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Abstract: 

Implementation of the Cross-entropy (CE) method to solve reliability-based design 

optimization (RBDO) problems was investigated. The emphasis of this implementation 

method was to solve independently both the reliability and optimization sub-problems within 

the RBDO problem; therefore, the main aim of this study was to evaluate the performance of 

the Cross-entropy method in terms of efficiency and accuracy to solve RBDO problems.  

A numerical approach was followed in which the implementation and preparation of the CE 

algorithm for the numerical modelling and simulations were performed on the high level 

language, MATLAB (R2014a and R2013b). 

The CE algorithm was prepared for reliability analysis and further developed to account for 

optimization problems. The CE method was initially validated on an academic RBDO 

problem within an analytical solution and the necessary parameter study of the CE algorithm 

was conducted. In the meantime, the efficiency and accuracy of the CE method were 

evaluated in comparison with existing reliability and optimization methods. Finally, the 

developed algorithm was examined and evaluated on an RBDO problem of a practical design 

of a laterally loaded monopile foundation for offshore wind turbines. 

The CE method showed efficient performance on RBDO problems. Moreover, the method 

gave both efficient (less simulation time) and accurate results by comparing it to analytical 

solutions and existing reliability as well as optimization methods. 

Some recommendations and future works were also pointed out and discussed. 
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BACKGROUND 

Facilities such as bridges, power plants, dams and offshore platforms require high construction 

cost. Failure of such structures could result in public safety issues as well as economy and 

environmental consequences. Reducing the probability of failure and cost of construction of these 

structures is an important part of engineering design to keep the structures safe (reliable) with 

seeking minimum (optimum) construction cost.  

Different design approaches are currently in use for safe design of structures. For simple 

structures and less uncertainties in the input parameters (e.g. material properties, loads, etc.), a 

direct or deterministic approach using a factor of safety is implemented due to ease and time 

saving design. Alternative to the factor of safety design is a probabilistic framework known as 

Reliability-based design which quantifies uncertainties in design parameters to produce a design 

with acceptably small failure probability.  

Extension of a Reliability-based design approach, known as Reliability-based design optimization 

(RBDO) is considered in this study as a promising methodology for design in geotechnical 

engineering. An advantage of the RBDO approach is that it allows for determining the best design 

solution while explicitly considering the effects of uncertainties in engineering design.  

Various algorithms were developed to solve reliability and optimization sub-problems within the 

RBDO problem. The main shortcoming of existing RBDO algorithms is that they are 

computationally demanding, because both reliability and optimization algorithms can require 

large number of simulations of computationally complex models simulating the response of a 

structure or an engineering system.  

TASK 

The main task for this thesis is to implement a method known as Cross-entropy to solve 

independently reliability and optimization sub-problems within the RBDO problem. The 

performance of the Cross-entropy method is examined on an RBDO problem with an analytical 

solution and a practical problem of a monopile foundation for offshore wind turbine. 

Task description 

The application of the Cross-entropy method to the RBDO problem is advantageous due to the 

flexibility of the Cross-entropy method to deal with both reliability and optimization problems. 

The resulting RBDO algorithm is a double-loop algorithm with the reliability problem solved 

within the optimization algorithm. The performance of the Cross-entropy method with respect to 

accuracy and efficiency on both reliability and optimization problems is compared to several 

commonly used methods. Due to the focus on geotechnical applications where high dimensional 

reliability problem are common, special attention was given to the limitations of the Cross-

entropy method with respect to the dimensionality of reliability problems. 
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 Objective and purpose 

The objective of this thesis is to demonstrate the advantages of the RBDO formulations in an engineering 

design and utilize the flexibility of the Cross-entropy method to deal with the reliability and optimization 

sub-problems within the RBDO problem. 

Subtasks and research questions 

 Literature study on the existing reliability and optimization algorithms. 

 

 Implementation and validation of the Cross-entropy method for reliability and 

optimization problems. 

 

 Implementation of the Cross-entropy method for RBDO. 

 

 Validation of the Cross-entropy method on an RBDO problem with an analytical solution, 

and a practical RBDO problem of a monopile foundation for offshore wind turbine. 
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1. Introduction 

1.1 Background 

Engineering facilities such as bridges, power plants, dams and offshore platforms are intended 

to benefit the society at the expense of high construction cost. Unfortunately, the failure of 

these structures could result in public safety issues as well as economic and environmental 

consequences (Choi et al., 2006); therefore, the main concern of engineering design is to keep 

the structures safe (reliable) under the possible minimum (optimum) construction cost so that 

the probability of failure and cost of construction of the structures are reduced.  

Different design approaches are currently in use based on the level of uncertainty in the input 

parameters (e.g. material properties, loads, etc.).  For simple structures with relatively low 

uncertainties in the input parameters, a direct or deterministic approach using a factor of 

safety can be implemented (Choi et al., 2006). Another approach explained by Phoon (2008) 

is called Reliability-based design which is a probabilistic framework that considers 

uncertainties in the design parameters to produce a design with acceptably small failure 

probability. 

Reliability-based design optimization (RBDO) is an advantageous methodology for design of 

engineering structures. The advantages of using RBDO are discussed by Valdebenito and 

Schuëller (2010) as it allows for determining the best design solution (reliable and optimum) 

while explicitly considering the unavoidable effects of uncertainties in engineering designs.  

Various methods have been developed to solve reliability and optimization problems (Choi et 

al., 2006 and Schuëller et al., 2004). The main shortcoming of existing RBDO algorithms is 

that they are computationally demanding, because both reliability and optimization algorithms 
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can require large number of simulations of computationally complex models simulating the 

response of a structure or an engineering system.   

This study implements an algorithm, known as Cross-entropy (CE), to solve both reliability 

and optimization problems within the RBDO. The performance of the Cross-entropy method 

is examined on an RBDO problem with an analytical solution and a practical problem of a 

monopile foundation for offshore wind turbine. 

1.2 Objective of study 

The main objective of this thesis is to demonstrate the advantages of the RBDO formulations 

in an engineering design and utilize the flexibility of the Cross-entropy method to deal with 

the reliability and optimization sub-problems within the RBDO problem. The objectives of 

this study are listed below:  

 To identify and study existing reliability and optimization analysis methods.  

 To evaluate the performance of the existing methods with respect to accuracy and 

efficiency. 

 To identify and study methods for RBDO of structures. 

 To prepare, develop and study the parameters of the CE algorithm. 

 To validate the CE algorithm on an RBDO problem with an analytical solution. 

 To compare the efficiency and accuracy of the CE algorithm with the existing reliability 

and optimization methods. 

 Finally, to check and evaluate the CE algorithm by testing on a practical RBDO problem 

of a monopile foundation for offshore wind turbine. 

1.3 Study Approach 

Numerical modelling and simulations have been adopted for the implementation of the CE 

algorithm as well as to prepare algorithms for the existing reliability and optimization 

methods. A high level language, MATLAB (version R2014a and R2013b) developed by 

MathWorks company, has been utilized for the numerical modelling and simulations. The CE 

algorithm was prepared for reliability analysis and further developed to apply for optimization 

problems. Then, the developed CE algorithm is investigated and evaluated on an academic 

problem that has an analytical solution and finally implemented on a design of a monopile 

foundation for offshore wind turbine. 
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1.4 Scope of the Thesis 

An algorithm that is used for RBDO is developed and tested on a monopile foundation for 

offshore wind turbine. The CE method is initially validated on an academic RBDO problem 

that has an analytical solution and the necessary parameter study for the CE algorithm is 

conducted. In the meantime, the efficiency and accuracy of the CE method have been 

evaluated by comparing it with existing reliability and optimization methods. Finally, the CE 

algorithm was tested and evaluated on a design of a laterally loaded monopile foundation for 

offshore wind turbine. 

1.5 Limitation 

The following are some of the limitations faced during this study: 

 The evaluation of the CE method algorithm on an academic problem showed 

limitations for both reliability and optimization for large numbers of uncertain input 

parameters.  

 Special attention should be given to parameter selection of the CE algorithm. 

Appropriate selection of the parameters can affect the final output. 

1.6 Structure of the Thesis 

The next chapters of the thesis are structured as follows: 

Chapter 2 reviews some of the commonly used methods for reliability analysis and 

optimization in engineering. Moreover, several methods were implemented for comparison in 

terms of efficiency and accuracy.  

Chapter 3 presents the Cross-entropy method with the general principles and discusses how 

the method is developed. 

In Chapter 4, the implementation of the CE algorithm is described and the effect of parameter 

selection on the performance of the algorithm is investigated. The algorithm is tested on a 

problem with an analytical solution. 

In Chapter 5, the CE algorithm is evaluated on a RBDO problem of a monopile foundation of 

wind turbine. Moreover, the analysis, results and discussion of the numerical simulations are 

presented.  

In Chapter 6, important findings and conclusions drawn from the study as well as 

recommendations and possible future works in this area of study will be discussed. 
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2. Literature Review 

2.1 Introduction 

As modern engineering analysis requires more critical and complex design, the need for 

accurate approaches to assess uncertainties in computer models, soil parameters, strength, 

loads, material properties, manufacturing processes, geometries and operational environments 

have increased significantly (Choi et al., 2006).  

Although for simple structures and relatively low uncertainty in the input parameters, a direct 

or deterministic approach using a factor of safety is implemented, (Choi et al., 2006), it is 

recommended by Phoon (2008) to apply a RBDO to quantify uncertainties in the design 

parameters to produce a robust design. 

There exist various methods used for a RBDO based on different theoretical formulations. 

The main challenge when implementing these methods is that they are computationally 

intensive and time consuming. This is due to the nature of reliability and optimization 

algorithms which require large number of simulations of engineering models.  

In this study, the Cross-entropy method is implemented to solve both reliability and 

optimization problems with in the RBDO. The detail principles of the Cross-entropy method 

will be discussed in Chapter 3.    

The Cross-entropy method, proposed by Rubinstein (1997), was successfully applied in 

several fields of study such as: DNA sequence alignment (Keith and Kroese, 2002), network 

reliability optimization (Kroese et al., 2007), vehicle routing optimization with stochastic 

demands (Chepuri and Homem-de-Mello, 2005), mixed integer nonlinear programming 

(Kothari and Kroese, 2009), queueing models of telecommunication systems (De Boer et al., 
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2004), project management (Cohen et al., 2005), optimal policy search (Busoniu et al., 2010) 

and noisy optimization problems such as optimal buffer allocation (Alon et al., 2005) are 

some of the products of the Cross-entropy method. 

This literature review concentrates on some of the important reliability and optimization 

methods used to solve engineering problems; therefore, this literature review is presented in 

two sections-Reliability analysis methods and Optimization methods.  

2.2 Reliability and Reliability Analysis Methods 

According to Choi et al. (2006), reliability is defined as the probability that a system will 

perform well its function over a specified period of time and under specified service 

conditions. The performance of a system is evaluated with a performance function which 

defines the state of a system as safe or unsafe. The state of a system is commonly defined as 

serviceability limit state if the minimum limit of safety is based on the allowable deflection, 

vibration or settlement of the structure while ultimate limit state defines the maximum state 

on the collapse of part or whole structure. If the limit state is exceeded or the structure cannot 

perform for its intended function, the structure is unreliable. Therefore, reliability is 

concerned with probability of limit state violations at any stage during a structure’s life.  

Schuëller et al. (2004) describes the reliability problem for performance function, g(θ), using 

a given random vector, θ, distributed with a probability density, h(θ), over a d-dimensional 

space, R
d
. The failure region or domain is defined as g(θ)≤0, denoted by F, while g(θ) >0 

indicates the safe domain. Hence, the probability of failure, Pf , is defined on Equations (2.1) 

and (2.2) as: 

              )d()()I((

)(

θθθθθ)
dR0θ

hdhP

g

f 


                                               (2.1) 

   )I(0)(P θEθ  gPf                                                            (2.2) 

Where, 

-The limit state, g(θ)=0, defines the margin of safety between the stabilizing 

(resistance) and  destabilizing of structures.   

-θ is a random vector denoting d number of uncertain inputs, [θ1, θ2, θ3,…, θd] ∈ θ⊂ 

R
d
. 

-I(θ) denotes the indicator function of F which equals 1 if [g(θ)≤0] and 0 if [g(θ)≤0] . 
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-P[g(θ) ≤0] indicates probability of violation of the limit state and is expressed in 

terms of the expectation  (mean), E, of the indicator, I(θ). 

Figure 2.1 shows the limit state region, failure and safe domains for two random vectors, θ1 

and θ2 distributed with a probability density, h(θ). 

 

Figure 2.1 Reliability analysis between θ1 and θ2 on h(θ) (Adopted from (Depina, 2014)). 

Various methods and approaches have been proposed by different scholars for calculation and 

estimation of the failure probabilities. These reliability analyses methods can be classified as 

Sampling (e.g. Monte Carlo, Importance Sampling and Subset Simulation) and Algorithms 

which apply optimization methods (e.g. FORM and SORM).  

2.2.1 Sampling Methods 

In the context of reliability analysis, sampling is related to the generation of random numbers 

which are values or outcomes associated with given random variables (Phoon, 2008). Random 

numbers can be generated by a True random number generator (generated by measuring a 

physical process that is expected to be random e.g. temperature fluctuation) or a Pseudo 

random number generic (generated by computer programming e.g. using MATLAB or Excel); 

therefore, these sets of all possible outcomes are called samples and are used to simulate the 

real cases in engineering problems to calculate the probability of failures and analysis of 

reliabilities. 

The basic advantage of the sampling methods is explained by Choi et al. (2006) as their direct 

utilization of samples to obtain mathematical solutions or probabilistic information 

concerning problems whose system equations cannot be solved easily by known procedures.  
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The following section presents the general overview of the sampling methods together with 

their respective advantages and disadvantages. It is not intended to provide a complete and 

detail description with all the required mathematical analysis; instead, a general overview is 

presented. Monte Carlo simulation, Importance sampling and Subset simulation are 

categorized under sampling methods because the main inputs for the calculation of reliability 

or probability of failure is the set of random numbers generated (samples). 

A. Monte Carlo Simulation (MC) 

Monte Carlo simulation is described by Choi et al. (2006) as a powerful mathematical tool for 

determining the approximate probability of violation for a given limit state using random 

numbers and statistical analysis of trial outputs. 

Algorithm of the Monte Carlo simulation can be summarized as follows: 

1. Define the limit state, g(θ), of the system/structure as discussed in Section 2.2. 

2. Identify the uncertain input parameters (e.g. shear strength, external load, etc.) 

associated within g(θ) and describe them probabilistically as random vector, θ, given 

by [θ1, θ2, θ3,…, θd] ∈ θ and h (θ).  

