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Abstract

The principles of the object oriented slug tracking schemes at EPT (Department of Energy and Process
Engineering, NTNU) have been developed and discussed in some detail. Simple bench-mark testing re-
vealed that the LASSI code suffers form a pipe inclination-dependant lack of mass conservation, the cause
of which is presently unidentified. Comparing simplified and non-simplified SLUGGIT simulations with
experimental data published by Taitel et al. [41] mostly indicate a reasonable correspondence, though the
precision is somewhat imprecise. In particular, obtaining stable riser flow (free of significant pressure oscil-
lations) at low liquid flow rates was not managed without excessive gas rates. This is possibly a consequence
of the method’s intrinsic slug flow approximation to dispersed regimes, but further investigation showed that
the methods stability response altered with recent code versions in which alterations to management proce-
dures was identified as the main differences, indicating that the SLUGGIT method’s riser stability properties
are quite sensitive to intuition-based section management routines. Further developing the models to better
accommodate vertical flow regimes is advised.

Supplementary testing was afforded through the development of a steady-state unit-cell type model for
phase fractions in the riser. Excellent accordance with simulation data was found, confirming that the SLUG-
GIT model is capable of reproducing stable, expanding bubble flow. Coarse resolution served to disturb this
process as bubbles becomes longer and are affected by riser entrance and exit effects. It was also found that
pressure oscillations caused by such entrance and exit effects display the typical characteristics of terrain
slugging and may be mistaken as such.

With basis in the P50 Girassol pipeline, a systematic investigation into operational instability phenom-
ena has been carried out using the available boundary conditions. Instabilities rooted in gas accumulation
in jumpers, possibly also influenced by the U-bend, were found when studying the fixed pressure open inlet
condition. The character of these instabilities were of a frequency and intermittency uncongenial to the field
data. Most instability phenomena captured in these simulations were sensitive to changes in geometry, inlet
condition and management parameters.

Severe slugging was initially found to dominate the flow picture with a fixed flow closed inlet condition.
Also this type of operational instability had too high a frequency to be a match with the field data. Nor does
the well-know ‘shark fin’ pressure profile of the terrain slugging liquid build-up and blow-out precesses
match the sinusoidal character of the field data.

It was recently found that the supplied field data needed adjustment for phase transition at the inlet state,
amounting to a considerable reduction in gas flow. This produced predictions of more stable production
compatible with those generated by external participant, though significant pressure fluctuations were still
observed. These fluctuations were found to originate from slugging in the U-bend and entrance effects as
large Taylor bubbles formed through coalescence and penetrated into the riser. This latter cause is believed
to be a feature of the limited, non-dispersed flow objects available in the EPT models.

A production index type boundary condition was implemented to better accommodate the well produc-
tion response. Even so, the conditions under which the Girassol field instability data was recorded could not
be recreated satisfactorily without gas lift and PVT support implemented. Simulations including the pro-
ductivity index inlet indicated, for the most part, that without the presence of a gas lift system, the pipeline
is likely to come to a complete stand-still; unless the liquid in riser and well are strongly aerated at all times,
the well head will not be sufficient to overcome the total system liquid column weight.
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Sammendrag

Prinsippene bak de objektorienterte slugfølgemodellene ved EPT (institurtt for Energi og Prosessteknikk,
NTNU) blir utledet og diskutert på detaljnivå. Enkel testing viser at LASSI-koden lider av en helningsavheng-
ing og foreløpig uidentifisert feil som fører til at masse ikke blir bevart. Sammenlikning av SLUGGIT-data
med eksperimentell data fra Taitel et al. [41] indikerer stort sett en akseptabel overenstemmelse, dog noe
upresis. Særlig ved lav væskestrømningsrate viste det seg vanskelig å oppnå stabil riserstrømning uten over-
drevent gassinnskudd. Modellenes slugtilnærming til dispersjoner kan ha skyld i dette. Videre undersøkelse
viser at forskjellige, forholdvis nye versjoner av SLUGGIT-koden predikerer forskjellige stabilitetsdomener
for risersystemet. Forskjellen blant versjonene ligger hovedsakelig i prosedyrene tilknyttet objekthåndtering,
hvilket indikerer at modellenes riserstabilitet er følsom for denne intuisjonbaserte delen av simuleringsruti-
nen. Videre modellutvikling med hensyn på vertikalstrømning anbefales.

Videre testing ble gjennomført ved utleding av en stasjonær ‘unit-call’ riser-fasefraksjonsmodell. Ut-
merket overensstemmelse med data fra simuleringer ble observert, hvilket underbygger SLUGGITmodel-
lens evne til å gjenskape stabil, ekspanderende riserstrømning. Grov oppløsning forstyrret derimot denne
prosessen ettersom bobleseksjoner ble lengre, hvilket førte til trykkendringer forbundet med seksjonenes
med inn- og uttreden av riseren. Disse forstyrrelsene i trykk var av en karakter lik det sett ved terrengslug-
ging.

Med utgangspunkt i P50-rørledninged ved Girassol-feltet ble mulige former for produksjonsustabilitet
undersøkt ved bruk av alle tilgjengelige innløpsbetingelser. Ustabilitet med opphav i gassakumulering i
jumpere, samt en mulig U-rørinnvirkning, ble oppdaget under studier med konstant trykk på innløpet. Disse
formene for ustabilitet viste seg derimot å ha for høy frekvens og for skarpt utfall til å samsvare med feltdata.
De fleste av disse simuleringene viste seg å være følsom til endringer i rørkonfigurasjon og simuleringspa-
rametere.

Terrengslugging type I dominerte strømningbildet hvor konstante massekilder ble benyttet som innløps-
betingelse. Også denne typen ustabilitet viste seg å gi oscillasjoner med overdreven frekvens. Heller ikke
den typiske ‘haifinne’-trykkprofilen assosiert med væskeopphopning og utblåsning står i samsvar med den
sinusformede trykkprofilen registrert i feltdataen.

Nylig ble det oppdaget at oppgitt innløpsdata trenger korrigering for faseovergang til innløpstilstanden.
Dette endrer gassraten betydelig. Resulterende simuleringer var mer stabile og dermed mer lik de gjennom-
ført av eksterne deltakere. Allikevel var trykkprofilen preget av en anselig forstyrrelse. Denne forstyrrelsen
viste seg å ha opphav i terrengslugging i U-røret, så vel trykendringer forbundet med at lange Taylor bobler,
formet ved koalesens i horisontalrøret, penetrer inn i riseren. Sistnevnte kan være et resultat av mangel på
dispergerte strømningsobjekter i slugfølgemodellene.

For bedre å tilpasse produksjonsresponsen til brønnen ved innløpet ble produktivitetsindeks imple-
mentert som grensebetingelse. Omstendighetene tilknyttet Girassolfeltets ustabilitet kunne likevel ikke
bli tilfredsstillende gjenskapt, primært grunnet mangelen på gassløft og PVT-tilstandsberegning i kodene.
Simuleringer med produktivitetsindeks på innløpet indikerte hovedsakelig at systemet ville stanse fulls-
tendig opp uten gassløft tilstede; hvis ikke riser og brønn til enhver tid et godt utluftet vil ikke brønntrykket
være tilstrekkelig til å overvinne tyngden av den totale veskesøylen.
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Nomenclature

Latin symbols

e Unit vector −

n Normal vector of control volume −

Ṁs Mass rate source term kg/s

Q Volumetric flow rate m3/s

A Pipe area, perpendicular to flow direction m2

c Speed of sound m/s

D Pipe diameter m

Dh Hydraulic diameter m

Fr Froude number = u/
√

gD −

g Gravitational acceleration m/s2

GOR Gas-Oil Ratio = US ,S T
g,i /US ,S T

l,i −

H Riser height m

h Phase height m

IFM Interphase Friction Multiplier −

K Productivity index Sm3/(bar · day)

k Wavenumber 1/m

L Pipeline length m

M Control volume mass kg

m Pipe specific mass (extensive) kg/m3

N Total number of samples −

p Pressure Pa

Pwell Well pressure bar

Q ‘Extensive volumetric flux’ – see (4.3) m3/s

R Gas constant J/(kg · K)
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r Pipe radius m

Re Reynolds number −

S Wetted perimeter m

sχ Sample standard deviation unit of χ

T Temperature K

u Phase velocity m/s

V Volume of section m3

v Border velocity m/s

V∫
dz Total phase volume in system, computed using (5.1a) m3

Vio Total phase volume in system, computed using (5.1b) m3

wc water cut = US ,S T
H2O,i/U

S ,S T
l,i −

y Vertical axis in pipe cross-section. Origin at pipe bottem m

z Position downstream the pipe m

MAX_BUB_COEF SLUGGIT simulation parameter; maximum allowed bubble length measured in diameter mul-
tiples. −

Greek Symbols

α Section volume fraction (hold-up) −

χ Representation of a property various

∆ Difference (macroscopic) −

δ Difference (differential approximation) −

` Control volume streamwise length m

κ Balance of Bernoulli suction and hydrostatic head gradient (see Eq. (4.28)) m2/s2

λ Darcy friction coefficient −

λ f Film thickness m

µ Dynamic viscosity kg/(m · s)

Ω Control volume domain m3
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ω Pulsation 1/s

∂Ω Boundary of control volume m2

Φ Total average riser phase fraction −

φ Pipe inclination angle (deg)

ψ Pressure error m3/s

ρ Density kg/m3

σ Surface tension N/m

τ Shear stress N/m2

Θ Total phase fraction in horizontal pipeline upstream riser −

Subscripts

κ Fluid type: κ ∈ {l, g}

Σ Control volume cell: Σ ∈ {W, E}

σ Control volume border: σ ∈ {w, e}

b ‘bubble’

crit ‘critical’ (criteria limit)

E Eastern (right) control volume cell

e Eastern (right) control volume border

f Liquid film (around bubble)

i ‘inlet’

int ‘interfacial’ (surface)

j Position index along the entire pipe

n ‘nose’

o ‘outlet’

P Present control volume cell

pipe pipe (interior surface)

s ‘slug’
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t ‘tail’

W Western (left) control volume cell

w Western (left) control volume border

Superscripts

gl ‘gas lift’

n Present time step

n + 1 Next time step

S Superficial property (e.g. uS
κ = ακuκ)

s Source

S T (At) standard conditions

Encasements

˙(·) (dot) Rate of property

d(·)
dχ Total derivative

D(·)
Dz =

∂(·)
∂t + u ∂(·)

∂z Material/particle/substantial etc. derivative

∂(·)
∂χ

= ∂χ(·) Partial derivative

〈(·)〉 Temporal average

˜(·) (tilde) Local property in space (not a cross-section average)

(·) (underline) Vector

(·) (double underline) Tensor

|(·)| Absolute value

Abbreviations

CFL Courant Friedrich Levy (criterion)

DNS Direct Numerical Simulation

EOS Equation Of State
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EPT Department of Energy and Process Engineering, NTNU

FVM Finite Volume Method

GOR Gas-to-Oil Ratio

IKH Invicid Kelvin-Helmholtz stability criteria

LHS Left Hand Side

NTNU Norwegian University of Technology and Science

RHS Right Hand Side

SSB Slug Stability criterion using the Bendiksen bubble-nose velocity

VKH Viscous Kelvin-Helmholtz stability criteria

Glossary

Gas lift Production technique for reducing the static head and stabilizing the flow by means of pumping gas
into the pipeline.

Hold-up local (liquid) volume fraction. ‘Gas hold-up’ is also sometimes found in the literature.

Horizontal (noun) Part of the P50 pipeline geometry – a 3.5 km segment between well and riser

Manifold Pipeline intersection unit. In the Girassol P50 production line, one is found the the inlet of the long
horizontal.

Production Flow (of a specified phase) through the pipeline outlet.

Riser Long, vertical pipe segment, transporting fluid from seabed to surface.

Stability See Section 2.
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1 Introduction

1.1 Multiphase flow

1.1.1 Flow regimes

Multiphase pipe flow is characterised by a wide va-
riety of flow patterns, or regimes, each characterised
by different pressure, shear stress, velocity and phase
fraction properties as a result of the flow patterns
being topologically different. In near horizontal
pipelines the flow patterns will be separated at low
phase velocities, and all gas and liquid will be sep-
arated by a single, relatively flat interface. This is
called a stratified flow regime. Increasing the gas
flow rate causes waves to appear on the liquid in-
terfacial surface due to interfacial friction. At high
enough relative velocities these small interface dis-
turbances will grow due to the effects of reduced lo-
cal pressure at the wave location caused by height-
ened gas velocities due to a narrowing of gas side
cross-section area. Interfacial friction will also act
unevenly on the interface, increasing wave forma-
tion. If the weight in hydrostatic height potential is
not great enough to dampen the wave formation, then
the stratified flow will be hydrodynamically unstable.
This results in the liquid phase at locations spanning
the entire cross section area (possibly with gas bub-
bles entrapped within). A new flow pattern, slugging
flow, is now established. This flow pattern is charac-
terised by intermitted flow of sequential liquid slugs
followed elongated (Taylor) bubbles surrounded by a
thin liquid film.

Should the gas rate be increased even further the
gas will begin to occupy most of the pipe centre,
pushing the liquid out towards the pipe walls. This
flow pattern is known as annular flow. The con-
verse situation, in which the amount of liquid far
exceeds the amount of gas, a fully dispersed bubble
flow regime appears. Here, small bubbles propa-
gate through a continuous liquid phase. From here,
void waves of high bubble concentration may form
causing bubble coalescence, returning the flow to
a slugging pattern. Similarly, rolling waves may
accumulate liquid and span the cross-section, man-
ifesting regime transition from the stratified regime
[10]. Figure 1.1 presents a schematic of the differ-
ent flow regime in horizontal pipes and Figure 1.2

portray schematically the corresponding regime flow
map. In vertical pipes, slugging and annular flow
will replace the stratified. ‘Chunk flow’ is a term
also sometimes used to characterise some vertical
flow patterns. A combined term for the annular and
stratified patterns is separated flow.

Slugs and rolling waves form a particular chal-
lenge as these have sharp fronts and constitutes near
discontinuities in cross-section phase fraction. They
also form jumps in pressure and velocity. Mod-
elling these slugs on Eulerian grids tend to demand
fine gridding to avoid numerical diffusion of the slug
fronts. Slugs may also be treated in a statistical man-
ner using, for instance, unit-cell approaches. Alter-
natively, slug or wave tracking methodology may be
adopted in order retain exact information of where
the slug front discontinuity is positioned, and condi-
tion the scheme thereafter. The methods considered
in this work apply a Lagrangian slug tracking strat-
egy where dynamic grid manipulation if achieved by
means of object oriented programming.

In the case of waves, an interesting strategy is
to tackling the Riemann problem in a way similar to
the Rusanow method [30]. Dynamic grids in strat-
ified regions may be utilised to promote a control
volume which follows the wave front in space and
time. This strategy is applied in LASSI [37] and will
be discussed in later. Bernoulli suction becomes an
important mechanism as the waves grow – difference
in gas and wave velocities account for a relative flow
past waves and therefore across regions of chang-
ing cross-sectional area. The local alteration in gas
velocity this causes produce a pressure gradient nor-
mal to the stratified interface, producing a suction
force which may overpower the gravitational weight
and cause slug formation. Capturing of these phe-
nomenon directly is fully possible [13, 7], but, for
the foreseeable future, too computationally costly for
large engineering purposes in which the diameter-to-
pipe length ratio is large. Applying some subgrid
model to determine a hydrodynamic slug initiation
criteria is a natural alternative. Several models for
slug initiation representing this phenomenon have
been proposed during recent years [3, 25], some of
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Figure 1.1: Flow patterns in horizontal flow. Source: [16] Figure 1.2: Flow map for horizontal pipes. β
is here the pipe inclination. Source: [25]

which will be presented and tested within this text.

1.1.2 Industrial importance

Instabilities in multiphase pipe systems are natural
phenomena which during the recent decades have
posed challenges to the industry. These instabilities
produce highly transient flow behaviour with large,
undesired, fluctuations in pressure, velocity and flow
pattern. For offshore oil and gas production, these
unsteady flow patterns are associated with loss of
production and additional strain and material fatigue
on equipment and production facility. Safety also
quickly becomes an issue, as it always does when-
ever equipment is place under strains exceeding their
design purpose.

In the Nuclear industry the need for accurate pre-
diction of fast pressure transients in thermal multi-
phase cooling systems have been apparent ever since
the Three Mile Island accident in 1979. The pres-
suriser in pressurised cooling reactors is an impor-
tant component for controlling the the pressure in the
primary cooling system, and it provides a surge vol-
ume for coolant expansion and contraction. [9]

Multiphase flow stability is also an issue for re-
newable energy systems, for example in thermal so-
lar systems and heat and refrigeration pumps..

Means with which unstable flow patterns can be
avoided is therefore immensely valuable to the all in-
dustry operating with multiphase pipe flow systems.
Common stabilisation methods in oil fields today in-
clued e.g., back pressure control systems, dynamic
choking, and intermitted or continuous gas injection

techniques [20, 38, 40, 14].

The mechanisms which cause the transition to
slugging flow are often divided into two main cate-
gories: hydrodynamic slugging, as described earlier,
and terrain slugging.

1.1.3 Limitation of exact simulation

In single phase flows analytical solutions only exist
in a few, very simple, laminar flow situation. As
soon at the Reynolds number increases beyond the
laminar regime the governing equations take on an
infinite number of possible solutions, rendering true
predictions impossible [35, 42]. Direct and mod-
elled simulation of the governing equations can re-
produce statistical characteristics of both single and
multiphase flow patterns, but often at great computa-
tional expense. Direct numerical simulation (DNS)
techniques such as immersed boundary methods in
the framework of a Navier Stokes solver [48] or
multiphase lattice-Boltzmann codes are examples of
methods [39] are examples of approaches aiming to
reproduce the dynamic behaviour of the flow by cap-
turing the physics in as an exact a manner as possible.
Though results from quite small, moderate Reynolds
number case studies are quite invaluable as an exper-
imental arena, their computational cost makes DNS
inadequate for any appropriate engineering purpose.
There seem to be little hope of computers obtaining
the required capacity anywhere in the foreseeable
future, with the steady development in performance
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seen to date.1 Indeed, although Moore’s law of long
term trends in computer development may still be
said to be valid, the limitation of single processors
have long since been reached. For the near future
then, DNS to have purely experimental, or laborato-
rial, use as it’s main application.

Therefore, in attempting purely mechanistic sim-
ulations to large problems, fine scale physics require
modelling and colsure relations in order to reduce the
computational cost. The mechanistic ideal is still the
same; in capturing enough of the physical mecha-
nisms governing the dynamic behaviour of the flow,
a general-purpose method will be obtained capable
of responding adequately to each scenario. Again,
large problems force coarser grids, demanding more
modelling, which in turn generally corrupt the gen-
eral purpose ideal.

1.1.4 Common methodology in simulation of
multiphase pipe flow

It has always been an ideal to provide a single ‘grand
unified’ model with which all flow situations can
be simulated. Particularly when dealing with multi-
phase flows there seem to be little hope of achieving
such an ideal, except on the tiny DNS-realm. The
reason for this was seen in Section 1.1.1; creating
a model which intrinsically incorporates all vastly
different flow pattern characteristics without captur-
ing the fine-scale mechanics which are source to the
differences is simply not done. Instead, the more
widely adopted strategy is to group flow patterns and
adopt different bespoke models for each flow regime.
However, this begs the question which regime to sim-
ulate? A priori knowledge of the state of the flow
becomes required, though this information is often a
part of the motivation for doing the simulation in the
first place. For many years this has been a motivation
for creating flow maps such as that in Figure 1.2. Un-
fortunately, these two-dimensional maps have proven
to be of limited applicability, particularly in terms of
changing geometries. Also, many of the phenomena
causing phase transitions are transient in nature, and

reversing the circumstances which caused transition
from one state to the other may not necessarily return
the flow back to its original state. There is also the
problem of the pattern grouping itself; the process
of transition is also be associated with changes in
flow characteristics. The introduction of transient
dynamic models around the 1980’s provided an im-
provement to this condition. Criteria for determining
flow pattern could now be based on local, dynamic
events rather than the flow state. Still, flow map
strategies are still in use.

An alternative to mechanistic strategy is a phe-
nomenological modelling. Here, the nature mim-
icking ideal is abandoned in favour of a response-
oriented approach. Rather than aiming at capturing
the underlying physics well enough to obtain the ap-
propriate dynamic system behaviour, the phenomena
and dynamic response involved therein directly be-
come the subject of modelling. The slug tracking
scheme studied in this work are indeed based upon
such a strategy, the object oriented framework being
ideal for the purpose of tailoring dynamic response.
Admittedly, such procedures can be said to be inca-
pable of handling scenarios involving phenomena not
explicitly included in the model framework. How-
ever, the same has already been said about many of
the mechanistic models as they are usually heavily
dependant on their empirically determined closure
relations [35]. The main goal is usually not to re-
trieve exact details, but a wider picture of the overall
dynamical system behaviour.

1.1.5 Commercial codes

Most commercially successful codes available to-
day are in some degree based on phenomenological
modelling, though some more than others. When
considering multiphase industrial pipe flow, length-
to-diameter ratios will often be so large as to render
any form of three or two dimensional simulation un-
feasible in terms of computational expense. Rather,
attention is given to one-dimensional models which
treat properties which are statistically averaged over

1By assuming that the smallest scales of turbulence are independent of the larger scales and only dependant on dissipation as vis-
cosity, while also assuming that the mean energy transfer through the scales is steady, it is easily shown that η/D ∼ Re−3/4, η being the
smallest scale to resolve. In three dimensions, including the cost of time step refinement, one finds that the computational cost increases
proportional to Re−3
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the pipe cross-section. In the mid 1970’s, headway
was made in physical understanding of two-phase
flows, leading to development of numerous mecha-
nistic models being developed. Most of these were
initially steady-state models, seeking to provide sta-
tistical information on flow rates, phase distribution,
pressure and temperature. In contrast to empirical
models, which on their own tend to have a validity
limited to the pipelines and states at which they are
calibrated, mechanistic models show far greater po-
tential for being applicable in a wide range of flow
situations.

Among the most popular early steady-state codes
available are PIPESIM from Baker Jardine, PROS-
PER GAP from Petroleum Express, PIPEPHASE
from SimSci, PEPTITE and WELLSIM Total, and
TUPPF developed within the Tunisia university fluid
flow projects [11, 35]. In recent years these steady-
state models are being replaced by more advanced
mechanistic and phenomenological transient mod-
els less dependant upon traditional empirical corre-
lations. These models usually first identify the flow
regime and then solves regime-dependant mass and
momentum equations supplied with empirical clo-
sure laws. The energy equation may also be included.

Steady-state models are not able to predict the
transition form one flow pattern to another, nor nec-
essarily all phenomena occurring in a pipe [13]. The
nuclear industry was amongst the first to create dy-
namic multiphase simulation codes, such as TRAC,
RELAP_5 and CATHARE [5]. These codes were
mainly motivated by safety protocols in reactor cool-
ing systems, and focused on capturing the quick pres-
sure transients, i.e., smaller systems during shorter
time intervals. The petroleum industry quickly fol-
lowed, focusing on the slow transients associated
with mass transfer.

OLGA and TACTILE are perhaps the most com-
mercially successful of these codes. The former has
been developed in a joint research programme be-
tween the Institute for Energy and Technology (IFE)
and SINTEF which applies a unit-cell model. In such
models, empirical criteria are used to determine the
flow regime. The dynamics inside a ‘cell’, at the
scale of the pipeline diameter, is treated statistically
in a steady-state manner as the control volume frame
of reference follows the flow. Flow pattern depen-

dant empirism plays a large role in how the con-
tent of each cell is treated in order to derive phase-
specific properties (slip, bubble nose velocity, inter-
facial mass transfer, friction factors, etc.) from the
mixture properties and close the model. These mix-
ture values for the slower transient, large scale dy-
namics are found by solving mechanistic consecra-
tion equations in the system of linked cells. Based on
the two-fluid principle, OLGA solves three continu-
ity equations (gas, liquid bulk and droplets) together
with two momentum equations (liquid film and gas-
droplet mixture). [5, 13]

The TACTILE model, which is based on a drift-
flux formulation, differentiates between two types of
flow patterns: separated and dispersed. Intermitted
flow is treated as a treated as a combination of the
two using a fraction of separation variable to com-
bine them. This variable is then also included in the
flow regime transition criteria.

A survey preformed in [11] judged the transient
models OLGA and TACTILE to be superior to the
steady-state models as these were found to be appli-
cable to a wide range of flow situations. This survey
also found TACTILA to perform better than OLGA.

TRIOMPF is another code which also ought be
mentioned. This code is a directly finite volume
discretisation of the two-fluid model, which consists
of a pair of one-dimensional momentum and energy
equations, one for each phase, applicable to strati-
fied flow. TRIOMPF solves the differential system
in a ‘brute force’ manner, applying finite volume
upwind discretisation, very fine griddling and itera-
tion at each time step to solve non-linearities with
precision. It was used by Issa and Kempf [13] to
demonstrate that is it possible to automatically cap-
ture hydrodynamic slug formation since the mech-
anism which causes this phenomenon is present in
the two-fluid model (see Section 4.11.) This strat-
egy (applying enough computational effort to capture
the mechanisms causing flow phenomena, rather than
modelling them) bears resemblance, but should not
be confused with, DNS simulation techniques.
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1.2 Present work

1.2.1 The Girassol oilfield

Girassol is a deep-water oilfield located 150 km
Northwest of the coast of Luanda in Algeria. The
seabed depth of the Girassol field is situated approx-
imately 1 300 meters, while the reservoir is relatively
shallow (1 200 meters) [47]. Though the seabed
pipeline is located at high pressures, the relatively
shallow well depth means that the well pressure it-
self is not sufficient to drive a steady production.
Artificial gas injection, known as gas lift, has there-
fore been applied to the riser base. Gas lifts are
commonplace in such fields an their purpose is to re-
duce the hydrostatic riser head by increasing the total
riser void fraction. Gas injection proves stabilising
to production and is often preferable to increasing
upstream pressure by means of mixture pumping
stations. Some forms of operational instabilities,
commonly called ‘headings’, are associated with the
riser itself (see Section 3.)

From May 12th to 15th 2004 single-well riser
stability tests were carried out on the P50 pipeline,
while multi-well tests were performed on the P10
pipeline from May 29th to June 3rd, 2004. Gas
lift injection rates were stepwise reduced from
190 kSm3/d to 70 kSm3/d through the stages Qgl

g ∈

{190, 150, 100, 70} kSm3/d, producing for several hours
at each stage. As the gas lift was reduced to 100 kSm3/d,
the oscillations form the system disturbance sur-
passed 5 bars in amplitude and the oscillation damp-
ing was slow. When reduced to 70 kSm3/d gas lift the
riser became unstable, showing increasing fluctuat-
ing amplitudes reaching ∆p = 30 bar before the gas
lift was again increased to prevent production system
damage. Pressure, temperature and flow rate data
were collected form manifolds and riser valves. Fig-
ure 1.3 show the pressure and gas lift rate history at
the well manifold. The data was supplied by TOTAL
[43].

Figure 1.3: P50 Girassol pipeline stability field tests.
Source: [43]

Another challenge typical of deep water oil fields
is low temperatures. Although the fields are situ-
ated at deep waters, the wells themselves are shallow,
making the fluid cool. The temperature measured at
the manifold of the P50 pipeline is about 64 ◦C on av-
erage, but lower well temperatures are also found in
this field. Even though insulated against the 4 ◦C sur-
roundings, there is a distinct temperature reduction
associated with transporting the fluid up the riser, as
internal energy in the fluid is abstracted into potential
energy. A lift of 1 300 meters entails a temperature
reduction of about 5 ◦C [35]. As wax deposition be-
comes problematic around 40 ◦C, retaining the liquid
enthalpy quickly becomes an issue. Expensive and
energy consuming electric pipeline hearing may then
become a necessary measure.

1.2.2 Suspected causes of case instability

The P50 pipeline offers many possibilities for the
cause of operational instability seen in Figure 1.3.
At the seabed, the pipeline stretches horizontally for
about 4.5 km. It is possible that hydrodynamically
initiated slugging in this region will affect the over-
all system dynamic. Also, this horizontal has a light
downward inclination (φ ≈ 0.8 deg on average,) mak-
ing it susceptible to terrain slugging (see Section 3.3)

‘Jumpers’ (small upwards-pointing bends to al-
low for slight thermal expansion/contraction of the
pipeline) are positioned along the horizontal part of
the pipeline. Eldar Khabibullin [18] showed that gas
accumulation is these jumpers may cause periodic
gas releases in the form of void waves, promoting
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system oscillation.
The total length of the pipeline, form well bore

to separator, is approximately 7.7 km long. Because
the production from the well will be dependant upon
local pressure gradient, and this in turn will be de-
pendant upon the liquid fraction in the riser at the
other end of the pipeline, there exist the potential for
a void, density or surge wave type instability [38, 26].
Such types of instabilities are seen as promising can-
didates for the operational instability seen at the P50
Girassol pipeline as the long spatial stretches covered
by such well-to-riser wave communication would in-
volve long periods of oscillation. Oscillation period
of the data in Figure 1.3 is three hours.

Instability driven by gas expansion in the riser
is also likely due to the large change in hydrostatic
pressure across the riser. A gross steady state calcula-
tion assuming ideal gas, no phase transfer, and a riser
completely filled with liquid reveals that a bubble re-
leased at the inlet of a filled riser will expand to about
3.5 times its original volume. In fact, gas expansion
in the riser is fount to play an important role in most
of the operational instability mechanisms discussed
in this work.

This topic will be further discussed in Section 3

1.2.3 Aims

The foremost aim of this thesis work is to acquire
insight an knowledge about the slug tracking meth-
ods available at EPT, as well as becoming familiar
with the dynamics of multiphase pipe flow and insta-
bility mechanisms active therein. In achieving these
goals a case study will be undertaken to set a con-
crete physical setting for the investigation. The Gi-
rassol field described in Section 1.2.1 is chosen for
this purpose Consequently, the methods abilities to
simulate riser flow will take centre stage in this eval-
uation. The P50 pipeline is chosen. This line become
production unstable as the gas lift injection rates are
reduced below 70 kSm3/d. Attempts at reproducing
this instability in simulation using OLGA and SIN-
TEF’s LedaFlow have not proven successful; both
these codes predict stable flow [47, 18]. Achieving
instability, and possibly gaining an understanding of
which type(s) of instability mechanisms are active in
this pipeline, is therefore an additional exciting chal-
lenge. Through collaboration with Eldar Khabibullin

at Kongsberg Oil & Gas Technologies and TOTAL,
we seek to understand the field instability better and
highlight differences and similarities in the predic-
tions form the LedaFlow and SLUGGIT codes.

1.2.4 Phenomenological slug tracking models at
EPT

As a counterpart to the TRIOMPF code, which
sought to reproduce dynamic phenomena by cap-
turing the mechanisms through sufficiently detailed
mechanistic modelling, the initial SLUGGIT code
[34] sought instead to model the phenomena in them-
selves. Such phenomenological strategies constitutes
a philosophy different form capturing schemes, fo-
cusing on response rather than recreation.

The first SLUGGIT code, and the code descend-
ing from this, utilises object oriented programming
to construct a framework within which dynamic be-
haviour can be hand tailored in compliance with
experimental observations. Such a strategy pro-
vides direct control of model behaviour and arena
for extending behavioural capability limited only by
the detail of information at which the model oper-
ates. Simplicity is a central ideal. In abandoning the
prospect of phenomena capturing, there is a unique
opportunity to push the limits of simplification and
investigate which factors are dominating the macro
scale system dynamics. Pushing the limitations of
simplicity also implies pushing the boundaries of
application as cases of larger scales become man-
ageable at less computational expense. The great
challenge lies of course in determining where the
limit at which simplification seems to be justifiable
and what boundaries may be pushed without damag-
ing the main system dynamic.

