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Abstract

This thesis focuses on numerical methods for two-phase flows, and es-
pecially flows with a moving contact line. Moving contact lines occur
where the interface between two fluids is in contact with a solid wall.
At the location where both fluids and the wall meet, the common con-
tinuum descriptions for fluids are not longer valid, since the dynamics
around such a contact line are governed by interactions at the molecular
level. Therefore the standart numerical continuum models have to be
adjusted to handle moving contact lines.

In the main part of the thesis a method to manipulate the position
and the velocity of a contact line in a two-phase solver, is described. The
Navier-Stokes equations are discretised using an explicit finite difference
method on a staggered grid. The position of the interface is tracked with
the level set method and the discontinuities at the interface are treated
in a sharp manner with the ghost fluid method. The contact line is
tracked explicitly and its dynamics can be described by an arbitrary
function. The key part of the procedure is to enforce a coupling between
the contact line and the Navier-Stokes equations as well as the level set
method. Results for different contact line models are presented and it
is demonstrated that they are in agreement with analytical solutions or
results reported in the literature.

The presented Navier-Stokes solver is applied as a part in a multi-
scale method to simulate capillary driven flows. A relation between the
contact angle and the contact line velocity is computed by a phase field
model resolving the micro scale dynamics in the region around the con-
tact line. The relation of the microscale model is then used to prescribe
the dynamics of the contact line in the macro scale solver. This ap-
proach allows to exploit the scale separation between the contact line
dynamics and the bulk flow. Therefore coarser meshes can be applied for
the macro scale flow solver compared to global phase field simulations,
reducing the overall computational coasts.

One of the major drawbacks of the level set method is that it does
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Abstract

not conserve the mass of the fluids. The application of the conservative
level set method (CLSM) offers a solution to this problem. Three of the
attached articles address details concerning the implementation of the
CLSM using a finite difference method. A finite difference discretisa-
tion of the CLSM based on stencils used in the Navier-Stokes solver is
described and tested. Various methods to compute the curvature in the
CLSM are assessed for the use in the ghost fluid method. It is shown
that the reinitialisation of the CLSM can lead to spurious deformations
of the interface, a stabilised constrained reinitialisation is developed in
an attempt to prevent the interface from deforming.
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Chapter 1

Introduction

1.1 Background and Motivation

Multiphase flows are of importance in many natural and industrial pro-
cesses. We all experience multiphase phenomena throughout our daily
live. Examples range from opening the tap in the morning to raindrops
making it hard to see through spectacles. In the process and energy
industries multiphase flows play an important role. They can be crucial
for the heat transport, for example in heat exchangers or boilers. In oil
industry numerous examples of multiphase flows can be found from the
well to the petrol station. Basically everywhere where liquids and gases
are involved, some sort of multiphase phenomena are influencing the
processes. The modelling and computational prediction of multiphase
flows still offers many challenges.

The present thesis is concentrating on the numerical computation of
multiphase flows which are in contact with solid walls. If an interface,
which is the region separating two immiscible fluids, is in contact with a
solid wall, a so called contact line is formed. Again there are numerous
examples for flow situations containing contact lines. One of the most
famous is the capillary rise of fluid in a small tube, where a denser
fluid displaces a lighter one. As it is obvious from the capillary rise the
physical effects which occur at a contact line can be important on the
overall behaviour of the system. Despite that these kind of flows are
very common in both industrial and natural processes, they are still not
completely understood. Hence, they pose interesting challenges in terms
of numerical simulations.

1



Chapter 1 Introduction

1.1.1 Methods for multiphase flow simulations

Here solely an overview over the methods which can be used to compute
multiphase flows is given. The overview does not include methods where
the averaged equations for multiphase systems are solved. Despite the
fact that these methods enjoy a great popularity for dispersed flows we
concentrate on methods, which are keeping track of the interface position
and not just an averaged volume fraction of the different components.
To develop methods for flows including contact lines, it is necessary to
know the location where the interface between the fluids is in contact
with a wall. A review over methods which can be used to track the
position of the interface is given in [59].

Methods to model multiphase flows on fixed grids can be divided
into two groups depending on the way they are modelling the interface.
The first group assumes that the interface between the fluids is much
smaller than any resolved length scale, such that the change in fluid
properties at the interface can be treated as a discontinuity. Typically
the interface is advected with the local fluid velocity and a number of
different techniques exist to keep track of the interface position. The
other group comprises methods where the interface has a finite exten-
sion. The fluid properties, such as density and viscosity, are chang-
ing rapidly but smoothly as the interface is crossed. Those are called
phase field methods [3, 41] and they typically solve the coupled Cahn-
Hilliard/Navier-Stokes equations. The Cahn-Hilliard equation is based
on the free energy of an interface [9]. The phase field methods allow
for contact line movement through diffusive interfacial fluxes across the
interface, even if a no-slip boundary condition is applied [37], which
is not the case for methods which do not resolve the interface. Since
the behaviour of the interface is modelled using physical principles, it
is necessary that the discretisation is resolving all the length scales of
the interface. Those length scales are in general much smaller than the
length scales of the flow, e.g. the size of a droplet. This resolution
requirement is posing a severe restriction on the applicability of phase
field methods for the simulation of problems including multiphase flow.

The advantage of methods not resolving the interface is, that they
typically require less resolution, since there is no diffuse interface which
needs to be resolved. Thus, those methods can be applied to problems on

2



1.1 Background and Motivation

a larger scale. The methods, which do not resolve the interface solve the
Navier-Stokes equations and apply appropriate interface conditions at
the position of the interface. The main difference between those method
is how they evolve the interface position in time [59, 67]. Tryggvason
et al. [68] differentiate between front-tracking and front-capturing meth-
ods. Front-tracking methods use marker points that represent the in-
terface and are tracked in a Lagrangian way. Since the particles tend
to accumulate in certain areas of the flow, they have to be redistributed
from time to time [67]. This redistribution can also be regarded as a
kind of adaptivity. Therefore front-tracking methods tend to be able to
resolve thin interface structures more accurately than front-capturing
methods. Since there is a connectivity between the tracing particles
topological changes have to be treated explicitly.

Front-capturing methods use an Eulerian scalar field to indirectly de-
scribe the interface position. The scalar field is evolved in time and it
indicates the location of the interface. Prominent representatives for
front-capturing methods are the volume of fluid method (VOF) [34] and
the level set method (LSM) [65, 51, 60]. The VOF uses a volume fraction
function which is either zero or one, depending on the volume fraction
of a cell occupied by one of the fluids. Special advection schemes and
interface reconstructions are applied such that the transition from zero
to one is kept as accurate as possible. The VOF method conserves
the mass of both fluids by construction. Instead of a volume fraction,
the LSM uses a signed distance function. The signed distance function
is continuous throughout the computational domain. The contour line
where the distance function is zero is defined as the interface. One of the
advantages of the LSM it enables a simple way to retrieve geometrical
information of the interface such as the curvature and surface normal.
However, the level set method has an important disadvantage because
it does not conserve the mass of the two fluids [60]. The mass loss
is most pronounced in regions with high curvature where the interface
is not well resolved by the grid. Different approaches were developed
to improve the mass conservation of the level set method. Examples
include the conservative level set method (CLSM) [49] [50], the parti-
cle level set method (PLS) [24] or the coupled level set/volume-of-fluid
(CLSVOF) [64]. The added complexity for both PLS and CLSVOF are
significant. On the other hand the conservative level set method im-

3



Chapter 1 Introduction

proves the mass conservation and keeps the simplicity of the original
method. Front-capturing methods can handle topological changes in a
natural way, since they use an Eulerian scalar function. If two inter-
faces approach each other and their distance becomes less than the grid
spacing, front-capturing methods can no longer resolve both interfaces
and they are merged. It has to be noted that the topological changes in
front-capturing methods are not based on physical principles but rather
a result of finite resolution of the computational grid.

The methods not resolving the interface, meet an additional chal-
lenge. Conventional discretisations can neither handle fluid properties
which change instantly at the interface nor the singular surface ten-
sion force. Therefore the jump in the fluid properties and the surface
tension is smeared artificially over multiple grid points [7, 12, 67]. An
alternative is to develop numerical methods, which can handle sharp
jumps in the solutions. Sharp interface methods applied for two-phase
flow include the ghost-fluid method (GFM) [40], immersed interface
method [45] and the extended finite element method [26]. The ghost-
fluid method (GFM) [25] was introduced for compressible flows and
later extended to incompressible two-phase flows [40]. It modifies the
discretisation stencils to allow sharp jumps of the fluid properties at the
interface as well as a sharp implementation of the surface tension force
through a jump in the pressure. The majority of methods for modelling
of multiphase flow including contact lines, where the interface is not re-
solved, smear the jumps and the surface tension over several grid points
[8, 27, 63, 70, 55, 2, 17].

1.1.2 Contact line

One of the difficulties arising in multiphase flows is the moving contact
line problem. This is the line where the interface between two different
fluids intersects the surface of a solid substrate. In two dimensions the
contact line is reduced to a point. There is not only a surface energy
associated with the interface between the fluids, but there is also a
surface energy associated with the interface between the solid and both
of the fluids. In a system containing two fluids in contact with a solid
wall, the fluids seek to assume a state where the energy is minimised.
This leads to the well-known relation proposed by Young [71], which

4



1.1 Background and Motivation

relates the three surface energies with the static contact angle.

If the fluids are not at rest the situation becomes more complicated.
It was shown by Huh and Scriven [35] that the hydrodynamic equations
in connection with the conventional no-slip boundary condition at the
solid wall cannot be used to describe systems where the contact line is
moving along a wall. It was demonstrated that the stresses are diverging
at the line where the three phases meet [35]. Molecular dynamics (MD)
simulations [42] show that there must be some sort of slip in the region
around the contact line. Over the years several different models have
been proposed to overcome the diverging stresses at the contact line. For
an overview the reader is referred to review articles such as [16, 44, 6].
Most of the analytical descriptions using a hydrodynamic descriptions
rely on the following three assumptions [6]. First, the Capillary number
Ca = µU

σ , where µ is the dynamic viscosity, U a characteristic velocity
and σ the surface tension, is assumed to be small. Second, the iner-
tial effects are considered to be negligible. And third, the surfaces are
assumed to be heterogeneous such that there is no contact angle hys-
teresis. The lubrication theory, where the hydrodynamic equations are
simplified and expressed with the help of the distance between the in-
terface and the wall h, is used to describe the flow in the vicinity of the
contact line. Then it is assumed that there is some kind of slip in a
region with an extent of Ls around the contact line. The length scale
Ls is associated with interactions at the molecular scale and is of the
order of nano meters [5]. The result of those analyses is some variation
of the Cox-Voinov law [6]

h′(x) = θm + 9Ca ln(x/Ls), (1.1)

where x is the distance from the contact point and θm is the microscopic
contact angle. It is often assumed that θm is equal to the static contact
angle θs [6]. Because the interface slope and therefore its angle with the
wall vary logarithmicly as the contact line is approached, it is difficult
to measure θm. This slope (1.1) of the interface shape is valid close
to the contact point and can be matched to analytical or numerical
solutions of the flow away from the interface. But the distance where
this matching is done is usually still much smaller than the grid size of
typical multiphase flow simulations.

5



Chapter 1 Introduction

While phase field methods can be used to simulate flows with moving
contact lines [37, 69, 19] without the introduction of a slip boundary
condition, it was demonstrated by Yue et al. [72] that the interface
thickness must be of the order of the physical thickness of the interface
which is of the same order as Ls. That means around the contact line a
grid spacing in the order of Ls is required in order to obtain the sharp
interface limit. Qian et al. [53] proposed a slip boundary condition for
phase field methods.

As it is often not possible to resolve the length scales at which slip
happens, most multiphase flow simulations relieve the no-slip boundary
condition around contact lines and force the interface to intersect the
wall at an angle θnum = F (Ca,. . . ). How F should be chosen is still a
matter of debate [68]. Examples using various forms of F are discussed
in [8, 4, 57, 27, 46, 10]. However, there are a few methods which do
not force the contact angle. Deganello et al. [17] manipulate the surface
tension force close to the wall to control the motion of the contact line.
Spelt [63] tracks a contact point which is moving with a velocity uCP =
f(θCP), where θCP is the angle between the interface and the wall. The
contact point treatment proposed in section 3.4 is based on [63] but it
is adapted for a multiphase solver using the GFM.

1.1.3 Multiscale methods for contact lines

An alternative approach to overcome the singularity at the contact line
is the application of multiscale models. The idea is to model the bulk
of the domain with conventional continuum models and couple it to a
more detailed molecular model around the contact line. The first ap-
plication of a multiscale method to two-phase flows was developed by
[28]. To couple the MD to the continuum description the domains of
the two models overlap each other. In every time step multiple itera-
tions are computed in each domain using the results of the other model
as boundary conditions in the overlapping region until the two mod-
els converge in the shared region. A more efficient way to couple the
two models is the so-called heterogeneous multiscale method (HMM)
[22, 23]. HMM assumes a scale separation between the bulk flow and
the flow around the contact points. Therefore the macroscopic model
does not need to resolve the dynamics around the contact point. The

6



1.2 Goal and contribution of the present thesis

macro model should offer a procedure to apply integral values describ-
ing the contact line dynamics. Those integral values are measured in
the micro scale simulation around the contact point, which also requires
some information from the macro model. This method was successfully
applied to two-phase flows with contact lines [54]. Both implementa-
tions [28, 54] of multiscale methods for two-phase flows were applied to
two immiscible fluids in Couette or Poisseuile flows. In both cases the
density and viscosity were the same for the two fluids.

1.2 Goal and contribution of the present thesis

The goal of the PhD. project was to develop a multiscale method to
simulate two-phase flows with a moving contact line. A multiphase
solver, which is resolving the macroscopic processes should be used to
model the bulk of the domain, while an appropriate micro scale model
should resolve the relevant length scales around the contact line. The
spacial scale separation should be exploited to couple the two models
at both scales using the HMM approach. To make a step towards the
application of such a multiscale method for real flow problems it was
desired that both the macro and micro scale models should be able
to handle fluids with different viscosities and densities. Further it was
desired that a sharp interface method should be employed in the macro
model, i.e. the surface tension and the jump of the fluid parameters
should be treated in a sharp manner. Most of the effort was done to
develop a suitable two-phase solver, where the motion of the contact
point can be controlled using the input of the micro model. Therefore
the details of the macro solver form the main part of the thesis. For
details on the other contributions the reader is referred to the attached
publications.

The main contributions of the present thesis are:

• Assessment of an alternative curvature computation of the con-
servative level set method. The details are given in publication
[b].

• Stabilisation of the high order constrained reinitialisation for level
set functions with large gradients. The details are given in publi-

7



Chapter 1 Introduction

cation [d].

• Implementation and verification of a two-phase solver using a
sharp interface method. The details are given in section 3.1 and
the publications [c] and [f].

• Development of a contact point treatment for the sharp interface
method, which allows to track a contact point. The motion of
the contact point can be described by an arbitrary function. The
contact point treatment includes a method to compute convergent
curvatures (see section 3.4).

• Development of a multiscale method for capillary driven contact
line dynamics. The details are given in publication [e].

1.3 Outline of the thesis

The remainder of the thesis is organised as follows. In chapter 2 an
overview over the derivation of the governing equations for two-phase
flow is given. The chapter starts with the single phase equations which
then are used to derive the interface conditions between two immisci-
ble incompressible fluids with constant densities and viscosities. The
concept of surface tension is introduced and added to the interface con-
ditions. The chapter closes with the reformulation of the interface con-
ditions such that they can be used by the ghost fluid method.

Chapter 3 gives a detailed description of the numerical methods used
to discretise the Navier-Stokes equations for multiphase flow. The spa-
cial discretisation for the single phase equations are introduced first,
before the level set method, which is used to track the interface, and its
implementation are described. After the introduction of the Ghost fluid
method the procedure for the contact point tracking and its adaption
for the ghost fluid method are explained in detail in section 3.4.

Results from numerical experiments verifying the methods presented
in the theses are shown in chapter 4. Damped surface waves are com-
puted to verify the implementation of the two-phase solver (section 4.1).
Alternative approximations for the advective terms and the jump con-
ditions were evaluated using the same example. The accuracy of the

8



1.3 Outline of the thesis

contact point treatment was tested using a capillary rise (section 4.2.1).
The chapter concludes with three examples involving dynamic contact
point behaviour. For two of the examples, i.e. capillary driven channel
flow (section 4.2.3) and advancing droplet (section 4.2.4), the contact
point dynamics is prescribed using the multiscale method from [e].

The thesis is closed with chapter 5, where the conclusions are drawn
and some suggestions for further work are given.

The research articles are summarised in chapter 6 and attached at the
end of the thesis.
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Chapter 2

Governing equations

In this chapter a derivation of the mass and momentum conservation
laws for multiphase flow is given. In multiphase flow the single phase
equations must hold in each individual fluid, as well as for the entire
fluid domain containing the two different fluids. The conditions at the
interface between two fluids can be derived using the integral conserva-
tion equations. The discretisation which is presented in the next chapter
is using the differential form of the conservation laws. Therefore, we give
first an overview of the derivation of the integral mass and momentum
conservation laws and use those to get the differential form as well as
the interface conditions. The derivations presented here are based on
notes form the lecture “Modelling of Multiphase flows” which was held
by Tor Ytrehus at NTNU [39], which in turn is partly based on the book
by Thompson [66].

2.1 Conservation laws for single phase flow

2.1.1 Mass conservation

The temporal change of a quantity χ inside a general moving control
volume V∗ is given by the generalised Leibniz rule of integration (see
e.g. [43])

d

dt

∫

V∗
χdV =

∫

V∗
∂χ

∂t
dV +

∫

A∗
χn · b dA. (2.1)

Where A∗ is the surface of the control volume with an outward pointing
unit normal n and local velocity b. The mass of a given material fluid
volume V is given as

∫
V ρ dV , where ρ is the local fluid density. Since

mass is neither created nor destroyed we must have d
dt

∫
V ρdV = 0. If

we set V∗ = V, A∗ = A and b = u (i.e. the velocity of the control

11



Chapter 2 Governing equations

volume is equal to the local fluid velocity) in equation (2.1) we get:

0 =

∫

V

∂ρ

∂t
dV +

∫

A
ρu · n dA. (2.2)

Which can be rewritten with the help of the divergence theorem

0 =

∫

V

∂ρ

∂t
dV +

∫

V
∇ · (ρu) dV =

∫

V

∂ρ

∂t
+∇ · (ρu) dV. (2.3)

This equation must hold for an arbitrary material volume V, which is
only true if the integrand is zero. We get therefore the differential form
of the mass conservation

∂ρ

∂t
+∇ · (ρu) = 0. (2.4)

In the case of an incompressible fluid the density is constant and the
differential form of the mass conservation reduces to

∇ · u = 0. (2.5)

Which means that the velocity field of an incompressible fluid must be
divergence free.

In order to derive the conditions at a fluid interface we need the mass
conservation equations for a general moving control volume V∗. For this
purpose we replace χ in equation (2.1) by the density ρ

d

dt

∫

V∗
ρdV =

∫

V∗
∂ρ

∂t
dV +

∫

A∗
ρn · b dA. (2.6)

Let us now assume that at a given time t0 the material fluid volume V
coincides with the general moving control volume V∗. At this time t0
we subtract equation (2.2) from (2.6) and we get the mass conservation
for a general moving control volume:

d

dt

∫

V∗
ρ dV +

∫

A∗
ρ (u− b) · n dA = 0. (2.7)

12



2.1 Conservation laws for single phase flow

2.1.2 Momentum conservation

The forces acting in a fluid can be divided into three classes [43]. Body
forces are acting on the volume of the fluid. Here the body forces per unit
mass will be denoted by g and the body force acting on the fluid volume
becomes

∫
V ρg dV . The second class comprises surface forces, which act

on the surface of a fluid volume. They can be divided into forces acting
normal on the surface (normal forces, e.g. pressure) and tangential to
the surface (shear forces). The surface forces acting on a fluid volume
are given as

∫
AT · n dA, where T is the stress tensor. The last class

comprises line forces, which act along lines (in 2 dimensions) or surfaces
(in three dimensions). An example is the surface tension which acts only
at the interface between two fluids. They are singular in the sense, that
they are confined to specific lines or surfaces. In some notations (e.g. [68,
chapter 2.5]) they enter the equations of motion using a delta function
i.e.

∫
V f̂δ (x− xΓ) dV , where f̂ denotes the line force, xΓ is the location

of the line where the force is active and δ denotes the delta function. In
other notations the line forces do not appear directly in the conservation
equations, but are considered through appropriate boundary conditions
[43, chapter 4.5]. Here we are using the second approach, and we will
introduce the surface tension in the interface conditions.

