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Abstract

In this thesis, the modelling of one-dimensional two-phase flows is stud-
ied, as well as the associated numerical methods. The background for
this study is the need for numerical tools to simulate fast transients in
pressurised carbon dioxide pipelines, amongst other things the crack ar-
rest problem. This is a coupled mechanical and fluid-dynamical problem,
where the pressurised gas causes a crack to propagate along the pipe,
while being depressurised to the atmosphere. The crack stops when the
pressure at the crack tip cannot drive it any longer.

Two-phase flow models were derived from the fundamental local con-
servation laws for mass, momentum and total energy. Through averag-
ing of these relations, a system of one-dimensional transport equations
was obtained, that must be closed by physical models and assumptions.
The underlying assumptions made in some of the classical models of the
literature are made clear. The numerical methods to solve hyperbolic
conservation laws, based on the Finite Volume Method, are subsequently
presented.

A partially-analytical Roe scheme for the N -phase drift-flux model has
been derived. The wave structure of the model is presented. It is mostly
analytical, except for some thermodynamical parameters. This makes the
scheme very flexible with respect to the thermodynamical relations. An
algorithm to resolve the thermodynamical state of a mixture of N phases
following the stiffened gas equation of state is derived.

A Roe scheme for the six-equation two-fluid model has been derived.
This model needs to be regularised to be hyperbolic. A tool to verify the
physical relevance of a regularisation term is provided.

The instantaneous chemical relaxation is performed on a five-equation
two-fluid model to derive a four-equation model, where the phases are in
full mechanical, thermal and chemical equilibrium at all times.

An application example of numerical methods to solve the crack arrest
problem is presented. A method is developed to evaluate the flow through
a crack, and compared in the single-phase case to an analytical method.
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1 Introduction

In the framework of carbon capture and storage (CCS), pipelines are an
option to transport carbon dioxide (CO2) over large distances, between
the point of capture and the storage site. According to the International
Energy Agency’s BLUE Map scenario, CCS will contribute to reducing
the global CO2 emissions by about 8 gigatonnes in 2050 [36]. In addition
to allow cost optimisation, simulation tools are required to ensure the op-
eration safety of the pipelines, both in normal and accidental situations.
One of the main risks is the occurrence of a crack propagation (cf. Fig-
ure 1.1). Driven by the internal pressure of the pipe, an initial crack may
propagate due to the concentration of tension at the crack tip. Besides,
the depressurisation of the gas through a crack may cool the pipe mate-
rial, possibly leading to transition in the material mechanical behaviour,
and reducing its strength. A depressurisation of the pipeline may occur
both in normal operation, for example for maintenance, and in accidental

Figure 1.1: A pipe after a crack has propagated.
Credit: SINTEF Material and Chemistry.
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2 1. Introduction

circumstances, for example an excavator puncturing the pipe.
In a simplified explanation, the crack arrest problem can be seen as

a race between the propagating crack and the pressure wave inside the
pipe. A crack in an initially pressurised pipe will cause a depressurisation.
The depressurisation wave will propagate away from the initial crack,
releasing the stress on the walls. However, if the stress at the crack tip
is strong enough, the crack will propagate at a given speed. If the crack
is faster than the pressure wave, the pressure at the crack tip will always
remain high, and the crack will continue to run. Otherwise it will stop.
In practice, the problem is dependent on many thermodynamical, fluid-
dynamical and mechanical parameters, like the pressure, the temperature,
the number of phases and the flow regime, the steel quality, etc. Hence,
tools are required to simulate this coupled mechanical and fluid-dynamical
problem in order to be able to avoid crack propagation.

These issues are already known from natural gas transport. Tools have
been developed, however, they are empirical and suited for material and
pressures used 30–40 years ago [68]. They have to be recalibrated for each
pipe material of interest, making parameter studies difficult. Besides, the
thermodynamical behaviour of the fluid is an important parameter, and
natural gas and CO2 are very different on this point. Therefore, there is
an interest in developing numerical tools helping to design CO2 transport
pipelines. These tools will naturally be applicable to transport of other
gases.

Under transport conditions, CO2 will normally be supercritical or in liq-
uid state (critical point: 73.8 bar, 31.1◦C [67]). During a depressurisation,
multiphase mixtures will occur, for example liquid-gas, but supercritical
CO2 and dry ice may also be present. Thus, the numerical tool must
involve multiphase flow models. In the present work, the mixtures are
limited to liquid and gas.

Numerical simulation tools for multiphase flows already exist. The
nuclear industry uses them in safety analysis, and many codes have been
developed (CATHARE [8], RELAP5/MOD3 [75], WAHA3 [42]). The
main interest in nuclear safety analysis is in heat transfer and transport to
ensure that the nuclear core is always cooled. The petroleum industry also
uses multiphase flow simulation tools to design pipelines for oil and gas
transport (OLGA [6], LedaFlow [15]). However, these tools do not include
the crack arrest problem, they are more designed for normal operation, for
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example evaluating the pumping energy requirement and the occurrence
of slug flows. Numerical simulation tools for the crack arrest problem
should on the contrary focus on very fast transients, since the pressure
waves are important. These regimes are not covered by the existing tools
from the nuclear or the petroleum industry.

The present thesis treats both the fluid-dynamical models and the nu-
merical methods for the crack arrest problem. Chapter 2 shows the com-
plete derivation of a multiphase flow model and all the assumptions that
are made in the process. Chapter 3 presents the numerical methods for
conservation laws. Then, in Chapter 4, brief summaries of the papers are
presented, and my personal contributions in each of them are made clear.
Chapter 5 gives some concluding remarks.





2 Physical modelling

In this chapter, we derive one-dimensional two-phase flow models. In
the first part, we start from the fundamental conservation laws for mass,
momentum and energy, and mostly follow the derivation presented in the
book of Drew and Passman [17]. We first present the local conservation
laws, before we derive the interface relations. Then these relations are
averaged to produce one-dimensional transport equations. In the second
part (Section 2.5), we introduce modelling assumptions which will lead
to a closed model, ready to be solved by numerical methods for transport
equations. This derivation mostly contains already known elements, but
is presented here in a way that makes visible the underlying modelling
assumptions in well-known and widely-used two-phase flow models.

2.1. The local conservation equations

Inside each phase, the behaviour of the material is governed by local
conservation equations [17, Sec. 8.1]. First, mass is conserved. For a fluid
phase k, we have

∂ρk
∂t

+∇ · (ρkvk) = 0, (2.1)

where ρk is the density of phase k and vk its velocity. Then, momentum
is transported, but not locally conserved since it can be exchanged with
the environment through external forces. Its transport equation is

∂

∂t
(ρkvk) +∇ · (ρkvk ⊗ vk) = −∇pk +∇ · τ k + ρkbk, (2.2)

where p is the pressure, τ is the stress tensor and b the external body
force. The symbol ⊗ represents the outer product. Finally, we can derive
a transport equation for total energy or entropy. It will be proved in the

5



6 2. Physical modelling

A

x x+ δx

Figure 2.1: One-dimensional control volume in a pipe.

following that both are physically equivalent (in the absence of shocks).
The total energy transport equation is

∂

∂t

(
ρk
(
ek +

1
2v

2
k

))
+∇ ·

(
ρkvk

(
ek +

1
2v

2
k

))
= ∇ · ((τ k − pkI) · vk − qk) + ρk(rk + bk · vk), (2.3)

where e is the internal energy, q is the internal heat flux and r is the
external heat source.

When it comes to the entropy transport equation, Drew and Pass-
man [17, Sec. 8.1] give an inequality. In the present derivation, we make
it an equality, and specify the missing terms. To this end, we write the
entropy balance in a motionless fluid, in a one-dimensional control vol-
ume [x, x + δx] of cross-section area A, as shown in Figure 2.1. All the
quantities are considered uniform to first order in the control volume. In
a time interval [t, t+ δt], the extensive entropy S(x, t) = ρ(x, t)s(x, t)Aδx
in the control volume will vary due to the internal heat flux q through
both ends of the control volume. Note that the entropy flux due to the
heat flux involves the temperature T (x, t) inside the control volume. The
external heat source r also affects the entropy in the control volume. The
remaining entropy sources are gathered in s′irr.

(ρ(x, t+ δt)s(x, t+ δt)− ρ(x, t)s(x, t))Aδx =
q(x, t)Aδt

T (x, t)

− q(x+ δx, t)Aδt

T (x, t)
+ (ρAδx)

rδt

T (x, t)
+ (ρAδx)s′irrδt, (2.4)

This corresponds – to first order after having simplified Aδtδx – to the
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equation

∂(ρs)

∂t
= − 1

T

∂q

∂x
+

ρr

T
+ ρs′irr. (2.5)

By adding a term for convective transport of entropy to the latter equa-
tion, we obtain the entropy transport equation for phase k

∂

∂t
(ρksk) +∇ · (ρkvksk) = − 1

Tk
∇ · qk +

ρkrk
Tk

+ ρks
′
k,irr. (2.6)

2.2. Equivalence of energy and entropy equations

Starting from the entropy equation (2.6), we are able to recover the inter-
nal energy part of the energy equation (2.3). We first expand the gradient
and the divergence in equation (2.6), where we drop the phase index k
for clarity

∂(ρs)

∂t
+
∑
j

∂(ρvjs)

∂xj
=
∑
j

(
− 1

T

∂qj
∂xj

)
+

ρr

T
+ ρs′irr. (2.7)

Expanding the derivatives in the two first terms and using the mass equa-
tion (2.1), we obtain

ρ
∂s

∂t
+
∑
j

ρvj
∂s

∂xj
=
∑
j

(
− 1

T

∂qj
∂xj

)
+

ρr

T
+ ρs′irr. (2.8)

Now, the fundamental thermodynamic relation states, in a version
which is also valid out of equilibrium,

T ds = de− p

ρ2
dρ−

∑
i

μi dni, (2.9)

where μi is the thermodynamic potential of component i in phase k, and
ni the specific amount of matter of component i in phase k.
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The latter differential is substituted into the entropy equation (2.6),

ρ

T

(
∂e

∂t
− p

ρ2
∂ρ

∂t
−
∑
i

μi
∂ni

∂t

)

+
∑
j

ρvj
T

(
∂e

∂xj
− p

ρ2
∂ρ

∂xj
−
∑
i

μi
∂ni

∂xj

)

=
∑
j

(
− 1

T

∂qj
∂xj

)
+

ρr

T
+ ρs′irr, (2.10)

which is simplified into, using the mass equation (2.1)

∂ρe

∂t
+
∑
j

∂ρvje

∂xj
+
∑
j

p
∂vj
∂xj

=
∑
j

(
− ∂qj
∂xj

)
+ ρr

+ ρ
∑
i

⎛⎝μi
∂ni

∂t
+
∑
j

(
vjμi

∂ni

∂xj

)⎞⎠+ Tρs′irr. (2.11)

We have now demonstrated that the entropy equation (2.6) leads, through
the thermodynamic relation (2.9), to an internal energy transport equa-
tion

∂ρe

∂t
+∇ · (ρve) + p∇ · v

= −∇ · q + ρr + ρ
∑
i

μi

(
∂ni

∂t
+ v · ∇ni

)
+ Tρs′irr. (2.12)

In this equation, the term

ρ
∑
i

μi

(
∂ni

∂t
+ v · ∇ni

)
(2.13)

can be written with a material derivative as

ρ
∑
i

μi
Dni

Dt
. (2.14)
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It is the internal energy consumption rate due to the evolution of chemical
reactions. It can be summarised in the term

ρ
∑
i

μi
Dni

Dt
= −ρrchem. (2.15)

Remark that this concerns bulk chemical reactions. It does not include
phase change or other reactions at the interface. After substitution in
(2.12), the internal energy transport equation becomes

∂ρe

∂t
+∇ · (ρve) + p∇ · v = −∇ · q + ρr − ρrchem + Tρs′irr. (2.16)

The kinetic part of the energy equation (2.3) comes from the momentum
equation (2.2), which is multiplied by v

v · ∂

∂t
(ρv) + v · ∇ · (ρv ⊗ v)︸ ︷︷ ︸

LHS

= −v · ∇p+ v · ∇ · τ + v · ρb. (2.17)

The vector operators of the left-hand side are expanded

LHS =
∑
i

vi
∂(ρvi)

∂t
+
∑
i

⎛⎝vi∑
j

∂ (ρvivj)

∂xj

⎞⎠, (2.18)

and the derivatives expanded such that the left-hand side of the mass
equation (2.1) appears multiplied by a factor v2i

LHS =
∑
i

(
ρvi

∂vi
∂t

)

+
∑
i

⎛⎝ρvivj∑
j

∂vi
∂xj

⎞⎠+
∑
i

v2i

⎛⎝∂ρ

∂t
+
∑
j

∂(ρvj)

∂xj

⎞⎠. (2.19)

Therefore, the left-hand side becomes

LHS =
∑
i

(
1

2
ρ
∂v2i
∂t

)
+
∑
i

⎛⎝1

2
ρvj
∑
j

∂v2i
∂xj

⎞⎠, (2.20)
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and we can use the mass equation (2.1) again to move everything inside
the derivatives

LHS =
∑
i

(
1

2

∂ρv2i
∂t

)
+
∑
i

⎛⎝1

2

∑
j

∂ρv2i vj
∂xj

⎞⎠. (2.21)

This is equivalent to

LHS =
1

2

∂ρv2

∂t
+

1

2
∇ ·
(
ρv2v
)
. (2.22)

Therefore the kinetic part of the energy equation is

∂

∂t

(
1

2
ρv2
)
+∇ ·

(
1

2
ρv2v

)
= v · (−∇p+∇ · τ ) + ρv · b. (2.23)

We obtain the total energy equation by adding (2.16) and (2.23)

∂

∂t

(
ρ

(
e+

1

2
v2
))

+∇ ·
(
ρv

(
e+

1

2
v2
))

= v · (−∇p+∇ · τ )

− p∇ · v −∇ · q + ρ (r + v · b)− ρrchem + Tρs′irr. (2.24)

Comparing the latter equation with the energy equation (2.3), we are
able to be more specific about the term s′irr. First, the evolution of a
chemical reaction comes with entropy creation. However, it does not
have any effect on the system’s total energy, because it is an internal
energy transformation from chemical potential energy to heat. Therefore
it seems reasonable to cancel the term ρrchem in the energy equation (2.24)
by integrating it in s′irr. It will thus appear in the entropy equation (2.6).
Second, there should be an entropy production term related to the viscous
dissipation of kinetic energy in the velocity gradients. Since the total
energy is conserved, unless there is an exchange with the environment,
the terms accounting for internal phenomena should be in conservative
form. For a Newtonian fluid, τ is symmetrical and we can write

τ : ∇v + v · ∇ · τ = ∇ · (τ · v), (2.25)

where the operator : represents the double-dot product between to ma-
trices of the same dimensions. v · ∇ · τ appears in the kinetic energy
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equation (2.23). Therefore, to form the conservative term ∇ · (τ · v) in
the total energy equation (2.3), the viscous dissipation of kinetic energy
must take the form

ρsvisc =
τ : ∇v

T
. (2.26)

Thus, the entropy production term can be rewritten

ρs′irr =
τ : ∇v

T
+

ρrchem
T

+ ρsirr. (2.27)

Remark also that

v · ∇p+ p∇ · v = ∇ · (pv). (2.28)

Consequently, the right-hand side of the energy equation (2.24) derived
from the entropy and momentum equations is equivalent to the right-hand
side of (2.3) if we assume that we already account for all entropy sources,
so that sirr = 0. The entropy equation (2.6) is rewritten as

∂

∂t
(ρs) +∇ · (ρvs) = − 1

T
∇ · q +

ρr

T
+

τ : ∇v

T
+

ρrchem
T

+ ρsirr. (2.29)

2.3. Interface relations

The equations presented above are bulk equations for one phase. In multi-
phase flows, several phases share the physical domain and interact at their
interfaces. In the present section, we derive the interface relations that
relate the bulk quantities of two adjacent phases. A control surface ΣS is
defined across the interface (cf. Figure 2.2), of infinitesimal thickness 2ε.
In addition, one control surface for each phase is defined such that one of
its faces is on the interface, and the other faces are superimposed with ΣS

in the bulk of the phase. They are called Σg and Σ�. These three control
surfaces are attached to the interface, so that their velocities are that of
the interface. They define three control volumes, called VS , Vg and V�

respectively, that we consider as open sets. This means that the interface
is contained in VS , but not in Vg and V�. The interface is denoted by
Σi. In the following, the fluxes through the short sides of thickness ε are
always neglected, since ε can be taken as small as one wants with respect
to the length of the long sides.
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Interface

Phase g Phase �

vg

Σi

Σg

vi

v�

Σ�

ΣS
ε ε

Figure 2.2: Control volumes on the interface

2.3.1. Mass relation

We start with the differential form of the mass equation for phase k (2.1)

∂ρk
∂t

+∇ · (ρkvk) = 0. (2.30)

We first integrate it over a control volume Vσ, and use the divergence
theorem to transform the volume integral of the divergence to a surface
integral over the control surface Σσ delimiting Vσ. This gives∫

Vσ

∂ρk
∂t

dν +

∮
Σσ

ρkvk · nσ dς = 0, (2.31)

where nσ is the unit vector normal to surface Σσ and pointing outwards.
k denotes the relevant phase k = g or k = �. Then we add and subtract
the interface velocity vi from vk, to obtain∫

Vσ

∂ρk
∂t

dν +

∮
Σσ

ρkvi · nσ dς +

∮
Σσ

ρk(vk − vi) · nσ dς = 0. (2.32)

This can be rewritten as

Di

Dt

(∫
Vσ

ρk dν

)
+

∮
Σσ

ρk(vk − vi) · nσ dς = 0, (2.33)



2.3. Interface relations 13

where
Di

Dt
=

∂

∂t
+ vi · ∇ (2.34)

is the material derivative with respect to a fluid particle attached to the
interface, therefore having a velocity vi. We can write this because vi is
the velocity of the control surface, it is not a function of x in the bulk.
Therefore, it can be taken out of the integral and the gradient.

Now, we write equation (2.33) for the control volume VS , from which
we subtract (2.33) written for Vg and for V�. Since the interface does
not contain mass, the volume integrals in domains Vg and V� cancel with
that in domain VS . On the other hand, though all the contributions
on the control surface ΣS are cancelled by contributions on the control
surfaces Σg and Σ�, those on the interface Σi remain. We obtain

0 = −
∫
Σi

ρg(vg − vi) · ng dς −
∫
Σi

ρ�(v� − vi) · n� dς, (2.35)

where ng and n� are the unit vectors normal to the interface, pointing
outwards from the phases g and � respectively. Since the latter equation
is valid for any surface element of the interface, the sum of the integrands
is uniformly zero. We obtain the mass interface relation

0 = ρg(vg − vi) · ng + ρ�(v� − vi) · n�. (2.36)

2.3.2. Momentum relation

We follow the same principle as for the mass relation above, from the
momentum equation (2.2). The momentum conservation law in integral
form for the control volumes Vσ where σ = S, g, � is

Di

Dt

(∫
Vσ

ρkvk dν

)
= −
∮
Σσ

ρkvk ⊗ (vk − vi) · nσ dς

+

∮
Σσ

(τ k − pkI)nσ dς +

∫
Vσ

ρkbk dν. (2.37)

The latter equation is then written for the control surfaces Σg and Σ� and
subtracted from the one written for ΣS . Now, the volume integrals have
to be treated carefully. They indeed do not necessarily cancel. Since we
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are working with open sets, the interface Σi remains after the subtraction
of the control volumes Vg and V� from the control volume VS . Therefore
surface terms can remain. Since the interface has no mass, it does not
have momentum, so that no surface term can remain on the left-hand
side. However, as to the body force term

∫
Vσ

ρkbk dν, it may reduce to a
non-zero surface term. For example, surface tension acts as an external
force on the phases and is a surface force term.

Surface tension is composed of two forces. The first is normal to the
interface and is caused by the curvature of the interface (cf. Figure 2.3a).
We first need to define the mean curvature of a surface. The principal
curvatures κ1 and κ2 of a surface at a given point are the minimum and
maximum curvatures of the surface at that point. They are algebraic
values, positive if the curve bends in the same direction as the chosen
normal vector, negative otherwise. They are the inverse of the curvature
radii R1 and R2. The mean curvature is defined as

Hs,k =
1

2

(
1

R1
+

1

R2

)
. (2.38)

Remark that this is an algebraic value, dependent on the choice of normal
vector. Here the index k means that the normal vector used is nk, pointing
outwards from phase k. For example, on Figure 2.3a where the interface
is convex seen from phase g, Hs,� is defined with respect to n� and is
therefore negative. The mean curvature with respect to phase g is Hs,g =
−Hs,�. Then, the normal component of the surface tension force can be
expressed invariably with respect to both phases and is equal to

F st = 2σHs,gng = 2σHs,�n�, (2.39)

where σ is the surface tension. It tends to flatten the interface.
The second component of the surface tension is tangential, and is caused

by a gradient of surface tension on the interface (cf. Figure 2.3b). A
gradient in surface tension can be caused by chemicals, like surfactants, or
a temperature gradient in the fluid for example. This causes the interface
to be more strongly curved where the surface tension is higher. This also
causes a jump in tangential stress across the interface, which means that
the phases exert a tangential force on each other. The tangential stress
is given by

τ st = ∇sσ, (2.40)
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Phase g

Phase �

n�

dς

(a) Normal component

A
B

Phase g

Phase �

τ g

τ �

(b) Tangential component
(σA < σB)

Figure 2.3: Surface tension

where ∇sσ is the surface gradient of the surface tension.

The surface integrals are treated as in the previous subsection, only the
contributions on the interface remain. We have consequently

0 = −
∮
Σi

[ρgvg ⊗ (vg − vi) · ng + ρ�v� ⊗ (v� − vi) · n�] · dς

+

∮
Σi

[(τ g − pgI) · ng + (τ � − p�I) · n�] · dς

+

∫
Σi

(2σHs,gng +∇sσ) · dς. (2.41)

Since the latter equation is valid for any surface element of the interface,
the sum of the integrands is uniformly zero. We obtain the momentum
interface relation

0 = ρgvg ⊗ (vg − vi) · ng + ρ�v� ⊗ (v� − vi) · n�

− (τ g − pgI) · ng − (τ � − p�I) · n� −∇sσ − 2σHs,gng. (2.42)
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2.3.3. Energy relation

We now apply the energy conservation law in integral form coming from (2.3)
to the three control volumes Vσ where σ = S, g, �, which gives

Di

Dt

(∫
Vσ

ρk
(
ek +

1
2v

2
k

)
dν

)
︸ ︷︷ ︸

i

=

−
∮
Σσ

ρk
(
ek +

1
2v

2
k

)
(vk − vi) · nσ dς︸ ︷︷ ︸

ii

+

∮
Σσ

((τ k − pkI)vk) · nσ dς︸ ︷︷ ︸
iii

+

∮
Σσ

qk · (−nσ) dς︸ ︷︷ ︸
iv

+

∫
Vσ

ρkrk dν︸ ︷︷ ︸
v

+

∫
Vσ

ρkbk · vk dν︸ ︷︷ ︸
vi

, (2.43)

and apply the same process of subtracting the contributions of the rela-
tions for g and � from the contributions of the relation for S. The resulting
relation is

Di

Dt

(∫
Σi

es,i dς

)
︸ ︷︷ ︸

I

=

−
∮
Σi

(
ρg
(
eg +

1
2v

2
g

)
(vg − vi) · ng + ρ�

(
eg +

1
2v

2
�

)
(v� − vi) · n�

)
dς︸ ︷︷ ︸

II

+

∮
Σi

[((τ g − pgI)vg) · ng + ((τ � − p�I)v�) · n�] dς︸ ︷︷ ︸
III

−
∮
Σi

[
qg · ng + q� · n�

]
dς︸ ︷︷ ︸

IV

+

∫
Σi

rs,i dς︸ ︷︷ ︸
V

+

∫
Σi

(2σHs,gng +∇sσ) · vi dς︸ ︷︷ ︸
VI

,

(2.44)

where the index s, i designates a surface quantity on the interface. In the
subtraction, the terms have been treated as follows. Since the interface
has no mass, it has no kinetic energy. However, it has internal energy
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for example in the form of surface tension. Therefore, from the term i
in (2.43) an interface contribution will remain, which is the term I. Term
II is a surface integral and follows from term ii, as term III follows from
term iii, and term IV from term iv. Then, the subtraction of the volume
energy source terms – term v – leaves the surface energy source term V,
acting along the interface. Note that it is an external source: it is not for
example the heat production due to phase change. It could be radiation
warming up a dark fluid at the interface with a transparent phase. Finally,
the subtraction of the terms accounting for the work of the body forces
– term vi – leaves the surface force work term VI. It can be for example
the work of the force due to interfacial tension.

Now, term I is a material derivative on the interface. We can expand
it and write it as

Di

Dt

(∫
Σi

es,i dς

)
=

∫
Σi

∂es,i
∂t

dς +

∫
Li

es,ivi · nLi dl, (2.45)

where Li is the contour line of the surface element on the interface Σi,
and nLi a vector normal to the contour line pointing outwards. Using the
divergence theorem, we obtain

Di

Dt

(∫
Σi

es,i dς

)
=

∫
Σi

∂es,i
∂t

dς +

∫
Σi

∇s · (es,ivi) dς. (2.46)

Now, since (2.44) is valid for any surface element of the interface, the
sum of the integrands on each sides of the equal sign are uniformly equal
to each other. We obtain the energy interface relation

∂es,i
∂t

+∇s · (vies,i) =

− ρg
(
eg +

1
2v

2
g

)
(vg − vi) · ng − ρ�

(
eg +

1
2v

2
�

)
(v� − vi) · n�

+ (τ g − pgI)vg · ng + (τ � − p�I)v� · n�

− qg · ng − q� · n� + rs,i + 2σHs,gng · vi + vi · ∇sσ. (2.47)

2.3.4. Energy relation expressed as an enthalpy relation

Using the definition of the enthalpy

h = e+
p

ρ
, (2.48)
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the mass transfer and stress terms in (2.47) can be transformed as

−ρk
(
ek +

1
2v

2
k

)
(vk − vi) · nk + (τ k − pkI)vk · nk

= −ρk

(
ek +

pk
ρk

+ 1
2v

2
k

)
(vk − vi) · nk − pkvi · nk + τ kvk · nk

= −ρk
(
hk +

1
2v

2
k

)
(vk − vi) · nk − pkvi · nk + τ kvk · nk.

(2.49)
Substituting this for k = g and k = � in (2.47), we obtain

∂es,i
∂t

+∇s · (vies,i) =

− ρg
(
hg +

1
2v

2
g

)
(vg − vi) · ng − ρ�

(
h� +

1
2v

2
�

)
(v� − vi) · n�

+ τ gvg · ng + τ �v� · n� − pgvi · ng − p�vi · n�

− qg · ng − q� · n� + rs,i + 2σHs,gng · vi + vi · ∇sσ. (2.50)

Now, we know that the pressure difference between the two phases is due
to the normal component of the surface tension force. Therefore the work
of the former is equal to the work of the latter. We then have

pgvi · ng + p�vi · n� = 2σHs,gng · vi. (2.51)

Substituting this into (2.50) gives

∂es,i
∂t

+∇s · (vies,i) =

− ρg
(
hg +

1
2v

2
g

)
(vg − vi) · ng − ρ�

(
h� +

1
2v

2
�

)
(v� − vi) · n�

+ τ gvg · ng + τ �v� · n� − qg · ng − q� · n� + rs,i + vi · ∇sσ. (2.52)



2.3. Interface relations 19

2.3.5. Internal energy relation

The internal energy equation in integral form, derived from (2.16), for the
three control volumes Vσ, where σ = S, g, � is

Di

Dt

(∫
Vσ

ρkek dν

)
︸ ︷︷ ︸

i

+

∮
Σσ

ρkek(vk − vi) · nσ dς︸ ︷︷ ︸
ii

= −
∮
Σσ

pkvk · nσ dς︸ ︷︷ ︸
iii

−
∮
Σσ

qk · nσ dς︸ ︷︷ ︸
iv

+

∫
Vσ

ρkrk dν︸ ︷︷ ︸
v

+

∫
Vσ

τ k : ∇vk dν︸ ︷︷ ︸
vi

.

(2.53)

We apply the subtraction process and obtain

Di

Dt

(∫
Σi

es,i dς

)
︸ ︷︷ ︸

I

= −
∮
Σi

ρgeg(vg − vi) · ng dς −
∮
Σi

ρ�eg(v� − vi) · n� dς︸ ︷︷ ︸
II

−
∮
Σi

pgvg · ng dς −
∮
Σi

p�v� · n� dς︸ ︷︷ ︸
III

−
∮
Σi

qg · ng dς −
∮
Σi

q� · n� dς︸ ︷︷ ︸
IV

+

∫
Σi

rs,i dς︸ ︷︷ ︸
V

. (2.54)

As for the energy equation, an interfacial energy may remain from term
i in (2.53). This is term I in (2.54). The terms ii, iii and iv are surface
integrals and their treatment is straightforward. The next term (v) is
the external heat source rk, which may leave an interfacial contribution
(term V ). Finally, the viscous dissipation term vi disappears since there is
a no-slip condition at the interface. Due to phase change for example, the
velocity may be discontinuous across the interface, however, this would
be due to mass changing phase and not to slip of the phases.

We then have, since the relation is valid for any surface element of the
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interface,

∂es,i
∂t

+∇s · (es,ivi) = −ρgeg(vg − vi) · ng − ρ�eg(v� − vi) · n�

− pgvg · ng − p�v� · n� − qg · ng − q� · n� + rs,i. (2.55)

2.3.6. Entropy relation

Finally, we can apply the same method to the entropy balance (2.6) across
the interface. However, some concepts appear, which are difficult to de-
fine. For the three control volumes Vσ where σ = S, g, �, we have

Di

Dt

(∫
Vσ

ρksk dν

)
︸ ︷︷ ︸

i

= −
∮
Σσ

ρksk(vk − vi) · nσ dς︸ ︷︷ ︸
ii

+

∮
Σσ

qk
Tk

· (−nσ) dς︸ ︷︷ ︸
iii

+

∫
Vσ

ρkrk
Tk

dν︸ ︷︷ ︸
iv

+

∫
Vσ

τ k : ∇vk

Tk
dν︸ ︷︷ ︸

v

+

∫
Vσ

ρkrchem,k

Tk
dν︸ ︷︷ ︸

vi

+

∫
Vσ

ρksirr,k dν︸ ︷︷ ︸
vii

. (2.56)

The subtraction of the volume integrals is then performed, and gives the
relation

∂ss,i
∂t

+∇s · (ss,ivi)︸ ︷︷ ︸
I

= − ρgsg(vg − vi) · ng − ρ�s�(v� − vi) · n�︸ ︷︷ ︸
II

−
qg
Tg

· ng −
q�
T�

· n�︸ ︷︷ ︸
III

+
rs,i,g
Tg

+
rs,i,�
T�︸ ︷︷ ︸

IV

+
rs,chem,i,g

Tg
+

rs,chem,i,�

T�︸ ︷︷ ︸
VI

+ sirr,s,i︸ ︷︷ ︸
VII

.

(2.57)

For the term i in (2.56), a surface entropy term ss,i may remain, which
is term I in (2.57). The terms ii and iii are surface integrals and have
straightforward treatment. The next volume integral term is iv, and
represents the external heat sources. An interfacial term (IV) can remain.



2.4. Averaging 21

Next, the viscous dissipation term v does not leave any surface terms,
as explained in the section above. The term vi represents the entropy
creation due to chemical reaction. An interfacial term (VI) may remain
in case of phase change or other interfacial chemical reactions. Finally,
for the last term vii, there may be an interfacial entropy creation due to
irreversible phenomena. This is term VII.

Note that the terms rs,i and rs,chem,i had to be split into phasic con-
tributions, because the entropy production involves phase temperatures.
An interface temperature does not exist. It is not necessarily straight-
forward how to split those terms, especially the chemical reaction heat
production, because it involves knowing on which side of the interface the
heat is produced.

2.4. Averaging

The balance equations describe the behaviour of the bulk in a phase,
while the interface relations describe the interactions between the phases.
To obtain fluid-dynamical equations for multiphase flow, we can use av-
eraging techniques. There are different averaging methods, with respect
to time, space or ensemble [17]. Spatial averaging consists in averaging
the thermodynamical and fluid-dynamical quantities over a given domain
at a given time. Typically, one can perform averaging over the cross-
section of a pipe flow [4]. The drawback of this method is that it can lose
relevance when the characteristic dimensions of the flow – for example
bubble size – are larger than the dimensions of the averaging domain.
Time averaging [38, 95] consists in looking at a given point, and average
the quantities over time. The same drawback can be noticed, when the
flow characteristic time scales are larger than the averaging time scale.

These drawbacks can be conceptually avoided by using ensemble av-
eraging. It consists in averaging the quantities – at a given time and a
given location – over all the possible realisations of a flow. The ensemble
of the realisations of a flow is the ensemble of all the possible micro- and
mesoscopic configurations that give the observed macroscopic flow. For
example, the flow of a bubbly liquid is characterised by its velocity, the
gas fraction, the size of the bubbles, etc., but the actual precise position
of the bubbles is not relevant to the study of the flow. It will vary over
time and space even if the macroscopic flow remains the same. The draw-
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back of ensemble averaging compared to spatial averaging is that it does
not take into account the cross-sectional structure of the flow. It is then
common to combine ensemble averaging with spatial averaging [4].

In the present work, we perform the ensemble averaging of the equations
derived above.

2.4.1. Ensemble averaging

The definition of the ensemble average of a quantity Ψ in a flow at point
x and time t is

E(Ψ(x, t)) =

∫
E
Ψ(x, t;μ) dm(μ), (2.58)

where μ is a micro- and mesoscopic realisation of the flow, dm(μ) is the
“occurrence weight” of the realisation μ, and E is the ensemble of all the
realisations μ that give the observed macroscopic flow.

2.4.2. Ensemble averaged balance equations

The generic balance equation for a quantity Ψ can be written [17, Sec. 11]

∂

∂t
(ρΨ) +∇ · (ρΨ⊗ v) = ∇ · J + ρs, (2.59)

where J is the flux of the transported quantity and s its source. This
generic balance equation becomes after averaging

∂

∂t
E(χkρΨ) +∇ · E(χkρΨ⊗ v)−∇ · E(χkJ)

− E(χkρs) = E([ρΨ⊗ (v − vi)− J ] · ∇χk) (2.60)

where χk is the characteristic function or phase indicator function defined
by

χk(x, t;μ) =

{
1 if phase k is present at (x, t) in realisation μ,

0 otherwise.
(2.61)

The Gauss and Leibniz rules [17, p. 103] have been used. They give
relations between the average of a derivative and the derivative of an
average. They are, respectively,

E(χk∇f) = ∇E(χkf)− E(fk,i∇χk) (2.62)
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and

E
(
χk

∂f

∂t

)
=

∂E(χkf)

∂t
− E
(
fk,i

∂χk

∂t

)
, (2.63)

where fk,i is the surface average of fk at the interface. Note that all
the quantities are defined over the whole domain. For example, ρ(x, t)
jumps between the liquid density and the gas density across the domain,
depending on which phase is present at point x and at time t in the
realisation μ. The characteristic function for phase k designates which is
the phase present at this point.

Now, the mass equation (2.1) is recovered from (2.59) by setting Ψ = 1,
J = 0 and s = 0. Its averaged expression is therefore

∂

∂t
E(χkρ) +∇ · E(χkρv) = E(ρ(v − vi) · ∇χk). (2.64)

The momentum equation (2.2) follows from (2.59) by setting Ψ = v,
J = T = τ − pI and s = b. Its average expression is

∂

∂t
E(χkρv) +∇ · E(χkρv ⊗ v) = ∇ · E(χk(τ − pI))

+ E(χkρb) + E([ρv(v − vi)− (τ − pI)] · ∇χk). (2.65)

Finally, the energy equation (2.3) is found from (2.59) by setting Ψ =
e + 1

2v
2, J = Tv − q = (τ − pI)v − q and s = r + b · v. Its average

expression is

∂

∂t
E
(
χkρ
(
e+ 1

2v
2
))

+∇ · E
(
χkρ
(
e+ 1

2v
2
)
v
)

= ∇ · E(χk((τ − pI)v − q)) + E(χkρ(r + b · v))
+ E
([
ρ
(
e+ 1

2v
2
)
(v − vi)− ((τ − pI)v − q)

]
· ∇χk

)
. (2.66)

2.4.3. Average variables

In the above section, we have derived the average of the balance equations.
To be able to use the equations, we have to define average variables, such
that we obtain balance equations that describe the behaviour of average
quantities. First, the ensemble average of the characteristic function is [17]

αk = E(χk), (2.67)
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where the averaging operator E was defined in (2.58). αk is usually called
the volume fraction of phase k in the mixture, though it is not strictly
one since it is not a spatial average. However, it is closely related as it
can be seen as the expected value of the volume fraction [17, p. 122]. The
average of the density is weighted by αk

ρ̄k =
E(χkρ)

αk
. (2.68)

All the other average variables are averages weighted either by αk or αkρ̄k.
They are

• Velocity average

v̄k =
E(χkρv)

αkρ̄k
. (2.69)

• Stress tensor average

τ̄ k − p̄kI =
E(χkτ )

αk
− E(χkp)I

αk
. (2.70)

• Body force average

b̄k =
E(χkρb)

αkρ̄k
. (2.71)

• Internal energy average

ēk =
E(χkρe)

αkρ̄k
. (2.72)

• Heat flux average

q̄k =
E(χkq)

αk
. (2.73)

• Heat source average

r̄k =
E(χkρr)

αkρ̄k
. (2.74)

Note that these are only definitions. No modelling assumptions are made.
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2.4.4. Manipulations on the averaged equations

We can now use the average variables in the balance equations.

Mass equation

The mass equation (2.64) can be written

∂

∂t
(αkρ̄k) +∇ · (αkρ̄kv̄k) = E(ρ(v − vi) · ∇χk). (2.75)

It is now a balance equation for the quantity αkρ̄k. The term on the
right-hand side is the average of the mass transfer to phase k from the
other phases. It will be discussed in Section 2.4.6.

Momentum equation

When it comes to the momentum equation (2.65), the definitions of the
average variables are not enough. The average of the product v ⊗ v can-
not simply be written as the product of two averages. We define the
fluctuation of the velocity with respect to its average as [17, p. 124]

v′k = v − v̄k. (2.76)

Remark that this definition applies at any point, regardless of which phase
is present at this point. However, it is only relevant at points where phase
k is present. The use of the characteristic function χk assures us that we
always use the relevant definition of the fluctuation. Being aware that
E(Ψ̄) = Ψ̄ and that the average of the fluctuation is zero, we can write

E(χkρv ⊗ v) = E(χkρ(v̄k + v′k)⊗ (v̄k + v′k))
= E(χkρv̄k ⊗ v̄k) + E(χkρv

′
k ⊗ v′k)

= E(χkρ)v̄k ⊗ v̄k + E(χkρv
′
k ⊗ v′k)

= αkρ̄kv̄k ⊗ v̄k − αkT
t
k,

(2.77)

where we have introduced the Reynolds-stress tensor T t
k. Its concept is

similar to the Reynolds-stress tensor in turbulence, but the definition of
the velocity fluctuation is different. It accounts for an apparent stress
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caused by the fluctuation of the fluid velocity, that disappears from the
product of the averages. The definition of T t

k is

T t
k = −E(χkρv

′
k ⊗ v′k)

αk
. (2.78)

We can now rewrite the averaged momentum equation

∂

∂t
(αkρ̄kv̄k) +∇ · (αkρ̄kv̄k ⊗ v̄k) = ∇ · (αkτ̄ k − αkp̄kI)

+∇ · (αkT
t
k) + αkρ̄kb̄k + E([ρv ⊗ (v − vi)− (τ − pI)] · ∇χk). (2.79)

The term
E([ρv ⊗ (v − vi)− (τ − pI)] · ∇χk)

on the right-hand side represents the momentum exchange between the
phases, which is caused by mass transfer and mechanical work at their
interfaces. It will be discussed in Section 2.4.6.

Energy equation

Now, we turn to the averaged energy equation (2.66). Similarly to the
momentum equation, we have to take into account the fluctuation velocity.
By the same principle as used in (2.77), we can write the average of the
kinetic energy

E
(
χkρ

1
2v

2
)
=

1

2
αkρ̄kv̄

2
k +

1

2
αkρ̄kē

kin
k , (2.80)

where

ēkink =
E (χkρv

′
k · v′k)

αkρ̄k
(2.81)

is the average of the fluctuation kinetic energy. Further, we can write the
average of the kinetic energy flux

E
(
χkρ

1
2v

2v
)
=

1

2
αkρ̄k

(
v̄2k + ēkink

)
v̄k − v̄k · αkT

t
k +

1

2
αkρ̄kve

kin
k , (2.82)

where

vekink =
E (χkρv

′
k · v′k ⊗ v′k)
αkρ̄k

(2.83)
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is the average of the fluctuating flux of fluctuation kinetic energy. We
also have to do the same for various terms containing the velocity. The
internal energy

E (χkρev) = αkρ̄kēkv̄k + αkρ̄kve
f
k , (2.84)

where

vefk =
E (χkρev

′
k)

αkρ̄k
(2.85)

is the average of the fluctuating flux of internal energy, the stress tensor

E(χk(τ − pI)v) = αk(τ̄ k − p̄kI)v̄k + αkvT
f
k , (2.86)

where

vT f
k =

E(χk((τ − pI)v′k))
αk

(2.87)

is the average of the fluctuating work of the stress tensor, and the external
forces

E(χkρb · v) = αkρ̄kb̄k · v̄k + αkρ̄kvb
f
k , (2.88)

where

vbfk =
E(χkρb · v′k)

αkρ̄k
(2.89)

is the average of the fluctuating work of the external forces.
After inserting the various average variables and rearranging, we obtain

the average energy equation

∂

∂t

(
αkρ̄k

(
ēk +

1

2
v̄2k +

1

2
ēkink

))
+∇ ·

(
αkρ̄k

(
ēk +

1

2
v̄2k +

1

2
ēkink

)
v̄k

)
= ∇ ·

(
αk

(
τ̄ k − p̄kI + T t

k

)
v̄k

)
−∇ · (αkq̄k) + αkρ̄k(r̄k + b̄k · v̄k)

+∇ ·
(
αk

(
vT f

k − ρ̄kve
f
k − 1

2
ρ̄kve

kin
k

))
+ αkρ̄kvb

f
k

+ E
([
ρ
(
e+ 1

2v
2
)
(v − vi)− ((τ − pI)v − q)

]
· ∇χk

)
. (2.90)

Note that T t
k is symmetrical, therefore the multiplication by v̄k is com-

mutative. This is a transport equation for the averaged total energy.
The kinetic energy is split between the contribution due to the average
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velocity, and the component due to the fluctuation of the velocity. The
fluctuation of the velocity also caused the appearance of terms accounting
for the fluctuation of other quantities, like the body forces. Again, the
term

E
([
ρ
(
e+ 1

2v
2
)
(v − vi)− ((τ − pI)v − q)

]
· ∇χk

)
represents the energy exchange between the phases, and is discussed in
Section 2.4.6.

2.4.5. Averaging of the interfacial relations

We have performed the averaging process on the bulk equations. These
equations contain interaction terms between the phases. By averaging the
interfacial relations (2.36), (2.42) and (2.47), we can relate the interaction
terms for the different phases with each other. We first introduce the
interfacial delta function [17, p. 101]

δ(x− xi) =

{
∞ if x is on the interface,

0 if x is not on the interface,
(2.91)

such that, in the context of volume averaging,∫
V
δ(x− xi) dν = S, (2.92)

where V is any control volume, and S the interface area contained in V .
Explained in words, this function designates the interface and gives it a
non-zero weight in volume integrals. In the context of ensemble averaging,
the principle is similar. We have∫

E
δ(x− xi) dm(μ) = mi, (2.93)

where E is an ensemble of realisations μ, which are weighted by their
occurence weight m(μ). The integral is equal to the probability mi that
the point x is on the interface in the ensemble E. Equipped with this
tool, we can give a non-zero weight to the interface in the ensemble aver-
aging process. To derive the average of the interfacial relations, they are
multiplied by the delta function, before averaging is performed. To this
end, we can remark that we have [17, p. 101]

δ(x− xi)nk = −∇χk. (2.94)
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Mass relation

For the mass relation (2.36), this gives

E
[(

ρg (vg − vi) · ng + ρ� (v� − vi) · n�

)
· δ (x− xi)

]
= 0. (2.95)

With the relation (2.94), this becomes

E(ρg(vg − vi) · ∇χg) + E(ρ�(v� − vi) · ∇χ�) = 0, (2.96)

which can be written synthetically

Λg + Λ� = 0, (2.97)

where

Λk = E(ρk(vk − vi) · ∇χk). (2.98)

Momentum relation

Applying the averaging process to the momentum relation (2.42), we ob-
tain

E(ρgvg ⊗ (vg − vi) · δ(x− xi)ng) + E(ρ�v� ⊗ (v� − vi) · δ(x− xi)n�)

− E((τ g − pgI) δ(x− xi)ng)− E((τ � − p�I) δ(x− xi)n�)

− E(δ(x− xi)∇sσ)− E(2σHs,gδ(x− xi)ng) = 0. (2.99)

By the use of the relation (2.94), as well as of the definitions

∇sσ = E(δ(x− xi)∇sσ) (2.100)

and

2σHs,gng = E(2σHs,gδ(x− xi)ng), (2.101)

it becomes

− E(ρgvg ⊗ (vg − vi) · ∇χg)− E(ρ�v� ⊗ (v� − vi) · ∇χ�)

+ E((τ g − pgI)∇χg) + E((τ � − p�I)∇χ�)−∇sσ − 2σHs,gng = 0.
(2.102)
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This can be written synthetically

v̄m
g,iΛg + v̄m

�,iΛ� +Mg +M � = −∇sσ − 2σHs,gng, (2.103)

where the average interface velocity v̄m
k,i is defined as

v̄m
k,i =

E(ρkvk ⊗ (vk − vi) · ∇χk)

E(ρk(vk − vi) · ∇χk)
, (2.104)

and the interfacial stress is defined by

Mk = −E((τ k − pkI)∇χk) (2.105)

Energy relation

Finally, we average the energy interfacial relation (2.47). By multiplying
it by the interface delta function and averaging, we obtain

E
(
∂es,i
∂t

δ(x− xi)

)
︸ ︷︷ ︸

I

+ E(∇s · (vies,i) δ(x− xi))︸ ︷︷ ︸
II

=

− E
(
ρg
(
eg +

1
2v

2
g

)
(vg − vi) · δ(x− xi)ng

)︸ ︷︷ ︸
IIIg

− E
(
ρ�
(
eg +

1
2v

2
�

)
(v� − vi) · δ(x− xi)n�

)︸ ︷︷ ︸
III�

+ E(((τ g − pgI)vg) · δ(x− xi)ng)︸ ︷︷ ︸
IVg

+ E(((τ � − p�I)v�) · δ(x− xi)n�)︸ ︷︷ ︸
IV�

− E(qg · δ(x− xi)ng)︸ ︷︷ ︸
Vg

−E(q� · δ(x− xi)n�)︸ ︷︷ ︸
V�

+ E(rs,iδ(x− xi))︸ ︷︷ ︸
VI

+ E(2σHs,gδ(x− xi)ng · vi)︸ ︷︷ ︸
VII

+ E(δ(x− xi)vi · ∇sσ)︸ ︷︷ ︸
VIII

.

(2.106)
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We first need to define a quantity that represents the probability that
the point x is on the interface. It can be interpreted as a measure of the
amount of interface area in the flow. It is the average of the delta function

ak = E(δ(x− xi)). (2.107)

For the term I, we write the average as

E
(
∂es,i
∂t

δ(x− xi)

)
= E
(
∂es,i
∂t

δ(x− xi)

)E(δ(x− xi))

E(δ(x− xi))

= ak
∂es,i
∂t

,

(2.108)

where the average variation of interface energy is defined by

∂es,i
∂t

=
E
(
∂es,i
∂t δ(x− xi)

)
E(δ(x− xi))

, (2.109)

and for the term II

E(∇s · (vies,i) δ(x− xi)) = E(∇s · (vies,i) δ(x− xi))
E(δ(x− xi))

E(δ(x− xi))

= ak∇s · (vies,i).
(2.110)

where the average gradient of interface energy is defined by

∇s · (vies,i) =
E(∇s · (vies,i) δ(x− xi))

E(δ(x− xi))
. (2.111)

On the right-hand side of (2.106), the terms IIIg and III� are rewritten
as

E
(
ρk
(
ek +

1
2v

2
k

)
(vk − vi) · ∇χk

)
=
(
ēk,i +

1
2 v̄

e2

k,i

)
Λk, (2.112)

where the interfacial averages are defined as

ēk,i =
E(ρkek(vk − vi) · ∇χk)

E(ρk(vk − vi) · ∇χk)
, (2.113)

and

v̄e
2

k,i =
E(ρkv2k(vk − vi) · ∇χk)

E(ρk(vk − vi) · ∇χk)
. (2.114)
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Next, the terms IVg and IV� are the interfacial work

Wk = −E(((τ k − pkI)vk) · ∇χk), (2.115)

Vg and V� are the interfacial heat transfer

Ek = E(qk · ∇χk), (2.116)

and VI is the interfacial external energy source

E(rs,iδ(x− xi)) = E(rs,iδ(x− xi))
E(δ(x− xi))

E(δ(x− xi))

= akr̄s,i,

(2.117)

where the average interface external energy source is defined by

r̄s,i =
E(rs,iδ(x− xi))

E(δ(x− xi))
. (2.118)

The terms VII and VIII represent the work from the interfacial tension

E(2σHs,gδ(x− xi)ng · vi) = 2σHs,gng · vi (2.119)

and
E(δ(x− xi)vi · ∇sσ) = vi · ∇sσ. (2.120)

Using the definitions above, we can write the averaged energy relation(
ēg,i +

1
2 v̄

e2

g,i

)
Λg +

(
ē�,i +

1
2 v̄

e2

�,i

)
Λ� +Wg +W� + Eg + E�

= ak
∂es,i
∂t

+ ak∇s · (vies,i)− akr̄s,i − 2σHs,gng · vi − vi · ∇sσ. (2.121)

2.4.6. Relations between the average balance equations

In the average mass balance equation (2.75), we can recognise the term

Λk = E(ρ(v − vi) · ∇χk) (2.122)

from the interfacial relation (2.97). Thus, the average mass balance equa-
tion can be written

∂

∂t
(αkρ̄k) +∇ · (αkρ̄kv̄k) = Λk, (2.123)
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where the terms Λk for the different phases are related through (2.97).
Similarly, we had an exchange term in the momentum balance equa-

tion (2.79), which is also present in the average interfacial momentum
relation (2.103)

E([ρv ⊗ (v − vi)− (τ − pI)] · ∇χk) = v̄m
k,iΛk +Mk. (2.124)

Thus we can write the average momentum equation as

∂

∂t
(αkρ̄kv̄k) +∇ · (αkρ̄kv̄k ⊗ v̄k) =

∇ · (αk(τ̄ k − p̄kI + T t
k)) + αkρ̄kb̄k + v̄m

k,iΛk +Mk. (2.125)

However, some formulations of the multiphase flow models require the
definition of an interfacial pressure, which is defined as [17, p. 128]

pi,k =
E(pδ(x− xi))

E(δ(x− xi))
. (2.126)

Note that the interfacial pressure is not necessarily the same for all the
phases. It arises from the fact that the pressure just next to the interface
may be different from the average bulk pressure. Now, remark that

E(pi,k∇χk) =
E(pδ(x− xi))

E(δ(x− xi))
E(∇χk)

= pi,k∇E(χk)

= pi,k∇αk.

(2.127)

Then a new interfacial force density is defined as

M i,k = −E(τ k∇χk) + E((pk − pi,k)∇χk), (2.128)

such that, in (2.124),

Mk = −E(τ k∇χk) + E(pk∇χk)

= M i,k + pi,k∇αk.
(2.129)

An alternative to the momentum equation (2.125) is then

∂

∂t
(αkρ̄kv̄k) +∇ · (αkρ̄kv̄k ⊗ v̄k) =

−αk∇p̄k− (p̄k−pi,k)∇αk+∇· (αk(τ̄ k+T t
k))+αkρ̄kb̄k+ v̄m

k,iΛk+M i,k.

(2.130)
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The exchange term in the energy balance equation (2.90) also appears
in the energy interfacial relation (2.121). It is

E
([
ρ
(
e+ 1

2v
2
)
(v − vi)− ((τ − pI)v − q)

]
· ∇χk

)
=
(
ēk,i +

1
2 v̄

e2

k,i

)
Λk +Wk + Ek. (2.131)

The average energy equation then becomes

∂

∂t

(
αkρ̄k

(
ēk +

1

2
v̄2k +

1

2
ēkink

))
+∇ ·

(
αkρ̄k

(
ēk +

1

2
v̄2k +

1

2
ēkink

)
v̄k

)
= ∇ ·

(
αk

(
τ̄ k − p̄kI + T t

k

)
v̄k

)
−∇ · (αkq̄k) + αkρ̄k(r̄k + b̄k · v̄k)

+∇ ·
(
αk

(
vT f

k − ρ̄kve
f
k − 1

2
ρ̄kve

kin
k

))
+ αkρ̄kvb

f
k

+
(
ēk,i +

1
2 v̄

e2

k,i

)
Λk +Wk + Ek. (2.132)

Remark that the friction between the phases is contained in Wk. It is not
the friction at the interface, but includes the shear stress in the whole
boundary layer.

We also need an equation describing the behaviour of the interface.
This is called the topological equation in [17, p. 101] and describes the
movement of the characteristic function χk

∂χk

∂t
+ vi · ∇χk = 0, (2.133)

where vi is the velocity of the interface.

2.4.7. Summary of the transport equations

We summarise the results of the sections above. The mass transport
equation for phase k = g, � is given by (2.123)

∂

∂t
(αkρ̄k) +∇ · (αkρ̄kv̄k) = Λk, (2.134)

where the interfacial interaction terms are related by (2.97)

Λg + Λ� = 0. (2.135)
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The momentum transport equation for phase k = g, � in its original form
is given by (2.125)

∂

∂t
(αkρ̄kv̄k) +∇ · (αkρ̄kv̄k ⊗ v̄k) =

∇ · (αk(τ̄ k − p̄kI + T t
k)) + αkρ̄kb̄k + v̄m

k,iΛk +Mk, (2.136)

where the interfacial interaction terms are related by (2.103)

v̄m
g,iΛg + v̄m

�,iΛ� +Mg +M � = −∇sσ − 2σHs,gng. (2.137)

To define the alternative form, we first introduce the definition (2.129)

Mk = M i,k + pi,k∇αk, (2.138)

and the momentum equation becomes (2.130)

∂

∂t
(αkρ̄kv̄k) +∇ · (αkρ̄kv̄k ⊗ v̄k) =

−αk∇p̄k− (p̄k−pi,k)∇αk+∇· (αk(τ̄ k+T t
k))+αkρ̄kb̄k+ v̄m

k,iΛk+M i,k.

(2.139)

The total energy transport equation for phase k = g, � is given by (2.132)

∂

∂t

(
αkρ̄k

(
ēk +

1

2
v̄2k +

1

2
ēkink

))
+∇ ·

(
αkρ̄k

(
ēk +

1

2
v̄2k +

1

2
ēkink

)
v̄k

)
= ∇ ·

(
αk

(
τ̄ k − p̄kI + T t

k

)
v̄k

)
−∇ · (αkq̄k) + αkρ̄k(r̄k + b̄k · v̄k)

+∇ ·
(
αk

(
vT f

k − ρ̄kve
f
k − 1

2
ρ̄kve

kin
k

))
+ αkρ̄kvb

f
k

+
(
ēk,i +

1
2 v̄

e2

k,i

)
Λk +Wk + Ek, (2.140)

where the interfacial interaction terms are related by (2.121)(
ēg,i +

1
2 v̄

e2

g,i

)
Λg +

(
ē�,i +

1
2 v̄

e2

�,i

)
Λ� +Wg +W� + Eg + E�

= ak
∂es,i
∂t

+ ak∇s · (vies,i)− akr̄s,i − 2σHs,gng · vi − vi · ∇sσ. (2.141)
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2.5. Two-phase flow models

The averaged transport equations (2.123), (2.125) and (2.132) involve
many more unknowns than there are equations. Thus we need closure
laws to make the system solvable. But first, to define one-dimensional
two-phase flow models, the transport equations should be averaged over
the cross-section. This process is very similar to the ensemble averaging
described above. Here we do it implicitly, and write the one-dimensional
equations directly. In the following, we will drop the bar for the average
variables.

