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Sammendrag 
 

Energibruken knyttet til ventilasjonsanlegg i boliger er et stort og viktig tema når 

utbredelsen av lufttette lavenergihus og passivhus øker i omfang. I boligkompleks 

med flere boligenheter og sentraliserte luftkondisjoneringsanlegg er det viktig å 

unngå lekkasjer av lukt og andre forurensinger fra avkastlufta til inntakslufta. Dette 

gjør at platevarmegjenvinnere er den vanlige varmegjenvinnertypen i slike anlegg. I 

denne oppgaven ble det sett på om en membranbasert platevarmegjenvinner som i 

tillegg til varme kan utveksle fukt, vil ha mindre problemer med kondensering og 

igjenfrysing enn en platevarmegjenvinner av plastmateriale. I tillegg ble det utviklet 

en matematisk metode og et enkelt regneverktøy for å simulere varme- og 

fuktoverføringsvirkningsgraden for en slik membranbasert varmegjenvinner.  

For å sammenlikne de ulike typene av varmegjenvinnermateriale ble det bygd et 

testoppsett i laboratoriet hos institutt for energi- og prosessteknikk ved NTNU. 

Eksperimentene viste at det oppsto kondens og frost i noen områder inne i de 

plastbaserte varmegjenvinnerne, mens i den membranbaserte gjenvinneren var det 

ingen tegn til verken kondenserings- eller fryseproblemer for temperaturer ned mot   

-10 oC i de samme områdene. Membranen hadde derimot en tendens til å utvide seg 

mye ved høy luftfuktighet og dette førte til at membranene klistret seg sammen. Både 

kondensering og tilfrysing ble observert i et at forsøkene der dette skjedde. Den 

testede membranen var på grunn av dette dermed ikke optimal med tanke på videre 

bruk i en membranbasert varmegjenvinner.     

Den utviklede metoden for å beregne virkningsgraden for fuktoverføring korrelerte 

meget godt med de eksperimentelle forsøkene. Det utviklede programmet kan dermed 

brukes for å forhåndspredikere andre membraners egnethet for bruk i en 

membranbasert varmegjenvinner.  
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Abstract 
 

 

Reduction of the energy used to acclimatise buildings is a huge challenge 

simultaneously with the implementation of air tight low energy buildings. In 

residential buildings with several living units centralised air handling units are the 

most energy efficient system. However, in a centralised system there is important to 

avoid leakages of pollutions between the exhaust air and the supply air. This leads to 

that flat plate heat exchangers are used instead of the more energy efficient rotary 

heat exchanger in these types of buildings. Flat plate heat exchangers will have 

problems concerning water condensation and frost formation in the exhaust air 

channels at low supply inlet temperatures. In this thesis a membrane based heat 

exchanger, which also was able to transfer moisture, was compared to a plastic based 

heat exchanger to see if the membrane based exchanger had less problems concerning 

condensation and freezing. In addition a mathematical method was derived to predict 

the heat and moisture transfer effectiveness in a membrane based heat exchanger. 

To compare the different heat exchanger plate materials a test rig was built in the 

laboratory at the Department of Energy and Process Engineering at NTNU. The 

experiments showed that the plastic based heat exchangers had problems with 

condensation and freezing in the tested conditions. The membrane based exchanger 

did not experience the same problems. However, additional problems with expansion 

of the membrane in high humidity showed that the tested membrane had drawbacks 

and was not really suitable. 

The derived mathematical method to predict the moisture transfer effectiveness was 

shown to correlate very well with the experimental results. The derived method and 

the developed Microsoft Excel tool called HXcalc may then be used to investigate 

other membranes moisture transfer effectiveness.     
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Chapter 1 

Introduction 

1.1. Background 

In the Nordic countries the population spend most of the time inside buildings. To 

feel comfortable the indoor air has to be within a specific temperature range 

(Novakovic et al., 2007). This is done by either heating in cold outdoor conditions or 

cooling in warm outdoor conditions. Acclimatisation of buildings requires a huge 

amount of energy per year. The energy efficiency of the acclimatisation systems in 

buildings have improved through the last decades. However, still more research is 

needed to continue the improvement. The Zero Emission Buildings Research Centre 

(ZEB) was initiated by the Research Council of Norway in 2009 as one of eleven 

national centres of Environment-friendly Energy Research (FME). Hosted by the 

Faculty of Architecture and Fine Art the research centre shall coordinate the 

collaboration between several partners ranging from manufacturing companies to 

architects and several different research and teaching institutions. The aim of the 

ZEB project is to: 

“Over the next eight years, the FME-Centre ZEB will develop competitive products 

and solutions for existing and new buildings that will lead to market penetration of 

zero emission buildings related to their production, operation and demolition.  “ 1 

The ZEB includes both research on building features as facade materials, heating 

systems and research on the end interplay between the end user and energy efficient 

buildings.  This thesis is based on a project connected to the work package 3 of the 

ZEB-project: “Energy Supply Systems and Services”. The project is cooperation 

between SINTEF and NTNU.  

Heat recovery is an important part of the air handling unit in buildings to lower the 

energy usage due to heating (and cooling) of the supply air. The heat recovery unit 

does usually include a heat exchanger where the hot exhaust air exchanges heat with 

the cold supply air (or opposite for cooling purposes). In the Nordic countries flat 

plate heat exchangers have been the dominating heat recovery system in buildings 

with several living units and centralised air handling systems. Different from the 

more energy efficient heat recovery wheels these heat exchangers will not cause the 

problems of leakages of pollutants from the exhaust to the supply air (Zhang, 2012). 

However, the aluminium or plastic based flat plate heat exchangers have quite low 

                                           
1  «About ZEB», Published: 12.08.11, Quoted:12.05.12, http://www.sintef.no/Projectweb/ZEB/About-

ZEB/ 
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annual energy recovery efficiency due to the energy needed for the frost protection 

systems which are required in low temperature areas (Drivsholm et al., 2005).  

Condensation and frost problems in flat plate heat exchangers may be avoided if the 

exhaust air is dehumidified before the temperature reaches the saturation 

temperature for humid air. In warm and humid areas where cooling and 

dehumidifying of supply air is required to meet the desired indoor air quality special 

enthalpy exchangers have been developed. These exchangers utilise membranes to 

separate the fresh supply air and the exhaust air. The differences in temperature and 

moisture content on the different sides of the membrane make heat and moisture 

transfer from the warm and humid side to the cool and dry side by passive transport 

mechanisms. 

In a preliminary work by the author the membrane based heat exchanger was found 

to be able to decrease the frost protection temperature compared to a conventional flat 

plate heat exchanger. This could lead to great energy savings in Nordic residential 

buildings with several living units and centralised air handling systems.  A method to 

predict the temperature efficiency and the energy recovery efficiency for a given heat 

exchanger geometry was derived. The necessary moisture transfer efficiency to avoid 

freezing problems was also found. The results showed that for the Oslo climate a 70% 

moisture transfer efficient heat exchanger was needless of a frost protection system 

and its heat recovery efficiency would reach 90%. This means that if such moisture 

transfer efficiency is obtainable it can reduce the energy used in frost protection and 

still the indoor air quality will be improved without increased total costs. This is 

important for new airtight buildings. (Aarnes, 2011)    

However, the research on how the flat plate membrane based heat exchanger 

performs in cold climate conditions is limited. Actually no available research articles 

were found about the theme. Nevertheless, several manufacturers sell this type of 

exchangers targetting the cold climate market and claim their good performances. 2 3

                                           
2 «Case Study: Natural Resources Canada (NRCan) - Canadian Centre for Housing Technology (CCHT) 

in Ottawa, Ontario.», Quoted: 12.05.12, http://www.dpoint.ca/energy-recovery-ventilator-cores/casestudy-

ccht.php 

3 «Mitsubishi Electric: Canada, Energy Recovery and Ventilation, Benefits.», Quoted: 23.05.12, 

http://www.mitsubishielectric.ca/en/hvac/erv/benefits.html 
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1.2. Objective  

Stated above, the membrane based heat and moisture exchanger may have great 

potential as an energy saver compared to a plastic based heat exchanger. However, 

this statement was based on the assumption that the membrane will elude the 

problems concerning condensation and frost formation in the exhaust air channels in 

the exchanger at low temperatures. Several manufacturers produce membranes that 

could be suitable to use in a membrane based heat exchanger. Since experimental 

testing takes a lot of time and effort, a method to predict the moisture transfer 

effectiveness from available data given by the manufacturers is preferable. Available 

calculation methods found in the literature includes membrane properties only found 

through special laboratorial testing. The objectives of the work presented in this 

thesis are to: 

 

 Develop a method to predict the moisture transfer effectiveness in a 

membrane based heat exchanger. The input values should not require other 

properties than the ones usually given in the producers’ datasheets. 

 

 Build a test rig to compare plastic based heat exchangers against a membrane 

based moisture and heat exchanger due to water condensation and frost 

formation. 

 

 Evaluate the membrane based heat exchanger prototype’s appropriateness for 

heat recovery in cold climate areas.   

 

The mathematical method derived was put into a simple program run in Microsoft 

Excel. The program should be suitable for further investigation in the suitability of 

different membranes for use in membrane based heat exchangers.   

A heat exchanger prototype was developed and a test rig was built in the lab at the 

Department of Energy and Process Engineering at NTNU to be able to compare 

different heat and moisture transferring materials. The experimental results will be 

compared to the results of the mathematical model. 
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1.3. Literature 

The available documentation regarding experimental testing of membrane based heat 

exchanger performance in cold climates is limited. Nevertheless, there were found 

two commercial producers of membrane based flat plate heat exchangers designed for 

cold climate. Both manufactures are operating in North-America. The “Japanese 

paper total heat exchanger” was invented in 1969 and patented in 1972. The 

advantages were that this type of heat exchanger could transfer both humidity and 

heat and without the size and complexity of the energy wheels. (Yoshino & 

Hashimoto, 1973) These exchangers are still sold under the name Lossnay from 

Mitsubishi Electric Corporation. The manufacturer claims that this exchanger will 

work very well without freezing problems in cold climate areas.3 Both the 

temperature efficiency and the moisture transfer efficiency is claimed to reach 70%. 

The membranes in this exchanger are micro porous.4 However, no available 

documented research on the cold weather performance of this exchanger was found. 

Another commercial membrane based heat exchanger was developed in Canada by 

dPoint. This firm patented a method to produce a water permeable laminated 

hydrophilic membrane in 2010 (Huizing, 2010). The dPoint ERV Core was tested in 

Canadian winter conditions and compared to a standard Coroplast HRV core.  The 

results are only shortly mentioned on the dPoint website and the report is 

confidential.2 However a very similar experiment was done in summer conditions at 

the same research centre; the Canadian Centre for Housing Technology and this 

experiment was published (Ouazia et al., 2006). It is therefore reason to believe that 

the winter condition experimental tests were performed after the same procedure as 

in the article of Ouazia (2006). The winter test showed, according to the 

manufacturer’s website, that the ERV Core had no need of drainage and were 10% 

more efficient than the standard HRV core. The manufacturer claims that the ERV 

Core has 80 % temperature efficiency and 40% moisture transfer efficiency. The heat 

exchanger was working down to a supply air temperature at -19oC without frost 

protection systems.2  

Articles on the sensible and latent effectiveness for different air flow rates(Nasif et 

al., 2005; Zhang, 2010) temperatures, flow patterns or  geometry(Vali et al., 2009; 

Zhang, 2010) and humidity levels (Kadylak et al., 2009; Niu & Zhang, 2000) were 

found in the literature. Zhang (2010) used a modified       method to predict the 

moisture transfer effectiveness and compared different heat exchanger geometries by 

the resulting effectiveness. He found that a quasi-counter flow geometry was both 

possibly to build and superior to the cross flow geometry regarding effectiveness. He 

did also perform a CFD analysis to see the flow pattern inside such an exchanger 

(Zhang, 2010). The result is reprinted below: 

                                           
4«Mitsubishi Electric: Canada, Energy Recovery and Ventilation, Features.», Quoted: 23.05.12, 

http://www.mitsubishielectric.ca/en/hvac/erv/features.html 
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Condensation will occur at the heat exchanger plate surface if the surface 

temperature of gets lower than the saturation line for the moist air flowing over it. 

The saturation temperature for a given absolute humidity,   was given as (Aarnes, 

2011): 

 
     

    

  (
   

      )

 
(1.1.)  

If the surface temperature is below 0oC the condensate will form ice crystals. The 

surface temperature in the heat exchanger in a given point may be assumed to be: 

 
   

     

 
 

(1.2.)  

The condensation and frost problems in heat exchangers are strongly linked to the 

exhaust air humidity. Kalamees et al. (2009) studied the outdoor and indoor 

humidity and temperatures in 170 Finnish residential buildings over a whole year. 

The connection between the outdoor temperature and indoor relative humidity may 

be seen in the reprinted figure below.  

 

Figure 1.1. Flow pattern in a quasi-counter heat exchanger. Reprint from (Zhang, 
2010).  

 

Figure 1.2. The coherence between the outdoor temperature and indoor relative 
humidity for Finnish residential buildings. Reprint form Kalamees et 
al. (2009).  

http://www.sciencedirect.com/science/article/pii/S0017931010003765
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Frost formation on a cold flat plate with moist warm air flowing over it was shown to 

grow in different forms of different humidity and temperature levels. For quite warm 

surface temperatures (close to 0oC) and low humidity levels the frost was found to be 

dense and had a smooth surface. For colder surfaces and high humidities the frost 

grew as crystals. These ice crystals increased the surface roughness and actually 

increased the heat transfer coefficient between the plate and the flowing air in the 

beginning of the experiments. (Yun et al., 2002) The results from the experiments are 

shown in a reprinted figure below:  

The moisture transfer efficiency of the membrane based heat exchanger will depend 

on the ability of the membrane material to transport water vapour (or the resistance 

to let the water molecules diffuse through it). Two main models exist to describe 

permeation of species through a membrane: 

1) The pore-flow model 

2) The solution-diffusion model 

The pore flow model describes the transport phenomena when a partial pressure 

difference at different membrane sides makes a convective driven flow of species from 

one side to the other through tiny pores in the membrane. The pore size acts like a 

sieve to sort out the different species.(Mukhopadhyay & Midha, 2008) The solution-

diffusion model was described in a review of Wijmans and Baker (Wijmans & 

Baker, 1995). Shortly, the model states that a permeant is dissolved (absorbed) in the 

membrane material and then diffuses through the membrane. The rate of absorption 

and diffusion is dependent on the concentration gradient.  The permeability, P, is 

then defined as the diffusion multiplied with the solubility: 

      (1.3.)  

 

 

 

Figure 1.3. Reprint from (Yun et al., 2002). Frost formation on a horizontal cold 
plate. Heat transfer coefficient dependency on time and distance 
from leading edge.  
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To find the permeability experimental test may be done. To find the solubility 

gravimetric test is usually made(Modesti et al., 2004). There exist several types of 

vapour transmission and permeability tests. McCullough (2003) compared 26 

different commercial fabrics tested according to five different standard methods. 

When comparing the water transmission flux for the different tests huge differences 

were found. Some of the differences can be explained by the differences in test 

methods; some have large humidity gradients and other smaller. In some test a 

resistance due to a stagnant air layer appears. Some test let the membranes come in 

contact with water and others have a great temperature gradient as well as a 

humidity gradient. (McCullough et al., 2003) This implies that when using available 

test results to predict the moisture transfer resistance of a membrane an 

understanding of how the tests was conducted is vital to be able to sort out the 

internal membrane resistance alone.  