Four codes of varying complexity are available at
EPT. These are

• The code implemented by Pascal Klebert [23,
24], in this work referred to as ‘SLUGGIT v.1’.

• The code implemented by Jørn Kjølaas [21,
22], here referred to as ‘SLUGGIT v.2’.

• A simplified version of Jørn’s scheme imple-
mented in the same code by Tor Kjelby, re-
ferred to as ‘SLUGGIT v.2s’.
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• A Lagrangian Approximate Scheme for Slug
Initiation (‘LASSI’) code [36, 37] by Fabien
Renault.

These codes are described in some detail in Sec-
tion 4.

2 Definitions and terminology

Unfortunately, in the literature researched during this thesis work a large portion of the terminology encountered
is found to be rather ambiguous depending on the author and topic. Therefore, it is fount helpful and clearly
define a few of the most commonly confused terms and concepts.

Flow patterns

Some ambiguity in the characteristic features of individual flow patterns are also present in the literature, in
particular with the ‘slug’, ‘plug’ and ‘chunk’ patterns. ‘Plugs’ here refer to solid blockage, as by a pig or
hydrate formation. the terminology applied in Figure 1.1 will be adopted here. Due to the limitations of the
slug tracking methods, smooth stratified flow and slug flow (mostly without gas entrainment) will be the most
widely discussed patterns.

‘Stability’

Model stability To be understood in terms of the stability of a model composed of discrete or differential
equations (such as Lyapunov stability.) In quasi-technical terms, a small disturbance to a steady system
should have finite influence on the solution as time progresses towards infinity. Model stability is usually
analysed by finding the criteria for which there exist a diverging Fourier mode.

(Physical) flow stability The conditions for which a specified flow pattern can physically be sustained. Ex-
amples of instability mechanisms in horizontal and vertical pipes may be Kelvin-Helmholtz instability
(see Annex E) and Rayleigh-Taylor instability [8], respectively. These are characteristics of the fluid
dynamics – even though models such as the two-fluid model are used to analyse such phenomena, they
should not be confused with model stability. If, however, teh model captures the physics perfectly, they
terms are equivalent.

Numerical stability The ability of a system of discrete equations to converge towards (close to) a finite solu-
tion not dependant on the discretisations itself (asymptotic convergence). A method spoken of as robust
is a method which remains numerically stable for a large verity of parameter combinations.

Operational stability Sable flow in this context is flow which retains steady properties in time and space.
Operational instabilities are typically termed ‘headings’ in the petroleum industry. This kind of stability
will be the main focus of the present work. As mentioned in Section 1.1.2, operational stability is a hot
topic in industry. Unfortunately, the author has not yet come across any clear definition of a criterion
for when a flow situation may be deemed unstable. Most industrial pipe flows processes operate in a
turbulent regime, which is intrinsically unstable and chaotic on a microscopic level. Industrial processes
usually include dynamic and transient features where small call oscillations or noise is present. Both the
frequency and amplitude of disturbance may be included in a possible definition and could, e.g., represent
fluctuations of any flow or fluid property in the same order of magnitude as those bulk.

Though throwing the terms ‘stable’ and ‘unstable’ about without definition is not unusual, Zakarian and
Larrey applies the usefully, yet arbitrary, ‘5-bar fluctuation’ stability criterion on the pressure upstream
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the riser in [47] for the Girassol oilfield. In lack good of alternatives, a similar convention is applied here.
However, because risers of different dimensions will be analysed, a slightly more general formulation is
decided upon, namely that the fluctuation peak amplitudes be less than 5% of the unaerated static riser
head. This is about equivalent in the case of the Girassol field.

In the literature, terminological ambiguity concerning this type stability is a nuisance, and no commonly
agreed upon term has been found by the author. The term operational stability has been coined herein.

‘Riser stability’ Whether a small, disturbing gas penetration into the riser will cause a blow-out event – see
Section 3.3

well-posedness The property of a model to have a unique solution continuously dependent upon the initial
conditions.

Steady-state

By steady-state it is in this text meant a state in which all flow variables are constant in time.

Types of operational instability

Many types of operational instability are possible
within the flow regimes of even a simple pipeline-
riser system. This will become apparent in Sec-
tion 3, where a few of the most important types of
operational instability is discussed. As far as the this
author can understand, some ambiguity in the termi-
nology used to describe these instability phenomena
is present in the literature, validating the need to for
a definitions. The descriptions given in Sections 3.2
and 3.1 should suffice in defining the terms ‘void
wave-’ and ‘expansion driven instability’, respec-
tively. When it comes to terrain slugging choices
will have to be made.

In this work the term terrain slugging it used for
all terrain induced slugging, i.e. changes in pipeline
elevation causing slug initiation. Slugging due to a
pipeline ‘obstacle’, such as a jumper, also falls into
this category.

The term ‘severe slugging’ is by many authors
used synonymous with the term ‘terrain slugging’.
Other authors use it to characterise all terrain slug-
ging events in which full blockage of the bend oc-

curs at some point, e.g., Cycle C and Cycle D
[33, 35, 20, 40, 41]. Yet another take on the term
is a cycle in which the vigorous blow-out event takes
place, including cycles like Cycle E (but not Cycle D)
[17]. According to Jansen et al., the term severe
is by definition reserved for terrain slugging events
in which full blockage occur and the slug length is
longer or equal the riser height [14].

Presently, to avoid contusion, the term ‘severe
slugging’ will be reserved for this latter extreme
event. ‘Terrain slugging type I’ will be used for
all terrain slugging cycles in which the low-point
becomes completely blocked (Cycle C and Cycle D,
enclosed by the Bøe criterion envelope in Figure 3.3),
while ‘Terrain slugging type II’ is used for cycles
where gas continuously enters the riser (Cycle E,
marked ‘unstable oscillations’ in Figure 3.3), as in
[20, 33]. Further specification (with fall-back, blow-
out event) is given when necessary.

Terms like ‘quasi-steady’ and similar, arbitrarily
scattered around in many pieces of literature, are a
nuisance and will be avoided within this text.

3 Operational instabilities in vertical risers
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Figure 3.1: Gas-lift well.
Source: [38]

Numerous instability mechanisms for operational instability have been doc-
umented from industrial, experimental and theoretical investigations. In the
petroleum industry, many such instabilities are found in connection with gas-
lift systems. Quickly summarise, instability types usually associated with gas-
lift systems are:

• Casing heading

• Formation heading

• Tuning heading

• Pipeline heading

Casing head may occur in gas-lift systems where the gas flow through
into the tubing is subsonic, allowing pressure information from the tubing to
propagate into the annulus between tub and casing. The flow in the tubing may
then be subject to compression of the gas in the annulus. This phenomenon is
similar to oscillations caused by the compressibility of trapped pockets of gas,
which will be visited later.

Formation heading is similar to casing heady, except that the accumulation
takes place in the formation.

Tubing heading is a density wave phenomenon which may occur also when
the gas injection is supersonic.

Pipeline heading is associated with the upstream pipeline and terrain slug-
ging.

Rather than using this terminology, the more general instability mechanism terms will be adopted, namely

• Expansion driven instability

• Density wave (void wave) instability

• Buoyancy driven instability

• Terrain slugging instability

3.1 Extension driven instability

Expansion driven instability is a term not commonly found in literature. In this work, the term is used to
describe the cyclic entrapment and expulsion of gas in ‘pocket volumes’ upstream the riser in a production
pipeline.

Cycle A. Expansion driven operational instability

A.1 After a gas pocket – in this case a pipeline jumper – has been filled with gas, an increased gas amount
will pass by the pocket and propagating into the riser in the form of a void wave.

A.2 The gas surplus travels up the riser and expands, reducing the riser static head and accelerating the liquid
ahead of it.

A.3 Expansion of the gas trapped in the upstream pocket and/or the acceleration of the system fluid contribute
to further release more of the trapped gas into the main flow and riser base. Consequently, the gas pocket
is drained of gas.
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A.4 The expended gas surplus exits the riser, the system slows down. The total void fraction in the riser is
reduced as gas form the well is now entrapped in the now flooded gas pocket. As the pocket fills, the
cycle repeats itself.

3.2 Density wave instability

The mechanism of density wave instability in riser systems is, like expansion driven instability, is related to
changes in upstream static head afforded by a variation of the total liquid present in the riser. This phenomenon
is categorised as a dynamic form of instability in that it has a negative-feedback (self regulating) nature where
the driving force of cyclic oscillatory behaviour is a delay in the liquid production response to alterations in
upstream pressure. This delay is associated with the limited propagation velocity of a density changes through
the pipeline. Propagation, or drift, of changes in mixture density is known as a density, consentration or void
wave. The steps of a wave cycle may be described as follows:

Cycle B. Density wave operational instability

B.1 An alteration phase fraction enters the riser base and propagates up the riser. As it propagates upwards
and an altered amount of gas expands, the total void in the riser changes.

B.2 As the total amount of liquid in the riser alters, so does the static pressure upstream the riser. A density
waves of increased liquid hold-up (concentration waves) would cause increased pressure while the oppo-
site is true for waves of decreased hold-up (void waves). This is the riser-to-well communication channel
– pressure changes, and this information propagates at the mixture speed of sound.2

B.3 The well responds to a drop in static head by increasing the well flow rate, and oppositely of pressure
increases (self-regulation or negative feedback). This well responds propagate down the system at the
concentration wave velocity.

B.4 The density wave reaches the riser and the total liquid amount of liquid in the riser changes. Because of
the delay in time from the well responds to pressure changes till the density wave reaches the riser, the
well will over-compensate. This over-compensateion in turn reverses the pressure situation and, through
delay, causes the well to over-compensate in the opposite manner. The cycle continues.

In pipeline a gas lift system is applied a smaller fraction of the total riser void will originate from the well.
Consequently, the expansion of a gas surplus originating form the well will have a smaller impact on the total
riser void fraction Φg, as seen in Section 5.3. Gas lifts therefore has a stabilising effect on the flow, as well as
helping production by compensating for low well pressure.

It is further interesting to note that decreasing the injection rate in the gas lift will produce a ‘jolt’ in riser
liquid fraction which would upset the production-pressure balance and initiate this cycle. Also, fraction of
riser gas originating from the gas lift will directly influence whether this cycle will converge towards stable
production or diverge towards operation instability.

Finally, the delayed response feature of this cycle makes places it amongst the few operation instability
phenomena discussed here which would exhibit a sinusoidal pressure disturbance similar to that seen in the
field data Figure 1.3.

Sinègre and Petit [38] produced a simple model
for the pressure change due to changes in produc-
tion. The well was treated as a boundary condition
with linear delay accounting for the transport time

of the density wave. Laplace transformations were
applied and an analysis of the underlying character-
istic equation performed using control engineering
theory. Is was fount that the critical parameter was

2Though significantly less than the single-phase speeds of sound [16], it is reasonably quick.
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the gas injection rate and a simple control strategy of
linear feedback to the gas lift from the well pressure,
a P-regulator, was shown by OLGA simulation to
stabilize the the system.

Apazidis [2] attacks the same problem. Rather
than using a delay model for the reaction to the well
response, a more complete model based on mass and
momentum balances of each phase was developed.
A particular air lift pump is considered, and an em-
pirical relation is used for bubble rise velocity. A
linear stability analysis is performed on this model
using Fourier transformation. Instability for interme-
diate injection rates were observed which were put
down to the density wave mechanism. The size of
the bubbles form the injection valve was shown to be
significant for the stability domain.

The characteristics of void wave propagation
have been studied further in detail by e.g., Lahey
[26], who performed both linear and nonlinear anal-
ysis of the void-wave phenomena on the two-fluid
model (4.26). Different types of void wave profiles
are found and the conditions necessary for sustain-
ing them. Smooth, time-invariant void wave profiles
(solitons) were shown to be possible only with rela-
tively large void fractions. It was also found that void
wave propagation data can be a powerful tool for as-
sessing interracial momentum transfer laws applied
in the two-fluid model.

3.3 Terrain slugging instability

Terrain slugging is caused by liquid accumulating at
local low-points in the pipeline. If the accumulation
become sufficient for liquid to block the entire pipe
cross section, a slug if formed. As long as this slug
occupies the low-point position it will accumulate

more liquid and grow in length. A requirement for
this is that the jump in pressure across the slug is not
sufficient to move the slug from the low-point up the
pipeline. Should the pressure difference across the
slug be great enough to move it as soon as the slug
is formed, then this terrain slugging will initiate the
transition to slugging flow, but not necessarily oper-
ational instability, merely a terrain induced slug flow
pattern.

Should however the opposite be true then gas
will be prevented form flowing passed the low-point.
Gas may then accumulate upstream the low-point
blockage, gradually increasing the pressure differ-
ence across the slug. Simultaneously, new liquid will
be fed to the slug, lengthening it and increasing the
required pressure difference needed in order to move
it. One of two things may happen: Either the pressure
resistance provided by the slug and the rest of the
pipeline becomes higher than what can be supplied
from the inlet, and the system comes to a stand-still.
Alternatively, the accumulated pressure will at some
point be sufficient to move the entire slug passed the
low-point. This may either be because the pressure
accumulation happens faster than slug pressure resis-
tance grows due to new liquid supply, or because the
upstream end of the slug has reached piping with re-
duced inclination or the outlet (‘proper’ severe slug-
ging). The result is a rapid acceleration of the slug
down the pipeline followed by a high-pressure gas
front. In expelling the slug the upstream gas vol-
ume is abruptly increased causing a sharp, sudden
pressure decrease. It is this abrupt, large-scale vari-
ation in velocity and pressure which characterizes of
terrain slugging as unstable in a operational stability
sense. After expulsion, a new liquid accumulation
may take place at the low-point and the cycle is re-
peated. In short:

Cycle C. Terrain slugging operational instability

C.1 Cross section blockage at low-point dip.

C.2 Compression of gas upstream the blockage, increasing the upstream pressure.

C.3 Eventual slug expulsion (blow-out), releasing the gas and plummeting the pressure.

C.4 Possible liquid fall back. New liquid accumulation at low-point and eventual blockage.

A visual example of this cycle can be seen in Figure B.3 in Appendix B.
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The ‘severity’ of the terrain slugging (i.e., the
length of the liquid slug at the time of blow-out) is
strongly dependent upon the upstream pipeline vol-
ume. During slug build-up there is a race between
the increasing slug column height (liquid supply) and
the pipeline pressure increase (gas supply). A larger
upstream gas volume means slower pressure build-
up and increased severity/reduced frequency of the
slugging. The ‘severity’ of the terrain slugging can
therefore be said to be proportional to the ratio of
upstream compressible volume to gas injection rate
(ALΘg/Ṁg). Notice that this ratio takes the units

ALΘg

Ṁg
=

[
m3

kg/s

]
=

[
s

kg/m3

]
∼
T

%

i.e., slugging frequency versus upstream gas density
(or multiple of specific volume).

Figure 3.2 show a typical terrain slugging ge-
ometry. The low-point bend (downward pipeline
inclination) is a requirement. Figure 3.3 present a
flow map of stability regimes, including the riser
stability criteria developed by Taitel et al. [40, 41].
Some elaboration of the cyclic modes of operation
instability represented within this flow map is worth
including – both because it is informative in light
of the dynamics active in riser systems without gas
lifts, but also because similar cyclic instability pat-
terns will be encountered later on.

The Bør criterion (marked ‘Boe criterion’) is here
included as a heavy, solid line. This well-known cri-
terion gives a necessary condition for gas blockages
to occur, and it amounts to a simple balance mark-
ing the limit for when the read ends of the slug can-
not penetrate back into the pipeline due to the high
relative gas velocity (monotonically increasing part
of curve). At sufficiently high liquid flow rates the
pipeline void fraction approaches zero and the crite-
rion bends off to a horizontal line. The original Bøe
assumption – that inside this criterion envelope slug-
ging flow will prevail – is today acknowledged as in-
accurate (see [32] for an alternative criterion.). The

Bøe criterion has the form [14]

Type I slugging ⇒ US
l,i ≥

ρg,oRT
ρlgαlH

US
g,o (3.1)

where the notation is consistent with that used
throughout this work – see the nomenclature.

The solid, horizontal line mark the divide for
riser stability in the case of a riser completely filled
with liquid. Again a new take on the stability term;
riser stability is the limit at which, when a small gas
amount protrude into the riser, the static head reduc-
tion due to increased riser void is balanced by the re-
duction in upstream pipeline pressure due to the ex-
pansion in gas volume. During steady operation the
riser will contain a constant, total riser liquid fraction
Φl. A steady state riser stability model is presented
in the broken line marked ‘steady state stability cri-
terion’. This is given by [40]

(riser) stable ⇔ Po > Φl

[(
Θg/α

′
g

)
L − H

]
ρlg (3.2)

Θg its the spatially average void fraction in the
pipeline affront the riser. α′g is the void fraction of
the bubble nose entering the riser, being of the order
0.9 [41].
In [40] Taitel assumed that flow in the stability region
of this criterion (above the line) will produce steady
production. A correction to this is presented in [41]
and is show in Figure 3.3 as the region marked ‘cyclic
no fall-back’. Here, ‘fall-back’ indicates whether
the top, or surface interface, of the liquid column
is re-established at the riser outlet or falls back to
a level below the outlet after the penetrated gas has
left the riser. Although blow-out does not take place
in this region due to riser stability, oscillatory be-
haviour happens which may result in cyclic slugging
similar to the terrain slugging described in Cycle C.
The mechanism causing these oscillations are, and
the flow pattern itself, is very similar to that of the
expansion drive instability, Cycle A, and consists of
the following steps:

Cycle D. Cyclic terrain slugging with blockage but no blow-out

D.1 Cross section blockage at low-point bend.

D.2 Increasing gas pressure forces gas to penetrate into the riser.
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Figure 3.2: Geometry subject to terrain slugging. Moment
of blow-out event or transition to steady of oscillatory cycle.
Source: [40]

Figure 3.3: Terrain slugging flow map example.
Source: [41]

D.3 The riser is stable in the sense that the liquid flow rate is too great for blow-out to occur. Bubbly flow
initiates at the riser base.

D.4 As new gas fills the riser and expands, the riser void in increased and upstream static head reduced.

D.5 Consequently, the pipeline gas expands, increasing the rate at which gas penetrates into the riser.

D.6 At some point the riser may become sufficiently aerated so that the reduction in static head is not sufficient
to make up for the reduction in upstream gas density. This causes the flow rate into the riser to decrease.

D.7 If the gas flow rate at any point becomes negative doe to this deceleration, the rear liquid front will again
penetrate into the pipeline and cause gas blockage. Gas remaining in the riser exits through the outlet,
reducing the void fraction and increasing static head. At the same time pressure builds up as gas density
increases. At some point (possibly before the riser is gas-free) new gas penetration occurs and the cycle
is repeated.

If, however, the gas flow rate in Step D.6 does not become negative, then Step D.7 will not take place.
Rather, the (expansion driven) oscillations will be sufficiently dampened to bring the flow to a steady state.

A final region of the flow map in Figure 3.3 worth some attention is that marked ‘unstable oscillations’.
According to the Bøe criterion, this a region of steady flow. However, it is also in the region of ‘steady state
instability’, and the liquid velocity is much too low to prevent liquid fall-back after blow-out. The net result
is a cyclic slugging process taking place even though the flow is inherently steady state (a liquid front will not
penetrate back into the riser.) The cycle takes events are the following:

Cycle E. Cyclic terrain slugging with blow-out but no blockage

E.1 Temporarely stable bubbly flow passes through the liquid column. Because the height of the liquid
column is less than the riser outlet, no liquid is produced.

E.2 As new liquid enter the riser base, and as gas expands when the bubbles propagate towards the liquid
column top, the liquid column height is increasesd.
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E.3 At some point, the liquid column reaches the riser outlet. Because of the inherit lack of stability at
this gas flow rate, a blow-out of the fully aerated liquid will occur rather than obtaining a steady liquid
production.

E.4 Fallback takes place and the system returns to its initial state. The cycle repeats itself.

This region of the flow map is a transition region between steady flow and terrain slugging.

Figure 3.4: Stability map example, func-
tion of GOR and riser height. Source: [35]

Taken from [35], Figure 3.4 shows a stability
map similar to that in Figure 3.3, here as a function
of GOR and liquid flow rate, plotting the stability
limit for different riser heights. To the left of the sta-
bility lies, cyclic terrain slugging dominates. In the
region enclosed to the left of the stability lines, but to
the right of the broken line, oscillation without blow-
out (Cycle D) dominates. In [35] and Figure 3.4,
the terminology ‘severe slugging’ and ‘non-severe
slugging’ was applied, which is not adopted in this

work. It is evident form the figure that increasing
the GOR has a stabilising effect on the flow. Increas-
ing the riser height can however be both stabilising
and destabilising. The two competing effects in-
fluenced by increasing riser height are the increased
gravitational riser pressure drop, promoting blockage
and destabilisation, and increased pipeline operating
pressure, stabilising the system.

tim
e

(a) With blow-out and fall-back

tim
e

(b) Without blow-out and fall-back

Figure 3.5: Phase portrait examples, terrain slugging. Source: [35]
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Another informative visualisation technique is
given by the phase portraits, as shown if Figures 3.5.
Here, the normalised mass fluxes leaving the riser
are plotted against the normalised inlet pressure. The
state is marked at each time step of the slugging
simulation. From the initial, unstable condition, the
operation state spirals outwards counter-clockwise
until a fixed slugging cycle is established. In Fig-
ure 3.5a slugging takes place at a state to the left of
the broken line in Figure 3.4 and the system diverges
to a cyclic state in which the liquid production is in-
termitted, giving the phase portrait the ‘flat bottom’
characteristic of classical severe slugging (Cycle C.)
Figure 3.5b show the phase portrait for a situation in

which the system is at a state to the right of the bro-
ken line in Figure 3.4 (above the horizontal line of
Figure 3.3.) Here, no fall-back takes place and there
is a continuous, though oscillating, liquid production
(Cycle D), giving the portrait a circular shape.

Jensen et al. [14] takes the analysis of Taitel
[40, 41] further by also including gas lift into the
analysis, including the chock from [40]. It is shown
that chocking the riser outlet can bring an unstable,
slugging system to stable, steady production. The
gas lift was also shown to have a stabilising effect by
increasing velocities and reducing liquid hold-up.

4 Details of Methods

In this section the common framework of EPT models is established form finite volume analysis, together with
the the empirical closure relations used in all method versions. The main development of the fundamental
equations will focus primarily on the newest SLUGGIT code, though clarifying important and unique features
of each individual method will also be attempted.

The disinterested reader may skip Section 4.3-4.10 without severe loss of comprehension.

During the derivation of this section the following assumptions will be made use of:

Assumptions A. Slug tracking model assumptions

A.1 All key features of the multiphase dynamic can be captured in the stratified or slugging flow patterns.
Bubbles can be treated as closed regions of stratified flow.

A.2 No entrainment of one phase into the spatial domain of the other takes place – each phase κ in a con-
trol volume domain ∂Ω is fully contained within a respective, closed sub-domain ∂Ωκ. In other words,
dispersed flow topologies are not considered.

A.3 The momentum of all pipe-normal movement is neglectable compared with that in the streamwise direc-
tion.

A.4 Liquid phases are assumed incompressible.

A.5 Pipe wall normal density gradients within a phase sub-domain are neglectable.

A.6 Momentum exchange through the fluid interface can be handled analogous to wall friction.

Additional assumptions applied in this work – but which are not crucial to the methods themselves – are:

Assumptions B. SLUGGIT, additional assumptions

B.1 Two-phase flow is assumed.3

3Although SLUGGIT v.2/v.2s supports three-phase flow.
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B.2 There are no exchange of mass between phases (no evaporation or condensation.) 4

B.3 The ideal gas law is valid. 4

B.4 Surface phenomena such as rolling waves, surface tension, etc. are not included here.5

B.5 The flow is assumed isothermal – the energy equation will not be touched in the present work. See e.g.
[22] for handling of thermal issues in SLUGGIT.

Similar for all models discussed is that only two types of flow objects are considered: separated and (possi-
ble aerated) slugs. Elongated Taylor bubbles are treated as enclosed regions of stratified flow, and in SLUGGIT
v.2 and LASSI forms of the two-fluid model are used to describe these.

4.1 Method structure

Central to the dynamic behaviour of the SLUGGIT
and LASSI programmes is the dynamic, object ori-
ented programming techniques used in their struc-
ture. The fundamental benefit of a completely object
oriented programming structure is the way in which
dynamic behaviour is implemented on a local level;

rather than operating from the level of the entire flow
system, responses and interactions are given each in-
dividual fluid object, allowing for tailor-made local
dynamic responses to local bubble-scale events. The
dynamic behaviour seen from a flow system level is
thereby the result of the combined interactions of all
objects which individually live and respond accord-
ing to individual characteristics.

Bubble section

Bubble-bubble border

Bubble unit
Bubble-slug border

Slug-slug border

Slug section

Slug-bubble border

Pipe

Slug unit

Figure 4.1: Main object classes

Details on the object oriented code structure will
not be given here – see e.g. [22] for this purpose.
Some description is however deemed necessary as
differences in programme versions are strongly con-
nected with the object oriented structure. These ob-
jects are continuously and dynamically moved, de-
stroyed, created and transformed during the simula-

tion. Figure 4.1 illustrates the fundamentals of object
structure; objects of the ancestor class Section hold
masses and have spatial extent. Those objects of the
ancestor class Border divide the Section objects at
a spatial position. The movements of these borders
govern the movement of the fluid objects and change
in section lengths. Pipe properties, such as diam-

4This assumption may be influential in deep-water case simulations.
5These topics are however approached and take a central place in the LASSI scheme [37] (Section 4.11) and indirectly in the topic

of hydrodynamic instability and the Kelvin-Helmholtz criterion (Annex E). Rolling wave functionality has been implemented in the
SLUGGIT v.2 framework, though this will not be approached or activated during the present work (see e.g. De Leebeeck [10])
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eter, roughness and inclination, are extracted from
the Pipe. Section objects retrieve pipe informa-
tion from the Pipe object spanning the spatial length
which the section in question occupies. Unit classes
(Unit_slug and Unit_bubble) are ancestors of
Section classes, collecting all sequentially similar
Section objects into one. It could be said that sec-
tions are ‘subgrids’ of ‘unit grids’, but in order to
underline the strongly object oriented nature of these
programmes the term ‘grid’ will be avoided. A ‘grid’
suggests something static rather than the a dynamic,
self-sustaining environment wherein the number and
nature of objects change continuously. Perhaps the
most important dynamic feature in this respect is that
the pipeline is automatically divided into compress-
ible (bubble) and incompressible (slug, plug) units,
generating regions wherein the system solved may
be compressible or incompressible. Thus, the prob-
lem of having a universal scheme for both compress-
ible and incompressible flow is elegantly avoided. It
becomes possible to control the level at which each
of the governing equations are solved. In particu-
lar, mass and momentum equations may be solved at

section level in bubbles while the same equations are
treated at unit level in slugs, making it possible to
connect single equations to whole slugs.

4.2 SLUGGIT scheme versions

The method derived in Section 4.3 is based on the im-
plementation [21] by Jørn Kjølaas [22], referred to
as ‘SLUGGIT v.2’. This implementation was further
developed by Tor Kjelby and Angela De Leebeeck,
and adjusted further by the present author during this
thesis work. Alternative implementations of simi-
lar, yet simpler implementations are also available
at EPT; previous to Kjølaas’ version, Pascal Kle-
bert implemented a code [23], documented in [24],
closer to the original model of Nydal and Banerjee
[34]. This code is in the present work referred to as
SLUGGIT v.1. In addition to these versions, Kjelby
has implemented an alternative, simplified proce-
dure in the framework of SLUGGIT v.2, with the
purpose of merging the different procedures into a
single framework.6 Here, this simplified version is
termed ‘SLUGGIT v.2s’

Here will follow short version descriptions to underline the main differences between versions.

SLUGGIT v.1: In form of implementation, this version has benefited for far less time in development and
debugging than v.2. It makes use of template function structures rather than class inheritance which is
widely adopted in v.2. In terms of the model, uniform pressure (and gas density) throughout every bubble
unit (Taylor bubble and stratified region) is assumed. As a consequence, a slug or pig object is needed
to generate a change in pressure. The benefit of this assumption is that only a single pressure equation
is solved for each bubble unit. Because checker board solutions become impossible with this scheme,
non-staggered grids have been employed – see Figure 4.7a and 4.6a. The mass flux and convection terms
are neglected in the pressure and momentum equations. Gas entrainment in slugs is also included in
the v.1 implementation, promoting a mixture formulation of the slug mass and momentum equations.
No sources, endothermal behaviour or boundary conditions other than fixed inlet flows are presently
supported.

SLUGGIT v.2: Motivated by the need to capture quick transients reactions for sudden pig and plug discharges
in pipelines, SLUGGIT v.2. was implemented with individual pressures for each section of a bubble unit.
In order to avoid unphysical checker board solutions, a staggered grids must then be used (Figure 4.7b.)
The momentum balance, including all terms, is solved for slug units and both phases in all bubble sec-
tions, except those neighbouring a slug unit where the empirical border velocity relations of Section 4.8
dominate – see Figure 4.6b. Gas entrainment in slugs (‘void in slugs’) is not supported in this version,
though thermal behaviour (solving the energy equation), support for rolling wave phenomena [10] and a
wider range of inlet conditions are available. Implicitness is imposed as presented in Section 4.3. Also,

6A great misfortune of the codes at EPS is that they have been developed separately in individual frameworks, see section 6
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automatic time step length based on the CFL condition is implemented, optimising the computation time
while ensuring numerical stability.7

SLUGGIT v.2s: This simplified version can be considered a cross between SLUGGIT v.1 and v.2. It is imple-
mented in the v.2 framework, allowing it to benefit form all the work invested into the v.2 implementation
in terms of making the code more robust. Additionally, all extra management and parameter options are
available, such as the automatic time step regulation, possibility of simulation restart and hydrodynamic
slug initiation mechanisms. The assumption of a uniform bubble pressure is employed also here, and
convection terms in the pressure and momentum equations are neglected. The slug momentum and bub-
ble unit pressure equations are coupled and solved implicitly (see Figure 4.6a). For the liquid phase in
bubbles, an explicit momentum balance is solved at the sections (non-staggered,) while the border ve-
locities sat to the mean of that in neighbouring sections. The gas velocities are not determined by the
momentum equation at all, but form an explicit mass balance at the borders. Here, the velocities are
governed by the fact that gas velocity equal border velocity at bubble unit borders. As the gas density,
due to the pressure, is uniform throughout the bubble unit, this determines the gas velocity as inversely
dependant on the void fraction of the cross section area αg. Neighbour means are used for the gas section
velocities. Mass equations are treated as in v.2. Void in slugs is presently not supported. Suggested
documentation: [24, 34, 33].

4.3 SLUGGIT – Fundamental Equations

In this section the the basis for the SLUGGIT model
is derived and presented in some detail. The aim
here is to present the model in details fine enough
to establish an overview of the fundamental ideas
and differences between the models. This is done by
first deriving the general balances used in the meth-
ods and then examining the way in which the grids
are defined and quantities approximated within the
different frameworks. In order to obtain new in-
sight, for both reader and writer into the methods,
the present section seeks to establish the undamen-
tal equation applying control volumes directly to the
discrete scheme and derive the numerics from there.
In contrast, [16, 22, 37, 24] proceed by deriving or
presenting the continuous two fluid model (4.26) and
simplify and discretise from there. The notation used
presently is chosen to correspond reasonably to the
model sources [22, 37, 34, 24, 20] and CFD conver-
sion [45, 30]. This derivation was developed during
the present work.

