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Abstract

An investigation of the turbulent fluctuating kinetic energy dissipation in low
Reynolds number channel flow is made, both analytically and numerically with
means of Direct Numerical Simulation (DNS). The unsteady Navier-Stokes equa-
tions are solved at a Reynolds number of 360, based on the shear velocity and
channel height, for four grid resolutions 483, 883, 1283 and 1923. The results are
compared with data from Kim et al. (1987) [9], and good agreement is found for
the 1923 grid resolution.

The viscous term in the kinetic energy equation is derived and described,
from there the “isotropic” dissipation equation is shown to be the homogeneous
dissipation equation which is compared with the thermodynamically correct dis-
sipation. The results are in agreement with the findings of Bradshaw and Perot
(1993) [2], with a difference of maximum ≈2.5% from the correct dissipation.

The isotropic dissipation, often used as approximation in experiments, is also
calculated and compared with the homogeneous dissipation. The results are un-
surprisingly poor, and are only in agreement about the centerline. A comparison
with an equation from the k-ε-model is also made, most as a curiosity, and also
shows poor agreement.

The Kolmogorov length scale is calculated from the dissipation, and it shows
clear grid dependency even though the grid is smaller than the Kolmogorov length
scale in the z-direction with max(∆z+/η+) = 0.8. The dissipation of the Reynolds
stress components are used to create Kolmogorov length scales in x, y and z-
direction. They are also grid dependent, even though max(∆z+/η+33) ≈ 0.7.

A length scale tensor analogous to the Kolmogorov length scale is proposed. It
is based on the connection between the Reynolds stress equation and the turbulent
fluctuating kinetic energy equation. It relaxes the grid restrictions compared to
the Kolmogorov length scale, but investigation of its validity requires simulations
with a super computer and is therefore not performed.
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Sammendrag

Det er gjennomført en undersøkelse av den turbulente fluktuerende kinetiske en-
ergidissipasjonen, b̊ade analytisk og numerisk med Direkte Numerisk Simulering
(DNS). De tidsavhengige “Navier-Stokes”-ligningene er løst ved Reynolds tall
lik 360, basert p̊a skjærhastighet og kanalhøyde, for gridoppløsning p̊a 483, 883,
1283 og 1923. Resultatene er sammenlignet med data fra Kim et al. [9], og god
overensstemmelse er funnet for 1923 oppløsningen.

Det viskøse leddet i “kinetisk energi”-ligningen er utledet og forklart, og der-
fra er ligningen for “isotropisk” dissipasjon vist å være lik den homogene dis-
sipasjonen, som sammenlignes med den termodynamisk korrekte dissipasjonen.
Resultatene er i overensstemmelse med funnene til Bradshaw og Perot (1993) [2],
med en differanse p̊a maksimum ≈2.5% av den korrekte dissipasjonen.

Den isotropiske disspasjonen, som ofte brukes ved eksperimenter, er ogs̊a
beregnet og sammelignet med den homogene dissipasjonen. Resultatene er, ikke
overraskende, d̊arlige og stemmer kun overens rundt senterlinjen. En sammelign-
ing med k-ε-modellen er ogs̊a gjort, mest som en kuriositet, og viser d̊arlige
resultater.

Kolmogorovs lengdeskala er beregnet fra dissipasjonen og viser klar grid-
avhengighet, til tross for at gridet er mindre enn Kolmogorovs lengdeskala i
z-retningen, med maks(∆z+/η+33) ≈ 0.8. Dissipasjonen av Reynoldsspenningens
komponenter er brukt til å lage en Kolmogorov lengdeskala i x-, y- og z-retning.
De er ogs̊a gridavhengig til tross for at maks(∆z+/η+33) ≈ 0.7.

En tensor for lengdeskalaen er foresl̊att. Den er basert p̊a forbindelsen mel-
lom Reynolsspenningen og den turbulente fluktuerende energiligningen. Den
foresl̊atte tensoren stiller mindre krav til gridoppløsning, men dens gyldighet er
ikke undersøkt ettersom superdatamaskinen ikke var tilgjengelig.
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i subscript: axis direction, velocity component
+ superscript: wall scaled variable
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t time (s)
~u velocity vector (m/s)
u velocity in x-direction (m/s)
v velocity in y-direction (m/s)
w velocity in z-direction (m/s)

φ̃ instantaneous variable
Φ upper case, time averaged variable
φ lower case, fluctuating variable

φ time averaging
p pressure (N/m2)
µ molecular viscosity (kg/(m·s))
µt “molecular” turbulent/eddy viscosity (kg/(m·s))
ν kinematic viscosity (m2/s)
νt turbulent/eddy viscosity (m2/s)
~f body force vector (N m3/kg)
k turbulence kinetic energy (m2/s2)
ε dissipation rate (m2/s3)
L characteristic length (m)
κ von Kármán constant
η Kolmogorov length scale (m)
δij Kronecker delta function
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Chapter 1

Theory

1.1 Equations of Fluid Dynamics

All governing equations used in fluid dynamics originates from the pillars of clas-
sical mechanics, the conservations laws. The conservation laws can be divided
into conservation of mass, conservation of linear momentum and conservation
of energy, where the two latter are of course Newton’s Second Law of Motion
and the First Law of Thermodynamics. These conservation laws are applied to
an infinitesimally small control volume. This control volume is small enough to
encapsulate what we call a fluid element, but not so small that intermolecular
actions are of importance, i.e the Knudsen number has to be small.1 From these
conservation laws and the control volume we get the continuity equation, mo-
mentum equations and the energy equation. See chapter 2 in [1] and [22] for
details.

∂ρ

∂t
+
∂ρui
∂xi

= 0 (1.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τji
∂xj

+ ρfi (1.2)

∂ρe

∂t
+
∂ρeui
∂xi

= k
∂2T

∂x2i
− ∂pui

∂xi
+
∂τjiui
∂xi

+ ρfiui + ρq̇ (1.3)

These are the general equations of fluid dynamics, but in this thesis we deal with
an incompressible Newtonian fluid. This implies zero volumetric deformation and
that the viscous stresses are proportional to the rate of deformation.

∂ui
∂xi

= 0 (1.4)

1Kn = λ
L The ratio of the molecular mean free path and a representative physical length

scale

1
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τji = τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.5)

Hence the final equations becomes

∂ui
∂xi

= 0 (1.6)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ 2µ

∂

∂xj
sij (1.7)

where sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain-rate tensor. Since we do not solve the

energy/temperature equation we omit the details of that equation here, as well
as gravity or body forces in the momentum equation.

1.2 Equations of Turbulence

1.2.1 Fluctuating turbulent kinetic energy

To investigate the dissipation of turbulent energy we need an equation to rep-
resent the turbulent kinetic energy. This is usually achieved by the so-called
Reynolds decomposition, where the instantaneous flow is described by a time-
averaged variable and a fluctuating variable.

φ̃ = Φ + φ (1.8)

where Φ by definition is:

Φ ≡ 1

T

∫ t0+T

t0

φ̃ dt (1.9)

We can now derive from the instantaneous momentum equation 1.11 a decom-
posed equation.

ρ

(
∂

∂t
(Ui+ui)+(Uj+uj)

∂

∂xj
(Ui+ui)

)
= − ∂

∂xi
(P+p)+2µ

∂

∂xj
(Sij+sij) (1.10)

We expand the equation:

∂Ui
∂t

+
∂ui
∂t

+Uj
∂Ui
∂xj

+Uj
∂ui
∂xj

+uj
∂Ui
∂xj

+uj
∂ui
∂xj

= −1

ρ

∂

∂xi
(P+p)+2ν

∂

∂xj
(Sij+sij)

(1.11)
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Multiplying the whole equation by ui and time average will result in a Reynolds
Averaged equation:

ui
∂Ui
∂t

+ ui
∂ui
∂t

+ uiUj
∂Ui
∂xj

+ uiUj
∂ui
∂xj

+ uiuj
∂Ui
∂xj

+ uiuj
∂ui
∂xj

= −ui
ρ

∂

∂xi
(P + p) + 2νui

∂

∂xj
(Sij + sij) (1.12)

Utilizing Ū = U , ū = 0, Uu = Ū ū = 0 and uu 6= 0 we can simplify equation 1.12.

ui
∂Ui
∂t

= ūi
∂Ūi
∂t

= 0 · ∂Ui
∂t

= 0

ui
∂ui
∂t

=
∂ 1

2
uiui

∂t
=
∂k

∂t
, where k =

1

2
uiui

uiUj
∂Ui
∂xj

= 0

uiUj
∂ui
∂xj

= Uj
∂k

∂xj

uiuj
∂Ui
∂xj

= uiuj
1

2

(∂Ui
∂xj

+
∂Uj
∂xi

)
= uiujSij

uiuj
∂ui
∂xj

=
∂

∂xj

(1

2
uiuiuj

)

−ui
ρ

∂

∂xi

(
P + p

)
= − ∂

∂xi
(uip)

2νui
∂

∂xj

(
Sij + sij

)
= 2ν

∂

∂xj
(ujsij)− 2νsijsij (1.13)

Inserting these results into equation 1.12 gives the kinetic energy equation for
turbulence fluctuations.