The momentum of a fluid volume V is given as
∫
V ρu dV . According to

Newton’s second law of motion the temporal change of the momentum
for a given fluid volume is equal to the forces acting on it

d

dt

∫

V
ρu dV =

∫

A
T · n dA+

∫

V
ρg dV. (2.8)

To get a differential form of the momentum conservation equation we
take the Leibniz rule (2.1) for a material volume V, such that b = u and
replace χ by ρϕ. Then the divergence theorem is applied to the surface

13
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integral and the product rule is used to get

d

dt

∫

V
ρϕdV =

∫

V

∂

∂t
(ρϕ) dV +

∫

A
ρϕn · u dA

=

∫

V

∂

∂t
(ρϕ) dV +

∫

V
∇ · (ρϕu) dA

=

∫

V
ρ

(
∂ϕ

∂t
+ (u · ∇)ϕ

)
dV +

∫

V
ϕ

(
∂ρ

∂t
+∇ · (ρu)

)
dV

=

∫

V
ρ

(
∂ϕ

∂t
+ (u · ∇)ϕ

)
dV =

∫

V
ρ

Dϕ

Dt
dV. (2.9)

The the mass conservation (2.4) and the definition of the substantial
derivative D

Dt = ∂
∂t+(∇ · u) were used in the last two steps. Inserting this

result into equation (2.8) and applying the divergence theorem yields for
ϕ = u

∫

V
ρ

(
∂u

∂t
+ (u · ∇) u

)
dV =

∫

V
∇ ·T dV +

∫

V
ρg dV. (2.10)

Again the equation must be fulfilled for any fluid volume V and therefore
we arrive at the differential form of the momentum equation

ρ

(
∂u

∂t
+ (u · ∇) u

)
= ∇ ·T + ρg. (2.11)

By replacing χ with ρu in equation (2.1) and subtracting it from equa-
tion (2.8) the integral form of the momentum conservation which holds
for a general moving control volume V∗ is obtained

d

dt

∫

V∗
ρu dV +

∫

A∗
ρu (u− b) ·n dA =

∫

A∗
T ·n dA+

∫

V∗
ρg dV. (2.12)

2.1.3 Constitutive equation for a Newtonian fluid

The stresses in a fluid at rest only act in normal direction of a surface
and are independent of the angular orientation of this surface. The
stress tensor must take the following form T = −pI, where p is the fluid
pressure and I the unit tensor. The negative sign is because the pressure
acts in opposite direction of the surface unit normal n.
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2.2 Interface conditions

In a moving fluid, the stress tensor contains additional components,
which in a Newtonian fluid are proportional to the strain rate. It can
be shown (for details see [43, chapter 4.10]) that the stress tensor for a
Newtonian fluid must take the following form

T = −pI + µ
(
∇u + (∇u)T

)
+ λ (∇ · u) I, (2.13)

where µ is the dynamic viscosity and λ the second viscosity coefficient.
If we consider an incompressible fluid the velocity field is divergence free
and the stress tensor is reduced to

T = −pI + τττ , (2.14)

where the viscous shear stress tensor is given as

τττ = µ
(
∇u + (∇u)T

)
. (2.15)

Substituting equation (2.14) into equation (2.11) and using the mass
conservation (2.4) we obtain the single phase Navier-Stokes equations
for incompressible fluids

∇ · u = 0 (2.16)

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+ µ∇2u + ρg, (2.17)

where µ is assumed to be constant.

2.2 Interface conditions

Immiscible multiphase flow can be regarded as multiple domains with
single phase flow which are in contact with each other. The equations
of motion derived in the previous section must hold in each phase. In
addition they must also be fulfilled in the entire domain containing the
multiphase flow. The single phase equations can be used to derive con-
ditions at the interface between two fluids.
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Chapter 2 Governing equations

2.2.1 Conservation of mass

We consider a control volume V∗ which contains two fluids separated by
an interface as illustrated in Figure 2.1. We assume that V∗ moves with
the interface such that its thickness normal to the interface is always 2ε.
The surface of the control volume is A∗ and the velocity of the control
volume surface is denoted as b. The interface divides the control volume
V∗ into two sub volumes V∗1 and V∗2 . We use Σ1 and Σ2 to denote the
surfaces of V∗1 and V∗2 , respectively, excluding the surface ΣS , which is
the interface inside the control volume. Such that we have A∗ = Σ1∪Σ2.

Interface

Fluid 1

Fluid 2
ǫ

ǫ

Σ1

Σ2

V∗
1

V∗
2

ΣS

n1

n2

b

b

uS

Figure 2.1: Control volume containing an fluid fluid interface.

The mass conservation laws (2.7) for the three control volumes read:

d

dt

∫

V∗
ρdV +

∫

A∗
ρ (u− b) · n dA = 0 (2.18)

d

dt

∫

V∗1
ρ1 dV +

∫

Σ1∪ΣS

ρ1 (u− b) · n dA = 0 (2.19)

d

dt

∫

V∗2
ρ2 dV +

∫

Σ2∪ΣS

ρ2 (u− b) · n dA = 0 (2.20)

The velocity of the control volume surface along the interface ΣS is equal
to the interface velocity uS . In addition along ΣS we have n2 = −n1.
Equations (2.19) and (2.20) are subtracted from equation (2.18) to yield:

∫

ΣS

(ρ1 (u1 − uS) · n1 − ρ2 (u2 − uS) · n1) dA = 0. (2.21)
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2.2 Interface conditions

This must hold for any control volume V∗ containing the interface and
therefore we can write:

ρ1 (u1 − uS) · n1 − ρ2 (u2 − uS) · n1 = 0. (2.22)

The quantity ṁ1 = ρ1 (u1 − uS) · n1 is the mass flow leaving fluid 1.
Assuming there is no mass exchange between the two fluids (e.g. there

is no evaporation and the fluids are immiscible) we have ṁ1 = 0 and
therefore uS ·n1 = u1 ·n. Thus the interface condition is further reduced
to

JuK · n = 0 (2.23)

where J. . .K denotes the jump at the interface with position xΓ, i.e.
JuK = u2(xΓ) − u1(xΓ). This means that the interface normal compo-
nent of the velocity is continuous across the interface, and the normal
interface velocity is equal to the normal component of the velocities at
the interface.

2.2.2 Kinematic condition at the interface

In addition to the condition that the mass must be conserved at the
interface we also have a kinematic condition for viscous fluids, which
states that the tangential velocity component of two neighbouring fluids
must be equal, i.e. JuK · t = 0 where t is a vector tangential to the
interface with unit length. Together with equation (2.23) the jump
conditions for the velocity at the interface read:

JuK = 0 (2.24)

J∇uK · t = 0. (2.25)

This implies that the velocity u and its tangential derivative are contin-
uous over the interface. The latter follows automatically from (2.24). If
both phases are incompressible we get the trivial identity J∇ · uK = 0.
Using the identity ∇ · u = n · ∇u · n + t · ∇u · t and equation (2.25) we
get:

Jn · ∇u · nK = 0, (2.26)

which means that the normal component of the normal derivative of the
velocity field is continuous across the interface.
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2.2.3 Conservation of momentum

To derive the interface conditions for the stresses we use again the
same control volumes as described in section 2.2.1 and illustrated in
Figure 2.1. The momentum conservation laws (2.12) for the control
volumes read:

d

dt

∫

V∗
ρudV +

∫

A∗
ρu (u− b) · ndA =

∫

A∗
T · n dA+

∫

V∗
ρg dV (2.27)

d

dt

∫

V∗
1

ρ1u1 dV +

∫

Σ1∪ΣS

ρ1u (u− b) · ndA =

∫

Σ1∪ΣS

T · ndA+

∫

V∗
1

ρ1g dV

(2.28)

d

dt

∫

V∗
2

ρ2u2 dV +

∫

Σ2∪ΣS

ρ2u (u− b) · ndA =

∫

Σ2∪ΣS

T · ndA+

∫

V∗
2

ρ2g dV.

(2.29)

Repeating the procedure from section 2.2.1, assuming no mass exchange
across the interface and using the constitutive equation for an incom-
pressible Newtonian fluid (equation (2.14)) the interface condition for
the stresses is obtained

J−pI + τττK · n = 0. (2.30)

This means that the stresses are continuous across the interface.

2.2.4 Surface tension

The interface between two fluids behaves like a flexible membrane. To
increase the area of the interface work has to be done, i.e. there is a
surface energy which is proportional to the area of the interface. The
surface tension σ represents the stretching work that needs to be done to
increase the interface area by a unit amount [11]. Therefore we can often
observe that small droplets assume a spherical shape in order to reduce
the surface area and thus the surface energy. The source of the surface
tension lies at the atomic scale. At the atomic scale all fluid molecules
interact with each other through attractive and repulsive forces. For a
single fluid molecule which is immersed in a fluid at rest, the averaged
resulting force is zero. Since the interaction forces between two fluid
molecules of different type are not the same as the interactions between
identical fluids, we have a nonzero force acting on a fluid molecule close
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2.2 Interface conditions

Interface

Fluid 1

Fluid 2

θ
2

θ
2

σ σσ ds
2Rs

σ ds
2Rs

n

Rs
T1 · n

T2 · n
ds

Figure 2.2: Forces on a small interface area including surface tension.

to an interface between two fluids. More information on the origin of
surface tension can be found in textbooks on the subject e.g. [1, 36].

Figure 2.2 shows a cross section trough a small interface element, ds is
the length of the interface element in the paper plane and dl is the length
of the interface element perpendicular to the paper plane. The radius
of the surface element in the paper plane is Rs and the normal vector
n is pointing from fluid 1 to fluid 2. The force from the surface tension
will pull at both ends in tangential direction of the surface element.
Its magnitude per length into the paper plane is σ at both end points
if the surface tension is constant along the interface, i.e. there are no
temperature gradients and no surfactants present. The net force of the
surface tension in tangential direction vanishes and in normal direction
the resulting force from the surface tension is −σ ds

Rs
n. Therefore the

balance of forces on the interface requires

T1 · n−T2 · n−
σ

Rs
n = 0. (2.31)

The same argument can be repeated in a plane which is perpendicular
to the paper and parallel to the normal vector in Figure 2.2. Introducing
the local curvature of the fluid element κ = 1

Rs
+ 1

Rl
, where Rs and Rl

are the radii of the interface measured in two perpendicular planes, and
using the constitutive equation for an incompressible Newtonian fluid
the interface conditions (2.30) becomes

J−pI + τττK · n = κσn. (2.32)
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Chapter 2 Governing equations

The inclusion of the surface tension in the interface condition leads to
a discontinuity in the normal stresses across the interface, while the
tangential stresses remain continuous.

2.2.5 Reformulation of the interface conditions

In order to use the interface conditions for the discretisation they have
to be rewritten. In the ghost fluid method the jump in the pressure JpK
and the jump in the derivatives of the velocity components along the
coordinate lines Jµ∇uK are required. Two versions of the reformulation
procedure, which differ in the notation, can be found in [29] and [40].

First the jump condition for the pressure is obtained by taking the
inner product of the jump condition including surface tension (2.32)
with the interface normal n and using the definition of τττ (2.15)

JpK = Jn · 2µ∇u · nK− σκ = 2 JµK n · ∇u · n− σκ, (2.33)

where equation (2.26) was used for the last step.
Equation (2.25) is used to write

Jµ∇uK · t = JµK∇u · t. (2.34)

The inner product of the jump condition (2.32) with the interface tan-
gent t becomes:

0 =
r
t · µ

(
∇u + (∇u)T

)
· n

z

= t · Jµ∇uK · n + n · JµK∇u · t, (2.35)

where (2.25) was used in the last equality. Decomposing Jµ∇uK · n into
its normal and tangential components and then using the equation above
yields

Jµ∇uK · n = (n · Jµ∇uK · n) n + (t · Jµ∇uK · n) t

= (n · Jµ∇uK · n) n− (n · JµK∇u · t) t

= (n · JµK∇u · n) n− (n · JµK∇u · t) t, (2.36)

where equation 2.26 was used in the last step. The jumps in the vis-
cous terms in an interface normal coordinate system can be obtained by
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2.2 Interface conditions

taking the inner product of equations (2.34) and (2.36) with the normal
and tangential vector respectively

n · Jµ∇uK · n = JµK n · ∇u · n
n · Jµ∇uK · t = JµK n · ∇u · t
t · Jµ∇uK · n = − JµK n · ∇u · t
t · Jµ∇uK · t = JµK t · ∇u · t, (2.37)

which can be rewritten in coordinate free form:

Jµ∇uK = JµK n · ∇u · n(n⊗ n) + JµK n · ∇u · t(n⊗ t)

− JµK n · ∇u · t(t⊗ n) + JµK t · ∇u · t(t⊗ t), (2.38)

where ⊗ denotes the dyadic product. The property a·(b⊗c) = (a·b)c of
the dyadic product, can be applied to the gradient, i.e. a · (∇b) = ∇(a ·
b). Hence, the normal or tangent can be moved inside the differential
operator. This is how equation (2.38) can be rewritten in the form used
by [29, equation (2.28)]

Jµ∇uK = JµK n · ∇(u · n)(n⊗ n) + JµK t · ∇(u · n)(n⊗ t)

− JµK t · ∇(u · n)(t⊗ n) + JµK t · ∇(u · t)(t⊗ t). (2.39)
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Chapter 3

Numerical methods

In this chapter the numerical methods will be described to solve the
equations governing multiphase flow presented in the previous chapter.
The method to solve the Navier-Stokes equations for two-phases is based
on the method presented by Kang et al. [40]. First the procedure to
solve the single phase Navier-Stokes equations (NS) is presented. Then
the level set method, which is used to track the interface is introduced.
And finally the ghost fluid method (GFM) is described. The GMF
implements the jump conditions form section 2.2, and thus extends the
single phase solver to a two-phase solver. At the end of the chapter the
methods to handle a contact point are described in detail.

3.1 Navier-Stokes solver

3.1.1 Projection method

For incompressible flow the mass conservation reduces to a constraint on
the velocity field, i.e. the velocity field must be divergence free, cf. equa-
tion (2.5). This constraint is changing the nature of the equation system.
While the momentum conservation equation forms a parabolic system,
the incompressible Navier-Stokes equations are not purely parabolic any-
more. They contain an elliptic part, because the divergence of (2.17)
together with (2.16) yields a Poisson equation for the pressure. This
dictates that appropriate numerical methods have to be used to solve
the coupled equations. One of the possible strategies to solve the in-
compressible Navier-Stokes equations are projection methods. Other
alternatives can be found for example in [20]. The idea of the projec-
tion methods is to advance the velocity field in time without taking care
of the divergence free constraint and then adjust the resulting interme-
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diate velocity field such that it has zero divergence. Thus, the velocity
field is projected on the space of solenoidal vector fields.

The projection methods are based on the Helmholtz-Hodge theorem,
which states that an arbitrary vector field a can be decomposed into a
divergence free or solenoidal part and a rotation free part. Such that it
can be written

a = ad +∇ϕ, (3.1)

where ∇ · ad = 0. Taking the divergence of equation (3.1) yields

∇ · a = ∇2ϕ. (3.2)

This procedure can be applied to advance the semi discrete Navier-
Stokes equations (2.17) in time. First an intermediate velocity u∗ is
obtained by advancing the velocity from the previous time step without
taking ∇p in (2.17) into account.

u∗ = u + ∆t

(
− (u · ∇) u +

µ

ρ
∇2u + g

)
(3.3)

The intermediate velocity field is then used as the right hand side of the
Poisson equation for the scaled pressure p∗ = p∆t

∇ ·
(∇p∗

ρ

)
= ∇ · u∗. (3.4)

Finally the intermediate velocity is made divergence free using the so-
lution of the pressure Poisson equation (3.4)

un+1 = u∗ − ∇p
∗

ρ
. (3.5)

To get an exact discrete projection it is important that ∇p∗ in equation
(3.4) and (3.5) is discretised in the same way. For a mathematically more
rigorous discussion of the projection method, the reader is referred to
the book by Chorin and Marsden [13].

3.1.2 Spacial discretisation

The spacial discretisation is done on a staggered grid [30], where the
scalar variables (i.e. pressure) are stored at the cell centres and the
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3.1 Navier-Stokes solver

vector components are stored at the cell faces. Figure 3.1 illustrates
the staggered grid. The solid lines indicate the cell boundaries, where
the velocity components are stored (the horizontal velocity component is
stored on the vertical cell face and vice versa). The grid lines connecting
the cell centres are drawn with dashed lines. The boundary of the
domain coincidences with the cell boundaries. The fixed grid spacing is
∆x in x-direction and ∆y in y-direction.

i i+ 1i− 1 i+ 1
2i− 1

2

j

j + 1

j − 1

j + 1
2

j − 1
2

Figure 3.1: Sketch of the staggered grid, scalars are stored at the cell centres
(green points) and the vector components are stored at the cell faces (red
and blue arrows).

Advective terms

The gradient in the advective terms (u ·∇)u is discretised with a 5th or-
der weighted essentially non-oscillatory (WENO) scheme [38, 25], since
the WENO scheme can handle discontinuities in the velocity automat-
ically. In two-dimensions the advective acceleration components read
u∂u∂x + v ∂u∂y and u ∂v∂x + v ∂v∂y , in x- and y-direction, respectively. First,
the velocity components have to be interpolated to the position of the
other component. A simple linear interpolation is used, such that the
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y-component at the position of the x-component becomes:

vi−1/2,j =
vi−1,j+1/2 + vi,j+1/2 + vi−1,j−1/2 + vi,j−1/2

4
. (3.6)

The interpolation of the x-component to the position of the y-component
is treated analogously. To form the WENO scheme for a∂ϕ∂x at xi and
yj , the differences between the neighbouring grid points have to be com-
puted. Depending on the upwind direction we set:

∆v1 =
ϕi−5/2 − ϕi−7/2

∆x
, ∆v2 =

ϕi−3/2 − ϕi−5/2

∆x

∆v3 =
ϕi−1/2 − ϕi−3/2

∆x
, ∆v4 =

ϕi+1/2 − ϕi−1/2

∆x
(3.7)

∆v5 =
ϕi+3/2 − ϕi+1/2

∆x
,

if ai−1/2 > 0, or

∆v1 =
ϕi+5/2 − ϕi+3/2

∆x
, ∆v2 =

ϕi+3/2 − ϕi+1/2

∆x

∆v3 =
ϕi+1/2 − ϕi−1/2

∆x
, ∆v4 =

ϕi−1/2 − ϕi−3/2

∆x
(3.8)

∆v5 =
ϕi−3/2 − ϕi−5/2

∆x
,

in the case of ai−1/2 < 0. If ai−1/2 = 0 we do not need to compute
the gradient since the convective transport is 0. These differences are
used to find an expression for the smoothness of each of the three sub
stencils:

S1 =
13

12
(∆v1 − 2∆v2 + ∆v3)2 +

1

4
(∆v1 − 4∆v2 + 3∆v3)2

S2 =
13

12
(∆v2 − 2∆v3 + ∆v4)2 +

1

4
(∆v2 −∆v4)2 (3.9)

S3 =
13

12
(∆v3 − 2∆v4 + ∆v5)2 +

1

4
(∆v3 − 4∆v4 + ∆v5)2 . (3.10)
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The smoother a sub stencil the smaller is S. The smoothness indicators
are then used to compute a weight for each sub stencil:

b1 =
1

10

1

(ε+ S1)2 , w1 =
b1

b1 + b2 + b3

b2 =
6

10

1

(ε+ S2)2 , w2 =
b2

b1 + b2 + b3

b3 =
3

10

1

(ε+ S3)2 , w3 =
b1

b1 + b2 + b3
, (3.11)

where ε is a small number to avoid a division with 0. In the present
work the standard value ε = 10−6 was used . Finally the gradient is
computed as

∂ϕ

∂x
|i−1/2 ≈w1

(
∆v1

3
− 7∆v2

6
+

11∆v3

6

)

+ w2

(
∆v2

6
+

5∆v3

6
+

4∆v4

6

)

+ w3

(
∆v3

3
+

5∆v4

6
− ∆v5

6

)
. (3.12)

For smooth flow, the WENO method (3.12) is 5th order accurate. For
non smooth flow, the accuracy is reduced to at least third order, de-
pending on the relative position of the discontinuity in relation to the
stencil.

Viscous terms

The viscous terms µ∇2u in the absence of an interface are computed
with a standard second order 5 point stencil. The x-component of the
viscous term reads
(
∂2u

∂x2
+
∂2u

∂y2

)
|i−1/2,j ≈

ui−3/2,j − 2ui−1/2,j + ui+1/2,j

∆x2

+
ui−1/2,j+1 − 2ui−1/2,j + ui−1/2,j−1

∆y2
, (3.13)

while the y-component is treated in the same way.
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Pressure Poisson equation

The divergence of the intermediate velocity field on the right hand side
of the pressure Poisson equation (3.4) is approximated by

∇u∗|i,j ≈
u∗i+1/2,j − u∗i−1/2,j

∆x
+
v∗i,j+1/2 − u∗i,j−1/2

∆y
. (3.14)

The Laplace operator for the pressure away form interfaces is the same
as the one used for the viscous terms (3.13). The resulting linear system
for the pressure is solved using a direct block tridiagonal solver. Finally,
the gradient of the pressure is computed as

∂p∗

∂x
|i−1/2,j ≈

p∗i,j − p∗i−1,j

∆x
(3.15)

∂p∗

∂y
|i,j−1/2 ≈

p∗i,j − p∗i,j−1

∆y
. (3.16)

3.2 Level set method

There are several different methods to keep track of the interface position
in multiphase flows. A popular method is the level set method (LSM)
[60, 51], in which the interface is defined as the zero contour line of a
scalar function φ. Typically φ is the signed distance function from the
interface. The signed distance function exists and is continuous in the
entire computation domain. The signed distance function is advected
with the local fluid velocity using the advection equation

∂φ

∂t
+ u · ∇φ = 0. (3.17)

For the gradient of φ the same 5th order WENO scheme as described
in section 3.1.2 is used. The scalar function φ is stored at the cell
centres. Thus the velocity components have to be interpolated to the
cell centres which is done by simple linear interpolation, i.e. ui,j =
1/2

(
ui−1/2,j + ui+1/2,j

)
and vi,j = 1/2

(
vi,j−1/2 + vi,j+1/2

)
.