Notation

The following subscript conventions will be used
(see Figure 4.2)

σ ∈ {w, e} Σ ∈ {W, E} κ ∈ {l, g}

where l and g denote ‘liquid’ and ‘gas’, respectively.
W, P and E denote ‘western’, ‘present’ and ‘eastern’
control volume cell, while w and e denote the western
and eastern control volume face values, respectively.
This is in accordance with the conversion used in
many CDF applications (e.g. [45]). ‘Left’ and ‘right’
are also standard notations, though letters denoting
‘left’ and ‘liquid’ may easily be confused. As the
model to be developed is 1D, dimensional indexa-
tion is deemed superfluous and non-bold vector and
tensor counterparts are streamwise components by
conversion (e.g., u ∆

= uz, τ
∆
= τzz). All variables not

marked with a tilde ( ·̃ ) represents cross section aver-
ages unless otherwise stated. Some attempt is made
of distinguishing the main variables stemming from
the conservation equations from those of a paramet-
ric or algebraic nature by using capital symbols for
the latter.

7As with the other EPS slug tracking codes, SLUGGIT v.2 has issues with robustness, but this is mainly due to the flow object
management operations. Only during the present thesis work SLUGGIT v.2 has improved in stability greatly through continuous
debugging and management measures.
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Figure 4.2: Control volume Figure 4.3: Pipe cross section

4.3.1 Mass Balance

By applying unity as the transported property to the Reynolds transport theorem over the control volume in
Figure 4.2 the continuous momentum equation takes the form

d
dt

*
Ωκ

ρ̃ dV +

	
∂Ωκ

ρ̃
(
ũ − ṽ

)
· ñ dA =

*
Ωκ

˙̃ms dV (4.1)

The tilde indicated that these are local variables in all dimensions of space, that is, they are continuous and
their integral values will be approximated by control volume averages. Based on Assumption A.5, a key
approximation used in the FVMs is:"

∂Ωσ,κ

ρ̃(ũ · ñ) dA ≈
1

(ακA)σ

"
∂Ωσ,κ

ρ̃ dA ·
"
∂Ωσ,κ

(
ũ − ṽ

)
· ñ dA =

[
nρκακA(uκ − v)

]
σ (4.2)

ακ in (4.2) is the section volume fraction of
fluid κ, i.e. ακ = Vκ/V, Vκ being the volume occu-
pied by fluid species κ. ακA thereby represent the
mean stream-normal area occupied by fluid κ. nσ is
the z-component of the ∂Ωσ surface normal; ne = 1,
nw = −1.

In the following, the convection term is slightly
reformulated in terms of superficial mass and flux
quantities8 m, Q; rather than expressing the flux of
mass ρκVκ across a border sub-area (ακA)σ, the total
area A and superficial specific masses mκ = Mκ/V =

ρκακ are used, Mκ and V being the total specie mass
and control volume. Likewise, the extensive volu-

metric flux Q is defined by

Qσ,κ =
[
(uκ − v)An]

σ (4.3)

The term ‘extensive’ is here, perhaps improperly, ap-
plied because Q is defined using the total pipe area A
while retaining the intrinsic velocity averages, and so
only appropriate for the flux of pipe-specific superfi-
cial quantities (m, mu). Beware that the area of Qn+1

is still taken from the previous time step.
m is nearly equivalent to the density, except that it

is the specific mass based on total pipe area A. Also,
ρ should not be confused with m in that the notation ρ
will be reserved for densities derived form the equa-
tion of state (EOS), used in the pressure equation,

8The term ‘superficial’ is equivalent to extensive (as opposed to intrinsic) spatial averages, e.g., using the notation of [16]: ρκ = 〈ρ̃κ〉
i

and mκ = 〈ρ̃κ〉 = ακ〈ρ̃κ〉
i
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while Mκ (and mκ) originate from the conservative
mass equation.

The mass flux over a border in (4.2) can now be
written on superficial form (mQ)σ,κ:dMp

dt
+

∑
σ

(nmQ)σ = Ṁs
P


κ

(4.4)

The implicit Euler method is used for the time dis-
cretization: (mV)n+1

P − Mn
P

δt
+

∑
σ

[
n(mQ)n+1

]
σ

= Ṁs
P


κ

(4.5)

The volumetric fluxes for the current time step Qn+1

is available as the phase momentum equations and
pressure equation are computed prior to the phase

mass conservation equations. In practice, the volume
Vn+1 is taken after the border positions are corrected
with zn+1 = zn + vnδt, but before the slug border po-
sitions have been accurately adjusted with respect to
the new liquid mass [21], making it only a prelimi-
nary future volume. Implicitness between the control
volume masses and the velocities is lost. However,
the mass continuity equation is still incorporated im-
plicitly into the momentum equation in two ways.
Firstly, the mass equation (4.5) is used to simplify
the momentum equation, allowing the transient vol-
ume integral to be evaluated for velocity rather than
momentum. Secondly, the pressure, which is solved
implicitly with the velocity, originates from a refor-
mulation of the continuity equation, incorporating a
compressibility relation for the gas phase.

4.3.2 The pressure equation

The pressure equation is obtained directly by reformulating the mass balance (4.4) by applying the chain rule
on the first transient term, assuming ρg = ρg(p,T ):

dMκ

dt
= Vκ

dρκ
dt

+ ρκ
dVκ

dt
= Vκ

[
∂ρ

∂p
dp
dt

+
∂ρ

∂T
dT
dt

]
+ ρκ

dVκ

dt

Since the main contributions to the absolute hydrostatic pressure is found from streamwise pressure gradients,
and only pressure gradients have a fine scale impact on the momentum equation, there is no ambiguity is placing
this EOS pressure p at the fluid interface. As the liquid phase is assumed incompressible (Assumption A.4)
this equation only becomes informative for the gas phase. Still, a combined phase control volume formulation
(overall continuity) allows for the simplest form:

∑
κ

Vn
P,κ

ρn
P,κ

(∂ρ
∂p

)
T

pn+1
P − pn

P

δt
+
∂ρ

∂T
dT
dt


P

+
∑
κ

∑
σ

nσ
ρn

P,κ

[
mnQn+1

]
σ,κ

+
∑
σ

(nvn)σAP =
∑
κ

(
Ṁs

ρn
P

)
κ

+ ψn
s,P (4.6)

Dividing by the respective density serves to bal-
ance the equation with respect to the fluid densi-
ties. Doing otherwise would cause the liquid phase
to dominate the equation, possibly leading to conver-
gence problems [13]. In this work only isothermal
systems will be considered (Assumption B.5). Be-
cause of this the temperature term in (4.6) is disre-
garded and no energy equation will be solved. Equa-
tion (4.6) is Laplacean in nature, meaning that it gov-
erns the streamwise change in pressure as a function
of the change in mass. Such a formulation is useful
as it is the pressure gradient which appears in the mo-
mentum equation. However, absolute pressure is also
important as pressure must be in agreement with gas

density in upholding the Equation Of State (EOS),
which in this case is the ideal gas law. Because sim-
plifications and non-conservative inaccuracies occur
in this non-conservative mass formulation, the abso-
lute pressure will eventually diverge from that pres-
sure which is consistent with the EOS and densities
from the conservative mass equation (4.5). The fi-
nal term ψ is a countermeasure for this; a correction
source term accounting for the discrepancy between
EOS pressure as found form the conservative masses,
and the pressure change from the non-conservative
pressure equation 4.6. This ‘trick’ of enforcing mass
conservation by explicitly supplementing the pres-
sure with the error from the previous time step allows
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for consistency to remain between pressure and gas
mass. The volume error takes the form:

ψs =
V
δt

∑
κ

mκ

ρκ

 − 1

 (4.7)

By including this error correction source term the er-
ror sustained during one time iteration is removed in
the iteration which follows. Thus, pressure-density

discrepancy in the momentum equation can originate
only from the present time iteration.

The SLUGGIT v.2 scheme uses a staggered grid
in order to avoid the notorious checker-board pres-
sure solution. An uniform interface pressures across
entire bubble units is assumed in SLUGGIT v.1. Ac-
cordingly, SLUGGIT v.1 solved (4.6) at bubble unit
level, while SLUGGIT v.1 solves it at section level.

4.3.3 Momentum Balance

By applying the momentum to the Reynolds transport theorem (e.g., [16, 46, 45]) over the control volume in
Figure 4.2 the continuous momentum equation takes the form

d
dt

*
Ωκ

ρ̃ũ dV +

	
∂Ωκ

ρ̃ũ
(
ũ − ṽb

)
· n dA =

	
∂Ωκ

(
τ̃ · n − p̃n

)
dA +

*
Ωκ

(
ρ̃g + ˙̃msũs

)
dV (4.8)

Here g · n = −g sin φ.

The pressure integral require some extra attention. It evaluates as a surface integral of local pressure p̃, but
only the pressure p at the gas-liquid interface generated from (4.6) is available. Transverse pressure gradients
must also be included. Because there may be streamwise gradients in the liquid height hl, transverse pressure
consideration will affect the pressure acting in the streamwise momentum balance also. The two-fluid model,
applies a hydrostatic approximation to include the gradients in fluid height. In fact, the two fluid model, on
which this derivation is based, becomes ill-posed if this hydrostatic pressure contribution is neglected (the
‘constant pressure model’) [16].

Figure 4.4: Pipe cross section Figure 4.5: Hydrostatic approximation of liquid
height gradient influence

The pressure integral in (4.8) may be evaluated hydrostatically, formulating the western and eastern inte-
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grals around the centre hight hP:

ez ·

	
∂Ωκ

−p̃n dA = −
∑
σ

nσ

"
∂Ωσ,κ

[
p(z) +

(
h(z) − y

)
ρlez · g

]
dA

=
∑
σ

(nακp)σ A +


∑
σ

hσ

"
∂Ωσ,κ

dA −

he∫
hw

y b̃(y) dy

︸                                ︷︷                                ︸
Vh

ρlg cos φP

(4.9)

where b̃(y) is the pipe breadth orthogonal to the flow plain (see Figure 4.4) and p is the pressure at the interface
found from the pressure equation (4.6). Vh (the term inside the square brackets) require some extra attention. In
a differential formulation its value would follow from integration using Leibnitz’ theorem. Here one must trod
carefully

Vh � (hακA)e − (hακA)w −
1
2 b̃(hP) ·

(
h2

e − h2
w

)︸    ︷︷    ︸
(he+hw)(he−hw)

= he

[
(ακA)P + 1

2 ∆hb̃P

]
− hw

[
(ακA)P −

1
2 ∆hb̃P

]
− hPb̃P∆h

where ∆h = he − hw. The western and eastern areas have been expressed as deviations around AP,κ – see the
schematic of Figure 4.5. ∆h � d has here been assumed, allowing the pipe breadth b̃(y) to be approximated
constant equal to b̃(hP) within the narrow integral region. Rearranging yields

Vh � AP,κ∆h + b̃P
1
2 (he + hw)︸      ︷︷      ︸

hP

∆h − b̃PhP∆h = AP,κ∆h

accordingly, the hydrostatic non-constant pressure model (4.9) evaluates as

ez ·

	
∂Ωκ

− p̃n dA = −
∑
σ

(nακ)σAκ
[
pσ + hσρlg cos φP

]
(4.10)

The result is easily understood from Figure 4.5 as
a correction to the gravity term for the liquid height
gradient. There he > hw have arbitrarily been as-
sumed, which does not affect the result. Expres-
sion (4.10) was derived with the liquid phase in fo-
cus (σ → l), though it also holds for the gas phase
(σ → g).9 It is however only in quite special cases
that the contribution of the gas weight will be impor-
tant.

In the final paper of [37] a simplified transverse
momentum balance is developed as an alternative to
hydrostatic approximation.

The convection integral (‘momentum flux’) is now
sat in focus. Again, the base assumptions of the fi-
nite volume method is that integrated properties can
be approximated by a uniform control volume aver-
age. Also applying Assumption A.5 of neglectable

wall normal density gradients within the phase sub-
domains, the fluxes may be assumed averaged and
the final simplification with regard to the convection
term is "

∂Ωσ,κ

ρ̃ũ
(
ũ − ṽ

)
· ñ dA

≈
1

(ακA)σ

"
∂Ωσ,κ

ρ̃ũ dA ·
"
∂Ωσ,κ

(
ũ − ṽ

)
· ñ dA

= (ρuQ)σ,κ

The shear force integral in (4.8) evaluates as:

ez ·

	
∂Ωκ

τ̃ · ñ dA =
[
(τA)pipe,k + (τA)int

]
P

(4.11)

where the subscripts pipe and int respectively indi-
cate the pipe wall and fluid interface control volume

9In the gas region, both y ≥ h and p̃(y) ≤ p, changing the signs twice and producing the same result.
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surfaces. The shear forces τ must be evaluated from
the local strain across these surfaces. Simple Darcy
friction factor relations will be used to approximate
these, and so they will be linearised functions of the
relative difference in kinetic energy across radial sur-
faces.

τ =
1
8
λρ|u|u (4.12)

Many different friction correlations are have been
developed throughout the years. Issa et al. proved
these to be of some influence in their slug capturing
scheme [13]. Here, the Darcy friction coefficient λ is
determined form the explicit Haaland correlation:

1
√
λκ

= −1.8 log

 6.9
Reκ

+

(
ε

3.7Dh,κ

)1.11 (4.13)

where ε is the pipe wall roughness and the phase
Reynolds number Reκ is computed using the hy-
draulic diameter Reκ = ρκDh,kuκ/νκ. The Dh is the
hydraulic diameter – the length scale analogous to
a pipe diameter evaluated from the surface periph-
ery and cross section area. Momentum exchange be-
tween phases across the interface is strongly simpli-
fied and use the same kind of friction factor, which
is equivalent to approximating the phases as solid
surfaces in relation to each other (Assumption A.6).
Possibility for including some linear deviation from
this assumption is supplied by adding an Interphase

Friction Multiplier (IFM) to the friction factor. The
friction forces used are computed from the gas phase

τint =
1
8
· IFM · λgρg

∣∣∣ug − ul

∣∣∣ (ug − ul

)
and so the interface perimeter is included in the gas
hydraulic diameter

Dh,g =
πD2

S g + S l
, Dh,l =

πD2

S l
(4.14)

Since the convection term of the momentum equa-
tion introduces non-linearities (momentum is trans-
ported by means of fluid motion,) the convective flux
terms are evaluated using velocities from the previ-
ous times step Qn. The same non-linearity is found in
the friction factor definition (4.12) and also here the
squared velocity is approximated as the product of
the velocity form the precious time iteration and the
present velocity for which the system is being solved
– un+1|un|. An iterative approach is also possible here.
This would require expensive re-evaluation of the
pressure-momentum system in each times step and
has for this reason not been implemented. The possi-
ble benefits in terms of accuracy are small in light of
the overall model simplifications As before, the first
order Euler method is used for the time derivative.
Collecting all the above methods of evaluation, (4.8)
takes the form:

[
(Mu)n+1 − (Mu)n

δt

]
P,κ

=



−
∑
σ

nσ
[(

mnQnun+1
)
σ,κ

+
(
αn
κApn+1

)
σ

]
−

1
8

(SκLλκρκ)n
P

∣∣∣un
P,κ

∣∣∣ un+1
P,κ

−
1
8
· IFM · (SintLλgρg)n

P

∣∣∣un
P,κ − un

P,↑κ↓

∣∣∣ (un+1
P,κ − un+1

P,↑κ↓

)
− gMn

P,κ

[
sin φ +

hn
l,e − hn

l,w

`n
P

cos φ
]

+
(
Ṁu

)s

P,κ

(4.15)

where the subscript ↑κ↓ indicates a property of the other phase. The last source term is usually of little relevance
as mass source inn and outflows are in most cases orthogonal to the main stream.

In multiplying the discrete mass balance (4.5) with the velocity at the computed time step un+1
P and subtract-

33



ing this from (4.15) the momentum balance simplifies to10

[
Mn un+1 − un

δt

]
P,κ

=



+
∑
σ

nσ
[
(mQ)n

σ,κ (uP − uσ)n+1
κ −

(
αn
κApn+1

)
σ

]
−

1
8

(SκLλκρκ)n
P

∣∣∣un
P,κ

∣∣∣ un+1
P,κ

−
1
8
· IFM · (SintLλgρg)n

P

∣∣∣un
P,κ − un

P,↑κ↓

∣∣∣ (un+1
P,κ − un+1

P,↑κ↓

)
− gMn

P,κ

[
sin φ +

hn
l,e − hn

l,w

`n
P

cos φ
]

+
[
Ṁs

(
us − un+1

)]
P,κ

(4.16)

In slugs, Equation 4.16 is solved for the liquid phase only (k = l), meaning that the interfacial friction term
(3rd term on RHS) vanishes. If gas entrainment is included in the scheme (SLUGGIT v.1,) then gas propagation
is determined by a slip relation. [7, 24, 10].

The complete system of Equations (4.5), (4.6) and (4.16) is first order accurate in both time and space.

4.4 Implicitness and time regulation

A purely explicit scheme may appear attractive is
terms of simplicity of implementation. However, for
stability reasons explicit procedures are impractical
for the purpose of simulating slow transients. Tra-
ditionally, most nuclear reactor safety codes would
be implemented explicitly as these were designed to
simulate small time invervals [5].

However,the Courant Friedrich Levy (CFL) cri-
terion for explicit time iteration imposes a time step
restriction of δt ≤ min j,κ ` j/

∣∣∣u j,κ ± c j,κ

∣∣∣ where c j,κ is the
speed of sound for fluid κ at position z j.11 This re-
flects the non-relative propagation of information in
the system of hyperbolic Euler equations. For im-
plicit procedures however, only the dynamic mass-
transport criterion applies:

δt ≤ min
j, κ

` j∣∣∣u j,κ

∣∣∣
which basically is the assurance that the advection
will not be able to pass entirely through, or bypass, a
cell within a single time step. In practice, the Courant
number chosen to determine the time step is less than

unity

Cmax = max
j, κ

∣∣∣u j,κ

∣∣∣ δt
` j

< 1

For accuracy reasons, choosing Cmin in the range of
0.1 to 0.01 is appropriate for large cases using SLUG-
GIT. For the TRIOMPF slug capturing code Bonizzi
et al. operated with Cmax = 0.5 [7], which for that
code is acceptable as accuracy is ensured through it-
eration at each time step.

4.5 Computational expense

Let ∆T be the (real) time the SLUGGIT programme
needs perform a simulation of the time interval ∆t of
a pipeline of length L. The length of a computational
time step δt will, due to the CFL criterion, be linearly
dependant on the smallest bubble section length:

δt ∝ min
j
` j, j ∈ [1,N]

Because the system is one dimensional, forming tri-
and heptadiagonal band systems, the physical com-
putation time δT needed to compute a single simula-
tion time step δt will be proportional to the number

10As a sidenote, applying the same procedure to the differential formulation of mass and momentum equations produce a convection
term on the form ρ (u − v) ∂zu for each phase. The upwind discretisation of un+1

σ,κ in (4.16) will then, in a finite difference formulation,
be equivalent to moving the differential ∂zu upwind.

11The speed of sound originate from the eigenvalues of the Euler equations and the CFL criterion can either be understood by decou-
pling this equation system through transforming it to eigenvalue variables and performing a von Neumann stability analysis, or simply
by realizing that for the information required at time n + 1 to be available from neighbouring cells at time n, the time step must be small
enough so that cells beyond neighbouring cells cannot be reached along the system characteristics in a single iteration [45, 30].
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fluid sections:

δT ∼ N · δτ ≈
L

`
· δτ

where δτ is the physical computation time needed per
section per simulation time step and δz the average
section length. The total physical computation time
becomes

∆T =
δT

δt
∆t ≈

δτ L/`

min j ` j
∆t

By assuming that the average and minimum section
lengths are proportional it is found that

∆T ∝ `−2 (4.17)

4.6 Non-locally defined properties

Some properties included in the control volume
equations are not defined at all locations where they
art needed. As a consequence,approximations these
quantities at other locations are needed.

All slug tracking schemes discussed here uses the
upwind scheme to evaluate the advection terms and
central averaging for the flux terms. The benefit with
using an upwind approach is that it is both simple and
numerically robust. The most prominent drawbacks
are that it is only first order accurate and subject to
severe numerical diffusion. The same goes for the
first order Euler discretisation in time. Numerical
diffusion would be especially damaging to the so-
lution had the model been purely Eulerian, which is
standard in most unit-cell and capturing codes. Often
Eulerian schemes compansate by enforcing a higher
order spatial discretisation or solving with a high
resolution in space. However, the Lagrangian slug
tracking approach avoids diffusion at slug and wave
fronts by where it would be most damaging. This is
the main idea of slug tracking.

A border property χ evaluated by an upwind
scheme (indicated by a ‘hat’) is taken from upstream
the flux:

χ̂w =

χW ; Qw ≥ 0

χP; Qw < 0
χ̂e =

χP; Qe ≥ 0

χE ; Qe < 0

while centrally defined properties χ are simply eval-
uated as

χσ =
1
2

(χΣ + χP)

4.7 Staggerd and non-staggered grids

Where properties are defined depends on how the
scheme grid is constructed, or rather, where the con-
trol volume is placed. To avoid the notorious checker
board solution, staggered grids must be applied in
schemes where pressure-velocity variable pairs are to
solved in each node. In SLUGGIT v.1 and v.2s this
issue is avoided solving for a single bubble unit pres-
sure rather than respective pressures for each section
velocity. Accordingly, non-staggered grids are cho-
sen. Here, all properties are defined in each section.
SLUGGIT v.2 and LASSI are based on a two-fluid
formulation and must apply staggered grids in which
the control volumes are shifted for the velocity and
pressure equations, respectively. This places implic-
itly computed velocities at borders in SLUGGIT v.2
while pressures are places at borders in LASSI. Fig-
ure 4.7 illustrates the difference for the momentum
balance control volume. In evaluating the mass and
pressure equations both versions apply the grid over
the section object, similar to Figure 4.7a

Shifting the pressure rather than the velocity in
a staggered scheme, as is done in LASSI, may in-
troduce some benefits. Such schemes will have a
fully defined flux term in the section. In dips, hav-
ing the pressure defined at the borders may also
be beneficial as pressure gradients here will be of
importance for the seepage and fluid accumulation
which affects terrain slugging characteristics. Also,
as will be discussed later, Renault [37] found that the
velocity staggered grid in conjunction with the up-
wind scheme tend to shift the pressure drop caused
by Bernoulli suction downstream the hold-up protru-
sion.

Table 1 lists the variables not locally defined
when using the different grid structures in a stratified
area.

Figure 4.6 illustrate the schematic differences in
momentum control volume systems between the sim-
plified and non-simplified versions of SLUGGIT v.2.
Key features in the simplified scheme are single unit
bubble pressures and neglect of momentum convec-
tion between bubbles and slugs. This allows the mo-
mentum equation to be formulated as a system of
slug control volumes only. Pressures and border ve-
locities are formulated into the the momentum sys-
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tem, making bubble units similar to control volume
face values. An attempt at surmising the all evalu-
ation situations in SLUGGIT v.2 and v.2s has been

attempted in Table 2. This information has been
(painstakingly) collected form the source code [21]
for the purpose of familiarisation.

Mass Eq Pressure Eq Momentum Eq
non-staggered mn+1

σ , un+1
σ mn

σ, un+1
σ mn

σ, un
σ, un+1

σ , αn
σ, hn

σ

Velocity-staggered (SLUGGIT v.2) mn+1
σ mn

σ mn
P, un

σ, un+1
σ , vn+1

σ

Pressure-staggered (LASSI) mn+1
σ , un+1

σ vn+1
σ , mn

P(in ψn) mn
σ, un

σ, un+1
σ , αn

σ, hn
σ

Table 1: Variables not locally defined

SLUGGIT version: v.2 v.2s(VI)

Variables Slug(I) immersed bubble section bubble unit border

(mQ)n+1
σ,l ρlQ̂n+1

σ,l

(III) ̂( Mn+1
σ,κ

`n+1
σ

)
(ul − v)n+1

σ

(
Mn

l
`n+1 (ul − v)n+1

)(IV)

Σ
Same as v.2

(mQ)n+1
σ,g Not solved

̂( Mn+1
σ,g

`n+1
σ

)
(ug − v)n+1

σ 0(I) Not solved(V)

(a) Mass equation

SLUGGIT version: v.2 v.2s(VI)

Variables immersed bubble section bubble unit border(
mnQn+1

)
σ,l

(̂
Mn
σ,κ

`n
σ

)
(ul − v)n+1

σ

(
Mn

l
`n (ul − v)n+1

)
Σ

(̂
Mn
σ,κ

`n
σ

)
(ul − v)n+1

σ(
mnQn+1

)
σ,g

(̂
Mn
σ,κ

`n
σ

)
(ug − v)n+1

σ 0(I) 0(I)

(b) Pressure equation

SLUGGIT version: v.2 v.2s(VI)

Variables Bubble Slug(I) Bubble(III) Slug(I)

(mQ)n
σ,κ (ακA)n

σ

(
Mκ
V

)n

σ

(
uκ

(II)
− v

)n

σ
Awρl

(
un

P,l − vn
σ

)
Ql = 0, gas not solved(VII) 0

un+1
σ,κ ûn+1

σ,κ ûn+1
σ,l 0 0(

αn
σApn+1

σ

)
κ

defined 1
2 (An

w + An
e)pn+1

σ 0
(

V
`

)n

P
pn+1
σ

Mn
P,κ Mn

P,κ defined defined defined

(c) Momentum equation

Table 2: Undefined variables
(I) Special case of no void in slugs; no gas flux through unit border as uσ,g = vσ.
(II) for the liquid phase, un

σ,κ is computed from an explicit section momentum balance.
(III) Explicit computation
(IV) Due to explicit slug treatment this term takes the old mass
(V) Gas mass equation not solved; section gas mass computed by Mg,section = Mg,unit

Vg,section
Vg,unit

(VI) Uniform bubble pressure assumed
(VII) Bubble gas velocities are determined from mas balance assuming constant uniform density

(pressure) and the the gas velocity to equal the border velocity at the slug front.

When evaluating the momentum equation of the simplified scheme v.2s in bubble units, a non-staggered
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(a) Simplified scheme: SLUGGIT v.2s

(b) Non-simplified scheme: SLUGGIT v.2

Figure 4.6: Momentum equation control volumes included in implicit system momentum computation. Note
that pn+1 = p(un+1) is included as the pressures in the momentum equation (4.16) are eliminated using the
pressure equation (4.6)

(a) Non-staggered grid (b) Velocity-staggered grid

Figure 4.7: Momentum equation control volume
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grid (Figure 4.7a) is used for the liquid phase while staggered grids (Figure 4.7b) are used for the gas phase
[21]. In this way, ug = v is maintained at the bubble-slug/slug-bubble borders. Undefined border and section
velocities are then later approximated by the means u.

4.8 Slug border velocities

The mechanics governing the propagation of bubbles
through slugs, or slugs through stratified sections, are
essentially three dimensional and influenced by mix-
ing effects, wake effects, bubble shape and surface
tension. Obviously, a coarse grid, one dimensional
method cannot obtain the relevant detailed informa-
tion needed to capture bubble propagation warranting
the need for empirically modelled closure relations
for the slug and bubble unit border velocities.

Firstly, a distinctive classification is needed in or-
der to characterise the behavioural properties of the
border. Two basic types of borders are defined – bub-
ble noses (alternatively ‘slug tails’) and bubble tails
(alternatively ‘slug fronts’). The basic characteristics
behind this distinction is the physical bubble shape; a
bubble front will be the ‘spearhead’ of bubble pene-
tration through slugs, entrapping liquid from the slug
tail. The relations imposed to model bubble prop-
agation applied in all versions of the slug tracking
schemes follows the assumption of Nicklin et al. that
the bubble front velocity can be expressed as a linear
relation from the slug mixture velocity

vb,n = C0us,m + U0 (4.18)

where subscripts b and s denote ‘bubble’ and ‘slug’,
respectively. n denotes ‘nose’ while m the ‘mixture’
velocity, i.e. um =

∑
κ ακuκ. The work of Bendiksen

[4] for long Taylor bubbles in inclined tubes is ap-
plied to close the model [34, 22, 20, 24, 37] 12

C0 = 1.05 + 0.15 sin2 φ

U0 = U0,ν sin φ + ξ±U0,h cos φ
Frs,m ≤

3.6
cos φ

C0 = 1.2

U0 = U0,ν sin φ
Frs,m > 3.6

cos φ

(4.19)

where U0,ν and U0,h are the bubble drift velocities in
stagnant liquid (neglecting surface tension) for verti-

cal and horizontal pipes, respectively [5, 4]:

U0,ν = 0.35
√

gD U0,h = 0.54
√

gD

The relation’s dependency on the slug Froude num-
ber Frs,m = us,m/

√
gD is an effect of bubble position in

the pipe cross-section. Increasing the Froude num-
ber tend to move the bubble nose centre towards the
pipe cross-section centre. For Reynolds numbers in
the range Re ∈

[
4 · 104, 105

]
, the centre field veloc-

ity is about 1.21 times the cross-sectional average.
This supplies a limiting bubble-bulk liquid velocity
ratio C0 of about 1.2 in turbulent flows – the bubble
moves faster than the surrounding liquid. In hori-
zontal pipes, complete bubble centring takes place
for Fr > 3.5. [4] When the slug velocity is oppo-
site that of the bubble (sign U0 , sing us,m) the rela-
tive flow across the bubble is from nose to tail, giv-
ing a different bulk drag on the bubble. Bendiksen’s
experiments indicate that a C0 value close to unity
(C0 = 0.98) is then appropriate [4], which is also in-
cluded in the implementation.

ξ± in (4.19) is a variable added to indicate the
sign logic influencing the horizontal drift. This logic
is a bit cumbersome and depends on whether the pipe
inclination is positive, negative or zero, and whether
the nose is pointing to the left or the right. These fea-
tures also influence – and should be seen in light of –
whether a unit border is defined as a bubble nose or
tail (Section 4.9). As an illustration, the logic applied
for SLUGGIT v.2 and v.2s (taken form source code
[21]) is

ξ± =

sign φ φ , 0

nb φ = 0
(4.20a)

nb =

+1 bubble-slug border
−1 slug-bubble border

(4.20b)

A similar expression may be used for the slip
velocity for gas entrained in slugs. Such slip relation

12The presented drift model (4.19) is not identical in all publications [4, 34, 22, 37, 20, 24] and some alterations have been made in
recent time to the source codes. For instance, smoothing functions have been implemented in SLUGGIT v.2 similar to those presented
in [15], expanded to handle flow in both directions. [37] contains an error in the presentation of (4.19).
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often have the form ug,s = S d(ul,s − U0), S d being the
distributed slip ratio [24, 10]. A similar slip relation
approach is used in the case of three-phase flow.

As slugs shed liquid at the slug tails (to the trail-
ing bubble), they may retrieve liquid at the slug fronts
(from the tail of the downstream bubble.) This hap-
pens when the slug mixture velocity is larger than
the liquid film velocity around the bubble ahead of it,
which will be the case for steady state bubble propa-
gation due to continuity. Obtaining a relation for the
slug front velocity from a mass balance in this case
is straight forward and schematically demonstrated
in Figure 4.8.

Figure 4.8: Principle used when computing slug
front velocities

This reveal that

vb,t =
dzb,t

dt
=

us,l − (αu)b,l

αb,g
(4.21a)

or, more generally, if the slug entrains gas, the rela-
tion becomes a balance of mixture velocities:

vb,t =
(αu)s,l − (αu)b,l

αb,g − αs,g
(4.21b)

subscript t denoting ‘tail’. If the liquid film veloc-
ity is greater than the slug liquid velocity, the shock
expression (4.21) would be entropy violating, and so
(4.21) is disregarded in such cases [22, 37].

In the case of rolling wave objects, which is im-
plemented in SLUGGIT v.2/v.2s, expression (4.21b)
will also be used for wave fronts [10]. In this case,

αs,g will be substituted with the void fraction in the
wave section. Also analogous to slugs, a wave tail
relation will be used similar to that of the bubble
nose expression (4.19), except that the wave liquid
hold-up, rather than wave section length, will be al-
tered as a consequence of unequal liquid fluxes at tail
and front. Rolling waves will not be considered in
this work and accordingly disabled in all simulations.