Mass equation

The mass transport equation (2.123) becomes

∂

∂t
(αkρk) +

∂

∂x
(αkρkvk) = Λk, (2.142)

where Λk = 0 if we assume that there is no mass exchange between
the phases. To model phase change, one possibility is to define Λk as a
relaxation term [53, 22, 64, 79, 94]. It may take the following form, for
example for the gas phase in a liquid-gas mixture

Λg = K(μ� − μg), (2.143)

where K is some positive relaxation constant and μk is the chemical po-
tential in phase k. This term will force the chemical potentials towards
each other through phase change.

Momentum equation

The momentum equation (2.125) becomes

∂

∂t
(αkρkvk) +

∂

∂x

(
αkρkv

2
k

)
+

∂

∂x
(αkpk) =

∂αk(τk,xx + T t
k,xx)

∂x
+mτ,k + αkρkbk + vmk,iΛk +Mk, (2.144)

where τk,xx and T t
k,xx are the longitudinal components of the stress tensors

τ̄ k and T t
k. mτ,k is a cross-sectional average of the other components of
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the stress tensors and represents the transversal momentum dissipation
due to shear stress and to the fluctuation of velocity. The contributions
from the fluctuations are often neglected. In the case of inviscid flow, we
can write τk,xx = 0 and mτ,k = 0. Otherwise, the term mτ,k represents
friction on the walls. The next term, αkρkbk, represents the projection
of the body forces on the flow direction, for example gravity. The term
vmk,iΛk represents the momentum transfer associated with phase change.
It requires the definition of an interfacial velocity vmk,i (See for example
vi in Paper G [55], Section 4.7). Finally, the term Mk is the momentum
exchange between the phases due to the interfacial stress. The alternative
form of the momentum equation (2.130) becomes

∂

∂t
(αkρkvk) +

∂

∂x

(
αkρkv

2
k

)
+ αk

∂pk
∂x

+ (pk − pi,k)
∂αk

∂x
=

+
∂αk(τk,xx + T t

k,xx)

∂x
+mτ,k + αkρkbk + vmk,iΛk +Mi,k. (2.145)

Energy equation

For the one-dimensional energy equation, we neglect in (2.132) the fluc-

tuation quantities ēkink , vT f
k , ve

f
k , ve

kin
k and vbfk

∂

∂t

(
αkρk

(
ek +

1

2
v2k

))
+

∂

∂x

(
αkρk

(
ek +

1

2
v2k

)
vk

)
+

∂

∂x
(αkpkvk)

=
∂

∂x
(αk(τk,xx + T t

k,xx)vk)−
∂

∂x
(αkqk) + αkρk(rk + bkvk)

+
(
ek,i +

1
2v

e2

k,i

)
Λk +Wk + Ek. (2.146)

Similarly to the momentum equation, the longitudinal effects of the stress
tensors τk,xx and T t

k,xx are present. Concerning their transversal contri-
butions, we can argue that they should disappear in the cross-sectional
averaging, since they represent fluid friction on the wall. Friction is a
diffusive effect that transforms kinetic energy into thermal energy. Since
the equation describes the evolution of total energy, friction should not
have any effect in this equation. It is only an internal energy exchange
over the cross-section. The second term on the right-hand side, ∂x(αkqk),
accounts for the longitudinal heat transfer by conduction. It is often
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neglected, when the conductive fluxes are negligible compared to the con-
vective fluxes. The term αkρk(rk+bkvk) represents the energy brought by
external heat sources and by the work of the body forces. Then comes the
energy exchange term (ek,i + 1/2ve

2

k,i)Λk, related to mass exchange. This
term involves an interfacial internal energy ek,i and another interfacial ve-
locity vek,i. Wk and Ek are the averaged interfacial work and heat transfer,
respectively. The interfacial heat transfer is sometimes neglected. It may
also be modelled by a relaxation term

Eg = H(T� − Tg), (2.147)

where H is a positive constant.
Finally, the one-dimensional average of the topological equation (2.133)

is [17, p. 101]
∂αk

∂t
+ vi

∂αk

∂x
= 0. (2.148)

2.5.1. The seven-equation two-pressure model

We now have two phases in presence, g and �. We write the one-dimensional
conservation equations, for which we have made the assumptions of in-
viscid flow, no mass exchange, no heat transfer, no heat source and no
body forces. In addition, we neglect surface tension and all other interface
phenomena. However, we keep the terms for interfacial momentum and
energy exchange. The equations are

∂αg

∂t
+ vi

∂αg

∂x
= Ig�, (2.149)

∂αgρg
∂t

+
∂αgρgvg

∂x
= 0, (2.150)

∂α�ρ�
∂t

+
∂α�ρ�v�

∂x
= 0, (2.151)

∂αgρgvg
∂t

+
∂

∂x

(
αgρgv

2
g + αgpg

)
= Mg�, (2.152)

∂α�ρ�v�
∂t

+
∂

∂x

(
α�ρ�v

2
� + α�p�

)
= M�g = −Mg�, (2.153)
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∂

∂t

(
αgρg

(
eg +

v2g
2

))
+

∂

∂x

(
αgρg

(
eg +

v2g
2

)
vg + αgvgpg

)
= Eg + vgMg�,

(2.154)

∂

∂t

(
α�ρ�

(
eg +

v2�
2

))
+

∂

∂x

(
α�ρ�

(
eg +

v2�
2

)
v� + α�v�p�

)
= E� + v�M�g.

(2.155)

The interaction term Ig� in the topological equation (2.149) allows for a
transversal movement of the interface – via the volume fraction – due to
mechanical action of the phases on each other. The interaction terms
for the momentum exchange between the phases by mechanical work
Mg� and M�g correspond to Mk in (2.144). The interfacial momen-
tum relation (2.103) with the assumptions given above then implies that
M�g = −Mg�. In the energy equation, the interaction terms Eg and E�

correspond to Ek, and vgMg� and v�M�g correspond to Wk in (2.146).
The energy interfacial relation (2.121) with the assumptions mentioned
above implies that

Eg + vgMg� = −(E� − v�Mg�). (2.156)

The interaction terms for the energy equations were defined in this way,
because, by multiplying the momentum equations by their respective ve-
locities vg and v� and subtracting them from their respective energy equa-
tions, we obtain the internal energy equations

∂

∂t
(αgρgeg) +

∂

∂x
(αgρgegvg) + αgpg

∂vg
∂x

= Eg, (2.157)

∂

∂t
(α�ρ�eg) +

∂

∂x
(α�ρ�egv�) + α�p�

∂v�
∂x

= E�. (2.158)

Expression of the interaction terms Eg and E�

The model (2.149)–(2.155) contains the undefined interaction terms Ig�,
Eg, E� and Mg�. Using thermodynamical relations, we are able to specify
Eg and E�. We first derive entropy transport equations from the inter-
nal energy equations (2.157)–(2.158). The fundamental thermodynamical
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relation reads

dek = Tk dsk +
pk
ρ2k

dρk. (2.159)

The internal energy equations (2.157)–(2.158) can be rewritten through
the mass equations (2.150)–(2.151), for a phase k,

αkρk
∂ek
∂t

+ αkρkvk
∂ek
∂x

+ αkpk
∂vk
∂x

= Ek. (2.160)

Substituting the thermodynamical relation (2.159), we obtain a first en-
tropy equation

αkρk

(
Tk

∂sk
∂t

+
pk
ρ2k

∂ρk
∂t

)
+ αkρkvk

(
Tk

∂sk
∂x

+
pk
ρ2k

∂ρk
∂x

)
+ αkpk

∂vk
∂x

= Ek.

(2.161)
Now, the mass equations (2.150)–(2.151) give an expression for the density
derivative

αk

(
∂ρk
∂t

+ vk
∂ρk
∂x

)
= −ρk

∂αk

∂t
− ρk

∂αkvk
∂x

, (2.162)

so that the entropy equation (2.161) finally becomes

∂αkρksk
∂t

+
∂αkρkskvk

∂x
=

pk
Tk

∂αk

∂t
+

pkvk
Tk

∂αk

∂x
+

Ek

Tk
. (2.163)

Another thermodynamical differential for the function pk(ρk, ek) is [62]

dpk =

(
c2k − Γk

pk
ρk

)
dρk + Γkρk dek, (2.164)

where Γk is the first Grüneisen parameter for phase k, defined by

Γ =
1

ρCv

(
∂p

∂T

)
ρ

, (2.165)

and Cv is the specific heat capacity at constant volume. The differen-
tial (2.164) gives, by the fundamental thermodynamical relation (2.159),

dsk =
1

ΓkρkTk
dpk −

c2k
ΓkρkTk

dρk. (2.166)



2.5. Two-phase flow models 41

Now, we can substitute the differential (2.166) in the entropy equation (2.163)

αk

ΓkTk

∂pk
∂t

− αkc
2
k

ΓkTk

∂ρk
∂t

+ vk
αk

ΓkTk

∂pk
∂x

− vk
αkc

2
k

ΓkTk

∂ρk
∂x

=

pk
Tk

∂αk

∂t
+

pkvk
Tk

∂αk

∂x
+

Ek

Tk
. (2.167)

The mass equations (2.150)–(2.151), multiplied by the factor
c2k

ΓkTk
, are

added to the latter equation, and after simplification, we obtain

Ek =

(
ρkc

2
k

Γk
− pk

)(
∂αk

∂t
+ vk

∂αk

∂x

)
+
αk

Γk

(
∂pk
∂t

+ vk
∂pk
∂x

)
+
αkρkc

2
k

Γk

∂vk
∂x

.

(2.168)

Expression of the interaction term Mg�

Using the relation (2.156), we are also able to specify Mg�. Substitut-
ing (2.168) for phases g and �, we find

(vg − v�)Mg� = −
(
ρgc

2
g

Γg
− pg

)(
∂αg

∂t
+ vg

∂αg

∂x

)
−
(
ρ�c

2
�

Γ�
− p�

)(
∂α�

∂t
+ v�

∂α�

∂x

)
− αg

Γg

(
∂pg
∂t

+ vg
∂pg
∂x

)
− α�

Γ�

(
∂p�
∂t

+ v�
∂p�
∂x

)
−

αgρgc
2
g

Γg

∂vg
∂x

− α�ρ�c
2
�

Γ�

∂v�
∂x

. (2.169)

Expression of the interaction term Ig�

The remaining interaction term Ig� in (2.149) says something on how the
phases reach mechanical equilibrium. Contrarily to the terms Eg, E�

and Mg�, it cannot be defined through the thermodynamical relations.
It requires an assumption. If Ig� = 0, the phases are insensitive to each
other’s pressure, and behave as if the interface were a wall that moves at
velocity vi. Otherwise, it may follow a relaxation law, for example

Ig� = J (pg − p�), (2.170)
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with J some positive constant. Thus, if pg > p�, the interaction term will
tend to increase the g-phase volume fraction αg, thus decreasing pg. The
term disappears at mechanical equilibrium pg = p�.

Additional assumptions

The system contains seven transport equations. In addition, there are two
independent thermodynamical parameters per phase, therefore thermo-
dynamics brings two additional independent relations per phase. Finally,
we have the relation αg + α� = 0. This amounts to 12 relations. On the
other hand, each phase is described by its volume fraction α, its five ther-
modynamical variables ρ, p, T , s and e, and its velocity v. This amounts
to 14 variables. We have left aside the interfacial velocity vi as it requires
its own modelling assumption. Therefore the system requires two addi-
tional relations in order to be closed. We have derived the phasic entropy
transport equation (2.163)

∂αkρksk
∂t

+
∂αkρkskvk

∂x
=

pk
Tk

∂αk

∂t
+

pkvk
Tk

∂αk

∂x
+

Ek

Tk
, (2.171)

where the interaction term Ek is given by (2.168)

Ek =

(
ρkc

2
k

Γk
− pk

)(
∂αk

∂t
+ vk

∂αk

∂x

)
+
αk

Γk

(
∂pk
∂t

+ vk
∂pk
∂x

)
+
αkρkc

2
k

Γk

∂vk
∂x

.

(2.172)
The two additional relations are found by making an assumption on the
phasic entropy sources

∂αgρgsg
∂t

+
∂αgρgsgvg

∂x
=

(pg − p�)Γg

2Tg
Ig�, (2.173)

∂α�ρ�s�
∂t

+
∂α�ρ�s�v�

∂x
=

(pg − p�)Γ�

2T�
Ig�. (2.174)

Note that Ig� has the same sign as (pg− p�), so that (pg− p�)Ig� is always
positive. These source terms create entropy when the system evolves
towards mechanical equilibrium. They are necessary in order for the
final system not to be singular when vg = v�. By summing the two
phasic equations (2.173) and (2.174), we can verify that the entropy of
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the mixture always increases. Then, due to the entropy equation (2.163),
we have, for phase g,

pg
Tg

∂αg

∂t
+

pgvg
Tg

∂αg

∂x
+

Eg

Tg
=

(pg − p�)Γg

2Tg
Ig�. (2.175)

Substituting Eg and simplifying, we obtain a relation giving the time
derivative of the pressures

αg
∂pg
∂t

= −αgvg
∂pg
∂x

− ρgc
2
g

(
∂αg

∂t
+

∂αgvg
∂x

)
+

1

2
(pg − p�)ΓgIg�, (2.176)

α�
∂p�
∂t

= −α�v�
∂p�
∂x

− ρ�c
2
�

(
∂α�

∂t
+

∂α�v�
∂x

)
+

1

2
(pg − p�)Γ�Ig�, (2.177)

The topological equation (2.149) gives an expression for the time deriva-
tive of the volume fraction

∂αg

∂t
= −vi

∂αg

∂x
+ Ig�. (2.178)

We can now remove all the time derivatives in the interaction terms.
Substituting them in Eg and simplifying, we obtain

Eg = −pg(vg − vi)
∂αg

∂x
− pgIg� +

1

2
(pg − p�)Ig�, (2.179)

and by symmetry

E� = −p�(v� − vi)
∂α�

∂x
+ p�Ig� +

1

2
(pg − p�)Ig�. (2.180)

For the momentum exchange term Mg�, we start from (2.156) that we
rewrite as

Mg� = − Eg

vg − v�
− E�

vg − v�
, (2.181)

After substitution, it becomes

Mg� =
pg(vg − vi)− p�(v� − vi)

vg − v�

∂αg

∂x
. (2.182)

The total energy exchange term becomes

Eg + vgMg� =
pgv�(vg − vi)− p�vg(v� − vi)

vg − v�

∂αg

∂x
− 1

2
(pg + p�)Ig�. (2.183)
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Remark that these interaction terms are not singular when vg = v�, as
long as vi → v when (vg, v�) → (v, v). In this case, the numerator and
denominator of Mg� and of the first term in Eg + vgMg� go to zero at the
same order of (vg − v�), thus the terms do not diverge. For example, if
vi = (vg + v�)/2, we have

Mg� =
pg + p�

2

∂αg

∂x
, (2.184)

and

Eg + vgMg� =
pgv� + p�vg

2

∂αg

∂x
− 1

2
(pg + p�)Ig�. (2.185)

The seven-equation model

To summarise, the seven-equation model derived above is

∂αg

∂t
+ vi

∂αg

∂x
= J (pg − p�), (2.186)

∂αgρg
∂t

+
∂αgρgvg

∂x
= 0 (2.187)

∂α�ρ�
∂t

+
∂α�ρ�v�

∂x
= 0 (2.188)

∂αgρgvg
∂t

+
∂

∂x

(
αgρgv

2
g + αgpg

)
=

pg(vg − vi)− p�(v� − vi)

vg − v�

∂αg

∂x
(2.189)

∂α�ρ�v�
∂t

+
∂

∂x

(
α�ρ�v

2
� + α�p�

)
= −pg(vg − vi)− p�(v� − vi)

vg − v�

∂αg

∂x

(2.190)
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∂

∂t

(
αgρg

(
eg +

v2g
2

))
+

∂

∂x

(
αgρg

(
eg +

v2g
2

)
vg + αgvgpg

)
=

pgv�(vg − vi)− p�vg(v� − vi)

vg − v�

∂αg

∂x
− 1

2
(pg + p�)J (pg − p�),

(2.191)

∂

∂t

(
α�ρ�

(
eg +

v2�
2

))
+

∂

∂x

(
α�ρ�

(
eg +

v2�
2

)
v� + α�v�p�

)
=

−pgv�(vg − vi)− p�vg(v� − vi)

vg − v�

∂αg

∂x
+

1

2
(pg + p�)J (pg − p�).

(2.192)

Seven-equation models have been used for example in [3, 74, 79, 80], with
different closure laws. A closure for the interfacial velocity which respects
both the conservation requirements and the second law of thermodynam-
ics was proposed in [39, 40], though in a slightly different framework. In
their formulation of the model, the interfacial pressure and momentum
also have to be explicitly closed. Note also that the exact closures pro-
posed involve derivatives, therefore the system loses its hyperbolic char-
acter since products of derivatives appear. These terms can be linearised
to keep a hyperbolic system.

2.5.2. The six-equation model

The six-equation model is derived from the seven-equation two-pressure
model by letting the mechanical relaxation be instantaneous. This means
that J → ∞ in (2.170), and that pg = p� at all times. Thus, J (pg − p�)
is an undefined form, and the volume-fraction advection equation (2.186)
loses significance. We replace it by the relation pg = p�. In practice, this
means that we can replace pg and p� by p in the other equations (2.187)–
(2.192), and replace J (pg − p�) by derivatives of αg using the volume-
fraction advection equation (2.186). The model becomes, after simplifi-
cation,

∂αgρg
∂t

+
∂αgρgvg

∂x
= 0, (2.193)

∂α�ρ�
∂t

+
∂α�ρ�v�

∂x
= 0, (2.194)
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∂αgρgvg
∂t

+
∂

∂x

(
αgρgv

2
g + αgp

)
= p

∂αg

∂x
, (2.195)

∂α�ρ�v�
∂t

+
∂

∂x

(
α�ρ�v

2
� + α�p

)
= −p

∂αg

∂x
, (2.196)

∂

∂t

(
αgρg

(
eg +

v2g
2

))
+

∂

∂x

(
αgρg

(
eg +

v2g
2

)
vg + αgvgp

)

= −p
∂αg

∂t
,

(2.197)

∂

∂t

(
α�ρ�

(
eg +

v2�
2

))
+

∂

∂x

(
α�ρ�

(
eg +

v2�
2

)
v� + α�v�p

)
= p

∂αg

∂t
.

(2.198)

This is the basic six-equation two-fluid model [37, 62, 69, 85, 93] for invis-
cid fluids, without phase change or heat exchange. Note that the source
terms in the entropy equations (2.173) and (2.174) are not undefined
forms. Since (pg − p�) appears squared in

∂αgρgsg
∂t

+
∂αgρgsgvg

∂x
=

(pg − p�)Γg

2Tg
J (pg − p�), (2.199)

∂α�ρ�s�
∂t

+
∂α�ρ�s�v�

∂x
=

(pg − p�)Γ�

2T�
J (pg − p�), (2.200)

the source terms vanish when J → ∞ and (pg − p�) → (p, p). Thus the
entropy equations in the six-equation two-fluid model are

∂αgρgsg
∂t

+
∂αgρgsgvg

∂x
= 0, (2.201)

∂α�ρ�s�
∂t

+
∂α�ρ�s�v�

∂x
= 0. (2.202)

This can be seen as an underlying assumption in the six-equation model,
which may not be the only possible choice. It directly follows from the
assumption that entropy follows the equations (2.173)–(2.174) (cf. also
Paper F [23], Section 4.6).

The model (2.193)–(2.198) contains time derivatives. They can be re-
placed by spatial derivatives. The equations (2.176) and (2.177) now give

αg
∂p

∂t
= −αgvg

∂p

∂x
− ρgc

2
g

(
∂αg

∂t
+

∂αgvg
∂x

)
, (2.203)
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α�
∂p

∂t
= −α�v�

∂p

∂x
− ρ�c

2
�

(
∂α�

∂t
+

∂α�v�
∂x

)
. (2.204)

and allow determining ∂tp and ∂tαg. We first combine the relations to
eliminate ∂tp, which gives

(α�ρgc
2
g + αgρ�c

2
� )
∂αg

∂t
= −αgα�(vg − v�)

∂p

∂x

− α�ρgc
2
g

∂αgvg
∂x

+ αgρ�c
2
�

∂α�v�
∂x

, (2.205)

and then to eliminate ∂tαg, which gives

(αgρ�c
2
� + α�ρgc

2
g)
∂p

∂t
= −(αgρ�c

2
�vg + α�ρgc

2
gv�)

∂p

∂x

− ρgc
2
gρ�c

2
�

∂αgvg
∂x

− ρgc
2
gρ�c

2
�

∂α�v�
∂x

. (2.206)

The six-equation model is used in various codes (CATHARE [8], RE-
LAP5/MOD3 [75], WAHA3 [42]). This model can be completed with
various interaction terms, like phase change [4, 38], drag force [4, 38, 95],
[17, p.226], lift [17, p.227], Basset force [38], [17, p.229], virtual mass
force [4, 16, 38, 48, 99, 95], [17, p.227].

2.5.3. Hyperbolicity of the two-fluid model

Inviscid two-phase flow models should be hyperbolic, which means that
the Jacobian matrix of the fluxes should be diagonalisable with real eigen-
values. The eigenvalues of a model are the propagation velocities of the
transported quantities. The six-equation two-fluid model in its basic form
has complex eigenvalues when vg �= v� [29, 85, 86, 41].

Regularisation of the model

The regularisation of this model is debated in the literature. Pokharna et
al. [72] argue that the lack of hyperbolicity is caused by the instabilities
inherent to two-phase flows (Rayleigh-Taylor, Kelvin-Helmholtz). They
write that the phenomena that should dampen the shorter wavelengths
are lost in the averaging process, for example the surface tension. There-
fore, the instabilities remain and the model loses its hyperbolicity. A
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regularisation should then act on shorter wavelengths, while leaving the
longer wavelengths unaffected. Prosperetti and Jones [73] studied the sta-
bility of two-phase flow models and showed that, when they only include
first order derivatives, the stability criteria are independent from the wave
number of the perturbation. If higher-order derivatives are included, the
stability criteria become dependent on the wave number. This complies
with the idea of Pokharna et al. [72], that the model should differentiate
short and long wavelengths.

Song and Ishii [83] derive equations including the momentum flux pa-
rameter [4, 38, 82, 83], which accounts for the flow structure over a cross-
section of the flow. This structure was lost in the averaging process. They
assert that this stabilises the two-fluid model. This momentum flux pa-
rameter takes different forms depending on the flow structure, each form
giving a restricted stability domain to the equation system. If the flow
enters an unstable regime, its structure will evolve to recover stability. In
other words, the governing equations can be temporarily unstable, but
the momentum flux parameter will evolve to make the model hyperbolic
again.

Regularisation using interfacial pressure

Often, though, the model is simply regularised by adding terms that make
the eigenvalues real. One possibility is to introduce a virtual mass force
term, however it is not enough to obtain hyperbolicity for low phase slip
velocities [65]. Städtke [84, Sec. 5.1.1] proposed to add to the virtual mass
force term, the effect of the interfacial pressure and of the compressibility,
making the model hyperbolic. Another option is take advantage of the
alternative form of the momentum equation (2.145), where the interfacial
pressure pi appears [4, 8, 13, 14, 20, 62, 69, 86, 93]. Neglecting the same
terms as above (cf. Section 2.5.1), we obtain for the gas phase

∂

∂t
(αgρgvg) +

∂

∂x

(
αgρgv

2
g

)
+ αg

∂p

∂x
+Δp

∂αg

∂x
= Mi,g�, (2.207)

where
Δp = p− pi. (2.208)

Then we drop the assumption of irreversibility (2.173)–(2.174), and in-
stead, make an assumption on the interaction term Mi,g�. It may be
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zero if friction between the phases is neglected. Otherwise it may be a
relaxation term on the velocities

Mi,g� = U(v� − vg). (2.209)

The second necessary assumption is made on the energy exchange term. It
involves a velocity vτ that must be modelled. The exchange term becomes

Eg + vgMg� = −p
∂αg

∂t
− vτΔp

∂αg

∂x
, (2.210)

or equivalently

E� − v�Mg� = p
∂αg

∂t
+ vτΔp

∂αg

∂x
. (2.211)

Now, from (2.129), we have

Mg� = Mi,g� + pi
∂αg

∂x
(2.212)

so that we can evaluate

Eg = −vgMi,g� − vgpi
∂αg

∂x
− p

∂αg

∂t
− vτΔp

∂αg

∂x
(2.213)

and

E� = v�Mi,g� + v�pi
∂αg

∂x
+ p

∂αg

∂t
+ vτΔp

∂αg

∂x
. (2.214)

The entropy equation for the gas phase can be found from (2.163), where
Eg is substituted

∂αgρgsg
∂t

+
∂αgρgsgvg

∂x
= Δp

vg − vτ
Tg

∂αg

∂x
− vg

Tg
Mi,g�. (2.215)

For the second law of thermodynamics to be respected, the right-hand
side of the entropy equation must be positive. If Mi,g� is an algebraic
term, the factor

Δp
vg − vτ

Tg
(2.216)

in the first term should be sensitive to the sign of ∂xαg, so that this term
would always be positive. The resulting model would then change nature,
and it would not be possible to write it in quasilinear form (cf. Chapter 3).
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Thus, the specific numerical solvers for transport equations could not be
used. Otherwise, if the factor is not sensitive to the sign, the positivity of
the entropy production cannot be enforced. This is the main drawback of
this approach. However, Δp is generally small compared to the pressure,
and it is expected that the entropy production or destruction due to
this term will remain small. As to Mi,g�, depending on the interphase
friction model adopted, it may also be negative and violate the second
law of thermodynamics. The relation between regularisation terms and
the second law of thermodynamics is further discussed in Paper F ([23],
Section 4.6).

The pressure difference Δp can model different physical phenomena,
for example hydrostatic pressure in a stratified flow [4], but also surface
tension in a dispersed flow. For the purpose of numerical testing, we can
use a term without particular physical significance, which has been de-
rived from mathematical considerations [10, 20, 60, 62, 65, 69, 86, 93](See
also Paper E [57], Section 4.5, and Paper G [55], Section 4.7)

Δp = δ
αgα�ρgρ�(vg − v�)

2

α�ρg + αgρ�
. (2.217)

When the parameter δ is equal to one, this is the minimum pressure
difference between the phases necessary to make the model hyperbolic at
the first order of (vg − v�). It has first been shown for some particular
cases of the two-fluid six-equation model [86, 93], then for the two-fluid
four-equation model without energy equations [20], and for the general
two-fluid six-equation model [46]. With δ larger than one, the model is
hyperbolic in an interval |vg−v�| < Ω, where Ω is dependent on δ. In [47],
the authors study the hyperbolicity domain of the multifield model, which
the six-equation two-fluid model is a particular case of, for regularisation
terms that are very similar to (2.217). If the velocity vτ is defined by

vτ =
αgΓgvg + α�Γ�v�
αgΓg + α�Γ�

, (2.218)

the interface friction only produces heat, and is not associated with de-
formation [62].
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2.5.4. Variations of the two-fluid model

The six-equation two-fluid model contains the assumption that the me-
chanical equilibrium between the phases is instantaneous. There are in
addition two other quantities which should evolve towards an equilibrium,
the temperature and the chemical potential. In the derivation of the mul-
tiphase flow equations (Section 2.5), exchange terms between the phases
appear. As mentioned previously, Λk in (2.142) models phase change and
can be an algebraic relaxation term as in (2.143). This would attract the
system towards chemical equilibrium. Relaxation has been studied for
example in [22, 43, 53, 64, 71, 79, 94]. A very stiff relaxation source term
may approach the equilibrium model [2], in which the chemical equilib-
rium would be instantaneous. We can also assume this equilibrium to
be instantaneous and derive the corresponding model. Then, only the
mixture mass equation makes sense instead of the phasic mass equa-
tions (2.193)–(2.194), and the model contains five transport equations.
The equality of the chemical potentials replaces one transport equation
to close the model.

When it comes to the thermal equilibrium, it can be modelled using the
exchange term Ek in the energy equation (2.145). The algebraic relax-
ation term (2.147) will attract the model towards thermal equilibrium at
a finite rate. Otherwise, similarly to the case of the chemical equilibrium,
this equilibrium can be assumed to be instantaneous. Then only the mix-
ture energy equation makes sense, thus reducing the number of transport
equations by one. The missing relation is the equality of the tempera-
tures. This is for example used in OLGA [6]. These two assumptions of
instantaneous equilibrium can be used at the same time, thus giving a
system of four equations, describing a two-phase flow in full thermal, me-
chanical and thermodynamical equilibrium at all times (cf. Paper G [55],
Section 4.7).

An interesting result about instantaneous relaxation and equilibrium
model is the subcharacteristic condition [12, 22, 51, 53, 64] (cf. also
Paper G [55], Section 4.7). It states that for the relaxation process to be
stable, thus producing a stable equilibrium model, the eigenvalues of the
equilibrium model must be interlaced in the eigenvalues of the relaxation
model. A direct consequence of this is for example that the speed of sound
in an equilibrium model must be lower than the speed of sound in the
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relaxation model. A stable relaxation process cannot make information
travel faster. As a matter of fact, this suggests that there is something
wrong in the relaxation process leading from the seven-equation two-fluid
model to the six-equation two-fluid model. Chen et. al. [11, 12] showed
that a relaxation process that creates entropy leads to a hyperbolic model.
Since the six-equation two-fluid model is not hyperbolic, this suggests that
there may be something wrong in the entropy of the mechanical relaxation
process.

2.5.5. The drift-flux models

Another category of two-phase flow models involves the mixture mo-
mentum instead of the phasic momenta, which are recovered through
an algebraic relation. These models are called drift-flux models [24,
63, 81, 85, 100], and contain only one mixture momentum equation.
The main advantages of these models is that they are in conservation
form, and that they are hyperbolic – though only conditionally [7] –
thus well-posed. However, the phasic velocities are then less indepen-
dent of each other, which makes the model more suitable for flows where
the phase movements are highly correlated, for example bubbly and slug
flows [5, 27, 33],[59, p. 173]. They may be less suited for flows like strati-
fied flows, where the phases interact less [83]. As with the two-fluid mod-
els, they can have varying number of transport equations, depending on
the assumptions on the equilibria [52, 22] (cf. Paper G [55], Section 4.7).

Drift-flux models are derived by summing the momentum equations in
their corresponding two-fluid models. The five-equation drift-flux model
derived from (2.193)–(2.198) reads, for example,

∂αgρg
∂t

+
∂αgρgvg

∂x
= 0, (2.219)

∂α�ρ�
∂t

+
∂α�ρ�v�

∂x
= 0, (2.220)

∂

∂t
(αgρgvg + α�ρ�v�) +

∂

∂x

(
αgρgv

2
g + α�ρ�v

2
� + p

)
= 0, (2.221)
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∂

∂t

(
αgρg

(
eg +

v2g
2

))
+

∂

∂x

(
αgρg

(
eg +

v2g
2

)
vg + αgvgp

)

= −p
∂αg

∂t
,

(2.222)

∂

∂t

(
α�ρ�

(
eg +

v2�
2

))
+

∂

∂x

(
α�ρ�

(
eg +

v2�
2

)
v� + α�v�p

)
= −p

∂α�

∂t
.

(2.223)

The phasic velocities are then recovered through an algebraic relation in
the form

vg − v� = Φ(U). (2.224)

2.6. Summary

In this chapter, we have derived the classical forms of the six-equation two-
fluid model and of the drift-flux model. We started from the fundamen-
tal local conservation laws and ensemble averaged them in a multiphase
mixture. Then, cross-sectional average gave one-dimensional transport
equations. The relations between the interaction terms were made clear,
and we saw that an additional assumption was needed to close the model.
This freedom can be used to derive a model that is both hyperbolic and
physically consistent.

The classical systems of transport equations for multiphase flows de-
rived in the present chapter are non-linear and hyperbolic, or they are
made hyperbolic by regularisation terms. The adapted numerical solvers
for these systems are the subject of the next chapter.
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A system of one-dimensional conservation laws can be written in the gen-
eral form

∂U

∂t
+

∂F (U)

∂x
= 0, (3.1)

where U is a vector of conserved variables and F (U) is the flux vector of
the conserved quantities. It governs the behaviour of the quantities that
are the components of U . Specifically, U is transported in the domain
and its total amount is conserved (except at the boundaries). With the
Jacobian matrix of the flux vector

A(U) =
∂F (U)

∂U
, (3.2)

this system can be rewritten in the quasilinear form

∂U

∂t
+A(U)

∂U

∂x
= 0. (3.3)

This form is useful for some of the numerical methods for conservation
laws. We can also analyse the structure of the system from this form.

There exist systems that contain terms which cannot be written in the
form (3.1). One example is non-conservative terms, which will create or
destroy U . The system then takes the form

∂U

∂t
+

∂F (U)

∂x
+B(U)

∂Z(U)

∂x
= 0, (3.4)

where the vector Z(U) contains non-conserved variables, while the factors
of the derivatives ofZ(U) are in the matrixB(U). Algebraic source terms
may also appear, in the form

∂U

∂t
+

∂F (U)

∂x
+B(U)

∂Z(U)

∂x
= S(U). (3.5)

55
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In this chapter, we will discuss how to include non-conservative terms in
the numerical solvers for conservation laws. On the other hand, algebraic
terms have to be solved separately from the conservative fluxes and the
non-conservative terms. This will not be further discussed here.

3.1. Structure of systems of conservation laws

3.1.1. Scalar conservation laws

The advection of a quantity u at constant velocity a is governed by the
linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0. (3.6)

It will simply translate the function u(x, t) at velocity a. Now, if the
velocity is not constant anymore, but a function of u, the equation is said
to be non-linear. For example, the inviscid Burgers’ equation reads

∂u

∂t
+ u

∂u

∂x
= 0. (3.7)

The quantity u is advected at velocity u. Non-linear transport equations
may produce shocks – discontinuities – from initially smooth functions.
So does Burgers’ equation (cf. Figure 3.1). The velocity s of a shock
is a function of ul and ur, the values of the variable u at the left and

u

x
0

(a) Initial state

u

x
0

(b) After shock formation

Figure 3.1: Formation of a shock with the Burgers’ equation.
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the right of the shock, respectively. It is given by the Rankine-Hugoniot
condition [50, p. 213]

s(ur − ul) = f(ur)− f(ul), (3.8)

where

f(u) =
u2

2
(3.9)

is the flux function of the Burgers’ equation expressed in conservative
form

∂u

∂t
+

∂f(u)

∂x
= 0. (3.10)

3.1.2. System of linear conservation laws

Systems of linear conservation laws can be written

∂U

∂t
+A

∂U

∂x
= 0, (3.11)

where A is a square matrix with constant coefficients of dimension m.
We assume that the system is hyperbolic, which means that A can be
diagonalised with real eigenvalues. Then we can write

R−1AR = Λ, (3.12)

whereR is the matrix of the right eigenvectors ofA, and Λ is the diagonal
matrix of the eigenvalues of A. Then we can rewrite (3.11) as [50, p. 32]

R−1
∂U

∂t
+R−1ARR−1

∂U

∂x
= 0, (3.13)

and defining the vector of the characteristic variables W = R−1U , we
obtain

∂W

∂t
+Λ

∂W

∂x
= 0. (3.14)

The system (3.14) is a system of decoupled scalar linear advection equa-
tions, where the propagation velocities are the eigenvalues of A. The
advected quantities are defined by the right eigenvectors of A contained
in the matrix R. According to the definition of W , we have

U = RW . (3.15)



58 3. Numerical methods

It can also be written [50, p. 48]

U =

m∑
p=1

wpRp, (3.16)

where wp are the components of W and Rp are the columns of R. This is
a decomposition of the state U in the eigenvectors of A, with weights wp.
Thus, U is a combination of waves wpRp travelling at different velocities
determined by the eigenvalues of A.

Riemann problem

Now, we consider a Riemann problem, defined by a system of hyperbolic
conservation laws and an initial condition composed of two constant states
separated by a single discontinuity [50, p. 52]

U0(x) =

{
U l if x < 0,

U r if x > 0.
(3.17)

The jump ΔU0 = U r − U l initially situated at x = 0 will break down
into m propagating waves, having as velocities the eigenvalues of A. The
discontinuities ΔUp,p+1 = Up+1 −Up, p ∈ [0,m− 1] will be eigenvectors
of A, such that

U0 = U l, (3.18)

Up = U r, (3.19)

m−1∑
p=0

ΔUp,p+1 = ΔU0. (3.20)

To solve the Riemann problem means to break down ΔU0 into prop-
agating waves. The waves can be either rarefaction waves or discontinu-
ities. Rarefaction waves are continuous curves, whose profile is determined
by the shape of the flux function derivative. In the case of a discontinuity,
its velocity is given by the Rankine-Hugoniot condition (3.8) extended for
systems. For a system of linear conservation laws (3.11), the flux function
can be written

F (U) = AU . (3.21)
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Thus the Rankine-Hugoniot condition (3.8) can be simplified as

s(U r −U l) = A(U r −U l). (3.22)

This is an eigenvalue problem: the only acceptable discontinuities are
those for which ΔU = U r−U l is an eigenvector ofA. They will propagate
with a velocity equal to the associated eigenvalue.

The initial discontinuity ΔU0 has then first to be decomposed into
waves satisfying the Rankine-Hugoniot condition [50, p. 54]

Wp = αpRp, (3.23)

where αp gives the amplitude of the wave of family p in the initial jump,
and is the component p of the vector

α = R−1ΔU0. (3.24)

Then, the solution of the Riemann problem is given by [50, p. 55]

U(x, t) = U l +

m∑
p=1

H(x− λpt)Wp, (3.25)

where λp is the eigenvalue of A associated to the wave of family p, and
H(x) is the Heaviside function

H(x) =

{
0 if x < 0,

1 if x > 0.
(3.26)

3.1.3. Riemann problem for systems of non-linear conservation laws

Systems of non-linear conservation laws cannot be decoupled as in the
section above. However, we can extend the definition of hyperbolicity by
saying that a non-linear system (3.1) is hyperbolic if the Jacobian matrix
A(U(x, t)) in the quasilinear form (3.3) is hyperbolic for any U . Then, at
a given point and time (x, t), the eigenvalues of the matrix A(U(x, t)) are
the local propagation velocities of the waves Wp(x, t) = αp(x, t)Rp(x, t).
The propagation velocities in the smooth regions for systems of non-linear
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conservation laws are therefore functions of the state U(x, t). For the
discontinuities, as was mentioned in Section 3.1.1, their velocities are
functions of the left and right states U l and U r. The Rankine-Hugoniot
condition (3.8)

s(U r −U l) = F (U r)− F (U l) (3.27)

is still valid. However, it cannot be simplified to (3.22) as for linear sys-
tems. Nevertheless, it still defines families of acceptable discontinuities,
either shocks or contact discontinuities, which are eigenvectors of some
average matrixA(U l,U r). In addition, ifU r−U l is an acceptable discon-
tinuity for the wave family p, the relation (3.27) defines the propagation
speed sp for this wave.
Figure 3.2 illustrates the Riemann problem and its solution with an

example for the compressible Euler equations⎛⎝ ρ
ρv
E

⎞⎠
t

+

⎛⎝ ρv
ρv2 + p
(E + p)v

⎞⎠
x

= 0, (3.28)

where ρ is the density, v the velocity, p the pressure, and

E = ρ

(
e+

1

2
u2
)
, (3.29)

where e is the internal energy. Subfigure (a) shows the initial condition.
Subfigure (b) shows the characteristics emanating from the initial discon-
tinuity, and having as slope, at each point, the eigenvalues of the system.
Subfigure (c) shows the solution at time t1. There are one shock and one
contact discontinuity propagating to the right. To the left, a rarefaction
wave propagates.

3.2. Finite-volume methods

Finite-volume methods are numerical methods suitable to solve approx-
imately systems of hyperbolic conservation laws. They are derived from
the integral form of the transport equations (3.1), which is discretised in
space and time. With a forward Euler time step, this gives for the cell i
in Figure 3.3

Un+1
i −Un

i

Δt
+

F n
i+1/2 − F n

i−1/2
Δx

= 0, (3.30)
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x

ρ

x

t

t1

x

ρ

(a) Density at t = 0 s

(b) Characteristics for the Riemann problem

(c) Density at t1

Figure 3.2: Riemann problem for the compressible Euler equations.

F n
i−3/2 F n

i−1/2 F n
i+1/2 F n

i+3/2

Un
i−2 Un

i−1 Un
i Un

i+1 Un
i+2

Figure 3.3: Cells and fluxes in the finite-volume method.

where i is the cell index, and n indicates the time step. This is enough
to determine Un+1

i at the next time step. One of the advantages of this
method is that it is by essence conservative, whatever the definition of
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a consistent numerical flux function F n
i−1/2. The flux entering a cell is

leaving from its adjacent cell, therefore the sum of Un
i over the domain is

conserved, excluding the contributions at the boundaries. Now, defining
a numerical scheme comes down to defining the numerical flux function.

3.2.1. Central vs. upwind scheme

Numerical methods for systems of partial differential equations try to
evaluate the fluxes at the cell interfaces to predict the solution at the
next time step. Central schemes use the information from the cells on
both sides symmetrically. However, as discussed in Section 3.1, hyperbolic
systems govern the propagation of waves. The upwind schemes take into
account the waves’ propagation direction to determine which side – the
upwind side – is relevant to evaluate the flux related to a given family
of waves. Therefore, these schemes are generally more accurate than the
central schemes, in that they are less subject to numerical dissipation. In
particular, discontinuities are resolved more sharply by upwind schemes.

3.2.2. Lax-Friedrichs, Richtmyer and FORCE fluxes

One simple method to define the numerical flux function is the Lax-
Friedrichs method. The intercell flux is defined by [90, Sec. 14.5.1]

F LF
i−1/2 =

1

2
(F (U i−1) + F (U i)− a (U i −U i−1)) , (3.31)

where a = Δx/Δt plays the role of extra numerical viscosity. This scheme
is first order and very diffusive. Another flux is the Richtmyer flux, defined
in two steps [90, Sec. 14.5.1]. First, an intermediate state is predicted as

URi
i−1/2 =

1

2
(U i−1 +U i)−

1

2

Δt

Δx
(F (U i)− F (U i−1)) , (3.32)

before the intercell flux is evaluated as

FRi
i−1/2 = F

(
URi

i−1/2
)
. (3.33)

The Richtmyer flux is second-order accurate for the smooth regions of the
solution, but will oscillate at discontinuities.
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The FORCE scheme combines the two previous ones and defines the
intercell flux as [90, Sec. 14.5.1]

F FO
i−1/2 =

1

2

(
F LF

i−1/2 + FRi
i−1/2
)
, (3.34)

where F LF
i−1/2 is given by (3.31) and FRi

i−1/2 by (3.33).

3.2.3. The MUSTA method

Solving systems of conservation laws using finite-volume methods can
be seen as discretising the solution and solving a Riemann problem at
each interface. As seen in Section 3.1.3 and illustrated by Figure 3.2, in a
Riemann problem, waves propagate to the left and to the right. The state
at x = 0 – called U∗ – remains constant at any time after the waves have
departed from the initial discontinuity. Therefore the initial discontinuity
U∗ − U l would only produce left-travelling waves, as U r − U∗ would
produce right-travelling waves. Knowing the state U∗ would therefore
allow building an upwind scheme. In the MUSTA method [89, 91], this
state is approached by numerically solving each Riemann problem in a
virtual domain. The intercell flux in the original domain is subsequently
set to be the FORCE flux at the interface in the middle of the virtual
domain

FMUSTA
i−1/2 = F FO

(
Uvirt

N ,Uvirt
N+1

)
, (3.35)

for a virtual domain with cell values Uvirt
i , i = 1, .., 2N . When N in-

creases, the MUSTA flux (3.35) tends to

FMUSTA
i−1/2 = F

(
U∼

i−1/2
)
, (3.36)

where U∼
i−1/2 is the MUSTA approximation of U∗ between the states

U i−1 and U i. In [61], the virtual domain was tested with 2 to 8 cells,
while the number of time steps in the virtual domain is set to half of
the cell number. It was found that 4 cells make a good compromise with
respect to accuracy and computational cost. The MUSTA method was
applied to the two-fluid six-equation model in [62]. This method was
used as a comparison with the Roe scheme (cf. next section) derived
in Paper E [57] (Section 4.5).
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3.2.4. Upwind schemes

Godunov’s method

The principle of Godunov’s method is to solve exactly the Riemann prob-
lems at each cell interface, before averaging the solution in each cell.
Then, the solution is reconstructed, for example as a piecewise constant
function, and the sequence is iterated [50, p. 76]. This is not efficient in
practice. However, noticing that the state U∗ mentioned in Section 3.2.3
is constant over a time step, we can design an equivalent scheme based
on the formulation (3.30), instead of averaging the evolved reconstructed
function after each time step. The state U∗ is found by solving the Rie-
mann problem at each cell interface, and the intercell fluxes in (3.30) are
evaluated by

FGodunov
i−1/2 = F

(
U∗

i−1/2 (U i−1,U i)
)
. (3.37)

The main drawback of the Godunov scheme is that the Riemann problem
must be solved exactly.

A slight reorganisation of (3.30) gives a formulation that can be useful
in defining approximate Riemann solvers. We know that the intercell flux

F i−1/2 is equal to F
(
U∗

i−1/2
)
. Now, the cell-flux F (U i) is introduced

in (3.30) to give

Un+1
i = Un

i +
Δt

Δx

(
F
(
U∗

i+1/2

)
− F (U i)− F

(
U∗

i−1/2
)
+ F (U i)

)
,

(3.38)
where the exponents n have been dropped on the fluxes. This can be
rewritten as [50, p. 313]

Un+1
i = Un

i − Δt

Δx

(
A−ΔQi+1/2 +A+ΔQi−1/2

)
, (3.39)

where we have defined the fluctuations by

A−ΔQi−1/2 = F
(
U∗

i−1/2
)
− F (U i−1), (3.40)

A+ΔQi−1/2 = F (U i)− F
(
U∗

i−1/2
)
. (3.41)
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In the wave propagation form, we have [50, p. 315]

A−ΔQi−1/2 =
m∑
p=1

(
spi−1/2

)−
Wp

i−1/2 (3.42)

A+ΔQi−1/2 =
m∑
p=1

(
spi−1/2

)+
Wp

i−1/2, (3.43)

with the notations used in Sections 3.1.2–3.1.3. The notation (s)− stands
for min(0, s), while (s)+ stands for max(0, s). They select, respectively,
the left-travelling and right-travelling waves.

Approximate Riemann solvers

There exist non-linear systems for which the solution of the Riemann
problem in not known, for example the two-fluid six-equation model. For
these systems, it is simpler to solve at each interface a linearised problem
instead. The linearisation of (3.3) at the interface of cells i− 1 and i can
be written [50, p. 315]

∂U

∂t
+ Â(U i−1,U i)

∂U

∂x
= 0, (3.44)

where Â is an approximation of the Jacobian of the flux function A
in (3.3), valid in a neighbourhood of U i−1 and U i. To ensure that the
linearised problem is hyperbolic and consistent with the original conser-
vation law, two conditions should be fulfilled:

R1: The matrix Â(U i−1,U i) should be diagonalisable with real eigen-
values,

R2: The matrix Â(U i−1,U i) should converge smoothly towards A(U)
when (U i−1,U i) → (U ,U) for any state U .

The VFRoe scheme

The VFRoe scheme is based on solving a linearised Riemann problem (3.44).
The approximate Jacobian is defined as [28]

Â(U i−1,U i) = A(Ū), (3.45)
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where Ū(U i−1,U i) is some average of U i−1 and U i. Then, the approxi-
mation U∼

i−1/2 of the U∗
i−1/2-state in (3.37) is found by constructing the

solution of the linearised Riemann problem, as in (3.25). Its expression
is [28]

U∼
i−1/2 = U i−1 +

∑
p/λ̂p<0

α̂p
i−1/2R̂

p
i−1/2, (3.46)

where λ̂p
i−1/2 is the pth eigenvalue of the approximate Jacobian Âi−1/2,

R̂
p
i−1/2 its pth right eigenvector, and the wave strengths are defined as

α̂p
i−1/2 = L̂

p
i−1/2 · (U i −U i−1) , (3.47)

where L̂
p
i−1/2 is the pth left eigenvector of Âi−1/2. The numerical flux

is given by (3.37) where U∗
i−1/2 is replaced by U∼

i−1/2. The method is
intrinsically conservative.

The Roe scheme

In addition to the conditions R1 and R2, a third condition on the lin-
earised matrix Â(U i−1,U i) gives nice properties to the scheme. It is the
requirement that [50, p. 318]

R3: If U i−1 and U are connected by a single wave W = U i − U i−1 in
the true Riemann solution, then W should also be an eigenvector of
Âi−1/2.

This means that if a single discontinuity is travelling in an otherwise
smooth flow, the approximate solution will agree with the exact solution.
The condition can be rewritten as

Âi−1/2(U i −U i−1) = F (U i)− F (U i−1). (3.48)

This also has the consequence that

A−ΔQi−1/2 +A+ΔQi−1/2 = F (U i)− F (U i−1) (3.49)

is satisfied, which guarantees that the scheme (3.39) is conservative.
Roe [77] introduced a method to derive a linearised matrix satisfying

the three conditions. The principle is to define Âi−1/2 as the average of
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the matrix A along a path U(ξ), ξ ∈ [0, 1] between U i−1 and U i, which
gives

Âi−1/2 =
∫ 1

0

dF (U(ξ))

dU
dξ. (3.50)

However, instead of evaluating this integral, an invertible parameter vec-
tor z(U) is used as a change of variable [50, p. 319]. The path becomes
z(ξ) = Zi−1 + (Zi −Zi−1)ξ. This gives

F (U i)− F (U i−1) =
[∫ 1

0

dF (z(ξ))

dz
dξ

]
︸ ︷︷ ︸

Ĉi−1/2

(Zi −Zi−1) (3.51)

and

U i −U i−1 =
[∫ 1

0

dU(z(ξ))

dz
dξ

]
︸ ︷︷ ︸

B̂i−1/2

(Zi −Zi−1). (3.52)

The average matrix, called Roe matrix, is now simply

Âi−1/2 = Ĉi−1/2B̂
−1
i−1/2. (3.53)

The matrix such defined is actually the matrix A evaluated for a partic-
ular state, called Roe averaged state. This ensures that if the original
problem was hyperbolic, the linearised problem will also be. In addition,
the convergence of Âi−1/2 towards A(U) when the left and right states
converge towards U is ensured. The Roe scheme consists in diagonalising
the matrix Âi−1/2 to evaluate the fluctuations (3.42)–(3.43), which are
then used in the update formula (3.39).

A weakness of the Roe scheme is that the solution may violate the
second law of thermodynamics. If an eigenvalue changes sign in the middle
of a rarefaction wave, the Roe scheme will predict an unphysical shock.
This problem can be solved with an entropy fix, for example the Harten
entropy fix [31].

The Roe scheme may be very computationally efficient if the eigen-
structure of the matrix Â is known analytically. However, it is not always
possible to know it. Then the matrix must be diagonalised numerically.
This is computationally expensive, and poses problems around resonant
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states (cf. Paper E [57], Section 4.5). In [66], the authors propose an
iterative method to avoid numerical diagonalisation, thus avoiding the
problems near resonance. However, it involves numerous matrix-matrix
multiplications, and the question of the overall computational efficiency
compared to the MUSTA scheme arises. The MUSTA scheme is indeed
more diffusive than the Roe scheme [61, 62], but it does not require matrix
diagonalisations. This is an advantage when the dimension of the system
is large, because matrix operation are computationally expensive. There-
fore, no general conclusion can be drawn here from the comparison of the
Roe and MUSTA schemes in term of accuracy-over-computational-time
rate.

Roe schemes have been derived for different models. Roe [77] applied
his method to the Euler equations. For the three-equation drift-flux model
without any energy equation, Roe schemes were presented in [26, 76, 78].
Roe schemes have also been derived for the four and five-equation two-
fluid models, without energy equation and with or without pressure re-
laxation [60], for the seven-equation two-fluid model with pressure relax-
ation [45], for the six-equation two-fluid model (cf. Paper E [57], Sec-
tion 4.5).

Positively conservative schemes

The Roe scheme suffers from a downside. In some situation, the Roe
averaging may lead to a non-physical average state, for example having
a negative pressure or density for the Euler equations [50, p.327]. This is
caused by the linearisation of the intercell matrix. Schemes which do not
have this drawback are called positively conservative. This is the case of
the exact Godunov solver.

The scheme of Harten, Lax and van Leer (HLL) is an approximate
Godunov solver which is positively conservative. In this scheme, instead
of looking for the exact U∗ state and use (3.37), an approximate value
UHLL is constructed such that UHLL is the average value of U in the
domain between the slowest wave and the fastest wave. This average
value can be evaluated exactly without solving the Riemann problem,
as long as the velocities of the slowest and the fastest waves are known,
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through [32],[90, p. 319]

UHLL
i−1/2 =

S+U i − S−U i−1 + F i−1 − F i

S+ − S−
, (3.54)

where S− is the velocity of the slowest wave, S+ the velocity of the fastest
wave, U i−1 and U i the states on the left and right sides, respectively, and
F i−1 and F i the fluxes on the left and right sides, respectively. Then the
numerical intercell flux is defined by

FHLL
i−1/2 = F i−1 + S−

(
UHLL

i−1/2 −U i−1
)
. (3.55)

In the HLL scheme, the minimum and maximum wave speeds S− and S+

are taken as the absolute lower and upper bounds of the wave velocities
that might arise. In [19], the HLLE scheme was proposed, where the
velocities are defined using the Roe average state as

S−i−1/2 = min
p

(
min
(
λp
i−1, λ̂

p
i−1/2
))

, (3.56)

S+
i−1/2 = max

p

(
max
(
λp
i , λ̂

p
i−1/2
))

, (3.57)

where λp
i is the p

th eigenvalue of the Jacobian A(U i), and λ̂p
i−1/2 is the p

th

eigenvalue of the Roe matrix Âi−1/2. The HLLE method resolves shocks
more sharply than the HLL method. Besides, as for the Roe scheme, the
HLLE method will give the exact solution for two states connected by
a single shock [50, p.329]. The main drawback of this method is that it
only resolves the slowest and the fastest waves, and is very diffusive for
the middle ones. In [92], Toro et. al. derived the HLLC method, where a
contact discontinuity is restored for the Euler equations. This also works
fine for the drift-flux models, which have two fast pressure waves, while all
the middle waves travel at the mixture velocity. Thus, there is only one
wave to restore. When it comes to the the six-equation two-fluid model,
the HLL scheme was applied in [97, 98]. However, the authors did not
reconstruct the missing waves. In [46], the author built a HLLC-similar
scheme for the six-equation two-fluid model. They assert that, in addition
to the two fast pressure waves, they only need to take into account the
eigenvalue of the fastest of the slow waves. This is valid as long as the
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four slow waves have similar velocities. The resulting SEDES scheme is
more diffusive than the Roe scheme, however it has better properties close
to a single-phase state [46].

3.2.5. Second order accuracy

Second-order accurate schemes perform better than first-order accurate
schemes on smooth regions of the solution. However, they oscillate at
discontinuities [50, p. 103]. One says that the total variation (TV) of the
solution increases. A method which only decreases the TV (called TV di-
minishing – TVD) will not be subject to this phenomenon [90, Sec. 13.6].
An idea to reach second-order accuracy for the smooth regions while keep-
ing the TVD property is to use second-order accurate fluxes in smooth
regions, while relying on first-order accurate fluxes near discontinuities.
This can be achieved for example by the FLIC scheme [90, Sec. 14.5.2],
using the FORCE flux as low-order flux, and the Richtmyer flux as high-
order flux. A flux limiter Φi−1/2 then chooses which combination of flux
is to be used. The intercell flux takes the form

F FL
i−1/2 = (1− Φi−1/2)F FO

i−1/2 +Φi−1/2FRi
i−1/2. (3.58)

Now, the method comes down to choosing the limiter function Φi−1/2. It
should be close to 0 in smooth regions, and close to 1 in the neighbourhood
of discontinuities. It is a function Φ(θ) ∈ [0, 1], where θ measures the slope
variation between to adjacent cells, defined by

θi−1/2 =
uji−2 − uji−1
uji−1 − uji

(3.59)

for some component uj of the vector U . No ideal limiter function exists,
but many can be found in the literature. See for example [50, p. 115].
However, Munkejord reported, in [59, p. 104], difficulties to apply this
method to the isentropic two-fluid model.

