼ pc

f
) Devp

v ¼ f � ln pc;ref

peq

� �
ð7Þ

where f is a parameter related to irrecoverable compress-

ibility (f = k*- j*). pc,ref is the effective 1D reference

pre-consolidation stress for corresponding Rref. j* is the

modified swelling index.

Combining Eqs. (5), (6) and (7) gives Eq. (8), where

time is eliminated from the equations, see Fig. 3 for

graphical illustration. Equation (8) is valid for oedometer

condition and gives the 1D expression of volume/axial

strain rate as a function of peq and pc,ref. The formulation

used in the Soft Soil Creep (SSC) [42] model, found in the

commercial finite element code PLAXIS, is identical to the

R
 =

∂t
/∂

ε

Time

rs

1

‘‘Pure creep’’

Time

R
1

τ

Rref

εa

Fig. 2 Graphical determination of time resistance number for an

incremental oedometer test

ln(pc’ = peq ), t = τ
1

ζ

ln(τ)/rs

ln(pc’ = pc,ref’), (t = t)

∆εv
vp

1 1vp
v

s refr R
ε

τ
= =

⋅

ln(t)/rs

1vp
v

sr t
ε =

⋅
εv

vp

Fig. 3 Graphical illustration of the integration to arrive at Eq. (8)
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Figure C.14: Concept of Eq. (C.54). Taken from (Grimstad et al., 2010). Notice, εv = εp.

C.6 Talyor Expansion - Plasitic Multiplier

As shown by Grimstad and Benz (2014), the change in the plastic multiplier with respect to time
may be found through a Taylor series as:

∆λ ≈
(
λ̇+

{
∂λ̇

∂σ

}
∆σ +

{
∂λ̇

∂κ

}
∆κ

)
∆t (C.55)

where the change in stresses may be approximated to:

∆σ ≈D
(

∆ε− ∂Q

∂σ
∆λ

)
(C.56)

The change in state parameter may be approximated to:

∆κ ≈ h∆λ where h =
dκ

dλ
(C.57)

Solving Eq. (C.55) for the change in the plastic multiplier following formulation may be found:

∆λ =

λ̇+

{
∂λ̇

∂σ

}
Ddε

1

∆t
−
{
∂λ̇

∂κ

}
h+

{
∂λ̇

∂σ

}
D

{
∂Q

∂σ

} (C.58)
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C.7 Elastic Anisotropy

This section shortly summaries the mathematical expressions to obtain elastic anisotropic response
through a general rotated orthotropic stiffness matrix as presented by Grimstad (2009).

The diagonal matrix α is defined as:

α =




αx 0 0 0 0 0
0 αy 0 0 0 0
0 0 αz 0 0 0
0 0 0

√
αxαy 0 0

0 0 0 0
√
αxαz 0

0 0 0 0 0
√
αyαz




(C.59)

where x, y and z refers to Cartesian coordinates and α to the fabric. To obtain consistency of the
fabric the following expression should be satisfied:

tr(α) = αx + αy + αz = 3 (C.60)

The isotropic (Diso) stiffness may be formulated as:




σ′11

σ′22

σ′33

σ′12

σ′13

σ′23




=




1

E

−ν
E

−ν
E

0 0 0

−ν
E

1

E

−ν
E

0 0 0

−ν
E

−ν
E

1

E
0 0 0

0 0 0
1

2
(D11 −D12) 0 0

0 0 0 0
1

2
(D11 −D12) 0

0 0 0 0 0
1

2
(D11 −D12)







ε11

ε22

ε33

2ε12

2ε13

2ε23




(C.61)

Thereby, the orthotropic stiffness matrix may be written as:

Dort = αDisoα (C.62)

and in full format:

Dort =




α2
xD11 αxαyD12 αxαzD13 0 0 0

αyαxD21 α2
yD22 αyαzD23 0 0 0

αzαxD31 αzαyD32 α2
zD33 0 0 0

0 0 0 αxαy
1

2
(D11 −D12) 0 0

0 0 0 0 αxαz
1

2
(D11 −D12) 0

o 0 0 0 0 αyαz
1

2
(D11 −D12)




(C.63)

As indicated in Eq. (C.63) the principle axis was assumed to coincide with the Cartesian coor-
dinates. Expressing the orthotropic material with respect to the axis of orthotropy may be done
through a fabric tensor. The eigenvectors and eigenvalues of the second order fabric tensor (α)
yields the orthotropic axis.
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α =




αxx αxy αxz

αyx αyy αyz

αzx αzy αzz


 (C.64)

The eigenvalues, α1, α2 and α3 with the corresponding eigenvectors x1, x2 and x3. One may now
define a second order tensor, called the transformation tensor, as:

a =



xT1
xT2
xT3


 (C.65)

The elements of the rotation tensor a will then be used in a rotational matrix A−1:

A−1 =




a2
11 a2

21 a2
31 2a11a21 2a11a31 2a21a31

a2
12 a2

22 a2
32 2a12a22 2a12a32 2a22a32

a2
13 a2

23 a2
33 2a13a23 2a13a33 2a23a33

a11a12 a21a22 a31a32

(
a11a22

+a12a21

) (
a11a32

+a12a31

) (
a21a32

+a22a31

)

a11a13 a21a23 a31a33

(
a11a23

+a13a21

) (
a11a33

+a13a31

) (
a21a33

+a23a31

)

a12a13 a22a23 a32a33

(
a12a23

+a13a22

) (
a12a33

+a13a32

) (
a22a33

+a23a32

)




(C.66)

The elastic material stiffness matrix, for the full three dimensional orthopic material (extended
Houlsby and Graham (1983)), may now be presented for a Cartesian coordinate system as:

D = A−1DortA
T (C.67)

C.8 Initial Anisotropy

This section will describe the initial anisotropy related to plasticity, i.e. the rotation of the yield
surface. Two different approaches to initialize the rotation of the yield surface will be determined.
Furthermore, the stress ratio in one-dimensional compression will be defined.

C.8.1 Stress Ratio during One-dimensional Condition

The stress ratio may be determined as:

η =
q

p′
=

σ′11 − σ′33
1
3 (σ′11 + σ′22 + σ′33)

(C.68)

During one-dimensional conditions σ′22 = σ′33 and σ′
33/σ′

11 = K ′0. Hence, following formulation of
the stress ratio may be found:

ηKNC
0

=
3(1−KNC

0 )

1 + 2KNC
0

(C.69)
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C.8.2 Neglecting Elastic Strains

Assuming that plastic strains are dominant and thereby neglecting the elastic contribution the
ratio between deviatoric and volumetric strains is equal to:

2

3
=
dεd
dεp
≈ dεpd
dεpp

(C.70)

Utilizing associated flow the deviatoric and volumetric plastic strains may be determined from Eq.
(4.2) as:

dεpd =
∂Q

∂q
= 2q − 2αp′ (C.71a)

dεpp =
∂Q

∂p′
= α2p′c + 2M2p−M2p′c − 2 (C.71b)

The ratio of deviatoric and volumetric plastic strains may be arranged as:

dεpd
dεpp

=
2q − 2αp′

α2p′c + 2M2p−M2p′c − 2qα
=

2(η − α)

2M2 + α2
p′c
p
−M2

p′c
p
− 2ηα

(C.72)

Recalling the definition of the yield function:

(q − αp′)2 − (M2 − α2)(p′c − p′)p′ = 0 (C.73)

The yield function may be rearranged as:

q2

p2
= 2ηα+M2 + α2 p

′
c

p′
−M2 p

′
c

p′
−→ −M2 − η2 = α2 p

′
c

p′
−M2 p

′
c

p′
− 2ηα

︸ ︷︷ ︸
Same as denominator in Eq. (C.72)

(C.74)

Substituting Eq. (C.74) into Eq. (C.72) yields:

dεpd
dεpp

=
2 (η − α)

2M2 −M − α2
=

2 (η − α)

M2 − α2
(C.75)

Utilizing Eq. (C.71) following expression for the ratio between the volumetric and plastic deviatoric
strains may be assembled:

dεd
dεp

=
2

3
=

2
(
ηKNC

0
− αKNC

0

)

M2 − α2
KNC

0

(C.76)

Notice that α = αKNC
0

and η = ηKNC
0

since the one-dimensional condition is utilized. Hence, an
expression for αKNC

0
may now be determined:

αKNC
0

=
η2
KNC

0
+ 3αKNC

0
−M2

3
(C.77)

where η2
KNC

0
can be found from KNC

0 .

Jesper Bjerre (s102905)



C.8. Initial Anisotropy 27

C.8.3 Neglecting Elastic Shear Strains

The expression for the initial rotation only neglecting the elastic shear strain may be found by
recalling the definition of the dilatancy angle:

Ψ =
dεpp
dεpq

(C.78)

Utilizing the (ln p′ : e)-plane an expression for the change in volumetric strain may be found as:

dεp =

(
λ

λ− κ

)
dεpp (C.79)

The shear strain can be found by neglecting the elastic contribution, meaning dεq ≈ dεpq . Hence,
using the standard relation of strains (ε = dεp/dεq) an expression for the dilatancy angle can be
found:

Ψ =

(
1−

(
λ

κ

))
ε (C.80)

According to the flow rule the ratio between the deviatoric and volumetric plastic strains may be
written as:

dεpp
dεpq

=
M2 − η2

2(η − α)
(C.81)

Using Eq. (C.80) and Eq. (C.81) and solving for α with respect to one-dimensional conditions
following expression may be assembled:

αKNC
0

=
η2
KNC

0
+ 3

(
1− κ

λ

)
αKNC

0
−M2

3

(
1− λ

κ

) (C.82)
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C.9 Rotational Hardening

The evolution of anisotropy is a complex phenomenon where the grains in the soil are reorganized.
The main aim will be to highlight some of the different formulations which have been suggested
to describe the rotational hardening. The benefits and drawbacks of these formulations will be
pointed out and it will be shortly discussed where the main conclusions are taken from (Dafalias
and Taiebat, 2013).

The corresponding rotational hardening law to the yield surface ((4.2)) presented by (Dafalias,
1986) may be formulated as

dα =
〈
dλ
〉
c

∣∣∣∣∣
∂Q

∂p′

∣∣∣∣∣
p′

p′c
(αb − α) where αb =

η

xα
(C.83)

where c is a model parameter controlling the pace of evolution, Q is the plastic potential surface,
and xα is another model parameter defining the equilibrium or bonding value (αb) under fixed
stress-ratio η loading. Later Dafalias changed the evolution rule slightly due to the

∣∣ ∂Q
∂p′

∣∣ term in

(C.83) to following expression:

dα =
〈
dλ
〉
cpat

p′

p′c
(αb − α) where αb =

η

xα
(C.84)

where pat is the atmospheric pressure introduced for dimensional consistency. The third evolution
rule was presented by (Wheeler et al., 2003) assuming associated flow:

dα = µ

[(
3η

4
− α

)
〈dεpp〉+ β

(η
3
− α

)
|dεpq |

]
(C.85a)

= µ
〈
dλ
〉
p′
[(

3η

4
− α

)
〈M2 − η2〉+ β

(η
3
− α

)
|2(η − α)|

]
(C.85b)

where µ and β are model constants. The fourth and last presented evolution law is a further
development of Eq. (C.84) presented by Dafalias and Taiebat (2013) and is formulated as:

dα =
〈
dλ
〉
cpat

p′

p′c
(αb − α) where αb = ±M

z

[
1− exp

(
−s |η|

M

)]
(C.86)

where z and s are positive model constants. Notice that, M will take the value of either Mc or Me

and the ± sign becomes positive or negative for η ≥ 0 or η ≤ 0, respectively.

Comparing Eqs. (C.83)-(C.86) it can be seen that the formulation proposed by Dafalias suggests
a bounding value of α denoted as αb. The formulation given by Wheeler uses an implicit approach
by setting the bracketed term equal to zero and thereby determining a bounding value of α. The
soil parameter presented in the four formulations may be divided into two categories: 1. Control
of the equilibrium values of α under constant-stress-ratio (η) and is represented by xα, β and z, s.
2. control the pace of rotation and is represented by c and µ.
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Model Parameters during Constant-Stress-Ratio
Utilizing the fact that a specific constant-strain-rate ratio will have a corresponding constant stress
ratio, the model parameters that control the equilibrium value of α may be determined. In such a
determination, it is required that experimental data for the equilibrium values of α are available.
This procedure has been done for the four rotational laws by Dafalias and Taiebat (2013).

The first step is to determine an analytical value of the bounding value of α which is done by the
following expressions and may be derived from Eqs. C.84-C.86, respectively:

α = αb =
η

xα
(C.87a)

α =

{√
8β(3α− η)(η − α)− 3(3η − 4α)(M2 − η2) = 0 if η < M

η
3 if η > M

(C.87b)

α = αb = ±M
z

[
1− exp

(
−s |η|

M

)]
(C.87c)

The Eqs.
(
(C.87a), (C.87b), and (C.87a)

)
are plotted in Figure C.16 where the model parameters

xα, β, z and s are chosen to fit the experimental data in the compression zone. Note that z = s in
the particular case, see Dafalias and Taiebat (2013) for further details.

equation (11), in conjunction with equation (9), suffices for
their determination.