In SLUGGIT v.2 and v.2s, the border velocities
v are expressed as multiples of the gas and liquid ve-
locities

vn+1 = Cgun+1
g + Clun+1

l + U (4.22)

allowing for the border fluxes to be expressed with
full implicitness in the mass and pressure equations
(4.5), (4.6). The momentum equation applies the old
border velocity; doing otherwise would make it non-
linear.

4.9 Turning point criteria

Relation (4.19) only holds for bubble nose borders
while (4.21) is only appropriate for slug fronts mov-
ing faster than the liquid film ahead. Therefore, some
turning point criterion is needed in order to deter-
mine whether the border in question is a bubble nose
or bubble tail. Empirical studies indicate that the
sign of the pressure gradient constitutes an appropri-
ate criterion – i.e. bubble fronts points the opposite
direction of the pressure gradient [4, 22].

Slightly different turning point criteria are used
in the different method versions. All rely on a turn-
ing a friction-gravity balance based on the general
assumption is that the bubble always moves opposite
of the pressure gradient [34].

1
2λlρlUcrit |Ucrit | S = ρlgA sin φ (4.23)

which constitutes a criterion based on the (liquid
film) Froude number, as in the bubble noes model
(4.19). Bendiksen [4] applied this criterion in a
mostly analytical investigation and found this to be
in good agreement whit experimental data.

SLUGGIT v.1 uses Nydal and Banerjee’s original procedure [34] where, if the pipe is inclined upwards along
the general flow direction, all bubble-slug borders are assumed to be bubble noses and all slug-bubble borders
are assumed to be slug fronts. The Froude number condition (4.23) is solved iteratively.
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isNose: φ > 0 φ < 0
bubble-slug true us,m > Ucrit

slug-bubble false us,m < Ucrit

If isNose == true then v = vb,n and Bendiksen’s empirical bubble nose velocity (4.19) is used. Otherwise
the border is assumed to be a slug front and (4.21) is applied.

SLUGGIT v.2n and v.2s uses the Blasius friction coefficient in turbulent pipe flow to find a simplified explicit
critical velocity such that no iteration is needed (see source code [21]). Applying Blasinus’ friction coefficient
to (4.23) yields

|Ucrit | = max

|U0|,

2gD
| sin φ|
0.316

(
ρlD
µl

)1/41/1.75
 (4.24)

The following logic is applied for determining the boolean isNose [21]:

isNose: φ > 0 φ < 0 φ = 0
bubble-slug us,m > −|Ucrit | us,m > |Ucrit | us,m > −|Ucrit |

slug-bubble us,m < −|Ucrit | us,m < |Ucrit | us,m < |Ucrit |

or, using the logical variables (4.20)

isNose = nbus,m > −nbξ±|Ucrit | (4.25)

LASSI uses the same critical velocity (4.23), only LASSI allows for bubbles to travel towards the inlet in
inclined pipes. Rather than basing the formulation on whether the Bendiksen correlation (4.19) is appropriate
or not, LASSI bases the formulation on when the slug front formulation (4.21) is not appropriate, i.e. when the
slug liquid velocity is not great enough to capture liquid from the neighbouring bubble’s liquid film: us,l < ub,l

isNose: us,l < ub,l us,l > ub,l

bubble-slug us,m > Ucrit true

slug-bubble true us,m < Ucrit

As with SLUGGIT v.1, an iterative approach is used for obtaining Ucrit.

4.10 SLUGGIT v.2/v2s computational sequence

The sequence undergone at each simulation time step is the following:

1. Border velocity coefficients (4.22) are computed from bubble nose (4.18) and slug front (4.21) relations.

2. The coefficients in the combined pressure (4.6) and momentum (4.16) equation system are found from
previous time step values and stored in an external matrix. Each object is connected to a row of this
matrix and individually takes care of updating this row without management interference (for details, see
[22] and source codes [21, 23, 36]). In the SLUGGIT v.2 scheme, this forms a linear, heptadiagonal band
systems of three upper and three lower co-diagonals, along with the main diagonal. Tridiagonal band
systems are formed in the case of the other two SLUGGIT versions.

3. The pressure-momentum system is solved using Gauss-elimination. u, v, z and p are updated to n + 1.

4. The coefficients in the mass equation for bubble sections are found from available quantities and stored
in external matrices, one for each bubble unit. In the simplified scheme, this is done for the liquid phase
only. If not simplified, this forms two, tri-diagonal systems (one for gas and one for liquid) for each
bubble unit consisting of more than two bubble sections.
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5. The mass systems are solved through Gauss-elimination without pivoting (Thomas or TDMA algorithm.)
Bubble masses are updated.

6. Liquid mass equations for slugs are solved explicitly and slug lengths are updated.

7. Gas densities ρg are updated form the EOS and a test is preformed to see whether the volume fraction
error ψ from the pressure equation (4.6) is too big. If it is, values are reset and the time step computation
is re-preformed using a smaller time step.

8. Management operations are preformed. This is the only part of the routine which takes place above object
level. Here, too long section objects are split in two, too small sections are merged with neighbouring
objects, and the nature of objects may be converted according to initiation criteria.

9. n := n + 1: the cycle is repeated.

The computational sequence of the LASSI scheme is similar, but slightly different in due to less time in
development and a different set of equations (Section 4.11). Mainly, the difference lies in the shallow water
wave equation solving procedure forming a central component is this scheme. For details, see [37, 36].

4.11 The LASSI scheme

Although also the LASSI scheme is based on the
same fundamental two-fluid equations as SLUGGIT
v.2, it developers them into a rather different sys-
tem of equations. LASSI can be seen as an inter-
mediary between a fully resolved two-fluid model
as that of Issa and Kempf [13], and the SLUGGIT
schemes originating from [34]. Including the full
model derivation also for this scheme would make
the this text too extensive in terms of methodology.
Rather, an abbreviated presentation is given and the
interested reader may refer to the thesis source [37]
for further details.

4.11.1 Abbreviated method presentation

LASSI is based on a differential formulation of the
two-fluid model:

∂

∂t
(ρα)κ +

∂

∂x
(ραu)κ = 0 (4.26a)

∂

∂t
(ραu)κ +

∂

∂x

(
ραu2

)
κ

=



−
(τS )pipe,κ

A
∓κ

(τS )int

A

− ακ
∂p
∂x

− ρκgακ

[
sin φ + cos φ

∂hκ
∂x

](4.26b)

which constitutes four equations. The friction τ is
defined so that ∓κ is (+) for the liquid phase and (−)
for the gas phase. S symbolise the wetter perimeter

and hκ(ακ) the phase height (seeFigure 4.2). Fur-
ther details on these variables are given later in Sec-
tion 4.3

The LASSI scheme employs a few simplifying
assumptions in order to decouple the gas and liquid
phases in (4.26). These assumptions are

Assumptions C. LASSI

C.1 Assumptions A and B holds. Wave phenom-
ena are not neglected.

C.2 In regard to the momentum equation (4.26b)
for liquid, the gas phase may be considered in-
compressible

C.3 Derivatives of the mixture velocity can be
neclecten in (4.26b) for the liquid.

C.4 Gas momentum is neglectable compared to
liquid momentum (i.e., ρlul � ρgug)

By eliminating the pressure in the liquid mo-
mentum equation (4.26b) through substitution with
its gas equation counterpart, and then applying the
assumptions, a decoupled, modified shallow water
equation is produced for the liquid phase:

∂

∂t
αl +

∂

∂x
(αu)l = 0 (4.27a)

∂

∂t
(αu)l +

∂

∂x

[(
αu2

)
l
+ 1

2κα
2
l

]
=
αl

ρl
FV (4.27b)
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where the modification appears in the form of a sec-
ond spatial derivative involving κ:

κ =
ρl − ρg

ρl
g
(

dαl

dhl

)−1

cos φ −
1
αg

ρg

ρl
(ug − ul)2 (4.28)

which is the balance between the Bernoulli suction
1
αg

ρg
ρl

(ug − ul)2 and hydrostatic head ρl−ρg
ρl

g
(

dαl
dhl

)−1
cos φ .

FV is the volumetric forces acting on the liquid phase:

FV =
∑
κ

∓κ

(
(τS )int

ακA
−

(τS )κ,pipe

ακA
− ρκg sin φ

)
(4.29)

In the LASSI scheme, (4.26) is first solved im-
plicitly for the gas velocities and pressures along
the pipe. The border velocities are then sat as de-
scribed in Section 4.8. A modified Lagrangian shal-
low water scheme is then employed to solve (4.27)
for the liquid velocities and hold-up. This shallow
water scheme solves the Reimann problem at each
bubble border, accurately determining wave propa-
gation. The mobility of borders is utilized in mov-
ing bubble-bubble borders to coincide with the wave
shock fronts, allowing the inherit discontinuity to be
handled without much numerical diffusion (smear-
ing) while avoiding excessively refined grids. As in
the SLUGGIT schemes, an upwind spatial discreti-
sation is applied combined with Euler discretisation
in time – see [37, p. 87-89] for details on the discrete
scheme.

4.11.2 Domain of well-posedness and slug cap-
turing

A characteristic of the discrete LASSI scheme which
is of some importance is that it retains nearly the
same model stability domain as the original two-
fluid model, converging towards the Viscous Kelvin-
Helmholtz criterion (VKH). In stability analysis, the

transition to model instability takes place when there
exist a disturbance wavenumber whose correspond-
ing pulsation has a negative imaginary part (see An-
nex E). The continuous two-fluid model is used for
such analysis. Renault went on to prove for the dis-
crete LASSI scheme that the effect of finite border
spacing ` on model stability is a new term propor-
tional to that spacing, along with a ‘numerical sur-
face tension’ term. In terms of model stability, the
latter has no significant impact. The former increases
the discrete model stability domain all over as bor-
der spacing ` increases. Enlarging the pipe diameter
reduce this effect.

Further, a character of the continuous two-fluid
model is that relative velocities leading to the sys-
tem being ill-posed as a hyperbolic problem coin-
cides with the inviscid Kelvin-Helmholtz (IVH) two-
fluid model stability criterion [13]. 13

This means that in the inviscid case, the transition
to a non-stratified flow takes place as the eigenvalues
– the slopes of the characteristics – of the two-fluid
model become complex. Unique solutions continu-
ously dependant upon the initial conditions is then
no longer guaranteed. Rather, numerical solutions
strongly influenced by the numerical discretisation
may be found. Ill-posedness is usually manifested in
a discrete model by the solutions produced therefrom
failing to become independent of grid spacing as this
is continuously reduced. To illustrate this, Figure 4.9
show two plots borrowed from a publication of Issa
and Kampf wherein one is well-posed and and the
other is ill-posed. The growth rate increases asymp-
totically with decreasing grid spacing in the ill-posed
case, whereas this becomes independent of grid spac-
ing in the well-posed case.

The domain of well-posedness is determined by
formulating the two fluid model as an equation sys-

tem and finding its eigenvalues. For the two-fluid
model, the well-posedness criterion reads [16, ch. 5]

well posed ⇔ (ug − ul)2 ≤ (ρl − ρg)g
[
αl

ρl
+
αg

ρg

] (
dαl

dhl

)−1

cos φ (4.30)

13Though very similar and, perhaps, both arising from the mechanism causing flow regime transition, the issue of well posedness
should not be entirely confused with stability of the stratified flow regime. While the former is a mathematical property of the continu-
ous two fluid model (4.26) the latter is physical character of the fluid dynamics, often analysed using that same model.
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(a) Well-posed (b) Ill-posed

Figure 4.9: Illustrating of manifestation of ill-posedness. Source: [13]

which bear striking resemblance to the IKH cri-
terion (E.3), mounting to a balance between the
Bernoulli suction and the hydrostatic forces. Also,
for ρl � ρg, well-posedness becomes equivalent to
κ > 0, where κ emerged naturally in the wave formu-
lation (4.28) of LASSI. Infinite liquid depth need not
be assumed in this criterion, contra to the regime sta-
bility condition. Bonizzi et al. [7] also showed that
their extended two-fluid model, which includes gas
entrainment in slugs, share the same criterion.

A problem in using numerically dissipative pro-
cedures such as the upwind scheme (used in all mod-
els discussed here) is that numerical diffusion tent
to dampen and mask the symptoms of ill-posedness.
For many years this has damaged the credibility of
methods utilising the two-fluid model [13]. Physi-
cally, ill-posedness in the two-fluid model can be ex-
plained by the the model’s neglection of certain as-
pects, such as surface tension and more complex vis-
cous effects [37].

Indeed, after Ramshow and Trapp raised the
problem of ill-posedness in 1978, doubts about the
applicability of the two-fluid model became wide
spread. In later years, as ill-posedness of the two-
fluid model was seen in light of the model (strati-
fied flow) stability limit, confidence has been some-
what restored; though the limit of well-posedness is

marked by the IKH-criterion, viscous forces prove
destabilizing to the flow [3], causing flow transi-
tion to a new flow regime in viscous fluids to take
place at lover relative velocities, marked by the
VKH-criterion [13]. A state in between these cri-
teria should therefore lead to flow transition without
becoming ill-posed. This has in recent years boosted
the confidence in the two fluid model as a means by
which automatic slug capturing, rather than applying
initiation mechanisms, may be utilised. Practising
some moderation in the choice of relative velocities
will however be required.

Experiments have further confirmed that insta-
bility in the continuous two-fluid model corresponds
well with physically observed instability and transi-
tion to a non-stratified flow regime. Some scepticism
still remains over what happens when approaching
the limits of these domains. Finally, as was demon-
strated by Bonizzi [6], also numerical issues tend to
arise as the two-fluid model approach the limit of
well-posedness. Thus, the domains of physical in-
stability, model instability, numerical instability and
ill-posendess of the two-fluid model are similar and
overlapping. These relationships are illustrated in
Figure 4.10

Figure 4.10: Slug initiation principle in the LASI scheme. Figure source: [37]
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As LASSI scheme retains the same model sta-
bility domain of the original two-fluid model, the
approach implemented in LASSI is then to assign
a minimum value for κ ≥ κmin

14 to ensure well-
posedness while the model instability will ensure
slug initiation.

These considerations supplies the LASSI method
with an advantage over methods which are to dif-
ferent from the two-fluid model to share its stability
domain; hydrodynamic slug initiation happen auto-
matically driven by the appropriate physical mech-
anisms which are retained in the method through
the Reimann-solving wave procedure. This makes
LASSI a slug capturing method, yet far less compu-
tationally expensive than the finely gridded, iterative
Eulerian two-fluid representation model of Issa et al.

In this respect, none of the versions of SLUGGIT
solve the Reimann problems of wave propagation.
Since SLUGGIT v.2 applies a two-fluid model in
stratified regions, it may be slug capturing, but only
with very fine border spacing. The other methods
(v.1, v.2s) are simplified to the extent that their model
stability domain probably does not match the physi-
cal one, and so cannot be used as capturing methods.
Instead, the hydrodynamic slugging phenomena have
to be modelled through a criterion and clugs artifi-
cially initiated. Such models are often questionable
in complex geometries [37] and the terms compos-
ing such criteria often come at large computational
expense15. The same goes for the perhaps most com-
mercially popular multiphase pipe flow code on the
market: OLGA [5].

5 Benchmark tests

5.1 Liquid conservation

This section concerns the methods’ ability to conserve mass. For reasons of simplicity, only liquid conservation
is considered.
Introducing two ways of computing the liquid volume contained in the pipes:

V∫
dz,l(t) = A

zo∫
zi

αl(z, t) dz = A
N∑

j=1

αl, j δz j (5.1a)

and

Vio,l(t) = V∫
dz,l(t0) + A

t∫
t0

[
αl(zi, t∗) ul(zi, t∗) − αl(zo, t∗) ul (zo, t∗)

]
dt∗ (5.1b)

where subscripts i and o indicate ‘inlet’ and ‘outlet’, respectively. The V-section geometry of Figure 5.1 is
tested. It is composed of two 2 m long pipes with opposite inclination φ ∈ ± {0◦, 30◦, 60◦}. The pipe diameter is
1.2 cm.

Figure 5.1: Configuration used to thest liquid consercation in Figures 5.2 and 5.3.

14After inspecting the source code [36] it is found that the value of κmin currently implemented is a fraction of the hydrostatic force:
κmin = 0.2 ρl−ρg

ρl
g cos φ

(
dαl
dhl

)−1

15Experienced from the SLUGGIT v.2 code.
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Figures 5.2 and 5.3 depict the pipe liquid vol-
umes computed using (5.1b) and (5.1a). The times
tmid and tout presented in the captions are respectively
the times at which the liquid fronts first reach the
mid section (the bend) and the outlet of the pipeline,
which initially is free of liquid. It is clearly visible
that, while SLUGGIT appears to conserve the liquid
mass appropriately, LASSI produce a biased liquid
error highly dependant on the pipe inclination. This
is visible in the plots as rates of error accumulation
change at t = tmid, which is the time at which liquid
reach the intersection change of the first and second
pipe segment. For horizontal pipes and pipes where
the inclination angle is small, this error is not large
enough to be directly visible from the hold-up ani-
mations generated in PLOTIT [31]. Increased angles
are associated with increased volumetric errors. Er-
rors occurring with steep pipe inclinations, |φ| ≥ 60◦,
are clearly visible in the animations. Simulations per-
formed wherein only a single inclined pipe section
have produced the same error as if it had been pre-
ceded by a horizontal pipe section, indicating that the
bend itself is not the main source of error.

The computed liquid flux at the outlet is slightly
imprecise due to the slugging and momentary nature
of the output data, which is why the time series are
cut around when liquid first reaches the outlet. This
occurs at t = tout

It should be pointed out that the V-section geom-
etry and all simulation parameters corresponds to the
simulations presented in the second paper of [37].
In these simulation the inclination angles range from
φ ∈ [−15◦, 30◦]. As is evident from Figures 5.2b
and 5.2c, the errors are small in this inclination
regime. However, in the third paper of [37] a S-
riser is simulated whose upstream rise is close to 55◦

and downstream rise near 75◦.

In order to investigate the errors apparent in
LASSI further, and illustrate some of the problems
inconsistent masses will impose on simulations of a
deep water riser case, the same mass conservation
test is applied to a riser case of similar dimension
to the Girassol field. Figure 5.4 presents a schematic.
Figure 5.5 depict the volume calculations (5.1) vary-

ing the inlet liquid velocity and TargetLength pa-
rameter.16The gas velocity is the same as in the previ-
ous case, i.e. 0.44 m/s, and the inlet hold-up is kept at
a constant αl = 0.5. The timestep used is δt = 0.01 s.
Geometrically, the pipe configuration is a horizontal
pipe section of 10 m followed by a 85◦ inclined riser
long enough so that the liquid front never reach the
outlet during a simulation period.

Figure 5.4: Riser geometry used to
test LASSI liquid volume error in
Figures 5.5.

20 m

1
0

0
0

 m

Varying the time step appears to have some mi-
nor impact on the results, also in the horizontal pipe
section, but this influence is small compared to that
of the inlet velocities and the TargetLength pa-
rameter. Figures 5.5 show that increasing the liq-
uid inlet velocity Ul,i reduces V∫

dz,l relative to Vio,l.
Likewise, increasing TargetLength reduces V∫

dz,l

relative to Vio,l. The reasonable appearance of Fig-
ure 5.5c (Ul,i = 0.50 m/s, TargetLength = 0.1 m)
should not be confused with a solution to the volume
error problem; it is merely the intersection of over-
and under-predictions of V∫

dz,l – reducing either time
step or TargetLengthwill not lead to an asymptotic
reduction in error.

The consequences of this failure to conserve liq-
uid mass in the available LASSI code [36] is fatal, as
seen in Figure 5.5e. Here, the liquid in the pipe V∫

dz,l

reaches a constant value long before any liquid ever
reaches the riser outlet. In other words, even as new
liquid is pushed in through the inlet ad infinitum, no
liquid will ever reach further than the first metres of
the riser, all new inserted liquid mysteriously disap-
pearing from the system.

The κ-values (Equation (4.28), κ < 0 ⇔ well-
posedness criterion (4.30) for ρl � ρg) are giver in

16TargetLength is not an universal section length, but is the length of sections at the inlet and half the length at which sections split
in two. The timestep also influence the average section length through the CFL criterion [37, paper 1, p. 60]
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(b) φ = ∓30◦, tmid = 1.85 s, tout = 7.15 s
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(c) φ = ±30◦, tmid = 5.40 s, tout = 7.35 s
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(d) φ = ∓60◦, tmid = 1.80 s, tout = 7.15 s
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Figure 5.2: Liquid volume conservation, SLUGGIT v2. V-section configuration, as in Figure 5.1. (δt = 0.01,
D = 0.012, αl,i = 0.275)
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(b) φ = ∓30◦, tmid = 1.50 s, tout = 6.35 s
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(c) φ = ±30◦, tmid = 5.50 s, tout = 8.70 s
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Figure 5.3: Liquid volume conservation, LASSI. V-section configuration, as in Figure 5.1. (δt = 0.01, D = 0.012,
αl,i = 0.275)
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Fiugres B.4 and B.5. It is seen that the V-section
simulations, for which lack of mass conservation
was documented, is well posed. Unsurprisingly, the
same can not be said about the riser case due to the
steep riser inclination. Since the flow is slugging
here, the ‘stratified’ Taylor bubbles are in any event
no longer than a few sections long.

It is evident that the available LASSI code [36]
cannot be applied to the riser stability study under-
taken within this work. In consideration of the rea-
sonable results published in [37] for slightly inclined
pipelines, and in reviewing the details of the scheme,
it seems probable that the absence of liquid conserva-
tion is due to some error in the code implementation
– possibly within the section management procedure.

5.2 Gas expansion in riser

The slug tracking schemes discussed in this work all
have two basic flow elements – the Taylor bubble and
the slug. It has been assumed that with these two el-
ements most flow regimes can be approximated, and
the appropriate basic flow system characteristics ob-
tained. In this section, the methods ability to handle
riser expansion will be tested. A short, closed inlet
with mass sources will be used to make the physical
regime bubbly and challenge the slug-flow approx-
imation. Mass sources are chosen to correspond to
those active in the larger field case study to come.

In Appendix A, a unit-cell type steady-state
method developed for analysis of the total void frac-
tion in the riser. A discrete procedure for finding the
profile of the mean void fraction 〈αg〉(z) is presented
in Section A.1. These models have been developed
during the present work.

Figure 5.6 shows the gas volume profiles from
the steady state computation of Appendix A.1
against temporally averaged dynamic simulations
with SLUGGIT v.2. The mean profile is here deter-
mined by computing

〈αg〉(z) =
1

tN − t0

tN∫
t0

αg(t′, z) dt′ =
1

tN − t0

N∑
i=1

αg(ti, z) δti

becoming a sample average in discrete space. Here,

N is the total number of temporal samples. The ba-
sic steady-state model code can be found in List-
ing 7, Appendix D, while Listing 5 presents the pro-
cedure for averaging the SLUGGIT simulation data
by means of interpolating projection. Gas and liq-
uid mass sources representative of the Girassol oil
field [47, 43] are applied to a closed inlet. Four
values of the parameter MAX_BUB_COEF were tested:
MAX_BUB_COEF ∈ {1 000, 200, 100, 50}. This pa-
rameter dictates how long a bubble section can be,
in terms of pipe diameter multiples, before it is split
into smaller sections. MAX_BUB_COEF = 100 is not in-
cluded in Figure 5.6 as it overlaps MAX_BUB_COEF =

50 and 200 nearly perfectly.
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Steady state computetion, film neglected

SLUGGIT; MAX BUB COEF = 1000

SLUGGIT; MAX BUB COEF = 200

SLUGGIT; MAX BUB COEF = 50

Figure 5.6: Gas volume fraction profile αg(z). Dy-
namic simulations vs. steady state analyses. Closed
inlet. Ṁg = 33.69 kg/s, Ṁl = 1.687 kg/s

The numerical steady-state model including the
liquid bubble film from Appendix A.1 produce a
near perfect match with the finely spaced section
simulations, even though friction effects have been
neglected in the steady-state models. These are
in any case low in the simulations conducted here
(µ ∼ 10−3 Pa/s). The simplified version, SLUGGIT
v.2s, give equally good results, except that the ampli-
tude of the sinusoidal MAX_BUB_COEF = 1 000 curve
is less, suggesting that the simplified scheme is less
affected by slug entrance and exit effects. A possible
explanation for this is a damping of the entrance and
exit disturbance obtained since pressure equalisation
in the pipeline bubble unit happens instantaneously,
not dependent on internal gas flux.
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Figure 5.5: Liquid volume conservation, geometry as in Figure 5.4, LASSI. (δt = 0.01, Ug,i = 0.44, D = 0.012,
αl,i = 0.5)
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Although the present result is quite satisfying, it
should not be forgotten that both SLUGGIT and this
steady-state model rely on the same bubble nose ve-
locity expression for closure. The ancestor model on
the other hand, in which the liquid film is neglected,
grossly over-predicts the void fraction profile, indi-
cating that this model was too simple.

Interestingly, section length dependant profile
oscillations are uncovered. Large amplitude, low
frequency oscillations dominate the large-bubble-
section simulation profile (MAX_BUB_COEF = 1 000).
A low amplitude, high frequency component is also
visible here. In the small-bubble-section profile
(MAX_BUB_COEF = 200 and 50,) it is the high fre-
quency oscillations that dominate, while these are far
less severe than in the aforementioned case. From
Figure 5.6 one can see that the MAX_BUB_COEF = 200
simulation bears larger oscillations near the riser in-
and outlet, indicating that this is a slug entrance and
exit phenomenon increasing with slug length.17

A possible complimentary explanation for the
profile oscillations’ dependency on the parameter
MAX_BUB_COEF may lie in how bubble volumes
themselves have a tendency oscillate in the deep
water cases, especially when the pressure conditions
are altered as bubbles enter and exit the riser. This
is rooted in the large hydrostatic heads pressing on
the bubbles and the inertias of the liquid columns.
Allowing for larger bubble lengths increases the av-
erage bubble volume in the riser (see Figures 5.7),
increasing the bubble compressibility. These big-
ger bubbles causes longer periods of oscillation with
larger total changes in volume during the bubble
rise. Also, the times steps are significantly larger for
simulations allowing longer bubbles as this places a
less strict CFL criterion on the simulation. It is im-
portant to note that the SLUGGIT simulations were
performed in a simple geometry with only four pipe
segments, allowing for bubbles to take on the maxi-
mum length. Including short pipe sections ahead of
the riser (such as small jumpers) would have a simi-
lar effect as reducing the parameter MAX_BUB_COEF.

Studying the animations generated form the sim-
ulation data provides an alternative explanation.
As the maximum bubble section length decreases,
the model is capable of capturing the rise in hold-
up similar to a hydraulic jump at the inlet to the
first horizontal pipe segment. This was seen for
MAX_BUB_COEF = 100 and MAX_BUB_COEF = 50 (see
Figures 5.7c), and allows for some hydrodynamic
to take place, similar to the finely gridded capturing
methods of, e.g., Issa and Kempf [13]. This makes
the average bubble length shorter. Therefore, when
a bubble enters the riser, a smaller amount of gas
mass is subtracted from the riser inlet pipe section.
Conversely, with a large value on the MAX_BUB_COEF
parameter, all slug initiation upstream of the riser is
killed off by numerical damping. A similar influ-
ence hydrodynamic upstream slug initiation on the
riser dynamic code has already been documented by
Kjeldby [19] using the same SLUGGIT v.2 code.

Because the inlet is closed, a bubble being sucked
into the riser inlet will cause a significant reduction
of gas in the horizontal riser inlet pipe, causing a
pressure reduction at the inlet. Upstream pressure
reductions causes a deceleration of the bubble once
in the riser, making it’s occupation time in the lower
section of the riser longer (first local maximum if
Figure 5.6.) As the gas source once again fill the
first horizontal pipe with gas, the pressure rises and
the bubble accelerates through the middle part of the
riser (middle local minimum in Figure 5.6,) before a
new bubble enters the riser, again causing a pressure
drop and a deceleration in the riser (final local max-
imum.) This effect is further reflected in the phase
portraits of Figures 5.8a and 5.9b, and described in
Cycle F.

In Figures 5.8 the Φl − p phase portraits (nor-
malised scatter-plots of total riser liquid fraction vs.
riser inlet pressure) are shown for the two cases
MAX_BUB_COEF = 100 (b) and MAX_BUB_COEF =

1 000 (a) – two of the three simulations whose 〈αg〉-
profile was shown in Figure 5.6.

For the case of MAX_BUB_COEF = 100, and all
smaller values of this coefficient, the phase diagram
appears fairly random, though askewed, indicating a

17This is more clearly seen in simulations of intermediate MAX_BUB_COEF values, not shown here.
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(a) MAX_BUB_COEF = 1 000 (b) MAX_BUB_COEF = 200 (c) MAX_BUB_COEF = 50

Figure 5.7: Snapshot of bubbles in simple riser system. Image pipe diameter rescaled for visibility. (This is
also done in all pipeline images throughout this text.)

Slug tail 
exits riser

Slug front 
reaches 
riser outlet

Bubble noes 
enters riser

Slug created 
at inlet

(a) MAX_BUB_COEF = 1 000

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

pi − 〈pi〉
〈pi〉

Φl − 〈Φl〉
〈Φl〉

 

 

T
im

e
 [

h
]

6

7

8

9

10

11

12

13

14

15

16

(b) MAX_BUB_COEF = 100

Figure 5.8: Φl−p phase portraits of simulations in Figures 5.6 and 5.7.
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Figure 5.9: Ṁl−p phase portraits of simulations in Figures 5.6 and 5.7.

correlation between inlet pressure and riser void.
Only analysing the riser system in a hydrostatic
frame, one would rather expect a perfect correla-
tion (points forming a positively inclined line,) but
transient momentum effects and a near constant riser
void fraction due to small bubbles causes scattering.
It is likely that, if run long enough, the simulation
with MAX_BUB_COEF = 100 would also converge to a
steady cycle pattern. However, time in computation
this would require can simply not be afforded.

The Φl − p phase portrait for MAX_BUB_COEF =

1 000 (Figure 5.8a) is significantly different. Here,
the data points form a distinct bacon shape as a cy-

cle is repeated. Specific events form the four cor-
ners of phase portrait shape as the system state moves
clockwise along a thin line in Φl− p space. The time
spans t ∈ [35, 100] hours, after the system has come to
a steady-state cycle18. Smaller data point marker than
those in Figure 5.8b have here been used to indicate
how narrow the line of this pattern is. Even so, nearly
only the point from the first hours are visible as these
overlap those following. A single cycle takes about
three minutes, making the number of cycles shown
more than one-thousand. The events forming the cy-
cles are manifested in the corners of the shape and
are the following:

Cycle F. Φl−p cycle; Figure 5.8a

F.1 Lower left corner: A slug is formed in the horizontal upstream the riser and this slug front enters the riser
inlet. The liquid fraction in the riser increases and the inlet pressure increases as the inlet is blocked and
upstream volume is reduced. This corner is not ‘sharp’ because the cross section area of the gas phase
αgA at the riser inlet narrows before slug initiation (αg > 0.95 at inlet).

F.2 Upper left corner: The front of the slug highest positioned in the riser reaches the riser outlet and enters
the downstream horizontal. Riser liquid fraction reduces as the topmost slug is blown out.

F.3 Upper right corner: The slug entering the riser in Step F.1 has completely entered the riser. The column
of slugs and bubbles in the riser is pushed higher towards the riser outlet and the inlet volume is increased,
reducing the pressure. The topmost slug is pushed out of the riser

F.4 Lower right corner: The slug exerting the riser outlet in Step F.2 has completely left the riser. Liquid is
no longer drained from the riser and the liquid fraction increases form the riser inlet.

