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Due to the inherent soil variability and measurement errors, a probabilistic link is constructed to model soil parameter 
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Abstract

A reliability-based design optimization (RBDO) of a monopile foundation for

offshore wind turbines is conducted to optimize monopile design criteria by ex-

plicitly accounting for the effects of uncertainties. The RBDO in this study aims

at optimizing cost of construction, installation and failure with respect to the

ultimate limit state of a monopile foundation while accounting for the effects of

uncertainties in soil parameters and lateral loads.

Due to the inherent soil variability and measurement errors, a probabilistic

link is constructed to model soil parameter interpretation from CPT data. The

probabilistic link is composed of a random field model of CPT data and the in-

terpretation uncertainty associated with existing relations between soil param-

eters and CPT measurements. Advanced maximum likelihood procedures were

employed to account for the effects of spatial correlation in the random field

parameters of CPT measurements.

Probabilistic models for soil parameters and lateral loads are coupled with

the nonlinear p-y finite element model to predict the response of a monopile

foundation. The response of a monopile foundation is evaluated with respect

to the ultimate limit state, defined by the yield strength of the monopile steel.

Based on uncertainties in soil parameters and lateral loads, the probability of

exceeding the ultimate limit is evaluated with the Subset Simulation method.

The RBDO problem is solved by coupling the Subset Simulation reliability method

with the Simulated Annealing stochastic optimization algorithm to minimize

the monopile design cost.
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Sammendrag

En sannsynlighetsbasert optimalisering for fundamentering av vindmøller off-

shore er gjennomført for å optimalisere designet av en monopele ved å hele

tiden ta høyde for effekten av usikkerheter. Målet for oppgaven er å optimalis-

ere kostnadene for konstruksjon, installasjon og svikt samtidig som effekten av

usikkerheter knyttet til jordparametere og laster blir medregnet.

På grunn av de naturlige iboende variasjonene i jorden og feil knyttet til

målinger, er det konstruert en sannsynlighetsbasert kobling for tolkning av jord-

parametere fra CPT data. Denne sannsynlighetsbaserte koblingen består av en

Gaussian tilfeldig felt modell av CPT data og usikkerheter knyttet til eksisterende

metoder for å tolke jordparametere fra CPT målinger. Maximum Likelihood

Method er en avansert prosedyre som ble anvendt for å ta hensyn til den romlige

korrelasjonen når CPT målinger blir betraktet som et tilfeldige felt.

Sannsynlighetsbaserte modeller for jordparametere og laster ble koblet sam-

men med den ikke-lineære p-y modellen for å kunne si noen om responsen av

monopelen når den blir utsatt for horisontale laster. Responsen av monopelen

er evaluert med hensyn til bruddgrensetilstanden, som i dette tilfellet er defin-

ert som flytespenningen til stålet i pelen. Basert på usikkerheter i jordparame-

tere og horisontale laster, er sannsynligheten for å overskride grensetilstanden

evaluert ved hjelp av sannsynlighetsmetoden Subset Simulation. Det sannsyn-

lighetsbaserte optimaliseringsproblemet er løst ved å koble algoritmen for Sub-

set Simulation sammen med den stokastiske optimaliseringsalgoritmen Simu-

lated Annealing.
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Chapter 1

Introduction

1.1 Background

Geotechnical design is prone to uncertainties due to inherent soil variability,

measurement errors and modeling assumptions. How the uncertainties in soil

properties affects the response of a foundation structure is of high interest, and

has received considerable attention in the recent years. The idea of using statis-

tical concepts in geotechnical engineering is not new, but the use of this method-

ologies has tended to be limited to projects relating to seismic design and off-

shore engineering (Fenton and Griffiths, 2008).

In deterministic geotechnical design, characteristic values and the factor of

safety approach are commonly used to maintain some degree of safety. This

approach is based on the ratio between expected strength of response to the ex-

pected load, which both are variables in practice. It is of importance to provide

answers about the reliability of a design, and when the level of uncertainty is

high, stochastic approaches becomes more necessary for system analyses and

design.

The inherent soil variability is a consequence of irregular processes that has

been ongoing for thousands of years. The physical properties of soil will vary

within resulting deposits and result in point and spatial variability. Due to this,

soil properties are shown to be spatially correlated. This distance, up to which

the correlation between two points is significant, is defined as the correlation

length. A probabilistic model commonly employed to characterize point and

spatial variability of soil properties is known as the random field model.

1
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Interpretation of soil parameters is usually a challenging task due to limited

data, and the variability observed in measured data originates both from spatial

variability and measurements errors. In the random field model contributions

from these uncertainties are included and the model is thus sufficient for de-

scribing soil parameters in a probabilistic manner.

The random field approach is demonstrated by using a reliability problem

of a monopile foundation. The local strength variation at a pile foundation is ex-

pected to have a greater effect compared to, for instance, a gravity-based foun-

dation (Ronold, 1990). This is because the area exposed to soil for a pile founda-

tion is significantly smaller and the response of laterally loaded piles are primar-

ily determined by using p-y curves applied at nodal points between elements.

In addition, the vertically correlation distance is significantly smaller than the

horizontally and the uncertainty associated with soil properties requires a spe-

cial consideration for this foundation design.

Problem Formulation

In this study, a reliability-based design optimization (RBDO) is conducted to

quantify uncertainties in soil parameters based on CPT investigations. The in-

terpretation of soil properties are based on a probabilistic link between the CPT

measurement and soil design parameters.

Random field model is utilized to characterize point and spatial variability

of CPT measurement. The Maximum likelihood method is implemented to esti-

mate the vertical correlation length, mean value and standard deviation of cone

resistance from available CPT measurements. These values are further used for

a probabilistic soil parameter interpretation.

Monopiles are subjected to lateral loading. p-y curves describes the non-

linear relationship between the resistance acting on the pile wall, p, and the lat-

eral deflection of the pile, y (Sørensen et al., 2012). The ultimate soil resistance,

pu , is an important parameter for construction of p-y curves. Undrained shear

strength, Su , is directly related to pu , and the ultimate soil resistance for sand

is calculated by dimensionless coefficients which depend on the friction angle,

ϕ. Variability of Su and ϕ are expected to have a significant influence on the

pile-soil response and the point and spatial variability of these parameters are

estimated by the random field model.
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The last step will be to conduct a probabilistic analysis within the Markov

Chain Monte Carlo framework to detect how uncertainties related to soil param-

eters and load effects the design of a monopile foundation. A RBDO algorithm

will be used to minimize cost of the monopile design and account for reliabil-

ity at the same time. This is done by coupling the Simulated Annealing with

the Subset Simulation reliability algorithm. Simulated Annealing is a stochastic

optimization technique which search for the minimum and rejects design pa-

rameters that returns a failure probability larger than the reliability limit of the

structure. Subset Simulation calculates the failure probability, and the prob-

abilistic response of the monopile foundation is obtained by coupling the p-y

model with random load and random fields of Su and ϕ.

Literature Study

This thesis contains several topics, which requires important literature from

different sources. The available literature was sorted into groups from the be-

ginning to get a good structure, and these main groups are Sheringham Shoal

wind farm, geostatistics and random field theory, interpretation of CPT mea-

surements, p-y method, reliability-based design and optimization. The most

important sources from each group will be briefly described below.

The main source which made this study possible is the available CPT mea-

surements from Sheringham Shoal wind farm. Almost 90 CPT measurements

with penetration length of up to 50 m are available for interpretation. The geotech-

nical report from soil investigations at the wind farm site (Saue and Meyer, 2009)

is also studied to obtain important information about the soil conditions at the

wind farm site.

The background theory of geostatistics and random fields are mainly cov-

ered by the literature from Fenton and Griffiths (2008) and Baecher and Chris-

tian (2005).

Interpretation of CPT is widely discussed in the literature, but the uncertain-

ties related to the commonly used transformation models are less discussed. To

transform CPT measurements into design parameters approaches suggested by

Lunne et al. (1997) are used, and the uncertainty related to these transforma-

tion models are taken from the study performed by Kulhawy et al. (1992) and

Kulhawy and Mayne (1990).
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To account for the effect of lateral load, monopiles are analyzed by p-y curves

in the pile-soil soil model. This is the current practice and is also the method de-

scribed in offshore standards DNV (2010) and API (2011).

The RBDO of a monopile foundation that is performed in this study is not

much different from the one presented by Depina and Eiksund (2015). The main

difference is that the probabilistic response of the monopile foundation is now

simulated by coupling the p-y model with random field models of undrained

shear strength and friction angle which are based on interpretation of measured

CPT values.

All calculations in this study are performed by using MATLAB r R2014a

1.2 Limitations

The variability of undrained shear strength is expected to influence the pile-soil

response significantly due to the formulation of p-y curves for clay. For formu-

lation of p-y curves for sand the variability of friction angle is expected to sig-

nificantly influence the pile-soil response. The RBDO analysis in this study is

limited to modeling uncertainties only in these two parameters, while the other

soil parameters are assumed to be deterministic.

Data from the wind farm site shows that the Bolders Bank Formation (BDK),

Egmond Ground Formation (EG) and Swarte Bank Formation (SBK) are of high-

est interest for construction of a monopile foundation. The ultimate soil resis-

tance, which is an important parameter for constructing p-y curves, is varying

with depth and depends on the soil type. BDK and SBK are characterized as stiff

clay and EG is a sand layer, and only construction of p-y curves for these soil

types are considered.

The main aim of this thesis is to develop a probabilistic link between CPT

data and soil parameters such that these can be used as input parameters in

a RBDO for a monopile foundation. Existing RBDO algorithms were used to

conduct RBDO of a monopile foundation.

The RBDO is evaluated with respect to the ultimate limit state of monopile

foundation, defined by the steel yield strength of the monopile.
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1.3 Structure of the Report

Chapter 2 - Theoretical background where some of the basic statistic terms are

shortly described. In this chapter also some theory behind cone penetration

testing, monopile foundation and the p-y method are introduced. Description

of soil conditions at the wind farm site and some principal limit state categories

for offshore installation is also presented.

Chapter 3 - In this chapter an introduction to geostatistics and random field

theory is provided. The factor of safety versus a reliability-based design is pre-

sented, and a description of the algorithm used for the reliability-based design

optimization is introduced.

Chapter 4 - Parameter estimation for the random field model based on CPT

measurements is described in this chapter. Some previous work is presented

and the maximum likelihood method is implemented to estimate the vertical

correlation length, mean value and standard deviation of random fields from

CPT .

Chapter 5 - The random field generation for undrained shear strength and fric-

tion angle is described in this chapter.

Chapter 6 - In this chapter the input parameters and the results from the reliability-

based design optimization is presented.

Chapter 7 - Discussion of results from advanced estimation of random field pa-

rameters, probabilistic soil parameter interpretation and the reliability-based

design optimization.

Chapter 8 - In the last chapter the thesis is summarized and some recommen-

dations for further work are given.
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Chapter 2

Theoretical Background

2.1 Basic Statistics

Some of the basic statistic terms that is used later in this thesis are simply de-

scribed below to give an introduction of statistical approaches.

2.1.1 Random Variable

An independent variable that can take a series of possible outcomes, each out-

come with a certain probability or frequency, is denoted as a random variable

(Huber, 2013). The random variable can either be discrete or continuous. Dis-

crete means that the random variable has a countable set of outcomes, like the

results of a dice throw. Continuous random variable takes values on the contin-

uous scale, like the value of undrained shear strength of clay.