Constant-stress-ratio loading
In the previous subsection, the imposition of a specific

constant-strain-rate ratio eventually turns out to also be-
come a constant stress ratio. A conjugate approach would
be to load at various constant stress ratios �, calculate the
resulting equilibrium values of Æ, and if experimental data
are available for the latter, use them to calibrate the
foregoing RH parameters of the first kind, namely x, �, z
and s.

In Wheeler et al. (2003) such an approach was followed,
whereby the experimental data for the equilibrium values of
Æ were obtained indirectly by best-fitting measured yield
points using equation (1). This provided Fig. 6 of Wheeler
et al. (2003), with plots of Æ/M against �/M for Otaniemi
clay. On the other hand, setting _Æ ¼ 0 yields the following
equilibrium values of Æ according to the chosen RH rule,
where equation (5) yields the same results as equation (6),
and is not referred to.

For equation (6)

Æ ¼ Æb ¼
�

x
(12a)

For equation (7)

Æ ¼ root of 8�(3Æ� �)(�� Æ)� 3(3�� 4Æ)(M2 � �2)

¼ 0 for � , M and Æ ¼ �

3
for � . M

(12b)

For equation (8)

Æ ¼ Æb ¼ �
M

z
1� exp �s

�j j
M

� �� �

(12c)

In Fig. 2 both the experimental data reported in Wheeler
et al. (2003) and the theoretical plots of Æ/M against �/M as
calculated from equations (12a), (12b) and (12c) are plotted
in three separate diagrams for two values of the RH param-
eters, as reported in the figure captions. It can be seen that
the RH rules given by equations (6) and (7) provide a
reasonably good fit to the data for triaxial compression via
the corresponding equations (12a) and (12b), respectively,
with appropriate choice of the parameters x and �, where
the better fitting of equations (7) and (12b) is weighted
against the simplicity of equations (6) and (12a). Observe
first in Fig. 2(b) the interesting feature that equation (12b)
provides, namely a decreasing value of Æ/M for increasing
�/M in the vicinity before �/M ¼ 1. Second, observe for
both equations (12a) and (12b) the unlimited increase of Æ/
M when �/M . 1; the consequences of this will be analysed
in the sequel. By contrast, in comparison the RH rule of
equation (8) provides, via equation (12c), the best fit, with
monotonically increasing Æ/M with �/M, but also a bounded
Æ/M , 1 for any value of �/M. In fact, the exponential
dependence of x on �, which leads to the derivation of
equation (8) from equation (6), was made in order to
address the fitting of the foregoing plots in Fig. 6 of Wheel-
er et al. (2003). None of equations (12) fits the data
satisfactorily in extension. From Fig. 2 one can make a
choice of the parameters x, �, z and s that best fits the
results in compression. Such a choice of RH parameters
may not correspond exactly to that based on fitting the K0

condition in the previous section, but it is expected to come
close to it.

Loading to critical state and uniqueness of CSL
From the constitutive modelling perspective, critical state

is reached when at the critical stress ratio � ¼ �c ¼ M one
has @g/@p ¼ 0. Hence the rate of p0 is zero, according to
equation (4), and simultaneously the RH variable Æ reaches
a critical state value Æc, and does not evolve any further,
thus yielding a zero plastic modulus from the consistency
condition _f ¼ 0: The question that arises is whether such a
combination of �c and Æc guarantees a unique CSL in e–
ln p space, irrespective of the loading history and mode of
shearing (triaxial compression, extension, or anything in
between).

Consider first the case of an associative flow rule, and set
� ¼ �c ¼M in the analytical expression of PPS/YS given in
the text just before equation (1), to obtain straightforwardly
for the critical state values pc, qc and Æc the relations

pc

p0

¼ 1

2
1þ Æc

M

� �
(13)

and qc ¼Mpc: Here pc and qc are shown in Fig. 1; M
assumes the value Mc in triaxial compression, and �Me in
triaxial extension; and, if loading is in extension, Æc , 0. It
follows from equation (13) that, in reference to a unique
NCL represented by the evolution of p0 in e–ln p space as
described by equation (4), the location of the corresponding
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Fig. 2. Equilibrium values of Æ/M for radial stress paths at
various �/M: (a) equation (12a); (b) equation (12b); (c) equation
(12c). Symbols are experimental data for Otaniemi clay (Wheeler
et al., 2003), and lines are based on different RH rules (M 1.1).
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(a) Eq (C.87a).

equation (11), in conjunction with equation (9), suffices for
their determination.

Constant-stress-ratio loading
In the previous subsection, the imposition of a specific

constant-strain-rate ratio eventually turns out to also be-
come a constant stress ratio. A conjugate approach would
be to load at various constant stress ratios �, calculate the
resulting equilibrium values of Æ, and if experimental data
are available for the latter, use them to calibrate the
foregoing RH parameters of the first kind, namely x, �, z
and s.

In Wheeler et al. (2003) such an approach was followed,
whereby the experimental data for the equilibrium values of
Æ were obtained indirectly by best-fitting measured yield
points using equation (1). This provided Fig. 6 of Wheeler
et al. (2003), with plots of Æ/M against �/M for Otaniemi
clay. On the other hand, setting _Æ ¼ 0 yields the following
equilibrium values of Æ according to the chosen RH rule,
where equation (5) yields the same results as equation (6),
and is not referred to.

For equation (6)

Æ ¼ Æb ¼
�

x
(12a)

For equation (7)

Æ ¼ root of 8�(3Æ� �)(�� Æ)� 3(3�� 4Æ)(M2 � �2)

¼ 0 for � , M and Æ ¼ �

3
for � . M

(12b)

For equation (8)

Æ ¼ Æb ¼ �
M

z
1� exp �s

�j j
M

� �� �

(12c)

In Fig. 2 both the experimental data reported in Wheeler
et al. (2003) and the theoretical plots of Æ/M against �/M as
calculated from equations (12a), (12b) and (12c) are plotted
in three separate diagrams for two values of the RH param-
eters, as reported in the figure captions. It can be seen that
the RH rules given by equations (6) and (7) provide a
reasonably good fit to the data for triaxial compression via
the corresponding equations (12a) and (12b), respectively,
with appropriate choice of the parameters x and �, where
the better fitting of equations (7) and (12b) is weighted
against the simplicity of equations (6) and (12a). Observe
first in Fig. 2(b) the interesting feature that equation (12b)
provides, namely a decreasing value of Æ/M for increasing
�/M in the vicinity before �/M ¼ 1. Second, observe for
both equations (12a) and (12b) the unlimited increase of Æ/
M when �/M . 1; the consequences of this will be analysed
in the sequel. By contrast, in comparison the RH rule of
equation (8) provides, via equation (12c), the best fit, with
monotonically increasing Æ/M with �/M, but also a bounded
Æ/M , 1 for any value of �/M. In fact, the exponential
dependence of x on �, which leads to the derivation of
equation (8) from equation (6), was made in order to
address the fitting of the foregoing plots in Fig. 6 of Wheel-
er et al. (2003). None of equations (12) fits the data
satisfactorily in extension. From Fig. 2 one can make a
choice of the parameters x, �, z and s that best fits the
results in compression. Such a choice of RH parameters
may not correspond exactly to that based on fitting the K0

condition in the previous section, but it is expected to come
close to it.

Loading to critical state and uniqueness of CSL
From the constitutive modelling perspective, critical state

is reached when at the critical stress ratio � ¼ �c ¼ M one
has @g/@p ¼ 0. Hence the rate of p0 is zero, according to
equation (4), and simultaneously the RH variable Æ reaches
a critical state value Æc, and does not evolve any further,
thus yielding a zero plastic modulus from the consistency
condition _f ¼ 0: The question that arises is whether such a
combination of �c and Æc guarantees a unique CSL in e–
ln p space, irrespective of the loading history and mode of
shearing (triaxial compression, extension, or anything in
between).

Consider first the case of an associative flow rule, and set
� ¼ �c ¼M in the analytical expression of PPS/YS given in
the text just before equation (1), to obtain straightforwardly
for the critical state values pc, qc and Æc the relations

pc

p0

¼ 1

2
1þ Æc

M

� �
(13)

and qc ¼Mpc: Here pc and qc are shown in Fig. 1; M
assumes the value Mc in triaxial compression, and �Me in
triaxial extension; and, if loading is in extension, Æc , 0. It
follows from equation (13) that, in reference to a unique
NCL represented by the evolution of p0 in e–ln p space as
described by equation (4), the location of the corresponding
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Fig. 2. Equilibrium values of Æ/M for radial stress paths at
various �/M: (a) equation (12a); (b) equation (12b); (c) equation
(12c). Symbols are experimental data for Otaniemi clay (Wheeler
et al., 2003), and lines are based on different RH rules (M 1.1).
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(b) Eq (C.87b).

equation (11), in conjunction with equation (9), suffices for
their determination.

Constant-stress-ratio loading
In the previous subsection, the imposition of a specific

constant-strain-rate ratio eventually turns out to also be-
come a constant stress ratio. A conjugate approach would
be to load at various constant stress ratios �, calculate the
resulting equilibrium values of Æ, and if experimental data
are available for the latter, use them to calibrate the
foregoing RH parameters of the first kind, namely x, �, z
and s.

In Wheeler et al. (2003) such an approach was followed,
whereby the experimental data for the equilibrium values of
Æ were obtained indirectly by best-fitting measured yield
points using equation (1). This provided Fig. 6 of Wheeler
et al. (2003), with plots of Æ/M against �/M for Otaniemi
clay. On the other hand, setting _Æ ¼ 0 yields the following
equilibrium values of Æ according to the chosen RH rule,
where equation (5) yields the same results as equation (6),
and is not referred to.

For equation (6)

Æ ¼ Æb ¼
�

x
(12a)

For equation (7)

Æ ¼ root of 8�(3Æ� �)(�� Æ)� 3(3�� 4Æ)(M2 � �2)

¼ 0 for � , M and Æ ¼ �

3
for � . M

(12b)

For equation (8)

Æ ¼ Æb ¼ �
M

z
1� exp �s

�j j
M

� �� �

(12c)

In Fig. 2 both the experimental data reported in Wheeler
et al. (2003) and the theoretical plots of Æ/M against �/M as
calculated from equations (12a), (12b) and (12c) are plotted
in three separate diagrams for two values of the RH param-
eters, as reported in the figure captions. It can be seen that
the RH rules given by equations (6) and (7) provide a
reasonably good fit to the data for triaxial compression via
the corresponding equations (12a) and (12b), respectively,
with appropriate choice of the parameters x and �, where
the better fitting of equations (7) and (12b) is weighted
against the simplicity of equations (6) and (12a). Observe
first in Fig. 2(b) the interesting feature that equation (12b)
provides, namely a decreasing value of Æ/M for increasing
�/M in the vicinity before �/M ¼ 1. Second, observe for
both equations (12a) and (12b) the unlimited increase of Æ/
M when �/M . 1; the consequences of this will be analysed
in the sequel. By contrast, in comparison the RH rule of
equation (8) provides, via equation (12c), the best fit, with
monotonically increasing Æ/M with �/M, but also a bounded
Æ/M , 1 for any value of �/M. In fact, the exponential
dependence of x on �, which leads to the derivation of
equation (8) from equation (6), was made in order to
address the fitting of the foregoing plots in Fig. 6 of Wheel-
er et al. (2003). None of equations (12) fits the data
satisfactorily in extension. From Fig. 2 one can make a
choice of the parameters x, �, z and s that best fits the
results in compression. Such a choice of RH parameters
may not correspond exactly to that based on fitting the K0

condition in the previous section, but it is expected to come
close to it.

Loading to critical state and uniqueness of CSL
From the constitutive modelling perspective, critical state

is reached when at the critical stress ratio � ¼ �c ¼ M one
has @g/@p ¼ 0. Hence the rate of p0 is zero, according to
equation (4), and simultaneously the RH variable Æ reaches
a critical state value Æc, and does not evolve any further,
thus yielding a zero plastic modulus from the consistency
condition _f ¼ 0: The question that arises is whether such a
combination of �c and Æc guarantees a unique CSL in e–
ln p space, irrespective of the loading history and mode of
shearing (triaxial compression, extension, or anything in
between).

Consider first the case of an associative flow rule, and set
� ¼ �c ¼M in the analytical expression of PPS/YS given in
the text just before equation (1), to obtain straightforwardly
for the critical state values pc, qc and Æc the relations

pc

p0

¼ 1

2
1þ Æc

M

� �
(13)

and qc ¼Mpc: Here pc and qc are shown in Fig. 1; M
assumes the value Mc in triaxial compression, and �Me in
triaxial extension; and, if loading is in extension, Æc , 0. It
follows from equation (13) that, in reference to a unique
NCL represented by the evolution of p0 in e–ln p space as
described by equation (4), the location of the corresponding
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Fig. 2. Equilibrium values of Æ/M for radial stress paths at
various �/M: (a) equation (12a); (b) equation (12b); (c) equation
(12c). Symbols are experimental data for Otaniemi clay (Wheeler
et al., 2003), and lines are based on different RH rules (M 1.1).
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(c) Eq (C.87c).