Henry’s law says that the partial pressure, p, is equal to the concentration of the 

solute, C, multiplied with a constant   .  

       (1.4.)  

Henry’s law may also be expressed in terms of the volume fraction, φ (as an 

alternative to the concentration) and a constant k, describing the water molecules 

affinity to the membrane material: 

 φ     (1.5.)  

The relationship between the volume fraction,   and the mass fraction,θ is: 

 
  

 

  (
   

 ) (
     
  )

 
(1.6.)  

Where    is the molar weight of the membrane material and    is the molecule 

weight of water. Zhang and Niu (2002) used a general sorption isotherm model 

derived from Henry’s law to describe the relationship between the moisture content in 

the membrane at different relative humidity levels. The relative humidity is 

expressed by the partial pressure divided by the vapour pressure at a given 

temperature. Since the vapour pressure of water at a given temperature is constant 

this value may be included in the constant k in equation 1.5. and the volume fraction 

may then be an expression of the relative humidity. This will give the expression 

given in Zhang and Niu (2002): 

 
  

    

    
 
 

 
(1.7.)  

Where   is a constant,   is the relative humidity and   is the moisture content in the 

membrane.      is the maximal uptake of water in the material (Zhang & Niu, 2002).  
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The water molecules unsymmetrical shape gives the molecules a polarity that makes 

intermolecular bonds between the molecules possible. This polarity makes also water 

a good solvent and makes the molecules easily bond to other polar molecules, ions or 

atomic groups. This feature is utilized in hydrophilic membranes. However, the well 

developed and described Flory-Huggins theory used to describe sorption of solvents 

into a membrane may not be used if the bonds between the penetrant molecules are 

stronger than the bindings between the membrane material and the penetrant.(Favre 

et al., 1993) The bindings between the water molecules make clusters of water inside 

the membrane. The approach from Favre et al. (Favre et al., 1993) called the ENSIC 

model (engaged species induced clustering) is described by looking at the membrane 

surface as a matrix of either cells of polymer or cells of solvent (water vapour). See 

picture below: 

At equilibrium the membrane has absorbed some water. Water vapour molecules may 

then either be absorbed by polar groups in the membrane material or by other water 

molecules already absorbed. If the partial pressure rises the number of water 

molecules absorbed by the membrane may be assumed to rise. If the total number of 

molecules in the membrane is assumed to be huge compared to the rise in numbers of 

water molecules due to the partial pressure rise the total molecule number may be 

assumed constant. This gives the relation(Modesti et al., 2004): 

        
    

               (1.8.)  

The theory may explain why an increase in water content will decrease the moisture 

transfer resistance of the membrane.  

The other factor in the permeability equation in 1.3., the diffusivity, is expressed by 

Fick’s first law (Crank, 1975): 

 
    

  

   
 

(1.9.)  

F is the rate of mass transfer per unit area and C is the concentration of water 

vapour. Fick’s second law is expressed as: 

 

Figure 1.4. Water molecules in the gas stream may either bond to polar groups in 
the polymer membrane surface (white balls) or to other water 
molecules already absorbed to the surface.  
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(1.10.)  

Fick’s first law is derived from the free diffusion theory and does not take into 

account the changes in molecular structures which play an important role in the 

transportation of water in a hydrophilic membrane. For porous materials the 

diffusivity may be considered independent form the change in concentration over the 

membrane. For hydrophilic materials this are not the case and the water vapour 

diffusion is shown to change a lot with changing humidity levels.  (Gibson, 2000) 

Modesti et al.(2004) showed that the diffusivity changed with different water 

activities and could by this not be considered to be a constant value. This differed 

from the model by Zhang (2012) where the water diffusivity in the membrane was 

assumed constant for a certain membrane.   
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Chapter 2 

Mathematical Model 
 

In a present work a mathematical model to predict the pressure drop, the temperature 

effectiveness and the annual heat recovery efficiency for a given frost protection 

temperature in a flat plate heat exchanger was derived (Aarnes, 2011). The heat 

transfer in this types of heat exchangers was shown to be independent of the heat 

exchanger material if the material was sufficiently thin. Hence, the temperature 

effectiveness is a function of the geometry and the inlet boundary conditions. As 

written in chapter 1.3. Zhang and Niu (2002) derived a method to find the moisture 

transfer effectiveness similar to the well-established ε-NTU method for heat transfer. 

Their method required additional laboratory testing to find the membrane thickness, 

diffusivity and sorption correlations. In this chapter a method to find the moisture 

transfer effectiveness without additional testing utilizing the information usually 

given by the manufacturers is derived. Membranes are often tested in a standardized 

way. For example the standard ISO 12572: Determination of water vapour 

transmission. The results are the materials permeability (s/m) given by the mass flux 

and the difference in the vapour partial pressure over the membrane. In addition it is 

often possible to find properties as thickness, porosity and water content at given 

humidity levels (often soaked (100%) or 50% RH).  

 

2.1. Membrane based heat exchanger theory 

If the heat of evaporation and the density are assumed to be constant the moisture 

transfer effectiveness may be expressed as (Zhang & Niu, 2002) : 

 
   

 

    
 

 ̇               

 ̇         
       

 
 ̇               

 ̇                
 

(2.1.)  

F is the flow rate of moisture from the exhaust air side to the supply air side (in cold 

climate). Note that the term efficiency and effectiveness denotes the same feature if 

the flow rates in each direction are equal. Niu and Zhang (2002) showed that the 

relationship between the effectiveness and a parameter called the number of transfer 

units; NTU, for moisture transfer followed the same form as for heat transfer. This 

means that the existing ε-NTU relations for heat transfer in heat exchangers may 

also be used for moisture transfer. ε-NTU relations for different exchangers are 

found in Kays and London (1964) or in Incropera and DeWitt (2007). 
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 When evaluating moisture transfer with the ε-NTU method the only difference from 

heat transfer is the definition of the effectiveness given in 2.1. and the NTU-value: 

 
     

   

 ̇   

 
(2.2.)  

Where    is the overall moisture transfer coefficient and  ̇ is the flow rate of air 

through the exchanger. The relation between the effectiveness and the NTU is given 

as: 

                                (2.3.)  

  is the ratio between the minimum and maximum air flow rates. 

The relations must be found from experimental investigation and different empirical 

correlations may be found in the literature. The relation is either to be found as 

empirical equations or as tabulated values. An empirical relation for a cross flow 

arrangement is found in Kays and London(1964):  

 
                 

(
 
 )     

     (                )
 

(2.4.)  

For a counter flow arrangement the empirical relation under is found in (Incropera 

& DeWitt, 2007): 

 
                    

    

      
 

(2.5.)  

 
                       

             

               
 

(2.6.)  

To find the effectiveness for the relevant quasi counter flow arrangement a relation 

from previous work was used (Aarnes, 2011): 

                    
             

    
                 

           

    
              ) 

(2.7.)  

For a given geometry and air flow rates the effectiveness may be given from the 

previous equation if the overall moisture transfer coefficient is found. Different form 

the heat transfer calculation this value will in the moisture transfer case be 

dependent on the membrane material as the next chapter will show. 
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2.2. Heat Exchanger Mass Transfer  

The heat exchanger consists of of multiple membranes that separate the supply and 

exhaust air.  

 

The transfer of water from the humid exhaust air side to the dry supply air side (for 

heating applications) consists of mainly two parts: 

(1. Convection to/from the surface from/into the air steams. This part is given by 

the advection due to the fluid motion over the surface and the diffusion of 

water molecules in the air streams. 

(2. Transport mechanisms inside the membrane material.  

These two parts may be added in an overall mass transfer coefficient UM: 

    [           ]
    (2.8.)  

Where       is the mass transfer resistance connected to the convection and       is 

the mass transfer resistance inside the membrane.  

 

2.2.1. Convective moisture transfer 

Convection may be divided into two main groups: forced convection and free 

convection. If the heat convection coefficient h is found, the mass transfer convective 

coefficient    may be found from the mass-heat analogy as described in Incropera 

and DeWitt (2007): 

  

  
 

 

         
(2.9.)  

 
 

Figure 2.1. Flow over membrane.  
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Where      is the water diffusivity in air,   is the thermal conductivity and    is 

the Lewis number.   is a constant usually set to 1/3. (Incropera & DeWitt, 2007) 

Forced convection will be the combination of advection due to the bulk motion of 

fluid and diffusion of water molecules in the air. Free convection is mainly diffusion 

transport, but the same analogy as for forced convection may be used since the 

diffusion causes a change in density and by that a buoyancy effect. (Incropera & 

Dewitt, 2007) 

In a heat exchanger there will always be a velocity present and the convection of heat 

and mass will then be a forced type. To find the heat transfer coefficient,  a Nusselt 

number correlation was used.  

 
    

  
   

 
 

(2.10.)  

   is the hydraulic diameter. In fully developed laminar flow in a rectangular 

channel the forced convection Nusselt number is found from(Aarnes, 2011): 

                                    
       

(2.11.)  

Where   is the aspect ratio (height of channel divided by the width). Using equation 

2.10. the heat transfer coefficient h is found and may then be used to find    from 

2.9. 

The resistance Rconv in equation 2.1. is then given as: 

 
       

 

    
 

 

     

 

 

(2.12.)  

2.2.2. Moisture Transport through Membranes 

The moisture transport resistance through a membrane is strongly dependent on the 

membrane material. There exist different classes of water permeable membrane 

materials. For use in a moisture transferring heat exchanger either a microporous or 

a nonporous hydrophilic membrane was found to be most favourable (Aarnes, 2011).  

The flow rate of water transported through a membrane is easily expressed as the 

total volume flow rate of air multiplied with the water vapour concentration 

difference from the inlet and outlet sides of the exchanger channels: 

    ̇   (            )   ̇                  (2.13.)  

Measurement of the water vapour concentration directly is difficult and there is more 

convenient to express the relation above in terms of the relative humidity difference. 
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The relation between concentration and vapour pressure is given by the perfect gas 

law: 

      ̅  (
 

 
)  ̅  (2.14.)  

Where   is the molar weight and m is the mass,  ̅ is the universal gas constant and 

  is the temperature in Kelvin. The relative humidity is defined as the vapour 

pressure divided by the saturation pressure at the same temperature. The water 

vapour concentration is the mass of water in the air divided by the total volume of the 

air. If the temperature over the membrane is assumed constant 2.13. may be expressed 

as: 

 
  

 ̇                     

 ̅ 
 

(2.15.)  

If the rate of change of concentration through each channel in the heat exchanger is 

assumed to be constant the moisture flux may be assumed to be given in terms of an 

arithmetic mean concentration difference and the overall mass transfer resistance in 

the membrane (Gibson, 2000): 

 
  

     ̅

     
 

 

(2.16.)  

Since it is more convenient to measure the vapour pressure than the concentrations of 

water vapour, the permeability constant, P may be introduced: 

         (2.17.)  

Assuming that the arithmetic mean concentration difference equals the difference 

over one side combining the equations above gives a relation between the permeability 

and the resistance. Applying the ideal gas law gives: 

 
      

  

 ̅  
 

(2.18.)  

With this relation it will be possible to find the resistance and further the overall 

moisture transfer coefficient from given values for the permeability. Equation 2.18. 

shows that the resistance is dependent on temperature. However, the temperature 

dependency was assessed in an article by Gibson (2000). He investigated the 

temperature dependency of vapour transport through different membrane materials 

used in waterproof, breathable clothing. He found that the vapour transport 

resistance inside the membrane changed very little with temperature in the range 

from 3 - 40oC. This may be explained from that the permeability is shown to increase 

with increasing temperature (Mondal et al., 2006) due to the increase in free volume 

radius. Looking at 2.18. the resistance will decrease with increasing temperature if 
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the permeability is constant. By using the permeability test temperature value in 

equation 2.18. the temperature dependency will be eliminated and the resistance may 

be assumed to be temperature independent since the partial pressure is dependent on 

temperature. 

2.2.3. Humidity Dependent Resistance 

The water vapour transport resistance was showed to be dependent on the mean 

relative humidity over the membrane. The relative humidity affected the amount of 

vapour content inside the membrane. And the water content in the membrane will 

affect the water vapour transport to a great extent. (Gibson, 2000) Since the relative 

humidity will vary through the membrane based heat exchanger, a mean moisture 

transport resistance was used to find the overall moisture transfer coefficient   . 

The normal operation area for such an exchanger in the Nordic climate is displayed 

in the figure below. 

 

It was preferable to find a relation between the resistance and the mean humidity for 

different types of membranes: 

                                           
    

(2.19.)  

Assuming that the water diffusivity in the membrane material was constant it was 

possibly to see that the correlation from 2.19 follows the same shape for different 

materials. The relation between the solubility and permeability is given in 1.2. 

Results from the literature for different membranes are presented below. The 

sorption curves are displayed in the same form as the resistance assuming      
 

    
. 

 

 

Figure 2.2. The normal operation area for a membrane based heat exchanger in 
cold climate. Green lines are relative humidity lines. The normal 
middle value is from RH approximately 30% to 80%.   
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The literature shows that the relation follows the same form for all different 

materials, both porous and nonporous hydrophilic ones. As possible to see from the 

figure above the resistance for a soaked membrane (i.e. RH 100%) does not goes to 

zero, but an asymptotic value. A correlation of this form will give a good 

approximation of the relation between the humidity level and he resistance: 

              (2.20.)  

However, to find the three constants A, B and C in this correlation three resistances 

and corresponding humidity levels need to be known. This may be difficult to find 

and a correlation with only two constants may be more useful. If a reference 

resistance is found a relation of this form may be used:  

 

 

 

Figure 2.3. Upper: Results from Gibson(2000): water vapour transport resistance 
for different types of membranes for different humidities at 3oC. 
Lower: Resistance equivalent values from sorption curves from 
(Marais et al., 2000),(Modesti et al., 2004) and (Niu & Zhang, 2000). 
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(2.21.)  

Where K is a constant for a given membrane material. The value may be found from 

a second reference point. 

 

  

     
     

  

     

      
  

 

(2.22.)  

Since only two points are given the resistance outlying from these points would be 

inaccurate. Especially if the two references are close to each other and the resistance 

level at interest is at another level than the two. The reference points will give the 

best result if they are quite far apart in humidity level. However, in most cases the 

only interesting points is between 30 to 80% RH according to figure 2.2. and there may 

be assumed that if the first reference point is between 100-60% and the second between 

20-50%  the results will be good enough for this use. To find the overall moisture 

transfer coefficient    a mean resistance value should be found. The inlet conditions 

are given in relative humidity. To find the mean humidity level in the exchanger the 

humidity should be converted to an absolute humidity because this will change 

linearly through the exchanger different form the relative humidity (see figure 2.2.).   

 
      

            

 
 

(2.23.)  

The relation between the absolute and relative humidity is given in Aarnes (2011): 

 
     

     
 

      
    

 

   
 

(2.24.)  

The mean resistance is then found from: 

 
               

     

      
  

(2.25.)  

If a permeability test is run and the permeability is given as in equation 2.17 the 

reference resistance is given in 2.18. However, permeability test results are not always 

available, and there is seldom possibly to find more than one reference resistance 

from permeability tests. This means that there will be preferable to find the 

resistance from other means as well. For a microporous membrane the resistance is a 

function of the porosity and the possibility for the water vapour to diffuse through 

the tiny air filled pores. Since the resistance is dependent on both sorption resistance 

and diffusion resistance the reference point should be found when the membrane is 
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soaked (RH 100%) then it is possible to assume that the sorption resistance is zero. 