Another strategy to obtain higher order TVD schemes is to reconstruct
the solution as a piecewise polynomial function of a given order, instead
of keeping a piecewise constant function. For example, in the MUSCL re-
construction [96], the solution is a piecewise linear function. The slope σi
of each segment is evaluated using a slope-limiter function, that takes as
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argument the variation rate of some component uj of U on each side of
the cell. For a cell i and the component j of U , it reads

σi = ϕ

(
uji − uji−1

Δx
,
uji+1 − uji

Δx

)
, (3.60)

where ϕ(a, b) generally returns a value in [a, b], see for example [50, p. 111].
Other methods use higher order polynomial reconstruction, like ENO and
WENO [50, p. 197].

A specific second-order extension exists for the Roe scheme, called wave
limiter. The principle is similar to the previous methods, but uses the
wave structure of the model. Now, the numerical scheme (3.39) is aug-
mented as [50, Sec. 6.13]

Un+1
i = Un

i − Δt

Δx

(
A−ΔQi+1/2 +A+ΔQi−1/2

)
− Δt

Δx

(
F̃ i+1/2 − F̃ i−1/2

)
, (3.61)

where the limited flux F̃ i−1/2 is defined using a limited wave W̃p

F̃ i−1/2 =
1

2

m∑
p=1

|λ̂p
i−1/2|

(
1− Δt

Δx
|λ̂p

i−1/2|
)
W̃p, (3.62)

where λ̂p
i−1/2 is the pth eigenvalue of the Roe matrix Âi−1/2. The limiter

function Φ(θp) – similar to the flux limiter in the FLIC method and to
the slope limiter in the MUSCL approach – appears in the definition of
the limited wave W̃p, but now, θp compares the jump of family p with
the jump of the same family at the upwind interface

θpi−1/2 =
αp
I−1/2

αp
i−1/2

with I =

{
i− 1 if λ̂p

i−1/2 > 0,

i+ 1 if λ̂p
i−1/2 < 0.

(3.63)

αp
i−1/2 was defined in (3.24). The limited version of αp

i−1/2 can then be
defined as

α̃p
i−1/2 = αp

i−1/2Φ
(
θpi−1/2

)
, (3.64)
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which is the limited scalar coefficient used in the definition of the limited
wave

W̃p = α̃p
i−1/2R̂

p
i−1/2, (3.65)

where R̂
p
i−1/2 is the pth eigenvector of the Roe matrix at the interface

i− 1/2. Various limiter functions Φ(θp) can be used [50, p. 115].

3.3. Systems of non-conservative transport equations

We have now discussed numerical methods for conservation laws. How-
ever, some models of interest, containing non-conservative differential
terms, cannot be written in conservation form (3.1). The non-conservative
terms can only be written in the form B(U)∂xZ(U) as in (3.4) that we
recall here,

∂U

∂t
+

∂F (U)

∂x
+B(U)

∂Z(U)

∂x
= 0, (3.66)

where the matrix B(U) is different from the identity matrix. In addition,
the integral ∫ Ur

U l

B(U)
∂Z(U)

∂U
dU (3.67)

is not independent of the integration path from U l to U r. If this integral
is independent of the path, it is possible to evaluate the integral

F̆ (U) =

∫ U

U0

B(Ũ)
∂Z(Ũ)

∂Ũ
dŨ (3.68)

for any convenient path and reference state U0, such that the term
B(U)∂xZ(U) can be rewritten using the conservative flux function F̆ (U)
as

B(U)
∂Z(U)

∂x
=

∂F̆ (U)

∂x
. (3.69)

In this case, the system actually conserves U .

3.3.1. Resolution of non-conservative terms

Systems of non-conservative transport equations are known to be chal-
lenging to solve. For conservative systems, the Lax-Wendroff Theorem [49]
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guarantees that if the numerical scheme converges, it converges to the
right weak solution. For non-conservative systems, the theorem does not
apply. Parés [70] proposed a theoretical framework – the formally path-
consistent framework – to treat the non conservative terms B(U)∂xZ(U)
in (3.66). The principle is to average the non-conservative factor ma-
trix B(U) over a given path between the left and right states U i−1 and
U i. This was done for the two-fluid six-equation model for example in [62]
and in Paper E [57] (Section 4.5). However, Castro et al. [9] showed that
schemes following the formally path-consistent framework do not neces-
sarily yield the right shock speeds. Abgrall and Karni [1] made the same
observation, but in addition showed that the scheme does not even satisfy
the Rankine-Hugoniot condition prescribed by the chosen path.

Hou and Le Floch [35] studied, for scalar conservation laws, the con-
vergence of numerical schemes in non-conservative form. They concluded
that schemes in non-conservative form could not converge to the right
weak solution in the presence of discontinuities. They proved that this
problem cannot be solved by an entropy correction of the scheme. Even
with schemes in non-conservative form corrected to respect the viscous
form of a conservative scheme, the wave velocities are not properly re-
solved. Hou and Le Floch mention, however, that this problem could be
solved by switching to a conservative scheme in the regions where discon-
tinuities are present. This is nevertheless not possible when the model
itself does not exist in conservative form, like the two-fluid six-equation
model.

In [21], Fjordholm and Mishra derived entropy corrections for finite-diff-
erence schemes for two systems of transport equations in non-conservative
formulation. The method is based on entropy-conservative schemes [87,
88]. It consists in suppressing the numerical viscosity from the numeri-
cal scheme, before reintroducing a viscosity term to stabilise it. Conse-
quently, one has control over the viscosity of the scheme. The authors
applied the method to two example models, the equations of compress-
ible inviscid gas dynamics in Lagrangian coordinates studied in [1], and
the isothermal Euler equations studied in [44]. The two models have one
thing in common, which is that they are two systems of conservation
laws which can be formulated, through a change of variables, in non-
conservative form. First, to find the entropy-conservative schemes for
the non-conservative models, the authors apply the change of variables
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to the entropy-conservative scheme derived for the conservative model.
Then, to find the right viscosity term, they apply again the change of
variables to the conservative model, augmented with entropy correction.
The scheme for the non-conservative model, augmented with the viscos-
ity terms, then seems to converge to the expected right solution. The
authors mention that there is no general theory to derive an entropy-
conservative scheme for a non-conservative system. Additionally, they
needed to know the entropy correction of the conservative scheme to be
able to derive the entropy correction of the non-conservative scheme. It
seems that the method actually corrects the non-conservative formulation
of the model by retrieving the underlying conservative properties of the
equivalent conservative model. It is not clear how this method could be
applied to models for which there is no equivalent conservation formula-
tion, like the six-equation two-fluid model.

The formally path-consistent framework has nevertheless good proper-
ties for some non-conservative systems [18]. When the non-conservative
products are only active across linear degenerate fields, the method be-
haves well. This is the case for the Baer-Nunziato model [3], which is a
seven-equation two-fluid model. This is not the case for the six-equation
two-fluid model, since the volume fraction jumps across a pressure wave.
Therefore the term p∂xαg in the momentum equations (2.195)–(2.196)
and p∂tαg in the energy equations (2.197)–(2.198) are active. Note that
the Baer-Nunziato model with mechanical relaxation (cf. Section 2.5.2)
treated as an algebraic source term – which approaches the six-equation
two-fluid model – may nevertheless be incorrectly solved, as will be shown
in Section 3.3.2. It is also mentioned in [18] that the inaccuracy of the
wave propagation for non-conservative systems is expected to be small for
real-life physical models, for which the solutions are often rather smooth
due to physical viscosity terms. In the crack arrest problem, strong pres-
sure variations are expected during depressurisation. However, they will
propagate as rarefaction waves, therefore the may not be concerned by
the wrong propagation velocity. To conclude, as written in [18], path-
conservative schemes must not be used as general-purpose black-box tools
to solve any kind of general nonlinear non-conservative hyperbolic system.

Finally, as mentioned in [35], as well as in [9, 18] in the context of
formally path-consistent schemes, diffusion-free schemes like the Glimm
scheme [30] correctly handle the non-conservative terms. Front tracking
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for hyperbolic conservation laws [34] is also little subject to numerical
diffusion (and diffusion-free for scalar conservation laws) and could be an
option.

3.3.2. Non-conservative terms treated with fractional-step methods

Another approach exists to treat non-conservative terms, the fractional-
step method [50, p. 380] or time-splitting strategies [13, 69], in which the
non-conservative terms are treated similarly to algebraic source terms.

Example case

We will use as example case the Euler equations of fluid dynamics in La-
grangian coordinates studied by Abgrall and Karni in [1]. In conservative
formulation, they are

νt − ux = 0

ut + px = 0

et + (pu)x = 0,

(3.70)

where ν = 1/ρ is the specific volume, u is the velocity, p is the pressure
and e is the specific total energy. The perfect gas equation of state is
used. Its expression is

ε =
pν

γ − 1
. (3.71)

Through a change of variables, it can be expressed in non-conservative
formulation

νt − ux = 0

ut + px = 0

εt + p(u)x = 0,

(3.72)

where ε is the specific internal energy, such that e = ε + u2/2. The
Jacobian matrix of the conservative formulation (3.70) is

Ac =

⎛⎜⎝ 0 −1 0

− p
ν − (γ−1)u

ν
γ−1
ν

−up
ν p− (γ−1)u2

ν
(γ−1)u

ν

⎞⎟⎠ , (3.73)
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while for the non-conservative formulation, we first write the matrices
according to (3.66)

B =

⎛⎝0 −1 0
0 0 1
0 p 0

⎞⎠ and M =
∂Z(U)

∂U
=

⎛⎝ 1 0 0
0 1 0

− p
ν 0 γ−1

ν

⎞⎠ , (3.74)

and the Jacobian is

Anc = BM . (3.75)

These systems are equivalent to each other for smooth solutions. In addi-
tion, if a linear path is chosen to evaluate the average of B, they have the
same shock relations, which means that they admit the same acceptable
discontinuities [1]. The authors solved both systems with a Roe scheme,
using the formally path-consistent approach with a linear path for the
non-conservative terms. The Roe averages, used in Ac and in M , are in
both cases

ν̂ =
νl + νr

2
, (3.76)

û =
ul + ur

2
, (3.77)

p̂ =
pl + pr

2
. (3.78)

The path-conservative average of the pressure, used in B, is identical to
its Roe average

p̄ =
pl + pr

2
. (3.79)

The eigenvalues of the Roe matrices are 0 and ±ĉ, where the speed of
sound ĉ is given by

ĉ =

√
γp̂

ν̂
(3.80)

and

ĉ =

√
(γ − 1)p̄+ p̂

ν̂
(3.81)

for the conservative and non-conservative formulations, respectively. Note
that they are equal for the present definition of p̄.
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The fractional-step method

We will solve the non-conservative system (3.72) with a numerical solver
which solves successively the conservative fluxes and the non-conservative
term. The conservative part of the system

νt − ux = 0,

ut + px = 0,

εt = 0,

(3.82)

is solved with a Roe scheme, where the Roe averages are still given
by (3.76). The eigenvalues are still 0 and ±ĉ, but now the speed of
sound is

ĉ =

√
p̂

ν̂
. (3.83)

The non-conservative term in the third equation of (3.72)

εt = −p(u)x (3.84)

is solved as a source term alternatively with the conservative flux through

εn+1
i = εni − pni

uni+1 − uni−1
2Δx

Δt. (3.85)

The results are shown on Figure 3.4. The curve in plain line is the solu-
tion of the conservative formulation. The dashed curve is the solution of
the non-conservative formulation solved with the formally path-consistent
approach. As mentioned in [1], the right discontinuity of the dashed
curve violates the Rankine-Hugoniot condition prescribed by the integra-
tion path of the non-conservative factors. The dotted curve is the solution
of the third method, solving the non-conservative terms as source terms.
It produces a solution very similar to the dashed curve. Thus, solving the
non-conservative terms with a fractional step method does not circumvent
the problem of wrong wave velocity and wrong height of the intermediate
plateau.

3.4. Summary

The numerical methods presented in this chapter are tailored for systems
of conservation laws. They generally manage to resolve the discontinu-
ities sharply and the Lax-Wendroff theorem assures us that if the method
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Figure 3.4: Results for the Euler equations in conservative and non-
conservative formulations. t = 0.7s, CFL = 0.3, 1500
cells.

converges, it converges to the right solution. The Roe scheme is the least
diffusive of them, however it lacks robustness in some particular cases,
due to being non-positively conservative. Its derivation also requires ex-
tensive algebraic calculation, reducing its flexibility. Other schemes are
positively-conservative, thus more robust, like the HLL scheme and its
variations, and the VFRoe scheme. They are nevertheless more diffusive.
The MUSTA scheme, despite being computationally expensive, seems to
be a good option, due to its robustness and its simplicity and flexibility.
As for the non-conservative terms, they are still a challenge to solve.

Now that the physical models and the numerical methods to solve them
have been presented, we will summarise the contributions of this thesis
in the next chapter.
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4.1. Paper A

Numerical Resolution of CO2 Transport Dynamics [54]

Published in the proceedings of the conference Mathematics for Industry
’09, San Francisco, USA, October 09-10, 2009.

Authors: Alexandre Morin, Peder K. Aursand, Tore Fl̊atten and
Svend T. Munkejord.

In this paper, we derived a partially-analytical high-resolution scheme
for the N -phase drift-flux model with a mixture energy equation. The
thermodynamic description is treated as “black box” relations, therefore,
any equation of state and mixing rule can be used in the derived frame-
work. Phase change may also be incorporated. Classically, the phases
are in mechanical equilibrium. They are in addition in thermal equilib-
rium, since only a mixture energy equation describes energy transport.
The phase velocities have to be recovered from the mixture velocity with
an algebraic relation. After having derived the quasilinear formulation of
the model, we were able to analyse its eigenstructure. It is composed of
N entropy waves having as associated eigenvalues the mixture velocity,
and two pressure waves, having as eigenvalues the relative sound speed
of the model. All the eigenvectors are given analytically as functions of
thermodynamic differentials. Then, a Roe scheme with the higher-order
wave-limiter extension is derived. Analytical Roe averages are given for
most of the variables; only a few thermodynamic variables have to be
averaged numerically. This keeps the generality of the derivation for any
thermodynamic description. We suggest a simple numerical procedure to
evaluate these averages. We then present the results of some test cases
to show the convergence properties of the Roe scheme compared to the
MUSTA method applied to the same model. We also illustrate why an ac-

79
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Figure 4.1: Depressurisation case. Pressure as a function of time at
x = 450m. Roe method, 100 cells. CFL 0.5. Comparison
of different flux limiters, and no flux limiter.

curate numerical scheme is crucial to simulate fast depressurisation cases,
like for example the crack arrest problem. This is shown on Figure 4.1,
where we compare a first-order method (“No lim”) to second-order meth-
ods.

Personal contributions: In this work, I participated in the implemen-
tation of the scheme in our in-house finite-volume-method code initiated
by Svend Tollak Munkejord. I ran some of the test-cases and produced
curves, and wrote the section on numerical simulations. I wrote the rest of
the paper from a note on the derivation. I presented it at the conference.
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4.2. Paper B

On Solutions to Equilibrium Problems for Systems of Stiffened
Gases [25]

Published in SIAM Journal on Applied Mathematics, Vol. 71 (2011),
pp. 41–67.

Authors: Tore Fl̊atten, Alexandre Morin and Svend T. Munkejord.
In this paper, we derive a method to solve the equilibrium state of a

mixture of N immiscible fluids described by the stiffened gas equation of
state. The problem that we wish to solve is to evaluate the thermody-
namic state of the fluids knowing their fluid-mechanical properties, which
are the partial densities and internal energies. Two cases are treated, one
with thermal equilibrium, the other without. In both cases, the mixture
is in mechanical equilibrium, which means that all the fluids are at the
same pressure. In addition, existence and uniqueness of the solution is
discussed.

The stiffened gas equation of state is a local approximation of the ther-
modynamical properties of a fluid around a given reference state, based
on the ideal gas equation of state. It can be written as

p(ρ, e) = (γ − 1)ρ(e− e∗)− γp∞, (4.1)

where p is the pressure, ρ is the density and e is the specific internal energy
of the fluid. γ is the heat capacity ratio, while e∗ is the zero point for
the internal energy and p∞ is the “stiffness” parameter, which modulates
the compressibility of the fluid. In addition, the volume fraction of the
phases in the mixture is denoted by αi.

The first step in deriving the solution methods is to reduce both prob-
lems to the solution of a monotonic function of one variable. In the prob-
lem without thermal equilibrium, we know the partial densities mi = αiρi
and the internal energies Ei = αiρiei. We can reduce the problem to a
function of the pressure

f(p̂) =

N∑
i=1

(γi − 1)(Ei −mie∗,i)
p̂+ γip∞,i

. (4.2)

The equilibrium mixture pressure p must satisfy

f(p) = 1. (4.3)
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The problem has a unique physically valid solution as soon as a set of
restrictions stated in the article is satisfied.

For the problem with thermal equilibrium, we know the partial densities
mi = αiρi and the mixture internal energy E =

∑N
i=1 αiρiei. The problem

is also reduced to a function of the pressure

g(p̂) =
N∑
i=1

γi − 1

γi

micp,i∑N
j=1mjcp,j

E + p̂−∑N
j=1mje∗,j

p̂+ p∞,i
. (4.4)

where cp,i is the specific heat capacity at constant pressure. The equilib-
rium mixture pressure p must satisfy

g(p) = 1. (4.5)

The problem has a unique physically valid solution as soon as the restric-
tions stated in the article are satisfied.

Finally, numerical algorithms based on Newton’s method are proposed
to solve the scalar pressure equations. Second order convergence is shown
on some examples.

Personal contributions: I initiated this work by deriving an algorithm
which evaluates the primary variables from the conserved variables in
the N -phase drift-flux model. I had reduced the equation system to two
equations, solved by Newton-Raphson iterations. Then, Tore Fl̊atten
reduced the systems to one pressure equation and derived consistency
conditions.

4.3. Paper C

Wave Propagation in Multicomponent Flow Models [24]

Published in SIAM Journal on applied Mathematics, Vol. 70 (2010),
pp. 2861-2882.

Authors: Tore Fl̊atten, Alexandre Morin and Svend T. Munkejord.
This paper follows up on the drift-flux model for mixtures of N phases.

It compares the version with instantaneous thermal equilibrium with the
version where the equilibrium is reached at a finite rate, called relaxation
model. Both models are composed of N phasic mass transport equations
and one mixture momentum transport equation. In addition, there is
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one mixture total energy transport equation for the model in instanta-
neous equilibrium, and N phasic total energy transport equations for the
relaxation model.

We are interested in comparing the wave structure of these two models,
to assess the effect of thermal relaxation on wave propagation. First of all,
taking advantage of the decomposition of the relaxation system, we find
that there are 2N − 1 waves with velocity v, amongst which N entropy
waves andN−1 mass-fraction waves, while the remaining two are pressure
waves with velocities v ± ĉ. Here, the mixture speed of sound is given by

ĉ2 =

(
ρ

N∑
i=1

αi

ρic2i

)−1
, (4.6)

where ρ =
∑N

i=1 αiρi is the mixture density, αi is the volume fraction of
component i, ρi its density and ci its speed of sound given by the equation
of state. The equilibrium system has N + 2 waves, amongst which N − 1
mass-fraction waves and one entropy wave, all travelling at velocity v,
and two pressure waves with velocity v ± c̃. The mixture sound velocity
of the equilibrium model is given by

c̃−2 = ĉ−2 + ρ

(
T

N∑
i=1

Cp,i

)−1 N∑
j>i

Cp,iCp,j(ζj − ζi)
2, (4.7)

where Yi = αiρi/ρ is the mass fraction, T is the temperature, Cp,i is the
extensive heat capacity αiρicp,i, and the thermodynamical parameter ζi
is defined as

ζi =

(
∂T

∂p

)
si

= − 1

ρ2i

(
∂ρi
∂si

)
p

. (4.8)

One interesting result to verify with this model comparison is that the
subcharacteristic condition is fulfilled. It is a required condition for the
stability of the relaxation process. It states that the wave speeds in the
equilibrium model should be not be greater than the speeds of the cor-
responding waves in the relaxation model. It is trivially fulfilled for the
waves with velocity v. For the pressure waves, the speeds of sound have
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to be compared. From (4.7), we can write that

c̃−2 − ĉ−2 = ρ

(
T

N∑
i=1

Cp,i

)−1 N∑
j>i

Cp,iCp,j(ζj − ζi)
2, (4.9)

which is strictly non-negative since Cp,i > 0.
Then, the quasilinear formulation for the equilibrium model is derived.
Personal contributions: In this work, I contributed by implementing

and numerically testing the Jacobian matrix.

4.4. Paper D

Towards a Formally Path-Consistent Roe Scheme for the
Six-Equation Two-Fluid Model [56]

Published in AIP Conference Proceedings, Vol. 1281 (2010), pp. 71–74.
Authors: Alexandre Morin, Tore Fl̊atten and Svend T. Munkejord.
This paper presents the derivation of a partially-analytical Roe scheme

for the six-equation two-fluid model. This model contains non-conservative
terms which are a challenge for numerical methods. The strength of the
derivation is that the Roe averages are valid for any averaging formula
for the non-conservative terms. Also, we give analytical Roe averages for
most of the variables, independently of the thermodynamic description of
the phases. The averaging of the remaining variables is dependent on the
equations of state, and has generally to be done numerically. We split the
flux function into two parts, the convective part and the pressure part.
The variables without analytical Roe averages must satisfy a reduced Roe
condition derived from the pressure part of the Roe condition

M̂
(
UL,UR

) (
UR −UL

)
= W

(
UR
)
−W

(
UL
)
, (4.10)

where U is the vector of conserved variables, M̂ is the Roe-averaged
matrix of the pressure part of the fluxes and W is the pressure-part flux
function. The exponents L and R designate the left and right cells. This
Roe condition is simplified into two scalar conditions dependent on – but
valid for any – equation of state.

Personal contributions: I started to derive the Jacobian matrix of the
model, and received help from Tore Fl̊atten to complete the pressure part



4.5. Paper E 85

of the Jacobian (M = ∂UW (U)). Then, Tore Fl̊atten derived the Roe
averages. I wrote the paper. I implemented the scheme and ran test cases.
I presented the work at the ICNAAM 2010 conference.

4.5. Paper E

A Roe Scheme for a Compressible Six-Equation Two-Fluid
Model [57]

Submitted to International Journal for Numerical Methods in Fluids,
2012.

Authors: Alexandre Morin, Tore Fl̊atten and Svend T. Munkejord.
This paper extends and completes the previous one. It presents a

partially-analytical Roe scheme for the six-equation two-fluid model. While
in the previous paper, only the derivation results of the Roe averages were
presented, the present paper gives the details. First the necessary differ-
entials to express the model in quasilinear formulation are derived. Then,
we show that the Roe averages presented fulfill the Roe conditions, in
particular

Â
(
UL,UR

) (
UR −UL

)
=

F c

(
UR
)
− F c

(
UL
)
+B
(
UL,UR

) (
W
(
UR
)
−W

(
UL
))

(4.11)

where U is the vector of conserved variables, Â is the Roe-averaged Ja-
cobian of the fluxes, F c is the convective part of the flux function, B is
the averaged matrix of the factors of the non-conservative terms and W
is the non-conservative flux function, containing the so-called pressure
contributions of the fluxes. The exponents L and R designate the left
and right cells. The condition (4.11) may be split in two, and B can-
cels using a clever definition of the Roe-averaged Jacobian of the pressure
part Âp = BM̂ .

Âc

(
UL,UR

) (
UR −UL

)
= F c

(
UR
)
− F c

(
UL
)

(4.12)

M̂
(
UL,UR

) (
UR −UL

)
= W

(
UR
)
−W

(
UL
)

(4.13)

Therefore, the derivation is independent of the averaging method for the
factor matrix of the non-conservative terms B. Only two scalar condi-
tions remain after simplification, that the remaining equation-of-state-
dependent variables must fulfill.
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A pitfall arising with the six-equation two-fluid model is that the model
is resonant when the gas and liquid velocities are equal to each other.
Resonance occurs when two or more eigenvalues are identical and their
associated eigenspace loses at least one dimension. Consequently, the Ja-
cobian matrix A of the fluxes becomes non-diagonalisable. The problem
is that the Roe scheme uses the Jacobian matrix eigenstructure. How-
ever, we explain why this only is an apparent problem. The eigenspace
associated with the eigenvalues v when vg = v� = v collapses because
the volume-fraction waves become identical. Therefore, one eigenvector
appears twice, making the matrix of eigenvectors singular. We construct
and justify a fix to this problem.

Subsequently, a second-order extension of the scheme using the wave
limiter approach is presented. The original version cannot be applied,
because of the difficulty to identify the order of the waves in the numerical
diagonalisation. We thus found a modified version and applied it to the
scheme.

Numerical results are then presented. Because we are aware that non-
conservative terms pose problems for the accurate resolution of the waves,
the first test case investigates the propagation velocity of all the six waves.
We show that only a small discrepancy is noticeable for one of the waves.
Then, some classical test cases are presented, Toumi’s shock tube (cf.
Figure 4.2a), the moving Gauss curve to evaluate the convergence order
on smooth regions and the water faucet (cf. Figure 4.2b).

Personal contributions: This is the continuation of the previous paper.
The Roe scheme (Sections 2 to 4) was derived by Tore Fl̊atten. The
other sections are mine. I implemented the scheme in the in-house finite-
volume-method code initiated by Svend Tollak Munkejord. I derived the
fix for resonance, and justified why it works. I added the second order
extension with wave limiters. Finally, I ran the test cases and produced
the curves. The results for the MUSTA scheme are from Svend Tollak
Munkejord.
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(a) Toumi’s shock tube. Gas volume frac-
tion. Minmod limiter. t = 0.06s.
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Figure 4.2: Numerical results for the Roe scheme on the six-equation
two-fluid model.

4.6. Paper F

On Interface Transfer Terms in Two-Fluid Models [23]

Published in International Journal of Multiphase Flow, Vol. 45 (2012),
pp. 24–29.

Authors: Tore Fl̊atten and Alexandre Morin.

The two-fluid model is known for not being hyperbolic in its classical
form. Though regularisations of the model exist to obtain a functioning
model, a better insight in the physical and mathematical explanations of
this fact could help improving the formulation of the model. This has
already been extensively discussed in the literature, without the debate
reaching a final conclusion. The main idea discussed in the paper is that
the often used regularisation terms may – and generally do – make the
model violate the second law of thermodynamics.

We first construct a two-phase flow model from the classical assump-
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tions of conservation of phasic masses, mixture momentum and mixture
energy, plus the assumptions of thermodynamical reversibility for smooth
solutions. Adding the assumption that entropy follows the transport
equation

∂αkρksk
∂t

+
∂αkρkskvk

∂x
= 0, (4.14)

we recover the classical formulation of the six-equation two-fluid model,
which is not hyperbolic. Now, the usual regularisations of this model
involve an extra differential term Mk in the momentum transport equa-
tions

∂αkρkvk
∂t

+
∂αkρkv

2
k

∂x
+ αk

∂p

∂x
+Mk = 0, (4.15)

where k = g or k = � and Mg = −M�. The present derivation shows that
such regularised models cannot respect both the conservation assumptions
and (4.14).

Then, we investigated the consequences of relaxing the assumption that
entropy follows the transport equation (4.14). We used instead

∂αkρksk
∂t

+
∂αkρkskvk

∂t
= σk, (4.16)

where σk may be some conservative differential term. We found that
a model could respect the conservation of all the required quantities,
while at the same time respect the thermodynamical reversibility, if Mk

in (4.15) is defined as

Mg = T (vg − v�)
∂W

∂x
+ 2WT

∂(vg − v�)

∂x
, (4.17)

where W (U) is defined through

Z(U) = W (U)(vg − v�)
2, (4.18)

and Z(U) is some potential function. This is not a tool to construct a
hyperbolic model, but it is a convenient tool to test the thermodynamic
consistency of a model. Amongst other things, it shows that a regular-
isation term consistent with thermodynamics must contain terms of the
form ∂xvk.
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Then, the interpretation of the interface transfer terms in the energy
balance equations is discussed. It is not really an energy transfer term,
but rather a heat and kinetic energy transfer term.

Personal contributions: The first part of this paper is based on my work.
I derived the two-fluid model from the basic conservation requirements,
leading to relation (24). I remarked that, when the assumption (4.14) is
made, the only physically relevant two-fluid model is the standard non-
hyperbolic model. Then, Tore Fl̊atten studied the consequences of relax-
ing the entropy assumption, and derived relation (36). Section 6 is Tore
Fl̊atten’s work.

4.7. Paper G

A Two-Fluid Four-Equation Model with Instantaneous
Thermodynamical Equilibrium [55]

Submitted to SIAM Journal on Applied Mathematics, 2012.

Authors: Alexandre Morin and Tore Fl̊atten.

The motivation for this work was to be able to use the Span-Wagner
equilibrium equation of state for mixtures of CO2. We derived the four-
equation two-fluid model, where the phases are at all times at mechani-
cal, thermal and chemical equilibrium. The model was derived from the
five-equation two-fluid model with instantaneous thermal equilibrium by
performing the instantaneous chemical relaxation through phase change.
First, phase change comes with an exchange of momentum at the inter-
face. By deriving the entropy transport equation, we are able to specify
the interfacial velocity.

Then, we write the equilibrium model. It contains time derivatives,
which we transform into spatial derivatives. The model is then written
in quasilinear formulation by deriving the differentials of the components
of the conservative flux function, as well as of the non-conservative flux
function.

Our derivation completes a hierarchy of models presented in the litera-
ture. The hierarchy is represented in Figure 4.3. A remarkable fact is that
the instantaneous relaxation of a variable in a model affects the speed of
sound of the model by a factor independently of the order in which the
relaxations are performed. For example, for the velocity relaxation, we
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Figure 4.3: Hierarchy of the two-phase flow models. TF: two-phase
model. DF: drift-flux model. Index: Number of con-
servation equations. p, T, μ and v designate the relaxed
variable.

have
cTF4

cDF3
=

cTF5

cDF4
=

cTF6

cDF5
, (4.19)

where c is the speed of sound of a model following the naming convention
in Figure 4.3 of the present chapter. We are also able to verify that
the four-equation two-fluid model satisfies the subcharacteristic condition
with the other models of the hierarchy.

Finally, this model as the other two-fluid models is not hyperbolic when
the gas and liquid velocities are different from each other. We have to use
a regularisation term. Using a perturbation method, we find an expression
for the pressure difference in the interfacial pressure regularisation term.

Personal contributions: This paper is mostly my work, helped by useful
discussions and suggestions from Tore Fl̊atten.

4.8. Paper H

Pipeline Flow Modelling with Source Terms due to Leakage: The
Straw Method [58]

Accepted in Energy Procedia, proceedings of the sixth Trondheim Con-
ference on CO2 Capture and Storage, 2012.

Authors: Alexandre Morin, Steinar Kragset and Svend T. Munkejord

This paper differs in spirit from the other contributions and is the most
applied one of the series. We try to evaluate the flow rate of a pressurised
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two-phase mixture through a crack in a pipeline wall. For the single-
phase case, the choked-flow theory gives an analytical formula for the flow
rate through an orifice. It is composed of two regimes. If the pressure
difference on each side of the orifice is under a given threshold, the flow
rate is dependent on the pressure difference. Otherwise, the flow rate
becomes independent of the downwind pressure. The pressure-difference
threshold is reached when the flow velocity at the orifice is equal to the
speed of sound. For a two-phase flow, the concept is similar, but obtaining
general analytical expressions with a “black box” equation of state is not
possible. We therefore wish to develop a numerical method. In the present
paper, we present the method and apply it to the single-phase case, for
which we have analytical results that we use for comparison.

The Euler equations with source terms for the escaping flow read

∂ρ

∂t
+

∂ρu

∂x
= −ζe, (4.20)

∂ρu

∂t
+

∂ρu2

∂x
+

∂p

∂x
= −uζe, (4.21)

∂E

∂t
+

∂(E + p)u

∂x
= −(Ee + pe)

1

ρe
ζe, (4.22)

where ρ is the density, u the velocity, p the pressure, E = ρ(e + u2/2)
and e the internal energy. ζe is the mass flow through the crack. The
subscript e designates the state at the orifice, on the inside, as opposed
to the other quantities which are averages in the tube. The problem is to
evaluate both the flow rate and the fluid state at the orifice.

The straw method models the fracture as a series of transversal tubes –
or straws – plugged in the pipe. The diameter of the straws represents the
crack opening. The key to the method is the definition of the boundary
conditions. They should reproduce the features of the flow through an
orifice. Figure 4.4 shows the modelling assumptions. The flow upwind of
the orifice is modelled as if it was a convergent nozzle, where the pressure
gradient accelerates the fluid. At the orifice, if the flow is subsonic, the
downwind pressure is the atmospheric pressure. If the pressure difference
should prescribe a speed higher than the sound speed, the pressure at
the orifice remains such that the flow is exactly sonic. Then, the fluid
reaches atmospheric pressure in a jet that we do not model. Therefore,
the inlet boundary condition performs a Bernoulli-like expansion, where
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Figure 4.4: Top: real situation of a leak across an orifice in the pipe
wall. Middle: model of the leakage flow using a conver-
gent nozzle and a free jet in atmosphere. Bottom: Pres-
sure profile in the adopted model, depending on the ratio
of the internal pressure to the surrounding (atmospheric)
pressure.

the fluid is accelerated at constant “total enthalpy” H = ρ(h + u2/2),
where h is the specific enthalpy. The outlet boundary condition will in-
trinsically juggle with the sub- and supercritical regimes. However, to
stabilise the convergence, and since we are only interested in the steady
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state, a correction is applied to the outlet pressure. This correction nat-
urally disappears in steady state. In the case of two-phase flows, there
may be phase change in the fracture flow. This can happen within the
straws. This is the strength of this method, which gives flexibility in the
modelling of phase change.

The numerical results show a perfect match at numerical precision be-
tween the straw method and the choked flow theory.

Personal contributions: The analytical expressions for the single-phase
flow through a fracture are from Steinar Kragset. Svend Tollak Munkejord
had started to implement the straw method. I completed it by defining
the relevant boundary conditions depending on the flow velocity. The
pressure correction to speed up convergence is from me. I performed the
numerical tests and presented the poster at the conference.





5 Conclusions and continuation

The present thesis contributed to the derivation and implementation of
some two-phase flow models and numerical methods to solve them. The
Roe method was applied to theN -phase drift-flux model in Paper A. Then
in Paper B, a method was derived to compute the equilibrium state of a
mixture composed of phases following stiffened gas equations of state. In
Paper C, we compared the wave propagation in the model from Paper A
and in the thermal-relaxation model that leads to this model. Then in
Papers D and E, a Roe scheme was derived for the six-equation two-
fluid model. Paper F deals with a known issue with this model, the
fact that it is not hyperbolic in its basic formulation. It does not solve
the problem, but clarifies the interaction between the regularisation term
and the thermodynamic consistency of the model. In Paper G, a new
model is derived, the four-equation two-fluid model, where the phases are
at equilibrium at all times. Finally, in Paper H, a numerical method is
presented, to evaluate the mass flow through a fracture in a pipe.

This work raised some problems and questions. First, in Paper G, a
nomenclature of two-phase flow models was presented, containing two-
fluid and drift-flux models, with various equilibrium assumptions. One
can wonder what the best choice of model is. The crack arrest problem in-
volves fast transients, and the assumptions of instantaneous equilibria can
be questioned. On the other hand, however physically relevant a model
is, experimental data is required to determine the parameters. For ex-
ample, the Span-Wagner equation of state describes accurately mixtures
of CO2 only at equilibrium, therefore the four-equation two-fluid model
was derived. A six-equation or even seven-equation two-fluid model may
be a better description for fast transients, however, an accurate equation
of state for CO2 in liquid and gas phases would be needed. In addition,
models should be provided for how the equilibria are reached. Allowing
the phases to be out of chemical equilibrium and providing a wrong phase-

95



96 5. Conclusions and continuation

change model is not necessarily better than assuming instantaneous chem-
ical equilibrium. Therefore, the choice of fluid-dynamical model should
be done by considering the physics that is to be modelled, but also the
available submodels for thermodynamics, heat transfer, friction, phase
change etc.

Another question arises from the non-hyperbolicity of the two-fluid
models. This fact questions the physical validity of the models. These
models may be regularised for example with an interfacial pressure differ-
ence term, with a pressure difference that is small compared to the phase
pressures. The problem could also be avoided by using a drift-flux model.
However, in the drift-flux model, the phases are not as mechanically in-
dependent from each other as they are in the two-fluid model. Hence,
using the two-fluid model with a regularisation term may still be a better
alternative. The seven-equation two-pressure model may also be an alter-
native, as it is hyperbolic and its eigenstructure is known. The drawback
is that a mechanical model at the interface is needed, and it is not clear
which one to use. This strategy is not necessarily a better choice than
to assume instantaneous mechanical equilibrium and use a regularisation
term. Some work could be carried out on the regularisation term using
the tools and insights of Paper F on the interfacial terms. The paper
shows that only terms containing spatial derivatives of the velocity could
respect the second law of thermodynamics, while these terms have not
received as much attention as interfacial pressure terms in the litterature.
Virtual mass forces terms may be a starting point.

When it comes to the numerical methods, Paper A illustrates the impor-
tance of accurate numerical methods to solve the crack arrest problem.
Otherwise, the smearing of the waves may cause a wrong resolution of
the features of the flow. The thesis has mainly concentrated on the Roe
scheme, which has been compared to the MUSTA method in Paper E.
The Roe method has a clear advantage in term of sharp resolution of the
waves. However, it requires extensive derivation work, and its application
to the two-fluid models poses problems due to the eigenstructure not be-
ing known analytically. It also suffers from a lack of robustness in some
particular cases, for example close to single-phase states. On the other
hand, the MUSTA method is easy to implement and rather robust, but
less accurate and more computationally expensive. The very recent adap-
tation of the HLL scheme with wave reconstruction to the six-equation
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two-fluid model by Kumbaro [46] seems interesting and should be tried.
The last concern is the resolution of the non-conservative terms. The

numerical methods for conservation laws may lead to a wrong resolution of
the waves, which is particularly problematic for the crack-arrest problem.
Further work is needed here, to try and correct the finite-volume method.
The front tracking method for conservation laws could also be tried, as it
is expected that it would perform better on the non-conservative terms.
However, in its current form, it requires an exact Riemann solver. To
apply it to the six-equation two-fluid model, for example, one should try
and see if linearised Riemann problems could be solved instead.

Recommendations for further work

• Run the four-equation two-fluid model with the Span-Wagner equa-
tion of state, and compare the results to experimental data, to assess
the consequences of the full-equilibrium assumption.

• Study why the instantaneous mechanical relaxation of the seven-
equation two-fluid model gives a non-hyperbolic six-equation model,
if this is due to a wrong entropy creation in the relaxation process
(cf. Chen et. al. [11, 12]).

• Related to the point over, try to find differential terms in the regu-
larisation term of the six-equation two-fluid model which make the
model both hyperbolic and physically relevant, using the results of
Paper F.

• Implement and assess the modified HLL method described by Kum-
baro in [46], and compare its performances against the Roe method
described in Paper E.

• Try to correct the finite-volume method for non-conservative sys-
tems.

• Assess the feasibility of using the front-tracking method to solve
the six-equation two-fluid model, or any other model for which no
solution of the Riemann problem is known.
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Abstract
We consider a hyperbolic system of conservation laws de-
scribing multicomponent flows through a transport pipeline,
with applications to CO2 transport and storage. We demon-
strate that numerical dissipation easily leads to an un-
derestimation of the amplitude of pressure pulses and the
resulting pipe strain. We argue that recently developed
high-resolution methods, particularly adapted to our cur-
rent model, are essential tools for an accurate operations
analysis.

1 Introduction
An important factor in carbon dioxide (CO2) capture
and storage (CCS) is the transport between the point
of capture and the point of storage. A main focus of
the newly established BIGCCS centre [2], a consortium
consisting of international universities, research institu-
tions and industry partners, is the development of cou-
pled fluid-mechanical and thermodynamic models with
material science models to simulate crack propagation
in CO2 pipelines.

Such pipe flow will take place at high pressures,
where the CO2 is in a supercritical (liquid-like) state.
Due to failure, or planned maintenance, the pipe can be
depressurized, leading to cooling. If the temperature
becomes low enough, the pipe material may become
brittle, causing a rupture and much damage. Therefore,
for a proper pipeline design, it is necessary to be able
to estimate the pipe cooling during depressurization.

This requires the formulation of adequate thermo-
dynamic and fluid-mechanical models, and an accurate
numerical solution of these models. Hence potential er-
rors in the operations analysis may arise from two sep-
arate sources:

• Modelling errors, i.e. failure of the underlying
mathematical models to correctly capture physical
reality;
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• Numerical errors, i.e. failure of the chosen numeri-
cal method to represent the correct solution of the
mathematical problem to a satisfactory degree of
accuracy.

The models of interest typically take the form of systems
of hyperbolic partial differential equations [9]. It is
well known in the scientific community that artificial
diffusion, needed to stabilize the numerical solution,
may lead to severe loss of accuracy [7].

With this paper, we wish to increase awareness
towards the fact that even a highly accurate math-
ematical model may produce untrustworthy results if
proper numerical methods are not employed for indus-
trial simulations. To this end, we compare an upwind
high-resolution scheme with a central first-order scheme,
namely the MUSTA scheme previously investigated for
the current model in [9].

Our upwind scheme will be based on the approx-
imate Riemann solver of Roe [10], and high resolu-
tion will be obtained by the wave-limiter approach of
LeVeque [7].

In order to construct our Roe scheme, we must over-
come the difficulty that our thermodynamic state rela-
tions are generally highly complex. They may consist
of a combination of analytical state equations, mixing
rules, and tabular interpolations. For all practical pur-
poses, we must be able to treat our interface to thermo-
dynamics as a black box.

In situations like these, fully numerical Roe schemes
are often applied [12]. However, for reasons of simplicity
and efficiency, we wish to consider a more analytical
strategy where the Roe matrix involves only partially
numerical constructions. To this end, we will largely
follow the approach of Abgrall [1], and use an idea
suggested by Glaister [6] for incorporating a general
pressure function into our Roe scheme.

Our paper is organized as follows: In Section 2, we
describe the governing equations of our multicomponent
model. In Section 2.1, we discuss in some detail the
particular thermodynamic submodels chosen for the
purposes of this paper. In Section 2.2.1, we analytically
derive the velocities and composition of the various
waves associated with the model.

In Section 3, we derive our Roe solver. In Sec-
tion 3.2.2 we describe more precisely how we are able to



incorporate a general black-box pressure function into
the scheme in a smooth manner.

In Section 4, we present some numerical simula-
tions, where we compare our high-resolution Roe scheme
to a MUSTA scheme. In Sections 4.1–4.2, we focus on a
couple of shock tube problems in order to illustrate the
behaviour of the schemes on the individual waves. In
Section 4.3, we present a case more relevant for indus-
trial applications, where we study the effect of depres-
surization of a pipe.

Finally, our work is summarized in Section 5.

2 The Model
We consider flows of N different chemical species (com-
ponents) along a transport pipeline. The model we will
be studying assumes that the flow variables are averaged
over the pipe cross section. Hence spatial dependence
is only along the x-axis, and we obtain a system of con-
servation laws in the form

(2.1)
∂U

∂t
+

∂F (U)
∂x

= Q(U),

to be solved for the unknown vector U . Here U is the
vector of conserved variables, F is the vector of fluxes,
and Q is the vector of sources.

Our model is similar to the one studied by Ab-
grall [1]. It consists of N + 2 separate conservation
equations; one for the masses of each component, as
well as conservation equations for the total momentum
and energy of the mixture. More precisely, we have

• Conservation of mass:

(2.2)
∂mi

∂t
+

∂

∂x
(miv) = 0 ∀i ∈ {1, . . . , N},

• Conservation of momentum:

(2.3)
∂ρv

∂t
+

∂

∂x

(
ρv2 + p

)
= Qv,

• Conservation of energy:

(2.4)
∂E

∂t
+

∂

∂x
(v(E + p)) = Qe.

Herein, the nomenclature is as follows:

mi - partial density of component i kg/m3,
ρ - density of the mixture kg/m3,
v - velocity of the mixture m/s,
p - common pressure Pa,
ei - internal energy of component i m2/s2,
E - total energy of the mixture kg/(m·s2),
Qv - momentum source terms kg/(m2·s2),
Qe - energy source terms kg/(m·s3).

Furthermore, the following relations hold:

ρ =
N∑

i=1

mi,(2.5)

E =
1
2

ρv2 +
N∑

i=1

miei.(2.6)

2.1 Thermodynamic Relations. An essential fea-
ture of the numerical methods presented in this paper
is that they are straightforwardly applicable to an ar-
bitrary thermodynamic description of the mixture, in-
cluding the possibility of phase transitions for each com-
ponent. Hence, we will generally assume only that the
mixture is at all times in thermodynamic equilibrium,
and that there exists state relations

p = p(ε, m1, . . . , mN ),(2.7)
T = T (ε, m2, . . . , mN )(2.8)

for the pressure and temperature of the mixture.
Herein,

(2.9) ε =
N∑

i=1

miei.

However, in order to present reproducible results, the
thermodynamics used for the simulations of this paper
will be based on two simplifying assumptions:
1. The components are assumed to be immiscible;

2. Each component follows a stiffened gas equation of
state, as described by Menikoff [8].

Note that none of these simplifying assumptions are
required to derive the numerical solver.

The assumption of immiscibility implies that each
component follows separate pressure and temperature
laws:

p = p(ρi, ei) ∀i,(2.10)
T = T (ρi, ei) ∀i,(2.11)

where ρi is the density of component i. The stiffened
gas EOS is fully defined by its Helmholtz free energy:
(2.12)
A(ρ, T ) = cvT (1−ln(T/T0)+(γ−1) ln(ρ/ρ0))−s0T+

p∞
ρ

,

where the parameters cv, γ, p∞, T0, ρ0 and s0 are
constants. From this we can derive the pressure law

(2.13) p(ρi, ei) = (γi − 1)ρiei − γip∞,i,

as well as the temperature law

(2.14) cv,iT = ei − p∞.i

ρi

for each component i.



2.2 Quasilinear Formulation. In this section, we
rewrite the system (2.2)–(2.4) in quasilinear form:

(2.15)
∂U

∂t
+ A(U)

∂U

∂x
= Q(U),

i.e. we obtain the matrix A given by

(2.16) A(U) =
∂F (U)

∂U
.

This will form the basis for the derivation of our Roe
scheme in Section 3.2. The derivation is a generalization
of the results of Abgrall [1], who considered a system of
ideal gases with phase transition. However, whereas
Abgrall’s construction assumes that the pressure is
given by Dalton’s law, our Roe scheme allows for a
general pressure function as described in Section 3.2.

First, we will find it convenient to split the flux
vector into convective and pressure terms as follows:

(2.17) F (U) = F c(U) + F p(U),

where

(2.18) F c(U) = vU

and

(2.19) F p(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
p
pv

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m1
m2
...

mN

ρv
E

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U1
U2
...

UN

UN+1
UN+2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then we may write

(2.20) A(U) = Ac(U) + Ap(U),

where
(2.21)

Ac(U) =
∂F c(U)

∂U
and Ap(U) =

∂F p(U)
∂U

.

Proposition 1. The convective Jacobian matrix
Ac(U) can be written as
(2.22)

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1 − Y1)v −Y1v . . . −Y1v Y1 0
−Y2v (1 − Y2)v . . . −Y2v Y2 0

... . . . . . . ...
...

...
−YN v −YN v . . . (1 − YN )v YN 0
−v2 −v2 . . . −v2 2v 0
−Ev −Ev . . . −Ev E v

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

(2.23) E =
E

ρ

and

(2.24) Yi =
mi

ρ
.

Proof. From (2.18) we obtain

(2.25) dF c = v dU + U dv,

which together with (2.5) and

(2.26) dv =
1
ρ
(d(ρv) − v dρ)

yields the result.

Proposition 2. Define

(2.27) Pi =
(

∂p

∂mi

)
mj �=i,ε

i ∈ {1, . . . , N}

and

(2.28) Pε =
(

∂p

∂ε

)
m1,...,mN

so that (2.7) can be written in differential form as

(2.29) dp = Pε dε +
N∑

i=1

Pi dmi.

Then the pressure Jacobian matrix Ap(U) can be writ-
ten as

(2.30) AT
p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 a1 v
(

a1 − p
ρ

)
0 0 . . . 0 a2 v

(
a2 − p

ρ

)
... . . . . . . ...

...
...

0 0 . . . 0 aN v
(

aN − p
ρ

)
0 0 . . . 0 −vPε

p
ρ − v2Pε

0 0 . . . 0 Pε vPε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

(2.31) ai = Pi +
1
2

v2Pε ∀i ∈ {1, . . . , N}.

Proof. From (2.6) and (2.26) we can derive the differ-
ential

(2.32) dE = dε − 1
2

v2
N∑

i=1

dmi + v d(ρv),

by which we may rewrite (2.29) as
(2.33)

dp =
N∑

i=1

(
Pi +

1
2

v2Pε

)
dUi − vPε dUN+1 +Pε dUN+2.

The result follows from (2.33) together with

(2.34) d(pv) = p dv + v dp.



2.2.1 Eigenstructure. In this section, we analyti-
cally derive the eigenstructure of the matrix

(2.35) A =

⎡⎢⎢⎢⎣
A11 A12 . . . A1,N+2
A21 A22 . . . A2,N+2
...

...
. . .

...
AN+2,1 AN+2,2 . . . AN+2,N+2

⎤⎥⎥⎥⎦
given by (2.20), (2.22) and (2.30).

Proposition 3. The velocity v is an eigenvalue of the
matrix A, and the dimension Dv of the corresponding
eigenspace satisfies

(2.36) Dv ≥ N.

Proof. We look for eigenvectors satisfying

(2.37) Aω = vω,

where

(2.38) ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω1
ω2
...

ωN

ωN+1
ωN+2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Now observe that the equations

(2.39)
N+2∑
j=1

Aijωj = vωi

reduce to

(2.40) ωN+1 = v
N∑

j=1

ωj

for all i ∈ {1, . . . , N} and

(2.41)
N∑

i=1

Piωi − 1
2

vPεωN+1 + PεωN+2 = 0

for i ∈ {N + 1, N + 2}. Hence there are at most 2
independent linear constraints on the elements of ω, and

(2.42) Dv ≥ (N + 2) − 2 = N.

Proposition 4. Assume that P1, . . . , PN and Pε are
all strictly positive. Then the eigenspace corresponding
to the eigenvalue λ = v is spanned by the basis vectors
ωi, where

(2.43) ωi
j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

PN if j = i,

−Pi if j = N,

v (PN − Pi) if j = N + 1,
1
2 v2 (PN − Pi) if j = N + 2,

0 otherwise

for i ∈ {1, . . . , N − 1} and

(2.44) ωN
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pε if j = 1,

vPε if j = N + 1,
1
2 v2Pε − P1 if j = N + 2,

0 otherwise.

Proof. Observe that when Pε is strictly positive, the
constraints (2.40) and (2.41) are linearly independent,
hence

(2.45) Dv = N.

Furthermore, note that the constraints (2.40)–(2.41)
are satisfied, so (2.43) and (2.44) are in the eigenspace
corresponding to λ = v.

Also, the N − 1 vectors described by (2.43) are
linearly independent since ωj

j �= 0, ωi �=j
j = 0 for all

j ∈ {1, . . . , N}. Finally, (2.44) is linearly independent
of the set (2.43), as all linear combinations of vectors in
the form (2.43) satisfy

(2.46) ∀i ∈ {1, ..., N − 1}
N∑

j=1

Pjωi
j = 0,

which is not satisfied by (2.44).
In conclusion, the N vectors described by (2.43)–

(2.44) are linearly independent and reside in the N-
dimensional eigenspace corresponding to λ = v. Hence
they form a basis for this space.

Proposition 5. The matrix A has two eigenvalues
given by

(2.47) λ = v ± c̃,

where

(2.48) c̃ =

√√√√ N∑
i=1

YiPi +
ε + p

ρ
Pε.

Proof. We look for eigenvectors satisfying

(2.49) Aω = (v + s)ω,

where s is assumed to be non-zero. Now observe that
the equations

(2.50)
N+2∑
j=1

Aijωj = (v + s)ωi



may be simplified to yield the constraints

(v + s)ωj = YjωN+1 ∀j ∈ {1, . . . , N},(2.51)

(v + s)PεωN+2 =

(
s2 −

N∑
i=1

PiYi + v

(
s +

1
2

v

))
ωN+1,

(2.52)

(
Pε

ε + p

ρ
− s2 +

N∑
i=1

PiYi

)
ωN+1 = 0.(2.53)

Furthermore, observe that (2.51)–(2.53) allow for non-
trivial solutions if

(2.54) s2 =
N∑

i=1

PiYi +
ε + p

ρ
Pε,

or by (2.48):

(2.55) s = ±c̃.

Proposition 6. The eigenvectors corresponding to the
eigenvalues v ± c̃ can be expressed as

(2.56) ω±
j =

⎧⎪⎨⎪⎩
Yj if j ≤ N

v ± c̃ if j = N + 1
ε+p

ρ + 1
2 v2 ± vc̃ if j = N + 2.

Proof. The constraints (2.51)–(2.53) can be simplified
by use of (2.55) to

(v ± c̃)ωj = YjωN+1,(2.57)

(v ± c̃)ωN+2 =
(

ε + p

ρ
+
1
2

v2 ± vc̃

)
ωN+1,(2.58)

which are satisfied by (2.56).

2.2.2 Primary variables. While the translation of
the primary variables into the vector of conserved
variables U is straightforward, the opposite direction is
not. It involves the resolution of the system consisting of
the definition of the conserved variables (U in equation
(2.19)), two state equations per component (equations
(2.13) and (2.14)) and the fact that the sum of the
volume fractions is equal to one:

(2.59)
N∑

i=1

Ui

ρi
= 1.

First of all, the velocity is trivially found through

(2.60) v =
UN+1∑N

i=1 Ui

.

In order for the rest to be solved, it is reduced to a
system of two equations. First, a relation between the

density of the component i = 2, N and that of the
component 1 is:

(2.61) ρi =
γ1−1

γ1
cp,1

γi−1
γi

cp,i

ρ1 − p∞,1 − p∞,i
γi−1

γi
cp,iT

.

Then we can write

f1 =

(
1 −

N∑
i=2

Ui

ρi

)
ρ1 − U1,(2.62)

f2 =
N∑

i=1

Ui

(
ei +

1
2

v2
)

− UN+2.(2.63)

This system can be solved for ρ1 and T using a Newton
algorithm. The remaining variables follow from (2.61)
and the equations of state.

3 Numerical Methods
A rough classification of finite volume methods for
hyperbolic conservation laws separates between central
methods, which are straightforward yet diffusive, and
upwind methods, which are more accurate but can be
algebraically cumbersome. A central-type method, the
MUSTA scheme introduced by Toro [13], was employed
in [9] for our current model.

The purpose of this paper is to adapt the Riemann
solver of Roe [10] to our particular application. Roe’s
solver is a convenient upwind method, as it requires
only the solution of a linear Riemann problem at each
cell interface; see [10] for details.

For a related model, a Roe scheme has already been
proposed by Abgrall [1], and we will closely follow his
approach. The modification presented here allows us to
construct a Roe scheme for arbitrary equations of state,
as described in more detail in Section 3.2.2.

3.1 The Roe Method. Roe’s method relies upon
the construction of a matrix Â satisfying the following
properties:

R1: Â(UL, UR)(UR − UL) = F (UR) − F (UL);

R2: Â(UL, UR) is diagonalizable with real eigenvalues;

R3: Â(UL, UR) → ∂F
∂U smoothly as UL, UR → U .

We now consider a computational grid with space index
j and time index n, such that

(3.64) xj = x0 + jΔx

and

(3.65) tn = t0 + nΔt.