Figure C.15: Equilibrium values of α/M for radial stress path with various η/M . Taken from (Dafalias
and Taiebat, 2013)

All three Eqs fit the data point reasonably well, but Eq. (C.87b) and Eq. (C.87c) fits better
compared to Eq. (C.87a) due to the benefit of the shape of the functions. The soil parameters
have been chosen to fit the compression data points and it has been suggested by (Dafalias and
Taiebat, 2013) to calibrate the parameter either to a compression or a tension test.
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Loading to critical state and uniqueness of CSL:

In the main essence of critical state theory it requires that the critical state ratio η = ηc = M
at the state where ∂Q

∂p = 0 meaning that the rate of p′c is zero. Therefore, by incorporating an
evolution law the same requirement should be fulfilled. To do this the bounding value of α should
approach a critical value simultaneously with isotropic hardening and the combination of αc and
ηc guarantees a unique critical state line in the (e : ln p′)-space.

The first step in this analyses process is to rewrite the formulation for the yield surface to obtain
a relationship between the stress conditions and rotation parameter in the critical state:

p′cs
p′c

=
1

2

(
1 +

αc
M

)
where qcs = Mp′cs (C.88)

According to Eq. (C.88), a unique CSL represented by the change of the pre-consolidation pressure
in the (e : ln)-space will be dependent on the ratio of αc/M . The uniqueness of the CSL may be
confirmed if the ratio αc/M remains the same for any loading at any mean pressure p′ and yielding
the same predictions of the critical state.

Going back to the four evolution laws the first would never yield a unique critical state line due to
the term of |∂G/∂p|. As stated in Dafalias and Taiebat (2013), this term would freeze the evolution
of both α and p′c approaching the stress point η = M . The tree other laws do not show the same
lack of uniqueness and would approach equilibrium at η = M . The ratio for this particular state
is given below for Eqs. (C.87), respectively:

αc
M

=
1

xα
and

p′cs
p′c

=
1 + xα

2xα
(C.89a)

αc
M

=
1

3
and

p′cs
p′c

=
2

3
(C.89b)

αc
M

=
1

z
[1− exp (−s)] and

p′cs
p′c

=
1

2

[
1 +

1

z
(1− exp (−s))

]
(C.89c)

Notice, to obtain a uniqueness of the CSL it requires independence of the ratio
p′cs
p′c

and the pa-

rameters xα, z and s from the Lode angle. Uniqueness of the CSL should still be obtained in a
multiaxial space. The lack of uniqueness may best be illustrated by plotting the undrained stress
path in a (p′ : q)-space and can be seen on Figure C.16 associated to the test made by Dafalias
and Taiebat (2013).

In Figure C.16 two main conclusions may be drawn. Regarding the first rotation law suggested
Dafalias (1986), the yield surface has not rotated enough towards extension region comparing to the
other cases. Furthermore, the critical state in compression and extension is found at different mean
pressures caused by the term |∂Q/∂p|. Comparing the three other rotation laws, a ”hook-type”
shape appears approaching failure where extension paths are more dominant in this behaviour.

This indicates continuous rotation of the yield surface at a constant p′c. Dafalias and Taiebat
(2013) has stated that the three rotational rules yield very similar results despite the fact that all
the rotational rules approach a different critical state and location on the unique CSL. In addition,
by applying non-associated flow the simulation capability is improved dramatically.
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sion respectively, among all Lode angles. Since the extension
values of both M and N are always smaller than the com-
pression values, but it is not known which of M and N is
smaller (usually, but not always, N , M), the final condition
reads Æmax , min(Me, Ne), which of course simplifies to
Æmax , Me for the case M ¼ N.

In order to test the eventuality of excessive rotation
response of the various RH rules, loading at constant stress
ratio � . M will be considered. Note that because the YS is
tangent to the q-axis at the origin, any value of constant-�
loading can be applied. It is clear that for equations (12a)
and (12b) the equilibrium values of Æ given by �/x and �/3
can exceed the value of M for appropriately high value of �:
thus, the corresponding RH rules of equations (6) and (7)
can always violate the requirement Æ , M. On the other
hand, owing to the negative exponential term, for a very
high value of � equation (12) gives Æmax ¼Mc/z, which in
conjunction with Æmax , min(Me, Ne) yields the restriction
z . Mc/min(Me, Ne). For M ¼ N this reduces to z > Mc/Me:

These conclusions are shown eloquently in the plots of Fig.
2, where it is seen that Æ/M increases linearly with �/M . 1
in Figs 2(a) and 2(b), whereas it is bounded by 1/z in Fig.
2(c). However, there may be a problem even for the RH rule
of equation (8), particularly when N , M and z . Mc/Ne is
violated, because Ne can be considerably smaller than Mc:
One explanation is pertinent here; although Æmax is calcu-
lated in terms of Mc for compression loading, it is then
compared with the extension values of Me or Ne, because it
is the same Æmax that enters equation (1) in the extension
stress space. Note that loading at constant � . M will
necessarily induce shrinking of the PPS/YS because of
dilation (see equations (3) and (4)), and it may be the case
that such shrinking will cause the surface to degenerate to a
point at the origin before excessive rotation violating Æ , M
occurs; the present investigation, though, is addressing the
worst-case scenario of violating the foregoing inequality.

A common remedy for the above excessive rotation of Æ
above M for all RH rules can be proposed as follows. The
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Fig. 3. Undrained stress paths in compression and extension after K0 consolidation, illustrating
uniqueness or lack of it of CSL, using RH rules of: (a) equation (5); (b) equation (6); (c) equation
(7); (d) equation (8). Solid lines with arrows, undrained stress paths after K0 consolidation; dashed
lines, location of YS at beginning and end of undrained loading after K0 consolidation in both
triaxial compression and extension; vertical projection lines with arrows on p-axis show uniqueness
or not of CSL at end of undrained loading
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Figure C.16: Undrained stress path in compression and extension after K0 consolidation, indicating
uniqueness or lack of it of CSL. a) Eq. (C.83) b) Eq. (C.84) c) Eq. (C.85) d) Eq. (C.86) in Appendix
C.9. Taken from (Dafalias and Taiebat, 2013).
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Appendix D

Programming

The purpose of this appendix is to provide information regarding the constitutive model. The first
part will introduce the algorithm and the procedure related to the MCC model which has been
programmed in MATLAB. The second part will present the FORTRAN framework.

D.1 Algorithm for the MCC Model

The MCC model in MATLAB is an iterative procedure where stresses are determined by a known
vertical deformation. A pseudo code may be seen in Algorithm 1.

Data: κ, λ, ν, e0,M and p′c
Result: p′cs, qcs, u, ε11, εp and εd
Initialization by assembling the initial contributions in vectors and matrices
while Counter < Max number of iterations do

if F = 0 then
Determine new p′0 by the previous stresses

else
No change in p′c

end
if yield = 0 then

Compute dλ
else

dλ = 0
end
-Assemble the constitutive stiffness matrix
-Determine Incremental strains
-Determine Incremental stress
-Updating stresses, strains and state parameters

end
Algorithm 1: MCC in MATLAB

The MATLAB code can be found in Appendix E.1.1. In general, the code has been assembled
by the elastic and plastic theory given by Chapter 2. The assembling of the constitutive stiffness
matrix will be explained in the following section.

Assembled Constitutive Matrix

Recalling the definition on the yield function:

F = q2 −M2p′(2p′ − p′c) (D.1)

To assemble the constitutive matrix the partial derivatives of the yield surface with respect to the

33
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stress tensor are needed. The derivative with respect to tri-axial conditions may be given as:

∂F

∂σ′11

= 2σ′11 − σ′22 − σ′33 +
1

3
p′ − 1

3
(p′c − p′)M2 −→ 2

3
(p′ − p′c) +

2σ′11 − σ′22 − σ′33

M2

∂F

∂σ′22

= −σ′11 + 2σ′22 − σ′33 +
1

3
p′ − 1

3
(p′c − p′)M2 −→ 2

3
(p′ − p′c) +

2σ′22 − σ′11 − σ′33

M2

∂F

∂σ′33

= −σ′11 − σ′22 + 2σ′33 +
1

3
p′ − 1

3
(p′c − p′)M2 −→ 2

3
(p′ − p′c) +

2σ′33 − σ′11 − σ′22

M2

∂F

∂σ′12

= 0

∂F

∂σ′13

= 0

∂F

∂σ′23

= 0

which may be rewritten into:

∂F

∂σ′11

=
2

3
(p′ − p′c) +

2σ′11 − σ′22 − σ′33

M2
−→ 2

3
(p′ − p′c) + 3(σ′11 − p′)

∂F

∂σ′22

=
2

3
(p′ − p′c) +

2σ′22 − σ′11 − σ′33

M2
−→ 2

3
(p′ − p′c) + 3(σ′22 − p′)

∂F

∂σ′33

=
2

3
(p′ − p′c) +

2σ′33 − σ′11 − σ′22

M2
−→ 2

3
(p′ − p′c) + 3(σ′33 − p′)

∂F

∂σ′12

= 0

∂F

∂σ′13

= 0

∂F

∂σ′23

= 0

In MATLAB a general expression may be formulated in a for loop as:

∂F

∂σ
=

(2p(a)− p′c)) + 3(σ′(n)− p(i))
M2

(D.2)

where n is a counter (n = 1 : 6)1 to represent the principle stresses, and i is the iteration number.

Plastic resistance number:

The plastic resistance number may be determined by:

A = −
(
∂F

∂σ

)
dσ

dλ
(D.3)

The first term has been determined by the above divination of the yield function and the second
term may be found by using the flow rule utilizing associated flow:

dεpp = dλ
∂Q

∂σ
−→ ∂F

dεpp
=
∂σ

dλ
(D.4)

The partial derivative of the yield surface with respect to the plastic volumetric strain yields:

∂F

dεpp
= −M2p′p′c

v

λ− κ since dεpp =
λ− κ
v

dp′c
p′c

(D.5)

Hence, the plastic number may be determined. The constitutive matrix may be assembled by:

1 It goes up to 6 but yields zero for 4-6.
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Dep = D −
D

{
∂F

∂σ

}{
∂F

∂σ

}T
D

A+

{
∂F

∂σ

}T
D

{
∂F

∂σ

} (D.6)

D.1.1 Determination of Strains

The strains may be divided into drained and undrained with respect to tri-axial conditions:

� In undrained conditions the strains in the horizontal direction would be equal (ε22 = ε33)
and obtain the half of the vertical strain since no volume change is allowed.

� In drained conditions the horizontal strain is determined by utilizing the fact that no change
in stresses will occur on a free surface.

Drained condition: For elastic conditions the change in stresses may be formulated as:

∆σ′11 = ∆ε11D11 + ∆ε22D12 + ∆ε33D13 (D.7a)

∆σ′22 = ∆ε11D21 + ∆ε22D22 + ∆ε33D23 (D.7b)

∆σ′33 = ∆ε11D31 + ∆ε22D32 + ∆ε33D33 (D.7c)

Under triaxial conditions following relations can be assumed.

∆σ22 = ∆σ33 = 0 and ∆ε22 = ∆ε33 (D.8)

Thereby, expressions for the horizontal strains may be formulated as:

∆ε22 =
−∆ε11D21

D22 +D23
and ∆ε33 =

−∆ε11D31

D33 +D31
(D.9)

Notice that the elastic relationship is used. This approximation is only valid if very small steps
are utilized:

D.2 Simulations of Tri-axial Tests

The MCC model has been used to simulate four scenarios for tri-axial conditions. Two drained and
two undrained simulations. The results can be seen in Figures D.1-D.4. The initial soil parameters
and stress history used to simulate the output are given in Table D.1.

Table D.1: Soil parameters used in the MCC model programmed in MATLAB. Used in Figures D.1-D.4

Parameter Value Unit

Confining pressure p′0 300 kPa
Consolidation pressure (NC) p′c 300 kPa
Consolidation pressure (OC) p′c 1200 kPa
Inclination of CSL M 1.0 -
Initial specific volume v 2.0 -
Compression coefficient λ 0.25 -
Swelling coefficients κ 0.05 -
Poisson’s ratio ν 0.15 -
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The output from the MCC model during a drained normal consolidated scenario may be seen in
Figure D.1.
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Figure D.1: MATLAB MCC: Drained normal consolidated.

The output from the MCC model during a drained over consolidated scenario may be seen in
Figure D.2.

Axial strain, ε11 [%]
0 20 40 60 80 100

D
ev
ia
to
ri
c
S
tr
es
s,
q
[k
P
a]

0

100

200

300

400

500

600

Effective Mean Stress, p‘ [kPa]
0 200 400 600 800 1000 1200

D
ev
ia
to
ri
c
S
tr
es
s,
q
[k
P
a]

0

200

400

600

800

1000
Stress Path
M-line
Final yield surface
Initial yield surface

Volumetic Strain, εv [%]
-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015

E
ff
ec
ti
ve

M
ea
n
S
tr
es
s,
p
‘
[k
P
a]

300

350

400

450

500

Effective Mean Pressure, p‘ [kPa]
100 101 102 103

V
oi
d
ra
ti
o,

e
[-
]

0.5

1

1.5

2

2.5
Stress Path
NCL
CSL

Figure D.2: MATLAB MCC: Drained over consolidated.
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The output from the MCC model during an undrained normal consolidated scenario may be seen
in Figure D.4.
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Figure D.3: MATLAB MCC: Undrained normal consolidated.