∂k

∂t
+Uj

∂k

∂xj
= − ∂

∂xj

[
1

ρ
ujp+

1

2
uiuiuj − 2νuisij

]
− uiujSij − 2νsijsij (1.14)

1.2.2 Viscous terms and dissipation

This is however an inconvenient form of the equation for a study of the viscous
term, as it is split up in two terms. We insert instead the term almost as it
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appears on the left side in equation 1.13, except for a simple change:

2νui
∂

∂xj

(
Sij + sij

)
= 2νui

∂

∂xj
sij = νui

∂2ui
∂x2j

(1.15)

∂k

∂t
+ Uj

∂k

∂xj
= − ∂

∂xj

[
1

ρ
ujp+

1

2
uiuiuj

]
− uiujSij + νui

∂2ui
∂x2j

(1.16)

Since equation 1.16 is a transport equation the viscous term consists of two
different effects, a sink/source effect and a transport effect. [4] It behaves as a
sink as it describes the rate of dissipation of turbulent energy to heat as well as
it describes the rate of transport of turbulent energy by viscous forces, hence:

νui
∂2ui
∂x2j

= T − φ (1.17)

Where φ is the fluctuations of the decomposed and time averaged general dissi-
pation function:

ε = Φ + φ = ν
∂Ui
∂xj

(
∂Ui
∂xj

+
∂Uj
∂xi

)
+ ν

∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.18)

We insert φ back into 1.17

νui
∂2ui
∂x2j

= T − ν ∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.19)

And take a closer look at how we can rearrange the left hand side:

ν
∂2 1

2
u2i

∂x2j
= ν

∂

∂xj

(
ui
∂ui
∂xj

)
= ν

∂ui
∂xj

∂ui
∂xj

+ νui
∂2ui
∂x2j

(1.20)

νui
∂2ui
∂x2j

= ν
∂2 1

2
u2i

∂x2j︸ ︷︷ ︸
Incomplete transport

− ν
∂ui
∂xj

∂ui
∂xj︸ ︷︷ ︸

Homogeneous dissipation

(1.21)

Now we have two different equations for the viscous term, equations 1.19 and
1.21, and can therefore solve for T.

ν
∂2 1

2
u2i

∂x2j
− ν ∂ui

∂xj

∂ui
∂xj

= T − ν ∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.22)

T = ν
∂2 1

2
u2i

∂x2j
+ ν

∂2uiuj
∂xi∂xj

(1.23)
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Finally we end up with the following expression for the viscous term:

νui
∂2ui
∂x2j

= ν

(
∂2k

∂x2j
+
∂2uiuj
∂xi∂xj

)
︸ ︷︷ ︸

Full transport

−ν ∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
︸ ︷︷ ︸

Correct dissipation

(1.24)

This equation describes the correct physical behavior of the viscous term in the
equation for fluctuating turbulent kinetic energy, with the point being that the
commonly used equation 1.21 is incorrect when discussing inhomogeneous dissi-
pation. [4] The dissipation in equation 1.21 is often called the “isotropic dissi-
pation”, which also is inaccurate, as the only condition needed to achieve this
mathematical form from the correct dissipation term is homogeneity. [2] Isotropic
turbulence implies that the statistical correlations are independent of direction,
e.g. the velocity fluctuations are equal along the x-, y- and z-axis independent
of the coordinate system’s position and angle. Homogeneous turbulence implies
that the spatial derivatives of all mean turbulence quantities are zero, i.e. the
quantities are independent of spatial position. Too see that the condition of
homogeneity suffices we can look at the kinetic energy equation again with the
condition applied. Equation 1.14 reduces to:

∂k

∂t
= −uiujSij − 2νsijsij (1.25)

and equation 1.16

∂k

∂t
= −uiujSij + νui

∂2ui
∂x2j

(1.26)

But with homogeneous turbulence the last term in equation 1.26 reduces to:

νui
∂2ui
∂x2j

= −ν ∂ui
∂xj

∂ui
∂xj

(1.27)

which can be seen from equation 1.21. And we see that for homogeneous turbu-
lence we get the simplification

ε = 2νsijsij = ν
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
= ν

∂ui
∂xj

∂ui
∂xj

(1.28)

This simplification is often utilized in turbulence models, as its transport equation
is much less complicated than for the full term. This homogeneous dissipation
term will also be subject to investigation later in the thesis, where a comparison
with the thermodynamically correct dissipation will be made.
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1.2.3 Reynolds Stresses

The derivation of the Reynolds stresses is long, tedious and very similar to the
derivation of equation 1.14 and therefore omitted, but see [5] for details. The
steady transport equations for the Reynolds stresses are

∂

∂xk
(Ūkuiuj) = −uiuk

∂Ūi
∂xk
− uiuk

∂Ūj
∂xk

− ∂

∂xk

(
uiujuk +

1

ρ
δjkuip+

1

ρ
δikujp− ν

∂uiuj
∂xk

)

+
1

ρ
p

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2ν

∂ui
∂xk

∂uj
∂xk︸ ︷︷ ︸

Dissipation

(1.29)

Solving these equations yields the symmetric Reynolds stress tensor, τij = uiuj.
By taking the trace of this tensor and dividing by two, we get the equation for
the fluctuating kinetic energy, i.e k = 1

2
uiujδij, where δij is the Kronecker delta.

We also observe that the dissipation term is not equal the correct dissipation,
consider again the trace of the Reynolds stress tensor, the dissipation term will
then be

2ν
∂ui
∂xk

∂uj
∂xk

δij = 2ν
∂ui
∂xk

∂ui
∂xk

(1.30)

The trace of the dissipation term in the Reynolds stress tensor is twice the ho-
mogeneous dissipation, and hence

ε = 0.5(ε11 + ε22 + ε33) (1.31)

So the norm of calculating the dissipation in DNS from the Reynolds stresses is
inaccurate, but this inaccuracy will be quantified later.

1.3 Transfer of Kinetic Energy

Turbulence is an energy demanding property of the flow due to several reasons,
e.g. an increase in (wall) shear stress and deformation work. The turbulent
kinetic energy distribution can be divided into production, diffusion and dissi-
pation, i.e. energy absorbed, redistributed and energy lost through heat due to
viscous forces. The kinetic energy is produced in and transferred from the mean
flow to the fluctuating flow and lost by a heat increase through what is called the
energy cascade. This energy transfer is described by the interaction of motion of
different scales, and these motions are usually called eddies. An eddy is a loose
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term collecting identifiable turbulent patterns such as velocity and pressure into
one term. We can observe the kinetic energy transfer by identifying terms in the
equations of mean and fluctuating kinetic energy.