3. Define the desired number of samples or number of simulations, N. 

4. Generate a realization for each random variable with a sample size of N. Note here, d 

is the number of random variables while random numbers are generate with a sample 

size of N to simulate each random variable, for example,  θ1= [θ1, θ2, θ3,…, θN] and 

θ2= [θ1, θ2, θ3,…, θN] for two-dimensional variable vectors, d=2. 

5. Evaluate the response of the structure/system for a given combination of random 

parameters, g(θ). 

6. Count the number of fails which give g(θ)≤0 and denote by NF. 

7. The probability of failure is then calculated as the ratio of NF to N. 

Similar to Equations (2.1) and (2.2) given for the failure probability estimation of the limit 

state, Equation (2.3a) gives the estimate of Pf for Monte Carlo method and the coefficient of 

variation, CoV, given by Equation (2.3b) is commonly used as a convergence parameter. 

N

N
)I(θ

N

1 F
N

1i

i  


fP
                                             (2.3a) 

f

f

f
P

P
PCoV

N

1
)(

-


                                               (2.3b) 
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Where, I(θi) equals 1 if g(θi)≤0 and 0 if g(θi)>0 , NF is the number of failed samples (samples 

resulting g(θi)≤0) and N is the total number of samples. 

MC method is widely applied in reliability analysis of engineering structures because it 

provides robust estimates of failure probabilities. Moreover, it is not affected by the 

nonlinearity of the problem and is straightforward to implement. The performance of the 

method is also independent of the dimensionality of the problem.  

The disadvantages of the Monte Carlo method can be stated as; MC requires large number of 

samples and model evaluations to simulate rare events
1
 and it is inefficient in situations where 

complex models are used to simulate the response of the engineering structures because of 

computationally intensive simulations (e.g. finite element model). 

B. Importance Sampling (IM) 

Important sampling is developed from the Monte Carlo method by introducing a second 

distribution called importance distribution, f(θ), defined close to the failure region. The 

application of the importance distribution is intended to get efficient simulation of rare events 

in the reliability assessment of engineering structures so that the disadvantages of the Monte 

Carlo method can be overcome (Au et al., 1999).  

According to Schuëller et al. (2004), the main principle of the IM method is to draw samples 

of random vector parameters, θ, from a distribution f(θ) which is concentrated in the 

‘important region’ of the random parameter space that is the failure domain, F. Equation (2.4) 

gives the definition of Pf for a random vector, θ, with original distribution, h(θ), and 

importance distribution, f(θ). Basically, Equation (2.1) presented earlier is modified to give: 

θ)θ)
θ)

θθ

d
R

((
(

)()I(
df

f

h
Pf                                                 (2.4) 

As discussed above, the importance (optimal) distribution is defined on the failure region or 

close to the failure region. The variation between the true Pf  and Pf obtained based on 

Equation (2.4) is defined by the variance of Pf. Schuëller et al. (2004) describes optimal 

importance distribution as the distribution which results in a variance equal or near to zero. 

The variance of Pf, Var[Pf], is given by Equation (2.5) and for Var[Pf] ≈0, the optimal 

importance distribution, fopt(θ), is defined by Equation (2.6). 

                                                 
1
 Events that occur with relatively low occurrence of probability, Pf <10

-4
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Where, 

f(θ) = Importance region probability distribution (pdf) 

I(θ) =  Indicator function of F 

h(θ) = Original probability distribution (pdf) 

N = Number of samples 

The representation of Equation (2.6) is practically infeasible since it requires knowledge of Pf 

as a priori. Therefore, several techniques have been developed to approximate the optimal 

importance distribution and the most prevalent two approaches are the use of design point and 

kernel density approximation of the samples in the failure domain (Schueller et al., 2004). 

These two approaches are discussed below. 

Schuëller and Stix (1987) and Freudenthal (1956) initially propose the use of a design point, 

which may be defined as the closest point on the limit state function to the origin of the 

standard normal space (center of the h(θ)), to be used as the center for the importance 

distribution. But Schueller et al. (2004) modifies the assumption and suggested the design 

point to be used if true additional information on the limit state is not possible to get. This is 

because the design point and their neighborhood do not always represent the most ‘important’ 

region of the failure domain, especially in high dimensional spaces. Furthermore, the 

computational cost associated to determine the design point can be quite high for complex 

limit state functions which adversely affect the efficiency of the method. 

Figure 2.2 shows the importance distribution illustration. The design point is given as the 

closest point on the limit state at failure, g(θ)=0, to the center of θ=[θ1,θ2] with h(θ).  
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Figure 2.2 Importance distribution illustration (Adopted from (Gu, 2014))  

To overcome the limitation posed on the use of the design point as the center of importance 

distribution and get more efficient estimate of Pf, points lying inside the failure domain, F, are 

used to construct a kernel sampling density estimator of the optimal importance sampling 

density (Schuëller et al., 2004). Kernel sampling density estimator, k(θ),  is given by Equation 

(2.7). 



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w
fk opt

0θ)θ                                   (2.7) 

Where,  

θ0 = initial point inside the failure domain, F 

θi = samples generated using advanced sampling methods such as Markov Chain and 

Markov Chain Monte Carlo (Gilk,  2005). 

N = number of samples 

w = window width 

λi = local bandwidth factor 

d = dimension 



 

Reliability-based design optimization with Cross-Entropy method        Master Thesis, Spring 2015 

                        Hiruy Ghidey Hishe  

12 Literature Review 

K(θ)= kernel pdf which is most commonly selected as the normal pdf (Schuëller et al., 

2004 and Au et al., 1999). It is given by Equation (2.8) as: 





















d

1i

2

θ i

2

1
)( eK


θ                                                 (2.8) 

The quality of the estimate of the optimal sampling pdf, fopt, provided by Equation (2.7) 

depends on the particular parameters θ0, w, λi and K(θ), and probabilistic characteristics of the 

points, θi, used. (Methods proposed by Au et al. (1999) and Schraudolph (1995) can be 

referred for detail estimation and selection of the parameters θ0, w and λi). 

Finally, k(θ)= fopt(θ) is used as the importance sampling density in order to estimate Pf when 

substituted in Equation (2.6). 

As a conclusion, the IM method can result in a reduced computational time and increased 

accuracy in estimation of small failure probabilities as compared to the Monte Carlo method 

(Schuëller et al., 2004 and Au et al., 1999). 

C. Subset Simulation (SS) 

Au et al. (1999) introduced the Subset simulation method for estimation of rare events failure 

probabilities of structural reliability problems. As the name subset indicates, the method uses 

a sequence of nested “failure” regions to reach the final failure region. The general concept 

and implementation technique is discussed below. 

Au et al. (2001) consider the failure domain, F, defined by the condition g(θ)≤0, in which g is 

the performance function and θ is a vector of random variables. Intermediate “failure” 

domain, Fi, is then defined by the condition g(θ)<Ci, in which Ci is a positive number. Further 

assumption is done that, it is possible to construct a nested sequence of failure domains of 

decreasing size using an increasing sequence of positive numbers, that is, there exists  

C1>C2>,…,>Ck=0 such that F1⊃F2⊃……⊃Fk. and P(Fk) = )(
1


k

i

iFP


,where k denotes the 

number of nested sequence of failure domains. As Ci approaches to zero, Fi approaches to F 

given by the region g(θ)≤0. 

Equations (2.9a) and (2.9b) define the failure probability, Pf, based on the nested sequence of 

failure domains or subsets as a product of a sequence of conditional probabilities. 

 )|(P)(P 1
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)(P)|(xP...x)|(P)|P( 112211 FFFFFFF kkkk                   (2.9b) 

Therefore, Pf is a function of both the initial “failure”, P(F1), and the conditional probabilities 

 1,...,2,1:)|( 1  kiFFP ii . Then, P(F1) is calculated using the Monte Carlo simulation as 

discussed in Section 2.2.1(A). For the evaluation of the conditional probabilities, samples of θ 

given that they lie in the intermediate failure regions, Fi, are necessary. These samples are 

generated from h(θ|Fi) and are different from the samples generated from the original 

distribution, h(θ). Therefore, sampling of these points from the conditional distribution is 

done using Monte Carlo Markov Chain (MCMC) method (Gilk, 2005).  

Equation (2.10) defines the conditional probability in terms of the indicator function, I(θj) for 

samples, θj, j=1,2,3….,N, where sample size, N and number of nested sequence of failure 

domains, k, given by i=1,2,…,k-1. 




 
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1j

j1 θI
N

1
)|P( ii FF                                                    (2.10) 

Au et al. (2001) describes the main advantage of the Subset simulation to be the ability to 

result in a faster convergence rate which does not depend on the number of random variables 

appearing in the problem. This is explained by Phoon (2008) and Schuëller et al. (2004) using 

a coefficient of variation, CoV, for the conditional probabilities, P(Fi|Fi-1). The relation can be 

seen in Equation (2.11) for N number of independent samples.  

)|P(N
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                                                 (2.11) 

Moreover, the SS method is expected to reduce computational efforts in estimating small 

failure probabilities when compared to the Monte Carlo method because the estimation of the 

conditional probabilities can be performed accurately with a relatively small numbers of 

samples. 
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2.3 Reliability Methods which apply optimization methods 

The reliability methods: FOSM (First-Order Second Moment), FORM (First-Order Reliability 

Method) and SORM (Second-Order Reliability Method) are based on calculation of  the 

reliability index for estimation of Pf. Reliability index is defined as the shortest distance 

between the origin of the standard normal space  (center of original distribution, h(θ)) and the 

design point located on g(θ). FORM and SORM methods are classified as reliability methods 

which apply optimization in search for the design points. 

A. First-Order Second-Moment (FOSM) Method 

FOSM is a relatively simple reliability method which uses first-order Taylor’s series 

expansion of g(θ) at the mean together with the first two moments (mean and variance) of the 

random variables, θ, to calculate the second moment (mean and variance) of g(θ) (Elishakoff 

et al., 1987). 

The first two moments of the d number of random vectors; θ1, θ2, θ3,…, θd are given by 

Equation (2.12): 

 
d21 θθθ ,...,,    and  

d21 θθθ ,...,,                                 (2.12) 

The mean and variance (second moments) of g(θ) are also defined in Equations (2.13a) and 

(2.13b). Equation (2.13c) gives the variance of g(θ) for uncorrelated (independent) random 

vectors: 
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Where, 

 μg = Mean of the performance function, g(θ) 

  σg = Standard deviation of the performance function, g(θ) 

E(g) = Expectation (mean) of performance function, g(θ) 

COV (θi, θj) =E[(θi –
iθ

 ) (θj –
jθ

 )] = Covariance between θi  and θj 
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Therefore, the reliability index, defined as the shortest distance between the origin and the 

design point, is calculated as:
g

g
β




 and the failure probability, Pf, is commonly calculated 

under the assumption that g is normally distributed: Pf =1-𝜑(𝛽) = 𝜑(−𝛽), where 𝜑 is the 

probability distribution function. 

Elishakoff et al. (1987) and Choi et al. (2006) listed the disadvantages of the FOSM method 

such as: lower accuracy for second and higher order performance functions (uses only first-

order Taylor’s series), full distribution is not used (only the mean and standard deviation are 

incorporated), the skewness and higher moments are ignored (commonly normal distribution 

is assumed) and reliability index is not uniquely defined (depends on the formulation of g(θ)).  

B. First-Order Reliability Method (FORM) 

FORM is an analytical approximation in which the reliability index is interpreted as the 

minimum distance from the origin of the standard space to the limit state surface (Fiessler et 

al., 1979). It is based on the first order Taylor’s series expansion at the design point, rather 

than the mean in case of the FOSM.  

As discussed in Section 2.2.1(B), the location of the design point is difficult to obtain for non-

linear or higher order performance functions. Hasofer-Lind (H-L) Algorithm which is 

explained in detail by Hasofer and Lind (1974) is commonly used to get a good estimate on 

the location of the design point (Refer: (Hasofer and Lind, 1974) for detail); therefore, the 

reliability index, β, can be obtained as the distance between the origin and the design point. 

Similar to the FOSM method, the probability of failure can be obtained from the reliability 

index, Pf =1-𝜑(𝛽) = 𝜑(−𝛽). 

The merit of FORM method over the FOSM is stated by Fiessler et al. (1979) and Choi et al. 

(2006) such as: reliability index is uniquely defined (not dependent on the formulation of 

g(θ)) and the method incorporates full distributions (distribution based on design point, f(θ)). 

But the accuracy of the method is low in case where the performance function is non-linear 

(second and higher orders performance functions). Moreover, in case of multiple design 

points and random variables, the algorithm needs several runs with independent starting 

points (Tichý, 1994) and (Fiessler et al., 1979). 
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C. Second-Order Reliability Method (SORM) 

SORM utilizes second order approximation at the design point to define g(θ). SORM is more 

accurate than the FORM method for a non-linear definition of g(θ), but it can be 

computationally more expensive (time consuming) and difficult since it requires the second 

order derivatives of g(θ) at the design point (Fiessler et al., 1979). 

The approximation of a non-linear g(θ) using both the FORM and SORM is given by Figure 

2.3 and it can be observed for non-linear g(θ), SORM provides a better approximation than 

the FORM at the design point. Tichý (1994) explains that the efficiency of both methods 

decrease as the non-linearity of g(θ) increase and the knowledge on the location of the design 

point is important for a good estimate of Pf.  

  

Figure 2.3 Approximation of non-linear g(θ) using FORM and SORM (Depina, 2014) 

2.3.1 Justification of Reliability Methods using a Non-linear Example 

In the previous sections, an overview and principles of some of the reliability methods used in 

engineering design have been discussed. The aim of this section is to compare the 

performance of several reliability methods on a simple problem. Therefore, a simple non-

linear performance function, g(θ), with random variables, θ1 and θ2, is considered as given by 

Equation (2.14).  

2.5θ0.5)( 2
θ1 θg                                               (2.14) 

The calculation of Pf for the given performance function on Equation (2.14) is assessed using 

FOSM, FORM, MC, IM and SS methods. The calculations and preparation of the algorithms 

for these methods are based on the literature review discussed in Section 2.2.  

For this particular example, a normal distribution (μ=0 and σ =1) is assumed for the variable 

vectors of random numbers (θ1 and θ2). Different sample sizes, N, are selected to investigate 
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the effects on the accuracy of the final result. Figure 2.4 shows the sample distribution 

generated using sample size of N=1000.  

 

Figure 2.4 Distribution of variable vectors for N=1000 (normal distributions)  

Assessment based on FOSM approximation gave, 𝜇g=3.5 and 𝜎g=1.217. Therefore, β =2.877, 

and the respective probability of failure, Pf =2x10
-3

. For the FORM approximation the design 

point and reliability index, β, were obtained using Hasofer Lind (H-L) Algorithm. The design 

point was obtained to be (1.111, 2.956) and the reliability index, β converged to 3.1584 after 

four iterations; therefore, Pf =7.9x10
-4

. 