18Characteristics of entire cycle is time independent.
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Snapshot 5.7a is taken in the narrow time slot between Step F.2 and F.3, marked and magnified in Fig-
ure 5.8a.

The MAX_BUB_COEF = 1 000 Ṁl−p phase portrait
shown in Figure 5.9a becomes discontinuous and
only vaguely similar to the phase portrait example
Figure 3.5a presented in the introductory discussion
(outer ring in this image). Still, the process has a cir-
cular, counter-clockwise moving portrait pattern with
a flat bottom where production becomes zero. The
discontinuity is a characteristic of the slug tracking
method; the discontinuity of hold-up in slug fronts
and tails produce jumps in production as unit bor-
ders pass through the outlet. Here, the ‘production’
Ṁl is taken form the pipeline outlet. Measuring Ṁl

at the riser outlet will give a somewhat different por-
trait where the production delay due to transport in

the upper horizontal is less.
Code samples used in producing these portraits

are given in Listings 3 and 4.

In Figure 5.10, the pressure times series corre-
sponding to the MAX_BUB_COEF = 100 and
MAX_BUB_COEF = 1 000 cases are shown. It is clear
that the larger bubble units causes the amplitude
of the pressure fluctuations to be 3 – 4 times that
of the case with more finely spaced bubble sec-
tions. Also apparent is the fact that the simulation
of MAX_BUB_COEF = 100 has not reach an equally
steady cycle as at this time interval as for the coarser
section case.
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Figure 5.10: Pressure profiles of simulations in Figures 5.6 to 5.9.

Sharp pressure fluctuation profile like those from
the MAX_BUB_COEF = 1 000 case is characteristic of
terrain slugging, but is slugging flow the physically
accurate solution? The severe slugging result can be
seen in connection with the theory of Taitel from Sec-
tion 3.3. Criterion (3.2), telling whether the riser is
table and can easily be checked: Approximating the
properties of (3.2) from the plots available through
PLOTIT [31], it is found that L = 600 m, H ≈ 1300 m,
〈Θg〉 ≈ 0.6, Po = 37 bar, 〈Φl〉 ≈ 0.69 and α′g was found
to be of the order 0.9 in [41]. Due to the shortness of
the horizontal inlet, the RHS of (3.2) becomes nega-

tive and marks the riser as securely stable according
to Taitel’s model.

Likewise, the Bøe criteria (3.1) can be checked.
It may be rewritten:

Type I slugging ⇒ Ṁs
l ≥

RT
gαgL

Ṁs
g (5.2)

Feeding inn the numbers the RHS evaluates to
0.4970 kg/s – the necessary criterion for terrain slug-
ging type I is satisfied. Accordingly, the system is
in the enclosed rectangular region of the flow map
in Figure 3.3. Therefore, it is likely that the physi-
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cally accurat solution should be either cyclic without
fall-back, or steady flow.19

Judging from the pressure time series in Fig-
ure 5.10, it seems likely that the the physical sys-
tem would be stable. All simulations have come
to a reasonably steady state, in the sance that the
average signal amplitudes and statistical moments
have been established. Only the simulation with
MAX_BUB_COEF = 1 000 is operationally unstable
per present definition. Further, no consistent pres-
sure fluctuation pattern or cycle is found, making the
signal appear as a steady state pressure with white
noise. Obviously, the small variations in pressure for
MAX_BUB_COEF � 1 000 are caused by the same slug
entrance and exit effects as in Cycle F, though the
riser bubbles are far smaller and far more numerous,
causing a more complex dynamic and supplying the
signal with a random element.

The pressure population standard deviation (sec-
ond moment) sp of the inlet pressure time series are

sp

∣∣∣∣
1 000

= 9.1 bar sp

∣∣∣∣
100

= 3.8 bar sp

∣∣∣∣
50

= 2.7 bar

where the numbers refer to the value of
MAX_BUB_COEF. This amounts to a reduction in
standard deviation proportional in order of magni-
tude to the reduction in bubble section length, which
is not unexpected. The pressure fluctuations will be
proportional to the slug lengths as these are formed.
Bubbly flow will be dominant in the physical steady
state case which the slug-stratified flow model con-
verge towards as the bubble sections approach in-
finitesimal lengths.

The influence of section lengths on the system
dynamics makes it clear that the section length pa-
rameters does not only affect accuracy and numerical
stability. Even though coarse resolution (vast sec-
tions) may give reasonable results (as they do in the
Girassol field case), these should be validated against
more finely resolved simulations to ensure that the
main dynamics are not significantly altered.

5.3 Influence of gas lift on riser void frac-
tion

Using the models from Appendix A, the void frac-
tions representative for the Girassol field case [47]
have been computed (H = 1278 m, d = 0.2032 m,
po = 37 bar, T = 59 ◦C – isothermal approxima-
tion.) The spatially discretised model A.1 with
the Girassol production state Ṁl = 33.7 kg/s, Ṁg =

Ṁwell
g = 1.69 kg/s (152 kSm3/d), finds a average void frac-

tion 〈Φg〉 = 0.345, while the void fraction found
for Ṁg = Ṁwell

g + Ṁgl
g = 2.35 kg/s is 〈Φg〉 = 0.422.

The void fraction attributed to the gas lift is then
0.3645 − 0.290 = 0.0774, or a head reduction from the
pure liquid case of ∆Hwell = 98.9 m.

Using the analytical model of Appendix A.2
yields ∆Hgl = H(0.4064 − 0.3254) = 103.5 m.
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Figure 5.11: Void fraction as a function of superficial
liquid velocity, Ṁg = 0.658 kg/s (70 kSm3/d)

Figure 5.11 shows the total void fraction’s de-
pendency on the liquid flow rate for the gas. In
comparing this with Figures A.4 in the appendix, it
is clear that the simpler liquid film neglecting analy-
sis in Annex F supplies an acceptable approximation
only when liquid flow rates are high relative to gas
flow rates.

If there is no liquid flow and the system has come
to a stand-still, the void fraction produced by a gas
lift will be fare more significant. In a stand still sit-

19note that Figure 3.3 is only an example – the the domain of steady flow inside the Bøe criterion may be larger than it appears here.
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uation (Ṁl = Ṁwell
g = 0) with a gas lift flow rate

Ṁlg
g = 0.658 kg/s = 70 kSm3/d the numeric liquid-film-

including analysis of Appendix A.1 predicts a total
void fraction 〈Φg〉(0.658, 0) = 0.4193, and the ana-
lytic approximation (A.10) of Appendix A.2 predicts
〈Φg〉(0.658, 0) = 0.4031. This constitutes a gas lift
riser head reduction of ∆Hgl = 535.9 m and ∆Hgl =

515.1 m, respectively. Reducing the static head by
40% will in most cases be enough to prevent the
system from comming to a stand-still, even at rel-
atively low well pressures. In the dayly operation
of the Girassol field, the gas lift flow rate is about
150 kSm3/d = 1.41 kg/s – 〈Φg〉(1.41, 0) = 0.59, or more
than half the static head at stand-still.

In Section 7.3, SLUGGIT simulation results of
full-geometry simulations with a productivity index
boundary condition are presented. The entire sys-
tem coming to a stand-still is amongst the results
encountered. Obviously, were gas lift to be included
in these simulations, the steady state outcome would
be severely affected. Probably, a system stand-still
would not be amongst the simulation outcomes.

Strictly speaking, Taylor bubble Assumption D.4
in the model derivation is not entirely valid in this
case as gas usually enter the riser base as tiny bub-
bles which, driven by buoyancy, will propagate more

slowly than Taylor bubble. The analysis still provide
an order of magnitude estimate, approving in accu-
racy as coalescence ensures Taylor bubble formation.

5.4 SLUGGIT and the riser flow map

The testing so far has raised the question of whether
the slug tracking methods are capable of predicting
appropriate operational stability situation due to the
‘lack’ of a dispersed flow regime (Assumption A.1.)
Here then, the ability of SLUGGIT v.2 to reproduce
the four types of stable and unstable riser flow dis-
cussed in Section 3.3 will quickly be tested. This
study will aim to find the simulation flow map, but
only at a few points to give an overall impression. To
evaluate the results, experimental data published by
Taitel et al. will be used for comparison. The pipe
diameter is d = 2.54 cm, the inclination is φ = 5◦, the
length form pipeline inlet to riser inlet is L = 19.1 m,
whereat gas is injected at the pipeline inlet itself and
liquid injected at z = 10 m downstream this inlet. Fig-
ure 5.12 shows the stability map for this geometry,
where the data points are tabularise in the original
publication [41]. Those data points marked with dia-
mond markers have been simulated using SLUGGIT
v.2 without active slug initiation at the bend. Pres-
sure time series from these simulations are shown in
Figure 5.13.

Figure 5.12: Flow map, L = 19.1, φ = 5◦,
d = 2.54 cm. Liquid injection at z = 10 m.
Source: [41]
Diamonds mark points simulated with SLUG-
GIT cf. Figure 5.13
US

g,o = {0.280, 0.185, 0.157, 0.245, 0.313}
US

l = {0.071, 0.066, 0.249, 0.527, 0.385}
Filled diamonds mark additional simulations
cf. Figure 5.14

The following can be said about these simulations from viewing their inlet pressure time series and their
PLOTIT [31] animations:

‘Steady flow’ point Cyclic flow pattern wherein the slug tail never penetrate far into the upstream pipeline
(equivalent of continuous gas penetration). Cycle appears equivalent dt that described in Cycle E, Sec-
tion 3.3, which is termed ‘Unstable oscillations’ in [40, 41, 14] and Figure 5.12. Snapshots of this cycle
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Figure 5.13: Pressure time series simulated with SLUGGIT v.2, MAX_BUB_COEF = 5, no active slug initiation
in bend. Flow conditions cf. Figure 5.12 – diamond markers.
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are presented in Figure B.2, Appendix B.

‘Unstable oscillations’ point Unstable oscillations as described in Cycle E. Compared to the ‘Steady flow’
point, the gas penetration rate is less and the gas-liquid interface re-establishes itself at a lower height
after blow-out.

‘Cyclic + fall-back’ point Severe slugging (slug longer than riser at blow-out), as described in Cycle C. In-
terface re-established about midway up the riser after blow-out.

‘Cyclic no fall-back’ points Severe slugging with some fall-back. The fall-back is less than in the ‘Cyclic +

fall-back’ point, and smallest in the point US
g,o = 0.313 m/s, US

l = 0.385 m/s, which is visible in the pressure
time series by shorter oscillation periods and disappearance of the flat-topped profile.

Evidently, the lack of a non-intermittent dis-
persed flow regime tend to make bubbly flow pat-
terns in the riser less stable. Consequently, the region
called ‘Unstable oscillations’ if Figure 5.12 extends
further to contain a wide range of gas flow rates.
Also a consequence is the region in which liquid
fall-back takes place after the blow-out, even though
the experiments indicate no fall-back. This latter
may be explained by too much liquid being cleared
from the riser since gas can only travel in the form
of Taylor bubbles which pushes more liquid ahead of
them than would smaller bubble formations. Adopt-
ing the simplified scheme SLUGGIT v.2s, as seen
in Figure b does not affect the time series signifi-
cantly. Somewhat larger amplitudes, longer periods
and fine-scale disturbances are here observed.

The most important observation to take from
these brief tests is that is a word of warning. In
the later sections of this work the SLUGGIT pro-
gramme will be utilised in an attempt to understand
operational instability in a real-life oilfield, yet it
has just been shown that this method may fail in
detecting some stable flow states at low liquid flow
rates. Figure 5.14 give an impression of the further
flow pattern development as the gas flow rate is in-
creased form the ‘Steady flow’ point. The second
pressure moment is not reduced below 5% of the un-
earated riser pressure (0.015 bar) until the gas velocity
is about twice that of the original data point.

5.5 Comment

The type of benchmark testing preformed in this sec-
tion of the SLUGGIT v2/v2s codes may seem ex-
tensive and somewhat diverging from the aims of the

present work. On the contrary, it has proven to be im-
mensely valuable (though time consuming) in reveal-
ing unexpected shortcomings in the newest SLUG-
GIT code versions. As the SLUGGIT v2/v2s code
[21] is being continuously developed by more than
once participant, its behaviour is altered with time,
though precise track of what changes are is easily
lost. The reasonable results presented so far stem
from simulations generated by a SLUGGIT code ver-
sion dated 19th of Match. When first carried out,
later versions of the code were used which, surpris-
ingly, gave significantly different results. A ver-
sion dated to the beginning of June managed to cor-
rectly give steady flow in the point US

g,o = 0.280 m/s,
US

l = 0.071 m/s, something the older version failed
to do. Unfortunately, this version also predicted
all other selected points to be stable. Even newer
versions again exaggerated the instability domains.
These versions also compared less favourably the the
steady state model from Section 5.2.

Figure 5.15 show the Φl−p and Ṁl−p phase por-
traits for the same MAX_BUB_COEF = 1 000 case, as in
Section 5.2, using the version from early June which
gave steady flow at every flow map point. The anima-
tion of this run looks quite the same, except for two
elongated bubbles occupying the riser rather than just
the one. Also, it appears as if the slug is initiated at a
slightly different location near the riser inlet. Similar,
jet more diffused phase portraits are seen. Since two
bubbles are active in the riser simultaneously, a cycle
consists of two ‘loops’ in the Φl− p portrait. Impor-
tantly, the scales in these phase portraits are about
an order of magnitude less than those in Figure 5.8
and 5.9, indicating the much lower fluctuations and
higher resilience towards model instability.
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Figure 5.14: Attempt at obtaining steady flow by increasing gas flow rate (filled diamonds in Figure 5.12)

What causes these differences is version be-
haviour is, unfortunately, unknown. The alterations
are numerous and included changes in evaluation
of friction terms and management operations such
as splitting and merging procedures. Despite time
consuming investigation, a precise understanding of
what causes these differences has yet not been es-
tablished. Future investigation seems necessary. All
investigation so far suggest that the model stability

issue is strongly dependant on somewhat arbitrarily
chosen management procedures.

To ensure compatibility, the code dated 19th of
March, without any severe modifications, will be
used in the reminder of the present work as this ver-
sion gave reasonable stability behaviour for riser sys-
tems.
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Figure 5.15: Analogue to Figure 5.8a and 5.9a using newer version giving more steady solutions

6 Compromises
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A great misfortune with respect to the slug track-
ing codes available at EPT is that there codes as im-
plementations of similar schemes, yet implemented
in totally separate and independent frameworks. This
means that little time has been afforded to make each
implementation robust, and the further development
of one implementation will not benefit the others.
Another resulting disadvantage is that in exploiting
all methods, familiarisation with three vast codes
rather than just one is required.

At the present state of each code, the time re-
quired to preform the adjustments and ‘tinkering’
needed to perform both simulation and analysis for
all versions is simply not available. Some compro-
mise is therefore required. Presently, the SLUGGIT
v.1 code [23] does not compile and is significantly
less developed than the SLUGGIT v.2/v.2s code [21].
Many of the special feature of the v.1 scheme is in-
corporated into the simplified v.2s alternative pro-
cedure, as discussed in Section 4.2. The main re-
maining differences are liquid velocities implicitly

computed in sections rather than borders and gas en-
trainment in slugs. In future code development it is
highly recommended by the author that the develop-
ment takes place in a unified framework, preferably
the v.2/v.2s code [21]. For these reasons, the v.2s
implementation will be studied in favour of the v.1
code in the remainder of this work.

In Section 5.1 it was shown that the LASSI code
[36] is presently not at a state which allows for analy-
sis of riser systems. The amount of work required to
remedy this problem (find the bug) is unknown. The
scheme was originally developed for smaller lab-
scale systems using fairly high grid resolution. Also
the LASSI code lacks many of the inlet, manage-
ment and automated timestep adjustment procedures
available in SLUGGIT v.2/v.2s, making comparisons
more challenging. For these reasons the study of the
LASSI scheme will be confined to the theoretical de-
scription hitherto presented, keeping the scheme con-
cepts and ideas in mind during the continued analy-
sis.

7 Field simulation results

The goal of this section is to gain insight into
what type(s) of instability(ies) causes to oscillations
observed in the P50 Girassol pipeline as the gas in-
jection rate is decreased below 100 kSm3/d (see Fig-
ure 1.3.) Simulation capability of the SLUGGIT
v.2/v.2s code [21] in deep-water cases is also tested.
Figure 7.1 shows the gas and liquid Ṁ−p phase por-
traits generated with the field data [43]. 20

20This point is fraught with some controversy; the value of 〈Ṁl,i〉 = 33.7 kg/s corresponds to that reported by Zakarian and Larrey
in [47]. On the other hand, this is inconsistent with the supplied field data [43] from which all the pressure information originates.
Taking the average over the time period during which the gas lift rare was 70 kSm3/d, liquid mean volumetric flow rate is here found to
be 1 288 Sm3/d, which is about 14.9 kg/s, or less than half half what has been taken as the ‘proper’ liquid flow rate.
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Figure 7.1: Girassol data. Wells on manifold P5011

Note that, contrasty to the flow rate phase por-
traits of Sections 5.2 and 7.2, which are defined at
the outlet, field data is only available near the inlet.

As in the the pure terrain slugging phase portraits
exemplified in Figure 3.5, the field data portraits take
on a circular form, spiralling anti-clockwise with
time. They do however also take on a diagonal
trend, flow rates decreasing with increasing pressure.
Whereas the former suggests a terrain slugging dy-
namic, as seen in Section 3.3, the latter suggests an
influence of the well characteristic; increasing pres-
sure at the inlet will reduce well production. This lat-
ter possibly indicates a void, concentration or surge
wave phenomenon.

7.1 Fixed inlet pressure – jumper influence

Khabibullin showed in [18] that the SINTEF multi-
phase dynamic pipe flow simulation code LedaFlow
show oscillatory pressure profiles for vertical riser
systems that are dependent upon whether jumpers
are included upstream with riser. The riser is here
similar to that of the Girassol P50 pipeline (see [47]
and Section 1.2.1). A fixed pressure inlet boundary
condition (a von Neumann type boundary condition)
is applied with inlet pressure is pinlet = 145 bar (a bit
higher than found in the field data, though there is
no gas lift in this simulation) and an outlet pressure
poutlet = 37 bar. The same dynamics as observed by
Khabibullin have here been recreated using SLUG-
GIT v.2.

(a) Jumper excluded (b) Jumper included

Figure 7.2: Short open inlet with fixed out- and in-
let pressures poutlet = 37 bar, pinlet = 145 bar. Slight
positive inclination of horizontal pipe upstream riser.

Figures 7.2 present two snapshots – one with,
and one without, a jumper afront the riser. A steady
stream of bubbles and slugs are observed in the no-
jumper case, and the pressure profile measured at the
riser inlet is approximately constant. When a small
jumper was included ahead of the riser, short bursts
of gas occasionally released form the jumper, fol-
lowed by streams of smaller bubbles, were observed.
These bursts appear to take place at regular intervals.
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7.1.1 Jumper-caused pressure oscillations

Comment The analysis of this section, carried out
at an early stage of this work, is sensitive to changes
in parameters and geometry, and also by the rather
large maximum section length applied. For this rea-
son the results themselves should be considered with
some reservations. Still, they do indicate that the U-
bend in the P50 pipeline geometry may play a part in
an upstream dynamic – a notion which is not to be
discredited.

Simulation To avoid the fixed inlet pressure in-
fluencing the upstream pressure measurements, the

whole horizontal of the Girassol geometry was in-
cluded in simulations using SLUGGIT v.2. To avoid
the system coming to a stand still, it was found nec-
essary to increase the inlet pressure to pinlet = 167 bar
so that both increased friction and the static head (no
gas lift) could be overcome. The geometries used are
shown in figure 7.3 and the pressure time series at the
riser inlet in Figures 7.4. To demonstrate the influ-
ence of the jumpers and their placement, three cases
are presented: One with the jumpers placed approxi-
mately as in the field geometry [43], one in which the
jumper placement in altered slightly, and one where
the jumpers have been removed altogether.

Figure 7.3: Simplified Girassol geometries. Pressure profiles at riser inlet shown in Figure 7.4. Pipe diameter
rescaled by a factor 75

In the simulation where the jumpers are placed
in accordance with field geometry (Figure 7.4a,) the
pressure occasionally plunges sharply with about
16 bar during the initial stages of simulation as gas
expulsions form the jumpers enter the inlet. These
events occur on average at intervals of about half an
hour. After two hours these events abruptly cease
and a transient/annular steady state is reached. The
dynamic changes as the positions of the jumpers are
slightly altered, the jumper closest to the riser be-
ing moved further upstream (Figure 7.4b and middle

geometry in Figure 7.3.) Here the regular pressure-
plunges continue throughout the time series. To
demonstrate that the jumpers are sources to pres-
sure disturbances, the pressure time traces when all
jumpers are removed are included in Figure 7.4c.
As expected, this simulation show no sign of pro-
nounced pressure fluctuation.

The manifold pressure time series form the field
data [43] as also included for comparison, contin-
uing the pursuit of Khabibullin in [18]. The simi-

61



0 1 2 3 4 5 6 7 8 9
90

100

110

120

130

140

150

160

170

time [hours]

p
re

s
s
u
re

 [
b
a
ra

]

SLUGGIT, jumpers at Girassol locations

Girassol field data transient

(a) Jumpers placed according to geom-
etry field data

0 1 2 3 4 5 6 7 8 9
90

100

110

120

130

140

150

160

170

180

190

time [hours]

p
re

s
s
u
re

 [
b
a
ra

]

SLUGGIT, jumpers slightly moved

Girassol field data transient

(b) Jumpers moved slightly
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Figure 7.4: Pressure time series at riser inlet. SLUGGIT simulations with simplified Girassol geometries
(Figure 7.3, top ↔ a, middle ↔ b, top ↔ c) fixed out- and inlet pressures poutlet = 37 bar, pinlet = 167 bar. Also
shown are field data [43] as gas lift is quickly reduced from 100 to 70 kSm3/d at t = 0.

larities are not convincing. The pressure series in
Figure 7.4b are amongst the few results managing to
obtain oscillations where both period and amplitude
are of the same order of magnitude, though pipeline
geometry manipulation was needed to achieve this.

More precisely, the jumpers has to be moved further
upstream, indicating that the field instability involve
also some length of the horizontal pipeline.

Oscillation dynamics The simulation data from this open inlet jumper case have been studied using visual-
ization provided by the EPT PLOTIT visualization tool [31]. The jumpers, which are always filled with gas,
are observed to periodically go through the following stages:

Description A.

A.1 Separated flow through the jumper and pipeline.

A.2 The gas volume in the jumper begin to oscillate. Volume fluctuation amplitude and frequency increase
progressively in the jumper.

A.3 A small, additional amount of gas is released into the horizontal pipe from the jumper. This is immedi-
ately followed by a short slug and travels downstream the horizontal as a density wave.

A.4 As the additional gas reaches the riser and begins to expand, the oscillations in the jumper stabilize and
the cycle repeat itself.

It is also found that the cycle in a single-jumper system is probably quite regular. The simulation which
gave the pressure trace in Figure 7.4b has three jumpers. These influence each others’ cycles and cause the
observed disregularity.

In Section 1.2.2, a suspected causality between
jumper gas release and riser expansions was men-
tioned. The idea was that a gas expulsion from the
jumper would travel up the riser and reduce the hy-
drostatic head, causing upstream expansion and fur-
ther gas expulsion. Instead, it appears form the ani-

mations that the activity in the jumpers become less
vigilant as the void wave progresses up the riser (see
accompanying animations.) The animations further
unveils that a long slug forms ahead of the void wave
in the riser. When this slug reaches U-bend near the
outlet, U-bend terrain slugging will cease. As U-
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bend slugging stops, also the high-frequency density
oscillation seen in the jumper form which the void
wave originated cease. This may suggest and inter-

esting jumper-riser-U-bend negative feedback cou-
pling – a possible cycle of causality is hypothesised:

Description B.

B.1 From steady state, terrain slugging initiate and progress in intensity and frequency in the upper U-bend.

B.2 This produces oscillations in the jumper void through pressure fluctuations propagating upstream. These
oscillations allow for irregular gas entrainment in the jumper.

B.3 Pressure oscillations, and therefore jumper gas volume oscillations, progress in relation with the U-bend
dynamics until a gas surplus is released into the pipeline form the jumper.

B.4 When this void wave reaches the riser, the disturbance is sufficient to initiate a slug formation quickly
travelling up the riser.

B.5 Once the slug front (propagating much faster than the bubble noes) reaches the outlet, the U-bend is
flooded and U-bend oscillations cease.

B.6 In turn, the pressure fluctuations will come to and end and the jumper volume will steady with little
entrapped gas and at relatively higher static riser head.

B.7 As the slug is expelled, a separated regime is again resurrected and slugging flow may begin to developed
in the U-bend. The cycle is repeated.

This presents an interesting prospect where oscillatory phenomena are coupled across approximately 1 500
meters of piping by means of pressure propagation upstream and void wave advection downstream. Figure 7.5
presents two illustrative snapshots.

(a) Jumper oscillations possibly caused by U-
bend produced pressure fluctuations

(b) U-bend slugging ceased by slug formation in
front of void wave disturbance

Figure 7.5: Open inlet, jumper-riser-U-bend oscillations
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Figure 7.6 presents three hold-up time series –
one at the jumper closest the the riser inlet, one at
the riser inlet itself, and one at the U-bend, at a point
where the inclinations is positive and slugging oc-
curs. Two hours of the eight hour simulation time
is depicted, during which no void wave travels form
any of the two jumpers further upstream. It is clear
that as soon as the gas enters the riser base (negative
spikes in the middle graph) periods of calmer jumper
hold-up lasting about 10 minutes can be observed
(top graph). As this happens, a quickly expelled slug
floods the riser and U-bend (visible in the bottom
graph). The expulsion of this riser slug manifest it-
self as a large drop in hold-up in the U-bend as the
expanded gas emitted form the jumper reaches the
outlet. These downward spikes in U-bend hold-up
(bottom) infallibly marks the re-initiating of oscilla-
tions in the upstream jumper (top). This is consistent
with the hypothesis, but does not prove any causality.

Naturally, simulations without any bend atop the
riser have been performed to strengthen or kill the
aforementioned hypothesis. Figure 7.7 shows the
found steady state solution.

This simulation quickly reaches a steady state
solution of stratified flow from the inlet to the second
jumper, and bubble-slug flow from there to the outlet.
Pressure fluctuations at the riser base (Figure 7.7b)
are on order of two bars – the flow is considered
stable. The horizontal in Figure 7.7a has zero incli-
nation all over, so it is interesting that the change of

flow regime should occur at the middle jumper.

7.1.2 Expansion driven unstable production

From here, the simple representation of the U-bend
from the previous Section is replaced by a more de-
tailed U-bend representation of the Girassol P50 pipe
using field geometry data [43]. The well piping is
still not included, but will be studied in Section 7.3.
Figure 7.8 display the geometry. The horizontal sec-
tion is retained somewhat simplified (pipe segments
of φ = 0◦ and φ = 0.4◦ inclination where field geome-
try has slightly negative inclination.)

Quite accidentally, expansion driven instability,
as described in Cycle A, is here stumbled upon.
The best way to understand the predicted dynamic
is by viewing an animation of the simulation, and so
the reader is encourage to view the accompanying
PLOTIT output files. Also helpful are the snapshots
in Figure B.1, Appendix B

Pressure time traces are shown in Figure 7.9.
These pressure series are similar to those fount for
the simplified U-bend (Figure 7.7b), but the mecha-
nism responsible for the pressure fluctuations appear
to be different when viewing the animations.

In the case of the geometry where the jumper po-
sitions are slightly altered (the last jumper is moved
upstream), the cycle is more regular as jumper place-
ment coincide better with bubble positions at the ex-
pansion event.

Description C. Expansion driven unstable production

C.1 No production occurs. Gas is entrapped in and around the jumpers. There are a couple of bubbles at the
bottom of the riser. The liquid column surface in the riser is slightly too low to reach the outlet U-bend.

C.2 As the bubbles travel up the riser, their size increase, riser void increases, bottomhole hydrostatic pressure
is reduced and the liquid hight in the riser increases. When the bubbles are about half-way up the riser,
the riser liquid height is heigh enough for the liquid to reach the outlet.

C.3 The liquid production increases the liquid flow, transporting gas from the rightmost jumper into the riser,
replacing the riser inlet bubble in Step C.1. This bubble enters the riser about the same time as the
expanding, liquid producing bubble exits the riser and the riser again floods with a liquid column surface
below the riser outlet.

C.4 Production is sustained as gas escaping a jumper is replaced by gas travailing from the upstream jumper
neighbour.
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(b) Short pressure time series.

Figure 7.7: Open inlet. Geometry equivalent to that in Figure 7.4b without U-bend atop the riser.
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(a) Jumpers slightly displaced

(b) Jumpers placed according to field data

Figure 7.8: Simplified Girassol geometry with complete U-bend

Figure 7.9: Pressure time series at riser base. Top graph ⇔ geometry Figure 7.8a, bottom graph ⇔ geometry
Figure 7.8b
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See Figure B.1b of animation snapshots to get
a visual impression of the dynamic. The period of
steady riser pressure seen in the top graph of Fig-
ure 7.9 happens as there is no liquid production (the
liquid does not reach the top of the riser) and the
amount of liquid in the riser remains unchanged.
This lasts for about 30 minutes, which is not the time
needed for the base bubbles to travel all the way up
the riser, but the time needed for the bubbles to travel

up the riser a distance far enough to expand suffi-
ciently. This expansion volume equals the volume
in between the riser outlet and an unaerated liquid
column surface. As is evident from top plot graph
in Figure 7.9, this time interval is fairly constant and
periodic. Variations in duration of steady pressure
are caused by uneven amounts of gas being left in
the riser base after a cycle.

In the case where the jumper is placed close to the riser (Figure 7.8b) the dynamic can be described as
follows:

Description D.

D.1 Liquid blocks the riser inlet. The jumper and piping upstream the riser contains gas that trickles forward.

D.2 The gas trickles into the riser. At some point, the trickle is large enough to suck the entire gas amount
entrapped in the last jumper into the riser. The system may stay idle for hours before this happens.

D.3 As the gas expands, the liquid production increases and gas is pulled from the inlet. Gas present in the
horizontal is pulled further downstream.

D.4 Depending on the amount of released gas and the momentum of the liquid, gas pulled from upstream
regions reach the riser inlet before the gas in the riser may reach the outlet. If it does, the liquid production
continues by means of the buoyancy and expansion provided by the newly arrived gas.

D.5 Eventually, new gas will not reach the riser inlet. Instead, the gas transported from upstream the riser
will reach the final jumper and accumulate a gas storage here. The cycle is repeated.

– see Figure B.1a.

The duration of system idleness is here quite un-
steady and unpredictable. From the bottom plot of
Figure 7.9 it is seen that this period can last as long
as three hours, all depending on the tiny movement
necessary to transport a sufficient amount of gas the
short distance from jumper to riser inlet. Basically,
the main jumper-caused difference between the be-
haviour seen in Descriptions C and D is that the
jumper placement does not correspond equally well
with bubble movement for replacement of the riser
inlet bubble to be guaranteed – Step C.3 and D.4.

Some important features of these simulations
should be underlined:

Inlet pressure In a case study such as this, with
fixed inlet pressure, there is only a narrow interval of
inlet pressures within which this type of instability is

possible. In the present case, the inlet pressure was
pi = 167 bar. Should however the inlet pressure be
higher than this then the pressure inlet-outlet differ-
ence is high enough to allow for production even with
no void in the riser. The dynamic then will be a fast
flow of slugs and bubbles, as previously seen in the
beginning of this section. Though this may itself be
subject to density wave instability and other forms of
instability, the dynamic presented in Description D
and C cannot be replicated.