∂k

∂t
+ Uj

∂k

∂xj
= − ∂

∂xj

[
1

ρ
ujp+

1

2
uiuiuj − 2νuisij

]
− uiujSij︸ ︷︷ ︸

source

−2νsijsij (1.32)

∂K

∂t
+Uj

∂K

∂xj
= − ∂

∂xj

[
1

ρ
Ujp+

1

2
Uiuiuj−2νUiSij

]
+uiujSij︸ ︷︷ ︸

sink

−2νSijSij (1.33)

Here we notice that the same term appear in both equations, only with opposite
sign. This in addition with the fact that uiujSij is almost always negative, this
relation shows that energy is transfered from the mean flow to the fluctuations.
Why this term is mostly negative can be explained by using kinetic theory of
gases. Figure 1.1 shows the transfer of energy between the different equations,

Figure 1.1: The transfer of energy between different scales and components of the
flow

i.e. the mean flow, the fluctuating flow and the energy equation. The energy
which goes into the energy equation, i.e. the dissipation, represents an irreversible
loss through heat. To further increase our understanding of how a turbulent flow
behaves, we can look at the concept of turbulent scales introduced by Kolmogorov
in 1941 [10], which builds on the ideas of Richardson. [17]

1.3.1 Turbulence Scales and the Energy Cascade

The basic idea of Richardson was that the smaller turbulent structures feed of the
energy from the larger energy containing turbulent structures, and he probably
explains it best with his famous poem:



8 CHAPTER 1. THEORY

Big whirls have little whirls,
Which feed on their velocity,
And little whirls have lesser whirls,
And so on to viscosity.
- L.F Richardson

Figure 1.2 illustrates the energy cascade, a breakup of unstable large eddies
or whirls which continues until the forces of viscosity stabilizes the eddies and
energy leave the flow through molecular viscosity causing an entropy increase.
Kolmogorov was among the first to quantify this energy transfer down the en-
ergy cascade with the assumption of homogeneous, isotropic turbulence and high
Reynolds number.

Figure 1.2: Illustration of the breakdown of scales

Integral Scales

The integral scales of length, time and velocity are denoted by l, t = l/u and u.
These are the characteristics of the flow determined by the imposed geometry. For
example in a pipe the length scale of the largest eddy would equal the diameter.
The integral scales can thus be seen as the boundary conditions of the flow, and
they are specific to the flow situation in question. The Reynolds number with
the integral scales is Re = UL

ν
.

Kolmogorov Scales

The Kolmogorov micro scales are the scales at which the smallest turbulent mo-
tion exist before they are dissipated by viscous effects. Observing that these
small-scale motions have very small time scales, it can be assumed that these
motions are statistically independent of the large-scale turbulence which has a
long turn-over time. From here Kolmogorov stated that the small scales should
only be dependent on the energy supplied from the large scales and the viscosity,
but the supplied energy must equal the dissipated energy and therefore the small
scales are a function of dissipation and viscosity. Utilizing this fact together with
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dimensional analysis these expressions can be inferred for the scales of length, η,
time, τ , and velocity, υ:

η =

(
ν3

ε

)1/4

τ =

(
ν

ε

)1/2

υ = (νε)1/4 (1.34)

If we insert these variables into the expression for the Reynolds number we get:

Re =
1

ν
(νε)1/4

(
ν3

ε

)1/4

=
1

ν

(
νεν3

ε

)1/4

= 1 (1.35)

This Reynolds number shows that the viscous effects are always important at
these scales. It is also interesting to see the ratio of the small-scale to the large-
scale, but in order to do that we need another way of describing η, i.e. an
expression for the dissipation ε is needed. Following the arguments of Tennekes
and Lumley [21] we start with the assumption that the rate of the energy supplied2

to small eddies is proportional to the reciprocal of the time scale of the integral
scale. The integral time scale is l/u, and the kinetic energy per unit mass in the
integral scale is u2. Thus will the rate of energy supply from the large scale be
proportional to u3/l and:

ε ∼ U3

L
(1.36)

Now we are equipped to compare the integral and Kolmogorov scales:

η

l
= Re−3/4

τ

t
Re−1/2

υ

u
= Re−1/4 (1.37)

We see that the difference between the scales increases with the Reynolds number,
and could appear to reach the limit zero. But it is important to remember that
turbulence is a continuum phenomenon as long as we avoid simultaneously a high
Mach number and low Reynolds number, a situation unlikely to occur on earth.

1.4 Measuring Dissipation in Experiments

To measure dissipation by experiments is one of the most difficult tasks in fluid
dynamics today. The fidelity demanded by the experiments to yield accurate
values of the velocity fluctuations is the most demanding part, mainly because
of the three-dimensional behavior of turbulence as well as the small scales at
which dissipation occurs. Today there are three main methods to measure veloc-
ity of a flow; hot-wire anemometer, supersonic anemometer and particle image
velocimetry (PIV).

2Rate of energy is energy per time unit
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1.4.1 Hot-Wire Anemometry

This is an intrusive point-measurement method which utilizes knowledge about
forced convection3 and its relation to the surrounding fluid velocity. A wire is
placed between two prongs and is subject to either a constant current or constant
temperature. If the current is kept constant, then a change in flow velocity will
cause variations in resistance which again is measured by monitoring voltage
variations across the wire. If the temperature is kept constant then the change
in current would be the variable to describe the flow velocity.

Flow

Wire

Prongs

Figure 1.3: A probe used
for hot-wire anemometry

The advantages of hot-wire anemometry [3]:

• Low noise levels

• Quick, i.e. very good frequency response

• Allows temperature measurements

• Can be used for two phase flows

The disadvantages of hot-wire anemometry:

• Intrusive, i.e. it locally disturbs the flow field

• Insensitive to reversal of flow direction, e.g. for
turbulent flows

• Wire extremely sensitive to deposition of impu-
rities

• Weak structural strength of probe

• Point measurement, very demanding to map a
complete flow field

The probe can also be equipped with two or three wires, which would give in-
formation about direction of velocity as well. In the case of turbulent flow the
fluctuating voltage is used to find the fluctuating velocity in the Reynolds de-
composition. The wire length is the parameter that decide which scale you are
measuring.

1.4.2 Ultrasonic Velocimeter

Ultrasonic anemometers are similar to the hot-wire anemometer, they also utilize
the fact that change in fluid velocity change how information travels between two
measuring points, e.g. the wire end points. Figure 1.4 shows the setup of the

3Conduction and radiation usually neglected
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ultrasonic velocimeter. An ultrasonic sound pulse is sent from point 1 to point 2
and another pulse is sent back again to point 1 from point 2. The time those two
pulses used to travel between the points are measured and the difference gives
information about the velocity in the 1-2 direction. The same process repeats
itself in the 3-4 direction, a pulse is sent out from point 3 to point 4 and and pulse
is sent back from point 4 to point 3. This time difference then gives information
about the velocity in the 3-4 direction.

1 2

3

4

Flow

Figure 1.4

In the case of figure 1.4 the pulse will travel faster from
point 1 to point 2, than it will the opposite direction.
It will also travel faster from point 3 to point 4, than it
will from point 4 to point 3. Three-dimensional probes
can also be applied. Some of the advantages of ultra-
sonic velocimetry are:

• Quick, i.e. very good frequency response

• Allows temperature measurements [11]

Some of the disadvantages are:

• Intrusive, i.e. it locally disturbs the flow field

• Point measurement, very demanding to map a
complete flow field

• Low spatial resolution

1.4.3 Particle Image Velocimetry

PIV exploits the digitalization of cameras to map the velocity in planes and even
volumes. Lasers are used to create an illuminated plane in a section of the flow,
and the flow is filled with spherical particles which reflect the laser light. A high
speed camera is used to take pictures of the illuminated particles moving in the
plane allowing calculation of velocity of the particle displacement between two
succeeding pictures. This calculation gives an instantaneous vector plot of the
flow field.

Advantages of PIV:

• Non-intrusive, i.e. it does not affect the flow field

• Maps large regions of the flow

Disadvantages of PIV:

• High speed flows demands very expensive high speed cameras
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(a) Black and white photo of particles in a flow (b) Vector plot calculated from two succeeding
pictures

Figure 1.5: Illustrations of the PIV method

• Lasers are also very expensive

• Can not measure through non-transparent walls

• Low spatial resolution

1.4.4 Approximating Dissipation

As the three subsections above show it is very hard to measure the dissipation in
flows because of the limited amount of data. How should the turbulent energy
dissipation be approximated if velocity information is only available in certain
points in space? Taylor [19] investigated in 1935 the simplifications arising in the
general dissipation equation by assuming isotropic turbulence.