2.1.2 Mean Value, Standard Deviation and Coefficient of Variation

The mean, which is also the expected value of the random variable, is the center

of gravity of the frequency distribution along the x-axis (Baecher and Christian,

2005). In other words, the mean value is the average of a set of data and is often

denoted as

µx = E(x) = 1

n

n∑
i=1

xi (2.1)

7
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A measure that is used to quantify the amount of variation or dispersion of

a set of data values is the standard deviation. A standard deviation close to zero

indicates that the data points tend to be very close to the mean value, while a

high standard deviation indicates that the data points are spread over a wider

range of values. The standard deviation of a set of data x = {xi , ..., xn}, denoted

as σx is:

σx =
√

E [(X −µx )2] =
√

1

n

n∑
i=1

(xi −µx )2 (2.2)

Sometimes the dominator (n-1) is used rather than (n). This is done to correct

a statistical bias, due to the fact that the mean also needs to be estimated from

the same data.

The coefficient of variation, CoVx , is defined as the ratio of the standard

deviation to the mean:

CoVx = σx

µx
(2.3)

2.1.3 Common Distributions

There is several models that describes the distribution of random variables. The

most commonly used models for continuous random variables are the normal

distribution and the lognormal distribution.

Normal Distribution

The normal distribution, which is also known as the Gaussian distribution, is

the classic bell-shaped function that is symmetric around the mean value. The

tail of the curve decays in an exponential manner, with the decay rate depen-

dent on the value of the standard deviation. There is a 68 percent chance that

a normal variable will be within ± 1σ from the mean value, 95 percent chance

that it will be within µ±2σ and 99,7 percent that the value will be within µ±3σ.

This means that it is very unlikely to observe a value that is outside ±3σ from

the mean value, as shown in Figure 2.1.
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Figure 2.1: Normal distribution

The probability density function of a random variable, x, is given by Eq. 2.4.

f (x;µx ,σx ) = 1

σx
p

2π
×e

−
(x −µx )2

2σ2
x (2.4)

Lognormal Distribution

A random variable will have a lognormal distribution if the logarithm of the vari-

able is a normally distributed random variable. A lognormal distribution does

not allow negative values of a variable. Since many geotechnical properties are

non-negative, the lognormal distribution is a reasonable model in many cases.

The probability density of a normal distribution is given by Eq. 2.5.

f (x;µl nx ,σl nx ) = 1

xσlnx
p

2π
×e

−
(l nx −µlnx )2

2σ2
lnx (2.5)

Where µlnx and σl nx is given by:
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µlnx = ln

(
µx√

1+ σ2
x

µx

2

)
(2.6)

σlnx =
√

ln
(
1+ σ2

x

µ2
x

)
(2.7)

Gumbel Distribution

The Gumbel Distribution, which is also known as the extreme value distribu-

tion, is a widely applied statistical distribution for engineering problems. The

distribution is commonly used to represent the distribution of the maximum by

using daily, monthly or annual maximum values. The distribution is thus suffi-

cient for estimating extreme values of waves. Figure 2.2 shows an example of a

Gumbel distribution for a random variable with µx = 2500 and σx = 500.

Figure 2.2: Gumbel distribution (after Depina and Eiksund, 2015)

2.2 Sheringham Shoal Windfarm

Sheringham Shoal is a wind farm site which is located approximately 20 km

north of the Norfolk Coast, Offshore UK. The water depth at the site is around

20 m, thus should monopile foundation be a good solution for this site. The soil

conditions described below are taken from the geotechnical report from soil in-

vestigations at the wind farm site (Saue and Meyer, 2009).
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2.2.1 Description of Soil Conditions

Five main soil units were identified from seabed and down to a depth of 50 m;

Botney Cut Formation (BCT), Bolders Bank Formation (BDK), Egmond Ground

Formation (EG), Swarte Bank Formation (SBK) and the Chalk Group (CK). This

was based on results from borings, samplings and CPTUs at the wind farm site,

and some of the key parameters from each soil unit is summarized in Table 2.1.

Table 2.1: Soil parameters at Sheringham Shoal (after Saue and Meyer, 2009)

Soil Depth Unit Undrained Friction

Unit interval1 Weight Shear strength Angle

γ Su ϕ′
u

[m] [kN/m3] [kPa] [deg]

BCT 0 - 5 17 20 - 60 [-]

varies 2

BDK 0 - 12 21.3 0 - 250 40.5

7 - 12 varies 2 36.0

EG 7 - 18 20.3 [-] 44

SBK 15 - 40 21.2 200 - 1100 33.5

40 - 62 20 varies 2

CK 10 - 70 19.5 220 - 950 35.5 - 41.0

varies 2 varies 3

1 typical depth range based on borehole logs
2 min-max Su values quoted.
3 varies with CK Grade
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Table 2.1 shows that the Bolders Bank Formation, Egmond Ground Forma-

tion and Swarte Bank Formation are of highest interest for construction of a

monopile foundation, and will be further described below. These layers are

all heavily overconsolidated due to the geological history of the area which in-

cludes repeated glaciation.

Bolders Bank Formation

The Bolders Bank Formation is in the report described as firm to stiff slightly

gravelly clay with pockets of sand and gravel. Sand layers with thickness of up

to several meters have been encountered in the Bolders Bank Formation. The

presence of sand layers and the variable composition of glacial deposits layers

results in some scatter in the finest content data, but a characteristic fines con-

tent of 62 % is suggested.

Egmond Ground Formation

Egmond Ground Formation is described as very dense fine sand with locally

seams and layers of silt and clay.

Swarte Bank Formation

Swarte Bank Formation is hard to very hard gravelly clay, where the gravel frac-

tion comprising fine to medium size rounded to subrounded praticles of chalk.

Such as for the Bolders Bank Formation, sand layers with thickness of up to sev-

eral meters can be encountered in this formation.
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2.3 Cone Penetration Testing

Due to the large quantity of available data from Sheringham Shoal wind farm,

a RBDO of a monopile foundation is performed by interpreting CPT measure-

ments. CPT is relatively inexpensive and a simple technique which provides

near continuous measurements of soil properties.

CPT, a cone at the end of a series of rods is pushed into the ground. The

rate of penetration is constant and continuous or intermittent real time mea-

surements of cone resistance, qc , and sleeve friction, fs , are made. Cone pene-

tration test undrained (CPTU) is cone penetration test with pore pressure mea-

surements during penetration of the probe.

2.3.1 Cone Tip Resistance

Among the CPT measurements, the cone tip resistance is commonly used for

soil parameter interpretation. The cone resistance is calculated as the total force

acting on the cone, Qc , divided by the projected area of the cone, Ac . Because

of the wide use of CPT in geotechnical engineering practice, a great demand for

validated correlations between cone resistance and engineering properties of

soil have been developed.

2.3.2 Corrected Cone Tip Resistance

The conical tip has to be separated from the rest of the probe by a joint because

it is demountable, and during penetration a pore pressure acting on this joint

will be developed. Because of different end areas of the probe components on

the two opposite sides of the joint, an unbalanced force will be produced. This

results in too small recordings of the cone resistance, and this effect has to be

accounted for. A corrected cone resistance is calculated by using Eq. 2.8.

qt = qc + (1−a)u2 (2.8)

where:

qt = corrected cone resistance [MPa]

qc = recorded cone resistance [MPa]

u2 = total pore pressure behind the cone [kPa]
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a =
An

Ac
is the net area ratio and is dependent on the probe design, where An is

the cross-sectional area of the load cell or shaft and Ac is the projected area of

the cone, as shown in Figure 2.3. Many cone penetrometers have values of cone

area ratios ranging from 0.55 to 0.9 (Lunne et al. (1997)). For interpretation of

CPTU measurements from Sheringham Shoal a net area ratio of 0.75 is assumed.

Figure 2.3: Corrected cone resistance

2.4 Monopile Foundations

Wind power is a renewable energy source, and as space is becoming scarce

for the installation of onshore wind turbines, offshore windmills becomes im-

portant structures for continuing utilizing this energy resource in a good way.

There are also other advantages to offshore wind energy compared to onshore.

Stronger winds offshore imply greater productivity that may offset higher instal-

lation and operation costs (Breton and Moe, 2009).

There are also several challenges met by offshore wind. These structures

are exposed to alternative loading from both wind and waves, which requires

higher investments in towers, foundations and underwater cabling. The instal-

lation is also more difficult and expensive compared to onshore turbines. One

foundation solution for these kinds of structures at moderate water depths is

monopiles, which are single steel pipe piles driven open-ended into the soil.

When planning the design of monopiles it is important to take into account

that the structures are dominantly subjected to lateral loads and overturning

moments, as shown in Figure 2.4.
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Figure 2.4: Monopile foundation for offshore wind turbines

The pile penetration depth, Lp , can be adjusted such that it suits the actual

environmental and soil conditions at each location. A possible disadvantage of

the monopile foundation design is too high flexibility in deep waters, and thus

the monopile support structure is best suited for sites with water depth ranging

from 0 to 25 meters.

To perform a design of a monopile foundation, two groups of uncertainties

should be considered: loading conditions and resistance. Uncertainty about

loading condition have to do with operational loads, accidental loads and en-

vironmental loads such as wind, waves and currents. Uncertainties about re-

sistance have to do with site conditions, dynamic and static soil properties and

how the monopile behaves when subjected to load (Baecher and Christian, 2005).

The response of the monopile foundation to loads can be simulated by the p-y

model.
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2.4.1 P-Y Model

A p-y curve describes the non-linear relationship between the soil resistance

acting on the pile wall, p, and the lateral deflection of the pile, y (Sørensen

et al., 2012). This method, also known as the Winkler approach, is therefore able

to produce a more accurate solution of the pile-soil response. The p-y curve

method is developed and verified for small diameter, slender piles. In current

practice and in offshore design codes (DNV (2010) and API (2011)) monopiles

are analyzed with the p-y method, although these are large-diameter, non-slender

piles.

In the Winkler approach the pile considered is supported by a series of un-

coupled non-linear springs, as shown in Figure 2.5. Each spring has a stiffness

Epyi , defined as the secant modulus of the p-y curve.

Figure 2.5: Pile modeled as an elastic beam supported by non-linear uncoupled

springs under lateral loading (from Sørensen et al., 2012)

As we can see from Figure 2.5, the stiffness is increasing with depth and de-

creasing with increasing level of deflection, y . The curves also shows that after a

certain y, the resistance is constant for increasing y and the soil behaves entirely

plastic. This value is the ultimate soil resistance, pu , which is varying with depth

and will depend on the governing type of failure mechanism.
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2.4.2 Construction of p-y Curves

The non-linear springs that is applied at the nodal points between the elements

are characterized by p-y curves. Each nodal point is assumed to be uncoupled,

which means that each spring is represented by its own ultimate soil resistance.

The ultimate soil resistance, pu , is an important parameter when construct-

ing p-y curves and how it is calculated depends on the soil type and the type

of load. In this study only the static loading for stiff clay and sand under water

will be further described below, because these equations are used later for the

reliability-based design optimization.

Stiff clay under water - Static

The construction of p-y curves for piles in stiff clay was proposed by Reese et al.

(1975) after studying the results from full scale test on laterally loaded piles in

stiff clay in Manor, Texas. They recommend to calculate the static ultimate lat-

eral resistance as:

pu =
{

2SuD +γ′Dz +2.83Su z for 0 < z ≤ zR

11SuD for z > zR
(2.9)

where z is depth below seabed and zR is the transition depth, below which the

value of 2SuD +γ′Dz + 2.83Su z exceeds 11SuD . Su is the average undrained

shear strength within the element, D is the pile diameter and γ′ is the sub-

merged unit weight.

For construction of the p-y curve we also need to calculate the deflection at

one-half the ultimate soil resistance, y50

y50 = ε50D (2.10)

where ε50 is the strain at one-half the ultimate soil resistance.