In case of IM, a second normal distribution at the design point, fopt(θ), with 𝜇=(1.111,2.956) 

and 𝜎 =1, was introduced. The Subset simulation is also implemented to compute small 

probability of failures. The sample sizes for the Subset simulation are given here per step of 

the nested series as the method is defined in a sequence of failure regions. The number of 

steps was observed to be four in this particular problem. Table 2-1 below shows the complete 

summary of the probability of failures results for different sample size, N.  

Table 2-1 Estimated Pf values using FOSM, FORM, MC, IM and Subset simulation for different 

sample sizes, N 

Sample size, N 100 500 1,000 10,000 100,000 1,000,000 

FOSM, Pf 2.00e-03 

FORM, Pf 7.90e-04 

MC, Pf 0 0.004 1.00e-03 9.00e-04 5.70e-04 5.96e-04 

IM(Importance sampling), Pf 6.40e-04 6.44e-04 5.93e-04 6.09e-04 6.02e-04 6.00e-04 

Subset simulation, Pf 5.00e-04 4.08e-04 3.85e-04 7.10e-04 7.95e-04 7.52e-04 
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It can be seen from Table 2-1, for the non-linear performance function, the application of the 

FOSM approximation method resulted in a higher failure probability estimate. FORM and 

FOSM are based on first order approximation but the FORM gave a good estimate of Pf 

similar to the Importance sampling and Subset simulation method because the design point 

location was calculated without difficulty using the Hasofer Lind (H-L) algorithm as a priori.  

As discussed in Section 2.2.1(A), the Monte Carlo simulation required large number of 

samples (N>10,000) to obtain an estimate of Pf with accuracy similar to the Importance 

sampling and Subset simulation methods. The accuracy of the MC improved with increase in 

the sample size but resulted in an intensive computation. 

Both the Importance sampling and Subset simulation required smaller sample sizes to give 

rare events Pf (<10
-4

). Here, it can be noted that, the IM is performing well because the design 

point location was accurately known using the Hasofer Lind (H-L) Algorithm and this design 

point is used for an approximation of the optimum distribution, fopt(θ).  

Although for the Subset simulation, N=100 gives a good stimate of Pf as discussed above, 

Figure 2.5 illustrates the Subset simulation procedure with a sample size, N=10,000. Similar 

to discussion on Section 2.2.1(C), the Pf is obtained as a product of series of conditional 

failure probabilities (levels) as shown in Figure 2.5. 

 

Figure 2.5 Subset simulation result for N=10,000 samples 

Generally, the analysis results and observations based on the simple non-linear performance 

function example agree well with the details in the literature review of Section 2.2.  
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2.4 Reliability-Base design Optimization (RBDO) 

Optimization is the act of obtaining the best result from given circumstances such as 

construction cost, reliability, performance and maintenance to meet an optimal structure (Choi 

et al., 2006). RBDO is concerned with the minimizations of expected life time costs 

considering construction and maintenance costs together with eventual failure (Kupfer and 

Freudenthal, 1977). 

RBDO allows for determining the best design solution in terms of reliability and cost while 

explicitly considering the unavoidable effects of the uncertain input parameters (Valdebenito 

and Schuëller, 2010). 

In the previous sections different reliability analysis methods have been discussed while this 

section will provide an insight into the commonly used optimization methods. 

Problem definition  

The general RBDO problem is presented by Equation (2.15) as given by Kupfer and 

Freudenthal (1977) and Royset et al. (2001). 

Minimize: The objective function, C(θ,t)                                                                         (2.15a) 

Subjected to  

gj (θ,t) ≤ 0,  j = 1,…, nt,  inequality constraints                                                                                          (2.15b) 

hk (θ,t) = 0, k = 1,…, s, equality  constraints                                                                                                    (2.15c) 

(θ
l
,t

l
) ≤ (θ,t) ≤ (θ

u
,t

u
), upper and lower bounds                                                              (2.15d) 

Where,  

θ=   d
θ Rd21 θ,...,θ,θ , Ωθ is the space of random parameters. 

t=Design variables =   n
t RΩt,...,t,t n21 , Ωt is the space of design variables.  

A design variable is defined by Royset et al. (2001) as a numerical input that is allowed to 

change during the design optimization in order to satisfy the objective function, e.g. until the 

minimum or optimum cost is obtained. 

The inequality constraints, given by Equation (2.15b) are commonly applied within a RBDO 

to compare Pf of the structure with the allowable (tolerable) failure, Pf  < Pf 
tol

. 

Various approaches and methods have been implemented to solve RBDO problems. Some of 

the most common optimization methods applied in engineering includes: Double-loop 
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approach, Decouple approach and Stochastic Subset optimization (SSO) approach 

(Valdebenito and Schuëller, 2010) 

A. Double-Loop Approach 

Double-Loop approach is the most direct approach to solve RBDO problems which considers 

only the inequality constraint (Enevoldsen and Sørensen, 1994). As the name double-loop 

implies, each set of the design variables, t, are initially used to estimate the objective function, 

C(t) and later evaluated based on the inequality constraint of the reliability index, β(t) ≥ β
tol

. 

The reliability problem can be solved using one of the methods discussed in Section 2.3 while 

the objective function, C(t), is solved using an optimization algorithm such as a powerful 

method called simulated annealing (this method will be presented at the end of this section).  

As can be seen in Equation (2.16) below, each set of design variable is first evaluated using 

C(t) and again the design variables are used to check the reliability index, (β(t) ≥ β
tol 

). The 

problem definition of this method is given by Equation (2.16). 

Minimize: The objective function, C(t)                                                                            (2.16a) 

Subjected to  

β(t) ≥ β
tol 

            (2.16b) 

Where, β(t) is the reliability index associated with the probability of failure of the structure 

and β
tol

 is the minimum acceptable reliability index, which is defined as: β
tol

=Փ
-1

(1-Pf 
tol 

)    

Dubourg et al. (2010) argue that despite the conceptual simplicity of the double-loop 

approach, it lacks efficiency since it requires too many evaluations of the performance 

functions for each set of design variables, t, which might result in a time consuming 

computation. However, for a broad range of applications where the performance functions are 

linear or weakly non-linear, it can give results within a reasonable number of evaluations of 

the performance functions.  

Simulated Annealing (SA) 

One of the robust optimization tools used to solve high dimensional design problems is the 

Simulated Annealing (SA). Annealing is a thermal process for obtaining low energy states (by 

reducing temperature) of a solid in a heat bath; therefore, annealing process contains two steps 

which involve increasing the temperature until the solid molecules melt (change to gas state) 

and decreasing carefully the temperature (gentle cooling) until particles arrange themselves to 
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give the minimum energy state of the solid (Goffe et al., 1994). This process of annealing can 

be seen in Figure 2.6. 

 

Figure 2.6 Cooling process of particles to yield low energy state (Depina, 2014) 

Aarst and Korst (1989) explain the analogy with an optimization problem. The optimum cost 

is assumed to be equivalent to the energy state and the solutions in the optimization problem 

are equivalent to the resulting temperature in the final state of the physical system (global 

minima). 

The advantages of using the Simulated annealing to solve optimization problems are 

discussed by Goffe et al. (1994). Not only can Simulated annealing find the global optimum 

(minimum), it is also less likely to fail on complex and discontinuous functions because it is a 

very robust algorithm.  

B. Decouple Approach 

Tu et al. (2001) proposed a method called decouple approach that avoids a double-loop 

problem associated with the RBDO. In this approach, for randomly generated design 

variables, ti, of sample size, N, a linear approximation of the reliability index is constructed 

using derivatives of the failure probability as shown in Equation (2.17) Then the appropriate 

design variables which yield β(t) ≥ β
tol

 are extracted and used to solve the optimization 

problem, C(t). By doing this, double-looping and double checking of the set of design 

variables is ignored and can improve numerical efficiency. 

Equation (2.17) shows the key step in this approach which is the construction of a linear 

approximation of the reliability index using information on the gradients of the failure 

probability, i.e.: 

 b
ii

N

1i i

b tt
t

(t)
)(t)( 









btt

β
ββ t                                              (2.17) 

Where, 

  t= design variable of randomly generated numbers,  N21 t,...,t,t , with sample size, N.  

t
b
= the b-th candidate optimal design which yields β(ti) ≥ β

tol
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b= order of candidacy which define ‘ti’ which yield β(ti) >> β
tol 

 is better candidate 

than ‘ti’, β(ti) ≥ β
tol

. 

Since the decoupling approach requires the calculation of derivatives, it might result in time 

consuming computations for complex objective functions (Royset et al., 2001 and Du and 

Chen, 2004). 

C. Stochastic subset optimization (SSO) 

Stochastic subset optimization is a simulation based approach recently proposed by Taflanidis 

and Beck (2008) that concentrates to find the region of admissible design space (region where 

the failure probability density function is minimum).  

The overall concept is closely related with the Subset simulation reliability analysis method, 

discussed in Section 2.2.1(C). However, the major drawback of the method is that the 

problem that SSO attempts to solve is not a full RBDO problem in the sense that it is designed 

to minimize the failure probability whereas the purpose of the RBDO is to minimize a cost 

function under some failure probability constraint as given by Equation (2.15b) and (2.16b). 
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3. Cross-Entropy Algorithm for Reliability 

analysis and Optimization 

3.1 Introduction 

The core of this study is to prepare and implement the Cross-entropy (CE) algorithm to solve 

RBDO problems. The Cross-entropy method was proposed by Rubinstein (1997) based on the 

basic principle of Importance sampling procedures to estimate failure probabilities of rare-

events (<10
-4

). Subsequent work by Rubinstein (1999; 2001) has also shown a small 

modification of Rubinstein (1997) can be used to solve optimization problems so that the 

optimization problems are translated in to rare-event estimation problems. 

The discussion on Chapter 2 Section 2.2.1(B) about Importance sampling method explained 

how the optimal distribution, fopt(θ), on the failure region can be obtained from the initial 

distribution, h(θ), based on variance minimization. It was also pointed out that fopt(θ) is 

approximated commonly based on design points. The computational cost associated to 

determine the design point can be quite high for complex limit state functions which 

adversely affect the efficiency of the Importance sampling method.  

This chapter will introduce the CE method with the basic principles. The development of the 

algorithm for both reliability and optimization analysis are also presented. Moreover, it 

discusses how the optimal distribution, fopt(θ), can be obtained relatively easier by 

implementing the CE method. 
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3.2 Cross-Entropy for Rare-event Probability Estimation 

As discussed previously in Section 2.2, the probability of failure is given by Equations (2.1) 

and (2.2) as: 

  )d(()I((

0)(

θu)θ;θθθ)
dRθ

hdhP

g

f 


                                     (3.1) 

   )I(0)(P θEθ  gPf                                                       (3.2) 

Where,  

θ= [θ1, θ2, θ3,…, θd], random vector, is distributed with a pdf, h(·; u) 

u= parametric vector (e.g., mean and standard deviation) of random vector, θ, in a 

given space, R
d
 

E= expectation is also defined in terms of the indicator function, I(θ) 

g(θ)= limit state function  

The discussion in Section 2.2.1(B) and Equation (2.4) gave the Importance sampling method 

for estimation of the probability of failure which is the base for the CE method. The Pf  is 

given by Equation (3.3) as: 
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f

h



                                  (3.3) 

Where, f(θ) = Importance distribution (pdf) and [θ1, θ2, θ3,…, θN] are randomly generated. 

numbers using sample size of N for simulation of a given random variable. 

Schuëller et al. (2004) describes optimal importance distribution as the distribution which 

results in a variance of Pf equal to zero (or near to zero). Equations (2.5) and (2.6) presented 

the optimal importance distribution, fopt(θ), as given by Equation (3.4). 

f

opt
P

h
ff

θ)θ
θθ

()I(
)()(                                                    (3.4) 

A major drawback in the implementation of the optimal distribution is the definition based on 

an unknown Pf. The advantage of the CE method is that it provides a simple adaptive 

procedure for estimating the near optimal distribution using the concept of Kullback-Leibler 

divergence method in which the basic concept is discussed next. 
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3.2.1 Kullback-Leibler distance 

It is described above that for a given initial distribution, h(θ; u), the main aim of the IM 

method is to attain the fopt(θ). Therefore, the idea of CE method is to choose the importance 

sampling distribution, fopt(θ), from within the parametric class of pdfs, h(·; v). The parameter 

vector, v, is selected such that the Kullback-Leibler distance between the optimal importance 

sampling pdf, fopt(θ), and h(
.
; v) is minimal (De Boer et al., 2005 and Botev et al., 2013). The 

parametric vector is defined as a vector of distribution parameters (e.g., mean and standard 

deviation). 

For a given independent random vectors [θ1,…, θd] with pdf of h (θ), the Kullback-Leibler 

distance between fopt(θ) and h(·; v) is given by Equation (3.5) as defined by De Boer et al. 

(2005) and Botev et al. (2013). 

𝒟(fopt , h) = 







 )(

)(
ln

)(

)(
ln)(

θ

θ
Eθ

θ

θ
θ

h

f
d

h

f
f

optopt

opt ,    )(θ~θ optf                (3.5a) 

      = θvθ;θ-θθθ dhfdff optoptopt  )(ln)()(ln)(                                (3.5b) 

𝒟 is not a distance in formal sense because 𝒟(fopt , h) ≠ 𝒟(ℎ , fopt).  

Where,  

u= parametric vector (e.g., vector of mean and standard deviation) at initial distribution. 

v= parametric vector (e.g., vector of mean and standard deviation) between h(·; u) and  fopt(θ). 

Minimizing the Kullback-Leibler distance given in Equations (3.5a) and (3.5b) is equivalent 

to choosing v such that θvθ;θ- dhfopt )(ln)(  is minimized, which is the same as the 

maximization problem given by Equation (3.6). 

 θvθθ dhfopt );(ln)(𝐯   
𝑚𝑎𝑥                                                (3.6) 

Substituting fopt(θ) from  Equation (3.4) in to (3.6), the maximization is given by Equation 

(3.7) as: 

 θvθ
v)θθ

dh
P

h

f
 );(

;(ln)I(
𝐯   

𝑚𝑎𝑥                                         (3.7a) 

=𝐯              
𝑚𝑎𝑥 𝒟(𝐯) 
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Where 𝒟 is implicitly defined above. Using the IM method, Equation (3.7) can be rewritten 

with a change of measure h(·; w) as given by Equation (3.8): 

=𝐯              
𝑚𝑎𝑥 𝒟(v) 

  𝐯    
𝑚𝑎𝑥 );(ln()I(E vθ)u;θ;θ hwWw                           (3.8) 

Where, W is the weight of the distribution given for any reference parameter w, with respect 

to the initial distribution, h(
.
; u): 

);(

);(
);(

wh

h
wW

θ

uθ
uθ;                                                       (3.9) 

The optimal solution (v*) of Equation (3.8) can be written as shown in Equation (3.10) given 

by De Boer et al. (2005) and Botev et al. (2013). 

v* =    𝐯         
arg 𝑚𝑎𝑥

);(ln()I(E vθ)u;θ;θ hwWw                              (3.10) 

Equation (3.10) can be solved using a stochastic counter (generating samples with number of 

simulation N for θ) part of Equation (3.8) to give: 

=𝐯             
𝑚𝑎𝑥 𝒟̂(𝑣) 
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1
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Where, θ1,…, θN  are the random samples generated from h(
.
; w). Differentiating the function 

𝒟̂ in Equation (3.11) with respect to v, the maximum value is obtained at a point where the 

derivative is equal to zero. 