ν
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
= ν

(
2
(∂u
∂x

)2
+ 2
(∂v
∂y

)2
+ 2
(∂w
∂z

)2
+
(∂v
∂x

+
∂u

∂y

)2

+
(∂w
∂y

+
∂v

∂z

)2
+
(∂u
∂z

+
∂w

∂x

)2)
(1.38)

Remembering that isotropic turbulence implies that the average value of any
function of the velocity is unchanged no matter how the axes are rotated, we get(∂u

∂x

)2
=
(∂v
∂y

)2
=
(∂w
∂z

)2
(1.39)

(∂u
∂y

)2
=
(∂u
∂z

)2
=
(∂v
∂x

)2
+ ... (1.40)

∂v∂u

∂x∂y
=
∂w∂v

∂y∂z
=
∂u∂w

∂z∂x
(1.41)
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Adding these terms together results in

ε = 6ν

((∂u
∂x

)2
+
(∂u
∂y

)2
+
∂v∂u

∂x∂y

)
(1.42)

Taylor then used the continuity equation to show that(∂u
∂x

)2
= −2

∂v∂u

∂x∂y
(1.43)

Then through a long process of using linear algebra Taylor proves that the possible
terms in equation 1.42 are linearly related to each other and that

2
(∂u
∂x

)2
=
(∂u
∂y

)2
(1.44)

Finally inserting these relations into equation 1.42 gives the dissipation equation
for isotropic turbulence.

ε = 15ν
(∂u
∂x

)2
(1.45)

Now a simple and elegant equation for the dissipation is available, but unfortu-
nately it consist of the spatial derivative of the velocity. However, when mea-
suring velocity with a probe it is the temporal dependent velocity, u(t), which
is obtained. How can a spatial derivative be calculated from a “fixed in space”,
time dependent variable? The answer is using Taylor’s frozen turbulence hypoth-
esis [20], “If the velocity of the air stream which carries the eddies is very much
greater than the turbulent velocity, one may assume that the sequence of changes
in u at the fixed point are simply due to the passage of an unchanging pattern of
turbulent motion over the point.” Thus we can write

u = u(t) = u(x/U) (1.46)

Since the velocity fluctuations are frozen the substantive derivative equals zero

Du

Dt
=
∂u

∂t
+ U

∂u

∂x
= 0

∂u

∂x
= − 1

U

∂u

∂t
(1.47)

Note that the mean velocity U could be replaced with the instantaneous u′ as
proposed by Heskestad (1965) [8]. The negative sign makes physical sense, e.g.
if the velocity of the flow coming from the left is increasing in time, then the
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spatial derivative to the right have to be negative. Inserting this into equation
1.42 gives

ε = 15ν
( 1

U

∂u

∂t

)2
(1.48)

More advanced approximations exist, e.g. with assumptions of axi-symmetric or
semi-isotropic turbulence, see [12] for details.

1.5 Dissipation in Turbulence Modelling

Closer investigation of equation 1.11, the Reynolds decomposed momentum equa-
tion, gives by time averaging:

∂Ui
∂t

+
∂UiUj
∂xj

+
∂uiuj
∂xj

= −1

ρ

∂P

∂xi
+ 2ν

∂

∂xj
Sij

∂Ui
∂t

+
∂UiUj
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂2Ui
∂x2j

− ∂

∂xj
uiuj (1.49)

Still assuming an incompressible Newtonian fluid. This equation, known as the
Reynolds Averaged Navier-Stokes equation, is the same as the original Navier-
Stokes equation except for the symmetrical Reynolds stress ρuiuj.

τ tij ≡ −ρuiuj = −ρ

u2 uv uw

vu v2 vw

wu wv w2

 (1.50)

It is the treatment of this term which is at the heart of the turbulence closure
problem, there simply are no equations for the six new unkowns brought forward
by the Reynolds stress. The Reynolds stress is dependent on the flow itself, and
hence can not be described by constitutive relations as for example the viscous
stress in a Newtonian flow, but turbulence modelling tries to exactly that in the
best possible way. Over the years many methods have been developed, but the
industry standard today is the two-equation k-ε-model based on the Boussinesq
eddy viscosity hypothesis, see Pope [16] for a detailed discussion. The hypothesis
states that the Reynolds stress anisotropy is equal the rate of strain tensor, which
is analogous to the viscous stress relation:

−uiuj = νt

(∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
kδij (1.51)

Where νt is the eddy viscosity. Inserting this into equation 1.49 gives

∂Ui
∂t

+
∂UiUj
∂xj

= (ν + νt)
∂2Ui
∂x2j

− 1

ρ

∂

∂xi
(P +

2

3
ρk) (1.52)
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This equation is solved using the k-ε-model, and in addition to the Boussi-
nesq eddy viscosity hypothesis it employs a transport equation for k, a trans-
port equation for ε and from νt = νt(length, velocity) it specifies νt = Cµk

2/ε.
The big limitation of this turbulence model, and in fact any model utilizing the
Boussinesq eddy viscosity hypothesis, is that it is isotropic. Remembering that
k = 0.5(u2 + v2 + w2), it is clear that all the velocity fluctuations are needed
in order to calculate anisotropic turbulence, but with this model k is calculated
directly, such that u2 = v2 = w2. The transport equations of k and ε are:

Dk

Dt
= ∇ ·

(
νt
σk
∇k

)
+ P − ε (1.53)

Dε

Dt
= ∇ ·

(
νt
σε
∇ε

)
+ C1

Pε

k
− C2

ε2

k
(1.54)

The transport equation for ε is based on the same arguments as the energy cascade
above, i.e. that the production and dissipation are proportional to the reciprocal
of the large eddy turnover time, ε/k [18]. Again looking to Pope [16] one can for
the case of channel flow with homogeneous streamwise and spanwise turbulence
derive the following relation:

ε =
C

3/4
µ k3/2

κy
(1.55)

Where κ ≈ 0.4 is the von Kármán constant and Cµ = 0.09. This relation is only
valid within the log-law region where the production of turbulent kinetic energy
is approximately equal to the dissipation.
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Chapter 2

Direct Numerical Simulation

2.1 Flow Domain and Equations

The structure of the CFD-code used in this thesis has not been a subject of
investigation, it is however presented here in the interest of the reader. Figure 2.1
illustrates the domain solved by means of Direct Numerical Simulation in this
thesis, where Lx = 2π, Ly = π and Lz = H = 1 denotes the streamwise, spanwise
and wall normal direction respectively. The Navier-Stokes equations are solved
in their non-dimensional form, which means that the variables are scaled by their
characteristic counter part. The star indicates a non-dimensional variable:

x∗ = x/H ~u∗ = ~u/uτ t∗ = tuτ/L p∗ = p/(ρu2τ ) (2.1)

We insert these into equation 1.2:

∂ρu∗iuτ
∂t∗H/uτ

+
∂ρu∗iuτu

∗
juτ

∂x∗jH
= −∂p

∗ρu2τ
∂x∗iH

+ µ
∂2u∗iuτ

∂x∗jH∂x
∗
jH

(2.2)

x

yz

Ly

Flow directionLz

Lx

Figure 2.1: Schematic of the flow domain
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z0
C

z0 z1
C

z1

z=0

Cell size

zNz zNz+1
C

z=1

Figure 2.2: Discretized domain in z-direction. Circle and line indicates cell center
and cell face respectively.

This looks quite messy so we clean it up by multiplying with H
ρu2τ

to get:

∂u∗i
∂t∗

+
∂u∗iu

∗
j

∂x∗j
= −∂p

∗

∂x∗i
+

H

ρu2τ

µuτ
H2

∂2u∗i
∂x∗j∂x

∗
j

(2.3)

It is easy to see that H
ρu2τ

µuτ
H2 = 1

Reτ
and hence:

∂u∗i
∂t∗

+
∂u∗iu

∗
j

∂x∗j
= −∂p

∗

∂x∗i
+

1

Reτ

∂2u∗i
∂x∗j∂x

∗
j

(2.4)

For clarity, uτ =
√
τw/ρ, is called friction velocity and it relates the wall shear

stress to a velocity. Equation 2.4 is the non-dimensional form of Navier-Stokes
solved in the DNS code, with Reτ = 360, a constant pressure gradient−dp∗/dx∗ =
2, no-slip condition at the wall and periodic boundary conditions at the remaining
directions.