Figure 2.6 illustrates the characteristic shape of p-y curve for stiff clay during

static loading and the construction of the curve is done by using Eq. 2.11
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Figure 2.6: Characteristic shape of p-y curve for stiff clay during static loading

(after Reese et al., 1975)

p =



0.5pu
( y

y50

)0.5 for y
y50

≤ A

0.5pu
( y

y50

)0.5 −0.055pu
( y − Ay50

Ay50

)1.25 for A < y
y50

≤ 6A

0.5pu(6A)0.5 −0.411pu − 0.0625

y50
pu(y −6Ay50) for 6A < y

y50
≤ 18A

0.5pu(6A)0.5 −0.411pu −0.75pu A for y
y50

> 18A
(2.11)

where A is a non-dimensional coefficient, and the value of A is taken from Fig-

ure 2.7. Eq. 2.12 shows how the value of A is calculated.
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Figure 2.7: Non-dimensional coefficients used for construction of p-y curves,

where coefficient A is for static loading (from Reese et al., 1975)

A =
 −0.0011

( z
D

)4 +0.0193
( z

D

)3 −0.1223
( z

D

)2 +0.3532
( z

D

)+0.2 for
z

D
< 3.5

0.6
z

D
≥ 3.5

(2.12)

Sand under water - Static

O’Neill and Murchison (1983) suggested a modified expression of the p-y curve

for sand under water, which is also the formulation that is currently recom-

mended by design codes (DNV (2010) and API (2011)). In the modified p-y

curve formulation, the analytical expression for the ultimate soil resistance is

approximated with dimensionless coefficients. These coefficients, C1, C2 and

C3, depend on the friction angle ϕ as shown in Figure 2.8, and the ultimate soil
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resistance is recommended to be calculated as:

pu =
{

(C1z +C2D)γ′z for 0 < z ≤ zR

C3Dγ′z for z > zR
(2.13)

where z is depth below seabed and zR is the transition depth, below which the

value of (C1z +C2D)γ′z exceeds C3Dγ′z. D is the pile diameter and γ′ is the

submerged unit weight of soil. The p-y curve can now be generated according

to Eq. 2.14.

Figure 2.8: Non-dimensional coefficients as a function of friction angle used for

calculating the ultimate soil resistance (after DNV, 2010)

p = Apu t anh
( kz

Apu
y
)

(2.14)

where A is a factor that accounts for static or cyclic loading, and the value of A

for static loading is given in Eq. 2.15, where k is the initial modulus of subgrade

reaction and depends on the friction angle φ as shown in Figure 2.9.
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A =
(
3−0.8

z

D

)
≥ 0.9 (2.15)

Figure 2.9: Variation of initial modulus of subgrade reaction k as a function of

friction angle (after DNV, 2010)

2.5 Principal Limit State Categories for Offshore Installa-

tions

A limit state is defined as a state where the condition of the structure no longer

fulfills the relevant design criteria. Beside the design for the maximum static

load, fatigue design is also a very important aspect for offshore structures.

For monopiles the effect of cyclic pile response is a major design consid-
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eration, because wind and wave loads all exhibit cyclic behavior. This type of

loading leads to accumulated rotation of the wind turbine tower and adversely

affect the ultimate strength and fatigue life of the wind turbine, including the

supporting structure.

For monopiles it is also important to consider the serviceability limit state,

which corresponds to factors such as deformations, vibrations and local dam-

age that govern normal use. The monopiles are typically designed after defor-

mation tolerance, which is often specified as a total rotation of the pile head in

a vertical plane(Doherty and Gavin, 2012). The pile head is defined to be at the

seabed and this criteria is typically derived from visual requirements.

If we consider the lifetime of the structure, the number of loads due to wind

and wave could exceed 108 (Achmus et al., 2009). A safe design must therefore

address issues of changes in stiffness due to long-term cyclic loading and rota-

tion over time. This is not considered explicitly in the current codes and the rec-

ommended p-y curves for cyclic loading are designed primarily for evaluation

of the ultimate lateral capacity. There is also considerable differences of opinion

throughout the literature on the rate of cyclic displacement accumulation. This

is one of the main reason why the reliability-based design optimization in this

study only consider the ultimate limit state based on maximum static load.
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Geostatistics

3.1 Risk Assessment in Geotechnical Engineering

Inherent soil variability, measurement errors and modeling assumptions effects

the uncertainties in geotechnical design. Estimation of soil parameters is usu-

ally a challenging task due to limited data, and traditionally this is solved by

using characteristic values of soil properties. Further are these values used to

determine a factor of safety for the design to maintain some degree of safety.

In this study we are interested in a probabilistic characterization of soil prop-

erties. How the uncertainties in soil properties effects the response of a founda-

tion structure is of high interest, and it is important to provide answers about

the reliability of a design.

3.1.1 Uncertainty

Uncertainties in soil properties are commonly a consequence of inherent soil

variability and measurement data. Uncertainties in soil properties are generally

divided into aleatory and epistemic uncertainty based on their origin.

Aleatory uncertainty

The physical properties of soils vary from place to place within resulting de-

posits because of irregular processes that has been ongoing for thousands of

years. This natural variation is inherent and cannot be changed or eliminated.

23
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Epistemic uncertainty

Epistemic uncertainty is associated with knowledge-based uncertainty, and can

be reduced or eliminated. This knowledge-based uncertainty can be divided

into three main areas (Lacasse and Nadim, 1997). First we have the statistical

uncertainty, which is related to limited site investigation data. Secondly, mea-

surement uncertainty which is related to determination of material parameters

in the laboratory. Model uncertainty is the last area and is based on the un-

certainty because of simplifications and idealizations made in the calculations.

This uncertainty may be discovered by performing the calculations with differ-

ent models.

3.1.2 Choosing a Distribution

In the reliability analyses of geotechnical structures, data obtained from field in-

vestigations are commonly used. One of the challenges in the analysis of these

data is the determination of a suitable distribution. There will never be enough

information, and this is why assumptions needs to be made based on the infor-

mation that is obtainable. If there is sufficient data available, the distribution

that best fits the histogram might represent the true distribution in a good way.

Examples of how histograms of collected data of a random variable might look

like are shown in Figure 3.1. The theoretical distribution that fit these observed

data reasonably is selected as the distribution of the random variable.

Figure 3.1: Histogram of collected data on an input variable of interest
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One advantage by fitting a distribution to the collected data is that also the

values outside the range of observed samples can be generated, which means

that extreme values can be simulated from the distribution (Fenton and Grif-

fiths, 2008). This is important because it is often the extremes that controls a

design.

Within the field of geotechnical engineering it is important to ensure that

the distribution is at least approximately physically reasonable. For instant, if

a non-negative parameter is given a distribution that will return negative val-

ues with a relatively high probability, this is not considered as an appropriate

distribution.

3.1.3 Maximum Likelihood Estimators

Many authors (e.g Fenton and Griffiths (2008) and Baecher and Christian (2005))

agree that a good approach to estimating the parameters of an assumed dis-

tribution is to find which parameter values lead to the greatest probability of

observing those data. The maximum likelihood method finds the distribution

parameters, also called maximum-likelihood estimators, which maximize the

probability of observing these data.

3.1.4 Trend Analysis

The spatial variation of soil deposits can be characterized in detail, but only after

a large number of test. In reality, the number of tests required far exceeds what

can be acquired in practice.

In some cases may two data set have the same mean and standard devia-

tion, but still describe different soil conditions. This is because the difference

between data sets cannot always be inferred from the mean and standard devi-

ation alone. By examine spatially dependent data, also known as a random or

stochastic process, with trend analyses this can be solved. The trend analysis is

conducted by separating the random process into a deterministic trend and a

residual variability around the trend.

r (z) = t (z)+e(z) (3.1)

where r (z) is the soil property at location z, t (z) is the value of the trend at z and
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e(z) is the residual variation

The residual variation is statistically characterized as a random process, usu-

ally with zero mean and non-zero variance. The variance of the residual reflects

uncertainty between the interpolated trend and the actual value of soil proper-

ties at unobserved locations.

V ar [e] = E [{r (z)− (t (z))}2] (3.2)

If the measured data shows a clear trend, this trend can be estimated by

performing a regression analysis. This may reduce the variation of the measured

data, but it is important to remember that this trend may not continue outside

the sampling domain, D , as shown in Figure 3.2.

Figure 3.2: An observed trend may not continue outside the sampling domain,

D

3.1.5 Local Average

For many geotechnical properties such as friction angle, elastic modulus, con-

solidation radio and shear modulus, a point value will not give a adequate value.

Soils are actually discontinuous at the microscale (Fenton and Griffiths, 2008),

and that is why soil property measurements are generally averaged over a vol-

ume.
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3.2 Random Field and Spatial Variability

Soils are geological materials that have been subjected to various stresses, pore

fluids, and physical and chemical changes. Even within soil layers that is nom-

inally homogeneous, the engineering soil properties from point to point can

exhibit considerable variations (Ronold, 1990). Our knowledge about soil prop-

erties is limited and the variability observed in measured data originates both

from spatial variability and measurement errors. This is why spatial variability

of soil properties can be modeled by using the mathematics of random pro-

cesses, which is a collection of random variables.

Gaussian random fields and kriging are examples of techniques that are used

for describing soil conditions in a probabilistic manner based on observed and

measured data. The Gaussian random field model will be used later in this study

and is described below.

3.2.1 Gaussian Process Theory

A stochastic process, with Gaussian finite dimensional distribution is a Gaus-

sian process. Just as a Gaussian distribution is fully specified by its mean and

covariance matrix, a Gaussian process is specified by a mean and covariance

function (Fenton and Griffiths, 2008).

A Gaussian process is used for modeling dependent data observed over time

or space and is commonly used to characterize the point and spatial variability

of soil properties. A Gaussian process might also be known as a Gaussian ran-

dom field. This continuous random field is defined by a multivariate normal

distribution:

[R(x1), ...,R(x2)] ∼ N (x;µ,Σ) = 1

(2π)
n
2 |C| 1

2

×exp{−1

2
(x−µ)T C−1(x−µ} (3.3)

Where C = E [(x−µ)(x−µ)T ] is the covariance matrix between the x’s and is n×n

symmetric. |C| is the determinant of C andµ= E [x] is the vector of mean values,

one for each xi ,

For a continuous random field, the dimensions of µ and C are sill infinite,

since the random field is composed of an infinite number of x’s, one for each

point. To simplify things, we often quantifyµ and C using continuous functions

of space based on just a few parameters.
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Stationarity

Stationarity implies that the joint probability function is independent of spatial

position and it depends only on relative position of the points. An assumption

like this indicates that the mean, covariance and higher order moments are con-

stant in time or space. This means that distinct trends in the mean or a variance

that change with position is not found in the layer.

Autocorrelation

It is common to observe that the closer two measurement are located, the more

similar the measured soil properties are. This type of spatial structure is exam-

ined through spatial correlations between soil properties. The spatial structure

of soil remains in the residual and can be described by a spatial correlation,

known as autocorrelation (Fenton and Griffiths, 2008). This concept of a sta-

tistical dependence between field values at different points is one of the major

features of a random field representation of soil.

Correlation is a measure of dependence between two random variables com-

monly expressed with the linear correlation coefficient:

ρx y = Cov[X ,Y ]

σxσy
(3.4)

A autocorrelation represent a correlation of an individual variable with it-

self over space or time. The autocorrelation function describes the correlation

coefficient between two measurements at distance τ, and is calculated as the

covariance of the residuals at distance τ divided by the variation of the residu-

als.

ρ(τ) = Cov[e(xi ),e(xi )+τ]

V ar [e(xi )]
(3.5)

It can be shown from observations that the correlation coefficients starts

from ρ=1 at τ=0 and decays towards zero as the distance between the measure-

ments increase. The correlation length θ is the distance within which points are

significantly correlated.
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Algorithm for generating Gaussian random fields

In reliability analyses the generated random field realizations are considered as

an input to the model that simulate the response of the studied structure. A

random field realization is generated by discretizing the domain into n points:

z = (z1, ..., zn). Based on the discretization, a n ×n covariance matrix is formu-

lated. If we assume a stationary field, standard deviation is constant within the

layer and the covariance matrix can be written as:

C =σ2
x


1 ρ(z1, z2) .. ρ(z1, zn)

ρ(z2, z1) 1 .. ρ(z2, zn)

: : :

ρ(zn , z1) ρ(zn , z2) .. 1

 (3.6)

This covariance matrix is decomposed in a lower A and a upper AT triangular

matrix with Cholesky decomposition.