The     may in this case be expressed as:(Yeh & Chang, 2005) 

 
     

  

    
 

(2.26.)  

  is the diffusion coefficient or water vapour in air,   is the porosity,   is the 

tortuosity and t is the thickness of the membrane. The tortuosity may be eliminated 

by a correlation between the porosity and tortuosity (Alves & Coelhoso, 2004): 

 
     

       

     
 

(2.27.)  

For a nonporous membrane the      must be found from other relations. All models 

found to predict the water vapour sorption for different materials build on 

experimental data. For instance the Guggenheim–Anderson–de Boer model (Huang 

et al., 2004) includes three different constants found from experimental investigation. 

Another model used in calculations for a membrane based heat exchanger was 

derived by Niu and Zhang (2000): 

 

  
     (    

 
 )

 

  

    
    
      

 

(2.28.)  

The relation between the water content in the membrane and humidity needs to be 

known to find the sorption constant C.     is the maximum amount of water the 

membrane will hold(kg water/ kg membrane).     is the diffusivity of water in the 

membrane.  

If a reference value is found: 

 

     

     (    
 

    
)
 

     
 

    
    
      

 

(2.29.)  

 
      

    

    
 

    

 
(2.30.)  

If a sorption test at a second reference humidity is done the resistance for that 

humidity levels if found from: 
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(
     

     
)
 

(
     

     
)
 

 

 
(2.31.)  

2.2.4. Evaluation of the empirical relation 

The approach derived in the previous chapter used and compared to the results form 

Gibson (2000). He tested several membranes for the dependency on resistance on 

relative humidity. See figure 2.3.  

McCullough et al. (2003) tested several fabrics after different permeability testing 

standards. Two of them were Sympatex® from Akzo-Nobel and Gore-tex® from W.L. 

Gore & Associates.  The first is a nonporous hydrophilic membrane and the latter is 

micro porous. The vapour flux found from ASTM E 96 B (ASTM, 2011)  and JIS L 

1099 (JSA, 1999) in the article by McCullough et al (2003) were used to find two 

reference resistances at 75% and 100% (soaked membrane) relative humidity 

respectively. The resistance in the air layer in the ASTM E 96 B-method was 

approximated after the relation: 

 
     

 

     
          

(2.32.)  

Where   is the height of the air layer,     is the diffusivity of water vapour in air 

and   is the test cup opening area. The comparison between the proposed method and 

the result from Gibson is shown below: 

 

  

 
Figure 2.4. Comparison between measured values by Gibson(2000) and empirical 

relations by the author. 
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The model seems to fit quite well for humidities over 40% with the results from 

Gibson (2000). 

The porosity of the Nafion®117 membrane from DuPont was showed to be 52±5% 

(Chen et al., 2008) and was used to find a reference resistance at 100% RH from 2.27. 

A sorption curve for different humidities was found in (Peron et al., 2010). Values at 

20 and 100% RH were used to find a resistance form the sorption model (2.31.).  

 

The model does also in this case fit very well with the results from Gibson (2000) for 

humidity levels between 40 and 60%.  

  

 
  

 
Figure 2.5. Comparison between measured values by Gibson (2000) and empirical 

relations by the author. 
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2.3. Practical use of the mathematical model 

For practical use of the model a simple program written in Visual basic language 

called HXcalc was written. The software used was Microsoft Excel 2010. This is an 

extension to the simple program HXOpt made in previous work (Aarnes, 2011). The 

program code is to be found in appendix A.3. The user interface has many dropdown 

choices for:  changing parameter, geometry, membrane resistance calculation method, 

energy effectiveness weather data location etc. A print screen picture of the input 

interface is showed here:   

After clicking the “Run simulation!” button the temperature effectiveness, moisture 

transfer effectiveness (if “Membrane HX?” is set to “Yes”) and the annual heat 

recovery efficiency will be displayed in a separate worksheet named “Results” as 

graphs where the effectiveness is the y-values and the chosen “Parameter to change” 

as the x-axis. The results will appear as points. Clicking on a single point will make a 

 

 

Figure 2.6. User interface of the input sheet in the developed HXCalc program. The 
white boxes are to be filled in by the user.   
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separate window appear. The window includes a drawing of the exchanger with 

additional information from the conditions given in that point. See example below: 

In addition will a second result sheet called “Hum-temp” update when clicking on 

point in the “Result” sheet. In this chart the input and output temperature and 

absolute humidities will appear as lines (between inlet and outlet values) in a 

temperature-humidity diagram. These lines indicate the temperature and humidity 

development through the exchanger. See picture below for the same case as the 

picture above: 

 

 

 
Figure 2.7. Results sheet after clicking on a single point. An information window 

appears.  

 

 
Figure 2.8. Results sheet after clicking on a single point. An information window 

appears. 
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2.4. Evaluation of the Method in HX Applications 

The moisture transfer effectiveness calculation method derived in the previous 

chapters was compared to the results in an article by (Kadylak et al., 2009). In this 

case only the moisture transfer effectiveness was addressed hence the article 

addressed the effectiveness of a humidifier operating in a proton exchange membrane 

fuel cell. Kadylac et al.(2009) took their starting point in Zhang and Niu’s(2002) 

method to calculate the moisture transfer effectiveness in a flat plate heat and 

moisture transferring heat exchanger.    

Two reference points for the mean resistance values were found from the relation in 

2.28. The C value was set to 10. Then the mean resistance was found from equation 

2.25. The results comparing to both Kadylac et al. (2009) and Niu and Zhang’s (2000) 

results are displayed below: 

As seen the derive method has the same evolution as the results from Niu and Zhang 

(2000), but the results are a bit lower value. At high humidities the method correlates 

well with Kadylack at al.’s ( method). 

Second the dependency on the flow rate was compared to the article by Niu and 

Zhang (2000). The results are shown below: 

 

 

Simulation  input values: 

LC 0.5m 

H 0.145m 

Nr of plates 29 

              

 ̇ 0.039 m
3
/s 

C 10 

            70.15 
o
C 

     0.23 kg/kg 

        

      100% 

Le 1.2 

     0.0263 w/mK 

     1.17 kg/m
3 

     1.33*10
-5 
m
2
/s 

 
      1010 J/kgK 

 

Figure 2.9. Comparison between the moisture transfer effectiveness calculations 
methods on changing supply inlet relative humidity from Aarnes, 
Kadylac et al.(2009) and Niu and Zhang(2000). 
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The results above have the same input values at the previous case. The proposed 

model correlates well with the model of Niu and Zhang (2000) for this specific 

example. The temperature effectiveness is not dependent on temperature, different 

from the moisture transfer effectiveness. A comparison was done, still with the same 

inputs as over, for different supply inlet temperatures and a supply inlet humidity 

kept constant at 50%. The results were again compared to the result in the article by 

Niu and Zhang (2000): 

 

 

 
Figure 2.10. Comparison between the derived model and results from Niu and 

Zhang (2000) for changing flow rate.  

 

 
Figure 2.11. Comparison between the derived model and results from Niu 

and Zhang (2000) for changing supply inlet temperatue. 
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The models do not correlate well regarding the moisture transfer effectiveness 

dependence on temperature. As seen is the proposed model less sensitive to changes in 

supply inlet temperatures than the model by Niu and Zhang (2000). The reason is 

probably that the derived model uses a mean value for the moisture transfer 

resistance while Niu and Zhangs’ (2000) model is iterative and may then take into 

account differences in humidity through the exchanger.    

The annual heat recovery efficiency from the method derived in the previous work by 

the author (Aarnes, 2011) was included in the program HXcalc. Zhang and Niu 

(2001) derived a method to predict the annual energy savings using a membrane based 

heat exchanger. A simulation with the same inputs as used in the article by Zhang 

and Niu (2001) was done. The weather data used was from Hong Kong and was found 

at the website of the American Energy Department1. Under are the results compared 

when only looking at energy for heating. The two methods seem to correlate very well. 

The author’s model gave a bit higher resulting values; this is probably because the 

model from Zhang and Niu (2001) did not take into account heating in the summer 

months as the author’s model.  

 

 

 

                                           
1 «Department of Energy: EnergyPlus Energy Simulation Software: Weather Data: China.», Quoted: 
06.06.12, 
http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=2_asia_wmo_region

_2/country=CHN/cname=China 

 

 
Figure 2.12. Required and saved energy for heating. Comparison between the 

derived model and results from Niu and Zhang (2000). 
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Chapter 3 
 

Experimental Investigation: Method 
 

The objective of the experimental part of this work was to compare a plastic based 

heat exchanger to a membrane based heat exchanger due to the problems of 

condensation and freezing in cold climate conditions. The fundamental hypothesis 

for the development of the test method was: When ice and frost is formed inside the 

exhaust air channels in a heat exchanger the pressure drop over exchanger on the 

exhaust air side will rice. The pressure drop on the supply air side will remain 

constant through the test period.  

In addition the test rig was used to perform experiments that could be compared to 

the mathematical method derived in the previous chapter. 

 

3.1. Development of the Test Rig 

A test rig was built to compare the frost formation in two plastic sheets and a 

membrane based heat exchanger. The test conditions should be as stable as possible 

over the test periods and it was preferable to have quite large differences in both 

humidity and temperature level in the supply air and exhaust air sides respectively.  

3.1.1. Supply Air Side 

The supply air was taken from the lab and blown through the cooling coils with a 

12V axial computer fan. The air flow rate was regulated by covering the inlet area to 

the fan with air tight tape. Two cooling coils in series with glycol as the chilled fluid 

were used to cool down air on the supply air side. The initial testing of the cooling 

coils is described in appendix A.1. The glycol was cooled down to -25oC. The long 

distance between the glycol compressor and the cooling coil gave an immense 

temperature loss and the coldest outlet air temperature measured at the outlet of the 

cooling coil was about -15oC. The lack of space in the lab made it necessary to build 

about 2.5m of ducts from the cooling coil to the heat exchanger. Plastic ducts of 3cm 

diameter were used and isolated with Armaflex (synthetic rubber isolation for ducts) 

from Glava.  Due to the very low velocity inside the ducts it was impossible to 

insulate the ducts well enough to conserve the cold temperature. When reaching the 

heat exchanger the temperature had riced to about -4 to -10oC depending on the air 

flow rate. The humidity and temperature probes were placed in square shaped ducts 

made out of stainless steel plate. The ducts worked also as air straighteners before 

and after the heat exchanger, supplying the air flow as even distributed as possible. 
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One centimetre from the channel opening, close to the heat exchanger a thin pipe was 

welded to the channel and a small hole was drilled through the channel wall. This 

was used to measure the static pressure over the heat exchanger. Due to ice formation 

inside the cooling coil the air flow rates decreased after approximately 12 hours. The 

tests were therefore ended after 12 hours.  

3.1.2. Exhaust Air Side 

Heating and moisturising of air to simulate the exhaust air side was done inside a 

“climate chamber” box built of 40mm thick polystyrene plates. By taking some of the 

cold air from the cooling coil the inlet air to the “climate-chamber” was stable 

regarding temperature and humidity. A bucket of water with a 300W heating element 

and a thermocouple coupled to a PID regulator was used to humidify the air. By 

regulating the water temperature in the water bucket both temperature and humidity 

were controlled since the inlet temperature and humidity were practically constant. 

See the picture below. 

A dimmer was connected to the heating element to regulate the temperature of the 

water. To get a stable temperature and humidity levels it was preferable to have the 

same effect from the heating element at all time. The heater was dimmed to give a 

water temperature at 34oC. This gave an exhaust temperature at approximately 22 oC 

and humidity at approximately 42% RH. The PID-regulator had a set point at 40 oC 

to protect the bucket from dry-out. A small axial computer fan with 12V power 

supply was attached at the inlet of the exhaust air supply duct. This was made out of 

a 10cm diameter spiro-channel insulated with an aluminium foil covered fibre glass 

insulation mat from Glava. The spiro-channel was attached to a rectangular duct 

 

Figure 3.1. Drawing made in Google Sketch Up. The exhaust air was heated and 
humidified in a polystyrene box placed under a table to make the rig 
as compact as possible. The duct to the lower right was connected to 
the cooling coil. 
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described in the previous chapter. An identical duct was placed in the opposite side of 

the heat exchanger.    

3.1.3.  Small Scale Heat Exchanger Prototype 

The heat exchanger was build up with a frame made of two hexagonal shaped 6 mm 

transparent acrylic plastic plates. Two 3mm bends cut out from a Lexan plate were 

glued to each hexagonal plate using epoxy glue. Four more bends of 6mm Lexan were 

also cut out. The first membrane layer was connected to the frame base layer using 

double sided tape. The construction was built like a sandwich with Lexan bends and 

membranes as seen in the picture below. For the first test this prototype was used. 

However, for the rest of the experiments eight new bends, now of 3mm Lexan were 

made to increase the membrane layers from 3 to 5. The mechanical drawing of the 

prototype frame is to be found in Appendix A.5.  

Three different types of heat exchanger plate materials were tested. Two non-

permeable “plastics” and one membrane with high permeability to water vapour. 

Properties of the materials are shown below: 

Table 3.1. Properties for the different tested plate materials. 
 

Material Manufacturer Water 
permeable 

Elastic Crumples in 
high humidity 

Transparent 

overhead 

sheets 

Optimax No No No 

PP DuPont No Yes No 

Membrane X DuPont Yes Yes Yes 

The transparent overhead sheet from Optimax was non-elastic and quite stiff. This 

made it easy to construct the heat exchanger prototype. The PP-sheets and membrane 

from DuPont were much more difficult to handle in the construction of the prototype 

exchanger. Results from permeability tests for the membrane were given in datasheets 

from the manufacturer. These values will not be given in this report due to 

 

 

Figure 3.2. Heat exchanger made of sandwich construction. Drawing of concept in Google 
Sketch Up. 3 layer prototype. 
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confidentiality, neither will the actual name of the membrane (therefore is it called 

X). The PP-sheets were actually the protection layer for the membrane. This 

material was used since the appearance was very similar to the membrane. The 

material was probably polypropylene since it was written PP on the sheets. The heat 

exchanger was placed in a die made from the four rectangular ducts and made air 

tight with a sealing compound. An isolation mat was placed on top of the heat 

exchanger under the experiments to minimize the temperature loss to the 

surroundings. See picture below: 

3.1.4. HSE 

A HSE report was written before the experiments were run. The whole report is to be 

found in Appendix A.6. The biggest risk was connected to the use of the ethylene 

glycol loop used to chill the supply air (leakages, pipe rupture etc.). The risks were 

found to be acceptable to run the experiments.  

 

3.2. Measurement and Instruments 

To measure temperature and humidity four instruments from Vaisala were used. 

Three of them were of the type HMP 233 and the last was of the type HMT 334. The 

probes could measure both humidity and temperature. They were mounted 

perpendicular to the air streams in each of the rectangular ducts receiving and 

supplying air from and to the heat exchanger. The pressure drop over the heat 

exchanger was measured with two micro manometers from DPM. The relative 

humidity and temperature of the surroundings and the supply air outlet velocity were 

logged with the TSI Velocicalc 9555-P instrument. The accuracy of the instruments 

is shown in the table below: 

 

Figure 3.3. Die for placing of the heat exchanger. The rectangular ducts with 
pressure measurement pipes are shown.  
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Table 3.2. Uncertainty of measurement instruments used in experimental set up. 
 