Since the discretisation of the advection equation is not exact and
since the fluid velocity u is not constant throughout the domain, φ loses
its signed distance property over time. To keep φ close to a signed
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distance function, it has to be reinitialised with a regular interval. This
is achieved by solving the following equation to steady state

∂φ

∂τ
= −S (φ) (|∇φ| − 1) , (3.18)

where τ is an artificial time. The reinitialisation of φ is implemented
with the help of the Level Set Method Library (LSMLIB) [14]. Again
the 5th order WENO scheme is used to approximate the gradient of
φ, where Godunov’s Scheme [51, see chapter 5.3.3] is used to determine
the upwind direction. The smeared sign function is computed as S(φ) =

φ0√
φ2

0+max(∆x,∆y)2
, where φ0 is φ at the beginning of the reinitialisation.

The interface normal and curvature can be obtained directly from the
signed distance function.

n =
∇φ
|∇φ| (3.19)

κ = −∇ · n (3.20)

The normal is always pointing in the direction of the fluid which occupies
the region with a positive φ. The sign of the curvature is used to identify
whether the interface is convex or concave seen from the fluid with
negative φ. Thus it is used to decide whether the pressure is de- or
increasing over the interface. The normal (3.19) is approximated by a
conventional second order finite difference scheme. The expression for
the curvature (3.20) can be rewritten in Cartesian coordinates:

κ = −

(
∂φ
∂x

)2
∂2φ
∂y2 − 2∂φ∂x

∂φ
∂y

∂2φ
∂x∂y +

(
∂φ
∂y

)2
∂2φ
∂x2

((
∂φ
∂x

)2
+
(
∂φ
∂y

)2
)3/2

, (3.21)

where the derivatives are approximated by second order finite differences
as well.

3.2.1 Constrained reinitialisation

It can be observed that the interface is displaced during the reinitiali-
sation see [58] for a simple 1-dimensional example. Russo and Smereka
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[58] noted that the reinitialisation equation (3.18) is hyperbolic and the
characteristics are pointing away from the interface. This means that at
the interface the characteristics are changing their direction. For grid
points adjacent to the interface the upwind direction is towards the in-
terface. But since the interface in general is not located at grid points,
an upwind discretisation at such a grid point would include points on
the opposite side of the interface, and there the characteristics point
in the opposite direction. Thus at grid points adjacent to the interface
there is no proper upwind stencil. Russo and Smereka [58] proposed to
fix this problem by interpolating the interface position and then use the
interface instead of the next grid point to form an upwind stencil. Hart-
mann et al. [31] introduced the constrained reinitialisation (CR) which
forces the interface to keep its position during the reinitialisation. This
method was then reformulated such that the forcing term appears as
a source term in equation (3.18) [32] which makes it possible to imple-
ment the constrained reinitialisation without changing the discretisation
stencils. In the current work the HCR-1 scheme from [32] was used to
reduce the spurious displacement of the interface.

The idea of the HCR-1 scheme is to add a source term to the residual
of the differential equation, which minimises the displacement of the
intersection points between the zero contour of φ and the grid lines in a
least squares sense. If two grid points xi−1,j and xi,j which are located on
opposite sides of the interface, the condition that the linear interpolation
of the intersection point between the zero contour line and the grid
line between those two points does not move during reinitialisation can

be reduced to
φ̃i,j
φ̃i−1,j

=
φi,j
φi−1,j

, where φ̃ and φ are the signed distance

functions before and after reinitialisation, respectively. In general a grid
point can have several neighbours which are on the opposite side of an
interface. The previous condition cannot be fulfilled for all involved
neighbours, since the problem is over determined. Let Si,j be the set
of all neighbouring grid points of xi,j which are on the opposite side of
the interface, and Mi,j the number of grid points in Si,j . Further we
denote an arbitrary point in Si,j by x(i,j)α such that α = 1...Mi,j . In
the constrained reinitialisation HCR-1 [32] the following least squares
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function is minimised.

Li,j =

Mi,j∑

α=1

δαi,j

(
φi,j − φ(i,j)α · r

i,j
(i,j)α

)2
, (3.22)

ri,j(i,j)α
=

φ̃i,j

φ̃i−1,j

. (3.23)

Hartmann et al. [32] chose the weights δαi,j = 1. If Li,j is differentiated
with respect to φi,j and this is set equal to zero, we get the target value
for the distorted signed distance function such that it minimises the
displacement of the interface:

Ti,j =

∑Mi,j

α=1 δ
α
i,j

(
φ(i,j)α · r

i,j
(i,j)α

)

∑Mi,j

α=1 δ
α
i,j

. (3.24)

Finally the HCR-1 correction term at the nth reinitialisation time step
is formulated as the difference between Tni,j and φni,j :

Fni,j =
βi,j

min(∆x,∆y)

(
φni,j − Tni,j

)
. (3.25)

Here βi,j is a coefficient which distributes the correction between neigh-
bouring grid points. For consistency the sum βi,j + β(i,j)α must always
be equal to 1. Setting βi,j = 0.5 corresponds to do half of the correction
on either side of the interface. Since the forcing leads to an instability
when one of the points of the set Si,j changes its sign during reinitiali-
sation, the forcing is not applied at the grid points in this particular set
Si,j . The correction term Fni,j is added to the discretised right hand side
of equation (3.18).

3.3 Ghost fluid method

To extend the single phase Navier-Stokes solver from section 3.1 it is
not sufficient to know the interface position. As it was demonstrated in
section 2.2, we have discontinuities in the solution. The ordinary stencils
cannot handle those discontinuities and will lose their accuracy if jumps
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are present. The ghost fluid method (GFM) was originally developed
to handle the discontinuities in compressible flow computations [25].
Later it was generalised. Liu et al. [47] used the GFM to solve Poisson
equations with immersed boundaries and known jump conditions. The
stencils formulated in [47] were then used to implement the interface
conditions in incompressible two-phase flow [40]. The idea of the GFM
is to introduce ghost cells on either side of the interface. The values in
those ghost cells can be computed knowing the interface conditions and
the values of the real fluid at this point. This explains the name of the
method despite the fact that for the formulation used here there is no
need to have multiple values for the variables at one grid point.

Here we will only sketch the GFM for a one-dimensional problem,
since it can be implemented dimension for dimension. Consider the
Poisson equation

∂

∂x

(
β
∂ϕ

∂x

)
= f, (3.26)

where ϕ and f are scalar functions. The coefficient β can take a different
constant value on each side of an interface. Further assume that there
is an interface at xΓ with the interface conditions

JϕK = aΓ,

s
β
∂ϕ

∂x

{
= bΓ. (3.27)

The interface location can be described by a level set function φ. Sup-
pose now that the level set function for two neighbouring grid points are
φk ≤ 0 and φk+1 > 0, which means that xΓ is located between xk and
xk+1. The sign of the level set function is used to decide what the value
of β is. To the left of the interface we have β− and to the right β+. The
situation is sketched in Figure 3.2. If bΓ = 0, the first derivative of ϕ at
xk−1/2 and xk+1/2 can be approximated as

∂ϕ

∂x
|k−1/2 ≈

ϕk − ϕk−1

∆x
(3.28)

∂ϕ

∂x
|k+1/2 ≈

(ϕk+1 − aΓ)− ϕk
∆x

. (3.29)

Since xk+1 is on the opposite side of the interface a was subtracted from
the value of ϕk+1. For this would be the value, which ϕ would have, if
xk+1 were to belong to the left fluid domain, cf 3.2. Figure.
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Interface

ξ∆x
x

ϕ
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ϕk

ϕk+1
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ϕk−1 + aΓ

ϕk + aΓ

ϕk+1 − aΓ ϕk+2 − aΓ

aΓ

Figure 3.2: Sketch of the interface position between two grid points.

To correct for the discontinuity in the first derivative (i.e. bΓ 6= 0), the
the first derivative on both sides of the interface is approximated. The
difference of those two approximations must equal the second interface
condition

β+ (ϕk+1 − aΓ)− ϕΓ

(1− ξ)∆x − β−ϕΓ − ϕk
ξ∆x

= bΓ, (3.30)

where ξ∆x is the distance between the interface and the grid point xk.
This expression can be solved for the solution at the interface

ϕΓ =
β̂(1− ξ)
β+

ϕk +
β̂ξ

β−
(ϕk+1 − aΓ)− β̂bΓ∆xξ(1− ξ)

β+β−
, (3.31)

where

β̂ =
β+β−

β+ξ + β−(1− ξ) . (3.32)

Using ϕΓ we can approximate the first derivative of ϕ at xk+1/2

∂ϕ

∂x
|k+1/2 ≈

ϕΓ − ϕk
ξ∆x

. (3.33)
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Finally the approximation for the Laplace operator at xk is obtained

∂

∂x

(
β
∂ϕ

∂x

)
|xk ≈

(
β̂ (ϕk+1 − ϕk)

∆x2
− β− (ϕk − ϕk−1)

∆x2

)

− β̂aΓ

∆x2
− β̂bΓ(1− ξ)

β+∆x
. (3.34)

Using the same approach, the approximation for the Laplace operator
at xk+1 becomes

∂

∂x

(
β
∂ϕ

∂x

)
|xk+1

≈
(
β+ (ϕk+2 − ϕk+1)

∆x2
− β̂ (ϕk+1 − ϕk)

∆x2

)

+
β̂aΓ

∆x2
− β̂bΓξ

β−∆x
. (3.35)

In the case where ϕk > 0 and ϕk+1 ≤ 0 we have to exchange β+ with β−

and vice versa as well as the signs in front of both of the correction terms
have to be inverted, since the jump is defined as JϕK = ϕ+−ϕ−. If there
is no interface (i.e. aΓ = 0, bΓ = 0 and β− = β+ = β̂ = β) the ordinary
second order finite difference stencil (3.13) is retrieved. If we want to
solve the Poisson equation (3.26) the correction terms containing aΓ and
bΓ can be moved to the right hand side such that the linear system is still
symmetric and negative definite, which is desirable if an iterative solver
is to be used. Interpolating the position where the level set function is
zero gives ξ = |φk|

|φk|+|φk+1| .
In two-phase flow, we have both discontinuities in the pressure and

in the first derivative of the velocity at the interface. Therefore at the
interface the discretisation for the viscous term (3.13) has to be replaced
by the stencil obtained form the GFM. For the viscous terms aΓ = 0
because of (2.24), bΓ can be computed using equation (2.38) and β = µ.
As the interface conditions are continuous, they are computed at the grid
nodes (see Figure 3.1) and then interpolated to the interface position
where they are required. Kang et al. [40] choose to first interpolate
the velocity components to the cell centres and then standard central
differences are used to approximate the gradients of the velocity at the
cell centres. Here a different strategy is adopted, where the derivatives
ux and vy are directly computed as the difference approximations of
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the velocities at the cell faces, i.e., ∂u
∂x |i,j =

(
ui+1/2,j − ui−1/2,j

)
/∆x,

and the other two derivatives namely ∂u
∂y and ∂v

∂x are approximated at

the cell corners, i.e., ∂u
∂y |i+1/2,j+1/2 =

(
ui+1/2,j+1 − ui+1/2,j

)
/∆y and

those two derivatives are subsequently interpolated to the cell centres
by averaging over the four corner values. Both methods lead to the same
stencil for uy and vx, but for ux and vy the present direct approximation
results in a smaller stencil with the same order of accuracy. In addition
we point out that ux and vy at the cell centres and ∂u

∂y and ∂v
∂x at the

cell corners have to be computed anyway to approximate the viscous
terms, cf. equations (3.13). The derivatives of the velocities are then
multiplied by the appropriate components of the normal and tangential
vectors, which are located at the grid centres as well. Finally the values
of the interface corrections at the grid centres are interpolated to the

location of the interface using the level set function bΓ =
bk|φk+1|+bk+1|φk|
|φk|+|φk+1| .

The discrete Laplace operator for the pressure at the interface is also
replaced by the GFM. But here aΓ is given by equation (2.33), bΓ = 0
[see 40, section 3.7 for the justification] and β = 1/ρ. Again a is com-
puted at the cell centres and then interpolated to the required interface

position using the level set function aΓ =
ak|φk+1|+ak+1|φk|
|φk|+|φk+1| . It has to be

remembered that we are solving for the pressure scaled by the time step
p∗ and therefore also the interface condition (2.33) has to be multiplied
by ∆t.

Finally the discrete gradient of the pressure correction has to be re-
placed by the GFM at the interface. Setting b = 0 the x-component of
the gradient multiplied by β becomes

β
∂ϕ

∂x
|k+1/2 = β̂

(ϕk+1 − aΓ)− ϕk
∆x

, (3.36)

if ϕk ≤ 0 and ϕk+1 > 0, or otherwise

β
∂ϕ

∂x
|k+1/2 = β̂

(ϕk+1 + aΓ)− ϕk
∆x

, (3.37)

where β̂ is given in equation (3.32).
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3.4 Contact point treatment

Spelt [63] introduced an explicitly tracked contact point moving along
the solid boundary as illustrated in Figure 3.3. The contact point is
tracked explicitly using the ordinary differential equation

dxCP

dt
= uCP = f(θCP), (3.38)

where f(θCP) is a function describing the dependency of the contact
point velocity on the contact angle θCP. The choice of f is important and
should be done carefully to obtain reliable results. Different approaches
to model the dependency of the contact point velocity on the contact
angle are possible, including the use of empirical data or results from
micro scale simulations around the interface. The method presented
here is not restricted to contact point velocities which are a function of
the contact angle. In principle f(θ) can be replaced by any relation.
Immediately after the advection of φ the contact point is updated using
the velocity computed from f(θ) at the last time step.

xn+1
CP = xnCP + ∆t · f(θnCP) (3.39)

Higher order in time is achieved by using the explicit Euler method
(3.39) for (3.38) in each stage of an explicit Runge-Kutta method as
discussed in section 3.5.

3.4.1 Boundary conditions for reinitialisation

The coupling between the zero level set of the distance function φ and the
explicitly tracked contact point has to be ensured. This coupling can be
enforced by the use of appropriate boundary conditions for φ during the
reinitialisation. Since the reinitialisation equation (3.18) is hyperbolic
and the characteristics are straight lines, which are pointing perpendic-
ular away from the interface. The position of the interface decides where
a boundary condition for the reinitialisation is required. If the interface
is closed and lies completely inside the computation domain, no bound-
ary conditions are necessary. In areas where no boundary condition is
required the ghost points for the signed distance function can simply
be filled with a linear extrapolation from the fluid points. The linear
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Figure 3.3: Sketch of the
explicitly tracked contact
point.
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extrapolated values in the ghost points will force the WENO scheme to
select stencils which are biased towards the direction where the char-
acteristics are coming from, i.e. the inside of the computation domain.
At locations where the interface is crossing the domain boundary with
an angle not equal to 90◦, i.e. at a contact point we will have charac-
teristics entering the computation domain. Incoming characteristics in
a hyperbolic equation require that boundary conditions are set. To fill
the ghost points in areas where a boundary condition is required, the
interface is prolonged as a straight line from the contact point with a
slope given by θCP [63]. The idea of letting the interface cross the wall
to compute a boundary condition for the signed distance function or the
VOF colour function is also used by Liu et al. [46] and Renardy et al.
[57]. A coordinate system where the x-axis is parallel to the wall and the
y-axis is pointing into the fluid domain (see Figure 3.3) is introduced.
The slope of the prolonged interface follows the equation

yI = Sb tan(θCP) (x− xCP) , (3.40)

where Sb is the sign of the level set function to the left of the interface.
Sb is introduced since the contact angle θCP is always measured in the

37



Chapter 3 Numerical methods

fluid with negative level set function. We use a = Sb tan(θCP) to simplify
the notation. The interface normal at the contact point is given as

yN = −1

a
(x− xCP) . (3.41)

For ghost points at (xi, yj), where we assume that the first grid point
in the fluid domain has the index j = 1, the distance to the prolonged
interface is

di,j =

√
(xi − xCP)2

a2
+

(
xi − xCP +

xCP − xi + ayj
a2 + 1

)2

. (3.42)

To get the signed distance to the prolonged interface φ̃i,j = sdi,j is set, if
yj > a(xi−xCP) (i.e. in the ghost points above the prolonged interface)
or φ̃i,j = −sdi,j is set otherwise. Here s = Sbsign(a) is the sign of φ
above the contact point. To obey the characteristics it is important that
only the ghost points in the shaded region in Figure 3.3 get the signed
distance to the prolonged interface φ̃. All the other ghost points should
just get linear extrapolated values as described above. The same holds
true for areas where there is a real interface in the fluid domain which
is closer to the wall than the prolonged interface.

As it was mentioned by Spelt [63], just taking φ̃ or the linearly ex-
trapolated value of φ, whichever has the smaller absolute value can lead
to the erroneous selection of the extrapolated value. This can effectively
be avoided by replacing the ordinary linear extrapolation by a signed
linear extrapolation [48]

φ̂i,j = φi,1 − sign (φi,wall) |φi,2 − φi,1| (j − 1) j = −2 . . . 0, (3.43)

where sign (φi,wall) is the sign of φ at the wall at the position of the
extrapolation. It must be determined using the contact point position.
Because if φi,wall is determined by extrapolation from the fluid domain,
it is the extrapolation error, which could cause the erroneous selection
of the extrapolated value as mentioned above, and one would lose the
advantage of the signed linear extrapolation.The signed extrapolation
ensures that the absolute value of the distance function in the ghost
point is always growing as the distance to the wall is increased. This
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leads to two effects, first it is ensured that no spurious interfaces are
introduced through the boundary condition (which is the reason it was
introduced by Miller [48]) and secondly it ensures that the the distance
to the prolonged interface is selected where there are incoming charac-
teristics.

In the end the ghost points are filled with either φ̂ or φ̃, whichever
has the smaller absolute value.

3.4.2 Curvature and interface angle at the wall

At the wall the curvature κ and the contact angle cannot be computed
with central differences like it is done in the interior (cf. section 3.2),
since the stencil for the first grid point inside the fluid domain would
contain points which are located inside the wall. As discussed above,
the interface is assumed to continue as a straight line into the wall and
the level set values at the ghost points are set as signed distances to
that line. As a result the curvature at the first grid point inside the
fluid domain would be compromised if computed by central differences.
Although the accuracy problem could be solved with one-sided stencils,
the curvature computation with finite differences would not be directly
dependent on the contact point position. Thus there would not be a
direct coupling between the contact point position xCP and the flow
field determined by the Navier-Stokes equations (2.17).

Instead a circle is fitted through the contact point xCP and the inter-
section points of the interface with the first two grid lines parallel to the
wall. The fitted circle is illustrated in Figure 3.3, where the intersection
points (x1, y1) and (x2, y2), and the contact point are highlighted as red
dots. The centre of the circle is given as

xm =
−mamby2 +mb (xCP − x1)−ma (x1 + x2)

2 (mb −ma)

ym =
(xCP − x2) +may1 −mb (y1 + y2)

2 (ma −mb)
, (3.44)

where ma = y1/ (x1 − xCP) and mb = (y2 − y1) / (x2 −x 1). The curva-
ture at the first grid point is then given as the inverse of the radius from
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the fitted circle

κ =
1√

(xm − xCP)2 + y2
m

. (3.45)

The sign of the curvature is adjusted to make it consistent with the
curvature in equation (3.20) by multiplying κ with sign (xCP − xm)∗Sb.
The smaller angle between the wall and the fitted circle is

θ̂ = sin−1


 |xCP − xm|√

(xm − xCP)2 + y2
m


 . (3.46)

Depending on the position of the circle centre (xm, ym) it can be decided
if θ̂ is the contact angle in the fluid with negative φ. If Sb < 0 and
(xCP − xm) ym > 0 or if Sb > 0 and (xCP − xm) ym ≤ 0 the contact
angle in the negative fluid is θCP = π − θ̂, in all other cases we have
θCP = θ̂.

During the reinitialisation the interface suffers from spurious displace-
ment. Therefore the reinitialisation will change the measured contact
angle and curvature, since they depend on the first two interpolated in-
tersection points. The spurious displacement and therefore the change
in the contact angle and curvature can be efficiently reduced using a
constrained reinitialisation [32] as discussed in section 3.2.1.

3.4.3 Interpolation of the Intersection points

Since the curvature adjacent to the wall is computed from the fitted
circle, the intersection points through which the circle is fitted need to
be approximated with sufficient accuracy. The curvature of the fitted
circle is two orders less accurate than the approximation of the points on
the circle, because the curvature is a function of the second derivative
of the curve fitted through these points. To get an order of accuracy for
the curvature at the wall which is consistent with the accuracy of the
curvature in the interior, the intersection points have to be interpolated
form φ with a fourth order accurate scheme. However, in our numerical
experiments we had cases where the curvature did not converge despite
using cubic interpolation for the intersection points.
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Figure 3.4: A circular inter-
face (red line) intersects the
wall (black line), and is pro-
longed as a straight line
(blue) into the ghost point
region. The square is the lo-
cation of the contact point
and the circles indicate the
positions where the inter-
face intersects the grid lines.
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This is illustrated with a simple example. A circle with unit radius
is placed such that it intersects the wall with an angle of 45◦. The in-
terface is prolonged as a straight line. The level set function for this
situation can be computed analytically. The example is illustrated in
Figure 3.4. The position of the intersection points is now computed
from φ using linear, quadratic and cubic interpolation. The stencils for
the linear and cubic interpolation are centred around the intersection
points and the quadratic stencil uses one grid point to the right and
two points to the left of the interface. The interpolation error for the
three different interpolation methods using n grid points per radius are
plotted in Figure 3.5. Both the linear and cubic interpolation converge
only with second order, while the quadratic interpolation exhibits its
full convergence order. As a consequence the curvature error, which is
shown in Figure 3.6, does not converge for the linear and cubic inter-
polation. The curvature error for the quadratic interpolation converges
linearly as expected. The reason for this lack of convergence is a discon-
tinuity in the second derivatives of φ. At the contact point, the circle
is prolonged as a straight line, meaning that the curvature of the inter-
face jumps from a finite value to zero. The characteristics, which are
pointing perpendicularly away form the interface, intersect along a line
which coincides with the interface normal at the contact point. This
is leading to the mentioned discontinuity in the second derivatives of
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Figure 3.5: Interpolation error of x1 using standard interpolation stencils.