C = AAT (3.7)

To calculate the Gaussian random fields an n ×1 vector of standard normal dis-

tributed random variables T ∼ N (0,1) is generated. Gaussian random fields re-

alization, R, with the vector of means, µ, is generated:

R =µ+AT (3.8)

3.3 Factor of Safety

A common approach to deal with uncertainties in the engineering practice is

known as the factor of safety approach. This is a semi-probabilistic design phi-

losophy, and the main concern behind this approach is that is does not provide

much physical insight into the likelihood of a design failure as a probabilistic

measure (Fenton and Griffiths, 2008). The factor of safety is not a complete in-

dicator of the safety margin because the uncertainty in parameters may affect

the likelihood of failure significantly, as illustrated in Figure 3.3.
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Figure 3.3: Probability density functions for different mean and standard devia-

tion values for the factor of safety

Figure 2.3 shows two different distributions of the factor of safety, which is

only selected for illustration. Because of large uncertainties in the case where

µ= 1.5 compared to the case where µ= 1.2, the probability of failure (P (Fs < 1))

is larger for the case where the mean value of factor of safety is higher.

3.4 Reliability-based Design

In a reliability-based design, uncertain quantities such as load and resistance

are represented as random variables and their corresponding distributions (Fen-

ton and Griffiths, 2008). Compared to characteristic values and the factor of

safety approach, probabilistic methods may give definite values for the proba-

bility of failure and costs related to risk reduction.

Probabilistic methods provides a tool to quantify the risk associated with

projects, and gives us the opportunity to express the reliability of a design. It is

important to emphasize that a reliability approach does not remove the uncer-

tainty, but they do provide a way of handling them consistently. For instance,

it will be possible to estimate how extensive the site investigations must be to

achieve desired reliability in the results.
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3.5 Reliability-based Design Optimization

A Reliability-based design optimization (RBDO) is a design methodology that

accounts for uncertainty all along the optimization process. The concept is to

optimize the structural performance criteria, such as cost, reliability and main-

tenance. This is done by explicitly accounting for the effects of uncertainties in

the design process, such as material properties and loads.

The goal of a design optimization is to find the design parameters that min-

imizes the costs and satisfying some performance requirements at the same

time. A RBDO problem can be forulated as shown in Eq. 3.9, where we want

to minimize the design costs C (x,t), which is a function of random parameters

x = [x1, x2, ..., xn] and design variables t = [t1, t2, ..., tn].

C (x,t) =Ci (t)+CF (t)PF (x,t) (3.9)

Ci (t) is the initial cost of the structure, CF is the cost of failure and PF (x,t) rep-

resent the probability of failure.

3.5.1 Subset Simulation

One of the main goal of a reliability analysis is to evaluate the probability of

an unsafe or undesired state of the structure. Unsafe or undesired state can

be a property of the engineering system such as stress state or displacement

limit. It is defined by the performance function G(x,t), where x = [x1, ..., xn] rep-

resent the random parameters and t = [t1, t2, ..., tn] represent design variables.

The system is considered as unsafe when G(x,t) ≤ 0 and safe while G(x,t) ≥ 0.

The probability of a structure being in this unsafe or undesired state is denoted

as the probability of failure, PF .

An unsafe or undesired state of the engineering system is often a rare event

with very low probability of failure. Although the commonly used Monte Carlo

method is accurate, robust and independent of the dimensionality of the reli-

ability problem, the method is considered to be inefficient when small failure

probabilities are evaluated. Subset simulation is then presented, where the ba-

sic idea about this method is to express the failure probability as a product of

larger conditional failure probabilities. This is done by introducing intermedi-

ate failure events (Au and Beck, 2001).



32 CHAPTER 3. GEOSTATISTICS

Given a failure region F, let F1 ⊃ F2 ⊃ ... ⊃ Fk = F . Fi is the intermediate

failure region and can be expressed by the performance function Gi ≤ bi , where

bi > 0 and bi , ...,bk = 0 defines the intermediate failure limits. This is illustrated

in Figure 3.4.

Figure 3.4: A set of intermediate failure events in Subset Simulation

The probability of failure is estimated by calculating the probability of be-

ing in the first intermediate failure region, P (F1), and conditional probabilities

{P (Fi+1|Fi ) : i = 1, ...,k −1}. This gives us the failure probability:

PF = P (F1)
k−1∏
i=1

P (Fi+1|Fi ) (3.10)

The probability of being in the first intermediate failure region for a given

combination of design variables is estimated by a Monte Carlo procedure:

P (F1) ≈ 1

N

N∑
j=1

IF1 (x j ) (3.11)

where IF1 is an indicator function, where IF1 (x j ) = 1 if x j ∈ F1 and IF (x j ) = 0

otherwise. x j is the independent and identically distributed samples from the

probability density function, f .

The original problem of calculating a small failure probability is that it is

computationally demanding. With a proper choice of the intermediate failure
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events this can be reduced to calculating a sequence of conditional probabil-

ities with relatively small number of samples. To generate samples from the

conditional intermediate failure regions a special Monte Carlo Markov Chain

procedure based on the Metropolis algorithm is implemented.

3.5.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a method for sampling the distribution

of interest, and is based on the concepts of Monte Carlo and Markov Chains

techniques (Klüppelberg et al., 2014)

Monte Carlo

Monte Carlo simulation is a numerical simulation method that relies on making

repeated calculations with random variables. The outcome of these results will

eventually form a basis for a probability distribution. The Monte Carlo simu-

lation is well suited for calculations where several of the input parameters are

random variables. The biggest uncertainty will be at the tail of the probability

distribution, since it is very unlikely that the minimum or maximum values of

all the variables is calculated at the same time.

The classical Monte Carlo method is not efficient in simulating rare events

because a large number of samples and model evaluations is required. This

can be solved by sampling the distribution of interest by constructing a Markov

Chain that has the distribution of interest as its limiting distribution. This is

called the Markov Chain Monte Carlo (MCMC) method, and one of the MCMC

is the Metropolis-Hastings algorithm, which is modified for sampling the con-

ditional distribution in a way that includes the step where it is checked if the

sample points is in the failure region.

Markov Chains

A Markov Chain is a mathematical system that takes in a series of random val-

ues, each value being based on the previous value. The characteristic about

Markov Chains is that the transition is without memory, meaning that the next

state of the process depends only on the current state, and not the previous.
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Metropolis-Hastings Algorithm

The main principle behind the Metropolis-Hastings Algorithm is that it gen-

erates realizations from a distribution f (x) via proposed distributions, q(x0),

and the acceptance-rejection mechanism defined by a transition kernel. The

proposal distribution is a uniform distribution which is centered at the current

sample of the chain, x0, and it is used to generate a proposal sample. A move

from the current position of the chain to the proposed sample, x ′, is accepted

with the probability defined by the transition kernel. The chain move if the pro-

posed sample is accepted, otherwise it stays at the same position.

This is how the Metropolis-Hastings Algorithm can control the direction in

which the Markov Chain moves. Markov Chain in Metropolis-Hasting algorithm

will then converge to the unknown probability distribution of interest under the

assumption of ergodicity which will be fulfilled by the reversible transition ker-

nel of the Markov Chain.

3.5.3 Simulated Annealing

Simulated annealing is one of the non-gradient optimization algorithms that

can be applied both for continuous and discrete variable spaces. The main dif-

ference between this optimization algorithms and other approaches is that it

is more sufficient in finding the global minimum, and not only the local mini-

mums. This is because the algorithm allows to escape from local minimums.

The algorithm can be viewed as a continuously attempt to transform the

current configurations into one of its neighbors based on randomization tech-

niques (Van Laarhoven and Aarts, 1987). This is done by the Monte Carlo Markov

Chain method where a probability density function is used in order to make

reasonable guesses in the neighborhood of the initial parameters. If the new

random realization leads to an improvement, the properties of the model are

update.

The advantage of Simulated Annealing is that it is possible to escape from

a local minima and find the global optimum with help of the Metropolis cri-

teria. If the new random guess is an improvement of the original this value is

accepted, but if it is not, then the values can still be accepted with a certain

probability less than 1. This means that the optimum value also is largely inde-

pendent of the stating values (Goffe et al., 1994).
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Soil Parameter Estimation based

on CPT Data

4.1 Previos Work

Several authors have already discussed how CPT data can be used to estimate

parameters and the spatial correlation structures in soil. Some of their work and

results are summarized below.

Liu and Chen (2010) estimated spatial correlation structures based on CPT

data. The main focus in their research was to estimate the vertical correla-

tion structures and specifically investigate the effects of three factors of interest.

These factors where; curve-fitting ranges, equal intervals of measurements and

unequal intervals of measurements.

The results from their research indicate that the correlation length of cone

tip resistance is more sensitive to different curve-fitting ranges and has larger

correlation distance than that of sleeve friction, with respectively mean values

of 1.86m and 0.82m. For sampling interval it seems that the mean value of cor-

relation distances is more constant for the equal sampling interval cases than

for the unequal cases.

Huber (2013) focused on the evaluation of the effects of soil variability within

the framework of probabilistic methods. In one of his case studies, the verti-

cal correlation length was evaluated using CPT databases of different soil types.

The results shows that the correlation length of ’sensitive fine grained soils’ and

’clean sands to silty sand’ is not very different. The subdivision of a soil profile

35
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into layers and the detrending inside each layer on the other hand, has a signif-

icant impact on the correlation length

4.2 CPT Data Analysis

The first step in the probabilistic site characterization is to decide preliminary

boundaries for different soil layers, and as mentioned above might this have

a significant influence on the correlation length estimate. Within each layer,

it is assumed that the measurement data fulfil the homogeneity and station-

arity criteria. After identifying the layers which tend to be sufficiently homo-

geneous, these measured data are analyzed to estimate the correlation length,

mean value and standard deviation.

If the measured data shows a trend, trend analyses can be conducted by sep-

arating the random process into a deterministic trend and a residual variability

around the trend. As described in chapter 3, this may reduce the variation of

the measured data, but it is important to select this trend with caution. In this

study the estimation of soil parameters was based on cone resistance, and no

trend was assumed.

4.2.1 Spatial Correlation

The spatial correlation determines how soils are correlated spatially and can be

estimated by means of its autocorrelation. The correlation function ρ(τ) de-

scribes how data is correlated with separation distance τ = |zi − z j |, which is

described in chapter 3. The correlation length, θ, might be dependent on the

sample size, and it is recommended to sample with a distance between the mea-

surement points that is at least smaller that 1/5 to 1/4 of the correlation length

(Huber, 2013).

4.3 Maximum Likelihood Method

The random field model is implemented to characterize the point and spatial

variability of cone resistance from CPT measurements. Maximum likelihood

method is an advance estimation technique that is used to describe the random



4.3. MAXIMUM LIKELIHOOD METHOD 37

field parameters. The method estimate the optimal values of correlation length,

mean value and standard deviation by maximizing the likelihood function.

The probability of observing a set of data x is expressed through the likeli-

hood function:

L(x|µx ,σx ,θ) = fxi ,...,xn (x1, ..., xn |µx ,σx ,θ) (4.1)

which is simply the joint conditional probability density of x1, ..., xn , given as-

sumed values of µx , σx and θ. If we assume that the data, x = {x1, ..., xn}, are

normally distributed, the multivariate normal distribution becomes like the one

stated in Eq. 3.3.