Manufacturer Model name Measurement Instrument Uncertainty 
Vaisala HMP 233 Relative humidity 

Temperature 

±2% (3% for 90-100%RH) 

±0.1
o
C 

Vaisala HMT 334 Relative humidity 

Temperature 

±(1+0.008*reading) %RH 

±0.2
o
C (at 20

o
C), ±0.3

o
C (at -

10
o
C) 

DPM TT470s Pressure drop ±1% of reading ± 0.1Pa +analogue 

output: ±0.3% 

TSI Velocicalc 

9555-P  

Relative humidity 

Temperature 

Velocity 

±3% 

±0.3
o
C 

±max(3% of reading, 0.015m/s) 

The humidity probes were calibrated with a LiCl-salt solution and against a 

reference value given by the TSI-instrument in a high humidity chamber (the 

polystyrene box with the humidity and heating bucket). The most important reason 

for this calibration was to make sure that the four different humidity probes were 

calibrated against each other, so that the difference between the inlet and outlet 

humidity level was as accurate as possible. The instruments were not calibrated for 

temperature measurements since this accuracy was good in the first place.     

The flow rates were not possible to measure with any availiable instruments due to 

the very low air flow rates. Since velocity measurement by traversing over the ducts 

with a velocity measurement instrument was found to be to inaccurate a manual 

method of measuring the air flow rates was used: A plastic bag was hold tight over 

the air outlet for 10-20 seconds measured with a stop watch. The bag was then quickly 

removed and the opening twisted. The bag was then put into a bucket of water to find 

the air volume. The measurements were made several times to find an average value. 

The humidity and temperature probes and the two micro manometers were connected 

to a computer via a serial bus. The program LabView was used to transform the 

analogue signals to preferable variables and log the results. The pressure drop, 

humidity and temperature were logged every second. The surrounding humidity and 

temperature were logged by the Velocicalc every 10 minutes (averaging by the 

instrument). Microsoft Excel was used to process the outputs into readable charts and 

averages. The measurement set up is shown in the figures below and at the next page: 

 

Figure 3.4. Measurement set up. 
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Figure 3.5. Flow chart of the experimental set up.   
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3.3. Uncertainty 

The uncertainty of the experimental investigation was connected to the reliability 

and the accuracy of the measurement instruments and the use of them. The relevant 

uncertainty can be divided into two separate parts(Novakovic et al., 2007):  

1) Random uncertainty. Instrument accuracy, influence from other sources etc.  

 

2) Systematic uncertainty- measurement calibration and upset of instruments 

etc.  

An example of random uncertainty is shown in the picture below. The picture shows 

the pressure drop results, a part of the LabView interface during an experiment. The 

peak shows random uncertainty.  

 

The standard deviation tells something about how the measurements will vary about 

the “true” value. The standard deviation may then be found from: 

 

  √
 (   ̅) 

(   )
 

(3.1.)  

Where  ̅ is the mean value and n is the number of measurements. Since the pressure 

drops, especially on the exhaust air side, changed trough the test period (in some 

experiments) using the variation about a mean value for the pressure drop would lead 

to a to larger standard deviation for the random uncertainty than it actually was. 

Therefor was this relation used instead of 3.1.:  

 

  √
 (   ̃) 

(   )
 

(3.2.)  

Where  ̃ is the “true” pressure drop given in a certain time step by a linear trend line 

describing the increase in pressure drop with time. This trend line is found by the 

 

 

Figure 3.6. Random uncertainty in the pressure drop measurement. Print screen 
from LabView Front Panel interface.  
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trend line tool in Excel. The supply air and exhaust air side pressure drops are shown 

in the figure below. 

 

The pressure drop was logged every second. If the hole time period is taken into 

account: 

 Exhaust air side pressure drop standard deviation: 0.0621 Pa 

 Supply air side pressure drop standard deviation : 0.2228 Pa 

Since the random uncertainty seemed to increase a great deal after 900 min it may 

only be interesting to look at this first part. If the standard deviation only takes into 

account the first 900 min: 

 Exhaust air side pressure drop standard deviation: 0.0536 

 Supply air side pressure drop standard deviation: 0.0637 

It appeared that the random uncertainty was less for the exhaust air measurement 

than the supply air measurement. This may be explained by that when the battery 

capacity was low the analogue output signals from the micro manometers were 

greater than if the battery was full. This seemed as a reasonable cause seen that the 

random uncertainty increased with time (ref. figure 3.7.). 

Random uncertainty for the mean value is calculated as: 

 

    √
 (   ̅) 

(   ) 
  

 

   
 

(3.3.)  

The systematic uncertainty may consist of different parts. The first is the one that is 

given by the manufacturer. This uncertainty is given in table 3.2. The systematic 

uncertainty for the resulting parameters as the efficiency will also be given by the 

difference in the calibration of the different humidity and temperature probes. This 

is possibly to see in this picture: 

 

 

Figure 3.7. Pressure drop measurement. A linear trend line equation for 
exhaust air pressure drop is displayed to the right.  
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The total uncertainty is then: 

     √        (3.4.)  

Since the measurements were logged every second and the experiments were run for 

more than 12 hours the random uncertainty was ignorable compared to the systematic 

uncertainty for temperature, humidity and pressure as shown in appendix A.4.   

For the air flow rate measurement, which was manually done by a plastic bag, a stop 

watch and a bucket of water, the uncertainty was of the combined type.  

 
 ̇  

             

    
 

(3.5.)  

Since the volume was manually found from between litre marks on the buckets the 

systematic uncertainty from manually readings may be set to ±0.2 l. The systematic 

uncertainty from the time to connect and release the bag from the duct outlet and the 

start and stop of the stopwatch may be set to ±0.5 sek. 

Table 3.3. Uncertainty of parameters in manual flow measurement method. 
                  Numbers from experiment 1. 

Time (s)   ̅           
          

           

         

           

Volume (l)   ̅̅ ̅       
          

          

         

           

10.17 4.6 

9.88 4.3 

9.88 4.4 

10.12 4.3 

 

 

 

 

 

Figure 3.8. Humidity level measurement. Chart from LabView interface. The graph 
shows the humidity level at the same sport for the four different Vaisala 
probes. The HMP3 probe gives a lower value of the humidity than the 
other probes, about 0.3%.  
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The uncertainty of an assembled result parameter is given from (Novakovic et al., 

2007) :            

 

    √(
  

   
   )

 

 (
  

   
   )

 

   

(3.6.)  

For the flow rate measurement: 

 

  ̇   √( 
 ̅

 ̅ 
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 ̅
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             ⁄

        
 

 ⁄   

(3.7.)  

The flow rate for the example in table 3.3. is then 1.58 ± 0.11 m3/h.  

The relation between the absolute humidity (used to find the moisture transfer 

efficiency) and the relative humidity was derived for 0oC in the project report by the 

author. (Aarnes, 2011) : 
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(3.10.)  

For the temperature efficiency the most accurate results were found when the 

temperature difference at the exhaust air side was used in the temperature efficiency 

relation. The reason was that the temperature loss to the surroundings was greater on 

the supply air side than on the exhaust air side. For the moisture transfer efficiency 

it was assumed to be no loss to the surroundings. The efficiencies for moisture 

transfer and heat transfer for the exhaust air side are given as:  

    
            
           

 
(3.11.)  
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(3.12.)  

The uncertainties are found from: 
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(3.14.)  

Where   is another term for the total uncertainty of the given parameter.  

 

 

 

 

 

  



 



                                                                                                                                         Chapter 4: Results 
 

 
39 

 

Chapter 4 

Results 
 

In this chapter the results from the mathematical simulations and the experimental 

investigation will be briefly presented. All results from each experimental 

investigation may be seen in appendix A.4. Comparison and discussion will be 

presented in the next chapter. The experimental results are given as temperature and 

moisture transfer efficiency and not effectiveness since the flow rate measurements 

were too inaccurate and incomplete. The connexion between the moisture transfer 

efficiency and effectiveness is shown here: 

 
    

            

           
    (

 ̇   

 ̇ 

) 
(4.1.)  

 
    

            

           
   (

 ̇   

 ̇ 
) 

(4.2.)  

The relations will be equivalent for the temperature effectiveness/efficiency with 

replacing   with  . 

 

4.1. Results from the Mathematical Model 

To compare the experimental data with the mathematical model derived in chapter 2 

simulations were run in the HXcalc program. The input values and results for one 

run are shown below and on the next page:  

Table 4.1. Simulation input values. 

LC 0.1264m      1.33*10
-5 

m
2
/s 

L 0.107m 

 

      1006 J/kgK 

W 0.178m    206.5 s/m 

H 0.024m    39% 

Number of 

plates 

5    76.27s/m 

   0.8    100% 

     0.025 w/mK     45% 

     1.17 kg/m
3
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Figure 4.1. Temperature, moisture transfer and annual heat recovery effectiveness 

for a set point temperature at 18 oC for different air flow rates(m3/s). 
 
The same geometry (see Appendix A.5) and input values were used in the simulation 

as in the experiments. The input properties were -6.4oC and 33.4% RH for supply air 

and 22.3oC and 43% RH for exhaust air for the case displayed above. These values 

were the mean input values from all experiments. Two moisture transfer reference 

resistances for the DuPont membrane X were found from the permeability test 

results given in the datasheet from the manufacturer. The reference mean humidities 

were 39 and 100% respectively from the ASTM E 96B and BW test methods (ASTM, 

2011). The air layer resistance for test B was assumed to be 500s/m as in chapter 2.2.4. 

For flow rates in both directions at 1 m3/h the effectiveness dependence on supply 

inlet temperatures (all at 33.4% RH) are shown below: 

 

 

Figure 4.2. Simulated supply inlet temperature dependence for the efficiencies. 
Square shapes are the moisture transfer effectiveness and diamonds 
are temperature effectiveness.   
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The figure above was taken directly from the HXcalc program. When clicking on the 

point for -10oC this picture appears on the screen: 

 

4.2. Flow Pattern inside the Heat Exchanger  

A heat exchanger with coloured copy paper as heat transfer plates was built to see the 

flow pattern inside the heat exchanger using a “smoke pen” form Björnax AB. A fan 

was used to pull air through the heat exchanger and the smoke pen was ignited and 

moved along the inlet end of the heat exchanger. The coloured paper made the smoke 

visible and it is possible to identify stream lines inside the heat exchanger. Three 

different picture series were taken starting with the first one with dry paper. After 

the first series the heat exchanger was exposed to mist form the humidifier for 

approximately 5 min and a second picture series was taken. After approximately 10 

more minutes exposed to mist a third photo series was taken. The paper started to 

crumple while exposed to humidity and for the last picture series this was clearly 

visible.  

 

 
 

 
Figure 4.3. Popup window from HXcalc for supply air temperature at -10oC.  

 

 

yyysfdgfg

  

Figure 4.4. Middle streamline for three different photo series. Picture to the right 
shows a streamline when the paper was exposed to high humidity. 
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Figure 4.5. Adobe Photoshop was used to overlay several pictures to see the 
different streamlines. Dry heat exchanger to the left, exposed to humid 
air in the middle and wet heat exchanger to the right. 

When the heat exchanger was dry it was possible to see that the air flows over most of 

the heat exchange area. When the paper started to be wet the flow covered less of the 

area. This means that there may have been stagnant air in some areas in the heat 

exchanger.  

 

4.3. Results from the Experimental Investigation   

The results from the different experiments are assembled for easier comparison in 

this chapter. For more results from the individual experiments see Appendix 4. For 

the experiments the resulting parameter is sown as efficiency given from the exhaust 

air side, not as the effectiveness given from the HXcalc program.  Below is a table 

with the mean results and the name of the heat and moisture transfer plate material 

for eight different experiments.  

 

Table 4.2. Overview of all experiments with mean values for inlet temperatures and 
relative humidity, pressure drops, measured air flow rates and calculated 
efficiencies based on the exhaust air side. 

 

 Plate 
material 

       

     

 

      

     

      

    
      

    
    

     
    

     
 ̇  

  
 

 ⁄   

 ̇  

  
 

 ⁄   

      

1 Optimax -5.27 23.81 27.4 43.6 2.40 2.55 1.58* 1.58 0.27  

2 Optimax -8.05 20.85 33.6 39.3 3.95 5.79 1.66 1.05 0.37  

3 DuPont X -4.96 21.25 27.1 42.86 9.248 8.96 0.74 1.38 0.41 0.37 

4 DuPont PP -8.41 21.04 35.17 46.15 6.16 6.73 1.38 1.30 0.35  

5 DuPont X -0.23 22.91 39.02 45.25 10.47 9.85 1.53 1.33 0.54 0.49 

6 DuPont X -4.32 22.77 29.54 43.27 11.13 10.48 1.55 1.20 0.54 0.58 

7 DuPont X -10.5 23.21 41.04 37.27 27.19 25.60 2.6 0.6** 0.60 0.91 

8 DuPont X -9.62 22.90 34.22 46.60 25.25 24.80 1.4* 0.6** 0.61 0.88 

 *) Flow rates not measured, but assumed from velocity and humidity-temperature 
     diagram lines. 
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The temperature efficiencies for the different experiments are shown below. The 

temperature efficiencies are quite stable over time for all experiments except 

experiment two where the temperature efficiency first rice and then sinks.   

 

The development of the pressure drops are shown in the figure below for the 

experiment one to six. The two last experiments had  much higher pressure drop and 

are therefore displayed in a separate figure: 

 

 

Figure 4.6. Temperature efficiency for all experiments.   

 
 

 
Figure 4.7. Pressure drop for all experiments except 7 and 8.Experiement 1,2 and 4 

were plastic based while 3,5,6,7 and 8 were membrane based.    



Membrane Based Heat Exchanger                                                                                                              .                                                                                                                                                                                                                                          
 

44 
 

The start pressure drops changed quite much between the different experiments as 

possible to see in the figures above. However, a significant difference between the 

plastic based heat exchangers and the membrane based one is to be easily recognised. 

While the difference in pressure drop between the two air steams was quite constant 

over time for the membrane based heat exchanger in experiment 3,5,6 and 7 the 

difference increased quite significantly with time for the plastic based heat 

exchanger prototypes in experiment 1,2 and 4. A tiny decrease in the pressure drop 

difference happened in experiment 8. Since the supply air pressure drops were not 

stable as expected an equation to elude the changes in supply air pressure drop to see 

the changes at the exhaust air side was set up:  

   ̅

  
 

(             )  (               )

 
 

 

(4.3) 

Below is a table showing the results for the eight experiments using the equation 

above for hour based averages in hour 2 and 14 (hour 1 and 11 in experiment 6, and 1 

and 6 from experiment 7): 

Table 4.3. Difference in pressure drop over time. 
 
 Experiment   ̅           ̅            

1 0.027497 0.934894 
2 0.25829 8.781845 
3 0.008796 0.299074 
4 0.093076 3.16458 
5 0.003044 0.103503 
6 0.014223 0.483596 
7 0.043156 1.467318 
8 0.021711 0.738186 

 

 

 
Figure 4.8. Pressure drop for experiment 7 and 8. 
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The membrane based experiment 2 and 4 stand out with high values. High value was 

also found for the membrane based experiment 7, but this experiment was only run 

for six hours.  

 

The moisture transfer efficiency results from the membrane based heat exchanger 

experiments are displayed here: 

The results above divide into two groups with experiment 7 and 8 having much 
higher efficiencies than the other three experiments. This should be seen in 
connection to the ratio between the flow rates which are much greater in experiment 
7 and 8 than in experiment 3,5 and 6.    

