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Abstract

Quantifying species transport rates is a main concern in chemical and petrochem-
ical industries. In particular, the design and operation of many large-scale indus-
trial chemical processes is as much dependent on diffusion as it is on reaction rates.
However, the existing diffusion models sometimes fail to predict experimentally ob-
served behaviors and their accuracy is usually insufficient for process optimization
purposes.

Fractional diffusion models offer multiple possibilities for generalizing Fick’s
law in a consistent manner in order to account for history dependence and non-
local effects. These models have not been extensively applied to the study of real
systems, mainly due to their computational cost and mathematical complexity.

A least squares spectral formulation was developed for solving fractional dif-
ferential equations. The proposed method was proven particularly well-suited for
dealing with the numerical difficulties inherent to fractional differential operators.
The practical implementation was explained in detail in order to enhance repro-
ducibility, and directions were specified for extending it to multiple dimensions
and arbitrarily shaped domains.

A numerical framework based on the least-squares spectral element method
was developed for studying and comparing anomalous diffusion models in pellets.
This simulation tool is capable of solving arbitrary integro-differential equations
and can be effortlessly adapted to various problems in any number of dimensions.

Simulations of the flow around a cylindrical particle were achieved by extend-
ing the functionality of the developed framework. A test case was analyzed by
coupling the boundary condition yielded by the fluid model with two families of
anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualita-
tive guidelines for determining the suitability of diffusion models can be formulated
by complementing experimental data with the results obtained from this approach.
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Chapter 1

Background and motivation

A common approach in the design of high complexity engineering systems consists
in dividing them into smaller parts whose behavior can be assessed in a simpler
way. Each of the simple components is then analyzed in greater detail. The pitfall
of this apparently simple and systematic formulation is that it can lead to losing
sight of ’the big picture’ if applied in an uncritical manner. This chapter intends
to be a review of the different processes related to natural gas processing that are
highly dependent on heat and mass transfer phenomena.

Although mass transfer plays a major role throughout the processing of natural
gas and has a strong impact in its economical aspects, the tools used for describ-
ing species transport still rely on the often inaccurate Fickian diffusion models.
The theoretical basis and applicability of these models have been intensively in-
vestigated during the last decades, and new models have been developed as an
alternative. However, only a limited amount of work has been carried out in order
to quantify the influence of diffusion models on practical cases. This will be the
central aspect of this thesis.

The objective of this introduction is to present a general overview of the current
technical-economical context of natural gas, but not a rigorous treatment of it.
This will serve the purpose of giving the reader a better grasp of the importance
and ubiquity of transport phenomena occurring in chemical reactors. Audiences
looking for a more comprehensive review are referred to textbooks such as [David
and Michel, 2008].

1.1 Introduction

About 20% of all the world’s primary energy requirements are covered today by
natural gas [Odumugbo, 2010]. In this context it may be difficult to understand
why the gas associated to oil reserves used to be flared only a few decades ago
[Ishishone, 2004]. The reasons for this have historically been associated to the
considerable energy consumption and capital investment required for conditioning
and transporting the gas [Kaldany, 2006]. These processes are not easy to design,
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and the methods that are technologically simple and reliable have not always been
economically convenient [Gusev et al., 2000]. However, the main causes of gas
flaring have in general been related to contract clauses, governance policies and
market availability.

The factors determining the economics of a gas project can be grouped into
two main categories, namely “soft” and “hard” (see Table 1.1). Hard factors are
related to technical issues and are not likely to change radically in the short term.
Soft factors are the ones that depend essentially on economical policies.

Hard factors Soft factors
• Distance to significant gas markets • Institutional, legal and regulatory

framework for gas and associated gas
• Availability and reliability of gas
supply

• Effectiveness of fiscal terms (gas
price, tax structure, etc)

• Gas infrastructure constraints • Development of domestic markets
for gas and sub-products

• Risks of gas re-injection in oil reser-
voir

• Funding constraints due to the
large required initial investment

Table 1.1: Main factors in a natural gas development project [World Bank, 2009]

As the worldwide environmental concern increases rapidly, the public and po-
litical pressure on eliminating gas flaring is changing the operating policies of
many oil companies [Kaldany, 2006; Labeyrie and Rocher, 2010; Ishishone, 2004;
Edino et al., 2010; Stanley, 2009]. This is important enough to stop the further
advance of several oil developments until efficient means for gas disposal are avail-
able [Fitzgerald and Taylor, 2001]. A bold statement is made in [Economides and
Wood, 2009], saying

”Natural gas is the only hydrocarbon source of energy that could
easily and at manageable cost lead to a further reductions in global
carbon intensity through reduction in carbon dioxide emissions.”

In addition, natural gas is in the process of becoming a highly desirable com-
modity due to the generation of new technologies which transform it into different
products [Hall, 2005]. Under this context the market value increases and gas pro-
duction becomes of interest. A diagram with the most adopted commercialization
options for natural gas is presented in Fig. 1.1. As a complement, examples of
important fixed bed catalytic processes with one fluid phase are included in Ta-
ble 1.2. These processes constitute a large portion of the application field for the
tools developed in this thesis.

The rest of Section 1.1 will provide a short overview of the natural gas value
chain where the fundamental role and omnipresence of diffusion processes
will be highlighted. This is mainly illustrative and may be skipped by the readers
whose primary interest lies in the technical aspects of this work.
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Figure 1.1: Main development options and products from natural gas
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Basic Chemical Industry Petrochemical Industry Petroleum Refining
Primary steam reforming Ethylene oxide Catalytic reforming
Secondary steam reforming Ethylene dichloride Isomerization
Carbon monoxide conversion Vinylacetate Polymerization
Carbon monoxide methanation Butadiene Hydrodesulfurization
Ammonia synthesis Maleic anhydride Hydrocracking
Sulfuric acid synthesis Phtalic anhydride
Methanol synthesis Cyclohexane
Oxo synthesis Styrene

Hydrodealkylation

Table 1.2: Examples of catalytic processes in fixed bed reactors [Jakobsen, 2008]

1.1.1 Development strategies for natural gas

Gas field development can be accomplished in many ways, each strategy being
suitable for a given set of conditions. Natural gas can be either re-injected (in the
case of associate gas), commercialized directly as gas or LNG or further processed
into more valuable products and commercialized as methanol, synfuels, etc.

Gas re-injection

Re-injection is a valuable technique for enhancing oil recovery in mature fields
where production has begun to decline. The re-injected gas increases the reservoir
pressure thus incrementing the amount of gas dissolved in the oil. The oil viscosity
is therefore reduced and the production level is stimulated. In addition, a high
percentage of the natural gas is recovered after having pumped the crude out. Re-
injection is also a feasible alternative for CO2 disposal [Sam and Holloway, 1997].
The efficiency of re-injection depends on gas diffusion rates in porous media.

Direct commercialization

Pipeline distribution, CNG and LNG technologies consist basically of sending the
CH4 component of the gas to its final destination. This technologies perform only
the necessary preprocessing to deliver the product safely, but even taking that into
account, the conditioning and transport are significantly expensive. Roughly less
than half of the price of natural gas corresponds to the commodity (the gas itself).
The rest corresponds to transmission and distribution costs [EIA, 2012].

Gas delivery is in itself a matter of study, and the convenience of a given
transport technology is strongly dependent on the distance and the gas volume.
A very interesting analysis is presented in [Durr et al., 2005]. Depending on the
reserve-market distance, shipping accounts for 10 to 30% of the delivered value
of LNG (this cost is below 10% for oil). The reason for this is the higher cost of
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LNG tankers, which is mainly associated to their expensive cryogenic insulation.
These currently cost more than double the price of a crude oil tanker capable of
transporting 4 to 5 times as much energy. An approximate division of costs up to
2003 is given in Fig. 1.2 [EIA, 2003].

Gas To Products

Gas To Products is the common name given to the chain of processes involved in
the production of non-gaseous long-chain hydrocarbons from gaseous short-chain
hydrocarbons. The concept comprises both Gas To Liquid (GTL) technology,
which yields liquid fuels from gas, and further processing which generates other
petrochemical commodities. Most of the required processes involve diffusion in
porous media and are listed in Table 1.2.

Gas To Products conversion requires further processing and a more expensive
infrastructure, but makes the transport cheaper and allows to obtain products with
higher added value. However, its main drawback lies in the required intermediate
syngas production (see Section 1.1.3) which demands high capital investments.
Syngas production comprises half the total capital cost of a GTL plant, and as a
result GTL is competitive against oil production only in scenarios where the gas has
low opportunity value and is not readily transported [Wilhelm et al., 2001]. GTL
has potential, particularly in high oil price markets, but according to [Economides
and Wood, 2009] much technological process and efficiency developments required
before it becomes widely exploited.

P
roduction

Pl
an
t

Shipping

R
ec
eiv
in
g

Figure 1.2: Division of costs in GTL value chain. Production: gas production,
from the reservoir to the LNG plant (15− 20%); Plant : LNG plant, gas treating,
liquefaction, LPG and condensate recovery (30 − 45%); Shipping : transport to
final destination (10 − 30%); Receiving : unloading, storage, re-gasification and
distribution (15− 25%)
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1.1.2 Gas separation and conditioning.

The natural gas extracted from the well is a multi-phase, multi-component mixture.
The composition of the mixture depends usually on many variables, but fields
are generally classified in dry (mainly gas) and wet (high content of condensible
hydrocarbons) [Beychok, 1975]. The simple hydrocarbons found in natural gas are
mainly saturated compounds (principally methane, ethane, propane and butane),
which means they contain the maximum allowable hydrogen content according to
the formula CnH2n+2.

Name Formula Volume %
Methane CH4 > 85%
Ethane C2H6 3− 8%
Propane C3H8 1− 2%
Butane C4H10 < 1%
Pentane C5H12 < 1%
Carbon dioxide CO2 1− 2%
Hydrogen sulfide H2S 0− 5%
Nitrogen N2 1− 5%
Helium He < 0.5%
Rare gases Ar, H2, He traces

Table 1.3: Typical composition ranges of natural gas (vol %)

In addition to these hydrocarbon components, the mixture contains rock frag-
ments, water vapor, hydrogen sulphide (H2S), carbon dioxide (CO2), helium (He),
Nitrogen (N), and other compounds. Typical compositions of natural gas are sum-
marized in Table 1.3 [Mokhatab et al., 2006]. Prior to being sold, processed or even
transported, natural gas requires a series of separation and conditioning processes.
Conditioned gas can be either sold directly as a commodity or further processed
into more valuable products.

The separation and conditioning stage consists in the four basic sub-processes
described below. The reader looking for further detail is referred to [Guo and
Ghalambor, 2005].

1. Separation of gas from free liquids and entrained solids
At the extraction stage, scrubbers and heaters are installed as close as possi-
ble to the wellhead. The scrubbers remove most of the large-particle impuri-
ties. The heaters prevent the formation of hydrates, which tends to occur if
the temperature drops below a certain threshold. The formation of hydrates
can also be prevented by enriching the mixture with additives.

2. Remotion of condensible and recoverable hydrocarbon vapors
Due to the high pressures occurring in the well, the gas is partially dissolved
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into an oil phase consisting of long hydrocarbon chains. In some cases the
mass transfer process driving to separation may occur spontaneously due to
the decrease in solubility caused by the pressure reduction. When further
separation is needed, it is often accomplished by distillation.

3. Remotion of condensible water vapor (dehydration)
The gas dewatering and separation is usually done using the density differ-
ence as a driving force. Mechanical systems that make use of gravity and
inertia are the usual choice for this step. Oil condensate and gas are sep-
arated and the first is sent to an oil refinery. If necessary, an additional
separation stage eliminates most of the associated water [Dupuy, 2010].

4. Remotion of other undesirable compounds, such as H2S or CO2

The sulfur content of natural gas ranges from virtually zero to approximately
30% H2S. Pipeline gas is often specified at below 4 ppmv (parts per million
on a volume basis), and even 1 ppmv [Maddox and Morgan, 2008]. Hydrogen
sulphide is removed in order to reduce corrosion (and health risk in many
cases) and then transformed into elemental sulfur. Most of the elemental
sulfur used in industry goes into the production of sulfuric acid [Nehb and
Vydra, 2000]. The most economically convenient method for gas sweetening
is highly dependent on the acid gas (CO2 and H2S) content [Maddox and
Morgan, 1986]. Solid bed adsorbents are recommended for mixtures with
low acid content, while amines and membrane processes are recommended
for moderate to high acid gas percentages [Bottoms, 1930]. Both sweetening
methods are highly dependent on diffusion rates which lack a consistent
quantitative theory behind them.

1.1.3 Conditioned gas processing

As mentioned above, natural gas is a relatively inexpensive feedstock that can be
used in the production of a great number of hydrocarbons of higher value. The
main products obtained from Gas To Products conversion are methanol, ammonia
and synthetic crude oil (GTL) derivatives such as naphtha, kerosene, paraffins,
diesel-oil and base-oil) among others. These liquid products can be transported in
a cheaper way by using existing pipelines or tankers [Rajnauth et al., 2008]

GTL production

GTL technology is strategically important as it is capable of producing more ho-
mogeneous products with less pollutants. FT diesel can in general replace regular
diesel fuel. In addition, having a high cetane number and no sulfur or nitrogen,
it allows to endeavor the design of more efficient diesel engines with lower acid
emissions [van Vliet et al., 2009]. This is highly desirable since environmentally
friendly fuels are being increasingly demanded in Europe [Abrell, 2010].
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GTL technologies are usually divided in two main categories: direct conver-
sion and indirect conversion methods. On the one hand, the indirect conversion
processes are based on the production of syngas as an intermediate step. The
syngas is then used as a primary resource from which liquid fuels are produced
via Fischer-Tropsch synthesis or via methanol. On the other hand, direct con-
version processes save the cost of syngas production, but involve reactions with
high activation energies and are more difficult to control. Both direct and indi-
rect conversion methods involve catalytically enhanced reactions in which species
transport plays an important role.

Syngas production

Syngas is the name given to a mixture of H2, CO and CO2 in variable proportions.
It is produced by inducing a reforming reaction between methane (or carbon) and
steam at elevated temperatures. Typical process conditions are around 1000◦C
and 3 bar [Lee and Han, 2009]. Conceptually, syngas can be produced from any
carbon-based compound. In practice, the predominant feedstock of interest is
low-value (e.g. stranded) natural gas.

Among the multiple applications of syngas the most important are:

• Ammonia synthesis: requires maximum H2 production and removal of
oxygen-bearing compounds.

• Oxo-synthesis: also known as hydroformylation, requires adjustment and
CO2 removal to give a 1:1 H2 : CO mixture. Produces aldehydes and some
byproducts as alcohols, acetals and esters.

• Reduction of oxides: requires CO2 removal, and the mix of CO and H2

can be used to reduce oxides of base metals into ores.

Partial Oxidation Reforming CH4 + CO2 → 2CO + 2H2 Exothermic

Steam Reforming
CH4 +H2O → CO + 3H2 Endothermic
CO +H2O → CO2 +H2

Table 1.4: Main reactions involved in syngas production from natural gas

The main technologies for syngas production from natural gas are based on
the implementation of the chemical reactions depicted in Table 1.4. The choice of
the process in made according to the size of the production, but also according to
its final destination, which determines the desired characteristics of the product.
The most important technologies for converting natural gas into syngas are, among
others, Partial Oxidation (POX), Steam Methane Reforming (SMR), Autothermal
Reforming (ATR) and two-step reforming.
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These technologies for the production of GTL are compared in [Wilhelm et al.,
2001]. It is concluded that SMR, two-step reforming and ATR processes are pre-
ferred for small, medium-sized and large scale productions respectively. The main
process characteristics can be summarized as follows:

• SMR Yields a higher H2/CO rate, which is the main reason behind the com-
petitiveness of this process in hydrogen-intensive applications (e.g. ammonia
synthesis, hydrogen production).

• POX Yields a lower H2/CO rate, but the associated generation of CO2

(usually undesirable as a byproduct) is also lower.

• ATR Consists in a combination of POX and catalytic SMR in the same reac-
tor, taking advantage of the exothermic nature of POX in order to partially
sustain the endothermic SMR reaction.

An additional advantage of the ATR process is that the final H2/CO rate of the
produced syngas can be adjusted to a specific value (a relation of 2 is required in
feedstock for producing GTL liquids). The two-step reforming process is described
in [Go et al., 2009].

1.1.4 Petrochemical commodities from natural gas

The countless final products obtained from natural gas are used in extremely
diverse fields and applications that cover medicine, agriculture, energy production
and many others. Four of the most important ones are mentioned below: all of
them are produced by catalytic processes in which diffusion is a key element.

Sulfuric acid Sulfuric acid is normally manufactured at about twice the amount
of any other chemical and is a leading economic indicator of the strength of many
industrialized nations [Chenier, 2002, Chapter 2]. It is mainly used in production
of fertilizers, but also in diverse applications such as dyes, explosives, metal clean-
ing, leather tanning, rayon and cellulose manufacturing and organic sulfonation
processes for the production of detergents [E.S.A.A., 2000].

Ammonia It is the second largest synthetic chemical product worldwide. More
than 90% of the world consumption is manufactured from nitrogen and hydrogen
in a catalytic process originally developed by Haber and Bosch using a promoted
iron catalyst discovered by Alwin Mittasch [Appl, 2000]. The catalytic synthesis of
ammonia laid the foundations for subsequent high-pressure processes like methanol
synthesis, oxo-synthesis, Fischer-Tropsch Process, coal liquefaction, and Reppe
reactions. Its use as a fertilizer is so widespread that nitrate and ammonium are
now the main pollutants in many areas, causing damage by acidification and base
cation depletion in forests and freshwaters1 [Schindler and Hecky, 2009].

1This is a compelling reason for controlling agricultural and industrial sources of nitrogen.
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Hydrogen Steam Methane Reforming (SMR) accounts for about 95 percent of
the hydrogen used today in the United States. The rest is generated by partial
oxidation, which consists in burning methane in air. Both steam reforming and
partial oxidation produce a synthesis gas, which is reacted with water to produce
more hydrogen [U.S. Energy, 2008].

Methanol It is generated from a syngas mixture with no composition adjust-
ment required for the process. Methanol finds application as a laboratory solvent
and also as fuel for internal combustion engines or fuel cells, but mainly (> 70%) as
feedstock to produce other chemical compounds such as plastics, explosives, paints
(from formaldehyde), gasoline additives (MTBE) and other compounds [Uhde En-
gineering, 2003].

1.2 Context & Objective

The current research was performed in the framework of the PAFFrx project (Par-
ticle Fluid Flow with Chemical Reaction – Multi level models for design and opti-
mization of fluidized bed processes), sponsored by the Norwegian Research Council.
The research objective of the PAFFrx project is to utilize knowledge and experi-
ence on CFD particle-fluid flow modeling and single-particle phenomena in order to
improve predictions of the fluidized bed unit performance and generate knowledge
contributing to optimal unit design and operation.

In this context, the ultimate goal is building a rigorous model of the whole
system, coupling Computational Fluid Dynamics (CFD) analysis with physical
models for mass and heat transfer and chemical reaction within each of the parti-
cles within the reactor. However, such a model would implicate an unmanageable
numerical complexity and probably a restricted applicability. Therefore it is pre-
ferred to study the cross-effects on smaller systems with the aim of obtaining a
simpler model based on well-understood underlying phenomena and a reduced
number of meaningful parameters.

There is a lack of agreement between different diffusion theories, and therefore
the most convenient validation method for the anomalous transport models seems
to be comparing simulations against available experimental data. This will provide
stronger arguments for determining whether a model is applicable or not. Hence,
developing a suitable numerical framework prior to testing the new models is
mandatory.

The objective of this Ph.D. project is generating tools for modeling transport
phenomena occurring in a catalytic pellets inside a packed bed reactor. This
requires developing a numerical framework capable of testing and comparing dif-
ferent diffusion models inside a particle and implementing their coupling with the
diffusion of species in a fluid outside the particle. The goals for this project can
then be summarized as:
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1. Developing an appropriate numerical technique for solving frac-
tional differential equations.
Fractional differential models offer multiple possibilities for generalizing the
scope covered by Fick’s law in a consistent manner. However, their numerical
implementation is challenging. The main concerns in this regard are their
high computational requirements and mathematical complexity.

2. Implementing models for anomalous diffusion in a particle.
Tools capable of reproducing and comparing different anomalous mass trans-
port models are to be implemented. Three dimensional simulations may be
required, but a two dimensional analysis is expected to suffice in accounting
for the complete physics of the problem in many cases.

3. Coupling solid diffusion and fluid flow.
The diffusion of species inside the particle is strongly coupled with the bound-
ary conditions generated by the fluid flow around it. Therefore, modeling the
flow is necessary in order to obtain accurate boundary conditions. A further
step is coupling solid and fluid transport and studying their combined effect.

4. Identifying criteria for choosing a proper diffusion model.
A benchmark should be formulated that helps determining whether anoma-
lous effects should be considered given a particular case. As anomalous
transport models are computationally expensive, their use is advantageous
only when a significant difference in the obtained predictions is expected.

1.3 Scope

This work is aimed to building a platform from which contributions to a better
understanding of diffusion physics can be made. At this early project stage, the
scope of the present thesis is confined to developing and testing numerical tools.

Even though an exhaustive examination of the theoretical models was left as
a secondary goal, a respectable amount of time was committed to generating a
review of different anomalous transport models and finding a consistent structure
between them.

The implemented models were restricted to a single particle where diffusion of a
single chemical species was simulated. When considering flow around the particle,
the fluid was assumed Newtonian and incompressible. Chemical reactions and
heat transfer were not addressed in any case.

Simulations are based on least squares spectral element methods (LSSEM).
The approach to the numerical formulation is made from a practical point of view,
and the mathematical theory behind it is only addressed through references to
other authors. Some of the mesh generation and operator mapping algorithms,
however, are either a contribution by the author or tools that are regularly used
in fields not related to modeling of transport phenomena.
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1.4 Thesis outline

This thesis is divided into four parts: Part I consists in an introductory review
meant to guide the reader through the topic of anomalous transport and its scope
of application; Part II presents the essential numerical tools and concepts used
throughout this thesis; Part III contains the code validation and results of the
numerical simulations; Part IV features the main conclusions and suggestions for
further work. An appendix presenting a collection of self-contained papers pub-
lished at journals and conference proceedings is included.

Introduction

Chapter 1: Background and motivation. This chapter provides a general
background on natural gas aimed for a layman reader, in order to provide a glimpse
of its whole value chain and show the ubiquity of chemical processes where anoma-
lous diffusion is relevant.

Chapter 2: Anomalous transport models. This chapter constitutes a short
review of the most relevant theoretical and empirical refutations of Fick’s law. A
characterization of the models according to scale is proposed, and the connection
and consistency between fractional diffusion and continuous time random walk is
verified.

Numerical tools

Chapter 3: The Least Squares Spectral Element Method. This chapter
consists in an introduction to the numerical technique used for the simulations
throughout this thesis: the Least Squares Spectral Element Method. The concepts
are presented from a practical point of view, aiming to make this chapter as self-
contained as possible with the minimum necessary complexity.

Chapter 4: Numerical implementation. This chapter describes the numer-
ical implementation details required to reproduce the calculations included in this
thesis. The main points are the fractional derivative operator and geometrical
mappings in spectral formulations.

Simulations and application to problems

Chapter 5: Cattaneo-Maxwell diffusion model. This chapter introduces a
time-space implementation of the Cattaneo-Maxwell model, the simplest hyper-
bolic generalization of Fick’s law that accounts for a finite information propagation
velocity. This velocity affects the shape of the transient concentration profiles.

14
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Chapter 6: Fractional diffusion models. This chapter presents a least squares
spectral implementation of the five most common fractional diffusion models. The
main numerical difficulties are discussed, and examples of calculated solutions are
displayed in order to validate the current implementation.

Chapter 7: Coupling convection and diffusion. This chapter presents a
framework for simulating species flow around a solid particle, coupled with anoma-
lous diffusion inside the particle. The models presented in Chapters 5 and 6 are
tested here as alternatives for describing diffusion in the solid.

Final remarks

Chapter 8: Conclusions. This chapter gives a brief overview of the main
conclusions of this work and discusses possibilities for further research.
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The problem of predicting the flow of species into a particle is of large importance
in the design of catalytic particles. A numerical framework using the Least Squares
Spectral Element Method is implemented in order to analyze the species transport
into a particle immersed in a flow. The qualitative change in the concentration
profiles in the transition from Fickian to fractional diffusion inside the particle is
investigated. A sample case corresponding to a flow between two parallel plates
and around a cylinder is displayed.

Article 5. Carella, A.R. and Dorao, C.A. (2012) N-dimensional Least

Squares Spectral Method formulation for the general Fractional Dif-

fusion Equation. Journal of Computational Physics - Under review.
This article presents an extension of the Least Squares Spectral Method capable
of solving partial fractional differential equations for any number of dimensions.
For adapting this method to various geometries and concentrating the interpo-
lating nodes at given zones, two domain mapping techniques called homography
and isoparametric method are presented. The linear homography method is sim-
ple and automatable, but is restricted to polygonal (linear) mappings, while the
isoparametric technique can be used for non-linear mappings. Numerical solutions
to three sample problems are presented and discussed. The strengths and weak-
nesses of the current implementation are analyzed through a convergence study.
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Chapter 2

Anomalous transport models

Questions have arisen about the validity of Fick’s diffusion model since the be-
ginning of the systematization of diffusion study. On the one hand, many pieces
of experimental evidence collected during the last years show diffusive phenom-
ena that are not properly described by this model. On the other hand, strong
theoretical arguments deter from considering Fick’s law as a definitive model for
diffusion.

This chapter provides a short review of the most actual and relevant diffusion
models and the main ideas behind them. Section 2.1 defines the concept of anoma-
lous transport and presents an overview of application cases. Section 2.2 divides
the transport models into categories according to the level of detail considered in
them. Section 2.3 presents the main features of the Continuous Time Random
Walk (CTRW) model, a consistent generalization of the classical random walk
model. Section 2.4 introduces Fractional diffusion models, an extension of Fick’s
law to fractional derivative exponents. The main ideas contained in this chapter
are briefly summarized in Section 2.5.

2.1 What is anomalous transport?

Due to its mathematical simplicity and acceptable accuracy for describing certain
diffusive processes, Fick’s law has been accepted as the universal ’standard’ diffu-
sive law [Visscher, 1984a;b; Herwig and Beckert, 2000]. Fickian transport models
obey certain well-defined characteristic rules such as dispersing linearly with time1

and yielding constitutive laws that result in parabolic systems. Any alternative
diffusion law not complying with these characteristics is then labeled as ’anomalous
transport ’.