Because we assume stationarity in each soil layer, the joint probability func-

tion is independent of spatial position and depends only on the relative position

of the points. Stationarity also indicates that the mean, covariance and higher

order moments are constant in time or space (Fenton and Griffiths, 2008). Hence,

this means that the covariance matrix can be written as

C =σ2
xρ (4.2)

where ρ is the correlation matrix

ρzi ,z j = exp
{
− 2

θ
|zi − z j |

}
(4.3)

As we see from Eq. 4.3, ρzi ,z j is a function of the unknown corelation length,

θ. With Eq. 4.2, the likelihood function in Eq. 3.3 can be written as

L(x|µx ,σx ,θ) = 1

(2πσ2
x )

n
2 |ρ| 1

2

×exp
{
− (x−µ)Tρ−1(x−µ)

2σ2
x

}
(4.4)

µ is the vector of means corresponding to each observation location. Since we

assumed a stationary random field, the mean will be spatially constant and µ=
µx 1, where 1 is a vector of ones. To find the optimal value of µx , σx and θ,

the likelihood function L(x|µ,σ,θ) is maximized. Since the function is strictly

nonnegative, maximizing the likelihood function is equivalent to maximizing

its logarithm. If we ignore constants, because they will not affect the maximum

likelihood estimate, we get:
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lnL(x|µx ,σx ,θ) =−n

2
lnσ2

x −
1

2
l n|ρ|− (x−µ)Tρ−1(x−µ)

2σ2
x

(4.5)

The maximum of Eq. 4.5 can in principle be found by differentiate with re-

spect to each unknown parameter µx , σx and θ in turn and setting the results

to zero. This will give three equations and three unknown, and the maximum

likelihood estimators can be determined (after Fenton and Griffiths, 2008).

µx = 1Tρ−1x

1Tρ−11
(4.6)

σ2
x = 1

n
(x−µx 1)Tρ−1(x−µx 1) (4.7)

Eq. 4.6 and 4.7 shows that both the mean and variance estimators can be

expressed in terms of the unknown parameter θ. Using this, the maximization

problem simplifies to finding the maximum of

L(x|µx ,σx ,θ) =−n

2
lnσ2

x −
1

2
ln|ρ| (4.8)

To calculate the estimate of the correlation length within a layer, the max-

imum of Eq. 4.8 is found by optimizing the likelihood function versus θ, as

shown in Figure 4.1. This maximum value of the likelihood function corre-

sponds to the maximum likelihood estimate of the correlation length, θ.



4.4. SOIL PARAMETER ESTIMATION 39

Figure 4.1: Maximum of the likelihood function when θ = 1m

The optimal mean value and standard derivation for this layer can now be

estimated by using Eq. 4.6 and 4.7 based on the value for the correlation length

which maximizes the likelihood function.

4.4 Soil Parameter Estimation based on CPT Data from

Sheringham Shoal wind farm

From CPT measurements the vertical correlation length, mean value and stan-

dard deviation of cone resistance from each layer are estimated. These random

field parameters are later used for a probabilistic soil parameter interpretation,

which is described in chapter 5.

Bolders Bank Formation

18 CPT profiles from Bolders Bank Formation (BDK) were selected for further

evaluation, and Table 4.1 shows that the correlation length estimates range be-

tween 0.4 and 2.9 m for this soil layer. Figure 4.2 shows the corrected tip resis-
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tance, qt , versus depth for three different boreholes with correlation lengths of

0.4, 1.3 and 2.9. The length of the layer used for determination from each CPT

profile can be found in Appendix B.

Table 4.1: Estimated correlation length, mean value and standard deviation
BDK

CPT profile θ µqt σqt

[m] [MPa] [MPa]
A3 0.4 1.68 0.39
A4 1.0 2.08 0.60
B1 2.1 1.50 0.70
B2 0.5 1.86 0.45
C1 1.3 1.87 0.44
C2 0.8 1.79 0.61
C4 2.4 1.94 0.55
C7 2.4 2.00 0.65
D3 1.7 1.91 0.61
D4 2.3 1.62 0.78
E1 0.4 1.83 0.34
H5 2.9 2.22 0.88
I1 1.2 2.39 0.84
I4 1.6 2.52 0.84
I6 0.8 1.97 0.46
J2 1.7 2.22 0.79
J6 1.2 1.81 0.55
K2 0.6 1.95 0.63

mean values 1.5 1.89 0.60
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Figure 4.2: Corrected tip resistance versus depth for three different CPT profiles,
all with different correlation lengths

Figure 4.3: Maximum likelihood function plotted against correlation length for

three different CPT profiles
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Figure 4.2 shows how the corrected cone tip resistance is varying with depth

for three different borehole locations, and Figure 4.3 shows the three corre-

sponding plots of the maximum likelihood function. Different lengths of the

layer used for interpretation may effect the estimated value of the vertical cor-

relation length. If the CPT measurements from 2 - 5 m is removed from profile

H5, a correlation length of 0.5 m is estimated. The likelihood function of profile

C1 and H5 also indicates that the value of the function is almost the same from

around θ = 0.7 m to θ = 3 m .

Swarte Bank Formation

11 CPT profiles from Swarte Bank Formation (SBK) were selected for further

evaluation. Table 4.2 shows that the correlation length estimates range between

0.5 and 3.0 m, which is similar to the estimated values from BDK. The length

of the layer used for determination from each CPT profile can be found in Ap-

pendix B.

Table 4.2: Estimated correlation length, mean value and standard deviation SBK

CPT profile θ µqt σqt

[m] [MPa] [MPa]
A7 2.0 5.98 2.53
C6 3.0 9.75 3.55
D6 0.9 9.57 2.26
E8 0.5 10.38 2.44
F6 1.9 5.99 2.51
G6 3.0 9.46 3.54
H1 1.1 7.02 4.84
I1 2.1 10.79 6.04
I4 1.1 8.79 4.16
I6 1.2 6.81 1.85
J6 1.3 9.84 3.52

mean values 1.6 8.58 3.39
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Probabilistic Soil Parameter

Interpretation from CPT Data

5.1 Link Between Soil Parameters and CPT Parameters

CPT measurements provide a basis for interpretation of a wide range of soil pa-

rameters for both strength and deformation. Due to uncertainties associated

with CPT measurements and the soil parameter interpretation it is of interest to

conduct a probabilistic CPT interpretation.

For a reliability-based design of a monopile foundation, where the soil con-

ditions at the pile penetration depth mainly consists of clay and sand layers,

interpretation of undrained shear strength and friction angle are of high inter-

est.

5.2 Interpretation of Undrained Shear Strength based on

CPT Data

To determine the soil resistance for clay under fully plastic behaviour, which is

used when modelling p-y curves, the undrained shear strength, Su , is an impor-

tant parameter. Su is directly related to the peak value of soil resistance, and

variability of Su is expected to have a significantly influence on the pile-soil re-

sponce.

The undrained shear strength of clay is not a unique parameter and no sin-
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gle undrained shear strength exists. The parameter depends significantly on

the orientation of the failure planes, the type of test used, soil anisotropy, rate of

strain and stress history.

Equation 5.1 shows the empirical approach available for interpretation of

Su from CPT/CPTU using corrected cone tip resistance. This approach can also

be denoted as a transformation model that is needed to relate the test measure-

ment to an appropriate design property (Phoon and Kulhawy, 1999). The design

parameter in this case is the undrained shear strength. To use this parameter in

a reliability-based design uncertainties related to the transformation model are

evaluated.

su = (qt −σv0 )

Nk
(5.1)

where:

qt =corrected cone tip resistance [MPa]

σv0 =in situ overburden pressure [kPa]

Nk =empirical cone factor

5.2.1 Corrected Cone Tip Resistance

If the values of corrected cone resistance, qt , is plotted in a histogram as shown

in Figure 5.1, it might be reasonable to assume that qt is log-normally distributed.

This indicates that l nqt is normally distributed, and the multivariate normal dis-

tribution of the lnqt random field becomes like the one stated in Eq. 3.3.
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Figure 5.1: Histogram showing the distribution of corrected tip resistance

By using the maximum likelihood method, as described in chapter 4, we

can determine the correlation length, mean value and standard deviation for

the lnqt random field.

When we have calculated µlnqt and σlnqt , we can find the corresponding

normal distribudet parameters by Eq. 5.2 and 5.3.

µqt = exp
(
µlnqt +

σ2
lnqt

2

)
(5.2)

σqt =µqt

√
exp(σ2

l nqt
)−1 (5.3)

5.2.2 Empirical Cone Factor

Nk is generally obtained from empirical correlations , and should not be a con-

stant value that is valid for all clays (Robertson and Campanella, 1983a). Pre-

vious research (e.g Aas et al. (1986), Lunne et al. (1976) and Rad and Lunne

(1989)) shows that the value might depend on factors like over consolidation

ratio, plasticity index and the reference test that has been used. For undrained

shear strength NGI favor the use of results from consolidated anisotropically

triaxial compression tests (CAUC) to develop consistent correlation from CPTU

data (Karlsrud et al., 1997).

If we want to establish a probabilistic link between undrained shear strength

and CPT data we need to consider the uncertainty in the empirical cone factor.

Kulhawy et al. (1992) developed a database for sites in clay to determine the
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correlation between measured CPTU and undrained shear strength determined

from consolidated isotropic undrained triaxial compression (CIUC), unconsoli-

dated undrained triaxial compression (UU) and vane shear test (VST). The coef-

ficient of variation (CoV) for Nk was found to bee between 29-40%, dependent

on test used to determine the undrained shear strength. For CIUC triaxial test

the CoV of Nk was around 35%.

In this case ,soil from Sheringham Shoal wind farm is considered. From

the Bolders Bank Formation and the Swarte Bank Formation a cone factor of

Nk =15 provides reasonable correlation with the available laboratory test data

(Saue and Meyer, 2009). For the static shear strength this value was evaluated

based on CAUC tests. This value is selected as the mean value and the CoV

evaluated from CIUC is assumed. Based on eq. 5.4 the standard deviation for

the empirical cone factor will be σNk = 5.25. This might seem like a high stan-

dard deviation for a cone factor, but due to the limited available information

this value is assumed.

CoVNk =
σNk

µNk

(5.4)

From equation 5.1 wee see that Nk equal to zero or a negative value will not

give a physically meaningful value of Su , and a log-normally distribution of Nk

is assumed. We use eq. 5.5 and 5.6 to find the corresponding parameters for the

lognormal distribution.

µl nNk = l n

(
µNk√√√√1+
σ2

Nk

µ2
Nk

)
(5.5)

σl nNk =
√√√√l n

(
1+

σ2
Nk

µ2
Nk

)
(5.6)
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5.2.3 Undrained Shear Strength

Now that we have determined a distribution for both the corrected cone tip re-

sistance and the cone factor, these can be used to determine the log-normally

distributed parameters of lnSu where:

lnSu = l n(qt −σv0)− lnNk (5.7)

µlnSu =µln(qt−σv0) −µlnNk (5.8)

σlnSu =
√(

∂l nSu

∂ln(qt −σv0)
σl n(qt−σ)

)2

+
(
∂lnSu

∂lnNk
σlnNk

)2

=
√
σ2

ln(qt−σv0) +σ2
lnNk

(5.9)

The overburden total stress σv0 is assumed to be deterministic, such that

σv0 = zγ+ zwγw (5.10)

Where:

z = depth below seabed [m]

zw = water depth [m]

γw = water density
[
kN /m3

]
The soil density, γ, is assumed to be constant within each layer and the the total

overburden stress will increase linearly with depth. This gives us µ(qt−σv0) and

σ(qt−σv0), which is µqt −σv0 and σqt , respectively. Such as for the cone factor Nk

we need to use equation 5.5 and 5.6 to find the log-normally distributed param-

eters, µl n(qt−σv0) and σln(qt−σv0).
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5.2.4 Su Random Field Generation

To characterize the point and spatial variability of undrained shear strength, a

random field model is utilized.