In reducing the inlet pressure too far below the
static head of a pure-liquid riser column, the void
produced by gas expanding while travelling up the
riser will not increase the riser liquid surface height
sufficiently to reach the outlet. In this case, no liquid
production will take place at all, the gas will leave
the riser, and the system will settle to a stand-still.

The upper snapshots of Figures B.1a and b shows
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how little additional head is needed on the inlet to
drive the system into continuous production.

Inclination of horizontal pipeline Attempts have
been made to reproduce the type on instability de-
scribed above using the exact Girassol P50 pipeline
geometry. This has proved impossible. The reason
is that the longest segments of piping on the P50
pipeline have an inclination of φ ≈ −0.8◦. Negative
inclination makes the pipeline prone to terrain slug-
ging, but buoyancy constantly works to prevent new
gas from entering the riser. From simulations it was
found that some promising expansion slugging could
be seen at the initial stages of the simulations, as gas
was pulled into the riser by the momentum of the liq-
uid. At some point however, the liquid will come to
rest and the gas may begin to evacuate up towards
the inlet. Again then, if the inlet head is less than
the riser height the system will come to a stand still.
Alternatively, were will be continuous production in
which buoyancy forces are does not drive the pro-
duction (buoyancy may on the other hand still affect
operational stability.) In other words, since periods
of no liquid production is a part of the expansion
driven unstable production seen in this section, the
system must be able to endure periods of near stand-
still while allowing gas to enter the riser.

7.2 Closed inlet, fixed flow rates – Terrain
slugging

Figure 7.10: Closed inlet geometry

The fixed flow rates inlet boundary condition is avail-
able in all EPT slug tracking codes. Here, all mass
fluxes through the inlet are fixed, either by fixing
the inlet superficial velocities US

k,i and pressure (den-
sity), or by denying any flow through the inlet and
fixing mass sources somewhere in the pipeline. This
is a Dirichlet type boundary condition that forces
changes in gas density, accommodating elasticity

into the dynamic. Compared with the open inlet,
fixed pressure boundary condition, the closed inlet
promotes a quite different system response.

Again, the Girassol field P50 pipeline will be in
focus as a test case. The P50 pipeline is perhaps
a more natural test case choice for the closed inlet
boundary as the combination of compressibility and
downward-sloping terrain produce a setting prone to
terrain slugging. Terrain slugging has already been
discussed introductorily in Section 3.3 and has been
past of benchmark testing in Section 5.4. As be-
fore, the well is excluded from geometry. This time,
the exact horizontal and riser geometry is used [43],
which is shown in Figure 7.10 – notice the downward
inclination of the horizontal, which is φ = −0.74 up-
stream the two jumpers, and φ = −0.83 downstream.

Mass sources are added close to the inlet; at
z = 1.0 m a gas source pumping Ṁs

g = 1.69 kg/s is
placed, while a liquid source Ṁs

l = 33.7 kg/s is placed
at z = 250 m. These sources ensure mass fluxes corre-
sponding the average well production measurements
published by Zakarian and Larrey in [47]. The pres-
sure response time series at the riser base is presented
in Figure 7.11
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Figure 7.11: Pressure time series upstream riser
from P50 pipeline geometry. Closed inlet, constant
mass sources Ṁs

g = 1.69 kg/s, Ṁs
l = 33.7 kg/s. SLUGGIT

v2 simulation vs. Girassol manifold measurements
[43, 18, 47].
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Again, in order to draw a parallel to
Khabibullin’s project thesis work [18], the pressure
time trace is plotted against the Girassol P50 mani-
fold pressure measurements just after the gas lift has
been reduced form 100 to 70 kSm3/d. A description of
the dynamic is here not necessary; a textbook case of
severe slugging plays out, and is already described in
Cycle C in Section 3.3. Snapshots of animation can
be found in Figure B.3 in Appendix B.

The severe slugging result can be seen in connec-
tion with the theory of Taitel from Section 3.3. Crite-
rion (3.2), telling whether riser is table, can easily be
checked. Approximating the properties of (3.2) from
the plots available through PLOTIT [31], it is found
that L ≈ 4600 m, H ≈ 1300 m, 〈Θ〉 ≈ 0.5, Po = 37 bar,
〈Φg〉 = 0 and α′g was found to be of the order 0.9
in [41]. This makes the RHS of (3.2) equal 125 bar,
which is significantly more than Po, confirming riser
instability.

Likewise, the Bøe criteria (3.1) may be checked,
using the re-written formulation (5.2). This produce
a RHS of 7.93 kg/s – the necessary criterion for terrain
slugging type I is satisfied. Using the alternative to
the Bøe criterion from [32] give than same result.

Figure 7.12 show the riser phase portraits of the
severe slugging simulation. The portraits show dis-
tinct resemblance to the portraits in Figures 5.8a and
5.9a in Section 5.2 where oscillations are caused by
coarse resolution.

Adjusted gas injection rate

During the final weeks of work the present master
thesis it was found, through communication with
Eldar Khabibullin, that there has been a misun-
derstanding concerning the input data used in the
above considerations. It would appear that the flow
rates supplied (Ṁoil = 14.36 kg/s, ṀH2O = 19.33 kg/s,
Ṁg = 1.69 kg/s) are in fact the phase flow rates the fluid
mixture would obtain under standard condition pres-
sure and temperature, not under the inlet conditions.
In other words, these flow rates are not adjusted
for phase transition associated with the state change
from standard to inlet conditions. The appropriate
inlet mass flow rates as recently supplied by Eldar
Khabibullin are Ṁoil = 15.96 kg/s, ṀH2O = 19.59 kg/s,

Ṁg = 0.295 kg/s, which correspond to a pressure
pi = 122 bar and temperature Ti = 63.5 ◦C. This
amounts to a gas mas flow rate less than a fifth of
the original inlet condition.

Unsurprisingly, the character of the flow now
changes significantly. The horizontal is now mostly
filled with liquid, the gas forming Taylor bubbles in
a liquid filled horizontal rather than a stratified re-
gion stretching from inlet to the bend-blocking slug.
The temporally and spatially averaged liquid hold-
up in the horizontal is found to be 〈Θl〉 = 0.84. In
comparison, the same average in the previous case,
with Ṁs

g = 1.69 kg/s and severe slugging, was found
to be 〈Θl〉 = 0.60. This means that, with the new
gas flow rate, the horizontal compressible volume is
about halved. Upstream compressibility is a key in-
gredient in the terrain slugging cycle C and reducing
this will reduce the severity of the slugging.

With the new reduced gas injection, liquid pro-
duction is uninterrupted. The riser is mostly filled
with un-aerated liquid, occasionally disturbed by a
Taylor bubble penetrating from the horizontal. Total
average liquid riser hold-up is 〈Φl〉 = 0.95
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Figure 7.13: Pressure upstream the riser from P50
pipeline geometry (Figure 7.10). Closed inlet, con-
stant mass sources Ṁs

g = 0.295 kg/s, Ṁs
l = 35.55 kg/s.

SLUGGIT v.2 simulation vs. Girassol manifold mea-
surements.

A pressure time series of a simulation performed
using these new inlet boundary conditions is pre-
sented in Figure 7.13. The pressure fluctuations have
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(b) Φl−p phase portrait

Figure 7.12: Closed inlet with fixed mass sources Ṁs
g = 1.69 kg/s, Ṁs

l = 33.7 kg/s. Geometry as in Figure 7.10
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(b) Φl−p phase portrait

Figure 7.14: Closed inlet with fixed mass sources Ṁs
g = 0.295 kg/s, Ṁs

l = 35.55 kg/s. Geometry as in Figure 7.10
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a period of about 10 min and peak-to-peak amplitude
around 20 bar. These fluctuations are again ladened
with more noise of higher frequency and smaller
smaller amplitude.
Figure 7.14 present the phase portraits of the adjusted
SLUGGIT simulation. Though some trends may be
discearnable, it is clear that these portraits does not
show patterns in the way seen in the severe slugging
simulation, Figure 7.12. It is quite interesting to note
that even under these flow conditions, fluctuations
with amplitude in the order of those measured at the
Girassol field are seen. The oscillations in pressure
are formed by gas occasionally penetrating into the
riser and expanding therein. PLOTIT animation [31]
further reveals that the Tailor bubbles in the horizon-
tal tends to ‘shake’ back and forth as they slowly
propagate downstream. This happens as bubble tails
are temporarily turned into bubble noses so that the
bubbles move a short distance upstream. Interest-
ingly, the temporary changes in bubble propagation
direction appears to be caused by the disturbances
generated as gas slugs in the U-bend atop the riser. It
is difficult to tell whether this dynamic has influence
on the pressure fluctuations, as well as whether it is
physically appropriate or caused by the bubble nose
criteria not being entirely appropriate when bubbles
are nearly stationary in horizontal pipes. From the
basic description of the SLIGGUT v.2/v.2s bubble
nose logic, Section 4.9, it should be evident that cap-
turing correct bubble propagation behaviour in near
horizontal pipes can be somewhat tricky.

To investigate to what degree the pressure dis-
turbances are caused by the bubble-riser penetration
effect or terrain slugging in the U-bend, a new sim-
ulation is carried out. This time, the U-bend atop
the riser replaced with a 400 m long perfectly hori-
zontal pipe segment. All other parameters remains
as in the previous simulation. The result is shown
in Figure 7.15. A part of the fluctuation has disap-
peared and only the less frequent bubble-riser en-
trance events remain. The amplitude of fluctuation
is here found to be slightly increased, possibly ex-
plained by the Taylor bubbles being larger since there
is no flow disturbance from the U-bend. The corre-
sponding Φl−p phase portrait shown in Figure 7.16b
form nearly a straight line, which is consistent with
a purely hydrostatic system consideration. This is

contrary to what was seen with the U-bend in Fig-
ure 7.14b, and confirms that the divergence from a
straight line riser void/upstream pressure relationship
in the former simulation was caused by slugging in
the U-bend. This, of course, makes sense since pres-
sure differences across an downstream slug is not ac-
counted for in the riser liquid column.
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Figure 7.15: Pressure upstream riser from P50
pipeline geometry – as in Figure 7.10, only U-
bend of pipeline geometry replaced with a horizontal
pipe segment. Closed inlet, constant mass sources
Ṁs

g = 0.295 kg/s, Ṁs
l = 35.55 kg/s. SLUGGIT v.2 simu-

lation vs. Girassol manifold measurements.

Simulations performed by Eldar Khabibullin us-
ing SINTEF’s LedaFlow model and the commer-
cially popular OLGA code predicts the same high-
frequency fluctuations as seen Figure 7.13, only
these fluctuations were slightly more regular [18].
These simulations included a gas lift injection rate
of 70 kSm3/d. Predicted fluctuation period of the
LedaFlow simulation was 5 min with a peak-to-peak
amplitude of about 11 bar. OLGA predicted sim-
ilar fluctuations of 10 bar peak-to-peak amplitude
and 24 min periods. The oscillations from OLGA
were composed of steady double-pulse signal with
a smaller pulsation followed by a larger one, sim-
ilar to a heart beat. Compared with the 3 hour pe-
riod and 35 bar amplitude of the field data [43], Fig-
ure 1.3, these simulations does not appear to cap-
ture the appropriate instability phenomena. 35 bar is
the fluctuation amplitude reached before the gas lift
injection rate was restored – it is unknown to what
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Figure 7.16: Closed inlet with fixed mass sources Ṁs
g = 0.295 kg/s, Ṁs

l = 35.55 kg/s. Geometry as in Figure 7.10,
only U-bend is replaced with a horizontal pipe segment

amounts these fluctuations would grow if given time,
nor what would happen if gas lift was eliminated al-
together. In fact, the slugging high-frequency fluctu-
ations found whit LedaFlow were found to be a con-
sequence of predicted terrain slugging in the U-bend
at the pipeline outlet, and not a riser slugging phe-
nomenon [18]. With SLUGGIT v.2, the same U-bend
terrain slugging is found, but also Tailor bubbles pen-
etrating into the riser appears to generate pressure
disturbances. Most likely it is these latter pressure
disturbances who case the SLUGGIT fluctuations to
be less regular that that of LedaFlow and OLGA.

LedaFlow further predicted bubbly flow in the
horizontal and slugging flow in the riser.21 Bubbly
flow, though intermittent on the small scale within
the flow itself, physically adopts a continuous char-
acter in cross-sectionally averaged properties. A
steady and continuous transport of gas into the riser
is therefore possible with simulation tools including
dispersed flow regimes. No dispersed flow patterns
are (presently) available in SLUGGIT, these instead
manifesting themselves as bubble-slug flow. Coales-
cence thereby tend to form all gas in the horizontal
into elongated bubbles, distributing the gas discon-
tinuously and irregularly along the horizontal. These
will disturb the pressure when entering the riser.

7.3 Full Girassol geometry with well

Figure 7.17 depicts the full Girassol geometry in-
cluding the sub-seabed well pipe sections.

Figure 7.17: Full Girassol pipe geometry with well

During the present work a linear pressure-flow
rate inlet coupling has been implemented similar to
that used in the commercial multiphase code OLGA
[12]. Details of this performance index implementa-
tion can be found in Appendix C. The productivity
index was implemented in order to increase the sys-
tem similarity to the real Girassol field and compa-
rability to the simulation results of collaborators who
work with other models (see Section 1.2.3 and 1.2.1.)

21LedaFlow animations supplied by Khabibullin.
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7.3.1 SLUGGIT v.2

Three simulations will here be described. All have
the an inlet productivity index K = 210 Sm3/d·bar,
a well pressure Pwell = 252 bar, Gas-Oil Ratio
GOR∗ = 48.316 Sm3/m3 and Water Cut wc∗ = 0 m3/m3

[47, 18]. The GOR and water cut are here adjusted
from the field values of GOR = 103 and wc = 0.531
to approximate both oil and water as a single liquid
phase.22 Because it was found in Section 5.2 that al-
lowing bubble sections larger than 200 times the pipe
diameter may cause significant ‘numerical numerical
terrain slugging’, 200 will be the above limit for the
MAX_BUB_COEF parameter in this section.

The relative velocities under the present flow
conditions are thought to be sufficiently high to
make hydrodynamic slug creation a possibly sig-
nificant influence. Two hydrodynamic slug initiation

criteria will therefore be tested: The Slug Stability
(Bendiksen) (SSB) criterion and the Invicid Kelvin-
Helmholtz (IKH) criterion. The former is a criterion
seen from the slugging regime, allowing slug ini-
tiation when the conditions are such that slugging
flow can be sustained. This is simply achieved by
initiating slugs when the gas velocity exceeds what
would be the bubble nose velocity vb,n from Equa-
tion (4.19). The latter of these criteria is seen form
the stratified region, and concerns when stratified
flow can no longer fluid-dynamically be sustained.
It is presented in Annex E. The inviscid version is
chosen in order to reduce the computational expense
of checking the criteria at each section, every time
step. For further details on hydrodynamic slugging
criteria, see e.g. [25, p. 66-74].

Two simulation cases are here given attention:

Case I: MAX_BUB/SLUG_COEF = 200. No modelled hydrodynamic slug initiation.

Description:

t < 0.3 h: Initial transient phase where the pipeline is filled by a stratified liquid hold-up front propagates
through the pipeline.

0.3 < t < 0.5: Slugging initiated from the first jumper. Liquid is transported through slugs up the riser.

0.5 < t < 0.8: Slugging from jumpers cease (for some reason.) Separated flow throughout system with-
out liquid production. Liquid builds up in riser as riser hold-up increases.

0.8 < t: Instantaneous formation of a slug in riser and well, blocking both with a full, un-aerated liquid
column. The static head rises abruptly at the inlet and becomes larger than the well pressure (pi >

Pwell.) As a result, the inflow through the inlet shuts down and the system comes to a stand still (no
backflow through the inlet is allowed, as in OLGA [12].)

Case II: MAX_BUB/SLUG_COEF = 200. SSB modelled hydrodynamic slug initiation is active.

Description:

t < 0.25 h: Initial phase. Hydrodynamic slug initiation at beginning of the horizontal pipeline. The
system is filled with liquid by a propagating slug-bubble front.

0.25 < t: Steady state production with slugging flow in the horizontal, riser and U-bend, and annular
flow in the well. The slug-to-bubble length ratio in the horizontal is on average in the order of 0.1.
Consequently, the point at which an increase in well production is balanced by the pressure drop
due to friction is relatively high (high production).

22Even thought three phase simulations are supported in SLUGGIT, this is outside the scope of the present work.
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(b) Case II

Figure 7.18: SLUGGIT simulated pressure and phase velocities using the performance index inlet boundary
conditions. Time trace taken close to well inlet.

The velocity and pressure time traces close to the
well inlet are shown for cases I and II in Figure 7.18.
A simulation similar to case II has also been carried
out using the IKH-criterion (E.3) to actively initiate
hydrodynamic slugs. The same dynamic behaviour
as seen in case II was then predicted, only slugs were
more frequently initiated for then to be destroyed
shortly after due to decreasing slug lengths. Conse-
quently, the net difference in choosing the IKH crite-
rion was larger computational expense.

For comparison with the mass source boundary
conditions supplied by Eldar Khabibullin and ap-
plied in Section 7.2, the steady-state average mass
flow rates are computed from the case II simula-
tion. The average liquid production was found to
be 〈Ṁl,o〉 = 56.9 kg/s, compared with Ṁl,i = 33.7 kg/s as
supplied by Khabibullin.20 For the gas phase mass
flow rate is found to be 〈Ṁg,o〉 = 1.97 kg/s, contrary
to the supplied boundary condition 〈Ṁg,i〉 = 1.69 kg/s.
Since phase transition is not presently included in the
SLUGGIT code, this steady-state flow rate is con-
stant throughout the pipeline (more on this later.)
Naturally, the stand-still in case I results in no pro-
duction.

It would appear that, depending on minor alter-
ations on the simulation parameters, the predicted
steady state solutions take on one of two opposite
extremes. Either a complete stand-still solution is
found if, at any point, a large enough slug blocks

blocks the riser. This is because the well pressure is
less than the maximum static head in the Girassol ge-
ometry, and the SLUGGIT code lacs gas lift support.
The event causing such a blockage usually takes the
form of a ‘collapse’ in the riser; if the liquid frac-
tion in an annular or lightly slugging vertical flow
regime is allowed to built up, the upstream pressure
will increase and there may come a point where liq-
uid hold-up locally reaches unity. As this happens,
the blockage causes a sudden flow retardation and
fall-back throughout the riser, turning all riser liquid
into a long, un-aerated slug nearly instantaneously.
The large hydrostatic pressure increase cased by this
event occurring in the riser immediately causes the
same event in the well, and to the hydrostatic pres-
sure suddenly increases beyond the well pressure.

Alternatively, the system always manages to
clear enough liquid to avoid liquid build-up and
blockage. In this situation, a positive feedback takes
place during the initial stages; a reduction in riser
and well liquid reduces the hydrostatic head, which
in turn increases the well production. In the case
studied here, increasing well production reduces the
overall system liquid fraction, reducing the inlet head
even further. At some point, the inlet pressure will
be dominated by frictional rather than gravitational
forces, forming a high-velocity equilibrium point.
Compensating for gas lift by e.g., reducing riser and
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well length has the effect of eliminating the former
flow solution, all predictions becoming the high-
velocity ones.

These solutions are contrary to solutions found
when computing the same case with LedaFlow or
OLGA [18]. The solutions found using these codes
are steady, but with less void in the system than
the high velocity solutions found with SLUGGIT.23

These simulations predict bubbly flow regimes in the
long horizontal and the annular regime in the riser.
Bubbly and droplet flow regimes are not yet imple-
mented in SLUGGIT v.2, and the void in all slugs

is assumed to be zero. This may in part explain the
difference in prediction.

It is also interesting to investigate whether finer
resolution affects the results. A simulation with
MAX_BUB/SLUG_COEF = 100 is carried out without
hydrodynamic slug initiation, along with the exag-
gerated case of MAX_BUB/SLUG_COEF = 1 000. It is
hoped that the high relative phase velocities possible
in this case study may be sufficient to produce some
natural hydrodynamic slug capturing, though obvi-
ously not sufficient to be undampened.

Case III: MAX_BUB/SLUG_COEF = 50. No modelled hydrodynamic slug initiation.

Description:

t < 0.27 h: Again, initial transient phase where the pipeline is filled by a stratified liquid hold-up front
propagates through the pipeline. Slug initiates form first jumper.

0.27 < t < 0.4: Formation of small slugs in the riser. These are blown out. All slug generation ceases.

0.4 < t < 0.5: All-over separated flow. A surge wave of high hold-up propagates up the riser.

0.5 < t < 0.6: Annular flow in the riser collapses and the riser is flooded with un-aerated liquid. The
wave front has by then reached about 500 m up the riser.

0.6 < t Annular flow regime in the well collapse. pi > Pwell and the system comes to a stand-still.

Case IV: MAX_BUB/SLUG_COEF = 1 000. No modelled hydrodynamic slug initiation.

Description:

t < 0.3 h: Initial phase. Separated flow throughout entire system. Vaguely increasing liquid hold-up in
riser and well.

0.3 < t: Equilibrium obtained. Steady state production without any slug formation.

Pressure and superficial phase velocity time
traces are shown in Figures 7.19. Obviously,
MAX_BUB/SLUG_COEF = 50 is not a sufficiently fine
resolution to obtain any form of hydrodynamic slug
capturing. This should perhaps not be surprising as
Issa, Kempf and Bonizzi [7, 13] found that a ratio
`/D ≥ 0.4 would be necessary for capturing to be rea-
sonably unaffected by further refinement. What is
interesting, however, is that a separated flow steady-
state solution was found for the coarsely resolved

case VI.

The gas and liquid production rates in case VI are
found to be 〈Ṁg,o〉 = 0.994 kg/s and 〈Ṁl,o〉 = 28.7 kg/s,
respectively. Compared with case II, the flow rates
are a little less.

In cases I and III the flow remained stratified
some time before a collapse occurred in the riser,
while in case VI the flow obtained a steady-state so-
lution with stratified flow throughout the horizontal.

23Private communication with Eldar Khabibullin.

75



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
190

200

210

220

230

240

250

260

In
le

t 
p

re
s
s
u

re
 p

 [
b

a
ra

]

Time [h]

z = 200m, D = 15.7cm

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

S
u

p
e

rf
ic

ia
l 
e

lo
c
it
y
 u

S
 [

m
/s

]pressure

u
l

S

u
g

S

(a) Case III
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(b) Case VI

Figure 7.19: SLUGGIT v.2 simulated pressure and phase velocities using performance index inlet boundary
conditions. Time series taken close to well inlet.

Due to the high relative velocities in these cases, one
would expect a non-stratified regime in the physical
flow. Figures 7.20 and 7.21 display the left and right
hand side of the inviscid Kelvin-Helmholtz criterion
(E.3) from Annex E at t = 0.25 h and t = 1.0 h from
cases III and VI, respectively. The tricky term

(
dαl
dhl

)
is handled by a geometric consideration of the sketch
in Figure 4.3, where the interface angle γ is found by
solving 1

2π (γ − sin γ) − αl = 0 in MATLAB R© using the
built-in iterative function fzero.

(
dαl
dhl

)
= 4

πD sin γ
2 is

then obtained. Alternatively, a linearisation provided
in [25, p. 49] may be applied within an accuracy of
±2 %�.

Evidently, the IKH-criterion is violated through-
out the pipeline. Because the domain of VKH sta-
bility is smaller than that of the IKH-criterion, a
stratified flow regime should not be able to persist
physically as a steady state flow pattern. Some form
of hydrodynamic slug initiation mechanism, as in
case II, is therefore justified. Further, as was proven
by Bonizzi et al. [6, 13, 7], the IKH-criterion also
marks a necessary criterion for the stratified two-
fluid model to have real characteristics (be well-
posed) and produce physically reliable solutions.
Similar figures of the well-posendess criterion (4.30)
are not shown here as they are nearly identical to
Figures 7.20 and 7.21. Ill-posedness can manifest it-
self in un-physical, resolution-dependant disturbance

(see Section 4.11.2). However, due to numerical dif-
fusion, they seldom manifest themselves in discre-
tised sachems unless grid resolution is exceptionally
high24 [13]. Consequently, the ill-posedenss (of the
underlying continuous two-fluid model) remain un-
detected and its influence, if any, unknown. Case
VI, where the ‘grid’ is very coarse indeed, may be
a prime example of this, wherein no symptoms are
visible, yet the continuous two-fluid model would be
ill-posed and the physical solution should, according
to the IKH-criterion, be non-stratified.

Also shown in Figures 7.20 and 7.21 are the pipe
inclination angles, of which the RHS of the IKH-
criterion is dependant. In vertical pipe segments, the
RHS of (E.3) reduce to zero and the criterion is un-
conditionally violated. Physically, this means that
a stratified flow cannot be sustained vertically. In-
stead, if separated, the regime will be annular. In
the SLUGGIT model however, only the wetted and
interfacial perimeters Sκ, Sint are adjusted. These are
weighted as a function of pipe inclination to give a
smooth transition to an annular flow pattern topol-
ogy. At the same time, the stratified two-fluid model
is solved as if the flow is stratified, including the
∂zh term in the momentum equation (4.16). Though
this term vanishes as the inclination approaches ±90◦,
the mid-region of high inclinations is poorly de-

24It is the continuous formulation of the two-fluid model which becomes ill-posed.
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fined, assuming partially annular surface perimeters
while retaining a phase hight hydrostatic pressure
term based on stratified flow. This aside, a sepa-
rated flow regime, as modelled in the SLUGGIT v.2
scheme in vertical risers, will have complex eigen-

values as the scheme basically incorporates a coarse
two-fluid model [16], all be it with adjusted friction
terms. Though appearing unproblematic from expe-
rience running the code, the effect of ill-posedness in
this scenario is not altogether understood.
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Figure 7.20: Case III simulation. (Square roots of) left and right hand side of inviscid Kelvin-Helmholtz
inequality criterion (E.3)
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Figure 7.21: Case VI simulation. (Square roots of) left and right hand side of inviscid Kelvin-Helmholtz
inequality criterion (E.3)
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7.3.2 SLUGGIT v.2s

For comparison, case I is re-simulated using the simplified scheme SLUGGIT v.2s:

Case I-s: MAX_BUB/SLUG_COEF = 200. No modelled hydrodynamic slug initiation. Simplified scheme.

Description:

t < 0.25 h: Slug formation takes place only some 50 meters away from the inlet. Slugging flow (slugs
and bubbles of about equal length) propagates through the pipeline and up the riser.

0.25 < t < 0.4: Slugs in the horizontal die away as the total liquid fraction in riser increases. The flow
slows down, increasing the liquid fraction in the well also.

0.4 < t: In a gradual manner, the inlet pressure approaches the well pressure and the system comes to a
stand-still. No liquid production has taken place.

Figure 7.22 shows the pressure and superficial
velocities close to the inlet. The simulation shows
much higher fluctuations than in the non-simplified
case of the previous section. The reason for this is
onset of slugging close to the inlet. Notice also that
data is taken form the location z = 20 m, where the
diameter is D = 14 cm, rather than z = 200 m, where
D = 15.7 cm, as was done previously. The reason for
choosing z = 200 m was the large section lengths of
Case VI, while the location z = 20 m in Case I-s was
chosen because further away from the inlet the flow
was slugging, which gave very intermitted and untidy
curves.

Figure 7.22: Case I-s simplified simulation. pressure
and phase velocities using performance index inlet
boundary conditions. Time series taken close to well
inlet.

So why the difference in prediction? The expla-
nation lies of course in the main method simplifica-
tions as they are described in Section 4.2 and Ta-
bles 2.

Most importantly, assuming uniform pressure in
stratified units denies gas acceleration thought pres-
sure transients, which are likely to be important in
the initial formation of the separated regime seen in
the unsimplified model. Transient pressure forces
counteract liquid build-up. This is demonstrated in
Figure 7.23, which shows the spatial pressure profile
during the initial stages (t = 20 s) of the Case I and
Case I-s simulations. Here, both simulations show
liquid propagation by means of a negative pressure
gradients. The non-simplified scheme manages to
create this gradient in the stratified/annular regime as
gas accelerates and column weight decreases. Due
to uniform stratified unit pressure, this is not a pos-
sible solution in the simplified scheme. Rather, the
formation of slugs are required in order to manifest
a pressure gradient. Also seen in Figure 7.23 is how
the pressure at the most upstream slug front in the
simplified scheme always will equal the outlet pres-
sure. Consequently, this warrants huge mass flow
rates initially

Uniform stratified pressure also dismisses the
Bernoulli suction phenomenon and the possibility of
slug capturing – the area of model stability now dif-
fers from that of the two-fluid model. An interesting
note to add here is Renault’s discovery that first order
upwind schemes with velocity-staggered grids (Fig-
ure 4.7b), will tend to ‘misplace’ this Bernoulli suc-
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tion one section downstream [37]. Velocity staggered
grids are quite common in transient codes, and is
found in e.g., SLUGGIT v.2, TRIOMPF and OLGA.
A consequence of this is that suction physically caus-
ing increasing hold-up locally will numerically in-
duce a pressure gradient in the counter-flow direc-
tion, which produce a suction ahead of single-section
slugs, possibly promoting liquid propagation and a
separated regime in the non-simplified scheme. This
gives an incentive for considering pressure-staggered
schemes as a substitution.

Further, in excluding the convection terms in the
liquid momentum equation, injected liquid is given
no initial momentum with which it is transported
away from the inlet.

Contrary to the intention and intuition, the sim-
plified scheme ends up requiring a significantly
longer computation time than the non-simplified
scheme because of the increased complexity accom-
panied with the slugging flow (particularly through
the jumpers.)

The simplified scheme afforded a significantly
longer computation time than the non-simplified
scheme due to increased the complexity of the slug-
ging flow

Adjusted GOR

Near the end of Section 7.2, an adjustment was made
to the inlet flow rate conditions to correct for a mis-
understanding that had arisen where mass rates had
been defined at standard conditions and so not cor-
rected for phase transfer. This mishap also affects the
present section as the GOR allegedly also is defined
in terms of gas-liquid separation at standard condi-
tions, and not, as was initially though, as the separa-
tion at the inlet. Due to the present intrinsic lack of
any PVT support in the models codes, the interpre-
tation of the GOR as a boundary condition computes
the mass flow rates under standard conditions and as-
sumes these phase mass rates to be the mass rates at
the inlet. Without PVT support, the conversion form
standard cubic meters was done by finding the ratio
of density at inlet and standard conditions – see Ap-
pendix C.

Conversely, the ‘appropriate’ way of applying

the supplied GOR value is to find the gas-oil-water
separation at standard conditions and compute the
separation of this mixture back to the inlet condi-
tions using PVT software. The main difference here
is that the gas mass at the inlet in considerably less
as phase transition causes gas condensation at the
increasing pressure.

Khabibullin provided a new approximation
of the GOR at the inlet under the conditions
p = 122 bar, T = 63.5 ◦C, namely GOR = Vg/Voil =

259 m3/d/1839 m3/d = 0.14 m3/m3. Since all PVT sup-
port is yet to be implemented in the SLUGGIT
code25, the same procedure as earlier must be em-
ployed, only the standard conditions are redefined
to closer match the inlet. The ‘adjusted standard
conditions’ are pS T∗ = 122 bar, T S T∗ = 65.3 K. Wa-
ter cut is assumed unchanged at 53% (though it in
reality slightly increased). As before, the GOR is
further adjusted to an all-oil single phase liquids
GOR∗ = (1 − 0.53) · 0.14 = 0.0658, wc∗ = 0

Figure 7.24 show pressure and superficial veloc-
ity plots for the new GOR and ‘adjusted standard con-
ditions.’ The profiles are seen to be similar to Case I
and Case III in Figures 7.18a and 7.19a, respectively.
The main difference lies in the reduced volumetric
gas flow rate due to the correction for phase transi-
tion. Overall liquid fraction increases therefore, also
when slugs are hydrodynamically initiated (bubbles
between slugs become shorter). Consequently, the
liquid fraction in the riser and well become too high,
and the flow collapse once the front of the slug-
bubble regression has reached some distance up the
riser.