φ. As it can be seen in Figure 3.4 a cubic central interpolation sten-
cil for x1 crosses the interface normal and therefore the discontinuity.
Hence, the convergence order is reduced to two. On the other hand the
quadratic interpolation stencil is chosen such that it does not cross the
discontinuity and we obtain the full order.

A possible remedy to this problem is using an ENO type interpolation,
where additional points in the stencil are chosen based on the smooth-
ness of φ. Another possibility is to adapt the position of the interpolation
stencil such that is as close to a symmetric stencil as possible without
crossing the interface normal. The experiment above was repeated using
those two approaches, and the results are presented in Figures 3.7 and
3.8. The ENO interpolation prefers the symmetric stencil despite the
discontinuity and therefore the curvature computed with this method
does not converge. The adaptive stencil is working as intended, and a
curvature which is converging with second order is obtained.

Since the intersection point interpolation is used to fit the circle, the
current contact angle is not available at the new time step. In all the
presented examples the interpolation stencil is chosen based on the con-
tact angle of the old time step. However, after the fitting of the circle
and the computation of the new contact angle at the new time step,
one could check, whether the applied interpolation stencil is indeed the
optimal one. One could check whether the stencil crosses the interface
normal using the newly approximated contact angle. One could even
check, whether a more symmetric stencil would be possible.
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Figure 3.6: Error of the curvature at the contact point, x1 is interpolated using
standard interpolation stencils.
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Figure 3.7: Interpolation error of x1 using interpolations which should omit the
discontinuity.
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Figure 3.8: Error of the curvature at the contact point, x1 is interpolated using
interpolations which should omit the discontinuity.
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3.5 Temporal discretisation

For the temporal discretisation of the semidiscrete equations the 3rd
order total variation diminishing (TVD) Runge-Kutta method [62] is
employed. It can be written as a weighted average of three stages:

Un+1 =
1

3
Un +

2

3
E

(
3

4
Un +

1

4
E (E (Un))

)
, (3.47)

where E(Un) = Un + ∆tR(Un) denotes one stage which is identical
to a forward Euler time step and U is the solution vector containing
the velocity u, the signed distance function φ and the contact point
position xCP. R(Un) is the right hand side of the semidiscrete equations
−(u · ∇)u + µ

ρ∇2u + g, −u · ∇φ and (3.38). The contact angle θCP and
the curvature at the wall have to be recomputed with the procedure
presented in section 3.4.2 after the evaluation of the weighted average
of U from the different stages. One stage E() consists of the following
steps:

1. Computation of the viscous terms µ∇2u using φn and nn to com-
pute the jump conditions (2.38).

2. Advection (3.17) of φ.

3. Advection of the contact point (3.39).

4. Reinitialisation (3.18) of φ, after every pseudo time step of the
reinitialisation θCP is updated and the boundary conditions are
set according to sections 3.4.2 and 3.4.1, respectively. Note that
reinitialisation is not required at every time step.

5. Divide the viscous terms by ρ, where φn+1 is used to determine
the value of ρ.

6. Compute surface normals nn+1 and curvature κn+1 in the interior.

7. Compute the intermediate velocity field u∗ (3.3)

8. Solve the Poisson equation (3.4) and correct the velocity field (3.5),
where φn+1 is used to compute β̂ and κ, while the jumps originat-
ing form the viscous stresses (i.e. the first term on the right hand
side of equation (2.33)) is computed as in step 1.
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Results

In this chapter the simulations of five different two-phase flows are pre-
sented. The first test case considers damped surface waves and does not
contain any contact points. It is used to assess different implementation
details of the two-phase solver. The first example containing contact
points is the test case of a capillary rise, where the stationary interface
shape is compared to the exact solution. The results for those two test
cases are not contained in the attached articles. The remaining exam-
ples, i.e. capillary and gravity driven channel flow and an advancing
droplet, are used to assess the numerical method for moving contact
points. They are taken from the attached articles [e] and [f].

4.1 Damped surface waves

Viscous damping of surface waves is used to verify that the implemen-
tation of the two-phase solver, which was presented in chapter 3, is
working properly. In addition this case is used to assess a conservative
discretisation of the advective terms and a different approximation of
the jump conditions.

The problem consists of two fluids which are separated by an interface.
Initially the interface is perturbed with a small periodic deformation,
such that the horizontal position of the interface is given as

yI(x) = y0 +A0 cos
(

2π
x

λ

)
, (4.1)

where y0 is the position of the undisturbed horizontal interface, A0 is the
initial amplitude and λ = 2π is the wavelength of the perturbation. Due
to surface tension σ at the interface, the disturbed interface will lead to
pressure jumps across the interface, which in turn will create a nonzero
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velocity field. The system is stable in the sense that it will return to its
undisturbed configuration, i.e. a horizontal interface. As viscous and
surface tension forces interact, the amplitude A(t) of the perturbation
will decrease over time. An analytical solution for the linearised problem
was presented by Prosperetti [52].

0 1/2π π 3/2π 2π
π −A0

y π

π +A0

x

A(t)

A0

Figure 4.1: Sketch of the geometry of
the damped surface wave, the solid
line represents the initial interface
position and the dashed lines are
the interface positions at some ar-
bitrary instants of time with t > 0.

We use non-dimensional variables here. The wavelength of the per-
turbation is λ = 2π and the initial amplitude is set to A0 = 0.01λ. Ac-
cording to the analytical solution the oscillation frequency ω0 is given by
ω2

0 =
(

2π
λ

)3 σ
ρ++ρ− . All solutions are obtained in a domain of size λ× λ

where y0 = λ/2. The boundary conditions parallel to the interface are
symmetric (or walls with complete slip), and perpendicular to the inter-
face periodicity is enforced. The densities of the fluids are ρ− = 1000
and ρ+ = 1, the surface tension is σ = 2 and the kinematic viscosities
are set to ν = 0.006472. For all reported grid resolutions the time step
was set to ∆t = 0.01 and the simulation was run until teω0 = 20

The time evolution of the interface amplitude is plotted in Figure 4.2
for 5 different grid resolutions. The analytical solution by Prosperetti
[52] is included as well. The amplitude error, i.e. the difference between
the analytical and numerical solutions normalised by A0 is shown in
Figure 4.3. Table 4.1 summarises the root mean square of the amplitude
error

εRMS =
1

A0

√√√√ 1

nend

nend∑

n=1

(A(tn)−Aanalytical(tn))2 (4.2)

and its convergence order. A convergence rate between first and second
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4.1 Damped surface waves

order is observed. For small grid resolutions the RMS errors are slightly
higher than those reported by Desjardins et al. [18], but a better con-
vergence is observed. Compared with the results by Herrmann [33] our
results exhibit again a better convergence while the errors for a grid
with 16 points in each direction are almost identical.
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Figure 4.2: Time evolution of the amplitude of a damped interface wave.

The standard method presented in chapter 3 uses a nonconservative
formulation of the advective terms in the Navier-Stokes equations (2.17).
Alternatively one could rewrite the advective terms in conservative form,
i.e. ∇ · (uu). This form must then be discretised by an appropriate
method. Here we tested a 5th order finite difference WENO scheme us-
ing a Lax-Friedrichs flux splitting [61]. The conservative method is more
complicated and requires more operations than the method presented
in section 3.1.2. The reason is that for the nonconservative method the
upwind direction is decided before the gradients are computed, while
the conservative method has to compute the positive as well as the neg-
ative fluxes before the upwind direction can be identified. To assess the
influence of the advective discretisation, the damped interface wave ex-
ample was recomputed using the conservative discretisation. As it can
be seen in Table 4.1, the results are almost identical to the standard
discretisation.
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Figure 4.3: Amplitude error of a damped interface wave.

Another source for errors in the presented method is the computation
of the jump conditions (2.33) and (2.38). To compute the jump con-
ditions, the derivatives of the velocity need to be approximated. But
those have a discontinuity in the first derivative. To omit the need to
approximate the derivatives of the velocities with its discontinuities, one
can move the normal or tangent inside the difference operator, see equa-
tion (2.39). Then the quantities on which the differential operators act
are continuous. But also this approach will produce an error, since the
discrete normals are stored only at the grid centres and their gradients
are not zero. Again the numerical experiment for the standing wave was
repeated, and the quantities in (2.33) and (2.38) where computed in the
following way. First the velocity components where interpolated to the
cell centres where they were multiplied by the appropriate normal and
tangential components. The gradients of the resulting expressions were
approximated using standard second order central finite difference sten-
cils before the approximations were multiplied by the remaining normal
and tangential components. The amplitude errors for the alternative
jump computation are shown in Figure 4.4. The results are again simi-
lar to the standard method. From Table 4.1 it is visible that the errors
are slightly higher, if the alternative method to compute the jumps is
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applied.
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Figure 4.4: Amplitude error of a damped interface wave, where the normals
are taken inside the differential operators. The grey lines indicate the errors
of the standard method.

4.2 Contact line examples

The boundary condition for the momentum equation at the contact
point should account for the slip between the wall and the contact point.
Otherwise, the stresses would become singular around the contact point.
To avoid this singularity, a number of authors have used a Navier con-
dition (4.3) parallel to the wall with a constant slip length λ along the
entire wall. An example of such a momentum boundary condition is
given in section 4.2.2. The discrete no-slip boundary condition on a
staggered grid corresponds to a Navier slip boundary condition with
λ = O(∆x2) due to the interpolation error [2]. Dussan V [21] used an
alternative approach, setting the velocity in the proximity of the contact
point equal to the contact point velocity itself and letting it smoothly
approach the wall velocity as the distance to the contact point increases.
The length scale Ls of this smooth transition is of the order of the in-
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Table 4.1: Amplitude errors εRMS and convergence rate O of the damped in-
terface test for the standard method and two variants.

grid standard conservative alternative jump condition
εRMS O εRMS O εRMS O

8× 8 0.1693 0.1709 0.1727
16× 16 0.0454 1.87 0.0454 1.88 0.0482 1.79
32× 32 0.0099 2.29 0.0099 2.30 0.0122 1.97
64× 64 0.0034 1.46

128× 128 0.0025 0.67

terface thickness. It was shown that the results for different velocity
profiles only differ within a region of the extent of the order of Ls. Our
preliminary numerical experiments revealed that a given wall velocity
profile or a slip boundary condition with a non-zero λ close to the con-
tact point will produce results which are similar away form the contact
point, as long as the length scale Ls is kept constant. Both length scales
λ and Ls are too small to be properly represented by the grids used in
practical applications of the Navier-Stokes equations.

For the examples presented in this section a Navier boundary condi-
tion

u · t = λt ·
(
∇u + (∇u)T

)
· t (4.3)

u · n = 0,

was used. Here n is a wall normal unit vector, t is a wall parallel unit
vector and λ is the slip length, which is non-zero only in the vicinity
of the contact point (except for section 4.2.2 where it is constant ev-
erywhere). Since almost complete slip is required around the contact
point, the grid points directly to the right and left of the contact point
have a large slip length which is reduced to zero over the next three grid
points. The slip length is here set to λ = 100 for the two grid points
adjacent to the contact point and is then reduced to λ = 1 and 0.01 over
the two consecutive grid points on either side of the interface. For all
the other grid points equation (4.3) with λ = 0 reduces to the ordinary
no-slip boundary condition. As it is demonstrated by the results in this
section, this boundary condition leads to converging results.
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4.2.1 Capillary rise

We consider two immiscible fluids between two short parallel plates.
The distance between the two plates is 2L their length is 3L. At both
ends of the channel (x = 0 and x = 3L) the pressure is fixed at p = 0.
Gravity g = 0.6 is acting parallel to the wall in negative x-direction.
The densities of the fluids are ρ+ = 1.0 and ρ− = 0.1. Both fluids
have the same dynamic viscosity µ+ = µ− = 0.01. The surface tension
between the fluids is σ = 1.0, while the static contact angle, measured
in the fluid to the right of the interface, is θs = 160◦. The + and − are
used to identify the left and right fluids, respectively. The contact angle
θCP is always measured in the fluid to the right of the interface. All
values are nondimensionalised using an appropriate combination of the

basic units L for length, ρ+L3 for mass and
√

ρ+L3

σ for time. A sketch
of the considered test case is given in Figure 4.5.

Figure 4.5: Sketch of the geometry of
the capillary rise test.

CP

η

+ −
x

y
θ

3L

2L

g

The capillary rise is used to assess the accuracy of the contact point
treatment. Since the stationary position of the contact point is sensitive
to errors of the contact angle and curvature close to the wall, it is a
good test for the method presented in section 3.4. Any mass flow over
the interface, which occurs since the level set method is not mass con-
servative, is balanced by a mass flow at the top and bottom boundaries.
Therefore the interface position is not affected by the mass loss, as it
would be the case for a droplet which is completely immersed in another
fluid.

First the analytical solution for the problem is presented. At steady
state the capillary force will be balanced by the gravity force and the
velocity will decay to zero, as the interface assumes a static position
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η(y). In both fluids we will have a hydrostatic pressure distribution:

p(x, y) =

{
p+ = −xρ+g if x ≤ η(y)

p− = (h− x)ρ−g if x ≥ η(y)
, (4.4)

where h is the extension of the capillary in the direction of the gravity.
Thus the pressure jump at the interface is given as the difference of the
pressure in the upper and lower fluid at x = η(y):

∆p(y) = p−(η(y), y)− p+(η(y), y) = g
(
hρ− + η(y)

(
ρ+ − ρ−

))
. (4.5)

On the other hand the pressure jump at the interface is proportional to
the interface curvature

∆p(y) = σκ(y) = σ
η′′(y)

(1 + η′(y)2)3/2
. (4.6)

Combining (4.5) and (4.6) we get the following ordinary differential
equation for the interface position:

η′′(y) =
g

σ

(
1 + η′(y)2

)3/2 (
hρ− + η(y)

(
ρ+ − ρ−

))
. (4.7)

The boundary conditions are given by the static contact angle θs at
y = 0 and the symmetry condition at y = L

η′(y = 0) = − tan(θs − π/2) (4.8)

η′(y = L) = 0 . (4.9)

The ODE is solved numerically using the boundary value problem solver
bvp4c in Matlab. At steady state the contact point is located at xCP =
1.8789. It is also pointed out that the stationary interface does not as-
sume a circular shape like it is often assumed, if the height of a capillary
rise is to be computed.

Since we are interested in the static position of the interface, an exact
modelling of the dynamic behaviour around the contact point is not so
important, which allows the use of a simple linear relation for the contact
point velocity f(θ) = 1.1 · (θCP − θs). All simulations are initialised
with zero velocity and a circular interface with a contact point position
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xCP = 2.2 and initial contact angle θCP = 120◦. The equations are
integrated until t = 50. As opposed to the results in [f] the length of
the domain is adjusted such that the distance between the first and
last grid points (the centres of the first and last grid cells) corresponds
to 3L, because the Dirichlet boundary condition on the pressure is set
at the cell centres. Since the problem is symmetric computations are
only done for half of the channel, i.e. 0 ≤ y ≤ L, with a symmetry
boundary condition at y = L. For all results presented a uniform grid
spacing of h = 3L/m = L/n was used, where m and n are the number
of grid points in x- and y-directions, respectively. The distance function
was reinitialised 4 times per time unit. Each reinitialisation consisted
of m reinitialisation steps with a CFL-number of 0.5. The interface
position at t = 50 is shown in Figure 4.6 for four different grid sizes,
while Figure 4.7 gives the difference between the numerical and exact
solutions as a function of y. The interface error is computed as:

εI =

√√√√ 1

n

n∑

j=1

(xI(yj)− η(yj))
2 , (4.10)

where xI(yj) is the interface position at yj interpolated from the distance
function. The contact point error εCP = |xCP − η(0)| and the interface
error εI are given in Table 4.2. They both exhibit a convergence order
around 2, cf. the orders of convergence OCP and OI . Since the interface
position is interpolated from the signed distance function φ the order of
convergence for the interface error is one order higher than the overall
order of convergence.

Table 4.2 also lists the maximum norm of the velocity components.
The velocities at t = 50 are not zero as the analytical solution requires.
The temporal evolution of the maximum norm of the x-component of
the velocity is plotted in Figure 4.9. After the initial transient, where
the contact point moves from x = 2.2 to its stationary position, the ve-
locity starts to oscillate. From the right plot in Figure 4.9 it is evident
that the frequency of those oscillations is the same as the reinitialisa-
tion frequency. Figure 4.8 shows the velocity field after a time step with
reinitialisation. The interface is displaced slightly during each reinitial-
isation, causing a small change in the interface shape, which then will
cause small changes in the interface curvature and angle close to the
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Figure 4.6: Interface position
at steady state for capillary
rise.
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Figure 4.7: Interface error at steady state for capillary rise.
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Figure 4.8: Velocity field and
interface position for capil-
lary rise at steady state im-
mediately after reinitialisa-
tion for h = 1/16. The
maximum norm of the ve-
locity is given in Table 4.2.
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Figure 4.10: Maximum norm
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ent reinitialisation strate-
gies for capillary rise. Grid
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Table 4.2: Measured errors for the capillary rise.

h εCP · 102 OCP εI · 102 OI ‖u‖max · 102 ‖v‖max · 102

1/8 2.9962 2.6473 3.115 3.247
1/16 0.5763 2.4 0.4736 2.5 0.476 0.945
1/32 0.2108 1.5 0.1547 1.6 0.177 0.312
1/64 0.0052 5.3 0.0019 6.3 0.058 0.133

wall. As a result the velocity field in the region around the contact
point is disturbed. In the time steps following the reinitialisation this
disturbance is dissipated, i.e. the maximum norm of the velocity reduces
rapidly until the next reinitialisation.

To demonstrate that it is important to use the constrained reinitialisa-
tion [32] in connection with the contact point treatment form section 3.4,
the computations from above were repeated and the reinitialisation was
done without HCR-1. The results are summarised in Table 4.3. For the
coarse grids there is only a small difference in the interface and contact
point position errors. As the grid is refined εCP and εI are not converging
anymore. The velocity norm without HCR-1 increases about an order of
magnitude. Table 4.3 includes also an example where 10 reinitialisation
steps using HCR-1 were performed after each time step. The errors are
higher than for the results where the reinitialisation is done with a time
interval of 0.25. The temporal evolution of the velocity norm at steady
state for the different reinitialisation strategies on a grid with h = 1/16
is plotted in Figure 4.10. The choice of the reinitialisation interval is
a balance between introducing disturbances through the spurious dis-
placement of the interface during the reinitialisation and the fact that
the contact point and φ will lose their coupling without reinitialisation.

4.2.2 Gravity driven channel flow

A gravity driven channel flow is simulated to demonstrate the appli-
cability of the presented method to a two-phase flow with a moving
contact line. The test case also illustrates that the function f(θCP) for
the contact point velocity in (3.38) can easily be replaced by a relation,
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Table 4.3: Measured errors for the capillary rise without constrained reinitiali-
sation. The result marked with the star was computed with HCR, but every
time step 10 reinitialisation steps were performed.

h εCP · 102 OCP εI · 102 OI ‖u‖max · 102 ‖v‖max · 102

1/8 3.2713 2.8978 6.469 5.445
1/16 0.5786 2.5 0.4450 2.7 2.700 3.707
1/32 0.5253 0.1 0.4032 0.1 1.730 2.421
1/32∗ 0.9589 0.6620 2.574 2.653

which is founded on physical principles. Ren and E [55] used molec-
ular dynamics to derive a relation for the contact point velocity for a
steady two-phase flow. They concluded that the appropriate boundary
condition at the wall is given in (4.3), where λ = µ/β with β being the
friction coefficient between the wall and a single fluid phase. According
to their results the contact point velocity is given as

uCP =
σ

βCP
(cos (θs)− cos (θCP)) , (4.11)

where βCP is the effective contact point friction coefficient and θs denotes
the static contact angle.

The same geometry and fluid properties as in Ren and E [55] were
used, namely two immiscible fluids with identical properties confined by
two parallel walls. The flow is driven by a gravity force g, which acts
parallel to the wall in positive x-direction. The distance between the
two plates is 200 and the length of the computation domain is chosen
as 400. The fluid properties were measured in the molecular dynamics
simulation by Ren and E [55]. The surface tension between the two
fluids is σ = 3.7, the density and the dynamic viscosities of both fluids
are ρ = 0.81 and µ = 2.2, respectively. Since both fluids are the same,
their interaction with the wall must be the same. Therefore the static
contact angle is θs = 90◦. The friction factors were again measured from
the molecular dynamics simulations and are β = 6.0 in both fluids away
from the interface, while the effective contact point friction coefficient
is βCP = 30.24. All values are expressed in terms of basic units of the
Lennard-Jones potential used by Ren and E [55]. The simulations are
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initialised with a straight interface at x = 200 and a grid of 64 × 128
cells is used for all presented results. Since the flow is symmetric about
y = 100, only the lower half of the channel is computed using a symmetry
boundary condition at y = 100. To prevent the interface from leaving
the computational domain, the contact point position is fixed. Instead
the wall is moved with a velocity uwall = −uCP, where the contact point
velocity uCP is computed from equation (4.11).