When determining the correlation length, mean value and standard devia-

tion from qt , we assumed stationarity within the layer. Since µl nSu and σlnSu is

dependent on the total overburden pressure, these will vary linearly with depth

and the layer does no longer fulfil the requirements of being stationary. µlnSu

and σlnSu will be vectors and can be written as:

µlnSu
=α1 +α2 ×z (5.11)

βlnSu
=β1 +β2 ×z (5.12)

Where α1, α2, β1 and β2 are the linear trend parameters and z is depth below

seabed. Figure 5.3 and 5.4 show an example of mean value and standard devia-

tion of the lognormally distributed parameters of Su varying with depth. As seen

in Figure 5.3, µl nSu is decreasing with depth. Figure 5.2 shows recorded values

of qt versus depth. Due to a constant µqt , the mean value of Su will decrease

with depth.
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Figure 5.2: CPT measurement from Sheringham Shoal wind farm showing

recorded values of qt versus depth
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Figure 5.3: Mean value of lnSu with depth, with α1 =−2,0 and α2 =−0,013

Figure 5.4: Standard deviation of lnSu with depth, with β1 = 0,46 and β2 = 0,002
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Because σlnSu is dependent with depth, the covariance matrix, C, will also

be depend on the standard deviation between two points of the random field

discretization:

C =



σ2
z1

σz1σz2ρ(z1, z2) .. σz1σznρ(z1, zn)

σz2σz1ρ(z2, z1) σ2
z2

.. σz2σznρ(z2, zn)

: : :

: : :

σznσz1ρ(zn , z1) σznσz2ρ(zn , z2) .. σ2
zn

 (5.13)

To generate a random field realization of Su , we need to perform a Cholesky

decomposition of the covariance matrix:

C = AAT (5.14)

where A is the lower triangular. The random field realization of the undrained

shear strength can now be determined by Eq. 5.15, and Figure 5.5 shows an

example of a random field of Su based on the values forµlnSu
andσlnSu as given

in Figure 5.3 and 5.4.

Su = exp × (µl nSu
+AT) (5.15)

where T is a vector of standard normal distributed random variables with mean

value 0 and standard deviation 1, T ∼ N (0,1).
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Figure 5.5: Random field of undrained shear strength with correlation length

θ=1 m

5.3 Interpretation of Friction Angle based on CPT Data

For construction of p-y curves for sand the variability of friction angle, ϕ, is ex-

pected to significantly influence the pile-soil response. The ultimate soil resis-

tance for sand is calculated by dimensionless coefficients which depends on ϕ.

Robertson and Campanella (1983b) reviewed calibration chamber test re-

sults to compare measured cone penetration resistance, qc , to measured fric-

tion angle from drained compression triaxial tests (also cited by Lunne et al.,

1997). These triaxial tests were performed at confining stresses approximately

equal to the horizontal effective stress in the calibration chamber before cone

penetrating.

Robertson and Campanella (1983b) proposed an average correlation and

developed a useful design chart for estimation of friction angle from cone pen-

etration resistance, as shown in Figure 5.6. It can be expected that this chart will

provide resonable estimates of friction angle for sands similar to those used in

the chamber studies. This was moderately imcompressible, normally consoli-

dated and predominantly quartz sands. For highly compressible sands the chart

would tend to predict conservatively low friction angles.
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Figure 5.6: Relationships between ϕ′, qc and σ′
v0 (after Robertson and Cam-

panella, 1983b)

Figure 5.6 shows that qc is linearly increasing with σ′
v0 for constant ϕ′. To

use this chart for further interpretation of the friction angle based on CPT data

from Sheringham Shoal, the transformation must be expressed by a correspond-

ing function. The first step would be to express the ratio between qc and σ′
v0,

here denoted as β:

β= qc

σ′
v0

(5.16)

Where:

qc = Cone resistance [MPa]

σ′
v0 = Vertical effective stress [kPa]

Each value of β gives a value of ϕ′, as shown in Figure 5.7. By adding a trendline
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between theses values an expression of ϕ′ is given, which is based on the ratio

between qc and σ′
v0. This relation can be expressed by Eq. 5.17, where ε is the

transformation uncertainty. This equation is also very similar to the interpre-

tation equation between triaxial compression effective stress friction angle and

the cone tip resistance described by Kulhawy and Mayne (1990).

Figure 5.7: Determination ofϕ′ based on the ratio between qc andσ′
v0, denoted

as β

ϕ(β) = 5.03l n(β)+52.04+ε (5.17)

5.3.1 Cone Tip Resistance

Similarly as for clay, the cone tip resistance, qc , in a sand layer is assumed to be

lognormally distributed. The cone tip resistance will be spatially correlated, and

it is of interested o find the parameters that describes the random field model.

This is done by the same method as for the corrected cone tip resistance, and

we can estimate θ, µl nqc and σl nqc for the lnqc random field. Figure 5.8 shows

recorded values of qc , and it might be reasonable to assume that µqc andσqc are

not dependent on position.
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Figure 5.8: CPT measurement from Sheringham Shoal wind farm showing

recorded values of qc versus depth for Egmond Ground Formation

5.3.2 Generate a Random Field Realization of Friction Angle

To determine the mean value and standard deviation for the ϕ random field we

use Eq. 5.18 and 5.19.

µϕ = 5.03µl nqc −5.03ln(σ′
v0)+52.04+µε (5.18)

σ2
ϕ = (5.03σlnqc )2 +σ2

ε (5.19)

The vertical effective stress σ′
v0 is assumed to be deterministic, such that
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σ′
v0 = zγ′ (5.20)

where z is depth below seabed and γ′ is effective soil density, which is assumed

to be constant within each layer, and the effective stress will hence increase

linearly with depth. The mean value of the transformation uncertainty, µε, is

zero and the standard deviation, σε, for this interpretation is 2.8◦ (Kulhawy and

Mayne, 1990). Figure 5.9 shows an exaple of a random field of ϕ.

Figure 5.9: Random field of friction angle with correlation length θ=1.5 m

5.4 CPT Parameter Interpretation and the P-Y Model

After the probabilistic models for Su and ϕ are constructed, they are utilized

in the reliability analysis of monopile foundation. The pile penetration length,

Lp , is discretized in P equal intervals, with interval length of dl = Lp

P
. As stated

earlier the soil response is simulated by a series of independent springs with

material behavior defined by p-y curves. Each spring is represent by a p-y curve,

which is calculated based on the soil type and depth at this point.

Figure 5.10 shows how the total pile penetration length, Lp is subdivided

into three layers, where z1 is the boundary between Bolders Bank and Edmond

Ground Formation, z2 is the boundary between Egmond Ground and Swarte

Bank Foundation and z3 is set to 40 m, which is set as the maximum length
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of penetration in the RBDO. Two CPT profiles from Sheringham Shoal were se-

lected and the layer boundaries for these profile are summarized in Table 5.1

Figure 5.10: Pile penetration length, Lp , subdivided into three different layers

which will have different parameters for their random field determination

Table 5.1: Layer boundaries

CPT profile Water depth z1 z2 z3

[m] [m] [m] [m]
I1 18 10 18 40
I4 18 10 15 40
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BDK and SBK are characterized as stiff clay. The p-y curves from these layers

are constructed after the method proposed by Reese et al. (1975). Su is directly

related to the ultimate soil resistance, pu , and the parameters for generating Su

random fields are needed. EG is characterized as a sand layer, and the p-y curves

for this layer are constructed after the modified expression suggested by O’Neill

and Murchison (1983). As stated earlier, pu for sand depends on the value of ϕ,

and the parameters for generating ϕ random fields are needed. The probabilis-

tic soil parameters of Su and ϕ from CPT profile I1 and I4 are summarized in

Table 5.2 and 5.3.

Table 5.2: Random field parameters for I1

θ α1 α2 β1 β2

[m]
BDK 1.2 -1.9 -1.2×10−2 0.50 2.7×10−3

EG 1.5 48 -0.38 2.99 0
SBK 2.1 -0.43 -2.7×10−3 0.63 8.6×10−4

Table 5.3: Random field parameters for I4

θ α1 α2 β1 β2

[m]
BDK 1.6 -1.9 -1.1×10−2 0.49 2.4×10−3

EG 3.0 49 -0.39 3.65 0
SBK 1.1 -0.6 -3.1×10−3 0.56 8.9×10−4



Chapter 6

Results

6.1 Reliability-based Design Optimization of a Monopile

Foundation

6.1.1 Problem Definition

The goal of RBDO is to find the monopile design parameters, t=[D , w , Lp ],

which minimize the cost and provide a safe design at the same time. In this

study, the design cost is defined to be proportional to the monopile weight and

failure probability:

C (x,t) =Ci (t)Lpρsπ

[(D

2

)2
−

(D

2
−w

)2
]
+CF PF (x,t) (6.1)

Where:

Lp = pile embedded length [m]

ρs = density of steel [kN/m3]

D = pile diameter [m]

w = pile wall thickness [m]

Ci (t) is the cost of production and installation which is assumed to be 2e/kg of

the monopile, CF is the failure cost and is estimated to be 107 e. PF (x,t) is the

probability of failure, which defines the probability of exceeding the ultimate

limit state.

The reliability analysis is performed by evaluating the effects of variability in
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undrained shear strength of clay, friction angle of sand and lateral load. The ran-

dom fields of Su and ϕ are used in the pile-soil system to determine p-y curves

of stiff clay and sand, where the distance between each uncoupled spring is 1 m

. Other parameters used in calculations of p-y curves are assumed to be deter-

ministic. These parameters and their values are summarized in Table 6.1.

Table 6.1: Parameters used for p-y curves

Symbol Explanation Value Unit
J Empirical model parameter 0.25 -
γ′ Submerged unit weight 18 kN/m3

ε50 Strain at one-half the ultimate soil resistance 0.005 -

Random Load

The characteristic for an offshore wind turbine is that the support structure is

subjected to dominant lateral loading due to wind and wave loading. In this

study the force resulting from wind and wave loading is approximated by a hor-

izontal force. For a modern offshore wind turbine, located in 20 m water depth,

it is assumed that this force will act approximately 30 m above seabed level

(LeBlanc, 2009). This consequently results in a moment M = H × m applied

at the sea bed level.

The uncertainties in the load are assumed to be distributed according to the

Gumbel distribution whit a mean valueµH = 2500 kN. According to Agarwal and

Manuel (2009) is it reasonable to assume a coefficient of variation of CoVH = 0.2.

Design parameters

The reliability analysis is conducted to optimize the cost of the foundation with

respect to the monopile diameter, D , the wall thickness, w , and the embedded

pile length, Lp . Optimization is conducted in the discretized domain, Ωt , such

that D ∈ [4.0,4.1, ...,7.0], w ∈ [0.03,0.04, ...,0.10] and Lp ∈ [25,26, ...,40]:

[4,0.03,25]T ≤ t ≤ [7,0.1,40]T (6.2)

Parameter for the steel pile is the density of steel, ρs = 7850 kN/m3, Young’s

modolus of steel pile, Ep = 2.1×105 MPa and Poisson’s ratio of steel, υs = 0.3.
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6.1.2 Ultimate Limit State

The reliability-based design optimization is performed by considering the un-

certainties in U = [Su ,ϕ, H ]T on the ultimate limit state for the monopile. The

ultimate limit state in this study is defined by the steel yield stress, σl i m = 235

MPa. The performance function for the ultimate limit state is defined as:

g (x̂,t̂) =σl i m −σ(x̂,t̂) (6.3)

where σ(x̂,t̂) is the maximum stress in the monopile for a given combination of

x̂ and t̂.

6.1.3 Subset Simulation

Based on a given combination of design variables, t̂, we want to find the prob-

ability of failure, PF (x,t̂). Subset simulation method has an efficient and robust

performance when small PF is to be evaluated, and is in this study used to find

PF (x,t̂):

PF (x,t̂) = P (F1x,t̂)
k−1∏
i=1

P (Fi+1(x,t̂)|Fi (x,t̂) (6.4)

where the conditional failure probability is set to P=0.1.