The Roe scheme can now be written in flux-conservative
form:

(3.66)
Un+1

j − Un
j

Δt
+

F j+1/2 − F j−1/2

Δx
= Qn

j ,

where the first-order numerical flux F j+1/2 is given by
(3.67)
F j+1/2 =

1
2
(
F (Un

j ) + F (Un
j+1)

)
+
∣∣Â∣∣ (Un

j+1 − Un
j

)
where the “absolute value” of the matrix Â is given by

(3.68)
∣∣Â∣∣ = R̂

∣∣Λ̂∣∣R̂−1
,

with

(3.69)
∣∣Λ̂∣∣ = diag(|λ1|, |λ2|, . . . , |λN+2|),

where λi are the eigenvalues of Â, and R̂ is the matrix
of eigenvectors that diagonalizes Â.

3.1.1 High Resolution. There are several ways of
obtaining high resolution in the numerical solution. By
“high resolution” we here mean second-order accuracy
in smooth portions of the solution, and no spurious
oscillations. In this work, we employ the method
of characteristic flux-limiting described in LeVeque [7,
Chapter 15] because of its accuracy and efficiency.
Herein, the numerical scheme is formulated as

(3.70)

Un+1
j = Un

j − Δt

Δx

(
A−ΔU j+1/2 + A+ΔU j−1/2

)
− Δt

Δx

(
F̃ j+1/2 − F̃ j−1/2

)
,

where the symbol A−ΔU j+1/2 denotes the net effect
of all left-going waves at xj+1/2, and A+ΔU j−1/2
measures the net effect of all right-going waves at
xj−1/2. The second-order correction F̃ j+1/2 is defined
in the following.

For the Roe solver, we have the interpretation that

(3.71) A±ΔU j+1/2 = Â
±
j+1/2(U j+1 − U j).

Herein,

(3.72) Â
±
j+1/2 = R̂j+1/2Λ̂

±
j+1/2R̂

−1
j+1/2,

where R̂j+1/2 is the matrix having the right eigenvectors
r̂j+1/2 of Âj+1/2 as its columns, and Λ̂

+
j+1/2 and Λ̂

−
j+1/2

are the diagonal matrices containing the positive and
negative eigenvalues, respectively, of Âj+1/2. Further,
to satisfy the condition R1, we must have that

(3.73) Âj+1/2(U j+1 − U j) =
N+2∑
p=1

λp
j+1/2Wp

j+1/2,

where Wp
j+1/2 is the pth wave arising in the solution

to the Riemann problem at xj+1/2. The approximate
Riemann solution consists of N+2 waves proportional to
the right eigenvectors r̂j+1/2, propagating with speeds
equal to the eigenvalues, λp

j+1/2, of Âj+1/2. The
proportionality coefficients βp

j+1/2 can be found by
solving the linear system

(3.74) U j+1 − U j =
N+2∑
p=1

βp
j+1/2r̂p

j+1/2,

and βp
j+1/2 can be interpreted as wave strengths.

The flux vector F̃ j+1/2 is the higher-order correc-
tion. It is given by
(3.75)

F̃ j+1/2 =
1
2

N+2∑
p=1

∣∣λp
j+1/2

∣∣(1 − Δt

Δx

∣∣λp
j+1/2

∣∣)W̃p
j+1/2,

where W̃p
j+1/2 is a limited version of the wave Wp

j+1/2.
The limited waves W̃p

j+1/2 are found by comparing the
wave Wp

j+1/2 with the upwind wave Wp
J+1/2 [7, see

Section 9.13], where

(3.76) J =

{
j − 1 if λp

j+1/2 ≥ 0,

j + 1 if λp
j+1/2 < 0.

We write

(3.77) W̃p
j+1/2 = φ(θp

j+1/2)Wp
j+1/2,

where φ is a flux-limiter function, and θp
j+1/2 is a

measure of the smoothness of the pth characteristic
component of the solution:

(3.78) θp
j+1/2 =

Wp
J+1/2 · Wp

j+1/2

Wp
j+1/2 · Wp

j+1/2
,

where · denotes the scalar product in RN+2.
In Section 4, we will employ the minmod limiter,

see [11],

(3.79) φ(θ) = minmod(1, θ),

where

(3.80) minmod(a, b) =

⎧⎪⎨⎪⎩
0 if ab ≤ 0,

a if |a| < |b| and ab > 0,

b if |a| ≥ |b| and ab > 0,

the monotonized central-difference (MC) limiter [14],

(3.81) φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)),

and the superbee limiter [11],

(3.82) φ(θ) = max(0,min(1, 2θ),min(2, θ)),

(see also [7, Section 6.11]).



3.2 A Semi-Analytical Roe Matrix. In this sec-
tion, we construct a Roe matrix in the so-called quasi-
Jacobian form [4], following closely the approach of Ab-
grall [1]. We will take advantage of the flux splitting
(2.17), and write the Roe matrix as

(3.83) Â = Âc + Âp.

Proposition 7. The convective Roe matrix given by
(3.84)

Âc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1 − Ŷ1)v̂ −Ŷ1v̂ . . . −Ŷ1v̂ Ŷ1 0
−Ŷ2v̂ (1 − Ŷ2)v̂ . . . −Ŷ2v̂ Ŷ2 0

... . . . . . . ...
...

...
−ŶN v̂ −ŶN v̂ . . . (1 − ŶN )v̂ ŶN 0
−v̂2 −v̂2 . . . −v̂2 2v̂ 0
−Ê v̂ −Ê v̂ . . . −Ê v̂ Ê v̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

Ŷi =
√

ρjYi,j +
√

ρj+1Yi,j+1√
ρj +

√
ρj+1

,(3.85)

v̂ =
√

ρjvj +
√

ρj+1vj+1√
ρj +

√
ρj+1

,(3.86)

Ê =
√

ρj Êj +
√

ρj+1Êj+1√
ρj +

√
ρj+1

,(3.87)

satisfies the Roe condition

(3.88) Âc,j+1/2(U j+1 − U j) = F c(U j+1) − F c(U j).

Proof. As described in [1, 3], this result can be derived
using Roe’s approach [10] with the parameter vector:

(3.89) q =
√

ρ

⎡⎢⎢⎢⎢⎢⎣
Y1
...

YN

v

Ê

⎤⎥⎥⎥⎥⎥⎦ .

3.2.1 The Pressure Roe Matrix. We write the
Roe matrix Âp as
(3.90)

Â
T
p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 â1 v̂

(
â1 −

[̂
p
ρ

])
0 0 . . . 0 â2 v̂

(
â2 −

[̂
p
ρ

])
...

. . . . . .
...

...
...

0 0 . . . 0 âN v̂

(
âN −

[̂
p
ρ

])
0 0 . . . 0 −v̂P̂ε

[̂
p
ρ

]
− v̂2P̂ε

0 0 . . . 0 P̂ε v̂P̂ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

(3.91) âi = P̂i +
1
2

v̂2P̂ε ∀i ∈ {1, . . . , N}.

Proposition 8. The pressure Roe matrix given by
(3.90) satisfies the Roe condition

(3.92) Âp,j+1/2(U j+1 − U j) = F p(U j+1) − F p(U j),

provided that v̂ is given by (3.86), and

(3.93)
[̂

p

ρ

]
=

√
ρj+1pj +

√
ρjpj+1√

ρj+1ρj +
√

ρjρj+1
,

and the subcondition

(3.94) P̂ε(εj+1 −εj)+
N∑

i=1

P̂i(mi,j+1 −mi,j) = pj+1 −pj

is satisfied.

Proof. The result may be verified by substituting (2.19)
and (3.90) with (3.86), (3.93) and (3.94) into (3.92).

3.2.2 The Roe-Averaged Pressure Derivative.
We have now reduced the problem to finding a suitable
Roe-type average of the form (3.94) for the pressure
function p(ε, m1, . . . , mN ). In general, these averages
can be calculated analytically for any given case of an
analytical pressure function p(ε, m1, . . . , mN ).

However, as the purpose of this paper is to keep the
method as general as possible, we will use an approach
similar in spirit to the suggestion of Glaister [6]. In
particular, our approach here is identical to the one used
in [5] for a different model.

Following [5], we first introduce the symbol Δ(r)
given by

(3.95) Δ(r)p(qL, qR) = p(qR
1 , . . . , qR

r , qL
r+1, . . . , qL

M )
− p(qR

1 , . . . , qR
r−1, qL

r , . . . , qL
M ),

where the (M = N + 1)-vector q is given by

(3.96) q =

⎡⎢⎢⎢⎣
m1
...

mN

ε

⎤⎥⎥⎥⎦ .

We then have that
(3.97)

P̂r =

{
Δ(r)p(qL,qR)

qR
r −qL

r
for qL

r �= qR
r

∂p
∂qr

(qR
1 , . . . , qR

r−1, qL
r , . . . , qL

M ) otherwise

satisfies the condition (3.94) for all functions
p(m1, . . . , mN , ε). Furthermore, the Roe condition



Table 1: EOS parameters employed in the present
calculations.

γi p∞,i cp,i

(–) (MPa) (kJ/(kgK))

carbon dioxide (1) 1.03 13.47 3.877
water (2) 2.85 833.02 4.155

methane (3) 1.23 10.94 2.930

Table 2: Initial state in the moving-discontinuity prob-
lem.

Quantity Symbol (unit) Left Right

CO2 vol. frac. α1 (–) 0.8 0.2
Water vol. frac. α2 (–) 0.2 0.8
Velocity v (m/s) 10 10
Pressure p (MPa) 10 10
Temperature T (K) 310 310

R3 is also satisfied; see [5] for details. The condition
R2 is satisfied provided the sound velocity c̃ is real, or
equivalently that s as given by (2.54) satisfies

(3.98) s2 ≥ 0.

Note in particular that this is the case if P̂1, . . . , P̂N

and P̂ε are all strictly positive. This assumption is also
made in Proposition 4.

4 Numerical Simulations
In this section, the Roe scheme is tested with respect
to stability, accuracy and robustness. Further, it
is compared to an independent scheme, namely the
MUSTA scheme described by Munkejord et al. [9].

The equation-of-state parameters have been
adapted to carbon dioxide (component 1), water
(component 2) and methane (component 3) at 10MPa
and 310K, and are shown in Table 1.

4.1 Moving discontinuity. We consider a case
which tests how the numerical method captures a mov-
ing discontinuity. Initially, all variables are uniform,
except for a discontinuity in the volume fraction in the
middle of the tube, see Table 2. Ideally, the numerical
method should advect the volume-fraction discontinuity
without smearing it.

Calculations have been performed with the Roe
scheme and the two-stage two-cell MUSTA scheme using
a CFL number of r = 0.9 on various grids. Figure 1
shows the CO2 volume fraction at t = 1.5 s. Both
numerical schemes behave well, without introducing
spurious oscillations. However, the MUSTA scheme is
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Figure 1: Moving-discontinuity problem. CO2 volume
fraction for the MUSTA and Roe schemes. r = 0.9.

Table 3: Initial state in the shock-tube problem.

Quantity Symbol (unit) Left Right

CO2 vol. frac. α1 (–) 0.9 0.9
Water vol. frac. α2 (–) 0.04 0.04
Methane vol. frac. α3 (–) 0.06 0.06
Velocity v (m/s) 0 0
Pressure p (MPa) 1.5 0.9
Temperature T (K) 310 310

more dissipative than the Roe scheme. In this case, the
MUSTA scheme gives roughly the same solution on an
800-cell grid as that produced with the Roe scheme on
a 100-cell grid.

4.2 Shock Tube. The present test case is a Riemann
problem set up to investigate basic consistency proper-
ties of the Roe scheme. The physical interpretation is a
tube divided by a membrane in the middle. At t = 0,
the membrane ruptures, and the flow starts evolving.
The initial conditions are given in Table 3.

Calculations have been performed on various grids
using a CFL number of r = 0.9. Figures ??–3 display
the physical variables at t = 0.1 s. The reference
solution has been obtained using the two-stage two-
cell MUSTA scheme on a fine grid of 20 000 cells. The
figures show that the solution calculated using the Roe
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Figure 2: Shock-tube problem. Convergence of the Roe scheme, r = 0.9. Volume fractions.

scheme converges towards the reference solution without
oscillations.

4.3 Depressurization Case. This test case is an ex-
ample of a possible industrial application. It simulates
the instantaneous depressurization of a tube at its right
end, followed by a repressurization at the previous pres-
sure. This creates a low-pressure wave propagating to
the left. In this case where only liquids are involved, this
is accompanied by a slight temperature decrease. How-
ever, things change for a system where phase change
is allowed, which finds direct application in industry.
The low-pressure wave would lead to an evaporation,
and thus to a strong cooling. This cooling is of interest
when one wishes to evaluate the mechanical properties
of a metal pipe, for example. As the cooling is sensitive
to the amplitude of the pressure wave, it becomes crit-
ically important to numerically reproduce such waves
correctly.

The case consists of a 1000m long pipe filled with
an initially motionless mixture at 10MPa and 300K.
The mixture is composed of carbon dioxide, water and
methane with initial volume fractions respectively being
0.9, 0.09 and 0.01. The component properties used
are shown in Table 1. At t = 0 s, the pressure is
instantaneously decreased to 1MPa, and set back to
10MPa at t = 2 s. The boundary conditions used are

designed to respect the information propagation. This
model includes five conservation equations, therefore
five independent quantities are advected in waves. Two
of those are mass fractions waves, one is the mixture
entropy wave and two are sound waves. Depending on
their propagation direction, they will either be created
or disappear at the boundary. In this case, where the
velocity is always positive or zero, four of the waves
leave the domain at the right; the last one - the left-
going sound wave - enters it. Consequently, the last
cell at the right of the domain is copied into a ghost
boundary cell. The required pressure is then set in this
boundary cell at constant mass fractions and mixture
entropy.

Figures 4–5 show the result of calculations that
have been performed on a grid of 100 cells, except the
reference solution which uses 1000 cells. The pressure
is recorded at a position of 450m from the right, over
6.5 s.

Several methods have been compared to evaluate
their ability to preserve the amplitude of the low-
pressure wave. Figure 4 shows the results for the
MUSTA method and the Roe method without limiters,
which are both first order. The three curves are
almost superimposed and a significant smoothing of
the pressure wave can be seen. The Roe method
is then made second order by adding flux limiters.
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Figure 3: Shock-tube problem. Convergence of the Roe scheme, r = 0.9. Pressure, velocity and temperature.
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Figure 4: Depressurization case. Pressure as a function
of time at x = 450m. Comparison of the first-order
Musta and Roe methods. 100 cells, r = 0.9.

In Figure 5(a), the results for three different flux
limiters (minmod, monotonized central-difference (MC)
and superbee) are compared to the version without
limiters (No lim). MC performs quite well, but the best
in this case is superbee. Here, the shape of the pressure
wave is well conserved. Finally, the influence of the CFL
number, r, deserves discussion. It may have a significant
effect on the numerical viscosity. Since only a global
limit can be imposed, the actual local CFL number
can be very different along the computational domain.
Therefore, methods maintaining accuracy for low CFL
numbers are needed. Figure 5(b) shows that the flux
limiters added to the Roe scheme, here superbee, make
it basically insensitive to the CFL number, while the
first-order scheme becomes more diffusive as the CFL
number decreases.

Additionally, a grid refinement test has been per-
formed on the Roe method with superbee limiter (Fig-
ure 6). It shows that already with 100 cells, the shock
resolution is quite sharp.

5 Summary
We have presented a formulation of the approximate
Riemann solver of Roe for a multicomponent flow
model, allowing for a general formulation of the thermo-
dynamic closure relations. We have incorporated high
resolution (second order accuracy for smooth solutions)
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Figure 5: Depressurization case. Pressure as a function
of time at x = 450m. Roe method, 100 cells.
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Figure 6: Depressurization case. Pressure as a function
of position at t = 4.9 s. Grid refinement for the Roe
method with superbee limiter, r = 0.5.

by means of the wave limiter approach. Our solver is
relatively efficient, as an analytical formulation of its
eigenstructure is available.

By numerical simulations, we have compared our
solver to a more straightforward first-order central
scheme. The results clearly show that numerical dissipa-
tion, which introduces a significant amount of error for
the first-order scheme, may be satisfactorily controlled
with our high-resolution Roe solver.

In particular, we have presented a case representing
the effect of depressurization of a pipe relevant for the
industry. Using a computational grid that would be
representative for industrial simulations, we have seen
that the central scheme underestimates the maximum
amplitude of a pressure pulse by as much as 9.5 percent,
whereas the high-resolution Roe scheme is able to
capture the pulse with a high degree of accuracy.

Hence, we conclude that a proper choice of a
numerical method plays an integral part in industrial
operations analysis and simulation.

Acknowledgements
The first author has received a PhD grant from the
BIGCCS Centre [2] and the work of the remaining au-
thors was financed through the CO2 Dynamics project.
The authors acknowledge the support from the Research
Council of Norway, Aker Solutions, ConocoPhilips

Skandinavia AS, Det Norske Veritas AS, Gassco AS,
Hydro Aluminium AS, Shell Technology AS, Statkraft
Development AS, StatoilHydro Petroleum AS, TOTAL
E&P Norge AS and Vattenfall Research and Develop-
ment AB.

References

[1] R. Abgrall, An extension of Roe’s upwind scheme to
algebraic equilibrium real gas models, Comput. Fluids
19 (1991), pp. 171–182.

[2] BIGCCS, International CCS Research Centre,
http://www.sintef.no/Projectweb/BIGCCS/

[3] D. Chargy, R. Abgrall, L. Fezoui and B. Larrouturou,
Comparisons of several upwind schemes for multi-
component one-dimensional inviscid flows, Rapports
de Recherche N◦ 1253, INRIA, France, 1990.

[4] P. Cinnella, Roe-type schemes for dense gas flow com-
putations, Comput. Fluids 35 (2006), pp. 1264–1281.

[5] T. Flåtten and S. T. Munkejord, The approximate
Riemann solver of Roe applied to a drift-flux two-phase
flow model, ESAIM-Math. Model. Num., 40 (2006),
pp. 735–764.

[6] P. Glaister, An approximate linearized Riemann solver
for the Euler equations for real gases, J. Comput. Phys.
74 (1988), pp. 382–408.

[7] R. J. LeVeque, Finite Volume Methods for Hyperbolic
Problems, Cambridge University Press, Cambridge,
UK, 2002.

[8] R. Menikoff, Empirical EOS for solids, in Shock Wave
Science and Technology Reference Library, Volume 2 -
Solids I, Springer Berlin Heidelberg New York, 2007,
pp. 143–188.

[9] S. T. Munkejord, J. P. Jakobsen, A. Austegard and
M. J. Mølnvik, Thermo- and fluid-dynamical modeling
of two-phase multi-component carbon dioxide mixtures,
Energy Procedia, 1 (2009), pp. 1649–1656.

[10] P. L. Roe, Approximate Riemann solvers, parameter
vectors, and difference schemes, J. Comput. Phys., 43
(1981), pp. 357–372.

[11] P. L. Roe, Some contributions to the modeling of
discontinuous flows, Lect. Appl. Math., 22 (1985),
pp. 163–193.

[12] J. E. Romate, An approximate Riemann solver for
a two-phase flow model with numerically given slip
relation, Comput. Fluids, 27 (1998), pp. 455–477.

[13] E. F. Toro, MUSTA: A multi-stage numerical flux,
Appl. Numer. Math., 56 (2006), pp. 1464–1479.

[14] B. van Leer, Towards the ultimate conservative differ-
ence scheme IV. New approach to numerical convec-
tion, J. Comput. Phys., 23 (1977), pp. 276-299.



B On Solutions to Equilibrium Problems for Systems of
Stiffened Gases

Tore Fl̊atten, Alexandre Morin and Svend T. Munkejord.
SIAM Journal on Applied Mathematics, Volume 71, No. 1, pp. 41-67,
2011.

123





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2011 Society for Industrial and Applied Mathematics
Vol. 71, No. 1, pp. 41–67

ON SOLUTIONS TO EQUILIBRIUM PROBLEMS FOR SYSTEMS OF
STIFFENED GASES∗
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Abstract. We consider an isolated system of N immiscible fluids, each following a stiffened-gas
equation of state. We consider the problem of calculating equilibrium states from the conserved
fluid-mechanical properties, i.e., the partial densities and internal energies. We consider two cases;
in each case mechanical equilibrium is assumed, but the fluids may or may not be in thermal equi-
librium. For both cases, we address the issues of existence, uniqueness, and physical validity of
equilibrium solutions. We derive necessary and sufficient conditions for physically valid solutions
to exist, and prove that such solutions are unique. We show that for both cases, physically valid
solutions can be expressed as the root of a monotonic function in one variable. We then formulate
efficient algorithms which unconditionally guarantee global and quadratic convergence toward the
physically valid solution.

Key words. stiffened gas, existence, uniqueness
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1. Introduction. Due to its simplicity and suitability for fluid-mechanical ap-
plications, the stiffened-gas equation of state advocated by Menikoff [7] and Menikoff
and Plohr [8] has found widespread use in the computational fluid dynamics commu-
nity [4, 6, 17]. In particular, many authors consider it a useful basis for simulating
multicomponent flow problems [1, 3, 11, 12, 14, 16]. This observation motivates our
current work.

For a given fluid, the stiffened-gas equation of state can be written as a pressure
law:

(1) p(ρ, e) = (γ − 1)ρ(e− e∗)− γp∞,

where p is the pressure, ρ is the density, and e is the specific internal energy of the fluid.
The parameters γ, e∗, and p∞ are constants specific to the fluid. Herein, e∗ defines
the zero point for the internal energy and becomes relevant when phase transitions
are involved. The parameter p∞ leads to the “stiffened” properties compared to ideal
gases; a large value of p∞ implies near-incompressible behavior. Note in particular
that for p∞ = 0 an ideal-gas law is recovered.

In this paper, we consider N immiscible fluids, each governed by the stiffened-gas
law (1) while sharing a common volume V . Now let Mi be the total mass of fluid i
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in the volume V . We may then define partial densities mi as

(2) mi =
Mi

V
.

Furthermore, let Vi be the total volume occupied by the fluid i, defined by

(3) Vi =
Mi

ρi
,

where ρi is the density of fluid i. We may then define the volume fractions αi as

(4) αi =
Vi

V
,

where consistency requires that

(5)

N∑
i=1

αi = 1.

From (2)–(4) it now follows that the partial densities can be written as

(6) mi = ρiαi.

Furthermore, each fluid has a partial internal energy density Ei given by

(7) Ei = miei,

and the total internal energy density in the volume V is

(8) E =

N∑
i=1

Ei.

Fluid-mechanical models are typically expressed as partial differential equations rep-
resenting conservation or balance laws. The solution vector obtained from these equa-
tions will typically provide us with the partial densities (6) and energies (7) or (8).
From this information, our task is to calculate the proper physical equilibrium states.

In this paper, we will consider two cases, summarized as follows.
Problem 1. The partial densities (6) are known for each of the N fluids. The

internal energies (7) are also known for each of the N fluids. In addition, we assume
that the fluids are in mechanical equilibrium; they all have the same pressure. Our
task is to calculate the pressure p and the temperatures Ti for each fluid as well as the
volume fractions αi.

This problem is more precisely defined in section 3.
Problem 2. The partial densities (6) are known for each of the N fluids. The

total internal energy (8) is known for the mixture. In addition, we assume that the
fluids are in mechanical and thermal equilibrium; they all have the same pressure and
temperature. Our task is to calculate the pressure p, the common temperature T , as
well as the volume fractions αi.

This problem is more precisely defined in section 4.
These problems have been encountered and solved by many authors [2, 3, 9, 10,

13, 15], although the number of fluids has often been limited to N = 2. Our current
paper is motivated by the observation that a complete discussion of the question of
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existence, uniqueness, and physical validity of solutions to such general equilibrium
problems for N fluids seems so far to be lacking in the literature.

A main result of this paper is a proof that, for any system of stiffened gases, if
physically valid (in a sense that will be made precise) solutions to the equilibrium
Problems 1 and 2 exist, they are unique. This should not be surprising; in many
cases, existence and uniqueness can be established directly by thermodynamic stability
theory if the equilibrium solution corresponds to the minimum of some free energy
for the system. One may then apply convexity arguments as described, for instance,
in [5].

However, in this paper we are also interested in obtaining explicit conditions
for physically valid solutions to exist, as well as practical algorithms for obtaining
these solutions. Toward this aim, a simple constructive approach will turn out to
be fruitful. A main idea behind our approach is the observation that, although the
problems are highly nonlinear, the stiffened-gas equation of state is in itself sufficiently
linear to allow the volume fractions to be expressed without an explicit temperature
dependence. This has been done in (42) and (79); see below.

This strategy allows for reducing Problems 1 and 2 to finding the root of a mono-
tonic function in one variable, for which existence and uniqueness follow directly from
elementary arguments. Robust and efficient numerical solvers can also be rather
straightforwardly constructed.

Our paper is organized as follows. In section 2, we review the stiffened-gas equa-
tion of state as presented by Menikoff and Plohr [7, 8]. In section 3, we address
equilibrium Problem 1; here equal pressures are assumed, but the fluids have inde-
pendent temperatures. A key equation is (42), which allows us to directly construct
a monotonic function whose root is our required solution.

In section 4 we address the case where both mechanical and thermal equilibrium
are assumed; this is Problem 2 described above. Here we use (79) for the construction
of our monotonic function, which in this case requires an additional mathematical
transformation detailed in section 4.1.1. For both problems, we derive sufficient and
necessary conditions for physically valid solutions to exist, and uniqueness follows
from monotonicity.

In section 5, we take advantage of some well-established properties of the Newton–
Raphson method. In particular, we show how our problems may be formulated to yield
numerical solution algorithms which unconditionally guarantee global and quadratic
convergence.

In section 6, we present numerical examples to verify and illustrate the results
derived in section 5. Finally, we briefly summarize our results in section 7.

2. The stiffened-gas equation of state. In this section, we briefly review
some properties of the stiffened-gas equation of state considered in this paper. We
refer to the work of Menikoff and Plohr [8] for a more in-depth discussion, particularly
regarding the physical basis for this model.

For a given fluid, the stiffened-gas equation of state is fully defined by the Helm-
holtz free energy [7]:

(9) A(ρ, T ) = cV T

(
1− ln

(
T

T0

)
+ (γ − 1) ln

(
ρ

ρ0

))
− s0T +

p∞
ρ

+ e∗,

where the parameters cV , γ, p∞, T0, ρ0, s0, and e∗ are constants specific to the fluid.
Here e∗ is used to define the zero point of energy, which becomes relevant when phase
transitions are involved. Although phase transitions will not be considered in this
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paper, we include this parameter for completeness.

2.1. Entropy. From (9) we can derive the entropy

(10) s(ρ, T ) = −
(
∂A

∂T

)
ρ

= cV ln

(
T

T0

(
ρ0
ρ

)γ−1
)

+ s0.

Note that

(11) s0 = s(ρ0, T0).

Hence the stiffened-gas equation of state can be interpreted as a local linearization
near the state (ρ0, T0), where the entropy is s0.

2.2. Heat capacity. The intensive internal energy is given by

(12) e(ρ, T ) = A+ Ts = cV T +
p∞
ρ

+ e∗,

from which we immediately see that cV is the specific isochoric heat capacity :

(13) cV =

(
∂e

∂T

)
ρ

.

2.3. Pressure. The pressure is obtained by

(14) p(ρ, T ) = ρ2
(
∂A

∂ρ

)
T

= ρ(γ − 1)cV T − p∞.

By (12), this can be written as the pressure law (1):

(15) p(ρ, e) = (γ − 1)ρ(e− e∗)− γp∞,

and we also obtain the energy in terms of pressure and temperature:

(16) e(p, T ) = cV T
p+ γp∞
p+ p∞

+ e∗.

Note that positive densities and energies do not generally guarantee positivity of the
pressure.

2.4. Ratio of specific heats. Substituting (14) into (10), we obtain

(17) s(p, T ) = γcV ln

(
T

T0

(
p0 + p∞
p+ p∞

)1−1/γ
)

+ s0,

where

(18) p0 = p(ρ0, T0).

Now

(19) cp = T

(
∂s

∂T

)
p

= γcV ;

hence γ is the ratio of specific heats

(20) γ =
cp
cV

,

and it follows that cp is constant.
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2.5. Sound velocity. Now if we introduce the constant

(21) K =
es0/cp

T0
(p0 + p∞)

1−1/γ
,

we can write (17) more conveniently as

(22) s(p, T ) = cp ln
(
KT (p+ p∞)

1/γ−1
)
.

Then from (14) we get the relation

(23) s(p, ρ) = cp ln

(
K

(p+ p∞)
1/γ

ρ(γ − 1)cV

)
.

Hence

(24) ds =
cp

γ(p+ p∞)
dp− cp

ρ
dρ

and

(25) c2 =

(
∂p

∂ρ

)
s

= γ
p+ p∞

ρ
.

Hence p∞ can be interpreted as a parameter that “stiffens” an ideal gas by increasing
its sound velocity.

We further note that from (12) and (14) we get a simple expression for the specific
enthalpy:

(26) h = e+
p

ρ
= cpT + e∗.

From this and (15), expression (25) can be written as

(27) c2 = (γ − 1)cpT.

2.6. Physical considerations. We note that the various parameters of the
stiffened-gas equation of state cannot be chosen freely if physically correct thermo-
dynamic behavior is to be reproduced. Throughout this paper, we will consistently
make the assumption that the parameters satisfy the following standard restrictions,
which follow from thermodynamic stability theory.

Restriction 1. We require

(28) cV > 0

and

(29) γ > 1

for the stiffened-gas equation of state to be physically valid.
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3. Mechanical equilibrium. In this section, we consider a mixture of N flu-
ids, each following its separate stiffened-gas equation of state (9). We assume that
the fluids are immiscible, in the sense that the equation of state is not affected by
the mixing. We here assume that the fluids reach instantaneous mechanical equilib-
rium, but heat transfer is dynamically modelled. Hence the fluids possess individual
temperatures.

For each fluid i ∈ {1, . . . , N}, the following information is known to us:
• The partial densities mi = ρiαi.
• The internal energies Ei = miei.

Herein, the densities are given by (14),

(30) ρi =
p+ p∞,i

(γi − 1)cV,iTi
∀i,

the volume fractions are given by (4), and the internal energies are given by (12),

(31) ei = cV,iTi +
p∞,i

ρi
+ e∗,i.

Definition 1 (Problem 1). Given the information above, our task is to calculate
the common pressure p, the temperatures Ti, and the volume fractions αi.

Such a problem is considered, for instance, in [3, 10, 13]. We now define the
following classes of solutions.

Definition 2. A valid solution to Problem 1 is a solution that satisfies

(32) αi ∈ (0, 1] ∀i

and

(33)

N∑
i=1

αi = 1.

A physically valid solution to Problem 1 is a valid solution that satisfies

0 < ρi < ∞,(34)

0 < Ti < ∞,(35)

e∗,i < ei < ∞(36)

for all i.
A strictly valid solution to Problem 1 is a physically valid solution that satisfies

(37) p > 0.

Note that, by Definition 2, nonpositive partial densities (6) cannot yield physically
valid solutions. Hence we have the following.

Restriction 2. Physically valid solutions require

(38) mi > 0 ∀i.

With (36), this immediately yields the following additional restriction.
Restriction 3. Physically valid solutions require

(39) Ei −mie∗,i = mi(ei − e∗,i) > 0 ∀i.
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Furthermore, we make the following observation.
Lemma 1. Any physically valid solution must satisfy

(40) p ∈ P1, where P1 =
(
−min

i
p∞,i,+∞

)
.

Proof. The lemma follows directly from Restriction 1 and from (34) applied to
(30).

Remark 1. Note that if

(41) min
i

p∞,i ≥ 0,

then it follows from Restriction 1, Lemma 1, and (16) that the condition (36) is
superfluous; it follows directly from (34).

3.1. Mathematical formulation of the problem. Multiplying (15) with αi

and using (6)–(7), we obtain

(42) αi =
(γi − 1)(Ei −mie∗,i)

p+ γip∞,i
,

from which we immediately obtain the following.
Lemma 2. Any physically valid solution must satisfy

(43) p ∈
(
−min

i
(γip∞,i),+∞

)
.

Proof. In order for (32) to be satisfied by (42), it follows from Restrictions 1 and 3
that we must have

(44) p+ γip∞,i > 0 ∀i,

which is equivalent to (43).
An equation for the pressure is now found by imposing the condition that the

volume fractions (42) must sum to 1. In other words, if we consider the function

(45) f(p̂) =
N∑
i=1

(γi − 1)(Ei −mie∗,i)
p̂+ γip∞,i

,

the required pressure p must satisfy

(46) f(p) = 1.

Lemma 3. The equation

(47) f(p̂) = 1

has a unique solution for p̂ satisfying

(48) p̂ ∈ P2, where P2 =
(
−min

i
(γip∞,i),+∞

)
.

Proof. We note that f(p̂) is a rational function without poles in the interval P2.
Hence f(p̂) is C∞-smooth in this interval, and its first derivative is

(49)
df

dp̂
= −

N∑
i=1

(γi − 1)(Ei −mie∗,i)

(p̂+ γip∞,i)
2 .
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From (29) and Restriction 3 it follows that f ′(p̂) < 0 throughout the interval P2.
Furthermore, note that f(p̂) → +∞ as p̂ → −mini (γip∞,i)

+. Also,

(50) lim
p̂→+∞

f(p̂) = 0.

Uniqueness and existence of the solution to (47) in the interval P2 follow.
We now know that f(p̂) = 1 has a unique solution in the interval P2. However,

Lemma 1 tells us that the solution must also lie in the interval P1 for the solution to
be physically valid. This is trivially satisfied if

(51) min
i

p∞,i ≤ 0.

Otherwise, we observe that f(p̂) is monotonically decreasing in the interval P1. We
must then have

(52) lim
p̂→−mini p+

∞,i

f (p̂) > 1

for a physically valid solution to exist. Together with (45), this yields the following
restriction.

Restriction 4. Physically valid solutions require either

(53) min
i

p∞,i ≤ 0

or

(54)

N∑
i=1

(γi − 1)(Ei −mie∗,i)
γip∞,i −minj p∞,j

> 1.

To recapitulate, we have the following claim.
Lemma 4. If Problem 1 has a physically valid solution in the sense of Definition 2,

then Ei and mi satisfy Restrictions 2–4.
Proof. From (6), (32), and (34) it follows that Restriction 2 is satisfied. Restric-

tion 3 follows from (36) and Restriction 2. By Lemmas 1 and 2, it follows from the
monotonicity of f that Restriction 4 is satisfied.

Furthermore, the converse also holds, as given next.
Lemma 5. Problem 1 has a physically valid solution in the sense of Definition 2

if Ei and mi satisfy Restrictions 2–4.
Proof. Lemma 3 guarantees the existence of a solution satisfying (33). Further-

more, from (42), Lemma 2, and Restrictions 1 and 3 it follows that (32) is satisfied.
Hence the solution is valid.

Given that (32) is satisfied, it follows from Restriction 2 and (6) that (34) is
satisfied. Furthermore, Restriction 4 guarantees that (40) is satisfied. Given that
(34) is satisfied, it now follows from (30) that (35) is satisfied. Finally, from (16),
Restriction 1, and Lemmas 1–2 it follows that (36) is satisfied. Hence the solution is
physically valid.

We are now in position to conclude the following.
Proposition 1. Problem 1 has a physically valid solution in the sense of Defi-

nition 2 if and only if Ei and mi satisfy Restrictions 2–4. This solution is unique.
Proof. By Lemmas 4 and 5, all that remains is to prove uniqueness. Uniqueness of

the pressure follows directly from Lemma 3. Then the volume fractions are uniquely
determined by (42). Multiply (31) by mi to obtain

(55) Ei = micV,iTi + αip∞,i +mie∗,i,

and it follows that Ti is uniquely determined for all i.
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3.2. Positivity of the pressure. We note that Definition 2 of physically valid
solutions allows for negative pressures. This is consistent with the view that a stiffened
gas is obtained by shifting the zero point of pressure for an ideal gas. In particular,
all derived thermodynamic quantities are well defined as long as p + p∞,i remains
positive; see, for instance, (17) and (30).

Hence there is no immediate reason to discard negative-pressure solutions as
unphysical. However, one may easily envisage situations in which positivity of the
pressure must be enforced, for instance if the stiffened gas mixture is to be used in
conjunction with other models. We now observe the following.

Restriction 5. A physically valid solution to Problem 1 is a strictly valid
solution in the sense of Definition 2 if and only if one of the following requirements
is satisfied: either

(56) min
i

p∞,i ≤ 0

or

(57)

N∑
i=1

Ei −mie∗,i
p∞,i

γi − 1

γi
> 1.

Proof. If (56) holds, it follows from Lemma 1 that any physically valid solution
is also a strictly valid solution. Otherwise, since f(p̂) as given by (45) is a strictly
decreasing function for p̂ > 0, it follows that a positive solution to (47) requires

(58) f(0) > 1.

This is precisely the condition (57). Conversely, if the solution satisfies p ≤ 0, then
f(0) ≤ 1.

Furthermore, we may make a more precise statement, as follows.
Proposition 2. Problem 1 has a strictly valid solution in the sense of Defini-

tion 2 if and only if Ei and mi satisfy Restrictions 2–3 as well as Restriction 5. This
solution is unique.

Proof. Note that by (29) and Restriction 3, the following inequality holds when-
ever mini p∞,i > 0:

(59)

N∑
i=1

(γi − 1)(Ei −mie∗,i)
γip∞,i −minj p∞,j

>

N∑
i=1

Ei −mie∗,i
p∞,i

γi − 1

γi
.

Hence Restriction 5 implies Restriction 4. The result now follows from Proposition 1
and Restriction 5.

4. Thermal and mechanical equilibrium. In this section, we consider a mod-
ified problem where the additional assumption is made that the fluids are in thermal
equilibrium. We again consider a mixture of N immiscible fluids, each following its
separate stiffened-gas equation of state (9).

For each fluid i ∈ {1, . . . , N}, the following information is known to us:
• The partial densities mi = ρiαi.
• The total energy density of the mixture E =

∑N
i=1 miei.

Herein, the densities are given by (14),

(60) ρi =
p+ p∞,i

(γi − 1)cV,iT
∀i,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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and the internal energies are given by (12),

(61) ei = cV,iT +
p∞,i

ρi
+ e∗,i.

Definition 3 (Problem 2). Given the information above, our task is to calculate
the common pressure p, the common temperature T , and the volume fractions αi.

This problem is considered in [2, 9]. Analogously to section 3, we define a hierar-
chy of classes of solutions below.

Definition 4. A valid solution to Problem 2 is a solution that satisfies

(62) αi ∈ (0, 1] ∀i

and

(63)

N∑
i=1

αi = 1.

A physically valid solution to Problem 2 is a valid solution that satisfies

0 < ρi < ∞ ∀i,(64)

0 < T < ∞.(65)

A positive-energy solution to Problem 2 is a physically valid solution that satisfies

(66) e∗,i < ei < ∞ ∀i.

A strictly valid solution to Problem 2 is a physically valid solution that satisfies

(67) p > 0.

Remark 2. Compared to Problem 1, here we have chosen to split physically valid
solutions into two classes, where positive energies may or may not be imposed. This is
done with the aim of completeness, as the separate analysis of these two cases allows
for the option of relaxing the requirement (66).

As in section 3, the following restriction follows from (6).
Restriction 6. Physically valid solutions require

(68) mi > 0 ∀i.

Remark 3. Note that in the limit when a component vanishes, i.e.,

(69) ∃j ∈ {1, . . . , N} : mj = 0,

our analysis can still be applied with a minor modification. Assume that K of the N
components satisfy

(70) mj = 0 ∀j ∈ {1, . . . ,K},

where K < N . It then follows from (6) and (64) that

(71) αj = 0 ∀j ∈ {1, . . . ,K}.
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We may then replace the problem with an equivalent problem consisting of M = N−K
components, where the volume fractions satisfy

(72) αr ∈ (0, 1] ∀r ∈ {K + 1, . . . , N}

and

(73)

N∑
r=K+1

αr = 1.

We may now apply our results to this reduced problem. This consideration is equally
valid for Problem 1, with the understanding that the temperatures Tj would then be
undefined for the vanishing components.

Furthermore, as it did for Problem 1, the following result holds.
Lemma 6. Any physically valid solution must satisfy

(74) p ∈ P1, where P1 =
(
−min

i
p∞,i,+∞

)
.

Proof. The lemma follows directly from Restriction 1 and Definition 4 applied
to (60).

4.1. Mathematical formulation of the problem. Multiplying (26) with mi,
we obtain

(75) αi (ρi(ei − e∗,i) + p) = micp,iT.

Also, (15) can be written as

(76) ρi(ei − e∗,i) + p =
γi

γi − 1
(p+ p∞,i) ;

hence

(77) αi
γi

γi − 1
(p+ p∞,i) = micp,iT.

Furthermore, summing (75) over all i yields

(78) E + p−
N∑
i=1

mie∗,i = T

N∑
i=1

micp,i.

Substituting for T in (77), we obtain

(79) αi =
γi − 1

γi

micp,i∑N
j=1 mjcp,j

E + p−∑N
j=1 mje∗,j

p+ p∞,i
.

As in section 3, an equation for the pressure is found by imposing the condition that
the volume fractions (79) must sum to 1. We introduce the function

(80) g(p̂) =
N∑
i=1

γi − 1

γi

micp,i∑N
j=1 mjcp,j

E + p̂−∑N
j=1 mje∗,j

p̂+ p∞,i
,

where the required pressure p must satisfy

(81) g(p) = 1.
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4.1.1. A simplifying notation. Now note that if we introduce the variables

Ai =
γi − 1

γi

micp,i∑N
j=1 mjcp,j

,(82)

z = E + p̂−
N∑
i=1

mie∗,i,(83)

qi = p∞,i − E +
N∑
i=1

mie∗,i,(84)

then g can be written in the form

(85) g(p̂(z)) =

N∑
i=1

Ai
z

z + qi
.

We consider now the function

(86) ϕ(z(p̂)) = g(p̂)− 1 =

N∑
i=1

Ai
z

z + qi
− 1,

subject to the constraints

Ai ≥ 0 ∀i,(87)

N∑
i=1

Ai < 1,(88)

z ∈ Z =
(
−min

i
qi,+∞

)
,(89)

which follow from Restriction 1, Restriction 6, and Lemma 6.
Below, we will derive some results concerning solutions to (81), expressed in the

form

(90) ϕ(z) = 0.

We start by making the observation that

(91)
dϕ

dz
=

N∑
i=1

Ai
qi

(z + qi)2
.

Lemma 7. If

(92) min
i

qi ≥ 0,

the equation

(93) ϕ(z) = 0

has no solution in the interval Z.
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Proof. We first note that ϕ(z) is a rational function without poles in Z. Hence
ϕ is C∞-smooth in the interval Z. We further note that from (87), (91), and (92) it
follows that

(94)
dϕ

dz
≥ 0

in this interval. Hence

(95) sup
z∈Z

ϕ(z) = lim
z→∞ϕ(z) =

N∑
i=1

Ai − 1 < 0,

so no solution can exist.
We now consider the case

(96) min
i

qi < 0.

Under this condition, ϕ′(z) as given by (91) does not have a definite sign. However,
a simple transformation on ϕ will give us a monotonic function, as stated below.

Lemma 8. The function Φ(z) given by

(97) Φ : z �→ zϕ(z)

is monotonicly decreasing in the interval Z.
Proof. We first note that Φ(z), being the product of two C∞-smooth functions,

is itself C∞-smooth in Z. Now

(98)
dΦ

dz
= ϕ(z) + z

dϕ

dz
=

N∑
i=1

Ai − 1−
N∑
i=1

Ai

(
qi

z + qi

)2

< 0,

where we have used (87) and (88).
Proposition 3. The equation

(99) ϕ(z) = 0

has a solution in the interval Z if and only if

(100) min
i

qi < 0.

This solution is unique.
Proof. Assume first that the condition (100) is satisfied. Then all z ∈ Z satisfy

z > 0, and Φ(z) = 0 if and only if ϕ(z) = 0. Now

(101) lim
z→−mini q+i

Φ(z) = +∞

and

(102) lim
z→∞Φ(z) = −∞,

and we have already established that Φ(z) is monotonicly decreasing in Z. Hence, by
smoothness, Φ(z) = 0 has precisely one solution in Z when (100) is satisfied. Lemma 7
completes the proof.
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We have now established sufficient results to formulate our main conclusions.
First, we note that from Lemma 7 and (84) we may conclude the following.

Restriction 7. Physically valid solutions require

(103) E −
N∑
j=1

mje∗,j > min
i

p∞,i.

This leads us toward the following proposition.
Proposition 4. Problem 2 has a physically valid solution in the sense of Defi-

nition 4 if and only if E and mi satisfy Restrictions 6–7. This solution is unique.
Proof. We have shown that if a physically valid solution exists, then Restric-

tions 6–7 are satisfied. Assume now that Restrictions 6–7 are satisfied. Then, from
(29) and (82), it follows that (87) is satisfied. Furthermore, from (29) it also follows
that (88) is satisfied. Hence it follows from Proposition 3 that (90) has a unique
solution in the interval P1.

It remains to show that this solution is physically valid, and that the full physical
state is uniquely determined. Now (81) gives us directly that (63) is satisfied. Fur-
thermore, from (29), (68), (74), (79), and (103) it follows that (62) is satisfied and
that all αi are uniquely determined. From (68), (74), (78), and (103) it follows that
(65) is satisfied and that T is uniquely determined.

Finally, from (28), (29), (60), (65), and (74) it follows that (64) is satisfied and
that ρi is uniquely determined for all i.

4.2. Positivity of the internal energies. In this section, we wish to derive
conditions under which physically valid solutions are also positive-energy solutions.

Proposition 5. A physically valid solution to Problem 2 is a positive-energy
solution if and only if one of the following requirements is satisfied: either

(104) min
i

p∞,i ≥ 0

or
(105)(

E −min
j

(γjp∞,j)−
N∑
j=1

mje∗,j

)
N∑
i=1

γi − 1

γi

micp,i
p∞,i −minj (γjp∞,j)

>

N∑
i=1

micp,i.

Proof. From (16), Restriction 1, and Lemma 6, it follows that a necessary and
sufficient condition for a physically valid solution to be a positive-energy solution is

(106) p ∈
(
−min

i
(γip∞,i),+∞

)
,

which follows directly from Lemma 6 if (104) holds.
Otherwise, write g(p̂) = 1 as

(107) Φ(z(p̂)) = z

(
N∑
i=1

Ai
z

z + qi
− 1

)
= 0.

Lemma 8 tells us that Φ(z) is a strictly decreasing function in the interval Z, corre-
sponding to

(108) p̂ ∈
(
−min

i
p∞,i,+∞

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EQUILIBRIUM SOLUTIONS FOR STIFFENED GASES 55

Since we now have from (83) that

(109)
dz

dp̂
≡ 1,

it follows that a positive-energy solution to (107) requires

(110) Φ
(
z|p̂ = −min

i
(γip∞,i)

)
= Φ

(
E −min

i
(γip∞,i)−

N∑
i=1

mie∗,i

)
> 0.

This is precisely the condition (105). Conversely, if the solution does not satisfy (106),
then

(111) Φ

(
E −min

i
(γip∞,i)−

N∑
i=1

mie∗,i

)
≤ 0.

4.3. Positivity of the pressure. Just as in section 3, our definition of phys-
ically valid solutions is sufficiently weak to allow for a negative pressure. We now
consider the stronger constraint that the pressure must remain positive.

Restriction 8. A physically valid solution to Problem 2 is a strictly valid
solution in the sense of Definition 4 if and only if one of the following requirements
is satisfied: either

(112) min
i

p∞,i ≤ 0

or

(113)

(
E −

N∑
j=1

mje∗,j

)
N∑
i=1

γi − 1

γi

micp,i
p∞,i

>

N∑
i=1

micp,i.

Proof. If (112) holds, it follows from Lemma 6 that any physically valid solution is
also a strictly valid solution. Otherwise, write g(p̂) = 1 as (107). It then follows from
a line of reasoning completely similar to the proof of Proposition 5 that a positive
pressure solution to (107) requires

(114) Φ(z|p̂ = 0) = Φ

(
E −

N∑
i=1

mie∗,i

)
> 0.

This is precisely the condition (113). Conversely, if the solution satisfies p ≤ 0, then

Φ(E −∑N
i=1 mie∗,i) ≤ 0.

This result may be incorporated with Proposition 4 to yield a more compact
characterization of strictly valid solutions, as follows.

Proposition 6. Problem 2 has a strictly valid solution in the sense of Defini-
tion 4 if and only if Ei and mi satisfy Restrictions 6–8. This solution is unique.

Proof. The result follows directly from Proposition 4 and Restriction 8.
Corollary 1. Problem 2 has a strictly valid, positive-energy solution in the

sense of Definition 4 if and only if Ei and mi satisfy Restrictions 6–7, and in addition
one of the following is satisfied:

1.

(115) min
i

p∞,i > 0
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and

(116)

(
E −

N∑
j=1

mje∗,j

)
N∑
i=1

γi − 1

γi

micp,i
p∞,i

>

N∑
i=1

micp,i,

2.

(117) min
i

p∞,i < 0

and
(118)(
E −min

j
(γjp∞,j)−

N∑
j=1

mje∗,j

)
N∑
i=1

γi − 1

γi

micp,i
p∞,i −minj (γjp∞,j)

>
N∑
i=1

micp,i,

3.

(119) min
i

p∞,i = 0.

This solution is unique.
Proof. The result follows from Proposition 4 and checking all possible signs of

mini p∞,i in Proposition 5 and Restriction 8.

5. Numerical solution algorithms. In this section, we derive second-order
solution algorithms for Problems 1 and 2. We will base our approach on the standard
Newton–Raphson method. However, we want our algorithms to be unconditionally
globally convergent, a property which would not be ensured if we were to use Newton’s
algorithm directly on the functions f and g given by (45) and (80). Instead, we will
make use of the following observation.

Proposition 7. Consider the equation

(120) f(x) = 0, x ∈ S ⊆ R.

Let g(x) be some C1-smooth function without roots in S, and let

(121) f ′(x) �= 0

in S. Then Newton’s method applied to the function

(122) F (x) = f(x) · g(x)

will yield a quadratically convergent method to a root of f , subject to the standard
conditions for quadratic convergence of Newton’s method applied to F . Furthermore,
Newton’s method applied to F will throughout S be a second-order accurate approxi-
mation to Newton’s method applied to f .

Proof. The definition of quadratic convergence may be stated as follows:

(123) |x∗ − xn+1| ≤ K|x∗ − xn|2

for all xn in some neighborhood close to x∗, where x∗ is the root and K is some
positive constant. Since the roots of F coincide with the roots of f , and (123) involves
only the root x∗, it follows that second-order convergence for F implies second-order
convergence for f .
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Furthermore, Newton’s method applied to f yields

(124) xn+1 = xn − f(xn)

f ′(xn)
.

Newton’s method applied to F yields

(125)

x̃n+1 = xn − f(xn)

f ′(xn)

(
1 +

f(xn)g
′(xn)

f ′(xn)g(xn)

)−1

= xn − f(xn)

f ′(xn)

(
1− f(xn)g

′(xn)

f ′(xn)g(xn)
+O(Δx2)

)
= xn+1 +O(Δx2),

where

(126) Δx = xn+1 − xn

and we have used that

(127) f(xn) = O(Δx).

The usefulness of this observation now lies in the possibility that a function F may
be found such that the method (125) provides us with better convergence properties
than the method (124). In the following, we will use this trick to obtain globally
convergent methods for Problems 1 and 2.

To this end, we will use the following classic result.
Proposition 8. Consider the equation

(128) F (x) = 0, x ∈ S ⊆ R,

where F (x) is at least C2-smooth. Consider now an interval T ⊆ S, and assume that
(128) has a root x∗ in T , i.e.,

(129) F (x∗) = 0.

Assume that for all x ∈ T we have

F ′(x) �= 0,(130)

F (x) · F ′′(x) > 0 ∀x �= x∗.(131)

Then Newton’s method converges monotonically and quadratically to x∗ for all initial
values x0 ∈ T .

The reader is referred to [18] and references therein for a review and more general
convergence criteria for Newton’s method. For our current purposes, Proposition 8
will be sufficient.

5.1. Problem 1. Let p∗ be the pressure that solves (46), where f(p̂) is given
by (45). In the context of Proposition 8, we then have

Fa(p̂) =

N∑
i=1

(γi − 1)(Ei −mie∗,i)
p̂+ γip∞,i

− 1,(132)

F ′
a(p̂) = −

N∑
i=1

(γi − 1)(Ei −mie∗,i)

(p̂+ γip∞,i)
2 ,(133)

F ′′
a (p̂) = 2

N∑
i=1

(γi − 1)(Ei −mie∗,i)

(p̂+ γip∞,i)
3 .(134)
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Newton’s method gives

(135) p̂n+1 = p̂n − Fa(p̂n)

F ′
a(p̂n)

= p̂n +
1− f(p̂n)

f ′(p̂n)
,

where f(p̂) is given by (45) and f ′(p̂) is given by (49).
Lemma 9. Assume that a physically valid solution p∗ to Problem 1 exists. Then

the method (135) converges monotonically and quadratically to p∗ for all initial values
satisfying

(136) p̂0 ∈ P3, where P3 =
(
−min

i
(γip∞,i), p

∗
]
.

Proof. It follows from Restriction 1, Lemma 2, and Restriction 3 that in the
interval P3, F

′
a(p̂) < 0 and Fa is monotonically decreasing. Hence Fa(p̂) > 0 for all

p̂ �= p∗ in this interval. Furthermore, we see from (134) that F ′′
a (p̂) > 0 throughout

the interval P3. Hence the conditions of Proposition 8 apply.
We now turn our attention to initial values satisfying

(137) p̂0 ∈ [p∗,+∞) .

The method (135) then no longer satisfies the convexity requirement (131), and in
general we have no guarantee that successive iterates p̂n will remain in the interval
P1 as given by (40). We will therefore make use of Proposition 7, and we consider
instead the function

(138) Fb(p̂) =

(
p̂+min

j
(γjp∞,j)

)
Fa(p̂).

We then have

F ′
b(p̂) = f(p̂)− 1 +

(
p̂+min

j
(γjp∞,j)

)
f ′(p̂),(139)

F ′′
b (p̂) = 2f ′(p̂) +

(
p̂+min

j
(γjp∞,j)

)
f ′′(p̂)

= 2

N∑
i=1

(γi − 1)(Ei −mie∗,i)

(p̂+ γip∞,i)
2

(
p̂+minj (γjp∞,j)

p̂+ γip∞,i
− 1

)
.

(140)

Newton’s method applied to Fb gives

(141) p̂n+1 = p̂n − Fb(p̂n)

F ′
b(p̂n)

= p̂n +
1− f(p̂n)

f ′(p̂n)

(
1− 1− f(p̂n)

f ′(p̂n) (p̂n +minj (γjp∞,j))

)−1

.

Lemma 10. Assume that a physically valid solution p∗ to Problem 1 exists, and
that

(142) γip∞,i = γjp∞,j = γ̃p∞ ∀i, j ∈ {1, . . . , N}.

Then the method (141) converges in one step to p∗ for all initial values satisfying

(143) p̂0 ∈ [p∗,+∞) .
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Proof. When (142) holds, the method (141) reduces to

(144) p̂n+1 =
N∑
i=1

(γi − 1) (Ei −mie∗,i)− γ̃p∞ ∀n.

Substituting into (45) yields

(145) f(p̂n+1) = 1.

Lemma 11. Assume that a physically valid solution p∗ to Problem 1 exists. Then
the method (141) converges monotonically and at least quadratically to p∗ for all initial
values satisfying

(146) p̂0 ∈ P4, where P4 = [p∗,+∞) .

Proof. We know from (49) that f ′(p̂) < 0 in the interval P1, and from this it
follows that f(p̂) ≤ 1 in the interval P4. We then see from Restriction 1 and (138)
that Fb(p̂) < 0 for all p̂ �= p∗ in P4, and from (139) that F ′

b(p̂) < 0 in this interval.
Furthermore, from Restrictions 1 and 3, Lemma 1, and (140), we see that F ′′

b (p̂) < 0
in P4, assuming that (142) does not hold. Then the conditions of Proposition 8 apply.

In the case that (142) does in fact hold, the result follows from Lemma 10.
We are now in position to formulate our globally convergent method, as follows.
Proposition 9. Assume that Ei and mi satisfy Restrictions 2–4. Then the

method

(147) p̂n+1 = p̂n +
1− f(p̂n)

f ′(p̂n)

(
1− 1− f(p̂n) + |1− f(p̂n)|

2f ′(p̂n) (p̂n +minj (γjp∞,j))

)−1

,

where f(p̂) is given by (45) and f ′(p̂) is given by (49), converges monotonically and
at least quadratically to the unique physically valid solution p∗ to Problem 1 for all
initial values satisfying

(148) p̂0 ∈ P2, where P2 =
(
−min

i
(γip∞,i),+∞

)
.