0 100 200 300
0

50

100

150

x

y

Figure 4.11: Gravity driven
channel flow. Velocity
field and interface position
for g = 4.4 × 10−5. The
velocities are given relative
to the interface.

The steady state velocity field and the interface position are illustrated
in Figure 4.11. The velocities are given in the frame of reference moving
with the interface, i.e. the wall and the fluid close to the wall are moving
in negative x-direction. It can be observed that there is a region with
a large slip around the contact points. Away from the interface the
flow is approaching an ordinary Poisseuile flow and the slip at the wall
almost vanishes despite the fact that the friction factor β is constant
along the entire wall. The large slip at the contact point is explained
by the pressure jump at the interface, which leads to a large shear rate
close to the contact point.

The contact angle θCP at steady state are 95.9◦, 103.1◦, 109.7◦ and
115.9◦ for g = 1.1 × 10−5, 2.2 × 10−5, 3.3 × 10−5 and 4.4 × 10−5, re-
spectively. This corresponds to contact point velocities of uCP = 0.013,
0.028, 0.041 and 0.054, respectively. The angles between the interface
and the horizontal direction as a function of the y-position for various
values of g are given in Figure 4.12. There is a clear difference between
the static contact angle θs = 90◦ and the contact angle θCP in case
of the moving contact line. Towards the centre of the channel the in-
terface angle is first increasing rapidly until it reaches a maximum θm
at the inflection point of the interface. After the inflection point the
interface angle is decreasing almost linearly towards the centre of the
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channel, where it is 90◦ because of symmetry. The values of the con-
tact angle θCP (and therefore also the contact point velocities) in our
computations are slightly lower than reported by Ren and E [55]. On
the other hand the maximum values of the interface angle are higher
in the present results. The main difference between the two continuum
solvers is the fact that Ren and E [55] smooth the surface tension force
over multiple grid points, whereas in the present method the surface
tension is implemented as a sharp jump in the normal stress. For the
discussed flow configuration the surface tension plays a crucial role and
a small deviation in the discretisation of the surface force could lead to
the observed differences in the steady interface shape.

Figure 4.12: Gravity driven
channel flow. Angle be-
tween the interface and the
wall as a function of y for
various values of g.
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Finally the computed results are compared with the analytical results
by Cox [15]. Cox provides an expression for the macroscopic contact
angle, which can be associated with the maximum of the angle between
the interface and the wall θm:

g(θm) = g(θCP) + Ca ln(ε−1), (4.12)

where Ca = µuCP
σ is the Capillary number and ε is the non dimensional

slip length. The solid line in Figure 4.13 represents g(θ), whereas the
symbols are g(θCP)+auCP for the four different simulation runs. A least
squares fit gives the coefficient a = 1.427. Figure 4.13 demonstrates
that, the numerical results fit well to the theoretical results by Cox [15]
if a = 1.427.
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Figure 4.13: Gravity driven channel
flow. The apparent contact an-
gle fitted to Cox’s theory. Solid
line: g(θ), Symbols: θm against
g(θCP) + 1.43uCP

4.2.3 Capillary driven channel flow

In the last two examples presented in the thesis, the relation f between
the contact point velocity uCP and contact angle θCP in (3.38) is the re-
sult of a micro scale simulation around the contact point. It is assumed
that the time scale of the flow close to the contact point is much smaller
than the time scale of the global problem. The scale separation both
in time and space allows that the relation f(θCP) in (3.38) for the con-
tact point velocity can be precomputed for a number of contact angles.
For the examples shown here the micro model was first evaluated for a
number of contact angles and the resulting contact point velocity was
tabulated [e]. Then a rational polynomial was fitted to the results from
the micro model and this polynomial was then used as f (θCP). In order
to not infringe upon the assumption of temporal scale separation we
used two examples where the driving force of the flow are the capillary
effects at the contact line.

The first example is a capillary rise in a horizontal channel. In the
following, we use non-dimensional variables. Two immiscible fluids are
placed between two plates separated by a distance of 2. The length of
the channel is 10 and the pressure is fixed to zero at the in- and outlet.
There is no gravity acting on the fluids. Initially the interface between
the two fluids is a straight line at x = 3.5. The grid spacing is h in both
directions. After an initial transient, the interface assumes a curved
shape and travels with an almost constant velocity towards the right as
the viscous and capillary forces are in balance. The mass densities of
the two fluids are ρ+ = 1 and ρ− = 0.8 and the dynamic viscosities are
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Figure 4.14: Capillary driven channel flow. Velocity field and interface position
as the contact point passes x = 5. The maximum velocity corresponds to
the interface velocity v̄CP given in Table 4.4.

µ+ = 0.3 and µ− = 1, respectively. The viscosity and density ratios
correspond to the values for water and oil. The surface tension between
the fluids is σ = 1 and the static contact angle, measured in the fluid
with negative φ, is θs = 140◦. The fluid− is located to the right of the
interface. The situation corresponds to two large vessels, each filled with
a different fluid. The fluid level in both vessels is chosen such that the
hydrostatic pressure at the bottom is the same in both vessels. At the
bottom both vessels are connected by a small rectangular channel, which
is initially blocked. As soon as the channel is opened, fluid+ starts to
displace fluid−, i.e. the interface between the two fluids starts to move.

The velocity field and the interface position at a time after the ini-
tial transient are displayed in Fig. 4.14. In Fig. 4.15, the contact point
velocity and position are plotted for a number of increasingly refined
grids. The results are converging as the grid is refined. This is also
evident from Table 4.4 where the time averaged contact point velocities
obtained with increasing grid resolutions are summarised. In Fig. 4.15 a
slow increase of the contact point velocity after the initial transient can
be observed. This is due to the reduction of the overall viscous force
as the less viscous fluid displaces the one with higher viscosity. The
contact point velocity is oscillating considerably at lower resolution. As
the resolution is increased, the amplitude of the oscillations is reduced
while their frequency increases. The cause for the oscillations is the in-
terpolation of the intersection point between the zero level set of φ and
the grid lines which are used to compute the curvature at the contact
point as well as the contact angle. The interpolation errors depend on
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Figure 4.15: Contact point velocity (left) and position (right) for capillary
driven channel flow with refined grids.

Table 4.4: Averaged velocity of the contact point v̄CP for different grid spacing
h. The averaging is done over time t when 4.5 ≤ xCP(t) ≤ 5.5. The result
marked with the star was computed using a 10 times larger value of λ around
the contact point.

h 1/4 1/8 1/16 1/32 1/16∗

v̄CP 0.0499 0.0362 0.0317 0.0291 0.0321

the distance between the intersection point and the next grid points.
Consequently, the estimation of the contact angle changes as the inter-
face is moving relative to the grid. With an increasing grid resolution,
the errors in the contact angle approximation decrease and hence the
oscillations in the contact point velocity are reduced.

In Table 4.4, we also included a result where λ in equation (4.3) has
been multiplied by 10. The increase of λ causes a much smaller change
in the result than doubling of the amount of grid points. Therefore it
can be assumed that the described values of λ allow for enough slip
around the contact point.

4.2.4 Advancing droplet

We consider the same fluids as in the previous example. Initially a
droplet of the fluid+ is placed on a flat surface. The initial interface
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shape is a semicircle with a radius of R0 = 1 and a corresponding wall
contact angle of θCP = 90◦. The two contact points are located at xCP =
±1, cf. t = 0 in Figure 4.16 where only the right half of the interface is
plotted. In order to minimise the surface energy, the drop will spread
on the surface until the static contact angle is reached. In the final
steady state, the interface will assume a circular shape with a radius of

R =
√

π
2(π−θs)−sin(2(π−θs)) and contact point positions xCP = ±R sin(π−

θs). The velocities are zero at steady state. Because of symmetry,
only half of the droplet is computed on a rectangular computational
domain of [0, 2.25]× [0, 1.5], with the circle centre located at the origin.
All computations were performed with equal grid spacing h in both
dimensions. At x = 0, x = 2.25, and y = 1.5 symmetry boundary
conditions are applied.

The evolution of the interface position as the droplet is spreading and
the instantaneous velocity field at t = 8 are shown in Fig. 4.16. As
the contact point advances towards the right, a vortex develops. The
maximum absolute value of the velocity is always located around the
contact point and the slip allowed by the boundary condition is clearly
visible. The small capillary number Ca = µ2UCP

σ � 1 indicates that the
capillary forces are dominating, and hence the interface shape resembles
a circle. The deviation from a circular shape is more pronounced at
initial times. This is because the large initial difference between the
wall contact angle and the static contact angle leads to a higher contact
point velocity UCP and therefore larger capillary numbers. The temporal
evolution of the contact point position is displayed in Fig. 4.17. As in
the example above, grid refinement leads to a decrease of the contact
point velocity. The mass loss of the level set method [60] is an important
contribution to the error in the contact point position at steady state.
Since the droplet loses mass over time, the contact point will reach a
steady state position which is on the left of the analytically suggested
value. It is also slowly receding further as the droplet continues to lose
mass. This is clearly visible for the case with the coarse grid spacing
h = 1/8.

On the basis of energy considerations, Ren et al. [56] derived a scaling
law for the contact point position xCP of a small advancing droplet.
Their results show that xCP(t) ∼ tα, where α is between 1/7 and 1/5
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depending on whether the viscous forces in the fluids or the friction
forces at one of the interfaces dominates the energy dissipation. The
right plot in Fig. 4.17 shows the evolution of contact point position in a
logarithmic scale. During the time interval 4 < t < 20, the contact point
position follows the scaling law by Ren et al. [56]. By a least square fit,
α is identified as 1/7.0580, 1/6.8015, and 1/6.6959 for grid spacing of
h = 1/8, h = 1/16, and h = 1/32, respectively, which agrees well with
the theoretical results.
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Figure 4.16: Interface position of the advancing droplet at different times t
(left). Interface position and instantaneous velocity field at t = 8 (right).
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Figure 4.17: Contact point position of the advancing droplet in linear (left) and
logarithmic scales (right).
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Conclusions and Outlook

5.1 Conclusions

A two-phase incompressible solver which treats the changes of the fluid
properties and the surface tension at the interface in a sharp manner
was implemented. The level set method was used to keep track of the
interface position. The solver was tested and verified for two-phase-flow
problems. Results for a damped surface wave are in good agreement
with the results reported in the literature.

A method to treat contact points in the sharp interface solver was
developed. A contact point is tracked explicitly along the wall, which
lies half way between two grid points due to the staggered grid. The
method allows a direct control of the motion of the contact points and
is therefore very flexible in the sense that it can be used to implement
different models to describe contact point dynamics. The important part
in the procedure is to set appropriate boundary conditions for the signed
distance function at the ghost points near the contact point. Moreover
it was shown how to couple the contact point position to the Navier-
Stokes equations through the curvature of the interface at the wall. This
curvature at the wall has to be approximated carefully to get convergent
results. A circle is fitted through the contact point and the intersection
points of the zero contour line of the signed distance function with the
first two grid lines parallel to the wall. The fitted circle is then used to
calculate the contact angle and the curvature adjacent to the wall. The
interpolation of the required intersection points has to be two orders
more accurate than the desired curvature order. In addition care has to
be taken that the interpolation stencil does not cross the discontinuity in
the level set function, which is caused by the linearly prolonged interface.
The present thesis gives examples such as a capillary rise and a gravity
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driven channel flow, which demonstrate the viability of the presented
procedure to handle contact points.

The developed two-phase solver was used as a part of a multiscale
framework for capillary driven multiphase flows. As a model for the
micro scale behaviour around the contact point a phase field method
with appropriate boundary conditions was used. The contact point in
the macro solver was advected by the contact point velocity which was
predicted by the phase field model for a given contact angle. Utilising
the scale separation between the macro and micro models, it is possible
for the micro model to use physical length scales over which contact
line diffusion occurs. Thus the results from the phase field micro model
represent real material behaviour. Therefore, our multiscale method
circumvents the necessity to resolve the contact line processes at a de-
tailed scale in the macro model by instead solving a micro scale model of
moderate size. The macro scale flow solver can use considerably coarser
meshes than a corresponding global phase field simulation would re-
quire, if it is to resolve all involved length scales. Thus the proposed
multiscale method can give tremendous improvements in computational
efficiency. Compared to other multiscale methods for contact line simu-
lation using molecular dynamics, the phase field method is not restricted
to fluids with equal properties. Numerical examples for an advancing
drop and a capillary driven channel flow demonstrate the feasibility of
the multiscale method.

In addition the thesis includes some work in relation to the conser-
vative level set method (CLSM). A finite difference discretisation for
the CLSM was implemented and examined. It was established that the
interface is subject to a significant spurious deformation during reinitial-
isation, leading to a poor convergence. A stabilised constrained reini-
tialisation proved to improve the convergence of the reinitialisation, but
it spoils the overall mass conservation property of the CLSM. A care-
ful investigation of the curvature computation showed that despite the
large gradient of the CLSM function the best curvature is obtained by
direct differentiation of the CLSM function.
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5.2 Outlook

Based on the work done for this thesis, the following suggestions for
further work are given.

• An appropriate boundary condition for the momentum equation at
the contact point should be developed using available information
from the micro model. The goal is to avoid the arbitrary choice
of the slip length λ at the contact point. As it is demonstrated by
[55], a contact point increases the friction between the wall and
the fluids. It should therefore be possible to measure a contact
point related friction component in the phase field micro model,
e.g. the integral of the additional wall parallel shear stress around
the contact point. This integral value could then be used to set
the boundary condition for the momentum equation in the macro
model. One possible solution would be to choose the slip length
at a few grid points surrounding the contact point such that the
same integral friction force is produced as it was measured in the
micro model.

• The extension of the multiscale methods for flows where the micro
model is not in equilibrium should be considered. For these kinds
of problems it will probably not be possible anymore to precom-
pute the reaction of the micro model. Therefore both models have
to be integrated in time together. It should also be investigated
whether additional exchange of information between the two scales
is necessary in addition to the contact point velocity and angle,
which are exchanged in the presented multiscale method.

• The proposed method to control the motion of the contact point
with an arbitrary function and the associated procedure to com-
pute the values of the signed distance function at the ghost points
could be extended to solid surfaces which are not aligned with the
Cartesian grid using the method proposed by Liu et al. [46].

• For the two-phase solver it would be desirable to increase the con-
vergence order at the jump. To achieve this, a better method to
decompose the known interface normal jump conditions into the
grid parallel components is required.
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• An extension of the proposed contact point treatment to three
dimensions is not straightforward, but in principle it is not impos-
sible. Instead of keeping track of the position of a single point, in
three dimensions a line has to be tracked. This could be done using
similar algorithms, which are employed in front-tracking methods.

• The spurious displacement of the interface during the reinitialisa-
tion of the CLSM using a finite difference implementation remains
an open issue.
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Summary of thesis articles

Article [a]

C. Walker and B. Müller. A conservative level set method for sharp
interface multiphase flow simulation. In Proceedings of ECCOMAS
CFD 2010 Conference, Lisbon, 2010.

A finite difference method for the computation of the interface loca-
tion in two two phase flows is presented. The level set method is often
used to describe the interface position. It’s major drawback is that it
does not conserve the mass of the fluids. To address this problem we use
a finite difference implementation of the conservative level set method.
The conservative level set method allows to write the advection and the
reinitialisation as conservation laws. High order methods are employed
for the advection of the level set function, to ensure an accurate rep-
resentation of the interface location and to keep the shape of the level
set function close to its hyperbolic tangent shape, which minimises the
effort for the reinitialisation. Also the reinitialisation is discretised with
high order finite difference methods.

As a result an explicit method which is relatively easy to implement
and has favourable properties for two phase flows is obtained. It employ-
ees the same discretisation schemes which are used for the advection of
an ordinary level set method. In addition the extension to three dimen-
sions is straightforward. We present results computed with our method
and compare them with the results from the original methods. Espe-
cially the improvements in mass conservation will be discussed.
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Article [b]

C. Walker. Curvature computation for a sharp interface method using
the conservative level set method. In A. Eriksson and G. Tibert, editors,
Proceedings of NSCM-23, pages 203–206, 2010.

Different approaches for the computation of the curvature from the
conservative level set function at the interface are compared. The first
method computes the curvature at the grid points by approximating
the derivatives of the conservative level set function. Then the curva-
ture is interpolated to the interface position. The second method uses
a distance function which is computed from the conservative level set
function by a fast marching method to approximate the derivatives at
the grid points. The third method computes the curvature directly at
the interface position by fitting a local polynomial through neighbouring
grid intersections. The accuracy of the resulting curvature is evaluated
at the locations where they are used in the ghost fluid method for two-
phase flows. In our test the method which computes the curvature from
approximated derivatives and then interpolates it to the intersections is
the most accurate.

Article [c]

C. Walker and B. Müller. Contact line treatment with the sharp in-
terface method. In B. Skallerud and H. Andersson, editors, MekIT’11:
Sixth national conference on Computational Mechanics, pages 451–462.
Tapir Academic Press Trondheim, 2011.

The paper presents a method to handle contact points in a sharp inter-
face method. The contact points are tracked explicitly and their veloci-
ties are a function of the contact angle. For sharp interface methods an
accurate approximation of the curvature is important. This cannot be
obtained by using the conventional central difference methods adjacent
to walls since the level set functions are not defined therein. Therefore it
is proposed to use the tracked contact point and the intersection points
of the first two grid lines parallel to the wall with the zero contour line
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of the signed distance function to approximate the contact angle and
curvature adjacent to the walls.

Article [d]

C. Walker and B. Müller. Constrained reinitialisation of the conservative
level set method. In J. Olsen and S. Johansen, editors, Proceedings of
the 8th International Conference on CFD in Oil & Gas, Metallurgical
and Process Industries, 2011.

In this paper it is shown that the reinitialisation of the conservative
level method (CLSM) introduces spurious displacements of the interface.
The high order constrained reinitialisation method (HCR) prevents the
interface in conventional level set methods from moving during the reini-
tialisation. Since the standard HCR is unstable for level set functions
with large absolute values of the gradient, it has to be adopted for the
CLSM. It is shown that HCR can be stabilised with an adaptive distri-
bution of the forcing and that it retains the shape of the interface during
reinitialisation of the CLSM. However, our numerical experiments show
that fixing of the interface during reinitialisation spoils the mass con-
servation of the conservative level set method.

Article [e]

M. Kronbichler, C. Walker, G. Kreiss, and B. Müller. Microscale en-
hancement of macroscale modeling for capillary-driven contact line dy-
namics. Submitted, 2012.

A multiscale method for the simulation of the two-phase of immisci-
ble incompressible fluids with moving contact lines is presented. The
presented multiscale method is restricted to flows driven by capillary
forces, with a clear separation between the scales of contact behaviour
and global fluid flow. The system is represented by a macro model us-
ing the methods presented in [c] and [f], and the contact point velocity
depends on the wall contact angle. The relation between this slip veloc-
ity and the wall contact angle is found by a micro model, based on the
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response of the flow to the molecular forces induced by the macroscopic
contact angle. The dimensions of the micro simulation correspond to
physical length scales over which contact line diffusion occurs, which
makes the results from the phase field micro model represent real ma-
terial behaviour. Numerical examples that demonstrate the viability
of the approach are presented. A comparison with phase field results
shows that the multiscale method is able to represent both transient
and steady state behaviour in a capillary rise. Agreement of the results
with previous studies of advancing droplets is demonstrated as well.

Article [f]

C. Walker and B. Müller. Contact line treatment with the sharp inter-
face method. Submitted, 2012.

This paper presents an improvement of the technique to handle con-
tact points in a sharp interface method from [c]. For sharp interface
methods an accurate approximation of the curvature is important. How-
ever, this cannot be obtained by using the conventional central difference
methods adjacent to walls since the level set functions are not defined
therein. Therefore we propose to use the tracked contact point and the
intersection points of the first two grid lines parallel to the wall with
the zero contour line of the signed distance function to approximate the
contact angle and curvature adjacent to the walls. It is shown that in-
terpolation of the intersection points for the curvature calculation, must
omit the discontinuity in the signed distance function. The coupling be-
tween the contact points and the zero level set is enforced by boundary
conditions during reinitialisation of the distance function. The signed
linear extrapolation is introduced to compute the ghost point values,
where the characteristics do not demand a boundary condition. Ap-
plications to capillary rise and a gravity driven two phase channel flow
show the validity of the approach and its grid convergence.
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Abstract. We present a finite difference method for the computation of the interface
location in two two phase flows. The method is especially suited for flow situations where
the surface tension plays an important role. Examples for such flows are falling droplets,
liquid jets or applications in micro fluidics..

The level set method is often used to describe the interface position. It’s major drawback
is that it does not conserve the mass of the fluids. To address this problem we use a
finite difference implementation of the conservative level set method. The signed distance
function is replaced by a hyperbolic tangent function. This allows to write the advection
and the reinitialisation as conservation laws. High order methods are employed for the
advection of the level set function, to ensure an accurate representation of the interface
location and to keep the shape of the level set function close to to its hyperbolic tangent
shape, which minimises the effort for the reinitialisation.