The reliability limit of the structure is specified as P l i m
F . For offshore wind

turbines the value of P l i m
F = 10−4 is selected based on the analysis of the failure

consequences associated with exceeding the ultimate limit state (Sorensen and

Tarp-Johansen, 2005). To satisfy the reliability constraint, PF (x,t̂) ≤ P l i m
F = 10−4,

the cost of the monopile is set to C (x,t̂) =∞ in the case when PF (x,t̂) > 10−4.

6.1.4 Simulated Annealing

The Simulated Annealing (SA) algorithm is in this study used to search for the

minimum of Eq. 6.1 and account for the reliability limit of the structure at the

same time.

The initial value of the design parameters in the SA algorithm is set to t(1) =
[5.5,0.05,30], with PF (x,t̂) < 10−6 and C (x,t̂) = 4.03×105 e.

Simulations of the Simulated Annealing algorithm were conducted with uni-

form proposal distributions where the current state of design parameters, t̂, is
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the center of the distribution. The uniform proposal distribution will then be

distributed with limits ±h such that U(t̂-h, t̂+h) with h = [0.1,0.01,1].

6.2 Summary of Results

Correlation lengths, random field realizations and optimal design parameters

were calculated for two different borehole locations at the wind farm site. The

result from these calculations are used as input parameters in the RBDO. Table

5.2 and 5.3 shows the random field parameters, which are used for integration

with p-y curves.

6.2.1 CPT Profile I1

As we see from Table 5.1 the water depth at this location is 18 m , Bolders Bank

formation is 0-10 m below seabed, Egmond Ground 10-18 m and Swarte Bank

from 18 m below seabed and down to the optimal penetration length of the

monopile. The calculated correlation lengths from each layer is shown in Fig-

ure 6.1, and Figure 6.2 shows examples of random field realizations from this

location, one for each layer.
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Figure 6.1: Makimum likelihood estimates of correlation length for layers at CPT

profile I1

Figure 6.2: Random field realizations for CPT profile I1
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Simulated Annealing

Seven calculations for CPT profile I1 were performed with the Simulated An-

nealing stochastic optimization algorithm. The algorithm was coupled with the

Subset Simulation (SS) to estimate the failure probabilities. Simulations of the

algorithm with 1000 iterations were performed. Subset Simulation algorithm

was performed with 200 simulations per step. Figure 6.3-6.7 shows the calcu-

lated values of costs, pile embedded length, pile wall thickness, pile diameter

and probability of failure of the first three calculations. Table 6.2 shows the min-

imum costs and related parameters from each calculation.

Table 6.2: Optimal minimum costs for CPT profile I1 based on SA Optimization

Ns Calculation number C (x,t) Lp w D PF

[-] [e] [m] [m] [m] [-]
200 1 2.55x105 26 0.04 5 8.5×10−6

200 2 2.60x105 26 0.04 5.1 4.6×10−6

200 3 2.64x105 27 0.04 5 8.5×10−6

200 4 2.90x105 27 0.04 5.7 3.3×10−6

200 5 2.70x105 27 0.04 5.1 8.5×10−6

200 6 2.65x105 26 0.04 5.2 7.9×10−5

200 7 2.75x105 26 0.04 5.4 3.9×10−5

Table 6.2 shows that the optimal design cost for these calculations is varying

between 2.55−2.90x105 e. The optimal pile wall thickness is consistently 0.04

m , Lp is 26 m or 27 m and D is varying between 5-5.7 m. Figure 6.7 shows that

the SA algorithm satisfies the reliability constraint since PF ≤ P l i m
F for all the

proposed design parameters.
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Figure 6.3: SA optimization I1 - Design cost of the monopile, C(u,t), from three

different calculations

Figure 6.4: SA optimization I1 - Pile embedded length, Lp , from three different

calculations
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Figure 6.5: SA optimization I1 - Pile wall thickness, w , from three different cal-

culations

Figure 6.6: SA optimization I1 - Pile diameter, D , from three different calcula-

tions
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Figure 6.7: SA optimization I1 - Probability of failure, P f , from three different

calculations

6.2.2 CPT Profile I4

As we see from Table 5.1 is the water depth at this location 18 m, Bolders Bank

formation is 0-10 m below seabed, Egmond Ground 10-15 m and Swarte Bank

from 15 m below seabed and down to the optimal penetration length of the

monopile. The calculated correlation lengths from each layer and examples of

random field realizations from this location is shown in appendix B.

Simulated Annealing

Seven calculations for CPT profile I4 was performed with the RBDO algorithm.

Simulations of the algorithm with 1000 iteration were performed, and the SS was

performed with 200 simulation per step. Figure 6.8 - 6.12 shows the calculated

values of cost, Lp , w , D and PF of the three first calculations. Table 6.3 shows

the minimum costs and related parameters from each calculation.
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Table 6.3: Optimal minimum costs for CPT profile I1 based on SA Optimization

Ns Calculation number C (x,t) Lp w D PF

[-] [e] [m] [m] [m] [-]

200 1 2.50x105 26 0.04 4.9 6.8×10−5

200 2 2.85x105 26 0.04 5.6 1.4×10−6

200 3 2.60x105 26 0.04 5.2 3.5×10−5

200 4 2.76x105 26 0.04 5.4 6.7×10−5

200 5 2.70x105 26 0.04 5.3 1.4×10−5

200 6 2.70x105 26 0.04 5.3 8.5×10−6

200 7 2.65x105 26 0.04 5.2 4.0×10−5

Table 6.3 show that the optimal design cost for these calculations is vary-

ing between 2.50−2.85x105 e. The optimal pile wall thickness is consistently

0.04 m , Lp is 26 m and D is varying between 4.9-5.6 m. Figure 6.12 shows that

the SA algorithm also satisfies the reliability constraint for the proposed design

parameters at CPT profile I4.

Figure 6.8: SA optimization I4 - Design cost of the monopile, C(u,t), from three

different calculations
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Figure 6.9: SA optimization I4 - Pile embedded length, Lp , from three different

calculations

Figure 6.10: SA optimization I4 - Pile wall thickness, w , from three different cal-

culations
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Figure 6.11: SA optimization I4 - Pile diameter, D , from three different calcula-

tions

Figure 6.12: SA optimization I4 - Probability of failure, P f , from three different

calculations



Chapter 7

Discussion

This thesis is divided into four sections:

• Advanced estimation of random field parameters.

• Probabilistic soil parameter interpretation of CPT data.

• Integration with p-y curves.

• Reliability-based design optimization.

In chapter 6, the RBDO results are presented. To obtain these results, the

effects of uncertainties must be included. How to estimate the random field

parameters from CPT measurements was presented in chapter 4, and the prob-

abilistic soil parameter interpretation was presented in chapter 5. These results

are used to determine the random input variables for construction of p-y curves,

which is described in section 5.4. To enlighten the importance of this, each sec-

tion is discussed in this chapter.
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7.1 Advanced Estimation of Random Field Parameters

In this study, tip resistance measured during CPT penetration is considered as

a random field. The maximum likelihood method is used to estimate vertical

correlation length, mean value and standard deviation. This advanced method

estimates the optimal values of the random field parameters by maximizing the

likelihood function.

The concept of a statistical dependence between field values at different lo-

cation is expressed through the correlation length, which is one of the major

features of a random field representation of soil properties. Figure 4.1 shows

how the correlation length effects the value of the likelihood function. It can be

observed that the maximum likelihood function is relatively flat between 0.7m-

3m with the maximum around 1m. This indicates that the correlation length is

not exactly 1m.

Fenton and Griffiths (2001) observed that the coefficient of variation of the

bearing capacity is positively correlated with the spatial correlation length. Sim-

ilar trend was observed in this study. Figure 7.1 shows how the correlation length

at Bolders Bank formation tends to increase with higher coefficient of variation

of the corrected tip resistance, qt . Figure 7.2 shows that the data from Swarte

Bank Formation have less correlation, but there is still some positively correla-

tion between the correlation length and the coefficient of variation.
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Figure 7.1: Correlation lengths from BDK plotted against coffiecient of variation

for corrected cone tip resistance

Figure 7.2: Correlation lengths from SBK plotted against coffiecient of variation

for corrected cone tip resistance
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Variation of the estimated values of the correlation length might come from

different sources like measurement and modeling errors. How the boundaries

for different soil layers are determined might also have a significant influence on

the estimated correlation length. Which data that have been selected for further

interpretation is important. Figure 7.3 shows how the value of θ slightly changes

for different selected soil layer lengths. These correlation length are evaluated

from CPT profile I1 from z= 1 m to z= 10 m . Even if the estimated value of

θ is different, they all tend to reach a value of the likelihood function close to

the maximum around θ = 0.7 m. When small layers are selected this results

in dealing with limited data, and the estimated standard deviation would most

likely be larger. This result in a higher coefficient of variation, which shown in

Figure 7.1 may effect the value of the estimated correlation length.

Figure 7.3: CPT profile I4 - Likelihood functions versus correlation length for

different selected soil layer lengths

The Maximum likelihood approach showed reliable results for the proba-

bilistic parameters of tip resistance measured during CPT, and provides a con-

sistent framework to estimation of random field parameters for CPT data. The

parameters were further used to develop a probabilistic interpretation of CPT

data.
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7.2 Probabilistic Interpretation of CPT Data

A probabilistic link between the CPT data and soil parameters is developed based

on different interpretation techniques. The estimated parameters from the ran-

dom field model of CPT measurements are further used to propose random

fields of undrained shear strength and friction angle. Because these parame-

ters are used to calculate the ultimate soil resistance, pu , which is an important

parameter for construction of p-y curves.

7.2.1 Undrained Shear Strength

The commonly used relation based on qt was used to relate CPT measurement

to an appropriate design parameter. One of the uncertainties about this ap-

proach is the determination of the probabilistic values of Nk . The uncertainty

in this parameter could be reduced by some additional information.

The resulting Su random fields from Bolders Bank Formation and Swarte

Bank Formation were compared with values from the geotechnical report, and

fit well with the suggested Su profiles from Sheringham Shoal wind farm. These

results indicates that the probabilistic interpretation of soil parameters based

on a random field model of CPT data can be efficiently used to model variability

of soil properties. The suggested profiles of Su versus depth from Sheringham

Shoal can be found in appendix A.

It can be observed that the random field profiles of Su from SBK (Figure 6.2)

exceed the upper estimate of the Su profile from Sheringham Shoal wind farm.

This is due to the large variance of the qt random field at certain locations due

to pockets of sand and gravel within the clay layer (e.g. Figure B.3).

7.2.2 Friction Angle

Robertson and Campanella (1983b) proposed a relationship betweenϕ′, qc and

σ′
v0. Based on the chart they developed, an equation to express how CPT mea-

surement could be transformed to design parameters was established. Similar

to the transformation uncertainty in Su , also the transformation uncertainty in

ϕ′ is difficult to determine. The values selected for the transformation uncer-

tainty was taken from Kulhawy and Mayne (1990), which established a similar

transformation equation to the one used in this study.
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The value of the friction angle was found to be 44◦ for the Edmond Ground

Foundation (Saue and Meyer, 2009), and this value corresponded well with the

mean value of the generated φ random field.

7.3 Integration with p-y Curves

The response of a monopile foundation to loads are simulated by the p-y model.

In this model the pile is considered to be supported by a series of uncoupled

non-linear springs. These non-linear springs, applied at the nodal points, are

characterized by p-y curves and defines the material behavior at this point.

The variability of Su and ϕ modeled by means of one-dimensional random

field are expected to influence the pile-soil response. This is because Su is di-

rectly related to the ultimate soil resistance, pu , and pu for sand is calculated

by dimensionless coefficients which depends on the friction angle. The random

fields are integrated in the p-y model to construct p-y curves, one for each nodal

point. The interval length, dl = Lp

P
, is set to 1 m .

Since the soil surrounding the pile was subdivided into three different layers,

it is important to ensure that the correct p-y curve for each nodal point corre-

sponds with the soil type surrounding it. When this is defined, the random field

parameters estimated in chapter 5 are used to make new random field realiza-

tions with values for every 1 m . Based on soil type and depth, the p-y curve

for each nodal point is created, and the stiffness matrix for the monopile is con-

structed. The p-y model provides a bending moment distribution from which

the maximum stress in the pile can be determined.