The output from the MCC model during an undrained over consolidated scenario may be seen in
Figure D.4.
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Figure D.4: MATLAB MCC: Undrained over consolidated.
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D.3 Subroutine User Mod

This appendix will describe the subroutine User Mod in greater details. The subroutine contains
31 arguments and should have the following structure:

Subroutime User Mod = IDTask, iMod, IsUndr, iStep, iTer, Ier, Int, X, Y,

Z, Time0, dTime, Props, Sig0, Swp0, StVar0, dEps, D,

Bulk\W, Sig, Swp, StVar, ipl, nStat, NonSym, iStrsDep,

iTimeDep, iTang, iPrjDir, iPrjLen, iAbort

where:

IDTask = Identification of the task

1= Initialise state variables

2 = Calculate constitutive stresses

3 = Create effective material stiffness matrix

4 = Return the number of state variables

5 = Return matrix attributes (NonSym, iStrsDep, iTimeDep, iTang)

6 = Create elastic material stiffness matrix

iMod = User-defined soil model number (Allows more than one UD model, up to 10.)

IsUndr = Drained condition (IsUndr = 0) or undrained condition (IsUndr = 1). In the
latter case, PLAXIS will add a large bulk stiffness for water.

iStep = Current calculation step number

iter = Current iteration number

Iel = Current element number

Int = Current local stress point number (1..3 for 6- noded elements, or 1..12 for 15-
noded elements

X,Y,Z = Global coordinates of current stress point

Time0 = Time at the start of the current step

dTime = Time increment of current step

Props = Array (1..50) with User-defined model parameters for the current stress point

Sig0 = Array (1..20) with previous (= at the start of the current step) effective stress
components for the current stress point (σ′0xx , σ′0yy , σ′0zz , σ′0xy , σ′0yz , σ′0zx , psteady
,
∑
Mstage0 ,

∑
Mstage, Sat, Sat0, Suc, Suc0,

∑
Msf0,

∑
Msf , 0 , 0 , 0 , 0)

In 2D calculations σyz and σzx should be zero. )

Swp0 = Previous excess pore pressure of the current stress point

StVar0 = Array (1..nStat) with previous values of state variables of the current stress point

dEps = Array (1..12) with strain increments of the current stress point in the current step
(∆ε11,∆ε22,∆ε33,∆γ12,∆γ23,∆γ13,∆ε

0
11,∆ε

0
22,∆ε

0
33,∆γ

0
12,∆γ

0
23,∆γ

0
13). In 2D

calculations ∆γyz,∆γzx,∆γ
0
yz,∆γ

0
zx should be zero.

D = Effective material stiffness matrix of the current stress point (1..6, 1..6).

Bulk W = Bulk modulus of water for the current stress point (for undrained calculations
and consolidation)

Sig = Array (1..6) with resulting constitutive stresses of the current stress point
(σ′11, σ

′
22, σ

′
33, σ

′
12, σ

′
23, σ

′
13).

Swp = Resulting excess pore pressure of the current stress point

StVar = Array (1..nStat) with resulting values of state variables for the current stress
point
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ipl = Plasticity indicator

0 = No plasticity

1 = Mohr-Coulomb (failure) point

2 = Tension cut-off point

3 = Cap hardening point

4 = Cap friction point

5 = Friction hardening point

nStat = Number of state variables (unlimited)

NonSym = Parameter indicating whether the material stiffness matrix is non-symmetric
(NonSym = 1) or not (NonSym = 0) (required for matrix storage and solution).

iStrsDep = Parameter indicating whether the material stiffness matrix is stress-dependent
(iStrsDep = 1) or not (iStrsDep = 9).

iTimeDep = Parameter indicating whether the material stiffness matrix is a tangent stiffness
matrix, to be used in a full Newton-Raphson iteration process (iTang = 1) or
not (iTang = 0).

iPrjDir = Project directory (for debugging purposes)

iPrjLen = Length of project directory name (for debugging purposes)

iAbort = Parameter forcing the calculation to stop (iAbort = 1)

All the arguments above consists of standard type, i.e. parameters starting with the letters A-H
and O-Z are associated to double (8-byte) floating points. The parameters may be divided into:

� Input: IDTask, iMod, IsUndr, iStep, iTer, Ier, Int, X, Y, Z, Time0, dTime, Props,

Sig0, Swp0, StVar0, dEps uPrjDir and iPrjLen.

� Output: D, Bulk W, Sig, Swp, StVar, ipl, nStat, NonSym, iStrsDep, iTimeDep, iTang

and iAbort.

The input parameters are provided by PLAXIS and should be within the subroutine where the
output parameters should be chosen by the user. Note, in the case of IDTask = 1 then StVar0

becomes an output parameter.

D.3.1 DLL File - Location

The created DLL file must be placed in the correct directory to be able to be used in PLAXIS.
Depending on the version of PLAXIS the file must be placed at different locations in the installation
folder. As mentioned in Section 1.6 the PLAXIS version is PLAXIS 2D AE 2.0. The correct location
of this version is:

� C:\Program Files\Plaxis\Plaxis 2D\udsm\ Your DLL file

Beware of other locations of the installation folder. Using other versions of PLAXIS please look at
the PLAXIS homepage at: http://kb.plaxis.nl/models/plaxis-user-defined-soil-models.

The bit version of the DLL file may cause issues when trying to run the UDSM in PLAXIS.
The calculation kernel in PLAXIS uses 64-bit applications which are not able to communicate
with a 32-bit DLL file. The problem cannot be solved by creating a 64-bit DLL file since the
Graphical User Interface (GUI) is only available as a 32-bit application. Therefore, a 32-bit and
64-bit DLL file must be created and placed in the folder mentioned above. This approach has
been used to run the UDSM in PLAXIS. Otherwise, it is possible to force PLAXIS to use the
32-bit kernel by removing or renaming the 64-bit kernel from the installation folder. For more
information about changing to a 32-bit kernel, please look at the PLAXIS homepage: http:

//kb.plaxis.nl/tips-and-tricks/64-bit-user-defined-soil-model.
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D.3.2 Finding the UDSM in PLAXIS

When the UDSM is created and the DLL files (32-bit and 64-bit) are located at the correct location
the UDSM can be selected as a soil model in PLAXIS. This is done by choosing the User-defined
option in the Material model combo box in the General tabsheet when defining new soils, see
Figure D.5.

Figure D.5: Selecting the UDSM.

Next step is done in the Parameters tabsheet. At the combo box ”DLL file” the created DLL file
is selected, see Figure D.6. Note that only one DLL file will be available even if both a 32-bit and
a 64 bit DLL file are created.

Figure D.6: Choosing the correct DLL file.

The DLL file may contain more soil models. Therefore the wanted UDSM (if more are available)
needs to be chosen which is done in the Model in DLL combo box, see Figure D.7. Note that some
PLAXIS versions have a bug and do not show the combo box clearly. If the user just clicks where
it should be, a drop down window should appear.
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Figure D.7: Selecting the wanted soil model in the DLL file.

PLAXIS will automatically read the input parameters from the DLL file and they should be
visible in the Parameters tabsheet just below the Model in DLL combo box. The rest of the soil
properties can be added to the soil model. Note that the Interfaces are slightly different in a
UDSM. It contains the oedometers modulus (Eref

oed), the interface strength parameters cinter, ϕinter

and ψinter. Hence the interface shear strength is directly given in strength parameters instead of
using a factor relating the interface shear strength to the soil shear strength (PLAXIS, 2015).

D.4 Macauley Brackets

The Macauley brackets is a mathematical tool which yields the same magnitude as input if the
input is positive and zero if the input is negative or zero.

MATLAB: The heaviside-function is used to describe the Macauley bracket. This is a built-in
function in MATLAB returning following output:

〈x〉 = x · heaviside(x) where heaviside(x) =





0 if x < 0
1
2 if x = 0

1 if x > 0

(D.10)

As observed in Eq. (D.10) one could expect errors when the input value is zero caused by the
heaviside-function yielding a value of 1

2 . Hence, it deviates from the definition of the Macauley
brackets. However, the heaviside-function is multiplied by the input value which solve the issue.

FORTRAN: Converting to FORTRAN code, the built-in functions in MATLAB will not be
transferred. Therefore, in the generated code from MATLAB an unknown function call heaviside
is present. This function is created in FORTRAN by the following procedure:

if x > 0.0 then
y = 1.0

else if x == 0.0 then
y = 0.5

else
y = 0.0

end if
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Appendix E

Code

This appendix consists of the MATLAB and FORTRAN code which has been developed during the
master thesis.

E.1 MATLAB

This section contains the MATLAB files which generate the FORTRAN code for vector v and
matrix D along with the associated functions. In addition, a file containing the additional coding
for utilizing implicit integration and a simple MCC model in MATLAB may be found.

E.1.1 MCC in MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Modificd Cam Clay (MCC) %%%
%%% Tri−Axial %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all
clc

font = 14;
set(0,'DefaultAxesFontName','Times')
set(0,'DefaultAxesFontAngle','Normal')
set(0,'DefaultAxesFontSize',font)
set(0,'DefaultTextFontName','Times')
set(0,'DefaultTextFontAngle','Normal')
set(0,'DefaultTextFontSize',font)

%============================ Input Parameters ===========================%
k = 0.05; % Swelling index
l = 0.25; % Compression index
nu = 0.15; % Poissons ratio
M = 1; % Stress ratio (critical state)
N = 3.4259; % Location of isotrop0c normal

pcc = 300; % Preconsolidation pressure
p0 = 300; % Initial pressure

%========================= Initial Calculations ==========================%
%% Determine following initial parameters V,e0 and OCR
pc = pcc; % Renaming
v = N−(l*log(pc))−(k*log(p0/pc)); % Specific Volume
e0 = v−1; % Initial Void Ratio
OCR = pcc/p0; % Over Consolidation Ratio
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%=========================== Numerical setup =============================%
%% Number of iterations and vertical strain]
iteration = 10000; % Number of iterations

% (should not be lower than 10000)
ide =0.01; % In decimal
de = ide/100; % Determining the procentence
es = 0:ide:(iteration−1)*ide; % Determine the vertical strains
n = 1; % Iterator

%====================== Initial vectors and matrice ======================%
%% Setup of the dimension og necessary vectors and matrice.
D = zeros(6,6); % Stiffness Matrix
p = zeros(iteration,1); % Mean Effective Stress
q = zeros(iteration,1); % Deviatoric Stress
u = zeros(iteration,1); % Pore Water Pressure
void = zeros(iteration,1); % Void ratio
dStrain = zeros(6,1); % Increamental Strain
eps p = zeros(iteration,1); % Volumetic Strain
eps d = zeros(iteration,1); % Deviatoric Strain

% Vector for subcalculation yield function different with respect to:

dfdep=zeros(6,1); % The Plastic Strains
dfds=zeros(6,1); % The Stress Tensor
%============================ Initialize =================================%
%% Stresses, Strains, Yield Surface and Void Ratio
Sig=p0*[1;1;1;0;0;0]; % Stress
p(n)=(Sig(1)+2*Sig(3))/3; % Effective Mean Stress
q(n)=(Sig(1)−Sig(3)); % Deviatoric Stress
yield=(q(n)ˆ2/Mˆ2+p(n)ˆ2)−p(n)*pc; % Defining the yield surface
strain=[0;0;0;0;0;0]; % Strain
void(n)=e0; % Void Ratio

%% Plotting the initial yield surface
p ini yield=(0:pc); % Effective Mean pressure
qy = (Mˆ2*(pc*p ini yield−...

p ini yield.ˆ2)).ˆ0.5; % Deviatoric Stress

%====================== While loop (Iteration process) ===================%
% While loop creates the elastic stiffness matrix and constitutive matrix.
% Checking if the yield condition i fulfilled and if yes computing the
% stresses with respect to the constitutive matrix. If the yield criteria
% is below zero when only the elastic part is taken. Furhtermore, updating
% all parameters which changes in each increment.

while n<iteration
K=v*p(n)/k; % Bulk Modulus
G=(3*K*(1−2*nu))/(2*(1+nu)); % Shear Modulus
if yield==0, pc=(q(n)ˆ2/Mˆ2+p(n)ˆ2)/p(n); % New preconsolidation
else pc=pcc; % No yielding −−> no change
end

%% Determine the Elastic Stiffness, plastic stiffness and subcalculations.
for i=1:6 % The stiffness matrix 6x6

for j=1:6 % The stiffness matrix 6x6
if i<=3

if yield <0, dfds(i,1)=0;dfdep(i,1)=0; % No platicity!
else % Platicity ! −−>

dfds(i,1)=(2*p(n)−pc)/3 + 3*(Sig(i)−p(n))/Mˆ2; % dfds
dfdep(i,1)=(−p(n))*pc*(1+e0)/(l−k)*Mˆ2; % dfdep

end
if i==j % First 3 in the diagonal

D(i,j)= K+4/3*G; % Elastic Stiffness 1/3
else if i<=3, D(i,j)=K−2/3*G; % Elastic stiffness 2/3 % obs

end
end

end
if i>3, dfds(i,1)=0; dfdep(i,1)=0; % df/ds',df/dep (tri−Axial)

if i==j, D(i,j)= G; % Elastic Stiffness 3/3
else D(i,j)=0; % Setting rest to zero
end

end
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end
end

%% Constrution the Stiffness Matrix, either elastic or platic
if yield<0, Dep=D; % Elastic
else Dep=D−((D*dfds*(dfds')*D)/...