Fick’s law is object of controversy based on both theoretical and empirical
arguments. The main theoretical objection against Fick’s law is the so-called

1 Given the solution f(x, t) to a transport problem, a linear dispersion means that the second
moment of the x coordinate increases linearly with time, according to 〈x2〉 ∝ t.
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Chapter 2. Anomalous transport models

infinite propagation velocity paradox, which will be discussed in Section 2.1.1. In
addition, many pieces of experimental work (discussed in Section 2.1.2) have been
published which contribute to discredit Fick’s law as the universal diffusion model.
An overwhelming amount of evidence suggests that ’anomalous diffusion is the rule
in concentration-dependent diffusion processes’ [Küntz and Lavallée, 2001; 2004].

2.1.1 Infinite propagation velocity paradox

Infinite propagation velocity paradox is one of the mathematical consequences of
using Fick’s law as a constitutive law, by which disturbance propagation at an
infinite speed is predicted. This means that a perturbation arising at any point
of the domain is instantly detected everywhere (see Example 2.1), which disagrees
with Einstein’s theory of relativity. This paradox is inherent to linear parabolic
models, and has been extensively discussed in several articles, e.g. [Liu, 1979;
Gómez-Dı́az, 2006].

Example 2.1: Fickian propagation of a concentration pulse

Let us analyze the fundamental problem of Fickian diffusion: a concentra-
tion pulse in an infinite medium. The mathematical form of the system
(Eq. (2.1)) consists of a second order differential equation and an initial
condition. ⎧⎨

⎩
∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
−∞ < x < ∞, t > 0

C(x, 0) = δ(x)
(2.1)

The analytical solution for this case can be found in many textbooks e.g.
[Incropera and DeWitt, 2002], and has the form

C(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
(2.2)

which implies C(x, t) > 0 for every t > 0. In other words, the information
propagates instantly to the whole domain.

2.1.2 Experimentally observed anomalous transport

Since most of (if not all) the known heat and mass transport processes fall into
the anomalous transport category [Küntz and Lavallée, 2004], attempting to do
an extensive review would be too ambitious. Even when a considerable effort is
being done in order to elucidate the global picture, the best modeling approach for
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2.1. What is anomalous transport?

each case is still a matter of discussion. Illustrating this point, the performance
of five anomalous diffusion models is evaluated in [Gao et al., 2009] by comparing
them with the same experimental setup. None of the models is found satisfactory
by the authors.

A selection of relevant cases is introduced here in order to set the background
for the present work. The considered articles are grouped into categories, and
a summary is presented in Table 2.1. Further general reviews with examples of
anomalous transport in many fields can be found in [Klafter and Sokolov, 2005;
Sokolov and Klafter, 2005].

Model 1 Hyperbolic diffusion. Diffusion models are usually developed from
a steady-state perspective. Starting from Einstein’s mechanistic definition
of molecular diffusion and replacing the mean quasi-static values by a full
transient model, it is shown in [Landau and Lifshitz, 1959] that a hyper-
bolic description is valid.2 However, this correction would only be noticeable
for processes with extremely small characteristic times or in certain cases of
composite materials. Under this conditions the validity of classical mechan-
ics is, at least, arguable. A nonlinear alternative with vanishing diffusion
coefficients for certain concentration values is proposed in [Kath, 1984]. It is
described in [Klages et al., 2008, Chapter 3.9] how coupled memory random
walks yield a hyperbolic diffusion model.

Model 2 Hyperbolic heat transfer. An exhaustive chronology of ideas about
heat waves is presented in [Joseph and Preziosi, 1989]. No significant pieces
of knowledge about the history dependence of the internal energy appear to
be published prior to this date. The consistency of this model is severely
questioned in [Bright, 2009].

Model 3 Non-linear parabolic diffusion. A model is proposed in [Islam,
2004], obtaining consistent results, in which the diffusive flux is proportional
to the chemical potential gradient instead of the concentration. As boldly
stated in this work, “Fick’s law loses to some extent its credibility as the
flux is proportional to the gradient of some parameter (concentration) and
at the same time the proportionality constant is also a function of the same
parameter”.

Model 4 Generalized Ohm’s law. A relaxation equation for the electrical
conduction current density is proposed in [Cuevas et al., 1999]. This gen-
eralized Ohm’s law takes into account the inertial effects of electrons, and
its predictions coincide with Drude’s model for metals. However, experi-
mental verification would require working with lengths of around 10−7m and

2The arguments in [Landau and Lifshitz, 1959] assume that a classical mechanics description
is applicable. This assumption is only valid for scales above the continuum limit.
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Chapter 2. Anomalous transport models

frequencies of around 1014Hz. This is expected to be relevant to the descrip-
tion of the magnetic field in plasma drift waves, where the inertia of electrons
is expected to be significant.

Model 5 Mixed random walk models. The percentage of existing oil that can
be extracted from a reservoir depends on the rate of migration of species into
the porous soil [Jahn et al., 2008]. The system considered in [Tør̊a et al.,
2009] is extremely heterogeneous and a ’pseudo-homogenization’ modeling
technique is presented. The microscopic diffusive properties are explored
using random walkers and then related to electrical conductivity by using
Einstein’s relation. The associated problem of upscaling from microscopic to
macroscopic lengths is addressed in [Hilfer, 1996].

Model 6 Time-dependent random walk. Continuous Time Random Walks
with a Mittag-Leffler waiting time law lead to the space-time fractional dif-
fusion equation [Mainardi et al., 2000; Gorenflo et al., 2001].A process not
complying with the central limit theorem plays a key role in the analysis
by [Scher and Montroll, 1975]. Long-tail time distributions can be obtained
from random activation energies in an Arrhenius-law model [Bendler et al.,
2007].

Model 7 Fractional derivative models. The fractional advection-dispersion
equation is regarded as a model capable of coping with the heterogeneity of
geological media by including non-local effects [Casper et al., 2012; Zhang
et al., 2007]. Large ranges of solute displacement (superdiffusion) can be
described with space-fractional models while long waiting times (subdiffu-
sion) are generated by time-fractional models. Space-vs-time nonlocality is
discussed in [Zhang et al., 2009].

2.2 When should anomalous models be used

The long list of arguments questioning Fick’s law, including the ones summarized
at Section 2.1, should plant a seed of doubt about using this model for analyzing
diffusive phenomena. Nevertheless, Fick’s law is still used in many applications,
mainly because of practical reasons among which we can count the following:

• Parabolic equations are well known and mathematically simple.

• The predicted results are useful as estimative values in some applications
(Gómez et al., 2010).

• Testing new models requires accurate dynamic diffusion measurements, which
involve large difficulties and uncertainties (Leipertz and Fröba, 2005).
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Chapter 2. Anomalous transport models

However, some applications require an accurate description for heat or mass dif-
fusion at short times. Some emblematic cases in addition to the list provided in
Section 2.1.2 are presented in (Lane et al., 1947; Vick and Ozisik, 1983; Stöcker,
2005). The purpose of this section is providing estimative guidelines that can help
to determine under which conditions anomalous transport models should be used.

2.2.1 Applicability of Fick’s law

Fick’s law can be derived with reasonable ease from a random walk model, see
for example (Berg, 1993, Chapter 2). However, its theoretical range of validity is
restricted to the following assumptions:

• no lateral interactions (mutual perturbations) exist between the particles,

• the behavior of the walkers is independent of the medium,

• the medium is isotropic and therefore no preferential interactions exist,

• the number of steps is “statistically significant” (non-valid at short times).

These strong assumptions are only fulfilled in a very limited number of cases,
such as diffusion in very dilute solutions after a given onset time. Systems like
multicomponent mixtures, mixtures of two gases in porous media or mixtures with
cations generally do not satisfy the mentioned assumptions. An introductory level
discussion of these topics can be found in (Wesselingh and Krishna, 1990).

The random walk model assumptions can be relaxed by considering the possi-
bility of having a probability distribution (instead of a single value) of step lengths
and waiting times. Fick’s law is recovered by choosing probability distribution
functions that decay fast enough. Arbitrary probability distribution functions re-
sult in Continuous Time Random Walk models, as presented in Section 2.3.

2.2.2 Transport modeling according to level of detail

The first broad characterization of diffusion models can be done according to the
level of detail each model accounts for. This is accomplished as a compromise
between the required precision and the affordable modeling complexity in the de-
scription of the physical phenomenon.

The anomalous transport models can be categorized in three basic levels, as
depicted in Fig. 2.1 (Balescu, 2005; 2007). In order to achieve a consistent descrip-
tion, each level must be a suitable approximation of the more fundamental ones.
This consistency is a challenging subject since the interrelation of these levels is
not a closed matter.

Geometric characterizations of correlated microstructures and the problem of
upscaling from microscopic to macroscopic length scales are introduced in (Hilfer,
1996). The topic is further considered in (Berkowitz et al., 2006), where the
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2.2. When should anomalous models be used

fact that species migration experiences a high sensitivity to inhomogeneities at all
scales is reasserted. This has motivated the development of macro-scale models
that account for such inhomogeneity.

At one end we find statistical mechanics, a combination of the basic laws of
microscopic dynamics with the laws of large numbers (Dorfman, 1999). Statistical
mechanical models can account for the behavior of the high number of particles,
but the analysis of real cases results unfeasible since the number of degrees of
freedom becomes unmanageable.

Moving up in scale, V-Langevin equation and CTRW are regarded as semi-
deterministic treatments. They provide a compromise between the complex sta-
tistical mechanical formulation and the macro-scale diffusive models. Each of the
multiple considered particles is characterized by its instantaneous position x(t)
and obeys an equation of motion having the same shape as the Newtonian equa-
tion. The velocity of each particle, however, is considered to be a (stochastically)
fluctuating quantity, following an external field. Some attempts to link different
modeling scales have been done recently (Meerschaert et al., 2010).

The macro-scale generalization of these descriptions are fractional diffusion
models. These account for inhomogeneities in the diffusive medium by considering
variable step length and waiting time, and also include non-local effects. Analog
to the case of RW and Fick’s law, CTRW models lead to fractional diffusion under
the conditions described in Section 2.3.3. The scope of this thesis is restricted to
macro-scale anomalous transport, represented in the upper block of Fig. 2.1.

Fractional
Differential
Equations

CTRW and
V-Langevin
equation

Statistical
Mechanical
Theory

Simplicity

Thoroughness

Figure 2.1: Global classification of anomalous transport models according to scale
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Chapter 2. Anomalous transport models

2.3 Continuous Time Random Walks

The concept of Continuous Time Random Walk (CTRW) incorporates time and
space non-local effects to the classical random walk (Montroll and Weiss, 1965).
In this approach, a set of walkers performs jumps of lengths Δxi at times ti. The
jumps Δxi and waiting times Δti = ti − ti−1 are drawn from different probability
density functions (PDF) ψx(x) and ψt(t), respectively. Therefore, the probability
P (x, t) of finding a walker at position x and time t is given by

P (x, t) = δ(x)

∫ ∞

t

ψt(t
′)dt′ +

∫ t

0

ψt(t− t′)

[∫ ∞

−∞

ψx(x− x′)P (x′, t′)dx′

]
dt′, (2.3)

where the first term accounts for the accumulation of walkers up to time t and the
second term accounts for the particles arriving to the position x at time t.

Since the laws of Brownian motion result from the Central Limit Theorem
(CLT), the usual form of the theorem fails when anomalous diffusion is present
(Bouchaud and Georges, 1990). This can be due to the existence of either long
range time correlations or jump/wait PDFs with diverging first or second moment.

For any CTRW defined by a jump PDF ψx(x) having at least finite first and
second moments, and a waiting time PDF ψt(t) having at least a finite first mo-
ment, the density profile P (x, t) tends to a Gaussian packet for long times and
large distances, as depicted in Fig. 2.2 (Balescu, 2005).

Gaussian
diffusive packet

Finite 〈ψx〉 and 〈ψ2
x〉 Finite 〈ψt〉

Figure 2.2: Conditions for the formation of Gaussian diffusive packets

An explicit relation can be found between the waiting time in a semi-Markovian
random walk process and the memory kernel of Eq. (2.3) so that they describe
an equivalent process (Kenkre et al., 1973). Both the fractional time diffusion
equation (see Section 2.3.3) and Cattaneo’s equation (see Chapter 5) can be derived
from choosing the PDF kernels properly in the generalized master equation.

2.3.1 Long tail distributions

Gaussian distributions represent the limit distributions of independent identically
distributed (iid) random variables with finite variance 〈x2〉. As an analogy, Lévy
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2.3. Continuous Time Random Walks

flights represent the limit distributions of iid random variables with infinite vari-
ance 〈x2〉 → ∞. Lévy flights are also referred to as long tail distributions.

Long tail distributions have been used as a tentative approach to describe nu-
merous processes. Examples are turbulence (Dubrulle and Laval, 1998), plasma
physics (Chechkin et al., 2002; Krommes, 2002; Jha et al., 2003), animal migra-
tion (Reynolds and Frye, 2007; Ramos-Fernndez et al., 2004) and disease spread-
ing (Bossak and Welford, 2010) among others (Metzler and Klafter, 2000; 2004;
Shlesinger et al., 1999). Nevertheless, Lévy flights are under ongoing research
since their thermodynamical consistency and proper formulation are still a matter
of discussion.

Long tail distributions can be obtained either from random processes such as
the Saint Petersburg paradox (Rieger and Wang, 2006, Section 1.3) and the model
of activated hopping (Bendler et al., 2007) or through a deterministic approach, as
illustrated in (Klages et al., 2008, Chapter 3).

2.3.2 Pseudo-Random PDF generation

In order to be able to test CTRW tendencies for different walking models, a non-
uniform PDF (i.e. a random function with a non-uniform occurence probability) is
required. The easiest way to generate such a function is by transforming a uniform
PDF and mapping it into the target probability distribution ψ(ξ). The procedure
is explained next and proven in textbooks such as (Devroye, 1986, Chapter 1).

1. The cumulative distribution function Ψ(ξ) is calculated as

Ψ(ξ) =

∫ ξ

−∞

ψ(ξ′)dξ′ (2.4)

2. A random number sU is drawn from a uniform PDF between 0 and 1

sU = rand[0,1] (2.5)

3. A random sample sNU from ψ(ξ) is calculated as

sNU = Ψ−1(sU) (2.6)

The power law distribution ψ(ξ) = Cξ−β is particularly interesting when ap-
plied to CTRW processes since it gradually leads to different diffusion behaviors
depending on the value of the exponent. In the cases with β ≤ 1 the distribution
does not have a finite integral and it is therefore necessary to truncate its infinite
tail in order to obtain an approximation. The procedure for obtaining a truncated
power law PDF ψN(ξ) is illustrated in Example 2.2.
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Chapter 2. Anomalous transport models

Example 2.2: Generation of a power law distributed PDF

The truncated power law PDF is defined as

ψN(ξ) =

{
1−β

ξ
1−β
1

−ξ
1−β
0

ξ−β ξ0 < ξ < ξ1

0 otherwise

and so the cummulative distribution function ΨN(ξ) from Eq. (2.4) is

ΨN(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
0 ξ ≤ ξ0
ξ1−β−ξ

1−β
0

ξ
1−β
1

−ξ
1−β
0

ξ0 < ξ < ξ1

1 ξ ≥ ξ1

A sample from a power law distributed PDF is obtained from Eq. (2.6) as

sNU = Ψ−1
N (sU) =

[(
ξ1−β
1 − ξ1−β

0

)
sU + ξ1−β

0

] 1

1−β

2.3.3 Linking CTRW and fractional diffusion

Continuous time random walk constitutes a flexible and attractive model for ob-
serving phenomena at a micro-scale. On one hand it has the capability of providing
a detailed description of the physical behavior of particles. On the other hand,
effects such as space non-locality and memory (time non-locality) can also be in-
cluded in the description.

As mentioned in Section 2.2.2, the complexity grows exponentially as the num-
ber of particles is increased if interactions between particles are considered. In
addition, as for any stochastic model, a large number of samples is required in
order to assure repeatability. Therefore it becomes desirable to complement this
model with its macro-scale counterpart in order to both simplify the treatment
and reduce computational cost.

Random walk and Fick’s law

It is commonly accepted that the predictions from a standard RW model are
equivalent to Fick’s law when continuum hypotheses are used (Berg, 1993). The
propagation of a concentration pulse (see Example 2.1) can be represented by
a random walk model where each particle faces an homogeneously distributed
jumping probability distribution at each time step (tn = nΔt), as depicted in
Fig. 2.3. Calculations from a random walk model with parameters Δx = 0.01 and
Δt = 0.04 are presented together with its Fick’s law counterpart in Fig. 2.4. The

26



2.3. Continuous Time Random Walks

t tn n+1

0 1

���

�� �xj

n+1

���

Figure 2.3: Jumping probability distribution for a random walk model

equivalence between models is given by

D =
(Δx)2

2Δt
, (2.7)

where D is the diffusion coefficient, Δx is the step length and Δt is the waiting
time between steps. Note in Fig. 2.4 that the equivalence between models becomes
clearer as the number of walkers increases.
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(a) Test sample with 103 walkers
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Figure 2.4: Diffusion of a concentration pulse by Fick and random walk models

27



Chapter 2. Anomalous transport models

Continuous time random walk and time fractional diffusion

A link between fractional diffusion and anomalous transport is provided by the
theory of random walks (Klages et al., 2008, Chapter 6.1). In the continuum limit,
the CTRW model leads to the fractional diffusion equation. Here the fractional
order of the derivatives depends on the decay exponents of the jumping length and
waiting time probability functions.

If a Markovian approach is taken (i.e. memory effects are neglected) Eq. (2.3),
called the master equation, leads to the diffusion equation. When memory and long
jumps are included through decaying probability density functions, the continuum
limit leads to the fractional diffusion equation (Lynch et al., 2003). Due to its
non-local nature, fractional diffusion models provide a non-bijective relationship
between concentration gradient and flux (Paradisi et al., 2001). This means that
the flux and the concentration gradient cannot be unambiguously determined from
each other’s local value since they depend on the previous history.

A relation analogous to the one described above between Fick’s law and ran-
dom walk can be found between continuous time random walk and Eq. (2.19),
which will be presented in next section. Proof of the equivalence between the time
fractional diffusion equation and a CTRW considering memory effects is given in
(Gorenflo et al., 2002). In order to achieve this equivalence, the jumping probabil-
ity distribution at each time step tn includes terms that account for the possibility
of staying at the same place or returning to previous positions, as depicted in
Fig. 2.5.

During the first time instant the particles can either jump left, stay at the
same position or jump right with probabilities μ, (1 − 2μ) and μ respectively. At
subsequent times, a probability of returning to a previous position is added to the
PDF. The constants in the sketch are defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ci = (−1)i+1

(
β

i

)
=

∣∣∣∣
(
β

i

)∣∣∣∣ i ≥ 1

bn =
n∑

i=0

(−1)i
(
β

i

)
n ≥ 0

μ =
τβ

h2
0 < β ≤ 1

(2.8)

where μ is the time-space renormalization constant, β is the time fractional deriva-
tive exponent, τ is the time step and h is the spatial step. The probability for
a particle to return to a given old position vanishes as time advances, in agree-
ment with Eq. (2.19). CTRW simulations reproducing the procedure in (Gorenflo
et al., 2002) are presented in Fig. 2.6 superimposed with the analytical solution
for Eq. (2.19).
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Figure 2.5: Jumping probability distribution for CTRW model with memory

2.4 Fractional diffusion models

This section presents the most common fractional diffusion models mentioned in
Sections 2.1 to 2.3. Prior to discussing fractional diffusion, the fractional derivative
operator must be properly introduced.

2.4.1 Fractional derivatives

Fractional derivatives are non-local operators that extend the notion of derivative
from positive integers to any real exponent. The usual notation to refer to frac-
tional derivatives is the same as the notation used for integer-order derivatives.
That is, the expression

Dβf (t) =
dβf (t)

dtβ
, β ∈ R (2.9)

is used, where β can adopt any real value and β < 0 are fractional integrals.
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Figure 2.6: Fractional diffusion of a pulse by Eq. (2.19) vs. CTRW in Fig. 2.3

The extension from integer to fractional derivatives is not unique. The two
main approaches for this generalization are iterated integration and iterated differ-
entiation (Podlubny, 1999).

Iterated integration approach

Fractional derivatives can be approached as an inductive generalization through
iterated definite integrals. This is extensively explained in (Kleinz and Osler,
2000), and yields the definition

RL : 0D
β
t f (t) =

1

Γ (n− β)

dn

dtn

∫ t

0

f (ξ) dξ

(t− ξ)β+1−n
, n− 1 < β ≤ n (2.10a)

by Riemann-Liouville (Klages et al., 2008), where n is the smallest integer that is
greater than or equal to β and 0 is the lower integration limit. This is known as
the left hand definition (LHD) of the fractional derivative (Podlubny, 1999).
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An alternative definition, usually referred to as the right hand definition (RHD)
and attributed to (Caputo, 1967), is

Ca : 0D
β
t f (t) =

1

Γ (n− β)

∫ t

0

f (n) (ξ) dξ

(t− ξ)β+1−n
, n− 1 < β ≤ n (2.10b)

with the same restrictions on β and n. The fact of inverting the order between the
integration and the differentiation has consequences on the modeling implemen-
tation and the interpretation of results (Loverro, 2004). The two definitions are
linked as presented in Eq. (2.11). A further comparison can be found in (Li and
Deng, 2007).

0D
β
t f (t) RL =

f (0)

Γ (1− β) tβ
+ 0D

β
t f (t) Ca (2.11)

Note that the definitions in Eqs. (2.10a) and (2.10b) yield special cases when
integer values of β are considered

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0D
β
t u(x, t) =

∂βu(x, t)

∂tβ
if β ∈ Z > 0

0D
β
t u(x, t) =

∫ t

0

· · ·
∫ tn1

0︸ ︷︷ ︸
n-fold integral

u(x, tn)dtn · · · dt1 if β ∈ Z < 0
(2.12)

The left hand definition in Eq. (2.10a) integrates the function f (t) before dif-
ferentiating it, and only requires f (t) to be causal (f (t) = 0 for t ≤ 0). However,
a significant drawback in using this definition in the formulation of physical prob-
lems is the requirement of fractional initial conditions in order to solve the resulting
fractional differential equations. The physical meaning of these fractional initial
conditions is not completely clear (Rutman, 1995; Podlubny, 2002). Aditionally,
according to this definition, the fractional derivative of a constant C is not zero
but is calculated as DβC = Ct−β

Γ(1−β)
. The latter is not necessarily a drawback, since

it suitably describes phenomena related with aging processes (Jumarie, 2009).

On the other hand, if the right hand definition (Eq. (2.10b)) is used, then the re-
quirements for f (t) are more demanding. It is then required that the function and
all its derivatives are zero at the left boundary of the integration interval, namely
f (0) = f (1) (0) = f (2) (0) = ... = f (n) (0) = 0 in order to ensure the convergence of
the right hand side of equation Eq. (2.10b). However, this definition makes the
fractional derivative of a constant zero, as for the integer exponent case. It also
allows integer order initial conditions (with immediate physical interpretation) to
be used in the solution of fractional differential equations.
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Iterated differentiation approach

Another approach to fractional derivatives is through succesive differentiation. In
this case, the generalization of Eq. (2.9) yields the definition

0D
β
t f (t) = lim

n→0

(
1

h

)β
t−a
h∑

r=0

(−1)r
(

β
r

)
f (t− rh) (2.13)

It has been proven that if f (t) is (n− 1) times continuously differentiable and
f (n) (t) is integrable in [0, T ] formulations in Eqs. (2.10) and (2.13) exist and are
equivalent (Podlubny, 1999).

Right derivatives

Equation (2.10) defines the fractional derivative 0D
β
t f (t) using the information

of the function in the interval [0, t] and can thus be interpreted as a function of
time before the current instant. However, the fractional derivative can also be
defined as a function of time after the current instant as tD

β
∞f (t) by performing

the integral in the interval [t,∞).
If the variable t represents time for the process f , physical causality gives

meaning only to the left definition, since it is an operation performed on the past
states of the process f (t). Although right derivative presents some similarities
with a conjugate operator and remains of interest for mathematical theories, we
will only be concerned with left derivatives in this thesis.

2.4.2 Fractional diffusion models

Mass transfer is governed by a transport equation in combination with a given
constitutive equation. Equation (2.14) represents a one-dimensional transport
equation without source terms. Here the variables C (x, t) and J (x, t) represent
species concentration and species flux respectively.

∂C (x, t)

∂t
+

∂J (x, t)

∂x
= 0 (2.14)

The traditional constitutive equation used to model diffusion is Fick’s first law
(Eq. (2.15)) which is appropriate only in a very limited number of cases (Küntz
and Lavallée, 2004; Klafter and Sokolov, 2005). Diffusive flux is then modeled as

J (x, t) = −μ(x)
∂C (x, t)

∂x
, (2.15)

where μ(x) is the diffusion coefficient. Using Eq. (2.15) as a constitutive law is
appropriate only if the mean free path of the modeled dispersion process is short
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enough. If, on the contrary, the mean free path is too long, the species flux can be
modeled by equation Eq. (2.16), which represents a ballistic propagation process.

J (x, t) = C (x, t) (2.16)

For moderately long mean free paths, Eq. (2.17) has been proposed as a constitu-
tive law in order to account for an intermediate scenario in which neither Eq. (2.15)
nor Eq. (2.16) are suitable approximations. Diffusive flux is then expressed as

J (x, t) = −μ(x)

(
(1− q) 0D

β
xC (x, t) + q xD

β
1C (x, t)

)
, 0 ≤ β ≤ 1, (2.17)

where q is the relative contribution of the right derivative to the total derivative
(0 ≤ q ≤ 1). The cases q = 0, q = 1 and q = 0.5 are called left derivative, right
derivative and Riesz derivative respectively. The operator aD

β
b denotes either the

Riemann-Liouville or the Caputo fractional derivative from Eq. (2.10).
Equation (2.17), denominated the fractional advection-dispersion constitutive

equation, has been proposed in (Chaves, 1998; Schumer et al., 2001) as a gener-
alization of integer order derivatives to describe diffusion processes in which Lévy
flights occur. More on the interpretation of this equation can be found in (Fix and
Roop, 2004; Meerschaert et al., 1999). Note that if β = 1, then Eq. (2.17) reduces
to Eq. (2.15).

