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Abstract:  

A wide range of offshore science and engineering applications utilize slender catenary-shaped structural elements in 

their design. These applications include moorings and steel catenary riser designs.  The susceptibility of these slender 

catenary-shapes to vortex-induced vibrations remains the subject of theoretical, numerical and experimental studies. 

This thesis studies the measured responses from the 2001 MARINTEK experiment with the purpose of trying to 

understand the relation between analytical models, numerical models, and experimental measurements. 

The time domain decomposition (TDD) method is implemented in a Matlab program, considering three velocity cases 

of cross-flow displacements in the catenary plane. The results show that in each of the cases, one of the frequencies 

has a higher degree of contribution than other frequencies. However, multiple frequencies are present throughout the 

measurements. Also, the frequencies corresponding to each mode varies. According to the MAC-criterion, the obtained 

mode shapes have a high degree of correlation with the numerically calculated mode shapes. 

For verification of the TDD results, the poly-reference least squares complex frequency method and the data- and 

covariance-driven stochastic subspace methods of operational modal analysis (OMA) are used for studying the data in 

the commercial Matlab toolbox MACEC. As for the TDD method, the mode shape estimates have high MAC-values, 

and the corresponding natural frequencies vary. The damping estimates show a great amount of scatter. Also, there is 

a varying degree of certainty in the results according to result processing guidelines. 

The effect of accelerometer masses and first order added mass effects are studied using a numerical model in Matlab. 

The effects of the masses are concluded to be negligible. 

A comparison between the operational modal OMA obtained eigenfrequencies and the corresponding numerically 

calculated modes show a great amount of agreement in how the natural frequencies increase with mode number. 

However, for this case study, the analytical and numerical calculations appear to underestimate magnitudes of the 

frequencies. Also, there is an indication that the frequencies corresponding to each mode shape vary, possibly resulting 

from higher order added mass effects. 
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Summary 

A wide range of offshore science and engineering applications utilize slender catenary-shaped 

structural elements in their design. These applications include moorings and steel catenary riser 

designs.  The susceptibility of these slender catenary-shapes to vortex-induced vibrations 

remains the subject of theoretical, numerical and experimental studies. 

This thesis studies measured responses from the 2001 MARINTEK experiment with the 

purpose of trying to understand the relation between analytical models, numerical models, and 

experimental measurements. 

The time domain decomposition (TDD) method is implemented in a Matlab program, 

considering three velocity cases of cross-flow displacements in the catenary plane. The results 

show that in each of the cases, one of the frequencies has a higher degree of contribution than 

other frequencies. However, multiple frequencies are present throughout the measurements. 

Also, the frequencies corresponding to each mode varies. According to the MAC-criterion, the 

obtained mode shapes have a relatively high degree of correlation with the numerically 

calculated mode shapes. 

For verification of the TDD results, the poly-reference least squares complex frequency method 

and the data- and covariance-driven stochastic subspace methods of operational modal analysis 

(OMA) are used for studying the data in the commercial Matlab toolbox MACEC. As for the 

TDD method, the mode shape estimates have high modal assurance criterion (MAC) values, 

and the corresponding natural frequencies vary. The damping estimates show a great amount 

of scatter. Also, there is a varying degree of certainty in the results, as some modal frequencies 

are more difficult to obtain due to signal noise or other sources of error. 

Continuing, the effect of accelerometer masses and first order added mass effects are studied 

using a numerical model in Matlab. There are limitations in the results because of the 

simplification of the added masses. However, based on the minimal changes in mode shapes, 

and the eigenvalues changing opposite to what they should in comparison with experimental 

data, the effects of the masses are concluded to be negligible. This conclusion coincides with 

original assumptions made for the analytical and numerical models. 

A comparison between the OMA obtained eigenfrequencies and the corresponding numerically 

calculated modes show that there is a great amount of agreement in how the natural frequencies 

increase with mode number. However, for this case study, the analytical and numerical 
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calculations appear to underestimate magnitudes of the frequencies. Also, there is an indication 

that the frequencies corresponding to each mode shape vary resulting from higher order added 

mass effects, which are not considered in the numerical or analytical methods. 
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Sammendrag 

Konstruksjoner bestående av elementer som danner en hengende form mellom to 

innfestningspunkter blir anvendt i mange offshore installasjoner og andre tekniske 

innretninger. Blant bruksområdene finnes forankringer av flytende konstruksjoner og hengende 

stigerør i stål. Disse strukturene er utsatt for virvelinduserte vibrasjoner, som fortsatt er et felt 

som undersøkes både teoretisk, numerisk og med eksperimenter. 

Analysene utført i denne hovedoppgaven er basert på eksperimentelle resultater fra et prosjekt 

som ble utført ved MARINTEK i 2001. Hensikten er å få en bedre forståelse for sammenhengen 

mellom de analytiske modellene, de numeriske modellene og observasjoner gjort under 

forsøkene. 

En dekomponeringsmetode for tidsdomenet (TDD) er brukt til systemidentifikasjon av 

måledataen, og er implementert i et Matlab program. Her er tre hastighetstilfeller fra forsøket 

er brukt, alle med målt bevegelse i konstruksjonsplanet. Resultatene av studiet viser at for alle 

hastighetstilfellene vibrerer strukturen med én hovedfrekvens. Det finnes likevel flere 

vibrasjonsfrekvenser i måledataene til enhver tid. I tillegg er det observert at enkelte frekvenser 

kan endre modeform avhengig av strømningshastigheten strukturen er utsatt for. Mange av 

modeformene som er funnet ved bruk av TDD metoden har ifølge MAC kriteriet en høy grad 

av korrelasjon med modeformene beregnet med elementmetoden. 

For å kontrollere resultatene som er funnet med TDD metoden, er en minste kvadraters 

kompleks frekvens metode (p-LSCF), en data drevet stokastiske Subspace-metode (DD-SSI) 

og en kovarians drevet stokastiske Subspace-metode (Cov-SSI) også brukt i analysene av 

måledataene i Matlab verktøyet MACEC. Her har også de estimerte modeformene god 

overenstemmelse med modeformene beregnet med elementmetoden ifølge MAC kriteriet, 

mens egenfrekvensene også her har en tendens til å endre modeformene de tilhører. Det er stor 

spredning i dempningsestimatene. Støy i signalet gjør at flere av de beregnede egenfrekvensene 

og modeformene har stor usikkerhet. 

Første ordens innvirkning av akselerometrenes masse og tilleggsmasse er undersøkt i en 

numerisk modell i Matlab. Resultatene fra denne undersøkelsen er kun anvendelige for enkle 

sammenligninger ettersom tilleggsmassens innflytelse er meget forenklet. De beregnede 

modeformene viser liten forandring sammenlignet med modeformene som er beregnet uten å 

ta hensyn til akselerometermassene. Graden av endring øker med økende modenummer. Det 
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viser seg at når akselerometermassene er inkludert i elementmetodeberegningene øker ikke 

egenfrekvensene like mye med modetall som det egenfrekvensene som er beregnet ved 

systemidentifikasjon av måledataen gjør.  

En sammenligning mellom egenfrekvensene som er funnet ved bruk av TDD, p-LSCF, DD-

SSI og Cov-SSI metodene og de som er beregnet ved bruk av elementmetoden uten 

akselerometrenes masser viser at det er stor grad av overenstemmelse når det gjelder hvordan 

egenfrekvensene øker med modenummer. Det viser seg likevel at de egenfrekvensene beregnet 

med elementmetoden er noe lavere enn frekvensene som er beregnet ved systemidentifikasjon, 

spesielt i de høyeste modetallene. I tillegg finnes det indikasjoner på at frekvensene som 

korresponderer til hver mode varierer, og dette kan være et resultat av høyere ordens effekter 

av tilleggsmassene, som ikke er tatt hensyn til i numeriske eller analytiske metoder presentert 

i denne oppgaven.  
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𝐿  Length 

m Mass 

𝑁  Degrees of freedom 

𝑃  Surface pressure 

𝑝(𝑡)  Time-dependent force 

𝑄  Scaling factor 

𝑞  Time dependent contribution factor 

𝑅𝑥𝑦  Cross-correlation function 

𝑠  Lagrangian coordinate 

𝑆𝑥𝑦  Two-sided PSD 

𝑇  Period (Chapter 2) 

𝑇  Tension (Chapter 3) 

𝑡  Time  

𝑈  Fluid velocity 

𝑤  Wet weight 

𝑋  Fourier coefficient 
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𝑦  Displacement  

�̇�  Velocity 

�̈�  Acceleration 

  

Useful Non-dimensional Parameters 

𝑅𝑒 =
𝑈𝐷

𝜈
 

Reynold’s number 

S𝑡 =
𝑓𝑠𝐷

𝑈
 

Strouhal number 

𝑈𝑟 =
𝑈𝑇

𝐷
=
𝑈

𝑓𝐷
 

Reduced velocity 

𝑘

𝐷
 

Roughness number 

𝐴

𝐷
 

Dimensionless amplitude 
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Chapter 1  

Introduction 

1.1 Background 

The oil and gas industry is one of the largest industries in the world, and was estimated to 

provide 40.7% of the world’s energy demand in 2014 (IEA 2014). Although clean energy 

solutions are preferable, they are not equipped to serve the world’s energy requirement in full 

in the near future, so we will have to depend on fossil fuels for a while longer. As the lifetime 

of the oil fields in production today is comparatively short, there is a need to explore reserves 

in deeper and more complex locations. This puts a larger strain on systems both under 

installation and operation, and leads to the required development of optimized solutions to 

increase capacities without an inflation of cost. 

One of the reasons why we do not have a clean energy solution providing a larger part of the 

world’s energy demand is that most of them are not feasible in the near future. That is, the time 

it takes for the extracted energy to pay off the installation cost is still too long. This calls for 

major optimizations to lower prices. For example, floating wind turbines require better mooring 

and electricity transport systems, which often take the shape of catenaries, see Figure 1.1. 

 

 

 

Figure 1.1: Example of a catenary shaped structural element 
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Slender catenary-shaped structural elements are found in a wide range of on- and offshore 

engineering applications, and are preferred due to their cost efficiency. They are found in 

suspension bridges, transmission lines, in moorings of offshore structures, as well as steel and 

flexible risers, pipelines under laying and free-spanning pipelines. However, this slender 

structural shape is not without its disadvantages. Its susceptibility to vortex-induced vibrations 

(VIV) results in a potential for fatigue damage, which in a worst-case scenario could lead to 

failure.  Therefore, it is important that the vibrations can be well estimated and understood, so 

that the risk of failure by use of catenary shaped structures can be reduced. 

To ensure the safe and optimal design of such structures, dynamic analysis is a must. This 

requires the prediction of natural frequencies, mode shapes and modal damping before analysis 

of the structures interaction with loading can be carried out. This can be done using either 

analytical, numerical or experimental methods. 

In 2001 an extensive model test program was carried out in order to better understand the 

behavior of a steel catenary riser (SCR) subject to VIV at various angles. The experiments were 

carried out by 2H Offshore Engineering, and subcontracted to MARINTEK. Following the 

experiments, multiple studies have improved the understanding of the presented data, both 

through system identification, and by trying to predict the observed responses analytically and 

numerically. 

One of the research groups that has been investigating the data consists of Geir Moe, Torbjørn 

Teigen, John M. Niedzwecki, Raed Lubbad and Sam Fang. In their work, they have studied 

displacement envelopes, frequencies, probability of exceedance distributions, effect of time-

series truncation and more (Moe et al. 2004; Niedzwecki & Moe 2005; Niedzwecki & Moe 

2007). Fang and Niedzwecki have also investigated the data using operational modal analysis 

techniques (OMA), more specifically the time domain decomposition (TDD) method that will 

be introduced in Section 4.3.1, and some of their unpublished results have been obtained by 

personal communication with the authors. 

Additionally, inspired by the studies of experimental data, attempts have been made at 

predicting natural frequencies and mode shapes of catenaries by analytical solutions. These 

solutions are based on methods first presented in the 1980’s, but have been modified to better 

suit steel catenary risers by modifying assumptions and input (Lubbad & Moe 2008; Lubbad 

et al. 2011). They have also been compared with numerical solutions such as finite element 

method analysis, seeking similarities and differences in the various solution methods. 
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Despite extensive studies showing good results, there is still a gap between the mode shapes 

and natural frequencies of the analytical and numerical solutions in comparison with 

experimentally obtained results. For example, there are clear eccentricities in the mode shape 

shown to the left in Figure 1.2 in comparison with the one to the right. Note that the difference 

in magnitudes of (a) and (b) in Figure 1.2 are consequences of normalization of the mode 

shapes, but the anomalies result from other apparent, but unknown effects.  

 

 (a) 

 

(b) 

Figure 1.2: (a) Mode shape obtained from TDD of experimental data excited at 1.20 Hz. 

(b) Mode shape obtained from analytical and numerical solutions corresponding to an 

eigenfrequency of 1.05-1.08 Hz 

1.2 Motivation and scope of work 

The above mentioned deviations are what inspired the work presented in this thesis. To bridge 

the gap between the analytical or numerical solutions, and the experimentally obtained results, 

an investigation is carried out into multiple possible causes of the eccentricities. Possible 

sources of error are flaws in the system identification methods, or consequences of physical 

effects that are neglected in the analytically obtained modes. The sources of error will be 

investigated by a case study of the data from the MARINTEK experiment. 

Firstly, the TDD method will be implemented and studied, altering the method of obtaining 

natural frequencies and damping from what is called the half-power bandwidth method to a 

correlation method presented in (Brincker et al. 2001). 

Secondly, the experimental data will be studied applying other system identification methods 

in the commercial Matlab toolbox MACEC, presented in Section 5.4, to get an understanding 
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of the applicability of the TDD method results and to investigate whether the other methods 

can give a better understanding of the data. 

Thirdly, the numerical methods of obtaining natural frequencies and mode shapes will be 

modified to investigate the possible issue of inertia effects due to the masses and volumes of 

the accelerometers. 
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1.3 Structure of thesis 

Chapter 1 aims to give the reader insight into the background and motivation for conducting 

the work associated with this thesis, along with giving an overview of the thesis structure and 

potential readership. 

Chapter 2 presents the general theory associated with vortex induced vibrations, including 

some relevant dimensionless parameters, the concept of shedding frequencies, cross-flow and 

in-line responses and more.  

Chapter 3 follows from Chapter 2, describing the dynamics of slender structures resulting 

from vibrations caused by vortices. Modal analysis solutions of un-damped systems are 

presented for both time and frequency domain, as well as modal analysis solutions of damped 

structural systems. Continuing, the static solution, i.e. catenary shape, is presented. This is 

described by multiple solutions to the inertia and damping free equation of motion with various 

assumptions. Finally, the chapter gives a presentation and discussion of the analytical and 

numerical solutions to the equation of motion for un-damped and damped catenary shaped 

structures.  

Chapter 4 focuses on system identification methods, introducing relevant terminology and 

relations in signal processing. The theory of the implemented TDD method is discussed, as 

well as the applied methods available in the MACEC toolbox, showing their differences in 

assumptions and derivations. 

Chapter 5 opens with an introduction to the experiment conducted in 2001 at the MARINTEK 

venue, including a description of the experiment setup, as well as general results. Subsequently, 

the chapter presents the case study for this thesis, followed by the various methods and relevant 

results. Following the results are discussions of observations made when comparing the results 

with each other and theoretical facts.  

Chapter 6 concludes the thesis, giving an overview of findings. 

Chapter 7 gives recommendations for further work. 
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1.4 Readership 

The main focus of this thesis is given to slender marine structures with a catenary shape, more 

specifically SCRs. It highlights main concepts associated with vortex induced vibrations, as 

well as multiple solution methods to the dynamics of SCRs subject to it. Also, the concepts of 

system identification are brought forward as a method of studying experimental VIV 

measurements. The readership of this thesis is, therefore, students seeking insight into 

fundamental theories of VIV, dynamics and system identification, as well as engineers, 

lecturers or scientists looking to extend their insight into the concepts, and use the results and 

recommendations as inspiration for further work.  
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Chapter 2  

Theory of Vortex Induced Vibrations 

This chapter presents general principles necessary for the understanding of vortex induced 

vibrations and its consequences. 

2.1 The process of vortex shedding 

Vortex-induced vibrations are caused by the shedding of vortices from the structure, and can 

occur in air as well as in ocean currents. The vortices are caused by the fluid movement around 

the structure, which again is driven by the conservation of mass, momentum and energy. The 

Bernoulli equation, i.e. Eqs. 2.1 and 2.2, are used to explain the mechanism of vortex shedding 

(Faltinsen 1993). 

 𝑃𝑡 +
1

2
𝑈𝑡
2 = 𝑃0 +

𝜌

2
𝑈∞
2  (2.1) 

 

 𝑈𝑡 = 2𝑈∞𝑠𝑖𝑛𝜃 (2.2) 

where 

𝑈𝑡 Tangential velocity along the surface 

𝑈∞ Fluid velocity at a distance from object 

𝑃𝑡  Surface pressure at tangential point 𝑡 

𝑃0 Surface pressure at 𝜃 = 0 

𝜌 Fluid density 

𝜃 Angular coordinate 

 

As Equations 2.1 and 2.2 imply, the pressure at the volume surface reduces as the tangential 

velocity increases. When the velocity passes its maximum at 𝜃 = 𝜋/2, the pressure will 

increase towards the volume aft, as the velocity decreases. The fluid will seek towards the aft 

of the object to regain kinetic energy.  
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This idealized potential flow formulation of the Bernoulli equation and the tangential velocity 

assumes laminar flow around the whole object. This is, however, rarely the case, and the 

description of the flow behind 𝜃 = 𝜋/2 becomes dependent on the Reynolds number, 

explained below. The fluid loses energy to friction force as it flows around the object. If the 

loss of energy is large enough, the fluid will separate from the surface at what is called the 

separation point, see Figure 2.1. 

 

2.1.1 Reynolds Number 

Reynolds number is a dimensionless number that relates the inertial forces of the fluid, 

represented by the fluid velocity, 𝑈, and the effective diameter, 𝐷, to the kinematic viscosity. 

The kinematic viscosity, 𝜈, defines the fluids shear resistance to density ratio. 

 𝑅𝑒 =
𝑈𝐷

𝜈
 (2.3) 

 

Figure 2.2 shows the vortex patterns for a cylinder of diameter 𝐷 as a function of Reynolds 

number. As can be seen from the figure, for circular cylinders, the idealized equations for 

potential flow are only valid for Reynolds numbers below about five. 

 

Figure 2.1: Cross-section subject to fluid flow and fluid separation 
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The vortices will separate from the structure and produce vortex streets from Reynolds numbers 

of about 40, but the most interesting Reynolds numbers for studying VIV are found for 𝑅𝑒 >

300. Here, the shedding frequency, 𝑓𝑠, is more likely to reach the natural frequencies of 

structures, inducing resonance.  

2.1.2 Strouhal Number 

Another useful dimensionless number when studying VIV is the Strouhal number, which is 

directly related to the Reynolds number, and is defined as 

 

The Strouhal number is nearly constant for the sub-critical flow regime (see Figure 2.2) for 

circular cylinders, with a value of about 0.2, and returns to a near constant state value of 0.24 

for the super-critical flow regime (Faltinsen 1993). In the transition flow regime the values of 

the Strouhal number depends on the surface roughness number, which is defined as 

 

 

Figure 2.2 Vortex patterns as a function of Reynolds number (Blevins 1994) 

 S𝑡 =
𝑓𝑠𝐷

𝑈
 (2.4) 
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 Here, 𝑘 is the characteristic size of the roughness. 

 

2.1.3 Vortices 

The tangential particle velocity at a point along the objects surface is proportional to its radius. 

As a result, as the fluid separates from the body, the difference in velocity causes shear in the 

thin fluid layers, resulting in vortices. 