As a result we get an explicit method which is relatively easy to implement and has
favorable properties for two phase flows. As it emploies the same discretisation schemes
which are used for the advection of an ordinary level set method it is relatively easy to
implement in an existing two phase solver. In addition the extension to three dimensions
is straightforward. We present results computed with our method and compare them with
the results from the original methods. Especially the improvements in mass conservation
will be discussed.
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1 Introduction

Drop impacts on dry surfaces can be found in many industrial and natural processes.
Applications where the behavior of the impacting drops plays an important role include
ink-jet printing, spray cooling, pesticide spraying, erosion processes due to rain and ther-
mal spray coating. Drop impacts also play an important role in gas-liquid separation in
the process industry and the gas and oil industry. In these processes the surface tension
plays often an important role. The spreading of the drop on the target surface is driven by
inertia forces, whereas the surface tension acts against the spreading. In certain cases the
surface tension is strong enough such that the drop can bounce back from the target. In
order to simulate such flows it is important to have an accurate description of the surface
tension force.

The surface tension in multiphase flows introduces a jump in the normal stress across
the interface. A widely used method to deal with such flows is the continuous surface
force (CSF) model. The surface tension force and the change of the fluid properties e.g.
density and viscosity are smeared out over several grid points. The result of those diffuse
interface methods are numerically smooth solutions, which in turn make it possible to
apply standard finite difference methods. The ghost-fluid method (GFM) [1], which uses
a fixed Cartesian grid, was extended to incompressible two-phase flows [2]. The GFM
allows to retain the jumps across the interface and therefore it is possible to eliminate
the error which stems from the artificial smearing of the fluid properties. To use the
GFM it is necessary to know the location of the interface, as well as its curvature, a
level set approach [3] is working well to retrieve this geometrical information about the
interface. Another advantage of the level set is its ability to handle topological changes of
the interface. However, the level set method has an important disadvantage, it does not
conserve the mass of the two fluids [4]. Different approaches were developed to satisfy the
mass conservation of the level set method. Examples include the conservative level set
method [5] [6], the particle level set method (PLS) [7] or the coupled level set/volume-of-
fluid (CLSVOF) [8]. The added complexity for both PLS and CLSVOF are significant.
On the other hand the conservative level set methods improves the mass conservation and
keeps the simplicity of the original method.

The main idea of the conservative level set method is to replace the signed distance
function from the traditional level set method with a hyperbolic tangent profile. As a
result the conservative level set method can be advected and reinitialized by conservative
numerical methods.

1.1 Conservative level set method

In level set methods the interface is defined as the iso contour of a smooth function.
For ordinary level set methods this function is the signed distance form the interface, and
the interface location is where the distance function is zero. The conservative level set
function replaces the distance function by a hyperbolic tangent function φ with values
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between zero and one. The position of the interface is located at the φ = 0.5 contour line.
Since we have smooth functions which are defined in the entire computational domain in
both cases, we can easily extract additional geometrical informations about the interface.
For example the interface normals n and the curvature κ are defined as

n =
∇φ
|∇φ| (1)

and

κ = ∇ · n. (2)

The interface is transported simply by advecting the level set function φt = −u · (∇φ).
If we have a divergence free velocity field, as it is the case for incompressible flow, the
interface transport can be written as a conservation law.

∂φ

∂t
+∇ · (uφ) = 0 (3)

Since all numerical methods will introduce an error as φ is advected, it will loose
its hyperbolic tangent shape. The diffusion of the advection schemes will increase the
distance in which φ rises from zero to one. Ollson and Kreiss [6] propose the following
reinitialisation equation to force φ back to its hyperbolic tangent shape:

∂φ

∂τ
+∇ · (φ(1− φ)n̂− ε ((∇φ · n̂)n̂)) = 0, (4)

where n̂ are the normals at the beginning of the reinitialisation, and ε determines the
width of the hyperbolic tangent. It is important to note that also the reinitialisation
equation is a conservation law. The first flux term causes a compression of the profile,
whereas the second term is a diffusive flux. By multiplications with the normals n̂ there
are only fluxes in the direction of the normals. This forced flux direction for both the
compression and the diffusion term are essential to improve the mass conservation of
the method. To illustrate the nature of Equation (4), we use a 1 dimensional example.
Suppose that the interface is located at x = 0, then the normals reduce to n = −1 or
n = 1, in the example we use the latter. In this case a steady state solution to Equation
(4) is:

φ =
1

2

(
1 + tanh

(
x

2ε

))
(5)

The solution is shown Figure 1, together with the compression and the diffusion term. It
is clearly visible that at steady state the compression and the diffusion are balanced. If
the φ would be too diffusive the compression term would outweigh the diffusive term and
φ would be forced back to the steady state solution.
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Figure 1: Illustration of the reinitialisation equation

2 Numerical Method

2.1 Advection

Since the conservative level set method will be a part of a multiphase solver, which
uses the GFM to describe the jumps at the interface in a sharp way, it is a natural
choice to use finite differences for its discretization. The spacial discretization for the
advection Equation (3) is done with a standard 5th order finite difference WENO method
as described in [9]. The advantage of the WENO scheme is that they do not produce
artifical oscillations and therefore keep φ between zero and one. At the boundaries zero
flux is imposed.

2.2 Normals

Before the reinitialisation Equation (4) can be solved the normals need to be computed.
Far away from the interface the gradient of φ will be very small. As a result of the small
gradients the direction of the normals will be extremely sensitive to small spurious errors
in φ. If Equation (1) would be discretised directly using central differences with one
sided stencils at the boundary, the resulting normals would point in arbitrary directions.
Especially near the boundaries of the computation domain this problem will be amplified
since the one sided stencils are less accurate. Such arbitrary normals pointing towards
each other will lead to the accumulation of φ at wrong places during the reinitialisation.

Desjardins et. al. [10] propose to compute a singed distance function from φ using the
fast marching method (FMM)[11]. The FMM is an efficient method to reinitialize the
signed distance function φd for ordinary level set methods. The signed distance function
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has a gradient with unity length everywhere in the computation domain. Therfore the
computation of the normals using (1) where φ is replaced by φd will be much more robust
with regard to small errors in φd. We use a the FMM from the LSMLIB [12] which is
second order in the L2-norm to compute φd from φ. The normals n̂ are then computed
from φd using a 4th order summation by parts (SBP) operator [13], with one sided stencils
at the boundary.

2.3 Reinitialisation

Using twice a central difference approximation for the first derivative will not damp
oscillations with a wavelength of 2∆x. But the diffusive term in Equation (4) can not be
computed using a central stencil for the second derivative because of the multiplications
with the normals. Therefore ∇φ is computed with a 4th order SBP operator and then
the divergence total flux φ(1−φ)n̂− ε ((∇φ · n̂)n̂) is approximated by the same 5th order
WENO scheme which is used for the advection. Again a zero flux boundary condition is
enforced.

3 Examples

To calculate the area inside the level set contour an unbiased level set contouring is
used as it is described in [14]. This method is only second order accurate. The error of
the interface location is measured with

1

L

∫
|H(φexpected)− H(φcomputed)| dA. (6)

Where L is the length of the interface and H(φ) = 0 for φ ≤ 0.5 or H(φ) = 1 otherwise.
The numerical calculation of the integral is done as described in [3].

In all examples the forward Euler scheme is used for the time discretisation. Every
1000 time steps we perform 20 reinitialisation steps.

3.1 Vortex test

A stream function of

ψ(x, y, t) =
1

π
sin2(πx) cos2(πy) cos(πt/T ) (7)

is given in a square unit domain. Initially a circle with a diameter of 0.3 is placed at
(0.5, 0.75). The circle will be transported in the vortex and reach its maximum deforma-
tion at t = T/2. From then on the velocity components will change their sign and the
vortex should reach its initial position at t = T . The time step ∆t is set to 5 · 10−5 and
the width of the hyperbolic tangent is ε = 0.8∆x . In the literature two common values
for T can be found, T = 2 will not lead to very thin filaments and is therefore often used
for to show the method’s ability at low numbers of grid points. On the other hand T = 8
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Figure 2: Circle undergoing deformation in a vortex at t = 0 blue, and t = T/2 red, for T = 2 on the left
and T = 8 on the right

will lead to significant deformation of the circle. The the contour line where φ = 0.5 at
the maximum deformation is shown in Figure 2 for both values of T .

In Table 1 the results on three different grids are presented for T = 2. The accuracy
is comparable to the results from Sun and Beckermann [15] who used a the phase-field
equation to track the interface, which is similar to our method. The main difference is that
using the phase-field equation the reinitialisation and the advection are combined in one
equation. Since the conservative level set method separates those two tasks it is possible
to use fixed normals for the reinitialisation which leads to the better area conservation
compared to the method from [15].

Grid cells Error Order % Area change
32 9.86E-3 1.48
64 2.26E-3 2.1 0.75
128 7.52E-4 1.58 0.71

Table 1: Error and mass loss for vortex test with T = 2

If the circle is advected longer in the vortex its develops very small structures and
a corresponding resolution is required. As soon as the method is not able to resolve
small structures in the interface, it develops small droplets which separate from the main
structure as can be seen in Figure 2. This is caused by the fact that the method is
conserving the quantity φ whereas in an ordinary level set method the unresolved parts
simply vanish and therefore cause a mass loss. As the velocity is inverted and the the circle
should be recovered at t = T it becomes clear that the small, separated droplets will cause
a big distortion of the interface (Figure 3). With a finer mesh the number of droplets which
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separate decreases and the error at t = T is decreasing. Table 2 summarises the error and
the area change for two different grid sizes. The error of the presented method is similar
to the error of an ordinary level set method [7] but the area conservation is improved
considerably. On the other hand we achieve a lower accuracy and area conservation than
the PLS [7].

Grid cells Error Order % Area change
128 1.75E-2 1.47
256 2.19E-3 2.9 0.77

Table 2: Error and mass loss for vortex test with T = 8

11
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Figure 3: Interface at t = T = 8 on a 128× 128 and 256× 256 grid

3.2 Rigid Body Rotation of Zalesak’s Disk

A stream function of

ψ(x, y) = − π

628

(
x2 + y2 − x− y

)
(8)

is given in a square unit domain. Initially a slotted circle is placed at (0.5, 0.75). The
radius of the circle is 0.15, the width and the length of the slot are 0.05 and 0.25 respec-
tively. In t = 628 the slotted disk completes a Rigid Body Rotation around the center of
the domain. The time step is set to ∆t = 5 ·10−3 and the width of the hyperbolic tangent
is ε = 0.7∆x.

Figure 4 shows the interface location of interface after one revolution. The errors and
area changes are shown in Table 3. Also in this thest the accuracy is slightly better
than for phase-field method [15]. The area change is the same for the coarse grid but
decreases much faster in our method (0.04% versus 0.8% on the finest grid). If our results
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Figure 4: Zalesak’s Disk after one revolution on different grids

are compared to an ordinary level set method and a hybrid particle level set method the
improvement in mass conservation is evident. Enright et. al. [7] report that on the coarse
grid the disk vanishes completely using a level-set method whereas the PLS suffers form a
area loss of 15.9%. On the other hand the area loss of the accurate conservative level set
method [10] is an order of magnitude smaller than in our method. Note that our errors
can not be compared directly with the errors reported in [7] since a different domain size
is used and the error measurement in Equation (6) is not dimensionless.

Grid cells Error Order % Area change
50 8.67E-3 3.03
100 1.20E-3 2.85 0.28
200 3.49E-4 1.79 0.04

Table 3: Error and mass loss for one revolution of Zalesak’s Disk

4 Conclusion

A finite difference implementation of the conservative level set method has been pro-
posed. The employed discretisation schemes are well documented and widely used, there-
fore it is relatively easy to implement the conservative level set method into existing flow
solvers especially to those which already contain an ordinary level set method. Mass con-
servation is considerably improved compared to an ordinary level set method and some
related methods. Form the results in the test cases it can be seen that our method does
not handle very thin interface structures as well as other methods. But this shortcom-
ing can probably be improved by optimising the parameters for the reinitialisation, e.g.
the number and frequency of the reinitialisation steps and the width of the hyperbolic
tangent.
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Summary. We compare different approaches for the computation of the curvature at the
interface. The first method computes the curvature at the grid points by approximating the
derivatives of the conservative level set function. Then the curvature is interpolated to the
interface position. The second method uses a distance function which is computed from the
conservative level set function by a fast marching method to approximate the derivatives at
the grid points. The third method computes the curvature directly at the interface position
by fitting a local polynomial through neighboring grid intersections. In our test the method
which computes the curvature from approximated derivatives and then interpolates it to the
intersections is the most accurate.

1 INTRODUCTION

Computations of two phase flows often use the continuum surface tension approach to handle
the surface tension. In order to obtain a smooth solution the jump in the density and viscosity
is smeared over multiple grid points around the interface and the singular force resulting from
the surface tension is applied as a volume force around the interface. As a result the jump in
the pressure is smeared as well. A more accurate description of the jumps at the interface can
be obtained using the Ghost Fluid Method (GFM)1. It applies the surface tension force directly
at the interface and the finite difference stencils are corrected to accommodate the jumps at the
interface.

The conventional level set method using a distance function does not conserve the mass of
the fluids. To address this problem we use the conservative level set method (CLSM)2. The
signed distance function is replaced by a hyperbolic tangent function. This allows to write the
reinitialization as a conservation law.

The combination of the GFM and the CLSM leads to challenges in the computation of the
curvature. Since the surface tension force is applied directly at the interface by the introduction
of a jump in the pressure, the curvature has to be computed at the intersections of the interface
and the grid lines. These intersection points are obtained by a linear interpolation of the level
set function and are therefore second order accurate. To judge whether a method to compute
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the curvature is applicable to the GFM, the accuracy of the curvature computation has to be
assessed at the intersection points.

2 Curvature computation

2.1 Computation using finite difference approximations

The simplest approach to get the curvature at the intersection points is to approximate the
derivatives of the conservative level set function at the grid points. That can be done by using
e.g. central finite differences. Then the curvature at the grid points is given as

κ =
φ2xφyy − 2φxφyφxy + φ2yφxx

(φ2x + φ2y)
3/2

. (1)

This is the standard method to compute the curvature in level set applications. Finally the
curvature has to be interpolated to the intersection points which can be done by the same linear
interpolation method used to find the intersection points.

2.2 Least squares approximation from distance function

If the conservative level set function is advected using certain discretisation schemes, it will
develop spurious oscillations, which will lead to problems for the approximation of the interface
normals and curvature. To avoid these problems Desjardins et al.3 propose to first recompute
a signed distance function ψ from the conservative level set function φ using a fast marching
method (FMM). Then the derivatives in equation (1) are approximated from ψ. Because the
FMM is at most second order accurate, the curvature will not converge if the derivatives are
computed with finite differences. By using the least squares approach4 first order convergence
is observed.

2.3 Curve fitting through the intersection points

Since all intersection points of the interface with the grid lines are known we can use those
to compute the curvature directly. Suppose there is a parameterised curve ~x(s) = (x(s), y(s))
trough the intersection points. The curvature at a intersection point is then given by

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
, (2)

where ẋ and ẍ first and second derivatives, respectively, with respect to the parameter s. To
approximate the derivatives at an intersection point ~x0 = (x0, y0) we use two additional inter-
section points ~xm and ~xp which are located before and after ~x0 on the interface, respectively.
Assuming that the difference of the parameter s is the same on both sides we can use simple
finite difference stencils to compute the derivatives, e.g. ẋ0 = (xp − xm)/2.

It was only possible to obtain converging curvature estimates if the linear interpolation of
the intersection points was replaced by a more accurate cubic interpolation. We got the best
results by setting ~xm and ~xp to the neighbouring points where the interface intersects a parallel
grid line to the one in ~x0. At certain points where two intersection points are located extremely
close to a grid point this approach will lead to large errors and the curvature will not converge

2
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as the grid is refined. To find a remedy the symmetry factor q of each curvature approximation
stencil is computed as

q =
δm + δp − 2

√
δmδp

2
√
δmδp

, (3)

where δm = |~xm − ~x0| and δp = |~xp − ~x0| respectively. q will be zero if the stencil is perfectly
symmetric. If the symmetry factor of the approximation in a certain intersection point is 10
times higher than the average of his two neighbours, the curvature at this point will be linearly
interpolated from the adjacent points which have a more symmetric stencil.

3 Numerical test

To test the presented methods for the curvature, we place a circle with radius r = 1/3 into
the center of a square domain of size [−1, 1] × [−1, 1] with n grid points in each direction. We
initialise the conservative level set function with

φ =
(

1 + ed/ε
)−1

, (4)

where ε = 0.2
√

2/n is the parameter for the slope of φ at the interface, and d is the analytical
distance form the interface. Then the reinitialisation equation is solved to steady state to
ensure that we test the curvature comptation on a level set function which can be expected in a
two phase solver. This reinitialized conservative level set function is then used to compute the
curvature κ at each intersection point. To test the least squares approximations from the distance
function (section 2.2) we used the FMM from the LSMLIB5 with second order upwinding to
obtain ψ from d. The error of the curvature is then calculated by

e =

(
1

m

m∑

i=1

(κi − 3)2

)1/2

(5)

where m is the number of intersection points.
The results are presented in Figure 1. If the finite difference method (section 2.1) is used

the error in the curvature reduces with second order, which is consistent with both the finite
difference and the interpolation schemes. The curve fitting at the intersection points (section
2.3) leads to a convergence which is between first and second order. At a low resolution 2nd
order can be observed. The lower convergence rate at higher resolution stems from the high
frequency oscillations which are illustrated on the right of Figure 1. Those oscillations originate
from the variance in the stencil quality for each intersection point. The error could be further
reduced by low pass filtering the curvature along the interface. The curvature which is computed
from ψ using a least squares approximation of the derivatives (section 2.2) is the most accurate
one at the lowest resolution, but it does not converge as the grid is refined. The reason for this
behavior is that ψ which is computed with the FMM is only second order accurate at the lowest
resolution. As the grid is refined the accuracy of the FMM deteriorates to first order.

4 Conclusions

We tested alternative methods to compute the curvature from a conservative level set func-
tion. If the curvature is computed by fitting a curve through the intersection points of the

3



Claudio Walker

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

n

e

 

 

n−2

n−1

0 pi/4 pi/2
1.5

2

2.5

3

3.5

4

θ

κ

 

 

n = 100

FD, section 2.1
FMM/LS, section 2.2
curve fitting, section 2.3

Figure 1: Error of the curvature computation on the left, curvature for n = 100 on the right

interface with the gird lines, the intersection points have to be interpolated with at least cubic
interpolation to obtain convergent results. The method which fits a curve through the inter-
section points is less accurate than the method using finite differences, but it converges faster
than the least square approximation of the derivatives of a distance function computed by the
FMM. In our tests the least squares approximation is not consistent with grid refinement. If an
accurate curvature is important, one should try to keep the conservative level set function free
from oscillations, e.g. by using WENO schemes for the advection and frequent reinitialisation,
such that the curvature can be computed by finite difference from the conservative level set
function.
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Summary In the present study a method to handle contact points in a sharp interface method is
presented. The contact points are tracked explicitly and their velocities are a function of the contact
angle. For sharp interface methods an accurate approximation of the curvature is important. This
cannot be obtained by using the conventional central difference methods adjacent to walls since
the level set functions are not defined therein. Therefore we propose to use the tracked contact
point and the intersection points of the first two grid lines parallel to the wall with the zero contour
line of the signed distance function to approximate the contact angle and curvature adjacent to the
walls.

Introduction
Drop impacts on dry surfaces can be found in many industrial and natural processes. Applica-
tions where the behavior of the impacting drops plays an important role include ink-jet print-
ing, spray cooling, pesticide spraying, erosion processes due to rain and thermal spray coating.
Probably the first study on droplet impacts was performed by [24]. An overview on the different
phenomena which can take place during a drop impact is given in the reviews of [17] and [25].

One of the difficulties arising in modelling droplet impacts is the moving contact line problem.
If the conventional no-slip boundary condition is applied to the Navier-Stokes equations, the
stresses are diverging at the line where the three phases meet. In fact, molecular dynamics
(MD) simulations show a near complete slip in the region of the contact line [10]. Although
there are several empirical models connecting the dynamic contact angle at the contact line
with the velocity of the contact line, a complete understanding of the mechanics at the contact
line is still missing.

The surface tension plays an important role during the spreading and receding of an impacting
drop. Therefore, accurate modelling of the surface tension in the continuum model is important.
The surface tension introduces a jump in the solution across the interface. While this jump
is smeared out to obtain numerically smooth solutions in diffuse interface methods, the jump
conditions are imposed by sharp interface methods. The ghost-fluid method (GFM) [4], which
uses a fixed Cartesian grid, was extended to incompressible two-phase flows [9]. The GFM
allows to retain the jumps across the interface and therefore it is possible to eliminate the error
which stems from the artificial smearing of the fluid properties. To use the GFM it is necessary to
know the location of the interface, as well as its curvature. This information about the interface
geometry can be obtained from the the level-set approach [23] [15]. However, if the interface
crosses a wall boundary, i.e., if it forms a contact point, a special method to approximate the
geometric information is required. Spelt [22] proposed a method to treat contact points in diffuse
interface methods, where contact points are tracked explicitly. In the presented paper we present
an extension of Spelt’s method to a sharp interface method.

Equations
Navier-Stokes equations

We consider incompressible flow of two immiscible viscous fluids. In this study we confine our-
selves to two-dimensional problems. There is no fundamental obstacle to extend the presented



method to three dimensions. The continuity and momentum equations, i.e., the Navier-Stokes
equations for a Newtonian fluid for incompressible flow:

∇ · u = 0 (1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u + ρg (2)

where u is the velocity vector , p is the pressure, g is the gravity vector, µ and ρ are the dynamic
viscosity and the density, respectively. The material properties µ and ρ can be different in each
fluid and we use a + and − sign to discriminate between the two fluids. These equations have
to be fulfilled in both fluids in two-phase flow.