The formulation of a wide range of problems is achieved by combining Eq. (2.14)
and Eq. (2.17) and adding Dirichlet boundary condition as shown in Eq. (2.18)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂C

∂t
= μ(x)

[
(1− q) 0D

1+β
x C + q xD

1+β
1 C

]
in Ω = [0, 1]× [0, 1]

C(0, t) = C0

C(1, t) = C1

C(x, 0) = CIC(x)

(2.18)

Further generalizations of this model are presented in (Luchko, 2009; Hanert,
2011). In order to model superdiffusive systems, the fractional derivative is moved
to the time domain as presented in Eq. (2.19)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− q) 0D
β
t C + q tD

β
1C = μ(x)

∂2C

∂x2
, in Ω = [0, 1]× [0, 1]

C(0, t) = C0

C(1, t) = C1

C(x, 0) = CIC(x)

(2.19)

Equation (2.19) is usually referred to as the time fractional diffusion equation. The
time fractional derivative can be directly correlated with the effect of memory in
diffusion phenomena, as explained in Section 2.3.3. Numerical solutions to these
and other fractional diffusion models are presented in Chapter 6.
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2.5 Chapter summary

Fick’s law is extensively used for modeling diffusion phenomena, mainly due to
its mathematical simplicity. However, the strong assumptions necessary for the
derivation of this model restrict its range of validity to a limited amount of simple
cases. A short review of the most important pieces of evidence refuting the general
application of Fick’s law was presented, together with a wide scope of alternative
diffusion models grouped under the common name ’anomalous transport’.

The anomalous transport models can be categorized according to their scale, in
a compromise between simplicity and thoroughness. In any case, each level must
be a suitable approximation of the most fundamental ones in order to achieve a
consistent description. The mutually coherent Random Walk and Fick’s law can
be generalized to Continuous Time Random Walk and Fractional Diffusion re-
spectively by relaxing some of the model assumptions. An introduction to these
models was provided in this chapter, and their coherence was verified by repro-
ducing numerical experiments from previous work.
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Numerical tools
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Chapter 3

The Least Squares Spectral
Element Method

The Least Squares Spectral Element Method (LSSEM) is a relatively novel nu-
merical technique which combines a formulation based on the minimization of a
residual norm with a finite element approximation using spectral (high-order) base
functions. The composition resulting from these three factors is a very robust nu-
merical technique which yields good results for simulations in a broad range of
problems.

This chapter presents the basic characteristics of the Least Squares Spectral
Element Method. Section 3.1 gives an overview over the main features of the
numerical method as a combination of different techniques. Section 3.2 explains
briefly the principles behind the least squares formulation. Section 3.4 summarizes
the key topics presented in this chapter.

3.1 Overview of LSSEM features

A least-squares numerical formulation yields always a symmetric positive-definite
(SPD) system of algebraic equations which performs remarkably in combination
with iterative solvers. The spectral scheme renders exponential convergence and
the division in elements provides the flexibility to adapt to arbitrary geometries.
This combination, known as the Least Squares Spectral Element Method, is spe-
cially suited for simulations in fluid dynamics and other equation systems with
non-selfadjoint operators.

The main characteristics of the method are summarized and shortly described
in each of the following subsections. The reader looking for a more detailed re-
view is referred to specialized publications such as (Jiang, 1998; Gerritsma and
De Maerschalck, 2010).
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3.1.1 Why finite elements?

Generality The inconvenience of having a single polynomial approximating the
solution over the whole domain, as in the case of spectral methods, becomes evi-
dent when rapid transients or any kind of non-smoothness are experienced. The
best solution here consists in subdividing the domain in multiple elements, using
local low-order representations in each of them and then connecting the elements
in order to obtain the full solution. Solving many small problems instead of a sin-
gle large problem is also a natural approach to parallel processing (Jiang, 1998).
A similar situation occurs when the domain shape is complex. The division in
multiple elements yields higher geometrical flexibility with simpler mappings.

3.1.2 Why least squares?

Cost-free a-posteriori error estimator As mentioned above, least squares
methods are based on the minimization of a residual norm. If the smoothness
requirements of the problem are satisfied, the residual minimization is equivalent
to the error minimization (see Section 3.2.1). This is very convenient considering
that a-posteriori error estimations involve extra computational cost for any other
numerical method.

Advantages for iterative solvers The algebraic equation systems generated
by the Least Squares methods are always Symmetric and Positive Definite (SPD),
even for non-selfadjoint first order operators. This allows using efficient iterative
solving algorithms such as the conjugate gradient method for every problem.

Strong or weak boundary conditions The boundary conditions to the prob-
lem can be included either in a strong or a weak form, which is often emphasized
as an advantage of this method over others (Jiang, 1998; Gerritsma and De Maer-
schalck, 2010). If the strong form is used, the discrete search space is restricted to
functions that fit the boundary conditions. Then the boundary is removed from
the set of problem unknowns.

On the other hand, if weak boundary conditions are used, the boundary is in-
cluded in the set of problem unknowns. In this case full compliance with boundary
conditions is achieved at the limit case (h → 0) when the element size goes to zero
(Kayser-Herold and Matthies, 2005). This possibility allows for a greater degree
of flexibility.

3.1.3 Why spectral?

Rapid convergence for smooth problems The LSSEM shares the charac-
teristic rapid convergence of the spectral methods as the approximation order N
is increased (p-refinement), provided the solution is smooth enough. The error
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decreases faster than any algebraic power of N provided the solution is smooth
enough, as formally stated in (Canuto et al., 2006). This is superior to the algebraic
convergence rate obtained when increasing the number of elements (h-refinement).
A successful combination of these (hp-refinement), is achieved by performing a
p-refinement in the smooth regions and a h-refinement in the regions of low regu-
larity.

3.2 Formulation

We will begin with the description of the least squares spectral numerical formu-
lation by considering an arbitrary set of partial differential equations (PDEs) and
boundary conditions (BCs):

Lu = g in Ω (3.1a)

Bu = gΓ on Γ ⊆ ∂Ω (3.1b)

where L is an arbitrary linear operator and B is a linear boundary condition
operator, u is the unknown vector, g and gΓ are the source terms and Γ is a
fraction of the boundary ∂Ω of the domain Ω.

3.2.1 Main concept

A norm-equivalent functional J (u) can be defined from the sum of residuals of
Eq. (3.1) as:

J (u) ≡ 1

2

(‖Lu− g‖2 + ‖Bu− gΓ‖2
)

(3.2)

The Least-Squares formulation seeks to minimize the functional J (u). If the
operators L and B are linear and Eq. (3.2) is well-posed, this is equivalent to solve
the system defined by Eq. (3.1). This is further clarified in (Proot and Gerritsma,
2002). In this context, an operator is well-posed if and only if it is bounded below,
as explained in (Jiang, 1998). In this case, there is a finite proportionality constant
between the solution error norm and the residual value. In other words, there is
a norm equivalence between error and residual. Note that the suitability of the
chosen norm depends on the operators L and B.

A necessary condition for the function u to be a minimizer of the functional
J (u) is that its first order variation vanishes at u. This can be expressed as:

lim
ε→0

dJ (u+ εv)

dε
= 0 ∀v ∈ Ω (3.3)

where ε is a scalar and v represents an arbitrary perturbation function over the
domain Ω.
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3.2.2 Introduction of norms and search spaces

The norm ‖•‖ used for the definition of the functional J (u) in Eq. (3.2) is chosen
to be the L2 norm based on practicality considerations. This norm, defined over
the domain Ω as

‖•‖L2(Ω) =

∫
Ω

• • dΩ, (3.4)

is a particular case of the L2 internal product, which is defined as

〈v,w〉L2(Ω) =

∫
Ω

v w dΩ. (3.5)

If we introduce the definition of the L2 norm in Eq. (3.2), the evaluation of Eq. (3.3)
using the linearity of operators L and B yields∫

Ω

[(Lu− g)Lv] dΩ +

∫
Γ

[(Bu− gΓ)Bv] dΓ = 0 ∀v (3.6)

An additional requirement must be introduced at this point. In order to be
able to evaluate Eq. (3.6), the solution u and the test functions v must be square
integrable over the domain Ω. That is

u,v ∈ L2 (Ω) ; L2 (Ω) = {w|
∫
Ω

w2dΩ < ∞}. (3.7)

From now on, the numerical set X (Ω) ∈ L2 (Ω) from which u and v are drawn
will be addressed as the search space. The final variational formulation can thus
be stated as:

Find u ∈ X (Ω) such that:

B (u,v) = F (v) ∀v ∈ X (Ω) (3.8)

Here the operator B : X(Ω) ×X(Ω) → R is a symmetric, continuous bilinear
form and the operator F : X(Ω) → R is a continuous linear form. These are
defined respectively as:

B (u,v) =

∫
Ω

LuLvdΩ+

∫
Γ

BuBvdΓ (3.9a)

F (v) =

∫
Ω

gLvdΩ+

∫
Γ

gΓBvdΓ (3.9b)
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Example 3.1: A simple Least-Squares problem

Let us analyze a simple first order problem where Eq. (3.1) takes the form

∂u(x)

∂x
= g(x) in Ω = [0, 1] (3.10a)

u(x)|x=0 = u0 (3.10b)

The functional J (u) from Eq. (3.2) can be expressed as

J (u) =
1

2

{∫ 1

0

[
∂u(x)

∂x
− g(x)

]2
dx+

[
u(0)− u0

]2}
(3.11)

and the weak form as defined in Eqs. (3.8) and (3.9) is then:

Find u(x) ∈ X([0, 1]) such that:

B 〈u,v〉 = F 〈v〉 ∀v ∈ X ([0, 1]) (3.12)

where

B 〈u,v〉 =
∫ 1

0

[
∂u(x)

∂x

∂v(x)

∂x

]
dx+

[
u(0)v(0)

]
(3.13a)

F 〈v〉 =
∫ 1

0

[
g(x)

∂v(x)

∂x

]
dx+

[
u0v(0)

]
(3.13b)

3.3 Discretization

The discretization of the problem consists in transforming it into a set of algebraic
equations that can be solved either analytically or, more generally, by iterative
methods. The three main parts in the discretization of a PDE problem are: func-
tion interpolation, quadrature and construction of differential operators.
This section describes each of these parts. References to subdivision into elements
are provided.

3.3.1 Function interpolation

The discrete representation of a given function u (ξ) in the reference domain
Ω̄ = [−1, 1] ∈ R is carried out by projecting it on a given basis. Spectral meth-
ods approximate functions using polynomial interpolants. In the most general
case, an approximation of order N is obtained as a linear combination of (N + 1)
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interpolating polynomials li (ξ) each multiplied by a corresponding coefficient ai
as

u (ξ) ≈
N∑
i=0

aili (ξ). (3.14)

The minimum attainable interpolation error depends on the regularity of the func-
tion u (ξ). It can be proven that if u (ξ) is analytic the error decreases exponentially
as the approximation order is increased (Jiang, 1998). This behavior of the error
on interpolation and quadrature (see Section 3.3.2) is characteristic of spectral
methods.

In general, li(ξ) can be arbitrary basis functions. The two most usual ap-
proaches to function approximation are modal and nodal expansions. The co-
efficients ai in a modal expansion determine the amplitude of the mode i (e.g.
Fourier, Hermite or Chebyshev expansions). In a nodal expansions the coefficients
ai correspond to the function values at the interpolation nodes ξi. Both concepts
are illustrated in Fig. 3.1.
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Figure 3.1: Example of an expansion in (a) a modal basis and (b) a nodal basis

Nodal interpolation

If the chosen interpolants constitute a nodal basis of order N , the set INof (N +1)
interpolants is defined such as the value of each interpolant li (ξ) is unity at one of
the interpolation nodes ξi and zero at the rest of them. This can be expressed as

IN = {li (ξ) |li (ξ) ∈ PN ∧ li (ξj) = δi,j} i, j = 0, 1, ..., N (3.15)

where PN is the set containing the polynomials up to degree N .
The polynomials li (ξ) can be expressed in its most intuitive form as

li (ξ) =
∏

0≤j≤N
j �=i

ξ − ξj

ξi − ξj
, (3.16)
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where it is evident that li(ξj) = δi,j. However, a more compact notation is conve-
nient further on since it will also simplify the required calculations. Let us define
an auxiliary polynomial PN+1 (ξ) with roots at the (N + 1) interpolation nodes.
Then the polynomials li (ξ) can be written as

li (ξ) =
PN+1 (ξ)

(ξ − ξi)
dPN+1 (ξi)

dξ

. (3.17)

Note that Eq. (3.17) is general for any choice of interpolation points ξi.
By joining Eqs. (3.14) and (3.15), it can be observed that the ai coefficients

multiplying each polynomial correspond to the value of the approximated function
at the interpolation points ξi. So Eq. (3.14) becomes

u (ξ) ≈
N∑
i=0

aili (ξ) =

N∑
i=0

u (ξi) li (ξ). (3.18)

This is very convenient when we deal with differential equations. Given these
coefficients, the derivative of the approximation is only function of the derivatives
of the interpolants, and can be calculated as

du (ξ)

dξ
≈ d

dξ

(
N∑
i=0

u (ξi) li (ξ)

)
=

N∑
i=0

u (ξi)
dli (ξ)

dξ
. (3.19)

Note that the last simplification in Eq. (3.19) is only valid when a nodal interpola-
tion is used. Equation (3.19) is relevant for the analysis described in Section 3.3.3.

Gauss-Legendre interpolants

Nothing has been said up to this point about the location of the interpolation nodes
ξi, which remain unspecified. The choice of these points determines the stability
of the approximation and the conditioning of the system (De Maerschalck, 2003).
A convenient, stable and efficient nodal interpolation basis for smooth functions
is the set of Gauss-Legendre (GL) polynomials.

GL The interpolation points (ξ0, ..., ξN) for the Gauss-Legendre (GL) basis cor-
respond to the roots of the Legendre polynomial of order (N+1) denoted LN+1(ξ).
The set of interpolants is obtained by defining PN+1 (ξ) in Eq. (3.17) as

PN+1 (ξ) = LN+1 (ξ) . (3.20)

The Legendre polynomials are solutions to the Legendre differential equation (Dev-
ille et al., 2002, Appendix B). The Legendre polynomial LN+1 (ξ) of order (N +1)
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and its first derivative can be calculated by using the simple recurrence formulas
from Eq. (3.21), which depend on the polynomials LN−1 (ξ) and LN (ξ).

L0 (ξ) = 0
L1 (ξ) = ξ

· · ·
LN+1 (ξ) =

(2N + 1) ξLN (ξ)−NLN−1 (ξ)

N + 1
dLN+1 (ξ)

dξ
=

(N + 1)ξLN+1 (ξ)− (N + 1)LN (ξ)

ξ2 − 1

(3.21)

The derivative at the end points is calculated as

dLN+1(ξ)

dξ
=

⎧⎪⎨
⎪⎩
(−1)N+1

(N + 1)(N + 2)

2
if ξ = −1

(N + 1)(N + 2)

2
if ξ = 1

(3.22)

The roots of the LN(ξ) polynomials (and therefore the GL quadrature points)
are found by solving the eigenvalue problem described in (Press et al., 1993).

GLL In the case of multi-domain problems and when the imposition of boundary
conditions is required, it is convenient to include the extremes of the interval in the
set of interpolation points (ξ0, ..., ξN). The interpolation points corresponding to
the Gauss-Lobatto-Legendre (GLL) basis can be found by defining the polynomial
PN+1 (ξ) from Eq. (3.17) as

PN+1 (ξ) = (ξ − 1) (ξ + 1)
dLN (ξ)

dξ
. (3.23)

Since it is computationally expensive to calculate the roots of Eq. (3.23) di-
rectly, they are computed iteratively by using the Newton-Raphson algorithm.
The set of starting values or iteration seeds used for the approximation is the set
of corresponding GL points. It can be proven that this iteration always converges
to the GLL points (Press et al., 1993, Section 4.5).

3.3.2 Quadrature

As analytical integrals are rarely available for the functions of our interest, partic-
ularly for Eq. (3.9), it is necessary to approximate integrals by a quadrature. In
the most general approach a quadrature approximates the integral of the product
f (ξ)W (ξ), where f (ξ) is the integrand function andW (ξ) is called the integration
weight. The approximation is constructed as the sum of the values of the integrand
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3.3. Discretization

function f (ξ) evaluated at the quadrature points ξα multiplied by coefficients wα

which are called quadrature weights :∫
Ω

f (ξ)W (ξ) dξ ≈
N∑

α=0

wαf (ξα). (3.24)

Note that the choice of the quadrature points ξα and weights wα depends on the
integration weight W (ξ). The accuracy of the approximation depends on the
choice of quadrature points and weights and on the regularity of the function f(ξ).

Gauss-Legendre quadrature

Gauss-Legendre and Gauss-Lobatto-Legendre quadrature rules include an integra-
tion weight equal to unity, which means W (ξ) = 1. The quadrature points ξα
corresponding to the GL and GLL quadrature rules are the same as the GL and
GLL interpolation points, respectively. The quadrature weight wα corresponding
to each quadrature point is calculated as

wα =
2

N (N + 1) [LN (ξα)]
α = 0, 1, ..., N (3.25)

The expression in Eq. (3.24) is exact if f (ξ) is a polynomial of order up to
(2N +1) for GL and (2N −1) for GLL quadrature. Otherwise the accuracy in the
representation depends on the smoothness of the function f (ξ). It can be proven
that if f (ξ) is analytical the approximation error decreases exponentially as N
increases (Jiang, 1998).

Let us now focus on the particular case when the function f (ξ) is a polynomial
interpolation of a given function g (ξ) on a GLL basis, as expressed in Eq. (3.26),
and the integration weight is equal to unity over the whole integration domain Ω.

f (ξ) ≈
N∑
j=0

g (ξj) lj (ξ). (3.26)

In this case, the expression for the quadrature approximation results∫
Ω

f (ξ) dΩ ≈
∫
Ω

N∑
j=0

g (ξj) lj (ξ)dξ =
N∑

α=0

N∑
j=0

g (ξj) lj (ξα)wα (3.27)

but due to the interpolation property it is simplified in a very convenient way as

N∑
α=0

N∑
j=0

g (ξj) lj (ξα)wα =
N∑

α=0

N∑
j=0

g (ξj) δαjwα =
N∑

α=0

g (ξα)wα (3.28)

Note that all the estimation error is introduced in the interpolation. As the func-
tion approximation is a polynomial of order N , the quadrature error for this case
is zero and the integration yields an exact value.
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Gauss-Jacobi quadrature

It was already mentioned in this section that the accuracy of GL quadrature de-
pends on the regularity of the integrated function, and it is therefore very inac-
curate for integrating functions with singularities. Gauss-Jacobi (GJ) quadrature
can effectively deal with singularities located at the extremes of the integration
domain. A textbook example for this case is the integration of a function g(ξ) of
the form

g(ξ) =
f(ξ)

(1− ξ)βR(1 + ξ)βL
0 ≤ βR, βL < 1 (3.29)

over the reference domain [−1, 1].
This integrand has two singularities at (ξ = −1) and (ξ = 1). Therefore, the

integration using GL quadrature yields highly inaccurate results. GLL quadra-
ture is not even possible since the integrand would need to be evaluated at the
singularity. A GL quadrature approximation would look like∫ 1

−1

g(ξ)dξ =

∫ 1

−1

f(ξ)dξ

(1− ξ)βR(1 + ξ)βL
≈

N∑
α=0

ωGL
α

f(ξα)

(1− ξα)βR(1 + ξα)βL
(3.30)

becoming increasingly inaccurate as ξα → (−1) or ξα → 1.
In order to calculate the integral of the function g(ξ) from Eq. (3.29) with

singularities of order βR < 1 and βL < 1 at either (or both) of the extremes
of the integration domain, the singularity must be transfered from the function
g (ξ) to the quadrature weights. This is achieved by constructing the non-singular
function p(ξ) = (ξ − 1)βR(ξ + 1)βLg(ξ) and then approximating the integral by
Gauss-Lobatto-Jacobi quadrature. The weight function WGLJ for this quadrature
is

WGLJ(ξ) =
1

(1− ξ)βR(1 + ξ)βL
βR, βL < 1. (3.31)

In this way the quadrature approximation results∫ 1

−1

g(ξ)dξ =

∫ 1

−1

f(ξ)dξ

(1− ξ)βR(1 + ξ)βL
=

∫ 1

−1

WGLJ(ξ)f(ξ)dξ ≈
N∑

α=0

ωGLJ
α f(ξα)

(3.32)
Note that if p(ξ) is a polynomial of order up to (2N + 1) the integration is

exact (i.e. there is no quadrature error). Furthermore, GLL quadrature rule is
recovered by setting βR = βL = 0. This procedure is useful for the evaluation of
fractional derivative operators as described in Section 4.1.

3.3.3 Construction of differential operators

Recalling the result from Section 3.3.1, the derivative of a given solution u (ξ) is
interpolated as the expression shown in Eq. (3.19), which depends only on the
basis polynomials li (ξ).
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3.4. Chapter summary

As the integrals required for the weak form require only the evaluation of the
integrands at the quadrature points (intentionally coincident with the interpolation
points ξi), the evaluation of the derivatives for the solution is only required at these
points. The derivative at the quadrature points is given by

du (ξ)

dξ
|ξ=ξi ≈

N∑
j=0

u (ξi)dij, (3.33)

where dij is the differentiation matrix whose components are defined as

dij =
dlj (ξ)

dξ
|ξ=ξi. (3.34)

3.3.4 Subdivision into elements

The main idea behind subdivision into elements consists in splitting the domain
Ω from Section 3.2 into Ne non-overlapping open sub-domains Ωi such as

Ω =

Ne⋃
i=1

, Ωi ∩ Ωj = ∅, i �= j. (3.35)

This topic will not be further addressed here since it has been extensively discussed
in references such as (Gerritsma and De Maerschalck, 2010; Jiang, 1998; Proot and
Gerritsma, 2002; Zhao and Liu, 2006). The reader is referred to the aforementioned
sources for an extensive treatment of this subject.

3.4 Chapter summary

This chapter aimed to yield a transparent, reader friendly introduction to the
least squares formulation and the spectral discretization from a practical point of
view. The LSSEM is a numerical technique that combines the features of finite
element methods and spectral methods using a least squares formulation
in an attempt to capitalize on a combination of their best characteristics.

The subdivision into elements gives geometric flexibility, an improved perfor-
mance for non-smooth functions and a natural approach to parallel processing.
Using a least squares formulation is convenient for using iterative solvers and pro-
vides an estimator for the quality of the numerical solution. Finally, a spectral
representation requires less points in order to achieve the same accuracy as a first
order approximation. The introduced concepts are required for a thorough under-
standing of Chapters 5 to 7.
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Chapter 4

Numerical implementation

Numerical methods are often written in a highly abstract language. This conven-
tion makes it possible to achieve greater generality at the price of increasing the
complexity in their formulation. As a result the practical aspects are not always
explicit and straightforwardly understood. This chapter describes some implemen-
tation details that will facilitate the reproduction of the calculations presented in
this thesis.

Section 4.1 provides a brief introduction to the fractional derivative operator
from a numerical point of view where the singularity problem is addressed. The
steps for implementation in a spectral framework are detailed together with an
example for mapping into nonlinearly deformed domains. Section 4.2 explains
how to extend the method to multiple dimensions. Guidelines for an automatable
linear mapping algorithm are included. Section 4.3 presents a brief summary of
the topics discussed in this chapter.

4.1 Fractional derivatives

The fractional derivative operator has already been introduced in Section 2.4 from
a modeling point of view. This section will focus on the numerical aspects of the
operator. Explaining the idea of fractional derivatives is easier when starting from
the derivative of a given function f(x), defined as

df(x)

dx
= lim

Δx→0

f(x+Δx)− f(x)

Δx
. (4.1)

Second order integer derivatives are defined as

d2f(x)

dx2
= f (2)(x) =

d

dx

(
df(x)

dx

)
(4.2)
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Chapter 4. Numerical implementation

Extending this approach, higher order derivatives are immediately defined as

dβf(x)

dxβ
= f (β)(x) =

d

dx
...
df(x)

dx︸ ︷︷ ︸
β times

(4.3)

In this definition the exponent β is required to be an integer which indicates
the number of times the derivative operation is performed. We will refer to the
operators in Eqs. (4.1) to (4.3) as integer derivative in contrast with the fractional
derivative operator defined in Eq. (2.10).

4.1.1 The fractional derivative operator

The fractional derivative operator is a generalization of the integer derivative op-
erator that allows to introduce any real value of β. Two main definitions are used
in practice: Riemann-Liouville and Caputo derivative (Podlubny, 1999). These
are presented in Eq. (2.10a) and Eq. (2.10b) respectively

0D
β
xf(x) =

d

dxn

[
1

Γ(n− β)

∫ x

0

f(ξ1)dξ1

(x− ξ1)β+1−n

]
(2.10a)

0D
β
x f(x) =

1

Γ (n− β)

∫ x

0

f (n) (ξ1)dξ1

(x− ξ1)
β+1−n

, (2.10b)

where Γ(x) represents the Gamma function which generalizes the factorial, β is the
derivative order which can adopt any real value and n is the lowest integer that
satisfies β < n. Equations (2.10a) and (2.10b) yield special cases when integer
values of β are considered:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0D
β
xf(x) =

∂βf(x)

∂xβ
if β ∈ Z > 0

0D
β
xf(x) =

∫ x

0

· · ·
∫ xn1

0︸ ︷︷ ︸
n-fold integral

f(xn)dxn · · · dx1 if β ∈ Z < 0
(4.5)

The evaluation of the fractional derivative operator includes differentiation and
integration, but the order in which these are performed depends on which definition
is used. This originates differences in significant aspects.

The Riemann-Liouville definition is less restrictive regarding the range of va-
lidity of the operator since it presents lower smoothness requirements. However,
the solution of fractional order differential equations requires fractional initial con-
ditions whose physical meaning is not completely clear. In addition, the fractional
derivative of a non-zero constant is zero only for Eq. (2.10b). These aspects are
discussed widely in (Loverro, 2004).
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4.1. Fractional derivatives

4.1.2 Numerical approaches

Different approaches have been used for calculating fractional derivatives during
the last years and the common concern of integration over singularities has arisen
in most of them. The quadrature problem for the fractional derivative operator has
been addressed by (Sugiura and Hasegawa, 2009; Jiang and Lin, 2010; Pálfalvi,
2010). Comparisons of different solution methods for problems with Dirichlet
homogeneous conditions are presented in (Yang et al., 2010; Diethelm et al., 2006;
Lin and Xu, 2007).

The singular integral

Equation (2.10) shows that both Riemann-Liouville and Caputo definitions require
approximating the integral of the auxiliary variable ξ1 over the variable interval
[0 < ξ1 < x], which cannot be done directly by quadrature. As a singularity in the
integrand is present at ξ1 = x, the integrand cannot be evaluated at that point
and an evaluation at the vicinity of that point would be highly inaccurate.