2.2 Discretization Schemes

The turbulent flow studied in this thesis is homogeneous in streamwise and span-
wise directions, and therefore a pseudospectral method is applied. The Navier-
Stokes equations are solved using Fourier transforms in the homogeneous direc-
tions, while a second order staggered finite difference method is applied in wall
normal direction.

Domain Discretization

The domain is discretized by a uniform grid in streamwise and spanwise direc-
tions, where the cell sizes are given by ∆x = 2π/Nx and ∆y = π/Ny, where Nx

and Ny are the number of grid points. In the wall normal direction the cell size
is stretched by a harmonic continuous function yielding finer grid resolution near
the walls, see figure 2.2. In other words the location of cell faces are given by the
vector function:

~z(~k, s) =
1

2

arctan(s(~k − 1
2
))

arctan(s1
2
)

+
1

2
(2.5)
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Where s is a stretching factor and ~k = [0, 1, 2, ..., Nz]/Nz, which means that the
cell size in wall normal direction is given by:

∆zi = z(ki)− z(ki−1) for i = 1, 2, ..., Nz (2.6)

Streamwise and spanwise velocities together with the pressure field are calculated
at the cell center, which we define as:

zCi =
1

2
(zi + zi−1) for i = 1, 2, ..., Nz (2.7)

while the wall-normal velocities are calculated at the face of the cell.

Spatial derivatives - wall normal direction

A second-order central difference scheme is chosen in wall normal direction, giving
a first-order accuracy on a non-uniform grid. All derivatives of cell centered
properties are defined at the cell faces and opposite, i.e. :

d

dz
uFi =

uCi+1 − uCi
zCi+1 − zCi

d

dz
uCi =

uFi − uFi−1
zFi − zFi−1

(2.8)

The derivation of second-derivatives is successive use of the above equations. If a
property saved at a cell face is needed at the cell center, the interpolation scheme
is simply the arithmetic mean.

uFi =
1

2
(uCi+1 + uCi ) uCi =

1

2
(uFi + uFi−1) (2.9)

Spatial derivatives - homogeneous directions

The pseudospectral method implies that the derivatives in the homogeneous di-
rections are calculated by means of Fourier transformations. The variables are
transformed from physical space and into the spectral space where the calcula-
tions of derivatives are easier and much more accurate. Consider the velocity
vector ~u

~u(~x, t) =
∑
k

~̂uk(t)e
i~k~x (2.10)

where ~x = [x, y, z] is the position vector in physical space and ~k = [kx, ky, z, t] is
the wave number vector in spectral space. Derivation of the transformed variable
is simply done by multiplying with i~k, where i is the imaginary number. Hence
the first and second derivative of ~u in the streamwise direction is

d

dx
~u(~x, t) =

∑
k

~̂uk(t)i~kxe
i~k~x d2

dx2
~u(~x, t) = −

∑
k

~̂uk(t)~k
2
xe
i~k~x (2.11)

After the derivatives are calculated and the system of equations is solved, the
terms are transformed back to physical space.
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Temporal Discretization

An explicit second-order accurate Adams-Bashforth scheme [7] is used for time-
stepping/time integration.

yn+2 = yn+1 + h
(3

2
f(tn+1, yn01)−

1

2
f(tn, yn)

)
(2.12)

If we apply this to the Navier-Stokes equations we get [14]

~un+1 − ~un

∆t
=

3

2
T (~un)− 1

2
T (~un−1)−∆pn+1 (2.13)

with T (~un) = −(~un · ∇)~un + Re−1∗ ∇2~un. We know every value at time step n,
hence we only have two unknowns; ~un+1 and pn+1. Next we solve equation 2.13
without the pressure term, yielding a temporary value for the velocity, ~u∗.

~u∗ − ~un

∆t
=

3

2
T (~un)− 1

2
T (~un−1) (2.14)

The lower index star indicates an intermediate value and must not be confused
with ~u∗ indicating a non-dimensional value. If we subtract equation 2.14 from
equation 2.13 we get

~un+1 − ~u∗ = −∆t∇pn+1 (2.15)

Now consider the divergence of this equation

∇ · ~un+1 −∇ · ~u∗ = ∆t∇2pn+1 (2.16)

In order to satisfy continuity∇·~un+1 must equal 0, resulting in a Poisson equation
for the pressure

∇2pn+1 =
∇ · ~u∗

∆t
(2.17)

Equation 2.17 is solved using fast Fourier transforms, and can then be used to
find the velocity at the new time step by going back to equation 2.16.

2.3 Grid Resolution

In this thesis four different grid resolutions and their impact are investigated.
The resolutions used are 483, 883, 1283 and 1923 resulting in 110 592, 681 472, 2
097 152 and 7 077 888 number of cells respectively. In table 2.1 the +-superscript
indicates a non-dimensional wall distance, i.e a quantity scaled by wall variables;
y+ ≡ yuτ/ν = y uτH

νH
= y

H
Reτ , with Reτ = 360. If we compare the 1923 grid with

data from [9] where ∆y+ varies between 0.1 and 4.4, it is apparent that Kim et al.
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Grid Size ∆x+ ∆y+ max ∆z+ min ∆z+

483 47.12 23.56 11.43 3.73
883 25.70 12.85 6.24 1.98
1283 17.67 8.84 4.29 1.35
1923 11.78 5.89 2.86 0.89

Table 2.1: Grid properties by wall scaled quantities
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Figure 2.3: ∆z+ for different grid resolutions

has employed a larger stretching factor in the wall normal direction giving a finer
near-wall resolution but at the cost of mid-channel resolution. Because of large
gradients near the wall this resolution is believed to be of critical importance to
the quality of the simulation. The computational time was about 10−2 s per time
step for the 483 grid and 3 s per time step for the 1923 grid. The cell size in the
z-direction for the different cases, shown in figure 2.3 increases steadily with a
larger jump from Nz = 88 to Nz = 48.
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Chapter 3

Results - Turbulence Statistics

After reaching a statistically steady velocity field the simulation is integrated fur-
ther in time in order to gather representative time and space averaged properties.
In space the quantities are of course only averaged in the homogeneous directions.
Figure 3.1 illustrates the need for averaged values when dealing with turbulent
flows. The randomness and chaotic structure of the velocity field makes the in-
stantaneous values almost useless for comparison between cases as the strength
of the perturbations are so high. However, when time averaging the velocity
field becomes symmetric, predictable and suitable for comparisons, it will at a
first glance resemble the velocity field of a laminar flow. The data presented in
this chapter is compared with data from the 1987 article Turbulence statistics in
fully developed channel flow at low Reynolds number by Kim, Moin and Moser [9].
Their data is thoroughly verified with experimental data and is considered correct
by peers.

Figure 3.1: A comparison of a time averaged and an instantaneous velocity field
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Figure 3.2: Mean velocity profile for the different grid resolutions compared with data
from Kim et al. [9]

3.1 Mean Flow Properties

Figure 3.2 shows the evolution of the mean velocity profile as the grid resolution
increases. The mean velocity profile moves towards a greater maximum and
“flatter” curvature near the channel center, i.e. dU/dz moves closer to zero in
this region. Compared with data from Kim et al. the difference in centerline mean
velocity is 10.1% for the 483 grid and 0.58% for the 1923 grid. The difference in
bulk mean velocity normalized by uτ is 10.1% for the 483 grid and 0.064% for the
1923 grid. The bulk mean velocity is defined as

Um =
1

H

∫ H

0

Udz (3.1)

Figure 3.3 is a zoomed in view of the near wall region of the mean velocity profile
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Figure 3.3: A closer look at the near wall mean velocity profiles for the coarsest and
finest grid compared with the law of the wall

from figure 3.2. The two equations in the figure are derived from the law of
the wall and describes velocity developement in the viscous sublayer and the
logarithmic layer. The law of the wall states that the normalized velocity is a
function of the normalized wall distance, i.e. u+ = f(z+), and more specifically:

f(z+) =

{
z+ if z+ < 5
1
κ
ln(z+) +B if z+ > 30

(3.2)

The von Kármán constant, κ, and B are the same as given by [9] and [1]. See [6]
for more details on the subject. The profile from the 1923 grid shows excellent
agreement with the law for z+ < 5 and good agreement for z+ > 30, whilst the
profile from the 483 grid seems to be almost logarithmic through all the layers.
From figures 3.2 and 3.3 it is apparent that only the two finest grid resolutions,
1283 and 1923 are sufficiently accurate with regards to mean velocity profiles,
although the 883 grid is surprisingly close.