At the point in time when a separation first occurs, the shedding of vortices will be symmetric 

about the structure axis in the flow direction, but as there are instabilities in the vortices, 

asymmetries will arise. These asymmetries will soon lead to the shedding of vortices 

alternating between the two sides, creating a vortex street behind the object. As the vortices 

shed from side to side, pressure variations along the aft of the structure create lift and drag 

forces, applying thrust forces to the structure. The frequency at which the vortices alternation 

runs a full circle is known as the shedding frequency, mentioned in the definition of the 

Strouhal number. When the shedding frequency, reaches a magnitude close to the body’s 

natural frequencies, the object will tend to oscillate. This phenomenon is called lock-in, where 

the shedding frequency will be locked into the natural oscillating frequency of the structure 

along its length.  

The shedding of vortices and amplitude of oscillation is highly dependent on the shape and 

surface of the structure cross-section. A circular cylinder is likely to oscillate with an 

amplitude, 𝐴, close to its diameter, D, where 
𝐴

𝐷
< 1.2. In this context, 

𝐴

𝐷
 is also known as the 

dimensionless amplitude. Moreover, a half cylinder exposed to current hitting the flat side first 

is likely to become unstable, with amplitudes escalating and ultimately ending in structural 

failure. 

 

 

 

 
𝑘

𝐷
 (2.5) 
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2.1.4 In-line and cross-flow motions 

 

Figure 2.3: Example trajectory of the mid-point of a structure subject to VIV 

 

Directional and perpendicular motions due to VIV are called in-line (IL) and cross-flow (CF) 

motions respectively. Figure 2.3 shows the idealized trajectory of the cylinder center as a result 

of VIV, and as previously defined, the shedding frequency is the rate at which the center moves 

the full trajectory. As can be seen from the figure, the IL motions will occur at twice this 

frequency, while the CF motion frequency can be associated with the shedding frequency 

directly.  

The figure also displays the difference in magnitude of motions, where the IL motions are 

usually much smaller than the CF motions. Hence, it is in the CF direction that the cylinder 

dimensionless amplitude is limited to 1.2. 

2.1.5 Reduced Velocity 

The reduced velocity is often used to describe the path length travelled in the IL direction, 𝑈𝑇, 

relative to the cylinders diameter. When defining the lock-in velocities for fluid flow, the 

reduced velocity definition connects the structural natural frequencies directly to the flow 

velocity.  

 𝑈𝑟 =
𝑈𝑇

𝐷
=
𝑈

𝑓𝐷
 (2.6) 
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2.1.6 Hydrodynamic Loading 

The steady IL force associated with fluid flow is described by Morison’s equation, i.e. Eq.2.7.  

 𝐹𝐼𝐿 = 𝐶𝑀𝜌
𝜋

4
𝐷2�̇�∞ + C𝐷𝐷 (

𝜌𝑈∞
2

2
) (2.7) 

where 

𝐹𝐼𝐿 In-line thrust force 

𝐶𝑀 Coefficient of mass 

𝐶𝐷 Coefficient of drag s 

�̇�∞ Fluid acceleration at a distance from 

object 

 

The formula is similar in both the IL and CF direction. However, the coefficient of drag will 

be replaced by the coefficient of lift. Vortices add an oscillating part to the fluid flow force in 

both IL and CF directions. As can be seen in Equation 2.7, the force consists of two separate 

parts, the force due to the drag, where the drag-coefficient is determined empirically from 

experiments, and the inertial part. The inertial-coefficient is 𝐶𝑀 = 1 + 𝐶𝐴 where 𝐶𝐴 is the added 

mass coefficient.  

It is this added mass coefficients contribution to the loading that is of interest when considering 

the accelerometer mass’ effect on the natural frequencies obtained in the experimental work. 

Some example added mass coefficients for VIV on free-spanning pipelines in lock-in 

frequencies are given in Section 4.5 of (DNV 2006). In reality, the added mass depends on the 

frequency, and will vary along the length of the structure and in time. However, to simplify, 

the added mass is assumed constant in the work presented in this thesis. 

2.1.7 Vortex Suppression 

In engineering practice, when designing offshore structures, the importance of minimizing the 

fatigue damage by VIV suppression limits the choice of shapes and materials. The optimal 

shape is one with reduced form drag, because it is the pressure variation due to drag that is the 

main cause of separation.  

A guide to the VIV mitigation strategies is given in (DNV 2010). It insists that reduction of 

VIV can be done either by changing structural properties, by changing surface properties, or 
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by verifying the structure by model testing. The recommended practice (RP) subdivides the 

surface modification methods in three categories; surface protrusions, shrouds and wake 

devices, shown in Figure 2.4. Surface protrusions, such as helical strakes, wires and studs, aim 

to hinder separation at the structure surface. Shrouds are placed a distance from the structure 

and aim to divide the flow into many small vortices, while wake devices hinder the building of 

a vortex street. Following from extensive experimental work on the subject, the RP gives 

suggestions to modelling considerations when these devices are to be included. 

 

Figure 2.4: Suppression devices.(a) and (h) are surface protrusions. (b) and (c) work like 

shrouds. (d)-(g) are forms of wake devices.(Blevins 1994) 

 

2.1.8 VIV Analysis 

Blevins discusses methods of VIV analysis in (Blevins 1994). As he points out, the first step is 

to identify structural modal characteristics, building the foundation for the model. This is 

usually done using finite element methods (FEM). There are two means of VIV analysis 

currently in use. Firstly, VIV can be studied by use of finite element solutions to Navier-Stokes 

equations, by dividing the flow field into a mesh and including a turbulence model. This 

method is also known as computational fluid dynamics (CFD). Secondly, empirical data 
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resulting from extensive experimental work can be built into software capable of connecting 

the structures characteristics to measured responses of similar experiments. An example of this 

type of software is MARINTEKS’s VIVANA. 

How modes and mode-shapes participate in vortex induced vibrations along a structure is 

difficult to predict, and two models are typically used, see Figure 2.5. Firstly, mode shapes are 

thought to be travelling waves, participating in the whole structure at separate time slots. This 

model is called the time sharing model, and is shown to the right in Figure 2.5. The second 

model assumes that multiple frequencies are present at the same time, but that each frequency 

is participating in a finite area along the structure, and these areas do not overlap. This model 

is called space sharing, and is shown to the left in the figure below. 

Space Sharing 

 

 

 

Time sharing 

 
Figure 2.5: Space sharing vs time sharing models of VIV analysis 

 

Continuous improvements in computer’s computational capacities are allowing for more 

complex and accurate VIV analysis tools. However, CFD modelling is still very resource 

demanding, and the empirical tools are limited to structures consisting of beam elements, so 

continuous work is needed to improve VIV analysis. 

.  
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Chapter 3  

Structural analysis of slender catenary structures 

The following chapter aims to provide general theory associated with the dynamic analysis of 

slender catenary structures subject to vortex induced vibrations. 

3.1 The equation of motion and solution methods 

A structures response to dynamic loading, like vortex-induced vibrations, requires a solution 

to the equation of motion. 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝑝(𝑡) (3.1) 

 

Describing a structure as a single mass with a single stiffness, moving in a single direction is a 

major simplification, and the system is therefore better described as a system of equations of 

motion, as given in Eq.3.2.  

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑦} = {𝑝(𝑡)} (3.2) 

 

where [𝑀], [𝐶] and [𝐾] are the mass, damping and stiffness matrices respectively, and all of 

size 𝑁 × 𝑁. 𝑁 denotes the systems number of degrees of freedom (DOF). Moreover, for Eq. 

3.1 to transfer directly to Eq. 3.2, the mass, stiffness and damping would have to be described 

by infinite degrees of freedom, 𝑁 → ∞. However, when using methods like the finite element 

method, 𝑁 is finite, and so the accuracy of the calculated responses to loads depends on the 

chosen number of elements that describe the system. {�̈�}, {�̇�}, {𝑦} and {𝑝(𝑡)} are the 

acceleration, velocity, displacement and applied force vectors respectively, and are of size 𝑁 ×

1. An idealization of a multi-degree of freedom (MDOF) system is shown in Figure 3.1. 
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Figure 3.1: A multi-degree of freedom system 

 

Equation 3.2 describes coupled equations of motion, but the simultaneous solution to these 

equations becomes inefficient as DOF increase. It is therefore more efficient to expand the 

equation of motion in terms of modal contributions (Chopra 2007). Here, the response is 

decoupled into a time-dependent part, the contribution factor, and a part describing the shape 

of the response. The number of different shapes describing the response should also be infinite, 

but is limited by the number of elements chosen to subdivide the system. Each of these shapes 

can be viewed as responses of single degree of freedom (SDOF) systems to loading, and the 

total response is a super-positioning of all of the SDOF responses. 

The homogeneous solution to the MDOF system without damping, when {𝑝(𝑡)} = 0 and [𝐶] =

0, has a solution on the form. 

 {𝑦(𝑡)} = {𝑞𝑛(𝑡)}{𝜙𝑛} = ({𝐴𝑛} 𝑐𝑜𝑠 𝜔𝑛𝑡 + {𝐵𝑛} 𝑠𝑖𝑛 𝜔𝑛𝑡){𝜙𝑛} (3.3) 

 

where 𝑛 denotes the DOF, 𝑞𝑛 is the time variation of displacements, 𝜙𝑛 is the deflected shape, 

{𝐴𝑛} and {𝐵𝑛} are vectors of constants and 𝜔𝑛 is a natural frequency. Substituting Equation 3.3 

into Equation 3.2 gives 

 [−𝜔𝑛
2[𝑀]{𝜙𝑛} + [𝐾]{𝜙𝑛}]{𝑞𝑛(𝑡)} = 0 (3.4) 

 

The only non-trivial solution to Eq. 3.4 is found when  

 𝑑𝑒𝑡 [[𝐾] − 𝜔𝑛
2[𝑀]] = 0 (3.5) 
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This equation is known as the characteristic equation of a system, and solving for 𝜔𝑛
2 results in 

N real and positive roots, known as the systems eigenvalues. When the natural frequencies, 𝜔𝑛, 

are known, the corresponding vectors, 𝜙𝑛, known as the mode-shapes, can be found using the 

equation 

 [[𝐾] − 𝜔𝑛
2[𝑀]]{𝜙𝑛} = 0 (3.6) 

 

The resulting dynamic response, expressed in terms of modal contributions, is given in 

Equation 3.7. 

 {𝑦(𝑡)} =∑{𝑞𝑟(𝑡)}{𝜙𝑟}

𝑁

𝑟=1

= [Φ]{𝑞(𝑡)} (3.7) 

 

The matrix Φ is known as the modal matrix, where each column represents the mode-shape 

corresponding to the eigenvalues of a spectral matrix containing the eigenvalues on the 

diagonal. 𝑞𝑟(𝑡) contains scalar multipliers for each DOF of the corresponding rth modes with 

time, and 𝑞(𝑡) is a matrix containing the contributions of all modes. 

Substituting for 𝑦(𝑡) in equation 3.2, and multiplying by the transform of the modal matrix 

results in the equation of motion in terms of modal contributions given by Equation 3.8. 

 [Φ]𝑇[𝑀][Φ]{�̈�(𝑡)} + [Φ]𝑇[𝐶][Φ]{�̇�(𝑡)} + [Φ]𝑇[𝐾][Φ]{𝑞(𝑡)}

= [Φ]𝑇{𝑝(𝑡)} (3.8) 

 

3.1.1 Modal analysis using damped modes 

Damping of a system is complicated, not only because it is difficult to predict or know for 

certain, but also because it complicates the calculations and results of the characteristic 

equation, given as Equation 3.5 for the un-damped case, and by Equation 3.11 for the damped 

case. The damping can be categorized by two main groups, classical and non-classical 

damping. In classical damping, which is usually an idealized form of damping (Chopra 2007), 

the damping is symmetrically distributed throughout the whole system. For non-classically 

damped systems, the energy dissipating areas are unevenly distributed, and more difficult to 

identify. 
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3.1.1.1 Rayleigh Damping 

A method of predicting classical damping is with use of Rayleigh damping, Equation 3.9. It 

assumes that the damping matrix is proportional to both the stiffness and mass matrix, and 

visualized in Figure 3.2. 

 [𝐶] = 𝑎0[𝑀] + 𝑎1[𝐾] (3.9) 

 

 

 

Figure 3.2: Conceptual interpretation of Rayleigh damping, as interpreted from (Crowe 

2009) 

 

If the modal damping is known from experimental data, the coefficients 𝑎0 and 𝑎1 can be 

obtained by Equation 3.10 

 

𝑎0 = 2𝜉𝑛𝜔𝑛 

𝑎1 =
2𝜉𝑛
𝜔𝑛

 
(3.10) 

where 𝜉𝑛 is the damping ratio corresponding to the natural frequency 𝜔𝑛. 

3.1.2 Calculating Modal Parameters with Damping 

 [[𝐾] + 𝜔𝑛[𝐶] + 𝜔𝑛
2[𝑀]]{𝜙𝑛} = 0 (3.11) 

 

As systems that are of interest for VIV are all under-damped, the solutions of Equation 3.11 

will all be of complex form, and in complex conjugate pairs. The procedure of obtaining the 
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solutions to 3.11 without the use of major computational effort is done by reducing the second 

order equation of motion to a system of first order equations (Hoen 2005). 

 

𝑥 = [
𝑦
�̇�] 

�̇� = [
�̇�
�̈�
] 

(3.12) 

 

Where 𝑥 is known as a state vector. This results in the equation of motion on the form 

 

[
[𝐼] [0]
[0] [𝐼]

] {�̇�} + [
[0] −[𝐼]

[𝑀]−1[𝐾] [𝑀]−1[𝐶]
] {𝑥} = [

[0]

[𝑀]−1
] {𝑝} 

{�̇�} = [
[0] [𝐼]

−[𝑀]−1[𝐾] −[𝑀]−1[𝐶]
]

⏟                
[𝐴]

{𝑥} + [
[0]

[𝑀]−1
]

⏟    
[𝐵]

{𝑝} 
(3.13) 

 

Here, 𝐴 is a 2𝑁 by 2𝑁 matrix. Assuming free vibration, {𝑝} = 0, and a solution on the form 

 {𝑥(𝑡)} = 𝑒𝜆𝑡{𝑥} (3.14) 

where 𝜆 are the eigenvalues of the system. 

Equation 3.13 can be written as  

 [𝐴]{𝑥} = 𝜆{𝑥} (3.15) 

 

And also, because det(𝐴) = det(𝐴𝑇). 

 [𝐴]𝑇{𝑢} = 𝜆{𝑢} (3.16) 

 

Solving for 𝜆 in both Equation 3.15 and 3.16 results in the same 2𝑁 eigenvalues, 𝜆, with 2𝑁 

corresponding eigenvectors, [𝑋] = [𝑥1, 𝑥2, 𝑥3, … , 𝑥2𝑁] and [𝑈] = [{𝑢1}, {𝑢2}, {𝑢3}, … , {𝑢2𝑁}]. 

These are right and left column eigenvectors respectively, and are related by [𝑈]𝑇 = [𝑋]−1. 

The full derivation of this relationship is found in (Hoen 2005). 𝜆 consists of 𝑁 complex 

conjugate pairs.  
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Before attempting to plot the mode shapes spatially, it is practical to view the eigenvectors in 

a complex plane plot. This is useful for determining if the element poles are in a straight line 

or out of phase with each other, which result in normal or complex modes respectively. 

As the response is assumed a linear combination of the 2𝑁 solutions of eigenvalues and 

eigenvectors, following an initial state at 𝑡 = 𝑡0, it can be written as Equation 3.17. 

 {𝑥(𝑡)} =∑{𝑥𝑗}𝑒
𝜆𝑗(𝑡−𝑡0){𝑢𝑗}

𝑇
{𝑥(𝑡0)}

𝑁

𝑗=1

+ {𝑥𝑗}
∗
𝑒𝜆𝑗

∗(𝑡−𝑡0){𝑢𝑗}
∗𝑇
{𝑥(𝑡0)} (3.17) 

 

Where 𝜆𝑗 and 𝜆𝑗
∗ are complex conjugate pairs. As we are only interested in the displacement 

solution of {x(t)} in this thesis, we can choose to keep only the first 𝑁 elements of [𝑋] and [𝑈], 

following from 3.12. On polar form the response can be written as 

 
yk(t) =∑2|𝑢𝑗,𝑘

𝑇 𝑥𝑘(𝑡0)|

𝑁

𝑗=1

|𝑥𝑗,𝑘|𝑒
−𝛼𝑗(𝑡−𝑡0) cos (𝜔𝑗,𝐷(𝑡 − 𝑡0) + 𝜃𝑗,𝑘

+ 𝜙𝑗(𝑡0)) 

(3.18) 

where 

𝛼𝑗 = 𝜉𝑗𝜔𝑗  Damping factor of mode j 

|𝑥𝑗,𝑘|  Magnitude of state-space eigenvector j, element k 

𝜔𝑗,𝐷  Damped circular frequency of mode j 

|𝑢𝑗,𝑘
𝑇 𝑥𝑘(𝑡0)|  

Initial modal amplitude of mode j corresponding to the initial state 

𝑥(𝑡0) 

𝜔𝑗  Un-damped circular frequency of mode j 

 𝜉𝑗  Damping ratio of mode j 

 𝜃𝑗,𝑘  Modal phase corresponding to element k 

 𝜙𝑗(𝑡0) =

𝑎𝑟𝑔(𝑢𝑗,𝑘
𝑇 𝑥𝑘(𝑡0)) 

Initial modal phase corresponding to mode j. 

 

Where 𝜔𝑗 and 𝜉𝑗 are given by Equations 3.19 and 3.20 (Lallement & Inman 1995). 
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 𝜔𝑗 = √𝑅𝑒(𝜆𝑗) + 𝐼𝑚(𝜆𝑗) (3.19) 

 𝜉𝑗 = −
𝑅𝑒(𝜆𝑗)

√𝑅𝑒(𝜆𝑗) + 𝐼𝑚(𝜆𝑗)

 
(3.20) 

 

In the case of proportionally damped systems, the modal phase corresponding to element k is 

expected to be zero, meaning that the components of a mode lie on a straight line in the complex 

plane. As a result, the mode shapes are similar to those found by normal un-damped modal 

analysis, but the mode shapes occur when exposed to frequencies corresponding to the damped 

natural frequencies, and the various shapes are phase-shifted relative to each other. This is 

practical for trying to recreate a response of a system with structural damping, but does not 

allow for the identification of mode shapes with phase-shifts between elements. 

 

3.1.3 Modal Analysis in the Frequency Domain 

Equation 3.2 can also be solved for a given harmonic loading, {𝑝𝑘(𝑡)} = {𝑝0,𝑘} ∙ 𝑒
𝑖𝜔𝑘𝑡, where 

𝑘 links the amplitude to the frequency 𝜔. The response to this load is assumed to be 

 {𝑦𝑘(𝑡)} = {𝐺𝑘}𝑒
𝑖𝜔𝑘𝑡 (3.21) 

 

where {𝐺𝑘} is a vector of constants. Substituting for {𝑦} in 3.2 with 3.21 results in the following 

equation 

 {𝐺𝑘}𝑒
𝑖𝜔𝑘𝑡(−𝜔𝑘

2[𝑀] + 𝑖𝜔𝑘[𝐶] + [𝐾]) = {𝑝𝑘(𝑡)} (3.22) 

 

So as a result, the response to a given harmonic loading {𝑝𝑘(𝑡)} is 

 {𝑦𝑘(𝑡)} = (−𝜔𝑘
2[𝑀] + 𝑖𝜔𝑘[𝐶] + [𝐾])

−1 ∙ {𝑝𝑘(𝑡)} = [𝐻(𝜔𝑘)] ∙ {𝑝𝑘(𝑡)} (3.23) 

 

Where [𝐻(𝜔𝑘)] is known as the frequency response to a given frequency 𝜔𝑘 (FRF). As this 

same derivation can be given to any frequency, 𝜔, the frequency response function can be 

generalized as 
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 [𝐻(𝜔)] = (−𝜔2[𝑀] + 𝑖𝜔[𝐶] + [𝐾])−1 (3.24) 

 

This is useful when the load and response are transformed to the frequency domain through 

Fourier transformations, which will be presented in Section 4.1. The resulting link of the load 

and response in the frequency domain is given by Equation 3.25. 