The Yuan-Agrawal method for calculating the time Caputo fractional derivative
of a function 0D

β
t f(t) is proposed in (Yuan and Agrawal, 2002). This method

consists in solving an initial value problem in order to find an intermediate function
Φ(w, t) where w is an auxiliary variable. This function is then integrated in w over
the interval [0,∞) in order to calculate the fractional derivative. This method
requires solving a stiff first order equation for each quadrature point where Φ(w, t)
is evaluated (Diethelm, 2009). Also several quadrature points are required for each
operator evaluation, and thus the method becomes computationally expensive.
In addition, the intermediate function Φ(w, t) has a singularity at w = 0 and
consequently the results of using Gauss-Laguerre quadrature yield a very slow
convergence as discussed in (Lu and Hanyga, 2005).

A modification to this method is presented in (Diethelm, 2009). It consists in
splitting the integration interval for the function Φ(w, t) in two domains [0, c) and
[c,∞) and then integrating the first part using Gauss-Jacobi quadrature. This
notoriously improves the accuracy of the method, but requires solving a stiff dif-
ferential equation for each quadrature point. A further modification consists in
using Gauss-Jacobi quadrature (Birk and Song, 2010).

J-R. Li presents a fast-time-stepping method for evaluating fractional deriva-
tives (Li, 2010). A Gauss-Legendre quadrature is used in the smooth region of
the operator integrand, obtaining good results. However, the model is restricted
to what they call the region of analyticity, namely a region which is at least Δt
away from the singularity. In other words, the time history is only considered from
t ≥ Δt.

Finite element approximations to fractional differential equations have been
achieved by J. P. Roop in (Roop, 2006; 2008). A Least Squares Finite Element
approach is presented by Fix and Roop in (Fix and Roop, 2004), where existence
and uniqueness of the least squares approximation is proven and the singularity
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Chapter 4. Numerical implementation

problem is avoided by applying the operator only to example functions that cancel
it with zeros. This first order technique does not take advantage of the storage
efficiency of the spectral methods, and is still limited to functions that go to zero
at the domain borders.

The order of the singularity in Eq. (2.10) must always be lower than unity
since (β + 1− n) < 1. Therefore, the singular integral can be elegantly treated by
using the Gauss-Lobatto-Jacobi quadrature technique1 presented in Section 3.3.2,
as described in (Li and Xu, 2009; 2010; Carella and Dorao, 2012). This is in turn
compatible with solvers using the Least Squares Spectral Element Method pre-
sented in Chapter 3. The main characteristic of this method consists in combining
spectral convergence with the ability of treating the fractional derivative operator
effectively and the possibility of imposing boundary conditions in a weak form
(Jiang, 1998).

Memory requirement issue

One of the most important problems arising when combining finite difference meth-
ods and time fractional derivatives is the large amount of memory and storage
space required. Since the current solution depends on all its previous values, the
size of the problem becomes unmanageable for t � 1. This is currently discourag-
ing the employment of fractional derivative models combined with finite difference
frameworks for diffusion problems, especially in more than one dimension.

An interesting idea for tackling this issue is implementing the short-memory
principle explained in (Podlubny, 1999; Deng, 2007). This consists in approximat-
ing the full-domain integral in [0, ξ] by the partial integral in [ξ − Δξ, ξ], where
ξ is the coordinate in which the fractional derivative operator is applied. This
approach capitalizes on the fact that the contribution of the function values to
the temporal integral decays as we move away from the singularity region, which
would in principle reduce the required storage space and calculation time at the
expense of some precision. The short-memory principle has been tested in (Lu
and Hanyga, 2005; Deng, 2007; Brunner et al., 2010), where it has been found to
be ineffective for this type of discretization as its implementation has devastating
effects in the accuracy of the solution. Moreover, a very high density of points
is required close to the last solution in order to cope with the arising numerical
singularity.

The calculations in this thesis are carried out by using a spectral (high order)
method. Using a high order approximation reduces drastically the degrees of free-
dom in a numerical problem, and consequently the storage requirements become
significantly lower.

1Theoretical considerations and implementation details of the GLJ quadrature approximation
are discussed in (Canuto et al., 2006) and (Press et al., 1993) respectively.
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4.1. Fractional derivatives

Multi-dimensional applications

As the calculation of fractional derivative operators is intrinsically complex and
numerically expensive, the work on multi-dimensional applications is scarce. Fi-
nite difference schemes have often been used to calculate 1-dimensional and 2-
dimensional fractional derivatives as in (Brunner et al., 2010; Langlands and Henry,
2005; Lin and Xu, 2007; Meerschaert et al., 2006; Tadjeran et al., 2006; Tadjeran
and Meerschaert, 2007; Yuste, 2006; Zhang and Sun, 2011). Two dimensional
fractional differentiation has been applied to signal processing in (Chang, 2009).
However, these articles consist in finite difference schemes based on a Grünwald-
Letnikov approach, which is defined as a limiting case for fractional order backward
differentiation. As this formulation is not convenient for analytical manipulation,
Caputo and Riemann-Liouville forms are preferred (Podlubny, 1999).

4.1.3 Implementation in a spectral framework

Using the Gauss-Lobatto-Jacobi quadrature to approximate the singular integrals
in Eq. (2.10), the fractional derivative operator can be expanded in a Gauss-
Lobatto-Legendre interpolant basis as

RL : 0D
β
xf (x) ≈ 1

Γ(n− β)

N∑
k=0

φ
(n)
k (xi)

(
N∑
j=0

( M∑
α=0

ωk
αφj(ξ

k
α)
)
f(xj)

)
(4.6a)

Ca : 0D
β
xf (x) ≈ 1

Γ(n− β)

N∑
j=0

( M∑
α=0

ωk
αφ

(n)
j (ξkα)

)
f(xj). (4.6b)

where φk(x) represents the k-th GLL Lagrangian interpolant of order N , ξkα are
the GLJ interpolant coordinates corresponding to the interval [0 ≤ ξ ≤ xj ] and ωk

α

are their corresponding GLJ quadrature weights.
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Figure 4.1: Integration domains for computing the fractional derivative operator

For the sake of clarity, a scheme of the domain is included in Fig. 4.1. The thick
line marked as x represents the domain for the x variable, where x0 and xN are the
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domain boundaries and each xi is one of the GLL quadrature points of order N.
The fractional derivative at x = x0 is trivially zero. For calculating the fractional
derivative at the rest of the xi points, N partially overlapping sub-domains [x0, xi]
are constructed (1 ≤ i ≤ N) and GLJ quadrature points of order M are generated
on each of these sub-domains.

Equations (4.6a) and (4.6b) can be written in matrix form as

RL : 0D
β
xf (x) ≈ D̄n · RLĪn · f (4.7a)

Ca : 0D
β
xf (x) ≈ CaĪn · f (4.7b)

where f denotes the function f(x) evaluated at the GLL interpolation points xj .
The operators D̄, RLĪn and CaĪn are defined as

D̄[ik] =
dφk(x)

dx

∣∣∣∣
xi

RLĪn[kj] =
1

Γ(n− β)

M∑
α=0

ωk
αφj(ξ

k
α)

CaĪn[kj] =
1

Γ(n− β)

M∑
α=0

ωk
αφ

(n)
j (ξkα)

and the nodal interpolation property by which

(
D̄n
)
[ik]

= φ
(n)
k (xi) =

dnφk(x)

dxn

∣∣∣∣
xi

=

(n times)︷ ︸︸ ︷(
D̄ · D̄ · · · D̄) [ik] (4.8)

has been used. Note that the operator construction method is general for any
choice of the derivative exponent β.

A crucial fact that should be highlighted is that the fractional derivative oper-
ators presented in Eq. (4.7) must be calculated only once, as long as the domain
shape is preserved. The application of the operator to any vector is then achieved
through a matrix-vector multiplication.

4.1.4 Non-linear mapping technique

Using more complex meshes such as a geometric time grid for fractional time
diffusion problems has been proposed in order to increase the mesh resolution
at time instants when the diffusive flux is higher (Brunner et al., 2010). The
homography technique described in Section 4.2.3 makes it possible to stretch,
rotate and deform linearly a given reference domain. More sophisticated shapes
that cannot be constructed as polygons require using a non-linear mapping. The
procedure for computing the fractional derivative operators when the interpolating
nodes are nonlinearly distributed along the spectral domain is explained next.
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4.1. Fractional derivatives

The polynomial mappings Fm,n(ξ) defined next are chosen for demonstration

Fm,n(ξ) =
(ξ + n)m − nm

(1 + n)m − nm
, (4.9)

and it is considered through the rest of this section that η(ξ) = Fm,n(ξ).
The parametersm and n define the shape of the mapped domain. Higher values

of the exponent m cause a more compact concentration towards lower values of
the ξ coordinate. The concept of the mapping is depicted in Fig. 4.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ξ

t(ξ
)

t(ξ)

Figure 4.2: Example of point redistribution according to the mapping F1,3(ξ): the
lower horizontal (black) axis is mapped into the upper horizontal (red) axis

The introduction of the mapping Fm,n(ξ) from Eq. (4.9) transforms the defini-
tion Eq. (2.10) into its more general version presented in Eq. (4.10). Observe that
the operators must be modified when solving the fractional differential equation
in a deformed domain in order to keep addressing the same problem.

0D
β
xf(x(ξ)) =

1

Γ(1− β)

∫ F−1
m,n(x)

F−1
m,n(0)

(
∂f(η(ξ))

∂ξ

∂ξ

∂η

)(
∂η

∂ξ

dξ

(x− η(ξ))β

)
=

=
1

Γ(1− β)

∫ F−1
m,n(x)

F−1
m,n(0)

∂f(η(ξ))

∂ξ

dξ

(x− η(ξ))β

(4.10)
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Every mapping in Eq. (4.9) for arbitrary values of m and n produces when
substituted in Eq. (4.10) an operator of the shape

0D
β
xf (x(ξ)) =

1

Γ(1− β)

∫ ξ1

ξ0

∂f(η(ξ))

∂ξ

dξ

[P (ξ)]β
(4.11)

where the integral coordinate, the polynomial P (ξ) and the integration limits are
defined as

ξ0 = F−1
m,n(0) η(ξ) = Fm,n(ξ)

ξ1 = F−1
m,n(t) P (ξ) =

(ξ1 + n)m − (ξ + n)m

(1 + n)m − nm
(4.12)

One of the roots of the polynomial P (ξ) is always ξ1, which allows approximat-
ing the integral by Gauss-Lobatto-Jacobi quadrature described in Section 3.3.2.
For integer values of m, the polynomial P (ξ) can be expanded in a finite number
of terms, which makes its evaluation computationally cheaper. The cases analyzed
in this work correspond to the four simplest cases of this mapping, namely

F1,1(ξ) = ξ → P (ξ) = (ξ1 − ξ)

F2,1(ξ) =
(ξ + 1)2 − 1

3
→ P (ξ) = (ξ1 − ξ)(ξ + ξ1 + 2)/3

F3,1(ξ) =
(ξ + 1)3 − 1

7
→ P (ξ) = (ξ1 − ξ)(ξ21 + ξξ1 + 3ξ1 + ξ2 + 3ξ + 3)/7

F4,1(ξ) =
(ξ + 1)4 − 1

15
→ P (ξ) = (ξ1 − ξ)(ξ1 + 1)2(ξ + 1)2(ξ1 + ξ + 2)/15

(4.13)
The mappings from Eq. (4.13) are depicted in Fig. 4.3.

F1,1(ξ)

0 1

F2,1(ξ)

0 1

F3,1(ξ)

0 1

F4,1(ξ)

0 1

Figure 4.3: Plots of the reference domain mapped by Fm,n(ξ)
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4.2 Multi-dimensional tools

This section provides the basis for extending the Least-Squares Spectral Method to
partial differential equations in multiple dimensions. The technique summarized
in Sections 4.2.1 and 4.2.2 is more thoroughly explained in books such as (Jiang,
1998).

4.2.1 Extension of nodal basis

The nodal basis of Gauss-Lobatto-Legendre polynomials (Canuto et al., 2006)
in which the solution is expanded can be straightforwardly extended to multiple
dimensions. D-dimensional basis functions are generated as the tensor product of
D one-dimensional basis functions as

Φ(x1, . . . , xD) =

D∏
i=1

φi(xi) = Φ(x), (4.14)

where x denotes the coordinates vector (x1, . . . , xD). The recommended and most
standard node enumeration for the extended basis is generated by advancing the
coordinate indices in the order they are given, as depicted in Fig. 4.4. If this
convention is followed, the D-dimensional basis Φ(x) can be easily computed as
the tensorial product of the D one-dimensional bases φi(xi).

Φ(x) = φD(xD)⊗ · · · ⊗ φ1(x1) (4.15)

Note the rapid increase in the number of basis functions Φj(x) as the number of
dimensions grows. The resulting number of basis functions is equal toN1×· · ·×ND.
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Figure 4.4: Convention for node enumeration in D-dimensional tensor product
basis for (a) 2D and (b) 3D grids
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4.2.2 Extension of differential operators

Both derivative and fractional derivative evaluations are achieved in 1D by pre-
multiplying the data vector f(ξ) by a derivative matrix Dβ as

[Dβ]jk =
dβφj(ξk)

dξβ
fk = f(ξk) Dβf(ξ) =

dβf(ξk)

dξβ
(4.16)

where β can take any real value. The procedure for computing the matrix Dβ for a
1-D basis is explained in detail in Section 4.1.3. The extension of the matrix Dβ to
multiple dimensions is achieved through a procedure analog to the one explained
in Section 4.2.1 for the extension of the nodal basis. This reduces in practice to

D
x1
Dβ = I⊗ · · · ⊗ I︸ ︷︷ ︸

D-1 times

⊗x1
Dβ

· · ·
D
xi
Dβ = I⊗ · · · ⊗ I︸ ︷︷ ︸

D-i times

⊗xi
Dβ I⊗ · · · ⊗ I︸ ︷︷ ︸

i-1 times

· · ·
D
xD
Dβ = xDDβ ⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸

D-1 times

(4.17)

where xi
Dβ is the 1-dimensional fractional derivative matrix of order β in the

coordinate xi and
D
xi
Dβ represents its D-dimensional counterpart.

4.2.3 Homography mapping technique

The application of the method to non-orthogonal domains requires defining a
mapping for the transformation from the regular reference domains into arbitrary
shapes. This section demonstrates the application of a simple and automatable
method whose applicability is restricted to polygonal (linear) mappings. To the
author’s knowledge, this technique has not been used in the context of finite ele-
ment methods.

A two-dimensional arbitrarily shaped domain Ω is here thought as the image
of a reference element Ω̂ through a bijective mapping F . If the mapping function
and its inverse are known for the domain, the process of changing the problem
geometry is straightforward. This is always the case for polygonal domains. The
method for finding a mapping from an arbitrary polygon ΩS of S sides to a regular
reference polygon Ω̂S with the same number of sides is presented next as described
in (Criminisi et al., 1999).

The linear mapping between the domains ΩS and Ω̂S is achieved through a
matrix-vector product of the form

xΩ = HxΩ̂ (4.18)
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where H ∈ R3×3 is called the homography matrix

H =

⎛
⎝ h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞
⎠ (4.19)

whose coefficients are calculated by the minimization of the residual |Ah|, with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 1 0 0 0 −x1u1 −y1u1 −u1

0 0 0 x1 y1 1 −x1v1 −y1v1 −v1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
xi yi 1 0 0 0 −xiui −yiui −ui

0 0 0 xi yi 1 −xivi −yivi −vi
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
xS yS 1 0 0 0 −xSuS −ySuS −uS

0 0 0 xS yS 1 −xSvS −ySvS −vS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.20)

where (xi, yi) is a vertex of the original polygon, (ui, vi) is the corresponding trans-
formed vertex and the vector h is defined as

h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)
T . (4.21)

Since the number of linearly independent rows of A is lower or equal to 8, a number
of extra constraints must be added in order to obtain H .

By means of this algorithm, a reference domain Ω̂S can be easily mapped into an
arbitrary polygon of S sides. The inverse mapping can be obtained by exchanging
the order of (xi, yi) and (Xi, Yi), or alternatively by inverting the matrix HS . An
example of a pentagon mapping is presented in Fig. 4.5.
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Figure 4.5: Homography mapping of a regular reference pentagon Ω̂5 into an
arbitrary pentagon
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It is relevant to note that there is no similar closed solution form for non-linear
transformations. The recommended approach for non-linear mappings is using a
non-linear mapping technique as described next in Section 4.2.4.

The homography technique is a simple, systematic and fully automatable al-
gorithm with low computational requirements. However, it is restricted to linear
transformations only. This means that, for example, the reference square in 2D
[−1, 1]2 can only be mapped into geometries delimited by four straight lines. In
order to map more complex smooth-edged geometries, a non-linear mapping tech-
nique must be used.

4.2.4 Bivariate blending function interpolation

The technique called bivariate ’blending function’ interpolation, as presented in
(Gordon and Hall, 1973), is a tool for constructing invertible mappings F of the
unit square Ω̂2 = [−1, 1]2 onto R

2 (or the unit cube Ω̂3 = [−1, 1]3 onto R
3). It is

used for constructing the deformed meshes in Chapter 7.

Figure 4.6: Concept illustration of the bivariate blending function interpolation

This procedure is capable of defining generalized curvilinear coordinate systems
on closed, bounded and simply connected domains R

2 (or R
3). The set of mesh

points can be obtained directly by mapping the mesh points in R
2 (or R3) into the

curvilinear system through the mapping F .

Even when the explicit forms of the mapping F and its inverse F−1 are often
difficult to find, only the mapping functions for the edges need to be mapped,
namely

∂Ωx0
:= F(−1, η) −1 ≤ η ≤ 1

∂Ωx1
:= F(1, η)

∂Ωy0 := F(ξ,−1) −1 ≤ ξ ≤ 1
∂Ωy1 := F(ξ, 1)

(4.22)

As an intermediate step, the partial mappings Fx(ξ, η), Fy(ξ, η) and Fxy(ξ, η)
are defined as

Fx(ξ, η) = s0(ξ)F(−1, η) + s1(ξ)F(1, η)
Fy(ξ, η) = s0(η)F(ξ,−1) + s1(η)F(ξ, 1)
Fxy(ξ, η) = s0(ξ)s0(η)F(−1,−1) + s0(ξ)s1(η)F(−1, 1)

+ s1(ξ)s0(η)F(1,−1) + s1(ξ)s1(η)F(1, 1)

(4.23)
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F : Ω̂ �→ Ω

Ω deformed domain

Ω̂ reference domain

(a) Mapping a reference square into a deformed 2D element

F : Ω̂ �→ Ω

Ω deformed domain

Ω̂ reference domain

(b) Mapping a reference cube into a deformed 3D element

Figure 4.7: Mapping reference geometries into deformed elements

where s0(r) and s1(r), denominated shape functions, are monotonically varying
functions of r ∈ [−1, 1] which satisfy

⎧⎪⎨
⎪⎩
s0(−1) = 1

s0(1) = 0

s0(r) + s1(r) = 1 −1 ≤ r ≤ 1

(4.24)

The simplest case corresponds to linear shape functions, defined as
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Figure 4.8: Extension of the simulation domain to 3 space dimensions

s0(r) =
1− r

2

s1(r) =
1 + r

2

(4.25)

F is then defined using the auxiliary definitions in Eq. (4.23) as

F2D(ξ, η) = Fx(ξ, η) + Fy(ξ, η)− Fxy(ξ, η) (4.26)

as illustrated in Fig. 4.6.

The generalization of this mapping technique to 3-dimensions is straightfor-
ward, and the resulting mapping is

F3D(ξ, η, ρ) = Fx(ξ, η, ρ) + Fy(ξ, η, ρ) + Fz(ξ, η, ρ)
− Fxy(ξ, η, ρ) − Fxz(ξ, η, ρ) − Fyz(ξ, η, ρ)
+ Fxyz(ξ, η, ρ)

(4.27)

This technique can be used for constructing D-dimensional space domains.
However, usually up to 3-dimensional deformed domains are of practical interest
and easy to interpret physically. The dimension corresponding to time inside a
given element is only affected by a linear transformation (stretched or compressed).

An example of a 3-dimensional domain representing the surroundings of a
sphere is presented in Fig. 4.8. Note that the reconstructed region is not simply
connected. Therefore it cannot be constructed out of a single element and must
be divided into several sub-domains Ωe. Each of these elements is then mapped
with an independent mapping function F e

3D, analog to the 2D example in Fig. 4.7.
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4.3 Chapter summary

This chapter introduced the fractional derivative operator from a numerical point
of view and presented a review of the previous work on the subject. Three of
the main concerns regarding fractional derivative implementation were addressed,
namely

• high memory and storage requirements,

• singularity at one extreme of the problem domain,

• difficulties in the extension to multiple dimensions and irregular shapes.

The storage requirement issue is alleviated by recurring to high order element
methods. In this way a reduced number of nodes is required in order to yield a
representation accuracy similar to first order methods. The singular integral con-
tained in the fractional derivative operator is elegantly evaluated by using Gauss-
Jacobi quadratures. In order to simplify its practical application, the method for
constructing the numerical operator is explained in detail. The chapter concludes
by describing techniques for extending the implementation to arbitrarily shaped
domains in multiple dimensions. These tools are of importance in Chapters 5 to 7.
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Part III

Simulations and application to
problems
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Chapter 5

Cattaneo-Maxwell diffusion model

Fluidized bed reactors are widely used in gas processing facilities due to their supe-
rior heat and mass transfer characteristics. Reaction rates in these reactors depend
on the diffusion of species into the catalytic particles. A more accurate description
of diffusion than Fick’s law provides is required for the optimization of the design
of these reactors. This chapter describes how a Least Squares Spectral Element
framework was implemented in order to solve the evolution of the concentration
profile predicted by Cattaneo-Maxwell’s law inside a catalytic pellet.

Section 5.1 introduces the physical context and motivation for this study. The
Cattaneo-Maxwell model, also known as the hyperbolic mass diffusion equation,
is presented in Section 5.2. Section 5.3 shows a comparison between time-slab and
full-domain numerical approaches. The convenience of the latter is verified as it
yields the same accuracy with lower computational cost. In Section 5.4 the models
by Fick and Cattaneo-Maxwell are examined in contrast, yielding significantly
different predictions for time scales similar to the relaxation time but converging
asymptotically for larger time periods. Section 5.5 summarizes the main findings
and conclusions of this chapter.

5.1 Introduction

Fluidized bed reactors (FBR) are a common processing choice in gas processing
facilities and particularly in petrochemical industries. The strong points of the
FBR are its outstanding heat and mass transfer characteristics, which make it
a good choice for processing large volumes of gas. Many industrially produced
polymers, such as rubber, vinyl chloride, polyethylene and styrene are made using
FBR technology. In the FBR, the reaction rate depends on the rate at which gas
diffuses into the catalyst active sites. Therefore, catalysts are shaped in the form
of small porous particles in order to enhance the gas diffusion rate by increasing
the gas-solid interfacial area. Hence, a better understanding and description of this
transport process is required in order to improve the accuracy in the estimation
of reactor dynamics.
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Chapter 5. Cattaneo-Maxwell diffusion model

Transient diffusion processes are usually modeled based on Fick’s second law,
a parabolic equation according to which the variance 〈x2〉 of a given concentra-
tion profile is expected to increase proportionally with time t, that is 〈x2〉 ≈ t.
According to Fick’s law, the information propagates at infinite velocity since a
perturbation in any region of the domain is instantly detected everywhere. This
inconsistence, denominated the infinite propagation velocity paradox, has been ad-
dressed in Section 2.1.1. As a result, even when the model is a good approximation
for steady-state problems, it leads to erroneous results at short times in transient
problems (Chen and Liu, 2003). In addition, the model is not suitable for describ-
ing processes at high frequencies, e.g. diffusion in polymer solutions (Depireux
and Lebon, 2001).

Experimental results have verified that diffusion often proceeds faster or slower
than predicted by Fick’s law, and the variance of a given concentration profile
evolves as 〈x2〉 ≈ tγ , where γ is called the anomalous diffusion exponent (Ritchie
et al., 2005). The cases with γ < 1 and γ > 1, not properly accounted by Fick’s
law, are designated as subdiffusion (Küntz and Lavallée, 2004) and superdiffu-
sion (Küntz and Lavallée, 2001) respectively. An alternative model to deal with
these problems that are inherent to Fick’s law is Maxwell-Cattaneo’s model. This
model is the simplest generalization of Fick’s law that allows a relaxation of the
local equilibrium. It solves the infinite propagation velocity paradox and allows
the modeling of different diffusion behaviors. It has been proven by Sharma in
(Sharma, 2005) that this damped wave diffusion model can be deduced by allow-
ing the depletion or accumulation of molecules near the diffusion plane. Besides
having numerous applications in heat transfer processes (Compte and Metzler,
1997; Dorao, 2009), Cattaneo’s law has been evaluated for diffusion modeling in
binary fluid mixtures (Jou et al., 1991) and crystalline solids that can be considered
to be far from their equilibrium point (Godoy and Garćıa-Coĺın, 1996; Buchbinder
and Martaller, 2009).

Evidence of superdiffusion has been found observing water infiltration profiles
in porous building materials (Küntz and Lavallée, 2001), and also subdiffusion
has been observed in one-dimensional experimental setups in high concentration
aqueous CuSO4 solutions (Küntz and Lavallée, 2004). Extended versions of Cat-
taneo’s equation including fractional derivatives are able to predict this behavior
in a consistent way. However, more experimental effort is required for determin-
ing the parameters of these models. In particular, Cattaneo-Maxwell’s model
has been applied to pseudo-homogeneous modeling of reaction-diffusion inside a
porous particle by a volume averaging procedure (Valdés-Parada et al., 2006). It
was concluded that an effective diffusivity tensor can be computed as in the Fickian
diffusion case for conditions found in practical applications.

According to Cattaneo’s law, the concentration wave propagates at a speed√
kp/τ , where kp is the diffusion coefficient and τ is a parameter called relax-

ation time (Gómez-Dı́az, 2006). The relaxation time is related to the molecular
relaxation processes that take place in the microstructure of the material (Álvarez-
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Ramı́rez et al., 2008). These processes involve a type of memory in particle colli-
sions and imply that highly ordered microstructures such as crystals are expected
to exhibit shorter relaxation times than disordered structures. This hyperbolic de-
scription has been proven valid for transient solute flows with small characteristic
times (Auriault et al., 2007) and for transport of a passive scalar in a turbulent
flow (Brandenburg et al., 2004). For certain parameter choices, the desorptive
diffusive flux can persist after the diffussing species has been completely desorbed.
However, such physically unrealistic behavior disappears when the values for pa-
rameters τ and kp are constrained by relations that explicitly enforce the second
law of thermodynamics. This is explained in detail in (Doghieri et al., 1993).
In Sections 5.2 to 5.5, the Cattaneo-Maxwell model is discussed and a numerical
solution is obtained using Least Squares Spectral Element Method.