26 CHAPTER 3. RESULTS - TURBULENCE STATISTICS

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

2.0

2.5

3.0

z/H

u
i r
m
s

 

 

urms

vrms

wrms

(a) 483 grid

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

2.0

2.5

3.0

z/H

u
i r
m
s

 

 

urms

vrms

wrms

(b) 883 grid
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Figure 3.4: Root mean squared of velocity components for the different grid resolu-
tions compared with data from Kim et al. [9], normalized with uτ

3.2 Turbulence Intensities

When studying the turbulent dissipation it is vital to have accurate values of the
turbulence intensities, see figure 3.4, or velocity fluctuations, as the dissipation
term is only dependent on their derivatives. The profiles of the velocity fluctu-
ations are symmetric about the centerline for all grids, and the u-fluctuations
converges towards the data from Kim as the grid resolution increase. All grids
have a maximum value of u-fluctuations at a wall distance of z+ ≈ 14. For the
483 grid there is an abrupt change at the maximum value, and for the v and w
fluctuations it over predicts the values near the wall and under predicts near the
center. This will result in over predicted values of dissipation in the spanwise and
wall normal direction, i.e ε22 and ε33, because of too high values of the derivatives
of the fluctuating velocities. The over prediction of the v fluctuations near the
wall can also be observed for the 883 grid, but it has already at that resolution
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Figure 3.5: Shear forces for the different grid resolutions compared with data from
Kim et al.(*)

almost converged with the data from Kim. w fluctuations for the 883 is consid-
ered satisfactory. At the resolution of 1283 the only fluctuation not converged is
the u fluctuations, and it is only too low in the near periphery of the extrema.
With grid resolution 1923 the data agree everywhere with Kim.

3.3 Reynolds Shear Stress

Figure 3.5 shows the Reynolds shear stress in the flow, and the only grid resolution
to give a notable discrepancy is the 483 grid. Since (νdU/dz)/τw is almost exactly
equal the data from Kim, uw/τw must be the inaccurate term. (νdU/dz)/τw is
closer to the data by Kim because it is only dependent on the shape of Ui(z)
and not its magnitude, whilst uw/τw is of course dependent on the magnitude of
Ui(z).
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Figure 3.6: ε11, ε22, ε33, and ε for different grid resolutions normalized by u2τ/ν. The
superscript denotes grid resolution. No data from Kim available.

3.4 Turbulent Dissipation

Figure 3.6 shows the directional behavior of the turbulence dissipation. As ex-
pected, because of largest derivatives of the velocity fluctuations, ε11 is the dom-
inating term followed by ε22 and ε33, and from equation 1.31

ε = 0.5(ε11 + ε22 + ε33)

hence has the shape of ε11. The amount of dissipation increases along with
increased grid resolution for ε11 and ε33 but it decreases for ε22, and the only
abnormality is seen with grid resolution 483 for ε22. Here we would expect ε4822
to have a larger value than ε8822 for z+ ∈ [0, 36], whereas the opposite is the fact.
This discrepancy is caused by the over prediction of the fluctuating v and w
velocity near the wall, which can easily be observed at low z-values for ε33 where
the dissipation has a steeper curve near the wall with decreasing grid resolution.
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Here the derivative dε33/dz decreases with increasing grid resolution as a direct
result from the change seen between figures 3.4(a) and 3.4(d).

3.4.1 Homogeneous vs. Thermodynamical Dissipation
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0 20 40 60 80 100 120 140 160 180
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

z+

D
is
si
p
a
ti
o
n

 

 

ν
d2ww
dz2

ν
∂ui

∂xj

∂ui

∂xj

ν
∂ui

∂xj
( ∂ui

∂xj
+

∂uj

∂xi
)

d2ww
dz2 / ∂ui

∂xj
( ∂ui

∂xj
+

∂uj

∂xi
)

(c) Correct disspation for the 1283 grid
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Figure 3.7: A comparison between the thermodynamic and homogeneous dissipation
normalized by u2τ/ν, denoted by ε and ε respectively

To investigate the difference between the homogeneous dissipation and thermo-
dynamically correct dissipation we look back at equations 1.21 and 1.24. These
equations are as they appear in the note by Bradshaw and Perot [2], and the
difference between the two dissipation terms is

ν
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
− ν ∂ui

∂xj

∂ui
∂xj

= ν
∂2uiuj
∂xi∂xj

(3.3)



30 CHAPTER 3. RESULTS - TURBULENCE STATISTICS

Since this study is of a channel flow with homogeneous turbulence in streamwise
(x) and spanwise (y) directions the term on the right hand side in equation 3.3
simplifies to

∂2uiuj
∂xi∂xj

=
d2ww

dz2
(3.4)

This term is compared with the exact dissipation by (d2w2/dz2)/( ∂ui
∂xj

( ∂ui
∂xj

+
∂uj
∂xi

)),

as shown in figure 3.7. Figure 3.7 shows that there is very little difference between
the homogeneous and thermodynamic dissipation, in fact for the 1923 grid the
integrated difference is 0.14%, i.e.∫ H

0
∂ui
∂xj

∂ui
∂xj

dz∫ H
0

∂ui
∂xj

( ∂ui
∂xj

+
∂uj
∂xi

) dz
= 0.9986 (3.5)

For the 1283 grid the difference is 0.18%, and it is 0.23% and 0.35% for the two
coarsest resolutions of 883 and 483 respectively. So even if the viscous diffusion
term is almost 2.5% of the thermodynamic dissipation at z+ ≈ 6, for the 1923

grid, it does not affect the magnitude of the dissipation but rather acts as a redis-
tribution term. The term adds to the dissipation near the wall until z+ ≈20, then
it reduces dissipation until z+ ≈100, where it returns to add to the dissipation.
The only “real” deviation between the correct and and homogeneous dissipation
is that the inflection point at z+ ≈ 9 is no longer an inflection point. These
results are in agreement with the findings of Bradshaw and Perot [2].

3.4.2 Homogeneous vs. isotropic dissipation
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Figure 3.8: A comparison between
isotropic and homogeneous dissipation

Figure 3.8 shows that the channel flow
clearly is anisotropic, which we al-
ready knew from the velocity fluctu-
ations. The homogeneous dissipation
is plotted against isotropic dissipation
given by equation 1.45. The implica-
tion of the wall boundary condition is
apparent, and creates anisotropic tur-
bulence for z+ < 150, leaving only a
small region about the channel center
which can be said to be approximately
isotropic. The 1923 grid is used for the
comparison.
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Figure 3.9: Location of log-law region found from (a) and dissipation plotted in (b)

3.4.3 Dissipation in the k-ε-Model

Figure 3.9(b) shows the dissipation calculated from equation 1.55 scaled by the
homogeneous dissipation from the DNS simulation in the log-law region, identified
by figure 3.9(a). The ratio goes from 1 for z+ = 40 to approximately 0.5 for
z+ = 10, but with large derivatives at both ends of the log-law layer.
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(c) η+33 for different grid resolutions
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Figure 3.10: Kolmogorov length scale based on total dissipation and its components

3.5 Kolmogorov Length Scale

Figure 3.10 shows the Kolmogorov length scale, η+, as a function of dissipation,
ε(z+). The length scales are decomposed by the corresponding dissipation terms,
e.g. η+11 = f(ε11) and η+ is calculated with η+ = [ν3/(0.5εii)]

1/4. Since the
Kolmogorov length scales are dependent on the dissipation the components will
naturally behave similarly to the reciprocal of the dissipation functions, with η+11
giving the strongest impact on η+, η+22 shows similar behavior while η+33 separates
from the other directions because of the wall condition. The Kolmogorov length
scale increases a lot for the 483 grid around the center of the channel, this is due to
ε48 decreasing more than it “should”, relative to the other too coarse resolutions.
The inflection point at z+ ≈ 9 for the dissipation in figure 3.7 can be seen for
the Kolmogorov length scales as well. For the 483 grid the global maximum of
all components is η+22 ≈ 5.6, while the global minimum is η+11 ≈ 1.35. For the
1923 grid the corresponding values are η+22 ≈ 4.3 and η+11 ≈ 1.39. In general the
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(c) ∆z+/η+33 for the different grid resolutions
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Figure 3.11: The ratio of cell size to the Kolmogorov length scale

Kolmogorov length scale decreases with increasing grid resolution because of the
increase in dissipation.