Proof. We know from (49) that f(p̂) is monotonically decreasing in the interval
P2. Hence we have f(p̂) ≥ 1 in the interval P3, and the method (147) reduces to
(135) in this interval. Monotonicity also implies that f(p̂) ≤ 1 in the interval P4,
and the method (147) reduces to (141) in this interval. The result now follows from
Lemmas 9–11 and Proposition 1.

5.2. Problem 2. We here focus on Problem 2 as stated in section 4. Now let p∗

be the pressure that solves (81), where g(p̂) is given by (80). Consider now Newton’s
method applied to the function ϕ given by (86), where the parameters are given by
(82)–(84). We obtain

(149) zn+1 = zn − ϕ(zn)

ϕ′(zn)
.

Now from (85) and (86) it follows that

(150) ϕ(z) = g(p̂)− 1.
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From (83), (109), and (150) it then follows that the method (149) can be written in
the equivalent form

(151) p̂n+1 = p̂n +
1− g(p̂n)

g′(p̂n)
,

where g(p̂) is given by (80) and g′(p̂) is given by

(152) g′(p̂) =
N∑
i=1

γi − 1

γi

micp,i∑N
j=1 mjcp,j

p∞,i − E +
∑N

j=1 mje∗,j
(p̂+ p∞,i)2

.

Lemma 12. Assume that a physically valid solution p∗ to Problem 2 exists. Then
the method (151) converges monotonically and quadratically to p∗ for all initial values
satisfying

(153) p̂0 ∈ P5, where P5 =
(
−min

i
p∞,i, p

∗
]
.

Proof. We consider the method in the equivalent form (149), where the root z∗

satisfies

(154) z∗ = z(p∗),

and the condition (153) corresponds to

(155) z ∈
(
−min

i
qi, z

∗
]
.

Now it follows from (98) that ϕ′(z∗) < 0, and since z∗ is the unique root that satisfies
(155), it follows from continuity that

(156) ϕ(z) > 0 ∀z ∈
(
−min

i
qi, z

∗
)
.

Hence it follows from (98) and (100) that

(157) ϕ′(z) < 0 ∀z ∈
(
−min

i
qi, z

∗
]
.

Differentiating (98) yields

(158) ϕ′′(z) =
2

z

(
N∑
i=1

Ai
q2i

(z + qi)3
− ϕ′(z)

)
,

and it follows from (87), (100), and (157) that

(159) ϕ′′(z) > 0 ∀z ∈
(
−min

i
qi, z

∗
]
.

Hence the conditions of Proposition 8 apply.
We now focus on the interval

(160) p̂0 ∈ [p∗,+∞) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EQUILIBRIUM SOLUTIONS FOR STIFFENED GASES 61

As noted in section 4.1, ϕ′(z) may become zero in this interval, rendering the method
(151) unreliable. We therefore again make use of Proposition 7, and consider instead
the function

(161) Fc(z) =
(
z +min

i
qi

)
Φ(z),

where Φ is given by (97). We then have

(162) Fc(z(p̂)) =
(
p̂+min

i
p∞,i

)(
E + p̂−

N∑
j=1

mje∗,j

)
(g(p̂)− 1) ,

(163) F ′
c(z(p̂)) =

(
2p̂+min

i
p∞,i + E −

N∑
j=1

mje∗,j

)
(g(p̂)− 1)

+
(
p̂+min

i
p∞,i

)(
E + p̂−

N∑
j=1

mje∗,j

)
g′(p̂).

Newton’s method applied to Fc yields

(164) p̂n+1 = p̂n − Fc(z(p̂n))

F ′
c(z(p̂n))

= p̂n +
1− g(p̂n)

g′(p̂n)

(
1− 1− g(p̂n)

g′(p̂n)
h(p̂n)

)−1

,

where h(p̂) is given by

(165) h(p̂) =
1

E + p̂−
∑N

j=1 mje∗,j
+

1

p̂+mini p∞,i
.

Lemma 13. Assume that a physically valid solution p∗ to Problem 2 exists. Then
the method (164) converges monotonically and quadratically to p∗ for all initial values
satisfying

(166) p̂0 ∈ P6, where P6 = [p∗,+∞) .

Proof. By Lemma 6, Lemma 8, and (83)–(84), it follows that

(167) Fc(z) < 0 ∀p̂(z) ∈ (p∗,+∞) .

Furthermore, we have

(168) F ′
c(z) =

(
z +min

i
qi

)
Φ′(z) + Φ(z),

and it follows from Lemma 8 and (83)–(84) that

(169) F ′
c(z) < 0 ∀p̂(z) ∈ [p∗,+∞) .

Differentiating (168) yields

(170) F ′′
c (z) = 2Φ′(z) +

(
z +min

i
qi

)
Φ′′(z),

which by (98) can be written as

(171) F ′′
c (z) = 2

(
N∑
i=1

Ai − 1 +

N∑
i=1

Ai

(
qi

z + qi

)2(
z +minj qj

z + qi
− 1

))
.
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Hence

(172) F ′′
c (z) < 0 ∀p̂(z) ∈ [p∗,+∞) ,

and the conditions of Proposition 8 apply.
We may now formulate our globally convergent method, as follows.
Proposition 10. Assume that Ei and mi satisfy Restrictions 6–7. Then the

method

(173) p̂n+1 = p̂n +
1− g(p̂n)

g′(p̂n)

(
1− 1− g(p̂n) + |1− g(p̂n)|

2g′(p̂n)
h(p̂n)

)−1

,

where g(p̂) is given by (80), g′(p̂) is given by (152), and h(p̂) is given by (165),
converges monotonically and quadratically to the unique physically valid solution p∗

to Problem 2, for all initial values satisfying

(174) p̂0 ∈ P1, where P1 =
(
−min

i
p∞,i,+∞

)
.

Proof. We know from (157) that ϕ(z) is monotonically decreasing in the interval
P5. Hence we have g(p̂) ≥ 1 in P5, and the method (173) reduces to (151) in this
interval. In particular, we have that ϕ′(z(p∗)) < 0, and since p∗ is the unique solution
to g(p̂) = 1 in the interval P1, it follows that g(p̂) ≤ 1 in the interval P6. Note
that the method (173) reduces to (164) in this interval. The result now follows from
Lemmas 12–13 and Proposition 4.

6. Numerical examples. The purpose of this section is to numerically demon-
strate and verify the results derived above. In particular, our examples will illustrate
the quadratic and monotone convergence of our methods. We first define some useful
concepts.

Definition 5. At each step of the Newton iteration, we define the error En as

(175) En = p̂n − p∗.

We also define the relative error Rn as

(176) Rn =

∣∣∣∣Enp∗
∣∣∣∣ ,

as well as the local convergence rate Ln,

(177) Ln =
ln |En+1/En|
ln |En/En−1|

.

The local convergence rate L is related to, but generally not identical to, the
global convergence order. However, Ln will approach the global convergence order as
we approach the solution.

6.1. Problem 1. We first consider Problem 1 concerning mechanical equilib-
ria; see section 3. This corresponds to multifluid models of the kind treated, e.g.,
by Paillère, Corre, and Garćıa Cascales [13], and we will use their parameters cor-
responding to water and air as an example. Our input state and the corresponding
equilibrium solution are given in Table 1, while the equation-of-state parameters can
be found in Table 2. In this case, we have two fluids, N = 2.
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Table 1

State variables for Problem 1.

Symbol (unit) Value

m1 (kg/m3) 2.252× 10−1

m2 (kg/m3) 5.000× 104

E1 (J/m3) 8.201× 102

E2 (J/m3) 1.058× 109

α1 (–) 0.200
α2 (–) 0.800
p (MPa) 0.100
T1 (K) 308.15
T2 (K) 308.15

Table 2

EOS parameters for Problem 1.

γj p∞,j cp,j e∗,j
(–) (Pa) (J/(kg K)) (J/(kg))

gas (1) 1.4 0 1008.7 0
liquid (2) 2.8 8.5× 108 4186.0 0

Table 3

Convergence for Problem 1 with p̂0 = 1× 104 Pa.

n p̂n (Pa) En (Pa) Rn (−) Ln

0 1.000× 104 −9.00× 104 9.00× 10−1 –
1 1.900× 104 −8.10× 104 8.10× 10−1 2.00
2 3.439× 104 −6.56× 104 6.56× 10−1 2.00
3 5.695× 104 −4.30× 104 4.30× 10−1 2.00
4 8.147× 104 −1.85× 104 1.85× 10−1 2.00
5 9.656× 104 −3.43× 103 3.43× 10−2 2.00
6 9.988× 104 −1.17× 102 1.17× 10−3 2.00
7 1.000× 105 −1.38× 10−1 1.38× 10−6 2.00
8 1.000× 105 −1.92× 10−7 1.92× 10−12 2.00
9 1.000× 105 −3.70× 10−19 3.70× 10−24 –

We employ the method (147) of Proposition 9. The results are shown in Table 3
for

(178) p̂0 = 1× 104Pa < p∗,

and in Table 4 for

(179) p̂0 = 1× 1012Pa > p∗.

We observe the expected quadratic convergence, and the monotonicity is verified by
En having a constant sign.

The results from Tables 3–4 are graphically illustrated in Figure 1. Figure 1(a)
contains the function Fa given by (132), and Figure 1(b) contains the function Fb

given by (138). As described in section 5.1, the method (147) is equivalent to the
standard Newton–Raphson algorithm applied to these functions. The figure indicates
how the established convexity properties ensure the monotone convergence.

Note that for the initial value (178), the unmodified Newton–Raphson method
(135) would fail. In particular, the method gives p̂1 = −5.2 × 1014Pa and rapidly
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Table 4

Convergence for Problem 1 with p̂0 = 1× 1012 Pa.

n p̂n (Pa) En (Pa) Rn (−) Ln

0 1.000× 1012 1.00× 1012 1.00× 107 –
1 1.895× 109 1.89× 109 1.89× 104 0.21
2 4.975× 108 4.97× 108 4.97× 103 1.03
3 1.257× 108 1.25× 108 1.25× 103 1.45
4 1.731× 107 1.72× 107 1.72× 102 1.82
5 5.642× 105 4.64× 105 4.64× 100 1.98
6 1.003× 105 3.61× 102 3.61× 10−3 2.00
7 1.000× 105 2.19× 10−4 2.19× 10−9 2.00
8 1.000× 105 8.09× 10−17 8.09× 10−22 –

Fa (–)

2 4 6 8 10

-0.8

-0.6

-0.4

-0.2

0

→

→

→
→

p̂ (104 Pa)

(a) p̂0 = 1× 104 Pa.

Fb (10
7 Pa)

0 5 10 15
0

1

2

3

→

→

→

p̂ (107 Pa)

(b) p̂0 = 1× 1012 Pa.

Fig. 1. Convergence for Problem 1 with the initial value lower (left) and higher (right) than
the solution. The arrows indicate the direction of successive iterates.

diverges. This shows that our modification (147) is in fact necessary to obtain global
convergence.

6.2. Problem 2. We now consider Problem 2 with mechanical and thermal
equilibria; see section 4. As an example we will take the three-component (N = 3)
mixture whose decompression was studied by Morin et al. [9]. The input state and the
corresponding equilibrium solution are shown in Table 5, while the equation-of-state
parameters are given in Table 6.

The numerical algorithm (173) of Proposition 10 has been applied. Table 7 shows
the result for an initial pressure of

(180) p̂0 = −min
j

p∞,j = −1.094× 107 Pa < p∗,

while Table 8 presents results for an initial pressure of

(181) p̂0 = 1× 1010Pa > p∗.

Again the expected convergence order and monotonicity are verified.
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Table 5

State variables for Problem 2.

Symbol (unit) Value

m1 (kg/m3) 6.235× 102

m2 (kg/m3) 9.378× 101

m3 (kg/m3) 1.274× 100

E (J/m3) 8.332× 108

α1 (–) 0.9
α2 (–) 0.09
α3 (–) 0.01
p (MPa) 10
T (K) 300

Table 6

EOS parameters for Problem 2.

γj p∞,j cp,j e∗,j
(–) (MPa) (J/(kg K)) (J/(kg))

CO2 (1) 1.03 13.47 3877 0
Water (2) 2.85 833.02 4155 0

Methane (3) 1.23 10.94 2930 0

Table 7

Convergence for Problem 2 with p̂0 = −1.094× 107 Pa.

n p̂n (Pa) En (Pa) Rn (−) Ln

0 −1.094× 107 −2.09× 107 2.09× 100 –
1 −1.093× 107 −2.09× 107 2.09× 100 2.44
2 −1.092× 107 −2.09× 107 2.09× 100 2.98
3 −1.089× 107 −2.08× 107 2.08× 100 4.35
4 −1.074× 107 −2.07× 107 2.07× 100 6.83
5 −9.791× 106 −1.97× 107 1.97× 100 3.38
6 −6.875× 106 −1.68× 107 1.68× 100 2.05
7 −2.170× 106 −1.21× 107 1.21× 100 2.00
8 3.676× 106 −6.32× 106 6.32× 10−1 2.00
9 8.293× 106 −1.70× 106 1.70× 10−1 2.00
10 9.875× 106 −1.24× 105 1.24× 10−2 2.00
11 9.999× 106 −6.59× 102 6.59× 10−5 2.00
12 1.000× 107 −1.85× 10−2 1.85× 10−9 2.00
13 1.000× 107 −1.46× 10−11 1.46× 10−18 –

In Figure 2, the results of Tables 7–8 are represented graphically. The function ϕ,
as given by (150), is presented in Figure 2(a) for the initial value (180). For the initial
value (181), Figure 2(b) contains the function Fc as given by (162). As described in
section 5.2, the method (173) reduces to the standard Newton–Raphson algorithm
applied to these functions. The graphs demonstrate behavior similar to that observed
for Problem 1.

As for Problem 1, we observe that the unmodified Newton–Raphson method (151)
fails for the initial value (181). It gives p̂1 = −4.2×1012Pa, and then rapidly diverges
toward negative infinity. This is due to the unfavorable curvature of ϕ for p̂ > p∗,
causing the näıve method (151) to cut through the physically relevant part of ϕ and
give a very large negative p̂1. From this there is no recovery.

This underscores the necessity of our modification (173).
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Table 8

Convergence for Problem 2 with p̂0 = 1× 1010 Pa.

n p̂n (Pa) En (Pa) Rn (−) Ln

0 1.000× 1010 9.99× 109 9.99× 102 –
1 4.803× 109 4.79× 109 4.79× 102 1.06
2 2.213× 109 2.20× 109 2.20× 102 1.12
3 9.357× 108 9.25× 108 9.25× 101 1.23
4 3.290× 108 3.19× 108 3.19× 101 1.42
5 8.005× 107 7.00× 107 7.00× 100 1.60
6 1.621× 107 6.20× 106 6.20× 10−1 1.51
7 1.016× 107 1.60× 105 1.60× 10−2 1.90
8 1.000× 107 1.59× 102 1.59× 10−5 2.00
9 1.000× 107 1.58× 104 1.58× 10−11 2.00
10 1.000× 107 1.58× 1016 1.58× 10−23 –

ϕ (–)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

→

→

→

→

p̂ (107 Pa)

(a) p̂0 = −1.094 × 107 Pa.

Fc (10
16 Pa2)

2 4 6 8-6

-5

-4

-3

-2

-1

0 →

→

→

p̂ (107 Pa)

(b) p̂0 = 1× 1010 Pa.

Fig. 2. Convergence for Problem 2 with the initial value lower (left) and higher (right) than
the solution. The arrows indicate the direction of successive iterates.

7. Summary. We have investigated a general system of N immiscible stiffened
gases assumed to be in mechanical equilibrium, meaning that the pressure is identical
for all the components. We have considered two cases, one in which the fluids are
assumed to have individual temperatures and one in which thermal equilibrium has
been assumed.

Under these assumptions, we have considered the problem of calculating the full
physical state from knowledge of only the conserved fluid-mechanical parameters. To
as large an extent as possible, we have attempted to give a complete exposition of
this problem. We have provided some natural definitions of what physical validity
means for such equilibrium solutions. We have then given the necessary and sufficient
conditions for such valid solutions to exist, and we have proved that these solutions
are unique.

Finally, we have demonstrated that the problems may be reduced to solving an
equation in one unknown. This allows for the construction of robust and efficient
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numerical solvers. In particular, we have formulated explicit Newton–Raphson-type
methods which guarantee unconditional quadratic convergence.
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TORE FLÅTTEN† , ALEXANDRE MORIN‡ , AND SVEND TOLLAK MUNKEJORD§

Abstract. We consider systems of hyperbolic balance laws governing flows of an arbitrary
number of components equipped with general equations of state. The components are assumed to
be immiscible. We compare two such models: one in which thermal equilibrium is attained through
a relaxation procedure, and a fully relaxed model in which equal temperatures are instantaneously
imposed. We describe how the relaxation procedure may be made consistent with the second law of
thermodynamics. Exact wave velocities for both models are obtained and compared. In particular,
our formulation directly proves a general subcharacteristic condition: For an arbitrary number of
components and thermodynamically stable equations of state, the mixture sonic velocity of the
relaxed system can never exceed the sonic velocity of the relaxation system.
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1. Introduction. Dynamic simulations of multicomponent flows often involve
nonequilibrium processes. Driving forces towards equilibrium occur in the equations
as relaxation source terms, which may be extremely stiff if the relaxation time towards
equilibrium is small. In this paper, we consider hyperbolic relaxation systems in a
form similar to the description by Chen, Levermore, and Liu [7],

(1)
∂U

∂t
+

∂F (U )

∂x
+A(U)

∂W (U)

∂x
+

1

ε
R(U) = 0,

to be solved for the unknown M -vector U . The system is endowed with an m ×M
constant-coefficient matrix Q with rank m < M such that

(2) QR = 0 ∀U .

Furthermore, we assume that QAdW is an exact differential:

(3) QA dW = dG(U).

Multiplying (1) on the left by Q we obtain a conservation law for the reduced variable
V = QU :

(4)
∂V

∂t
+

∂

∂x
(QF (U) +G(U)) = 0.
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We now assume that each V uniquely determines a local equilibrium value U = E(V ),
satisfying R(E(V )) = 0 as well as

(5) QE(V ) = V ∀V .

Now (4) can be closed as a reduced system by imposing the local equilibrium condition
for U , namely,

U = E(V ),(6)

∂V

∂t
+

∂F(V )

∂x
= 0,(7)

where the reduced flux F is defined by

(8) F(V ) ≡ QF (E(V )) +G(E(V )).

Chen, Levermore, and Liu [7] studied stability of solutions to such relaxation systems
for the special caseA = 0; i.e., the hyperbolic part of (1) is conservative. In particular,
they based their analysis on the requirement that the relaxation term should be
entropy dissipative.

1.1. The subcharacteristic condition. Central to the question of stability of
relaxation systems is the subcharacteristic condition, a concept introduced by Liu [13].
Within our formulation, this concept may be defined as follows.

Definition 1. Let the M eigenvalues of the relaxing system (1) be given by

(9) λ1 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ≤ λM

and the m eigenvalues of the relaxed system (6)–(7) be given by

(10) λ̃1 ≤ · · · ≤ λ̃j ≤ λ̃j+1 ≤ · · · ≤ λ̃m.

Herein, the relaxation system (1) is applied to a local equilibrium state U = E(V )
such that

(11) λk = λk(E(V )), λ̃j = λ̃j(V ).

Now let the λ̃j be interlaced with λk in the following sense: Each λ̃j lies in the
closed interval [λj , λj+M−m]. Then the relaxed system (6)–(7) is said to satisfy the
subcharacteristic condition with respect to (1).

Chen et al. [7] were able to prove the following: If the relaxation system (1) may
be equipped with a convex entropy function that is dissipated by the relaxation term,
then the subcharacteristic condition holds. Furthermore, a converse holds for linear
systems and general 2× 2 systems.

Although the subcharacteristic condition is formally neither a necessary nor suf-
ficient condition for stability in general, it is nevertheless an essential condition for
linear stability and is in practice required for most physically meaningful relaxation
processes. Hence the literature commonly puts a strong focus on this condition; see,
for instance, Baudin et al. [4, 5] for an application to a two-phase flow model.

A main result of this paper is a constructive proof that the subcharacteristic
condition holds for the models we are studying. We will not rely on the technique
proposed by Chen et al. [7], as this would involve constructing a convex, mathematical
entropy function to be dissipated by the relaxation term. Instead, we will first prove
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the weaker result that standard thermodynamic entropy is dissipated by the relaxation
term, thus verifying the physical consistency of the model.

Then our constructive approach allows us to obtain explicit algebraic expressions
for the eigenvalues of the models. By these, it may easily be verified that the sub-
characteristic condition holds.

1.2. Weak solutions. A well-known property of hyperbolic systems is the abil-
ity to support weak solutions, i.e., solutions containing discontinuities. However, the
results of this paper are achieved by considering only classical (smooth) solutions.
That is, we assume that our state vectors U(x, t) and V (x, t) are everywhere differ-
entiable. The question of existence and uniqueness of weak solutions of our resulting
models (stated in sections 2.1.2 and 2.2) may then be addressed by interpreting the
derivatives in the distributional sense.

Although this issue will not be pursued in our paper, we remark that for the
general case of nonconservative hyperbolic balance laws, where A dW in (1) is not an
exact differential, the study of uniqueness of weak solutions requires an extension of
the standard theory for conservative systems. This has been an active area of research
in recent years; see, for instance, [6, 8].

1.3. Applications to multiphase flows. In addition to modeling actual physi-
cal processes, relaxation systems are significant also from the viewpoint of pure numer-
ical analysis—the relaxation system (1) may be used as a starting point for devising
numerical methods for the relaxed system (6)–(7). A classic paper in this respect is
the work of Jin and Xin [11], who devised a general method in which a conservative
system in the form (7) is recast as the limit ε → 0 of (1), where M = 2m and the
hyperbolic part of (1) is fully linear. By this, they were able to construct a numerical
method where all nonlinearities are encoded in the source terms. Variations of this
approach were applied to the drift-flux two-phase flow model by Evje and Fjelde [10]
as well as Baudin et al. [4, 5].

Since the works of Abgrall and Saurel [2, 20], there has been considerable interest
in applying various relaxation techniques to multiphase flow models. The starting
point for many such investigations is the two-pressure two-fluid model [3, 19].

•Conservation of mass:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,(12)

∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v�) = 0.(13)

•Balance of momentum:

∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g + αgpg

)
− pi

∂αg

∂x
= μv(v� − vg),(14)

∂

∂t
(ρ�α�v�) +

∂

∂x

(
ρ�α�v

2
� + α�p�

)
− pi

∂α�

∂x
= μv(vg − v�).(15)

•Balance of energy:

∂

∂t

(
ρgαg

(
1

2
v2g+eg

))
+

∂

∂x

(
ρgαgvg

(
1

2
v2g+eg+

pg
ρg

))
+pi

∂αg

∂t
= μvv

i(v� − vg),(16)

∂

∂t

(
ρ�α�

(
1

2
v2� + e�

))
+

∂

∂x

(
ρ�α�v�

(
1

2
v2� + e� +

p�
ρ�

))
+ pi

∂α�

∂t
= μvv

i(vg − v�).

(17)



2864 T. FLÅTTEN, A. MORIN, AND S. T. MUNKEJORD

•Evolution of volume fraction:

(18)
∂αg

∂t
+ vi

∂αg

∂x
= μp(pg − p�).

Herein, we use the following nomenclature for phase k ∈ {g, �}:
ρk - density of phase k,
pk - pressure of phase k,
vk - velocity of phase k,
αk - volume fraction of phase k,
ek - specific internal energy of phase k,
pi - pressure at the gas-liquid interface,
vi - local velocity at the gas-liquid interface.

Furthermore, μv and μp are relaxation coefficients and the following relation holds:

(19) αg + α� = 1.

Munkejord [15] fixed μv = 0 and studied the resulting relaxation system for μp →
∞, with an emphasis on assessing a relaxation scheme based on the Roe Riemann
solver, and performing computations with finite μp. Here the energy equations were
neglected.

Murrone and Guillard [16] and several other authors [9, 12, 21, 22] have performed
analytical and numerical studies of the full relaxation process where both μp → ∞
and μv → ∞. This results in a five-equation simplified system also briefly described
by Stewart and Wendroff [24]. This system may be written in the following form [16]:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgv) = 0,(20)

∂

∂t
(ρ�α�) +

∂

∂x
(ρ�α�v) = 0,(21)

∂

∂t
(ρv) +

∂

∂x
(ρv + p) = 0,(22)

∂E

∂t
+

∂

∂x
(v(E + p)) = 0,(23)

∂αg

∂t
+ v

∂αg

∂x
=

αgα�(ρ�c
2
� − ρgc

2
g)

α�ρgc2g + αgρ�c2�

∂v

∂x
,(24)

where the mixture density ρ is given by

(25) ρ = ρgαg + ρ�α�,

the mixture total energy E is given by

(26) E = ρgαgeg + ρ�α�e� +
1

2
ρv2,

and v and p are the velocity and pressure common to both phases. In addition to p,
v, and αg, the independent physical variables are here the temperatures Tg and T�.

1.4. Outline of this paper. This paper is motivated by the observation that
most existing works related to the model (20)–(24) assume that the number of inde-
pendent phases is fixed to 2. We are interested in generalizing this model to apply to
an arbitrary number of components, and then applying relaxation heat-transfer terms
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that will drive the model towards thermal equilibrium. In the fully relaxed limit, we
then recover the homogeneous equilibrium model, studied, for instance, in [1, 18].

The usefulness of such an extension is twofold:
1. Several immiscible fluids may coexist without being in thermal equilibrium,

and modeling individual temperatures for each species may be required. For
instance, this can occur for mixtures of hydrocarbons and water relevant for
the petroleum industry.

2. Direct equilibrium calculations for multicomponent mixtures are computa-
tionally expensive. Therefore, relaxation schemes based on nonequilibrium
models may provide benefits in terms of efficiency compared to solving equi-
librium models directly.

This paper is organized as follows: In section 2, we detail the models we will
be working with. In section 2.1, we present the (2N + 1)-equation relaxation model
for N components involving N individual temperatures. We derive necessary and
sufficient restrictions on the relaxation terms imposed by the first and second laws of
thermodynamics. In section 2.1.2, we explicitly state our model in the form (1). In
section 2.1.3, we show that our model reduces to the standard five-equation model for
the special case N = 2. In section 2.2, we explicitly perform the relaxation procedure
to recover the reduced form (6)–(7).

In sections 3.1–3.2, we obtain exact expressions for the wave velocities of the
models. Our formulation allows for a direct proof that the subcharacteristic condition
as stated in Definition 1 is satisfied. This is stated in section 3.2.4.

For completeness, we derive an explicit quasi-linear formulation of the relaxed
system in section 3.3. In section 4, we summarize and comment on the results of our
paper.

2. The models. The foundation for the models we consider in this paper con-
sists of one mass conservation equation for each component,

(27)
∂

∂t
(ρiαi) +

∂

∂x
(ρiαiv) = 0 ∀i ∈ {1, . . . , N},

as well as a conservation equation for the total momentum of the mixture,

(28)
∂ρv

∂t
+

∂

∂x

(
ρv2 + p

)
= 0,

where for the purposes of this analysis we neglect any momentum source terms. Here
ρi - density of component i,
ρ - density of the mixture,
v - velocity of the mixture,
αi - volume fraction of component i,
p - pressure common to all components,

and the following relations hold:

ρ =

N∑
i=1

ρiαi,(29)

N∑
i=1

αi = 1.(30)
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We remind the reader that throughout the paper all derivatives will be interpreted in
the classical (i.e., nondistributional) sense. We now state some observations that will
prove useful later.

Lemma 1. The mixture density evolution equation can be written as

(31)
∂ρ

∂t
+

∂

∂x
(ρv) = 0,

and the evolution equation for the mass fraction

(32) Yi =
ρiαi

ρ

can be written as an advection equation:

(33)
∂Yi

∂t
+ v

∂Yi

∂x
= 0.

Proof. Sum (27) over all i to obtain (31). Write

(34) ρiαi = ρYi

and use (27) and (31) to recover (33).
Remark 1. Note that since

(35)
N∑
i=1

Yi = 1,

we have only N − 1 independent mass fraction equations, expressible in vector form

(36)
∂Y

∂t
+ v

∂Y

∂x
= 0,

where

(37) Y =

⎡⎢⎣ Y1

...
YN−1

⎤⎥⎦ .
Lemma 2. The following momentum evolution equation is valid for each compo-

nent i:

(38)
∂

∂t
(ρiαiv) +

∂

∂x

(
ρiαiv

2
)
+

ρiαi

ρ

∂p

∂x
= 0.

Proof. We have

(39) d(ρiαiv) = ρiαi dv + v d(ρiαi)

and also

(40) dv =
1

ρ
(d(ρv) − v dρ) .

Substituting (40) into (39), and using (27)–(28) and (31), we obtain

(41)
∂

∂t
(ρiαiv) +

ρiαi

ρ

(
∂

∂x
(ρv2 + p)− v

∂

∂x
(ρv)

)
+ v

∂

∂x
(ρiαiv) = 0,
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which simplifies to

(42)
∂

∂t
(ρiαiv) + ρiαiv

∂v

∂x
+

ρiαi

ρ

∂p

∂x
+ v

∂

∂x
(ρiαiv) = 0

by expansion of derivatives. Lemma 2 now follows from the product rule for deriva-
tives.

Lemma 3. The velocity evolution equation can be formulated as follows:

(43)
∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p

∂x
= 0,

and the following kinetic energy evolution equation is valid for each component i:

(44)
∂

∂t

(
1

2
ρiαiv

2

)
+

∂

∂x

(
1

2
ρiαiv

3

)
+

ρiαiv

ρ

∂p

∂x
= 0.

Proof. Expand derivatives in (38) and use (27) to obtain (43). Furthermore,
expand the time derivative of (44) as

(45)
∂

∂t

(
1

2
ρiαiv

2

)
=

1

2
v
∂

∂t
(ρiαiv) +

1

2
ρiαiv

∂v

∂t
.

If we now substitute (38) and (43) into (45), we recover (44) after collecting deriva-
tives.

2.1. Relaxation system. In this section, we derive separate energy evolution
equations for each component, where heat is transferred between the components at a
rate proportional to their temperature difference. We start with the assumption that
in Lagrangian coordinates, entropy change is due only to the heat-transfer terms,

(46) ρiαiTi

(
∂si
∂t

+ v
∂si
∂x

)
=
∑
j �=i

Hij(Tj − Ti),

where

(47) si = si(p, Ti)

is the specific entropy of component i. We further assume that the relaxation coeffi-
cients Hij are independent of the temperatures Tk. From (46), we may then derive
energy evolution equations for each component, using the kinetic energy equation (44)
and the fundamental thermodynamic differential

(48) dei = Ti dsi +
p

ρ2i
dρi.

Proposition 1. To be consistent with the second law of thermodynamics, the
relaxation coefficients Hij must satisfy

(49) Hij = Hji ≥ 0.

Proof. For the total cross-sectional entropy given by

(50) ω =

N∑
i=1

ρiαisi,
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we obtain the evolution equation

(51)
∂ω

∂t
+

∂

∂x
(ωv) =

N∑
i=1

∑
j �=i

Hij
Tj − Ti

Ti

from (46). Now, inside a closed region R the global entropy Ω is given by

(52) Ω(t) =

∫
R

ω(x, t) dx.

Hence the second law

(53)
dΩ

dt
≥ 0

imposes

(54)

N∑
i=1

∑
j �=i

Hij
Tj − Ti

Ti
≥ 0.

Now

(55)

N∑
i=1

∑
j �=i

Hij
Tj − Ti

Ti
=
∑
i,j>i

(
Hij

Ti
− Hji

Tj

)
(Tj − Ti)

=
∑
i,j>i

Hij
(Tj − Ti)

2

TiTj
+
∑
i,j>i

(Hij −Hji)
Tj − Ti

Tj
,

which remains unconditionally nonnegative only if

(56) Hij ≥ 0, Hij −Hji = 0 ∀i, j.

Proposition 2. The entropy evolution equations (46) with the condition (49)
respect conservation of total energy.

Proof. From (46) and the fundamental differential (48), we obtain

(57) ρiαi

(
∂ei
∂t

+ v
∂ei
∂x

)
− pαi

ρi

(
∂ρi
∂t

+ v
∂ρi
∂x

)
=
∑
j �=i

Hij(Tj − Ti),

where ei is the specific internal energy of component i. Using (27), we can rewrite
this as

(58)
∂

∂t
(ρiαiei) +

∂

∂x
(ρiαieiv) + p

(
∂αi

∂t
+

∂

∂x
(αiv)

)
=
∑
j �=i

Hij(Tj − Ti).

Summing over all i and using (30) we obtain

(59)
∂

∂t

(
N∑
i=1

ρiαiei

)
+

∂

∂x

(
v

N∑
i=1

ρiαiei

)
+ p

∂v

∂x
=

N∑
i=1

∑
j �=i

Hij(Tj − Ti),
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which by (49) may be simplified to

(60)
∂

∂t

(
N∑
i=1

ρiαiei

)
+

∂

∂x

(
v

N∑
i=1

ρiαiei

)
+ p

∂v

∂x
= 0.

We now define the total energy E as

(61) E =

N∑
i=1

ρiαi

(
ei +

1

2
v2
)
.

Summing (44) over all i and adding (60), we obtain an evolution equation for E in
conservative form:

(62)
∂E

∂t
+

∂

∂x
(v(E + p)) = 0.

2.1.1. Energy evolution equations. In this section, we aim to transform (46)
into evolution equations for the energy Ei of each component:

(63) Ei = ρiαi

(
1

2
v2 + ei

)
.

We start by deriving some preliminary results.
Lemma 4. The pressure evolution equation can be written as

(64)
∂p

∂t
+ v

∂p

∂x
+ ρc2

∂v

∂x
= ρc2

∑
i,j>i

(
Hij

(
Γi

ρic2i
− Γj

ρjc2j

)
(Tj − Ti)

)
,

where

(65) c2 =

(
ρ

N∑
i=1

αi

ρic2i

)−1

.

Here

(66) c2i =

(
∂p

∂ρi

)
si

represents the single-component velocity of sound, and Γi is the Grüneisen coefficient

(67) Γi =
1

ρi

(
∂p

∂ei

)
ρi

.

Proof. The differential (48) may be rewritten as

(68) dp = c2i dρi + ΓiρiTi dsi.

From (68) and (46) we obtain

(69)
∂p

∂t
+ v

∂p

∂x
= c2i

(
∂ρi
∂t

+ v
∂ρi
∂x

)
+

Γi

αi

∑
j �=i

Hij(Tj − Ti),
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which by (27) may be rewritten as

(70)
αi

ρic2i

(
∂p

∂t
+ v

∂p

∂x

)
+

∂αi

∂t
+

∂

∂x
(αiv) =

Γi

ρic2i

∑
j �=i

Hij(Tj − Ti).

Lemma 4 follows from summing over all i.
Lemma 5. The internal energy evolution equation for component i can be written

as

(71)
∂

∂t
(ρiαiei) +

∂

∂x
(ρiαieiv) + αip

ρc2

ρic2i

∂v

∂x

= θi
∑
j �=i

Hij(Tj − Ti) +
ρc2

ρic2i
αi

∑
k,j>k

(Hkj(θj − θk)(Tj − Tk)) ,

where

(72) θi = 1− Γip

ρic2i
≡ 1

Ti

(
∂ei
∂si

)
p

.

Proof. Substitute (70) into (58) to obtain

(73)
∂

∂t
(ρiαiei) +

∂

∂x
(ρiαieiv)−

αip

ρic2i

(
∂p

∂t
+ v

∂p

∂x

)
=

(
1− Γip

ρic2i

)∑
j �=i

Hij(Tj −Ti).

Now (71) follows by substituting (64) into (73).
Proposition 3. The evolution equation for the total energy of component i can

be written as

(74)
∂Ei

∂t
+

∂

∂x
(Eiv) +

ρiαiv

ρ

∂p

∂x
+ αip

ρc2

ρic2i

∂v

∂x

= θi
∑
j �=i

Hij(Tj − Ti) +
ρc2

ρic2i
αi

∑
k,j>k

(Hkj(θj − θk)(Tj − Tk)) ,

or equivalently

(75)
∂Ei

∂t
+

∂

∂x
(Eiv) +

ρiαi

ρ

∂

∂x
(pv) + αip

(
ρ2c2 − ρ2i c

2
i

ρρic2i

)
∂v

∂x

= θi
∑
j �=i

Hij(Tj − Ti) +
ρc2

ρic2i
αi

∑
k,j>k

(Hkj(θj − θk)(Tj − Tk)) .

Proof. Add (44) and (71) to obtain (74).

2.1.2. Canonical relaxation form. In this section, we explicitly express the
above model in the form (1). We emphasize that since the system is partially non-
conservative, there is no obvious preferred choice of variables in which to express the
balance equations; however, conservation of total energy must be respected.

For the (N = 2)-model previously investigated, the authors [9, 12, 16, 21, 22]
commonly choose to express the equations in terms of total energy and volume frac-
tion, as stated by (20)–(24). This formulation naturally follows from performing the
relaxation procedure on the model (12)–(18).
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However, to preserve the symmetry in the equations, we here choose to express
our model in terms of the energy evolution equations for each component. Summing
these equations then automatically yields conservation of total energy, as stated by
Proposition 2. In the context of (1), we obtain

(76) U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1α1

...
ρNαN

ρv
E1

...
EN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F (U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1α1v
...

ρNαNv
ρv2 + p
E1v
...

ENv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W (U) =

[
pv
v

]
.

Furthermore, the (2N + 1)× 2 matrix A is given by

(77) A(U) =
1

ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...
0 0
0 0

ρ1α1 α1p
(

ρ2c2−ρ2
1c

2
1

ρ1c21

)
...

...

ρNαN αNp
(

ρ2c2−ρ2
N c2N

ρNc2N

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The relaxation source term is given by
(78)

R(U) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0

θ1
∑

j �=1 h1j(Tj − T1) +
ρc2

ρ1c21
α1

∑
k,j>k (hkj(θj − θk)(Tj − Tk))

...

θN
∑

j �=N hNj(Tj − TN) + ρc2

ρN c2N
αN

∑
k,j>k (hkj(θj − θk)(Tj − Tk))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

(79) hij = εHij .

2.1.3. Relation to five-equation model. In this section, we wish to illustrate
that our model essentially reduces to the five-equation model [9, 12, 16, 21, 22] for
the special case N = 2.

From our general model (76)–(78), we may derive an evolution equation for the
volume fraction.
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Lemma 6. The evolution equation for the volume fraction of component i can be
written as

(80)
∂αi

∂t
+ v

∂αi

∂x
+ αi

ρic
2
i − ρc2

ρic2i

∂v

∂x

=
Γi

ρic2i

∑
j �=i

Hij(Tj − Ti)− αi
ρc2

ρic2i

∑
k,j>k

(
Hkj

(
Γk

ρkc2k
− Γj

ρjc2j

)
(Tj − Tk)

)
.

Proof. Substitute (64) into (70) and expand derivatives.
Now for N = 2, this may be written as

(81)
∂α1

∂t
+ v

∂α1

∂x
=

α1α2(ρ2c
2
2 − ρ1c

2
1)

α2ρ1c21 + α1ρ2c22

∂v

∂x

+
α1α2

α2ρ1c21 + α1ρ2c22

(
Γ1

α1
+

Γ2

α2

)
H12(T2 − T1).

Augmenting this with the mass, total momentum, and total energy equations (20)–(23),
we recover the formulation of the five-equation model stated in [21, section 5.5].

2.2. Relaxed system. We now consider the system obtained by letting the
relaxation coefficients Hij tend to infinity; i.e., we achieve instantaneous thermal
equilibrium. In addition to the mass and momentum conservation equations (27)
and (28), we replace the componentwise energy evolution equations (74) with the
following.

•Equality of temperatures:

(82) Ti = Tj = T ∀i, j.
•Conservation of total energy:

(83)
∂E

∂t
+

∂

∂x
(v(E + p)) = 0.

In the context of section 1, the (N + 2)× (2N + 1) matrix Q is given by

(84) Q = [Qij ], Qij =

⎧⎪⎨⎪⎩
1 if i = j,

1 if j > i and i = N + 2,

0 otherwise.

We may then verify that (2) holds. Furthermore, we obtain

(85) V (U ) =

⎡⎢⎢⎢⎢⎢⎣
ρ1α1

...
ρNαN

ρv
E

⎤⎥⎥⎥⎥⎥⎦ , G(U) =

⎡⎢⎢⎢⎢⎢⎣
0
...
0
0
pv

⎤⎥⎥⎥⎥⎥⎦ , QF (U) =

⎡⎢⎢⎢⎢⎢⎣
ρ1α1v

...
ρNαNv
ρv2 + p
Ev

⎤⎥⎥⎥⎥⎥⎦ ,
and the local equilibrium value E(V ) is determined by (82).

Remark 2. Note that the matrix Q reduces to the identity matrix for the special
case N = 1, where the equilibrium condition is already satisfied by the relaxation
system. However, in section 1, we explicitly assume that

(86) rank(Q) < M = 2N + 1.

Throughout this paper, we will assume that N ≥ 2 so that (86) holds.
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3. Wave structure. In this section, we derive the wave velocities associated
with the relaxation and relaxed models, formally given by the eigenvalues of the
coefficient matrix of the system in quasi-linear form. Our derivation will rely heavily
on the similarities between our systems and the well-known Euler system for single-
component gas dynamics.

3.1. Relaxation system. System (76)–(78) may be expressed in an alternative
form as a composition of 3 parts:

• an “isentropic Euler part” consisting of (28) and (31);
• a mass fraction part (36);
• an entropy part (46).

From (36) and (46) we immediately see that si and Y are characteristic variables.
Hence v is an eigenvalue of the system with multiplicity (2N − 1), corresponding to
N entropy waves and N − 1 mass fraction waves.

From (28) and (31) we then obtain the remaining eigenvalues:

(87) λ = v ± ĉ,

where

(88) ĉ2 =

(
∂p

∂ρ

)
Y ,s1,...,sN

.

Proposition 4. The mixture sonic velocity ĉ is given by

(89) ĉ2 =

(
ρ

N∑
i=1

αi

ρic2i

)−1

.

Proof. Consider the differential

(90)

N∑
i=1

d(ρiαi)

ρi
=

N∑
i=1

dαi +

N∑
i=1

(
αi

ρi
dρi

)
=

N∑
i=1

(
αi

ρic2i
dp+O(dsi)

)
,

which can also be written as

(91)

N∑
i=1

d(ρiαi)

ρi
=

N∑
i=1

d(ρYi)

ρi
= ρ

N∑
i=1

dYi

ρi
+

N∑
i=1

(
Yi

ρi

)
dρ.

We then have

(92) ĉ2 =

(
∂p

∂ρ

)
Y ,s1,...,sN

=

∑N
i=1

Yi

ρi∑N
i=1

αi

ρic2i

,

and (89) follows.
Remark 3. Note that when N = 2, (89) reduces to a classical expression for the

two-phase sonic velocity, sometimes referred to as the “Wood speed of sound” [21].
This expression is also derived in [17] by considering one phase as an elastic wall for
the other.
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3.2. Relaxed system. The relaxed system (85) may also be expressed in a
convenient alternative form as

• a mass fraction part (36);
• a “mixture Euler” part consisting of

∂ρ

∂t
+

∂

∂x
(ρv) = 0,(93)

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p) = 0,(94)

∂E

∂t
+

∂

∂x
((E + p)v) .(95)

From (36) we see that there are N−1 characteristics with velocity v corresponding to
mass fraction waves. The remaining 3 eigenvalues may now be found from the Euler
system (93)–(95) by means of the following result.

Proposition 5. The mixture entropy given by

(96) s =

N∑
i=1

Yisi

satisfies the characteristic equation

(97)
∂s

∂t
+ v

∂s

∂x
= 0.

Proof. The assumption of immiscibility implies that the differential (48) holds
individually for each component. Substituting (48) into (95) and using (61), we
recover (97) by textbook simplifications made possible by (93) and (94).

Hence, in addition to the N − 1 mass fraction waves and the mixture entropy
wave (97), we obtain two sonic waves with velocities v ± c̃, calculated in a standard
way from the reduced Euler system (93)–(94). Herein, the sonic velocity c̃ is given by

(98) c̃ =

(
∂p

∂ρ

)
Y ,s

.

3.2.1. Some thermodynamic derivatives. In order to obtain an explicit ex-
pression for c̃, we will first need some intermediate results. In particular, the following
parameter will prove useful:

(99) ζi =

(
∂T

∂p

)
si

= − 1

ρ2i

(
∂ρi
∂si

)
p

.

Lemma 7. The following thermodynamic derivatives may be expressed in terms
of ζ: (

∂si
∂p

)
T

=
1

ρ2i

(
∂ρi
∂T

)
p

= −ζicp,i
T

,(100) (
∂ρi
∂p

)
T

=
1

c2i
+

ρ2i ζ
2
i cp,i
T

,(101) (
∂ei
∂T

)
p

= cp,i

(
1− ζi

p

T

)
,(102) (

∂ei
∂p

)
T

=
p

(ρici)2
− ζicp,i

(
1− ζi

p

T

)
,(103)
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where the specific heat capacity cp,i is given by

(104) cp,i = T

(
∂si
∂T

)
p

.

Proof. From (99) and (104) we directly obtain (100). Furthermore, we obtain
(101) from (66), (99), (104), and the relation

(105)

(
∂ρi
∂p

)
T

=

(
∂ρi
∂p

)
si

+

(
∂ρi
∂si

)
p

(
∂si
∂p

)
T

.

The result (102) follows from

(106)

(
∂ei
∂T

)
p

= T

(
∂si
∂T

)
p

+
p

ρ2i

(
∂ρi
∂T

)
p

and (100). Finally, (103) follows from

(107)

(
∂ei
∂p

)
T

= T

(
∂si
∂p

)
T

+
p

ρ2i

(
∂ρi
∂p

)
T

as well as (100) and (101).
As we will see in the following section, expressing the relaxed sound velocity c̃ in

terms of the parameter ζ will lead to significant simplifications.

3.2.2. The relaxed sound velocity c̃. Armed with these results, we are now
able to obtain an explicit expression for c̃ as given by (98). To this end, we first state
the following lemma.

Lemma 8. The differential (90) can be written as

N∑
i=1

d(ρiαi)

ρi
=

N∑
i=1

(
αi

ρic2i

)
dp− ρ

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

ds

+

(
T

N∑
i=1

Cp,i

)−1
⎛⎝ N∑

i=1

ζ2i Cp,i ·
N∑
i=1

Cp,i −
(

N∑
i=1

ζiCp,i

)2
⎞⎠ dp+O(dY ),(108)

where the extensive heat capacity Cp,i is given by

(109) Cp,i = ρiαicp,i.

Proof. Use (100) and (101) to obtain

(110)
N∑
i=1

d(ρiαi)

ρi
=

N∑
i=1

(
αi

ρi
dρi

)
=

N∑
i=1

(
αi

ρic2i
+ ζ2i

Cp,i

T

)
dp−

N∑
i=1

(
ζi
Cp,i

T

)
dT.

Furthermore, use (100) and (104) when differentiating (96) to obtain

(111) ds =

N∑
i=1

(
Yi

cp,i
T

)
dT −

N∑
i=1

(
Yiζi

cp,i
T

)
dp+O(dY ).

Substitute (111) for dT in (110), and (108) follows.
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To achieve further simplification, we will find use for a general summation lemma.
Lemma 9.

(112)
∑
i

(x2
i yi) ·

∑
i

yi −
(∑

i

(xiyi)

)2

=
∑
j>i

yiyj(xj − xi)
2.

Proof.

∑
i

(x2
i yi) ·

∑
i

yi −
(∑

i

(xiyi)

)2

=
∑
i

(x2
i y

2
i ) +
∑
i�=j

x2
i yiyj −

∑
i

(x2
i y

2
i )−
∑
i�=j

xixjyiyj

=
∑
i�=j

(
x2
i yiyj − xixjyiyj

)
=
∑
j>i

(
(x2

i + x2
j)yiyj − 2xixjyiyj

)
=
∑
j>i

yiyj(xj − xi)
2.(113)

Proposition 6. The relaxed mixture sonic velocity (98) may be written as

(114) c̃−2 = ĉ−2 + ρ

(
T

N∑
i=1

Cp,i

)−1∑
j>i

Cp,iCp,j(ζj − ζi)
2,

where ĉ, given by (89), is the mixture sonic velocity of the relaxation system of sec-
tion 2.1.

Proof. Lemma 9 allows us to write (108) as

(115)

N∑
i=1

d(ρiαi)

ρi
=

⎛⎝ N∑
i=1

αi

ρic2i
+

(
T

N∑
i=1

Cp,i

)−1∑
j>i

Cp,iCp,j(ζj − ζi)
2

⎞⎠dp

− ρ

∑N
i=1 ζiCp,i∑N
i=1 Cp,j

ds+O(dY ).

Using (91), we may then express the mixture sound velocity as
(116)

c̃−2 =

(
∂ρ

∂p

)
Y ,s

=

(
N∑
i=1

Yi

ρi

)−1
⎛⎝ N∑

i=1

αi

ρic2i
+

(
T

N∑
i=1

Cp,i

)−1∑
j>i

Cp,iCp,j(ζj − ζi)
2

⎞⎠ ,

and (114) follows.

3.2.3. Alternative formulations. Several equivalent formulations of the equi-
librium mixture sound velocity c̃ are known from the literature. For equilibrium flow
of two immiscible components, Städtke [23] obtained the following result:

(117) c̃−2 = ρ

(
α1γ1 + α2γ2 −

T

Cp,1 + Cp,2
(α1β1 + α2β2)

2

)
,
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where

βi = − 1

ρi

(
∂ρi
∂T

)
p

,(118)

γi =
1

ρi

(
∂ρi
∂p

)
T

.(119)

Proposition 7. The expression (114) is equivalent to (117) when N = 2.
Proof. Using (100) and (101) to substitute for βi and γi in (117), we recover

(120) c̃−2 = ĉ−2 +
ρ

T

Cp,1Cp,2(ζ2 − ζ1)
2

Cp,1 + Cp,2
,

which corresponds to (114) for N = 2.
Furthermore, Abgrall [1] derived the general result

(121) c̃2 =
N∑
i=1

YiPi +
ρe+ p

ρ
Pε,

where the parameters P are defined through

(122) dp =

N∑
i=1

Pi d(ρiαi) + Pε d(ρe)

with

(123) e =

N∑
i=1

Yiei.

In section 3.3, we will show that the expression (114) can be written in the form (121)
for our model.

3.2.4. The subcharacteristic condition. Although related formulations of
the mixture sound velocity c̃ already exist in the literature, the particular formula-
tion (114) we have obtained in this paper will now prove useful. In particular, it
straightforwardly leads to the following result.

Proposition 8. Assume that the relaxation sonic velocity ĉ given by (89) is
real and nonzero, i.e., ĉ2 > 0. Then the relaxed system of section 2.2 satisfies the
subcharacteristic condition given by Definition 1, with respect to the relaxation system
of section 2.1, subject only to the condition

(124) Cp,i > 0 ∀i,

which is assured by thermodynamic stability theory.
Proof. We observe that the difference

(125) c̃−2 − ĉ−2 = ρ

(
T

N∑
i=1

Cp,i

)−1∑
j>i

Cp,iCp,j(ζj − ζi)
2

is strictly nonnegative under the condition (124). Hence

(126) c̃ ≤ ĉ,
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and the equality holds only if all ζi are equal. Furthermore, in the context of Defi-
nition 1, we have that M = 2N + 1 and m = N + 2, and we assume that N ≥ 2 as
stated in Remark 2. The eigenvalues are given by

λ1 = v − ĉ,(127)

λ2, . . . , λ2N = v,(128)

λ2N+1 = v + ĉ(129)

and

λ̃1 = v − c̃,(130)

λ̃2, . . . , λ̃N+1 = v,(131)

λ̃N+2 = v + c̃.(132)

The interlacing condition of Definition 1 becomes

(133) λ̃j ∈ [λj , λj+N−1] ∀j,

which by inspection of (127)–(132) yields the conditions

v − c̃ ∈ [v − ĉ, v],(134)

v ∈ [v, v],(135)

v + c̃ ∈ [v, v + ĉ],(136)

which by (126) are all satisfied.

3.3. Quasi-linear formulation. In this section, we derive an explicit quasi-
linear formulation of the relaxed system described in section 2.2. More precisely, we
express the system in the form

(137)
∂V

∂t
+A(V )

∂V

∂x
= 0,

where

(138) A(V ) =
∂F(V )

∂V
.

In addition to facilitating further analysis, such a formulation provides advantages
when devising numerical methods for the model. An application of this has already
been presented in [14].

3.3.1. Some intermediate results. We will start by deriving some intermedi-
ate differentials that will prove useful for our further analysis.

Lemma 10. The internal-energy differentials satisfy

(139)
N∑
i=1

Vi dei =

(
p− T

∑N
i=1 Cp,i∑N

i=1 ζiCp,i

)
N∑
i=1

dVi

ρi

+

(
T

ρĉ2

∑N
i=1 Cp,i∑N

i=1 ζiCp,i

+

∑
j>i Cp,iCp,j(ζj − ζi)

2∑N
i=1 ζiCp,i

)
dp.
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Proof. Use (102) and (103), as well as the definition (89), to obtain

(140)

N∑
i=1

Vi dei =

N∑
i=1

(
Cp,i

(
1− ζi

p

T

))
dT +

(
p

ρĉ2
−

N∑
i=1

ζiCp,i

(
1− ζi

p

T

))
dp.

Use (110) to eliminate dT from (140), and simplify by use of Lemma 9.
Lemma 11. The total specific internal-energy differential may be expressed as

(141) d(ρe) =
N∑
i=1

(
ei +

p

ρi

)
dVi − T

∑N
i=1 Cp,i∑N

i=1 ζiCp,i

N∑
i=1

dVi

ρi
+

T

ρc̃2

∑N
i=1 Cp,i∑N

i=1 ζiCp,i

dp.

Proof. Use

(142)

N∑
i=1

Vi dei = d(ρe)−
N∑
i=1

ei dVi

in (139) and simplify using (114).
Lemma 12. The pressure differential may be expressed as

(143)

dp = ρc̃2
N∑
i=1

dVi

ρi
− ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

(
N∑
i=1

(
ei+

p

ρi
− 1

2
v2
)
dVi + v dVN+1 − dVN+2

)
.

Proof. Use

(144) d(ρe) =
1

2
v2

N∑
i=1

dVi − v dVN+1 + dVN+2

in (141) and solve for dp.
Lemma 13. The pressure-transport differential may be expressed as

(145)

d(pv) = vρc̃2
N∑
i=1

dVi

ρi
− v

ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

N∑
i=1

(
ei +

p

ρi
− 1

2
v2
)
dVi −

pv

ρ

N∑
i=1

dVi(
p

ρ
− v2

ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

)
dVN+1 + v

ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

dVN+2.

Proof. Use

(146) d(pv) = v dp+ p dv

together with (29) and (40) in (143).

3.3.2. The Jacobi matrix. We will find it convenient to split the flux vector
into convective and pressure terms as follows:

(147) F(V ) = Fc(V ) + Fp(V ),

where

(148) Fc(V ) = vV



2880 T. FLÅTTEN, A. MORIN, AND S. T. MUNKEJORD

and

(149) Fp(V ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
p
pv

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

...
VN

VN+1

VN+2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ1α1

ρ2α2

...
ρNαN

ρv
ρe + 1

2ρv
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then we may write

(150) A(V ) = Ac(V ) +Ap(V ),

where

(151) Ac(V ) =
∂Fc(V )

∂V
and Ap(V ) =

∂Fp(V )

∂V
.

Proposition 9. The convective Jacobian matrix Ac can be written as

(152) Ac(V ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1 − Y1)v −Y1v . . . −Y1v Y1 0
−Y2v (1 − Y2)v . . . −Y2v Y2 0

...
. . .

. . .
...

...
...

−YNv −YNv . . . (1− YN )v YN 0
−v2 −v2 . . . −v2 2v 0

−
(
e+ 1

2v
2
)
v −

(
e + 1

2v
2
)
v . . . −

(
e+ 1

2v
2
)
v e+ 1

2v
2 v

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where

(153) e =

N∑
i=1

Yiei.