5.2 The hyperbolic mass diffusion equation

The mass transfer in a one-dimensional system is governed by Eq. (2.14), known
as the balance equation

∂C (x, t)

∂t
+

∂J (x, t)

∂x
= 0, (2.14)

in combination with a constitutive equation. As an alternative to Fick’s first law,
the following equation is proposed by Cattaneo (Compte and Metzler, 1997)

J + τ
∂J (x, t)

∂t
= −kp

∂C (x, t)

∂x
. (5.1)

In the equations above C (x, t) represents the mass concentration, J (x, t) is
the mass flux, kp is the diffusion coefficient, τ is the relaxation time and (x, t)
represent the space and time coordinates. By combining Eqs. (2.14) and (5.1),
Maxwell-Cattaneo model is obtained:

kp
∂2C (x, t)

∂x2
=

∂C (x, t)

∂t
+ τ

∂2C (x, t)

∂t2
(5.2)

Equation (5.2), known as Cattaneo-Maxwell’s equation, is a damped-wave hy-
perbolic diffusion equation, which predicts that concentration waves propagate
at a finite speed. This constitutive model yields the same results as Fick’s law
for steady-state cases, since the non-transient terms are the same. However, the
results of both models are considerably different for time scales comparable to
the relaxation time of the considered medium. It can be seen immediately that
Cattaneo-Maxwell equation approaches Fick’s law as τ → 0.
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5.3 Numerical Solution

The objective of this chapter is to describe the solution of Eq. (5.2) by the Least
Squares Spectral Element Method. By this procedure, a well-posed system of par-
tial differential equations is transformed into a symmetric, positive definite system
of algebraic equations (Gerritsma and De Maerschalck, 2010). These character-
istics of the system enable the use of advantageous solving algorithms like the
conjugate gradient method (Shewchuk, 2004).

As an alternative to Eq. (5.2), a second order differential equation, the first
order system consisting of Eqs. (2.14) and (5.1) is solved. In a higher level of
abstraction, the problem can be expressed as:

Lu = g in Ω (3.1a)

Bu = gΓ on Γ ⊆ ∂Ω (3.1b)

where L, u and g for this problem are defined as

L =

⎡
⎢⎣

∂•
∂t

∂•
∂x

−kp
∂•
∂x

τ
∂•
∂t

+ •

⎤
⎥⎦ ; u =

[
C
J

]
; g =

[
0
0

]
(5.4)

Here g represents the source terms, B the boundary condition (trace) operator and
gΓ the solution at part of the domain boundaries.

The linear operator L defines the isomorphism L : X (Ω) −→ Y (Ω) for which
two constants C1 and C2 exist that fulfill

C1 ‖u‖X ≤ ‖Lu‖Y ≤ C2 ‖u‖X ∀u ∈ X (5.5)

As a consequence of this, the norms ‖u‖X and ‖Lu‖Y are equivalent, and so
minimizing ‖u− uex‖X is equivalent to minimizing ‖L (u− uex)‖Y where uex is
the exact solution.

To solve Eqs. (3.1a) and (3.1b), a norm-equivalent functional can be defined as

J (u) =
1

2
‖Lu− g‖2Y (Ω) +

1

2
‖Bu− gΓ‖2Y (Γ) (3.2)

where the norm ‖•‖2Y (Γ) is defined as

‖•‖2Y (Γ) =

∫
Γ

• • dΓ (3.2)

Solving the system for Eqs. (3.1a) and (3.1b) is equivalent to finding the func-
tion u that minimizes the functional Eq. (3.2). That is:

Find u ∈ X (Ω) such that:

B (u,v) = F (v) ∀ v ∈ X (Ω) (5.6)
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with
B (u,v) = 〈Lu,Lv〉Y (Ω) + 〈Bu,Bv〉Y (Γ) (5.7)

F (v) = 〈g,Lv〉Y (Ω) + 〈u,Bv〉Y (Γ) (5.8)

where B : X×X −→ R is a symmetric continuous bilinear form, and F : X −→ R

a continuous linear form. The concepts introduced in Section 3.2 are in this way
particularized to fit the actual problem by a proper choice of the operators and
variables in Eq. (5.4).

As the boundary conditions are expressed in a weak form, functions that do
not satisfy the boundary conditions can be included in the search space X (Ω). In
order to perform the numerical calculations, this infinite search space is reduced
to a finite search space Xh (Ω) ⊂ X (Ω).

The computational domain Ω is divided into Ne = Nex ×Net non-overlapping
sub-domains or elements Ωe, such that

Ω =
Ne⋃
e=1

Ωe Ωe ∩ Ωi = ∅ ∀ e �= i (5.9)

In each element, the unknown function ue is approached by the set of all
polynomials of degree up to Ox. The global approximation in Ω is constructed by
attaching the local element approximations Ωe. The solution is expanded in the
base of Lagrange polynomials, as depicted in Fig. 5.1.
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Figure 5.1: Lagrange polynomials of order 0 ≤ Oe ≤ 5 for a reference domain
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5.3.1 Time-space formulation

The problem was solved in a 2-dimensional domain, with x and t as the variables.
Two numerical approaches were compared: a full domain approach consisting in
the simultaneous solution of the complete 2-D domain in one hand, and on the
other hand a time-slab approach, consisting in solving one slab at the time, using
the solution of the previous slab as initial condition. Both solving schemes are
presented in Fig. 5.2

t

xx1=1x0=0
t0=0

t1=0

xj xj+1

tj

tj+1

�ij
full

domain

(a) Full-domain approach

t

xx1=1x0=0
t0=0

t1=0

xj xj+1

tj

tj+1

�ij time slab

(b) Time-slab approach

Figure 5.2: Solving schemes for Cattaneo-Maxwell model: (a) full-domain simul-
taneous solution vs. (b) time-slab approach

The simultaneous solution of the full domain requires the solution of one linear
equation system of large size, while the time-slab approach requires the solution of
many linear equation systems of smaller size. In more concrete words, we compare
solving of a system of size ≈ Nex Ox × Net Ot against solving Net systems of size
≈ Nex Ox × Ot, where Nex, Net, Ox and Ot are the number of elements and the
approximation order in x and t respectively.

The advantage of solving the problem with the time-slab approach becomes
notorious as the size of the system increases. In this case, the computational cost
is approximately proportional to the number of time slabs, while with the full
domain solution, the computational cost grows faster than linearly.

5.4 Numerical examples

Simulations with different values of τ were performed in order to observe the effect
of this parameter in the behavior of the normalized system coordinates x and t and
variables C and J . The propagation of concentration waves in a slab as depicted
in Fig. 5.3 was studied as a reference case. This can represent the evolution of the
concentration profile inside a catalytic pellet submerged in a reactant medium. In
order to illustrate the differences with Fick’s law, the case with τ = 0 is included
in some figures.
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C(x,0)=0i

C = (t)1 �(1,t)C = (t)0 �(0,t)

xx1=1x0=0

Figure 5.3: Physical interpretation of the 1-D numerical problem

5.4.1 Analysis of Cattaneo-Maxwell model

The most important conceptual difference between Fick’s model and Cattaneo-
Maxwell model is the finite propagation speed that arises as a relaxation term
appears in the equation. The propagation velocity of the concentration wave is
vc =

√
τ/kp (Gómez-Dı́az, 2003).

Figure 5.4 shows the evolution of concentration in an initially depleted slab
when a sudden change in concentration is applied on both boundaries at time
t = 0. A comparison between the Fickian case (τ = 0) and two different values of
τ is presented in order to illustrate the effects generated by a finite propagation
velocity. The smoothed shape of the wavefront and the lower boundary value
of the solution for short times are due to the use of β (t) functions instead of
step functions as boundary conditions. This change was performed in order to
avoid discontinuities that are difficult to treat numerically. Figures 5.4(a), 5.4(c)
and 5.4(e) present the results in the complete simulation domain, while Figs. 5.4(b),
5.4(d) and 5.4(f) displays snapshots for different simulation times. In the Fickian
case, Figs. 5.4(a) and 5.4(b), the concentration converges asymptotically to the
boundary value, while two differences can be appreciated in the other plots:

• A propagation delay can be observed: the concentration in a given region
of the domain does not start to increase until the propagation wave reaches
that point. This is evident in Figs. 5.4(e) and 5.4(f).

• There is a concentration overshoot: since the information takes a finite time
to propagate, constructive interference occurs between both counterdiffusing
waves and uphill diffusion is observed.

Even when experimental evidence has been found on the existence of diffu-
sion proceses that Fick’s law cannot describe properly (Ritchie et al., 2005; Küntz
and Lavallée, 2004; 2001), there are still no measurements that can conclusively
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support Cattaneo-Maxwell model as accurate. This is partly due to the exper-
imental difficulties associated with measuring concentration transients at a time
scale similar to the relaxation time (Uemura and Macdonald, 1996; Nakawaga,
2003). Similar phenomena have been observed in heat transfer processes (Lane
et al., 1947), suggesting that Cattaneo-Maxwell model could be appropriate.
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5.4. Numerical examples

5.4.2 Convergence study

In order to find guidelines for the optimal resolution (order and number of ele-
ments) to solve this problem, the residual and computing time were measured for
the same problem with different resolutions. The results are shown in Fig. 5.5. The
residual decreases as the order and number of elements is increased, which verifies
that the problem is solved correctly. The oscillations evidenced in the decreasing
tendency of the residual, specially in the red curves of Figs. 5.5(c) and 5.5(d), are
due to the low resolution of the simulation. Being the number of points in the
domain too low, the shape of the interpolating functions affects the quality of the
approximation.
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Figure 5.5: Convergence plots for full-domain and time-slab approaches

Figure 5.6 presents the residual against the computing time for both time-
slab and full-domain approaches. The points in this plot were obtained from the
solution of the same problem with different resolutions. All combinations of order
Ox and element number Nex were included in the plot, with 2 ≤ Ox ≤ 12 and
1 ≤ Nex ≤ 10. The noise in the plot is attributed to the variation of Ox and Nex

at the same time.
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Figure 5.6: Residual vs. computing time for Full-domain and Time-slab ap-
proaches

The main fact to be observed from Fig. 5.6 is that the time-slab approach
is more effective than the full-domain approach, producing better results with
significantly less calculation time.

5.5 Chapter conclusions

A framework for Least Squares Spectral Element Method was implemented in
order to solve the evolution of the concentration profile inside a catalytic pellet.
A time-space formulation of Cattaneo-Maxwell equation was solved for different
relaxation time values. This model approaches Fick’s law for time scales well
above the relaxation time. However, for time scales similar to the relaxation time,
the finite propagation velocity proposed by Cattaneo-Maxwell model predicts the
superimposition of two concentration waves that move towards each other. This
can originate a transient uphill diffusion which is not predicted by Fick’s law, but
has been observed experimentally in (Baird et al., 1971; Vrentas et al., 1984). Two
solution schemes were compared: a time-slab approach consisting in solving each
time slab separately, and a full-domain approach consisting in solving the complete
domain at once. The time-slab approach proved to be more efficient, allowing to
achieve the same precision with less computing effort.
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Chapter 6

Fractional diffusion models

Fractional derivatives provide a general approach for modeling transport phenom-
ena occurring in diverse fields ranging from hydrology and viscoelasticity to electro-
chemistry, signal processing, magnetically confined plasmas and several anomalous
diffusion cases. These models provide a general approach that can link Fick’s law
with hyperbolic diffusion theories and CTRW. Sub-diffusive and super-diffusive
processes, not accounted for by traditional models, can be addressed by fractional
diffusion equations. This chapter presents the most common fractional diffusion
models and a selection of numerical solutions using the Least Squares Spectral
Method.

Section 6.1 contains a brief review on applications of fractional diffusion and
discusses the numerical difficulties in solving fractional differential equations. Sec-
tion 6.2 introduces equations representing various relevant physical models. Guide-
lines to the Least Squares Spectral Method applied to this problem are provided in
Section 6.3. Sample results and convergence analyses for validating the numerical
tools are displayed in Section 6.4.

6.1 Introduction

Diffusion processes have traditionally been described using Fick’s law, which gives
sufficiently accurate results for many applications. However, as elaborated in
Chapter 2, this model can be insufficient for some purposes and numerous ap-
proaches for deriving a more general formulation have been attempted.

Fractional differential equations constitute a generalization of differential equa-
tions which can account for any real value of the derivative exponent. These are
employed as alternative models for describing many transport processes which
cannot be accurately accounted for by Fick’s law (Erćılia and Sousa, 2009).

77



Chapter 6. Fractional diffusion models

6.1.1 Fractional derivative applications

Fractional derivative formulations are attractive for describing diffusion phenom-
ena since they provide a general approach that can link Fick’s law with hyperbolic
diffusion theories and CTRW (Compte and Metzler, 1997; Barkai, 2002; Hilfer
and Anton, 1995; Luchko and Punzi, 2011). In addition, fractional differential
equations are powerful tools for modeling phenomena occurring in diverse fields.
Particular examples are found in hydrology (Benson et al., 2004; Berkowitz et al.,
2006; Fomin et al., 2009; Gao et al., 2009; Küntz and Lavallée, 2001; 2004), electro-
chemistry (Oldham, 2010), viscoelasticity (Caputo and Mainardi, 1971; Rossikhin
and Shitikova, 2011; 2006), magnetically confined plasmas (Lynch et al., 2003),
signal processing (Mathieu et al., 2003; Chang, 2009) and anomalous diffusion (Lu
and Hanyga, 2005; Giona and Roman, 1992; Hanert, 2011; Huang et al., 1995;
Logvinova and Néel, 2004; Metzler et al., 1999) just to name a few. There are
plenty of reviews on the vast range of applications of fractional derivatives, e.g.
(Zhang et al., 2009; Conner and Wilson, 1994; Klages et al., 2008; Mainardi, 2010;
Podlubny, 1999; Metzler and Klafter, 2000).

The transport of passive scalars by fluid flow in a porous medium is often
modeled by a fractional derivative model (Meerschaert and Tadjeran, 2004; Huang
et al., 2008). These models allow capturing experimentally observed super-diffusive
and sub-diffusive behaviors in the fields mentioned above. Also memory effects and
processes with long-range correlations can be represented by fractional models
(Bagley and Torvik, 1983; Gorenflo et al., 2002; Metzler and Klafter, 2004).

A sound physical interpretation for the fractional derivative as a way of con-
sidering non-locality is given in (Molz et al., 2002). Following this concept, it is
shown in (Hanneken et al., 2004) that fractional diffusion can be interpreted as
the collective motion of separate ensembles of random walkers.

6.1.2 Numerical issues

The aforementioned facts make fractional derivatives a powerful model for study-
ing anomalous diffusion cases. However, the solution of non-integer differential
equations presents greater mathematical and computational challenges.

On the mathematical aspect, notwithstanding the wide application scope of
fractional derivatives, simple cases with analytical solution and practical applica-
tion are scarce. In addition, the physical meaning of fractional boundary conditions
is still a matter of discussion (Podlubny, 2002; Deng, 2007; Rutman, 1995; Sabatier
et al., 2010; Heymans and Podlubny, 2006; Malinowska and Torres, 2010; Zhang
et al., 2007).

On the computational aspect, as discussed in Section 4.1, the singularity and
non-locality of the fractional operator result in difficult numerical handling and
high computational cost.
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6.2 Physical models

This section introduces the multi-dimensional problems used for testing the perfor-
mance of the LSSM applied to fractional differential equations, in addition to the
fractional advection-dispersion and fractional time diffusion equations introduced
in Section 2.4.2.

6.2.1 Time fractional diffusion equation (2D+Time)

The first problem considered in this section consists of a time fractional diffusion
equation with order 0 < β ≤ 1, with given boundary conditions and evolving from
a given initial condition:⎧⎪⎪⎨

⎪⎪⎩
0D

β
t C(x, y, t) = ∇2C(x, y, t) + s(x, y) in Ω = [−1, 1]2 × [0, 1]
C(x, y, 0) = C0(x, y)
C(x, y, t) = gD(x, y, t) on ∂ΩD

∂nC(x, y, t) = gN(x, y, t) on ∂ΩN

(6.1)

where ∂nC(x, t) is the normal derivative on the boundary and the vector x rep-
resents all the spatial coordinates x = [x, y]. The boundary ∂Ω is subdivided
into ∂ΩD and ∂ΩN where Dirichlet and Neumann boundary conditions are applied
respectively. The subdivisions satisfy ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅.
Here 0D

β
t C(x, y, t) represents the time fractional derivative operator defined in

Eq. (2.10b). Note that Eq. (6.1) converges to Poisson’s equation as β → 1.

Analytical solution

The existence and uniqueness of this solution have been proven in (Li and Xu,
2010), and a finite difference solution is presented in (Brunner et al., 2010). In
order to test the performance of the Least Squares Spectral Method, results and
analysis are presented for the boundary conditions in Eq. (6.2).⎧⎪⎪⎪⎨

⎪⎪⎪⎩
C0(x, y) = cos

(
π
2
x
)
cos
(
π
2
y
)

gD(x, y, t) = 0

∂ΩD = ∂Ω

∂ΩN = ∅

(6.2)

The analytical solution to the system composed by Eqs. (6.1) and (6.2) is ex-
pressed as the product of separate functions for space and time variables (Brunner
et al., 2010):

C(x, y, t) = Eβ

(−1
2
π2tβ

)
C0(x, y), (6.3)

where Eβ(ξ) is the Mittag-Leffler function, defined as

Eβ(ξ) =
∞∑
k=0

ξk

Γ(βk + 1)
. (6.4)
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Figure 6.1: Plot of the temporal solution Eβ
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)
in the interval t ∈ [0, 1]

The initial condition C0(x, y) is in turn a product of separate functions in
one variable. This characteristic is convenient for testing the convergence of the
polynomial representation when increasing the polynomial degree (Jiang, 1998).
The temporal dependence of the solution is given in the form of the Mittag-Leffler
function which has the shape depicted in Fig. 6.1. The Mittag-Leffler function is
steeper at the initial instants, and its steepness depends on the fractional derivative
exponent β. This characteristic is useful in order to test the ability of polynomials
to represent the solution as it approaches a singular function.

6.2.2 General fractional diffusion equation

The second problem introduced in this section is Eq. (6.5), which has been ad-
dressed as the general fractional diffusion equation in (Podlubny et al., 2009).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
0D

β1

t C(x, t) = Dβ3

R C(x, t) + s(x, t) in [x0, x1]× [t0, t1]
C(x0, t) = 0
C(x1, t) = 0
C(x, t0) = 0
s(x, t) = 8

(6.5)

Here Dβ3

R C(x, t) denotes the Riesz fractional derivative, defined as

Dβ3

R C(x, t) =
1

2

(
x0
Dβ3

x C(x, t) + xD
β3

x1
C(x, t)

)
. (6.6)

This case is a further extension of Poisson’s equation in 1D, but fractional deriva-
tive exponents β1 and β3 are here considered in both space and time coordinates.
Poisson’s problem is again recovered for β1 = 1 and β3 = 2.
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6.2.3 General fractional diffusion equation with delay

Equation (6.5) can even be generalized to include a delay δ into its formulation.
This has the only purpose of testing the numerical framework since there is still
no agreement on the physical meaning of this equation (Podlubny et al., 2009).
The derivative exponent β2 and the time delay δ are added, resulting in Eq. (6.7).⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2

(
0D

β1

t C(x, t) + 0D
β2

t−δC(x, t)
)

= Dβ3

R C(x, t) + s(x, t) in [x0, x1]× [t0, t1]

C(x0, t) = 0
C(x1, t) = 0
C(x, t0) = 0
s(x, t) = 8

(6.7)

6.3 Numerical solution

The problems introduced in the previous section: Eqs. (2.18), (2.19), (6.1), (6.5)
and (6.7) are solved next by the Least Squares Spectral Method. The abstract
formulation can be expressed as:

Lu = g in Ω (3.1a)

Bu = gΓ on Γ ⊆ ∂Ω (3.1b)

where the operators L, u and g are defined for Eq. (6.7) as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L =
1

2

(
0D

β1

t •+ 0D
β2

t−δ•
)
−Dβ3

R •
B = I

g = s(x, t)

gΓ = 0

u = C

(6.9)

In order to solve the system of Eqs. (3.1) and (6.9), a norm-equivalent functional
can be defined as

J (u, g) = ρL ‖Lu− g‖2Y (Ω) + ρB ‖Bu− g0‖2Y (Γ) (3.2)

where the L2 norm ‖•‖2Y (Γ) is defined as

‖•‖2Y (Γ) =

∫
Γ

• • dΓ (3.4)

and the factors ρL and ρB in front of each term of the functional defined in Eq. (3.2)
are found in practice as the combination that minimizes the numerical error. The
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best performances in these simulations were found for ρB/ρL > 1000, which means
assigning a greater weight to the boundary residual.

Solving the system for equation Eq. (3.1) is equivalent to finding the function
u that minimizes the functional Eq. (3.2) by solving the weak form in Eq. (3.8)
defined in Section 3.2.2.
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Figure 6.2: Convergence plots for integration: g(ξ) with γ1(ξ) = epξ, with fixed
β = 0.5 (left column) and with fixed coefficient p = 10 (right column)
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6.4 Numerical verification

This section presents numerical examples used to validate the convergence of the
numerical scheme. Validations for Gauss-Lobatto-Jacobi quadrature and the frac-
tional derivative operator are presented in Sections 6.4.1 and 6.4.2 respectively.
Sections 6.4.3 to 6.4.6 show numerical results for the models introduced in Sec-
tion 6.3 and a comment about the convergence of the numerical scheme is included
in Section 6.4.7.

6.4.1 Quadrature validation

The validation of GLJ quadrature was achieved by integrating two test functions
of the form g(ξ) = (1 − ξ)−βγ(ξ) over the domain [0, 1] for two representative
choices of γ(ξ).

The relative error in numerical integration is plotted in Fig. 6.2 as a function
of the polynomial degree. The relative error is here defined as the absolute value
of the difference between the exact integral and the quadrature approximation,
divided by the absolute value of the exact integral

err =

∣∣∣ ∫ 1

0
g(ξ)dξ − ∫ 1

0
gN(ξ)dξ

∣∣∣∣∣∣ ∫ 1

0
g(ξ)dξ

∣∣∣ .

Note that a Gauss-Lobatto quadrature of orderN is equivalent to the exact integral
of a polynomial approximation of order 2N − 1.

Case A The first choice of γ(ξ) corresponds to the exponential function, i.e.

g(ξ) =
γ1(ξ)

(1− ξ)β
, with γ1(ξ) = epξ,

which is infinitely smooth for any value of p. As the function g(ξ) cannot be ex-
actly represented by a polynomial approximation with a finite number of terms,
it is used to evaluate the relationship between the quadrature error and the num-
ber of quadrature points. The GLJ quadrature is therefore expected to converge
exponentially to the integral as the number of quadrature points is increased (see
Fig. 6.2). The convergence is always exponential and nearly independent of the
derivative exponent β. A slower convergence is observed, as the coefficient p in-
creases, due to the corresponding ’sharpening’ of the integrand function g(ξ). The
results are compared with GL integration, which yields algebraic convergence.

Case B The second choice of γ(ξ) corresponds to a polynomial, i.e.

g(ξ) =
γ2(ξ)

(1− ξ)β
, with γ2(ξ) = ξp.
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Figure 6.3: Convergence plots for numerical integration: g(ξ) with γ2(ξ) = ξp,
with fixed β = 0.5 (left column) and with fixed coefficient p = 20 (right column)

Since the fractional derivative operator is intended to be applied to arbitrary
functions which are approximated by polynomials, it is of interest to test its per-
formance on polynomials.
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The error in the numerical integration of g(ξ) for different values of p and β is
plotted in Fig. 6.3. Exponential and algebraic convergence is again obtained for
GLJ and GL quadratures respectively. Cases A and B provide a validation of GLJ
quadrature applied to functions of the form g(ξ) = (1− ξ)−βγ(ξ).

6.4.2 Validation of fractional derivative operators

The validation of the fractional derivative operators is performed by applying them
to the function γ(ξ) = ξp(1− ξ)p in the domain [0, 1] as

Dβ
q γ(ξ) = (1− q) 0D

β
ξ γ(ξ) + q ξD

β
1γ(ξ).

The reported measures for relative error are the L2 and L∞ norms of the
difference between the numerical and analytical solutions normalized with the
maximum absolute value of the analytical result as

err =

∥∥Dβ
q γ(ξ)−Dβ

q γN(ξ)
∥∥
L2,L∞∥∥∥Dβ

q γ(ξ)
∥∥∥
L2,L∞

.

The studied cases correspond to Left, Right and Riesz derivatives (i.e. q = 0,
q = 1 and q = 0.5 respectively). Convergence results for the reference derivative
exponent β = 1/2 are displayed in Fig. 6.4. For illustrative purposes, the ana-
lytical result and polynomial approximation of Dβ

q γ(ξ) are plotted in Fig. 6.5. It
is not possible for the naked eye to distinguish the analytical and numerical so-
lutions (order 19) in this figure. Note that for this particular choice of γ(ξ) both
Riemann-Liouville and Caputo definitions of fractional derivative are coincident.

6.4.3 Fractional advection-dispersion equation

The model given by Eq. (2.18) is solved for the following set of parameters: q = 1/2
(Riesz derivative), μ(x) = 1, homogeneous initial and boundary conditions and
with a source term s(x, t) = 8. The resulting system is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂C (x, t)

∂t
− 1

2

(
0D

β
xC (x, t) + xD

β
1C (x, t)

)
= s(x, t), in Ω = [0, 1]× [0, 1]

C(0, t) = 0
C(1, t) = 0
C(x, 0) = 0
s(x, t) = 8

(6.10)
where the fractional derivative operator has been defined according to the Caputo
definition in Eq. (2.10b). The numerical solution of Eq. (6.10) is found by the
LSSM described in Section 6.3. The finite difference result in (Podlubny et al.,
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Figure 6.4: Convergence plots for Riemann-Liouville and Caputo fractional deriva-
tives of the function γ(ξ) = ξp(1− ξ)p for β = 0.5
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2009) is reproduced using a different approach, obtaining the solution presented in
Fig. 6.6. A comparison of the C(x, t) profiles predicted by each derivative exponent
β for the final time is included in Fig. 6.6 in order to illustrate the qualitative
differences in the predicted physical behavior. Note that β = 2 corresponds to
Fick’s law.
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Figure 6.6: Obtained solutions for Eq. (6.10) with different derivative exponents β
reproducing results in (Podlubny et al., 2009): spatial approximation of order 16

An important advantage of the LSSM as a solution method is its uncondi-
tional stability. This allows reducing considerably the number of nodes in the
time discretization, depending on the smoothness of the solution. If the particular
problem described in Eq. (6.10) is considered, its solution is linear in the variable
t and can therefore be accurately resolved with just 2 nodes. This is a significant
improvement over the 144 nodes used in (Podlubny et al., 2009). However, it is
not possible to compare the performance of both methods in terms of accuracy
and CPU time due to lack of information in the mentioned work.

