


Assumptions for environmental data: Wind-wave scatter diagrams are lumped into 20 simulation
cases consisting of mean wind speeds (VW ), significant wave heights (HS ), and wave peak peri-
ods (TP). The lumping is performed in a damage equivalent way using a method suggested by
Kuehn [6]. For each simulation case wind-wave directionality is simplified into fully aligned or
fully misaligned. For this purpose, wind and wave roses are lumped in bins of 30degree. Fully
aligned wind and waves occur in the same bin, where the aerodynamic damping is maximum.
All other combination of wind and wave directions are treated as fully misaligned with reduced
aerodynamic damping.
Assumptions for calculation method: The estimation approach for wind-induced EFLs only ad-
justs for TI and natural frequency. Differences in air density, wind shear, structural geometry or
mode shapes are neglected since the effects on the load level are expected to either be minor or
represented through the natural frequency correction.

2.3. Verification

The fatigue load estimation method is verified empirically against time domain simulations
using the non-linear aero-elastic tool Bonus Horizontal axis wind turbine Code (BHawC), which
allows for a global dynamic analysis of wind turbines. The verification was done for wave-only
load cases (as described in [8]), as well as wind-only loads, and wind-wave combined loads for
a 4MW OWT in 35m water depth. Results of this verification study are presented in Section 5.

3. Probabilistic Load Assessment

Fatigue load calculation processes contain significant uncertainties commonly addressed with
safety factors in the design standards [4, 5]. Insight on the effect of uncertainties on EFLs im-
proves the understanding of the actual structural reliability. A brief overview of existing work on
probabilistic fatigue assessment of wind turbines is given by Yeter [20] and Veldkamp [21].
The novelty of this work is the use of frequency domain analysis with MCS to assess uncertain-
ties in fatigue loads for application in probabilistic design clustering of OWTs. For every turbine
location 1000 MCS were run with simultaneous, random variation of input parameters. As a
result, the output distribution of EFLs can be estimated with a root-mean-square error of 0.3%.
Epistemic uncertainties in fatigue load calculations occur in the form of data, statistical and
model uncertainty [22]. Previous work showed significant influence of data uncertainties in
MSL and TP on fatigue loads [8]. For the clustering problem, the probabilistic assessment is
extended to include uncertainty in TI and model uncertainty. Model uncertainty is analyzed re-
garding the development of sea states, represented with the peak enhancement factor γ in the
JONSWAP wave spectrum, and regarding diffraction, represented with the inertia coefficient CM

in the McCamy-Fuchs diffraction correction for Morison equation. All parameters in the proba-
bilistic assessment are independent, normal distributed with mean value and standard deviation
(STD) stated in Table 1.
Data uncertainty was given a constant STD over the wind farm. In practice, uncertainties can
differ for some locations due to incomplete measurement data, for example soil measurements
may not be available for every turbine position in early project phases.
Parameter ranges were chosen to represent realistic uncertainties for design clustering in large

wind farms. The choice is made based on wind farm data, existing publications of sensitivity
studies [21, 23, 24], and expert opinion. For example, the variation of MSL is chosen as tidal
variation. Soil properties typically contain high uncertainties due to difficult measurement and
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Table 1: Input distributions for probabilistic design clustering.

Uncertainties Data (factors) Statistical Model

Parameter TI [-] MSL [-] Soil [-] HS [m] TP [s] γ [-] CM [-]

Mean 1 1 1 1.6 6.9 1.5 1.7
STD 0.1 0.05 0.2 0.1 0.2 0.1 0.1

data interpretation while the water depth is known with better accuracy. Mean values of data
inputs are location specific, thus the uncertainty is represented through a scaling factor. Soil
variations are represented by scaling of the soil stiffness which is obtained from nominal p-y
curves with a factor that is constant over the full depth. For probabilistic clustering only the sea
state that contributes most to lifetime fatigue damage is analyzed. Mean values of γ and CM

are chosen based on exemplary wind farm and support structure data about fetch limitation and
diffraction (cf. Table 1).