((−(dfdep')*dfds+(dfds')*D*dfds))); % Plastic
end

%============================== Updating =================================%
%% Incremental strains, Note first line Undrained, second drained!
% dStrain = [de;−de/2.;−de/2.;0.;0.;0.]; % (Tri−Axial)

dStrain = [de;−1*Dep(2,1)/(Dep(2,2)+Dep(2,3))*de;−1*Dep(3,1)/...
(Dep(3,2)+Dep(3,3))*de;0.;0.;0.];

%% Incremental stress
dS = Dep*dStrain;

%% New strain and stresses
Sig = Sig+dS;
strain = strain+dStrain;

%% Incremental volumetric and deviatoric strains
deps p = dStrain(1) + dStrain (2) + dStrain (3); % Volumetric
deps d = 2./3. * (dStrain(1) − dStrain(3)); % Deviatoric

%% Update Specific Volume
v = N−((k*log(p(n)/pc))+l*log(pc));

%% Updating Iteration, Effective Mean Stress, Shear stress, Pore Pressure
n = n+1;
p(n) = (Sig(1)+Sig(2)+Sig(3))/3;
q(n) = Sig(1)−Sig(3);
u(n) = p0+q(n)/3−p(n);

%% Updating Void Ratio, Final Strain Volume, Deviator Strain
void(n) = v−1.0;
eps p(n) = deps p + eps p(n−1);
eps d(n) = deps d + eps d(n−1);

%% Defining the yield surface at the partical increment
if yield<0, yield=q(n)ˆ2+Mˆ2*p(n)ˆ2−Mˆ2*p(n)*pc;
else yield=0;
end

end

%============== Determining stuff for plotting ===========================%
%% Final Yield Surface
p fyield = (0:pc); % Effective Mean Pressure
q fyield = M*p fyield;
q yf = (Mˆ2*(pc*p fyield−p fyield.ˆ2)).ˆ0.5; % Deviatoric Stress

%% Normal Consolidation Line (NCL)
p NCL = (1:pc); % Effective Mean Pressure
q NCL = p NCL*M; % Deviatoric Stress
e NCL = (N − l*log(p NCL)) − 1; % Void Ratio

%% Critical State Line (CSL)
p CSL = p NCL; % Effective Mean Pressure
Gamma = 1+l*log(p(n))+void(n); % Deviatoric Stress
e CSL = (Gamma − l*log(p CSL)) − 1; % Void Ratio

%========================= Results and Plots =============================%
figure(1)
hold on
subplot(2,2,1)
plot(es,q,'k','LineWidth',2)
grid on
xlabel('Axial strain, $\varepsilon {11} $ [\%]','Interpreter','latex','fontsize',font)
ylabel('Deviatoric Stress, $q $ [kPa]','Interpreter','latex','fontsize',font)
subplot(2,2,3),
plot(p,q,'k−','LineWidth',2);
grid on
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hold on
plot(p fyield,q fyield,'k:','LineWidth',2);
plot(p ini yield,qy,'k−.','LineWidth',2);
plot(p fyield,q yf,'k−−','LineWidth',2);
legend('Stress Path', 'M−line', 'Final yield surface', 'Initial yield surface')
xlabel('Effective Mean Stress, $ p` $ [kPa]','Interpreter','latex','fontsize',font)
ylabel('Deviatoric Stress, $q $ [kPa]','Interpreter','latex','fontsize',font)
subplot(2,2,2);
plot(eps p,p,'k','LineWidth',2); % Drained
grid on
xlabel('Volumetic Strain, $\varepsilon v$ [\%]','Interpreter','latex','fontsize',font)
ylabel('Effective Mean Stress, $ p` $ [kPa]','Interpreter','latex','fontsize',font)
%plot(es,u,'k−','LineWidth',2); % Undrianed
%grid on
%xlabel('Axial strain, $\varepsilon {11} $ [\%]','Interpreter','latex','fontsize',font)
%ylabel('Excess Pore Pressure, $u $ [kPa]','Interpreter','latex','fontsize',font)
subplot(2,2,4);
semilogx(p,void,'k−','LineWidth',2);
grid on
hold on
semilogx(p NCL,e NCL,'k−−','LineWidth',2);
semilogx(p CSL,e CSL,'k:','LineWidth',2);
xlabel('Effective Mean Pressure, $p` $ [kPa]','Interpreter','latex','fontsize',font)
ylabel('Void ratio, $e $ [−]','Interpreter','latex','fontsize',font)
legend('Stress Path','NCL','CSL')
hold off

E.1.2 Generate FORTRAN Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% MCC + Anisotropic + Structure %%%
%%% General −−> Generate Fortran code −−> PLAXIS %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all
clc

global Sig alpha d dF ds F1 F2 c p0 v p M % For 3D plotting (Plotsurf)

%======================== Basic Input Parameters =========================&
%% General MCC
k = sym('k', 'real'); % Swelling Index
l= sym('l', 'real'); % Compression Index
nu = sym('nu', 'real'); % Poissons Ratio
e0 = sym('e0', 'real'); % Initial Void Ratio
M = sym('M', 'real'); % Stress Ratio (Critical State)
p0 = sym('p0', 'real'); % Preconsolidation Pressure
OCR = sym('OCR', 'real'); % Over Consolidation rRatio
K0nc= sym('K0nc', 'real'); % Lateral coefficient in NC

%============================== Lode Angle ===============================&
phi = sym('phi', 'real'); % Angle of Friction
MC LMN = sym('MC LMN', 'real'); % Select rule

%================================ Tensors ================================&
%% Symbolics − Stresses.
s11 = sym('s11', 'real'); % Sigma 11
s22 = sym('s22', 'real'); % Sigma 22
s33 = sym('s33', 'real'); % Sigma 33
s12 = sym('s12', 'real'); % Sigma 12
s23 = sym('s23', 'real'); % Sigma 23
s13 = sym('s13', 'real'); % Sigma 13

p = (s11+s22+s33)/3; % Mean Effective Stress
Sig = [s11;s22;s33;s12;s23;s13]; % Stress Tensor
q = sqrt(3/2*dev Sig'*dev Sig); % Deviatoric stress (q)
dev Sig = Sig − p*[1;1;1;0;0;0]; % Deviatoric Stress (sigma)
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dev Sig(4:6) = sqrt(2)*dev Sig(4:6); % Deviat. Stress Tensor

%% Symbolics − Strains.
e11 = sym('e11', 'real'); % Strain 11
e22 = sym('e22', 'real'); % Strain 22
e33 = sym('e33', 'real'); % Strain 33
e12 = sym('e12', 'real'); % Strain 12
e23 = sym('e23', 'real'); % Strain 23
e13 = sym('e13', 'real'); % Strain 13

strain = [e11;e22;e33;e12;e23;e13]; % Strain Tensor

%% Symbolics − Fabric
alphad11 = sym('alphad11', 'real'); % Deviatoric strain 11
alphad22 = sym('alphad22', 'real'); % Deviatoric strain 22
alphad33 = sym('alphad33', 'real'); % Deviatoric strain 33
alphad12 = sym('alphad12', 'real'); % Deviatoric strain 12
alphad23 = sym('alphad23', 'real'); % Deviatoric strain 23
alphad13 = sym('alphad13', 'real'); % Deviatoric strain 13

alpha d = [alphad11;alphad22;alphad33;... % Fabric Tensor
alphad12;alphad23;alphad13];

%======================= Advanced Input Parameters =======================&
%% Symbolics − Structure for soil.
x = sym('x', 'real'); % Structure for soil
a = sym('a', 'real'); % Absolute rate of destructuation
b = sym('b', 'real'); % Relatece effectiveness of strains

% in destruying the bonding
%% Symbolics − Recovery of structure
R = sym('R', 'real'); % Recovery of structure
Rtime = sym('Rtime', 'real'); % Rate of recovery
rsi min = sym('rsi min', 'real'); % Should to defined x b and x

%% Symbolics − Creep.
rsi = sym('rsi', 'real'); % Creep parameter
aK0NC = sym('aK0NC', 'real'); % Initial rotation
etaK0NC = sym('etaK0NC', 'real'); % Stress Ratio corresponding to K0
tau = sym('tau', 'real'); % Reference Time
dt = sym('dt', 'real'); % Time
t max = sym('t max', 'real'); % Maximum Time for creep
lambda = sym('lambda', 'real'); % Plastic multiplier

% Symbolics − Rotation Hardening
beta = sym('beta', 'real'); % Wheeler 2003
mu = sym('mu', 'real'); % Wheeler 2003
z = sym('z', 'real'); % Dafalias 2013
s = sym('s', 'real'); % Dafalias 2013
rule = sym('rule', 'real'); % Evalution rule 1, 2 or 3

%======================== Defining Stiffness matrix ======================%
% Houlsby treansversely isotropic constant
E = sym('E', 'real'); % Elastic Modulus
alpha e = sym('alpha e', 'real'); % Houlsby anisotropy
alpha1 = sym('alpha1', 'real'); % Houlsby anisotropy
alpha2 = sym('alpha2', 'real'); % Houlsby anisotropy
alpha3 = sym('alpha3', 'real'); % Houlsby anisotropy

De = E/((1+nu)*(1−2*nu))*...
[(1−nu) nu nu 0 0 0;

nu (1−nu) nu 0 0 0;
nu nu (1−nu) 0 0 0;
0 0 0 1/2*(1−2*nu) 0 0;
0 0 0 0 1/2*(1−2*nu) 0;
0 0 0 0 0 1/2*(1−2*nu)] % Linear Elastic Stiffness Matrix

transverse = [alpha1*alpha1 alpha1*alpha2 alpha1*alpha3 0 0 0;
alpha2*alpha1 alpha2*alpha2 alpha2*alpha3 0 0 0;
alpha3*alpha1 alpha3*alpha2 alpha3*alpha3 0 0 0;
0 0 0 alpha1*alpha2 0 0;
0 0 0 0 alpha1*alpha3 0;
0 0 0 0 0 alpha2*alpha3]; % Transversely Transforming Matrix
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De = De.*transverse % Transversely Isotropic Stiffness

%======================== Equivalent Pressure ============================%
peq = p + ((3/2)*(dev Sig−p*alpha d)'*(dev Sig−p*alpha d))/...

((Mˆ2−(3/2)*alpha d'*alpha d)*p);

%% Derivative of Equivalent Pressure
dpeq dp = (Mˆ2−((3/2)*dev Sig'*dev Sig)/pˆ2)/... % Respect to

(Mˆ2−(3/2)*alpha d'*alpha d); % Effective Mean Stress
dpeq dsigd = 3*(dev Sig−p*alpha d)/... % Respect to

((Mˆ2−(3/2)*(alpha d'*alpha d))*p); % Stress Tensor

%========================= Defining Yield surface ========================%
pm = (1+x)*p0; % Intrinsic Yield Surface (Structure)
F = peq − pm % Yield Surface

%=========================== Plastic Potential ===========================%
Q = F; % Assumed Associated flow
dQ ds = diffvec(Sig,Q); % Respect to Stress Tensor
dF ds = dQ ds; % Renaming

%% Derivative of Plastic Potential
dQ dp = dpeq dp; % Respect to Effective Mean Stress
dQ dq = sqrt(2/3*... % "Equivalent" Deviatoric Plastic

dpeq dsigd'*dpeq dsigd); % Strain Measure

%=================== Defining Constants for Anisotropic ==================%
c2 = mu; % Renaming
c3 = beta; % Renaming
c4 = 3/4; % Taken from Wheeler 2003
c5 = 1/3; % Taken from Wheeler 2003
c6 = z; % Taken for Dafalias 2013
c7 = s; % Taken for Dafalias 2013
c8 = mu; % Remaning (Dafalias vs. Wheeler)
patm = 101; % Atmospheric Pressure

% Evolution Rule 1 − Wheeler 2003
y1 = c2/(1+x)*((c4*(dev Sig/p)−alpha d)*macaulay brackets(dQ dp)+c3*...