The L2 residual and condition number for this problem are plotted in Fig. 6.7
for approximation order up to 29 for both x and t coordinates. It can be seen in
Fig. 6.7(a) that a refinement in the t coordinate does not improve the accuracy.
This was the expected result since Eq. (6.10) is linear in that variable.

6.4.4 Time fractional diffusion equation (1D+Time)

The problem in Eq. (2.19) is solved in (Scherer et al., 2008) by a Grünwald-
Letnikov approach and in (Podlubny et al., 2009) using finite differences with
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Figure 6.7: Plots corresponding to: (a) residual and (b) condition number of the
problem matrix for different order approximations to Eq. (6.10)

fixed parameters q = 1/2 and μ(x) = 1.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

(
0D

β
t C (x, t) +t D

β
1C (x, t)

)
=

∂2C (x, t)

∂x2
, in Ω = [0, 1]× [0, 1]

C(0, t) = 0
C(1, t) = 0
C(x, 0) = 4x(1− x)

(6.11)

The same problem is solved here using LSSM. The results presented in Fig. 6.8
reproduce the calculations in (Podlubny et al., 2009) and (Scherer et al., 2008).
Note however that the result presented in Fig. 6.8 was obtained using a polynomial
of order 9 for the approximation in the time coordinate. The solution is therefore
reconstructed using only 10 nodes, while results in the mentioned works required
150 and 6000 time steps respectively. Plots corresponding to L2 residual and
condition number are presented in Fig. 6.9 for approximation order up to 29 in
both space and time. Again, it is not possible to compare the solution errors and
CPU time of both methods due to lack of information.

A clarification should be made at this point regarding Figs. 6.6 and 6.8. As
the calculated solution consists on the basis coefficients of a polynomial expansion,
the numerical ’semi-analytical’ solution is known over the complete domain and
not only over the nodes used for the discretization. Therefore the meshes shown
at these solution plots were chosen in order to improve the clarity of the figures,
and are not related to the discretization.

6.4.5 Time fractional diffusion equation (2D+Time)

Snapshots of the solution of Eq. (6.1) using boundary and initial conditions from
Eq. (6.2) are presented in Figs. 6.10 and 6.11 for fractional derivative exponents
β = 0.3 and β = 0.9 respectively. A stronger superdiffusion is observed for the
lower value of β. This is consistent with the expected evolution of the variance σ2

in time (σ2 ∝ tβ) as explained in (Gorenflo et al., 2002).
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Figure 6.9: Plots corresponding to: (a) residual and (b) condition number of the
problem matrix for different order approximations to Eq. (6.11)

As explained in Section 6.2.1, the analytical solution is formed as a product
of decoupled space and time functions. The extremely high steepness of the time
evolution for the case β = 0.3 (see Fig. 6.1) has important consequences on the
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Figure 6.10: Numerical solution snapshots for Eq. (6.1) with β = 0.3 using BC
and IC from Eq. (6.2). Decay is visibly faster than in Fig. 6.11.

quality of the numerical results obtained by the 3D+time LSSM scheme, as further
elaborated in Section 6.4.7.

The results from Figs. 6.10 and 6.11 were calculated with a spectral discretiza-
tion of order 16 in each direction. Note that the regular high resolution mesh used
for the plots has been chosen for an optimal visualization and is not related to the
problem discretization. This is possible as the numerical solution is a continuous
polynomial in the coordinates x, y and t.

6.4.6 General fractional diffusion equation

Solutions to Eq. (6.5), the general fractional diffusion equation, are presented
in Fig. 6.12. The simulation domain has been restricted to [0, 1] × [0, 0.06] and
the space and time derivative exponents have been chosen respectively as [β1 =
0.7, β3 = 1.4], [β1 = 0.7, β3 = 1.7] and [β1 = 0.7, β3 = 2.0] in order to reproduce the
results obtained in (Podlubny et al., 2009) who used a finite difference approach.
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Figure 6.11: Numerical solution snapshots for Eq. (6.1) with β = 0.9 using BC
and IC from Eq. (6.2). Decay is visibly slower than in Fig. 6.10.

An additional example with exponents [β1 = 0.7, β3 = 2.2] is also included in order
to show the consistency and generality of the scheme.

Numerical solutions for Eq. (6.7), the delayed form of the general fractional
diffusion equation, are displayed in Fig. 6.13. The derivative exponents are chosen
as β1 = 0.9, β2 = 0.8 and β3 = 1.9 in all cases. The delay term δ is consecutively
set to δ = 0.0025, δ = 0.005, δ = 0.01 and δ = 0.015 in order to compare
the results with the ones presented in (Podlubny et al., 2009). An increase in
the delay between the two advancing ridges proportional to δ is observed. The
polynomial order in Fig. 6.13 has been set to 20 in order to accurately represent
the non-smoothness in t.

It is important to note that the set of time values that the delay δ can take
is limited if a finite difference approach is used. The delay parameter δ must
coincide with exact multiples of the time step for any finite difference approach.
The method presented in this thesis allows to account for any real value of δ
without any restriction, which can be considered an advantage.
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Figure 6.12: Numerical solutions to Eq. (6.5) for different choices of β1 and β3.
The simulation domain has been chosen as to [0, 1]× [0, 0.06] following (Podlubny
et al., 2009).The space and time derivative exponents are indicated in the figure.

6.4.7 Convergence study of the numerical scheme

This section presents numerical convergence results used to test the applicability
of the Least Squares Spectral Method for solving a time fractional differential
equation. The system consisting in Eqs. (6.1) and (6.2) has been solved with
growing approximation order in each coordinate (Ox = Oy = Ot) for three different
values of the exponent β.

As already mentioned in Section 6.4.5, a polynomial may not be the best in-
terpolant choice if functions as steep as Eq. (6.4) (see Fig. 6.1) need to be approx-
imated. This function becomes steeper as the exponent β decreases, and this is
evidenced in the tendency followed by convergence parameters as the approxima-
tion order increases. Figure 6.14 shows plots matching the approximation order
with the following convergence parameters: (a) L2 error norm, (b) L∞ error norm,
(c) residual, (d) condition number of the final linear system and (e) simulation
time in seconds, as an estimator of computational cost.
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Figure 6.13: Numerical solutions to Eq. (6.7) for β1 = 0.9, β2 = 0.8 and β3 = 1.9.
The delay term δ is set to (a) δ = 0.0025, (b) δ = 0.005, (c) δ = 0.01 and (d)
δ = 0.015 following (Podlubny et al., 2009).

The L2 norm of the error decreases in all cases as the spectral order increases.
It is evident though that the convergence improves as the derivative exponent β
approaches unity. This is due to the reduction observed in the steepness of the
solution. A similar situation is evidenced in the evolution of the L∞ norm of the
error, where a low value of β can hinder the convergence of the solution even up to
the point of having a larger L∞ error norm for higher approximation order. As β
decreases, the solution becomes steeper and it is not possible to obtain an accurate
representation without oscillations with a finite order continuous polynomial.

Another effect worth mentioning is that an increase in the approximation order
results in an ill-conditioned linear system Ax = b and higher computational costs
(see Figs. 6.14(d) and 6.14(e)). This is not desirable as the condition number
κ(A) is a measure of the transfer of error from the matrix A and the vector b
to the solution x. An accepted estimation is that at least log10 (κ(A)) digits of
precision are lost in solving the system Ax = b. The sensitiveness of the system to
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Figure 6.14: Convergence indicators for Eq. (6.1) with IC and BC from Eq. (6.2).
Comparison of (a) error L2, (b) error L∞, (c) residual, (d) condition number and
(e) simulation time in seconds for β = 0.3, β = 0.6 and β = 0.9.

perturbations A and b is reflected in A having a large condition number (Cheney
and Kincaid, 2008, Chapter 8). In simple words, a high condition number κ(A)
translates into a penalty in the accuracy of the obtained results. Therefore, even
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when a very high order approximation (Order → ∞) would be able to reproduce
any functional form, the resulting system would be so ill-conditioned that it would
not be solvable in practice.

In order to increase the resolution of the numerical scheme and be able to
deal with such steep solutions without incurring into an unmanageable condition
number κ(A), the extension of this method to elements is recommended. Work is
currently being done at this front.

6.5 Chapter conclusions

This chapter introduced a multi-dimensional least-squares spectral technique for
solving integro-differential and partial fractional differential equations. Five cases
involving fractional differential operators were presented and analyzed.

The exponential convergence of the spectral fractional derivative operator was
verified by comparison with analytical results. Numerical solutions were displayed
and compared to either analytical solutions or results obtained by other numerical
methods. A convergence study revealing strengths and weaknesses of the current
implementation was exposed and discussed. In addition, references to other arti-
cles including theoretical considerations on spectral methods applied to fractional
derivatives were provided.

It was concluded that the ability for accurately representing a solution with
a reduced number of points makes LSSM a very suitable alternative for solving
fractional differential problems given that solutions are sufficiently smooth. Work
is currently being done on extending this implementation to a framework using
multiple elements in each dimension.
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Chapter 7

Coupling convection and diffusion

A good understanding of species transport in a fluid-particle system is a matter of
importance in the design of packed bed chemical reactors. Diffusion plays an essen-
tial role in reaction dynamics, which in turn controls the conversion percentage and
selectivity. This chapter presents simulations of a 2-Dimensional incompressible
flow around a cylindrical particle coupled with two different anomalous diffusion
models inside the particle: Cattaneo-Maxwell model and fractional time diffusion.

Section 7.1 introduces the concept and a multi-domain representation of a
packed bed reactor. A physical model consisting in two domains with different
constitutive laws is presented in Section 7.2. The numerical frameworks and sam-
ple results for the fluid and solid domains are presented in Sections 7.3 and 7.4
respectively. Section 7.5 summarizes the main findings of this chapter.

7.1 Introduction

Packed bed reactors are widely used in industry, ranging from petroleum and
petrochemical applications (see Table 1.2) to environmental biotechnology (Doran,
2013; Dunn et al., 1983; Grace et al., 2005). Furthermore, most of commercial gas-
phase catalytic processes are nowadays carried out in packed bed reactors.

Catalysts are often designed as porous support structures holding a dispersed
active phase. As particles are made smaller in order to increase the solid-fluid
interface area, the characteristic times become shorter. Therefore the transient
diffusion period grows in importance and diffusion can no longer be regarded a
steady-state process for calculation purposes. Under this conditions Fickian diffu-
sion models, originally developed for addressing steady-state phenomena, become
less appropriate as discussed in Chapter 2.

In catalytically enhanced chemical processes, the species concentration sur-
rounding the catalyst determines the rate at which reactants can reach its active
sites. This in turn limits the reaction rate, which is the main output of interest
(Nagy, 2012, Chapter 4). One of the constraints currently limiting the optimiza-
tion possibilities of these reactors is the inaccuracy in the predictions involving
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diffusion into the catalysts.
Another important motive for attempting to achieve a better description of

transport phenomena is the importance of predicting and controlling the temper-
ature at the hot spots. These consist in regions of the chemical reactor where
extremes temperatures are reached, particularly in exothermic processes. Temper-
atures higher than the allowable limits can unfavorably influence the equilibrium
conversion, product selectivity or catalyst stability, resulting in extreme cases in
unsafe operation (Jakobsen, 2008, Chapter 11).

This chapter presents a simple approach for studying the coupling of convective-
diffusive flow of a component around a particle with anomalous transport models
for that component inside the particle.

7.1.1 The problem scenario

Figure 7.1: Simplified scheme of a packed bed reactor

A packed bed reactor consists in a stack of catalytic pellets through which the
reactant is circulated, as illustrated in Fig. 7.1. Due to the complexity of the real
system, a simpler case consisting in studying the flow around a single stationary
particle is considered (see Fig. 7.2).

This is one of the simplest versions of the problem that still include two of the
main implementing difficulties, namely

1. generation of deformed meshes,

2. coupling of non-overlapping domains with different constitutive laws.

7.2 The physical models

The problem in this chapter is the migration of one species into a particle immersed
in a fluid flow. The simulation domain depicted in Fig. 7.2 is divided in two regions
with different constitutive laws. The fluid in the region around the particle is
modeled as an incompressible flow, while two different ’anomalous’ models are
tested for species diffusion.
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Figure 7.2: Sketch of the simulation domain: flow around a particle

7.2.1 The fluid model

The fluid flow around the particle is modeled by the incompressible Navier-Stokes
equations without body forces in combination with the continuity equation

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + μ∇2v (7.1a)

∇ · v = 0 (7.1b)

where v represents the velocity vector, P the pressure field, ρ the density and μ the
dynamic viscosity of the fluid. Equation (7.1a) enforces momentum conservation
and Eq. (7.1b) enforces mass conservation.

The topology of the fluid domain is not equivalent to a single mapped ele-
ment (i.e. the region is not simply connected). Therefore it becomes necessary
to subdivide it into several simply connected elements, and the continuity of the
interpolating basis across multiple elements becomes of importance. The Gauss-
Lobatto-Legendre nodal basis used for reconstructing the solution yields C0 con-
tinuity across elements. As described in (Jiang, 1998, Chapter 4), the global con-
tinuity requirement for a differential equation system whose residual is measured
with the L2 norm depends on its order. A first-order equation requires the interpo-
lation to be continuous across the elements (C0 continuity), while a second-order
equation system like Eq. (7.1) requires also continuity in the derivatives between
two elements (C1 continuity). Briefly stated, the two simplest ways to satisfy the
continuity requirements are either

1. transforming the second-order equation system into a first-order system, or

2. using base functions that yield C1 continuity between adjacent elements.
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These alternatives are compared and analyzed in (Sporleder et al., 2010). The
first option is used here for tackling the current problem because of simplicity and
generality, and also because of the usefulness of the new first-order variable (ω)
defined in Eq. (7.2) in order to reduce the order of the system.

If the added variables were simply chosen to be the derivatives of the velocities
in Eq. (7.1), the resulting system would consist of (2D+1) simultaneous first order
equations and variables. A better strategy is using a vorticity formulation analog
to the one presented in (Proot and Gerritsma, 2002), which reduces the problem
to (D + 2) equations, where D) is the number of dimensions of the problem.

∇ · v = 0 (7.2a)

∂v

∂t
+ v∇v +∇P +

1

Re
∇× ω = 0 (7.2b)

ω −∇× v = 0 (7.2c)

where ω = ∇ × v represents the vorticity field and Re is the Reynolds number
defined as ρumD/μ, with um the mean inlet velocity and D the particle diameter.

The species diffusion in the fluid is modeled by Eq. (7.3)

∂C

∂t
+∇ · (vC + J) = 0 (7.3a)

J+ kf∇C = 0, (7.3b)

where C represents the concentration field for the diffusing species, J the diffusive
flux and kf the diffusion coefficient. Equation (7.3a) enforces the mass conservation
of the diffusing species, and Eq. (7.3b) is Fick’s law for diffusion.

7.2.2 The solid diffusion models

Two models are tested for diffusion of species inside the (solid) particle domain: the
Cattaneo-Maxwell model and the time fractional diffusion equation, presented in
Chapters 5 and 6 respectively. A one-dimensional model assuming radial symmetry
is used (variations in θ are not considered) since the fractional derivative operator
is still in process of being implemented in a 2-dimensional deformed domain.

The radial Cattaneo-Maxwell model

The first of the tested models for diffusion inside the particle is the radial version
of Cattaneo-Maxwell model. Here Eq. (7.4a) imposes the species conservation and
Eq. (7.4b) is Cattaneo-Maxwell model for diffusion

∂C

∂t
+

1

r

∂

∂r
(rJr) = 0 (7.4a)
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Jr + kp
∂C

∂r
+ τ

∂Jr

∂t
= 0. (7.4b)

where r is the radial coordinate, Jr is the radial diffusive flux per unit area and kp
is the diffusive coefficient inside the particle. The parameter τ with time units is
the relaxation time, already introduced in Section 5.2. The effect of the relaxation
time in the diffusion model is to introduce a finite propagation velocity of the
information vD calculated as vD =

√
kp/τ . This is only significant for the initial

transient, since the term containing the relaxation time goes to zero for steady
states (Gómez et al., 2010). Note that Eq. (7.4b) reduces to Fick’s law for a
cylindrical coordinate system with radial symmetry when τ = 0.

The radial time fractional diffusion equation

The second tested model is the radial time-fractional diffusion equation, where
radial symmetry in concentration is again assumed. The species transport inside
the particle is modeled by Eq. (7.5).

0D
β
t C(r, t) =

kp

r

∂

∂r

(
r
∂C(r, t)

∂r

)
(7.5)

where kp is the diffusivity inside the particle and 0D
β
t C is the time fractional

derivative operator defined in Eq. (2.10) and β is the derivative exponent. Note
that when β is equal to unity, Eq. (7.5) reduces to Fick’s law for a cylindrical
coordinate system with radial symmetry.

7.3 Numerical flow solution

In order to reduce the computational cost for the calculations at the first stage
of testing, the solution to the incompressible flow system in Eq. (7.2) is found
by using a mixed approach. Space discretization statement consists in searching
the solution in a reduced spectral element subspace, and the time coordinate is
approximated by a second order Crank-Nicolson finite difference scheme, as shown
in (Jiang, 1998, Chapter 8).

The solution is calculated on successive time-space slab domains, with a time
step defined as Δt = tn−1 − tn. The initial condition for each space-time slab is the
final solution for the previous slab and initial condition for the first slab is equal
to the initial condition of the problem. The time step is chosen so that the largest
CFL number (|v|Δt/h) is close to unity. The system linearization is achieved by
a Picard (fixed-point) iterative scheme, using the solution to the Stokes problem
(nonlinear terms set to zero) as initial value. Iterations are stopped when the norm
of the difference between two consecutive solutions is below a specified threshold.
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Using the abstract formulation presented in Chapter 3, the problem can be
expressed as

Lu = g in Ω (3.1a)

Bu = gΓ on Γ ⊆ ∂Ω (3.1b)

with the operator L, the source term g and the unknown vector u are defined as

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂•
∂x

∂•
∂y

0 0
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[
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∂•
∂x
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∂•
∂y

]
0 Δt

∂•
∂x

θΔt

Re

∂•
∂y

0 •+ θΔt
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∂•
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∂•
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∂•
∂y

−θΔt

Re

∂•
∂x

∂•
∂y

∂•
∂x

0 •

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.7a)

g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(
• − (1− θ)Δt

(
vn−1
x

∂
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∂
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))
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∂ωn−1

∂y(
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(
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x

∂
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∂
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))
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y +

(1− θ)Δt

Re

∂ωn−1

∂x

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.7b)

u =
[
vx vy P ω

]T
(7.7c)

where θ = 0.5 yields the Crank-Nicolson scheme. Implicit and explicit schemes are
obtained for θ = 1 and θ = 0 respectively. Note that the finite difference scheme
is implicit (θ = 1) for P , in order to improve stability.

No-slip boundary conditions (i.e. v = 0) are prescribed for the cylinder bound-
ary. The prescribed velocity at the inlet as well as at the upper and lower borders
of the domain is set to (ux,uy) = (1, 0) for all cases. A point value is fixed for the
pressure: P (x1, 0) = 0.

Using an integral boundary condition for pressure is usually adviced when
solving the Navier-Stokes system in order to stabilize the evolution of this vari-
able (Isaev and Shapeev, 2010). However, calculating an integral over the problem
domain prevents from using the highly efficient Element by Element Conjugate
Gradient technique to solve the linear system that results from the discretization.
As the accuracy in pressure estimation is not critical for this study, a point bound-
ary condition is used in this work in order to reduce the computational effort.

Two example spatial meshes are depicted in Fig. 7.3, and the reproduction of
a sample case (108 elements of order 4) is shown in Fig. 7.4. The problem domain
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Figure 7.3: Plot of the simulation domain for the fluid problem

is set to (Ω : −6 ≤ x ≤ 20,−6 ≤ y ≤ 6) and a circular cylinder with unit diameter
is located at (0, 0). The boundary conditions are specified as v = (vx,vy) = (0, 0)
along the cylinder surface and v = (1, 0) on the top, bottom and inlet boundaries.
A reference value for pressure (P = 0) is specified at the center of the right
boundary. The initial condition corresponds to v = (1, 0) throughout the domain,
as in (Jiang, 1998). Due to time constraints the simulation framework has still not
been fully validated. This example is presented for illustrative purposes only.

The verification of the numerical solution is performed by running a conver-
gence test where both the residual and the mass conservation are examined. Mass
conservation for this incompressible problem is verified by calculating the diver-
gence of the velocity field. Note that for this case the residual provides only a
measure of the error in the spatial discretization. An excessively large time step
would hinder the numerical accuracy without increasing the value of the residual.

Convergence plots showing the evolution of the residual and the divergence
of the velocity field for Re = 1 are presented in Fig. 7.5. The velocity field
corresponding to the verification case is displayed in Fig. 7.6, where the arrows
represent the velocity vectors and the the colors correspond to the magnitude of
the velocity in the x direction.
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(a) Pressure contours

(b) Streamlines

(c) Velocity component in the x direction

Figure 7.4: Vortex shedding by a circular cylinder at Re = 200 at t = 150: (a)
Pressure contours and (b) Streamlines from (Jiang, 1998, p.174), (c) Velocity vx
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Figure 7.5: Fluid problem convergence: (a) residual and (b) mass conservation

7.3.1 Species convection and diffusion

Using the calculated velocity field v as an input, the operators L and g and the
unknown vector u for Eq. (7.3) can be written as

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂•
∂t

∂•
∂x

∂•
∂y

−vx •+kf
∂•
∂x

• 0

−vy •+kf
∂•
∂y

0 •

⎤
⎥⎥⎥⎥⎥⎥⎦ (7.8a)

g =
[
0 0 0

]T
(7.8b)

u =
[
C Jx Jy

]T
(7.8c)

Note that, even when the output of interest is the concentration C, the definition
of two auxiliary flux variables Jx and Jy is necessary for transforming Eq. (7.3)
into a first order system, as discussed above.

The concentration for a sample case at different time instants is depicted in
Fig. 7.7. The initial condition corresponds to C = erfc(10(x− x0)), where erfc(x)
is the complimentary error function defined as

erfc(x) = 1− 2√
π

∫ x

0

e−x2

dx.

The boundary conditions are⎧⎨
⎩
C = 1 on x = x0

∂C

∂n
= 0 on [x = x1, y = y0, y = y1,

√
x2 + y2 = 1]
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Figure 7.6: Velocity field around a circular cylinder at Re = 1

where the last condition assumes that the particle is not permeable to either the
fluid or the diffusing species. The diffusion coefficient is set to kf = 10−2. The
evolution of the average concentration around the particle during the first transient
is shown in Fig. 7.8. The same discretization is used in Figs. 7.4, 7.6 and 7.8.

(a) t = 1s (b) t = 2s (c) t = 3s

Figure 7.7: Species concentration field for fluid region at different times

7.4 Diffusion in the particle

As a first attempt to coupling (convective and diffusive) species transport in the
fluid flow with anomalous diffusion inside the particle, two different diffusion con-

106



7.4. Diffusion in the particle

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

t

C

Average concentration on the particle boundary

Concentration at r=1

Figure 7.8: Time evolution of the average concentration on the particle boundary

stitutive laws are tested in a simplified geometry assuming radial symmetry.
The average concentration of species at the external boundary (Fig. 7.8), re-

trieved from the system made up by Eqs. (7.7) and (7.8), is used as a boundary
condition for the test cases. The objective is to obtain a qualitative comparison
between the models. Both radial models presented in Section 7.2.1 are solved in a
single non-deformed spectral domain.

The operators L and g and the unknown vector u for Eq. (7.4) are

L =

⎡
⎢⎣

∂•
∂t

1

r

∂(r•)
∂r

kp
∂•
∂r

•+ τ
∂•
∂t

⎤
⎥⎦ (7.9a)

g =
[
0 0

]T
(7.9b)

u =
[
C Jr

]T
(7.9c)

and for Eq. (7.5) they turn into

L = 0D
β
t • −kp

r

(
∂•
∂r

+ r
∂2•
∂r2

)
(7.10a)

g = 0 (7.10b)

u = C (7.10c)
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The results for the radial Cattaneo-Maxwell model in Eq. (7.4) and the radial
time-fractional diffusion equation in Eq. (7.5) are presented in Figs. 7.9 to 7.12
for different values of the characteristic parameters τ and β. The initial condition
for both models is C(r, 0) = 0 throughout the particle. The case corresponding to
Fick’s law τ = 0 and β = 1 is presented as a comparative reference at the top of
each figure.

Figures 7.9 and 7.10 show a comparison between both models for a short initial
transient (0 ≤ t ≤ 2s). In this scenario a variation of the derivative exponent β
does not yield major differences in the observed concentration profiles. However,
changes in the relaxation time τ affect the shape of the profiles and even uphill
diffusion (against the concentration gradient) is observed, as exposed in Chapter 5.
Note that the horizontal axis r has been inverted in the right half of Figs. 7.9 to 7.12
and the concentration flux goes from left (r = 1) to right (r = 0).

Figures 7.11 and 7.12 display a longer term evolution (0 ≤ t ≤ 4s) of the same
cases. It can be seen here that the final profiles after the concentration information
has propagated along the domain (

√
kp/τ � r/t) are practically independent of

the relaxation time τ . On the other hand, the derivative exponent β affects the
shape of the stationary concentration profiles, in accordance with the information
presented in Chapter 6.

7.4.1 Anomalous diffusion in coupled phenomena

The presented alternative models converge to Fick’s law when the extended model
parameters τ and β approach the values τ → 0 and β → 1 respectively. The
profiles may be significantly different from Fick’s law depending on the time scale
of interest and the modeling parameters (τ) or the characteristic duration of the
time transients of the problem (tc).

For time scales close to the relaxation time (t ≈ τ), the Cattaneo-Maxwell
model predicts concentration profiles that depart considerably from Fick’s law.
For longer time scales, Fick’s law provides an excellent approximation to this
model. Complementary, the fractional derivative model yields results that are
significantly different for times longer than the characteristic transient time of the
problem (t � tc), while Fick’s law is approached for shorter times.