The moisture transfer efficiency dependence on supply inlet temperature: 

 

 

 
Figure 4.9. The moisture transfer efficiency dependency on time for the 

different experiments with membranes.   

 

 

Figure 4.10. The moisture transfer efficiency on the exhaust air side 
dependence on time for the different experiments with membranes.   
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The correlation between the temperature and moisture transfer efficiency in 
experiment 5,6,7 and 8 forms a increasing efficiency trend for lower temperatures. 
Experiment 3 does not follow this. However the experiment three was the only 
experiment where the exhaust air flow rate was greater than the supply air flow rate.   
 
Ice and condensed water were found in all plastic exchangers (experiment 1, 2 and 4) 
plus in the last membrane based experiment (experiment 8). The ice formed in 
different areas in the plastic based and membrane based exchanger respectively. For 
the plastic based heat exchangers ice formation occurred in the exhaust air channels 
near the supply air inlet. In the membrane based heat exchanger the ice formed near 
the supply air outlet. In the membrane based exchanger the membranes tend to 
expand and crumple in very humid conditions. This happened in experiment 8 and it 
was also observed when the cooling coil was turned off between the experiments. 
However, the membranes tightened when the humidity level went down again.  

 

4.4. Expansion of the Membrane in High Humidity 

Conditions 

A very simple experiment was done with the membrane based heat exchanger. The 

exchanger was dipped in water for just a second. The membranes expanded and the 

membranes stuck together as showed in the picture below.  After several hours the 

membranes dried and were stretched out again as before. Below are two pictures 

showing the difference between the dry and the wet heat exchanger: 

 
  

Figure 4.11. Ice formation in experiment (from left) 1,4 and 8.  
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Figure 4.12. Left: Dry heat exchanger. Right: Wet heat exchanger 
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Chapter 5 
 

Discussion 
 

The first objective of this work was to make a direct mathematical calculation 

method to predict the moisture transfer effectiveness. The simulated results and the 

experimental investigation were compared to see if the proposed method gave reliable 

results. The second objective was to investigate the difference between the different 

heat exchanger plate materials regarding condensation and freezing. The change in 

pressure drop over the heat exchanger was used as an indicator. The heat exchanger 

prototype top and bottom were made out of transparent acrylic plates. This made it 

possible to do a visual investigation on if and where ice formation took place.    

5.1. Comparison between the Mathematical Model and 

the Experimental Investigation 

A comparison between the proposed mathematical method and the method derived by 

Niu and Zhang (2000) to predict the heat and moisture transfer efficiency was done 

in chapter 2.4. The comparison showed that the two methods correlated very well 

regarding changes in flow rate. However, the proposed method by the author did not 

correlate with Niu and Zhangs’ (2000) method regarding changes in supply 

temperature.  

The HXcalc-program was run with the same inputs (inlet temperatures, humidity, 

flow rates and geometry) from all experiments (see Appendix A.4). A comparison 

between the simulated and experimental results for temperature efficiency and 

moisture transfer efficiency are shown in figures on the next page. Since the results 

from the simulations were given as effectiveness, while the experimental results were 

given in efficiency it was necessary with a calculation between the two properties. 

The correlations are shown in equation 4.1. and 4.2. 
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For both temperature efficiency and moisture transfer efficiency the correlation of 

the two set of results is close to a trend line. However, the trend line for temperature 

efficiency does not have the 1:1 correlation as expected. One explanation why the 

simulated values for the temperature efficiency were higher than the measured ones 

may be that the temperature loss to the surroundings from the point where the supply 

air inlet temperature was measured to the heat exchanger was huge. The supply air 

inlet temperature was included in the definition of the temperature efficiency 

(equation 4.1. and 4.2.) and if this measured value was lower than the actual inlet 

temperature to the heat exchanger the temperature efficiency would be calculated to 

be too low. The points below the trend line in the figure to the left above were for the 

lowest supply air inlet temperatures which confirms the theory about temperature 

loss to the surroundings since the colder the supply air temperature, the higher the 

loss. The moisture transfer efficiency correlation differs with only 10% between the 

simulated and experimental results. This is really promising since the mathematical 

method only takes into account a mean moisture transfer resistance value to calculate 

the effectiveness. This differs from Niu and Zhangs’ (2002) method to calculate the 

moisture transfer effectiveness which needs a iterative solution method. This result 

implies that the information given by the manufacturer regarding water vapour 

permeability was enough information to predict the moisture transfer effectiveness 

for the given membrane. Nevertheless, as mentioned before, the permeability tests are 

done in many different ways as stated in the article by McCollough(2003). An 

understanding on how the tests were performed is vital for good results.  

To see if the shape of the heat exchanger worked as intended (counter flow with cross 

flow headers) the streamlines in the dry exchanger were assumed to be of the same 

form in both exhaust and supply air streams. The picture below shows the 

streamlines for both streams overlaid.   

  

 
Figure 5.1. Comparison between the experimental and simulated results for 

temperature efficiency (left) and moisture transfer efficiency (right). 
Trend lines equations for the correlation is displayed inside the charts. 
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Figure 5.2. Idealistic quasi-counter flow heat exchanger flow to the left and the 
results from the smoke-pen test to the right.  
 

This small experiment showed that in the cross flow headers the flows were fairly 

perpendicular, but in the counter flow area the streams were not counter wise but 

approximately 30o. This means that to predict results as counter flow will probably 

give over predicted results as for the temperature efficiency in figure 5.1. Compared to 

Zhang’s (2010) CFD-model the streamlines in this experiment were less counter flow 

angled. However, the geometric shape of Zhang’s (2010) exchanger was slimmer than 

the tested heat exchanger. This may have caused the differences.    

 

5.2. Pressure Drop and Flow Rates through the 

Exchanger  

The HXcalc program calculates the pressure drop with this correlation (Aarnes, 

2011): 

 
    

 

 
     

 (
   

  
       ) 

(5.1.)  

An increase in the flow rate will then cause an increase in the pressure drop. 

Increasing flow rates will also cause a decrease in the U-value for the heat exchanger. 

Regarding to the mathematical method this will decrease the efficiency as seen in 

figure 4.1. This means that an increase in pressure drop should mean a decrease in 

temperature efficiency. However, the experimental results show the opposite result. 

There was not found any correlation between the measured pressure drop over the 

exchanger and the flow rate as seen in the figure below:   
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 Figure 5.3. Correlation between the temperature efficiency and the mean pressure 

drop. 
 

  

 
Figure 5.4. Correlation between the exhaust flow rate and the exhaust side pressure 

drop (left). Correlation between the supply flow rate and the supply 
side pressure drop (right).  Error bars represent the total calculated 
error. When only one flow rate was measured the error was set to 0.26 
m3/h which was the maximum calculated flow rate error for all tests.                                                        

 

 

This result may indicate other reasons different from the flow rate that caused the 

pressure drop. The pressure drop over the supply air side was not stable in all 

experiments. In experiment 2,3,7 and 8  the supply air side pressure drop decreased, 

while in experiment 4,5 and 6 it increased. In both experiment 2 and 4 a great 

amount of ice formation was observed. The test conditions were quite similar in these 

two experiments. However the pressure drop over the supply air side had opposite 

developments in these tests. See figure 4.7. A possible reason for the difference may be 

differences in the material properties. The experiment 2 utilized Optimax’s quite stiff 

non-elastic transparent plastic sheets while experiment 4 was utilizing elastic PP-

sheets form DuPont. While an ice layer was building up in the PP-exchanger 

blocking the exhaust air channels and increasing the exhaust air side pressure drop, 

the elastic material changed the channel height of the supply air side channels as 

well, increasing the pressure drop also here. This did not happen in experiment 2 

using stiff plastic sheets. When the air flow at one side was greater than the other the 

membrane tend to expand and making the channels with the lowest air flow rate 

narrower. This caused that the pressure drop at this side increased as well and that 

the pressure drops were almost equal at both sides. If the side with the highest flow 

rate decreased the flow rate the other side followed the tendency and the pressure 
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drop on each side decreased. This may be seen by comparing the figures 4.7. and 4.8. 

The only experiment that did not follow this was experiment two there inelastic 

transparent plastic sheets were used.  This effect is really a drawback for the 

membrane from DuPont in this application.      

 

5.3. Evaluation of the Test Rig 

For simplicity when building the experimental set up, the already installed glycol 

cooling loop in the lab was used to produce cold air. Since the air flow rates were kept 

at low levels to increase the temperature efficiency the temperature loss to the 

surroundings through the distance from the cooling coil to the heat exchanger was 

huge. This restricted the cold side temperature to about -10.5 oC for the coldest 

experiment. Severe difficulties to get the same inlet conditions in the different 

experiments, especially regarding pressure drop, air flow rates and supply inlet 

temperatures, made it difficult to compare the results. However, the exhaust air side 

of the test rig delivered very stable humidity and temperature conditions through the 

test periods and were found to be almost not affected by changes in the surroundings. 

The hypothesis that ice formation would create an increase in the pressure drop over 

the exhaust air side of the heat exchanger was right according to the results. This 

means that the test rig was suitable to investigate if ice formation problems occurred 

or not.  

The uncertainty of the experimental results was huge, especially concerning the flow 

rate measurements and the temperature loss to the surroundings. The equipment used 

for this experimental investigation were not ideal, especially since the cooling coil 

tended to freeze and the air flow rate on the supply air side therefore decreased with 

time. The test length was restricted to the time before the cooling coil was filled with 

ice and blocked the air flow rate. For most experiments this happened after about 800 

minutes. Nevertheless, this was enough time to see ice formation in the plastic based 

heat exchangers. Actually condensation of water was observed to occur after short 

time in these experiments (1,2 and 4). The differences in pressure drops were also 

starting to rice at the beginning of these experiments (see figure 4.7.). 

If the flow rates are equal, there is no ice formation or condensation, the heat 

capacity is assumed constant and there are no losses to the surroundings the lines 

indicating the change in temperature and humidity for the air streams will be of 

equal length and inclination in the temperature-humidity diagram (as shown in 

figure 2.2.). In the test rig it was almost impossible to get equal flow rates due to the 

problems in regulating this, and the difficulty in measuring it as well. The 

temperature efficiency was calculated based on the exhaust air side as mentioned in 

chapter 3.3. This lead to that in the case where the exhaust air flow rate was greater 

than the supply air flow rate, as in experiment 3, the line for the supply air is longer 

(see figure A.15). When the flow rate for the supply air was greater than the air flow 

for the exhaust air the line for exhaust air should have been longer than the one for 

supply air. However, due to experiment 2,4,5 and 6 this was not the case. The supply 

air lines were still longer (in experiment 4) or of the same magnitude. This may be 



Membrane Based Heat Exchanger                                                                                                              .                                                                                                                                                                                                                                          
 

54 
 

explained from that the cold supply air experienced a greater temperature loss to the 

surroundings than the exhaust air. Since the surrounding temperature heated the 

supply air the line was longer than if it had been no loss. How great this loss was may 

be found from experiment 4 where the flow rates only differed by approximately 6%. 

The temperature loss to the surroundings based on the difference in lines length was 

around 10 oC for the case when the supply inlet temperature was -8.4 oC. From the 

experiment 5 the loss was however below 4oC. 

 

5.4. Evaluation of the Membrane Based Heat 

Exchanger Prototype 

The plastic based heat exchanger prototypes (both the Optimax plastic sheets and the 

DuPont PP-material) were shown to experience water condensation and frost 

formation in the exhaust air channels. Water droplets were observed through the 

transparent acrylic top plate in the top exhaust channel already after few hours in 

these experiments. The frost formation appeared near the supply air inlet (see figure 

4.12.) which correlates very well with the CFD analysis of Zhang (2010). Zhang’s 

(2010) analysis shows that the coldest area in the exhaust air channels will be near 

the supply air inlet. See reprinted figure below: 

 
Figure 5.5. The dimensionless temperature change and flow pattern in the warm 

air side through a quasi-counter flow heat exchanger. Reprinted 
overlaid figures from Zhang (2010). 
 

The pressure drop difference in these experiments riced significantly through the test 

periods according to table 4.3.  

In the membrane based experiments 3, 5, 6 and 7 neither condensation nor ice 

formed. The change in pressure drop differences were not significantly (experiment 7 

must be disregarded here since the test period was too short). In the last experiment a 
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small amount of condensate water was observed near the supply air outlet in the 

upper exhaust air channel after 8 hours. The membrane had expanded and was also 

crumpled in this area in this experiment. The DuPont X-membrane material tested 

was shown to expand in very humid conditions. See figure 4.12. At the end of the 

experiment ice was found as shown in picture A.41. and 4.12. Since the ice formation 

appeared in different areas in the plastic based prototypes contra the last membrane 

based experiment, the ice formation in the latter may have been caused by other 

means than in the previous. In the plastic based exchanger prototypes the ice formed 

in the area where the coldest temperature in the exchanger acted; near the supply air 

inlet. Conversely, the ice in the membrane based heat exchanger appeared near the 

supply air outlet which actually was the second warmest side of the exchanger.  As 

shown in the picture series in figure 4.4. and 4.5. the crumpled membrane changed 

the air flow pattern, making the air in one part of the exchanger area stagnant.  

A hypothesis of why ice was formed in this part in the experiment 8 was made: The 

crumpling of the membrane due to high humidity levels in the exhaust air side made 

the membrane stuck to the upper and lower heat exchanger frame plates making the 

exhaust air stagnant. The supply air side cooled the stagnant exhaust air to down to 

(almost) the temperature of the supply air. Since the moisture transfer efficiency 

never can be 100% condensation and freezing occurred. 

Zhang’s (2010) CFD-analysis showed that the most humid area was on the heat 

exchangers’ lower right side (see figure below) while the ice formation in the 

experiment was on the lower left side. However, Zhang (2010) showed that the lower 

left side had a lower velocity than the right side. This can explain why the extensive 

crumpling and ice formation happened here in the exhaust air side. From figure 5.5. 

the temperature was also found to be lower in the right side than at the left, 

increasing the relative humidity. 
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Figure 5.6. Left: The dimensionless humidity change and flow pattern in the 
warm air side through a quasi-counter flow heat exchanger. The 
exhaust air inlet is at the lower rights side. Reprinted overlaid figures 
from Zhang (2010). Right: the ice formation and crumpling of the 
tested heat and moisture exchanger. (The picture is mirrored for 
comparison) 

 

As neither condensate water nor ice were found in the coldest spot (near the supply 

air inlet) this may indicate that the expansion of the membrane was the problem that 

caused the ice formation. Expansion and crumpling were observed when the 

humidity was high and were experienced in experiment 8 with an exhaust humidity 

of 46.6% and supply air temperature of -9.6 oC, but not in experiment 7 with 37.3% and  

-10.5 oC.  

Experiment 8 had the highest exhaust inlet absolute humidity at 8 gW/kgA. The 

supply air temperature in experiment 7 was colder than in experiment 8, but the 

exhaust humidity was lower (6.5 gW/kgA). Therefore it seems like the temperature and 

humidity condition that lead to crumpling of the membranes laid somewhere in the 

range between these two experiments. In the picture below lines are drawn between 

the exhaust inlet condition and supply inlet condition for the different membrane 

exchanger experiments in a temperature-humidity diagram. As seen the line for the 

experiment 8 is much closer to the saturation line than the other experiments. This 

may explain the expansion of the membrane in this experiment. 
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Figure 5.7. Lines drawn between the membrane based experiments inlet 
conditions in a temperature-humidity diagram.   