N

v)u;;
1

iii );(θlnW(θ)I(θ
N

1

i

hw                                         (3.12) 

Where, the gradient (derivative) is performed with respect to v (e.g., with respect to μ and 𝜎). 

The advantage of this approach is that the solution of Equation (3.12) can be calculated 

analytically specially if the distributions of the random variables belong to a natural 

exponential family (Rubinstein, 1997).  

Since the objective of the method is to attain estimation of rare-events, Equations (3.11) and 

(3.12) are performed by constructing a sequence of reference parameters, vt and a sequence of 

levels (g(θ)<γt), and iterate in both vt  and γt. The goal of this procedure is to converge vt to v* 

(μ and 𝜎 near the optimal distribution) and γt to zero (g(θ)≤0, failure)(De Boer et al., 2005 and 

Botev et al., 2013).  

Figure 3.1 summarizes the general procedure of the Cross-entropy method which incorporates 

the evolution of h(θ;u) to h(θ;vt) and finally near to fopt (θ). For example, the random vector, θ, 
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is defined by the initial parametric vector, v0 = u which is a function of μ0 and 𝜎0. Next, we let 

γ0 be such that, under the original density h(θ; u), the intermediate probability level, P[g(θ)< 

γ0]= Eh I(g(θ)≤ γ0 ), is at least ρ, ρ ∈ (0,1), for example, ρ = 0.1 or 10%. We then update the 

parametric vector v0 to v1= [μ1, 𝜎1] defined as the mean and standard deviation of the samples 

on the 10% intermediate probability level, γ0. Then, using μ1 and 𝜎1, a distribution for h(θ; v1) 

is drawn for a sample size N and the next 10% probability level, γ1, on h(θ; v1) is identified 

and the parametric vector is updated to v2. These steps are repeated with the goal for vt to 

converge to v* and γt to zero (g(θ)≤0, failure) by reducing the Kullback-Leibler distance 𝒟. 

 

 

 

In other words, each iteration of the algorithm consists of two main phases. In the first phase, 

γt is updated and in the second vt is updated. Specifically, starting with v0 = u, we obtain the 

subsequent γt and vt as follows: (De Boer et al., 2005 and Botev et al., 2013) 

1. Adaptive updating of γt: For a fixed vt−1, we first generate N random sample 

parameters θi, i= 1,…,N according to the density function h(θ; vt−1) , then with these 

trial parameters, we calculate the associated performance function g(θi), i= 1,…, N. 

These N values are then sorted in an increasing order g(θ1) ≤ … ≤ g(θN). The samples 

which result in g(θi) ≤ γt are taken as “elites”. Where, γt is given by the ρN+1 or ρ-

10% Failure 
10% Failure 

Limit state, g(θ) 

 Failure in the limit 

state region 

g(θ) >0, Safe 

h(θ;u),  

u= (μ0, 𝜎0) 

Near fopt (θ) 

distribution 

h(θ;v1), 

 v1=(μ1, 𝜎1) 

h(θ;v2),  

v2= (μ2, 𝜎2) 

μ0   μ1 μ2 

p
d

f 

Figure 3.1 Development of the Cross-entropy method for reliability analysis 
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quantile value of the sorted values that satisfies the two conditions given by Equations 

(3.13). 

ρ)γ)((P t θ
1-tv g                                                 (3.13) 

Where, θ ~ h(·; vt−1). 

2. Adaptive updating of vt: For a fixed vt−1, derive vt from the solution of the CE 

program as given by Equations (3.11) and (3.12). The optimal solutions of (3.11) and 

(3.12) can often be obtained analytically, in particular when h (θ; v) belongs to natural 

exponential family. 

The above rationale results in the following algorithm given by De Boer et al. (2005) for the 

estimation of probability of failure for rare-events:   

 Algorithm 1.1: CE Algorithm for Rare-Event Estimation 

1. Define v0= u, specify sample size N and ρ. Set t = 1 (iteration = level counter). 

2. Generate a sample θ1,…, θN from the density h(·;vt−1) and compute performance 

function g(θi)  and sort in increasing order. 

3. Compute γt which is the ρN+1 quantile of the performance function provided γt ≥0. 

Otherwise γt =0. 

4. Use the same sample θ1,…, θN  to solve the stochastic  program given by Equation 

(3.11). Denote the solution by vt. 

5. If γt ≥ 0, set t= t+1 and reiterate from step 2. Else proceed with step 6. 

6. Estimate the rare-event probability Pf  using (3.14) 

Pf = 


N

)vu;;
1i

Tii (θ)I(θ
N

1
W                                               (3.14) 

Where, T is the final number of iteration. 

Smoothed updating: while updating vt-1 to vt, instead of updating it directly, a smoothed 

updating is often performed using 0≤ αr ≤1 and 0≤ βr ≤1 (De Boer et al., 2005). This will be 

discussed in Section 3.3. 

3.3 Cross-Entropy Method for Optimization 

Subsequent work by Rubinstein (1999; 2001) has shown a small modification of the CE 

algorithm in Rubinstein (1997) can be used to solve optimization problems so that the 

optimization problems are translated in to rare-event estimation problems.  
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Suppose the goal is to find the minimum of C(t) over a given space of design variable Ωt, 

where t=design variable = [t1, t2,…,tn] ∈ Ωt. Assume, for simplicity, there is only one 

minimizer t*. Denote the minimum by γ*, so that;  

min C(t*) = γ*                                              (3.15) 

We can now associate the above optimization problem given by Equation (3.15) with an 

estimation of the probability Pf = P(g(t)≤0) where, t has some probability density h(t; u) on Ωt 

and the unknown γ* is close to 0. Typically, Pf is a rare-event probability, and the multi-level 

CE approach of Algorithm 1.1 presented above can be used to find an importance sampling 

distribution that concentrates all its mass in a neighborhood of the point t*. Sampling from 

such a distribution thus produces optimal or near-optimal states. Note that, in contrast to the 

rare-event simulation setting, the final level γ*= 0 is generally not known in advance, but the 

CE method for optimization produces a sequence of levels γt and reference parameters vt such 

that ideally the former tends to the optimal γ* and the latter to the optimal reference vector v* 

corresponding to the point mass at t*. 

Figure 3.2 is a simple illustration between t and C(t) intended to show and clarify the method 

of CE optimization with the aim to obtain the minimum C(t). For a given sample size, N of a 

random design variable, t, defined by ti, i=1,…N, i.e., ti=[t1, t2,…, tN], the respective values of 

C(ti)=[C1, C2,…, CN] are calculated at the first step. Similar to Algorithm (1.1), the ρN+1 

quantile is selected to give C1 and all ti values which yield C(ti) ≤ C1 are assumed as ‘elites’;  

therefore, we take t̂1 = [t4, t6,…, t13] which gives C(ti) ≤ C1 and a normal distribution I is draw 

using mean and standard deviation of t̂1to generate N size samples. Using this generated 

samples, C(t̂i) is calculated and the respective ρN+1 quantile is selected to give C2. Similarly, 

we select  t̂2 = [t5, t6,…, t11] which gives C(t̂i) ≤ C2 and the second normal distribution II is 

draw using the mean and standard deviation of  t̂2 to generate N size samples. The same 

procedure is also repeated on the next iteration where t̂3 = [t5, t6, t7] are taken as ‘elites’. On 

this step, the third normal distribution III is narrow in width as compared to the I and II 

distributions because the standard deviation converges to near zero or zero; therefore, the 

mean of t̂3 converges to t6 and  C(t6) is the minimum point given by point A.  

In each iteration the standard deviation is decreases and converges to zero or near zero near at 

the optimal point (minimum point in this case). The repeated iteration and updating of mean 

and standard deviation is important to give global minimum (point A) by avoiding local 

minimum (point B). 
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Figure 3.2 Illustration of the CE optimization method 

The above discussion on the CE optimization can be summarized by Algorithm 2.1 presented 

by Rubinstein (1999). The situation is similar to the rare-event simulation of Algorithm 1.1.  

Algorithm 2.1: CE Algorithm for Optimization 

1. Choose an initial parameter vector, v0= u, specify sample size N and ρ. Set t = 1. 

2. Generate a sample ti, i=1,…,N from h(·;vt-1) and compute C(ti) and sort in increasing 

order. 

3. Compute γt which is the ρN+1 quantile of the objective function, C(ti) 

4. Use the same sample t1,…, tN to solve the stochastic  program given by Equation (3.11) 

with W=1. Denote the solution by vt. 
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h                                            (3.16) 

Where, W=1 because we are not concerned to calculate Pf  and the ratio h(t;u)/ h(·;vt-1)) is 

ignored. 

5. If some stopping criterion is satisfied, stop; otherwise, set t= t+1 and reiterate from 

step 2.  

Smoothed updating: while updating vt-1 to vt, instead of updating it directly via Equation 

(3.10), a smoothed updating is often performed using 0≤ αp ≤1 and 0≤ βp ≤1 (De Boer et al., 

2005). Equation 3.17 gives the updating procedure for the mean and standard deviation of the 

parametric vector, vt = [μt , σt]. 
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1tptpt )α1(α                                   (3.17a) 

1tptpt σ)β(1σβ                                  (3.17b) 

The main reason for using this smoothed updating is to prevent the occurrence of local 

minima by preventing the occurrence of 0s and 1s in the parameter vectors; once such an 

entry is 0 or 1, it often will remain so forever, which is undesirable (occurrence of local 

minima). 
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4.  CE-RBDO Validation on an academic 

example 

4.1 Introduction 

The main objective of this chapter is to implement and validate the CE-RBDO algorithm on a 

problem with an analytical solution. The problem is evaluated for a range of dimensions of 

the reliability and optimization problems.  

Together with implementation of the algorithm, a study on the effects of the updating 

parameters (α and β), percentage of failure in each iteration (ρ) and number of samples (N) 

used for simulation have been evaluated. Finally, the results obtained using CE algorithm will 

be compared with the existing reliability and optimization methods and with the analytical 

solution. 

4.2 Problem Definition 

RBDO problems are commonly defined as the minimizations of expected life time costs 

considering construction and maintenance costs together with the eventual failure (Kupfer and 

Freudenthal, 1977). Similarly, the RBDO problem given by Equation (4.1) defines the 

objective function as a function of initial cost, maintenance cost and failure probability.  

Minimize: C (θ,t) = )(CtC F

n

1i

2
ii tθ,fP



                                                                           (4.1a) 

Subjected to  

Pf (θ,t) ≤ Pf 
tol

                                                                                                                            (4.1b) 

 tmin ≤ t ≤ tmax                                                                                                                           (4.1c) 
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Where,  

C (θ,t) is the objective function defined as the loss function (i.e., design cost). 

θ=Random parameters =   d
θ Rd21 θ,...,θ,θ  

t=Design variables =   n
t RΩt,...,t,t n21 , Ωt   is the space of design variables. 

Ci (t) defines the initial cost of the structure (e.g., material, installation costs). 

CF (t) represents the cost of failure. 

Pf (θ, t) is the failure probability which should be less than the allowable, Pf 
tol

. 

tmin ≤ t ≤ tmax shows the boundary condition for the design variable. 

Input parameters: 

 CF=10
10€ 

 θj ~ N(0,1), Normally distributed with μθ=0 and 𝜎θ =1. 

 ti ~ U( tmin, tmax), Uniformly distributed bounded between 0 and 10. 

 Pf 
tol

 =10
-4

. 

 For simplicity t1=t2= t3…, tn 

 The Reliability problem for estimation of Pf  is given by the performance function in 

Equation (4.2). 

 
 


n

1i

d

1j

ji θt)( tθ,g                                                                  (4.2) 

Therefore, the Cross-entropy is implemented to solve the reliability and optimization sub-

problems within the RBDO problem of Equations (4.1) and (4.2) which will be presented in the 

next Sections of 4.3 and 4.4 respectively. 

4.3 Reliability Analysis using the CE algorithm 

Algorithm 1.1 discussed on the previous Chapter of Section 3.2.1 has been implemented to 

estimate the reliability (probability of failure) for the performance function given in Equation 

(4.2). The next section will evaluate and discuss the implementation of Algorithm 1.1 in 1D, 

2D and higher dimensional problems. 
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4.3.1 One-dimensional problem (1D) 

Equation (4.2) can accommodate wide range of dimensionality based on n and d values. For 

the case of one-dimensional problem (n=1 and d=1), a single random vector and a design 

variable is considered. Therefore, a normal random variable, θ, with a zero-mean and unit 

standard deviation is considered. To evaluate the performance of the CE approach for a rare-

event estimation, the design variable is taken equal to 5. Equation (4.3) shows the 

performance function for the one-dimensional reliability problem. 

θtθ,  5)(g                                                                  (4.3) 

Failure probability defined as Pf = P[θ>5] was to be estimated. Table 4-1 shows the results 

obtained for the CE method, existing methods (MC and IM) and the analytical solution (from 

the standard normal table). 

Table 4-1 Results of the MC, IM and CE and analytical solution 

Simulation Methods Sample size, N Pf 

Monte Carlo (MC) 500 0 

Monte Carlo (MC) 10,000,000 1.000e-07 

Importance Sampling (IM) 500 2.982e-07 

Cross-entropy (CE) 500 2.943e-07 

Standard Table 
 

2.870e-07 

As it can be seen from Table 4-1, the simulation of the one-dimensional problem using the CE 

algorithm gave good convergence with the analytical solution. Moreover, the number of 

samples used for the simulation were quite less when compared to the MC method which 

required over 10
6 

samples. As discussed in Chapter 2, the IM requires knowledge of the 

design point to provide an efficient estimate of Pf. In this case the design point is defined as 

θ=5. Therefore, the IM method also resulted in an accurate estimate of probability of failure 

when compared to the standard normal table and CE. 