 [𝑌(𝜔)] = [𝐻(𝜔)][𝑃(𝜔)] (3.25) 

 

3.2 Static analysis of slender catenary structures 

The catenary is defined as the shape a chain or a cable assumes under its own weight when 

supported only at its ends, as shown in Figure 3.3. To find the characteristics of a catenary 

shaped structure in terms of vibration response, it is necessary to model the shape of the 

catenary in terms of tension, position and angle along its length. This requires solving the 

equation of motion, Eq. 3.2, for the case of no inertia or damping terms. Multiple theories and 

assumptions exist for the prediction of catenary configuration. First, one can distinguish 

between solutions where the catenary is thought to be inelastic and flexible (also known as line 

or cable theories), and solutions where the bending stiffness is thought to play a large role in 

the shape (also known as beam formulations). Secondly, it is possible to determine the shape 

either analytically or numerically using the finite element method (FEM).  

In cable formulations of the catenary shape, the cables axial tension is thought to play a major 

role in the shape that the line takes. As discussed in (Moe & Arntsen 2001), one must also 

consider whether the cable is extensible or not. None of the presented theories allow for 

interaction with the seabed in the prediction of shape, so the starting point in terms of 𝑥-

direction is taken from the catenaries touch-down-point (TDP), the point at which it first lifts 

from its foundation. 
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Figure 3.3: The catenary plane, and the catenary cross-section 

 

3.2.1 Inextensible cable 

The cable self-weight and tension are described in Equation 3.26 and 3.27 respectively. Here, 

the wet-weight is simply the weight of the riser plus its content, subtracting the buoyancy. The 

force in the catenary walls resulting from the self-weight, plus the force due to the external 

pressure, subtracting the force due to the internal pressure, describe the tension. 

 𝑤 = 𝜌𝑠𝑔𝐴𝑠 + 𝜌𝑖𝑔 𝐴𝑖 − 𝜌𝑒𝑔𝐴𝑒 (3.26) 

 𝑇𝑒𝑓𝑓 = 𝑇𝑤𝑎𝑙𝑙 + 𝑃𝑒𝐴𝑒 − 𝑃𝑖𝐴𝑖 = 𝑇𝑒 (3.27) 

where 

𝑤 Wet Weight 

𝜌𝑠 Structure material density 

𝜌𝑖 Internal content density 

𝜌𝑒  External fluid density 

𝑇𝑤𝑎𝑙𝑙  Tension in wall due to self-weight 

𝑃𝑖 Internal pressure 

𝐴 Area of material cross-section 

𝐴𝑖 Area of internal void 

𝐴𝑒 Total area of cross-section 

𝑇𝑒𝑓𝑓 Effective tension 

𝑃𝑒 External pressure 
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When the axial stiffness is assumed large enough that the cable does not elongate due to its 

own weight, the solution to the catenary shape is in accordance with inextensible theory. 

Furthermore, the tension along the line can be decomposed into a vertical component 𝑉, and a 

horizontal component 𝐻, see Figure 3.3. As the catenary is assumed to be loaded only by its 

own weight, the horizontal component of the tension will be constant. Therefore, the vertical 

component can be expressed as a function of the horizontal component and the variation of 

profile along the length, 
𝑑𝑧

𝑑𝑥
. Introducing a suggested solution of this derivative, Equation 3.28, 

Equation 3.29 is obtained from integration. 

 
𝑑𝑧

𝑑𝑥
= 𝑠𝑖𝑛ℎ (

𝑤�̃�

𝐻
) (3.28) 

 𝑧(�̃�) =
𝐻

𝑤
(𝑐𝑜𝑠ℎ (

𝑤�̃�

𝐻
) − 1) (3.29) 

 �̃� = 𝑥 − 𝑥𝑇𝐷𝑃 (3.30) 

where 

𝑥 x-directional coordinate 

𝑧 z-directional coordinate 

𝐻 Horizontal tension component 

 

The height at which the riser is supported, that is 𝑧𝑡𝑜𝑝, is usually known. To describe the rest 

of the catenary using Eq.3.28 and Eq.3.29 requires that an additional parameter is known. This 

can be either the horizontal component of tension, 𝐻, the top angle, 𝜃 = arctan (− 𝑠𝑖𝑛 (𝑤 ∙

𝑥𝑇𝐷𝑃

𝐻
)), x-coordinate at the touch-down-point (TDP), 𝑥𝑇𝐷𝑃, or the axial tension specified along 

the full length. 

3.2.2 Extensible cable 

In catenaries where the density of the material outweighs the material strength, the inclusion 

of the materials axial stiffness, 𝐸𝐴, is needed. Here, 𝐸 is short for the material Young’s 

modulus, and 𝐴 is the cross section area. An interpretation of this theory is presented in 

(Triantafyllou et al. 1985), although the full derivation is not included in the article. However, 

the basic principle is that the elongation due to tension, 휀 = 𝑇/𝐸𝐴, results in an arc length 𝐿 =
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𝐿0(1 + 휀), where 𝐿0 denotes the un-stretched arc length. Because the tension varies along the 

line, the arc length will have to be estimated from an integration of the local elongations at 

discrete points, 𝑑𝐿 = 𝑑𝐿0(1 + 휀). The resulting formulas are given below.  

 

 Te(𝑠) = √(𝐻2 + [𝑉 − 𝑤(𝐿 − 𝑠)]2)  (3.31) 

 𝑥(𝑠) =
𝐻

𝑤
(arcsinh

𝑉 − 𝑤(𝐿 − 𝑠)

𝐻
− arcsin

𝑉 − 𝑤𝑙

𝐻
) +

𝐻𝑠

𝐸𝐴
 (3.32) 

 
𝑧(𝑠) =

𝐻

𝑤
(√1 + (

𝑉 −𝑤(𝐿 − 𝑠)

𝐻
)

2

−√1 + (
𝑉 − 𝑤𝐿

𝐻
)
2

)

+
𝐻𝑠

𝐸𝐴
(
𝑉

𝐻
𝑠 +

𝑤

2𝐻
(𝐿 − 𝑠)2)   

(3.33) 

 𝑡𝑎𝑛(𝜃(𝑠)) =
𝑉

𝐻
−
𝑤

𝐻
(𝐿 − 𝑠) (3.34) 

where 

𝑠 Lagrangian coordinate 

𝜃 Catenary’s angle with the horizontal 

plane 

𝑥(𝑠) x-coordinate at s 

𝑧(𝑠) z-coordinate at s 

 

 

As a practical example, the theories of inextensible and extensible catenary shapes are applied 

to the case study catenary, which will be presented in Chapter 5, and the results are presented 

in Figure 3.4 and 3.5. As can be seen, for this catenary the effective tension relative to the axial 

stiffness has little or no effect on the resulting configuration, so either theory can be adapted.   
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Figure 3.4: Catenary profiles calculated by 

inextensible and extensible theory 

Figure 3.5: Catenary tension distribution 

calculated using extensible and inextensible 

cable theory 

 

3.2.3 Beam formulations of the catenary shape 

The above presented theories both rely on the assumption that the bending stiffness of the 

catenary has no effect on the configuration of the catenary. Although there are studies in the 

application of newer mathematical models to predict the catenary shape, (Hsu & Pan 2014), 

they are still very complex, and to the authors knowledge not widely used and tested. Therefore, 

the static equilibrium of a catenary including bending stiffness is assumed adequately described 

using FEM.  

Figures 3.6 and 3.7 show how the solutions using cable theory deviate from the FEM modelled 

shape for the base case given in Chapter 5. Notice that the bending stiffness holds a lot of the 

weight, lowering the effective tension, which leads to a larger sag of the catenary. Notice also 

the effect of varying the TDP angle from 0° to 2°, the striped red and blue lines respectively, 

and how this increases the effective tension along the line. 

Lubbad concluded that for the experimental catenary model, the effects of bending stiffness 

are relatively large, and it is recommended that this static profile should be used when 

comparing the results of the experimental data with those from the numerical and analytical 

calculations (Lubbad et al. 2011) 
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Figure 3.6: Comparison of beam and cable 

formulations of the catenary profile 

Figure 3.7: Comparison of beam and cable 

formulations of the tension distribution 
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3.3 Eigenvalue analysis of slender catenary structures 

The following will present the various methods applied for solving the equation of motion, Eq. 

3.2, for slender catenary structures by means of natural frequencies and mode-shapes. It is 

important when describing catenary motions to distinguish between in-plane and out-of-plane 

motions. As pointed out by (Triantafyllou et al. 1985), the directional motions are uncoupled 

for out-of-plane motions. Therefore, they can be idealized as a taut-string or straight beam with 

varying tension along the length. The natural frequencies can then be described by Equation 

3.35, assuming a near constant tension variation. This near constant tension variation can be 

obtained using buoyancy devises along the length of the structure. 

where 

T Mean tension 

m Mass per unit length 

L Span between tie downs 

fi Natural frequency of mode i 

 

Eq. 3.35 is applicable in many cases. However, as the length of catenaries increase, the 

applicability of these buoyancy solutions may decline. As it is assumed that the axial tension 

has a large influence on the calculated frequencies, the variation over the riser length should 

have a profound effect. 

The in-plane motions are even more complex, and are dependent on the angle of inclination as 

well as the tension distribution. The transverse and axial motions are coupled, and it is 

important to consider both in combination when estimating natural frequencies. Multiple 

studies have focused on overcoming the difficulties in interaction between varying tension, 

longitudinal and transverse motion, resulting in multiple derivations with varying assumptions. 

Triantefyllou and his team gave an analytical, asymptotic solution to the eigenvalue problem 

for inclined cables in 1984 (Triantafyllou et al. 1985). In mathematical analysis, asymptotic 

 
𝑓𝑖 =

𝑖

2𝐿
(
𝑇

𝑚
)

1
2
, 𝑖 = 1,2,3, … (3.35) 
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analysis is the practice of estimating limiting behavior. For solving differential equations, this 

entails finding the singular points of the equation. However, one of the main limitations of the 

solution presented in 1985 is its shallow-sag formulation. That is, the axial tension at the point 

on the catenary where the inclination angle is the same as the angle of the total inclination of 

the cable must be much larger than the cable weight, 0 <
𝑤𝐿

𝑇𝜃
≪ 1. 

In 1983, Kim introduced the application of Wentzel-Kramers-Brillouin (WKB) method to 

solving the differential equation of long slender beams, assuming that the tension varies slowly 

along the beam (Kim 1983). 

Modified asymptotic solutions were presented in 2008 by Lubbad and Moe (Lubbad & Moe 

2008). The differential equation was solved using the “local analysis” method for cables, 

neglecting bending stiffness, and the WKB method was used for solving the equation when 

including the bending stiffness term. In the methods presented, the tension variation along the 

length of the beam was considered linear, which is an assumption fit for estimation of nearly 

vertical cables or beams. 

In 2011, the “local analysis” and WKB techniques were extended to catenary shaped structures 

by a change in the assumption of tension variation (Lubbad et al. 2011). The tension was 

approximated by a non-linear function. Section 3.3.1 will present the solutions recommended 

by this paper. The results from the modifications were compared with a Finite Element Method 

(FEM) solution to the eigenvalue problem, and the implemented FEM solutions, along with 

modifications made for this thesis will be discussed in Section 3.3.2. 

3.3.1 Analytical Methods 

3.3.1.1 Asymptotic Method of Cable or String 

A catenary’s local displacement as a function of the time t and vertical distance from the TDP 

is given by the equation of motion of 3.36. 

 

𝜕2

𝜕𝑧2
(𝐸𝐼

𝜕2𝑌(𝑧, 𝑡)

𝜕𝑧2
) −

𝜕

𝑑𝑧
(𝑇
𝜕𝑌(𝑧, 𝑡)

𝜕𝑧
) + 𝑐

𝜕𝑌(𝑧, 𝑡)

𝜕𝑡
+ 𝑚𝑡𝑜𝑡

𝜕2𝑌(𝑧, 𝑡)

𝜕𝑡2

= 𝑓(𝑧, 𝑡) 

(3.36) 
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The indexes used here are similar to those of Section 3.1 and 3.2. When considering Equation 

3.36 for a cable or string, the term containing the bending stiffness, 𝐸𝐼, is considered negligible, 

along with the damping term containing 𝑐. The equation is solved for  𝑓(𝑧, 𝑡) = 0. Now 

assuming a tension variation given as 

 𝑇 = 𝐻√1 + tan2 𝜃 = 𝐻√1 + 𝛼2 (3.37) 

 

where 𝜃 is the local angle of the catenary to the horizontal, 𝛼 = 𝑡𝑎𝑛 𝜃 and 𝐻 is still the 

horizontal tension component. Converting the vertical coordinates 𝑧 to the Lagrangian 

coordinates 𝑠, and with the displacement 𝑊(𝑠, 𝑡) along the catenary assumed harmonic, so that 

𝑊(𝑠, 𝑡) = 𝑤(𝑠) cos𝜔𝑛𝑡. After yet another change of variables, the resulting expected solution 

is on the form 

 𝑤(𝛼) = 𝑒S(α) (3.38) 

 

Solving 3.38 with a second order solution, the natural frequencies must be found iteratively 

using Equation 3.39. 

 
𝜔𝑛 (

𝐿

𝜏
)√
𝑚

𝐻
∙ ∫ (1 + 𝛼2)−

1
4𝑑𝛼 +

1

𝜔𝑛
(
𝜏

𝐿
)
1

8√
𝑚
𝐻

∫
(1 + 𝛼2) − 3

(1 + 𝛼2)
7
4

𝜏

0

𝑑𝛼
𝜏

0

= 𝑛𝜋   
(3.39) 

where 𝜏 is the value of 𝑡𝑎𝑛 𝜃 at 𝑠 = 𝐿 and 𝐿. The corresponding mode-shapes are found by 

 

𝑤(𝛼) = (1 + 𝛼2)−
1
4 𝑠𝑖𝑛

(

 𝜔𝑛√
𝑚

𝐻
(
𝐿

𝜏
)∫ (1 + 𝛼2)−

1
4𝑑𝛼

𝜏

0

+
1

𝜔𝑛
(
𝜏

𝐿
)

1

8√
𝑚
𝐻 

∫
(1 + 𝛼2) − 3

(1 + 𝛼2)
7
4

𝜏

0

𝑑𝛼

)

   

(3.40) 

 

3.3.1.2 Asymptotic Solution for a Beam Model 

When solving Equation 3.36 without a negligible bending stiffness, 𝐸𝐼, the characteristics of 

the catenary cannot be resolved by the previously presented local analysis technique. 
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Therefore, assuming that the tension varies slowly but non-linearly along the catenary, the 

problem is solved using the WKB method first presented for applications to long, slender 

beams in (Kim 1983), and later improved by Lubbad and Moe (Lubbad & Moe 2008). The 

solutions for the natural frequencies as given in (Lubbad et al. 2011) are the roots of Equation 

3.41. 

 
𝛤𝑛
1.5

𝑏
(2𝑒

𝜉𝑛
2 −

2

3
𝑒−

3𝜉𝑛
2 ) |

𝜉𝑛𝑡
 
𝜉𝑛𝑏

= 𝑛𝜋  (3.41) 

where 

𝑎 =
𝐻𝐿2

𝐸𝐼
 𝑏 =

(𝑇𝑡 − 𝐻)𝐿
2

𝐸𝐼
 𝛤𝑛 =

𝜔𝑛
𝜔0

 𝜔0 = √
𝐸𝐼

𝑚𝐿4
 

�̌� =
𝑠

𝐿
 𝜉𝑛 = 𝑠𝑖𝑛ℎ

−1
𝑎 + 𝑏�̌�

2𝛤𝑛
 𝜉𝑛𝑏 = 𝜉𝑛(�̌� = 0) 𝜉𝑛𝑡 = 𝜉𝑛(�̌� = 1) 

and 𝑇𝑡 is the effective tension in the upper end of the catenary. 

The corresponding mode-shapes are calculated by solving Equation 3.42. 

 𝑤𝑛 =
𝑒
𝜉𝑛
4

 √(𝑐𝑜𝑠ℎ 𝜉𝑛) 
𝑠𝑖𝑛 (

𝛤𝑛
1.5

𝑏
(2𝑒

𝜉𝑛
2 −

2

3
𝑒−

3𝜉𝑛
2 ) |

𝜉𝑛
 
𝜉𝑛𝑏

)  (3.42) 

3.3.2 Finite Element Solutions 

When using FEM, the catenary is divided into a net of elements, and the equation of motion 

given by Eq. 3.36 must be solved for each element separately. Each element is assumed to have 

three DOF at each node, see Figure 3.8, so that both the CF directional movement and the axial 

movement is accounted for.  
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Figure 3.8: The degrees of freedom of a catenary element 

 

3.3.2.1 Stiffness Matrix 

The assumption of three DOFs at each node results in the local stiffness matrix similar to that 

for a frame element given on page 26 of (Cook 2002).  However, the 𝑌1, 𝑌2, 𝑌3 and 𝑌4 

components are modified to account for the effects of the axial tension as follows 

 K =

[
 
 
 
 
 
𝑋 0 0
0 𝑌1 𝑌2
0 𝑌2 𝑌3

−𝑋 0 0
0 −𝑌1 𝑌2
0 −𝑌2 𝑌4

−𝑋 0 0
0 −𝑌1 −𝑌2
0 𝑌2 𝑌4

𝑋 0 0
0 𝑌1 −𝑌2
0 −𝑌2 𝑌3 ]

 
 
 
 
 

[
 
 
 
 
 
𝑢1
𝑣1
𝜙1
𝑢2
𝑣2
𝜙2]
 
 
 
 
 

 (3.43) 

 

 

𝑌1 =
12𝐸𝐼

𝐿3
+
36𝑇𝑏
30𝐿

+
36𝛥𝑇

60𝐿
 𝑌2 =

6𝐸𝐼

𝐿2
+
𝑇𝑏
10
+
𝛥𝑇

10
 

(3.44) 𝑌3 =
4𝐸𝐼

𝐿
+
2𝑇𝑏𝐿

15
+
𝛥𝑇𝐿

30
 𝑌4 =

2𝐸𝐼

𝐿
−
𝑇𝑏𝐿

30
−
𝛥𝑇𝐿

60
 

 𝑋 =
𝐸𝐴

𝐿
  

where 

𝑇𝑏 Tension in lower end of element 

Δ𝑇 = 𝑇𝑏 − 𝑇𝑡 Tension variation over the element 

3.3.2.2 Mass Matrix 

The mass matrix used for the original Matlab codes written by Lubbad is a consistent mass 

matrix for a frame element. Chapter 11.3 of (Cook 2002) explains how this matrix is 
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determined, and it is based upon the assumption that the shape functions describing the 

displacements over the elements, which are used when determining the stiffness matrix given 

in 3.43, are consistent with the variation of the acceleration field over the same element. This 

mass matrix assumes that the mass is distributed evenly along the element.  

However, when applying additional masses at locations throughout the catenary, the mass 

matrix of the original codes cannot be used, as the total mass can no longer be assumed 

distributed along the element. Therefore, the simpler mass matrix formulation, the lumped mass 

matrix, has been implemented, as shown in Eq. 3.45. This formulation assumes that the total 

mass of the element is divided in two, and placed at the two element nodes. With this 

interpretation the accelerometer masses can be added at the node corresponding to its location, 

but divided evenly between the two elements that share this node. The 𝛼 of Equation 3.45 is 

included to account for the associated mass moment of inertia, and should be given a value of 

0 ≤ 𝛼 ≤ 1/24, following from the formula for rotational inertia. In this thesis, the assumption 

is made that the rotary inertia has little effect on the calculation of natural frequencies, so 𝛼 ≈

0. 