Interface conditions

The boundary conditions at the interface can be derived by considering an infinitesimal control
volume across the interface. This volume can be divided into a control volume for each fluid.
The conservation laws for mass and momentum hold for the entire volume as well as for each of
the partial volumes. Subtracting the sum of the conservation laws applied to the two partial vol-
umes individually from the conservation laws applied to the entire volume, we get the boundary
conditions at the interface. For the case with constant surface tension σ and no mass transfer
across the interface we get the following jump conditions:

[u] = 0 (3)[(
nT

tT

)
(pI− τ)n

]
=

(
σκ
0

)
, (4)

where square brackets define the jump across the interface, e.g. [u] = u+ − u−. We further
denote n and t as unit normal and tangent vectors to the interface. κ is the local interface cur-
vature and τ is the viscous stress tensor. These conditions imply that the velocity and tangential
stresses are continuous across the interface, whereas the pressure and the normal stresses are
discontinuous.

Level set method

In order to apply the interface conditions presented in the previous section it is necessary to
know its position. A popular method to keep track of the interface position in two- phase flows
is the level set method (LSM) [19]. There the interface is defined as the zero contour line of a
scalar function φ. Typically φ is the signed distance function from the interface and it exists and
is continuous through the entire computation domain. The signed distance function is advected
with the local fluid velocity using the advection equation

∂φ

∂t
+ u · ∇φ = 0. (5)

Since all discretisations of the advection equation will not be exact, φ looses its signed distance
property over time and has to be reinitialised solving the following equation to steady state

∂φ

∂τ
+ sign (φ) (|∇φ| − 1) = 0. (6)

The interface normal and curvature can be obtained directly from the signed distance function.

n =
∇φ
|∇φ| (7)

κ = −∇ · n (8)



Contact point

Around a point where the interface between two fluids meets a solid surface, the conventional
no-slip boundary condition cannot be applied. For otherwise the stresses around the interface
would become singular. To avoid this singularity the no-slip boundary condition is often re-
placed by a slip boundary condition of the following form:

u‖ = λ
∂u‖
∂x⊥

∣∣∣∣
wall

, (9)

where λ is the slip length and ‖ and ⊥ denote the parallel and normal directions relative to the
wall. The difference in the surface energies can lead to a motion of the contact point. For small
capillary numbers this effect can become extremely important. However, it is not possible to
describe the dynamics around the contact point accurately using the Navier-Stokes equations.
Some authors choose to fix the contact angle to model the dynamics around the contact line
[1, 2, 5, 12]. In the present paper we shall set the contact point velocity uCP as a function of
the contact angle. To achieve this goal Spelt [22] proposed to track the contact point explicitly.
Thus, the position of the contact point is described by an ordinary differential equation

dxCP

dt
= uCP = f(θ), (10)

where f(θ) is an arbitrary function describing the dependency of the contact point velocity on
the contact angle. The choice of f is important and should be done carefully to obtain good re-
sults. Different approaches to model the dependency of the contact point velocity on the contact
angle are possible, including the use of empirical data or results from microscale simulations
around the interface. In the present paper we uses a simple linear relation as an example.

Discretisation
The discretisation is done on a uniform staggered grid, where the scalar quantities, i.e., pressure
p and signed distance function φ, are stored at the cell centers while the velocity components u
and v are stored at the vertical and horizontal cell faces, respectively [7]. The classical marker
and cell (MAC) method is used to couple velocity and pressure in the discretisation of the
incompressible Navier-Stokes equations (1) and (2).

Navier-Stokes

The advection terms in the Navier-Stokes equation (2) are discretised by a 5th order finite dif-
ference WENO scheme using a Lax-Friedrichs flux splitting [20]. For the WENO scheme can
handle the discontinuities in the first derrivative of the velocity automatically. In points which
are not adjacent to the interface the viscous terms are discretised by second order central differ-
ence stencils, i.e.,

(
∂2u

∂x2

)

i−1/2,j

≈ ui+1/2,j − 2ui−1/2,j + ui−3/2,j

∆x2
(11)

(
∂2u

∂y2

)

i−1/2,j

≈ ui−1/2,j+1 − 2ui−1/2,j + ui−1/2,j−1

∆y2
. (12)

The velocity component in y-direction is treated analogously. To enforce incompressibility a
direct projection is applied. First an intermediate velocity u∗ is obtained by updating the velocity



from the previous time step with the advective, viscous and gravity terms.

u∗ = u + ∆t

(
− (u · ∇)u +

µ

ρ
∇2u + g

)
(13)

This intermediate velocity field is then used as the right hand side of the Poisson equation for
the scaled pressure correction p∗ = p/∆t. Homogeneous Neumann boundary conditions are
applied to solve for p∗.

∇ ·
(∇p∗

ρ

)
= ∇ · u∗ (14)

Away from the interfaces the density ρ corresponds to the constant density of the fluid we are
in and the Laplace operator is approximated by the standard second order 5 point central finite
difference stencil. Finally the intermediate velocity is made divergence free using the solution
of the pressure Poisson equation.

un+1 = u∗ − ∇p
∗

ρ
(15)

This projection procedure can be viewed as a special time splitting scheme which is advancing
the solution ∆t in time like one time step in a forward Euler scheme. Therefore a repetition of
the projection procedure can be employed to form a Runge-Kutta time integration scheme. In
the present work the 3rd order TVD Runge-Kutta method by Shu and Osher [21] is applied. An
expression for the maximum allowed time step for a forward Euler time integration considering
advection, diffusion, surface tension and gravity is given by Kang et al. [9]:

∆t

2

(
(CCFL + VCFL) +

√
(CCFL + VCFL)2 + 4S2

CFL

)
≤ 1, (16)

where CCFL = |u|max

∆x
+ |v|max

∆x
, VCFL = max

{
µ−

ρ− ,
µ+

ρ+

}
4

∆x2
and SCFL =

√
σ|κ|

min{ρ−,ρ+}∆x2 .

Interface jump conditions

The jump conditions at the interface (4) can be rewritten such that jumps are separated for the
derivatives of the velocity components [9].

(
[µux] [µuy]
[µvx] [µvy]

)
=[µ]

(
(∇u)T

(∇v)T

)(
0
tT

)T (
0
tT

)
+ [µ]nnT

(
(∇u)T

(∇v)T

)
nnT

− [µ]

(
0
tT

)T (
0
tT

)(
(∇u)T

(∇v)T

)T
nnT (17)

[p∗] =∆t

(
σκ+ 2[µ]

(
∇u · n
∇v · n

)
· n
)

(18)

The jumps are continuous functions which are defined in the whole domain. Therefore they
can be computed at the grid centers and then interpolated to the location where they are re-
quired. To compute the jump conditions one needs to approximate the derivatives of the ve-
locity components at the cell centers. Kang et al. [9] choose to first interpolate the velocity
components to the cell centers and then use standard central differences to approximate the
gradients of the velocity. Here a different strategy is adopted, where the derivatives ux and
vy are directly computed as the difference approximations of the velocities at the cell faces,



i.e., ux i,j =
(
ui+1/2,j − ui−1/2,j

)
/∆x, and the other two derivatives namely uy and vx are ap-

proximated at the cell corners, i.e., uy i+1/2,j+1/2 =
(
ui+1/2,j+1 − ui+1/2,j

)
/∆y and those two

derivatives are subsequently interpolated to the cell centers. Both methods lead to the same
stencil for uy and vx, but for ux and vy the direct approximation results in a smaller stencil with
the same order of accuracy. In addition we point out that ux and vy at the cell centers and uy
and vx at the cell corners have to be computed anyway to approximate the viscous terms, cf.
equations (11) and (12).

The separated jump conditions together with the ghost-fluid method [13] allow to treat the jumps
in a sharp manner. If there is an interface crossing the grid lines of a stencil, the known jumps
are added or subtracted from the points on the opposite side of the interface. This addition or
subtraction is then included into the second order finite difference method. The treatment of the
jump condition is improved by interpolating the jump condition to the place where the interface
intersects with the grid lines. This procedure allows to discretise the Poisson equation

(βϕx)x + (βϕx)x = f(x) (19)

with the interface conditions [ϕ] = a and [βϕn] = b in the following way:

βi+1/2,j

(ϕi+1,j−ϕi,j
∆x

)
− βi−1/2,j

(ϕi,j−ϕi−1,j

∆x

)

∆x

+
βi,j+1/2

(
ϕi,j+1−ϕi,j

∆y

)
− βi,j−1/2

(
ϕi,j−ϕi,j−1

∆y

)

∆y
= fi,j + F. (20)

F is a correction term for the jumps and therefore dependent on the interface position and
the jump conditions a and b. If no interface crosses the stencil, F is zero and equation (20)
reduces to the conventional second order central difference method. The correction appears
only on the right hand side, which is beneficial since the same linear solvers can be used as
for conventional central difference discertisations. If for example the interface intersects the left
arm of the stencil, i.e., it is located between xi−1,j and xi,j and at xi−1,j we have the fluid with
the material constant β+, the correction term reads:

F =
βi−1/2,jaΓ

∆x2
− βi−1/2,jbΓΘ

β+∆x
, (21)

where Θ · ∆x is the distance between xi−1,j and the intersection point, and the subscript Γ
indicates that the jump conditions are interpolated to the intersection point. In the context of
two-phase flow this method is used for the viscous terms, where ϕ corresponds to the velocity
components, a = 0 and b are the jump conditions form equation (17). For the pressure Poisson
equation ϕ corresponds to the pressure p∗ and the derivative is continuous, i.e., b = 0 and the
pressure jump a is given by equation (18). For details concerning the GFM and its implementa-
tion for two-phase flows we refer the reader to the literature [9, 13].

Level set method

The gradients in the level set equations (5) and (6) are discretised by a 5th order finite difference
WENO scheme [14]. To minimise spurious displacements of the interface during the reinitial-
isation the constrained reinitialisation CR-1 by Hartmann et al. [8] is applied. The normal is
approximated by a conventional second order finite difference scheme. The expression for the



curvature (8) can be rewritten as:

κ = −φ
2
xφyy − 2φxφyφxy + φ2

yφxx(
φ2
x + φ2

y

)3/2
, (22)

where the derivatives are approximated by second order finite differences as well.

Contact point treatment

The contact point is tracked explicitly with the ordinary differential equation (10). Immediately
after the advection of φ the contact point is updated using the velocity which was computed
form the contact angle θ at the last time step.

xn+1
CP = xnCP + ∆t · f(θn) (23)

Since the updating of the contact point is a part of each Euler step in the projection algorithm,
which forms one step of the Runge-Kutta scheme, the order of the temporal discretisation of the
contact point position is consistent with the temporal order of the other equations.

The curvature κ and the contact angle cannot be computed with central differences at the wall
since the stencil for the first grid point inside the fluid would contain points which are located
inside the wall. As discussed in more detail below, the interface is assumed to continue as a
straight line into the wall and the level set values at the ghost points are set as signed distances
to that line. As a result the curvature at the first grid point would be compromised if computed
by central differences. Instead a circle is fitted through the contact point xCP and the intersec-
tion points of the interface with the first two grid lines parallel to the wall. To get convergent
curvatures the intersection points of the grid lines and the zero level set contour are determined
by a quadratic interpolation. The curvature at the first gird point is then given as the inverse of
the radius R from the fitted circle. The smaller angle between the wall and the fitted circle is:

θ̂ = sin−1

( |xCP − xm|
R

)
(24)

where xm is the x-position of the center from the fitted circle, cf. Fig. 1. Using the y-position of
the circle center and the sign of the first grid point left of the interface it can be checked whether
θ̂ is the contact angle in the desired fluid and we set θ = θ̂. Otherwise the correct angle is ob-
tained by θ = π − θ̂. In Figure 1 the fitted circle at the contact point is illustrated. During the
reinitialisation the interface suffers from spurious displacement. Therefore the reinitialisation
will change the measured contact angle and curvature since they depend on the first two inter-
polated intersection points. The spurious displacement and therefore the change in the contact
angle and curvature can efficiently be reduced using a constrained reinitialisation.

The reinitialisation equation (6) can be rewritten as a hyperbolic equation where the charac-
teristics are pointing perpendicular away form the interface [18]. Therefore the position of the
interface decides where a boundary condition for the reinitialisation is required. In areas where
no boundary condition is required the ghost points for the signed distance function can simply
be filled with a linear extrapolation from the fluid points. To fill the ghost points in areas where
a boundary condition is required, the interface is prolonged as a straight line from the contact
point with a slope given by θ. For all ghost points which are below a line which is perpendicu-
lar to the interface at the contact point (shaded area in Figure 1) the distance to the prolonged
interface is computed analytically. In addition the sign of the distance can be decided using



the first fluid point adjacent to the interface. To ensure that the characteristics are obeyed the
ghost points are finally filled with either the extrapolated value or the analytical signed distance
whichever has the smallest absolute value. If there are multiple contact points the analytically
determined distance to the closest prolonged interface is used.

Fitted circle
Interface

Prolonged interface

Interface normal

Contact point

R

(x2, y2)

(x1, y1)

(xm, ym)

Figure 1: Illustration of the contact point treatment, in the shaded region the ghost points are filled with
the analytical distance to the interface if this is smaller than the extrapolated value.

Results

To test our implementation of the GFM we first compute two examples of two-phase flow with
dynamic interfaces for which analytical solutions exist. The ability of our method to handle
contact points is demonstrated in an additional example of a droplet receding on a solid wall.

Oscillating droplet

An oscillating droplet surrounded by another fluid where both fluids are inviscid is a popular test
case for multiphase solvers. An analytical solution to this problem can be found using potential
theory [11]. Initially the droplet has the shape of an ellipse with a semimajor and a semiminor
axis which is 5% longer and smaller than the radius r = 1

3
.

The surface tension σ = 1 N/m and the density ρ+ = ρ− = 1 kg/m3 will lead to an oscillation
which is not damped in the inviscid case. The frequency of the oscillation is ω2

0 = 6σ
(ρ++ρ−)r30

.
Hansen [6] showed that the influence of the no-slip boundaries are becoming small if the domain
becomes larger than 2 × 2 m2. This was also verified in the present case. Therefore all the
reported results were computed with a domain size of 2× 2 m2. The time step was chosen such
that it is 1% of the maximum allowed time step and the number of grid points was m = 52,
m = 100 and m = 200.

The time evolution of the semimajor axis is plotted in Figure 2. As the grid is refined the nu-
merical solution approaches the exact solution. The amplitude of the semimajor axis is damped
in the numerical results and the frequency is slightly too low as well. To analyse the influence
of the time step we computed a solution on the coarsest grid with a 10 times larger ∆t. It can



be seen in Figure 2 that the results are converging with decreasing time step. The area loss after
two oscillation periods is 0.356%, 0.077% and 0.004% for the three grid resolutions. This is
comparable to the results by Hansen [6].
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Figure 2: Time evolution of semimajor axis for the oscillating droplet.

Standing wave

Viscous damping of surface waves is used to verify the two phase solver for cases where viscous
and surface tension forces interact. An analytical solution for this problem was presented by
Prosperetti [16]. We use non-dimensional variables here. Initially two fluids are separated by
a flat interface in the middle of the domain which is slightly perpetuated by a sine wave. The
wavelength of the perturbation is λ = 2π and the initial amplitude is set to A0 = 0.01λ.
According to the analytical solution the oscillation frequency is ω2

0 = σ
ρ++ρ− .

All solutions are obtained in a domain of size 2π × 2π. The boundary conditions parallel to the
interface are slip walls, and perpendicular to the interface periodicity is enforced. Both densities
are set to unity, the surface tension is σ = 2 and the viscosities are set to µ = 0.064720863. For
all reported grid resolutions the time step was set to ∆t = 0.01.

Figure 3 shows the time evolution of the amplitude and the amplitude error. Again the frequency
predicted by the numerical computations is too low, but converges with grid refinement. Op-
posed to the inviscid droplet oscillation, the damping of the oscillation amplitude is not strong
enough. The RMS values of the amplitude errors are summarised in Table 1. A convergence
rate between first and second order is observed. The RMS errors are slightly higher than those
reported by Desjardins et al. [3]. The lower accuracy in our method could be caused by the com-
pletely explicit time integration, whereas a semi-implicit Crank-Nicholson scheme is employed
by Desjardins et al.

Droplet on plate

Our last example is a droplet on a plate receding to its static contact angle. Again, non-dimensional
variables are used. A droplet of radius r0 = 1.66 and contact angle of 30◦ is placed on a solid
surface. A different fluid is surrounding the droplet. The static contact angle is θs = 120◦. This
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Figure 3: Time evolution of the wave amplitude (left) and amplitude error (right).

Table 1: RMS of amplitude error for the standing wave

Mesh Error

8× 8 0.2962
16× 16 0.0958
32× 32 0.0261

configuration will lead to moving contact points until the static contact angle is reached. In the
steady state all velocities should vanish and the interface will assume a circular shape.

A rectangular computational domain of size [−1, 1] × [0, 1] is used. All boundaries are no-slip
walls except for the bottom wall where the drop is placed on, here a slip boundary condition,
cf. equation (9) with a slip length of λ = 0.02 is applied. The fluid parameters are chosen as
in Case II of Spelt [22], i.e., ρ− = 1, ρ+ = 20, µ− = µ+ = 0.0495 and σ = 2.21, where
the fluid denoted with − is inside the droplet. The function of the contact point velocity is
uCP = 0.1 · (θ − θs). A time step of 0.7 times the maximum stable time step is chosen for all
grid resolutions.

The velocity field at t = 2 is shown in Figure 4. During the receding of the contact points
two vortices develop. The maximum absolute value of the velocity is always located around the
contact points and the slip allowed from the boundary condition is clearly visible. In Figure 5
the time evolution of the interface is plotted. Since the Capillary number of the flow is relatively
low Ca = µuCP

σ
≤ 3.528 · 10−3, the interface keeps a circular shape during the entire receding

process. The evolution of the contact angle θ and the position of the right contact point xCP as
a function of time are presented in Figure 6. The contact angle and contact point position are
almost identical for both grid resolutions. Initially the contact angle is small resulting in a high
contact point velocity. This is causing a relative large curvature at the contact point which in
turn leads to a relatively large pressure jump adjacent to the contact point. Therefore high slip
velocities are produced. As the contact points are receding, the contact angle gets smaller and
therefore the velocities are reduced as well. Finally the contact points approach their equilibrium



positions, the vortices are dissipated and steady state is reached.

At steady state the interface position error is computed by interpolating the position of all in-
tersection points between the grid lines and the zero contour line using a 1-dimensional cubic
spline interpolation. The position error of the interface εinterface is then given as the 2-norm of
the distance between each interpolated intersection point and its correct position. The relative
error of the contact point at steady state εCP is given as the difference between the contact point
and its analytically position. Table 2 summarises the errors when the steady state is reached
(t = 24). Since the interface is slightly displaced during reinitialisation of the signed distance
function the curvature at the contact point is changed as well. This causes small spurious veloc-
ities around the contact point. The reported norms of the velocity are computed directly after
reinitialisation, they will decrease until the next reinitialisation. Tests showed that they will
converge to zero if no reinitialisation is applied after the steady state is reached. An important
contribution to the errors of the interface and contact positions is the mass loss which occurs
during the computation. The interface approaches the shape of a circle but with a radius which is
too small. Often the signed distance function is lifted after reinitialisation to eliminate the mass
loss. But this procedure would lead again to a spurious change in the curvature at the contact
point. Therefore we did not adopt this practice in the presented examples.
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Conclusions

We devise a way to handle contact points in sharp interface methods. The main difficulty is the
computation of the curvature at the first grid point adjacent to the wall. A method is presented
where a contact point is tracked explicitly. A circle is fitted through this contact point and the
intersection points of the zero contour line of the signed distance function with the first two
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Table 2: Errors at t = 24 for a droplet on a plate.

‖u‖2 ‖v‖2 εCP εinterface

64× 32 0.719 · 10−3 0.858 · 10−3 13.359 · 10−3 5.320 · 10−3

128× 64 0.391 · 10−3 0.381 · 10−3 7.903 · 10−3 3.353 · 10−3

grid lines parallel to the wall is used to calculate the contact angle and the curvature adjacent
to the wall. Numerical experiments show that the present two-phase solver based on the sharp
interface method can correctly simulate dynamic interfaces and the steady state of contact lines
for standard test cases, although an improvement is still possible.
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Erratum

• Equation (14) should read:

ri,j(i,j)α
=

ψ̃i,j

ψ̃(i,j)α

• The 5. step of the constrained reinitialisation should read:

– If Mi,j = M(i,j)α = 1, flag points for equal forcing

– Else, set ri,j(i,j)α
= 0, reduce Mi,j by 1 and flag x(i,j)α

as point with β(i,j)α = 1
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ABSTRACT
In this paper it is shown that the reinitialisation of the conservative
level function introduces spurious displacements of the interface. A
method which prevents the interface in conventional level set meth-
ods from moving during the reinitialisation is adopted for the con-
servative level set method. It is shown that using the constrained
reinitialisation with an adaptive distributed forcing retains the shape
of the interface during reinitialisation. This eliminates the negative
effects if too many reinitialisation steps are applied. However, our
numerical experiments show that fixing of the interface during reini-
tialisation spoils the mass conservation of the conservative level set
method.

Keywords: Multiphase flow, Level set method .