4.3.2 Two-dimensional (2D) and higher dimensional Problems 

The algorithm used to solve the one-dimensional problem was examined on high dimensional 

problems. In this section the implementation and validation of the algorithm will be examined 

together with the investigation on the effects of αr, βr, ρ and N on the performance of the 

approach. The results based on the CE implementation will be compared with the analytical 

solution. The procedures followed to solve the reliability problem are presented for both the 

analytical and the CE algorithm methods. 
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Analytical Solution 

The analytically solution for Equation (4.2) can be obtained for a given t value denoted by t* 

= [t1*,…, tn*]. From discussion in Section 2.2.2(A) of Equation (2.13), the mean and standard 

deviation of the performance function can be calculated as: 

jj θ

n

1i

i

d

1

θ

n

1

i d*t*t)( μg
ii
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 E                                (4.4) 

  d
θ

Var
jj

2
d

1j j

θθ  



 



g
gg                                     (4.5) 

Therefore, substituting the given mean (μθ =0) and standard deviation (𝜎θ =1) of the random 

variable, θ, in to Equations (4.4) and (4.5), the reliability index is calculated as:
g

g
β




  and 

the estimate of the failure probability is analytically calculated under the assumption that g is 

normally distributed: Pf =1-𝜑(𝛽) = 𝜑(−𝛽). This gives a direct relation between 𝛽 and 

summation of t* so that for a given t value denoted by t* = [t1*,…, tn*], the corresponding 𝛽 

and Pf can be estimated. 

To evaluate the performance of the CE approach for a rare-event estimation, 𝛽 is fixed to 4 

and the corresponding Pf = 3.161712*10
-5

. Moreover, the design point, t*= 
4√d

n
, can be obtain 

using 𝛽=4 and Equations (4.4) and (4.5). 

CE approach Solution 

The procedures described in Algorithm 1.1 were followed to estimate the probability of 

failure for the different combinations of n and d that extend from two-dimensional to higher 

dimensions. The following section will present the general results obtained using the Cross-

entropy algorithm and discuss effects of the different parameters (αr, βr, ρ and N). 

A. Results for Two dimensional (2D) Problem (n=2 and d=2) 

Table 4.2 shows the results obtained using the CE algorithm for n=2, d=2 and ρ=0.1 with 

different αr, βr and N. By comparison of the results with the analytical solution given above, 

Pf =3.161712*10
-5 

and 𝛽 =4, the study on the updating parameters αr and βr show the choice 

of αr does not have a significant effect on the final result while βr between 0.5 and 1 leads to 

an accurate estimate. Lower βr values resulted in a slight deviation of the probability of failure 

from the true value and were found to be time consuming because the number of iterations, T, 
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was relatively higher; therefore, α=1 and βr=0.7 will be used for further study on high 

dimensions (n>2 and d>2). 

The effect of the sample sizes were also studied such that the sample sizes N=100, 300 and 

800 were used. As can be seen in Table 4-2, the efficiency of the CE method to estimate Pf 

improved as the sample size increased. N=100 was found to be sufficient to provide a good 

estimate of Pf with a relatively less computational time. Note: βr= updating paramer and 𝛽= 

reliability index. 

Table 4-2 Estimation of Pf  for n=2, d=2 and ρ =0.1 with variable αr, βr and N 

αr βr 
N=100 N=300 N=800 

T Pf 𝜷 T Pf 𝜷 T Pf 𝜷 

1 1 4 3.010e-05 4.0120 4 3.193e-05 3.9989 4 3.182e-05 3.9975 

1 1 4 2.913e-05 4.0197 4 3.209e-05 3.9969 4 3.109e-05 4.0040 

0.5 1 4 3.872e-05 4.1228 4 3.087e-05 4.0061 5 3.471e-05 3.9782 

0.5 1 4 3.635e-05 3.9673 4 3.411e-05 3.9824 4 2.608e-05 4.0463 

0.2 1 4 3.273e-05 3.9286 6 2.202e-05 4.0852 5 3.317e-05 3.9890 

0.2 1 4 2.798e-05 4.0293 5 2.501e-05 4.0556 6 3.077e-05 4.0070 

1 0.5 4 2.286e-05 4.0765 4 3.483e-05 3.9826 5 3.036e-05 4.0090 

1 0.5 4 3.891e-05 3.9510 5 3.387e-05 3.9774 5 3.488e-05 3.9784 

1 0.2 6 1.798e-05 4.1320 6 2.057e-05 4.1009 6 4.731e-05 3.9040 

1 0.2 7 2.243e-05 4.0809 6 2.141e-05 4.0428 6 2.010e-05 4.1063 

0.5 0.5 5 5.212e-05 3.8008 6 3.921e-05 3.9492 6 2.896e-05 4.0211 

0.5 0.5 4 2.181e-05 4.0874 6 3.406e-05 3.9828 6 2.918e-05 4.0193 

Figures 4.1 and 4.2 illustrates the  propagation of the generated samples in each iteration from 

the initial point [0,0] to the design point [2.8285, 2.8285]. These figures show the methodology 

followed by the CE method as discussed in Chapter 3.  

αr=1, βr=0.7,N=800 and variable ρ have been used in this case to evaluate the effect of ρ. The 

use of ρ=0.01, 0.05, 0.1 and 0.4 was assessed such that, in case of ρ=0.4, almost half of the 

previous samples were used to generate the next distribution which resulted in a relatively 

higher computational time as compared to lesser ρ values, otherwise, the use of ρ=0.01, 0.05, 

0.1 and 0.4 showed accurate convergence of the random numbers, θ1 and θ2, from the origin to 

the intended design point. 
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Figure 4.1  Plot for ρ=0.01 (left) and ρ=0.05 (right) with N=800 

   

  

Figure 4.2 Plot for ρ=0.1 (left) and ρ=0.4 (right) with N=800 

Figure 4.3 also shows the propagation of the samples from safe region (g(θ) > 0) to the 

failure region for αr=1, βr=0.7, ρ=0.1and N=800 with the iteration, T. The convergence to 

failure, g(θ) < 0, was obtained in the fourth iteration as can be seen in two  (2D) and three 

(3D) dimensional views. The perfomance function gave g(θ)>2 for all samples (N=800) in 

the first iteration which shows the safe region while in the fourth iteration, some samples 

yield g(θ)<0. 
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Figure 4.3 Illustration of 2D (left) and 3D (right) view for convergence of g(θ)  

B. Results for High dimensional Problems up to n=100 and d=100 

The study on n=2 and d=2 was extended further to solve high dimensional problems. Table 

4.3 shows the results obtained for (n=5, d=5), (n=10, d=10) and (n=20, d=20) for different ρ 

and N. Unlike to the discussion earlier for n=2 and d=2, the estimation of the probability of 

failure became unstable for lower sample size (N=100) and even provided poor estimation for 

high n and d values (e.g. n=20 and d=20); therefore, as can be seen in the Table 4.3, the 

increase from N=100 to 500 (for n=10, d=10) and 1500 (for n=20, d=20) resulted in a better 

estimate of Pf. 

The study on ρ showed that the choice in ρ value does not have significant effect on Pf or  

𝛽 for n and m values less than 10 except for some lower values (ρ=0.01) and small sample 

sizes (N=100), but, for the high dimensional (n=20, d=20) analysis, it was observed that lower 

ρ values resulted in unstable results which also deviated from the analytical solution as can be 

seen in Table 4-3. Therefore, it can be concluded from Tables 4-2 and 4-3, high dimensional 

problems require larger sample size, N, and ρ than low dimensional problems. The main 

reason for this can be explained as; the increase in the dimensionality requires large sample 

sizes and ρ to simulate the region of the joint distribution of the random vectors (large number 

uncertain parameters). 
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Table 4-3 Estimation for (n=5, d=5), (n=10, d=10) and (n=20, d=20) 

N ρ 
n=5, d=5 n=10, d=10 n=20, d=20 

T Pf 𝜷 Pf 𝜷 Pf 𝜷 

100 0.1 
4 3.42e-05 3.9816 9.02e-05 3.7453 5.46e-07 4.8742 

4 1.20e-05 4.2231 2.31e-05 4.0724 1.60e-07 5.1109 

500 0.1 
4 3.33e-05 3.9885 2.64e-05 4.0431 3.35e-05 3.9864 

4 3.49e-05 3.9769 2.82e-05 4.0271 4.43e-07 4.9154 

1500 0.1 
4 3.06e-05 4.0081 2.35e-05 4.0705 2.35e-05 4.0701 

4 2.98e-05 4.0147 3.26e-05 3.9935 2.744-05 4.0343 

For further evaluation on the CE method, ρ=0.3 and ρ=0.4 were used and their effect have 

been studied together with the effect of using N=100, 500 and 1500. Table 4-4 shows the 

reliability analysis for a high dimensional problem of n=60 and d=60. It can be seen lower N, 

N=100 and 500, yielded unstable results while acceptable results are obtained when ρ=0.4 and 

N=1500 although the number of iterations (T=11) is increased considerably. (Refer Figure 4.4 

for comparison of the results in terms of reliability index values, 𝛽 obtained from Table 4-4).  

Table 4-4 Estimation of Pf  for n= 60 and d=60 

N 
ρ = 0.3 ρ = 0.4 

T Pf 𝜷 T Pf 𝜷 

100 

7 2.244e-10 6.2360 7 2.923e-09 5.8211 

7 1.041e-07 5.1917 7 2.448e-10 6.2224 

500 

7 2.662e-06 4.5516 9 5.725e-06 4.3878 

7 6.946e-06 4.3455 9 6.967e-06 4.3449 

1500 

8 1.645e-05 4.1524 11 3.769e-05 3.9559 

8 3.130e-06 4.5174 11 3.140e-05 4.0020 

 

 

Figure 4.4 Estimation of Pf  or 𝜷   for n= 50, d=50 for ρ=0.3 and ρ=0.4 

Futher study on a high dimensional n>60 and d>60 problem gave unstable results 

demostrating the limitation of the CE algorithm.  
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4.3.3 Comparison of the CE algorithm results with existing methods  

From the discussion in Section 4.3.2, the reliability analysis problem with n=2, d=2 and ρ=0.1 

was selected and the result based on the CE algorithm is compared with the Monte Carlo 

(MC), Importance Sampling (IM), Subset Simulation (SS) and the analytical solution as 

presented in Table 4-5. As discussed in Chapter 2 and Section 4.3.1 of this chapter, the MC 

simulation can be inefficient for low Pf. Similarly on this case, N=1,000,000 is required to get 

a reasonable estimate of Pf which was found to be computationally demanding.  

For case of IM, the design point should be known as a priori to give a good estimate of Pf in 

which it has been estimated to be [2.8285, 2.8285] in this particular case for 2D. The SS also 

gave good estimation of probability of failure with N=100 similar to the CE method as can be 

seen in Table 4-5. The CE required four iterations while the SS was simulated six times. It 

can be concluded for this particular case, the CE method performed well both in accuracy and 

efficiency.  

Table 4-5 Comparison of the CE method with other existing methods 

Reliability analysis 

Method 
N Pf 

MC (Monte Carlo) 1000000 2.800e-05 

IM (Importance Sampling) 100 3.307e-05 

SS (Subset Simulation) 6x100 2.500e-05 

CE (Cross Entropy) 4x100 2.891e-05 

Analytical (True) Solution 
 

3.162e-05 

4.3.4 Discussion and Summary on reliability analysis 

From the above study and validation of the CE method for the reliability analysis (estimation 

of Pf) on the 1D, 2D and high dimensional problems with an analytical solution, the following 

important findings can be summarized and concluded.  

- The study on the updating parameters αr and βr showed the choice of  αr does not have a 

significant effect on the final result while βr between 0.5 and 1 leads to accurate estimate. 

Lower βr values resulted in a slight deviation of the probability of failure from the true value 

and were found to be time consuming (high number of iteration); therefore, αr=1 and βr=0.7 

have been selected for further study. 

- For problems with n=(10-20) and d=(10-20), increase in the sample size was required and 

change from N=100 to 1500 yielded good estimate of Pf. 
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- For problems with n=(20-60) and d=(20-60), the use of ρ=0.1 did not yield accurate 

estimates ;therefore, it was increased to ρ=0.4 and together with  N=1500, it gave good 

estimate of Pf. 

- Finally, the method resulted in unstable estimate of Pf for higher dimensional problems n>60 

and d>60. The samples generated for simulation on the joint probability of the random vectors 

could not perform well demonstrating the limit of the algorithm. 

- Comparison of the results obtained using the CE and other existing reliability analysis 

methods on a 2D performance function showed the CE algorithm resulted in both accuracy 

and efficiency, that is, it resulted in a good estimate of Pf and required less computational time 

as compared to both MC and SS.  

4.4 Optimization Analysis using CE method 

Subsequent work by Rubinstein (1999; 2001) has shown a small modification of the CE 

algorithm in Rubinstein (1997) can be used to solve optimization problems by translating the 

optimization problems in to rare-event estimation problems. Therefore, the optimization part 

of the RBDO problem defined by Equation (4.1) can be solved using the implementation of 

Algorithm 2.1 and compared to an analytical solution. 

Input parameters to solve Equation (4.1) given in Section 4.2 (Problem definition): 

 CF=10
10€ 

 θj ~N(0,1), Normally distributed with μθ=0 and 𝜎θ =1. 

 ti ~ U( tmin, tmax), Uniformly distributed bounded between 0 and 10. 

 Pf 
tol

 =10
-4

. 

 For simplicity t1=t2= t3…, tn 

Analytical solution procedure 

From the reliability analysis discussion in Section 4.3, the reliability index for the 

performance function, g(θ), is given by: 

d

μdt
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Substituting the input parameters and taking t1=t2= t3…, tn, Equation (4.6) can be reduced to: 
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d

tn 1                                                              (4.7) 

The optimization part of the RBDO problem is concerned with minimizing the objective 

function, C(θ,t); therefore, the mathematical derivative of the objective function with respect 

to ti gives the values of ti which result in the minimum or optimal C(θ,t). The derivative is 

given by Equation (4.8) and the corresponding ti value which yield the minimum C(θ,t) is 

denoted as ti,min in Equation (4.9). 
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Where 𝜙(−𝛽) is the pdf (probability distribution) which is the derivative of the cumulative 

distribution function, Փ(−𝛽) given by: 

 𝜙(−𝛽) =  
1

 √2𝜋
exp (−

1

2
(−𝛽)2)                                   (4.10) 

By rearranging Equation (4.9), the initial cost, Ci can be defined interms of ti,min. This is 

shown by Equation(4.11) as: 

)(
dt2

C
C

mini,

F
i                                             (4.11) 

Finally, the analytical solution can be obtained by equating t1= ti,min on Equations (4.7) and 

(4.9). For a given β and the dimensionality denoted by n and d, the Equations from (4.6) to 

(4.11) are used to give analytical solution of the problem in Equation (4.7). 

CE algorithm solution 

This portion discusses the preparation of the CE algorithm to solve the optimization sub-

problem within the RBDO problem given by Equation (4.1). The input parameters includes: 

n, d, ρ, β (reliability index), the updating parameters for optimization (αp and βp) and sample 

size (N). It is recommended to refer back to Algorithm 2.1 and Figure 3.2 for the discussion 

below. 