4. Clustering Optimization

The aim of design clustering is to find an optimum between number of clusters and the level
of design conservatism. Clustering optimization here provides a solution to the question of clus-
ter configurations: To which cluster should each OWT be assigned to?
Applying the developed (probabilistic) estimation method, fatigue loads are calculated site spe-
cific for all given turbine locations within the wind farm. The resulting set of discrete (determin-
istic or probabilistic) fatigue values is clustered regarding customized criteria.

4.1. Problem formulation
Clustering optimization has two dimensions: the decision on (i) number of clusters and

(ii) cluster configuration. Regarding number of clusters, limiting cases are one cluster, mean-
ing all turbines are designed for the highest load level in the wind farm, and individual support
structure design, where cluster number equals number of OWTs. The number of clusters is typi-
cally restricted by resources in the engineering team and limited project time. Even if the industry
moves towards faster tools and higher capacities making individual design feasible, clustering is
still beneficial to implement for turbines with similar load level to optimize costs of manufactur-
ing and installation.
Ideally, in clustering optimization the support structure costs should be minimized. In this study,
the optimization problem is formulated to minimize design loads since accurate cost information
is difficult to gather. Loads correlate to mass of the support structure which is commonly treated
as cost indicator [6]. Thus, the unconstrained, non-linear objective function is the total design
load T L calculated as the sum over all clusters n with Equation (3). Ni is the number of turbines
in cluster i, while Li equals the highest load level in cluster i.

T L =

n∑

i=1

Ni ∗ Li (3)

The choice of number of clusters n can either be fixed prior to optimization or be included as a
variable in optimization. If the clustering approach is extended for cost minimization, n will be
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an optimization result.
Including uncertainties in fatigue load calculations results in a set of fatigue load distributions
for all turbines. Probabilistic clustering is performed by increasing the mean load value with
k ∗ S T D. Choice of k represents how much of the load variability is accounted for, for example
k = 3 accounts for 99.7% of the sample population for a normal distribution. The higher k is
chosen, the smaller is the chance of misgrouping turbines into clusters with too low load level.

4.2. Assumptions for clustering optimization

The formulation of the optimization problem reveals underlying assumptions for clustering:

• All turbines are designed for the highest load in the cluster, no design interpolation is done
within clusters.

• Fatigue is design driving, extreme loads do not influence clustering. This is typically
valid for monopiles in deeper water, where the design is often dominated by wave induced
fatigue loads. A check should be performed for every project to confirm fatigue as a design
driver.

• Location specific loads are calculated with the same initial design for all positions. Thus,
the validity of the design for all positions has to be confirmed which can be done through
the frequency constraint. Alternatively, the initial design can be updated in an iterative
procedure of clustering and renewed load calculation.

4.3. Solution approaches

The pattern of the optimization problem is explained for an example of 150 turbines equally
divided into five clusters with cluster 1 (T1 − T30) containing the highest loaded turbines and
cluster 5 the lowest loaded turbines (T120 − T150). Thus, 30 turbines are in each cluster (N = 30).
Moving one turbine T60 from cluster n2 to cluster n3 causes:

1. (N − 1) turbines in cluster n2,
2. (N + 1) turbines in cluster n3 and
3. Increase of maximum load in cluster n3 to L60.