These results are to be considered when coupling convection-diffusion phenom-
ena (e.g. in chemical reactors). Whether significant deviations from Fick’s law are
to be expected or not depends on the model parameters and on the time scales
involved in the problem. If no important deviations from Fick’s law are expected,
the extra numerical cost of considering either τ > 0 or β < 1 is not justified and
using Fick’s law is the most computationally efficient alternative.
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Figure 7.9: Species concentration at short times (Cattaneo-Maxwell model)
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Figure 7.10: Species concentration at short times (Fractional diffusion model)
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Figure 7.11: Species concentration at long times (Cattaneo-Maxwell model)
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Figure 7.12: Species concentration at long times (Fractional diffusion model)
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7.5 Chapter conclusions

This chapter presented a simulation framework for coupling convective flow around
a particle with two different anomalous diffusion models inside the particle. The
models were solved in two separate domains, and a one-way coupling was accom-
plished by neglecting the concentration changes in the fluid due to diffusion into
the particle.

The implementation of convective flow was achieved by using the vorticity
formulation of Navier Stokes equation in combination with Fick’s law for diffusion
in the fluid region. As a first approximation for obtaining qualitative results, the
anomalous diffusion models were applied to a 1-dimensional geometry where radial
symmetry was assumed. The concentration profiles inside the particle may yield
very different results depending on which diffusion model is used.

Whether significant deviations from Fick’s law are to be expected or not de-
pends on the problem time scales and model parameters. This has implications
for modeling coupling convection-diffusion phenomena (e.g. chemical reactors). If
the problem is out of the range where important deviations from Fick’s law are
expected, the extra numerical cost of considering anomalous diffusion models is
not justified and Fick’s law is preferred.
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Chapter 8

Conclusions

The main purpose of this project has been developing tools for simulating anoma-
lous diffusion phenomena related to solid particles inside a chemical reactor. This
will in time allow for evaluating the convenience and applicability of different
models and generating guidelines for their use. The long-term goal is improving
the optimization possibilities for catalytic reactions applied to gas processes. This
work succeeded in proposing anomalous transport models which were implemented
and tested in order to extend the current modeling capabilities.

Various practical aspects regarding the use of least squares spectral element
methods in the simulations were addressed along the thesis. Since the discussed
concepts and obtained results are listed at the end of each chapter, the remarks
presented here are just an overview featuring the most important conclusions.

Section 8.1 presents a short and concise reassessment of the original objectives.
Section 8.2 contains a summary of the major contributions of this thesis, and
Section 8.3 concludes with recommendations for further extending the scope of
the current work.

8.1 Revisiting the objectives

In order to assess the outcome of the project, a review of the main objectives as
postulated in Chapter 1 is presented next:

1. Developing an appropriate numerical technique for solving frac-

tional differential equations.

Fractional differential models offer multiple possibilities for generalizing the
scope covered by Fick’s law in a consistent manner. However, their numer-
ical implementation is challenging. The main concerns in this regard are
their high computational requirements and mathematical complexity.

A least squares spectral formulation was implemented for solving fractional
differential equations. The proposed method was proven particularly well-
suited for dealing with the numerical difficulties inherent to fractional dif-
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ferential operators. The practical implementation details were explained
thoroughly in order to enhance reproducibility, and guidelines were given for
extending it to multiple dimensions and arbitrarily shaped domains.

2. Implementing models for anomalous diffusion in a particle.

Tools capable of reproducing and comparing different anomalous mass trans-
port models are to be implemented. Three dimensional simulations may be
required, but a two dimensional analysis is expected to suffice in accounting
for the complete physics of the problem in many cases.

A numerical framework for studying anomalous diffusion models in pellets
was developed and validated by testing it against model problems. This sim-
ulation tool is capable of solving arbitrary integro-differential equations and
can be effortlessly adapted to various problems in any number of dimensions.

3. Coupling solid diffusion and fluid flow.

The diffusion of species inside the particle is strongly coupled with the bound-
ary conditions generated by the fluid flow around it. Therefore, modeling the
flow is necessary in order to obtain accurate boundary conditions. A further
step is coupling solid and fluid transport and studying their combined effect.

Simulations of the flow around a particle were achieved by extending the
functionality of the developed framework. A concept test case was analyzed
coupling the boundary condition yielded by the fluid flow with the two main
anomalous diffusion models studied in this work.

4. Identifying criteria for choosing a proper diffusion model.

A benchmark should be formulated that helps determining whether anomalous
effects should be considered given a particular case. As anomalous transport
models are computationally expensive, their use is advantageous only when a
significant difference in the obtained predictions is expected.

Qualitative guidelines based on the problem parameters and time-scales have
been proposed which can be used to decide whether Cattaneo-Maxwell or
fractional diffusion models will be satisfactorily approximated by Fick’s law.
If no deviations of practical significance are expected, the simpler Fick’s
model is preferred.

8.2 Contributions in this work

As a starting point for this thesis, a review of the most important evidence refuting
the generality of Fick’s law was carried out. The next step was trying to find an
underlying structure among the numerous existing alternative diffusion models, all
grouped under the common denomination anomalous transport.

Following guidelines from previous work, several anomalous transport models
were categorized in a scale ranging from simplicity to thoroughness according to the
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level of detail they accounted for. Of course, not all the models were simultaneously
viable since it was necessary to achieve coherence between the different scales. This
contributed to shorten the list of possibilities.

Of particular interest for this work were two macro-scale deterministic models:
the Cattaneo-Maxwell model, also known as ’hyperbolic diffusion’, and the Frac-
tional Diffusion model. Both of them are consistent with their stochastic coun-
terpart: the family of Continuous Time Random Walk (CTRW) models. This
relation between a deterministic and a stochastic formulation is an extension of
the analogy between Fick’s law and the Random Walk model, which represents a
particular case of these models.

The aforementioned context sets the stage for reviewing the most important
contributions in this work. This section will present an overview of the main
findings in the present study, and their application scope will be shortly discussed
afterwards.

8.2.1 Contribution to knowledge

Fractional derivatives are non-local operators that allow generalizing the ordi-
nary integrals and derivatives to intermediate orders. Applied to diffusion, this
implies a capability to describe a wider scope of anomalous diffusive behaviors.
The three main concerns regarding implementation of fractional differential oper-
ators were identified as high storage requirements, the inherent singularity in their
mathematical definition and the consequent difficulties in the extension to multiple
dimensions and irregular shapes.

The proposed least squares spectral formulation reduces the storage require-
ment by demanding a reduced number of nodes in order to yield a similar rep-
resentation. The singular integral contained in the fractional derivative operator
is elegantly evaluated by using Gauss-Jacobi quadratures. In addition, the im-
plementation can be easily extended to arbitrarily shaped domains and multiple
dimensions.

In order to simplify its practical application, the steps for implementing frac-
tional derivative operators in a spectral framework were explained in detail. A
procedure for mapping the operator into non-linear domains was described and
example problems in multiple dimensions were presented and compared with re-
sults available in literature.

Numerical simulations in this work were based on least squares spectral el-
ement methods (LSSEM). Regardless of being considerably more complex than
finite difference methods, LSSEMs provide advantages like generality, geometri-
cal flexibility, numerical stability, a-posteriori error estimation and lower storage
requirements. This last feature is crucial for fractional differential operators.

In order to facilitate the development process, the implementation of the nu-
merical framework was carried out in two programming languages. On one hand
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the meshing algorithm, involving higher complexity and short computing times,
was coded in MATLABR©, a higher level language. On the other hand the solving
algorithm was coded in C++, a more efficient lower level language. This coupling
technique takes advantage of both ease of programming and computing efficiency,
at the very low cost of requiring an interface to communicate both modules.

A numerical framework for studying anomalous diffusion models in pellets was
developed and validated by testing it against example problems. The first test
consisted in a comparison between Fick’s law and its simplest hyperbolic general-
ization: Cattaneo-Maxwell’s law. The physically relevant differences between both
models were quantified in terms of the propagation velocity.

As a numerical experiment, a random walk simulation tool was developed and
validated by comparing its results with the ones yielded by Fick’s law. The sim-
ulations were later generalized to a Continuous Time Random Walk, allowing for
greater flexibility. Coherence was verified between the latter and time fractional
diffusion for an appropriate choice of parameters. This consistency contributed to
clarify the physical interpretation of time fractional diffusion.

A simple problem was proposed for investigating the effect of coupling the
fluid flow around a particle with two different anomalous diffusion models inside
the particle: Cattaneo-Maxwell model and fractional time diffusion. The problems
were solved in two separate domains, and a one-way coupling was accomplished by
neglecting the concentration changes in the fluid due to diffusion into the particle.
It was concluded that whether significant deviations from Fick’s law are to be
expected or not depends on the problem time scales and the model parameters.
If the problem is out of the range where important deviations from Ficks law are
expected, the additional complexity and numerical cost of considering anomalous
diffusion models are not justified and Ficks law is preferred.

8.2.2 Application scope

As described in the introductory part, a better knowledge of the anomalous dif-
fusion phenomena facilitated by the tools developed in this work will result in
extended optimization possibilities for a wide variety of Oil & Gas related pro-
cesses. The most relevant are summarized as:

1. Catalytically enhanced processes. Modern catalysts are usually de-
signed as finely dispersed salts over an inert substrate acting as a mechanical
support. Surface anomalous diffusion takes place when preferential interac-
tions occur between some molecules and the catalyst surface.

• Since efficiency and conversion rate depend on diffusion, a better knowl-
edge of the dynamics of species transport will result in new guidelines
for the design of catalytic particles.
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2. Transport of entrained particles. Moving up to a larger scale, particles
carried in a turbulent flow get periodically trapped in vortices that reduce the
effective particle transport rate. This phenomenon is of special importance
in fluidized bed reactors and can be studied using the models employed to
describe anomalous diffusion.

• An improved description of the migration of particles in the system
will be translated into design and optimization criteria for fluidized bed
reactors.

3. Oil displacement in a reservoir. The pressurizing water injected in an oil
reservoir needs to diffuse into the oil-bearing substrate in order to displace
the oil and allow its extraction. This process is tightly related to anomalous
diffusion of water in porous rocks.

• During the extraction procedure, a significant fraction of the oil is ’by-
passed’ and left in the less permeable substrate. A more suitable charac-
terization of diffusion phenomena will allow to increase the final amount
of extracted oil.

Many other applications for anomalous diffusion models have been included in
Table 2.1, which provided a glimpse of the extension of this discipline. However, a
full review has not been attempted due to the extraordinary vastness of the field.

8.3 Future work

Regarding the coupling between fluid transport and fluid in solid, only a concept
proof was presented for a one-way coupling. Additional work should be directed to
implementing a bidirectional coupling between the solid and fluid, accounting for
the effect caused by the particle on its environment. This extension would result
in larger computational costs occasioned by the need for solving larger systems,
but its complexity is not substantially higher.

Additionally, two main directions for a further extension of the numerical
framework are suggested.

• On one hand the present formulation could be extended from binary compo-
sitions to multicomponent mixtures. This would require the different mass
transfer mechanism for each individual component to be considered.

• The effect of chemical reactions should be included in the dynamics of dif-
fusion since the chemical reactive and diffusive processes are expected to be
strongly interdependent, particularly in the field of gas processing.

Furthermore, a supplementary extension for including several particles, even-
tually subjected to relative movement, is to be considered. This would contribute
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to determining the importance of the interference between particles, which is in-
timately related to the validation of the single-particle model as a representative
sample of a complete reactor.

Regarding the modeling activity, an effort is constantly made to improve the
accuracy in the description of diffusion in order to obtain more exact predictions
for real systems. Since there is a lack of agreement between different diffusion the-
ories, the most convenient validation method at this point seems to be comparing
different simulations and experimental data. Simultaneously, the development of
new measuring techniques is extending the availability of experimental results that
in their turn promote the formulation and evaluation of new diffusion models.
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a b s t r a c t

Fluidized bed reactors are widely used in gas processing facilities due to their superior heat and mass
transfer characteristics. Reaction rates in these reactors depend on the diffusion of species into the
catalytic particles. A more accurate description of diffusion than Fick’s law provides is required for the
optimization of the design of these reactors. In this work, a Least Squares Finite Element framework was
implemented in order to solve the evolution of the concentration profile predicted by Cattaneo-
Maxwell’s law inside a catalytic pellet. Fick’s and Cattaneo-Maxwell’s models were compared, being the
obtained predictions significantly different for time scales similar to the relaxation time but converging
asymptotically for larger time scales. Time-marching and full-domain numerical approaches were
compared. The convenience of the time-marching approach was verified, since this approach yields the
same accuracy with less computational cost.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fluidized bed reactors (FBR) are a common processing choice in
gas processing facilities and particularly in petrochemical indus-
tries. The strong points of the FBR are its outstanding heat andmass
transfer characteristics, which make it a good choice for processing
large volumes of gas. Many industrially produced polymers, such as
rubber, vinyl chloride, polyethylene and styrene are made using
FBR technology. In the FBR, the reaction rate depends on the rate at
which gas diffuses into the catalyst active sites. Therefore, catalysts
are shaped in the form of small porous particles in order to enhance
the gas diffusion rate by increasing the gas-solid interfacial area.
Hence, a better understanding and description of this transport
process is required to improve the estimation of reaction times.

Transient diffusion processes are usually modeled based on
Fick’s second law, a parabolic equation according to which the
variance hx2i of a given concentration profile is expected to increase
proportionally with time t, that is hx2i z t. According to Fick’s law,
the information propagates at infinite velocity since a perturbation
in any region of the domain is instantly detected everywhere. This
inconsistence is referred to as the infinite propagation velocity
paradox. As a result, evenwhen the model is a good approximation
for steady-state problems, it leads to erroneous results at short
times in transient problems (Chen and Liu, 2003) and is not suitable

for describing processes at high frequencies (e.g. Depireux and
Lebon, 2001 diffusion in polymer solutions).

Experimental results (Ritchie, 2005) have verified that diffusion
often proceeds faster or slower than predicted by Fick’s law, so the
variance of a given concentration profile evolves as hx2iz tg, where
g is called the anomalous diffusion exponent. The cases with g < 1
and g > 1, which are not properly accounted by Fick’s law, are
termed subdiffusion (Küntz and Lavallée, 2004) and superdiffusion
(Küntz and Lavallée, 2001) respectively. An alternative model to
deal with these inherent problems of Fick’s law is Maxwell-Catta-
neo’s model. This model is the simplest generalization of Fick’s law
that allows a relaxation of the local equilibrium. It solves the
infinite propagation velocity paradox and allows the modeling of
different diffusion behaviors. It has been proven by Sharma in (Kal
Renganathan Sharma, 2005) that this damped-wave diffusion
model can be deduced by allowing the depletion or accumulation of
molecules near the diffusion plane. Besides having numerous
applications in heat transfer processes (Compte and Metzler, 1997;
Dorao, 2009), Cattaneo’s law has been evaluated for diffusion
modeling in binary fluid mixtures (Jou et al., 1991) and cristalline
solids (Godoy and García-Colín, 1996; Buchbinder and Martaller,
2009) that can be considered far from their equilibrium point.

Evidence of superdiffusion has been found observing water
infiltrationprofiles inporous buildingmaterials (Küntz and Lavallée,
2001) and also subdiffusion has been observed in one-dimensional
diffusion in high concentration aqueous CuSO4 solutions (Küntz and
Lavallée, 2004). Extended versions of Cattaneo’s equation including
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fractional derivatives are able to predict this behavior in a consistent
way. However,more experimental effort is required for determining
the parameters of this model. In particular, Cattaneo-Maxwell’s
model has been applied to pseudo-homogeneous modeling of
reaction-diffusion inside a porous particle (Valdés-Parada et al.,
2006) by a volume averaging procedure. It was concluded that an
effective diffusivity tensor can be computed as in the Fickian diffu-
sion case for conditions found in practical applications.

According toCattaneo’s law, the concentrationwavepropagates at
a speed

ffiffiffiffiffiffiffiffi
D=s

p
(Gómez-Díaz, 2006), where D is the diffusion coeffi-

cient and s is a parameter called relaxation time. The relaxation time
is related to themolecular relaxation processes that take place in the
microstructure of the material (Álvarez-Ramírez et al., 2008). These
processes involve a type of memory in particle collisions and imply
that highly ordered microstructures such as crystals are expected to
exhibit shorter relaxation times than disordered structures. This
hyperbolic description has been proven valid for transient solute
flows with small characteristic times (Auriault et al., 2007) and for
transport of a passive scalar in a turbulent flow (Brandenburg et al.,
2004). For certain parameter choices, the desorptive diffusive flux
canpersist after the diffussing species has been completely desorbed.
However, such physically unrealistic behavior disappears when the
values for parameters s and D are constrained by relations that
explicitly enforce the second law of thermodynamics. This is
explained in detail in (Doghieri et al., 1993). In this work, the Catta-
neo-Maxwell’s model is discussed and a numerical solution is
obtained using Least Squares Finite Element method.

2. Cattaneo-Maxwell’s hyperbolic mass diffusion equation

The mass transfer in a one-dimensional system is governed by
the balance equation

vrðx; tÞ
vt

þ vJðx; tÞ
vx

¼ 0 (1)

in combination with a constitutive equation. As an alternative to
Fick’s first law, Cattaneo (Compte and Metzler, 1997) proposes the
following constitutive equation

J þ s
vJðx; tÞ

vt
¼ �D

vrðx; tÞ
vx

(2)

In the equations above r(x, t) represents the mass concentration, J
(x, t) is themass flux,D is the diffusion coefficient, s is the relaxation
time, t is time and x is the space coordinate. By combining these
equations, Maxwell-Cattaneo’s model is obtained.

D
v2rðx; tÞ

vx2
¼ vrðx; tÞ

vt
þ s

v2rðx; tÞ
vt2

(3)

Cattaneo-Maxwell’s equation (3) is a damped-wave hyperbolic
diffusion equation, which predicts that concentration waves
propagate at a finite speed. This constitutive model yields the same
results as Fick’s law for steady-state cases. However, the results of
both models are considerably different for time scales shorter than
the relaxation time of the considered medium. It can be seen
immediately that as the relaxation time s approaches zero Catta-
neo’s equation approaches Fick’s law.

3. Numerical solution

The objective of this work is to describe the solution of the stated
problem by the Least Squares Finite Element Method. By this
procedure, a well-posed system of partial differential equations
(Gerritsma and De Maerschalck, 2010) is transformed into
a symmetric, positive definite system of algebraic equations. These

characteristics of the system enable the use of advantageous solving
algorithms like the conjugate gradient method (Shewchuk, 2004).

Instead of solving the second order differential equation (3), the
system composed by the two first order equations (1) and (2) is
solved. The problem can be expressed as:

Lf � g ¼ 0 in U (4)

Bf � g0 ¼ 0 on G (5)

where L, f and g are defined as

L ¼
2
4 v�

vt
v�
vx

�Dv�
vx sv�vt þ �

3
5; f ¼

�
C
J

�
; g ¼

�
0
0

�
(6)

Here g represents the source terms, B the boundary condition
(trace) operator and g0 the solution at part of the domain
boundaries.

The linear operator L defines the isomorphism L : XðUÞ/YðUÞ
for which two constants C1 and C2 exist that fulfill

C1kf kX � kLf kY � C2kf kXcf˛X (7)

As a consequence of this, the norms kf kX and kLf kY are equivalent,
and so minimizing kf � fexkY is equivalent to minimizing
kLðf � fexÞkY where fex is the exact solution.

To solve Equations (4) and (5), a norm-equivalent functional can
be defined as

Jðf ; gÞ ¼ 1
2
kLf � gk2YðUÞ þ

1
2
kBf � g0k2YðGÞ (8)

where the norm j�j2Y(G) is defined as

k � k2YðGÞ ¼
Z
G

��dG (9)

For simplicity, the L2-norm is used in this work.
Solving the system for Equations (4) and (5) is equivalent to

finding the function f that minimizes the functional (8). That is:
Find f ˛ X(U) such that

Aðf ; vÞ ¼ FðvÞcv˛XðUÞ (10)

with

Aðf ; vÞ ¼ hLf ; LviYðUÞþhBf ;BviYðGÞ (11)

FðvÞ ¼ hg; LviYðUÞþhf ;BviYðGÞ (12)

where A:X � X / R is a symmetric continuous bilinear form, and
F: X / R a continuous linear form.

As the boundary conditions are expressed in a weak form,
functions that do not satisfy the boundary conditions can be
included in the search space X(U). In order to perform the numer-
ical calculations, this infinite search space is reduced to a finite
search space Xh(U) 3 X(U).

The computational domain U is divided into Ne ¼ Nex � Net non-
overlapping sub-domains or elements Ue, such that

U ¼ W
Ne

e¼1
Ue UeXUi ¼ Bc esi (13)

In each element, the unknown function fe is approached by the set
of all polynomials of degree up to Ox. The global approximation in U
is constructed by attaching the local element approximations Ue.
The solution is expanded in the base of Lagrange polynomials
(Fig. 1).
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3.1. Time-space formulation

The problemwas solved in a 2-dimensional domain, with x and t
as the variables. Two numerical approaches were compared: a full
domain approach consisting in the simultaneous solution of the
complete 2-D domain in one hand, and on the other hand a time
marching approach, consisting in solving one slab at the time, using
the solution of the previous slab as initial condition. Both solving
schemes are presented in Fig. 2.

The simultaneous solution of the full-domain requires the
solution of one linear equation system of large size, while the time
marching approach requires the solution of many linear equation
systems of smaller size. In more concrete words, we compare
solving of a system of size z Nex Ox � Net Ot against solving Net

systems of size z Nex Ox � Ot, where Nex, Net, Ox and Ot are the
number of elements and the approximation order in x and t
respectively.

The advantage of solving the problem with the time marching
approach becomes more notorious as the size of the system
increases. In this case, the computational cost is approximately
proportional to the number of time slabs, while with the full
domain solution, the computational cost grows faster than
linearly.

4. Numerical examples

4.1. Analysis of Cattaneo-Maxwell’s model

Simulations with different values of s were performed in order
to observe the effect of this parameter in the behavior of the

normalized system coordinates x and t and variables T and J. The
propagation of concentration waves in a slab was studied as
a reference case. This can represent the evolution of the concen-
tration profile inside a catalytic pellet submerged in a reactant
medium (Fig. 3). In order to illustrate the differences with Fick’s
law, the case with s ¼ 0 is included in some figures.

Themost important conceptual difference between Fick’s model
and Cattaneo’s model is the finite propagation speed that arises as
a relaxation term appears in the equation. The propagation velocity
of the concentration wave is vc ¼ ffiffiffiffiffiffiffiffi

s=D
p

(Gómez-Díaz, 2003).
Fig. 4 shows the evolution of concentration in an initially

depleted slab when a sudden change in concentration is applied on
both boundaries at time t ¼ 0. A comparison between the Fickian
case (s ¼ 0) and two different values of s are plotted in order to
illustrate the effects generated by a finite propagation velocity. The
smoothed shape of the wave front and the lower boundary value of
the solution for short times are due to the use of b(t) functions
instead of step functions as boundary conditions. This change was
performed in order to avoid discontinuities that are difficult to treat
numerically. The left half of Fig. 3 presents the results in the
complete simulation domain, while its right half displays snapshots
for different simulation times. In the Fickian case, Fig. 4(a) and 4(b),
the concentration converges asymptotically to the boundary value,
while two differences can be appreciated in the other plots:

� A propagation delay can be observed: the concentration in
a given region of the domain does not start to increase until the
propagationwave reaches that point. This is evident in Fig. 4(e)
and (f).

� There is a concentration overshoot: since the information takes
a finite time to propagate, constructive interference occurs
between both counter diffusing waves and uphill diffusion is
observed.

Even when experimental evidence has been found on the exis-
tence of diffusion processes that Fick’s law cannot describe properly
(Ritchie, 2005; Küntz and Lavallée, 2004, 2001), there are still no
measurements that can conclusively support Cattaneo-Maxwell’s
model as accurate. This is partly due to the experimental difficulties
associated with measuring concentration transients at a time scale
similar to the relaxation time (Uemura and Macdonald, 1996;
Nakawaga, 2003). However, similar phenomena has been observed
and measured in heat transfer processes (Lane et al., 1947), which
suggests that Cattaneo-Maxwell’s model could be appropriate.

4.2. Convergence study

In order to find guidelines for the optimal resolution (order and
number of elements) to solve this problem, the residual and
computing timeweremeasured for the sameproblemwithdifferent

t
a b

xx1=1x0=0
Full-domain approach Time-marching approach

t0=0

t1=0

xj xj+1

tj

tj+1
Ωij

full
domain

t

xx1=1x0=0
t0=0

t1=0

xj xj+1

tj

tj+1
Ωij time slab

Fig. 2. Full domain simultaneous solution (a) vs one time slab at the time (b).

C(x,0)=0i
C = (t)1 β(1,t)C = (t)0 β(0,t)

xx1=1x0=0

Fig. 3. Physical interpretation of the 1-D numerical problem.
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Fig. 1. Lagrange polynomials of order 0 � Oe � 5 for a reference domain.
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Fig. 4. Evolution of an unitary concentration pulse for different values of s.
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resolutions. The results are shown in Fig. 5. The residual decreases
logarithmically as the order and number of elements is increased,
which verifies that the problem is solved correctly. The oscillations
evidenced in thedecreasing tendencyof the residual, specially in the
red curves of Fig. 5(c) and (d), are due to the low resolution of the
simulation. Being the number of points in the domain too low,
the shape of the interpolating functions affects the quality of the
approximation.

Fig. 6 presents the residual against the computing time for both
time-marching and full-domain approaches. The points in this plot
were obtained from the solution of the same problem with
different resolutions. All combinations of order Ox and element
number Nex were included in the plot, with 2 � Ox � 12 and
1� Nex� 10. The noise in the plot is probably due to the variation of
Ox and Nex at the same time.

The main fact to be observed from Fig. 5 is that the time-
marching approach ismoreeffective than the full-domain approach,
producing better results with significantly less calculation time.

5. Conclusions

A Least Squares Finite Element framework was implemented in
order to solve the evolution of the concentration profile inside
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a catalytic pellet. A time-space formulation of Cattaneo-Maxwell’s
equationwas solved for different relaxation time values. This model
approaches Fick’s law for large time scales. However, for time scales
similar to the relaxation time, the finite propagation velocity
proposed by Cattaneo-Maxwell’s model predicts the superimposi-
tion of two concentrationwaves that move towards each other. This
can originate a transient uphill diffusion which is not predicted by
Fick’s law, but has been observed experimentally in (Baird et al.,
1971; Vrentas et al., 1984). Two solution schemes were
compared: a time-marching approach consisting in solving each
time slab separately, and a full-domain approach consisting in
solving the complete domain at once. The time-marching approach
proved to be more efficient, allowing to achieve greater precision
with less computing time.
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Abstract

Fractional derivatives provide a general approach for modeling transport
phenomena occurring in diverse fields. This article describes a Least Squares
Spectral Method for solving advection–dispersion equations using Caputo or
Riemann–Liouville fractional derivatives.