A uniform distibution of ti bounded between 0 and 10 were initially generated as given by 

Equation (4.1c), ti ~U(tmin, tmax). These generated samples have been used to estimate the 

failure probabilities, Pf, and checked for Pf < Pf 
tol

 as given by Equation (4.1b). Those ti values 
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which yield acceptable Pf have been further used for estimation of the cost, C(θ,ti) and were 

arranged in increasing order. As given in step 3 of Algorithm 2.1, the ρN+1 quantile of the 

sorted  C(θ,ti) was identified and denoted as γt.  

All ti values which yield C(θ,ti) < γt were identified and their mean (μt) and standard deviation 

(𝜎t) were calculated. These μt and  𝜎t were updated using the updating parameters αp and βp in 

order to yield fast convergence. Then, using this new mean and standard deviation of ti, a new 

distribution of ti was generated with a sample size of N. The procedures explained above were 

then repeated until the mean of ti converged and gave the design cost (Cmin). 

The next section will present the results obtained using the CE algorithm and the results will 

be compared with the analytical solution and an existing optimization method (Simulated 

annealing). Different n and d sizes have been used to consider the high dimensional problems. 

Moreover, the effects of the updating parameters (αp and βp), the sample size (N) and 

percentage of failure in each iteration (ρ) will be evaluated. 

4.4.1 Results for Two-dimensional (n=2 and d=2) optimization analysis 

Given n=2, d=2 and reliability index, β=4, the analytical solution can be solved using 

Equations (4.6) to (4.11), for example, the design point or ti,min can be obtained to be 

t1=t2=2.8285. The cost estimation was performed for different combinations of αp, βp and N. 

Since the cost minimization problem requires the estimation of probability of failure, CE 

algorithm was performed for two sets of sample sizes.  A sample size, N=100 have been used 

for calculation of probability of failure (in Algorithm 1.1) together with αr=1 and βr=0.7 and 

the same sample size have been used initially for the generation of design variables, t, in 

Algorithm 2.1. 

The use of sample size of N=100 together with different combination of updating parameters 

for reliability (αr and βr) and optimization (αp and βp) showed deviation on the minimum cost 

Cmin obtained using CE as compared to the analytical solution. The main reason for the 

deviation was identified to be lack of consistency in calculating the Pf. To reduce this effect 

higher sample sizes; N=200,500,1000,1500 and 2000 were used for calculation of probability 

of failure (generation of random vectors, θ, in Algorithm 1.1) while the sample size used for 

generation of design variables, t, was fixed to N=100 (in Algorithm 2.1). 

Table 4-6 summarizes the results obtained using CE, Simulated annealing and compared to 

the analytical solution. Algorithm 1.1 was implemented for the reliability analysis with αr=1, 

βr=0.7 and ρ=0.1 and different sample sizes N. For the optimization part, Algorithm 2.1 with 
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N=100, αp =0.98 and βp=0.98 was implemented. The CE algorithm was run 10 times and the 

average results are shown in Table 4-6. 

Table 4-6 Comparison of Algorithm solution with Analytical solution 

Method Sample size, N t1 t2 Cmin 

CE 

100 2.7405 2.7673 2.6685e+06 

200 2.7947 2.7748 2.8144e+06 

500 2.7936 2.8009 2.8915e+06 

1000 2.8307 2.7982 2.9208e+06 

1500 2.8291 2.8195 2.9420e+06 

2000 2.8267 2.8164 2.9536e+06 

Simulated 

annealing 

 

2.8590 2.859090 2.9592e+06 

Analytical solution 

 

2.8282 2.8282 2.9921e+06 

As can be seen from Table 4-6, the accuracy of the CE method increased as the sample size N 

increased from 100 to 2000. Generally, the Cross-entropy method gave good estimate of the 

minimum cost similar to the results obtained based on an analytical solution and the existing 

optimization method called Simulated annealing. 

The observations on the effects of αp and βp  can be summarized as; choice of αp have no 

significant effect on the final result of the minimum cost while the choice of βp is significant 

in which lower values were found to be computationally intensive.  

The result from Table 4-6 can be seen as a ln(C(θ,t)) plot on Figure 4.5 illustrating the 

minimum design cost, Cmin, which is equal to ln(C) =14.88. The design points, t1=t2=2.8285, 

which resulted on the design cost, Cmin, can also be seen in the contour plot given by Figure 

4.6 for ln(C) versus t1 and t2. 
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Figure 4.5 ln-plot of Cost for e
t1
 and e

t2 

 

Figure 4.6 Contour plotting of ln(C) over t1 and t2 

The optimization tool used for comparison with the CE method is Simulated annealing in 

which the basics of the method have been already discussed in the literature review. The 

results obtained using this method can be seen from Figure 4.7 or Table 4-6 as the design 

points [2.8590, 2.8590] gave a design cost, Cmin=2.9592e+06. 
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Figure 4.7 Estimation of Cmin and respective design points from Simulated annealing 

4.4.2 Results for high dimensions (n>2 and d>2) optimization analysis 

This section will assess the suitability of the CE method to solve n>2 and d>2 optimization 

problems and further study the limit of the CE algorithm.  

Similar to the discussion in Section 4.4.1, the main aim was to solve the objective function 

given by Equation (4.1a) and all the procedures used to develop the algorithm were the same 

as the discussion in Section 4.4.1. But, since this section is aiming to simulate high 

dimensional problems, N and ρ have been increased to yield good estimations. Therefore, 

αr=1, βr=0.7, N=500 and ρ=0.2 have been used for the calculation of Pf (using Algorithm 1.1) 

for n≤20 and d≤20 while αp=0.98, βp=0.98, N=100 and ρ=0.1 have been used for the 

optimization of the minimum cost (using Algorithm 2.1). For high dimensions of n=30 and 

d=30; αr=1, βr=0.7, N=1500 and ρ=0.4 (in Algorithm 1.1). 

Table 4-7 gives the results of minimum cost for the different combinations of n and d. The 

Cross-entropy method performed well for n≤20 and d≤20 while the minimum cost estimated 

is considerably lower than the true estimate for case of n=30 and d=30. This can demonstrate 

the limitation of the CE method. 

Table 4-7 High dimensional optimization problems compared with the analytical solution 

n m Cmin C (analytical) 

2 2 2.8915e+06 2.9921e+06 

2 5 2.8413e+06 2.9921e+06 

5 5 2.9146e+06 2.9921e+06 

5 2 2.9108e+06 2.9921e+06 

10 10 2.8998e+06 2.9921e+06 

20 20 2.6948e+06 2.9921e+06 

30 30 2.2298e+06 2.9921e+06 
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4.4.3 Discussion and Summary on optimization analysis 

From the above study and evaluation of the CE method to solve the optimization sub-problem 

within RBDO problems for 2D and high dimensional, the following important findings can be 

summarized and concluded.  

- Since the final (design) cost was defined as a function of initial cost, maintenance cost and 

probability of failure, consistency in the estimate of Pf was found to be critical; therefore, the 

sample size was increased to get a good estimation. For the two-dimensional problem, the 

sample size increased from N=100 to 200, 500 and 2000 and resulted in a good estimate of 

the final cost close to the analytical (true) solution. The computation time increased as the 

sample size increased but better accuracy was achieved.  

- The study on the updating parameters showed selection of αp have not resulted in a 

significant change in the estimation of the final cost while it was observed the choice of βp is 

significant in which lower values of βp (<0.5) resulted in a time consuming computation 

although the final cost is not affected.  

- For higher dimensions (n≤20 and d≤20), αr=1, βr=0.7, N=500 and ρ=0.2 were used for 

calculation of Pf (using Algorithm 1.1) while αp=0.98, βp=0.98, N=100 and ρ=0.1 were used 

for the optimization of the minimum cost (using Algorithm 2.1) to yield a good estimate of 

the final cost. 

- For n=30 and d=30, the estimation of the final cost gave considerably lower than the true 

solution although N=1500 and ρ=0.4 were used. This may be because the algorithm cannot 

simulate the joint probability distribution for high dimensional problems which show the limit 

of the CE algorithm.  
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5. Reliability-Based Design of a Monopile 

Foundation  

5.1 Introduction 

Monopiles are mainly used as a foundation for offshore wind turbines in which both wind and 

wave forces generate significant amount of lateral loads (H) and moments (M). These 

monopile foundations are made of an open-ended circular steel pile with diameters (D) of 4 to 6 

m and embedded pile lengths (L) of 15 to 30 m (LeBlanc, 2009). For attaining stability of the 

monopile foundation, the lateral loads are absorbed by the pile structure via bending moment 

and transferred laterally to the soil. In current practices, these piles are commonly designed 

with the p-y method which is used to determine the lateral soil resistance.   

The Det Norske Veritas (DNV, 2004) and American Petroleum Institute (API, 2000) design 

standards for offshore wind turbine structures use the subgrade reaction approach which 

employs the p-y curve method for determining the lateral soil resistance. This method is based 

on the Winkler soil model which replaces the elastic soil medium with a series of infinitely 

closely spaced independent (uncoupled) springs with stiffness Epy as shown on Figure 5.1.  

The p-y curves give the relation between the integral values of the mobilized resistance from 

the surrounding soil, p, when the pile deflects a distance y laterally. The ratio between p and y 

is used to denote the soil stiffness, Epy (DNV, 2004). The solution of pile displacements and 

pile stresses at any point along the pile for any applied load at the pile head gives the solution 

to the differential equation of the pile given by Equation (5.1).  
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Figure 5.1 Winkler approach with the pile modelled as an elastic beam supported by nonlinear and 

coupled springs (Bekken, 2009) 

Equation (5.1) was developed by Timoshenko (1941) to evaluate the deflection of beams, y. 

The equation for an infinitesimal small element, dz, located at depth z, with Young’s modulus 

Ep and moment of inertia Ip of a monopile subjected to a lateral loading, can be derived from 

the static equilibrium given by: 

0p(y)
dz

yd
V

dz

yd
IE

2

2

4

4

pp                                                   (5.1a) 

With 

M
dz

yd
IE  and    H

dz

dy
V

dz

yd
IE

2

2

pp3

3

pp                               (5.1b) 

yEp(y) py                                                               (5.1c) 

Where, EpIp Flexural rigidity of the pile (kNm2)  

y Pile lateral deflection at any point z along the pile (m) 

p(y) Soil reaction per unit length (kPa) given by Equation (5.1c) 

  H Lateral load (kN) on the pile at position z  

V Axial load (kN) on the pile at position z and    

M Bending moment (kNm) on the pile at position z 
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To solve Equation (5.1a), the p(y) defined as the soil reaction per unit length should be 

initially estimated. For this particular study, the soil type is given as stiff clay under water 

with static loading. The stiff clay is defined by undrained shear strength, Su and soil 

submerged unit weight, γ’; therefore, API (2000) provides the general procedures to follow to 

estimate the p-y curve or p(y) and the respective Epy; 

1-Obtain values of the undrained shear strength, Su (will be discuss in detail on the next 

sections), soil submerged unit weight, γ’, and the pile diameter, D. 

2-Compute the average undrained shear strength Su,mean, over depth, z. 

3-Compute the ultimate soil resistance per unit length of pile (pu) using the smaller of the 

values given by Equation (5.2) as: 

up =2SuD+ γ’Dz+2.83 Suz  or  up =11SuD                              (5.2) 

4-Choose appropriate static loading coefficient, As, for the particular non-dimensional depth 

(z/D). If z/D >=3.5, As=6, otherwise Equation (5.3) is used. 
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5-Establish the initial straight-line portion of the p-y curve as given by Equation (5.4) 

z)y(p sk = Epyy                                                       (5.4) 

Choose the value of ks =Epy/z , variation of soil reaction modulus over depth, from Table 5-1. 

Table 5-1 Representative of ks for overconsolidated clay (API, 2000) 

Su, mean(kPa) 50-100 100-200 300-400 

ks (MN/m
3
) 135 270 540 

6-Calculate the deflection at 0.5pu denoted by y50:                y50 = ε50D                            (5.5) 

Use the appropriate values of 50ε  (strain at Su, mean) from results of laboratory tests or in the 

absence of laboratory tests, from Table 5-2. 

Table 5-2 Representative of ε50  for overconsolidated clay (API, 2000) 

Su, mean 50-100 100-200 300-400 

50ε  0.007 0.005 0.004 

7-Calculation of soil resistance, p, is given by Equations (5.6) to (5.9) as: (API, 2000) 

For 
5.0

50u50 )y/y(0.5pp:)y/y(  As                                     (5.6) 
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For 25.1

0550u
5.0

50u50 ))y(/())y(y((p055.0)y/y(0.5pp:)6y/y( AsAsAsAs    (5.7) 

For As)6(y/yp0.0625p0.411)(6p0.5p:)18y/y(6 50uu
0.5

u50  AsAsAs     (5.8) 

For AsAsAs uu
5.0

u50 p75.0p411.0)6(0.5pp:)18y/y(                    (5.9) 

8-Finally, the soil stiffness, Epy, is calculated as given by Equations (5.10) and (5.11) as: (API, 

2000) 

For p/yE:)10y/y( py
6

50                                         (5.10) 

For  ))((100.25pE:)10y/y( 0.5-6
upy

6
50                         (5.11) 

5.2 Soil variability  

Soil types and properties vary over a given space both vertically and horizontally.  In soils, it 

is common to observe higher correlation in the horizontal direction than the vertical direction 

meaning that soil properties vary more rapidly in the vertical direction than the horizontal. 

Moreover, in addition to spatial variability, there is a point variability which arises as a result 

of uncertainty in estimating (measuring) the correct parameter in just one point.  

Point and spatial variability of soil properties are commonly modeled using random fields 

(Fenton and Griffiths, 2008). This can be explained as; point variability is modeled with mean 

and covariance while spatial variability is modeled with spatial correlation.  

In this study, the variability of undrained shear strength, Su, is studied and Figure 5.2 shows 

variability of Su with depth (spatial variable). A one-dimensional random field is implemented 

to simulate the variability of soil properties in the vertical direction while the soil properties in 

horizontal directions are assumed to be homogeneous. The random field which simulates the 

variability of Su is defined as; 

 d
u RLz(z); S  ~ )(SuSu

h                                  (5.12) 

Where,  Lz(z);S u   is a realization of the random field, z is the reference variable 

 30z0:Lz   or random field discretization (z = z1,…, zn),   L is the reference domain, 

d is the dimensionality of the reference domain (e.g., d = 1; one-dimensional random field)  

and )(SuSu
h is a probability density function (pdf) specifying the random field.  
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Figure 5.2 shows a random field realization of Su, over 30m depth of stiff clay and the 

reference variable, z, is used to denote the random field discretization which divides L in to 

equal n-equal segments. 