(c5*(dev Sig/p)−alpha d)*dQ dq);

% Evolution Rule 2 − Dafalais 1986
alpha b 2 = aK0NC/etaK0NC*dev Sig/p;
y2 = c8*patm*p/peq*(alpha b 2−alpha d);

% Evolution Rule 3 − Dafailis 2013
sig norm = norm(dev Sig/p);
eta = sqrt(3/2*(dev Sig/p)'*dev Sig/p);
n r = (dev Sig/p)/(norm(dev Sig/p));
alpha b 3 = M/c6*(1−exp(−c7*abs(eta)/M))*n r;

y3 = c8*patm*p/peq*(alpha b 3−alpha d);

% Chosing the evolution rule
dalpha dlam =(1−rule)*(2−rule)*1/2*y1+rule*(2−rule)*y2−rule/2*(1−rule)*y3;

%=================== Defining Constants for Structrure ===================%
c6 = a; % Renaming
c7 = b; % Renaming
c8 = R; % Recovering of structure
c9 = Rtime; % Renaming
x b = (rsi−rsi min)/rsi min; % Defining boundary value of x

dx dlam = −x*(c6*abs(dQ dp)+c7*abs(dQ dq)); % Destructuration
dx dt = heaviside(c8*x b−x)*(c8*x b−x)*c9*dt;% Recovering of structure

%======================== Plastic resistance number ======================%
%% Determine parameters in A (Differentiate)
dF dp0 = −(1+x); % Yield Surface by p0
dp0 dlam = (1+e0)/(l−k)*p0*dQ dp; % p0 by Plastic Multiplier
dF dalpha = diffvec(alpha d, F); % Yield Surface by Fabric
dF dx = diffvec(x, F); % Yield Surface by Structure
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%======================== State Parameters ==============================%
dkappa dlam = [dp0 dlam; dalpha dlam; dx dlam];
dkappa dt = [0;0;0;0;0;0;0;dx dt];

%============================ Creep ======================================%
kappa = [p0; alpha d; x]; % State parameters
zetai = (l−k)/(1+e0); % Coefficient
m K0NC = (Mˆ2−aK0NCˆ2)/(Mˆ2−etaK0NCˆ2); % Inclination
dlam dt = 1/(rsi*tau)*macaulay brackets((peq/pm)ˆ(rsi*zetai)−tau/t max)*m K0NC;
dlam dsig = diffvec(Sig,dlam dt); % (Differentiate)
dlam dkappa = diffvec(kappa,dlam dt); % (Differentiate)

%======================== Plastic Multipliers ===========================%
dLambda VP = (dlam dt+dlam dsig'*De*strain)/... % Visco−Plastic

(1/dt−dlam dkappa'*dkappa dlam+dlam dsig'*De*dF ds);
%===================== Output to Fortran framework =======================%
U VP = [De*(strain−dQ ds*dLambda VP);

dLambda VP;
dkappa dlam*dLambda VP + dkappa dt*dt]; % Visco Plastic

% ============================= Fortran ================================= %
De = fortran([De;De]);
fortran(U VP, 'file', 'UJB t max2.f');
fortran(peq, 'file', 'peq.f');

%======================== Defining vectors for plotting ==================%
v = [Sig;lambda;p0;alpha d;x]; % State parameters
c = [l;k;nu;e0;phi;OCR;K0nc;mu;rule;a;b;rsi;rsi min;R;Rtime;alpha e;MC LMN];

Associated Functions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Function %%%
%%% macaulay brackets(x) %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = macaulay brackets(x)
out = x*heaviside(x);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Function %%%
%%% diffvec(Sig, Q) %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = diffvec(Sig, Q)
for i = 1:1:length(Sig)

dfdv(i) = simplify(diff(Q,Sig(i)));
end
out = dfdv';
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E.1.3 Changes to Implicit Integration

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Modifications for utilizing implicit integration %%%
%%% Assembling the residual and the Jacobi matrix %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Vector containing unknowns
v = [Sig;Lambda;p0;alpha d;x];
% State parameters in previous and current stage
kappa = [p0;alpha d;x];
kappa0 = [p00; alpha d0; x0];
% Evolution in state parameters
dkappa dlamda = [dp0 dlamda; dalpha d dlamda; dx dlamda];
dkappa dt = [0;0;dx dt];
% Formulating the differential equaitions
r1 = Sig − Sig0 − De*de + De*diffvec(Q,Sig)*(lam−lam0);
r2 = kappa−kappa0 − dkappa dlamda*(lam−lam0) + dkappa dt*dt;
r3 = (lam−lam0) − dlamdt*dt; % For elasto−plastic: F
% Assembling the residual
r = [r1;r2;r3];
% Generate the FORTRAN code
fortran(r, 'file', 'Residuals.f');
matlabFunction(r, 'file', 'Residuals.m');
% Jacobian matrix − 15x15 matrix
J = jacobian(r,v);
fortran(J, 'file', 'Jacobian.f');
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E.2 FORTRAN

This section contains the FORTRAN code for generating the DLL-file. The file-usrlin.f90 is left
out since it is offered by PLAXIS, see (PLAXIS, 2015).

E.2.1 User Mod

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Main subroutine − User Mod %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Supporeted by Jon Roenningen (NTNU) − Realted to GeoFuture %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

include 'Constitutive Model'
subroutine User Mod(IDTask, iMod, IsUndr,iStep, iTer, iEl, Int,X, Y, Z,Time0,

dTime,Props, Sig0, Swp0, StVar0,dEps, D, BulkW,Sig, Swp,
StVar, ipl,nStat, NonSym, iStrsDep, iTimeDep,iTang,iPrjDir,
iPrjLen, iAbort)

% iMod I I : model number (1..10)
% IsUndr I I : =1 for undrained, 0 otherwise
% iStep I I : Global step number
% iter I I : Global iteration number
% iel I I : Global element number
% Int I I : Global integration point number
% X I R : X−Position of integration point
% Y I R : Y−Position of integration point
% Z I R : Z−Position of integration point
% Time0 I R : Time at start of step
% dTime I R : Time increment
% Props I R() : List with model parameters
% Sig0 I R() : Stresses at start of step
% Swp0 I R : Excess pore pressure start of step
% StVar0 I R() : State variable at start of step
% dEps I R() : Strain increment
% D I/O R(,) : Material stiffness matrix
% BulkW I/O R : Bulkmodulus for water (undrained only)
% Sig O R() : Resulting stresses
% Swp O R : Resulting excess pore pressure
% StVar O R() : Resulting values state variables
% ipl O I : Plasticity indicator
% nStat O I : Number of state variables
% NonSym O I : Non−Symmetric D−matrix ?
% iStrsDep O I : =1 for stress dependent D−matrix
% iTimeDep O I : =1 for time dependent D−matrix
% iTang O I : =1 for tangent matrix
% iAbort O I : =1 to force stopping of calculation

use vars
Implicit Double Precision (A−H,O−Z)
Dimension iPrjDir(*)
Character*255 PrjDir, Dbg Name
Integer IDTask, ne, nt, n
double precision, dimension(6) :: Sig0, Sig, dEps, deabs
double precision, dimension(size(v)) :: StVar0, StVar
double precision, dimension(size(c)) :: Props
double precision :: demax, dtmax

if (IDTask.eq.1) then ! Initialize state variables
c(:) = props(:) % Emtry vector
v(:) = 0 % Emtry vector
v0(:) = 0 % Emtry vector

v(1:6) = −1.0*Sig0(1:6) % Changing notation
I1 = v(1) + v(2) + v(3)
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if (I1.le.0) then
v(1:3) = 1.0e−3 % Debugging

end if
call initialize() % Initialize state patameters (SP)
if (lvec(StVar0, size(v)).eq.0) then

StVar0 = v
end if

end if ! End IDTask 1

if (IDTask.eq.2) then ! Calculate stresses
c(:) = props(:) % Emtry vector
v = StVar0 % Redefine previous SP
v(1:6) = −1*Sig0(1:6) % Add the new stresses
v0 = v % Rename the time
dt = dTime
dn = 0
de(:) = 0
de(1:6) = −1.0*Deps(1:6) % Changing notation

I1 = v(1) + v(2) + v(3)

If (IsUndr.Eq.1) Then
Swp = Swp0 + BulkW*(dEps(1) + dEps(2) + dEps(3))

Else
Swp = Swp0

End If

! Check if time increment or strain increment is too large
deabs = abs(de)
demax = max(deabs(1), deabs(2), deabs(3), deabs(4), deabs(5), deabs(6))
dtmax = dt
ne = nint(demax/1.0e−4)
nt = nint(dtmax/1.0)

if (ne.eq.0) then
ne = 1

end if

if (nt.eq.0) then
nt = 1

end if

n = max(ne,nt)

de = de/n*1.0
dt = dt/n*1.0

do i = 1,n
call calcondition()

end do

if (checkv() == .true.) then
v = StVar0

else
Sig(1:6) = −1.0*v(1:6)

end if

StVar = v
end if ! End IDTask 2

if (IDTask.eq.3) then ! Material stiffness matrix
v = StVar0
v(1:6) = −1*Sig0(1:6)
call Dematrix(D)

end if ! End IDTask 3

if (IDTask.eq.4) then ! Return number of state variables
nStat = size(v);

end if ! End IDTask 4

if (IDTask.eq.5) then ! Inquire matrix properties
NonSym = 0 % 1 for non−symmetric D−matrix
iStrsDep = 1 % 1 for stress dependent D−matrix
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iTang = 0 % 1 for tangent D−matrix
iTimeDep = 1 % 1 for time dependent D−matrix

end if ! End IDTask 5

if (IDTask.eq.6) then ! Dependent material stiffness matrix
v = StVar0
v(1:6) = −1*Sig0(1:6)
call Dematrix(D)

end if ! End IDTask 6

return
End subroutine

E.2.2 Constitutive Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FORTRAN %%%
%%% Constitutive Model %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Supporeted by Jon Roenningen (NTNU) − Realted to GeoFuture %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
module vars
include Additional code.f90
include usrlib.f90
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create vectors with state parameters (v,v0)
% Input parameters (c) and strain vector (de)

double precision, dimension(17) :: v, v0
double precision, dimension(20) :: c
double precision, dimension(6) :: de
integer :: dn
double precision :: dt
logical :: op

% Making following function local. See the functions below.
public :: desc, pardesc, undesc, statpardesc, statundesc

contains
function desc() result(y)

implicit none
Character (Len=255) :: y
y = 'ViscoPlastic Model (Explicit)' % Name in PLAXIS

end function desc

function pardesc(i) result(y) % Input parameters in PLAXIS
implicit none
Character (Len=255), dimension(size(c)) :: u
Character (Len=255) :: y
Integer i
u = (/'@l# i', '@k#', '@n# ur', 'e 0', '@f# cs', 'OCR @t#', 'K 0#ˆNC# ',

'@m# or c','RH−Rule 1/2/3 (0/1/2)', 'a', 'b','r si','r si,min','R',
'R T','@a# e','MC/LMN (0/1)','t max','POP','@tau'/)

y = u(i)
end function pardesc

function undesc(i) result(y) % Unit of the input parameters
implicit none
Character (Len=255), dimension(size(c)) :: u
Character (Len=255) :: y
Integer i
u = (/'−', '−', '−', '−', '−', '−', '−', '−', '−', '−', '−', '−', '−',

'−', '−', '−', '−', '−', '−', '−'/)
y = u(i)

end function undesc

function statpardesc(i) result(y) % Naming the state variables
implicit none
Character (Len=255), dimension(size(v)) :: u
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Character (Len=255) :: y
Integer i
u = (/'S11', 'S22', 'S33', 'S12', 'S23', 'S13', 'lambda', 'p0', 'ad11',

'ad22', 'ad33', 'ad12', 'ad23', 'ad13', 'x','OCR 1'/)
y = u(i)

end function statpardesc

function statundesc(i) result(y) % Unit of the state variables
% F for force unit
% L for length unit
% T for time unit

implicit none
Character (Len=255), dimension(size(v)) :: u
Character (Len=255) :: y
Integer i
u = (/'F/Lˆ2#', 'F/Lˆ2#', 'F/Lˆ2#', 'F/Lˆ2#', 'F/Lˆ2#', 'F/Lˆ2#', '−',

'F/Lˆ2#', '−', '−', '−', '−', '−', '−', '−', '−'/)
y = u(i)

end function statundesc
end module vars

module map % Mapping the state varialbes

double precision :: OCR 1,M,M1,a,alphad11,alphad12,alphad13,alphad22,alphad23,
alphad33,b,beta Var,e0,k,l,mu,nu,p0,s11,s12,s13,s22,s23,s33,
x, etak0nc, ak0nc, OCR, K0nc, epst, kdivg, atemp,e11,e12,e13,
e22,e23,e33,tau,rsi,eta K0NC,alpha K0NC,rule,Recovery,rsimin,
Rtime,R,theta,J2,J3,q,PI,phi,LMN beta,LMN theta,x1,x2,LMN,rsi min,
s,z,alpha e,Ke,G,MC LMN,fvalue,dfdxx,p,alpha1,alpha2,alpha3,zz,ss,
z0,xx,E var,ss2,sinTHETA,costheta,t max,POP,peq,peqq

contains
%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine update %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subroutine update() % Update state variables

use vars
call mapping()

end subroutine
%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine mapping %%%%%%%%%%%%%%%%%%%%%%%%%%%%
subroutine mapping() % Map state variables

use vars
l = c(1)
k = c(2)
nu = c(3)
e0 = c(4)
phi = c(5)
OCR = c(6)
K0nc = c(7)
mu = c(8)
rule = c(9)
a = c(10)
b = c(11)
rsi = c(12)
rsi min = c(13)
R = c(14)
Rtime = c(15)
alpha e = c(16)
MC LMN = c(17)
t max = c(18)
POP = c(19)
tau = c(20)

p0 = v(8)
x = v(15)
OCR 1 = v(16)
ppeq = v(17)