 M =

[
 
 
 
 
 
1 0 0
0 1 0
0 0 2𝛼𝐿2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 2𝛼𝐿2]

 
 
 
 
 

[
 
 
 
 
 
𝑢1
𝑣1
𝜙1
𝑢2
𝑣2
𝜙2]
 
 
 
 
 

 (3.45) 

 

The lumped mass matrix is a much simpler matrix, and as Cook points out with a number of 

examples, this mass matrix is expected to have larger errors in comparison with the true natural 

frequencies of systems. In his examples, it is clear that the expected error is larger for higher 

modes than in the lower modes. As a practical example, Table 3.1 shows the relative error of 

the consistent and lumped matrices for the catenary system used for the case study. 

Table 3.1: Comparison of lumped and consistent mass matrices for the case study catenary 

Eigenfrequency of mode no. 1 2 3 4 5 6 7 8 9 10 

Consistent mass matrix [Hz] 0,2256 0,5586 1,0593 1,7435 2,6168 3,6814 4,9382 6,3876 8,0297 9,8647 

Lumped mass matrix [Hz] 0,2256 0,5586 1,0593 1,7435 2,6168 3,6814 4,9382 6,3875 8,0296 9,8646 

Relative error [%] 0 0,0001 0,0001 0,0002 0,0003 0,0004 0,0006 0,0007 0,0009 0,0012 
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As can be seen, the difference is of negligible magnitude, but increases slightly with mode 

number. The relative error could be larger with lumped masses added at multiple locations, as 

the total effect given by the masses should be larger. However, it is assumed that this difference 

will still be relatively small. Therefore, the lumped mass matrix is considered sufficient for the 

comparison of the subsequent added mass comparison. 

3.3.2.3 The Global Stiffness and Mass Matrices 

After the stiffness and mass matrices for each element have been constructed, they must be 

systemized into a global mass and stiffness matrix for the total system. This is done by first 

rotating the matrices to the global axis using Equation 3.46, and then adding the matrices using 

indexes so that the influences of the DOFs that are shared between elements are summed in the 

global matrix. 

 

3.3.2.4 Complex modes 

Structures subject to dynamic loading do not necessarily experience large amounts of damping 

effects, but are rarely without damping at all. For this reason, when attempting to recreate a 

measured response using numerical or analytical methods, it may be of importance to 

incorporate some form of damping. As mentioned in Section 3.1.1, a simple method of 

incorporating the damping effects in the in-house Matlab formulated FEM codes is by use of 

the theory of Rayleigh damping. The initial 𝑎0 and 𝑎1 values can be based on findings from 

analysis of the experimental work, using Eq. 3.10. It is important to remember that these 

calculations do not allow for identification of mode shapes with phases between elements, but 

could identify the expected damping of each of the modes when recreating the responses. 

  

 𝑟 =

[
 
 
 
 
 
cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0
0 0 1]

 
 
 
 
 

 (3.46) 
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Chapter 4  

System Identification Methods 

System identification methods, which are used for experimental modal analysis (EMA) and 

OMA, aim to predict the structural properties of a system by studying the output of 

experimental measurement. The practice of EMA and OMA is based on the assumption that 

the dynamic behavior of any system can be expressed in terms of modal characteristics, as 

explained in Section 3.1. In engineering disciplines, modal testing became more widely used 

during the 1980’s (Ewins 2000). Since then, the colossal evolution in computer computational 

capacities, and the introduction of the FEM, have led to even more robust and reliable tools 

capable of validating numerical analysis of structures (Rainieri et al. 2014). 

The distinction between OMA and EMA lies in the requirements of the input data. While EMA 

requires that the input load must be known or at least estimated, the OMA techniques require 

response measurements only. Assumptions made when using OMA are: 

 Linearity: There is a constant link between an input and the corresponding output. 

 Stationarity: The systems modal characteristics do not change in time. 

 Observability: Sensors are located so that the modes of interest are possible to extract 

from the data. It is important to avoid placing sensors at nodal points, and to have an 

adequate number of sensors. 

As the input loading is not known, the assumption is made that the combined system, that is 

the excitation system and the structure of interest, are loaded with white noise, see Figure 4.1. 

White noise is a zero mean random signal with a constant power spectrum. However, if enough 

data is available, one can distinguish between the properties of the excitation system and the 

structure system because the structures responses are expected to be narrow band and constant 

with time, while the excitation system has a broadband response and can be time-invariant. 

 



Chapter 4 

36 

 

 

OMA is ideal, as the identified modal parameters are found from actual behavior when the 

system is exposed to actual conditions, and not to idealized artificial vibrations. Other reasons 

for choosing to apply OMA is that it does not interfere with operational use of a structure, and 

the input loads do not need to be known.  

The methods of gathering measurement data for EMA and OMA are advancing. Structures or 

models can be equipped with classical measurement systems like accelerometers, 

extensometers, and strain or tilt gauges, but can now also be investigated with ultrasonic 

sensors (Carullo & Parvis 2001), laser vibrometers (Giuliani et al. 2003) and fiber optics (Casas 

et al. 2003). This leads to the attractive fact that the modal analysis can be carried out cheap 

and fast, and more reliable. There is, however, a limitation in the sensitivity in the required 

data, which could limit the application of OMA. Also, the assumption of broadband loading 

does not hold for all cases. 

To understand the concepts of system identification, an introduction to the fundamentals of 

random processes and corresponding mathematical models is needed, and so is presented in 

the following text. The OMA methods available in the commercial software MACEC 

(Reynders et al. 2014) will also be introduced, as well as the TDD method (Kim et al. 2005) 

formerly implemented on a similar catenary analysis (Fang 2014). Basics and concepts 

presented may only touch the surface of the topics, so the interested reader is referred to 

(Newland 2005) and (Rainieri et al. 2014) for more in-depth explanations.  

 

Figure 4.1: Assumed system for OMA applications 
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4.1 Random Processes 

An output measurement from a structure subject to environmental loading will often look like 

the time-series to the right in Figure 4.2. As is shown, the signal fluctuates profoundly in time 

and it is difficult to see any regularities in the data.  

 

Figure 4.2: Sinusoid signal vs a random process signal. 

 

A solution to describing the fluctuations is the use of Fourier transformations, Eq.4.1 and 

Eq.4.2. They transform a signal in the time domain (TD) to a signal in the frequency domain 

(FD), by decomposing the signal as a sum of sinusoids with frequency 𝑓, as shown to the left 

in Figure 4.2.  

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 (4.1) 

 𝑋𝑘 = ∑ 𝑥𝑘𝑒
−
𝑖2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

,    𝑘 = 0,1,2, … ,𝑁 − 1 (4.2) 

 𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑓
∞

−∞

 (4.3) 

where 

𝑓  Frequency 

𝑥(𝑡)  Measured signal 

𝑡   Time 

𝑋(𝑓)  Fourier coefficients 

𝑋𝑘  Discrete Fourier coefficients 
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𝑁   𝑇/𝛥𝑡  

 

The Fourier coefficient magnitude |𝑋𝑘| relates to the magnitude of the sinusoid of frequency 

𝑓𝑘, and the signal phase is described by 𝜃𝑘, Eq.4.4. 

 𝜃𝑘 = arctan (
𝐼𝑚(𝑋𝑘)

𝑅𝑒(𝑋𝑘)
) (4.4) 

4.1.1 Power Spectral Density 

The power spectral density (PSD), is used to describe how the present frequencies are 

distributed in terms of powers, or magnitudes. As the Fourier transform of Eq.4.1 is integrated 

from −∞ to ∞, the power spectral density will cover both the positive and corresponding 

negative frequencies. However, the spectral densities are mirrored about the y-axis, and so for 

practical applications, it is more common to consider only the positive frequencies, given by 

𝐺𝑥𝑦(𝑓). 

 𝐺𝑥𝑦(𝑓) = 2 ∙ 𝑆𝑥𝑦(𝑓) = lim
𝑇→∞

𝐸[
1

𝑇
𝑋𝑘
∗(𝑓, 𝑇)𝑌𝑘(𝑓, 𝑇)] (4.5) 

where 

 

 

 

Here, the 𝑥 and 𝑦 of 𝑆𝑥𝑦(𝑓) and 𝐺𝑥𝑦(𝑓) denote that the spectrum for the relationship between 

variables 𝑥 and 𝑦, also called the cross-spectrum, while a subscript containing only one 

variable, or two of the same, represents the auto-spectrum. Generally, these spectrums are 

complex, where the real part is often called the co-spectrum, and the imaginary part is called 

the quad-spectrum. 

 𝑆𝑥𝑦(𝑓) = 𝐶𝑜𝑥𝑦(𝑓) − 𝑖𝑄𝑢𝑥𝑦(𝑓) (4.6) 

𝑆𝑥𝑦(𝑓) Two-sided PSD 

𝐺𝑥𝑦(𝑓) One-sided PSD 

𝑋𝑘
∗(𝑓, 𝑇) Complex conjugate of 𝑋𝑘 
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4.1.2 Convolution 

To express how much one function, 𝑎, overlaps another function, 𝑏, as it is shifted over it, one 

can use a convolution integral, Eq.4.7. A convolution integral can be difficult to solve 

numerically. However, convolutions in TD correspond to multiplication in FD, so it may be 

practical to consider signals in FD by Fourier transformations before calculating convolutions, 

Eq.4.8. Also, the same goes for convolution in FD, which corresponds to multiplication in TD. 

This is as a result of the relationship between Equations 4.1 and 4.3.  

 c(t) = ∫ 𝑎(𝜏) ∙ 𝑏(𝑡 − 𝜏)𝑑𝜏
∞

−∞

= (𝑎(𝑡) ∗ 𝑏(𝑡)) (4.7) 

 𝐶(𝑓) = 𝐴(𝑓) ∙ 𝐵(𝑓) (4.8) 

4.1.3 Covariance 

The consequence of equation 4.7 and 4.8 is widely used in signal processing, as it allows us to 

interpret the relationships between signals with ease in both domains. In describing a structures 

dynamics, an important factor is how far a load or response, or a relationship between two 

signals, is from being constant in time. This can be described using the covariance, which 

measures how much two measurement time-series change together, subtracting the mean or 

constant offset. The equation for covariance is shown in 4.9. 

 

  𝐶𝑥𝑦 = 𝐸[(𝑥𝑘 − 𝜇𝑥)(𝑦𝑘 − 𝜇𝑦)] = ∬ (𝑥𝑘 − 𝜇𝑥)(𝑦𝑘 − 𝜇𝑦)
∞

−∞

𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (4.9) 

where 

𝑝(𝑥, 𝑦)  Joint probability density 

𝑥𝑘  Random variable 𝑥 

𝜇𝑥  Mean of 𝑥 

𝑦𝑘  Random variable 𝑦 

𝜇𝑦  Mean of 𝑦 
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In OMA, one of the main assumptions is that the signals are stationary. Stationary signals come 

from processes where the mean and variance do not change in time, so consequently the joint 

probability distribution is constant, even when the signal is shifted in time. Equation 4.10 

follows from this relationship, and shows that the covariance is only dependent on the lag of 

one variable in relation to the other in time.  

 𝐶𝑥𝑦(𝜏) = 𝐸[(𝑥𝑘(𝑡) − 𝜇𝑥)(𝑦𝑘(𝑡 + 𝜏) − 𝜇𝑦)] (4.10) 

where 

 

 

4.1.4 Correlation 

Covariance is a good way of describing how two signals move together. One can determine 

whether one increases at the same time as the other increases, positive covariance, or that one 

increases while the other decreases, negative covariance. However, it does not say to what 

degree the signals change with one another. This degree of variance is achieved by using the 

correlation function, Equation 4.11.  

 𝑅𝑥𝑦(𝜏) = 𝐸[𝑥𝑘(𝑡)𝑦𝑘(𝑡 + 𝜏)] (4.11) 

 

As for PSDs, the 𝑥 and 𝑦 represent covariance and correlation between two variables, the cross-

covariance, and two identical variables represent auto-covariance or auto-correlation functions. 

When the means of the variables are zero, or set to zero by subtracting the actual values, the 

correlation function and the PSD are related by 

 𝑆𝑥𝑦(𝑓) = ∫ 𝑅𝑥𝑦(𝜏)𝑒
−𝑖2𝜋𝑓𝜏𝑑𝜏

∞

−∞

 (4.12) 

 

Equation 4.12 shows that they are Fourier transform pairs. This relationship is practical for 

identifying the phase between two signals, which represents the concurrence of the signals. 

This phase is found by using the parts of the PSD as shown in Eq.4.6, and applying Eq.4.13.  

𝑡  Time 

𝜏  Time lag 



 

41 

 

 𝜙𝑥𝑦 = arctan (
𝑄𝑢𝑥𝑦(𝑓)

𝐶𝑜𝑥𝑦(𝑓)
)      (4.13) 

  

When 𝜙𝑥𝑦 = 0, the displacements are in the same direction. If on the other hand 𝜙𝑥𝑦 = 𝜋, the 

signals are perfectly phased in the opposite direction to one-another. When the signals are not 

in phase at frequencies corresponding to a predicted natural frequency, it is likely that the 

reason is presence of damping in the structure. 

4.1.5 Application of the Fundamental Theories 

4.1.5.1 Aliasing 

An important repercussion of applying the Discrete Fourier Transforms (DFT), Eq.4.2, is that 

the number of sinusoid frequencies describing the signal is limited by half of the sampling 

frequency, 𝑓𝑇 =
1

∆𝑡
. The limiting frequency is called the Nyquist frequency, 𝑓𝑁. This leads to 

the possibility of aliasing. If data points in a signal can correspond to multiple sinusoids of 

different frequencies, it is important to have a high enough sampling frequency so that all of 

the frequencies in the signal will be present in its power spectrum. If 𝑓𝑇 is too low, the 

magnitudes of the lower frequencies will erroneously show as larger in relation to other 

frequencies present in the signal. 

4.1.5.2 Filtering 

Even though it is important to have a high sampling frequency, so that the magnitudes of the 

frequencies in the spectrum are accurately characterized, this does not mean that all frequencies 

present in the data are of importance. Therefore, it is often of interest to remove excessive 

frequencies using so called band-pass filtering before analysis. This is done by applying a 

window function in the frequency domain, which means multiplying all frequencies of interest 

by one, and setting the redundant frequencies to zero. This concept is often used in the SDOF 

system identification methods, where the goal is to isolate frequencies that correspond to the 

natural frequency and mode-shape of the system as a whole. 
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4.1.5.3 Windowing 

Filtering can also be applied in TD. Here it is often called windowing, and sets measurements 

at time instances that are not of interest to zero. This can, however, not be done without caution. 

The reason for this lies in the fundamentals of the transformation from time to frequency 

domain. Windowing can be understood as multiplying the signal with a function that is only 

defined as one in the time window of interest, and zero elsewhere. Following from the 

relationships of Eq.4.3, 4.7 and 4.8, the operation can be viewed as convolution in the FD. The 

window function is a finite function of ones, and the Fourier transform will experience what is 

called leakage, as it will not be represented accurately by one single frequency, see Figure 4.3. 

Multiple frequencies will be present, and the convolution will result in the magnitude of 

frequencies to be spread over the frequency range. This problem can be resolved by using 

window functions, like for example the Hanning window, which approximately represent only 

one frequency in FD. It is, however, important to rescale the transformation to avoid loss in 

magnitude in the represented frequencies. 

 

Figure 4.3: A Fourier transform of a rectangular window function 

 

4.2 Singular Value Decomposition 

A mathematical algorithm used in many of the OMA analysis methods is single value 

decomposition (SVD). It redefines a matrix as a combination of three matrices 

 𝑨 = 𝑼𝑺𝑽∗ (4.14) 

 

 Where the matrix 𝑆 is a diagonal matrix containing the non-zero real or complex singular 

values, or eigenvalues, of the matrix 𝐴. 𝐴 is a 𝑚 × 𝑛 real or complex matrix, and so 𝑈 will be 
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a 𝑚 ×𝑚 real or complex matrix, and 𝑉∗ will be a 𝑛 × 𝑛 matrix containing the conjugate 

transpose or transpose of 𝑉. The 𝑚 columns of 𝑈 will contain the left-singular vectors of 𝐴 

corresponding to the 𝑚𝑡ℎ diagonal value of 𝑆, while similarly the  𝑛 columns of 𝑉 contain the 

right-singular vectors of 𝐴. The algorithm of singular value decomposition can be found in 

Chapter 8 of (Golub & Van Loan 1996). 
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4.3 Operational Modal Analysis Techniques 

4.3.1 Time Domain Decomposition Method 

The TDD method is a simple system identification technique that relies on reducing the system 

to a SDOF system before identifying the natural frequencies, damping and participation factors.  

The reduction of the system is done by filtering the data around peaks in the spectral densities 

of the output. As a result, the method requires that the modes are excited to an extent so that 

they can be identified as peaks in the PSD. But if the modes are adequately identifiable, the 

method has the advantage of requiring less computational effort than similar methods like the 

frequency domain decomposition method (FDD) (Kim et al. 2005).  

4.3.1.1 The Process 

The first step in the TDD method is to identify the peaks of the PSD signal. The PSD can be 

found using direct Fourier transforms of the correlation functions, or by Welch procedure, 

resulting in smoothed densities. The Welch procedure is less computationally demanding 

(Rainieri et al. 2014). The example PSD shown in Figure 4.4 is averaged in segments of 500 

elements, overlapping by 50. 

 

Figure 4.4: Example PSD from a sensor of the experimental data presented in Chapter 5. 

 

After identifying the frequencies of the peaks, band-pass filters have to be designed to filter 

out all other frequencies that are not part of the peaks. The article that first proposed this method 

uses a third order Butterworth filter for this process (Kim et al. 2005), and the fit of this filter 

is vital for the accuracy of the results.  
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Using the assumption that the total displacement can be decomposed into modal participations, 

as in Equation 3.7 of Section 3.1, the filtered signal can be written as 

 {𝑦𝑖(𝑘)} = {𝑐𝑖(𝑘)}{𝜙𝑖} + {휀𝑓(𝑘)} (4.15) 

 

where 𝑘 denotes the discrete time instance, 𝑦𝑖 is the filtered response of peak 𝑖, 𝑐𝑖 is the modal 

participation,𝜙𝑖 is the mode shape corresponding to mode 𝑖. 휀𝑓 is the error of this mode 

resulting from noise or the accuracy of the band-pass filtering, and which can also be 

decomposed into a sum of shapes and contributions in time, 𝜓𝑗 and 𝑑𝑗 respectively. 

When the filtered time-series is ready, the cross-correlation matrix of the signals from all of 

the sensors is calculated, resulting in what the literature calls the energy matrix. Here, 𝑌𝑖 is the 

𝑁 × 𝑝 matrix of 𝑝 discrete time instances and 𝑁 sensors. 

 [𝐸] = [𝑌𝑖][𝑌𝑖]
𝑇 = [

𝑅1,1 ⋯ 𝑅1,𝑁
⋮ ⋱ ⋮
𝑅𝑁,1 ⋯ 𝑅𝑁,𝑁

] (4.16) 

   

Applying the assumptions of Equation 4.15 to the energy matrix, results in Equation 4.17. 