  

Figure 5.2 Shear strength over depth 

The undrained shear strength is usually modelled as a lognormal distribution since the values 

are non-negative (Tang, 1995). Therefore, pdf )(SuSu
h is defined as multivariate lognormal 

distribution by linearly increasing mean starting from 𝜇Su
=70 at z=0 with an increment of 2. 

COV is equal to 0.25 while the spatial correlation is defined by the Markovian correlation 

function (exponential autocorrelation function) shown in Equation (5.14).  

z270
uS                                                           (5.13) 

)
δ

2exp()'z',(z'
ulnS


                                                (5.14) 

 Where, δ=|z′-z′′| is the distance between two points in the reference domain   1RL'z',z'   

and ϕ is the correlation length which is defined, according to Fenton and Griffiths (2008), as 
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the distance within which the random properties are significantly correlated (e.g., ϕ =2m in 

this study). 

A common random field algorithm used to generate a Gaussian continuous random field is 

presented in Depina (2014) but this study is concerned with a lognormal distribution of Su, 

therefore, some modifications have been implemented as shown below: 

Algorithm for generating lognormal random fields 

- Discretize the domain (L) into n segments: z = (z1,…, zn), n=30 with each segment equal to 

1m as can be seen in Figure 5.2. 

- From the linear mean given by Equation (5.13), the lognormal mean and standard deviation 

are calculated using Equation (5.15) 
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- Calculate the n x n correlation matrix, C: 

C=

























)(z)z,(z)(z)(z

)z,(z)(z)(z)z,(z)(z)(z

)z,(z)(z)(z)z,(z)(z)(z

)z,(z)(z)(z)(z

nlnS
2

1nlnS1lnSnlnS

n1nlnSnlnS1nlnS11nlnS1lnS1nlnS

n2lnSnlnS2lnS12lnS1lnS2lnS

n1lnSnlnS1lnS1lnS
2

uuuu

uuuuuu

uuuuuu

uuuu















                 

(5.16) 

- Decompose C in to a lower A and an upper A
T

 triangular matrix: 

C=AA
T
                                                           (5.17) 

- Generate n x 1 vector of the standard normal distributed random values:   

USu∼ N(0,1)                                                       (5.18) 

- A Gaussian random field realization with mean 
ulnSμ and A is calculated as: 

Su = 𝜇lnSu
+ 𝐀U                                                   (5.19) 

-A lognormal random field realization with mean 
ulnSμ and A is calculated as: 

                                       Su = exp (𝜇lnSu
+ 𝐀U)                                              (5.20) 

Equation (5.20) gives the lognormal random field which simulates the uncertainties in the soil 

shear strength, Su. 



 

Reliability-based design optimization with Cross-Entropy method        Master Thesis, Spring 2015 

                        Hiruy Ghidey Hishe  

55 Reliability-Based Design of a Monopile Foundation 

5.3 Lateral load  

The monopile is laterally loaded with a random horizontal force H as a result of both wind 

and wave forces and a moment M = H·30 m applied at the sea bed level. The load is modeled 

by the Gumbel distribution (to simulate the extreme loading effect on the monopile resistance) 

with μH=2500KN and COVH=0.2. (See Figure 5.3) 

 

Figure 5.3 Gumbel distribution of lateral load, H 

5.4 Pile geometry 

The pile material is steel, modeled as a linear elastic with a Young’s modulus of Ep = 

210MPa, a Poisson’s ratio of 𝜐= 0.3, moment of inertia, Ip and a unit weight of p = 78.35 

KN/m3
.  
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w                              (5.21) 

Various pile parameters (diameter, D, embedded length, L, and wall thickness, w) have been 

considered, as will be discuss in the next sections, to conduct the reliability-based design 

optimization of the monopile foundation. 

5.5 Reliability analysis (Estimation of Pf for the monopile foundation) 

The performance of monopile foundations is regulated by the serviceability limit state (SLS) 

and ultimate limit state (ULS). The SLS defines the state of the monopile where the 

deformations exceed the tolerance values while the load carrying capacity has not been 

surpassed. Specifically, the SLS is defined by a rotational limit (inclination) of the monopile 

at the sea bed level while the ultimate limit state (ULS) can be defined as an event where a 
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structure as a whole or some of its load bearing elements exceeded the load bearing capacity 

of the monopile (DNV, 2004 and API, 2000). 

In this particular study, the CE method is implemented to estimate the probability of failure in 

which the load bearing capacity is exceeded (ULS); therefore, the reliability analysis is 

performed to analyze the effects of the uncertainties in Su and H together with the pile 

parameters; D, w, L on the ULS. For a given combination of θ= [Su, H] and t=[D, w, L], the 

performance function is defined as the violation of the allowable (tolerable) stress given by 

Equations (5.22) and (5.23). 

)()( lim tθ,tθ,  g                                               (5.22) 

    
pI 2

DM*
)( tθ,                                                     (5.23) 

Where 

lim  = 235MPa is the allowable yield stress of the monopile steel. 

)( tθ,  is the maximal stress in the monopile for diameter, D, moment of inertia, Ip, 

and moment, M (calculated using Equation (5.1b)). 

5.5.1 Preparation of the Algorithm for Reliability 

Procedures described in Algorithm 1.1 have been followed to develop the Cross-entropy 

algorithm to solve reliability or Pf. 

1. Based on the findings in Chapter 4, N=100, ρ=0.2, αr =1 and βr=0.7 have been selected 

and the iterator was set to t =1. 

2. The performance function, g(θ,t), was calculated from the input parameters θ = [Su, H] 

and t=[D, w, L] 

 The domain (L) has been discretized into n segments: z = (z1,…, zn), where 

n=30 with each segment equal to 1m. 

 USu∼N(0,1)  has been generated  as given by Equation (5.18) and transformed 

to Su using Equation (5.20). 

 Similarly, UH∼ N(0,1) has been generated and transformed to H.                           

 Moments along, z = (z1,…, zn), the pile have been calculated using Equation 

(5.1b).  

Note: p-y analysis discussed above is used to calculate the moments. 

 )( tθ,  is calculated using Equation (5.23). 
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 Finally, g(θ,t) was estimated. 

3. Sort g(θ,t) values in increasing order and denote the ρN+1 quantile of the performance 

function by γt. 

4. All USu and UH values which yield g(θ,t)≤ γt  were identified and the weight has been 

calculated using  Equation (3.9). The mean (μUsu  and  μUH) and standard deviation (𝜎Usu  

and  𝜎UH)  were calculated  by solving Equation (3.11) and updated using Equations 

(3.17a) and (3.17b). The iterator was updated to t= t+1.Then, new normally distributed 

samples of USu and UH with mean (μUsu  and  μUH) and standard deviation (𝜎Usu and  𝜎UH) 

were generated with a sample size, N, as follow: 

U= μUsu +randn (𝜎U)                                               (5.24) 

UH= μUH +randn (𝜎UH)                                              (5.25) 

5. USu and UH were transformed to Su and H respectively and the procedures stated in 

step 2 have been repeated. 

6.  If g(θ,t)≤ 0, the probability of failure is calculated by Equation (3.14) as discussed in 

Chapter 3.  

Pf = 


N

)vu;;
1

T(θ)I(θ
N

1

i

ii W                                            (5.26) 

5.6 Optimization Problem 

RBDO problems are defined by Kupfer and Freudenthal (1977) as the minimizations of 

expected life time costs considering construction, maintenance costs and eventual failure.  

Optimization is conducted in the discretized space Ω𝐭, such that the input parameters of the 

pile parameters are defined as t=[D,w, L] ⊂ Ω𝐭 and bounded such as D ∈ [4.0, 4.1, …,6.0], w 

∈ [0.02, 0.03,…, 0.1], and L ∈ [25,26, …, 40]. The RBDO of the monopile foundation is then 

defined as: 

Minimize: C (θ,t)= )(C
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D
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                                         (5.27a)                                                          

Subjected to  

Pf (θ,t) ≤ Pf  
tol

,                                                                                                                          (5.27b) 

[4.0, 0.02, 25] ≤ t ≤ [6.0, 0.1, 40]                                                                          (5.27c) 
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The cost of construction and installation is assumed to be Ci(t)=2€/kg of the monopile with 

density of steel, ρ=7835kg/m
3
, while the failure cost is estimated to be CF=10

7
€. For failure 

consequences associated with offshore wind turbines, Pf 
tol 

=10
-4

 is selected.  

5.6.1 Preparation of the Algorithm for Optimization 

Procedures described in Algorithm 2.1 have been followed to implement the CE algorithm to 

solve the optimization with the objective function given by Equation (5.27a). 

1- From the important findings of Chapter 4; N=100, ρ=0.1, αp =0.98 and βp=0.98 have 

been selected and the iterator was set to t =1. 

2- N bounded random numbers have been generated such as D ∈ [4.0, 4.1,…, 6.0], w ∈ 

[0.02, 0.03,…, 0.1], and L ∈ [25,26,…, 40]. 

3- Using each set of the randomly generated numbers, ti=[Di, wi, Li], the probability of 

failure, Pf , was calculated as discussed in Section 5.5.1 or Algorithm 1.1; therefore, 

for the values which satisfy the reliability constraint, the final cost is calculated using 

Equation (5.27a). 

4- C(θ,ti) values were sorted in increasing order and denoted the ρN+1 quantile of the 

performance function by γt. 

5- All ti values which yield C(θ,ti)≤ γt were identified using weight, W =1, Equation 

(3.16) was solved to get the respective vector of mean, [μD, μw, μL] and standard 

deviation, [𝜎D, 𝜎w, 𝜎L] and then updated using Equations (3.17a) and (3.17b). 

6- Then, new normally distributed samples ti=[Di,wi, Li] based on mean, [μD, μw, μL] and 

standard deviation, [𝜎D, 𝜎w, 𝜎L]  were generated with a sample size, N. In each case the 

generated values were checked if it is within the bounds as given by Equation (5.27c). 

D∼ N(μD, 𝜎D)                                                             (5.28) 

w∼ N(μw, 𝜎w)                                                             (5.29) 

L∼ N(μL, 𝜎L)                                                             (5.30) 

7- The procedures starting from step 2 were repeated until the mean values converge or 

the standard deviations were close to zero.  

8- The mean, [μD, μw, μL], at the last iteration are taken as the optimal monopile design 

parameters and the corresponding cost is the design cost of the monopile. 
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5.7 Results and Discussion 

The estimation of the probability of failure for the laterally loaded monopile foundation was 

started by studying the effects of αr and βr of the CE method on the estimates of the failure 

probabilities and the results were compared with the result of Subset simulation (SS).  

For optimization analysis, the results obtained by implementing the CE algorithm are 

compared with Simulated annealing and compared in terms of efficiency and accuracy. 

Section 5.7.1 presents the results and discussion for the reliability analysis while the 

optimization analysis results are summarized in Section 5.7.2. 

5.7.1 Reliability Analysis of a monopile foundation  

The discussion in Chapter 4 recommended the use of N≥100 and ρ>0.1 to estimate Pf for high 

dimensional problems. Therefore, N=100 and ρ=0.2 have been chosen for this case to study 

the effects of the updating parameters. Moreover, the parameters D=5m, w=0.05m and 

L=30m have been selected with in the allowable range for the monopile parameters (Equation 

(27.c)). 

Similar to the discussion in Chapter 4, the study on αr and βr showed that the choice of  αr 

does not have a significant effect on the final result while βr between 0.5 and 1 leads to 

accurate estimate. As βr approaches to 1, the calculation was time consuming (high number of 

iteration) because of less convergence of the standard deviation to zero. In general, it can be 

observed from Table 5-3, the Pf values are less than 10
-4

 which shows the capability of the CE 

method in estimating rare-events.  

Table 5-3 Estimation of Pf  for the different combinations of αr and βr 

αr βr Iteration, T Pf 

1 0.5 6 1,854e-06 

1 0.7 6 6,043e-06 

1 1 8 1,223e-06 

Table 5-4 shows the effect of ρ, on Pf for αr= 1, βr= 0.7 and N=100. Each case was run 10 

times and it was observed the estimate of Pf  yielded a value between 7.800e-06 and 3.500e-05 

so Table 5-4 shows the average values obtained. The discussion on Chapter 4 recommended 

the use of ρ > 0.1 for high dimensional problems and similarly in this case, ρ = 0.1 resulted in 

time consuming computation and instability in Pf estimations. The use of ρ = 0.2 and 0.3 

resulted similar estimate of Pf though more consistent results were obtained for ρ = 0.3. 



 

Reliability-based design optimization with Cross-Entropy method        Master Thesis, Spring 2015 

                        Hiruy Ghidey Hishe  

60 Reliability-Based Design of a Monopile Foundation 

Table 5-4 Effect of ρ on estimate of Pf  

 

CE 

ρ Iteration, T Time (minutes) Pf 

0.2 6 6 7.800e-06  

0.3 5 8 7.697e-06 

5.7.1.1 Comparison of the CE method with subset simulation 

The study on the monopile foundation is extended further to compare the results obtained 

based on the CE algorithm with SS method in terms of efficiency and accuracy.  Two cases 

have been considered: 

 Case-1) Comparison of the CE (using N=100, ρ = 0.2 and N=300, ρ = 0.3) with SS (using 

N=100 and ρ = 0.1) for the monopile foundation with parameters; D=5m, w=0.05m and 

L=30m. 

Table 5-5 shows the results of 15 simulations of the CE and SS for Case-1 and the number of 

iterations (T), time of simulation and Pf are also presented. The consistency in estimating Pf 

was found to be better in the CE method than SS in which most results were concentrated in 

the border between 10
-5 

and 10
-6

 while for the SS method there was some discrepancy which 

range between10
-4 

and 10
-7

. Moreover, the consistency of the result was improved by 

increasing the sample size from 100 to 300 although the computation became more intensive 

(time consuming). 

Table 5-5 Comparison of CE with SS for monopile foundation, Case-1 

CE (N=100, ρ = 0.2) 

  

CE (N=300, ρ = 0.3) 

  

SS (N=100, ρ = 0.1) 

T 
Time 

(minute) 
Pf T 

Time 

(minute) 
Pf T 

Time 

(minute) 
Pf 

4 6 1.86e-05 4 8 4.52e-05 6 7 2.66e-06 

5 3 3.87e-06 6 11 4.81e-06 4 5 6.00e-05 

6 7 1.82e-06 4 11 3.82e-06 5 7 1.00e-06 

4 6 4.19e-05 4 12 1.09e-05 6 7 4.90e-06 

7 8 1.36e-06 4 11 7.92e-06 4 5 2.70e-05 

6 7 2.34e-06 4 11 6.31e-06 6 8 7.40e-06 

5 6 1.54e-05 4 10 5.54e-06 5 6 2.60e-06 

5 4 3.87e-06 4 11 3.87e-06 6 7 1.30e-06 

6 3 4.50e-06 4 9 8.36e-06 5 7 3.90e-06 

5 6 2.29e-06 4 11 2.29e-06 6 7 2.40e-07 

5 6 4.36e-06 4 12 1.36e-05 5 8 1.30e-05 

5 6 7.31e-06 5 11 6.23e-06 6 8 2.10e-06 

5 6 3.11e-05 4 12 3.11e-06 6 7 4.30e-06 

5 7 3.00e-06 4 11 8.12e-06 5 6 4.30e-07 

5 6 3.11e-06 4 11 3.11e-06 5 6 4.30e-06 
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In Table 5.5, 15 simulation results for Case-1 were presented and Table 5.6 summarizes the 

results as a mean and covariance of Pf. Moreover, the average time of simulation and the 

number of iterations (T) are presented. The mean values of Pf obtained by the CE agree well 

with the estimate of Pf using SS. The comparison based on the covariance and time of 

simulation show that the CE gave more consistent estimate of Pf  in a relatively less time of 

simulation. 