Figure 3.11 shows the ratio of cell size to Kolmogorov length scale for the
different components, note that it is the grid’s own Kolmogorov length scale
which is used. The difference between the cases is significant, ranging from a
ratio of ∆x/η+11 ≈ 35 for the 483 grid to ∆x/η+11 ≈ 3 for the 1923 grid, shown
in figure 3.11(a). The only direction which has fully resolved the Kolmogorov
length scale is the z-direction, where the 1923 grid has a ratio of 0.7 and the 1283

grid must also be considered as resolved with a ratio of 1.01. ∆x is chosen for the
comparison with η+, see figure 3.11(d), because it is the largest cell size. Here
the 483 grid goes from approximately 25 near the wall to 8 in the center, while
the 1923 grid varies between approximately 7.5 at the wall and 3 in the channel
center. With a grid resolution of 1283 the ratio is as much as about 11 near the
wall.

Figure 3.12 shows the ratio of the geometric mean, ∆, to the Kolmogorov
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Figure 3.12: ∆/η+ for different grid resolutions

length scale. The geometric mean, ∆ = (∆x∆y∆z)1/3, can be seen as a cubic
length conversion of the volume of the computational cells, since it describes a
cube with edge length ∆ with the same volume as the cell ∆x∆y∆z. Applying
∆ instead of ∆x reduces the ratio by approximately 3,

3.6 Turbulent Kinetic Energy Budget

Figures 3.13(a) and 3.13(b) shows the turbulent kinetic energy budget and figures
3.13(c) and 3.13(d) the cumulative distribution of production, dissipation and
diffusion in the z-direction for the two grid resolutions 1923 and 883. Since there
exist a derivative of the mean velocity in the wall normal direction it is possible
for the kinetic energy to be steady1, i.e. Dk/Dt can and should be zero. This
implies that the sum of the integrated energy budget is zero, and this added
with the fact that diffusion terms integrated over a surface (for fully developed
flow) are zero means that production should equal dissipation when integrated
over a surface. Since the turbulence is homogeneous in streamwise and spanwise
directions it is sufficient to integrate along a line in wall normal direction. For
figures 3.13(c) and 3.13(d) the diffusion is the sum of turbulent diffusion, viscous
diffusion and the velocity pressure gradient. The diffusion integrated from wall
to wall for the 1923 grid adds up to ≈0.035, while the 883 grid resolutions gives a
value of ≈0.37, a ratio of ≈10.6. The production shows less deviation with ≈12.5
and ≈13.35 for the 1923 and 883 grid respectively, resulting in a ratio of ≈1.07.
Lastly, the dissipation goes from ≈11.6 to ≈9.75, a ratio of ≈0.84. Looking to
figures 3.13(a) and 3.13(b) the data from 1923 is in good agreement with Mansour
et. al [13]2, except that the viscous diffusion is 13% lower than the dissipation at

1For homogeneous turbulence with no mean velocity gradients this is impossible as the
dissipation then have to be zero, see equation 1.26.

2The data in [13] is based on KMM
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grid resolution of 1923
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(b) The turbulent kinetic energy budget with
grid resolution of 883
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grid resolution of 1923
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Figure 3.13: The turbulent kinetic energy budget and its cumulative distribution

the wall, whereas they compute equal rate of dissipation and viscous diffusion.
The dissipation at the wall, εw = 0.1686, is 1.6% higher than the data from
Mansour et. al. When z+ < 5 viscous diffusion behaves as the dissipation. For
the 883 grid resolution the viscous diffusion is 68% lower than the dissipation.
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Chapter 4

Discussion

Since the tasks given for this master thesis is given in a structured manner, it is
convenient to apply a similar structure in the following discussion. This chapter
begins with a discussion of the approximations of dissipation in experiments and
turbulence models with basis in the theory given and results obtained. Then
a discussion of the dissipation components follows, and how the homogeneous
dissipation differ from the thermodynamical dissipation. After that attention
is given to how grid dependency impacts the Kolmogorov length scale and the
simulation accuracy. Lastly an investigation is made of the directional behavior
of the Kolmogorov length scale, with an attempt to make a length scale tensor
analogous to the Kolmogorov length scale.

4.1 Approximating Dissipation

Experiments

In the case of the approximation for the dissipation in experiments, i.e. equa-
tion 1.45, the word “approximation” is a bit ambiguous since the equation itself
is exact. It is the assumptions behind its derivation, namely homogeneous and
isotropic turbulence, which cause trouble as these flow properties are the excep-
tion rather than the rule. In low Reynolds number channel flow it is expected
poor results from this approximation, which the results in figure 3.8 also show.
It is possible that a higher Reynolds number would give a larger region about the
centerline where the approximation would yield good results, but then the fluctu-
ations near the wall would increase giving large discrepancies. There is however
little doubt that this is a powerful approximation when utilized correctly, making
experiments faster, easier and cheaper. It should be remembered that this is the
most basic approximation, and more advanced expressions exist.
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Turbulence Models

With regards to the dissipation in the k-ε-model the comparison yielded little
results, as the comparison was made with an anisotropic k, whereas a k calculated
with the model would be isotropic. An effort has been made by the author
into converting the anisotropic k to an isotropic k, but the the results were
unsuccessful. It could be interesting to compare dissipation from a a proper
calculation with the model with the DNS data.

4.2 Dissipation

As stated earlier in the theory chapter the dissipation of turbulent kinetic energy
depends only on the gradients of the velocity fluctuations. These fluctuations are
in the small scale and demands high grid resolutions to be resolved accurately,
and the grid spacing should be at least equal to the Kolmogorov length scale in
order to resolve every scale. At the same time most of the dissipation occurs
at scales larger than the Kolmogorov length scale. Moser and Moin [15] found
that most of the dissipation occurs at scales larger than 15η for a curved channel,
relaxing the grid size requirements some. Remember that the Kolmogorov scale
is the smallest scale at which dissipation occurs.

Dissipation Components

The results for dissipation of turbulent kinetic energy shows that the dissipation
rate increases with increasing grid resolution, which makes sense from the argu-
ments above. Following this logic the dissipation thus converge towards a finite
amount with increasing resolution. Through the Reynolds stress equations the
dissipation is separated into components representing the streamwise, spanwise
and wall-normal directions. The most predominant component is the streamwise
ε11, dictating the behavior of the scalar dissipation. Since ε11 > ε the components
do not make much physical sense, i.e. the streamwise dissipation rate can not be
larger than the total dissipation rate in all directions, but they can perhaps be
utilized to create a tensor-version of the Kolmogorov length scale which will be
discussed later. By closer inspection of the near-wall behavior it becomes clear
that the overshoot of the lower resolutions is due to ε11. ε33 also over predicts
near the wall for the lower resolutions, and for this component the whole curve
seems to be skewed towards the wall. Opposed to the other two components, ε22
shows a maximum value for the lower resolutions for z+ ≈ 15.