 

[𝐸] = {𝜙𝑖}{𝑐𝑖}
𝑇{𝑐𝑖}{𝜙𝑖}

𝑇 + {𝜙𝑖}{𝑐𝑖}
𝑇∑{𝑑𝑗}

𝑝−1

𝑗=1

{𝜓𝑗}
𝑇

+∑{𝜓𝑗}{𝑑𝑗}
𝑇
{𝑐𝑖}{𝜙𝑖}

𝑇

𝑝−1

𝑗=1

+∑∑{𝜓𝑗}{𝑑𝑗}
𝑇
{𝑑𝑘}{𝜓𝑘}

𝑇

𝑝−1

𝑘=1

𝑝−1

𝑗=1

 
(4.17) 

 [𝐸] = {𝜙𝑖}𝑞𝑖{𝜙𝑖}
𝑇 +∑{𝜓𝑗}𝜎𝑗{𝜓𝑗}

𝑇

𝑝−1

𝑗=1

 

 

Here, 𝑞𝑖 and 𝜎𝑗 denote the scalar representing the physical energy at the modes. Now, using 

4.17, 𝐸 can be written as 

 [𝐸] = [𝐴][𝛺][𝐴]𝑇 (4.18) 

 

Solving Equation 4.18 for [𝐴] and [Ω] requires applying an SVD process, as presented in 

Section 4.2. The resulting matrix [𝐴] will contain the mode-shape of the mode in the first 
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column, and the mode-shapes of the noise in the other columns. Ω contains the energy of the 

𝑖𝑡ℎ identified mode, 𝑞𝑖, in the first number on the diagonal, and the remaining numbers on the 

diagonal represent the energy of the noise, 𝜎𝑗. If the identified peak represents an actual mode, 

𝑞𝑖 ≫ 𝜎1 > 𝜎2 >. . . > 𝜎𝑝−1, and in noise free data, all the sigma values should be zero. 

The next step in the process of TDD is to identify the natural frequencies and damping based 

on the identified mode shapes, and the modal contributions, which can be calculated based on 

Equation 4.15 using Equation 4.19. 

 {𝑐𝑖}
𝑇 =

1

{𝜙𝑖}𝑇 {𝜙𝑖}
{𝜙𝑖}

𝑇[𝑌𝑖] (4.19) 

 

This modal participation is now assumed noise free, as Equation 4.19 extracts the time-series 

of the identified mode shape only. Kim and his team recommend that the damping and natural 

frequencies are extracted from the spectrum of the participation using either peak-picking or 

the half-bandwidth method, or by use of ERADC (Kim et al.). In (Fang 2013) the author has 

chosen to use the half-power bandwidth method. However, this method has shown to have 

large errors (Rainieri et al. 2014), so the method proposed for this thesis is based on the 

framework presented in (Brincker et al. 2001). 

Utilizing the fact that 

 [𝑅𝑦𝑦(𝜏)] = [Φ][𝑅𝑝𝑝(𝜏)][Φ]
𝑇 (4.20) 

 

where 𝑅𝑦𝑦(𝜏) is the auto-correlation of the out-put time-series and 𝑅𝑝𝑝(𝜏) is the auto-

correlation of the modal participation. The auto-correlation function of the modal participation 

time-series, which is also called the free decay time domain function, is found first for all time 

lags. The damped natural frequencies can then be found by extracting the period of the zero-

up-crossings of this function. Then, the peaks of the function are identified, and the damping 

is found by the logarithmic decrement of the peaks. By writing the decrement on the form 

shown in Equation 4.21, the decrement can be found by identifying the slope of a linear 

regression of the first points of the function. 
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where 

 

 

 

 

 

4.3.2 The Macec Methods 

4.3.2.1 The Poly-Reference Least Squares Complex Frequency Method 

As a consequence of some limitations found in the original Least Squares Complex Frequency 

method (LSCF) in prediction of closely spaced modes and other conversion problems, the Poly-

reference Least Squares Complex Frequency method (p-LSCF) was presented in 2003 by 

(Guillaume et al. 2003). This method is a frequency domain method, see Section 3.1.3, utilizing 

the fact that the Fourier transform of a time-series has poles in all four quadrants of the complex 

plane, so that the FRF can be written as 

 

[H(ω)] =∑
[𝑅𝑟]

𝑖𝜔 − 𝜆𝑟
+

[𝑅𝑟
∗]

𝑖𝜔 − 𝜆𝑟∗

𝑁𝑚

𝑟=1

=∑
𝑄𝑟{𝜙𝑟}{𝜙𝑟}

𝑇

𝑖𝜔 − 𝜆𝑟
+
𝑄𝑟
∗{𝜙𝑟}

∗{𝜙𝑟}
∗𝑇

𝑖𝜔 − 𝜆𝑟∗

𝑁𝑚

𝑟=1
 

(4.23) 

where 

  𝑁𝑚 The number of modes 

 {𝜙𝑟} The mode-shape corresponding to mode r 

[𝑅𝑟]  The residue matrix 

 𝑄𝑟 Holds information about the modal scaling factor 

𝜆𝑟 = 𝜎𝑟 + 𝑖𝜔𝑑,𝑟 The pole of the 𝑟𝑡ℎ mode holding information 

about the damped frequency and ratio of damping 

 

 𝑘𝛿𝑘 = ln (
𝑟0
𝑟𝑘
) (4.21) 

 𝜉 =
𝛿

√𝛿2 + 4𝜋2
 (4.22) 

𝛿𝑘  The logarithmic decrement 

𝑘  Peak number 

 𝑟0  Magnitude of the first peak 

𝑟𝑘  Magnitude of the 𝑘𝑡ℎ peak 

𝜉  Damping ratio 
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Continuing, the FRF is also written on a Matrix Fraction Description (MFD), which is a ratio 

of two matrix polynomials, the numerator polynomial and the common-denominator 

polynomial. 

 [H(ω)] =
[𝐵(𝜔)]

𝐴(𝜔)
=
∑ [𝛽𝑗(𝜔)]Ω

𝑗(𝜔) 𝑛
𝑗=0

∑ 𝛼𝑗Ω𝑗(𝜔)
𝑛
𝑗=0

 (4.24) 

where 

 [𝛽𝑗(𝜔)] Unknown matrix of complex parameters to be 

estimated 

 𝛼𝑗 Unknown complex parameters to be estimated 

 Ω𝑓
𝑗
= 𝑒(𝑖𝜔𝑓∆𝑡)𝑗 = 𝑧𝑓

𝑗
 Complex polynomial basis function 

 𝑛 = 2𝑁𝑚/𝑁𝑐 Order of the polynomial 

 𝑁𝑐 Number of sensors 

 

Then, by considering that 

 [Syy(𝜔)] = [𝐻(𝜔)]
∗[𝑆𝐹𝐹(𝜔)][𝐻(𝜔)]

𝑇 (4.25) 

 

the positive PSD for any out-put sensors, o, can be written as 

 [GYY(𝜔𝑓)] =
∑ [𝐵𝑜,𝑗]Ω𝑓

𝑗
 𝑛

𝑗=0

∑ [𝐴𝑗]Ω𝑓
𝑗
  𝑛

𝑗=0

= [𝐵𝑜(Ω𝑓 , [𝜃])][𝐴(Ω𝑓 , [𝜃])]
−1

 (4.26) 

 where 

[𝐵𝑜,𝑗], [ 𝐴𝑗] Unknown complex parameters to be estimated 

 [𝜃] A vector of all the unknown complex parameters of  

[𝐵𝑜,𝑗], [ 𝐴𝑗]  

 Ω𝑓
𝑗
 Generalized transform variable 

 

The least squares formulation is a result of minimizing the error [𝐸𝑜(𝜔𝑓 , 𝜃)] of the predicted 

cross-power spectrums of Equation 4.26 to the measured power spectrums 

 [Eo(𝜔𝑓 , 𝜃)] = [𝐵𝑜(Ω𝑓, [𝜃])] − [�̂�𝑜(𝜔𝑓)][𝐴(Ω𝑓 , [𝜃])] (4.27) 
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where 

[�̂�𝑜(𝜔𝑓)]  Measured Power Spectrum 

 

This is done by minimizing the cost-function of Equation 4.28. 

 ℓ([𝜃]) =∑ ∑ 𝑡𝑟([Eo(𝜔𝑓, 𝜃)]
𝐻[Eo(𝜔𝑓 , 𝜃)])

𝑁𝑓

𝑓=1

𝑁𝑐

𝑜=1
 (4.28) 

where 

 𝑡𝑟(∙) = 𝐸[(∙)] Trace, the sum of diagonal components 

of (∙) 

 ℓ([𝜃]) Cost function of variables [𝜃] 

 

Minimizing 4.28 requires expressing ℓ([𝜃]) in terms of a Jacobian matrix J so that 

 [J]{θ} ≈ 0 (4.29) 

 

This process is further explained in (Guillaume et al. 2003). The solutions of polynomials are 

sorted in what are called stabilization diagrams, with examples given in Chapter 5, where only 

the imaginary solutions are considered stable. One of the main reasons why the p-LSCF has 

become very popular is that the stabilization diagrams have very distinct stable poles, and the 

method is therefore considered valuable for automation purposes.  

After the unknown parameters, 𝜃, are estimated, the natural frequencies are found by 

transforming the 𝑧𝑓
𝑗
solutions back to TD by 

 zr = 𝑒
𝜆𝑟∆𝑡 → 𝜆𝑟 =

ln(𝑧𝑟)

∆𝑡
 (4.30) 

 fr =
|𝜆𝑟|

2𝜋
 (4.31) 

 ξr =
𝑅𝑒(𝜆𝑟)

|𝜆𝑟|
 (4.32) 
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4.3.2.2 Stochastic Subspace Identification 

The Stochastic Subspace Identification methods (SSI) are considered parametric TD methods. 

They aim to identify the stochastic state-space model from out-put data only. The state-space 

relation is a result of the reduction of order of the equation of motion using state vectors 

 {𝑠(𝑡)} = [
{�̇�(𝑡)}
{𝑦(𝑡)}

] (4.33) 

 

Resulting in a state-equation on the form 

 
{ṡ(𝑡)} = [

−[𝑀]−1[𝐶] −[𝑀]−1[𝐾]

[𝐼] [0]
]

⏟                
[Ac]

{𝑠(𝑡)} + [[𝑀]
−1{�̅�}
0

]
⏟      

{

[Bc]

𝑓(𝑡)} 
(4.34) 

where {�̅�} is a vector containing the force locations. 

The resulting observation equation is written as 

 {y(t)} = [Cc]{𝑠(𝑡)} + [𝐷𝑐]{𝑓(𝑡)} 

(4.35) 
 [𝐶𝑐] = [[𝐶𝑣] − [𝐶𝑎][𝑀]

−1[𝐶] [𝐶𝑑] − [𝐶𝑎][𝑀]
−1[𝐾]] 

 [𝐷𝑐] = [𝐶𝑎][𝑀]
−1{�̅�} 

where 

 𝐶𝑎, 𝐶𝑣, 𝐶𝑑 Output location matrices for accelerometers, velocimeters and displacement 

transducers respectively 

 

Since the input is not known in stochastic subspace methods, the discrete versions of Equations 

4.33 and 4.34 reduce to the Equations of 4.36. 

 

 {𝑠𝑘+1} = [𝐴]{𝑠𝑘} + {𝑤𝑘} 

(4.36) 
 {𝑦𝑘} = [𝐶]{𝑠𝑘} + {𝑣𝑘} 
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where {𝑤𝑘} and {𝑣𝑘} are vectors containing noise, which is assumed to be a zero-mean 

Gaussian, stationary white noise process. The covariance of the noise for two arbitrary time 

instances 𝑝 and 𝑞 is given by 

 𝐸 [{
{𝑤𝑝}

{𝑣𝑝}
} {{𝑤𝑞}

𝑇
{𝑣𝑞}

𝑇
}] = {

[
[𝑄𝑤𝑤] [𝑆𝑤𝑣]

[𝑆𝑤𝑣]𝑇 [𝑅𝑣𝑣]
] , 𝑝 = 𝑞

[0], 𝑝 ≠ 𝑞

 (4.37) 

And 

 [𝐴] = 𝑒[𝐴𝑐]∆𝑡 

(4.38) 
 [𝐶] = [𝐶𝑐] 

 

Determining [𝑄𝑤𝑤], [𝑆𝑤𝑣] and [𝑅𝑣𝑣] is part of the system identification process of SSI, and 

this premise of white noise loading is the fundamental part of the proof of the method. A 

number of manipulations of the state-equations lead to the fundamental relations for Equation 

4.39. 

 [Σ] = [𝐴][Σ][𝐴]𝑇 + [𝑄𝑤𝑤] = 𝐸[{𝑠𝑘}{𝑠𝑘}
𝑇] 

(4.39) 

 [𝑅0] = [𝐶][Σ][𝐶]
𝑇 + [𝑅𝑣𝑣] 

 [𝐺] = [𝐴][Σ][𝐶]𝑇 + [𝑆𝑤𝑣] = 𝐸[{𝑠𝑘+1}{𝑦𝑘}
𝑇] 

 [𝑅𝑖] = [𝐶][𝐴]
𝑖−1[𝐺] 

 

Here, [𝐺] is known as the one-step ahead covariance matrix. This is practical, as the output 

covariance matrix, [𝑅𝑖], is found directly from the output data. So, the one-step ahead vector 

can be found by decomposing [𝑅𝑖], making the prediction of the state-space matrix possible. 

Therefore, an optimal predictor can be found by minimizing the error between the predicted 

and actual measured response, assuming that the predicted response is in the form 

 {yk} = [𝐶]{𝑠𝑘} (4.40) 

 

This is done by the introduction of Kalman-filters and the Ricatti equation, which are explained 

in Section 4.2.2 of (Rainieri et al. 2014). When the error is minimized, the equations are solved 
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for [𝐴], and as for the p-LSCF method, the natural frequencies and damping ratios are found 

by use of Equations 4.30 and 4.31. 

Two predictor formulations are based on solving for the state-equations presented above, the 

covariance-driven SSI (Cov-SSI) and the data-driven SSI (DD-SSI) methods. The derivations 

of these two methods can be found in the referenced literature.  

4.3.3 Processing of Mode-Shape and Natural Frequency Estimates 

After the modes and mode-shapes have been estimated by means of the methods presented 

above, they have to be compared in some sort of way. As the exact solutions are not known, 

the comparison will not be in terms of accuracy, but rather by terms of precision. A critical 

factor in the effectiveness of the comparisons of results is the correct pairing of modes. This is 

mainly done manually by observations of the mode shapes. A major concern with manual 

pairing of modes by mode shape observations is the possible presence of spatial aliasing due 

to insufficient sensor positioning (Ewins 2000).  

Natural frequencies are simply compared by their relative scatter in percent by Equation 4.41, 

where (1) and (2) are two arbitrary techniques of obtaining the frequencies. The methods are 

either numerical, analytical or experimental, but the comparison between numerical models 

and experimental results is principally of interest only if the experimental results are in good 

agreement with each other. 

 ∆𝑓 =
𝑓(2),𝑛 − 𝑓(1),𝑛

𝑓(1),𝑛
∙ 100 (4.41) 

 

Similarly, the mode-shapes are compared in terms of the degree of linearity between two mode-

shapes, also known as MAC-values, shown in Equation 4.42.  

 𝑀𝐴𝐶 ({𝜙𝑛
(1)
}, {𝜙𝑛

(2)
}) =

|{𝜙𝑛
(1)
}
𝐻
{𝜙𝑛

(2)
}|
2

({𝜙𝑛
(1)
}
𝐻

{𝜙𝑛
(1)
}) ({𝜙𝑛

(2)
}
𝐻

{𝜙𝑛
(2)
})

 (4.42) 

 

The calculated complex mode-shapes are first plotted in the imaginary plane. This allows for 

analyzing the phase of the modes. When the phases are within ±10° of either 0° or 180°, the 

phases are considered adequately small so that the modes can be interpreted by the real part of 
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the modes alone, Section 4.8.1 of (Rainieri et al. 2014). Otherwise, the mode shapes must be 

interpreted by use of Equation 3.18. 

Other measures of how close the modes are to being normal (real) modes are the mean phase 

deviations (MPD) and the modal phase collinearity (MPC). For normal modes, the MPC value 

should be one, while the MPD should be zero. 
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Chapter 5  

Case Study 

This chapter presents a case study to illustrate, discuss and compare the different methods 

described in Chapters 3 and 4. Experimental data of a SCR model subjected to VIV is used to 

define the case study. 

5.1 Description of the Experiment 

The experimental data used for the case study of this thesis originates from a test project that 

was part of the joint industry project STRIDE Phase 4, administrated by 2H Offshore 

Engineering Ltd and subcontracted to MARINTEK. The experimental tests were carried out 

during the course of 2001, and a summary of the results was presented in the report by Halvor 

Lie (Lie 2001). Main objectives of the tests were 

 To study VIV for a generic catenary riser configuration subject to various current 

velocities, with a varying incident angle between the riser and the current flow. 

 To create input data for fundamental studies of VIV and improvements of theoretical 

models. 

5.1.1 The Test Facility 

The test facility used for the towing of the SCR model was Towing Tank No.III at 

MARINTEK, with an overview shown in Figure 5.1. 

The dimensions of the towing tank are given in Table 5.1. The SCR was towed by a towing 

carriage with a constant speed that could be adjusted to reach the desired uniform current speed. 

 

 

Table 5.1: Dimensions of MARINTEK Towing Tank No.3 

Length (m) Breadth (m) Depth (m) 

80 10.5 10 
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5.1.2 The Experimental Setup 

Figures 5.2 and 5.3 present the experimental setup of the catenary in the MARINTEK tank. 

The top of the brass catenary was attached to a horizontal beam, while the lower end was 

attached to a truss-structure. 

 

 

Figure 5.1: Overview of the MARINTEK test facility (Lie 2001). 

  

Figure 5.2: View of catenary setup from 

above (Lie 2001). 

Figure 5.3: Vertical setup of catenary (Lie 

2001). 
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In order to reduce vibration loading on the horizontal arm, the upper riser end was mechanically 

isolated from the carriage by applying a 50 kg mass near the riser end, connecting the arm end 

to the carriage by thin, pre-tensioned wires. The lower end of the truss-frame was also pre-

tensioned to the carriage using thin wires. 

 

5.1.3 The Catenary Riser Model 

With a length to diameter ratio of about 890, the model riser is not representative of typical 

installed risers offshore, but is still sufficient for the comparison of numerically calculated 

modes to experimentally estimated ones. The catenary outer diameter was 14 mm, and it had a 

length of 12.5 meters. Additional model characteristics are given in Table 5.2. 

 

Table 5.2: Catenary properties used as input for static configurations and modal 

calculations (Lie 2001). 

Total length between pinned ends 12.5 m 

Mass per unit length including content 0.357 kg/m 

Outer diameter 14 mm 

Wall thickness of riser 0.45 mm 

Density of brass 8980 kg/m3 (nominal) 

Youngs modulus for brass 1.05 ∙ 1011N/m2 (nominal) 

Axial stiffness, EA 2.01 ∙ 106 N (nominal) 

Bending stiffness, EI 46.2 Nm2 (nominal) 

Percent relative damping in air, 𝜉 0.2-0.6 (measured) 

Horizontal distance between riser ends 9.253 m 

Vertical distance between riser ends 7.130 m 

Vertical height of upper end fixture 

(rotating point) above water surface 

0.050 m 

Tension, upper end 22.55 N (Calculated by RIFLEX) 

Tension, lower end 8.44 N (Calculated by RIFLEX) 

Angle from vertical, upper end 26 degrees (Calculated by RIFLEX) 

Angle from vertical, lower end 88 degrees (Calculated by RIFLEX) 
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Force transducers were used to weigh the total structure in air, and this gave the resulting mass 

per unit length including content. Structural damping estimates were found using free-decay 

tests in air. 

As the brass tube used as the catenary could not be delivered in its full length, separate pieces 

of 5 meters were joined together by hard soldering sleeves of 20 mm length. These sleeves had 

an outer diameter of about 18 mm, and were located at 4.042 and 8.396 meters from the lower 

end. The same type of sleeve was used to house the accelerometers, as shown in Figure 5.4. 