It should be emphatically pointed out that adjust-
ing the GOR-value as done here is no a solution to
the present lack of PVT-management in the SLUG-
GIT codes. Earlier it was seen that the difference
in gas mass flow rates due to phase transition at the
well and outlet conditions are large. Changing the
gas mass flow at the inlet does not account for the
phase transition which occurs in the riser as local
pressure decreases. Consequently, adjusting for a
correct gas mass flow rate at the well will generate an

25This is being done presently by Tor Kjelby.
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Figure 7.23: Initial development, simplified vs. non-simplified SLUGGIT scheme t = 20 s

under-prediction of gas mass flow rate near the out-
let. PVT-support is therefore a necessary component

in deep-water simulation tools.
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Figure 7.24: Adjusted GOR computation. MAX_BUB/SLUG_COEF = 200

8 Discussion and recommendations

8.1 Girassol instability

Finding the origin of the P50 Girassol pipeline instability has proven to be challenging task. Though multiple
forms of operational instability were generated, none had a period of oscillation in the range of the field data.
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Over-predicting slugging frequency seems to be a common problem in most multiphase codes [35]. For the
SLUGGIT code, the following obstacles have shown to be particularly troublesome:

Gas lift No field data is available in which the gas injection is switched off altogether. Neither does the data
from which it is at its lowest (70 kSm3/d) ever reaches a steady amplitude of fluctuation. In fact, it is not
altogether know whether the P50 pipeline has any production at all without active gas lift. Neither any of
the SLUGGIT codes nor the LASSI code has in them any well-functioning support for generating a gas
lift in the riser (i.e., placing a gas source at the riser base.) The reason for this is that technical challenges
arise when a slug object passes the point at which the gas source is placed. Kjeldby implemented a
method for tackling these challenges in his master thesis work [20], though this method caused some
pressure disturbances and did not function ideally. Modified gas lift procedures are possible and are
likely to be implemented in the near future. An alternative and perhaps preferable way of overcoming
the gas source challenge is to implement gas entrainment into slugs. Void in slugs is also recommended
to improve the methods’ capability of predicting dispersed flows.

PVT treatment It has already been demonstrated, though quite unintentionally, that retrieving the appropriate
thermodynamic PVT fluid mixture properties is important in fields where pressure changes are signifi-
cant. Mainly the issues are those of phase transition, which in this field is found to be of the same order
as the produced gas. The influence of this may very well affect the system dynamic as a whole.

Field data controversy The for publication reported by Zakarian and Larrey [47] does not altoghther match
the field data [43] from which all the pressure information originates. Where the former supplies a liquid
flow rate 〈Ṁl,i〉 = 33.7 kg/s, the mean volumetric flow rate is found to be 1 288 Sm3/d in the latter, or 14.9 kg/s.
Though there probably exist a natural explanation for this, it does serve to reduce confidence in the data.

Limited flow regimes All of the EPT slug tracking methods presently rely on the base assumption that all
simulated flow regimes can be represented by slug and stratified flow objects. In Section 5 and 7, it was
found that the limited number of flow regimes – particularly the absence of a dispersed flow – may reduce
the domains of model stability.

In Section 5.4 it was found that the SLUGGIT v.2/v.2s codes had difficulty in obtaining steady flow at
low liquid, high gas flow rates. This is particularly disconcerting since flow stability is here the main
focus.26 Similarly, it was found is Section 7.3 that the SLUGGIT v.2/v.2s codes predicted high pressure
fluctuations in comparison to LedaFlow and OLGA simulations carried out by Khabibullin [18]. Occa-
sional release of coalesced tailor bubbles into the riser was found to cause a part of the fluctuations in the
SLUGGIT simulations, while LedaFlow and OLGA had predicted bubbly flow regimes in the horizontal.
On the other hand, due to lack of gas lift and confusion surrounding inlet boundary conditions, the basis
for comparison is questionable.

Implementation of gas entrainment in slugs is likely to improve this condition. The SLUGGIT v.1 code
by Pascal Klebert already have this feature installed, but could not be tested during this work due to
technical problems with the code. Bonizzi et al. [7] investigate the influence of entrainment into their
slug capturing code TRIOMPF. In the limited and simple cases investigated in this publication it was
found that the effect was not severe, but corrected an otherwise erroneous trend where increasing mixture
velocity would also increases mean hold-up in the V-section case.

Limited focus on vertical flow All investigated slug tracking methods have been developed based on the prin-
ciple of the stratified two-fluid model. During the present work, these methods have unquestioningly been

26Some reserves should here be made. It is not entirely clear whether this is due to the model fundamentals or short-comings in
the current management procedure. The SLUGGIT v.2/v.2s are being continuously developed and differences in stability predictions
within resent versions may suggest the latter.
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applied to vertical risers. In the case where the flow regime is predicted to be slugging with short units
(often method-equivalent of bubbly flow,) the SLUGGIT methods reduce to an empirical slug specifica-
tion model in which the bubble propagation correlations and mass balances govern the flow.

Some assurance is provided by the fact that test simulations provided excellent correspondence to the
steady-state model in Appendix A, provided a reasonable maximal section length. With high gas rates
however, the riser flow will on the other hand be annular. Even with some correction for the friction
perimeters, the liquid height gradient term ∂zh cos φ will disappear form the (stratified) two-fluid model.
Consequently, the pressure treatment will be equivalent to applying the constant cross-sectional pressure
assumption in a simplified two-fluid. As was shown in [16, p. 69-70], or in expression (4.30) for that
matter, this simplified two-fluid model is then unconditionally ill-posed. Though this topic is somewhat
controversial, it seems to this author at least that some effort must be made, either in ensuring well-
posedness, or in proving an evidential basis, for it to be fully accepted in a scientific community.

Another point which presently seems weak in the LASSI and SLUGGIT codes is the 90◦bend at the riser
inlet. Appropriate slug formation here has been found to be vital for obtaining the correct flow pattern
in the riser, which in turn has a strong effect on the system dynamic as a whole. Bend initiation criteria
have not proven to be all together successful in this respect, partially because this criterion requires inflow
towards a low-point from both directions. The presently developed pipe class for bent pipes may improve
these matters, but would still require high section length refinement in bend regions.

Although the type of pressure fluctuations ob-
served in the field data [43] (Figure 1.3) has not been
recreated, much has been learned about the instabil-
ity characteristics and how they apply to the Girassol
field case. In Section 7.1, various forms of oscilla-
tory behaviour related to the fixed-pressure ‘open in-
let’ boundary conditions were discovered. Here, geo-
metric features of the pipeline, centrally the jumpers
and U-bend, were given special attention. Reproduc-
ing oscillations particularly caused by gas expansion
in the riser was attempted successfully, including the
dynamic described as ‘expansion driven instability’
in the assignment description of this thesis. Also a
surprising feature of this investigation was that os-
cillations in the U-bend may play a role in operation
instability dynamics involving pipeline upstream of
the riser. Despite these findings, it was in general
observed that the oscillating pressure profiles cor-
responded poorly with the field data measurements.
Periods of gas accumulation in jumpers, and oscilla-
tion periods generated from the void waves created
therefrom, were both found to be short (usually less
than an hour.) These would yield pressure fluctua-
tions that were occasional and spiky, rather than pos-
sessing a slow, sinusoidal character of the field data.
Although riser expansion is likely to be a key com-
ponent in the field instability, the suggested mecha-
nism of expansion driven fluid accelerations ‘pulling

with it’ additional gas from jumpers (Cycle A) seems
very unlikely for two reasons. Firstly, the proximity
of the gas congestion would be too close to the riser
to produce periods of three hours. Secondly, the en-
trapment volume of the risers and pipeline does not
seem sufficient.

Gas release caused by upstream expansion is also
a possibility. Again though, the only upstream en-
trapment volume big enough is likely to be the well
itself. If so, the mechanism is actually equivalent to
the favoured void wave Cycle B.

All the instabilities observed in the open in-
let configuration appeared to be very sensitive to
changes in geometry, and inlet hold-up and pressure.
Small changes have been found to cause or reverse
operational instability mechanise, and even uncover-
ing unexpected new ones.

In Section 7.2, the fixed fluid flow rates bound-
ary condition was tested. Severe slugging obtained
using Ṁg,i = 1.69 kg/s and Ṁl,i = 33.7 kg/s was found
to give slugging periods of about 30 min and tip-to-
tip amplitudes of approximately 60 bar. Compared to
the 3 h periods and 35 bar tip-to-tip amplitudes of the
field data, the match is poor. The flat-top form sinu-
soidal of the field data also compares poorly with the
sharp zig-zag pressure pattern of terrain slugging. In
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terms of amplitude, it must again be underlined that
it is unknown how the field pressure would develop
if allowed to grow.

Recently made corrections of the mass source
conditions gave a different response altogether. Here,
the rate of gas injection was so low as to make gas
production only occasional, as Tailor bubbles from
time to time penetrated into the riser. The restricted
gas amounts reduced the volume of upstream com-
pressibility, while the riser was mostly un-aerated.
Pressure fluctuations were found to originate both
form the U-bend and the events wherein a Taylor
bubble enter the riser. Again, fluctuation periods and
amplitudes were too short.

The full geometry simulations with the produc-
tivity index inlet boundary condition of Section 7.3
was though to offer the greatest hope of reproduc-
ing the field instability. The main reason for believ-
ing so is the long oscillation periods in the field data.
Should these oscillation be caused by a transport phe-
nomena, as opposed to some sort of build-up as in
terrain slugging type I or gas pocked build-up, the
distance of transport need to be vast. It is likely that
the entire pipeline – from inlet outlet – is involved.

Wave phenomena similar to that described in Cy-
cle B seems the most plausible explanation in this re-
spect, particularly due to the way such a cycle would
generate a sinusoidal pressure profile, as well as be
strongly dependant upon the operational state of gas
lift injection – both in terms of how gas injection af-
fects the flow in a stabilising manner, and in term of
how a change in gas lift state would cause a distur-
bance kick-starting this type of operational instabil-
ity. This was discussed in more detail in Section 3.2.
Since well response is crucial for such density-wave
instability dynamics to take place, further investiga-
tion into well-replicating boundary conditions on the
inlet may be beneficial in investigating this field case.

Disappointingly, unless liquid accumulation in
the riser was continuously counteracted by upstream
hydrodynamic slugs, the system would come to a
stand-still. Most simulation indicated the stand-still
outcome, which is an easily verifiable solution as the
un-aerated inlet static head of filled riser and well

will exceed the well head. If not at a stand still, the
system would show no signs of operational instabil-
ity.

Again, these results appear to have been affected
by the misunderstanding concerning the inlet con-
ditions (GOR definition in terms of phase transfer).
Only stand-still solutions were found when apply-
ing an approximate GOR based on ‘adjusted standard
conditions’. Adjusting the GOR and standard con-
ditions is not a solution to the PVT problems, and
the differences in prediction demonstrate that the pro-
ductivity index implementation is not complete until
such support is available. Naturally, the mix-up in
inlet conditions also serves as a reminder of the im-
portance of supplying detailed, accurate and verified
case information.

8.2 Method considerations

LASSI: The investigatory part of this thesis be-
gan by testing the codes’ ability to handle the ver-
tical riser geometry. The LASSI code [36] failed
these tests brutally, the cause rooted in a inclination-
dependant failure to conserve mass. Since the formu-
lation of the LASSI model is presented in an entirely
mass-conservative manner in [37], it is assumed that
the lack of mass conservation is due to an imple-
mentation error, possibly in the section management
procedure. Whether finding and solving this bug
would be a small or large task is unknown, but it
is imperative if the scheme is to be applied for any
future purpose.

Based on the results published in [37], one may
postulate how this scheme may fare in comparison to
the SLUGGIT schemes for this case study. In the
horizontal of the Girassol case the LASSI scheme
would probably hold certain advantages, such as
waves and slug capturing. The method is how-
ever not developed for the purposes of vertical flow,
and so would have little advantage in the riser and
well. Further, simulating with the resolution required
for grid-independent wave functionality would en-
tail significant computational cost in a pipeline of the
field dimension. In [37], section lengths at the or-

27Even though the LASSI code [36] is more simply implemented and so therefore runs significantly quicker than SLUGGIT for the
same number of sections and time steps.
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der of the pipe diameter is normally applied, which
would be impossible in a field study.27 On the other
hand, also SLUGGIT simulations are clearly affected
by section length when pushed beyond a limit. In
field tests this was found to begin affecting the sim-
ulations as MAX_BUB_COEF passed 200. More spe-
cific statistical properties, such as slug frequency
and length, are likely to be affected by resolution in
SLUGGIT for far smaller section lengths.

SLUGGIT v.2s: In the full-geometry simulations,
the simplified scheme gave slugging flow starting
at the inlet due to intrinsically uniform pressure in
stratified units. Though it should be mentioned that
it is not really known what flow regime is physically
appropriate at the inlet of the Girassol field case, it
is an important drawback of the simplified scheme is
that achieving an separated flow solutions in highly
inclined pipe segments becomes nearly impossible.
Only with massive interfacial friction forces can liq-
uid be driven upwards without the assistance of a
stratified/annular pressure gradient. Otherwise, the
simplified scheme only really support slugging flow.
Therefore, the simplified scheme is most appropri-
ate when the physical flow regime consists of rela-
tively short bubbles. If bubble units are single sec-
tion sized, than, apart from neglecting the convective
terms in the momentum equation, the simplified and
non-simplified schemes are equivalent, removing the
benefit of simplification altogether.

Perhaps it is possible to create a hybrid environ-
ment within which the simplified treatment changes
if bubble units grow too long. This would however
cause management challenges in the transition from
‘short’ to ‘long’ bubbles which probably would sab-
otage the intended simplicity.

8.3 Recommendations and suggestions

In order to perform reliable deep-water simulations
the challenges listed in the beginning of Section 8.1
must be addressed.

In particular gas lift and PVT support seems vital.
Alternative border restriction procedures for allow-
ing gas sources to be placed independently of slug
presence have been suggested. Though this would
be interesting to test, enabling gas lift by means of

implementing gas entrainment into slugs is the pre-
ferred approach since gas entrainment in itself also a
suggested improvement. Further, the slug initiation
routine during terrain slugging needs to be investi-
gated with focus on operational stability regime.

Because density wave instabilities, as described
in Section 3.2, seems a plausible cause of the field in-
stability, further investigation into density waves may
prove fruitful. Further development of the well rela-
tion applied to the inlet boundary may also be neces-
sary in this endeavour.

Incorporating gas entrainment in slugs may re-
duce the fluctuations form Taylor bubbles entering
the riser in low-gas systems, such as those seen in
Figure 7.24. It may possibly also improve confor-
mity to the terrain slugging flow map tested in Sec-
tion 5.4.

All slug tracking method discussed here have
been developed for near-horizontal flow. It may be
necessary with further development of the method
intrinsics with particular focus on vertical flow. In
essence, this concerns expanding the extent of sup-
ported flow patterns so that they are appropriately de-
fined in vertical pipes. On the other hand, expanding
the methods excessively may go against the ideal of
simplicity and ‘reducing to essentials’ on which the
methods are founded.

During the flow map testing in Section 5.4, it
was found that both criteria and the procedure by
which slugs were initiated at the riser inlet dip were
determining factors in the method’s ability to repro-
duce experimentally determined operational regimes.
Criteria and initiation procedures are however de-
veloped and changes continuously, affecting stabil-
ity behaviour both for better and worse. In the opin-
ion of the author, finding a general-purpose model
which will be capable of generating appropriate ter-
rain slugging for all possible pipeline configurations,
similar to the bend initiation procedure, would be
difficult and require much special case treatment.
Rather, these areas of the geometry, which are subject
to much activity and influence the system as a whole,
need the appropriate resolution. Presently, the only
way of reducing allowable section length is to do so
across the entire pipeline.

It should, however, be a simple task to allow for
location dependant length parameters. This could
reduce computational time significantly while retain-
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ing an appropriate resolution where it is needed. An
important feature in this respect however, is that the
dynamic time step regulation sets the time step ac-
cording to the smallest Courant number found across
the entire pipeline. Broadly stated, this implies that
a local section refinement would still be accompa-
nied by a proportional increase in computation time
(which is better than the quadratic increase found
otherwise – see Section 4.5). An idea in this con-
cern is an intermediate computation; in a region of
pipe where resolution is sought to be increased, say
a distance reaching form one slug-bubble border to
another, the local section lengths could be halved lo-
cally. Rather than making extra computations across
the entire pipeline, an intermediate computation n+1/2

is computed in this region only. For the mass equa-
tion, this would be unproblematic since mass fluxes
across bubble-slug borders are already computed ex-
plicitly. The implicitness of the pressure-momentum
equation system would however be disturbed. This
latter obstacle holds equally for the trouble of paral-
lelising the code, which would also involve a ‘seam’
across which implicitness is broken.

When considering the simplified v.2s versus the
non-simplified v.2 SLUGGIT schemes, it is the au-
thors opinion that the simplified scheme will be
suited for some special slugging cases only, and that
in these cases the simplification benefit in terms of
computational savings is limited. Instead, there is
at the moment thought to exist a significant poten-
tial in optimising and improving the efficiency of the
SLUGGIT v.2/v.2s code [21] as a measure for reduc-
ing computational costs. Also, though it may be that
the simplified scheme has an advantage in terms of
robustness, the non-simplified scheme has benefited
from more development, debugging and testing.

Lastly, the author is absolutely adamant that the
continued development should take place within one
single unified framework. It is a great misfortune
that the three codes, SLUGGIT v.1 [23], SLUGGIT
v.2/v.2s [21] and LASSI [36], have all developed in-
dependently. Even the time afforded within a master
thesis work did not prove sufficient to become ad-

equately familiarised with each code. Nor, for that
matter, to find and remove enough bugs for the case
simulation to run. It would appear unlikely, or at leas
not recommendable, that the hours required in devel-
oping each of these codes to a robust level ever be af-
forded. Rather, the methodologies of each can be im-
plemented in a unified framework, utilising as much
as possible of the same management code and regu-
lation features. This is also a vital point for the valid-
ity of comparison; are core method differences to be
appreciated with clarity, all other features of manage-
ment should remain the same (grid, time step, inlet,
outlet, exception handling, closure relations, turning
and hydrodynamic slug initiation criteria, etc.. )

8.4 Final comments

It should not be forgotten that the field data to which
a comparison has been attempted is the field response
to a particular event, namely the momentary with-
drawal of gas lift support from a stable to an unstable
state. Possibly the oscillations seen is the beginning
of a highly transient process which eventually would
bring the system, from initial steady, gas-lift sup-
ported conditions, down to a stand-still. In this case,
obtaining similar transients while initiating from a
stand-still condition without gas lift would indeed be
impossible. It may also be that the oscillations from
the field data would continue to grow. In any event,
since the data presents merely an uncompleted tran-
sition from one state to another, only comparison of
the same transition process can be said to be appro-
priate. This is not possible at present.

The goals put forth in this thesis work was to
investigate the EPT slug tracking schemes’ ability
to recreate real-life oilfield slugging dynamics us-
ing the P50 Girassol field pressure data as a bench-
mark for comparison. At the same time, finding the
hitherto undocumented caus(es) of the oilfield’s un-
stable operation was put forth as a supplementary
goal. Accordingly, it has here been attempted to ver-
ify model behaviour using field data, and investigate
operational instability mechanisms using those same
models. This constitutes a type of ‘mutual bench-
marking’ – always a questionable business indeed.
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9 Conclusion

The slug tracking models, in combination with the PLOTIT visualisation tool, have shown to be particularly
well suited in helping to understand pipeline flow dynamics. Not only in the clarity of visualisation does this
become apparent, but also in the way in which the code is open and easily modifiable. This offers an unique
ability to investigate the influence of phenomena and flow mechanisms by making them accessible for direct
phenomenological manipulation.

At present, the SLUGGIT and LASSI codes does not seem mature enough handle deep water riser systems
reliably. In particular, these codes still lack

• Support for gas sources capable of handling passing slugs (gas lift).

• PVT-support accounting for high-pressure compressibility and phase transition.

• Models developed for vertical and dispersed flow regimes.

Prediction sensitivity to mostly intuition-based management procedures is also an issue.

Although not directly reproducible, the present study indicates that the field instability is produced, at
least in part, by some wave phenomena involving long stretches of pipeline, and probably also the well. The
sinusoidal character of pressure measurements suggests density or surge waves, similar to Cycle description B.
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Appendices

A A model of void in risers

In this section, a steady state model designed to compute the void fraction in vertical risers is developed from
base principles. Although somewhat of a digression from the main topic of the EPT dynamic multiphase mod-
els, it is ventured upon as it will provide some basis of model comparison and evaluation. Though experimental
measurements are perhaps preferred for the purpose of validation, the basis for comparison with the large Gi-
rassol field case [47] is not ideal. Also, this theoretical analysis may be used to gain some insight into how gas
lift, or the lack such, affects the result when comparing with field data (Section 5.3.) A theoretical model with
which to compare is, therefore and in of itself, valuable. Additionally, it opens for the inclusion of theoretical
analysis into the present thesis work.

Figure A.1: Riser with gas lift Figure A.2: Bubble-slug unit

Figure A.1 presents a sketch of the layout for this analysis. The gas inflow stem from both the well and the
gas lift, so

Ṁg = Ṁgl
g + Ṁwell

g

while liquid is only supplied from the well.
The following assumptions are used:

Assumptions D. Riser steady state void model

D.1 The liquid phases can be approximated as a single phase (two fluids)

D.2 The production is at steady state, i.e. the mass fluxes of both fluids, are constant in time and space.

D.3 The riser is fully vertical.

D.4 The gas propagates as large Taylor bubbles so that the empirical bubble nose velocity from Section 4.8
can be used to approximate the gas velocity – i.e., ub = vb,n

D.5 The local bubble area fraction αb(z) never reach unity.
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D.6 Bubble film thickness acquire a practically constant value some short distance downstream from the
bubble nose.28

This analysis will be based on the schematic of
Figure A.2. The ratio of bubble and slug lengths
will be important in this respect, and so the follow-
ing local, mean bubble length fraction Γ is defined,
together with the local average bubble cross-section
area fraction αb

Γ
∆
=
`b

`
αb

∆
=

Ab

A
=

(r − λ f )2

r2

Applying the steady state assumption D.2, mass bal-
ances may be applied using to mass rates to provide
two equations. Also, doing a liquid mass balance
across slug and bubble film, one can retrieve expres-
sion (4.21) in Section 4.8. As declared in Assump-
tion D.4, the empirical bubble nose velocity expres-
sion of Section 4.8 is used to express average bubble
velocity:

Ṁg = ρgubAΓαb (A.1a)

Ṁl = ρlusA(1 − Γ) · 1 + ρlu f AΓ · (1 − αb) (A.1b)

ub =
us − (1 − αb)u f

αb
(A.1c)

ub = 1.2us − Uν (A.1d)

As before, b, s and f denote ‘bubble’, ‘slug’, and
(liquid) ‘film’, respectively.

Equations (A.1) produce a system of four equa-
tions and five variables {us, ub, u f , αb, Γ}. As it
turns out, the variables Γ and αb collapse into the
variable of interest – the average gas volume frac-
tion 〈αg〉 = αbΓ. Solving system (A.1) is a tedious
task, the details of which the reader will be spared.
The procedure is to contract (A.1d) and (A.1c) into
(A.1a), and then attack (A.1b), solving for Γ and mul-
tiplying by αb. Gas density is handled by substitution
using the ideal gas law. Using caution, this produces:

〈αg〉 =
Uc1

Uc2 p + 1.2Uc1
(A.2)

where the mean gas volume (void) fraction 〈αg〉 =

1 − 〈αl〉 is defined by

〈αg〉(z) ∆
= lim

t→∞

1
t − t0

∫ t

t0
α(t′, z) dt′ = αbΓ(z)

and Uc1 = ṀgRT/A and Uc2 = Uν + 1.2Ṁl/(Aρl). A to-
tal riser void fraction Φg (neglecting the gas weight)
may then be defines:

Φκ
∆
=

1
H

∫ H

0
ακ dz (A.3)

and, by Fubini’s theorem:

〈Φg〉 = lim
t→∞

1
t − t0

∫ t

t0

1
H

∫ H

0
αg dz dt′

=
1
H

∫ H

0
lim
t→∞

1
t − t0

∫ t

t0
αg dt′ dz

=
1
H

∫ H

0
〈αg〉 dz

(A.4)

A slight digression: Before it was known that
the variables αb and Γ would disappear from (A.2),
it was originally thought that a final relation on the
bubble film thickness λ f would be necessary in or-
der to achieve closure. Before this was known, some
effort was put into finding an appropriate expression
for the film thickness λ f . Searching through the lit-
erature provided some such information. In particu-
lar, Llewellin et al. [27] give a nice summary of this
topic and showed that the dimensionless film thick-
ness λ f /r is a function of the dimensionless inverse
viscosity ρl

√
gd3/µ only. For example, should bubble

film thickness be a interesting characteristic of the
dynamic simulation models, Brown’s (1965) laminar
analyses, attacking Navier-Stokes equations, could
be applied:

λ f =

√
1 + ND − 1

N
, where N =

 16
9Frb

ρ2
l g
µ2


where Frb = ub/

√
2grb is the bubble Froude number

with bubble radius rb = r − λ f . Brown assumed a
constant bubble Froude number Frb = 0.351 making
the film thickness constant throughout the riser.

Expression (A.2) provide and express for the av-
erage phase volume fraction 〈ακ〉 and total void frac-
tion 〈Φg〉 as a function of the local pressure. How-
ever, the local hydrostatic pressure is itself an integral

28Empirically found to be valid [4]
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function of the mean liquid volume fraction 〈αl〉:

p(z) = po + gρl

∫ z

0
ρm dz′

= po + g
∫ z

0

[
〈αg〉ρg +

(
1 − 〈αg〉

)
ρl

]
dz′

(A.5)

Two approaches, one discrete and one analytical ap-
proximation, are presented to tackle this challenge.

A.1 Discrete calculation

In this approach, the riser is divided into small, finite
sections. Equation (A.2) is solved for each section
using the information in the above sections; the pres-
sure integral (A.5) for section j is evaluated as

p j = po + g
j−1∑
ζ=1

ρm,ζ δzζ

= po + g
j−1∑
ζ=1

[(
1 − 〈αg〉ζ

)
ρl + 〈αg〉ζ ρg,ζ

]
δzζ

(A.6)

Note that only the fluid in the cells above the present
cell j is included. It would be more precise to also
include half the liquid weight of the liquid in the
present section. This would however make the ex-
pression implicit and warrant the deed for iteration.
Instead of iteration, a sequential approach may be
take, regaining the accuracy by a finer grid. The pro-
cedure is then simply to loop through j = 1 to N (from
riser outlet, down towards the inlet). At each step j,
p j is computed from (A.6), using the values 〈αg〉ζ ,
ρg,ζ = pζ/RT ; ζ < j stored from the previous compu-
tations. Then, 〈αg〉j(p j−1, p j−2, . . . ) may be computed
from (A.2) and stored as a profile. The total riser void
fraction can the be found by:

〈Φg〉 =
1
H

N∑
j=1

〈αg〉j δz j
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Figure A.3: Numerically computed profiles, Ṁl = 33.69 kg/s, or US
l = 1.04 m/s.

H = 1278 m, d = 0.2032 m, T = 59 ◦C, po = 37 bar

A.2 Analytical approximation

Even though the numerical procedure of Section A.1 is straight forward, a single analytical expression for the
total riser void fraction may be useful. Here, this is acheived by attacking Equation (A.2) with the pressure
from (A.5). Contrary to the numerical procedure, the gas weight will be neglected. Combining these equations,
rearranging slightly and integrating from z = 0 to z = H (outlet to inlet) yields:

Uc2gρl

∫ H

0
〈αg〉

∫ z

0
〈αg〉 dz′ dzUc2gρl

∫ H

0
z〈αg〉 dz − (Uc2 po + 1.2Uc1)

∫ H

0
〈αg〉 dz + Uc1H = 0 (A.7)
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From here, the technique employed is to express (A.7) in terms of integrals of Γ from 0 to H, which is already
defined in (A.3) as the sought-after average total riser void fraction 〈Φg〉. The first term is handles easily as
either integration by parts or substitution of dz by 〈αg〉

−1d
(∫ z

0〈αg〉 dz′
)

yields

∫ H

0
〈αg〉(z)

∫ z

0
〈αg〉(z′) dz′ dz =

1
2

(∫ H

0
〈αg〉(z) dz

)2

=
1
2

(
〈Φg〉H

)2

The second term,
∫ H

0 z〈αg〉 dz
(
= 〈Φg〉H2 −

∫ H
0

∫ z
0 〈αg〉dz′dz

)
, is far more troublesome – the author has not found

any way of solving for it analytically as the running variable z requires information in the void profile itself.
From the results of the numerical approach of Section A.1 (see Figure 5.6) it is observed that the slope of 〈αg〉

is smooth and does not change greatly across the riser. The approximation∫ H

0
z〈αg〉 dz ≈

1
H

∫ H

0
z dz ·

∫ H

0
〈αg〉 dz =

1
2
〈Φg〉H2 (A.8)

is applied, which is an approximation analogue to the key approximation of the handling of the flux terms in
the finite volume method – e.g. Equation (4.2). Because the slope of 〈αg〉 slightly decreases as the outlet is
approach, approximation (A.8) underpredicts the true term value by a small amount.

All terms may now be expressed in 〈Φg〉 and known variables, producing a quadratic equation. Further
rearranging gives the simplest form

〈Φg〉
2 − 2b〈Φg〉 + c = 0 (A.9)

where

b =
1

gρlH
[
po + 1.2Uc1Uc2

]
+

1
2

c =
2

gρlH
Uc1

Uc2

The quadratic expression (A.9) has the well-know solution

〈Φg〉 = b ±
√

b2 − c (A.10)

(± → −) providing the physical solution.

Figures A.4 shows the numerical and analytical void model’s response to changing liquid velocity into the
riser at a constant gas mass flow rate of Ṁg = 1.69 kg/s (152 kSm3/d). This is a gas lift flow rate taken from the
Girassol P50 pipeline field data [43], along with the properties H = 1278 m, d = 0.2032 m, T = 59 ◦C, po = 37 bar.
The liquid well flow rate associated with this field is Ṁl = 33.69 kg/s or uS

l = 1.04 m/s [18, 43, 47]29.
Figures A.4 also include computations from the further simplified models presented in Annex F. These

models were developed leading up to the present one, and were simpler in that the the liquid film was neglected
– i.e. the slug liquid velocity was computed directly from the liquid flux and mean hold-up. As can be seen
from the figures, these models gave fairly similar predictions when the liquid mass rate is high relative to the
gas mass rate. However, when a larger mean fraction of the riser cross section is occupied by gas, the accuracy
decreases, notably – see Figure 5.6. The wish to improve this spatial void fraction profile near the riser outlet
was the motivation for the present model.