A Gauss–Lobatto–Jacobi quadrature is implemented to approximate the sin-
gularities in the integrands arising from the fractional derivative definition. Ex-
ponential convergence rate of the operator is verified when increasing the order
of the approximation.

Solutions are calculated for fractional–time and fractional–space differential
equations. Comparisons with finite difference schemes are included. A signifi-
cant reduction in storage space is achieved by lowering the resolution require-
ments in the time coordinate.

Keywords: Advection-dispersion; Caputo derivative; Riemann–Liouville
derivative; Fractional derivative; Riesz derivative; Least-Squares; Spectral
Method; Anomalous diffusion; Anomalous transport

1. Introduction

Diffusion processes have traditionally been described using Fick’s law, which
gives sufficiently accurate results for many applications. However, as has been
stated many times and supported by new experimental evidence, this model can
be insufficient in many cases [1, 2]. Numerous approaches for deriving a more
general formulation have been attempted such as hyperbolic diffusion theories
[3, 4, 5, 6] and Continuous Time Random Walks (CTRW) [7].

Fractional derivative formulations are attractive to describe diffusion phe-
nomena since they provide a general approach with the possibility of linking
hyperbolic diffusion theories [6] and CTRW [8, 9, 10]. In addition, fractional
differential equations are powerful tools for modeling phenomena occurring in
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diverse fields. There are extended reviews on the vast range of applications of
fractional derivatives e.g. [11, 12, 13, 14, 15, 16].

1.1. Fractional derivative applications

Numerous cases of fractional derivative models applied to physically relevant
problems are found in the scientific literature. Fractional derivatives have been
used to represent memory effects [17, 18]. In particular, fractional derivatives
have been applied to electrochemistry [19], anomalous transport via coupling
with CTRW [20, 9, 8], diffusion in porous media [21, 22] and general cases of
anomalous transport [6, 10, 23, 24]. The transport of passive scalars by fluid flow
in a porous medium is modeled by a fractional derivative model in [25, 7, 26].
These models allow capturing super–diffusive and sub–diffusive behaviors which
are experimentally observed in groundwater hydrology [27, 1]. The applications
of fractional derivatives extend also to the field of viscoelasticity. Examples
can be found in [28, 29, 30]. It is interesting to note that notwithstanding the
vast application scope of fractional derivatives some aspects related to boundary
conditions and their interpretations are still under discussion [31, 32, 33, 34].

1.2. Numerical approaches to fractional derivatives

Different approaches have been used to calculate fractional derivatives during
the last years and the common concern of integration over singularities has arisen
in most of them. The quadrature problem for the fractional derivative operator
has been addressed by [35, 36, 37]. Comparisons of different solution methods
for problems with Dirichlet homogeneous conditions are presented in [38, 39, 40].

The Yuan–Agrawal method for calculating the time Caputo fractional deriva-
tive of a function 0D

β

t
f(t) is proposed in [41]. This method consists in solving

an initial value problem in order to find an intermediate function Φ(w, t) where
w is an auxiliary variable. This function is then integrated in w over the inter-
val [0,∞) in order to calculate the fractional derivative. This method requires
solving a stiff (as stated in [42]) first order equation for each quadrature point
where Φ(w, t) is evaluated. Also several quadrature points are required for each
operator evaluation, and thus the method becomes computationally expensive.
In addition, the intermediate function Φ(w, t) has a singularity at w = 0 and
consequently the results of using Gauss–Laguerre quadrature yield a very slow
convergence as discussed in [43, Section 3].

A modification to this method is presented in [42]. It consists in splitting the
integration interval for the function Φ(w, t) in two domains [0, c) and [c,∞) and
then integrating the first part using Gauss–Jacobi quadrature. This notoriously
improves the accuracy of the method, but requires solving a stiff differential
equation for each quadrature point. A further modification consists in using
Gauss–Jacobi quadrature [44].

J-R. Li presents a fast–time–stepping method for evaluating fractional deriva-
tives [45]. A Gauss–Legendre quadrature is used in the smooth region of the
operator integrand, obtaining good results. However, the model is restricted to
what they call the region of analyticity, namely a region which is at least Δt
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away from the singularity. In other words, the time history is only considered
from t ≥ Δt.

Due to the global time dependence, the fractional derivative operator may
present high storage space requirements. An option for saving storage space and
computing time is applying the so called short–memory principle as described in
[46]. This approach capitalizes on the fact that the contribution of the function
values to the temporal integral decays as we move away from the singularity
region. Alternatively, Li and Xu [47, 48] present a space–time Galerkin spectral
approach to fractional time derivatives. The spectral convergence of high order
methods reduces considerably the amount of data that need to be stored in
order to achieve good accuracy, and this fact is also exploited in the present
work. It should be noted that the system of algebraic equations obtained by
a Galerkin spectral method is not symmetric, positive-definite (non-SPD), and
the boundary conditions are applied by restricting the set of base functions
included in the search space.

Finite element approaches to the fractional derivative operator have been
achieved by J. P. Roop in [49, 50]. A Least Squares Finite Element approach is
presented by Fix and Roop in [51], where existence and uniqueness of the least
squares approximation is proven. The singularity is avoided by applying the
operator only to example functions that cancel it with zeros.

This article presents a Least Squares Spectral Method (LSSM) to solve
a 1–dimensional fractional advection–dispersion equation (FADE). The main
characteristic of this method consists in combining spectral convergence, the
ability of dealing with the singular fractional derivative operator, the possibility
of imposing boundary conditions in a weak form, yielding an SPD linear system
and the existence of an a-posteriori error estimator [52].

The outline is as follows. Section 2 presents the physical model studied in
this work. Section 3 summarizes the main features of the Least Squares Spec-
tral Method used to solve the numerical model. Section 4 explains the use of
Gauss–Lobatto–Jacobi quadrature for the evaluation of the fractional derivative
operator. Section 5 describes in detail the construction of the fractional deriva-
tive operator for a high order polynomial discretization. Section 6 presents
numerical results which validate the numerical framework developed here and a
comparison with previous works. Section 7 contains a summary and the main
conclusions of the work.

2. Physical model

Mass transfer in a one-dimensional system is governed by a transport equa-
tion in combination with a given constitutive equation. Equation (1) represents
a transport equation without source terms. Here the variables C (x, t) and
J (x, t) represent species concentration and species flux respectively.

∂C (x, t)

∂t
+

∂J (x, t)

∂x
= 0 (1)
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The traditional constitutive equation used to model diffusion is Fick’s first
law (Eq. (2)) which is appropriate only in a very limited number of cases [1, 2].
Diffusive flux is then modeled as

J (x, t) = −μ(x)
∂C (x, t)

∂x
, (2)

where μ(x) is the diffusion coefficient.
When using a fractional advection–dispersion equation as a constitutive law

the diffusive flux J(x, t) results

J (x, t) = −μ(x)

(
(1− q) 0D

β

x
C (x, t) + q xD

β

1
C (x, t)

)
, 0 ≤ β ≤ 1, (3)

where q is the relative contribution of the right derivative to the total derivative
(0 ≤ q ≤ 1). The cases q = 0, q = 1 and q = 0.5 are called left derivative, right

derivative and Riesz derivative respectively. The operator aD
β

b
denotes either

the Riemann–Liouville fractional derivative or the Caputo fractional derivative
[15], defined respectively as

RL : aD
β

b
f (ξ) =

1

Γ(n− β)

dn

dξn

∫
b

a

f(ξ)dξ

(b− ξ)β+1−n
, (4a)

Ca : aD
β

b
f (ξ) =

1

Γ(n− β)

∫
b

a

f (n)(ξ)dξ

(b− ξ)β+1−n
, (4b)

where n is defined as the ceiling function of the derivative exponent β, that is
the smallest integer that satisfies β ≤ n.

Equation (3) has been proposed in [53, 54] as a generalization of integer order
derivatives to describe diffusion processes in which Lévy flights occur. More on
the interpretation of this equation can be found in [51, 55]. Note that if β = 1,
then Eq. (3) reduces to Eq. (2) which is the traditional Fick’s law.

The formulation of a wide range of problems is achieved by combining Eq. (1)
and Eq. (3) and adding Dirichlet boundary condition as shown in Eq. (5)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂C (x, t)

∂t
= μ(x)

(
(1− q) 0D

1+β

x
C (x, t) + q xD

1+β

1
C (x, t)

)
in Ω = [0, 1]× [0, 1]

C(0, t) = C0

C(1, t) = C1

C(x, 0) = CIC(x)
(5)

A further generalization of this model is presented in [56, 57]. In order to
model superdiffusive systems, the fractional derivative is moved to the time
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domain as presented in Eq. (6)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− q) 0D
β

t
C (x, t) + q tD

β

1
C (x, t) = μ(x)

∂2C (x, t)

∂x2
, in Ω = [0, 1]× [0, 1]

C(0, t) = C0

C(1, t) = C1

C(x, 0) = CIC(x)
(6)

3. Numerical method

The goal of this work is to describe the solution of the problems stated in
Eqs. (5) and (6) by the Least Squares Spectral Method. By this procedure, a
well-posed system of partial differential equations (the system must be bounded–

below as explained in [52]) is transformed into a SPD system of algebraic equa-
tions. The mentioned characteristics allow using highly efficient algorithms like
the conjugate gradient method [58].

The problem can be expressed as:

Lf = G in Ω (7a)

Bf = G0 on Γ ⊂ ∂Ω (7b)

where

L =

[
∂•

∂t

∂•

∂x

μ
[
(1− q)0D

β

x
•+q tD

β

1
•
]

•

]
; f =

[
C
J

]
; G =

[
0
0

]

The linear operator L represents the isomorphism L : X (Ω) −→ Y (Ω) for
which two non–negative constants C1 and C2 exist that satisfy

C1 ‖f‖X ≤ ‖Lf‖
Y
≤ C2 ‖f‖X ∀f ∈ X, (8)

the operator G represents the source terms, B is the boundary condition oper-
ator and G0 the solution at part of the domain boundaries. As a consequence
of Eq. (8), the norms ‖f‖

X
and ‖Lf‖

Y
are equivalent, and so minimizing

‖f − fex‖X is equivalent to minimizing ‖Lf − Lfex‖Y where fex is the exact
solution [52].

In order to solve Eq. (7), a norm-equivalent functional can be defined as

J (f,G) = ρL ‖Lf −G‖2
Y (Ω)

+ ρB ‖Bf −G0‖2Y (Γ)
(9)

where the L2 norm ‖•‖2
Y (Γ)

is defined as

‖•‖2
Y (Γ)

=

∫
Γ

• • dΓ (10)

and the factors ρL and ρB in front of each term of the functional defined in
Eq. (9) are found in practice as the combination that minimizes the numerical
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error. The best performances in this work were found for ρB/ρL > 1000, which
means assigning a greater weight to the boundary residual.

Solving the system for equation Eq. (7) is equivalent to finding the function
f that minimizes the functional Eq. (9) by solving the weak form

Find f ∈ X (Ω) such that

A (f, v) = F (v) ∀ v ∈ X (Ω)

with the operators A (f, v) and F (v) defined as

A (f, v) = 〈Lf,Lv〉
Y (Ω)

+ 〈Bf,Bv〉
Y (Γ)

(11)

F (v) = 〈G,Lv〉
Y (Ω)

+ 〈f,Bv〉
Y (Γ)

(12)

where A : X ×X −→ R is a symmetric continuous bilinear form and the trans-
formation F : X −→ R is a continuous linear form.

As the boundary conditions are expressed in a weak form, functions that do
not satisfy the boundary conditions can be included in the search space X (Ω).
In order to perform the numerical calculations, the infinite search space X(Ω) is
reduced to a finite search space Xh (Ω) ⊂ X (Ω) corresponding to a product of
polynomials up to degree N in each dimension. The numerical solution is then
expanded by Lagrangian interpolants φj(ξ) based on Gauss–Lobatto–Legendre
points as

fN(ξ) =

N∑
j=0

f(ξj)φj(ξ), (13)

where the interpolating polynomials φj(ξ) satisfy the property

φj(ξi) = δi,j

The integrals are approximated by quadratures as explained in Section 4.
The conditioning arising from a high-order discretization is discussed in [59,
Chapter 2.7].

4. Gauss–Lobatto–Jacobi quadrature

The integrals in Eqs. (4), (11) and (12) are not performed analytically but
approximated by quadrature rules. More detail on high order polynomial ap-
proximations and quadratures can be found in [60, Chapter 2]. In the general
case a quadrature can approximate the integral of the product of a given in-

tegrand function f(ξ) times a weight function W (ξ) over a one-dimensional
integration domain Θ as a sum of the values of the integrand function evaluated
in the quadrature points ξα multiplied by appropriate quadrature weights ωα as

∫
Θ

W (ξ) f (ξ) dξ ≈
N∑

α=0

ωαf (ξα) . (14)
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GL quadrature. The quadratures of Gauss–Legendre (GL) type use the roots
of the Legendre polynomial as quadrature points. The weight function is taken
equal to unity. The GL quadrature is accurate and convenient as it has the
property of yielding an exact integral exact when the integrand function is a
polynomial of degree up to 2N + 1.

GLL quadrature. An alternative to GL quadrature is Gauss–Lobatto–Legendre
(GLL) quadrature, which forces the points at the extremes of the integration do-
main to coincide with the domain boundaries. Two degrees of freedom are there-
fore lost for choosing the location of the quadrature points and consequently the
integration is exact for polynomials of degree up to 2N − 1. However, including
the boundary points results in greater simplicity regarding the imposition of
boundary conditions and the implementation of a multi–domain approach.

GLJ quadrature. A further extension of GLL quadrature in order to include
integration weights different from unity results in Gauss–Lobatto–Jacobi (GLJ)
quadrature. Recalling Eq. (4) it can be observed that the evaluation of the
fractional derivative operator requires the integration of a function g(ξ) of the
form

g (ξ) =
f (ξ)

(x− ξ)
β

0 ≤ β < 1 (15)

over the interval [a, x].
This integrand has a singularity at ξ = x. Therefore, the integration using

GL quadrature yields highly inaccurate results. GLL quadrature is impractica-
ble since the integrand would need to be evaluated at the singularity, which is
not possible. A GL quadrature approximation would look like

∫
x

a

g (ξ) dξ =

∫
x

a

f (ξ)

(x− ξ)
β
dξ ≈

N∑
α=0

ωGL

α

f (ξα)

(x− ξα)
β

(16)

becoming increasingly inaccurate as ξα → x. The singular integrand g(ξ) from
Eq. (15) can be integrated in a clever way by using the Gauss–Lobatto–Jacobi
quadrature which takes the singularity into the integration weight function
WGLJ(ξ) = (x− ξ)−β . In this way the quadrature approximation results

∫
x

a

g (ξ) dξ =

∫
x

a

f (ξ)

(x− ξ)β
dξ =

∫
x

a

WGLJ(ξ)f (ξ) dξ ≈
N∑

α=0

ωGLJ

α
f (ξα) (17)

Note that by using β = 0 the GLL quadrature rule is recovered.

5. Implementation of the fractional derivative operator

Using Eq. (17) to approximate the integral described in Eq. (15), approx-
imations to the fractional derivative operators in Eqs. (4a) and (4b) can be
expanded in a GLJ interpolant basis respectively as

7
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Figure 1: Scheme of integration domains to calculate the fractional derivative operator.

RL : 0D
β

x
f (x) ≈ 1

Γ(n− β)

N∑
k=0

φ
(n)

k
(xi)

(
N∑
j=0

( M∑
α=0

ωk

α
φj(ξ

k

α
)
)
f(xj)

)
(18a)

Ca : 0D
β

x
f (x) ≈ 1

Γ(n− β)

N∑
j=0

( M∑
α=0

ωk

α
φ
(n)

j
(ξk

α
)
)
f(xj). (18b)

Note that the super-index GLJ over the variables ωk

α
and ξk

α
has been omitted in

order to simplify the notation. Here φk(x) represents the k-th GLL Lagrangian
interpolant, ξk

α
are the GLJ interpolant coordinates corresponding to the interval

[0 ≤ ξ ≤ xj ] and ωk

α
are the corresponding GLJ quadrature weights.

For the sake of clarity, a scheme of the domain is included in Fig. 1. The
thick line marked as x represents the domain for the x variable, where x0 and
xN are the domain boundaries and each xi is one of the GLL quadrature points
of order N. The fractional derivative at x = x0 is trivially zero. For calculating
the fractional derivative at the rest of the xi points, N partially overlapping
sub-domains [x0, xi] are constructed (1 ≤ i ≤ N) and GLJ quadrature points of
order M are generated on each of these sub-domains.

Equations (18a) and (18b) can be written in matrix form as

RL : 0D
β

x
f (x) ≈ D̄n · RLĪn · f (19a)

Ca : 0D
β

x
f (x) ≈ CaĪn · f (19b)

where f and f (n) denote respectively the function f(x) and its n–th derivative
evaluated at the GLL interpolation points xj . The operators D̄, RLĪn and CaĪn
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are defined as

D̄[ik] =
dφk(x)

dx

∣∣∣∣
xi

RLĪn[kj] =
1

Γ(n− β)

M∑
α=0

ωk

α
φj(ξ

k

α
)

CaĪn[kj] =
1

Γ(n− β)

M∑
α=0

ωk

α
φ
(n)

j
(ξk

α
)

and the nodal interpolation property by which

(
D̄

n

)
[ik]

= φ
(n)

k
(xi) =

dnφk(x)

dxn

∣∣∣∣
xi

=

(n times)︷ ︸︸ ︷(
D̄ · D̄ · · · D̄) [ik] (20)

has been used. Note that the operator construction method is general for any
choice of the derivative exponent β and for both left and right derivative oper-
ators [23].

A crucial fact that should be highlighted is that the fractional derivative
operators presented in Eq. (19) must be calculated only once, as long as the
domain shape is preserved. The application of the operator to any vector is
then achieved through a matrix-vector multiplication.

6. Numerical results

6.1. Quadrature validation

The validation of GLJ quadrature has been done through the integration
of two test functions of the form g(ξ) = (1 − ξ)−βγ(ξ) from Eq. (15) over the
domain [0, 1] for two representative choices of γ(ξ).

The absolute value of the relative error in numerical integration is plotted
in Fig. 2 as a function of the polynomial degree. The relative error is here
defined as the absolute value of the difference between the exact integral and the
quadrature approximation, divided by the absolute value of the exact integral

err =

∣∣∣ ∫ 1

0
g(ξ) − ∫ 1

0
gN (ξ)

∣∣∣∣∣∣ ∫ 1

0
g(ξ)

∣∣∣ .

Note that a quadrature of order N is equivalent to the exact integral of a
polynomial approximation of order N .

Case A. The first choice of γ(ξ) corresponds to the exponential function, i.e.

g(ξ) =
γ1(ξ)

(1− ξ)β
, with γ1(ξ) = epξ,
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which is infinitely smooth for any value of p. As the function g(ξ) cannot
be exactly represented by a polynomial approximation with a finite number
of terms, it is used to evaluate the relationship between the quadrature error
and the number of quadrature points. The quadrature is therefore expected
to converge exponentially to the integral as the number of quadrature points
is increased (see Fig. 2). The convergence is always exponential and nearly
independent of the derivative exponent β. A slower convergence is observed as
the coefficient p increases which is due to the corresponding ’sharpening’ of the
integrand function g(ξ). The results are compared with GL integration, which
exhibits a poorer performance.

Since the fractional derivative operator is intended to be applied to arbitrary
functions which are approximated with polynomials, it is of interest to test its
performance on polynomials.

Case B. The second choice of γ(ξ) corresponds to a polynomial, i.e.

g(ξ) =
γ2(ξ)

(1− ξ)β
, with γ2(ξ) = ξp.

The error in the numerical integration of g(ξ) for different values of p and β is
plotted in Fig. 3. The accuracy of results is similar to the previous case, and ex-
ponential convergence is again observed. Cases A and B provide a full validation
of GLJ quadrature applied to functions of the form g(ξ) = (1− ξ)−βγ(ξ).

6.2. Validation of fractional derivative operators

The validation of the fractional derivative operators is performed by applying
them to the function γ(ξ) = ξp(1− ξ)p in the domain [0, 1] as

Dβ

q
γ(ξ) = (1− q) 0D

β

ξ
γ(ξ) + q ξD

β

1
γ(ξ).

The reported measures for relative error are the L2 and L∞ norms of the
difference between the numerical and analytical solutions normalized with the
maximum absolute value of the analytical result as

err =

∥∥Dβ

q
γ(ξ)−Dβ

q
γN (ξ)

∥∥
L2,L∞∥∥∥Dβ

q γ(ξ)
∥∥∥
L∞

.

The studied cases correspond to Left, Right and Riesz derivatives (i.e. q = 0,
q = 1 and q = 0.5 respectively). Convergence results for the reference deriva-
tive exponent β = 1/2 are displayed in Fig. 4. For illustrative purposes, the
analytical result and polynomial approximation of Dβ

q
γ(ξ) are plotted in Fig. 5.

For order N = 19 (20 nodes) it is not possible for the naked eye to distinguish
the analytical and numerical solutions in this figure. Note that for this particu-
lar choice of γ(ξ) both Riemann–Liouville and Caputo definitions of fractional
derivative are coincident.
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Figure 2: Convergence plots for integration: γ1(ξ) = epξ, with fixed β = 0.5 (left column) and
with fixed coefficient p = 10 (right column).

6.3. Fractional advection–dispersion equation

The first proposed physical model (Eq. (5)) is solved for parameters q = 1/2
(Riesz derivative), μ(x) = 1, homogeneous initial and boundary conditions and
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Figure 3: Convergence plots for integration: γ2(ξ) = ξp, with fixed β = 0.5 (left column) and
with fixed coefficient p = 20 (right column).

with a source term s(x, t) = 8. The resulting system is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂C (x, t)

∂t
− 1

2

(
0D

β

x
C (x, t) +x Dβ

1
C (x, t)

)
= s(x, t), in Ω = [0, 1]× [0, 1]

C(0, t) = 0
C(1, t) = 0
C(x, 0) = 0
s(x, t) = 8

(21)12
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Figure 4: Convergence plots for Riemann-Liouville and Caputo fractional derivatives of the
function γ(ξ) = ξp(1− ξ)p for derivative exponent β = 0.5. L2 and L∞ norms are presented.
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where the fractional derivative operator has been defined according to the Ca-
puto definition in Eq. (4b). The numerical solution of Eq. (21) is found by
the LSSM described in Section 3. It reproduces the finite difference result in
[23] using a different approach, obtaining the solution presented in Fig. 6. A
comparison of the profiles of C(x, t) predicted by each derivative exponent β
for the final time is included in Fig. 6(d) in order to illustrate the qualitative
differences in the predicted physical behavior. Note that β = 2 corresponds to
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Fick’s law.
An important advantage of the LSSM as a solution method is its incondi-

tional stability. This allows reducing considerably the number of nodes in the
time discretization, depending on the smoothness of the solution. If the par-
ticular problem described in Eq. (21) is considered, its solution is linear in the
variable t and can therefore be accurately resolved with few nodes. This is a
considerable improvement over the 144 nodes used in [23]. However, it is not
possible to compare the performance of both methods in terms of accuracy and
CPU time due to lack of information.
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Figure 6: Obtained solutions for Eq. (21) with different derivative exponents β, reproducing
results in [23]. A spatial approximation of order 16 is presented in this figure.

The residual and condition number for this problem are plotted in Fig. 7 for
approximation order up to 29 for both x and t coordinates. It can be seen in
Fig. 7(a) that a refinement in the t coordinate does not improve the accuracy.
This was the expected result since Eq. (21) is linear in that variable.

6.4. Fractional time dispersion equation

The problem in Eq. (6) is solved in [61] (by a Grünwald–Letnikov ap-
proach) and [23] (using finite differences) with the fixed parameters q = 1/2
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Figure 7: Plots corresponding to: (a) Residual and (b) Condition number of the problem
matrix for different order approximations to Eq. (21).

and μ(x) = 1.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

(
0D

β

t
C (x, t) +t D

β

1
C (x, t)

)
=

∂2C (x, t)

∂x2
, in Ω = [0, 1]× [0, 1]

C(0, t) = 0
C(1, t) = 0
C(x, 0) = 4x(1 − x)

(22)

The same problem is solved using LSSM. The results presented in Fig. 8 re-
produce the calculations in [23] and [61]. Note however that the result presented
in Fig. 8 was obtained using a polynomial of order 9 for the approximation in the
time coordinate. The solution is therefore reconstructed using only 10 nodes,
while results in the mentioned works required 150 and 6000 time steps respec-
tively. Plots corresponding to residual and condition number are presented in
Fig. 9 for approximation order up to 29 in both space and time. However, it is
not possible to compare the solution errors and CPU time of both methods due
to lack of information.

A clarification should be made at this point regarding Fig. 8. As the calcu-
lated solution consists on the basis coefficients of a polynomial expansion, the
numerical ’semi–analytical’ solution is known over the complete domain and not
only over the nodes used for the discretization. Therefore the meshes shown at
the solution plots in Figs. 6 and 8 were chosen in order to improve the clarity
of the figures, and are not related to the discretization.

7. Conclusions

This article described a Least Squares Spectral Method for solving advection–
dispersion equations using either Caputo or Riemann–Liouville fractional deriva-
tives. The same approach is also valid for left and right derivatives. The de-
scribed method required evaluating the function in a reduced number of points
in order to obtain satisfactory results. Comparisons with finite difference results
were included to provide support to this point.
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Figure 8: Solutions for Eq. (22) with different derivative exponents β, reproducing results in
[23] and [61] using N = 20 nodes and M = 10 nodes in spatial and temporal discretization.
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Figure 9: Plots corresponding to: (a) Residual and (b) Condition number of the problem
matrix for different order approximations to Eq. (22).

As a necessary step for developing the LSSM framework, Gauss–Lobatto–
Jacobi quadrature was implemented to approximate the singular integrands aris-
ing from the fractional derivative definition. The fractional derivative operator
was applied to a test function and numerical and analytical results were com-
pared. Exponential convergence was verified in this comparison. Convergence
graphics were supplied to prove the suitability of this quadrature to this type
of problem.
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Work is currently being done on extending this implementation to multiple
elements and dimensions.
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