The formulated problem is addressable with algorithms of combinatorial optimization [25]. The
discrete solution approaches brute-force and local search were compared in terms of efficiency
and robustness. In brute-force the number of recombination are reduced by using pre-knowledge
of the solution that (i) clusters are filled with turbines sorted in load descending order making
optimization only a cluster-border decision and (ii) when adding a cluster, the number of turbines
in every cluster is less or equal to the maximum number of turbines in the previous n clusters.
Problems with 150 OWTs and up to 6 clusters can be solved with brute-force giving the global
minimum in a computation time of less than 1 hour.
An approximate algorithm using local search starts from an initial cluster guess, selects a random
cluster-border, and optimizes it in terms of decreasing the objective function, while keeping all
remaining positions constant. The optimization of the single cluster-border is performed by
selecting the position with the minimum cost of all possible border positions. This procedure is
repeated in every iteration step. With a chance of 5%, the previously optimized cluster-border
is replaced by a random border to ensure that the algorithm does not become trapped in a local
minimum with poor quality. In the tested example for 150 OWTs, 100 iterations were sufficient
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for the algorithm to reach the global minimum or local minima with good quality. The quality of
local minima depends on the shape of the solution space and the initial guess. In order to avoid
poor local minima, the optimization algorithm is repeated for several initial positions selected
randomly. In a fast check, the quality of the computed local minima is compared against a linear
distribution of load levels in the offshore wind farm and results for individual design. For a linear
distribution of loads, the optimal solution is an equal number of turbines in each cluster.

5. Results and Discussion

5.1. Probabilistic fatigue load estimation results
Results of the verification study for the load estimation method are presented in Figure 2.

EFLs were calculated based on seven wind and wave realizations for all operational wind speeds.
The load estimation tool gives the best results around rated wind speed of the turbine. Errors
increase for higher wind speeds mainly due to an underestimation of wave loads. This is in
agreement with previous study of the wave-only load estimation tool [8]. Possible reasons are
that for higher wind and waves non-linear effects in the wave load and also in the soil-structure
interaction play a larger role which is not captured in the linear frequency domain wave model.
Additionally, aerodynamic damping magnitude and small differences in the calculation models
(e.g. discretization in structural model, CM coefficients in Morison equation) are further error
sources. Combining the simulation cases to weighted lifetime EFLs using a Weibull distribution
for wind speed occurrences, a total load estimation accuracy of 95% (conservative error, EFLs
are overestimated) is achieved.
Figure 3a presents the location specific EFLs for 150 turbines calculated with the load estima-

tion tool for a realistic wind farm example in 30-40m water depth leading to a maximum load
difference of 25% in the wind farm. MSL, soil properties, and TI are varied site specifically,
while all remaining parameters are constant, e.g. identical lumped sea states or wind-wave align-
ment. Sorting the turbines for ascending mudline EFLs does not result in interface loads sorted
correctly. This is due to the higher local sensitivity of wave-induced EFLs at mudline nodes to
changes in MSL as shown in [8]. Thus, a critical decision in clustering optimization is the po-
sition of interest, since clustering regarding mudline EFLs might result in interface EFLs being
in a suboptimal cluster. In this study, optimization of mudline EFLs was performed since these
are typically the highest loaded nodes on the support structure. Alternatively, multi-objective
optimization or an optimization based on the “integrated load from interface-mudline-pile tip”
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Figure 2: Comparison of normalized EFLs of response moment at mudline.
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Figure 3: (a) Location specific EFLs at mudline and interface level for 150 turbines normalized
to the maximum load in the wind farm. The EFLs are sorted ascending for mudline location. (b)
Mean value and STD of probabilistic, location specific EFLs at mudline.

might be suitable.
Figure 3b shows the normalized mean load values with an error bar for STDs of all turbines re-
sulting from the probabilistic load assessment. Mean load values are normalized to the maximum
mean load value in the wind farm. In general, STDs between the turbines are quite similar; the
maximum absolute difference is 4.5%.
A reason for the relatively small variation between location specific STDs is the choice of input
distributions. In this example case, only the data factors for MSL, soil, and TI introduce location
specific uncertainties, while the remaining uncertain parameters are identical for all turbines (cf.
Table 1). Scatter plots of EFLs for the input parameters reveal that MSL, soil stiffness, TP, HS ,
and CM uncertainties influence the loads equally while γ and TI have no relevant influence (not
shown). Higher location specific uncertainties may increase variability differences within wind
farms.
Figure 4 shows STDs of EFLs as scatter plots for natural frequency, MSL, and load level. The
following two trends regarding the load variability are observed:

1. STDs of EFLs increase with higher load level and accordingly also with deeper water or
lower eigenfrequency. This result matches previous analysis that showed a higher sensi-
tivity of EFLs for increasing water depth and decreasing soil stiffness [8].