A.3 Comment

29Temperature downstream riser choke applied.
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ity, Ṁg = 1.69 kg/s (152 kSm3/d)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Figure A.4: Approximated void fraction in riser

Figure A.5: Bubble expan-
sion schematic of Mayor et al.
Source: [29]

After the completion of this section, a dynamic expansion model by
Mayor et al. [29, 28] was found in the literature. Encouragingly, this
model applies much of the same methodology as employed here. The
model of Mayor et al. differs in that they numerically organize the com-
putation around bubbles which are tracked up the riser, quite similar to
the slug tracking models which compose the main theme of the present
work. Mayor et al. applies a Box Muller algorithm to set the bubble
lengths at the riser inlet from a normal distribution, and the slug length
from a dependant normal distribution. Additionally, iteration is needed
in this method, making it altogether more complicated than the method
of this section.
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B Snapshots

(a) Jumpers moved, see Description C. The snapshots are taken at times (top to bottom)
t ∈ {3 220 s, 4 840 s 5 040 s, 5 460 s, 5 960 s, 6 570 s}

(b) Jumpers unmoved, see Description D. The snapshots are taken at times (top to bottom)
t ∈ {12 290 s, 12 460 s 12 870 s, 13 100 s, 135 700 s, 13 450 s}

Figure B.1: Snapshots of expansion driven instability (see Section 7.1.2 and pressure times series in Figure 7.9).
Circles included to underline void propagation and period of production
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Figure B.2: Riser stability flow map bench-mark test – see Section 5.4. US
g,o = 0.280 m/s, US

l = 0.071 m/s. The
snapshots are taken at times (top to bottom) t ∈ {37.5 s, 46.5 s, 50.0 s, 55.0 s, 61.0 s}. Experimental data from
Taitel et al show this point to be stable.

Figure B.3: Terrain slugging type I (severe slugging) – see Section 7.2. The snapshots are taken at times (top
to bottom) t ∈ {5 180 s, 5 330 s, 5 920 s, 6 050 s, 6 160 s, 7 030 s}. Notice the speed of blow out.
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Figure B.4: κ as in (4.28), LASSI. V-section configuration, as in Figure 5.1. (δt = 0.01, D = 0.012, αl,i = 0.5).
Generated during the mass conservation testing of Section 5.2
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Figure B.5: κ as in (4.28), geometry as in Figure 5.4, LASSI. (δt = 0.01, D = 0.012, Ug,i, αl,i = 0.5). Generated
during the mass conservation testing of Section 5.2
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C Productivity Index inlet

The productivity indec boundary conditions is
formulated as [12]:

US ,S T
l,i = K(Pwell − pi)/A (C.1)

where K is the productivity index – a empirically de-
termined well parameter. It is often given in the units
[Sm3/(bar · day)]. Water cut wc and Gas-Oil-Ratio
GOR are input parameters used to compute the inlet
water and oil superficial velocities, as in OLGA [12,
p. 46]:

US ,S T
oil,i = US ,S T

l,i (1 − wc) (C.2a)

US ,S T
H2O,i = US ,S T

l,i wc (C.2b)

US ,S T
g,i = US ,S T

oil,i GOR (C.2c)

Here, S denote ‘superficial’, i.e. US
κ = ακUκ.

S T indicate that the fluid is at standard conditions.
The same standard conditions are used as those im-
plemented in OLGA, which are representative for
those widely used in the oil industry [12, p. 136]:
PS T = 1 atm = 1.01325 Pa, T S T = 15.56 ◦C = 288.71 K.

As the well relation (C.1) apply to the state vari-
ables as standard conditions, a transformation to the
local state is required at the inlet. In the present
work, the ideal gas law is used for the PVT states for

simplicity (despite the large system pressures). The
phase velocities are found by regarding (C.1) as an
expression for the mass flux and assuming this flux
remain unchanged across the variation of pressures
found at the inlet

∂Ṁk,i

∂ρ
= 0 ⇒ AρgUg = AρS T

g US T
g ⇒

Ug,i

US T
g,i

=
ρS T

g

ρg,i

additionally assuming isothermal flow

Ug,i

US T
g,i

=
PS T

pi
(C.3)

or alternatively found by linearising around the stan-
dard conditions.30

Correction In section 7.2 and 7.3, is was seen that
this implementation introduces large errors in high-
pressure cases because the GOR is apparently defined
as the gas-oil separation that would take place at stan-
dard conditions, not the separation actually found at
the inlet. Consequently, phase transition affects the
mass rate and therefore Ṁk,i , Ṁst

k . PVT-support
is thereby required for accurate implementation of a
productivity index boundary condition.

D Titbits of MATLAB R© code

Some useful segments of code is shown here. The code is intended to be simple and illustrative. Optimisation
has not been a main focus and loops have been used, contrary to the previous work [1].

Listing 1: General input data load� �
1 path = [ ma in_d i r , f o l d e r , ’ \ ’ , f i l e n a m e ] ;
2 i f l o a d _ d a t a ;
3 f i l e _ i d = fopen ( path , ’ r ’ ) ;
4 a s s e r t ( f i l e _ i d ~= −1 , ’ i n p u t d a t a n o t found ’ ) ;
5
6 d a t a = t e x t s c a n ( f i l e _ i d , [ ’%f32 %f32 %f32 %f32 %f32 %f32 %f32 ’ , . . .
7 ’%d %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 ’ , . . .
8 ’%f32 %f32 %f32 %f32 ’ ] , ’ D e l i m i t e r ’ , ’ , ’ ) ;

30linearising around the specific volume produce (C.3) straight away as ∂Ug
∂(1/ρg) =

Ug
ρg

and all higher derivatives are identically zero,

while linearising about ρ would produce Ug

US T
g

=
∑∞
ζ=0

(
ρS T

g −ρg

ρS T
g

)ζ
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9 i f i sempty ( d a t a {1}) % Data b e g i n s a t second l i n e o f i n p u t f i l e
10 d a t a = t e x t s c a n ( f i l e _ i d , [ ’%f32 %f32 %f32 %f32 %f32 %f32 %f32 ’ , . . .
11 ’%d %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f322 ’ , . . .
12 ’%f32 %f3 %f32 %f32 ’ ] , ’ D e l i m i t e r ’ , ’ , ’ , ’ Heade rL ines ’ , 1 ) ;
13 end
14 f c l o s e ( f i l e _ i d ) ;
15 end
� �

Listing 2: Sorting data in single-time cells� �
1 var_names . SLUGGIT = {
2 ’ Time ’ %1
3 ’ z ’ %2
4 ’ Length ’ %3
5 ’ u_b ’ %4
6 ’ i d ’ %5
7 ’ Hold−up ’ %6
8 ’ P r e s s u r e ’ %7
9 ’ P ipe number ’ %8

10 ’ u _ l ’ %9
11 ’ u_g ’ %10
12 } ;
13 l e n _ d a t = l e n g t h ( d a t a { 1 } ) ;
14 i _ l a s t = f i n d ( d a t a { 1 } ( 2 : l e n _ d a t ) , d a t a { 1 } ( 1 : l e n _ d a t −1) >0) ;
15 t i m e s = [ d a t a {1}( i _ l a s t ) ; d a t a {1}( l e n _ d a t ) ] ;
16 l e n _ t i m e = l e n g t h ( t i m e s ) ;
17 prop = c e l l ( l e n _ t i m e , 1 ) ;
18 prop {1} = d a t a { p r o p _ i n d e x } ( 1 : i _ l a s t ( 1 ) ) ;
19 f o r i = 2 : l e n _ t i m e −1
20 prop { i } = d a t a { p r o p _ i n d e x } ( i _ l a s t ( i −1)+1: i _ l a s t ( i ) ) ;
21 end
22 prop { l e n _ t i m e } = d a t a { p r o p _ i n d e x } ( i _ l a s t ( i )+1 : l e n _ d a t ) ;
� �

Listing 3: Creating mass rate - pressure phase portraits� �
1 % t i m e s d e f i n e d i n L i s t i n g 2
2 j t _ s t a r t = f i n d ( t i m e s >= t _ s t a r t , 1 , ’ f i r s t ’ ) ;
3 dotM_out = z e r o s ( l e n _ t i m e −1− j t _ s t a r t , 1 ) ;
4 p_ in = dotM_out ;
5 c o u n t = 0 ;
6 f o r j t = j t _ s t a r t : l e n _ t i m e −1
7 c o u n t = c o u n t +1;
8 % z , u , p and ho ldup g e n e r a t e d from " prop " i n L i s t i n g 2
9 j s t a r t = f i n d ( z { j t }> z _ i n l e t _ p , 1 , ’ f i r s t ’ ) ;

10 j e n d = f i n d ( z { j t }< z _ o u t l e t , 1 , ’ l a s t ’ ) −1;
11 dotM_out ( c o u n t ) = a r e a ∗ r h o l ∗ ho ldup { j t } ( j e n d )∗ u{ j t } ( j e n d ) ;
12 p_ in ( c o u n t ) = p{ j t } ( j s t a r t ) ;
13 end
14 dotM_out_mean = mean ( dotM_out ) ;
15 p_in_mean = mean ( p_ in ) ;
16 Mmark = ( dotM_out − dotM_out_mean ) / dotM_out_mean ;
17 pmark = ( p_ in − p_in_mean ) / p_in_mean ;
� �
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Listing 4: Total liquid riser fraction - pressure phase portrait� �
1 j t _ s t a r t = f i n d ( t i m e s >= t _ s t a r t , 1 , ’ f i r s t ’ ) ;
2 p h i = z e r o s ( l e n _ t i m e −1− j t _ s t a r t , 1 ) ;
3 p_ in = p h i ;
4 c o u n t = 0 ;
5 f o r j t = j t _ s t a r t : l e n _ t i m e
6 c o u n t = c o u n t +1;
7 % z , s e c _ l e n , p and ho ldup g e n e r a t e d from " prop " i n L i s t i n g 2
8 j i n l e t = f i n d ( z { j t }> z _ i n l e t _ p , 1 , ’ f i r s t ’ ) ;
9 j s t a r t = f i n d ( z { j t }>= z _ r i s e r _ i n l e t , 1 , ’ f i r s t ’ ) ;

10 j e n d = f i n d ( z { j t }<= z _ r i s e r _ i n l e t +H, 1 , ’ l a s t ’ ) ;
11
12 %I n t e r p o l a t e s e c t i o n s a t r i s e r i n l e t / o u t l e t
13 d z _ i n = z { j t } ( j s t a r t )− z _ r i s e r _ i n l e t ;
14 d z_ ou t = ( z _ r i s e r _ i n l e t +H)− z { j t } ( j e n d ) ;
15 w e i g h t _ i n = d z _ i n / s e c _ l e n { j t } ( j s t a r t −1 ) ;
16 w e i g h t _ o u t = dz _o u t / s e c _ l e n { j t } ( j e n d ) ;
17
18 p_ in ( c o u n t ) = p{ j t } ( j i n l e t ) ;
19 p h i ( c o u n t ) = ( w e i g h t _ i n ∗ ho ldup { j t } ( j s t a r t −1 ) .∗ s e c _ l e n { j t } ( j s t a r t −1) . . .
20 + w e i g h t _ o u t ∗ ho ldup { j t } ( j e n d ) . ∗ s e c _ l e n { j t } ( j e n d ) . . .
21 + sum ( ho ldup { j t } ( j s t a r t : j end −1 ) .∗ s e c _ l e n { j t } ( j s t a r t : j end − 1 ) ) ) /H;
22 end
23 phi_mean = mean ( p h i ) ;
24 p_in_mean = mean ( p_ in ) ;
25 phimark = ( p h i − phi_mean ) / phi_mean ;
26 pmark = ( p_ in − p_in_mean ) / p_in_mean ;
� �

Listing 5: Integrating liquid fraction in riser through time� �
1 % In t h i s code , t h e l i q u i d f r a c t i o n any e v e r t y t i m e s t e p i s
2 % p r o j e c t e d down t o an average r i s e r l e n g t h H w i t h s e c t i o n
3 % l e n g t h dz (= 1 ) . I n t e r p o l a t i o n i s used as da ta b o r d e r s do
4 % n o t c o i n s i d e w i t h " mean r i s e r " b o r d e r s .
5 dz = 1 ;
6 d t = t i m e s (2) − t i m e s ( 1 ) ; %d t c o n s t i n o u t p u t f i l e
7 x = 0 : dz :H;
8 z _ r i s e r = l e n g t h _ h o r i z o n t a l : dz : l e n g t h _ h o r i z o n t a l +H;
9 h o l d u p _ p r o f i l e _ s u m = z e r o s ( 1 , l e n g t h ( z _ r i s e r ) ) ;

10 i n c l u d e c o u n t = 0 ;
11 n o t i n c l u d e d c o u n t = 0 ;
12
13 f o r j t = round ( t _ s t a r t / d t ) : l t
14 % z and ho ldup g e n e r a t e d from " prop " i n L i s t i n g 2
15 z _ r i s e r = z { j t }− l e n g t h _ h o r i z o n t a l ;
16 j = 1 ;
17 f o r i = f i n d ( z _ r i s e r <= x ( 1 ) , 1 , ’ l a s t ’ ) : l e n g t h ( z _ r i s e r )−1
18 j n e x t = f i n d ( x >= z _ r i s e r ( i +1 ) , 1 , ’ f i r s t ’ ) ;
19 i f i sempty ( j n e x t ) , break ; end
20 h o l d u p _ p r o f i l e _ s u m ( j : j n e x t −2) = h o l d u p _ p r o f i l e _ s u m ( j : j n e x t −2)+ ho ldup ( i ) ;
21 j = j n e x t ;
22 h o l d u p _ p r o f i l e _ s u m ( j −1) = h o l d u p _ p r o f i l e _ s u m ( j −1) + . . .
23 ( ( z _ r i s e r ( i +1)−x ( j −1) )∗ ho ldup ( i )+ ( x ( j )− z _ r i s e r ( i +1) )∗ ho ldup ( i + 1 ) ) / dz ;
24 end
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25 h o l d u p _ p r o f i l e _ s u m ( j : end ) = h o l d u p _ p r o f i l e _ s u m ( j : end ) + ho ldup ( i +1 ) ;
26 i n c l u d e c o u n t = i n c l u d e c o u n t +1;
27 end
28 a l p h a _ p r o f i l e = 1 − h o l d u p _ p r o f i l e _ s u m / i n c l u d e c o u n t ;
� �

Listing 6: IKH/well posedness criteria at time t across pipeline� �
1 % z , Ul , Ug , s e c _ l e n , p and ho ldup g e n e r a t e d from " prop " i n L i s t i n g 2
2 % s e e same l i s t i n g f o r d e f . o f ’ t i m e s ’
3 t _ i n d e x = f i n d ( t i m e s > t , 1 , ’ f i r s t ’ ) ;
4 % remove s l u g s e c t i o n
5 H = ho ldup { t _ i n d e x } ;
6 s t r a t i f i e d = H<1;
7 H _ s t r a t = H( s t r a t i f i e d ) ;
8 z = z { t _ i n d e x } ( s t r a t ) ;
9 L = s e c _ l e n { t _ i n d e x } ( s t r a t ) ;

10 rhog = p{ t _ i n d e x } ( s t r a t ) / ( R∗T ) ;
11 u l = Ul { t _ i n d e x } ( s t r a t ) ;
12 ug = Ug{ t _ i n d e x } ( s t r a t ) ;
13
14 [ p i p e z s , a n g l e s ] = g e t p h i ( ) ; % f u n c t i o n h o l d i n g geomet ry da ta i n a r r a y
15 p h i = z e r o s ( l e n g t h ( H _ s t r a t ) , 1 ) ;
16 f o r k = 1 : l e n g t h ( H _ s t r a t )
17 f o r j = 1 : l e n g t h ( p i p e z s )
18 i f z ( k ) < p i p e z s ( j )
19 p h i ( k ) = a n g l e s ( j ) ;
20 break
21 end
22 end
23 end
24 c o s p h i = cosd ( p h i ) ;
25
26 % i n t e r p h a s e a n g l e t h r o u g h s e r i e s e x p a n s i o n :
27 gamma = pi ∗ H _ s t r a t + ( (3∗ pi / 2 ) ^ ( 1 / 3 ) ) ∗ . . .
28 ( 1−2∗H _ s t r a t + H _ s t r a t . ^ ( 1 /3 ) − ( 1 − H _ s t r a t ) . ^ ( 1 / 3 ) ) ;
29 % or t h r o u g h i n t e r a t i v e p r o c e d u r e :
30 % f o r j = 1: l e n g t h ( H _ s t r a t )
31 % f _ t h e t a = @( gamma ) (2∗ p i ) \ ( gamma − s i n ( gamma ) ) − H _ s t r a t ( j ) ;
32 % t h e t a = f z e r o ( f _ t h e t a , p i / 2 ) ;
33 % end
34
35 dAldh l = 2∗ r ∗ s i n (gamma ) ;
36 u g l s q = ( ug−u l ) . ^ 2 ;
37 % IKH
38 RHS = ( r h o l ∗(1− H _ s t r a t )+ rhog . ∗ H _ s t r a t ) . ∗ . . .
39 ( ( r h o l −rhog ) . / ( r h o l . ∗ rhog ) ) ∗G. ∗ c o s p h i ∗ a r e a . / dAldh l ;
40 % w e l l _ p o s e d
41 %RHS = ( rho l −rhog ) . ∗G . ∗ (H / r h o l + (1−H ) . / rhog ) . ∗ c o s p h i ∗ area . / d A l d h l ;
� �

Listing 7: Numeric riser void fraction model� �
1 f u n c t i o n [ mean_alpha , z ] = a l p h a _ f i l m _ n u m e r i c _ m i x t u r e ( Mdotg , Mdotl )
2
3 g l o b a l H a r e a R T G Po Uv r h o _ l
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4
5 N = 5∗H;
6 dz = H /N;
7 z = −dz :− dz :−H;
8 Gz = G∗dz ;
9 mean_alpha = z e r o s (N , 1 ) ;

10 rho_g = z e r o s (N , 1 ) ;
11
12 Uc1 = Mdotg∗R∗T / a r e a ;
13 Uc2 = Uv+1.2∗ Mdotl / ( a r e a ∗ r h o _ l ) ;
14 f o r j = 1 :N
15 p = Po + Gz ∗ ( sum ( mean_alpha ( 1 : j − 1 ) . ∗ ( rhog ( 1 : j −1) − r h o _ l ) ) + r h o _ l ∗ ( j −1) ) ;
16 rho_g ( j ) = p / ( R∗T ) ;
17 mean_alpha ( j ) = Uc1 / ( Uc2∗p + Uc1 ) ;
18 end
19 end
� �

Listing 8: Analytic riser void fraction model� �
1 f u n c t i o n [ mean_alpha , z ] = a l p h a _ f i l m _ n u m e r i c _ m i x t u r e ( Mdotg , Mdotl )
2
3 g l o b a l H a r e a R T G Po Uv r h o _ l
4
5 N = 5∗H;
6 dz = H /N;
7 z = −dz :− dz :−H;
8 Gz = G∗dz ;
9 mean_alpha = z e r o s (N , 1 ) ;

10 rho_g = z e r o s (N , 1 ) ;
11
12 Uc1 = Mdotg∗R∗T / a r e a ;
13 Uc2 = Uv+1.2∗ Mdotl / ( a r e a ∗ r h o _ l ) ;
14 f o r j = 1 :N
15 p = Po + Gz ∗ ( sum ( mean_alpha ( 1 : j − 1 ) . ∗ ( rhog ( 1 : j −1) − r h o _ l ) ) + r h o _ l ∗ ( j −1) ) ;
16 rho_g ( j ) = p / ( R∗T ) ;
17 mean_alpha ( j ) = Uc1 / ( Uc2∗p + Uc1 ) ;
18 end
19 end
� �
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Annexes

E The Kelvin-Helmholtz stability criteria

Figure E.1 shows a photo of the onset of Kelvin-Helmholtz instability of stratified shear flow. The main phys-
ical mechanism behind the phenomenon is the Bernoulli suction which appears in the gas cross section as the
gas is accelerated past a small perturbation of the smooth liquid surface. If the conditions are such that this
suction is sufficient to amplify the perturbation, the flow conditions are unstable.

Figure E.1: Kelvin-Helmholtz instability of stratified
shear flow. Source: [44].

Barnea and Taitel presented in 1993 a linear stability analysis of the two-fluid model [3, 37]. As all models
discussed in this work rely on the fundamental equations of this model, its stability domain is of interest.

The two-fluid model consists of two pairs of mass and momentum conservation equations, one for each
fluid phase (4.26). A small disturbance in the stratified flow regime is considered. This disturbance is presented
as a small perturbation in the state variables from their equilibrium states. This perturbation can be expressed
as a Fourier sum of modes

χ(t, z) = χ +

∞∑
ζ=0

χ̃ζ exp
{
i
(
ωζ t − kζz

)}
; χ ∈ {ug, ul, αg, αl, hl, p}

where χ is representative of the state variables. kζ and ωζ are respectively the mode wavenumber and its
corresponding pulsation. It is clear from this expression that if there exists a wavenumber k with a corresponding
pulsation ω whose imaginary part is negative, then this imaginary pulsation part will cause an amplification of
this mode over time, resulting in instability. To find whether such a wavenumber exists, all frequencies of
the disturbance may be considered individually. Therefore, the analysis proceeds by inserting a single Fourier
mode and allow its wavenumber k to take on any value form zero to infinity. If the state equilibrium variables
χ are such that there exists a wavenumber k whose corresponding pulsation ω consists of a negative imaginary
part. Accordingly, one proceeds by eliminating the pressure term in the two-fluid model (4.26) by combining
the two momentum equations, inserting the mode

χ(t, z) = χ + χ̃ exp {i (ωt − kz)} ; χ ∈ {ug, ul, αg, αl, hl, p}

for the state variables, and deduct the equilibrium part. After linearising around the resulting volumetric force
FV on the liquid phase (see Equation (4.29),) the following dispersion equation for the pulsation ω is obtained

ω2 − 2[ak − ib]ω + ck2 − dk4 − iek = 0 (E.1)

where a, b, c and e are combinations of the equilibrium state variables using the original notation of Barnea and
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Taitel [3].

ρ∗ =
ρl
αl

+
ρg
αg

c = 1
ρ∗

[
ρlul

2

αl
+

ρgug
2

αg
−

(
ρl − ρg

)
g cos φ

(
dαl
dhl

)−1]
a = 1

ρ∗

(
ρlul
αl

+
ρgug
αg

)
d = σ

ρ∗

(
dαl
dhl

)−1

b = 1
2ρ∗

( ∂FV
∂uS

l

)
αl,uS

g

−

(
∂FV
∂uS

g

)
αg,uS

l

 e = − 1
ρ∗

(
∂FV
∂αl

)
αl,uS

g

adopting the liquid volumetric force FV from (4.29) and σ is the surface tension. Since the neutral stability limit
occurs where the imaginary part of the pulsation ω turns from a positive to a negative value, the critical states
will have ={ω} = 0. In the following then, ω can be considered a purely real value.

Solving (E.1) for its imaginary parts yields a criterion critical wave velocity ω/k

ω

k
=

e
2b

and solving for the real part of (E.1), using this critical wave velocity, yields a stability criterion:

stable ⇔ For ∀ k :
( e
2b
− a

)2
+

(
c − a2

)
− dk2 < 0

The last LHS term is the only term involving surface tension, and is also the only term which is a multiple of the
wavenumber. Consequently, surface tension is only important for large wavenumbers (short waves). Obviously,
since d is always positive, k → 0 is the determining wavenumber, producing the final viscous Kelvin-Helmholtz
(VKH) criterion:

stable ⇔
( e
2b
− a

)2
+

(
c − a2

)
< 0 (E.2)

The inviscid Kelvin-Holmholtz criterion (IKH) is easily found inserting the equilibrium state variables into
(E.2), and neglecting the viscous and surface tension terms. The result is a simple imbalance where the hydro-
static forces must outweigh the Bernoulli suction for stability [3, 13]:

stable ⇔ (ug − ul)2 < (αgρl + αlρg)
ρl − ρg

ρlρg
g cos φ

(
dαl

dhl

)−1

(E.3)

In the viscous Kelvin-Helmholtz criterion (VKH), the RHS of (E.3) is multiplied with a viscosity-dependant
factor less than unity, which constitutes a smaller model stability domain. Rewriting slightly reveals the simi-
larity to the well-posedness criterion (4.30):

stable ⇔ (ug − ul)2 < (ρl − ρg)g
[
αg

ρl
+
αl

ρg

] (
dαl

dhl

)−1

cos φ

F Simplified models of void in riser

Preceding the riser void model of Section A, a
model was made in which the liquid film around Tay-
lor bubbles was neglected altogether. It was found
that this approximation was good for cases in which
the gas flow rate was low relative to the liquid flow

rate (see e.g. Figure 5.11), but gave poor predictions
otherwise. Since it was already documented, and
because its character gives some insight to the liquid
film influence, it has not been removed completely
from this text.
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The Assumptions D from Appendix A are re-
tained while including an assumption on the bubble
liquid film:

Assumptions E. Simplified riser steady state void
model

E.1 Assumptions D still holds.

E.2 The local slug liquid velocity can be approxi-
mated by the local average liquid velocity (i.e.
the influence of the velocity difference of the
bubble liquid film is neglected)

Assumption D.1 gives:

Ṁκ = A(ρu〈α〉)κ = const (F.1)

and Assumption D.4 allows for ug = vb,n where
vb,n is the bubble nose velocity from Section 4.8. To
compute it, the Bendiksen model from Section 4.8
is used, assuming no backflow and a 90◦ inclination,
along with (F.1) for the liquid phase to approximate
us,m (Assumption E.2)

ug = 1.2
Ṁl

Aρl(1 − 〈αg〉)
− Uν (F.2)

where Uν = 0.35
√

gd was the empirically determined
bubble nose velocity in vertical pipes in still liquid.

As before, both a numerical and an analytical ap-
proximation is found.

F.1 Numerical calculation

As before, the riser is discretised j ∈ {0,N} from out-
let to inlet as in scetch A.1. Equation (F.1) gives,
when inserting the ideal gas law, (F.2) for the gas ve-
locity and (F.1) for the liquid velocity:

Ṁg = A〈αg〉j

( p j

RT

) (
1.2

Ṁl

(1 − 〈αg〉j)ρlA
+ Uν

)
After some rearranging, this yields an expression for
〈αg〉

〈αg〉j =
a j ±

√
a2

j − 4b j

2
(F.3)

where

a(p j) = 1 +
1.2 · Ml

ρlAUν
+

Ṁg

p jAUν

b(p j) =
Ṁg

p jAUν

and (± ⇒ −) is the only physical solution.31 Pres-
sure p j and total average riser void fraction 〈Φg〉 can
then be obtained the same way as in Appendix A.1.
Void fraction profiles of this procedure can be found
in Figures A.4, 5.11 and 5.6.

As a final note, the special case of Ṁl → 0 re-
quires some special attention. Figure A.4a shows
that the numerical solution to the void fraction ap-
proaches unity as Ṁl → 0. The reason is that the the
liquid velocity is intrinsically a part of this model so
that ul and therefore ug increases proportionally. For
cases where Ṁl = 0 and Ṁg > 0.5292, other states
being the same, will give a gas volume at the out-
let larger than can be accompanied in the pipe sec-
tion at velocity ug = Uν (i.e. b > 1), for which the
model is not defined (violating Assumption D.5.)The
elementary solution 〈αg〉 = 1 ∀ z is then found. Fig-
ure F.1 show the development of the gas volume frac-
tion 〈αg(z)〉 with no liquid flow as the gas mass flux
increases towards where it is ill-defined. The void
fractions are respectively 0.085, 0.184, 0.303, 0.461,
0.750, 1.000 for increasing gas flux, where the last is
not a valid solution.
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Figure F.1: Gas volume fraction 〈αg〉 profiles with no
liquid flow

31In the case were Ṁl is exactly zero and Ṁg is larger than about 0.5 kg/s, the root becomes
√

(1 − b)2 with b > 1 and so (± ⇒ +) is
the hydrostatic solution, but gives an ill-defined αg > 1
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F.2 Analytical approximation

Simplified expressions may also be developed using
only inlet and outlet properties. Using the superficial
gas velocities uS

b = ub〈αg〉 and (F.1) yields:

∂Ṁg

∂z
= 0 ⇔

1
uS

b

∂uS
b

∂z
=

1
ρg

∂ρg

∂z
=

1
RTρg

∂p
∂z

(F.4)

To compute the bubble nose velocities ub = vb,n,
the Bendiksen model from Section 4.8 is used, as-
suming no backflow and a 90◦ inclination, along with
(F.1) for the liquid phase to approximate us,m (As-
sumption E.2)

ub = 1.2
Ṁl

Aρl(1 − αg)
− Uν (F.5)

where Uν = 0.35
√

gd was the empirically determined
bubble nose velocity in vertical pipes in still liquid.

To simplify matters, z is defined positive up-
stream, along the gravitational force (see Fig-
ure A.1). Accordingly, the pressure gradient be-
comes:

∂p
∂z

= gρl(1 − 〈αg〉) (F.6)

Using (F.1) for ρg and (F.6) for ∂z p, (F.4) can be writ-
ten

1
vS

∂uS
b

∂z
= −

(Aub)αg(1 − 〈αg〉)Gρl

RT Ṁg

which can be rearranged and integrated to give the
lift gas volume in the riser

Vg = 〈Φg〉AH =

H∫
0

〈αg〉A dz = −
RT Ṁg

gρl

H∫
0

∂uS
b

∂z dz

vS ub(1 − 〈αg〉)
=

RT Ṁg

gρl

vS (H)∫
uS

b (0)

duS
b(

vS )2
(
1 − 1

〈αg〉

) (F.7)

The final integral in (F.7) is not trivial to solve analytically. To simplify matters, the gas fraction αg is substituted
with a frozen mean approximation value

〈αg(z)〉 ≈ 〈αg〉 =
1
2

[
〈αg(H)〉 + 〈αg(0)〉

]
(F.8)

which gives

〈Φg〉AH ≈
RT Ṁg

gρl

〈αg〉

1 − 〈αg〉

uS
b (H)∫

uS
b (0)

duS
b(

vS )2 =
RT Ṁg

gρl

αg

1 − αg

 1
uS

b (H)
−

1
uS

b (0)

 (F.9)

This is not a valid assumption when the gas vol-
ume fraction approaches unity! Further, (F.1) gives
an implicit expressions for αg(0) and αg(H) with re-
spect to the outlet pressure po when substituting with
the ideal gas law:

〈αg(0)〉 =
ṀgRT
Apo

1
ub(0)

(F.10a)

〈αg(H)〉 =
ṀgRT

A
1

p(H)
1

ub(0)
(F.10b)

The riser gas volume fraction Vg from (F.9) is
also an implicit expression in terms of the riser inlet
pressure p(H), which, for simplicity, is approximated
by neglecting the gas mas

p(H) ≈ po +

∫ H

0
ρgg(1 − 〈αg〉) dz

= po + ρlgH
(
1 − 〈Φg〉

) (F.11)

An iterative solving procedure can then be used in
which (F.5) is solved for both phases. The riser
inlet pressure p(H) is found using (F.11), which is
in turn used in finding the gas fractions 〈αg〉 from
(F.10). From here, the mean fraction 〈αg〉 can be
computed from (F.8), and the riser gas volume
(from the gas lift) Vg from (F.9). About ten itera-
tions seems to be sufficient to reach an accuracy for
|∆〈Φg〉

i/〈Φg〉
i| < 10−6

For inlet liquid mass flow rates less than 10 kg/s

(Ṁg = 0.658 kg/s), or gas mas flow rate grater than
1.8 kg/s (Ṁl = 33.69 kg/s), the iteration procedure with,
more or less, arbitrary initial values begin to diverge.
This probably has to do with the fact that the gas
volume fraction modelled by ṀgRT/(Apub) becomes
larger than one at the outlet as the liquid velocity
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approaches zero. Also, the mean gas volume fraction
〈αg〉 simplification may influence the result.

As an ending note, for steady liquid, ub = Uν =

0.35
√

gd and ∂zub = 0 giving a system on the form

〈Φg〉 =
ṀgRT

AHUνgρl
ln
〈αg(0)〉 〈αl(H)〉
〈αg(H)〉 〈αl(0)〉

(F.12)

which need no simplification as in (F.9). The log-
arithm arise as keeping v constant produce a void
integral on the form

∫ d〈αg〉

〈αg〉(1−〈αg〉)
which can easily be

solved by substituting dαg with d
(
1/〈αg〉 − 1

)
. . .
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