Homogeneous and Thermodynamically Correct Dissipation

Bradshaw and Perot found that the assumption of homogeneous dissipation is
accurate for all practical purposes, which also is the conclusion to be made from
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the results in this thesis. The term which makes the difference between homoge-

neous dissipation and the correct dissipation is the viscous diffusion term,
∂2uiuj
∂xi∂xj

,

which with the divergence theorem gives∫
V

∂2uiuj
∂xi∂xj

dV =

∫
A

ni
∂uiuj
∂xj

dA =

∫ H/2

−H/2

dww

dz
bdz = b

[
ww

]H/2
−H/2

= 0 (4.1)

because of the wall boundary condition and homogeneity in streamwise and span-
wise directions, and b is the breadth of the integrated surface. The reasons for
this term not being exactly zero in the results could be insufficient sampling time
for the time averaging, creating asymmetric distribution or numerical error as the
wall-normal direction is only first order accurate. As the equation show there is
no change made by the viscous dissipation term if it is integrated over a volume, it
will however redistribute the dissipation rate within the volume. It is found that
it gives a maximum increase of 2.5% at z+ ≈ 7 compared to the homogeneous
dissipation, and a maximum reduction compared to the homogeneous dissipation
of 1.14% at z+ ≈ 40. Thus the effect of the viscous dissipation term is a reduction
of the dissipation rate in 18 < z+ < 105 and consequently an increase for the
remaining z+ values.

Turbulent Kinetic Energy Budget

The figures showing the cumulative distribution of turbulent kinetic energy pro-
duction, dissipation and diffusion reveals that the 1923 simulation is good, but
not perfect. Both the diffusion and the difference between production and dissi-
pation should add up to zero. From the discussion of dissipation it is concluded
that dissipation increases with increasing grid resolution as the grid approaches
the Kolmogorov length scale, but the figures of TKE show that production in-
creases with decreasing grid resolution. Hence lowering the grid resolution results
in a “double” punishment, as production and dissipation moves in opposite direc-
tions. The production term consist of the second moment of fluctuating velocity
and the mean velocity gradient, i.e. uiujdU/dz, and a simple order of magnitude
analysis will show that the dominating term is the mean velocity gradients. The
dissipation however consist of the gradients of the velocity fluctuations, which re-
quires much higher grid resolution, and that explains why the production reacts
less than the dissipation towards decreasing grid resolution.

4.3 Kolmogorov Length Scale

The computed Kolmogorov scales in section 3.5 shows that a grid is capable of
reporting the Kolmogorov scale to be less than its own grid size, though it is
not grid independent. For example the coarsest 483 grid has minimum cell sizes
(∆x+,∆y+,∆z+) = (47.1, 23.6, 3.7) while the minimum computed Kolmogorov
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length scale is η+ ≈ 1.53. All grids compute approximately the same η+ at the
wall, and the largest difference between the grids is where the dissipation rate
is lowest. The reason for this is that the fractional difference becomes great for
small values, and with

η1
η2

=

(
ε2
ε1

)1/4

(4.2)

it is clear that the center region of the channel will show the largest differences
in Kolmogorov length scale. Compared with η+192, η

+
128 is 2.8% larger, η+88 is 7.2%

larger and η+48 is 23.4% larger. Based on the averaged dissipation across the
channel height the Kolmogorov length is 2.36 for the 1923 grid, and based on the
averaged production the Kolmogorov length is 2.31. Since the dissipation rate
increases with grid resolution, production decreases and the Kolmogorov scale
behaves opposite it is probable that the averaged Kolmogorov length scale is
somewhere between 2.31 and 2.36.

Grid Comparison

Figure 3.11 in previous chapter shows the different grid sizes compared to the
Kolmogorov length scale. As stated before, to resolve everything these functions
should have a maximum value of 1. The only grids to have such fine resolution
are the 1283 and 1923 grids, and that is only for η+33, but those grids both have
∆x+i < 15η+ everywhere. They should then by the conclusion of Moser and
Moin capture the bulk of the dissipation, but integrated from wall to wall the
dissipation rate of the 1283 grid is 7.8% less than that of the 1923 grid. Almost
10% must be considered a large difference and hence for the case of low Reynolds
number channel flow the “rule of thumb” from Moser and Moin, section 4.2, is
quite inaccurate. The continuing change of the scale shows that there is still
inaccuracies in the simulation, and a better simulation is possible.

Directional Behavior

The directional behavior of the Kolmogorov scale is based on the Reynolds stress
dissipation rate components and hence similar in its behavior. The Kolmogorov
length scale is therefore smallest in the streamwise direction and increasing in
spanwise and wall-normal direction. In the wall-normal direction, η+33, where the
cell sizes for 1283 and 1923 are equal or less than the Kolmogorov scale there still
is grid dependency. The reason for this change, even though it is “supposed” to be
resolved, is probably because ε33 is dependent on the x, y and z derivatives of the
fluctuating w velocity. So if the x and y directions are not resolved, with a grid
improvement they will affect ε33 even though the z-direction was already resolved.
This could be confirmed or rejected by running a fully resolved simulation in all
but one direction, and then increase resolution in that direction and compute the
changes.
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Length Scale Tensor

It is proposed a length scale tensor, or specifically a vector, which relates the
Kolmogorov length scale to the components in the Reynolds stress tensor.

η = α

[(
ν3

ε11

)1/4

,

(
ν3

ε22

)1/4

,

(
ν3

ε33

)1/4]
(4.3)

There are however some issues with this length scale vector. For instance the
Reynolds stress dissipation component in the streamwise direction is larger than
the turbulent kinetic energy dissipation, perhaps making the grid restriction too
strict. Therefore a scaling parameter, α, is introduced. Since the dissipation
rate of turbulent kinetic energy is given by half the trace of the Reynolds stress
dissipation, the dissipation of kinetic energy, e.g. in the x-direction, can be given
as εk,x = 0.5ε11. This suggest a scaling parameter α = 21/4 ≈ 1.2, and relaxes
the grid restrictions compared with using the Reynolds stress dissipation as well
as the restriction from the Kolmogorov length scale. Whether this length scale
tensor is strict enough or not was not possible to investigate during this thesis,
as the super computer was unavailable.

4.4 Further Work

• Due to the lack of computing power some tasks had to be omitted, e.g.
simulation of grid resolution 2563. It is proposed to run a grid of 2563 or
higher, and compare that with 256x256x(192 or 128). Since the z-direction
is resolved for the 1923 grid is interesting to see the change between 2563

and 256x256x192.

• More stretching in the grid could be employed to give finer resolution near
the wall.

• Utilizing the proposed length scale vector together with average dissipation
across the channel height, the corresponding grid becomes [∆x+,∆y+,∆z+] =
[3.1, 4.2, 4.7]. This suggest a cell distribution of ≈ (700, 300, 100) in x, y and
z-direction respectively. If the suggestion in the first point, shows no grid
dependency when there are 192 cells in the z-direction, the grid proposed
here could be interesting.

• Implementation of a higher order accuracy scheme in wall-normal direction.
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4.5 Conclusion

The turbulence statistics presented are in good agreement with the data from Kim
et al. [9] for grid resolution of 1923, however the dissipation data was not available
and thus not compared. The dissipation was found to increase along with the
grid resolution, and in agreement with Bradshaw and Perot [2] the extra viscous
term in the correct dissipation term is a maximum of almost 2.5% of the correct
dissipation term. The dissipation increases as the grid resolution approaches the
Kolmogorov length scale. It is concluded that a simulation with higher resolution
has to be made to be certain that the results are grid independent, although the
dissipation at the wall agrees well with that reported by Mansour et al. [13].

The isotropic dissipation roughly agrees about the centerline of the channel,
and the comparison with the k-ε-model is mostly made as a curiosity and has no
practical value for this thesis.

Since the dissipation was found to be grid dependent, then ipso facto the
Kolmogorov length scale is grid dependent. It is therefore difficult to draw any
conclusions based on the results, other than that the grid can calculate Kol-
mogorov length scales smaller than the grid size itself. The wall-normal direction
is resolved with respect to the Kolmogorov length scale, so the grid dependency
is most likely because of the resolution in spanwise and streamwise direction for
the 1923 grid.

The components of the energy dissipation tensor presented are used to inves-
tigate the directional behavior of the Kolmogorov length scale. In streamwise
direction the Kolmogorov length scale is smaller than the scale calculated from
the scalar dissipation, and it is larger in spanwise and wall-normal direction. On
the basis of the connection between the Reynolds stress equation and the equation
for turbulent fluctuating kinetic energy it is proposed a length scale vector, anal-
ogous to the Kolmogorov length scale. This length scale vector gives a slightly
higher value for the scales than the Kolmogorov scale, but unfortunately it was
not possible to run any simulation to test its implications due to the lack of
computing power.
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