Proof. From (148) we obtain

(154) dFc = v dV + V dv,

which together with (29) and (40) yields the result.
Proposition 10. The pressure Jacobian Ap can be written as

(155) Ap = A1 +
ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

A2,

where

(156) A1(V ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 0
0 0 . . . 0 0 0
...

. . .
. . .

...
...

...
0 0 . . . 0 0 0
ρc̃2

ρ1

ρc̃2

ρ2
. . . ρc̃2

ρN
0 0

v
(

ρc̃2

ρ1
− p

ρ

)
v
(

ρc̃2

ρ2
− p

ρ

)
. . . v

(
ρc̃2

ρN
− p

ρ

)
p
ρ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

(157) A2(V )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 0
0 0 . . . 0 0 0
...

. . .
. . .

...
...

...
0 0 . . . 0 0 0

1
2v

2 − e1 − p
ρ1

1
2v

2 − e2 − p
ρ2

. . . 1
2v

2 − eN − p
ρN

−v 1

v
(

1
2v

2 − e1 − p
ρ1

)
v
(

1
2v

2 − e2 − p
ρ2

)
. . . v

(
1
2v

2 − eN − p
ρN

)
−v2 v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. The result follows directly from Lemmas 12 and 13 applied to (149).
By the above calculations, it follows that the relaxed system of section 2.2 can be

written in the form (137), with

(158) A = Ac +A1 +
ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

A2,

where Ac, A1, and A2 are given by (152), (156), and (157).
We are now in position to prove the following.
Proposition 11. The mixture sound velocity c̃, given by (114), satisfies Abgrall’s

formula (121).
Proof. From Lemma 12 it follows that

(159) Pi =
ρc̃2

ρi
− ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

(
ei +

p

ρi

)
and

(160) Pε =
ρc̃2

T

∑N
i=1 ζiCp,i∑N
i=1 Cp,i

in the context of (122). By this, (121) simplifies to the trivial identity

(161) c̃2 =

N∑
i=1

Yi
ρc̃2

ρi
=

N∑
i=1

αic̃
2 = c̃2.

4. Summary. We have studied a relaxation system modeling the flow of an ar-
bitrary number of immiscible fluids. The fluids are assumed to flow with the same ve-
locities and to be in mechanical equilibrium, i.e., to have the same pressure. Thermal
equilibrium is not assumed; instead heat transfer has been modeled by a relaxation
procedure. The relaxation procedure has been carefully chosen to respect the first
and second laws of thermodynamics. In this respect, we have extended upon previous
works [12, 21], which considered the special case of two separate fluids.

Furthermore, we have studied the relaxed limit where thermal equilibrium is in-
stantaneously imposed. This relaxed limit is sometimes referred to as the homogeneous
equilibrium model. We have derived a formulation of the mixture sound velocity of
this relaxed model, from which it is straightforward to see that the relaxed system
unconditionally satisfies the subcharacteristic condition. The physical interpretation
of this result is that the instantaneous equilibrium condition imposes a slower mixture
sound velocity compared to the nonequilibrium case. Although this result may be ob-
tained by other means, the proof presented in this paper seems original and provides
insights into the effects of relevant thermodynamic parameters on sonic propagation.
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Abstract. We start from the most common formulation of the six-equation two-fluid model, from which we remove the non-
conservative temporal term using an equivalent formulation derived in the literature. We derive a partially analytical, formally
path-consistent Roe scheme, using the flux-splitting method.

We first expose the model in detail, and split the flux into a convective part, a pressure part, and a non-conservative part.
Then we derive an analytical Jacobian matrix of the fluxes, which allows the model to be written in quasilinear form. Finally,
we explain the approach used to express formulas for the Roe-averaging of the variables. Only a simplified Roe-condition on
the pressure remains. It can be fulfilled numerically, given any equation of state.

In the present article, we do not show the full results, but rather explain the approach. The full results will be explained at
the conference.

Keywords: Two-phase flow, Compressible flow, Finite volume method, Numerical methods, Roe scheme
PACS: 47.11.Df, 47.40.Dc, 47.55.Ca, 47.60.Dx, 47.85.Dh

INTRODUCTION: THE MODEL

The six-equation two-fluid model [1, 3] is a well-studied two-phase flow model. In its most common formulation, it
takes the general form

(1)
∂U
∂ t

+
∂F(U)

∂x
+ Ã(U)

∂ Ṽ(U)

∂ t
+ B̃(U)

∂W̃(U)

∂x
= S(U).

As described in [1], the non-conservative temporal term ∂tṼ presents mathematical and numerical difficulties in
deriving fully upwind schemes, as well as schemes that are formally path-consistent with respect to the definitions of
the non-conservative products of the system.

In this work, we address this difficulty by taking advantage of a mathematically equivalent formulation, derived in
[1], that eliminates the non-conservative temporal term. The system of equations is written as

(2)
∂U
∂ t

+
∂F(U)

∂x
+B′(U)

∂W(U)

∂x
= S(U),

where the variables vector consists of the conserved quantities for each of the two phases (mass, momentum and total
energy):

(3) U =

⎡⎢⎢⎢⎢⎢⎣
u1

u2

u3

u4

u5

u6

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎣

ρgαg
ρ�αl

ρgαgvg
ρ�αlvl

ρgαg
(
eg+ 1

2v2g
)

ρ�αl
(
e�+ 1

2v2l
)

⎤⎥⎥⎥⎥⎥⎥⎦ .



Further, the conservative flux F(U) is split into a convective part and a pressure part, such that

(4) F = Fc+Fp with Fc(U) =

⎡⎢⎢⎢⎢⎢⎢⎣

ρgαgvg
ρ�αlvl
ρgαgv2g
ρ�αlv2l

ρgαgvg
(
eg+ 1

2v2g
)

ρ�αlvl
(
e�+ 1

2v2l
)

⎤⎥⎥⎥⎥⎥⎥⎦ and Fp(U) =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0

αgvg p
αlvl p

⎤⎥⎥⎥⎥⎥⎦ .

The term B′(U) ∂W(U)
∂x in (2) originally contains the non-conservative contributions of the fluxes, to allow using the

formally path-consistent approach of Parés [5]. However, to simplify the analysis, B′(U) is modified to also contain
the pressure part of the flux Fp(U), to give the system analysed in the present paper:

(5)
∂U
∂ t

+
∂Fc(U)

∂x
+B(U)

∂W(U)

∂x
= S(U),

where

(6) B(U) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0
0 0

αg 0
αl 0

αgvg −ηαgαl (vg − vl) ηρ�αgc2�
αlvl +ηαgαl (vg − vl) ηρgαlc2g

⎤⎥⎥⎥⎥⎥⎥⎦ and W(U) =

[
p

αgvg +αlvl

]
.

η is defined by

(7) η =
p

ρgαlc2g+ρ�αgc2�
.

Finally, the source term S(U) can represent gravity or phase interactions. Note that this formulation does not include
regularising terms making the model hyperbolic, for which a number of possibilities exists in the literature. The
numerical framework we present here may be extended to include such terms, following for instance the approach in
[7, 9].

QUASILINEAR FORM

In order to derive a Roe scheme [2], we first write the model in a quasilinear form:

(8)
∂U
∂ t

+A(U)
∂U
∂x

= S(U),

where

(9) A(U) =
∂Fc

∂U
+B(U)

∂W
∂U

.

To achieve this, we first derive the analytical Jacobian matrix of the flux. A natural decomposition of the problem

is to treat the convective part Fc separately from the rest of the flux, mainly involving the pressure, B(U) ∂W(U)
∂x . The

resulting Jacobian matrices will be called Ac and Ap, respectively.
The matrix Ac is given by

(10) Ac =
∂Fc

∂U
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0
0 0 0 1 0 0

−v2g 0 2vg 0 0 0

0 −v2l 0 2vl 0 0
−vgEg 0 Eg 0 vg 0

0 −vlEl 0 El 0 vl

⎤⎥⎥⎥⎥⎥⎥⎦ where Eϕ = eϕ +
1

2
v2ϕ .



In order to derive the Jacobian Ap of the pressure flux, we need the derivative of the non-conservative flux variables,
W, with respect to the conservative variables, U:

(11) M =
∂W(U)

∂U
= R−1

⎡⎢⎢⎢⎢⎢⎣
ζlβg (vg − vl)αlβg −Rvg/ρg
ζgβl (vl − vg)αgβl −Rvl/ρl

−ζlΓgvg R/ρg − (vg − vl)αlΓgvg
−ζgΓlvl R/ρl − (vl − vg)αgΓlvl

ζlΓg (vg − vl)αlΓg
ζgΓl (vl − vg)αgΓl

⎤⎥⎥⎥⎥⎥⎦

T

,

where

βg = c2g −Γg

(
eg +

p
ρg

)
+ 1

2Γgv2g, ζg = ρgc2g −Γg p, R = αgζl +αlζg,

βl = c2l −Γl

(
el +

p
ρl

)
+ 1

2Γlv2l , ζl = ρlc2l −Γl p.

We define

(12) Ap = RB(U)
∂W(U)

∂U
= RBM, hence A = Ac +R−1Ap.

DERIVATION OF THE ROE SCHEME

The Roe scheme requires the construction of a matrix at each cell interface. It is the Jacobian matrix A evaluated at
a particular average of the variables in the neighbouring cells. This is called Roe averaging and denoted by Â in the
following. It has to satisfy some conditions [2, 6, 7, 8], amongst which one is problematic:

R1: Â
(
UL,UR

)(
UR−UL

)
= Fc(UR)−Fc(UL)+B

(
UL,UR

)(
W(UR)−W(UL)

)
.

The matrix B is a property of the mathematical solution rather than the numerical method [1], and it is assumed that it
is known in the present work.

Similarly to what was done in the derivation of the Jacobian matrix, we can split the problem into a convective part
and a pressure part, such that Â = Âc + R̂−1Âp.

The Roe condition R1 can subsequently be split in two:

Âc
(
UL,UR

)(
UR−UL

)
= Fc(UR)−Fc(UL),(13)

R̂−1Âp
(
UL,UR

)(
UR−UL

)
= B
(
UL,UR

)(
W(UR)−W(UL)

)
.(14)

The derivation of the Roe matrix for the convective part Âc is already well known, using the parameter-vector
approach of Roe [2]. Specifically, Toumi [3] gives the parameter vector for this case. On the other hand, this method is
impractical for the pressure part. Instead, we follow a similar strategy as in [4]. It consists in reducing the partial Roe
condition (14) on Âp to two simpler ones. One will concern the pressure average, and the other the mixture-velocity
average. This gives the possibility to construct a partially analytical Roe matrix for any equation of state.

From the averaging of (12) comes Âp = R̂BM̂. Here we recall that B is known a priori, and does therefore not need

Roe averaging. Inserting Âp into (14) gives

(15) M̂
(
UL,UR

)(
UR−UL

)
= W(UR)−W(UL),

which results in a system of two equations. The matrix M̂ is the matrix M evaluated for specific weighted averages of
the variables in the neighbouring cells, which we will call Roe-average and denote x̂. For example, v̂l is an average of
vLl and vRl . We will use the system (15) to define the Roe-averages of all the needed variables.

First, we show that the first line of the system (15) is fulfilled if we use a Roe-average of the pressure differential

(16) R dp = ζl

(
ζg

ρg
−Γgeg

)
du1+ζg

(
ζl

ρl
−Γlel

)
du2+ζlΓg d(u1eg)+ζgΓl d(u2el) ,

as well as

(17) u5 = u1eg +
1

2
u1v2g and u6 = u2el +

1

2
u2v2l ,



and if we suppose that the velocities follow the usual Roe-averaging, weighted by
(√ρϕ αϕ

)L,R
.

The condition expressed by the first line of (15) is then reduced to the condition found by Roe-averaging (16):

(18) R̂(pR− pL) = ζ̂l

(
ζ̂g

ρg
− Γ̂gêg

)(
(ρgαg)

R− (ρgαg)
L
)
+ ζ̂g

(
ζ̂l

ρl
− Γ̂l êl

)(
(ρlαl)

R− (ρlαl)
L
)

+ ζ̂lΓ̂g
(
(ρgαgeg)

R− (ρgαgeg)
L
)
+ ζ̂gΓ̂l

(
(ρlαlel)

R− (ρlαlel)
L
)
.

Second, the same process is applied to the second line of the system (15). It is more involved, therefore we only
show the results. We keep assumptions on the Roe-averaging of vϕ and we make further assumptions on the shape of
the Roe-averages of αϕ and ρϕ . Further, we define some other averaging formulas for ᾰ and ρ̆ which will be made
explicit at the conference. Then we show that this second line will be reduced to the condition

(19) ᾰgα̂l

(
ζ̂g

ρg

)(
(ρg)

R− (ρg)
L
)
− ᾰlα̂g

(
ζ̂�
ρl

)(
(ρl)

R− (ρl)
L
)

+ ρ̆gᾰgα̂lΓ̂g
(
(eg)R− (eg)L

)
− ρ̆lᾰlα̂gΓ̂l

(
(e�)R− (e�)L

)
= 0.

Further, (18) and (19) reduce to the same condition by using the appropriate expression for
ζ̂ϕ
ρϕ

(20) pR− pL =
ζ̂g

ρ̂g

(
ρR

g −ρL
g
)
+ ρ̆gΓ̂g

(
eRg − eLg

)
=

ζ̂l

ρ̂l

(
ρR

l −ρL
l
)
+ ρ̆lΓ̂l

(
eRl − eLl

)
.

This last condition cannot be fulfilled analytically for a general equation of state. In case of non-analytical equation
of state, or if its expression is too complicated, (20) will be the only condition that will be solved numerically. The
approach presented in [4] can be used for example.
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SUMMARY

We derive a partially analytical Roe scheme with wave limiters for the compressible six-equation
two-fluid model. Specifically, we derive the Roe averages for the relevant variables. First, the fluxes
are split into a convective and a pressure part. Then, independent Roe conditions are stated for
these two parts. These conditions are successively reduced while defining acceptable Roe averages.
For the convective part, all the averages are analytical. For the pressure part, most of the averages
are analytical, while the remaining averages are dependent on the thermodynamic equation of
state. This gives a large flexibility to the scheme with respect to the choice of equation of state.
Furthermore, this model contains non-conservative terms. They are a challenge to handle right,
and it is not the object of this paper to discuss this issue. However, the Roe averages presented in
this paper are fully independent from how those terms are handled, which makes this framework
compatible with any treatment of non-conservative terms. Finally, we point out that the eigenspace
of this model may collapse, making the Roe scheme inapplicable. This is called resonance. We
propose a fix to handle this particular case. Numerical tests show that the scheme performs well.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Two-fluid model; Roe scheme; Resonance

1. INTRODUCTION

The two-fluid model is an option to simulate one-dimensional two-phase flows in pipelines [1,
2, 3, 4]. It is extensively used, particularly in the petroleum and nuclear industries [5, 6, 7, 8].
This model is derived from conservation laws for each phase for mass, momentum and
energy. The phases interact through interfacial terms, some of which are not conservative.
These non-conservative terms pose problems for the numerical solution of the model, since
numerical schemes for conservation laws take advantage of the conservative nature of the
equations. One approach is treating these terms as source terms [4, 9]. The conservative
part of the model is then advanced one time step alternatively with the source terms. The
latter are solved using ordinary differential equation solvers. The main drawback is that
the wave propagation velocities should be affected by the non-conservative terms, which is
not properly caught in this approach. The consequence is that the discontinuities that can
occur with non-linear models may be smeared. Therefore, many authors have tried to include

∗Correspondence to: Department of Energy and Process Engineering, Norwegian University of Science and
Technology (NTNU), Kolbjørn Hejes vei 1B, NO-7491 Trondheim, Norway. Email: alexandre.morin [a]
sintef.no
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2 A. MORIN ET AL.

them in the framework of the numerical schemes for conservation laws [10, 11, 12, 13]. In
the present article, we continue the work presented in [14], making a step in the direction of
properly including the non-conservative terms in the numerical scheme for the six-equation
two-fluid model by a formulation suitable for the formally path-consistent framework of
Parés [10]. Castro et al. [15] and Abgrall and Karni [16] showed that this approach may
produce waves which violate the Rankine-Hugoniot condition. Therefore, in the present
work, the propagation of each of the waves has been analysed separately. Though it tends
to indicate that the effect shown in [15] and [16] occurs with our scheme, it is marginal. The
advantages of being able to treat all terms in a fully upwind manner still make this scheme
a better option than solving the non-conservative terms as source terms.
The MUSTA scheme is an option to solve systems of conservation laws [17, 18]. It has

been applied to the six-equation two-fluid model [2], and it was shown that it performed
well. However, the linearised upwind Roe scheme [19] is generally more accurate. Toumi [3]
presented a Roe scheme for the same model, but he made the assumption of incompressible
liquid flow. In the present article, we extend the Roe scheme for the six-equation two-fluid
model to compressible flows. We show that the Roe averages can be defined independently
of the choice of integration path for the non-conservative terms. Therefore we do not
concentrate on finding a physically-right path. Further, the derivation of the Roe averages
for the variables is mostly analytical and independent of the thermodynamics. Only two
remaining scalar relations are dependent on the equation of state. There exist numerical
methods to solve those two relations, therefore the scheme can also be used with “black
box” thermodynamical routines.
Before we can derive the Roe scheme, we first need to eliminate the non-conservative terms

containing time derivatives. This has been achieved by Munkejord et al. [2] by transforming
the time derivatives into space derivatives. In the present article, we take advantage of this
transformation to be able to write the system in quasi-linear form.
In Section 2, we first expose the six-equation two-fluid model. Then in Section 3, we derive

the quasilinear expression of the model. In Section 4, the Roe condition is formulated and
average formulas that satisfy it are proposed. Next, in Section 5, we explain how we deal
with the non-conservative terms. Section 6 points out the resonance which can happen with
the present model, and how it is solved. In Section 7, we discuss how to make the scheme
second order with the wave limiters. Finally, the numerical scheme is tested on three test
cases in Section 8. Section 9 summarises the results of the paper. The main symbols used
are listed in Table I. The other ones are introduced in the text.

Table I. Main symbols.

Symbol Signification
α Volume fraction
ρ Density
v Velocity
e Internal energy
p Pressure
Γ First Grüneisen coefficient
c Speed of sound
E Total energy
ui Components of the vector U
U Vector of the conserved variables
F Vector of the fluxes
W Vector of the non-conservative variables
B Coefficient matrix in the non-conservative terms
S Vector of the algebraic source term
g Gas phase (Subscript)
� Liquid phase (Subscript)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



A ROE SCHEME FOR A COMPRESSIBLE SIX-EQUATION TWO-FLUID MODEL 3

2. THE MODEL

The most common formulation of the six-equation two-fluid model takes the general
form [1, 2]

∂U

∂t
+

∂F (U)
∂x

+ Ã(U)
∂Ṽ (U)

∂t
+ B̃(U)

∂W̃ (U)
∂x

= S̃(U). (1)

where the terms Ã∂tṼ and B̃∂xṼ are respectively the non-conservative temporal and
spatial terms.
The non-conservative temporal term Ã∂tṼ presents mathematical and numerical

difficulties in deriving fully upwind schemes. In this work, we address this difficulty by
taking advantage of a mathematically equivalent formulation, derived in [2], that eliminates
the non-conservative temporal terms. The system of equations is written as

∂U

∂t
+

∂F (U)
∂x

+ B′(U)
∂W (U)

∂x
= S(U), (2)

where the variables vector consists of the conserved quantities for each of the two phases
(mass, momentum and total energy):

U =

⎡⎢⎢⎢⎢⎢⎢⎣
u1
u2
u3
u4
u5
u6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
αgρg
α�ρ�

αgρgvg
α�ρ�v�

αgρg
(
eg + 1

2v2
g
)

α�ρ�

(
e� + 1

2v2
�

)

⎤⎥⎥⎥⎥⎥⎥⎦ . (3)

Further, the conservative flux F (U) was in [2] originally split into a convective part and
a pressure part, such that

F = F c + F p (4)

with

F c(U) =

⎡⎢⎢⎢⎢⎢⎢⎣

αgρgvg
α�ρ�v�

αgρgv2
g

α�ρ�v
2
�

αgρgvg
(
eg + 1

2v2
g
)

α�ρ�v�

(
e� + 1

2v2
�

)

⎤⎥⎥⎥⎥⎥⎥⎦ and F p(U) =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0

αgvgp
α�v�p

⎤⎥⎥⎥⎥⎥⎥⎦ . (5)

However, in the present work, we obtain a simpler non-conservative system by modifying
B′(U) to also incorporate the pressure part of the flux F p(U). By this, we obtain the
equivalent formulation of the system presented in [2]:

∂U

∂t
+

∂F c(U)
∂x

+ B(U)
∂W (U)

∂x
= S(U), (6)

where

B(U) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0

αg 0 Δp
α� 0 −Δp

αgvg − ηαgα� (vg − v�) ηρ�αgc2
� vτΔp

α�v� + ηαgα� (vg − v�) ηρgα�c
2
g −vτΔp

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

and

W (U) =

⎡⎣ p
αgvg + α�v�

αg

⎤⎦ . (8)
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4 A. MORIN ET AL.

where η is defined by
η =

p

ρgα�c2
g + ρ�αgc2

�

. (9)

It is well known that the basic equal-pressure two-fluid model is not hyperbolic [1, 20].
Therefore, our present model includes the regularisation terms Δp and vτ that make it
hyperbolic, often used for numerical testing [3, 4, 6, 9, 21, 22]. They can for example
represent surface tension or hydrostatics. In this work, we focused on the numerical scheme,
and therefore did not emphasise the physical relevance of the model closure relations.
The discussions in the present article remain nevertheless relevant for any other choice
of interfacial pressure regularisation term. We chose a widely used term [2, 4, 22, 23, 24]
derived from mathematical considerations [25, 26]

Δp = δ
αgα�ρgρ�(vg − v�)2

α�ρg + αgρ�
. (10)

When the parameter δ is equal to one, this is the minimum pressure difference between
the phases necessary to make the model hyperbolic at the first order of (vg − v�). It has
been shown for some particular cases of the two-fluid six-equation model [25, 26], and for
the two-fluid four-equation model without energy equations [22]. It can be shown with a
perturbation method that it is also true for the general two-fluid six-equation model. With
δ larger than one, the model is hyperbolic in an interval |vg − v�| < Ω, where Ω is some
constant dependent on δ. The other term is defined by

vτ =
α�Γgvg + αgΓ�v�

α�Γg + αgΓ�
. (11)

Finally, the source term S(U) can represent gravity or phase interactions.

3. QUASILINEAR FORM

In order to derive a Roe scheme [19], we first write the model in a quasilinear form:
∂U

∂t
+ A(U)

∂U

∂x
= S(U), (12)

where
A(U) =

∂F c

∂U
+ B(U)

∂W

∂U
. (13)

To achieve this, we first derive the analytical Jacobian matrix of the flux. A natural
decomposition of the problem is to treat the convective part F c separately from the rest of
the flux, mainly involving the pressure, B(U)∂W (U)

∂x . The resulting Jacobian matrices will
be called Ac and Ap, respectively.

3.1. Convective part
We can write the following differentials

αgρg dvg = du3 − vg du1 (14)
α�ρ� dv� = du4 − v� du2 (15)

and the matrix Ac follows

Ac =
∂F c

∂U
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0
0 0 0 1 0 0

−v2
g 0 2vg 0 0 0

0 −v2
� 0 2v� 0 0

−vgEg 0 Eg 0 vg 0
0 −v�E� 0 E� 0 v�

⎤⎥⎥⎥⎥⎥⎥⎦ (16)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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A ROE SCHEME FOR A COMPRESSIBLE SIX-EQUATION TWO-FLUID MODEL 5

where Eϕ = eϕ + 1
2v2

ϕ.

3.2. A pressure differential
In order to derive the Jacobian Ap of the pressure flux, we need the derivative of the non-
conservative flux variables, W , with respect to the conservative variables, U . First, some
useful differentials are derived. We know from [2] that the differential of the pressure can
be written

dp =
(

c2
k − Γk

p

ρk

)
dρk + Γkρk dek, (17)

or equivalently:

dp =
(

c2
k − Γk

(
ek +

p

ρk

))
dρk + Γk d(ρkek) (18)

for k ∈ g, �. Furthermore,

dαk =
1
ρk

(d(αkρk) − αk dρk) (19)

=
1

ρkek
(d(αkρkek) − αk d(ρkek)) , (20)

and similarly

dρk =
1

αk
(d(αkρk) − ρk dαk) , (21)

d(ρkek) =
1

αk
(d(αkρkek) − ρkek dαk) . (22)

Hence we can write the differential (18) as

αk dp =
(

c2
k − Γk

(
ek +

p

ρk

))
(d(αkρk) − ρk dαk) + Γk (d(αkρkek) − ρkek dαk) (23)

which simplifies to

αk dp =
(

c2
k − Γk

(
ek +

p

ρk

))
d(αkρk) + Γk d(αkρkek) − ζk dαk. (24)

Now we express (24) for k = g and k = �, multiply them respectively by ζ� and ζg and add
them to eliminate dαg

Rdp = ζ�

(
ζg

ρg
− Γgeg

)
du1 + ζ�Γg d(u1eg) + ζg

(
ζ�

ρ�
− Γ�e�

)
du2 + ζgΓ� d(u2e�), (25)

and in terms of the elements of the state vector U , the pressure differential is

Rdp = ζ�βg du1 + ζgβ� du2 − ζ�Γgvg du3 − ζgΓ�v� du4 + ζ�Γg du5 + ζgΓ� du6, (26)

where

ζk = ρkc2
k − Γkp, (27)

βk = c2
k − Γk

(
ek +

p

ρk

)
+
1
2
Γkv2

k, (28)

R = αgζ� + α�ζg. (29)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
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6 A. MORIN ET AL.

3.3. A volume-fraction differential
Now, we derive a volume-fraction differential. We start from

du1 = ρg dαg + αg dρg, (30)

in which we substitute the density differential extracted from (17)

du1 = ρg dαg +
αgρg

ρgc2
g − pΓg

(dp − Γgρg deg) . (31)

Now, through the expression of the pressure differential (25) and d(u1eg) = u1 deg + eg du1,
we obtain

Rdαg = α�

(
ζg

ρg
− Γgeg

)
du1 − αg

(
ζ�

ρ�
− Γ�e�

)
du2 + α�Γg d(u1eg) − αgΓ� d(u2e�), (32)

and in terms of the elements of the state vector U , the volume-fraction differential is

Rdαg = α�βg du1 − αgβ� du2 − α�Γgvg du3 − αgΓ�v� du4 + α�Γg du5 − αgΓ� du6. (33)

3.4. Velocity differentials
Finally, through the volume-fraction differential (33) and

dvg =
1

αgρg
(du3 − vg du1) , (34)

dv� =
1

α�ρ�
(du4 − v� du2) , (35)

we obtain the following differentials

Rd(αgvg) = vg

(
α�βg − R

ρg

)
du1 − αgβ�vg du2

+
(R

ρg
− α�Γgv2

g

)
du3 + αgΓ�vgv� du4 + α�Γgvg du5 − αgΓ�vg du6,

(36)

Rd(α�v�) = −α�βgv� du1 + v�

(
αgβ� − R

ρ�

)
du2

+ α�Γgvgv� du3 +
(R

ρ�
− αgΓ�v

2
�

)
du4 − α�Γgv� du5 + αgΓ�v� du6.

(37)

3.5. Pressure part
With the help of the differentials (26), (33), (36) and (37), we can write the Jacobian matrix
of W defined in (7)

M =
∂W (U)

∂U
= R−1

⎡⎢⎢⎢⎢⎢⎢⎣
ζ�βg (vg − v�)α�βg − Rvg/ρg α�βg
ζgβ� (v� − vg)αgβ� − Rv�/ρ� −αgβ�

−ζ�Γgvg R/ρg − (vg − v�)α�Γgvg −α�Γgvg
−ζgΓ�v� R/ρ� − (v� − vg)αgΓ�v� αgΓ�v�

ζ�Γg (vg − v�)α�Γg α�Γg
ζgΓ� (v� − vg)αgΓ� −αgΓ�

⎤⎥⎥⎥⎥⎥⎥⎦

T

, (38)

The matrix Ap is defined as

Ap = RB(U)
∂W (U)

∂U
= RBM , (39)

such that the Jacobian matrix A is

A = Ac + R−1Ap. (40)
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4. THE ROE SCHEME

The Roe scheme requires the construction of a matrix at each cell interface. One seeks here
the Jacobian matrix A evaluated at a particular average of the variables in the neighbouring
cells. This is called Roe averaging and denoted by Â in the following. It has to satisfy some
conditions [19, 22, 27, 28],

• R1: Â
(

UL, UR
)
is diagonalisable with real eigenvalues,

• R2: Â
(

UL, UR
)

→ A
(
Ū
)
smoothly as UL, UR → Ū ,

• R3: Â
(

UL, UR
)(

UR − UL
)
=

F c(UR) − F c(UL) + B
(

UL, UR
)(

W (UR) − W (UL)
)
.

The condition R3 is found by using the definition of B in [2] in the Roe condition in [27].
The condition R1 will be fulfilled as long as the matrix Â(UL, UR) is defined as the matrix
A(Û) evaluated for some Roe-average state Û of the left and right states UL and UR, and
that Û is within the hyperbolic domain of the model. R2 will in this case also be trivially
fulfilled. However, the condition R3 is problematic. Note that the matrix B is a property
of the path chosen to evaluate the non-conservative products, and is independent of the
numerical method [2]. Specifically, it will be shown in Section 4.2 that B disappears from
condition R3, so that the Roe averages can be defined independently of B. In this section,
it is assumed that it is known. It will be discussed in Section 5.
Similarly to what was done in the derivation of the Jacobian matrix, we can split the

problem into a convective part and a pressure part, such that Â = Âc + R̂−1Âp. Then we
can remark that if the subconditions

Âc

(
UL, UR

)(
UR − UL

)
= F c(UR) − F c(UL), (41)

R̂−1Âp

(
UL, UR

)(
UR − UL

)
= B

(
UL, UR

)(
W (UR) − W (UL)

)
(42)

are fulfilled, then the Roe condition R3 will be fulfilled. Therefore, we choose to split R3 in
two, (41) and (42), and to build the partial matrices Âc and Âp that satisfy each its own
condition, so that Â will satisfy R3.

4.1. Convective part
The derivation of the Roe matrix for the convective part Âc is already well known, using the
parameter-vector approach of Roe [19]. Specifically, Toumi [3] gives the parameter vector
for this case. The condition (41) is fulfilled for a matrix Âc defined as the matrix Ac (16)
evaluated for the following Roe-averages of the velocity and the internal energy

v̂k =
(√

αkρkvk

)L +
(√

αkρkvk

)R(√
αkρk

)L +
(√

αkρk

)R , (43)

êk = ẽk +
1
2

√
(αkρk)L(αkρk)R

(
vR

k − vL
k

)2((√
αkρk

)L +
(√

αkρk

)R
)2 (44)

where

ẽk =
(√

αkρkek

)L +
(√

αkρkek

)R(√
αkρk

)L +
(√

αkρk

)R . (45)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



8 A. MORIN ET AL.

4.2. Relation for the pressure part
On the other hand, the parameter-vector approach is impractical for the pressure part.
Instead, we follow a strategy similar to that in [29]. It consists in reducing the partial Roe
condition (42) on Âp to two scalar ones. One will concern the pressure average, and the
other the mixture-velocity average. This approach will give analytical averaging formulas for
all the variables but the pressure, for which we will have a relation to satisfy. This relation
will be dependent on the equation of state and will generally have to be solved numerically.
Thus we can construct a partially analytical Roe matrix for any equation of state.
By analogy with the the definition of Ap in (39), we look for Âp in the form Âp = R̂BM̂ .

Inserting this into (42) gives

M̂
(

UL, UR
)(

UR − UL
)
= W (UR) − W (UL), (46)

which results in a system of three equations. The matrix B disappears from this system,
therefore the Roe condition R3 can be satisfied without making any assumption on how
B is averaged. Thus the Roe scheme can be derived independently of the choice of the
non-conservative term averaging.

4.3. Velocity average for the pressure part
The first line of the system (46) reads

R̂ (
pR − pL) = ζ̂�β̂g

(
uR

1 − uL
1
)
+ ζ̂gβ̂�

(
uR

2 − uL
2
) − ζ̂�Γ̂gv̂g

(
uR

3 − uL
3
)

− ζ̂gΓ̂�v̂�

(
uR

4 − uL
4
)
+ ζ̂�Γ̂g

(
uR

5 − uL
5
)
+ ζ̂gΓ̂�

(
uR

6 − uL
6
)

. (47)

When the velocities are averaged following the formula (43), and if we choose

β̂k =
ζ̂k

ρ̂k
− Γ̂k

(
ẽk − 1

2
v̂2

k

)
, (48)

this expression is equivalent to the “Roe-average” of the pressure differential (25)

R̂ (
pR − pL) =

ζ̂�

((̂
ζg

ρg

)
− Γ̂gẽg

)(
(αgρg)R − (αgρg)L

)
+ ζ̂g

((̂
ζ�

ρ�

)
− Γ̂�ẽ�

)(
(α�ρ�)R − (α�ρ�)L

)
+ ζ̂�Γ̂g

(
(αgρgeg)R − (αgρgeg)L

)
+ ζ̂gΓ̂�

(
(α�ρ�e�)R − (α�ρ�e�)L

)
(49)

Proof
Equating the right-hand sides of (47) and (49), as well as using (48) and

u5 = u1eg +
1
2

u1v2
g , (50)

u6 = u2e� +
1
2

u2v2
� , (51)

we obtain

1
2

ζ̂�Γ̂gv̂2
g
(
(αgρg)R − (αgρg)L

)
+
1
2

ζ̂gΓ̂�v̂
2
�

(
(α�ρ�)R − (α�ρ�)L

)
− ζ̂�Γ̂gv̂g

(
(αgρgvg)R − (αgρgvg)L

) − ζ̂gΓ̂�v̂�

(
(α�ρ�v�)R − (α�ρ�v�)L

)
+
1
2

ζ̂�Γ̂g
(
(αgρgv2

g)R − (αgρgv2
g)L

)
+
1
2

ζ̂gΓ̂�

(
(α�ρ�v

2
� )R − (α�ρ�v

2
� )L

)
= 0. (52)
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which is satisfied if

1
2

ζ̂�Γ̂gv̂2
g
(
(αgρg)R − (αgρg)L

) − ζ̂�Γ̂gv̂g
(
(αgρgvg)R − (αgρgvg)L

)
+
1
2

ζ̂�Γ̂g
(
(αgρgv2

g)R − (αgρgv2
g)L

)
= 0 (53)

and

1
2

ζ̂gΓ̂�v̂
2
�

(
(α�ρ�)R − (α�ρ�)L

) − ζ̂gΓ̂�v̂�

(
(α�ρ�v�)R − (α�ρ�v�)L

)
+
1
2

ζ̂gΓ̂�

(
(α�ρ�v

2
� )R − (α�ρ�v

2
� )L

)
= 0 (54)

hold independently. They simplify to

v̂2
g
(
(αgρg)R − (αgρg)L

) − 2
(
(αgρgvg)R − (αgρgvg)L

)
+
(
(αgρgv2

g)R − (αgρgv2
g)L

)
= 0 (55)

and

v̂2
�

(
(α�ρ�)R − (α�ρ�)L

) − 2
(
(α�ρ�v�)R − (α�ρ�v�)L

)
+
(
(α�ρ�v

2
� )R − (α�ρ�v

2
� )L

)
= 0 (56)

which in turn are satisfied if the velocity follows the averaging formula (43).

4.4. Further simplification of the first line of the system (46)

Let us assume that the averages are such that the following equalities hold

(αkρk)R − (αkρk)L = α̂k

(
ρR

k − ρL
k

)
+ ρ̂k

(
αR

k − αL
k

)
, (57)

(αkρkek)R − (αkρkek)L = α̂k

(
(ρkek)R − (ρkek)L

)
+ ρ̂kẽk

(
αR

k − αL
k

)
. (58)

(59)

We also observe that

(ρkek)R − (ρkek)L = ρ̆k

(
eR

k − eL
k

)
+ ẽk

(
ρR

k − ρL
k

)
, (60)

where ẽk is given by (45) and

ρ̆k =
ρL

kρR
k

ρ̂k
. (61)

Now, through the definition (̂
ζk

ρk

)
=

ζ̂k

ρ̂k
, (62)

(49) can be further simplified. The condition deriving from the first line of the system finally
reads

R̂ (
pR − pL) = α̂gζ̂�

ζ̂g

ρ̂g

(
ρR

g − ρL
g
)
+ α̂�ζ̂g

ζ̂�

ρ̂�

(
ρR

� − ρL
�

)
+ ρ̆gα̂gζ̂�Γ̂g

(
eR

g − eL
g
)
+ ρ̆�α̂�ζ̂gΓ̂�

(
eR

� − eL
�

)
. (63)
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4.5. Simplification of the second line of the system (46)

The second line of the system (46) reads

R̂ (
(αgvg + α�v�)R − (αgvg + α�v�)L

)
=(

(v̂g − v̂�)α̂�β̂g − R̂v̂g

ρ̂g

)(
uR

1 − uL
1
) −

(
(v̂g − v̂�)α̂gβ̂� − R̂v̂�

ρ̂�

)(
uR

2 − uL
2
)

+

(
R̂
ρ̂g

− (v̂g − v̂�)α̂�Γ̂gv̂g

)(
uR

3 − uL
3
)
+

(
R̂
ρ̂�

+ (v̂g − v̂�)α̂gΓ̂�v̂�

)(
uR

4 − uL
4
)

+ (v̂g − v̂�)α̂�Γ̂g
(
uR

5 − uL
5
) − (v̂g − v̂�)α̂gΓ̂�

(
uR

6 − uL
6
)

. (64)

This expression will be successively simplified by assuming averaging formulas for the
different variables. We first list them. The velocities will follow the same averaging as for
the convective part, given by (43). Then, the density Roe-averaging takes the form

ρ̂k =
√

ρL
kρR

k

√
(αkρk)L +

√
(αkρk)R√

αL
k ρR

k +
√

αR
k ρL

k

, (65)

the volume fraction will be averaged as

α̂k =

√
αR

k ρL
kαL

k +
√

αL
k ρR

k αR
k√

αL
k ρR

k +
√

αR
k ρL

k

, (66)

while the internal energy has to have a different form than in the convective part. Its
Roe average will be ẽ as defined in (45). Note that the averages (65) and (66) satisfy the
relations (57) and (58).
If we assume the velocity Roe-average (43), (64) simplifies to

R̂ (
(αgvg)R − (αgvg)L

)
= v̂g

(
α̂�

((̂
ζg

ρg

)
− Γ̂gẽg

)
− R̂

ρ̂g

)(
uR

1 − uL
1
)

− α̂gv̂g

((̂
ζ�

ρ�

)
− Γ̂�ẽ�

)(
uR

2 − uL
2
)
+

R̂
ρ̂g

(
uR

3 − uL
3
)

+ α̂�Γ̂gv̂g
(
(αgρgeg)R − (αgρgeg)L

) − α̂gΓ̂�v̂g
(
(α�ρ�e�)R − (α�ρ�e�)L

)
(67)

and

R̂ (
(α�v�)R − (α�v�)L

)
= −α̂�v̂�

((̂
ζg

ρg

)
− Γ̂gẽg

)(
uR

1 − uL
1
)

+ v̂�

(
α̂g

((̂
ζ�

ρ�

)
− Γ̂�ẽ�

)
− R̂

ρ̂�

)(
uR

2 − uL
2
)
+

R̂
ρ̂�

(
uR

4 − uL
4
)

− α̂�Γ̂gv̂�

(
(αgρgeg)R − (αgρgeg)L

)
+ α̂gΓ̂�v̂�

(
(α�ρ�e�)R − (α�ρ�e�)L

)
. (68)

Proof
The above conditions (67)–(68) are summed, and the right-hand side of the resulting
expression is equated to that of the condition (64). This results in the two conditions
already found for the convective part (55)–(56), and they are satisfied for the velocity
averaging formula (43).
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4.6. Density average
Then, if we assume a density average of the form (65), the conditions (67)–(68) reduce to

R̂ (
(αg)R − (αg)L

)
= α̂�

((̂
ζg

ρg

)
− Γ̂gẽg

)(
uR

1 − uL
1
) − α̂g

((̂
ζ�

ρ�

)
− Γ̂�ẽ�

)(
uR

2 − uL
2
)

+ α̂�Γ̂g
(
(αgρgeg)R − (αgρgeg)L

) − α̂gΓ̂�

(
(α�ρ�e�)R − (α�ρ�e�)L

)
. (69)

Proof
First, observe that

(αkvk)R − (αkvk)L = α̌k

(
vR

k − vL
k

)
+ v̂k

(
αR

k − αL
k

)
(70)

where v̂k is given by (43), ρ̂k by (65) and

α̌k =
√
(αkρk)RαL

k +
√
(αkρk)LαR

k√
(αkρk)L +

√
(αkρk)R

. (71)

These averaging formulas also satisfy

α̌g
(
vR

g − vL
g
)
= − v̂g

ρ̂g

(
uR

1 − uL
1
)
+

1
ρ̂g

(
uR

3 − uL
3
)

(72)

α̌�

(
vR

� − vL
�

)
= − v̂�

ρ̂�

(
uR

2 − uL
2
)
+

1
ρ̂�

(
uR

4 − uL
4
)

. (73)

Now, write (70) for phases g and �, substitute into them respectively (72) and (73), and
substitute them in turn respectively into (67) and (68). Since αg + α� = 1, both expression
reduce to (69).

4.7. Internal energy average for the pressure part
Finally, if we assume that the volume fraction average follows (66) and the internal energy
average follows the form of ẽ in (45), the condition (69) can be written as(̂

ζg

ρg

)(
ρR

g − ρL
g
) −

(̂
ζ�

ρ�

)(
ρR

� − ρL
�

)
+ ρ̆gΓ̂g

(
eR

g − eL
g
) − ρ̆�Γ̂�

(
eR

� − eL
�

)
= 0, (74)

where we have used the shorthand (61).

Proof
Recall the expressions (57), (58) and (60). Substituting them into (69), using (66) and (45)
as averaging formulas, as well as defining

R̂ = α̂gζ̂� + α̂�ζ̂g (75)

yields the result after cancelling the equal terms.

4.8. A relation for the pressure average
We have now reduced the two first lines of the system resulting from the pressure part of
the Roe condition to the expressions (63) and (74). With the definitions of the averages
(43), (45), (65) and (66) as well as the definitions (62) and (75), they can be recombined as

pR − pL =
ζ̂g

ρ̂g

(
ρR

g − ρL
g
)
+ ρ̆gΓ̂g

(
eR

g − eL
g
)

(76)

=
ζ̂�

ρ̂�

(
ρR

� − ρL
�

)
+ ρ̆�Γ̂�

(
eR

� − eL
�

)
. (77)

This resembles a Roe average of the differential (17).
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4.9. Simplification of the third line of the system (46)

The third line of the system (46) reads

R̂ (
αR

g − αL
g
)
= α̂�β̂g

(
uR

1 − uL
1
) − α̂gβ̂�

(
uR

2 − uL
2
)

− α̂�Γ̂gv̂g
(
uR

3 − uL
3
)
+ α̂gΓ̂�v̂�

(
uR

4 − uL
4
)
+ α̂�Γ̂g

(
uR

5 − uL
5
) − α̂gΓ̂�

(
uR

6 − uL
6
)

, (78)

where β̂k is given by (48) and R̂ is as defined in (75).
Now, if the velocities are averaged following the formula (43), the condition (78) reduces

to

R̂ (
αR

g − αL
g
)
=

α̂�

(
ζ̂g

ρ̂g
− Γ̂gẽg

)(
(αgρg)R − (αgρg)L

) − α̂g

(
ζ̂�

ρ̂�
− Γ̂�ẽ�

)(
(α�ρ�)R − (α�ρ�)L

)
+ α̂�Γ̂g

(
(αgρgeg)R − (αgρgeg)L

) − α̂gΓ̂�

(
(α�ρ�e�)R − (α�ρ�e�)L

)
, (79)

Proof
Equating the right-hand sides of the expression (78) and (79) yields

1
2

α̂�Γ̂gv̂2
g
(
(αgρg)R − (αgρg)L

) − 1
2

α̂gΓ̂�v̂�

(
(α�ρ�)R − (α�ρ�)L

)
− α̂�Γ̂gv̂g

(
(αgρgvg)R − (αgρgvg)L

)
+ α̂gΓ̂�v̂�

(
(α�ρ�v�)R − (α�ρ�v�)L

)
+
1
2

α̂�Γ̂g
(
(αgρgv2

g)R − (αgρgv2
g)L

) − 1
2

α̂gΓ̂�

(
(α�ρ�v

2
� )R − (α�ρ�v

2
� )L

)
= 0, (80)

which is satisfied by the averaging formula (43).

Finally, if we assume that the averaging formulas for the volume fraction α̂ (66), the
density ρ̂ (65) and the internal energy ẽ (45) hold, the condition (79) simplifies to

ζ̂g

ρ̂g

(
ρR

g − ρL
g
) − ζ̂�

ρ̂�

(
ρR

� − ρL
�

)
+ ρ̆gΓ̂g

(
eR

g − eL
g
) − ρ̆�Γ̂�

(
eR

� − eL
�

)
= 0. (81)

Proof
Using the relations (57) and (58), the expression (79) can be written as(

ζ̂g

ρ̂g
− Γ̂gẽg

)(
ρR

g − ρL
g
) −

(
ζ̂�

ρ̂�
− Γ̂�ẽ�

)(
ρR

� − ρL
�

)
+ Γ̂g

(
(ρgeg)R − (ρgeg)L

) − Γ̂�

(
(ρ�e�)R − (ρ�e�)L

)
= 0. (82)

The expression (81) follows from using the relation (60).

The relation (81) is satisfied whenever the relations resulting from the two first lines (76)
and (77) are satisfied.

4.10. Remaining variables
The last variables in the conditions (76) and (77) for which we did not define a Roe average
are ζk and Γk. Recall the definition ζk = ρkc2

k − Γkp. It is dependent on the equation of
state because the speed of sound c and Γ are thermodynamical parameters. Therefore the
remaining averaging formulas cannot be deduced analytically from these conditions without
specifying the equation of state. On the other hand, there exist approaches to construct the
required averages numerically, when the equation of state is in the form of a “black box”
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(see for example the approach presented in [29]). This is an advantage when using tabulated
equations of state.
Note that the internal energy averages for the convective part (44) and the pressure part

(45) are different from each other. Hence the full matrix cannot in general be written in the
form

Â(UL, UR) = A(Û(UL, UR)). (83)

In addition, in general
α̂g + α̂� �= 1. (84)

However, this is just a feature of the formulation of the averaging and does not in any way
affect the numerical consistency of the scheme. In particular, the conditions R2 and R3 are
unconditionally satisfied. The condition R1 holds only conditionally for the model itself,
and is discussed in more detail in Section 6.

4.11. Application to stiffened gas
The derivation above was independent of the choice of equation of state. For the purpose
of numerical testing in the present work, we have used the stiffened gas equation of state.
This equation of state is based on the ideal gas law, to which a factor is added to reduce the
compressibility. It can then represent liquid-like fluids in addition to gases. It is expressed
by

p(ρ, T ) =
γ − 1

γ
ρCpT − p∞ (85)

e(ρ, T ) =
Cp

γ
T +

p∞
ρ

. (86)

where γ, p∞ and Cp are constants.
To represent a two-phase flow of a liquid and a gas at mechanical equilibrium, we then

define two fluids following the equation of state (85)–(86), sharing the same pressure and
whose volume fractions sum to one. To evaluate the state of the two fluids from the vector
of conserved variables, we use in the present work the algorithm described in [30].
With the choice of an equation of state, we are now able to define Roe averages for ζk

and Γk. First, we can write
p = Γkρkek − γkp∞, (87)

where Γ is the first Grüneisen coefficient, which for the stiffened gas equation of state is
Γ = γ − 1. This gives

dp = Γk d(ρkek) = Γkek dρk + Γkρk dek. (88)

By comparison with the differential (17), we deduce

ζk = Γkekρk. (89)

We choose to define the averages as
Γ̂k = Γk, (90)

and
ζ̂k = Γkĕkρ̂k. (91)

We now need to define the average ĕk in order to satisfy the Roe condition (42). From
(76)–(77) and (87), we obtain

pR − pL = Γk(ρR
k eR

k − ρL
keL

k ) =
Γkĕkρ̂k

ρ̂k
(ρR

k − ρL
k ) + ρ̆kΓk(eR

k − eL
k ) (92)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



14 A. MORIN ET AL.

which simplifies to

ρR
k eR

k − ρL
keL

k =
ĕkρ̂k

ρ̂k
(ρR

k − ρL
k ) + ρ̆k(eR

k − eL
k ) (93)

which is verified by the definition (61) and the internal energy average (45)

ĕk =

√
αL

k ρL
keL

k +
√

αR
k ρR

k eR
k√

αL
k ρL

k +
√

αR
k ρR

k

= ẽk. (94)

Note that with the stiffened gas equation of state, the Roe average of the pressure is not
used.

5. NON-CONSERVATIVE TERMS

In the formally path-conservative framework [10], the non-conservative terms are integrated
between the left and right states along a given path, giving the averaging formulas for the
non-conservative factors gathered in the matrix B. Some previous works pointed out that
this approach may converge to a weak solution with the wrong shock speeds [15, 16]. Other
approaches to handle non-conservative terms consist in flux splitting, see for example [4].
In these approaches, the solution is advanced one time step with the conservative fluxes,
before the non-conservative terms are applied as source terms. Therefore the whole wave
structure is not captured during the conservative time step. This results in smearing of the
discontinuities. By letting the non-conservative terms affect the wave structure of the model,
this smearing is avoided. The formally path-conservative framework allows that, since all
the differential terms are solved at the same time. Further, this is an advantage for the
purpose of analysis since we have access, at least numerically, to the real velocity of the
waves.
Choosing the right integration path for the matrix B is not the object of this article. As

shown with (46), the matrix B disappears from the Roe condition. Therefore the choice of
the path does not interact with the derivation of the Roe averages, and the Roe scheme
here presented is independent of the choice of path. However, it has been observed that if
the B-averages are too different from the Roe averages, the resulting matrix A may have
complex eigenvalues. Now, in [2], it was shown that the averaging method for the matrix
B has limited effect on the results for Toumi’s shock tube with the six-equation system.
Therefore, we found it convenient to choose the Roe averages for evaluating the matrix B.
The pressure can have a particular treatment. Since we have used the stiffened gas equation
of state, the Roe average of the pressure is not used (cf. Section 4.11). This average generally
has to be found numerically using the relations (76)–(77). We have here simply used the
arithmetic average for the pressure in the matrix B.
Note that our scheme can only be said to be implicitly path-consistent, as the existence of

a definite path corresponding to these averages is here an a priori assumption. In this respect,
we follow the approach of [2]. Nevertheless, our method will be formally path-consistent for
any path giving the B-averaging employed in this paper.

6. RESONANCE OF THE SYSTEM

When the velocities are equal to each other, the Jacobian matrix A (40) is not diagonalisable.
The system is then said to be resonant. Since the Roe scheme is based on diagonalising this
matrix, this seriously impairs the robustness of the method.
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6.1. Collapse of the eigenspace
The two-fluid model has six eigenvalues. Two of them correspond to the speed of the pressure
waves in both directions, two others correspond to the speed of the interfacial waves – also
called volume-fraction waves – in both directions. The last two correspond to the convection
speed of the entropy in each phase. Only the last two are known analytically: vg and v�.
Otherwise, the eigenstructure of the two-fluid model is in general not known. However,
when vg = v�, we are able to obtain general analytical eigenvalues and eigenvectors for the
entropy and volume-fraction waves. If we substitute vm for vg and v� in the matrix A (40),
vm is an eigenvalue with multiplicity four. The corresponding eigenvector can be shown to
be

Xvm =

⎡⎢⎢⎢⎢⎢⎢⎣
ω1
ω2

vmω1
vmω2

1
2v2

mω1 − egρgω3
1
2v2

mω2 + e�ρ�ω3

⎤⎥⎥⎥⎥⎥⎥⎦ . (95)

This vector only contains three degrees of freedom (ω1, ω2, ω3), which is less than the
multiplicity of the eigenvalue. This shows that the matrix is not diagonalisable. When
vg �= v�, however, the eigenvalues become generally distinct, and so do the eigenvectors. In
particular, the eigenvectors corresponding to the eigenvalues vg and v� are respectively

Xvg =

⎡⎢⎢⎢⎢⎢⎢⎣
1
0
vg
0

1
2v2

g
0

⎤⎥⎥⎥⎥⎥⎥⎦ and Xv�
=

⎡⎢⎢⎢⎢⎢⎢⎣
0
1
0
v�

0
1
2v2

�

⎤⎥⎥⎥⎥⎥⎥⎦ . (96)

These vectors describe the entropy waves, propagating at the velocity of the phases. We can
remark that when (vg, v�) → (vm, vm)

Xvm = ω1Xvg(vg = vm) + ω2Xv�
(v� = vm) + ω3

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0

−egρg
e�ρ�

⎤⎥⎥⎥⎥⎥⎥⎦ . (97)

Both eigenvectors describing the entropy waves are independent and present in Xvm , while
only one dimension remains for the vectors describing the volume-fraction waves. We deduce
that the eigenspace collapsing is the one associated with the volume-fraction waves. Those
waves do indeed become identical when they propagate at identical velocities, therefore
their corresponding eigenvectors cross each other at vg = v�. Note that this is a purely
mathematical phenomenon, not a physical one. The eigenspace collapses because the waves
become identical, such that their eigenvectors become equal. Physically, both waves are
still present, but superimposed. This is why resonance is not a problem for the MUSTA
method [2], which does not use the eigenstructure of the model.

6.2. Correction of the numerical scheme
This results in the Roe scheme being inapplicable when |vg − v�| < ε (ε being a small
quantity depending on the machine precision) because the vectors will be indistinct at
machine precision. To overcome this difficulty, we will take advantage of the continuity of
the eigenvectors with respect to vg − v�.
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For some small ε, for each interface where the averaged state is such that |vg − v�| < ε ,
we apply the following procedure. For an interface between the cell i and i + 1, the velocities
are modified as follows

vi
g → vi

g + ε vi+1
g → vi+1

g + ε (98)

vi
� → vi

� − ε vi+1
� → vi+1

� − ε, (99)

before the Roe fluctuations (cf. [31], p. 80) are evaluated at the interface for these states.
Then the velocities are again modified as

vi
g → vi

g − ε vi+1
g → vi+1

g − ε (100)

vi
� → vi

� + ε vi+1
� → vi+1

� + ε. (101)

The Roe fluctuations are also evaluated for these states. Then the approximate fluctuations
with the original velocities are obtained by taking the arithmetic average.

6.3. Effect of the regularisation of the model
The regularisation term Δp used in this work vanishes when vg = v�, and resonance occurs.
Now, theoretically, if the pressure difference between the phases is not zero when vg = v�,
resonance should be avoided. This is because the eigenvalues associated with volume fraction
waves then are slightly different from each other. However, physically sensible regularisation
terms will generally give small pressure differences compared to the phase pressures. To
investigate whether this is enough to avoid the resonance problems, we added to our
regularisation term Δp a term in the form proposed by Soo [32] (pp. 319–321), C · p, where
p is the pressure, and C is a constant. These investigations showed a strong loss of numerical
accuracy in the proximity of the state vg = v�, even when the system would theoretically
not be resonant for the volume-fraction waves. This is due to the eigenvectors matrix being
badly conditioned. A constant C of the order of unity – thus Δp of the order of the fluid
pressure – was necessary in order to be able to run the scheme without the resonance fix
exposed in the previous section. This is not physical, therefore the fix is also necessary with
any physically meaningful pressure difference Δp between the phases.