Locations of the accelerometers are found in Table.5.3. 

 

 

 

 

 

 

The accelerometers were placed in pairs normal to the longitudinal axis and perpendicular to 

each other. The cables from each pair were threaded through holes in the catenary, and passed 

through the pipe. To avoid differences in masses, dummy cables were used so that the amount 

of cable throughout the pipe was the same, and it was assumed that the sleeves solved the 

problem of local differences in axial and bending stiffness resulting from the cable holes. 

Accelerometer pair no. 7 failed during the experiments, so results from this sensor are not 

 

Figure 5.4: Accelerometers with casing (Lie 2001). 

Table 5.3: Accelerometer 

locations (Lie 2001). 

Accelerometer Distance from 

lower end (m) 

1 1.137 

2 2.272 

3 3.408 

4 4.544 

5 5.682 

6 6.817 

7 7.953 

8 9.090 

9 10.224 

10 11.364 

Upper joint 12.500 
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included in this thesis. However, it was assumed that 6-8 pairs of accelerometers would be 

sufficient to serve the scope of the experiment. 

The surface roughness of the catenary model was not documented during the experimental 

campaign. However, the surface was painted to enhance visibility in the recorded video images, 

and thus the surface is assumed rather smooth. The straightness of the model was measured in 

air, with a maximum deviation of about 2/3 of the catenary diameter. 

Before carrying out the experiment, natural frequencies for the first 10 modes were found using 

string, beam and frame theory. Based on the natural frequencies of the frame FEM, the 

velocities that are expected to excite the various frequencies were calculated, using a Strouhal 

number of 0.2. The results from the preliminary calculations are found in Table 5.4. The 

excitation velocities to the right in this table show that the modes that are most likely to be 

present in the signals are modes 4-6, as these velocities lie within the applied towing velocities, 

presented in Section 5.1.5. 

 

Table 5.4: Preliminary calculations of natural frequencies 

and excitation velocities (Lie 2001). 

Mode 

number 

String 

(Hz) 

Beam 

(Hz) 

Frame 

(Hz) 
𝑈 =

𝜔𝑓𝑟𝑎𝑚𝑒𝐷

2𝜋𝑆𝑡
 

(m/s) 

1 0.282 0.099 0.299 0.021 

2 0.563 0.397 0.690 0.048 

3 0.845 0.893 1.230 0.086 

4 1.127 1.588 1.947 0.136 

5 1.410 2.481 2.853 0.200 

6 1.692 3.573 3.953 0.247 

7 1.974 4.863 5.248 0.367 

8 2.255 6.351 6.740 0.472 

9 2.537 8.039 8.429 0.590 

10 2.819 9.924 10.317 0.722 
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5.1.4 The Coordinate Systems 

Three different right handed Cartesian coordinate systems were used for the presentation of 

results from the experiment.  

 One system is the global, assumed inertial coordinate system, 𝑥, 𝑦 and 𝑧. As shown in 

Figure 5.5, 𝑦 is the axis pointing in the towing direction of the pool and 𝑥 points in 

the breadth direction.  

 The second system is the local catenary coordinate system, 𝑥𝑟 , 𝑦𝑟 and 𝑧𝑟, with 𝑥𝑟 and 

𝑧𝑟 denoting the catenary plane, and 𝑦𝑟 going out of the catenary plane.  

 The last coordinate system is the riser cross-section coordinate system, 𝑥𝑐, 𝑦𝑐 and 𝑧𝑐. 

𝑥𝑐 is in the catenary plane, and 𝑦𝑐 is orthogonal to the catenary plane, both aligned 

with an accelerometer pair. 𝑧𝑐 is tangential to the riser cross-section midpoint angle 

with the horizontal plane. 

 

 

 

 

 

 

Figure 5.5: Coordinate systems used for experimental work and results, modified image 

from (Lie, 2001). 
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5.1.5 The Test Program 

The catenary model was towed at velocities ranging from 0.12 to 0.34 m/s at 0.02 m/s steps. 

These towing velocities represent uniform currents of the same magnitudes.  

During the test, the angles of inclination were varied from 0 to 90 degrees at 30-degree 

intervals. The duration of each run depends on the towing velocity, and is limited by the pool 

length. Average run durations were about 2 minutes.  

Lie (2001) commented on the influence of the towing carriage on the 0° towing angle data 

series, as it was found that the wake effects behind the carriage could reduce the experienced 

current velocities to about a factor of 0.8 or 0.9 of the reference speeds. 

Displacement time-series from the experiment are obtained by integrating the acceleration 

measurements twice in the frequency domain. Other measurements, like the catenary end 

forces and the test rig accelerations are not considered in the following case study. 

 

5.2 Experimental results and discussion 

Before continuing on to system identification and numerical analysis in the case study of this 

thesis, the data set itself is studied and discussed in the following text. The displacement results 

from both IL and CF directions obtained from the perpendicular sensors at location 5 are plotted 

in Figures 5.6 and 5.7. As is expected, the displacements are larger for the CF direction for 

both velocities, and the larger velocity results in larger displacements.  

Also notice the transient state at the beginning of each time-series, in the carriage acceleration 

phase, where the displacement magnitudes are larger for both current velocities. This will affect 

the displacement envelopes of the raw-data series, and may erroneously affect observations 

that are linked to the various current speeds. (Niedzwecki & Moe 2007) discusses the effect of 

removing this transient phase when studying the resulting PSDs. In this thesis, to avoid possible 

noise resulting from these effects, the first twenty seconds of the time-series are removed from 

the analysis. This has consequences on the remaining time-series length, but should give a 

better representation of the responses resulting from the specific current velocities under 

investigation. 
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Figure 5.6: Displacement time-series from sensor 5 at 

0.12 m/s current velocity. 

Figure 5.7:Displacement time-series from sensor 5 at 

0.34 m/s current velocity 

 

 

The PSDs calculated by a Welch-procedure using a Matlab function with two non-overlapping 

segments of the displacements measured at sensor 5 in the CF direction are shown below, in 

Figures 5.8 and 5.9.  

For both velocities, the largest peaks are concentrated about a relatively narrow band of 

frequencies, mainly in the range from 0-5 Hz. Comparing this observation with the calculated 

modal excitation velocities shown in Table 5.4, the largest peaks seem to match relatively well 

with the calculations in the preliminary work. The peaks are gathered around 1-2 Hz for the 

0.12 m/s flow speed, and the largest observed peak for 0.34 m/s flow speed is at about 4-5 Hz. 

Based on Table 5.4, frequencies higher than that of the seventh mode are not likely occur. 

Although they are of magnitudes much smaller than in the 0-5 Hz range, there are peaks present 

above this mode. However, as they were not considered likely in the planning of the 

experiment, the accelerometer spacing and number limits the identification of possible mode 

shapes corresponding to these potential natural frequencies. Nonetheless, as the magnitudes of 

the peaks are relatively small, it is likely that they are due to measurement noise, such as 

vibrations from the carriage or sensor flaws. 
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Figure 5.8. PSD of displacements measured at 

accelerometer 5 in the cross-flow direction, with a 0.12 

m/s flow velocity. 

Figure 5.9: PSD of displacements measured at 

accelerometer 5 in the cross-flow direction, with a 

0.34 m/s flow velocity. 

 

Displacement envelopes of the truncated time-series are shown in Figures 5.10 and 5.11. The 

envelopes show the maximums and minimums at each of the accelerometer locations over the 

whole time-series, which do not necessarily occur simultaneously. For this thesis, the 

displacement extremes at accelerometer seven are estimated by linear interpolation between 

accelerometers six and eight.  

  

Figure 5.10: Displacement envelopes of the 0.12 m/s 

current flow velocity. 

Figure 5.11: Displacement envelopes of the 0.34 m/s 

current flow velocity. 
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Notice that there are larger differences between nodes for the 0.12 m/s current flow than for 

the 0.34 m/s flow. This could be a result of the fact that there are more active modes for the 

higher velocity case, so if an accelerometer location is a nodal point for one mode shape, it 

could still have large displacements resulting from other active modes.  

 

5.2.1 Case Study 

As the CF displacement cases are of most interest for the scope of this thesis, the experimental 

data from the 90 degree towing angle is used. For this towing angle, the measurements from 

the accelerometer placed in the 𝑥𝑐 direction will be in the riser plane.  

Table 5.5: Towing results selected for the Case Study. 

Current velocities 

(m/s) 

Towing angle 

0 degrees 90 degrees 

𝑥𝑐 𝑦𝑐 𝑥𝑐 𝑦𝑐 

0.12   X  

0.24   X  

0.34   X  

 

OMA methods adopted for the case study are the TDD method, the p-LSCF method, the Cov-

SSI method and the DD-SSI methods. 

To investigate the similarities between the experimental results and the numerical models 

discussed in Section 3.3, the model characteristics of Table 5.2 are used as input in the static 

and dynamic analysis. Table 5.6 compares the eigenvalues obtained using the FEM solutions 

to dynamic analysis to those obtained using the WKB method by use of Eq.4.41. Figure 5.12 

presents the correlations in terms of MAC values of the mode shapes resulting from FEM and 

WKB. The correlations on the diagonal represent the MAC values calculated from mode shape 

𝜙𝑖 of FEM and mode shape 𝜙𝑗   of WKB, when the mode numbers 𝑖 = 𝑗. These correlations 

should be as close to one as possible, and a value of one indicates perfect unity. The correlations 

off the diagonal are MAC values of mode shape 𝜙𝑖 and 𝜙𝑗, when 𝑖 ≠ 𝑗. These correlations are 

expected to be as close to zero as possible, indicating that the calculated mode shapes are 

independent of mode shapes corresponding to other modes. As can be seen from Table 5.6 and 
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Figure 5.12, the solutions are relatively similar. The deviations in eigenfrequencies are 

relatively small. Also, the diagonal of Figure 5.12 are all equal to one, while the values off the 

diagonal are close to zero for all modes, indicating that the calculated mode shapes are similar. 

Therefore, when comparing results from experimentally obtained modes and mode shapes with 

the FEM method’s results, it is assumed that the conclusions drawn would also be applicable 

to a similar comparison to the WKB method solutions. 

 

Table 5.6:Eigenvalue comparison of FEM solutions relative to the WKB method solutions 

Mode no. 1 2 3 4 5 6 7 8 9 10 

Eigenvalue 

deviation[%] -4.33 -4.18 -2.77 -1.78 -1.16 -0.77 -0.50 -0.32 -0.19 -0.10 

 

 

 

Figure 5.12: AutoMAC comparison of the WKB mode shapes relative to the FEM method 

mode shapes 

 

 

 

 

  



Chapter 5 

66 

 

5.3 Application of the Time Domain Decomposition method 

The TDD method is implemented, following the discussion from Section 4.3.1, with the 

algorithm flow chart shown in Figure 5.13. Un-damped frequencies and damping are found 

from auto-correlations of the modal participation factor using the logarithmic decrement 

technique presented in Section 4.3.1. 

 

 

 

Figure 5.13: Flow-chart of implemented TDD method in Matlab 

 

The codes allow for keeping or discarding plotted mode-shapes at identified PSD peaks, to help 

eliminate erroneous mode-shape identification due to data noise or closely spaced modes, using 

the identification window, Figure 5.14 (a). The slope of the decrement used for determining 

the damping is identified by the first, nearly linear, slope of Figure 5.14 (b). 
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(a) 

 

 

 

(b) 

Figure 5.14: (a) The identification window of the implemented TDD codes. (b)The identification window for 

determining the decrement slope for damping. 

 

5.3.1 Results 

Appendix C shows all the identified modes, their corresponding frequencies, mode shapes and 

damping according to the TDD method. By visual inspection, and by studying AutoMAC 

matrices (Figure 5.15) we can organize the results into the identified natural frequencies as in 

Tables 5.7, 5.8 and 5.9. Note that there is a possibility of failure in our visual inspection due to 

spatial aliasing as we are using a spline fitting function in Matlab, and as the values at 

accelerometer location 7 are linearily interpolated. Identified frequency peaks may also be a 

result of noise in the data resulting from the measurement equipment, the catenary carriage or 

other hydrodynamic effects. Hence, the corresponding identified mode shapes may resemble 

mode shapes, but will not correspond to actual modes. These false frequencies must be 

identified by comparisons between results from the various cases and methods, and are only 

ruled out where MAC values and eigenvalue deviation are distinctly weak.  

5.3.1.1 0.12 m/s case 

Figure 5.15 shows a matrix containing MAC-values of each identified mode shape by TDD 

method, 𝜙𝑖, to each of the numerically calculated mode shapes, 𝜙𝑗. Here, the values of 𝑖 do not 

necessarily correspond to the 𝑖𝑡ℎ mode, but represents the sequential step when the mode shape 
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was obtained. Values larger than 0.9 are considered relatively good values, but as the 

measurements are relatively noisy, lower values are included in the Tables 5.7, 5.8 and 5.9 for 

the sake of comparison, as the natural frequencies may match better than the mode shapes.  

 

 

Notice that there are frequencies present in the 0.12 m/s signal starting from mode number 3, 

Table 5.7. As the observable mode shapes are limited due to the number of accelerometers, the 

mode shapes of the higher observed frequencies for this flow velocity could not be readily 

predicted. According to Table 5.4, modes higher than the 4th mode should not be excited, as a 

0.12 m/s velocity is not supposed to excite modes higher than the 3rd mode. However, although 

the magnitudes of these frequencies in the PSD are of relatively negligible size, their mode 

shapes are still observed to have MAC-values relatively close to unity.  

Modes 3, 4, 5 and 7 are the modes with the least amount of noise relative to the numerical 

solutions, and as can be seen, their deviations in terms of natural frequencies do not seem to 

have any noticeable trend. 

 

 

 

 

 

 

Figure 5.15: AutoMAC matrix from the comparison of the 0.12 m/s data using the TDD method and the 

FEM solutions 
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Table 5.7: Identified natural frequencies using the TDD method on 0.12 m/s flow velocity results 

Mode 

no. 

Natural 

frequency [Hz] 

Damping [%] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

1-2 - - - - 

3 1.19 1.22 12.40 0.98 

4 1.72 0.25 -1.11 0.97 

5 2.70 1.84 3.30 0.98 

6 3.57 0.09 -2.99 0.88 

7 5.26 0.21 6.58 0.97 

8 6.67 0.27 4.37 0.93 

9 9.09 1.03 13.22 0.58 

10 10.00 0.79 1.37 0.83 

 

 

5.3.1.2 0.24 m/s case 

As could be expected, Table 5.8 shows that the 0.24 m/s case seems to have more problems 

with identifying the lower modes, but predicts the higher modes better than for the 0.12 m/s 

case in comparison with numerical results. The AutoMAC plot can be found in Appendix C. 

Again the, eigenfrequencies carrying the larges magnitudes in the PSD predict the mode shapes 

well in comparison with the numerical solutions, although their eigenvalues differ by a 

relatively large amount.  

Also, modes 8 and 9 are difficult to classify, as there are spurious modes or spatial aliasing 

present. However, in comparison with the 0.12 m/s case, it is more likely that the 8th mode has 

a frequency of about 6.67 Hz. The 9th mode is seemingly found at 8.33 Hz, as it is closer to the 

numerical calculations in MAC and eigenvalues. 
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Table 5.8: Identified natural frequencies using the TDD method on 0.24 m/s flow velocity results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping [%] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

1-2 - - - - 

3 1.11 0.73 4.89 0.69 

4 1.79 2.32 2.45 0.58 

5 2.86 0.10 9.19 0.97 

6 4.17 1.16 13.19 0.98 

7 5.88 0.07 19.12 0.83 

8 6.67/7.69 0.22/0.11 4.37/20.43 0.95/0.95 

9 8.33/9.09/ 

10.00 
0.23/1.01/0.02 3.78/13.22/24.54 0.99/0.85/ 0.79 

10 - - - - 
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5.3.1.3 0.34 m/s case 

For the 0.34 m/s case, a larger number of modes seem to be excited. Although the frequency 

identified as mode no. 6 has the largest magnitude in the PSD, in agreement with the calculated 

modes of Table 5.4, it seems that modes 7 and 8 are also well defined in the measured response. 

It seems that modes 1 and 2 are difficult to identify due to large amounts of noise in the lower 

frequencies, so the frequency shown in Table 5.9 corresponding to mode 2 is not expected to 

be an actual mode. 

 

Table 5.9: Identified natural frequencies using the TDD method on 0.34 m/s flow velocity results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping [%] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

1 - - - - 

2 0.95 4.01 70.62 0.32 

3 1.79 0.88 68.59 0.93 

4 1.39 3.16 -20.30 0.83 

5 2.70 1.26 3.29 0.86 

6 4.35 0.45 18.10 0.95 

7 5.56 0.68 12.50 0.99 

8 6.67/7.69 0.82/0.53 4.37/20.43 0.99/0.85 

9 9.09 0.16 13.22 0.88 

10 10.00 0.61 1.372 0.40 
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5.4 OMA investigations using MACEC 

As part of the verification of the implemented TDD method in this thesis, the commercial 

software MACEC is used, which is a Matlab toolbox software. With its graphical user interface 

(GUI) it is very intuitive, but requires a user’s basic knowledge of the OMA approaches 

available, and introduced in Section 4.3. The MACEC program was first coded as a part of a 

Master thesis project in 1997-1998. The code was then modified during Ph.D work between 

1998 and 2001, and finally got a face-lift and new features as part of a Ph.D study between 

2006 and 2011. Accompanying the software itself is a thorough User Manual, which provides 

tutorials on example cases relevant to a number of applications of the software (Reynders et al. 

2014).  

The input loading is unknown for the case studies relevant to this thesis. However, MACEC 

also includes methods for reference-based means of system identification, where a reference 

could be, for example, a load time-series at a specific node or many nodes. In the absence of 

input information, the modes and mode-shapes must be estimated using the output-only 

techniques. This limits the available methods to: 

 Nonparametric PSD+ using the correlogram and periodogram methods. Here, Peak 

Picking or CMIF/FDD can be selected. 

 Reference-based data-driven stochastic subspace idendtification (DD-SSI)  

 Reference-based covariance-driven stochastic subspace identification (Cov-SSI) 

 Operational poly-reference Least Squares Complex Frequency identification 

Because the Peak Picking method is much simpler than the TDD method, and the FDD method 

shares most of its features with the TDD method, the non-parametric methods are not adopted 

for this thesis. 

A schematic step-by-step procedure of the MACEC investigations carried as part of this thesis 

can be found in Appendix B.  

Output files from MACEC contain valuable information about natural frequencies, mode-

shapes and damping, and the Cov-SSI method also returns information about the standard 

deviations of the output.  

As the methods used in MACEC are not SDOF methods like the TDD method, the methods 

allow for identification of complex modes with phase shifts between elements. However, for 
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this case study, the mode shapes are expected to be normal, and it is, therefore, assumed that 

the large spreads in the complexity plots, see Figure 5.16 (b), are due to noise.  

The plotted mode shapes are the real parts of the complex modes. Complex plots, mode shapes 

and AutoMAC matrices of all the MACEC obtained data can be found in Appendix D, and in 

the following the results are sorted in tables according to the modes they correspond to. The 

same limitations related to spatial aliasing or spurious frequencies as for the TDD method in 

Section 5.3.1 also apply to these methods. 