2. For turbines on a similar load level, differences in STD up to 2% exist. This variability
can be attributed mainly to location specific uncertainties since the effect of model and
statistical uncertainty is constant for the same load level.

5.2. Clustering results

Standard clustering approaches based on eigenfrequency and MSL give an indication but do
not fully capture the variation of EFLs as Figure 5a shows. The representation of EFL change
through eigenfrequencies is of higher quality than for MSL. A better match was achieved by
Seidel [2] with his suggested load site parameter. Using the developed load estimation tool, clus-
tering can now be performed based on complete site specific fatigue load information.
Figure 5b shows the total design loads (TLs) of all possible recombinations for grouping 150
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Figure 4: Scatter plots of normalized STD for the natural frequency, MSL, and normalized EFLs.

turbines into three clusters using brute-force. Cluster 1 is the highest loaded, cluster 3 the lowest
loaded cluster. The solution space of the optimization problem has a convex pattern with a rather
flat bottom with good quality local minima (cf. Figure 5b). This shape and the relative smooth-
ness of the problem enable local search algorithms to achieve good results.
The local search algorithm for optimizing 10 clusters is applied for 20 random initial positions
as shown in Figure 6a. This confirms that the local search algorithm leads to a very good local
minimum with only minor influence of initial positions. The maximum difference between the
different local minima is 0.4% for this example which is negligible.
Figure 6b presents TLs minima as a function of the number of clusters. The clusters 1-6 are
calculated with the brute-force method resulting in the global minimum, while higher number of
clusters are solved with the local search algorithm. One cluster means all turbines are designed
for the highest load in this wind farm, while 150 clusters represent individual design. This em-
phasizes the necessity to implement a sufficient number of clusters in large offshore wind farm
since designing all support structures to the highest loaded position leads to 13% larger TLs com-
pared to individual design for this example case. On the contrary, the marginal gain adding more
clusters reduces significantly after 6 clusters. TLs approach individual design results quickly
after 10 clusters already, where more designs add little value.
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Figure 5: (a) Scatter plots of site specific EFLs for eigenfrequencies of the structures fnat and
MSL variation. (b) Brute-Force optimization of 150 turbines in 3 clusters.
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Figure 6: (a) Local minima obtained with discrete optimization algorithm for different random
initial positions. (b) Minima of TLs for 150 turbines as a function of number of clusters.

The optimal cluster configurations are shown in Table 2. Optimization has to be performed for
the number of turbines in each cluster Ni only; the maximum load in the cluster Li results from
ascending turbine sorting (cf. Figure 3a). This setup based on brute-force solving can also be
used for interpolation to higher number of clusters instead of applying optimization algorithms.
Next, based on the calculated load distributions (cf. Figure 3b), clustering is now performed
probabilistically by allocating turbines based on their mean load level increased with 3*STD.
Figure 7a presents the rearrangement of turbines compared to deterministic clustering based on
only mean values for the case with three clusters. In this example, the number of turbines in
cluster 1 increased by one while cluster 3 has one turbine less. In Figure 7a, the numbers indi-
cate turbine IDs, grey stating the turbines in the cluster for deterministic clustering and the red

Table 2: Optimal cluster configurations.