Table 5-6 Summary of comparison between CE and SS methods 

Method 
CE (N=100, ρ = 

0.1) 
CE (N=300, ρ = 0.3) SS (N=100, ρ = 0.1) 

Pf 
Mean, μ 9.653e-06 8.881e-06 9.008e-06 

 COV  1.26 1.18 1.74 

T Average 5 4 5 

Time 

(minute) 
Average 

6 11 7 

Case-2) Comparison of the CE (using N=100, ρ = 0.2) with Subset simulation for a random 

monopile foundation parameters (4≤D≤6, 0.01≤w≤0.1 and 25≤L≤40).  

The simulations results for Case-2 are presented in Table 5-7. Each simulation was run three 

times and the results displayed in the table are the average values.  

Table 5-7 shows the estimate of Pf obtained by implementing the Cross-entropy method gave 

similar result (accuracy) and number of iteration (efficiency) with the SS method. The values 

of probability of failure vary for the different combinations of D, w and L. For example, 

D=4m, w=0.02m and L=20m gave highest probability of failure in Table 5-7. 

Table 5-7 Comparison with SS for random pile dimensions (D, w and L) 

D 

(m) 

w 

(m) 

L 

(m) 

CE SS 

Pf Iteration Pf Iteration 

4 0.02 20 1 1 1 1 

4.50 0.06 35 3.3989e-06 6 6.7.6e-06 6 

5.2 0.08 40 <1.00e-8 >8 <1.00e-8 >8 

5.4 0.02 28 0.0117 2 0.058 2 

5.6 0.08 34 <1.00e-8 >8 <1.00e-8 >8 

5.6 0.02 40 0.02 2 0.01 3 

5.8 0.04 28 2,7226e-06 4 2.6e-06 4 

5.80 0.02 20 0.0144 2 0.01 2 

6 0.05 30 <1.00e-8 >8 <1.00e-8 >8 

6 0.08 40 <1.00e-8 >8 <1.00e-8 >8 
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5.7.2 Results for the Optimization Problem 

The simulation of the optimization sub-problem within the RBDO problem was time 

consuming and in average it took five days for each simulation. Three simulations were run to 

get the optimum monopile parameters (D, w, L) which yield the minimum (design) cost 

(Cmin). The results obtained using the CE algorithm and Simulated annealing are presented in 

Table 5-8.  

Table 5-8 Pile Parameters D, w, L with initial cost Ci and minimum final cost Cmin 

Method 
Simul

ation 

Final Cost 

(Cmin, €) 
D (m) w (m) L(m) Pf 

Initial Cost 

(Ci, €) 

CE (cross-entropy) 

1 3.1372e+05 5.70 0.045 25 8.500e-5 3.1286e+05 

2 3.2490e+05 5.15 0.045 30 4.600e-5 3.2481e+05 

3 3.0268e+05 5.95 0.035 29 5.200e-5 2.9998e+05 

Simulated Annealing  3.0021e+05 5.20 0.04 29 6.400e-5 2.9880e+05 

The results on Table 5-8 shows the initial cost and design (optimum) cost obtained using the 

Cross-entropy method agree well with the robust Simulated annealing optimization method.  

The optimum results D, w and L are the mean values obtained after four iterations. The 

stopping criterion for the CE algorithm was set so that the standard deviation for the wall 

thickness of the pile, w, is less than 10
-4

 so that D converged with in three decimal places and 

L converged to two decimal places as can be seen in Table 5-9. 

Table 5-9 Convergence of D, w and L as a result of small standards deviation 

standard 

deviation 

Iteration 

1 2 3 4 

𝜎D  0.1190 0.0267 0.0059 0.00163 

𝜎w  0.0029 0.0006 0.0001 4.00e-05 

𝜎L  1.3651 0.2667 0.0831 0.0229 

The three simulation results using the CE method have already presented in Table 5-8. The 

optimum monopile parameters for Simulation 2 were obtained to be D=5.15m, w=0.045m, 

L=30 and the minimum cost, Cmin= 3.2490e+05€. Therefore, the next portion illustrates how 

the optimum monopile dimensions and the design cost have been obtained.  

Figure 5.4 illustrates how the optimum diameter of the monopile was attained. The diameter 

was initially bounded between 4m and 6m and under the implementation of the CE algorithm 

on optimization problem it converged to D=5.15m after four iterations. 
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Figure 5.4 Evolution of D to optimum value, D=5.15m, after four iterations 

Similarly, Figure 5.5 illustrates how the optimum embedment depth of the monopile was 

attained. L was initially bounded between 25m and 40m. The evolution of L from the initial 

bounded limit to the optimum under the CE algorithm resulted in L=30m after four iterations.  

 

Figure 5.5 Evolution of L to optimum value, L=30m, after four iterations 

The wall thickness, w, plot on Figure 5.6 shows the convergence of w to the optimum, 

w=0.045m after four iterations. From Table 5-9, it was shown that the standard deviation after 

four iterations was 𝜎w =4.00e-05 for N=100 samples which shows an accurate convergence of 

w to 0.045m.  
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Figure 5.6 Evolution of w to optimum value, w=0.045m, after four iterations 

 

Figure 5.7 Evolution of cost to optimum value, Cmin= 3.2490e+05€, after four iterations 

So far, Figures 5.4, 5.5 and 5.6 illustrated convergence to the optimum monopile parameters 

D, w and L. Figure 5.7 shows the evolution of the estimated costs to the design (minimum) 

cost at each iteration. The convergence to design cost was obtained after four iterations to be 

Cmin= 3.2490e+05€.  

As a conclusion, the above discussion and Table 5-8 show the estimated design cost by 

implementing the CE algorithm agrees well with the robust simulated annealing optimization 

method. 
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6. Summary and Conclusions 

6.1 Introduction 

The main task for this thesis was to implement the Cross-entropy method to solve 

independently reliability and optimization sub-problems within the RBDO problem. The 

performance of the Cross-entropy method was examined on an RBDO problem with an 

analytical solution and a practical problem of a monopile foundation for offshore wind 

turbine. The investigation on the performance of the Cross-entropy method with respect to 

accuracy and efficiency on both reliability and optimization problems as compared to several 

commonly used methods was also the main interest to be evaluated. 

A numerical approach has been utilized as the basic study methodology. Preparation of the 

algorithms to solve both reliability and optimization problems was done by implementing and 

coding on the high level language of MATLAB (version R2014a and R2013b), developed by 

MathWorks company. 

The summary of important findings, conclusion, recommendations and possible future works 

are presented in this chapter. 

6.2 Summary of Important findings 

The implementation and evaluation of the CE algorithm was performed initially on a RBDO 

problem with an analytical solution. Then, the CE algorithm was implemented further on a 

RDBO problem of a laterally loaded monopile foundation of offshore wind turbine. Some 

important and interesting findings have been observed by conducting this particular study. 

These basic findings are presented in the next sections, divided in-to reliability (Section 6.2.1) 

and optimizations findings (Section 6.2.2). 
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6.2.1 Summary on reliability analysis and findings 

Algorithm 1.1 was initially implemented for reliability analysis to estimate Pf on one-

dimensional problem (1D). The implementation of the CE algorithm was then extended to 

two-dimensional (2D) and even up to hundred dimensional (100D) problems. Parallel to the 

implementation of the algorithm, the study on the effects of the updating parameters (αr and 

βr), percentage of failure at each iteration (ρ), and number of samples (N) were evaluated.  

The developed algorithm was first tested on a problem within an analytical solution and 

finally applied on a monopile foundation design; therefore, the important findings can be 

presented on the following two categories. 

6.2.1.1 Important findings based on a problem that has analytical solution 

-For a one-dimensional (n=1 and d=1) problem, the CE method gave a better estimate of 

probability of failure as compared to the existing methods such as Monte Carlo (MC) and 

Importance sampling (IM). Moreover, the CE method required less computational time and 

required less sample size as compared to MC and IM methods. Therefore, the method was 

found to be both accurate and efficient. 

-For two-dimensional (n=2 and d=2) problems, the CE method resulted in good estimation of 

Pf  and required less computational time (efficient) as compared to both MC and SS methods.  

-For problems with 2<n<10 and 2<d<10, the study on the updating parameters αr and βr 

showed that the choice of  αr does not have a significant effect on the final result while βr 

between 0.5 and 1 leads to an accurate estimate; therefore, αr=1 and βr=0.7 have been selected 

on this particular study. Moreover, the study on N and ρ showed the use of N=100 and ρ=0.1 

were found sufficient to give good estimates of Pf and required less computational time than 

higher N and ρ.  

-For problems with n=(10-20) and d=(10-20), increase in N was required, and change from 

N=100 to 1500 resulted in a more accurate estimate of Pf. 

-For problems with n=(20-60) and d=(20-60), the use of ρ=0.1 did not yield accurate 

estimates; therefore, it was increased to ρ=0.4 and together with  N=1500 gave good estimate 

of Pf. 

-For problems with n>60 and d>60, the method did not yield stable estimates. This may 

demonstrate the limit of the CE method. 



 

Reliability-based design optimization with Cross-Entropy method        Master Thesis, Spring 2015 

                        Hiruy Ghidey Hishe  

67 Summary and Conclusions 

6.2.1.2 Important findings based on monopile foundation design 

-For a given monopile foundation parameters D=5m, w=0.05m and L=30m, the choice of  αr 

did not show significant effect on the estimation of Pf while βr between 0.5 and 1 leads to an 

accurate estimate. As βr approaches to 1, the calculation was found to be time consuming; 

therefore, as discussed earlier on Section 6.2.1.1, αr=1 and βr=0.7 were chosen, and the results 

based on the CE method agree well with the Subset simulation estimates of Pf. 

-The number of iterations and time required for a simulation has been slightly less for the CE 

than SS (Subset simulation) for the same N and ρ. 

-The consistency of the results, which is based on the covariance calculation of Pf estimates, 

was found to be better in the CE than SS method. 

6.2.2 Summary on Optimization analysis and findings 

The study on optimization problems concentrated to minimize the final cost for a given 

objective function. RBDO problems are commonly defined as minimizations of expected life 

time costs considering construction, maintenance costs and eventual failure (Kupfer and 

Freudenthal, 1977); therefore, the reliability analysis method discussed earlier or Algorithm 

1.1 was used to estimate failure probability, and the procedures given by Algorithm 2.1 were 

followed to solve the optimization problems.  

Similar to the reliability analysis problems presented earlier, the implementation of the CE 

method on optimization problems was initially performed on a problem which has an 

analytical solution. Then, the method was implemented on a monopile foundation design to 

estimate the monopile parameters D, w, and L that yield the minimum (design) cost; therefore, 

the important findings observed are presented next. 

6.2.2.1 Important findings based on a problem that has an analytical solution 

-For two-dimensional (n=2 and d=2) problems, the use of sample sizes 200, 500 and 2000 

resulted in good estimates of the final cost approximate to the analytical (true) solution.  

-The study on the updating parameters showed that change in αp does not significantly affect 

the final result of the minimum cost while it was observed during simulation that the choice of 

βp can significantly affect the accuracy and efficiency of the approach.  

-For higher dimensions (n≤20 and d≤20), the reliability analysis required large sample size, 

N, and ρ>0.1. Therefore, the parameters αr=1, βr=0.7, N=500 and ρ=0.2 were used for 

estimation of Pf (using Algorithm 1.1) while αp=0.98, βp=0.98, N=100 and ρ=0.1 were used 
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for optimization of the minimum cost (using Algorithm 2.1) to yield good estimate of the final 

cost. 

-For n=30 and d=30, the estimate of the final cost based on the CE method gave considerably 

lower than the true estimate although N=1500 and ρ=0.4 were used. This may be because the 

algorithm cannot simulate the high dimensional problem showing the limit of the CE method. 

6.2.2.2 Important findings based on a monopile foundation  

-The implementation of the CE algorithm on a monopile foundation RBDO problem yielded 

the optimum monopile dimensions (D, w and L) and the respective final design cost 

(minimum cost). The final design cost obtained using the CE algorithm was compared to an 

existing optimization method (Simulated annealing) and showed good agreement.  

-Since the RBDO for the monopile foundation features only three optimization variables (D, 

w and L), the CE-RBDO performed well; therefore, αp=0.98, βp=0.98, N=100 and ρ=0.2 have 

been found to be enough to give estimate of the minimum cost. 

6.3 Conclusion, Recommendations and Future works 

6.3.1 Conclusion and Recommendations 

The aim of this thesis is to implement the Cross-entropy method for reliability-based design 

optimization (RBDO). The CE method showed efficient performance on RBDO problems 

with analytical solutions and a monopile foundation design of offshore wind turbines. 

Moreover, the method showed efficient and accurate result by comparing it to analytical 

solutions and existing reliability as well as optimization methods.  

The CE method showed limitations in the dimensionality of both reliability and optimization 

problems. Special attention should be given to parameter selection so that the important 

findings on α, β, ρ and N from this study can be used as a preliminary input for similar 

problems but it is recommended to study the effects of the parameters by changing the values. 

Finally, the main merit and beauty of the CE method can be summed as the ability and 

flexibility to solve both reliability and optimization problems which makes the method 

suitable to solve RBDO problems; therefore, the implementation of CE to solve RBDO 

problems saves time rather than the use of two different methods to solve the reliability and 

optimization sub-problems within the RBDO respectively. 
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6.3.2 Future works 

The efficiency and accuracy of the cross-entropy method can be modified:  

 The CE method showed limitations in the dimensionality of both reliability and 

optimization problems for the academic problem considered. It gave accurate 

estimates of probability of failure for dimensionality or input parameters d<60 

while it gave estimates of the minimum cost up to 30 input parameters. The study 

can extend to investigate and evaluate on the limits of the CE method to account 

for more dimensional. 

 It is recommended to give special attention for the parameter selection (α, β, ρ and 

N) because the final output may be affected by the values of the parameters. 

Detailed parameter analysis study can be conducted that may enhance the 

efficiency of the method. 
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