 

 

(a) 

 

(b) 

Figure 5.16: Complexity plots of (a) A very normal mode, the 4th mode found by 0.12 m/s 

velocity p-LSCF. (b) A relatively complex mode, the 3rd mode found by 0.34 m/s velocity p-

LSCF 

 

5.4.1 Results 

5.4.1.1 Poly-reference Least Square Complex Frequency method 

As this method has a stricter convergence criteria than the TDD method, less frequencies are 

identified as natural frequencies for the system. An example of a stabilization diagram used for 

the identification of modes using the p-LSCF method on 0.12 m/s current flow is shown in 

Figure 5.17. As can be seen, only one pole is stable throughout the model orders. This is due 

to the pole having the largest magnitude in the PSD, and supports the theory that vortex induced 

vibrations principally only contain one frequency, the lock-in frequency. However, it is clear 

that multiple frequencies are present nonetheless, and a few have been identified and compared 

with the FEM solutions in terms of MAC-values. Note that the stabilization criteria are altered 
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for all of the methods due to a large amount of noise in the data, and this must be considered 

when comparing results. 

 

Figure 5.17: Stabilization diagram for the p-LSCF 0.12 m/s case 

 

For the 0.12 m/s case the identified modes are found in Table 5.10. Notice the two stable poles 

with frequencies of 6.63 and 6.93 Hz respectively, both identified as mode 8, the 6.63 Hz 

frequency is closer to the numerical solutions, while the 6.93 Hz solution has a lower damping 

and mean phase deviation, supporting its selection. 
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The three identified modes in the 0.24 m/s current velocity, Table 5.11, all have good MAC, 

MPC and MPD values, but they all have a deviation of about 10% in comparison to the FEM 

eigenvalues.  

Table 5.11: Identified natural frequencies using the p-LSCF method on 0.24 m/s flow velocity 

results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-4 - - - - - - 

5 2.89 0.06 0.99 2.61 10.60 0.96 

6 4.07 0.09 0.91 -0.27 10.55 0.97 

7-8 - - - - - - 

9 8.69 0.01 0.96 2.32 8.16 1.00 

10 - - - - - - 

 

Notice in Table 5.12 that the mode identified as the 3rd mode using the p-LSCF method and the 

0.34 m/s flow velocity measurements has a very large deviation to the 3rd modes identified 

using the 0.12 m/s and 0.24 m/s velocity results and the TDD method, and to the numerical 

solution. It is supported by the results of the TDD analysis of the 0.34 m/s measurements, but 

its stabilization diagram did not contain a very stable pole, so this result must be considered 

with caution. Also, its corresponding complexity plot, found in Figure 5.16 (b) suggests that 

Table 5.10: Identified natural frequencies using the p-LSCF method on 0.12 m/s flow velocity 

results 

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-3 - - - - - - 

4 1.75 7.42 0.99 1.49 0.28 0.97 

5 - - - - - - 

6 3.47 0.03 0.97 3.36 -5.64 0.93 

7 5.19 0.12 0.94 2.75 5.06 0.59 

8 6.63/6.93 0.06/0.02 0.97/0.97 1.47/0.48 3.76/8.56 0.97/0.91 

9 - - - - - - 

10 10.37 0.03 0.97 -2.98 0.05 0.93 
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there is either a large amount of noise or un-proportional damping present, so the mode should 

not have been plotted as a real mode, and therefore shows an erroneously large MAC-value. 

Table 5.12: Identified natural frequencies using the p-LSCF method on 0.34 m/s flow velocity 

results 

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-2 - - - - - - 

3 1.83 0.27 0.55 3.88 72.95 0.95 

4 - - - - - - 

5 3.15 1.40 0.95 0.20 20.42 0.72 

6 4.28 2.34 0.97 -0.84 16.15 0.99 

7-8 - - - - - - 

9 8.92 0.18 0.94 0.00 11.09 0.91 

10 10.67 0.17 0.94 -0.45 8.18 0.98 
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5.4.1.2 Covariance Driven Stochastic Subspace method 

The results of the Cov-SSI method analysis all produced very few identified modes, but the 

identified modes all have relatively stable poles in the stabilization diagrams, see Figure 5.18. 

Modifying the stabilization criteria further did not produce more stable poles.  

 

Notice that all of the identified natural frequencies in Tables 5.13 to 5.15 except mode no.5 in 

the 0.12 m/s flow velocity have deviances to the numerical solutions of about 10 % or more. 

The largest deviation determined by the Cov-SSI method, is found in the 6th mode in the 0.34 

m/s case, Table 5.15, which also has a relatively low MAC-value, even though it is the mode 

that is excited the most. The complexity plot for this mode, found in Appendix C, looks 

relatively normal, so the deviation could more likely be a result of measurement error or noise. 

 

 

 

Figure 5.18: Example stabilization diagram for the Cov-SSI 0.34 m/s case. 
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Table 5.13: Identified natural frequencies using the Cov-SSI  method on 0.12 m/s flow velocity 

results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-3 - - - - - - 

4 1.20 1.96 0.99 1.86 13.32 0.98 

5 1.73 0.04 1.00 1.50 -0.83 0.97 

6-10 - - - - - - 

 

Table 5.14:Identified natural frequencies using the Cov-SSI  method on 0.24 m/s flow velocity 

results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-4 - - - - - - 

5 2.90 0.04 0.93 2.50 10.76 0.96 

6-8 - - - - - - 

9 8.69 0.04 0.94 3.24 8.28 0.99 

10 - - - - - - 

 

 

  

Table 5.15: Identified natural frequencies using the Cov-SSI  method on 0.34 m/s flow velocity 

results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-5 - - - - - - 

6 4.48 0.06 0.96 -1.15 21.59 0.83 

7-8 - - - - - - 

9 8.89 0.56 0.96 2.85 10.74 0.90 

10 - - - - - - 
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5.4.1.3 Data-Driven Stochastic Subspace Identification method 

According to Table 5.16, the 3rd, 4th and 8th mode are identified to a large degree of certainty 

under the assumption of normal modes, as the MPC and MAC values are both close to unity. 

The eigenvalue deviations do not suggest any clear trends, which would be useful for 

identifying the reasons behind the discrepancies between measured and numerically predicted 

results. The other identified modes for this velocity case and method have slightly lower MPC 

values, and are therefore either complex modes, spurious modes or contain larger amounts of 

noise. 

Table 5.16: Identified natural frequencies using the DD-SSI  method on 0.12 m/s flow velocity 

results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-2 - - - - - - 

3 1.20 1.28 0.99 2.02 13.50 0.98 

4 1.73 0.02 0.99 1.48 -0.84 0.97 

5 - - - - - - 

6 3.51 0.79 0.84 -0.40 -4.58 0.92 

7 5.20 0.27 0.86 -10.90 5.34 0.96 

8 6.80 0.18 0.98 2.82 6.49 0.97 

9-10 - - - - - - 

 

Notice that Table 5.17 shows close to the same value for mode 5 as the other 3 methods do, 

supporting its identification. Also, the MPC and MAC values are relatively good. Modes 3 and 

4 contain large amounts of damping, likely from noise, but the 3rd mode looks likely in terms 

of MPC and MAC value. The higher modes also behave well. However, when investigating 

some of the frequencies outside of the assumed identifiable mode range, it was noticed that the 

10th mode shares linearity with the 12th mode as well as the 10th, so it may contain large amounts 

of noise, see Figure 5.19. 
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Table 5.17: Identified natural frequencies using the DD-SSI  method on 0.24 m/s flow velocity 

results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1-2 - - - - - - 

3 1.1528 7.9148 0.9169 -5.0306 8.82 0.89 

4 1.8037 12.8815 0.8458 4.2817 3.45 0.29 

5 2.8991 0.0401 0.9328 2.5798 10.79 0.97 

6-7 - - - - - - 

8 7.4071 1.3887 0.9212 -3.6506 15.96 0.95 

9 8.6981 0.0194 0.9429 3.0497 8.32 0.99 

10 10.3978 0.5496 0.9581 0.4672 5.40 0.91 

 

 

Figure 5.19: AutoMAC matrix of the DDSSI 0.24 m/s and FEM solution 

 

The DD-SSI method 0.34 m/s case, Table 5.18, also identified the highest modes better than 

the lower modes. Notice that the 6th mode has a large deviation in eigenfrequency, although it 

has a higher MAC-value than the Cov-SSI method. 
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Table 5.18: Identified natural frequencies using the DD-SSI  method on 0.34 m/s flow velocity 

results  

Mode 

no. 

Natural 

frequency [Hz] 

Damping 

[Hz] 

MPC [-] MPD [-] Eigenvalue deviation 

from FEM [%] 

MAC-FEM 

[-] 

1 - - - - - - 

2 1.1562 20.65 0.8982 1.7498 9.15 0.51 

3 - - - - - - 

4 1.9261 11.9707 0.9296 -3.1908 10.48 0.75 

5 3.1159 2.9477 0.9479 0.1501 19.07 0.78 

6 4.4592 0.4871 0.9544 -1.4217 21.13 0.89 

7 5.1531 6.3966 0.939 -0.2869 4.35 0.99 

8 6.6952 4.552 0.9694 7.1751 4.82 0.98 

9 8.9013 0.469 0.9639 2.8836 10.85 0.90 

10 - - - - - - 

 

The 7th and 8th modes both have very good MAC values and MPC, but the 8th mode has a 

surprisingly large MPD. Still, a closer look at the complexity plot (Figure 5.20) reveals that the 

mode shape poles are still almost in a straight line, but are all deviating by values of about 10 

degrees. Hence, the mode may still be normal and reliable. 

 

Figure 5.20: Complexity plot of the 8th mode using the DD-SSI method and 0.34 m/s 

current flow. 
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5.5 Numerical investigations of the accelerometers effects on the 

solution of the eigenvalue problem 

The discussion of the deviation in mode-shapes and eigenvalues led to the hypothesis of the 

accelerometer mass and added mass influencing the experimental data. To investigate these 

effects, the codes used by Raed Lubbad in the numerical example presented in his doctoral 

thesis are modified for this thesis to account for masses at the accelerometer locations. The 

reason for this is to see if the assumption that the masses do not affect the experienced mode 

shapes is insufficient. 

5.5.1 DNV DeepC and Riflex for Static Analysis 

Because the closed-form solutions for the static configuration and tension variation is limited 

to strings, without bending stiffness, and the incorporation of local masses would deem a 

computationally heavy iterative process, the static configurations have been found using the 

DNV Deep C software module RIFLEX. 

RIFLEX is a state-of-the-art software capable of analyzing flexible, metallic and steel catenary 

systems subject to hydrodynamic loading, and loading due to vessel-catenary interaction. The 

DeepC user interface makes the modelling easy and intuitive. 

For the catenary case under investigation in this thesis, the line object of the software is used, 

connected to fairleads at points with a specified distance. Boundary conditions are applied at 

the ends so that the catenary is fixed from translational motion, but free to rotate in the catenary 

plane, see Table 5.19. The line characteristics used in the analysis are found in Table 5.2. 

Table 5.19: Boundary conditions of the modeled catenary 

Direction Translation Rotation 

X Fixed Fixed 

Y Fixed Free 

Z Fixed Fixed 

 

Lumped buoys are placed at the accelerometer locations, with the sizes and masses as presented 

in Table 5.20. The masses are not exact accelerometer masses, but likely masses of varying 
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size according to a similar study of accelerometer masses on a plate structure (Baharin & Abdul 

Rahman 2009). Figure 5.21 shows a 2D view of the catenary profile. 

 

 

Figure 5.21:Static configuration using DeepC/RIFLEX 

 

 

Table 5.20: Mass and dimensions of 6 accelerometer cases 

Mass (kg) 
1 2 3 4 5 Extreme 

0.00584 0.01584 0.02584 0.03584 0.04584 1  

Dimensions 

(mm) 

Length Breadth Height 

5 2 5 

. 
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5.5.2 Natural Frequency and Mode-Shape Investigation Using Matlab 

The flow chart of the modified Matlab-scripts is found in Figure 5.22. The original codes are 

implemented based on techniques presented in Chapter 8.10 of (Kwon & Bang 2000).  

 

Figure 5.22: Flow-chart of matlab script for investigation of accelerometer effects 

 

The resulting modes and mode-shapes are firstly compared with the numerically and 

analytically calculated values without loading, as presented in (Lubbad et al. 2011), primarily 

considering the solutions from the FEM code and non-linear tension variation of cables and 

beams, as discussed in Section 3.3. The comparison of the two methods for the case of 

catenaries without specific accelerometer loading is shown in Section 5.2.1. The comparison 

between the accelerometer mass loaded catenary with the pure catenary is given terms of MAC 

values for mode-shapes and percentage difference for natural frequencies. It is important, 

however, to remember that these values do not reveal anything about the accuracy of the 

solutions, but can give an indication of the precision of the solution.  
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5.5.3 Results 

  

Figure 5.23: Static profile of accelerometer mass 

loaded catenary 

Figure 5.24: Tension profile of accelerometer mass 

loaded catenary 

 

Figures 5.23 and 5.24 show the static profiles and tensions variation along the catenary 

obtained from the static analysis in RIFLEX. Noticeably, the profile does not change as a result 

of masses 1-5, while mass 6 is large enough to modify the profile. The tension along the 

catenary increases with increasing mass, and the discontinuities of the curves in the diagram of 

Figure 5.24 are results of the lumped masses. 

  

Figure 5.25: Calculated eigenfrequencies of 

accelerometer loaded catenary 

Figure 5.26: A plot of the 3rd mode shape obtained from 

FEM analysis of the accelerometer loaded masses 
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Figures 5.25 and 5.26 present the resulting eigenfrequencies and mode shape number 3 of the 

FEM analysis including accelerometer masses. The comparison of the results in Figure 5.25 to 

the solutions without accelerometer masses in terms of Eq.4.41 are presented in Table 5.21. As 

is shown, masses 1-6 increase the eigenfrequencies of the lower modes, and reduce the 

eigenfrequencies of the higher modes, but mode 3 seems to be kept almost constant. 

 

Table 5.21:Eigenfrequencies of accelerometer loaded catenary relative to original FEM solution 

Mode no. 

1 2 3 4 5 6 7 8 9 10 

Mass no. 

1 0.73 0.28 -0.02 -0.19 -0.28 -0.33 -0.36 -0.39 -0.43 -0.49 

2 0.73 0.28 -0.02 -0.19 -0.28 -0.33 -0.36 -0.39 -0.43 -0.49 

3 3.16 1.27 -0.02 -0.75 -1.15 -1.36 -1.50 -1.63 -1.81 -2.10 

4 4.30 1.74 -0.02 -1.02 -1.57 -1.86 -2.05 -2.23 -2.48 -2.90 

5 5.39 2.19 -0.02 -1.28 -1.97 -2.34 -2.59 -2.82 -3.14 -3.70 

6 39.99 17.14 -0.30 -11.45 -18.53 -23.29 -26.96 -30.35 -34.61 -40.86 

 

All the mode shapes obtained from the accelerometer loaded analysis are compared with the 

pure catenary results in terms of MAC-values in Figure 5.27. Figure 5.12 shows that there is 

little or no cross-correlation of the mode shapes associated with different mode numbers 

obtained numerically. Therefore, the correlations shown in Figure 5.27 are the MAC-values of 

mode shape 𝜙𝑖 obtained from the accelerometer mass influenced analysis with 𝜙𝑗 from the 

pure catenary analysis, where 𝑖 = 𝑗, and  𝑖 and  𝑗 are mode numbers. Notice that the smallest 

mass has the largest effect on the shape of the higher modes, while the lower modes seem to 

be unaffected. Mass 6 seems to affect modes 2-5 the most, while the higher modes have 

increasing MAC-values. 
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Figure 5.27: MAC matrix of eigenfrequencies 1-10 of mass loaded mode shapes vs original 

FEM mode shapes 
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5.6 Discussions  

The following sections compare and discuss the results presented in Sections 5.3, 5.4, and 5.5, 

with additional information attached in Appendices C and D. 

5.6.1 System identification and FEM comparison 

The results presented in Sections 5.3 and 5.4 using the various OMA methods are plotted with 

their corresponding mode numbers in Figure 5.28. The solid line represents the numerically 

calculated natural frequencies using FEM, and not considering accelerometer masses. With 

observations based on this figure it is tempting to conclude that the FEM solutions, and 

therefore also the WKB solutions, predict the natural frequencies of the catenary quite well. 

However, notice that modes 7-10 are seemingly underestimated compared with all of the 

methods and current flow cases.  

 
Figure 5.28: Experimental and FEM natural frequency results 

 

The underestimation of natural frequencies can result from a range of faulty assumptions or 

errors in the system identification methods. An increase in tension along the catenary stiffens 

the structure, resulting in reduced frequencies for the higher modes. Therefore, one possible 
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reason for the underestimation of frequencies is an overestimation of the mass per unit length 

or constant added mass of the catenary. 

Another potential source of error is the overestimation of complexity in the modes, resulting in 

overestimation of damping. However, as can be observed from Figure 5.29, the damping 

estimates for the highest considered modes are relatively low, deeming this source of error less 

likely.  

The relative scatter of frequencies in each mode is difficult to explain. Especially the fact that 

a natural frequency can correspond to different mode shapes, e.g. 1.79, which is calculated to 

be the fourth mode using the TDD method with the 0.24 m/s current data, and the third mode 

using the TDD method with the 0.34 m/s current data. This could of course be a result of 

computational error, spurious frequencies and noise. However, in a note about VIV obtained 

by personal communication with Carl M. Larsen, he mentioned the possibility of the added 

mass effects on the preferred mode shape by the natural frequencies. This observation was also 

made in a VIV experiment investigating VIV in a shearing current of a rotating rig at 

MARINTEK (Lie et al. 1997). If this is the case, the analytical and numerical models describing 

the catenary equations of motion, Section 3.3, would have to be altered to include higher order 

added mass effects. 

Figure 5.29 shows the scatter of damping estimates related to each of the mode numbers in all 

the current velocity cases. Clearly, there are large deviations, especially in the mode range with 

the largest participations in the various current flow cases. It is difficult to determine the reason 

for this large amount of error, and this is something that should be given more attention in 

further work. A possible reason is the amount of noise present, which can result from: 

 The data not accurately being modelled by a state-space model 

 Measurement noise due to sensor inaccuracies 

 Computational noise due to the finite precision of the data series 

 The finite number of data points 
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Figure 5.29: Modal damping estimate comparison 

 

In comparison with FEM, MAC values calculated for the OMA obtained mode shapes are 

recognized to be very high, and for some cases even unity. Based on this observation and 

assuming that the complexities calculated in some of the modes are due to noise, a conclusion 

could be drawn that the potential for un-proportional damping in this case study riser is not 

very likely. 

This observation also questions the assumption of the “space sharing” model of VIV analysis, 

and strengthens the reasoning for using a “time sharing” model, which assumes a travelling 

wave, as observed in most of the predicted mode shapes of this thesis. However, notice that in 

Figure 5.30 the mode with the largest participation is present for most of the time-series, while 

the other participating modes fluctuate more. But there is no clear tendency that one mode dies 

out as another increases. Therefore, by use of the “time sharing” method of VIV modelling, the 

responses are likely to be underestimated.  
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Figure 5.30: Time-series of modal participaition of the 5 first identified modes usind TDD 

with the 0.24 m/s measurements 

 

5.6.2 Accelerometer added mass effects 

The results of the numerical investigations presented in Section 5.5.3 show that the first order 

added mass effect due to the mass and volume of the accelerometers are not likely to be the 

reason for the deviations of the numerical solutions from results of preliminary studies of the 

experimental results. The results of the system identification studies in this thesis show that the 

deviations in mode shapes were more likely a result of noise and spline fitting errors in 

preliminary studies. The number of high MAC values supports this reasoning. Adding a 

reasonable amount of mass at the accelerometer locations did not alter the mode shapes 

noticeably, and did not create the expected damped mode shape effect. 

Additionally, adding masses at the accelerometer locations increased the tension along the riser 

length. This resulted in the higher modes having lower natural frequencies than the catenary 

without lumped masses, conflicting with the observations shown in Section 5.6.1. A source of 

error in these calculations is the fact that the riser mass per unit length was kept constant, and 

should have been reduced to maintain a constant total weight, as measured by MARINTEK. 