Number of clusters 1 2 3 4 5 6 150

Cluster 1 N1 150 54 24 18 4 4 1
L1 1 1 1 1 1 1 1

Cluster 2 N2 - 96 53 41 30 20 1
L2 - 0.883 0.919 0.929 0.952 0.952 0.994

Cluster 3 N3 - - 73 57 43 30 1
L3 - - 0.862 0.878 0.908 0.919 0.972

Cluster 4 N4 - - - 34 39 25 1
L4 - - - 0.812 0.862 0.883 0.956

Cluster 5 N5 - - - - 34 37 1
L5 - - - - 0.812 0.861 0.952

Cluster 6 N6 - - - - - 34 1
L6 - - - - - 0.812 0.951

Cluster 150 N150 - - - - - - 1
L150 - - - - - - 0.746

Normalized TL 1 0.925 0.904 0.892 0.886 0.881 0.865
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Figure 7: (a) Turbines changing clusters in probabilistic compared to deterministic optimization.
(b) Total design loads for deterministic and probabilistic clustering.

boxes referring to turbine moving due to probabilistic clustering. In total, twelve turbines change
clusters as indicated by the arrows. These are often turbines located close to the cluster-borders
but can also be turbines that have a higher STD than load neighbouring turbines (e.g. ID23).
Turbines changing clusters leads to an increase of the highest mean EFL in the clusters. There-
fore, the total design loads are higher for probabilistic clustering compared to deterministic clus-
tering as shown in Figure 7b.

5.3. Evaluation of load estimation and clustering methods

Limitations of the current estimation tools are the simplification of many physical phenom-
ena, for example non-linearity of waves and soil, wind-wave directionality and interaction be-
tween wind and wave loads. Moving to bigger turbines supported by XL-monopiles with di-
ameters above 7m, wave diffraction becomes more important, making use of Morison equation
in linear wave theory only applicable when diffraction corrections are included. Immediate im-
provement of the method can be achieved through the use of distributed transfer functions in the
wave load tool and detailed study of suitable aerodynamic damping values.
Verification of the fatigue estimation method confirms a total conservative error of 5% indicating
good load estimation. However, since some results of the estimation tool are non-conservative
for high wind speeds (cf. Figure 2), contingency should be added in project applications.
Probabilistic assessment of all turbines within an example wind farm gave only 5% differences
in STD over the wind farm. For design practice, it is suggested to perform a single probabilistic
assessment for the highest loaded position in uniform wind farms to indicate the variability of
loads due to uncertain input parameters for all turbine locations. With some contingency, this
approach is conservative as it was shown that STDs increase with higher loads.
A main limitation of the probabilistic assessment is that results strongly depend on chosen input
distributions. For example, soil stiffness had only minor influence on EFLs compared to param-
eters like MSL and TP in previous studies [8]. This was due to high soil stiffness for the example
site. Soil stiffness became in this study a more important parameter for turbine locations with
poorer soil stiffness. This emphasizes that probabilistic assessments are problem specific and
cannot be generalized. Consequently, applying a general safety factor in the design process is
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not expedient for design optimization. Probabilistic load assessment can, combined with uncer-
tainty in structural resistance, form a good decision-making basis for optimizing safety factors.
For design clustering, the needs of industry are fast and robust tools, while nowadays larger wind
farms typically have only 2-3 clusters. Brute-force optimization guarantees global optima at
the expense of solution time making it the best choice for up to 5 clusters for wind farms with
100-150 turbines. For more clusters, the local search algorithm is recommended which showed
very good performance for solution quality and computational efficiency. For practice, a possible
constraint in the optimization routine can be a limit on MSL difference within clusters so that
monopile lengths can be kept constant for all cluster positions.
In the probabilistic clustering example, only few turbines change cluster since the distribution of
STDs follows that of EFLs relatively closely. Thus STDs are only of importance near cluster-
borders. It can be concluded that deterministic clustering has good stability for uniform sites.