The probabilistic models of soil parameters are coupled with the nonlinear

p-y finite element model to evaluate the effect of local strength variation on the

ultimate limit state of a monopile foundation.

7.4 Reliability-based Design Optimization

The last step in this study is to conduct a reliability-based design optimization

(RBDO) to quantify uncertainties in soil parameters based on CPT investiga-

tions. Two different CPT profiles, I1 and I4, are presented to calculate the opti-

mal design of a monopile foundation subjected to lateral loading.
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7.4.1 Subset Simulation

The probability of exceeding the ultimate limit state is evaluated with the Sub-

set Simulation (SS) method. In the SS algorithm special attention should be

given to the failure probability convergence and the selection of the acceptance

probability parameters. The calculations were performed with 200 simulations

per iteration, and this number was selected to compromise between computa-

tional time and accuracy of the Subset Simulation. Due to the uncertainty in the

estimate of failure probability and consequently the calculated design cost, sev-

eral independent calculations of the RBDO algorithm were performed. Table 6.2

and 6.3 summarizes the results from these calculations. Due to uncertainty in

the estimated failure probability there is some variability in the minimum cost

estimates.

Once the RBDO estimate are obtained, a detailed examination is required.

Table 6.2 and 6.3 shows that the algorithm tends to locate the same minimum

for the design costs. Lp and w tends to have the same values for the optimal

design, while the value of D is varying. The observed variation of D might be a

result of the dominant effect of D on the probability of failure. This means that

a slight variation of D might result in significant change in PF , and a possible

reliability constraint violation, PF (x,t̂) ≥ P l i m
F = 10−4.

To increase the reliability of the proposed optimal design, a more accurate

calculation for the failure probability can be performed. This might be done by

increasing the numbers of simulations per iteration or by using other methods

for calculating small failure probabilities.

The sensitivity of the pile-soil model to the soil and load variability is also in-

vestigated. The optimal solution of D=5.4 m, w=0.04 m and Lp =26 m from CPT

profile I1 is selected for evaluation. The probability of failure for this design is

calculated again to see how the random load and uncertainties in soil param-

eters affects the value of the performance function. The probability of failure

was found to be 5.2x10−5 for this calculation, which is a result of 5 intermediate

failure regions, Fi .
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Effect of random load

Figure 7.4: Random load plotted against performance function

Figure 7.4 shows that the random load is dominantly affecting the value of the

performance function in first two intermediate failure regions. When the value

of the performance function becomes smaller, it is likely to believe that the un-

certainties in soil parameters becomes more significant.

Effect of Su random field

For the optimal design values presented above, Lp was subdivided into 26 equally

sized elements and represented by 27 non-linear springs at nodal points be-

tween the elements. To see how the Su random field from BDK and SBK affects

the value of the performance function it is possible to consider only one nodal

point at the same time. The value of Su from tow points is considered, one from

each layer. For BDK, values from z=6 m are selected and for SBK values from
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z=26m are selected. Figure 7.5 and 7.6 shows a scatter plot of Su versus G(x,t̂)

from BDK and SBK respectively.

Values of Su from BDK seems to correlate with the value of the performance

function, particularly at low values. This indicates that the variability of Su from

BDK is affecting the probability of failure. These results are as expected, be-

cause lower values of Su should give larger moments and higher stresses in the

monopile, which results in a lower value of G(x,t̂).

Figure 7.5: Su from one nodal point at BDK plotted against performance func-

tion
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Figure 7.6: Su from one nodal point at SBK plotted against performance func-

tion

Effect ofϕ random field

Values from the ϕ random field is taken from z=16 m, and Figure 7.7 shows that

the variability of ϕ does not significantly affect the value of the performance

function. The location of the springs are also important, and in the middle of

the pile will the effects of deformations be smaller. The sand layer is located

from z=10 m to z =18 m, which is in the middle of the pile, and the results are as

expected.
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Figure 7.7: ϕ from one nodal point plotted against performance function

7.4.2 Simulated Annealing

As a stochastic optimization method, Simulated Annealing does not provide a

convergence criteria that can guarantee that the located minimum from a num-

ber of simulations really is the global minimum. For this reason several inde-

pendent optimization are calculated with the aim of location the global mini-

mum.

Effect of Design Parameters

Figure 6.4 - 6.6 and 6.9 - 6.11 show that the value of D and Lp tend to vary more

during the optimization process than the value of w . This indicates that the op-

timization process is sensitive to changes in w . Changes in w might easily result

in increasing design cost or constraint violation. Figure 7.8 - 7.10 shows both the

rejected and accepted values from the SA algorithm, and they support the state-
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ment that design costs varies most with the pile wall thickness. Figure 7.9 shows

that there is a strong correlation between pile wall thickness and design cost.

Figure 7.8: Design cost of monopile foundation plotted against pile penetration

length, Lp

Figure 7.10 shows that there is no correlation between pile diameter and

design cost. The red line in this figure indicates that the region to the left is

probably the region where the reliability constraint is validated, which means

that it is likely to believe that the diameter of the pile should be larger than 5.3

m to provide an optimal and safe design.
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Figure 7.9: Design cost of monopile foundation plotted against pile wall thick-

ness, w

Figure 7.10: Design cost of monopile foundation plotted against pile diameter,

D
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7.4.3 RBDO and Geotechnical Engineering

In Geotechnical engineering it is of importance to provide answers about the

reliability of a design, and this study shows an example of how probabilistic ap-

proaches can be integrated in design analyses. A RBDO has a large potential in

geotechnical engineering and can be applied to give insight into the probabil-

ity of exceeding a certain limit state as a probabilistic measure. Different limit

states (e.g. ultimate limit state and serviceability limit state) for the same struc-

ture may give different consequences, and probabilistic approaches is thus suf-

ficient for considering the consequences and optimizing the design for different

limit states.

The initial values of the design parameters in the SA algorithm were set to

D=5.5 m, w=0.05 m and Lp =30 m, which gave a probability of failure PF (x,t̂) <
10−6 and design costs C (x,t̂) = 4.03×105e. These values were based on an initial

engineering guess. By using the SA algorithm the cost from the proposed initial

design was reduced with approximately 30 %.

Monopile foundations is an example of structures where the area exposed to

soil is small compared to other foundation design, and uncertainties associated

with soil properties requires a special consideration. The local strength varia-

tion was expected to influence the pile-soil response. In this study, the proba-

bility of failure was dominantly related to the uncertainties of random load, as

shown in Figure 7.4, but the uncertainty in Su did also effect the value of the

performance function significantly. Results in Figure 7.4 - 7.7 illustrate the sig-

nificance of parameters uncertainty, and this is one of the great advantages by

using probabilistic approaches. Results of a probabilistic analysis can indicate a

relative contribution to the resulting random response. These observations can

further be used to investigate or reduce uncertainty associated with random pa-

rameters. E.g. if the values from the Su random fields tended to affect the prob-

ability of failure significantly, further field investigations could be performed to

reduce some of the uncertainty in this parameter.
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Summary and Recommendations

for Further Work

8.1 Summary and Conclusions

In deterministic geotechnical design, characteristic values and the factor of safety

approach are commonly used to maintain some degree of safety. The main con-

cern behind this approach is that it does not give a completely indicator of the

safety margin, because it does not explicitly account for the effects of uncertain-

ties. How the uncertainties in soil parameters and loads affect the reliability of a

geotechnical design is important, and probabilistic approaches becomes more

necessary for design analyses when the level of uncertainty is high. The uncer-

tainty can not be removed by using reliability approaches, but they do provide

a way of handling them consistently.

A Reliability-based design optimization (RBDO) is a design methodology

that accounts for the effects of uncertainties on the structural reliability while

searching for a design which minimizes structural performance criteria (e.g.

cost). The goal for the RBDO in this study is to optimize cost of construction,

installation and failure while accounting for the effects of uncertainties in soil

parameters and lateral load on the reliability of a monopile foundation. The

response of a monopile foundation subjected to lateral loading was evaluated

with respect to the ultimate limit state, defined by the yield strength of the monopile

steel.

Uncertainty due to inherent soil variability, measurement errors and mod-

85
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eling assumptions are described by the random field model. The random field

model for soil parameters and uncertainties related to lateral load was cou-

pled with the nonlinear p-y finite element model to predict the response of a

monopile foundation. The variability of Su and ϕ were expected to influence

the pile-soil response significantly, and a probabilistic interpretation from CPT

measurement was conducted for these soil parameters.

Gaussian random fields were used to describe soil conditions in a proba-

bilistic manner based on observed and measured data. This method is pre-

ferred, because statistical dependence between field values at different points is

expressed through the correlation length. By comparing the generated random

fields of design parameters with existing suggested estimates, it is reasonable to

assume that the random fields represent the variability of soil conditions in a

good way.

RBDO algorithm, which couples the Subset Simulation reliability (SS) method

with the Simulated Annealing (SA) stochastic optimization algorithm, was used

to achieve an efficient and accurate optimization process. The SS algorithm was

used to calculate the probability of exceeding the ultimate limit state, and the SA

algorithm ensured that proposed design parameters were rejected if PF (x,t̂) ≥
P l i m

F = 10−4.

The results from the SA algorithm indicate that the method can be con-

sidered as robust and efficient for standardized structural design of monopile

foundations subjected to static lateral loading. Each calculation gave almost

the same result, which indicates that it is likely to believe that the global opti-

mal minimum is within this area. Some consideration should be given to the

calculation of failure probability, due to the selected numbers of simulations

and acceptance probability parameter.

This study shows that a RBDO can provide an optimal selection of design

variables while explicitly accounting for the effects of uncertainties. In addi-

tion to optimal design it provides an insight into the likelihood of exceeding

the limit state as a probabilistic measure. The economical design can thus be

optimized by achieving a proper balance among initial cost, risk of failure and

consequences of failure.
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8.2 Recommendations for Further Work

It would be interesting to use other reliability methods and alternative algo-

rithms to perform a RBDO for this geotechnical design. To determine soil layer

boundaries, a more accurate CPT classification system could have been imple-

mented to see if it is possible to reduce some of the variation of the estimated

cone tip resistance.

In this study, the ultimate limit state defined by the steel yield stress was

evaluated. Other limit states, such as serviceability limit state and fatigue limit

state, would also be interesting to investigate. More advanced finite element

methods could also be performed to calculate the pile-soil response.

To strengthen the credibility of the results in this study, a design based on

well known deterministic geotechnical approaches should be performed. This

can be done by calculating a factor of safety for the optimal reliability-based

design based on characteristic values for soil parameters and load.
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A.1 Undrained Shear Strength

Figure A.1: Suggested estimates of Su versus depth (after Saue and Meyer, 2009)
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B.1 Bolders Bank Formation

B.1.1 Selected Soil Layers

Table B.1: Selected soil layers from BDK for interpretation of CPT measurements
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B.1.2 Parameters for Construction of Su Random Fields

Table B.2: Calculated values from BDK to use as input parameters in random

fields
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B.2 Swarte Bank Formation

B.2.1 Selected Soil Layers

Table B.3: Selected soil layers from SBK for interpretation of CPT measurements
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B.2.2 Parameters for Construction of Su Random Fields

Table B.4: Calculated values from SBK to use as input parameters in random

fields
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B.3 CPT Profile I1

Figure B.1: Corrected cone resistance, qt , versus depth for CPT profile I1
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B.4 CPT Profile I4

Figure B.2: Corrected cone resistance, qt , versus depth for CPT profile I4



B.4. CPT PROFILE I4 105

B.4.1 Random Fields of Su and φ

Figure B.3: Makimum likelihood estimates of correlation length for layers at CPT

profile I4

Figure B.4: Random field realizations for CPT profile I4
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