7. SECOND ORDER SCHEME WITH WAVE LIMITERS

The Roe scheme presented so far is first order. It can be made second order by using the
MUSCL [33] reconstruction of the data, along with e.g. a second-order Runge-Kutta solver
for the time integration. However, a specific second-order extension of the Roe scheme exists,
that does not require several stages in the time integration, thus saving computational time.
It is the wave-limiter approach described in the book of LeVeque [31] (pp. 181–183). This
method consists in comparing the waves at an interface with the corresponding upwind
waves. The wave ωp

i−1/2, of family p and at the interface where the flux is to be evaluated
(i − 1/2), is defined by

ωp
i−1/2 =

(
�p

i−1/2ΔU i−1/2

)
rp

i−1/2, (102)

where �p
i−1/2 and rp

i−1/2 are the respectively left and right eigenvectors corresponding to
the pth eigenvalue of the Riemann problem at interface i − 1/2. ΔU i−1/2 is the jump at
interface i − 1/2. At the upwind interface, the wave is defined by

ωp
I−1/2 =

(
�p

I−1/2ΔU I−1/2

)
rp

I−1/2, (103)

where I ∈ [i − 1, i + 1] selects the adjacent interface in the upwind direction. Whether the
upwind interface is the left or the right one depends on the sign of the pth eigenvalue. Then
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a smoothness measure is evaluated, similar to the slope ratio in the MUSCL approach, in
order to construct a wave correction. The smoothness measure for wave p is defined by

θp
i−1/2 =

ωp
I−1/2 · ωp

i−1/2

ωp
i−1/2 · ωp

i−1/2
. (104)

The drawback of this method is that it is dependent on the ordering of the eigenvalues,
because the definition of the upwind wave ωp

I−1/2 uses the eigenstructure of the Riemann
problem at the upwind interface I − 1/2. To employ (104), one needs to know which wave
the index p actually represents. For the two-fluid model, the eigenvalues must be calculated
numerically, and we have in general no method of determining which eigenvalue belongs
to which family of waves. Hence the above method is not directly applicable, for it will
fail each time the eigenvalues change order from an interface to the next. Instead, Lax and
Liu [34] defined a new smoothness measure, where the information coming from adjacent
cells only comes from the jump ΔU I−1/2, which is independent of the wave ordering. The
upwind wave is now defined as

ω̂p
I−1/2 =

(
�p

i−1/2ΔU I−1/2

)
rp

i−1/2. (105)

Remark that only the eigenvectors at interface i − 1/2 are used. The smoothness measure
is now defined as

θp
i−1/2 =

ω̂p
I−1/2 · ωp

i−1/2

ωp
i−1/2 · ωp

i−1/2
. (106)

This smoothness measure is however a less precise measure of the variation in the wave,
since it decomposes the jump ΔU I−1/2 at the upwind interface using the eigenvectors of
the Riemann problem at interface i − 1/2. This can in some cases produce an oscillation in
the solution, as will be discussed in the numerical results.
A limited version of the wave is then defined as [31, p. 182]

ω̃p
i−1/2 = φ(θp

i−1/2)ω̂
p
i−1/2, (107)

where φ(θ) is the limiter function, which is used to evaluate the limited flux

F̃ i−1/2 =
1
2

m∑
p=1

|sp
i−1/2|

(
1 − Δt

Δx
|sp

i−1/2|
)

ω̃p
i−1/2. (108)

The scheme with the second-order extension then reads

Un+1
i = Un

i − Δt

Δx

(A−ΔU i+1/2 + A+ΔU i−1/2
) − Δt

Δx

(
F̃ i+1/2 − F̃ i−1/2

)
, (109)

where the fluctuations A±ΔU i−1/2 and the wave velocities sp
i−1/2 are those of the classical

Roe scheme, defined in [31, p. 120].

8. NUMERICAL RESULTS

Some tests have been run on the six-equation two-fluid model using the presently described
Roe scheme. Since some of the waves can have a zero velocity, an entropy fix is needed.
Harten’s entropy fix [31] (p. 324) with δHart = 20 is therefore active on all the test cases.
Note that the MUSTA method does not require an entropy fix. The thermodynamical
parameters used in the stiffened gas equation of state (85)–(86) are listed in Table II.
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Table II. Thermodynamical parameters for the stiffened gas equation of state.

Gas (g) Liquid (�)
γ (−) 1.4 2.8
p∞ (Pa) 0.0 8.5×108

Cp (J/(kg.K)) 1008.7 4186.0

8.1. Isolated waves
Castro et al. [15] and Abgrall and Karni [16] write that formally path-consistent schemes
may feature slightly wrong wave velocities, compared to the wave velocities predicted by
the Rankine-Hugoniot system for a given averaging of B. In the present section, we test the
Rankine-Hugoniot system on each of the six waves occurring in the two-fluid six-equation
model. All the tests start with the same left state, given in Table X in Appendix A. The
six right states were produced by numerically browsing the Rankine-Hugoniot system

σ
(

UR − UL
)
= Â

(
UL, UR

)(
UR − UL

)
. (110)

When relevant, a shock has been chosen rather than a rarefaction. The right states can be
found from ΔU listed in Table XI in Appendix A through

UR = UL +ΔU . (111)

The waves are numbered by increasing order of velocity. Waves 1 and 6 are the pressure
waves, waves 2 and 4 are the volume fraction waves and waves 3 and 5 are the entropy
waves.
The waves propagate in a domain of 10,000 cells, and are located at t = 0 s either at cell

100 for the right-going waves, or at cell 900 for the left-going waves. The simulation time
is determined so that the wave travels to the other end of the tube. The minmod wave
limiter is used and the CFL number is 0.5. δ = 2 was used in the regularisation term (10).
To evaluate the propagation velocity, the location of the waves is estimated to be at the
inflexion point of u1 = αgρg (or u2 = α�ρ� when u1 = αgρg is constant).
The Rankine-Hugoniot condition is tested by evaluating the two sides of the Rankine-

Hugoniot system (110): σΔU and Â · ΔU . The measured wave velocity σ and the relative
error of the two sides of the system for each wave type is reported in Table III. When one
of the sides was a zero, the relative error has been replaced by an absolute error, denoted
by (abs.) in the result table.
We can see that the relative error is most of the time on the order of 10−5 or lower, and

that it is very similar for all variables. This indicates that this small error comes from the
wave velocity σ, but that the jump satisfies the Rankine-Hugoniot system rather strictly.
The error in the wave velocity σ may be explained either by the uncertainty in locating the
waves, or by a slightly wrong propagation velocity. The exception is wave 2. The relative
error goes up to 10−3 for the momentum components, and is not homogeneous for all
the variables. This indicates that the jump in itself slightly violates the Rankine-Hugoniot
condition. This phenomenon seems similar to what was observed in [16], though here in a
much smaller scale.
This test shows that the wave velocities and jumps satisfy the Rankine-Hugoniot condition

reasonably well in the conditions presented here. However, the error may be larger for
increasing shock amplitudes.

8.2. Shock tube
The next test case is the shock tube introduced by Toumi [3], and also studied in [2, 4, 24].
This shock tube activates the resonance fix described in Section 6, since vg = 0 and v� = 0
at t = 0 s. The parameter in this fix is taken to be ε = 10−3 m/s. The initial states are given
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Table III. Relative error in Rankine-Hugoniot conditions for the isolated wave test

Wave 1
σ = −366.83
u1 4.5857 × 10−5

u2 4.5305 × 10−5

u3 4.5612 × 10−5

u4 4.5356 × 10−5

u5 4.5855 × 10−5

u6 4.5168 × 10−5

Wave 4
σ = 76.579
u1 4.2484 × 10−4

u2 4.2487 × 10−4

u3 4.2675 × 10−4

u4 4.2411 × 10−4

u5 4.2477 × 10−4

u6 4.2505 × 10−4

Wave 2
σ = −4.9214
u1 1.7004 × 10−5

u2 2.1544 × 10−5

u3 1.1157 × 10−3

u4 −4.3392 × 10−4

u5 1.6157 × 10−5

u6 2.0390 × 10−5

Wave 5
σ = 100.033
u1 3.3333 × 10−5

u2 0.0
u3 3.3307 × 10−5

u4 −5.8668 × 10−4(abs.)
u5 3.3282 × 10−5

u6 −6.0766 × 10−3(abs.)

Wave 3
σ = 10.000068
u1 0.0
u2 6.7568 × 10−5

u3 2.8099 × 10−5(abs.)
u4 6.6350 × 10−5

u5 1.7770 × 10−4(abs.)
u6 6.4933 × 10−5

Wave 6
σ = 514.69
u1 8.1034 × 10−5

u2 8.0726 × 10−5

u3 8.1191 × 10−5

u4 8.1009 × 10−5

u5 8.1091 × 10−5

u6 8.0694 × 10−5

in Table IV. In the regularisation term (10), δ = 2 was used. The results at t = 0.06 s for
different grid resolutions are presented in Figure 1. The result from the MUSCL-MUSTA
scheme with 2 substeps and the minmod slope limiter, presented in [2], is used for the
reference curves on a grid of 10,000 cells. The curve for the Roe scheme presented in this
article, on the same grid, match the reference curves to plotting accuracy. For the lower
resolutions, the plateau between the slow waves is not well resolved. A similar behaviour
is observed with the MUSCL-MUSTA method, but it is more pronounced with the Roe
method, especially for the liquid velocity. To understand where this overshoot comes from,
we use the similarity property of the solution. The shock tube is run on a fine grid of 10,000
cells, with the minmod limiter. The liquid-velocity profiles at different time steps are plotted
against the similarity parameter x/t on Figure 2. We can see that an oscillation appears for
the wave at x/t ≈ 100m/s, but that the wave after all converges to the expected wave. This
is due to the limiter with the Lax and Liu smoothness-measure definition (cf. Section 7)
being more imprecise the larger the jump is. Using the original definition of the smoothness
measure by LeVeque, the original oscillation is present but much smaller. Note, however,
that the latter requires that the waves be ordered the same way in adjacent computational
cells, and therefore cannot generally be used with the present system. It is a particular
case that it works on this test case, where the velocities keep the same ordering during
the simulation. The oscillation does not appear at all without wave limiter, as shown on
Figure 3.

Table IV. Initial states for Toumi’s shock tube

Symbol (unit) Left Right
Gas vol. frac. αg (−) 0.25 0.10
Pressure p (MPa) 20 10
Gas velocity vg (m/s) 0 0
Liq. velocity v� (m/s) 0 0
Temperatures Tg, T� (K) 308.15 308.15

8.3. Moving Gauss curve
The Roe schemes without and with flux limiters are expected to be first and second order,
respectively, for smooth solutions. This test case consists in a smooth volume-fraction profile

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



20 A. MORIN ET AL.
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Figure 1. Convergence of the scheme with minmod limiter on Toumi’s shock tube at t = 0.06s.
CFL=0.5. The reference curves are produced with the MUSCL-MUSTA scheme, with the minmod

slope limiter on a grid of 10,000 cells, CFL=0.5.
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Figure 2. Solution of Toumi’s shock tube at different times plotted against the similarity parameter
x/t. 10,000 cells, minmod limiter, CFL=0.5.
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Figure 3. Solution of Toumi’s shock tube at different times plotted against the similarity parameter
x/t. 10,000 cells, no limiter, CFL=0.5.

(a Gauss curve) being advected with the flow. The two phases having the same velocity, the
profile should not be distorted. We use this case to evaluate the convergence order of the
scheme.
The case is initialised with all the quantities being uniform, apart from the gas volume

fraction which follows a scaled Gauss curve

αg,0 = 0.1 + 0.8 exp
(

−(x − μ)2

2σ2

)
(112)

where σ = 0.42 and μ = 6m. The other quantities are given in Table V.
The solution is compared to the analytical solution at t = 0.03 s. The Gauss curved is

advected at the velocity 100 m/s, therefore the analytical solution is given by the equation
(112) where σ is unchanged and μ = 9m. The error and the convergence order are listed in
Table VI for the Roe scheme without wave limiter, and the Roe scheme with the minmod
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Table V. Initial state for the moving Gauss curve case

Symbol (unit) Initial value
Pressure p (MPa) 0.1
Gas velocity vg (m/s) 100
Liq. velocity v� (m/s) 100
Temperatures Tg,� (K) 315.9

wave limiter. The parameter in the resonance fix is ε = 10−3 m/s. δ = 2 was used in the
regularisation term (10). Figure 4 gives an illustration of the convergence. We can see that
for the scheme with wave limiter, the second order convergence is observed already from 200
cells. For the scheme without limiter, which is first order, the expected convergence order
is attained for a finer grid than for the second order scheme.
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x (m)

(b) Minmod Limiter

Figure 4. Convergence for the moving Gauss curve, Roe with and without limiter. t = 0.03s.

Table VI. Moving Gauss curve: convergence order of the Roe scheme without wave limiter, and with
the minmod wave limiter, both with a resonance fix parameter ε = 10−3 m/s

Roe MC-Roe
Cells ‖E(αg)‖1 n ‖E(αg)‖1 n
100 4.122 × 10−1 – 1.192 × 10−1 –
200 2.615 × 10−1 0.66 3.028 × 10−2 1.98
400 1.523 × 10−1 0.78 7.625 × 10−3 1.99
800 8.341 × 10−2 0.87 1.908 × 10−3 2.00
1600 4.386 × 10−2 0.93 4.770 × 10−4 2.00
3200 2.252 × 10−2 0.96 1.193 × 10−4 2.00
6400 1.142 × 10−2 0.98 2.982 × 10−5 2.00
12800 5.749 × 10−3 0.99 7.455 × 10−6 2.00

This test is also used to check the sensitivity of the solution to the parameter ε in the
resonance fix. The velocities should remain uniform and equal to their initial value, but they
are slightly deformed. Table VII shows the maximum error in the velocities as a function of
ε. Recall that the ε parameter determines how close the gas and liquid velocities can be. We
can see that the error is very dependent on it. In this test, it was not possible to decrease ε
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further. Otherwise, the code crashes due to the diagonalisation routine returning conjugate
complex eigenvalues, though with negligible imaginary part. This is caused by a strong loss
of numerical accuracy, since two eigenvectors become almost parallel. The matrix should
in theory be diagonalisable with real eigenvalues. The ε parameter should be set so that
the diagonalisation routine always returns real eigenvalues. A value of ε = 10−3 m/s worked
well for this case.

Table VII. Moving Gauss curve: Maximum error in the gas and liquid velocities depending on the
ε parameter in the resonance fix.

ε ‖vg − 100‖max ‖v� − 100‖max
10−0 8.35 × 10−2 1.34 × 10−1

10−1 8.34 × 10−4 1.30 × 10−3

10−2 8.34 × 10−6 1.30 × 10−5

10−3 8.00 × 10−8 1.30 × 10−7

8.4. Water faucet
The last test is the water-faucet test case. It was introduced by Ransom [35] and is a
standard test case for one-dimensional two-fluid models and numerical methods to solve
them. In particular, it exposes the ability of the scheme to accurately capture the slow-
moving mass waves, which is of interest e.g. in pipe-transport applications. This case has
been studied for example in [2, 4, 9, 22, 24, 28, 36]. It consists in a vertical tube initially
filled with a mixture of uniform gas fraction αg = 0.2. The tube is closed for the gas at
the top. The liquid flows downwards, and is injected from the top at a liquid fraction of
α� = 0.8. At time t = 0, the gravity is turned on. The liquid already present in the tube
accelerates downwards, while a thinning jet forms from the top of the tube. Some gas is
sucked in in counter-current to fill the space freed by the thinning jet. Table VIII presents
the parameters used in this work. δ = 1.2 was used in the regularisation term (10).

Table VIII. Parameter values for the water-faucet test case

Symbol (unit) Value
Gas vol. frac. αg (−) 0.20
Pressure p (MPa) 0.1
Gas velocity vg (m/s) 0.0
Liq. velocity v� (m/s) 10.0
Temperatures Tg, T� (K) 315.9
Gravity g (m/s2) 9.81

The upper boundary condition should impose a zero velocity on the gas phase, while
allowing one characteristic to leave the domain, since the flow is subsonic and entering the
tube. The four other characteristics are entering the domain. Therefore, five variables have
to be set, while one is extrapolated. At the bottom, the liquid flows out at subsonic velocity,
while the gas may flow in or out, at subsonic velocity. Depending on the gas velocity, three
or four variables have to be extrapolated, while three or two respectively have to be set.
Table IX shows the variables chosen (the same as in [2]), if they are extrapolated or set,
and in the latter case, their value.
The entropy is evaluated according to the expression

s = Cp ln

(
γ(p + p∞)

1
γ (p0 + p∞)1− 1

γ

ρ(γ − 1)CpT 0

)
(113)

where T 0 and p0 are some reference parameters at which s = 0J/K. sin
� is once and for all

evaluated with (113) at the initial pressure and temperature of the water jet (and using the
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Table IX. Variables for the boundary conditions for the water faucet case.

Top Bottom
Variable Unit Value Value
Volume fraction αg (−) Set 0.2 Extrapolated –
Pressure p (MPa) Extrapolated – Set 0.1
Momentum mg (kg/(m2 · s)) Set 0 Extrapolated –
Momentum m� (kg/(m2 · s)) Set min

� Extrapolated –
Entropy sg (J/K) Extrapolated – Set or Extr. satm

g
Entropy s� (J/K) Set sin

� Extrapolated –

equation of state to evaluate the density), and remains the same over time. The momentum
min

� also remains constant over time, and is equal to the initial momentum of the water jet
m0,in

� = ρ0,in
� v0,in

� evaluated at the state given in Table VIII. Finally, in the case where the
gas entropy has to be set at the bottom, satm

g is equal to its initial value, evaluated using
(113) and the values in Table VIII.
The results of a mesh sensitivity study are plotted at t = 0.6s in Figure 5. They are

compared to the results from the MUSCL-MUSTA scheme from [2], with the minmod slope
limiter. This shows that the two schemes converge to the same solution, to plotting accuracy.
Finally, we assessed the computational efficiency of the Roe scheme compared to the

MUSTA scheme. We compared the CPU time used to solve the water faucet case on grids
from 50 to 800 cells, with the second order extension. Remark that the flux limiter approach
for the Roe scheme requires a first-order forward Euler time step, while the MUSCL-MUSTA
approach requires a second-order Runge-Kutta time step. The results are presented in
Figure 6. In this case, the Roe and the MUSCL-MUSTA methods perform similarly in
terms of convergence error compared to CPU time. However, the profiling of the code
gives useful information. In the case of the Roe scheme, 60% of the CPU time is used on
diagonalising the Jacobian, while only 3% is used on evaluating the primary variables, which
means solving the equation of state. In the case of the MUSCL-MUSTA method with two
substeps, 30% of the CPU time is used on solving the equation of state. Here, the stiffened
gas equation of state is used, which is a simple one to solve. More accurate equations of
state may take considerably more time to solve, thus impairing the efficiency of the MUSTA
method.

9. CONCLUSION

A partially analytical Roe scheme for the six-equation two-fluid model has been derived and
implemented. For most of the variables, an analytical Roe average is given. The average of
the few remaining variables must generally be found numerically and is dependent on the
equation of state. This makes the scheme flexible with respect to the choice of equation of
state.
The central idea of this work was to include the non-conservative terms in the quasilinear

form, so that the wave structure of the system reflects the effects of all the terms in the
model. However, the numerical solution is dependent on the choice of an integration path
for the non-conservative terms, which can present problems. One advantage of the present
derivation is that the definition of the Roe averages can be made independent from the
integration path. Only the averages of the non-conservative factors will be affected by a
change of family of path.
We have seen that the six-equation two-fluid model with the regularisation used in this

work is prone to resonance when the liquid and gas velocity are equal. The Jacobian matrix
becomes non-diagonalisable. A fix has been devised by taking advantage of the continuity
of the eigenvalues and eigenvectors.
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Figure 5. Convergence of the scheme on the water faucet test case at t = 0.6s with the minmod
wave limiter. CFL=0.5. The reference curves are produced with the MUSCL-MUSTA scheme, with

the minmod slope limiter on a grid of 10,000 cells, CFL=0.5.
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Figure 6. CPU time versus 1-norm of the error on αg of the numerical solution compared to the
reference (Roe scheme, MC limiter, 10000 cells). 50 to 800 cells, Roe and MUSCL-MUSTA with

MC limiter, t=0.6s, CFL=0.5. Fortran 90 on an Intel R© Xeon R© CPU X5570 at 2.93GHz.

Finally, four test cases show that the scheme performs well. Even though some previous
work showed that the formally path-consistent approach can feature a wrong wave structure,
the test cases show that this problem is limited here.

A. ISOLATED WAVES

The common left state for the isolated wave test is given in Table X. The right states are
found from ΔU listed in Table XI through

UR = UL +ΔU . (114)

Table X. Left state for the isolated wave test

Symbol Value
Gas vol. frac. αg (−) 0.2
Pressure p (Pa) 1 × 107

Gas density ρg (kg/m3) 100
Liq. density ρ� (kg/m3) 1000
Gas. velocity vg (m/s) 100
Liq. velocity v� (m/s) 10
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a b s t r a c t

In this note we consider two-fluid models based on the usual formulations for conservation of mass, total
momentum and total energy. We present some potentially useful general relationships between the
interface exchange terms and the evolution of the mechanical variables. In particular, we discuss the pos-
sibility of obtaining in this framework a model that is both thermodynamically reversible and possesses
real eigenvalues. We formally prove that such a model must include terms associated with the virtual
mass force.
We then address a technical issue regarding the modelling of interface transfer terms in the energy

equations. In particular, we demonstrate how the formulation of the non-conservative products in these
equations determine whether the interface exchange terms represent heat or energy transfer.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in the classical compressible model for two-
phase flow assuming mechanical equilibrium between the phases,
and a separate velocity field for each phase (Bendiksen et al., 1991;
Bestion, 1990; Stewart and Wendroff, 1984). With the standard
closure assumptions, this model possesses complex eigenvalues
(Stewart and Wendroff, 1984; Toumi, 1996; Toumi and Kumbaro,
1996). The mathematical and physical implications of this fact have
been extensively discussed during the past decades (Keyfitz et al.,
2003, 2004; Lax, 1957, 1980; Sever, 2005, 2008; Stewart and
Wendroff, 1984).

In particular, this model is generally ill-posed in the sense that
smooth solutions are expected to be absolutely unstable under per-
turbations (Sever, 2005). Obviously, this calls into question the use-
fulness of these equations for modelling and simulation. A common
practice is to introduce regularizing terms to render the eigenvalues
real. These terms typically take the form of interface momentum
exchange terms, and may be classified in two main categories:

� interface pressure corrections (Bestion, 1990; Munkejord and
Papin, 2007; Stuhmiller, 1977), involving spatial derivatives in
the volume fraction;

� virtual mass force terms (Bestion, 1990; Lahey, 1991; Städtke,
2006; Toumi, 1996), involving spatial derivatives in the
velocities.

A very general analysis including both these effects was per-
formed by Jones and Prosperetti (1985). Considering the incom-
pressible limit, the authors here showed that hyperbolicity is a
necessary condition for stability of steady uniform flows, even in
the presence of algebraic momentum source terms.

It is known (Saurel et al., 2003), but not widely discussed in the
literature, that such differential regularizing terms tend to intro-
duce a fundamental problem on the physical level; the model
ceases to satisfy the second law of thermodynamics. In fact, several
issues regarding the modelling of interface transfer terms seem to
be only implicitly discussed in the recent literature. The aim of this
paper is to clarify some of these issues. In this respect, we provide
what seems to us some explicit original calculations, although the
topics we address are highly classical and our conclusions should
not be surprising.

In particular, we aim to shed light on the following two model-
ling issues:

1. The apparent incompatibility between thermodynamic revers-
ibility and well-posedness for our two-fluid models. Assuming
thermal equilibrium, we here provide a general explicit condi-
tion on the interface momentum exchange term that is neces-
sary and sufficient for global entropy to be conserved for
smooth solutions. This condition is rather strict and excludes
a large class of models from being simultaneously well-posed
and reversible.

2. The interpretation of the interface transfer terms in the energy
balance equations. We argue that in the standard formulation,
these terms should be interpreted as heat transfer terms rather
than energy transfer terms, and we make this interpretation
mathematically precise.

0301-9322/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
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Our paper is organized as follows. In Section 2, we describe the
general framework for the two-fluid models we will consider. In
Section 3, we derive a relationship between interphasic heat trans-
fer and the evolution of the pressure and volume fraction. In Sec-
tion 4, we present a similar result for the momentum exchange
term. A main result of our paper is the Eq. (24), which gives a sim-
ple general relationship between heat and momentum transfer in
our two-fluid models.

In Section 5, we apply these results by considering the special
case of thermal equilibrium between the phases. In particular,
we are able to derive the general, and rather restrictive, explicit
condition (36) that must be satisfied by the momentum exchange
term in order for the model to be thermodynamically reversible.
This result allows us to prove that such a model can be well-posed
with real eigenvalues only if this term includes spatial derivatives
in the velocities. The purpose of this analysis is not to advocate the
use of such a model; rather, the main insight gained is that models
in our framework that do not satisfy this condition are unquestion-
ably fundamentally unphysical.

In Section 6, we discuss the interpretation of the interface trans-
fer terms in the standard formulation of the energy equations. In
particular, we provide two mathematically equivalent formula-
tions of the energy equations; in one formulation, the right-hand
side terms will represent heat transfer; in the alternative formula-
tion, these terms will represent internal energy transfer. The rela-
tionship between these two kinds of source terms is made
explicit, and gives us an expression for the amount of heat trans-
ferred that will be converted to mechanical work.

Finally, in Section 7, the results of this paper are summarized.

2. The two-fluid model

We consider here the highly classical two-fluid model pre-
sented for instance by Stewart and Wendroff (1984), based on fun-
damental conservation principles. For simplicity, we will limit our
discussion to the formulation in one space dimension.

Physically, it is commonly recognized that such a formulation
is most sensibly interpreted as an averaging of a local description
of separate flow fields (Ishii, 1975; Stewart and Wendroff, 1984).
In Ishii (1975) the focus is on time averaging, but spatial and
ensemble averaging are alternative viable approaches (Drew and
Passman, 1999; Stewart and Wendroff, 1984). In this framework,
we focus on the model derived from the following basic
assumptions of conservation of masses, momentum and total
energy:

A1: Mass is conserved for each phase:

@

@t
ðqgagÞ þ @

@x
ðqgagvgÞ ¼ 0; ð1Þ

@

@t
ðq‘a‘Þ þ @

@x
ðq‘a‘v ‘Þ ¼ 0: ð2Þ

A2: Total momentum is conserved in the form:

@

@t
ðqgagvg þ q‘a‘v ‘Þ þ @

@x
qgagv2

g þ q‘a‘v2
‘ þ p

� �
¼ 0: ð3Þ

A3: Total energy is conserved in the form:

@

@t
ðEg þ E‘Þ þ @

@x
ððEg þ agpÞvg þ ðE‘ þ a‘pÞv ‘Þ ¼ 0: ð4Þ

Herein, external and dissipative forces have been neglected, and
we have assumed the following notation for the phase k 2 {g,‘}:

qk density
vk velocity
ak volume fraction
Ek energy
p pressure common to both phases

Here the volume fractions satisfy

ag þ a‘ ¼ 1; ð5Þ
and the phasic energies are given by

Ek ¼ qkak ek þ 1
2
v2
k

� �
; ð6Þ

where ek is the specific internal energy.
Within the context of averaging, (1) and (2) can be taken as the

definition of the velocities vk. That these velocities appear in
unmodified form also for the momentum and energy Eqs. (3) and
(4) is here an assumption, although common, that is mainly based
on the desire to avoid excessive complexities in the model (Stewart
and Wendroff, 1984). In this respect, we remark that alternative
formulations of (3) and (4) may, and perhaps should, be considered
(Song and Ishii, 2001; Stewart and Wendroff, 1984).

For the thermodynamic closure, we assume that each phase
may be equipped with a free energy Gk(p, Tk), and that the funda-
mental thermodynamic differential

dek ¼ Tkdsk þ p
q2

k

dqk ð7Þ

is valid. Herein, Tk and sk are the temperatures and specific entro-
pies of the phases. It should be noted that (7) is in itself a rather
strong assumption; given that the entropies, energies and densities
are to be interpreted in an averaged sense, relating them through a
unique equation of state is a simplification motivated mainly by
convenience (Stewart and Wendroff, 1984).

2.1. Well-posedness and reversibility

In addition to these basic conservation principles, we want our
model to satisfy the second law of thermodynamics. In particular,
we here insist that the model should be purely fluid-mechanical,
i.e. thermodynamically reversible for smooth solutions.

In particular, we assume that some model is given that is locally
fully defined, including a complete set of constitutive relations.
Then reversibility should hold whenever this model is applied to
a physical region with no exchange of mass, energy or heat with
the surroundings. Mathematically, we represent such a region as
a closed loop in space (periodic boundary conditions), and we
exclude any terms representing interactions with the environment.

Given these considerations, we impose the following
requirement:

A4: Global entropy is conserved for smooth solutions:

d
dt

I
R
ðqgagsg þ q‘a‘s‘Þdx ¼ 0; ð8Þ

where the integral is taken over any closed region R, i.e. we have

R ¼ ½x1; x2Þ;
with periodic boundary conditions.
We also want our model to be globally linearizable, and the velocity
of information propagation should be finite:
A5: The model can be written in quasilinear form

@U
@t

þ AðUÞ @U
@x

¼ 0; ð9Þ
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where U is the vector of evolved variables and A(U) is a smooth
function.
Finally, the initial value problem should be well posed:
A6: All eigenvalues of A(U) are real for all U in some physically

relevant domain D.

Additional relations are needed to close the model. Although a
multitude of such closures have so far been proposed in the litera-
ture, we are not aware of any full model that satisfies all conditions
A1–A6 in any general sense.

In this paper, we will derive a potentially useful condition that
such a model must satisfy. We first derive some basic mathemati-
cal relationships.

3. Entropy exchange terms

With no loss of generality, we may write entropy evolution
equations for each phase in the form

@

@t
ðqkakskÞ þ @

@x
ðqkakskvkÞ ¼ rk; ð10Þ

where the local entropy modification term rk is so far unknown.
However, we may state the following general result.

Proposition 1. If the mass conservation assumption A1 holds, then in
the context of (10) we have

Tkrk ¼ ak

Ck

@p
@t

þ vk
@p
@x

� �
þ qkc

2
k

Ck

@ak

@t
þ @

@x
ðakvkÞ

� �
; ð11Þ

where

c2k ¼ @p
@qk

� �
sk

ð12Þ

represents the phasic sound velocity and

Ck ¼ 1
qkTk

@p
@sk

� �
qk

ð13Þ

is the Grüneisen coefficient.

Proof. By assumption A1 we obtain

rk ¼ qkak
@sk
@t

þ vk
@sk
@x

� �
ð14Þ

and

ak
@qk

@t
þ vk

@qk

@x

� �
¼ �qk

@ak

@t
þ @

@x
ðakvkÞ

� �
: ð15Þ

The result then follows from the differential

Tkdsk ¼ 1
Ckqk

dp� c2kdqk

� �
: � ð16Þ

3.1. Relation to internal energy

Through the fundamental differential (7), this can be recast in
terms of internal energy evolution as follows:

@

@t
ðqkakekÞ þ @

@x
ðqkakekvkÞ ¼ ak

Ck

@p
@t

þ vk
@p
@x

� �

þ qkc
2
k

Ck
� p

� �
@ak

@t
þ @

@x
ðakvkÞ

� �
;

ð17Þ

where we have used A1:

@

@t
ðqkakekÞ @

@x
ðqkakekvkÞ ¼ qkak

@ek
@t

þ vk
@ek
@x

� �
: ð18Þ

4. Momentum exchange terms

With no loss of generality, the momentum conservation
assumption A2 can be rewritten as

@

@t
ðqgagvgÞ þ @

@x
qgagv2

g

� �
þ ag

@p
@x

þM ¼ 0; ð19Þ
@

@t
ðq‘a‘v‘Þ þ @

@x
q‘a‘v2

‘

� �þ a‘

@p
@x

�M ¼ 0; ð20Þ

where the interface momentum exchange term M is determined
from the closure relations. Using assumption A1, we can then derive
kinetic energy evolution equations:

@

@t
1
2
qgagv2

g

� �
þ @

@x
1
2
qgagv3

g

� �
¼ �vg Mþ ag

@p
@x

� �
; ð21Þ

@

@t
1
2
q‘a‘v2

‘

� �
þ @

@x
1
2
q‘a‘v3

‘

� �
¼ v‘ M� a‘

@p
@x

� �
: ð22Þ

We then obtain the following potentially useful proposition.

Proposition 2. If the assumptionsA1–A3 and the differential (7) hold,
the momentum exchange term M satisfies

ðvg � v ‘ÞM ¼ qgc
2
g

Cg
� q‘c

2
‘

C‘

 !
@ag

@t
þ qgc

2
g

Cg

@

@x
ðagvgÞ þ q‘c

2
‘

C‘

@

@x
ða‘v ‘Þ

þ ag

Cg
þ a‘

C‘

� �
@p
@t

þ agvg

Cg
þ a‘v‘

C‘

� �
@p
@x

: ð23Þ

Proof. Add (21) and (22) to (17) and compare with (4). h

Note the general validity of (23), which at first sight may look
like a definition of M. However, on the contrary, this equation
merely provides us with information about how the interface
momentum term affects the evolution of the pressure and volume
fraction.

In particular, we have the following simple relation:

Tgrg þ T‘r‘ ¼ ðvg � v‘ÞM; ð24Þ
which follows from (11) and (23). From this we immediately see
that if entropy is conserved along the flow in each phase, i.e.

rk � 0; ð25Þ
then our only choice of M that conserves total energy is

M � 0; ð26Þ
which is the standard non-hyperbolic model (Stewart and Wendr-
off, 1984) for which real-valued eigenvalues occur only for vg = v‘.
This indicates a fundamental incompatibility between well-posed-
ness and reversibility for models satisfying the assumptions A1–
A3. We will now investigate this issue further by relaxing the
requirement that rk = 0.

5. Thermal equilibrium

For simplicity, we now limit ourselves to the special case that
the phases are in thermal equilibrium, i.e.

T ¼ Tg ¼ T‘: ð27Þ
This simplification is justified by the fact that any valid general
model must also be valid for the equilibrium states (27). Further-
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more, the equilibrium condition (27) may also be imposed as a clo-
sure relation for the model, as was done for instance by Martínez
Ferrer et al. (2012).

We now introduce the local total entropy variation S:
S ¼ rg þ r‘; ð28Þ
so that the relation (24) simplifies to

TS ¼ ðvg � v‘ÞM: ð29Þ
We may then write the reversibility condition A4 as:

d
dt

I
R
ðqgagsg þ q‘a‘s‘Þdx ¼

I
R

S � @

@x
ðqgagsgvg þ q‘a‘s‘v ‘Þ

� �
dx

¼
I
R
Sdx ¼ 0; ð30Þ

for any distribution U(x) on the closed region R. Hence if S is a func-
tion of U, it becomes an algebraic entropy source term, and (30) can
only be generally satisfied if

SðUÞ � 0: ð31Þ
However, our condition A5 allows S to be a function of the spatial
derivative of U:

S ¼ Sð@xUÞ ¼
X
i

BiðUÞ @Ui

@x
; ð32Þ

and the condition (30) may still be non-trivially satisfied. Now, the
classical gradient theorem states that a line integral over an arbitrary
closed path in a vector field is identically zero if and only if the inte-
grand is a gradient of some potential function. We now recall that
the condition A4 states that reversibility must hold for all smooth
solutions; hence the entropy integral (30) must be zero for any spa-
tial distribution U(x).

We may consequently apply the gradient theorem to the space
of physically admissible states D to which U belongs, i.e. we
consider arbitrary curves in D parametrized by the variable
x 2 [x1, x2) = R, representing the possible initial conditions
U(x). By this, the condition that (30) must hold for any distribution
U(x) implies the existence of a potential function Z(U) such thatI
R
Sdx ¼

I
R
rUZðUÞ � @U

@x
dx ¼ 0: ð33Þ

Hence Sdx must be an exact differential, i.e. we have

Bi ¼ @Z
@Ui

; ð34Þ

and in particular

S ¼ @

@x
ZðUÞ: ð35Þ

In other words, S can be interpreted as an entropy flux. This gives us
a main result of this paper.

Proposition 3. Consider a subdomain D of the admissible thermal
equilibrium states. Consider a two-fluid model satisfying the assump-
tions A1–A3, A5 and the fundamental differential (7) for all U 2 D.
Then, for all U 2 D, the reversibility condition A4 is satisfied if and only
if there exists a function W(U) such that the interface momentum
exchange term can be written as

M ¼ Tðvg � v‘Þ @W
@x

þ 2WT
@

@x
ðvg � v‘Þ ð36Þ

for all U 2 D.

Proof. With no loss of generality, we may write Z as

ZðUÞ ¼ WðUÞðvg � v ‘Þ2; ð37Þ

where W(U) is some function. Now substituting (37) in (29) and
cancelling terms, we obtain (36). h

This result opens for the possibility that some appropriateW(U)
may be found, making the reversible model at least conditionally
hyperbolic. This question will not be pursued in the current paper.

However, we may use (36) as a convenient tool for testing the
thermodynamic consistency of various established models. In par-
ticular, we have the following proposition.

Proposition 4. Any model satisfying the assumptions A1–A5 with
M– 0 must involve terms of the form @xvk in M.

Proof. If this does not hold, it follows from (36) that W(U) would
have to satisfy

vs
@W
@vs

þ 2W ¼ 0; ð38Þ

where

vs ¼ vg � v‘: ð39Þ
Now (38) can be integrated to yield

WðUÞ ¼ Cv�2
s ; ð40Þ

where C is independent of vs. By substituting this result into (37), it
follows that Z(U), and hence S, must be independent of vs. However,
it follows from (29) and the smoothness ofM that S must disappear
when vs = 0. Hence we must have S � 0, giving M � 0. h

We remark that M ¼ 0 corresponds to the standard non-hyper-
bolic formulation of the model, violating the condition A6 for all
vs – 0. Hence Proposition 4 may be restated as follows:

Any model satisfying the assumptions A1–A6 in any general sense
must involve spatial derivatives of the velocities in the momentum ex-
change term. Physically, such velocity derivatives are most natu-
rally interpreted as being associated with the virtual mass force
(Jones and Prosperetti, 1985; Lahey, 1991).

In particular, this result immediately rules out all models based
solely on interface pressure corrections in the framework A1–A3
(Bestion, 1990; Martínez Ferrer et al., 2012; Stuhmiller, 1977).
We remark that hydrostatic pressure corrections, used to simulate
surface waves and regime transitions (De Henau and Raithby,
1995; Holmås et al., 2008), typically operate with separate pres-
sures in each phase and hence do not fit into our framework A2.

We emphasize that the converse of Proposition 4 does not nec-
essarily hold. The standard formulations of the virtual mass force
terms do not in general satisfy (36) – and hence the resulting mod-
el is not thermodynamically reversible.

It should also be noted that the standard formulations of the
virtual mass force (Jones and Prosperetti, 1985; Lahey, 1991) in-
volve not only spatial, but also temporal, derivatives of the veloci-
ties. However, our current framework applies also in this case; the
temporal derivatives can always be equivalently reformulated in
terms of spatial derivatives through a mathematical transforma-
tion. This point will be demonstrated in the next section, where
such a transformation is performed on the energy equations.

6. Energy transfer terms

We now turn our attention to the modelling of interface energy
exchange terms. With no loss of generality, we may write the
assumption A3 in the standard form (Martínez Ferrer et al.,
2012; Munkejord et al., 2009; Paillère et al., 2003; Stewart and
Wendroff, 1984):
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@Eg

@t
þ @

@x
ðvgðEg þ agpÞÞ þ p

@ag

@t
þ Q ¼ 0; ð41Þ

@E‘

@t
þ @

@x
ðv‘ðE‘ þ a‘pÞÞ þ p

@a‘

@t
� Q ¼ 0: ð42Þ

Herein, the interpretation of the interface exchange term Q deserves
some attention. Given that (41) and (42) balances total energy, one
may be tempted to interpret Q as representing the amount of energy
being transferred between the phases. However, the presence of the
term p@ta complicates this picture somewhat. In fact, in the form
(41) and (42), the equations are not evolution equations for the
energies; strictly speaking, they are evolution equations for the dif-
ferential d Jk given by

dJk ¼ dEk þ pdak: ð43Þ

In other words, the source term Q will modify the volume fractions
as well as the energies of each phase. This means, in the context of
(41) and (42), it makes more sense to interpret Q as heat and kinetic
energy transfer terms rather than energy transfer terms. In the fol-
lowing, we will make this notion more precise, and present an alter-
native formulation of the energy balance equations where the
source terms are truly energy transfer terms.

This may be considered an advantage from a purely heuristic
point of view, although the resulting formulation is more involved
than (41) and (42). Nevertheless, this alternative formulation has
previously proven fruitful in devising numerical schemes (Martí-
nez Ferrer et al., 2012; Munkejord et al., 2009).

In this respect, the main purpose of this section is to make the
following point: the modelling of the interface energy exchange terms
is sensitive to the choice of formulation of the non-conservative terms
representing mechanical work exchanged between the phases.

6.1. Internal and kinetic energy

Using assumption A1 and the fundamental differential (7), we
may rewrite the entropy Eq. (10) as follows:

@

@t
ðqkakekÞ þ @

@x
ðqkakekvkÞ þ p

@ak

@t
þ @

@x
ðakvkÞ

� �
¼ Tkrk: ð44Þ

Now adding (21) and (22) to (44) and comparing to (41) and (42),
we obtain

Q ¼ Mvg � Tgrg ¼ Mv ‘ þ T‘r‘: ð45Þ

In other words, Q represents the sum of the interface heat transfer
and kinetic energy transfer terms, as may be expected; the mechan-
ical work the phases perform on each other is encoded in the term
p@tak.

6.2. Energy evolution equations

As was done in (Martínez Ferrer et al., 2012; Munkejord et al.,
2009), we now aim to reformulate (41) and (42) to replace the
p@ta-term with spatial derivatives. We may rewrite (11) as an evo-
lution equation for the volume fraction:

b
@ag

@t
þ qga‘c2g

@

@x
ðagvgÞ � q‘agc2‘

@

@x
ða‘v‘Þ þ aga‘ðvg � v ‘Þ @p

@x
¼ a‘CgTgrg � agC‘T‘r‘; ð46Þ

where

b ¼ qga‘c2g þ q‘agc2‘ : ð47Þ

Substituting (46) into (41) and (42) we obtain

@Eg

@t
þ @

@x
ðEgvgÞ þ ðagvg � gaga‘ðvg � v ‘ÞÞ @p

@x

þ gq‘agc2‘
@

@x
ðagvg þ a‘v ‘Þ ¼ gðagC‘T‘r‘ � a‘CgTgrgÞ � Q ; ð48Þ

@E‘

@t
þ @

@x
ðE‘v‘Þ þ ða‘v‘ þ gaga‘ðvg � v‘ÞÞ @p

@x

þ gqga‘c2g
@

@x
ðagvg þ a‘v ‘Þ ¼ Q � gðagC‘T‘r‘ � a‘CgTgrgÞ; ð49Þ

where

g ¼ p
b
: ð50Þ

6.2.1. Interpretation of source terms
To recapitulate, we may now write the energy equations in the

two equivalent forms:

� Standard formulation:

@Eg

@t
þ @

@x
ðvgðEg þ agpÞÞ þ p

@ag

@t
¼ Hg �Mvg; ð51Þ

@E‘

@t
þ @

@x
ðv ‘ðE‘ þ a‘pÞÞ þ p

@a‘

@t
¼ H‘ þMv‘: ð52Þ

� Formulation with spatial derivatives:

@Eg

@t
þ @

@x
ðEgvgÞ þ ðagvg � gaga‘ðvg � v ‘ÞÞ @p

@x

þ gq‘agc2‘
@

@x
ðagvg þ a‘v‘Þ ¼ Eg �Mvg; ð53Þ

@E‘

@t
þ @

@x
ðE‘v ‘Þ þ ða‘v ‘ þ gaga‘ðvg � v‘ÞÞ @p

@x

þ gqga‘c2g
@

@x
ðagvg þ a‘v‘Þ ¼ E‘ þMv ‘: ð54Þ

Herein:

� Mvk are kinetic energy transfer terms;
� Hk ¼ Tkrk are heat transfer terms;
� Ek are internal energy transfer terms.

We observe that the following relations hold between the heat
and energy transfer terms:

Eg ¼ Hg þ gðagC‘H‘ � a‘CgHgÞ; ð55Þ
E‘ ¼ H‘ � gðagC‘H‘ � a‘CgHgÞ: ð56Þ
In particular, the term

W ¼ gðagC‘H‘ � a‘CgHgÞ ð57Þ
represents the mechanical work the phases perform on each other
as a result of energy being transferred.

7. Summary

We have addressed some technical issues regarding the model-
ling of interface transfer terms in a class of two-fluid models com-
monly studied in the literature. In particular, we have discussed
the compatibility between thermodynamic reversibility and well-
posedness in two-fluid models based on simple formulations for
conservation of masses, energy and momentum. We have derived
an explicit condition on the interface momentum exchange term
for these models to be reversible. In particular, this condition states
that any such well-posed, reversible model must include virtual
mass force terms; more precisely, the momentum exchange term
must include spatial derivatives in the velocities.
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Furthermore, we have showed that in the standard formulation
of the energy balance equations, interface exchange terms play the
role of heat transfer terms. We have discussed an alternative for-
mulation where the interface terms transfer energy. We have also
provided an explicit relationship between the amount of heat
transferred and the mechanical work exchanged between the
phases.
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A TWO-FLUID FOUR-EQUATION MODEL WITH
INSTANTANEOUS THERMODYNAMICAL EQUILIBRIUM

ALEXANDRE MORIN† AND TORE FLÅTTEN‡

Abstract.
We derive a four-equation version of a common two-fluid model for pipe flow, containing one

mixture mass equation and one mixture energy equation. The motivation is to obtain a fluid-
dynamical model where the mixture is in thermodynamical equilibrium at all time. We start from
a five-equation model with instantaneous thermal equilibrium, to which we add phase relaxation
terms. An interfacial velocity appears, for which we give an expression based on the second law of
thermodynamics. We then derive the limit of this model when the relaxation becomes instantaneous.
The time derivatives appearing in this process are subsequently transformed into spatial derivatives
to be able to use numerical methods for conservation laws. The Jacobian matrix of the fluxes can
then be evaluated, and the system be put into quasilinear form. From the Jacobian matrix, we
are able to extract the sound speed intrinsic to the model. By comparison to the sound speed in
other two-phase flow models, we extend some previous results showing that the effect of relaxation
on sound speed is independent of the order in which the variables are relaxed. We also check the
subcharacteristic condition and place the model in a hierarchy of two-phase flow models. Finally, this
model requires a regularisation term to be hyperbolic. We postulate that this term takes the form
of an interfacial pressure difference. With the help of a perturbation method, we find an expression
for the pressure difference that makes the model hyperbolic.

Key words. Two-phase flows, relaxation, two-fluid model, subcharacteristic condition

AMS subject classifications. 76T10,76N15,35L60,80M35

1. Introduction. One-dimensional two-phase flows in pipelines may be mod-
elled using the two-fluid model [20, 23, 28, 31]. The two-fluid model is characterised
by the fact that it has two momentum equations. Therefore, the phase velocities are
independent from each other, as opposed to the drift-flux model [11, 21, 26] where
there is only one momentum equation for the mixture. The six-equation version of the
two-fluid model is used for example in the nuclear industry [4, 33]. In this version, the
phases are in mechanical equilibrium – they are at the same pressure at all time – but
not in chemical and thermal equilibrium. A five-equation version has been chosen for
pipeline flow simulation [3], in which the phases are assumed to be in mechanical and
thermal equilibrium. A seven-equation version, where the phases are allowed to be
totally out of equilibrium – both have their own pressure, temperature and chemical
potential – has also been derived [2, 25]. The aim was to avoid the non-hyperbolicity
[13, 29] of the six-equation model.

Relaxation source terms may be added to the model to bring it towards equilib-
rium at a finite rate. This has been studied for example in [10, 12, 15, 22, 24, 25, 32].
An equilibrium system may also be approached by a relaxation system with very
stiff source terms [1]. For instance, the six-equation model with a stiff temperature
relaxation will behave similarly to the five-equation model with one mixture energy
equation. However, numerical methods for hyperbolic systems do not naturally handle
algebraic source terms. With a splitting approach, the fluxes are advanced one time
step alternately with the source terms. The latter are solved using ordinary differen-
tial equation solvers. However, when the relaxation is instantaneous, it should directly

†Department of Energy and Process Engineering, Norwegian University of Science and Tech-
nology (NTNU), Kolbjørn Hejes vei 1B, NO-7491 Trondheim, Norway. alexandre.morin [a]

sintef.no
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2 A. MORIN AND T. FLÅTTEN

affect the propagation speed of the waves. This time splitting may cause smearing of
the discontinuities in this case. Thus it is preferable to use the equilibrium system.

For the simulation of the two-phase flow of a mixture with phase change, the equa-
tion of state plays an important role. For example, the Span-Wagner equation of state
is accurate for two-phase mixtures of CO2 [27]. However it is an equilibrium equation
of state, which means that the fluid-dynamical model must handle a mixture that is at
equilibrium at all time. Therefore, a four-equation version of the two-fluid model has
to be derived in order to use such equilibrium-based equations of state. In the present
paper, we derive this model from the two-fluid five-equation model presented in [10],
where we replace the individual phase mass-equations by a mixture mass equation
and an instantaneous chemical equilibrium assumption. As mentioned in the pre-
vious paragraph, this will modify the wave structure of the model compared to the
initial five-equation model. In fact, this phenomenon has been studied, and a stability
condition has been derived, called the subcharacteristic condition [6, 10, 12, 16, 22]. It
says that for a relaxation system and its corresponding equilibrium system, the speed
of the waves of corresponding families will be lower in the equilibrium system than in
the relaxation system. In [10], the authors began to establish a hierarchy of two-phase
flow models with respect to the subcharacteristic condition, where they concentrated
on velocity and thermal relaxation. In addition, they showed that the sound speed is
reduced by the same factor regardless of the order in which the relaxation processes
are performed.

The four-equation model thus derived is expected to be non-hyperbolic when the
gas and liquid velocities are different from each other. Therefore, we add to the
derivation a regularising term. We choose to use an interfacial pressure term of the
sort often used with the six-equation two-fluid model [4, 7, 8, 9, 23, 31]. We then
obtain an explicit expression for the pressure difference involved in this term. We do
this with the help of a perturbation method [30, 31], which gives a well known form
for this term [5, 9, 19, 20, 23, 29].

The structure of the paper is as follows. In Section 2, we present the five-equation
model, to which we add relaxation source terms for phase change. These involve
an interfacial momentum velocity, for which we give an expression with the help
of entropy considerations. In Section 3, the four-equation model is derived. The
phase change relaxation source term is expressed by means of derivatives, so that
no algebraic terms remain in the system. Also, the problematic time derivatives are
transformed into spatial derivatives. Then, in Section 4, the system is written in
quasilinear form, which involves finding the Jacobian of the fluxes. In Section 5,
the speed of sound of the model is evaluated, and the subcharacteristic condition
with respect to other two-phase flow models verified. In Section 6, we show how a
perturbation method gives an expression for the interfacial pressure difference that
makes the model hyperbolic. Finally, in Section 7, we discuss the phenomenon of
resonance which is known to occur in the kind of two-fluid models we consider [14,
17, 18]. Section 8 summarises the results of the paper. The main symbols used are
listed in Table 1.1. The other ones are introduced in the text.

2. The five equation model with phase relaxation. The two-fluid five-
equation model studied by Martinez et. al. [10] describes a one-dimensional two-
phase flow where the pressure and the temperature are kept equal in both phases at
all times. This follows from the assumption of instantaneous mechanical and thermal
equilibrium. However, the two phases will in general not be in chemical equilibrium.
Algebraic relaxation terms representing phase change should then act to attract the
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Table 1.1

Main symbols.

Symbol Signification
c Speed of sound
Cp Specific heat capacity at constant pressure
e Internal energy
E Phasic total energy (E = αρ(e+ 1/2v2))
fi Components of the vector F
p Pressure
T Temperature
ui Components of the vector U
v Velocity
wi Components of the vector W
α Volume fraction
Γ First Grüneisen coefficient
ε Perturbation parameter
μ Chemical potential
ρ Density
A Jacobian
B Coefficient matrix in the non-conservative terms
F Vector of the fluxes
U Vector of the conserved variables
W Vector of the non-conservative variables
g Gas phase (Subscript)
� Liquid phase (Subscript)

phases towards equilibrium. The model with phase relaxation is

∂αgρg
∂t

+
∂αgρgvg

∂x
= K(μ� − μg), (2.1)

∂α�ρ�
∂t

+
∂α�ρ�v�

∂x
= K(μg − μ�), (2.2)

∂αgρgvg
∂t

+
∂αgρgv

2
g

∂x
+ αg

∂p

∂x
= viK(μ� − μg), (2.3)

∂α�ρ�v�
∂t

+
∂α�ρ�v

2
�

∂x
+ α�

∂p

∂x
= viK(μg − μ�), (2.4)

∂(Eg + E�)

∂t
+

∂

∂x
((Eg + αgp)vg + (E� + α�p)v�) = 0, (2.5)

where

E = αρ

(
e+

1

2
v2
)
, (2.6)

K is a positive relaxation constant, μ is the chemical potential, and vi is some interface
velocity. Assuming that the phases are composed of only one component, we may
express the chemical potential as

μ = e+
p

ρ
− Ts. (2.7)
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2.1. Interfacial momentum velocity. Through entropy considerations, we are
able to give an expression for the interface velocity vi. We will derive the mixture
entropy evolution equation and show that the second law of thermodynamics naturally
suggests the expression

vi =
1

2
(vg + v�). (2.8)

We first derive the kinetic energy evolution equations, by multiplying the mo-
mentum equations (2.3) and (2.4) by vg and v� respectively. For the gas phase, after
expansion of the derivatives, we obtain

v2g
∂αgρg
∂t

+αgρgvg
∂vg
∂t

+v2g
∂αgρgvg

∂x
+αgρgv

2
g

∂vg
∂x

+αgvg
∂p

∂x
= vgviK(μ�−μg). (2.9)

The same applies to the liquid phase. After the use of the mass equation and reor-
ganisation, the equations read

∂

∂t

(
1

2
αgρgv

2
g

)
+

∂

∂x

(
1

2
αgρgv

3
g

)
+ αgvg

∂p

∂x
= vg

(
vi −

1

2
vg

)
K(μ� − μg), (2.10)

∂

∂t

(
1

2
α�ρ�v

2
�

)
+

∂

∂x

(
1

2
α�ρ�v

3
�

)
+ α�v�

∂p

∂x
= v�

(
vi −

1

2
v�

)
K(μg − μ�). (2.11)

Using the latter equations, we can now cancel the kinetic energy contribution in
the mixture total energy equation (2.5), which gives

∂

∂t
(αgρgeg + α�ρ�e�) +

∂

∂x
(αgρgegvg + α�ρ�e�v�)

+ p
∂αgvg
∂x

+ p
∂α�v�
∂x

= (vg − v�)

(
vi −

1

2
(vg + v�)

)
K(μg − μ�). (2.12)

By the mass equation, we obtain an evolution equation for the material derivatives of
the phasic internal energy

αgρg
Dgeg
Dt

+ α�ρ�
D�e�
Dt

+ p
∂αgvg
∂x

+ p
∂α�v�
∂x

=

(
(vg − v�)

(
vi −

1

2
(vg + v�)

)
+ eg − e�

)
K(μg − μ�), (2.13)

where we have introduced the phase specific material derivative Dk

Dt = ∂
∂t + vk

∂
∂x .

Using the fundamental thermodynamic relation

de =
p

ρ2
dρ+ T ds, (2.14)

we can transform the previous equation into an entropy equation. First, (2.14) is ex-
pressed in terms of material derivatives and substituted in the internal energy equation
(2.13)

αgρg

(
T
Dgsg
Dt

+
p

ρ2g

Dgρg
Dt

)
+ α�ρ�

(
T
D�s�
Dt

+
p

ρ2�

D�ρ�
Dt

)
+ p

∂αgvg
∂x

+ p
∂α�v�
∂x

=

(
(vg − v�)

(
vi −

1

2
(vg + v�)

)
+ eg − e�

)
K(μg − μ�). (2.15)
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By the mass equations (2.1)–(2.2), it can be simplified to

αgρgT
Dgsg
∂t

+ α�ρ�T
D�s�
∂t

=

(
(vg − v�)

(
vi −

1

2
(vg + v�)

)
+ eg +

p

ρg
− e� −

p

ρ�

)
K(μg − μ�), (2.16)

and using again the mass equations, we obtain the evolution equation for the mixture
entropy

T

(
∂αgρgsg

∂t
+

∂α�ρ�s�
∂t

+
∂αgρgsgvg

∂x
+

∂α�ρ�s�v�
∂x

)
=

(
(vg − v�)

(
vi −

1

2
(vg + v�)

)
+ μg − μ�

)
K(μg − μ�) (2.17)

since the chemical potential can be expressed as in (2.7).
Now, the second law of thermodynamics imposes that the right-hand side of (2.17)

should be greater than zero(
(vg − v�)

(
vi −

1

2
(vg + v�)

)
+ μg − μ�

)
K(μg − μ�) ≥ 0. (2.18)

We have that

K(μg − μ�)
2 ≥ 0, (2.19)

so that, if

(vg − v�)

(
vi −

1

2
(vg + v�)

)
K(μg − μ�) ≥ 0, (2.20)

the condition is always verified. It is natural to assume that the interfacial velocity
should be independent of the chemical potentials. In this case, the condition can only
be verified for

vi =
1

2
(vg + v�). (2.21)

This is the same expression as proposed in [28], though it was not physically motivated.