% Debugging for zero

if (rsi min == 0.0) then
rsi min = c(12)

else
rsi min = c(13)

end if
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if (tau == 0.0) then
tau = 1.0

else
tau = c(20)

end if

if (OCR == 0.0) then
OCR = 1.0

else
OCR = c(6)

end if

% Defining Stresses
s11 = v(1)
s12 = v(4)
s13 = v(6)
s22 = v(2)
s23 = v(5)
s33 = v(3)

% Defining Strains
e11 = de(1)
e12 = de(4)
e13 = de(6)
e22 = de(2)
e23 = de(5)
e33 = de(3)

% Defining Fabric
alphad11 = v(9)
alphad12 = v(12)
alphad13 = v(14)
alphad22 = v(10)
alphad23 = v(13)
alphad33 = v(11)

% Determine J2, J3, q and defining Pi for Lode Angle
Pi = 4.D0*DATAN(1.D0) ! Define Pi in Fortran

J2 = 0.0
t2 = s22*(1.0D0/3.0D0)
t3 = s33*(1.0D0/3.0D0)
t4 = s11*(1.0D0/3.0D0)
t5 = t2+t3+t4
t6 = s33*(1.0D0/6.0D0)
t7 = s11*(1.0D0/6.0D0)
t8 = s22*(1.0D0/6.0D0)
t9 = sqrt(2.0D0)

J2 = (alphad12*t5−s12*t9)*(alphad12*t5*(1.0D0/2.0D0)−s12*t9*(1.0D0/2.0D0))+
(alphad13*t5−s13*t9)*(alphad13*t5*(1.0D0/2.0D0)−s13*t9*(1.0D0/2.0D0))+
(alphad23*t5−s23*t9)*(alphad23*t5*(1.0D0/2.0D0)−s23*t9*(1.0D0/2.0D0))+
(s11*(−2.0D0/3.0D0)+t2+t3+alphad11*t5)*(−t4+t6+t8+alphad11*t5*(1.0D0/2.0D0))+
(s22*(−2.0D0/3.0D0)+t3+t4+alphad22*t5)*(−t2+t6+t7+alphad22*t5*(1.0D0/2.0D0))+
(s33*(−2.0D0/3.0D0)+t2+t4+alphad33*t5)*(−t3+t7+t8+alphad33*t5*(1.0D0/2.0D0))

J3 = 0.0
t3 = s11*(1.0D0/3.0D0)
t4 = s33*(1.0D0/3.0D0)
t5 = s22*(1.0D0/3.0D0)
t6 = t3+t4+t5
t7 = sqrt(2.0D0)
t16 = s13*t7
t17 = alphad13*t6
t2 = t16−t17
t8 = alphad12*t6−s12*t7
t18 = s23*t7
t19 = alphad23*t6
t9 = −t18+t19
t10 = alphad11*t6
t11 = s11*(−2.0D0/3.0D0)+t4+t5+t10
t12 = alphad22*t6
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t13 = s22*(−2.0D0/3.0D0)+t3+t4+t12
t14 = alphad33*t6
t15 = s33*(−2.0D0/3.0D0)+t3+t5+t14

J3 = t2**2.0*t13+t9**2.0*t11+t8**2.0*t15−t2*(t18−t19)*(alphad12*t6*2.0D0−s12*t7*2.0D0)−
t11*t13*t15

q = 0.0
t2 = s22*(1.0D0/3.0D0)
t3 = s33*(1.0D0/3.0D0)
t4 = s11*(1.0D0/3.0D0)
t5 = t2+t3+t4
t6 = s33*(1.0D0/2.0D0)
t7 = s11*(1.0D0/2.0D0)
t8 = s22*(1.0D0/2.0D0)
t9 = sqrt(2.0D0)

q = sqrt((alphad12*t5−s12*t9)*(alphad12*t5*(3.0D0/2.0D0)−s12*t9*(3.0D0/2.0D0))+
(alphad13*t5−s13*t9)*(alphad13*t5*(3.0D0/2.0D0)−s13*t9*(3.0D0/2.0D0))+
(alphad23*t5−s23*t9)*(alphad23*t5*(3.0D0/2.0D0)−s23*t9*(3.0D0/2.0D0))+
(s11*(−2.0D0/3.0D0)+t2+t3+alphad11*t5)*(−s11+t6+t8+alphad11*t5*(3.0D0/
2.0D0))+(s22*(−2.0D0/3.0D0)+t3+t4+alphad22*t5)*(−s22+t6+t7+alphad22*t5*
(3.0D0/2.0D0))+(s33*(−2.0D0/3.0D0)+t2+t4+alphad33*t5)*(−s33+t7+t8+
alphad33*t5*(3.0D0/2.0D0)))

% Setting yield criteria

if (MC LMN == 0.0) then
call Lode Angle() % Mohr Coulomb Criteria

else
call Lode Angle LMN() % LMN Denpendency

end if

% Calculate alpha k0nc
etak0nc = 3.0*(1.0−K0nc)/(1.0+2.0*K0nc)
epst = 3.0/2.0
kdivg = 2.0*(1.0+nu)/3.0/(1.0−2.0*nu)
ak0nc = (etak0nc**2 + 2*etak0nc*atemp−M**2)/2.0/atemp
beta Var = 3.0*(3.0*etak0nc−4.0*ak0nc)*(M**2.0−etak0nc**2.0)/(8.0*

(3.0*ak0nc−etak0nc)*(etak0nc−ak0nc)) % Dafalias 2013
end subroutine
end module map

%%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine initialize %%%%%%%%%%%%%%%%%%%%%%%%
subroutine initialize() % Initialize parameters

use vars
use map

implicit none
double precision f90
double precision f
call update()

% Initial anisotropy
v(9:14) = (/−1.0/3.0*ak0nc,2.0/3.0*ak0nc,−1.0/3.0*ak0nc,

0.0d0,0.0d0,0.0d0/)
% Plastic multiplier

v(7) = 0
% Initial structure

if (c(13) == 0.0) then
v(15) = 0
else
v(15) = (c(12)−c(13))/c(13)
end if

% Set p0
call yield(f)
v(8) = (f*OCR+POP)/(1+v(15))

end subroutine

%%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine Lode Angle %%%%%%%%%%%%%%%%%%%%%%%%
subroutine Lode Angle() % Mohr Coulomb Criteria

use vars
use map

Implicit Double Precision (A−Z)
double precision, dimension(6) :: St
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% Stresses
St(1) = v(1)
St(4) = v(4)
St(6) = v(6)
St(2) = v(2)
St(5) = v(5)
St(3) = v(3)

call Eig 3a(St,SS2) % Determine principle stresses

if (q == 0.0 ) then
M = 6.0*sin(phi*PI/180)/(3.0−sin(phi*PI/180))

else
theta = −1.0/3.0*asin(checkSINA(27.0/2.0*J3/(q**3.0)))
M = 3.0*sin(phi*PI/180)/(sqrt(3.0)*cos(theta)+sin(THETA)*sin(phi*PI/180))

end if
end subroutine

%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine Lode Angle LMN %%%%%%%%%%%%%%%%%%%%%%%
subroutine Lode Angle LMN() % Incorreborate the Lode Angle by LMN

use vars
use map

Implicit Double Precision (A−Z)

if (q == 0.0) then
M = 6.0*sin(phi*PI/180)/(3.0−sin(phi*PI/180))

else
theta = −1.0/3.0*asin(checkSINA(27.0/2.0*J3/(q**3.0)))
LMN beta = (3.0−sin(phi*PI/180))/(3+sin(phi*PI/180))
x1 = 1.0/6.0*acos(−1.0+27.0/2.0*(LMN beta**2.0*(1.0−LMN beta)**2.0)/

((LMN beta**2.0−LMN beta+1.0)**3.0)*sin(3.0*theta)**2.0)
x2 = PI/3.0−1.0/6.0*acos(−1.0+27.0/2.0*(LMN beta**2.0*(1.0−LMN beta)**

2.0)/(LMN beta**2.0−LMN beta+1.0)**3.0*sin(3.0*theta)**2.0)
LMN theta = heaviside(theta)*x1 + heaviside(−theta)*x2
LMN = sqrt(3.0)/2.0*LMN beta/(sqrt(LMN beta**2.0−LMN beta+1.0))*1.0/

(cos(LMN theta))
M = (6*sin(phi*PI/180)/(3−sin(phi*PI/180)))*LMN

end if
end subroutine

%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine Umatrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%
subroutine Umatrix(A0)
use vars
use map

Implicit Double Precision (A−Z)
double precision, dimension(size(v),size(de)) :: A0

call update()
call Newton Raphson s z()
call yield(f)
A0(:,:) = 0.0d0

% Redefining some terms from MATLAB
p = (s11+s22+s33)/3.0
alpha2 = 1.0+2.0/3.0*alpha e
alpha1 = 1.0−alpha e/3.0
alpha3 = 1.0−alpha e/3.0
E VAR = 27.0*(1.0+e0)*p*(−1.0+2.0*nu)*(1.0+nu)/(k*(4.0*alpha e**2.0*nu

−2.0*alpha e**2−9.0*nu−9.0))

INPUT VECTOR V FROM MATLAB and added these two line to the vector:

A0(16,1) = p0*(1.0+x)/f
A0(17,1) = f

end subroutine
%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine Dematrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine Dematrix(A0) % Elastic stiffness matrix
use vars
use map

Implicit Double Precision (A−Z)
double precision, dimension(6,6) :: A0

call update()
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% Redefining parameters from MATLAB
p = (s11+s22+s33)/3.0
alpha2 = 1.0+2.0/3.0*alpha e
alpha1 = 1.0−alpha e/3.0
alpha3 = 1.0−alpha e/3.0
E VAR = 27.0*(1.0+e0)*p*(−1.0+2.0*nu)*(1.0+nu)/(k*(4.0*alpha e**2.0*nu

−2.0*alpha e**2−9.0*nu−9.0))

INPUT MATRIX D FROM MATLAB

end subroutine
%%%%%%%%%%%%%%%%%%%%%%%%% subroutine calcondition %%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine calcondition() % Calculate the new stresses
use vars
use map

Implicit Double Precision (A−Z)
double precision, dimension(size(v)) :: dv

call update()
dv(:) = 0.0d0
call UMatrix(dv)
v(1:15) = v(1:15) + dv(1:15)
v(16) = dv(16)
v(17) = dv(17)

end subroutine
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% subroutine yield %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subroutine yield(f) % Defining the yield function
use vars
use map

Implicit Double Precision (A−Z)
double precision f

call update()

f = 0
t2 = s11*(1.0D0/3.0D0)
t3 = s22*(1.0D0/3.0D0)
t4 = s33*(1.0D0/3.0D0)
t5 = t2+t3+t4
t6 = s33*(1.0D0/2.0D0)
t7 = s11*(1.0D0/2.0D0)
t8 = s22*(1.0D0/2.0D0)
t9 = sqrt(2.0D0)

f= t2+t3+t4−((alphad12*t5−s12*t9)*(alphad12*t5*(3.0D0/2.0D0)−s12*t9*(3.0D0/
2.0D0))+(alphad13*t5−s13*t9)*(alphad13*t5*(3.0D0/2.0D0)−s13*t9*(3.0D0/
2.0D0))+(alphad23*t5−s23*t9)*(alphad23*t5*(3.0D0/2.0D0)−s23*t9*(3.0D0/
2.0D0))+(s11*(−2.0D0/3.0D0)+t3+t4+alphad11*t5)*(−s11+t6+t8+alphad11*
t5*(3.0D0/2.0D0))+(s22*(−2.0D0/3.0D0)+t2+t4+alphad22*t5)*(−s22+t6+t7+
alphad22*t5*(3.0D0/2.0D0))+(s33*(−2.0D0/3.0D0)+t2+t3+alphad33*t5)*
(−s33+t7+t8+alphad33*t5*(3.0D0/2.0D0)))/(t5*(−M**2+alphad11**2*(3.0D0/

2.0D0)+alphad12**2*(3.0D0/2.0D0)+alphad13**2*(3.0D0/2.0D0)+alphad22**
2*(3.0D0/2.0D0)+alphad23**2*(3.0D0/2.0D0)+alphad33**2*(3.0D0/2.0D0)))

end subroutine

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
function lvec(v, l) result(y)

integer i,l
double precision :: y
double precision, dimension(l) :: v
y = 0.0
do i=1,l

y = y + v(i)*v(i)
end do

end function
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
function checkv() result(u) % Control that p cannot be negative
use vars