6. Conclusion and Recommendations

6.1. Conclusion
Fatigue load differences of 25% for 150 OWTs in 30-40m water depth showed the impor-

tance of site condition variations, making design clustering necessary. A developed probabilistic
fatigue load estimation method proved to be suitable for site specific EFL estimation. A veri-
fied accuracy of 95% with only seconds of computation time for one simulation case makes the
estimation tool ideal for application in clustering optimization, load interpolation, uncertainty
studies and preliminary design. Based on EFL estimates, optimization of design clustering gave
a reduction of up to 13% of total design loads compared to standardized design. This makes
clustering an important approach in support structure cost reduction.
By investigation of the marginal gain of adding additional clusters (cf. Figure 6b), the clustering
tool can improve decision-making on the optimal number of clusters of a wind farm in early
project phases and is strongly recommended for use in industry. An alternative application of the
combined load estimation and clustering tool is wind farm layout design. The layout is typically
optimized for power output through wake modeling and cable costs. Having this fast load esti-
mation tool, support structure loads and costs can add a new dimension to layout optimization.

6.2. Recommendations
Two main recommendations for the load estimation tool are: firstly, the verification study

should be extended to different structural and environmental settings. More precisely, studies
should confirm the accuracy of the estimation method for different support structure eigenfre-
quencies and in shallow water depths where wind loads have more influence. Ideally, the tool
should be validated on experimental data in the future. Secondly, resistance uncertainty should
be included in the probabilistic approach making it applicable for reliability-based design. Clus-
tering can then be based on structural reliability instead of (probabilistic) design loads only.
For clustering optimization the following recommendations are made:

• Extend the clustering algorithms for costs optimization.

• Test the local search algorithm for load distributions that feature significant local minima.

• Include load interpolation by formulating the objective function for minimum load dif-
ference within clusters. Multi-objective optimization should be implemented to consider
EFLs at multiple support structure levels.
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Appendix C

Local search optimization

This appendix extends the explanation of the local search algorithm for solving the
clustering optimization problem that is introduced in the paper “Design clustering of
offshore wind turbines using probabilistic fatigue load estimation" in Appendix B. The
local search algorithm is implemented in the software environment R for statistical
computing.
Figure C.1 presents the flowchart of the local search algorithm. The algorithm starts
with the choice of number of clusters n. Secondly, a random initial guess about the
number of turbines Ti in each cluster i is made. According to the initial guess, turbines
are sorted to clusters in load descending order. Afterwards, a random cluster-border
bi with i = {1...(n − 1)}is selected. The total design loads TL are calculated for all
possible positions of the selected cluster-border, while keeping the remaining borders
constant. For the selected border, (Ti+T(i+1)−1) possible positions exist between the two
neighboring, constant cluster-borders. Finally, the cluster-border is put on the position
with the smallest TL value. The steps from selection of a cluster-boarder to putting it
on the local optimum position form one iteration loop. After the local optimum cluster-
border position is chosen, this border position is replaced by a random position with a
chance of 5% before the start of the next iteration. This avoids that the optimization
algorithm is trapped in a local minimum with poor quality. The local search algorithm
stops after a defined number of iterations.
For the example case in paper B with 150 turbines, 100 iterations were sufficient for the
algorithm to reach the global minimum of the solution space or local minima with good
quality. Alternatively, a stopping criteria could be defined, when the solution converges
to a local minimum.
An alternative solution approach to the clustering problem based on site-specific EFLs
is the application of standard continuous optimization solvers for nonlinear functions,
for example “fminsearch" in MATLAB R©. For this case, the discrete distribution of fatigue
loads has to be approximated by a continuous function through interpolation. The
obtained solution must then be rounded to the nearest discrete value. This approach
is comparable efficient, in terms of computation time, as the local search algorithm.
However, for the example case of 150 turbines, it leads to a local optimum that is less
good compared to results obtained with the discrete local search algorithm due to the
continuous approximation and rounding.
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Figure C.1: Flowchart of local search algorithm for clustering optimization.


	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

	

	
	
	
	
	
	
	

	
	
	

	
	
	
	


	
	
	
	
	
	

	
	
	

	
	
	
	
	

	
	
	

	
	
	
	
	

	
	
	
	
	