Since the humidity inside a residential building in winter seldom gets above 40% RH 

pursuant to Kalamees et al. (2009). See figure 1.3. This means that the tested 

membrane based heat exchanger may work in even colder supply air temperatures 

than -10 oC in normal conditions.  

Figure 4.10. shows the relation between the moisture transfer efficiency on the 

exhaust air side and the supply inlet temperature. The relation follows the effect 

found in the theory from Niu and Zhang (2000) showed in figure 2.11. The colder the 

temperature in the supply air inlet was the higher the mean relative humidity close 

to the membrane. This decreased the mean moisture transfer resistance and increased 

the moisture transfer efficiency. Since the exhaust air flow rate was much higher 

than the supply air flow at the two last experiments the measured efficiencies at the 

exhaust air side reached 90%. This is of course a much higher value than it would 

have been if the air flow rates were equal. Nevertheless, the correlation shows that an 

even colder supply inlet temperature may lead to higher moisture transfer efficiency. 

It is impossible to define how much better the membrane based heat exchanger would 

work regarding to energy savings compared to a plastic based exchanger in a 

residential building use from the test performed in this work. The heat exchanger 

area and the flow rates were too low to compare this experiment to a “real case”. 

However, the experimental results shows that the freezing and condensation problems 

were less in the membrane based exchanger. It is need for more investigation to find 

out at what temperature and humidity levels the membrane based exchanger also will 
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experience freezing due to the limitation of moisture transfer effectiveness and not 

because of expansion of the membrane due to humidity levels. 

The membrane tested had drawbacks as it was very elastic which made it difficult to 

get the membranes stretched out when building the heat exchanger prototype. The 

pressure prop behaviour cause by the elasticity discussed in chapter 5.2 may cause 

problems if the flow rates are unbalanced. The elastic membranes would probably 

create an even bigger unbalance and the energy needed for pumping the air through 

the heat exchanger would increase. The optimal membrane should therefore not 

expand when soaked in water and should preferably not be elastic due to the 

problems if the flow rates get imbalanced and the difficulty in building the 

exchanger.  
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Chapter 6 

Conclusion and Further Work 
 

The mathematical method derived to predict the moisture transfer effectiveness in a 

membrane based heat exchanger was shown to fit very well with the experimental 

results. Utilising available permeability test results to find an average moisture 

transfer resistance were shown to be an appropriate method to find the overall 

moisture transfer coefficient. The direct computational method was simple to 

implement in a calculation tool since it did not require any iteration processes or 

additional testing of the membrane. The calculation tool HXcalc made in Microsoft 

Excel may be used for further work to investigate the appropriateness for different 

membranes in a membrane based heat exchanger.  

The experimental tests showed that the heat exchanger prototypes utilizing plastic 

sheets, as the heat transfer material, experienced condensation and ice formation in 

the exhaust air channels near the supply air inlet side of the exchanger. In the 

experiments utilising the hydrophilic membrane X from DuPont as the heat and 

moisture transfer material neither condensation nor ice were found near the supply 

air inlet. However in the experiment with the highest exhaust inlet humidity (46.6% 

RH) the membrane had expanded and was crumpled near the supply air outlet. 

Condensate water and ice were found in the exhaust air channels near the supply air 

outlet in this experiment. The hydrophilic membrane X from DuPont was therefore 

found to be superior to the two plastic materials regarding water condensation and 

frost formation in the heat exchanger prototype when the exhaust air relative 

humidity was below 37% and the temperature above -10.5 oC.  

The pressure drops over the heat exchanger were found to be strongly influenced by 

the membrane material’s elasticity and were not proportional to the flow rate as 

expected. The elasticity and the membrane’s tendency to expand at high humidity 

made the tested membrane unsuitable for use in a membrane based heat exchanger. 

Methods to support the membrane to decrease the elasticity should be investigated. 

Lamination of the membrane to a supporting fabric may be a solution that should be 

tested. Other types of membranes should also be tested.    

The experimental investigation was restricted to a supply air temperature at about -10 
oC at the lowest. The membrane based heat exchangers performance at even lower 

temperatures should be investigated to see if the membrane based heat exchanger 

could work in extreme winter conditions without defrosting systems (frost guards 

etc).       

A plastic based heat exchanger should be tested more carefully to find the lowest 

exhaust air humidity and warmest supply air temperature that would lead to 
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condensation and ice formation respectively. Then the two types of heat exchangers 

may be compared to find the possible energy savings from replacing plastic sheets 

with membranes.  

If the built test rig is to be used for further testing the axial fans should be replaced 

with centrifugal fans to make sure that the flow rates are stable even if the pressure 

drop over the exchanger changes due to condensation and ice formation.  The heat 

exchanger prototypes should also be rebuilt with an increased number of heat 

exchanger plates to be able to increase the air flow rates still remaining high 

efficiency. Higher air flow rates will decrease the temperature loss to the 

surroundings and there will be possible to test the heat exchanger at colder supply 

inlet temperatures.    

The membrane should also be tested for durability and pollution transfer to decide if 

the technology is suitable for use in residential buildings with several living units.  
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A.1. Initial Testing of Cooling Coils 

Testing of the cooling system already installed in the VVS-lab at EPT was carried out 

initially to see if the system could be used for the experiment. It was preferable to use the 

installed system to save time and money.  

The cooling coil was first tested with outdoor air and quite high air flow rates given by the 

natural drag through the ducting system. Extensive frost formation on the cooling coils was 

experienced and the flow rate was decreased after about 6 hours. After 12 hours the cooling 

coil outlet was completely blocked with frost. Second another approach was tried with smaller 

air flow rates through the cooling device. A small fan was placed in front of the inlet duct. 

Warm indoor air from the lab was used to test the “worst case scenario” of frost formation 

inside the coil. First the cooling coil was tested for 24 hours. The flow rate was measured with 

the Velocicalc 9555-P instrument from TSI by measuring the velocity in three different points 

in the outlet channel and average the value. The flow rate was adjusted by changing the outlet 

area of the outlet duct using airtight “duct tape”.  The Velocicalc instrument was used to log 

the pressure drop over the cooling coil and the temperature and humidity after the cooling 

coil. After 24 hours no increasing pressure drop was found. The outlet humidity was rising 

through the test period. Since the inlet humidity and temperature was unknown the reason for 

increasing outlet humidity was unknown. Another test period of 24 hours was then carried 

out. The cooling coil and fan was not turned off in the break between the test periods. The two 

tests may therefore be seen in connection. In the second test period the inlet air humidity and 

temperature was measured using a TinyTag instrument from Gemini. 

After approximately 38 hours the pressure started to increase. At the same time the outlet 

temperature started to increase and the outlet humidity started to decrease. The outlet 

temperature and humidity did not correlate with the fluctuations in the inlet temperature and 

humidity.  

 

Figure A.1. Internal testing of cooling coil. Temperature, relative humidity and pressure 
were tested for a 24 hour period first. For the second 24 hour period the 
temperature and humidity in the surrounding room. The outlet temperature 
was pretty stable at about -12oC and the humidity was between 45-55% through 
the tests.     
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The test showed that the humidity increased through the whole test period until the pressure 

drop started to increase. Nevertheless since the outlet temperature was quite low the increase 

in relative humidity will correspond to a very low change in absolute humidity. The inertial 

testing of the cooling coil seemed therefore promising for tests up to 38 hours. The cooling coil 

had been turned on for approximately two hours before the measurements begun. Why the 

humidity didn’t draw near 100% may indicate that the air in fact was colder somewhere inside 

the cooling coli than at the outlet were the measurement was taken. The small air flow rates 

may have caused almost stagnant air in the outlet duct witch then may have had a great 

temperature exchange with the warm surroundings. Insulation of the outlet side of the cooling 

device was then needed.   
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A.2. Development of Stable Exhaust Air Conditions 

Different attempts were tried out to make warm and humid exhaust air that were stable over a 

long time. In this appendix is two attempts that were rejected shortly described. The final 

method is described in chapter 3. A simple system without too many advanced control 

mechanisms was preferable. A polystyrene box was made to have the heat and humidifier 

equipment inside. This made it easy to change refill water in the humidifier and the box acted 

as a small “climate-chamber”.  

Try-out 1: Electrical humidifier and fan heater. 

An “ultrasonic” humidifier was put inside the box together with a 2000 W electrical fan heater 

with an inbuilt thermostat. Pretesting showed a great fluctuation in the humidity level. The 

temperature level did also fluctuate to some extent. The temperature and humidity were 

masured by the Velocicalc 9555-P from Vaisala. 

 

 

 

 

 

  Figure A.2. Overview of a first attempt to build attest rig. Drawing made in Google 
Sketch Up. The exhaust air was heated and humidified in a polystyrene box 
placed under a table to make the rig as compact as possible.  
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Try-out 2: fan heater and water bracket.  

A second approach was tried with an open bracket of water put inside the polystyrene box 

together with the fan heater. There were still observed fluctuations in the humidity level. This 

sudden drops in the humidity level corresponded to the on and of switching of the fan heater 

that probably changed the flow conditions in the polystyrene box a great deal. 

 

  Figure A.3. Internal testing of exhaust air side. The temperature seemed quite stable 
while the humidity level changed greatly through the test period. 

 

  Figure A.4. Internal testing of exhaust air side. The temperature seemed quite stable 
while the humidity level still fluctuating. 
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A.3. Program code 

Sub inputvar() 
 

Call clearsheet2 

 

Min = Worksheets(1).Range("c5") 

Max = Worksheets(1).Range("c6") 

Begin = Min 

If Worksheets(2).Range("d11") = 1 Then 

 Worksheets(2).Range("b43").Value = Worksheets(1).Range("c26") 

 Worksheets(2).Range("b44").Value = Worksheets(1).Range("c27") 

 Worksheets(2).Range("b45").Value = Worksheets(1).Range("c28") 

 Worksheets(2).Range("b46").Value = Worksheets(1).Range("c29") 

 Worksheets(2).Range("b47").Value = Worksheets(1).Range("c30") 

 Worksheets(2).Range("b49").Value = Worksheets(1).Range("c31") 

 Ant = (Max - Min) / 2 

 Teller = 2 

 Varcell = 48 

 

ElseIf Worksheets(2).Range("d11") = 2 Then 

 Worksheets(2).Range("b43").Value = Worksheets(1).Range("c26") 

        Worksheets(2).Range("b44").Value = Worksheets(1).Range("c27") 

        Worksheets(2).Range("b46").Value = Worksheets(1).Range("c29") 

        Worksheets(2).Range("b47").Value = Worksheets(1).Range("c30") 

        Worksheets(2).Range("b48").Value = Worksheets(1).Range("c21") 

        Ant = Worksheets(1).Range("c7") 

        Teller = (Max - Min) / (Ant - 1) 

        Varcell = 45 

 

ElseIf Worksheets(2).Range("d11") = 3 Then 

Worksheets(2).Range("b43").Value = Worksheets(1).Range("c26") 

Worksheets(2).Range("b44").Value = Worksheets(1).Range("c27") 

Worksheets(2).Range("b45").Value = Worksheets(1).Range("c28") 

Worksheets(2).Range("b47").Value = Worksheets(1).Range("c30") 

Worksheets(2).Range("b48").Value = Worksheets(1).Range("c21") 

Worksheets(2).Range("b49").Value = Worksheets(1).Range("c31") 

Ant = Worksheets(1).Range("c7") 

Teller = (Max - Min) / (Ant - 1) 

Varcell = 46 

 

ElseIf Worksheets(2).Range("d11") = 4 Then 

Worksheets(2).Range("b44").Value = Worksheets(1).Range("c27") 

Worksheets(2).Range("b45").Value = Worksheets(1).Range("c28") 

Worksheets(2).Range("b46").Value = Worksheets(1).Range("c29") 

Worksheets(2).Range("b47").Value = Worksheets(1).Range("c30") 

Worksheets(2).Range("b48").Value = Worksheets(1).Range("c21") 

Worksheets(2).Range("b49").Value = Worksheets(1).Range("c31") 

Ant = Worksheets(1).Range("c7") 

Teller = (Max - Min) / (Ant - 1) 

Varcell = 43 

 

ElseIf Worksheets(2).Range("d11") = 5 Then 

Worksheets(2).Range("b43").Value = Worksheets(1).Range("c26") 

Worksheets(2).Range("b45").Value = Worksheets(1).Range("c28") 

Worksheets(2).Range("b46").Value = Worksheets(1).Range("c29") 

Worksheets(2).Range("b47").Value = Worksheets(1).Range("c30") 

Worksheets(2).Range("b48").Value = Worksheets(1).Range("c21") 

Worksheets(2).Range("b49").Value = Worksheets(1).Range("c31") 

Ant = Worksheets(1).Range("c7") 

Teller = (Max - Min) / (Ant - 1) 

Varcell = 44 

 

ElseIf Worksheets(2).Range("d11") = 6 Then 

Worksheets(2).Range("b43").Value = Worksheets(1).Range("c26") 

Worksheets(2).Range("b44").Value = Worksheets(1).Range("c27") 

Worksheets(2).Range("b45").Value = Worksheets(1).Range("c28") 

Worksheets(2).Range("b46").Value = Worksheets(1).Range("c29") 

Worksheets(2).Range("b48").Value = Worksheets(1).Range("c21") 

Worksheets(2).Range("b49").Value = Worksheets(1).Range("c31") 

Ant = Worksheets(1).Range("c7") 

Teller = (Max - Min) / (Ant - 1) 
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Varcell = 47 

End If 

Worksheets(2).Cells(Varcell, 2).Value = Begin 

 

 

For K = 1 To Ant 

 

Call Fmini 

 

Fmin = Worksheets(2).Range("h46") 

Fe = Worksheets(2).Range("i46") 

Fs = Worksheets(2).Range("j46") 

 

If Worksheets(2).Range("d32") = 1 Then 

Call geomcross 

If Worksheets(2).Range("d17") = 1 Then 

Call membranecross 

End If 

ElseIf Worksheets(2).Range("d32") = 2 Then 

Call geomcounter 

If Worksheets(2).Range("d17") = 1 Then 

Call membranecounter 

End If 

ElseIf Worksheets(2).Range("d32") = 3 Then 

Call geomcross 

Call geomcounter 

Atot = Worksheets(2).Range("e52") + Worksheets(2).Range("e53") 

nT = (Worksheets(2).Range("e53") / Atot) * Worksheets(2).Range("k53") + 

(Worksheets(2).Range("e52") / Atot) * Worksheets(2).Range("k52") 

Worksheets(2).Range("k54").Value = nT 

DP = Worksheets(2).Range("i52") + Worksheets(2).Range("i53") 

Worksheets(2).Range("i54").Value = DP 

Worksheets(2).Range("e54").Value = Atot 

 

If Worksheets(2).Range("d17") = 1 Then 

  Call membranecross 

  Call membranecounter 

  nM = (Worksheets(2).Range("e53") / Atot) * Worksheets(2).Range("m53") + 

(Worksheets(2).Range("e52") / Atot) * Worksheets(2).Range("m52") 

  Worksheets(2).Range("m54").Value = nM 

End If 

End If 

'Outoput: 

 Tein = Worksheets(2).Range("b43") 

 Tsin = Worksheets(2).Range("b46") 

 øein = Worksheets(2).Range("b44") 

 øsin = Worksheets(2).Range("b47") 

 wein = øein * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tein))) 

 wsin = øsin * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tsin))) 