3. The four-equation model. We wish to derive a four-equation model from
the above five-equation model, where we assume the phase change to be instantaneous.
The two phases will then at all times be in equilibrium. This is achieved by letting
K → ∞ in the model (2.1)–(2.5). Since the repartition of the mass in the phases now
is entirely governed by thermodynamics, we only need one mixture mass evolution
equation, instead of one for each phase as in (2.1)–(2.2). We therefore sum (2.1) and
(2.2) to give the mixture mass evolution equation of the four-equation model

∂(αgρg + α�ρ�)

∂t
+

∂(αgρgvg + α�ρ�v�)

∂x
= 0, (3.1)

and specify μg = μ�. The remaining three other evolution equations of the four-
equation model are the same as in the five-equation model (2.3)–(2.5). However, since
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K → ∞ and μg = μ�, K(μg − μ�) is an undefined limit. It needs to be substituted
using the phase mass equations (2.1) and (2.2). This gives the model

∂(αgρg + α�ρ�)

∂t
+

∂(αgρgvg + α�ρ�v�)

∂x
= 0, (3.2)

∂αgρgvg
∂t

+
∂αgρgv

2
g

∂x
+ αg

∂p

∂x
=

vg + v�
2

(
∂αgρg
∂t

+
∂αgρgvg

∂x

)
, (3.3)

∂α�ρ�v�
∂t

+
∂α�ρ�v

2
�

∂x
+ α�

∂p

∂x
=

vg + v�
2

(
∂α�ρ�
∂t

+
∂α�ρ�v�

∂x

)
, (3.4)

∂(Eg + E�)

∂t
+

∂

∂x
((Eg + αgp)vg + (E� + α�p)v�) = 0. (3.5)

Further, the internal energy equation becomes

∂

∂t
(αgρgeg + α�ρ�e�) +

∂

∂x
(αgρgegvg + α�ρ�e�v�) + p

∂αgvg
∂x

+ p
∂α�v�
∂x

= 0. (3.6)

In the entropy equation (2.17), since K(μg−μ�) is finite, we have that K(μg−μ�)
2 → 0.

The entropy equation becomes

∂αgρgsg
∂t

+
∂α�ρ�s�

∂t
+

∂αgρgsgvg
∂x

+
∂α�ρ�s�v�

∂x
= 0. (3.7)

Now, to be able to have the model in quasilinear form, we first need to express
the time derivatives ∂tαgρg and ∂tα�ρ� in terms of spatial derivatives.

3.1. Some differentials. Some useful differentials can be derived from the as-
sumptions of equilibrium. From the expression of the thermodynamic potential (2.7)
and the fundamental thermodynamic relation (2.14), we obtain

dμ =
1

ρ
dp− s dT. (3.8)

Since μg = μ�, we can write(
1

ρg
− 1

ρ�

)
dp = (sg − s�) dT. (3.9)

Remark that, with the Clapeyron equation, we can write

sg − s� =
L

T
, (3.10)

where

L = eg +
p

ρg
− e� −

p

ρ�
(3.11)

is the latent heat. Thus the differential becomes(
1

ρg
− 1

ρ�

)
dp =

L

T
dT. (3.12)

Then, we obtain an entropy differential from [12] for the gas phase

dsg = −ΓgCp,g

ρgc2g
dp+

Cp,g

T
dT, (3.13)
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which with the help of (3.12) becomes

dsg = −Cp,g

(
Γg

ρgc2g
+

ρg − ρ�
ρgρ�L

)
dp. (3.14)

We also obtain an internal energy differential from [11] for the gas phase

deg =

(
∂eg
∂T

)
p

dT +

(
∂eg
∂p

)
T

dp

= Cp,g

(
1− Γgp

ρgc2g

)
dT +

(
p

ρ2gc
2
g

− ΓgT

ρgc2g
Cp,g

(
1− Γgp

ρgc2g

))
dp,

(3.15)

which can be written through (3.12) as

deg =
1

ρgc2g

(
p

ρg
− TCp,g(ρgc

2
g − Γgp)

(
ρg − ρ�
ρgρ�L

+
Γg

ρgc2g

))
dp. (3.16)

We obtain the counterpart for the liquid phase of these differentials by symmetry of
the phases.

To simplify the expressions, we rewrite the two last expressions using shorthands
for variable groups which will repetitively appear in the present article. We first define

χg =
Γg

ρgc2g
+

ρg − ρ�
ρgρ�L

, (3.17)

χ� =
Γ�

ρ�c2�
+

ρg − ρ�
ρgρ�L

, (3.18)

and then

Ψg = 1 + ρgTCp,gΓgχg, (3.19)

Ψ� = 1 + ρ�TCp,�Γ�χ�. (3.20)

This gives

dsg = −Cp,gχg dp. (3.21)

and

deg =

(
p

ρ2gc
2
g

Ψg − TCp,gχg

)
dp. (3.22)

where we recognise an expression similar to the fundamental thermodynamic relation
(2.14)

deg =
p

ρ2gc
2
g

Ψg dp+ T dsg. (3.23)

3.2. Treatment of the time derivatives. From the differentials (3.21) and
(3.22) as well as the mixture mass equation (3.2), internal energy equation (3.6) and
entropy equation (3.7), we are able to find three relations between ∂tp, ∂tαgρg and
∂tα�ρ� and spatial derivatives. Therefore we can find an expression for each of the
time derivatives.
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The first relation is the mass equation (3.2)

∂(αgρg + α�ρ�)

∂t
+

∂(αgρgvg + α�ρ�v�)

∂x
= 0. (3.24)

Then, the derivatives are expanded in the entropy equation (3.7). The derivatives
∂tsk and ∂xsk are subsequently substituted using the entropy differential (3.21) to
obtain a second relation

− (αgρgCp,gχg + α�ρ�Cp,�χ�)
∂p

∂t
− (αgρgCp,gχgvg + α�ρ�Cp,�χ�v�)

∂p

∂x

+ sg
∂αgρg
∂t

+ s�
∂α�ρ�
∂t

+ sg
∂αgρgvg

∂x
+ s�

∂α�ρ�v�
∂x

= 0. (3.25)

Finally, the same treatment is applied to the internal energy equation (3.6) with
the differential (3.22), which gives a third relation

(
αgρg

(
p

ρ2gc
2
g

Ψg − TCp,gχg

)
+ α�ρ�

(
p

ρ2�c
2
�

Ψ� − TCp,�χ�

))
∂p

∂t

+

(
αgρg

(
p

ρ2gc
2
g

Ψg − TCp,gχg

)
vg + α�ρ�

(
p

ρ2�c
2
�

Ψ� − TCp,�χ�

)
v�

)
∂p

∂x

+ eg
∂αgρg
∂t

+ e�
∂α�ρ�
∂t

+ eg
∂αgρgvg

∂x
+ e�

∂α�ρ�v�
∂x

+ p
∂αgvg
∂x

+ p
∂α�v�
∂x

= 0. (3.26)

Solving these three relations, we obtain an expression which takes the form of
the gas-phase mass equation on the left hand side, which can be substituted in the
momentum equation for the gas phase (3.3)

∂αgρg
∂t

+
∂αgρgvg

∂x
= −P ∂p

∂x
− V
(
∂αgvg
∂x

+
∂α�v�
∂x

)
, (3.27)

where

V =
T (αgρgCp,gχg + α�ρ�Cp,�χ�)

L
(

αg

ρgc2g
Ψg +

α�

ρ�c2�
Ψ�

)
+ T (αgρgCp,gχg + α�ρ�Cp,�χ�)

ρg−ρ�

ρgρ�

, (3.28)

P =
αgα�T (vg − v�)

(
ρ�Cp,�χ�

Ψg

ρgc2g
− ρgCp,gχg

Ψ�

ρ�c2�

)
L
(

αg

ρgc2g
Ψg +

α�

ρ�c2�
Ψ�

)
+ T (αgρgCp,gχg + α�ρ�Cp,�χ�)

ρg−ρ�

ρgρ�

. (3.29)

For the liquid phase, we remark that the mass equation gives

∂α�ρ�
∂t

+
∂α�ρ�v�

∂x
= −∂αgρg

∂t
− ∂αgρgvg

∂x
, (3.30)

so that we have

∂α�ρ�
∂t

+
∂α�ρ�v�

∂x
= P ∂p

∂x
+ V
(
∂αgvg
∂x

+
∂α�v�
∂x

)
. (3.31)
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3.3. Regularising term. As with the six- and five-equation two-fluid models,
we expect the present four-equation model not to be hyperbolic when the gas and
liquid velocities are different from each other [13, 29]. The eigenvalues associated
with the volume-fraction waves are expected to be complex. We choose to include
a regularising term similar to the interfacial-pressure regularising term for the six-
equation two-fluid model [4, 7, 8, 9, 23, 31]. It consists in applying a pressure difference
Δp between the two phases. The momentum equations are transformed into

∂αgρgvg
∂t

+
∂αgρgv

2
g

∂x
+ αg

∂p

∂x
+Δp

∂αg

∂x
=

vg + v�
2

(
∂αgρg
∂t

+
∂αgρgvg

∂x

)
, (3.32)

and

∂α�ρ�v�
∂t

+
∂α�ρ�v

2
�

∂x
+ α�

∂p

∂x
+Δp

∂α�

∂x
=

vg + v�
2

(
∂α�ρ�
∂t

+
∂α�ρ�v�

∂x

)
, (3.33)

while the mass and energy equations are not modified.

3.4. Expression of the model. As a result of the present section, the four-
equation model (3.2)–(3.5) can be written, using (3.27), (3.31), (3.32) and (3.33), in
the following form

∂(αgρg + α�ρ�)

∂t
+

∂(αgρgvg + α�ρ�v�)

∂x
= 0, (3.34)

∂αgρgvg
∂t

+
∂αgρgv

2
g

∂x
+

(
αg +

vg + v�
2

P
)

∂p

∂x

+
vg + v�

2
V ∂(αgvg + α�v�)

∂x
+Δp

∂αg

∂x
= 0,

(3.35)

∂α�ρ�v�
∂t

+
∂α�ρ�v

2
�

∂x
+

(
α� −

vg + v�
2

P
)

∂p

∂x

−vg + v�
2

V ∂(αgvg + α�v�)

∂x
+Δp

∂α�

∂x
= 0,

(3.36)

∂(Eg + E�)

∂t
+

∂

∂x
((Eg + αgp)vg + (E� + α�p)v�) = 0. (3.37)

4. Quasilinear form. We wish to write the model in quasilinear form

∂U

∂t
+A(U)

∂U

∂x
= 0, (4.1)

where the vector of variables U is defined as

U =

⎛⎜⎜⎝
αgρg + α�ρ�

αgρgvg
α�ρ�v�
Eg + E�

⎞⎟⎟⎠ . (4.2)

The matrix A(U) is the Jacobian of the flux. The flux is split into a conservative and
a non-conservative part, such that the system can be written as

∂U

∂t
+

∂F c(U)

∂x
+B(U)

∂W (U)

∂x
= 0, (4.3)
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where the conservative flux is

F c(U) =

⎛⎜⎜⎝
αgρgvg + α�ρ�v�

αgρgv
2
g

α�ρ�v
2
�

(Eg + αgp)vg + (E� + α�p)v�

⎞⎟⎟⎠ , (4.4)

while the non-conservative contributions are

B(U) =

⎛⎜⎜⎝
0 0 0

αg +
vg+v�

2 P vg+v�
2 V Δp

α� − vg+v�
2 P − vg+v�

2 V −Δp
0 0 0

⎞⎟⎟⎠ and W =

⎛⎝ p
αgvg + α�v�

αg

⎞⎠ . (4.5)

4.1. Some differentials. In order to write the Jacobian of the fluxes, we need to
express the differentials of some variables in terms of the differential of the components
of the variable vector U . We will find them with the help of the fundamental relation
of thermodynamics (2.14) as well as the differentials of the components of the vector
U . First, we will express all the differentials in terms of the differential of the gas
density. Then, the other differentials will follow.

We recall from the previous section the differential (3.23)

deg =
p

ρ2gc
2
g

Ψg dp+ T dsg. (4.6)

By identification with the fundamental thermodynamic relation (2.14), we can deduce

Ψg dp = c2g dρg, (4.7)

and using the relation between pressure and temperature differentials (3.12), we obtain

−Ψg
ρgρ�L

T (ρg − ρ�)
dT = c2g dρg. (4.8)

Now, we write the differential of the thermodynamic potentials for both phases
in terms of their respective density differentials, using (4.7) and (4.8)

dμg =
1

ρg
dp− sg dT =

1

ρg

c2g
Ψg

dρg + sg
c2g
Ψg

T (ρg − ρ�)

ρgρ�L
dρg (4.9)

dμ� =
1

ρ�
dp− s� dT =

1

ρ�

c2�
Ψ�

dρ� + s�
c2�
Ψ�

T (ρg − ρ�)

ρgρ�L
dρ� (4.10)

and equate them, using the assumption of chemical equilibrium. Implicitly, we also
use the mechanical and thermal equilibrium assumptions, since we have expressed
the pressure and temperature differentials in terms of the gas as well as of the liquid
phase variables. This gives a relation between the density differentials:

c2g
Ψg

dρg =
c2�
Ψ�

dρ�. (4.11)

Next, we need a relation for the energy differentials. For the gas phase, we find
it using the differential of p(ρg, eg)

dp =

(
c2g − Γg

p

ρg

)
dρg + Γgρg deg, (4.12)
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where dp is replaced using (3.22). After simplification, we obtain

Ψg(
p

ρ2
gc

2
g
Ψg − TCp,gχg

) deg = c2g dρg. (4.13)

For the liquid phase, we first use the phase symmetry to obtain

Ψ�(
p

ρ2
�c

2
�
Ψ� − TCp,�χ�

) de� = c2� dρ�, (4.14)

and then replace the liquid density differential using (4.11)

1(
p

ρ2
�c

2
�
Ψ� − TCp,�χ�

) de� = c2g
Ψg

dρg. (4.15)

Further, we seek an expression for the differential of the volume fraction. From
the differential of the first component of the vector U , we have

du1 = αg dρg + α� dρ� + (ρg − ρ�) dαg, (4.16)

where ρ� is eliminated using the differential (4.11)

(ρg − ρ�) dαg = du1 −
(
αg + α�

c2gΨ�

c2�Ψg

)
dρg. (4.17)

Finally, we would like to find an expression for the velocity differentials. For the
gas phase, we start from the differential of the second component of the vector U

du2 = d(αgρgvg) = αgρg dvg + αgvg dρg + ρgvg dαg, (4.18)

where dαg is replaced using (4.17) to obtain

αgρg dvg = − ρgvg
ρg − ρ�

du1 + du2 +
vg

ρg − ρ�

(
αgρ� + α�ρg

c2gΨ�

c2�Ψg

)
dρg. (4.19)

By phase symmetry, we deduce that

α�ρ� dv� =
ρ�v�

ρg − ρ�
du1 + du3 −

v�
ρg − ρ�

(
α�ρg + αgρ�

c2�Ψg

c2gΨ�

)
dρ�. (4.20)

In order to express it in terms of the differential for the gas density, we use (4.11) to
obtain

α�ρ� dv� =
ρ�v�

ρg − ρ�
du1 + du3 −

v�
ρg − ρ�

(
αgρ� + α�ρg

c2gΨ�

c2�Ψg

)
dρg. (4.21)

Now, using the differential of the mixture internal energy, we are able to deduce
a differential for the gas density dρg. We have that

d(αgρgeg)+d(α�ρ�e�) = du4−
vg
2

du2−
v�
2
du3−

1

2
αgρgvg dvg−

1

2
α�ρ�v� dv�. (4.22)
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After having replaced all the differentials using the expressions (4.11), (4.13), (4.15),
(4.17), (4.19) and (4.21) previously derived, we obtain the density differential

dρg =
1

Φ

Ψg

c2g

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
(4.23)

where we have used the following shorthands to simplify the expressions

Φ = αg
p

ρgc2g
Ψg + α�

p

ρ�c2�
Ψ� − (αgρgTCp,gχg + α�ρ�TCp,�χ�)

+
1

ρg − ρ�

(
−eg +

1

2
v2g + e� −

1

2
v2�

)(
αgρ�

Ψg

c2g
+ α�ρg

Ψ�

c2�

)
(4.24)

and

E = −ρg

(
eg −

1

2
v2g

)
+ ρ�

(
e� −

1

2
v2�

)
. (4.25)

All the other differentials now follow. The differential of the volume fraction
follows from (4.17) in which dρg is replaced using (4.23)

dαg =
1

ρg − ρ�
du1

− 1

ρg − ρ�

1

Φ

(
αg

Ψg

c2g
+ α�

Ψ�

c2�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.26)

The differential of the pressure follows from (4.7)

dp =
1

Φ

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.27)

The differential of the liquid density follows from (4.11)

dρ� =
1

Φ

Ψ�

c2�

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.28)

The differentials of the internal energies follow from (4.13) and (4.15)

deg =
1

Φ

(
p

ρ2gc
2
g

Ψg − TCp,gχg

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
, (4.29)

de� =
1

Φ

(
p

ρ2�c
2
�

Ψ� − TCp,�χ�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.30)

The differentials of the velocities follow from (4.19) and (4.21)

αgρg dvg = − ρgvg
ρg − ρ�

du1 + du2+
1

Φ

vg
ρg − ρ�

·
(
αgρ�

Ψg

c2g
+ α�ρg

Ψ�

c2�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
,

(4.31)

α�ρ� dv� =
ρ�v�

ρg − ρ�
du1 + du3−

1

Φ

v�
ρg − ρ�

·
(
αgρ�

Ψg

c2g
+ α�ρg

Ψ�

c2�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
.

(4.32)
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4.2. Jacobian of the fluxes. We are now able to derive the Jacobian of the
conservative fluxes F c(U) (4.4) and of the vectorW (U) in the non-conservative fluxes
(4.5). To do so, we express the differentials of the components of the vectors F c(U)
and W (U) in terms of the differentials of the components of U . First, we simply
have

df1 = d(αgρgvg + α�ρ�v�) = du2 + du3. (4.33)

Then for the second component

df2 = d(αgρgv
2
g) = vg d(αgρgvg) + αgρgvg dvg = vg du2 + αgρgvg dvg, (4.34)

where dvg is substituted using (4.31)

df2 = −
ρgv

2
g

ρg − ρ�
du1 + 2vg du2 +

1

Φ

v2g
ρg − ρ�

·
(
αgρ�

Ψg

c2g
+ α�ρg

Ψ�

c2�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.35)

Similarly, for the third component

df3 = v� du3 + α�ρ�v� dv�, (4.36)

where dv� is substituted using (4.32)

df3 =
ρ�v

2
�

ρg − ρ�
du1 + 2v� du3 −

1

Φ

v2�
ρg − ρ�

·
(
αgρ�

Ψg

c2g
+ α�ρg

Ψ�

c2�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.37)

Finally, the fourth component can be written as

df4 =
1

2
v2g du2 +

1

2
v2� du3 + (ρgegvg + vgp− ρ�e�v� − v�p) dαg

+ (αgvg + α�v�) dp+ αgegvg dρg + α�e�v� dρ� + αgρgvg deg + α�ρ�v� de�

+
(
αgρg

(
eg + v2g

)
+ αgp

)
dvg +

(
α�ρ�
(
e� + v2�

)
+ α�p

)
dv�, (4.38)

which after replacement of the differentials and simplification becomes

df4 =
−ρgv

3
g + ρ�v

3
�

ρg − ρ�
du1 +

(
eg +

3

2
v2g +

p

ρg

)
du2 +

(
e� +

3

2
v2� +

p

ρ�

)
du3

+
1

Φ

[
v3g − v3�
ρg − ρ�

(
αgρ�

Ψg

c2g
+ α�ρg

Ψ�

c2�

)
+αgvg+α�v�−T (αgρgvgCp,gχg+α�ρ�v�Cp,�χ�)

]

·
( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.39)

Similarly, for the non-conservative part of the fluxes, we need to derive a Jacobian
matrix for the vector W . First, we can remark that

dw1 = dp, (4.40)
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which gives after substitution of the differentials

dw1 =
1

Φ

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.41)

For the second component, we have that

dw2 = d(αgvg + α�v�) =
1

ρg
(du2 − αgvg dρg) +

1

ρ�
(du3 − α�v� dρ�), (4.42)

which gives

dw2 =
1

ρg
du2 +

1

ρ�
du3 −

1

Φ

(
αgvg

Ψg

ρgc2g
+ α�v�

Ψ�

ρ�c2�

)
·
( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.43)

Finally, the third component is the volume fraction differential (4.26)

dw3 = dαg, (4.44)

thus

dw3 =
1

ρg − ρ�
du1 −

1

ρg − ρ�

1

Φ

(
αg

Ψg

c2g
+ α�

Ψ�

c2�

)
·
( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.45)

4.3. The matrices in the quasilinear form. We can now write the matrix
A(U) appearing in the quasilinear form (4.1). According to the flux-splitting strategy,
the matrix is split in a conservative part and a non-conservative part. With the help
of (4.33), (4.35), (4.37) and (4.39), the conservative part is written as

Ac(U) =
∂F c(U)

∂U

=

⎛⎜⎜⎜⎝
0 1 1 0

− ρgv
2
g

ρg−ρ�
+

v2
gE

ρg−ρ�
Σρ 2vg − v3gΣρ −v2gv�Σρ v2gΣρ

ρ�v
2
�

ρg−ρ�
− v2

�E
ρg−ρ�

Σρ vgv
2
�Σρ 2v� + v3�Σρ −v2�Σρ

a41 a42 a43 (v3g − v3� )Σρ +Ω

⎞⎟⎟⎟⎠ (4.46)

where

a41 =
−ρgv

3
g + ρ�v

3
�

ρg − ρ�
+
(
(v3g − v3� )Σρ +Ω

) E
ρg − ρ�

, (4.47)

a42 =

(
eg +

3

2
v2g +

p

ρg

)
−
(
(v3g − v3� )Σρ +Ω

)
vg, (4.48)

a43 =

(
e� +

3

2
v2� +

p

ρ�

)
−
(
(v3g − v3� )Σρ +Ω

)
v�. (4.49)

We have also introduced the shorthands

Σρ =
1

Φ

1

(ρg − ρ�)

(
αgρ�

Ψg

c2g
+ α�ρg

Ψ�

c2�

)
(4.50)
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and

Ω =
1

Φ
(αgvg + α�v� − αgρgvgTCp,gχg − α�ρ�v�TCp,�χ�) . (4.51)

For the non-conservative part, we can express the Jacobian of the vector W (U) using
(4.41), (4.43) and (4.45)

M(U) =
∂W (U)

∂U
=

⎛⎜⎝
1
Φ

E
ρg−ρ�

− vg

Φ − v�
Φ

1
Φ

− E
ρg−ρ�

Σv
1
ρg

+ vgΣv
1
ρ�

+ v�Σv −Σv
1

ρg−ρ�
− E

ρg−ρ�
Σ vgΣ v�Σ −Σ

⎞⎟⎠ (4.52)

where

Σ =
1

Φ

1

ρg − ρ�

(
αg

Ψg

c2g
+ α�

Ψ�

c2�

)
, (4.53)

Σv =
1

Φ

(
αgvg

Ψg

ρgc2g
+ α�v�

Ψ�

ρ�c2�

)
. (4.54)

The Jacobian of the non-conservative fluxes then follows from

Ap(U) = B(U) ·M(U). (4.55)

The Jacobian of the whole system is then

A(U) = Ac(U) +Ap(U). (4.56)

5. Subcharacteristic condition. The subcharacteristic condition is a stability
condition which states that the stiff limit of a relaxation model – called the equilibrium
model – can only be stable if the wave speeds of the equilibrium system do not exceed
the speeds of the corresponding waves of its relaxation system [6, 12, 16, 22]. We
expect the two-fluid models mentioned in the present paper to respect this condition
since the underlying physical models describe a stable reality. Figure 5.1 presents
the model hierarchy, where TF and DF, respectively, denote the two-fluid and the
drift-flux models, and the index, the number of conservation equations in the model.
Each arrow designates the relaxation performed from one model to the next. The
subcharacteristic condition has been proved for some of the relaxation processes in
[10] and [12]. In the present section, we prove the subcharacteristic condition for the
remaining relaxation processes TF5 → TF4 and TF4 → DF3.

TF7

p
TF6

T

v

TF5

μ

v

TF4

v

DF5

T
DF4

μ
DF3

Fig. 5.1. Hierarchy of the two-phase flow models. TF: two-phase model. DF: drift-flux model.
Index: Number of conservation equations.
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5.1. Speed of sound. The eigenvalues of the Jacobian of the fluxes A(U) are
the propagation velocities of the quantities defined by the eigenvectors of A(U), also
called waves. In the present model, these waves are the volume-fraction waves and
the pressure waves. When vg = 0 and v� = 0, the matrix A(U) becomes

A(U(vg = 0, v� = 0))

=

⎛⎜⎜⎜⎜⎝
0 1 1 0

αg(ρgeg−ρ�e�)c
2
TF4

(α�ρg+αgρ�)T (sg−s�)
0 0 − αg(ρg−ρ�)c

2
TF4

(α�ρg+αgρ�)T (sg−s�)
α�(ρgeg−ρ�e�)c

2
TF4

(α�ρg+αgρ�)T (sg−s�)
0 0 − α�(ρg−ρ�)c

2
TF4

(α�ρg+αgρ�)T (sg−s�)

0 eg +
p
ρg

e� +
p
ρ�

0

⎞⎟⎟⎟⎟⎠ , (5.1)

where

cTF4 =

√√√√ α�ρg + αgρ�

ρgρ�

(
αg

ρgc2g
Ψg +

α�

ρ�c2�
Ψ� + T (αgρgCp,gχg + α�ρ�Cp,�χ�)

ρg−ρ�

ρgρ�L

) . (5.2)

Its eigenvalues are then 0, 0, cTF4 and −cTF4. The waves with zero velocity are the
volume-fraction waves, while the two other are the pressure waves. We deduce that
cTF4 is the speed of sound of the model. This speed of sound is dependent on the ther-
modynamical assumptions, here that the phases are at all times at equilibrium. The
expression (5.2) uses the variable blocks that are involved in the Jacobian matrices.
We can also reorganise it to a more compact form

cTF4 =

√√√√ α�ρg + αgρ�

ρgρ�

(
αg

ρgc2g
+ α�

ρ�c2�
+ T (αgρgCp,gχ2

g + α�ρ�Cp,�χ2
�)
) . (5.3)

Note that the speed of sound can be used to simplify (3.28) and (3.29)

V =
ρgρ�

α�ρg + αgρ�

T

L
(αgρgCp,gχg + α�ρ�Cp,�χ�)c

2
TF4, (5.4)

P =
αgα�ρgρ�(vg − v�)

α�ρg + αgρ�

T

L

(
ρ�Cp,�χ�

Ψg

ρgc2g
− ρgCp,gχg

Ψ�

ρ�c2�

)
c2TF4. (5.5)

5.2. Eigenvalues for the equal velocity limit. The eigenstructure for the
general case is not accessible. However, when vg = v�, we are able to find the eigen-
values of the system. For this, we write the characteristic polynomial of the matrix
A(U) where the velocities have been substituted with vg = vm and v� = vm

ΠA,vg=v�
= Det(A(Uvg=v�)− λ · I4), (5.6)

where I4 is the identity matrix of rank 4. This polynomial can be simplified to

ΠA,vg=v� = (λ− vm)
2 · (λ− (vm + cTF4)) · (λ− (vm − cTF4)). (5.7)

Thus, the resulting eigenvalues are

ΛTF4 =

⎛⎜⎜⎝
vm − cTF4

vm
vm

vm + cTF4

⎞⎟⎟⎠ . (5.8)
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5.3. Speed of sound in other models. The speed of sound of the five-equation
model is given in [10]. In order to express it in terms of the parameters used in the
present article, we first derive a relation. In [10], the parameter

ζ =

(
∂T

∂p

)
s

= − 1

ρ2

(
∂ρ

∂s

)
p

(5.9)

is used. The triple product rule gives

ζ =
1

ρ2

(
∂p

∂s

)
ρ

/(
∂p

∂ρ

)
s

, (5.10)

where (
∂p

∂ρ

)
s

= c2, (5.11)

and, from [20], (
∂p

∂s

)
ρ

= ΓρT. (5.12)

Thus

ζ =
ΓT

ρc2
. (5.13)

The speed of sound in the five-equation model, taken from [10] and simplified, is

cTF5 =

√√√√√√√
αgρ� + α�ρg

ρgρ�

⎛⎝ αg

ρgc2g
+ α�

ρ�c2�
+

αgρgCp,gα�ρ�Cp,�T

(
Γg

ρgc2g
− Γ�

ρ�c
2
�

)2

αgρgCp,g+α�ρ�Cp,�

⎞⎠ . (5.14)

We also know from [12] the speed of sound in the drift-flux three-equation model.
This model can be seen as the limit of the drift-flux four-equation model with in-
stantaneous phase relaxation, or as the limit of the two-fluid four-equation model
(3.34)–(3.37) with instantaneous velocity relaxation. This is obtained by summing
equations (3.35) and (3.36) and assuming vg = v�. After simplification, the speed of
sound can be written

cDF3 =
1√

(αgρg + α�ρ�)
(

αg

ρgc2g
+ α�

ρ�c2�
+ T (αgρgCp,gχ2

g + α�ρ�Cp,�χ2
�)
) . (5.15)

5.4. Comparison of the speeds of sound. In [10], the authors compared the
speeds of sound of four of the two-phase flow models in Figure 5.1 – the TF6, TF5,
DF5 and DF4 models. They showed that the effect of the instantaneous relaxation
of a given type on the mixture speed of sound is independent of the order in which
relaxations are performed. For example, the effect of relaxing the velocity multiplies
the speed of sound by a constant factor

cTF5

cDF4
=

cTF6

cDF5
=

√
(αgρg + α�ρ�)

(
αg

ρg
+

α�

ρ�

)
, (5.16)
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By rearranging the expression above, they also arrive at

cDF5

cDF4
=

cTF6

cTF5
, (5.17)

which shows that the same conclusion applies to the effect of thermal relaxation.
Now, in the present work, we derived TF4 from the TF5 model previously men-

tioned by performing instantaneous phase relaxation, and found its sound speed (5.3).
By comparing it to the speed of sound in the DF3 (5.15), we immediately see that we
can extend the ratio relation (5.16) with

cTF4

cDF3
=

cTF5

cDF4
=

cTF6

cDF5
, (5.18)

which shows that the velocity relaxation once more has an independent effect on the
speed of sound. From the above relation, we can deduce

cDF4

cDF3
=

cTF5

cTF4
, (5.19)

hence, the effect of phase relaxation on the sound speed is also independent from the
order of the relaxation steps.

Using the results of [10] on the ordering of the speeds of sound, we can write from
(5.18)

cDF3 ≤ cTF4. (5.20)

Now, we take the difference between the two speeds of sound cTF4 and cTF5, or more
precisely the inverse of their squares, which gives

c−2
TF4 − c−2

TF5 =
ρgρ�

α�ρg + αgρ�

T (αgρgCp,gχg + α�ρ�Cp,�χ�)
2

αgρgCp,g + α�ρ�Cp,�
. (5.21)

This difference is always positive, which proves that

cTF4 ≤ cTF5. (5.22)

Consequently, from (5.19)

cDF3 ≤ cDF4. (5.23)

5.5. Subcharacteristic condition and model hierarchy. We can now ex-
tend the results SC1–SC4 in [10] by adding the two-fluid four-equation and the drift-
flux three-equation models to the hierarchy. Following the argument in [10], as well
as referring to (5.8) and to the eigenvalues of the drift-flux three-equation model in
[12], we can state:

SC5: The model DF3 statisfies the subcharacteristic condition with respect to TF4.
SC6: The model DF3 statisfies the subcharacteristic condition with respect to DF4.
SC7: The model TF4 statisfies the weak subcharacteristic condition with respect

to TF5.
Here we follow the definitions of the subcharacteristic and weak subcharacteristic
conditions given in [10]. For the two-fluid models, due to algebraic complexity, the
general eigenvalues are not known. Therefore, we only discussed the case where the gas
and liquid velocities are equal, which only proves a weak subcharacteristic condition.
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6. Condition for hyperbolicity. The canonical model derived above, with
Δp = 0, is generally not hyperbolic. Identically to the two-fluid six-equation model,
the eigenvalues related to the volume-fraction waves are complex as soon as the gas
and liquid velocities are different from each other [13, 29]. The pressure difference
term Δp has been added to make the model hyperbolic. In order to find an expression
for Δp, we will use a perturbation method around the state where vg = v�. Based
on the experience from the two-fluid six-equation model [5, 9, 19, 20, 23, 29], we look
for it in the form Δp = C · (vg − v�)

2. We know, from the section above, the speed of
sound of the model, cTF4. The variable defined as

ε =
vg − v�
2 · cTF4

(6.1)

is small for subsonic velocities and is therefore suitable as a perturbation parameter.
We first evaluate the characteristic polynomial

ΠA = Det(A(U)− λ · I4), (6.2)

where I4 is the identity matrix of rank 4. In this polynomial, we make a variable
change through

λ =
vg + v�

2
+ a · cTF4, (6.3)

where a is the new unknown. Then, all the occurences of the velocity are eliminated
by substituting

vg = vm + ε · cTF4, (6.4)

v� = vm − ε · cTF4, (6.5)

where vm is the arithmetic average of vg and v�. This is in compliance with the
definition of ε (6.1).

Now, we perform a power-series expansion of the eigenvalues in terms of the
degree of ε. To do so, the variable a is substituted by

a =
N∑
i=0

(
bi · εi

)
, (6.6)

where N must be higher than the highest degree of ε that we wish in the expansion.
Then we will sequentially solve

degree(ΠA, ε, i) = 0 (6.7)

for the coefficients bi, starting from i = 0, where degree(ΠA, ε, i) returns the coefficient
of the ith degree of ε in ΠA(ε).

The zeroth degree gives a fourth order equation in b0,

ρ4gρ
4
�(α�ρg + αgρ�)

4L4

(ρg − ρ�)8c4TF4

(b0 − 1)(b0 + 1)b20 = 0, (6.8)

whose four solutions are b0 = −1, b0 = 1, and twice b0 = 0. The first two give the
approximate eigenvalues

λ =
vg + v�

2
± cTF4 +O

(
vg − v�
2 · cTF4

)
, (6.9)
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which are clearly the eigenvalues related to the pressure waves. The double solution
b0 = 0 corresponds to the volume-fraction waves, which are of interest here. For this
wave family, we push to the next degree of the expansion. However, the first degree
of the polynomial ΠA(ε) vanishes when b0 = 0. We then go to the second degree.
Fortunately, b2 vanishes from the second degree, and we are left with a second order
equation in b1

((αgρ� + α�ρg)b
2
1 + 2(αgρ� − α�ρg)b1 + (αgρ� + α�ρg)− 4C)

·
ρ4gρ

4
�L

4(αgρ� + α�ρg)
3

c4TF4(ρg − ρ�)8
= 0. (6.10)

The reduced discriminant of the equation is

Δ = (αgρ� − α�ρg)
2 − (αgρ� + α�ρg)(αgρ� + α�ρg − 4C)

= −4αgα�ρgρ� + 4(αgρ� + α�ρg)C.
(6.11)

Therefore b1 will only be real if

C ≥ αgα�ρgρ�
αgρ� + α�ρg

, (6.12)

which is the same constraint as the one obtained for the six-equation model [29]. The
solutions are then

b1 =
−αgρ� + α�ρg ± 2

√
−αgα�ρgρ� + (αgρ� + α�ρg)C

αgρ� + α�ρg
. (6.13)

This gives the approximate eigenvalues for the volume-fraction waves

λ =
vg + v�

2
+

−αgρ� + α�ρg ± 2
√

−αgα�ρgρ� + (αgρ� + α�ρg)C
αgρ� + α�ρg

vg − v�
2

+O
(
vg − v�
2 · cTF4

)
. (6.14)

We deduce from the above that the model with the regularising term expressed
as

Δp =
αgα�ρgρ�

αgρ� + α�ρg
(vg − v�)

2 (6.15)

is hyperbolic at first order around the state where vg = v�. To make the model
actually hyperbolic when vg �= v�, it is common to define the pressure difference as

Δp = δ
αgα�ρgρ�

αgρ� + α�ρg
(vg − v�)

2, (6.16)

where δ > 1 [5, 9, 20, 23].

7. Resonance. The two-fluid models are prone to resonance, which means that
the eigenvector space collapses under some conditions, and the Jacobian of the fluxes
becomes singular [14, 17, 18]. This is due to the eigenvectors related to the volume-
fraction waves becoming parallel when the gas and liquid velocities are equal. The
physical explanation is that the volume-fraction waves become identical – identical
jump and propagation velocity. This is not a problem for numerical methods that do
not use the eigenstructure of the system, because the two waves actually exist and
are superimposed. However, this is problematic for numerical methods that use the
eigenstructure, because it looks like information is lost. In this case, a fix can be used
to overcome this issue, for example the one described in [18].
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8. Conclusion. The aim of the article was to derive a two-fluid model for two
phases reaching instantaneous equilibrium. This is required in order to be able to use
equilibrium-based equations of state.

We have derived a two-fluid four-equation model as the limit of a five-equation
model when the phase relaxation becomes instantaneous. The phase relaxation source
terms involve an interfacial momentum velocity, for which we found an expression
respecting the second law of thermodynamics. This model was then put in quasilinear
form by deriving the differentials of the primary variables. Then the intrinsic speed
of sound of the model has been extracted.

We have placed our model in a hierarchy of two-phase flow relaxation models. It
has been proved in previous works that the subcharacteristic condition is satisfied for
a part of this hierarchy. In the present work, we have proved that it is satisfied for
the rest of our hierarchy.

Finally, we applied a perturbation method around the state where the gas and liq-
uid velocities are equal. This helped deriving an expression for the pressure difference
in the regularisation term which makes the model hyperbolic.

This model is ready to implement, using numerical methods for conservation laws.
One should nevertheless keep in mind that the model is prone to resonance, so that
methods that use the eigenstructure of the system will require a fix when the gas and
liquid velocities are equal or close to each other.
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Abstract 

A numerical method for calculating the leakage flow rate through a crack in a pressurized pipeline is presented. 
Calculations of the flow inside, and leakage from, a pipeline with a running crack are performed. For the case of 
single-phase flow, the flow through the crack can also be calculated using choked-flow theory. The two methods are 
compared and identical results obtained. The advantage of the present method is that it does not rely on analytical 
expressions for the flow through the crack, and it is therefore thought to be applicable for two-phase flow, including 
phase transition. Hence it may be of use in the development of coupled fluid-structure models for the assessment of 
running ductile fracture in carbon dioxide transport pipelines. 

© 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer] 
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1. Introduction  

Pipelines are a common and convenient way of transporting natural gas, and with the increasing 
interest in carbon capture and storage (CCS) technology, pipeline transport will also become an important 
link between the capture and storage sites of CO2. As for natural gas, a rupture of a CO2 pipeline can 
cause serious accidents as well as economic losses and must be avoided. In order to control and 
predict the risk of accidental failure, such as a running fracture initiated e.g. by damage to the pipeline by 
a third party, the fracture properties of the pipe materials have long been a subject of study.  A semi-
empirical model based on research at the Battelle memorial institute in the 1970s [1] where the fluid flow 
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and the material structure behaviour are assumed to be uncoupled processes, is traditionally used for the 
assessment of running ductile fractures. New pipeline materials have, however, motivated the search for 
improved models, and it is natural to consider a coupling of the fluid and structure processes [2]. 
Moreover, the thermodynamic properties of CO2 are different from those of natural gas at the relevant 
conditions for pipeline transport. It is not clear how e.g. phase change and a large heat capacity will 
influence the fracture mechanics. Further, various impurities will be present in the transported CO2, and 
even small amounts will change the properties compared to pure CO2 [3,4]. Therefore, a flexible 
framework is required with respect to the employed equations of state. For hydrocarbon mixtures, the 
Peng–Robinson equation of state is appropriate, and was used by Oke et al. [5] in a study of a fluid model 
for pipeline puncture. 

In Berstad et al. [6], a coupled fluid-structure model was presented and tested by comparisons to full-
scale experiments of running ductile fractures in steel pipelines. In this model, the effect of the leakage of 
the fluid through the crack opening is included in the one-dimensional fluid equations as source terms. 
The emerging fluid pressure is then coupled back into the structure part of the model as a load. In order to 
evaluate the source terms in the fluid part, the fracture is modelled by a sequence of orifices and the 
leakage is assumed to be an isentropic process. By using the ideal-gas equation of state and the choked-
flow theory it is possible to derive analytical expressions for them. The model agreed well with the 
experiments, but is still restricted to the ideal gas case and therefore premature to be applied for CO2 at 
typical operating conditions. A generalization of the model to handle other equations of state may follow 
two paths, either an analytical approach where the source terms are derived explicitly as in [6], or a 
numerical approach in which the source terms are evaluated using the flow solver. It is the latter that will 
be studied here, and it will be referred to as “the straw method”. In this study, we assume the fracture 
opening to be given, so that the structure part of the model can be ignored, and the focus is on a one-
dimensional fluid model inflicted by a radial leakage. Also, this study intends to prove the concept of the 
straw method, therefore we consider only single-phase, ideal gas, for which we have analytical results. 
However, this method is developed to be easily generalized to two-phase mixtures. 

In the following, the governing equations of the one-dimensional (1D) fluid model will be presented in 
Section 2, and Section 3 then gives an introduction to the straw method. Section 4 explains the 
implementation of the straw method for a pipe filled with pressurized gas. Further, Section 5 presents 
some numerical simulations of a pipe depressurization due to a running fracture. Finally, Section 6 
concludes the paper.

2. Governing equations  

It was shown in Berstad et al. [6] that the leakage of the fluid in a fractured pipeline, illustrated in Fig. 
1, can be incorporated into the Euler equations, as source terms written on the right-hand side: 

( ) ,e
u

t x
ρ ρ ζ∂ ∂+ = −

∂ ∂
  (1) 

2( ) ( ) ,e
u u p u
t x x

ρ ρ ζ∂ ∂ ∂+ + = −
∂ ∂ ∂

  (2) 

[ ]( ) 1( )e e e
e

E p uE E p
t x

.ζ
ρ

∂ +∂ + = − +
∂ ∂

  (3) 
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Herein, p,  and u are the pressure, density and the x-directed velocity, respectively, and E = (e + u2/2) 
is the total energy per unit volume, with e being the internal specific energy. The general source term eζ
is the leakage mass flow rate and can be written 

2
,e

e e e
r

u
A

ζ ρ=   (4) 

where the subscript e indicates that the quantities are taken in the crack opening through which the fluid 
may escape. This opening is given by its width 2re(x), whereas the cross section of the main pipe is A. For 
simple equations of state, analytical expressions can be derived for the escape quantities [6], but in 
general, numerical methods must be used. 

Fig. 1.  A section of the pipeline with a fracture running along the x-direction. 

3. The straw method  

The straw method takes the fracture geometry as given. The main challenge is to evaluate the flow rate 
through the fracture. For a two-phase flow with a “black box” equation of state, an attempt to develop 
analytical expressions for choked flow may lead to intractable expressions, let alone the inclusion of phase 
change. An alternative idea is then to let the flow rate be evaluated by a numerical solver analogously to 
what happens inside the pipe. We assume here that the fracture along the pipe can be modelled by a 
sequence of transversal tubes, whose length is the thickness of the pipe steel. These tubes are plugged into 
the main pipe, and their cross-sections represent the crack opening (see Fig. 2). The fluid dynamics in the 
tubes, as well as in the pipe, is solved as one-dimensional conservation laws averaged over the cross-
section. By inserting one tube in each of the fractured pipe cells, we obtain a discretization of the fracture 
along the pipe. The variation of the fracture width is represented by adjusting the tube diameters at each 
time step. The propagation of the fracture is accounted for by adding new tubes along the pipe. 

The inlet flows in the transversal sub-tubes become mass, momentum and internal-energy source terms 
for the flow in the main pipe. To simplify, we assume that the flow in the pipe is quasi-stationary with 
regard to the flow through the fracture, therefore we let the sub-tubes reach steady-state flow between the 
pipe and outside pressures at all time steps. Particular attention has to be given to the boundary conditions 
for the sub-tubes, depending on whether the outflow is choked or not. 

In the present paper, we validate the approach by applying the straw method to a single-phase pure 
gas. We can thus compare the results to those obtained by a method using the analytical expressions from 
the choked-flow theory.  
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Fig. 2.  A small section of the pipe where the exaggerated pipe wall is partly open due to a crack. The flow rate through the opening 
is evaluated separately by modelling the crack as a sequence of small tubes, or straws, transversal to the main pipe as indicated.
Each tube is discretized into finite volumes, i.

4. Implementation of the straw method 

This section begins by explaining how the flow through the crack is modelled, and how it is 
implemented in the numerical framework. Then the boundary conditions that apply to the straw are 
detailed. 

4.1. Modelling choices 

Fig. 3 (a) illustrates the leakage flow through a crack in a pipe, where the crack is thought of as an 
orifice. Ahead of the orifice, the fluid inside the pipe is accelerated, while the pressure decreases. The 
streamlines are contracting and all leading to the orifice. Downstream of the orifice, the fluid is expanding 
and decelerating, while mixing with the outside air [7]. We assume that the flow ahead of the orifice is 
isentropic. This supposes that heat exchange can be neglected, which is acceptable due to the high 
velocity of the gas. This also supposes that we can neglect the viscosity. In this situation, the flow is 
similar to that in a convergent nozzle leading to the orifice, see Fig. 3 (b). However, downstream of the 
crack, the mixing with the outside air makes the isentropic assumption invalid. We therefore decide not to 
model the diverging part. Instead, we let the outflow boundary condition govern the release pressure. Fig.
3 (c) shows the pressure profile along the leakage flow. Two regimes can be distinguished. In the 
subcritical regime, which the pressure at the orifice is equal to the atmospheric pressure. The velocity 
across the orifice is then subsonic. In the supercritical regime, also called choked flow,  the pressure at the 
orifice becomes independent of the atmospheric pressure. The velocity across the orifice is then exactly 
equal to the sound speed in the fluid. This duality may be problematic when the pressure ratio is 
supercritical, because the outflow pressure at the orifice is not known a priori. This may cause 
convergence problems that the boundary conditions have to handle.  

In the present work, the straw is of constant cross-section. When there is no phase change or friction, 
the steady state is reached when the pressure profile is flat. The flow ahead of the orifice has to be 
accounted for in the inlet boundary condition. Actually, in this work the straw is only present to connect 
the two boundary conditions, see Fig. 4.

i+1
i

i-1
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Fig. 3. (a) Real situation of a leak across an orifice in the pipe wall; (b) Model of the leakage flow using a convergent nozzle and a 
free jet in atmosphere; (c) Pressure profile in the adopted model, depending on the ratio of the internal pressure to the surrounding
(atmospheric) pressure. 

Fig. 4. Practical implementation of the straw method. 
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4.2. Straw inlet boundary condition 

The convergent flow is accounted for by the inlet boundary condition. Since the model contains three 
equations, three quantities have to be taken care of to fully describe the state of the fluid at the straw 
boundary. Depending on the flow regime, these quantities are either specified to be equal to their values 
in the pipe, or extrapolated from the straw. In the straw method, before the steady state is attained, we 
expect either a subsonic or a supersonic outflow from the pipe, or a reversed subsonic inflow. 

In an isentropic flow, the entropy s is a conserved quantity since we can write 

( ) 0.s s Dsu
t x Dt

ρ ρ ρ∂ ∂+ =
∂ ∂

=   (5) 

Next, we need a quantity characterizing the energy. We start from the energy equation 

( )
0,

E p uE
t x

∂ +∂ +
∂ ∂
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in which we add and subtract the time derivative of the pressure 
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In steady state, we recover a conservation equation 
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∂ ∂

2
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Therefore the second chosen quantity is what we can call the total enthalpy per unit volume, 
( 2=H h uρ + )2 , where h is the specific enthalpy. The third chosen quantity is the momentum, u.

Table 1 shows which variables are specified or extrapolated depending on the flow regime. In the 
subsonic regime, the effect of this boundary condition is to convert the mechanical potential energy of the 
pressure into kinetic energy. The total enthalpy, which contains all the potential energy but the 
mechanical potential energy, is conserved along the convergent nozzle. On the other hand, the straw 
imposes the momentum and indirectly the kinetic energy. Together with the entropy, from the pipe or 
from the straw depending on the direction of the flow, we can determine the thermodynamic state of the 
fluid as well as its velocity. 

Table 1. Straw inlet boundary conditions. 

Specified to be equal to 
its value in the pipe 

Extrapolated from the 
straw

Supersonic outflow from pipe s, H, u -

Sonic/subsonic outflow from pipe s, H u 

Subsonic inflow to pipe H s, u
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4.3. Straw outlet boundary condition 

The outlet boundary condition has to account for the discharge to the atmosphere. Most of the time, the 
flow leaving the straw is either exactly sonic or subsonic. Due to the fact that we do not model the jet in 
the atmosphere, the release pressure is not necessarily the atmospheric pressure. As shown in Fig. 3 (c), if 
the pressure ratio is subcritical, atmospheric pressure applies at the orifice. However, if the ratio is 
supercritical, the release pressure at the orifice is different from the atmospheric pressure. In calculations, 
this may cause the pressure to oscillate between the atmospheric pressure and the orifice pressure. 

To cover all the possible situations, subsonic or supersonic outflow, and subsonic inflow, we again 
choose three variables to specify or extrapolate. Here we use the natural primitive variables: the density, 
the velocity and the pressure. Table 2 shows how the variables are either specified or extrapolated. In the 
supersonic regime, the pressure is extrapolated from the straw, and therefore the atmosphere does not 
have any effect on the flow in the straw, as expected. In the subsonic regime, the straw always decides 
over the discharge velocity, whereas the density comes from the side from which the fluid is flowing. 

Table 2. Straw outlet boundary conditions. 

Specified to be equal to 
the atmospheric value 

Extrapolated from the 
straw

Supersonic outflow from pipe - , u, p

Sonic/subsonic outflow from pipe p , u

Subsonic inflow to pipe , p u 

As can be seen in Table 2, the pressure is imposed or not, depending on whether the flow is sonic or 
supersonic. Now, when the flow is choked, the velocity at the straw end should be exactly sonic, while 
the pressure in the straw and in the atmosphere will be very different from each other (Fig. 3 (c)). 
Therefore numerically, the slightest oscillation of velocity around the sonic point will cause a large 
variation in pressure, thus hindering convergence. Since we are only interested in the steady state in the 
straw, we can speed up convergence by correcting the imposed boundary pressure, as long as the 
correction term vanishes in steady state. We define  as the difference between the flow velocity and the 
sound speed. For a constant C that we choose equal to 0.1s/m, the outlet boundary pressure is defined as 

( )
if 0 (simple extrapolation)
if 0 and 1
if 0 and 1

straw

boun straw straw atm

boun atm

p
p p p p C C

p p C

λ
λ λ λ

λ λ

≥
= + − < <

= < >
 (9) 

Note that the boundary pressure pboun is a continuous function of , the atmospheric pressure patm, and 
the straw pressure pstraw. Further, in steady choked flow, =0, and we recover the simple extrapolation. In 
steady subsonic flow, patm= pstraw, so that the outflow pressure is the atmospheric pressure. Therefore the 
correction term does not have any effect in steady state. 
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5. Numerical results 

Numerical tests have been performed for a pipe filled with methane at 122 bar, closed at both 
extremities. The pipe is 12m long, has a diameter of 0.261m and is divided into 400 cells. After 2ms, a 
crack is initiated in the middle of the pipe, propagating at a constant velocity of 100m/s in both directions. 
The crack is shaped like a sinus function (cf. Fig. 1) and its width at maximum opening is 0.2m. We let it 
evolve during 30ms. 

The numerical method used is the multi-stage (MUSTA) centred method with four cells and four 
substeps [8,9] with forward Euler time steps. The source terms are solved with first order time splitting. 

Fig. 5 shows the evolution of the pressure in the pipe at approximately 1m (x=4.995m) and 3m 
(x=2.985m) from where the crack is initiated. We see that the depressurization begins later for the red 
curve, further from the crack, than for the green curve. This is due to the depressurization wave travelling 
from the crack towards the extremities of the pipe. The kink in the red curve is due to the reflection wave 
from the closed end of the pipe. There is also a smaller kink in the green curve at t=0.0012s, due to the 
crack tip passing at the corresponding position. The black squares – denoted “ref” – are the results using 
the choked flow theory. We see that the results are practically identical, thus showing that the straw 
method in one dimension gives the same results as the analytical theory to reasonable accuracy. 

Fig. 6 shows the pressure profile in the tube at four different times. The depressurization starts in the 
middle of the pipe, where the crack is initiated. Then decompression waves begin to propagate towards 
the extremities, faster than the crack progresses. The crack tips are located at the two kinks in the pressure 
profile, e.g., at about 4 and 8 m in the last graph. Further, there is a ridge in the pressure profile in the 
middle of the pipe. Although this ridge probably exists in reality, its size may be exaggerated in this 
method. The ridge is due to the fluid flowing towards the middle of the pipe and colliding with the fluid 
from the other side. In reality, the fluid is deflected transversally towards the crack, but in one-
dimensional flow, the fluid is constrained to move longitudinally. Therefore it has to stop first, thus 
building up pressure, before it is accelerated again transversally in the straws. However, the total enthalpy 
is conserved in both cases. Further, since this always happens in a region of the pipe where there already 
is a crack, it does not impact the crack-propagation problem. 

6. Concluding remarks 

We have presented a numerical method to evaluate the leakage flow rate through a fracture in a pipe. 
The method has been applied to single-phase flow, where a direct comparison to choked-flow theory is 
possible. The two methods were compared for a case with a running fracture. The results obtained were 
identical to plotting accuracy; therefore it is insignificant whether the leakage flow is a sequence of 
orifice flows or of straw flows in the single-phase case. Hence, we deduce from the results of Berstad et 
al. [6] that our approach is valid. 

This method was developed with the extension to two-phase flows in mind. Such an extension is future 
work, but is believed to be reasonably straightforward, since it does not rely on finding analytical 
expressions for the flow through the fracture. The only model-specific part is the adaptation of the 
boundary conditions of the straw, following the same principles of release in the atmosphere at the 
outflow, and conservation of entropy, total enthalpy and momentum at the inflow. The present method is 
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Fig. 5. Evolution of the pressure in the pipe at two positions. 

t=0s t=0.007s

 t=0.024s t=0.016s

Fig. 6. Pressure profile in the pipe at four different times.
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hoped to be of use in the development of coupled fluid-structure models for the assessment of running 
ductile fracture. 

In the single-phase case, the flow in the straw itself is uniform, everything happening in the boundary 
conditions, which is why orifices and straws give indistinguishable results. The aim with the straw 
method for two-phase flow is to let the straw account for phase change due to the depressurization across 
the fracture. This is an important aspect, since the sound speed may change significantly when the gas 
volume fraction is changing. Since the flow rate is limited by the sound speed, phase change across the 
crack will have an effect on the flow rate. This modelling choice will have to be assessed by comparison 
to experimental results with two-phase flows.  

Compared to previous work [5,6], the present method offers a high flexibility with respect to the flow 
model, for example single-phase flow or two-phase flow with or without phase change, friction or heat 
exchange in the pipe and across the fracture. And last but not least it can naturally handle any 
thermodynamical routine, either analytical or "black box". 
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