Integer i
logical u
double precision I1

do i = 1,size(v)
if (isNan(v(i))) then
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u = .true.
end if

end do

I1 = v(1) + v(2) + v(3)
if (I1.le.0) then

u = .true.
end if

end function
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
function heaviside(x) result(y) % Function from MATLAB

double precision x,y
if (x > 0.0) then
y = 1.0d0

else if (x == 0.0) then
y = 0.5d0
else
y = 0.0d0

end if
end function

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Ensure that sina(1.0) and sina*(−1.0) gives a real number
function checkSINA(x) result(y)

double precision x,y
if (x > 1.0) then
y = 1.0d0
else if (x < −1.0) then
y = −1.0d0

else
y = x

end if
end function
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
function ifzero(x) result(y) ! Check for division with zero

double precision x,y
if (x == 0.0) then

y = 0.999999999999999
else

y = x
end if

end function
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
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E.2.3 Additional Coding

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FORTRAN %%%
%%% Additional coding %%%
%%% By Jesper Bjerre − s102905 %%%
%%% Master Thesis %%%
%%% DTU and NTNU %%%
%%% Spring 2015 %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% Newton Raphson s z() %%%%%%%%%%%%%%%%%%%%%%%%%%
% NR to determine Dafalias 2013 evoluation rule of rotation (z and s)
subroutine Newton Raphson s z()

implicit none
real(kind=8), parameter :: tol = 1.d−14
real(kind=8) :: res= 1.0
integer :: itere = 0
integer:: maxiter = 20
double precision xx, ff, dff, deltaxx

xx = 2.0 % Initial guess of xx

do while (res.gt.tol)
if(itere.gt.maxiter) stop

call fff(xx,ff)
call dfff (xx,dff)
deltaxx = ff/dff % Compute Newton increment xx
xx = xx − deltaxx % Update xx
call fff(xx,ff)
res = abs(ff)
itere = itere + 1

end do

if (xx == 2.0) then
xx = xx

else
s = xx
z = xx

end if

end subroutine

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fff() %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function I for Dafalias 2013 evoluation rule of rotation (z and s)
subroutine fff(xx,ff)

real(kind=8), intent(in) :: xx
real(kind=8), intent(out) :: ff
call mapping()

M1 = 6.0*sin(phi*PI/180)/(3−sin(phi*PI/180))
ff = aK0NC − M1/xx*(1−exp(−xx*abs(etaK0NC)/M1))

end subroutine

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dfff() %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function II for Dafalias 2013 evoluation rule of rotation (z and s)
subroutine dfff(xx,dff)

real(kind=8), intent(in) :: xx
real(kind=8), intent(out) :: dff

call mapping()
M1 = 6.0*sin(phi*PI/180)/(3−sin(phi*PI/180))
dff = M1*(1.0−exp(−xx*etak0nc/M1))/xx**2.0−etak0nc*exp(−xx*etak0nc/M1)/xx

end subroutine
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Appendix F

Soil Parameters

This appendix contains the interpretation of soil parameters which have not been presented in the
main report. The interpreted parameters are related to the predictions of the embankment located
at Onsøy which have been performed with the SCA-R model.

F.1 Compression and Swelling Parameters

The interpreted intrinsic compression and swelling parameters may be seen in Table 7.5 in the
main report.
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(d) Block-26-B1-20-50

Figure F.1: Interpreted compression and swelling index from CRS. The data is taken from Bamberg
(2009) and Lunne et al. (2009).
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Figure F.2: Interpreted compression and swelling index from CRS. The data is taken from Lunne et al.
(2010) and Berre (2010).
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F.2 Permeability and Its Evolution

Only six CRS tests are presented in the appendix. This is a consequence of missing the data for
the remaining CRS tests. The interpreted parameters may be seen in Table 7.3 in the main report.
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(e) Block-26-B1-19-35
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Figure F.3: Interpreted permeability and change in permeability from CRS. The data is taken from Lunne
et al. (2010), Lunne et al. (2009), and Bamberg (2009).
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F.3 Unit Weight

The unit weight has been determined through the following method:

γ =
(1 + w)Swds
wds + Sw

γw (F.1)

where γw is the unit weight of water, Sw is the degree of saturation, w is the water content and ds
is the relative density which may be determined by:

ds =
ρs
ρw

(F.2)

where ρs is the grain density of the soil and ρw is the density of the water. Notice, Sr is modified
if the magnitude if higher than 100 %. This is done by adjusting the initial void ratio.

F.4 Creep Number

A summary of all the interpreted creep numbers may be seen in Table F.1. The creep number
may be interpreted through the principle suggested by Janbu (1969). Hence, rs may be deter-
mined through the inclination of the curves shown in Figure F.4 and Figure F.5 representing the
development of deformations under constant effective stress.
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Figure F.4: Interpreted creep number from CRS. The data is taken from Bamberg (2009) and Lunne
et al. (2009).
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Figure F.5: Interpreted creep number from CRS. The data is taken from Lunne et al. (2010) and Berre
(2010).

Table F.1: Interpreted creep numbers (rs) from Figure F.4 and Figure F.5.

22-B-1-CRS 22-B-2-CRS 3-A1-O1 10-A2-O1 19-A1-O1 28-B-11 28-B-12 26-B1-19-35 26-B1-19-50

214 214 265 492 126 244 313 201 244.4
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F.5 Transformation of rs to ris.

The intrinsic creep number is normally found by an incremental oedometer. However, no incre-
mental data is available and may be approximated through the CRS data. The intrinsic creep
number (ris) may be found through the creep number (rs). It may be assumed that the ratio
between the compression parameter and creep number is a constant:

λ

rs
≈ Constant (F.3)

Hence, knowing the creep number (rs), and the compression parameters (λ and λi) the intrinsic
creep number may be found through:

rsi = rs
mi

m
(F.4)

Notice that the secant modulus has been utilized and may be rewritten into the compression
modulus through Eq. (7.7). The secant modulus is determined as suggested by Janbu (1969).
Hence, it may be found through the inclination of the curves shown in Figure F.6-F.7.

Table F.2: Transforming rs to rsi from Figure F.6 and Figure F.8.

22-B-1-CRS 22-B-2-CRS 3-A1-O1 10-A2-O1 19-A1-O1 28-B-11 28-B-12 26-B1-19-35 26-B1-19-50

mnc [-] 19.42 18.73 5.68 -∗ 14.27 14.29 14.46 15.15 15.27
mnc,i [-] 20.41 21.83 6.55 -∗ 19.67 15.38 15.58 17.09 17.24
rsi [-] 225 250 306 - 174 136 337 226 276
∗ Not able to interpret data.
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Figure F.6: Interpreted compression and swelling index from CRS. The data is taken from Lunne et al.
(2010) and Berre (2010).
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Figure F.7: Interpreted compression and swelling index from CRS. The data is taken from Bamberg
(2009) and Lunne et al. (2009).
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Figure F.8: Interpreted compression and swelling index from CRS. Taken from Bamberg (2009) and
Lunne et al. (2009).
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F.6 Back Calculation

This section contains the back calculation curves of the CRS and tri-axial tests. The utilized input
parameters are presented in the main report, see Table 7.7. In addition, the section contains the
investigation of neglecting the influence of αe during the CRS simulations.

F.6.1 Effect of αe

In Section 7.4 the input parameter, αe, was set to zero during the back calculation of the CRS
tests. Hence, the influence on the stress-strain relationship must be investigated. A typical value
of the elastic stiffness parameter is αe = −0.1, see Section 7.4. A back calculation of the stress-
strain path for sample Block-19-A1-O1 may be seen on Figure F.9 with and without the influence
from αe.
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Figure F.9: Back calculations of the CRS for Block-19-A1-O1. Investigating the effect of αe

It may be seen that αe = −0.1 affected the stress-strain path by lowering the curve. However the
lowering is not significant and would not cause major changes in the soil response. Hence, the
utilized approach in Section 7.4 is assumed to be acceptable.

F.6.2 CRS Tests

The back calculation of the CRS tests may be seen on Figure F.10-F.11.
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Figure F.10: Back calculation of CRS.
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(e) Block-26-B1-19-35

Vertical Effective Stress, σ‘
11 [kPa]

101 102 103

V
er
ti
ca
l
S
tr
ai
n
,
ε
11

[%
]

0

5

10

15

20

25

30

Measurement
SCA-R

(f) Block-26-B1-20-50

Figure F.11: Back calculation of CRS.
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F.6.3 Tri-axial Tests

The back calculation of the tri-axial tests may be seen on Figure F.12-F.13. Notice that a modified
version of Block-10-A1-T1 using a OCRτ=1.5 has added to avoid the loop in the ESP as seen on
Figure F.12(a).
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(b) Block-22-B-9
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(c) Block-26-A-2
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(d) Block-28-A-5
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(e) Block-10-A1-T1
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(f) Block-22-B-9

Figure F.12: Back calculation of tri-axial test I. ESP and vertical strain vs. deviatoric stress.
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(a) Block-26-A-2
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Figure F.13: Back calculation of tri-axial test II. Vertical strain vs. deviatoric stress and pore pressure.
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Appendix G

Documentation of Calculations

This appendix contains additional predictions related to the embankment located at Onsøy which
have not been highlighted in the main report.

G.1 NGI Data

The performance of the SCA-R model has been compared to other soil models in Section 8. To
ensure a reliable comparison, the influence of the finite element model itself should be investigated.
Hence, the utilized finite element model should be controlled to see if similar predictions, as for the
finite element model assembled by Mehli (2015b), may be achieved. The SSC model is an available
soil model in PLAXIS and may be used in such a verification. Figure G.1 shows two simulations,
one performed by the finite element model suggested by the Author and one by Mehli (2015b).
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Figure G.1: Comparison of assembled finite element models through the SSC soil model. The graph shows
the vertical displacement just beneath the center of the embankment.

A small deviation near 0.1 m of vertical displacement may be observed on Figure G.1. This may
be a consequence of how the fill layers are activated. By investigating the path closely it looks as if
the two last fill layers are activated on the same time for the NGI model. However, the rest of the
curve is very similar. Hence, it may be concluded that the assembled finite element model yields
a similar response as for the finite element model suggested by Mehli (2015b).
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G.2 Recovering

This section contains the investigation of how the recovery effect influences the final predictions of
the embankment located at Onsøy.

G.2.1 Scenario 1

(a) Structure (x), Day No. 1120.

(b) Intrinsic Pressure (p′mi), Day No. 1120.

Figure G.2: Scenario 1 - State parameters.
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(a) Day No. 36.

(b) Day No. 1120.

Figure G.3: Scenario 1 - Excess pore pressure.
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Figure G.4: Scenario 1 - Plastic multiplier (dλ), Day No. 1120.

G.2.2 Scenario 2

Figure G.5: Scenario 2 - Plastic multiplier (dλ), Day No. 1120.
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(a) Structure (x), Day No. 1120.

(b) Intrinsic Pressure (p′mi), Day No. 1120.

Figure G.6: Scenario 2 - State parameters.
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(a) Day No. 36.

(b) Day No. 1120.

Figure G.7: Scenario 2 - Excess Pore Pressure.
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G.2.3 Scenario 3

Figure G.8: Scenario 3 - Plastic Multiplier (dλ), Day No. 1120.
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(a) Structure (x), Day No. 1120.

(b) Intrinsic Pressure (p′mi), Day No. 1120.

Figure G.9: Scenario 3 - State parameters.

Jesper Bjerre (s102905)



G.2. Recovering 81

(a) Day No. 36

(b) Day No. 1120.

Figure G.10: Scenario 3 - Excess pore pressure.
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G.3 Investigation of Implicit vs. Explicit

This section contains the predictions of layer 1 (0.6 - 2.0 m), layer 3 (5.0 - 10.0 m) and layer 4 (10.0
- 25.0 m) related to the investigation of the explicit and implicit scheme described in Section 8.9.
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(a) Undrained tri-axial compression.
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(b) Drained creep.
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(c) One-dimensional compression (∆ε11 = 10 %)
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(d) One-dimensional compression (∆ε11 = 50 %)
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(e) Compression + drained creep.
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(f) Compression + drained creep test.

Figure G.11: Investigation explicit and implicit scheme for layer 1 (0.6 - 2.0 m).
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(a) Undrained tri-axial compression.
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(b) Drained creep.
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(c) One-dimensional compression (∆ε11 = 10 %)
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(d) One-dimensional compression (∆ε11 = 50 %)
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(e) Compression + drained creep.
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(f) Compression + drained creep test.

Figure G.12: Investigation explicit and implicit scheme for layer 3 (5.0 - 10.0 m).
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(a) Undrained tri-axial compression.
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(b) Drained creep.
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(c) One-dimensional compression (∆ε11 = 10 %)
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(d) One-dimensional compression (∆ε11 = 50 %)
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(e) Compression + drained creep.
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(f) Compression + drained creep test.

Figure G.13: Investigation explicit and implicit scheme for layer 4 (10.0 - 25.0 m).
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