 Worksheets(2).Range("c44").Value = wein 

 Worksheets(2).Range("c47").Value = wsin 

        Worksheets(2).Range("b60").Value = xax 

  Worksheets(2).Cells(60 + K, 2).Value = Worksheets(2).Cells(Varcell, 2) 

  Hxgeom = Worksheets(2).Range("d32") 

  Worksheets(2).Cells(60 + K, 3).Value = Worksheets(2).Cells(51 + Hxgeom, 11) 

  Worksheets(2).Cells(60 + K, 6).Value = Worksheets(2).Cells(60 + K, 3) * (Tein 

- Tsin) + Tsin 

  Worksheets(2).Cells(60 + K, 4).Value = Worksheets(2).Cells(51 + Hxgeom, 13) 

  Worksheets(2).Cells(60 + K, 7).Value = -Worksheets(2).Cells(60 + K, 3) * (Tein 

- Tsin) + Tein 

  Worksheets(2).Cells(60 + K, 8).Value = Worksheets(2).Cells(60 + K, 4) * (wein 

- wsin) + wsin 

  Worksheets(2).Cells(60 + K, 9).Value = -Worksheets(2).Cells(60 + K, 4) * (wein 

- wsin) + wein 

  Worksheets(2).Cells(60 + K, 10).Value = Tsin 

  Worksheets(2).Cells(60 + K, 11).Value = Tein 

  Worksheets(2).Cells(60 + K, 12).Value = wsin 

  Worksheets(2).Cells(60 + K, 13).Value = wein 

  Tfrost = 5427 / (Log(10 ^ 7 / (6.19 * Worksheets(2).Cells(60 + K, 9)))) - 273 

Ta = Tein - (Tein - Tfrost) / (Worksheets(2).Cells(60 + K, 3)) 

Worksheets(2).Cells(60 + K, 14).Value = Ta 

Call recoveryefficiency 

       Worksheets(2).Cells(60 + K, 15).Value = Worksheets(2).Cells(51 + Hxgeom, 16) 

Worksheets(2).Cells(60 + K, 5).Value = Worksheets(2).Cells(51 + Hxgeom, 15) 

Worksheets(2).Cells(60 + K, 16).Value = Worksheets(2).Cells(60 + K, 5) * 

Worksheets(2).Cells(60 + K, 15) 

Begin = Begin + Teller 

Worksheets(2).Cells(Varcell, 2).Value = Begin 

Worksheets(2).Cells(60 + K, 20).Value = Worksheets(2).Cells(51 + Hxgeom, 9) 
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Next 

 

Worksheets(2).Range("b58").Value = Ant 

End Sub 

 

Sub geomcross() 
 

h = Worksheets(1).Range("e20") 

Channelheight = h / (Worksheets(2).Range("b48") + 1) 

W = Worksheets(1).Range("f20") 

Dh = 2 * Channelheight * W / (Channelheight + W) 

L = W 

A = Channelheight / W 

Atot = L * W * (Worksheets(2).Range("b48")) 

Visc = Worksheets(1).Range("c37") 

rho = Worksheets(1).Range("c36") 

kond = Worksheets(1).Range("c35") 

cp = Worksheets(1).Range("c38") 

Across = Channelheight * W 

 

Fmin = Worksheets(2).Range("h46") 

Fe = Worksheets(2).Range("i46") 

Fs = Worksheets(2).Range("j46") 

R = Worksheets(2).Range("k46") 

 

Vel = Fmin / ((h / 2) * W) 

Re = Vel * Dh / Visc 

f = (-50.416 * A ^ 3 + 132.75 * A ^ 2 - 121.22 * A + 95.705) / Re 

K = 4 * f * L / Dh 

DP = 0.5 * rho * Vel ^ 2 * (K + 0.8775) 

Nu = -7.4818 * (A ^ 3) + 18.535 * (A ^ 2) - 15.663 * A + 8.235 

Worksheets(2).Range("g42").Value = Nu 

hc = Nu * kond / Dh 

U = (2 / hc) ^ -1 

NTU = U * Atot / (cp * Fmin * rho) 

nT = (1 - Exp((1 / R) * (NTU ^ 0.22) * (Exp(-R * (NTU ^ 0.78)) - 1))) / (Fe / Fmin) 

 

Worksheets(2).Range("b52").Value = Dh 

Worksheets(2).Range("c52").Value = NTU 

Worksheets(2).Range("d52").Value = L 

Worksheets(2).Range("e52").Value = Atot 

Worksheets(2).Range("f52").Value = A 

Worksheets(2).Range("g52").Value = Vel 

Worksheets(2).Range("h52").Value = Re 

Worksheets(2).Range("i52").Value = DP 

Worksheets(2).Range("j52").Value = hc 

Worksheets(2).Range("k52").Value = nT 

End Sub 

 

Sub geomcounter() 
 

h = Worksheets(1).Range("e20") 

Channelheight = h / (Worksheets(2).Range("b48") + 1) 

W = Worksheets(1).Range("h20") 

Dh = 2 * Channelheight * W / (Channelheight + W) 

L = Worksheets(1).Range("g20") 

A = Channelheight / W 

Atot = L * W * (Worksheets(2).Range("b48")) 

Visc = Worksheets(1).Range("c37") 

rho = Worksheets(1).Range("c36") 

kond = Worksheets(1).Range("c35") 

cp = Worksheets(1).Range("c38") 

Fmin = Worksheets(2).Range("h46") 

Fe = Worksheets(2).Range("i46") 

Fs = Worksheets(2).Range("j46") 

R = Worksheets(2).Range("k46")Worksheets(2).Range("f42").Value = R 

Across = Channelheight * W 

Vel = Fmin / ((h / 2) * W) 

Re = Vel * Dh / Visc 

f = (-50.416 * A ^ 3 + 132.75 * A ^ 2 - 121.22 * A + 95.705) / Re 

K = 4 * f * L / Dh 

DP = 0.5 * rho * Vel ^ 2 * (K + 0.8775) 

Nu = -7.4818 * A ^ 3 + 18.535 * A ^ 2 - 15.663 * A + 8.235 

Worksheets(2).Range("g43").Value = Nu 

hc = Nu * kond / Dh 

U = (2 / hc) ^ -1 

NTU = U * Atot / (cp * Fmin * rho) 

If R < 1 Then 
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nT = ((1 - Exp(-NTU * (1 - R))) / (1 - R * Exp(-NTU * (1 - R)))) / (Fe / Fmin) 

ElseIf R = 1 Then 

nT = (NTU / (1 + NTU)) / (Fe / Fmin) 

End If 

 

Worksheets(2).Range("b53").Value = Dh 

Worksheets(2).Range("c53").Value = NTU 

Worksheets(2).Range("d53").Value = L 

Worksheets(2).Range("e53").Value = Atot 

Worksheets(2).Range("f53").Value = A 

Worksheets(2).Range("g53").Value = Vel 

Worksheets(2).Range("h53").Value = Re 

Worksheets(2).Range("i53").Value = DP 

Worksheets(2).Range("j53").Value = hc 

Worksheets(2).Range("k53").Value = nT 

End Sub 

 

Sub membranecross() 
 

'equation 2.8. 

hm = Worksheets(2).Range("j52") / (Worksheets(1).Range("c38") * 

(Worksheets(1).Range("c16")) ^ (2 / 3)) 

Rconv = 2 / (hm) 

 

Fmin = Worksheets(2).Range("h46") 

Fe = Worksheets(2).Range("i46") 

Fs = Worksheets(2).Range("j46") 

R = Worksheets(2).Range("k46") 

 

'reference resistances 

R1 = (Worksheets(1).Range("c13")) 

r2 = (Worksheets(1).Range("c15")) 

Ø1 = Worksheets(1).Range("g12") 

T1 = Worksheets(1).Range("f12") 

Ø2 = Worksheets(1).Range("g14") 

K = (r2 / R1 - 1) / (Ø1 / Ø2 - 1) 

øein = Worksheets(2).Range("b44") 

Tein = Worksheets(2).Range("b43") 

øsin = Worksheets(2).Range("b47") 

Tsin = Worksheets(2).Range("b46") 

wmax = øein * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tein))) 

wmin = øsin * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tsin))) 

wref = Ø1 * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + T1))) 

wmean = (wmin + wmax) / 2 

Tmean = (Tein + Tsin) / 2 

ømean = wmean / (10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tmean)))) 

'mean resistance: 

Rmem = R1 * (1 - K + K * (Ø1 / (ømean))) 

Um = 1 / (Rconv + Rmem) 

NTUm = Um * (Worksheets(2).Range("e52")) / (Fmin * Worksheets(1).Range("c36")) 

Worksheets(2).Range("n52").Value = NTUm 

'moisture transfer efficiency from 2.4 

nM = (1 - Exp(NTUm ^ 0.22 * (Exp(-R * NTUm ^ 0.78) - 1) / R)) / (Fe / Fmin) 

Worksheets(2).Range("l52").Value = Rmem 

Worksheets(2).Range("m52").Value = nM 

Worksheets(2).Range("f45").Value = hm 

End Sub 

 

Sub membranecounter() 

 
hm = Worksheets(2).Range("j53") / (Worksheets(1).Range("c38") * 

(Worksheets(1).Range("c16")) ^ (2 / 3)) 

Rconv = 2 / (hm) 

Fmin = Worksheets(2).Range("h46") 

Fe = Worksheets(2).Range("i46") 

Fs = Worksheets(2).Range("j46") 

R = Worksheets(2).Range("k46") 

 

R1 = (Worksheets(1).Range("c13")) 

r2 = (Worksheets(1).Range("c15")) 

Ø1 = Worksheets(1).Range("g12") 

Ø2 = Worksheets(1).Range("g14") 

T1 = Worksheets(1).Range("f12") 

K = (r2 / R1 - 1) / (Ø1 / Ø2 - 1) 

øein = Worksheets(2).Range("b44") 

Tein = Worksheets(2).Range("b43") 

øsin = Worksheets(2).Range("b47") 
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Tsin = Worksheets(2).Range("b46") 

wmax = øein * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tein))) 

wmin = øsin * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tsin))) 

wref = Ø1 * 10 ^ 7 / (6.19 * Exp(5427 / (273.15 + T1))) 

wmean = (wmin + wmax) / 2 

Tmean = (Tein + Tsin) / 2 

ømean = wmean / (10 ^ 7 / (6.19 * Exp(5427 / (273.15 + Tmean)))) 

Rmem = R1 * (1 - K + K * (Ø1 / (ømean))) 

Um = 1 / (Rconv + Rmem) 

NTUm = (Um * Worksheets(2).Range("e53")) / (Fmin * Worksheets(1).Range("c36")) 

'moiure transfer efficiency from eq 2.5 

 

If R < 1 Then 

nM = ((1 - Exp(-NTUm * (1 - R))) / (1 - R * Exp(-NTUm * (1 - R)))) / (Fe / Fmin) 

ElseIf R = 1 Then 

nM = (NTUm / (1 + NTUm)) / (Fe / Fmin) 

End If 

 

Worksheets(2).Range("l53").Value = Rmem 

Worksheets(2).Range("m53").Value = nM 

Worksheets(2).Range("n53").Value = NTUm 

End Sub 

 

 

Sub recoveryefficiency() 
 

Tsupply = Worksheets(1).Range("c43") 

Tein = Worksheets(2).Range("b43") 

wein = Worksheets(2).Range("c44") 

wsin = Worksheets(2).Range("c47") 

V = Worksheets(2).Range("b45") * 3600 

Cpair = Worksheets(1).Range("c38") 

Rhoair = Worksheets(1).Range("c36") 

j = Worksheets(2).Range("d32") 

 

  nM = Worksheets(2).Cells(51 + j, 13) 

  DP = Worksheets(2).Cells(51 + j, 9) 

  'get nT 

  nT = Worksheets(2).Cells(51 + j, 11) 

  sumwithout = 0 

  DPsum = 0 

  summe = 0 

  'Set Ta and Tb 

  If nM > 0 Then 

  weut = -nM * (wein - wsin) + wein 

  Else 

  weut = wein 

  End If 

     

  Tfrost = -8 

  Ta = Tein - (Tein - Tfrost) / nT 

  If Ta < -273 Then 

  Ta = -273 

  End If 

  

  Tb = nT * (Tein - Ta) + Ta 

 'sums hourly 

 place = Worksheets(2).Range("k16") 

 For K = 2 To 8761 

  Tsupply = Worksheets(1).Range("c43") 

    Tsin = Worksheets(2).Cells(K, 16 + place) 

    Tc = nT * (Tein - Tsin) + Tsin 

  'Set by-pass in summer 

  B = 0 

  If Tsin > Tsupply Then 

  B = 1 

  End If 

  'find heat needed without recovery 

  sumwithout = sumwithout + (1 - B) * Rhoair * V * Cpair * (Tsupply - Tsin) 

  'find energy based on pressue drop both air streams. No pressure drop summer 

  DPsum = DPsum + 2 * DP * V * (1 - B) 

  'Sets Dtfrost 

  If (Ta - Tsin) > 0 Then 

  DTfrost = Ta - Tsin 

  Else 

  DTfrost = 0 

  End If 

 'Sets Dtsupply 
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  If Tsupply > Tc Then 

  Dta = Tc 

  Else 

  Dta = Tsupply 

  End If 

  If Tb > Dta Then 

  Dtb = Tb 

  Else 

  Dtb = Dta 

  End If 

  If (Tsupply - Dtb) > 0 Then 

  Dtsupply = Tsupply - Dtb 

  Else 

  Dtsupply = 0 

  End If 

 'sums Dt values 

  summe = summe + DTfrost + Dtsupply 

 Next 

 

 'energy for heating rest after rec and frost protection 

 Qrec = Cpair * Rhoair * summe * V 

'Finds annual heat recovery efficiency 

nE = 1 - (Qrec + DPsum) / (sumwithout) 

Worksheets(2).Cells(51 + j, 15) = nE 

End Sub 

Sub Fmini() 

 

'Flow min 

If Worksheets(2).Range("d11") = 2 Then 

Fmin = Worksheets(2).Range("b45") 

Fe = Fmin 

Fs = Fmin 

R = 1 

Else 

 If Worksheets(2).Range("b45") >= Worksheets(2).Range("b49") Then 

 Fmin = Worksheets(2).Range("b49") 

 Fe = Fmin 

 Fs = Worksheets(2).Range("b45") 

 R = Fmin / Worksheets(2).Range("b45") 

 Else 

 Fmin = Worksheets(2).Range("b45") 

 Fe = Worksheets(2).Range("b49") 

 Fs = Worksheets(2).Range("b45") 

 R = Fmin / Worksheets(2).Range("b49") 

 End If 

End If 

 

Worksheets(2).Range("h46").Value = Fmin 

Worksheets(2).Range("i46").Value = Fe 

Worksheets(2).Range("j46").Value = Fs 

Worksheets(2).Range("k46").Value = R 

End Sub  
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A.4. Results 

In this chapter all results from all eight experiments are presented individually. A short 

description about the performed experiment comes first. Second a table showing the standard 

deviation, random uncertainty, mean value, systematic uncertainty and the total uncertainty 

for all measured and calculated results. The mean input and output temperatures and 

humidity levels are plotted in a humidity-temperature diagram showing the changes through 

the heat exchangers in each air stream. All relative humidity, temperatures, pressure drop 

developments and efficiency(ies) with time are displayed. For some experiments the 

surrounding temperature and humidity level were measures with the TSI- instrument, in 

other experiments the supply outlet velocity were measured with the same instruments. In 

these cases the results are plotted against time. For experiment 1, 4 and 8 pictures showing the 

heat exchanger with ice and condensate water are displayed as well. The colours used in the 

plots are as shown here:    

 

  

 

  Figure A.5. Overview of the Vaisala humidity and temperature probes placement and the 
air streams. The colour indicates which measurement points that are displayed 
in the graphs later in this chapter. 
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A.4.1 Experiment 1: Three layer Optimax plastic sheets 

 

The first experiment was done with a three layer plastic sheet exchanger. The plastic sheets 

used were transparent overhead plastic sheets from Optifilm. Only the flow rate on the supply 

air side was measured. The pressure drop on the supply air side was quite stable while the 

exhaust air side experienced a linear increase in the pressure drop. After 900 min an increase 

in the surrounding temperature and decrease in surrounding humidity made the inlet and 

outlet temperatures increase, while the humidity levels still were quite stable. At the end of 

the experiment dense ice had built up in the upper exhaust air channel near the supply air 

inlet. In the middle of the exchanger area condensed water had built up, making the upper 

and middle plastic sheets sticking together. In the lower channel no ice was found, however 

water droplets were present.  