This should be incorporated in further studies of this effect.  
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Chapter 6  

Concluding remarks 

In this thesis, general theories concerning vortex induced vibrations and their consequences in 

terms of dynamic responses in slender catenary structures have been presented and discussed. 

Operational modal analysis techniques for system identification of measured responses 

resulting from VIV are introduced and discussed. 

Following from the theory of dynamic analysis of catenary structures subject to VIV, results 

from the 2001 MARINTEK experiment were used for the case study, with the purpose of trying 

to understand the relation between the presented analytical and numerical models, and observed 

measurements. The major conclusions of this study are as follows: 

 Firstly, the TDD method is implemented in a Matlab program, considering three 

velocity cases of cross-flow displacements in the catenary plane. The results show 

that in each of the cases, one of the frequencies has a higher degree of contribution 

than other frequencies, but multiple frequencies are present throughout the 

measurements. Also, the frequencies corresponding to each mode varied. The 

obtained mode shapes have a relatively high degree of correlation with the 

numerically calculated mode shapes. 

 Secondly, the poly-reference least squares complex frequency method and the DD- 

and Cov-SSI methods of OMA were used for studying the data in the commercial 

Matlab toolbox MACEC. As for the TDD method, the mode shape estimates have 

high MAC-values, and the corresponding natural frequencies vary. The damping 

estimates show a great amount of scatter. Also, there is a varying degree of certainty 

in the results, as some modal frequencies are more difficult to obtain due to signal 

noise or other sources of error. 

 Continuing, the effect of accelerometer masses and first order added mass effects are 

studied using a numerical model in Matlab. There are limitations in the results 

because of the simplification of the added masses. However, based on the minimal 

changes in mode shapes, and the eigenvalues changing opposite to what they should 

in comparison with experimental data, the effects of the masses are concluded to be 
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negligible. This conclusion coincides with original assumptions made for the 

analytical and numerical models. 

 A comparison between the OMA obtained eigenfrequencies and the corresponding 

numerically calculated modes show that there is a great amount of agreement in how 

the natural frequencies increase with mode number. However, for this case study, the 

analytical and numerical calculations apparently underestimate magnitudes of the 

frequencies. Also, there is a possibility that the frequencies corresponding to each 

mode shape vary resulting from higher order added mass effects, which are not 

considered in the numerical or analytical methods. 
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Chapter 7 Recommendations for future work 

It is recommended that further investigations into the dynamic responses of slender catenary 

structures subject to vortex induced vibrations are attempted. Areas that may be of interest in 

the continuation of this work are: 

 Investigations of the reliability of the mass estimates resulting from the measurements 

done at MARINTEK in 2001. If the mass estimates are found to be higher than they 

should be, the numerical result would likely obtain a better fit with the results from 

the experimental study. 

 In order to analytically or numerically reconstruct the measured responses, the 

incorporation of modal damping is necessary, as structural damping is present to a 

certain extent in the measurements. Investigations using a Rayleigh damping matrix in 

a finite element model could of interest. However, better experimental damping 

estimates would be preferable in order to give better estimates of the weighting 

coefficients of Eq.3.10. 

 As the observable range of modes is limited due to the number of accelerometer and 

their spacing, it would be preferable to obtain new measurements to verify or improve 

the results of this thesis. According to (Rainieri et al. 2014), the preferable record 

length for OMA is about 1000-2000 times the natural period of the fundamental 

mode, and this should be taken into account for future experiments. Improved 

equipment could also serve to obtain better quality observations, lowering noise levels 

in the measurements. 

 New experimental data could also be used to study the damping estimates. This could 

better understanding of the large scatter in damping estimates shown in this thesis. 

 Investigations of the possibility of multiple natural frequencies corresponding to the 

same mode shape, or changing mode shape due to higher order added mass effects. 

 It would be interesting to investigate the actual observability of the presented 

experimental data. This could for example be done my use of an observability matrix. 
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Appendix A  

Task Description 

Background 

A wide range of offshore science and engineering applications utilize slender catenary-shaped 

structural elements in their design. These applications include moorings and steel catenary riser 

designs.  The susceptibility of these slender catenary-shapes to vortex-induced vibrations 

remains the subject of theoretical, numerical and experimental studies. 

 

Task 

The research for this Master thesis will start by analyzing experimental data selected from a 

model test program of a towed catenary model. The multi-modal cross-flow response behavior 

of the catenary model will be investigated. The natural frequencies and the corresponding 

mode-shapes of the catenary model will be calculated analytically and numerically. The 

accuracy of the eigenvalue calculations will be established through comparison with 

experimental data. Finally, modal analysis techniques will be applied in an attempt to 

analytically reconstruct the measured response of the catenary model. 

 

Task description 

 Literature study 

 Numerical modelling of catenary dynamics 

 Validation of numerical model with available measurement data 

 System identification 
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Appendix B  

Step-by-step MACEC procedure 

The following presents the step-by-step method used to analyze the case study data in the 

commercial Matlab toolbox MACEC. 

 Import acceleration or displacement measurements. Convert to mcsignal. 

 Process the data by applying necessary 

filters, windows or detrending. A Hanning 

window is used to remove any transient 

parts of the time-series. 

 

 Create a geometry by producing a grid of 

nodes. The positions of the nodes are based 

on the node geometry found by the static 

analysis in DeepC. 

 

 Specify slave nodes. For this thesis this 

implies specifying that nodes 1 and 12 are 

fixed in all directions by slaving to 

neighboring nodes with amplification 0. 
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 Define beams or surfaces between nodes. 

 

 Specify connection between signal and 

nodal DOFs. 

 

A mcsignal proc file is now ready to follow steps of the signal processing techniques 

 

Processing of the data is based on the theory of the methods given in Section 4.3. 

 pLSCF 

Specify the output channels to be used for 

the calculation of auto- and cross PSDs. 

Specify the expected order of the 

polynomials. Run the modal analysis using 

the method, and identify the modes in the 

stabilization diagram. The stabilization 

criteria may be too strict, and can be 

modified to allow for more stable poles. 
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 DD-SSI/ Cov-SSI 

Select all channels to be used. Specify 

expected model order, which is the 

expected number of singular values. For 

the example SVD diagram shown to the 

right, a natural number of system order 

would be about 50, but a higher order 

could be specified to increase the solutions 

of the algorithms. The two methods of 

calculating poles are run separately, and 

their resulting stabilization diagrams are 

used to identify natural frequencies. As for 

p-LSCF, the stabilization criteria can be 

modified if needed. 
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Appendix C  

The TDD Method Results 

This appendix summarizes the results obtained by the TDD method with the three different 

flow velocity cases. The results are sorted by the sequential step that they were identified, and 

show the estimated natural frequency, estimated damping ratio and a spline fit mode shape. 

The values at accelerometer location no. 7 are linearly interpolated values. 

C.1 0.12 m/s 

Table C 1: Results from TDD method, 0.12 m/s flow velocity 

Identified as 

number 
1 2 

Natural 

frequency [Hz] 
1.1906 1.7241 

Damping [%] 1.2208 0.2491 

Mode Shape 

 

 

 

 

Identified as 

number 
3 4 

Natural 

frequency [Hz] 
2.7032 3.5714 

Damping [%] 1.8400 0.0860 
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Mode Shape 

  

Identified as 

number 
5 6 

Natural 

frequency [Hz] 
5.2632 6.6667 

Damping [%] 0.2100 0.2664 

Mode Shape 

  

Identified as 

number 
7 8 

Natural 

frequency [Hz] 
8.3333 9.0913 

Damping [%] 0.3501 0.9720 

Mode Shape 
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Identified as 

number 
9  

Natural 

frequency [Hz] 
10.0003  

Damping [%] 0.7247  

Mode Shape 

 

 

 

Identified peaks with irregular mode-shapes (possible modes with unfortunate accelerometer 

spacing. 

1 2  3 4 5 

0.5714 7.6922  11.1111 14.2858 16.6668 

 

Figure C 1 shows the correlations between mode shapes according to the description given in 

section 5.3.1.1. 

 

Figure C 1: MAC matrix for TDD method obtained mode shapes, 0.12 m/s current velocity 
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C.2 0.24 m/s 

Table C 2: Results from TDD method, 0.24 m/s flow velocity 

Identified as 

number 
1 2 

Natural 

frequency 

[Hz] 

1.1111 1.7862 

Damping 0.7282 2.3154 

Mode Shape 

  

Identified as 

number 
3 4 

Natural 

frequency 

[Hz] 

2.8572 4.1670 

Damping [%] 0.1011 1.1641 

Mode Shape 
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Identified as 

number 
5 6 

Natural 

frequency 

[Hz] 

5.0026 5.8824 

Damping [%] 3.2423 0.0695 

Mode Shape 

  

Identified as 

number 
7 8 

Natural 

frequency 

[Hz] 

6.6667 7.6922 

Damping [%] 0.2212 0.1071 

Mode Shape 

  

Identified as 

number 
9 10 

Natural 

frequency 

[Hz] 

8.3333 9.0913 

Damping [%] 0.2371 1.0120 
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Mode Shape 

  

Identified as 

number 
11  

Natural 

frequency 

[Hz] 

10.0000  

Damping [%] 0.0180  

Mode Shape 

 

 

 

Identified peaks with irregular mode-shapes (possible modes with unfortunate accelerometer 

spacing) 

1 2 3 

12.5000 14.2858 16.6668 
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Figure C 2: MAC matrix for TDD method obtained mode shapes, 0.24 m/s current velocity 
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C.3 0.34 m/s 

 

Table C 3: Results from TDD method, 0.34 m/s flow velocity 

Identified as 

number 
1 2 

Natural 

frequency [Hz] 
0.9531 1.3896 

Damping [%] 4.0056 3.1552 

Mode Shape 

  

Identified as 

number 
3 4 

Natural 

frequency [Hz] 
1.7858 2.7029 

Damping [%] 0.8758 1.2588 

Mode Shape 

  

Identified as 

number 
5 6 

Natural 

frequency [Hz] 

4.3479 

 

5.5557 

 

Damping [%] 0.4468 0.6812 
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Mode Shape 

  

Identified as 

number 
7 8 

Natural 

frequency [Hz] 
6.6669 7.6924 

Damping [%] 0.8195 0.5254 

Mode Shape 

  

Identified as 

number 
9 10 

Natural 

frequency [Hz] 
9.0909 10.0001 

Damping [%] 0.1590 0.6119 

Mode Shape 
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Identified peaks with irregular mode-shapes (possible modes with unfortunate accelerometer 

spacing) 

1 2 3 4 5 6 

11.1111 12.5000 14.2858 16.6668 20.0003 25.0006 

 

 

Figure C 3: MAC matrix for TDD method obtained mode shapes, 0.34 m/s current velocity 
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Appendix D  

The MACEC Method Results 

This appendix summarizes the results obtained by the methods available in the Matlab toolbox 

MACEC using the three different flow velocity cases. The results are sorted by the sequential 

step that they were identified, and show the estimated natural frequency, estimated damping 

ratio and a spline fit mode shape. The values at accelerometer location no. 7 are linearly 

interpolated values. 

D.1 Covariance driven SSI 

D.1.1 0.12 m/s 

Table D 1: Results from Cov-SSI method, 0.12 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
1.2004 1.7290 

Damping [%] 1.9587 0.0431 
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Mode Shape 

  

Identified as 

number 
3  

Complex plot 

 

 

Natural 

frequency [Hz] 
4.3263  

Damping [%] 
10.0640 

 
 

Mode Shape 
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Figure D 1:MAC matrix for Cov-SSI  method obtained mode shapes, 0.12 m/s current velocity 
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D.1.2 0.24 m/s 

 

Table D 2: Results from Cov-SSI method, 0.24 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
1.1603 2.8984 

Damping [%] 16.1109 0.0391 

Mode Shape 

  

Identified as 

number 
3  

Complex plot 

 

 

Natural 

frequency [Hz] 
8.6945  
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Damping [%] 
0.0408 

 
 

Mode Shape 

 

 

 

 

 

 

Figure D 2: MAC matrix for Cov-SSI  method obtained mode shapes, 0.24 m/s current velocity 
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D.1.3 0.34 m/s 

 

Table D 3: Results from Cov-SSI method, 0.34 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
4.4764 8.8920 

Damping [%] 0.0568 0.5618 

Mode Shape 

  

Identified as 

number 
3  

Complex plot 

 

 

Natural 

frequency [Hz] 
17.6407  
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Damping [%] 0.3658  

Mode Shape 

 

 

 

 

Figure D 3: MAC matrix for Cov-SSI  method obtained mode shapes, 0.34 m/s current velocity 
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D.2 Data-driven SSI 

D.2.1 0.12 m/s 

Table D 4:Results from DD-SSI method, 0.12 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

 

 

 

 

 

 

Natural 

frequency [Hz] 
1.2023 1.7288 

Damping [%] 1.2754 0.0175 

Mode Shape 
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Identified as 

number 
3 4 

Complex plot 

  

Natural 

frequency [Hz] 
3.5127 4.3449 

Damping [%] 0.7920 6.0561 

Mode Shape 

  

Identified as 

number 
5 6 

Complex plot 

  

Natural 

frequency [Hz] 
5.2018 6.8024 

Damping [%] 0.2705 0.1845 



 

126 

 

Mode Shape 

  

 

 

 

 

Figure D 4: MAC matrix for DD-SSI  method obtained mode shapes, 0.12 m/s current velocity 
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D.2.2 0.24 m/s 

Table D 5: Results from DD-SSI method, 0.24 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
1.1528 1.8037 

Damping [%] 7.9148 12.8815 

Mode Shape 

  

Identified as 

number 
3 4 

Complex plot 

  

Natural 

frequency [Hz] 
2.8991 7.4071 
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Damping [%] 0.0401 1.3887 

Mode Shape 

  

Identified as 

number 
5 6 

Complex plot 

 

 

 

 

 

 

Natural 

frequency [Hz] 
8.6981 10.3978 

Damping [%] 0.0194 0.5496 

Mode Shape 
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Identified as 

number 
7  

Complex plot 

 

 

Natural 

frequency [Hz] 

12.5683 

 
 

Damping [%] 
0.7134 

 
 

Mode Shape 

 

 

 

 

Figure D 5: MAC matrix for DD-SSI  method obtained mode shapes, 0.24 m/s current velocity 
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D.2.3 0.34 m/s 

 

Table D 6: Results from DD-SSI method, 0.34 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
0.8349 1.1562 

Damping [%] 30.5146 20.6500 

Mode Shape 

  

Identified as 

number 
3 4 

Complex plot 
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Natural 

frequency [Hz] 
1.9261 3.1159 

Damping [%] 11.9707 2.9477 

Mode Shape 

  

Identified as 

number 
5 6 

Complex plot 

  

Natural 

frequency [Hz] 
4.4592 5.1531 

Damping [%] 0.4871 6.3966 

Mode Shape 
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Identified as 

number 
7 8 

Complex plot 

  

Natural 

frequency [Hz] 
6.6952 8.9013 

Damping [%] 4.5520 0.4690 

Mode Shape 

  

Identified as 

number 
9  

Complex plot 

 

 

Natural 

frequency [Hz] 
15.1055  

Damping [%] 
0.5761 
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Mode Shape 

 

 

 

 

 

Figure D 6: MAC matrix for DD-SSI  method obtained mode shapes, 0.34 m/s current velocity 
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D.3 p-LSCF 

D.3.1 0.12 m/s 

Table D 7: Results from p-LSCF method, 0.12 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
1.2084 1.7484 

Damping [%] 2.0556 7.4206 

Mode Shape 

  

Identified as 

number 
3 4 

Complex plot 
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Natural 

frequency [Hz] 
3.4736 5.1882 

Damping [%] 0.0321 0.1161 

Mode Shape 

  

Identified as 

number 
5 6 

Complex plot 

  

Natural 

frequency [Hz] 
6.6276 6.9341 

Damping [%] 0.0579 0.0205 

Mode Shape 

 

 

 

 

 

 

 

 



 

136 

 

Identified as 

number 
7  

Complex plot 

 

 

Natural 

frequency [Hz] 

10.3700 

 
 

Damping [%] 
0.0347 

 
 

Mode Shape 

 

 

 

 

Figure D 7: MAC matrix for p-LSCF method obtained mode shapes, 0.12 m/s current velocity 
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D.3.2 0.24 m/s 

Table D 8: Results from p-LSCF method, 0.24 m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
1.1171 2.8941 

Damping [%] 2.9492 0.0632 

Mode Shape 

  

Identified as 

number 
3 4 

Complex plot 

  

Natural 

frequency [Hz] 
4.0697 8.6850 
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Damping [%] 0.0888 0.0060 

Mode Shape 

  

Identified as 

number 
5 6 

Complex plot 

  

Natural 

frequency [Hz] 
12.6917 13.5157 

Damping [%] 0.0052 0.0267 

Mode Shape 
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Figure D 8: MAC matrix for p-LSCF  method obtained mode shapes, 0.24 m/s current velocity 
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D.3.3 0.34 m/s 

Table D 9: Results from p-LSCF method, 0.34m/s flow velocity 

Identified as 

number 
1 2 

Complex plot 

  

Natural 

frequency [Hz] 
1.8320 3.1513 

Damping [%] 0.2701 1.3963 

Mode Shape 

  

Identified as 

number 
3 4 

Complex plot 

  

Natural 

frequency [Hz] 
4.2759 8.9200 
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Damping [%] 2.3362 0.1812 

Mode Shape 

  

Identified as 

number 
5 6 

Complex plot 

  

Natural 

frequency [Hz] 
10.6715 15.1649 

Damping [%] 0.1668 0.2441 

Mode Shape 
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Identified as 

number 
7  

Complex plot 

 

 

Natural 

frequency [Hz] 

17.4058 

 
 

Damping [%] 
0.0777 

 
 

Mode Shape 
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Figure D 9: MAC matrix for p-LSCF  method obtained mode shapes, 0.34 m/s current velocity 
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Appendix E  

List of Matlab Scripts 

The following codes are included in the zip-folder submitted with this thesis. 

 

For TDD analysis: 

 TDD_method.m: The program used for identifying modes, plotting mode shapes and 

calculating MAC matrices. 

 MAC_func.m: Calculates the MAC value of two vectors of same length. 

 MZerocross.m: Calculates the damped period of the participation time series. 

 TDD_fnat_damp.m: Calculates the natural frequencies and mode shapes. 

For importing and viewing static configuration obtained from RIFLEX: 

 Static_Analysis_Beam_Mass.m: Imports RIFLEX files and gives an output .mat file 

containing static analysis results used for modal analysis. 

 get_matrix.m: Transforms mpf file data to matrices. 

For numerical investigations of the accelerometer effects on the solution of the eigenvalue 

problem: 

 SCR_Eigenvalues.m: Used to select mass case to be investigated, number of modes to 

calculate and which mode shape to plot. Gives a .mat file containing identified natural 

frequencies and mode shapes at the accelerometer locations as output. Output is used 

for calculation of MAC values and frequency deviations. 

 SCR_Beam_FEM_Fun.m: Creates global mass and stiffness matrices, calculates 

natural frequencies and mode shapes, sorts the calculated modes and outputs the 

requested number of modes and modeshapes. 

 feaplycs.m: Applies boundary conditions to the global mass and stiffness matrices. 

 feasmbl1.m: Assembles local element mass and stiffness matrices into global mass 

and stiffness matrices according to indexing. 

 feeldof1.m: Creates indexes for the DOFs associated with each local element mass 

and stiffness matrix for use when assembling global matrices. 
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 feframe2.m: Creates local element mass and stiffness matrices for elements without 

accelerometer masses. 

 feframe3.m: Creates local element mass and stiffness matrices for elements with 

lumped mass at the second node. 

 feframe4.m: Creates local element mass and stiffness matrices for elements with 

lumped mass at the first node. 

 

 