 

Table A.1. Data from experiment 1. Standard deviation, random uncertainty, 
mean value, systematic uncertainty and total uncertainty are shown.   

 

 
  

 

 

 

HMP 1 RH

HMP 1 

Temp  HMP 2 RH

HMP 2 

Temp HMP 3 RH

HMP 3 

Temp HMP 4 RH

HMP 4 

Temp

Pressure

 Exthaust 

Pressure  

Supply

%
oC %

oC %
oC %

oC Pa Pa

s 3.0150 0.6133 0.6344 0.4696 0.2597 0.6735 4.2812 0.6738 0.0621 0.2065

Ur 0.0112 0.0023 0.0024 0.0017 0.0010 0.0025 0.0159 0.0025 0.0002 0.0008

43.6163 23.8101 27.4885 -5.2667 9.4386 11.5200 71.1096 15.9736 2.5518 2.4006

US 2.0000 0.1000 2.0000 0.1000 1.4000 0.2000 2.0000 0.1000 0.1900 0.1900

UT 2.0000 0.1000 2.0000 0.1000 1.4000 0.2000 2.0001 0.1000 0.1900 0.1900

Exhaust flow Supply flow

kgW/kgM kgW/kgM kgW/kgM kgW/kgM m3/h m3/h

s

Ur

0.2693 0.0132 0.0079 0.0007 0.0008 0.0081 ?? 1.5789

US

UT 0.0044 0.0179 0.0004 0.0001 0.0001 0.0002 ?? 0.1104

  

            

  



                                                                                                                                                      Appendix.                                                                                                       

 

A-15 
 

 
  Figure A.6. Exhaust (red) and supply (blue) air flows through the heat exchanger 

(based on inlet and outlet values) in a Humidity-temperature diagram.  
The green lines are relative humidity lines starting at 10% to the left 
and 100% (saturation line) at the right. 

 
 

 

 

  Figure A.7. Relative humidity (left) and temperature (right) measurements 
through the test period in all four measurement points. 

 
 

  Figure A.8. Pressure drop for both air flows. Linear trend line for the exhaust air stream 
is displayed. 
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  Figure A.9. Left: surrounding temperature (red line) and Relative humidity (green 
line) over the test period. Right: Temperature efficiency. 

 
 

                                  

 

 

 

  Figure A.10. Pictures after experiment. Left: dense ice was found in the upper right 
part (near the supply air inlet). In the middle a pool of water made the 
two upper plastic sheets stick together. Upper right: side view of the dry 
supply air channels. Lower right: picture inside the ice and water 
filled exhaust air side.   
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A.4.2 Experiment 2: Five layer Optimax plastic sheets 

 

In the second experiment the heat transfer sheets from experiment 1 were increased to five 

layers. This were done to increase the temperature efficiency and to see if this increased the 

ice formation. The flow rate at the exhaust air side were only measured once so no uncertainty 

were able to be found for that single measurement. Now a more significant ice layer built up 

in two out of three air channels in the exhaust air side. (Unfortunately no pictures were 

taken.)    

 

Table A.2. Data from experiment 2. Standard deviation, random uncertainty, mean 
value, systematic uncertainty and total uncertainty . 

 

 
 

 

  

HMP 1 RH

HMP 1 

Temp  HMP 2 RH

HMP 2 

Temp HMP 3 RH

HMP 3 

Temp HMP 4 RH

HMP 4 

Temp

Pressure

 Exthaust 

Pressure  

Supply

%
oC %

oC %
oC %

oC Pa Pa

s 1.3328 0.8945 3.7454 1.6007 2.4531 2.5703 3.7454 1.7966 0.4508 1.2758

Ur 0.0055 0.0037 0.0154 0.0066 0.0101 0.0106 0.0154 0.0074 0.0019 0.0053

39.3434 20.8521 33.6857 -8.0513 16.6964 2.6907 66.7383 10.0383 5.7938 3.9516

US 2.0000 0.1000 2.0000 0.1000 1.4000 0.2000 2.0000 0.1000 0.1900 0.1900

UT 2.0000 0.1001 2.0001 0.1002 1.4000 0.2003 2.0001 0.1003 0.1900 0.1901

Exhaust flow Supply flow

kgW/kgM kgW/kgM kgW/kgM kgW/kgM m3/h m3/h

s

Ur

0.3733 0.0120 0.0060 0.0007 0.0008 0.0051 1.0528 1.6629

US

UT 0.0043 0.0146 0.0003 0.0000 0.0001 0.0002 ?? 0.1096
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  Figure A.11. Exhaust (red) and supply (blue) air flows through the heat 

exchanger (based on inlet and outlet values) in a Humidity-
temperature diagram.  The green lines are relative humidity lines 
starting at 10% to the left and 100% (saturation line) at the right. 

 
 
 

 

  Figure A.12. Relative humidity (left) and temperature (right) measurements 
through the test period in all four measurement points. 

 
 

 

  Figure A.13. Pressure drop for both air flows. Linear trend line for exhaust air 
stream is displayed as well.  
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  Figure A.14. Left: surrounding temperature (red line) and Relative humidity 
(green line) over the test period. Right: Temperature efficiency. 
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A.4.3  Experiment 3: DuPont X-membrane 

 

A five layer membrane based heat exchanger utilising a membrane from DuPont in this thesis 

called membrane X was tested. Neither ice formation nor water condensation occurred 

through the test period.  

 

Table A.3. Data from experiment 3. Standard deviation, random uncertainty, mean 
value, systematic uncertainty and total uncertainty is shown.   
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  Figure A.15. Exhaust (red) and supply (blue) air flows through the heat exchanger 

(based on inlet and outlet values) in a Humidity-temperature diagram.  
The green lines are relative humidity lines starting at 10% to the left 
and 100% (saturation line) at the right. 

 
 

 

 

  Figure A.16. Relative humidity (left) and temperature (right) measurements 
through the test period in all four measurement points. 

 
 

 
  Figure A.17. Pressure drop for both air flows. Linear trend line for exhaust air 

stream is displayed as well.  
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  Figure A.18. Left: surrounding temperature (red line) and Relative humidity 
(green line) over the test period. Right: Temperature efficiency (blue 
line and moisture transfer efficiency (red line).  
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A.4.4  Experiment 4: DuPont PP  

 

The poly propylene protection sheet for the DuPont X membrane was tested as a second plastic 

material. The PP-sheet was used since the material was very similar to the membrane 

material regarding thickness, colour and behaviour as elasticity etc. The heat exchanger had 

five layers of plastic sheets. In this experiment the TSI measurement instrument were used to 

measure the supply air outlet velocity at the duct exit rather than the surrounding 

temperature and humidity. Condensed water was observed after a short while in the upper 

exhaust air channel through the acrylic top plate. At the end of the experiment a lot of ice had 

formed in the exhaust air side. The supply air channels was observed to be narrower caused by 

the ice layer in the exhaust air side.  

 

Table A.4. Data from experiment 4. Standard deviation, random uncertainty, 
mean value, systematic uncertainty and total uncertainty. 
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  Figure A.19. Exhaust (red) and supply (blue) air flows through the heat exchanger 

(based on inlet and outlet values) in a Humidity-temperature diagram.  
The green lines are relative humidity lines starting at 10% to the left 
and 100% (saturation line) at the right. 

 
 

  

  Figure A.20. Relative humidity (left) and temperature (right) measurements 
through the test period in all four measurement points. 

 
 

 

  Figure A.21. Pressure drop for both air flows. Linear trend line for both air streams 
are displayed as well.  
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  Figure A.22. Velocity in one point at the supply air outlet channel exit. Right: 

Temperature efficiency. 
                                   

   

 

 

  Figure A.23. Pictures after experiment. Left: Ice was found in the upper right 
half (near the supply air inlet). Right: side view of the ice and water 
filled exhaust air side.   
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A.4.5  Experiment 5: DuPont X 

 

A second experiment with the membrane from DuPont was done. Now the supply air flow 

were greater than the exhaust air flow, opposite of the case in experiment 3. The supply air 

temperature was about 0oC. Neither ice, condensate water nor crumpling of the membrane 

were observed in this experiment. 

 

Table A.5. Data from experiment 5. Standard deviation, random uncertainty, mean 
value, systematic uncertainty and total uncertainty. 
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  Figure A.24. Exhaust (red) and supply (blue) air flows through the heat exchanger 

(based on inlet and outlet values) in a Humidity-temperature diagram.  
The green lines are relative humidity lines starting at 10% to the left 
and 100% (saturation line) at the right. 

 
 

  

  Figure A.25. Relative humidity (left) and temperature (right) measurements 
through the test period in all four measurement points. 

 

 
  Figure A.26. Pressure drop for both air flows. Linear trend line for exhaust air 

stream is displayed as well.  
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  Figure A.27. Temperature efficiency (blue line) and moisture transfer efficiency 

(red line).  
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A.4.6  Experiment 6: DuPont X 

 

A third experiment with the membrane from DuPont was done. The test conditions were 

almost the same as for the previous experiment, but the supply inlet temperature was colder. 

Neither ice, condensate water nor crumpling of the membrane were observed in this 

experiment. 

 

 

Table A.6. Data from experiment 6. Standard deviation, random uncertainty, mean 
value, systematic uncertainty and total uncertainty. 
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  Figure A.28. Exhaust (red) and supply (blue) air flows through the heat exchanger 

(based on inlet and outlet values) in a Humidity-temperature diagram.  
The green lines are relative humidity lines starting at 10% to the left and 
100% (saturation line) at the right. 

 
 

  

  Figure A.29. Relative humidity (left) and temperature (right) measurements through 
the test period in all four measurement points. 

 

 
  Figure A.30. Pressure drop for both air flows. Linear trend line for exhaust air 

stream is displayed as well.  
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  Figure A.31. Temperature efficiency (blue line) and moisture transfer efficiency 

(red line).  
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A.4.7  Experiment 7: DuPont X 

 

A fourth experiment with the membrane from DuPont was done. Now the test rig was moved 

closer to the cooling coil and the supply air flow rate was increased to decrease the supply air 

temperature. The flow rates were not measured, but the supply air flow rate was about three 

times greater than the exhaust air flow rate. Unfortunately the exhaust air fan stopped 

working after about 350 min and the result are therefore only displayed for the first 350 min. 

There were no sign of ice formation in the heat exchanger. A few droplets of condensed water 

were though found attached to the upper plastic plate. This did however not influence the 

pressure drop over the heat exchanger.    

Table A.7. Data from experiment 7. Standard deviation, random uncertainty, 
mean value, systematic uncertainty and total uncertainty is shown.   

 

 
 

 

  

HMP 1 RH

HMP 1 

Temp  HMP 2 RH

HMP 2 

Temp HMP 3 RH

HMP 3 

Temp HMP 4 RH

HMP 4 

Temp

Pressure

 Exthaust 

Pressure  

Supply

%
oC %

oC %
oC %

oC Pa Pa

s 0.4198 0.1208 0.2205 0.0480 0.8949 0.6092 2.4474 0.3560 0.2108 0.3547

Ur 0.0029 0.0008 0.0015 0.0003 0.0062 0.0042 0.0170 0.0025 0.0015 0.0025

37.2678 23.2101 41.0420 -10.5020 35.2069 -3.5668 25.3446 2.9113 25.6146 27.2056

US 2.0000 0.1000 2.0000 0.1000 1.4000 0.2000 2.0000 0.1000 0.1900 0.1900

UT 2.0000 0.1000 2.0000 0.1000 1.4000 0.2000 2.0001 0.1000 0.1900 0.1900

Exhaust flow Supply flow

kgW/kgM kgW/kgM kgW/kgM kgW/kgM m3/h m3/h

s

Ur

0.5993 0.9121 0.0065 0.0007 0.0010 0.0012 ?? ??

US

UT 0.0037 0.0100 0.0004 0.0000 0.0000 0.0001 ?? ??
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  Figure A.32. Exhaust (red) and supply (blue) air flows through the heat 

exchanger (based on inlet and outlet values) in a Humidity-
temperature diagram.  The green lines are relative humidity lines 
starting at 10% to the left and 100% (saturation line) at the right. 

 

  

  Figure A.33. Relative humidity (left) and temperature (right) measurements 
through the test period in all four measurement points. 

 

 

  Figure A.34. Pressure drop for both air flows. Linear trend lines for the air 
streams are displayed.  
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  Figure A.35. Temperature efficiency (blue line) and moisture transfer efficiency 

(red line).  
 
 

 
  Figure A.36. Velocity in one point at the supply air outlet channel exit.  
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A.4.8  Experiment 8: DuPont X 

 

The membrane based heat exchanger was tested yet another time. The air flow rate on the 

supply air side was turned down compared to experiment 7. The flow rates were not measured, 

but the velocity at the supply air outlet was about the half of experiment 7 and at the same 

level as in experiment 4. The exhaust air humidity were much higher than in experiment 7 

(46 to 37% RH). The exhaust air pressure drop experienced a tiny increase compared to the 

supply air pressure drop. At the end of the test period ice were observed in the exhaust air 

channels close to the supply air exit. The membrane was also crumbled in this area. No ice was 

found in the middle exhaust air channel. 

Table A.8. Data from experiment 8. Standard deviation, random uncertainty, mean 
value, systematic uncertainty and total uncertainty is shown.   
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  Figure A.37. Exhaust (red) and supply (blue) air flows through the heat exchanger 

(based on inlet and outlet values) in a Humidity-temperature diagram.  
The green lines are relative humidity lines starting at 10% to the left 
and 100% (saturation line) at the right. 

 

  

  Figure A.38. Relative humidity (left) and temperature (right) measurements 
through the test period in all four measurement points. 

 

 

  Figure A.39. Pressure drop for both air flows. Linear trend lines for the air streams 
are displayed.  
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  Figure A.40. Velocity in one point at the supply air outlet channel exit. Right: 

Temperature efficiency. 
                                   

  

 

  Figure A.41. Pictures after experiment. Left: The membrane had expanded near 
the supply air outlet (down to the right in the picture) and can be 
seen as crumpled. In the same area condensed water had formed and 
stuck the membrane to the upper acrylic plate of the heat exchanger. 
Right: the heat exchanger was taken out from the set up. The 
membrane stretched out again after a few minutes. The oval shaped 
structures in the lower right side in the picture shows ice that stuck 
the membrane to the upper plate.   
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A.5. Heat Exchanger Prototype: Mechanical Drawing 
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A.6. HSE Report 
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