NOMENCLATURE

Greek Symbols
β Forcing distribution factor.
Γ Set of points addjacent to the interface.
δ Least squares weights.
ε Width parameter for the conservative level set func-

tion.
κ Interface curvature.
ρ Distance to domain center.
τ Pseudo time.
φ Conservative level set function.
Ψ Stream function.
ψ Signed distance function.

Latin Symbols
C Set of points with nonzero foring term.
e Error.
F Forcing term.
f Numerical flux.
h Grid spacing.
n Interface normal.
m Number of grid points.
t Time.
S Set of neighbouring points on opposit side of the inter-

face.
u Velocity.
x Position.

Sub/superscripts
α Index α .

i Index i.
j Index j.
n Discrete time level.

INTRODUCTION

The level set method (LSM) is a popular method to describe
the location of the interface in multiphase flow computations.
It represents the interface with the help of a signed distance
function which is advected by the fluid velocity. For a more
thorough discussion of the LSM and its application to multi-
phase flow we refer the reader to the review by (Sethian and
Smereka, 2003). This representation has the advantage of
relatively simple calculations of interface normals and curva-
tures. Another often cited advantage of the LSM is that the
parallelisation is straightforward. Due to the advection the
level set function loses its signed distance property. There-
fore it has to be reinitialised after a few advection steps. This
is done by solving a reinitialisation equation. The deforma-
tion of the interface during this reinitialisation is a known
problem and an explanation of the cause and a possible rem-
edy was given by (Russo and Smereka, 2000). There exists a
number of methods to reduce the displacement of the signed
distance function during reinitialisation. Among these meth-
ods is the Constrained Reinitialisation (CR) (Hartmann et al.,
2008), which is minimising the displacement of the intersec-
tion points between the grid lines and the zero level set con-
tour.
However, the LSM has an important disadvantage, it does
not conserve the mass of the two fluids. Different approaches
have been developed to satisfy the mass conservation of the
level set method. Examples include the conservative level set
method (CLSM) (Olsson and Kreiss, 2005) (Olsson et al.,
2007), the particle level set method (PLS) (Enright et al.,
2002) and the coupled level set/volume-of-fluid (CLSVOF)
(Sussman and Puckett, 2000). The added complexity for both
PLS and CLSVOF are significant. On the other hand the con-
servative level set method improves the mass conservation
and keeps the simplicity of the original method.
We discovered that during the reinitialisation of the CLSM
the interface is displaced considerably. In most applications
of the CLSM this problem is not evident since typically only
a few reinitialisation steps are conducted, and the deforma-
tion becomes only significant for high numbers of reinitial-
isation steps. There is no general rule on how frequent the
CLSM has to be reinitialised and how many reinitialisation
steps should be applied each time. It is therefore important
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to make sure that too many reinitialisation steps do not com-
promise the accuracy of the CLSM. Recently Hartmann et al.
published a technique called high-order constrained reinitial-
isation (HCR) (Hartmann et al., 2010) for the conventional
LSM. But its implementation through a source term allows
the adoption of HCR to do a constrained reinitialisation of
the CLSM.
In the present paper a short introduction to the conserva-
tive level set method and its discretisation is given. Then
we present an overview of the HCR and show how it can be
adopted for the CLSM. Finally we show some numerical ex-
periments and explain why it is after all not advisable to fix
the interface during the reinitialisation of the CLSM.

CONSERVATIVE LEVEL SET METHOD

In level set methods the interface is defined as the iso con-
tour of a smooth function. For ordinary level set methods this
function is the signed distance from the interface, and the in-
terface location is where the distance function is zero. The
conservative level set function replaces the distance function
by a hyperbolic tangent function φ with values between zero
and one (Olsson and Kreiss, 2005). The position of the in-
terface is located at the φ = 0.5 contour line. Since we have
smooth functions which are defined in the entire computa-
tional domain in both cases, we can easily extract additional
geometrical information about the interface. For example the
interface normal n and the curvature κ are defined as

n =
∇φ
|∇φ | (1)

and
κ = ∇ ·n. (2)

The interface is transported simply by advecting the level set
function using the advection equation φt =−u · (∇φ). If we
have a divergence free velocity field, as it is the case for in-
compressible flow, the interface transport can be written as a
conservation law.

∂φ
∂ t

+∇ · (uφ) = 0 (3)

Since all numerical methods will introduce an error as φ is
advected, it will lose its hyperbolic tangent shape. The dif-
fusion of the advection schemes will increase the distance in
which φ rises from zero to one. (Olsson et al., 2007) propose
the following reinitialisation equation to force φ back to its
hyperbolic tangent shape, which is solved to steady state with
respect to the pseudo time τ:

∂φ
∂τ

+∇ · (φ(1−φ)n̂− ε ((∇φ · n̂)n̂)) = 0, (4)

where n̂ is the normal at the beginning of the reinitialisation,
and ε determines the width of the hyperbolic tangent. It is
important to note that also the reinitialisation equation is a
conservation law. The first flux term causes a compression
of the profile, whereas the second term is a diffusive flux.
By multiplications with the normal n̂ there are only fluxes
in the direction of the normal. This forced flux direction
for both the compression and the diffusion term are essen-
tial to improve the mass conservation of the method. Indeed
it was shown that the CLSM conserves mass as ε approaches
0. To illustrate the nature of Equation (4), we use a one-
dimensional example. Suppose that the interface is located
at x = 0. Then the normal reduces to n =−1 or n = 1. In the

example we use the latter. In this case a steady state solution
to Equation (4) is:

φ =
1
2

(
1+ tanh

( x
2ε

))
. (5)

The solution is shown Figure 1, together with the compres-
sion and the diffusion terms. It is clearly visible that at steady
state the compression and the diffusion are balanced. If φ
would be too diffusive the compression term would outweigh
the diffusive term and φ would be forced back to the steady
state solution.
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Figure 1: Illustration of the reinitialisation equation.

Discretisation

Advection

The divergence in the advection equation (3) is discretised
by a 5th order finite difference weighted essentially non-
oscillatory (WENO) scheme using a Lax-Friedrichs flux
splitting (Shu, 1998). For time discretisation the 3rd order
TVD Runge-Kutta method by (Shu and Osher, 1988) is ap-
plied.

Interface normal

In order to keep the stencils for the reinitialisation equation as
small as possible (Desjardins et al., 2008) proposed to com-
pute the fluxes of the reinitialisation equation (4) at the cell
faces. As a consequence the normal is required at the cell
faces. It was also proposed by the authors to compute the
normal from a signed distance function ψ which in turn is
computed using a fast marching method (FMM). The reason
for this is that the gradient of the conservative level set func-
tion φ becomes extremely small far away from the interface.
In this region with small gradients small errors in φ can lead
to a normal pointing in the wrong direction. Close to the in-
terface, however, the gradient of φ is large enough such that
a reliable normals can be computed directly form φ . Further
away from the interface the accuracy of the normal is not so
important anymore, but they should be continuous and not
contain spurious oscillations. In the present work the normal
are computed directly form the conservative level set func-
tion where 0.0001 ≤ φ ≤ 0.9999, otherwise they are com-
puted from a signed distance function.
The gradient for the normal on the cell faces in x-direction at
x = xi−1/2, j is approximated by the following stencil:

(∇φ)x i−1/2, j ≈
φi, j−φi−1, j

h
(6)

(∇φ)y i−1/2, j ≈
φi−1, j+1 +φi, j+1−φi−1, j−1−φi, j−1

4h
. (7)

The gradient at the cell faces in y-direction (∇φ)i, j−1/2 is
treated analogously. Finally the normal can be computed
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from the gradient using equation (1). Note grid points where
|∇φ | = 0 have to be treated separately, here we chose to fill
the normal at these points with a unit vector pointing in an
arbitrary direction.

Reinitialisation

A central difference method on a staggered grid is used to
discretise the reinitialisation equation (4). The fluxes in x-
direction as well as those in y-direction are computed on
the corresponding cell faces. First the convective fluxes
are obtained at the cell centers from the level set function
i.e. fc i, j = φi, j (1−φi, j) and then they are interpolated to
the cell faces using linear interpolation e.g. fc i+1/2, j =(

fc i, j + fc i+1, j
)
/2. The diffusive fluxes are computed di-

rectly at the cell faces to keep the stencil as small as pos-
sible. Accordingly the diffusive fluxes at the cell faces in
x-direction read:

fd i−1/2, j =ε
(
(∇φ)x i−1/2, j ·nx i−1/2, j

+(∇φ)y i−1/2, j ·ny i−1/2, j

)
, (8)

where nx i−1/2, j and ny i−1/2, j are the x- and y-components of
the interface normal. This leads to the total fluxes in x- and
y-directions:

fi−1/2, j =
(

fc i−1/2, j− fd i−1/2, j
)
·nx i−1/2, j (9)

gi, j−1/2 =
(

fc i, j−1/2− fd i, j−1/2
)
·ny i, j−1/2 . (10)

Eventually the total residual of the reinitialisation equation
is:

∂φ
∂τ
≈−

fi+1/2, j− fi−1/2, j

h
−

gi, j+1/2−gi, j−1/2

h
. (11)

The forward Euler scheme is used to advance the conserva-
tive level set function in the pseudo time τ . To ensure stabil-
ity the time step must fulfill:

∆τ
(

2
h
+

4
h2 ε
)
≤ 1. (12)

CONSTRAINED REINITIALISATION

We observed that the convergence of the reinitialisation with
the described discretisation was poor for simple cases. In
Figure 2 the result of the reinitialisation of a circle is shown.
During the first few iterations the residual drops fast and then
the convergence is slowed down. During this period of small
convergence rate the interface develops towards a rhombus.
This tendency to deform the interface is not reduced as the
grid is refined. In most applications this defect is not evi-
dent since typically only a few reinitialisation steps are con-
ducted and the residual is not reduced until the numerical
steady state.

Constrained reinitialisation for conventional level
set methods

A similar problem appears in conventional level set meth-
ods. Recently (Hartmann et al., 2010) proposed a method
to reduce the displacement of the signed distance function
ψ during reinitialisation. The idea is to add a source term
to the residual of the differential equation, which minimises
the displacement of the intersection points between the zero
contour of ψ and the grid lines in a least squares sense.

If two grid points xi−1, j and xi, j which are located on op-
posite sides of the interface, the condition that the linear in-
terpolation of the intersection point between the zero con-
tour line and the grid line between those two points does not
move during reinitialisation, can be reduced to ψ̃i, j

ψ̃i−1, j
=

ψi, j
ψi−1, j

,
where ψ̃ and ψ are the signed distance functions before and
after reinitialisation, respectively. In general a grid point can
have several neighbours which are on the opposite side of an
interface. The previous condition cannot be fulfilled for all
involved neighbours, since the problem is overdetermined.
Let Si, j be the set of all neighbouring grid points of xi, j which
are on the opposite side of the interface, and Mi, j the number
of grid points in Si, j. Further we denote an arbitrary point in
Si, j by x(i, j)α such that α = 1...Mi, j. In the constrained reini-
tialisation CR-1 (Hartmann et al., 2010) the following least
squares function is minimised.

Li, j =
Mi, j

∑
α=1

δ α
i, j

(
ψi, j−ψ(i, j)α · r

i, j
(i, j)α

)2
, (13)

ri, j
(i, j)α

=
ψ̃i, j

ψ̃i−1, j
(14)

(Hartmann et al., 2010) chose the weights δ α
i, j = 1. If Li, j is

derived with respect to ψi, j and this is set equal to zero we
get the target value for the distorted signed distance function,
such that it minimises the displacement of the interface.

Ti, j =
∑

Mi, j
α=1 δ α

i, j

(
ψ(i, j)α · r

i, j
(i, j)α

)

∑
Mi, j
α=1 δ α

i, j

(15)

Finally the CR-1 correction term at the nth reinitialisation
time step is formulated as the difference between T n

i, j and
ψn

i, j:

Fn
i, j =

βi, j

h

(
ψn

i, j−T n
i, j
)
. (16)

Here βi, j is a coefficient which distributes the correction be-
tween neighbouring grid points. For consistency the sum
βi, j + β(i, j)α must always be equal to 1. Setting βi, j = 0.5
corresponds to do half of the correction on either side of the
interface. Since the forcing leads to an instability when one
of points of the set Si, j changes its sign during reinitialisation,

Figure 2: Reinitialisation result of a circle with 8 grid points
per diameter, the small insert shows the evolution of the reini-
tialisation residual over the number of time levels.
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the forcing is not applied at the grid points in this particular
Si, j.

Adaptation to the conservative level set method

The idea is to apply the CR-1 forcing to the reinitialisation of
the CLSM to avert an undesirable movement of the interface
during reinitialisation. In the CLSM the interface is given as
the 0.5 contour line. Therefore ψ in equation (13) to (16)
must be replaced by φ− = φ −0.5.

Stabilising CR-1

An essential difference between the signed distance function
φ and the conservative level set function ψ is that the latter
has larger gradients at the interface. As a consequence the
forcing term for the CLSM tends to be stronger. For points
where the distance to the interface approaches h the mag-
nitude of the forcing term is increasing rapidly. It was ob-
served in numerical experiments that if the distance between
the intersection point and the grid point becomes smaller than
0.01h the constrained reinitialisation of φ becomes unstable.
Imagine two bars which cross each other. Suppose one is
only allowed to move one end of one bar to adjust the posi-
tion of the crossing point. If now the crossing point is close to
the fixed end of the moving bar, the free end has to be moved
relatively far to obtain a given displacement of the crossing
point. On the other hand if one could move the end which is
closer to the crossing point a much smaller movement is re-
quired to obtain the same displacement of the crossing point.
The correction can also be divided to both ends where the
necessary corrections at each end are multiplied by factors
which have to add to one. These factors are the distribution
factors βi, j.
In order to stabilise the constrained reinitialisation of the
CLSM the forcing for pairs where the crossing point is close
to one of the points should be distributed better, which means
adjusting βi, j in equation (16). For pairs where both neigh-
bours have Mi, j = 1, βi, j can be chosen such that the forcing
term has the same magnitude on both sides. As an example
if both Mi, j and Mi−1, j are equal to 1 and the crossing point
is either close to xi, j or xi−1, j set

βi, j =

(
ψi, j−Ti, j

ψi−1, j−Ti−1, j
+1
)

(17)

βi−1, j = 1−βi, j. (18)

This choice of distribution coefficients ensures that the forc-
ing term is equal for both points.
In general Mi, j > 1 especially for points which are close to
the interface. There βi, j cannot be adjusted to an arbitrary
value since βi, j + β(i, j)α = 1, and the set Si, j often overlaps
with the sets from the neighbouring points. Therefore setting
βi, j gives a condition to a number of β from neighbouring
grid points. A solution to keep the effect of choosing βi, j lo-
cal is to use the weights δ α

i, j in the least squares function (13).
If a grid point xi, j is too close to an intersection point βi, j is
set to 1. This would require to set all β(i, j)α = 0. Instead
we choose δ α̂

(i, j)α
= 0 in all the neighbouring cells where α̂

points to cell (i, j). That is equivalent to do the complete
forcing on the grid point close to the intersection and ignor-
ing the constraint at all the neighbouring points.

Summary of the constrained reinitialisation

Only at points adjacent to the interface the operations for the
level set forcing have to be conducted, we define therefore

the set

Γ =
{

xi, j :
(

φ−i, jφ
−
i′, j ≤ 0

)
∨
(

φ−i, jφ
−
i, j′ ≤ 0

)}
, (19)

where i′ ∈ {i−1, i+1} and j′ ∈ { j−1, j+1}. For sets Si, j
where φ at one of the points changes its sign during reinitial-
isation the forcing is not applied. To that effect the following
set of grid points will have a forcing term Fi, j 6= 0:

Cn =
{

xi, j ∈ Γ : φ−n
i, j φ−n

(i, j)α
< 0∀α ∈ {1, ...,Mi, j}

}
. (20)

Using these definitions the steps for the constrained reinitial-
isation of the CLSM are:

1. Compute the interface normal. and (7))

2. Compute the shifted conservative level set function be-
fore reinitialisation φ̃− = φ̃ −0.5.

3. Find all points in Γ.

4. Update the set Si, j, and compute ri, j
(i, j)α

for all points in
Γ.

5. Find points where ri, j
(i, j)α

< TOL

• If Mi, j = M(i, j)α = 1, flag points for equal forcing

• Else, set ri, j
(i, j)α

= 0, reduce Mi, j by 1 and flag xi, j

as point with βi, j = 1

6. For all points with βi, j = 1, do for all (i′, j′) where
x(i′, j′)α̂ = xi, j, δ α̂

i′, j′ = 0 and reduce Mi′, j′ by 1 where
x(i′, j′)α̂ = xi, j.

7. Remove points xi, j where Mi, j = 0 from Γ.

8. Solve the constrained reinitialisation problem by per-
forming the following steps for each iteration:

(a) Compute the shifted conservative level set func-
tion at pseudo time step n: φ−n = φ n− 1

2 .

(b) Update the set Cn

(c) For all grid points in Cn compute the forcing terms
given by equation (16), use βi, j = 0.5 unless the
point is flagged for βi, j = 1 or equal correction.

(d) Compute residual from the PDE (4).

(e) Advance φ one pseudo time step.

NUMERICAL EXPERIMENTS

Reinitialisation

To test the constrained reinitialisation method described in
the previous section we consider a circle with radius R = 1

2
which is placed in the center of a square domain with unit

length. The initial condition is φ̃ =
(

1+ exp
(

3(ρ−R)
2ε

))−1
,

where ρ =

√(
x− 1

2

)2
+
(
y− 1

2

)2
is the distance from the

center of the domain. For this case the exact steady state
solution of equation (4) is:

φexact =

(
1+ exp

(
ρ−R

ε

))−1

. (21)
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The reinitialisation equation was iterated until the 2-norm of
the residual was below 10−13. The error norm is computed
as follows:

e =
1
m

(
m

∑
i, j=1

(φexact i, j−φi, j)
2

) 1
2

, (22)

where m is the number of grid points in each direction. To
assess the deformation of the interface the reinitialised φ was
interpolated to a fine grid with 500 points in each direction
using bi-cubic splines. On this fine grid the position of all
intersection points between the grid lines and the 0.5 contour
line were computed using a 1-dimensional cubic spline inter-
polation. The position error of the interface ep is then given
as the 2-norm of the distance between each interpolated in-
tersection point and its correct position.

Analytic normal

The errors after the reinitialisation with analytic normal and
a fixed ε = 0.044 are presented in Figure 3. The error norm
e is reduced with second order which is consistent with the
discretisation scheme. To find the position of the interface
we need to interpolate it. This interpolation is the reason that
the position error of the interface is one order higher than the
order of the discretisation scheme. Special attention should
be payed to the results with m = 81. At this grid resolution
16 grid points were marked since their distance to the inter-
face was smaller than 0.01h. These grid points where treated
with the procedure explained previously. Without this im-
proved distribution of the forcing term the reinitialisation is
unstable for m = 81. As it can be seen in Figure 3, the con-
vergence rate of the position error is slightly reduced due to
the unequal distribution of the forcing term. For comparison
the errors without the CR-1 are plotted in Figure 3 as well.
Since the interface is developing a rhombus shape (see Fig-
ure 2) at all grid resolutions neither the error norm nor the
position error are converging with grid refinement. In Ta-
ble 1 we list the number of reinitialisation steps which were
required to reduce the residual to the target value of 10−13.
The constrained reinitialisation accelerates the convergence
of the residual significantly. For the unconstrained reinitiali-
sation of the circle with m = 64 and m = 81 the target resid-
ual was not reached after 100000 reinitialisation steps. The
residuals at n = 100000 were 1.55 ·10−5 and 4.03 ·10−5 for
m = 64 and m = 81, respectively.

Table 1: Number of iterations required to reach a residual of
10−13 during the reinitialisation of a circle.

m 8 16 32 64 81

CR-1 165 318 943 3654 4760
without 372 7536 96637 > 100000 > 100000

Numeric normal

The same test as in the previous section is repeated, but the
interface normal is computed numerically. For a constant ε =
0.044 the results are almost identical to the reinitialisation

with the analytic interface normal. Since the mass conserva-
tion of the CLSM is improved as ε is decreased, the reinitial-
isation of the circle was repeated once with ε = 0.2

√
h and

with ε = 0.6h. As ε is decreased the width of tangent hyper-
bolic is also decreased, which means that there are less grid
points resolving the area where φ changes from 0 to 1. The
result is that the convergence rate is reduced if ε is decreas-
ing together with the grid width. The errors for simultaneous
reduction of h and ε are shown in Figure 4.

Advection and Reinitialisation

Initially a circle of radius R = 0.1 is placed at (0.5,0.7) in a
square domain with unit length. The circle is advected with
an external velocity field with the stream function

Ψ =−π
(
x2 + y2− x− y

)
. (23)

This velocity field is advecting the circle anticlockwise
around the center of the computational domain. To keep the
error contribution from the temporal discretisation negligible
a small CFL number of 0.05 was chosen for all examples.
After 100 time steps a reinitialisation was performed. Dur-
ing the reinitialisation the residual was reduced to 10−8 or a
maximum of 500 iterations were done. The convergence of
the errors for the constrained CLSM is plotted in Figure 5 for

8 16 32 64 81

10
−4

10
−3

10
−2

10
−1

m

 

 

e with CR−1
e

p
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Figure 3: Error convergence for the reinitialisation of a circle
with analytic interface normal and ε = 0.044.
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Figure 4: Error convergence for the reinitialisation of a circle
with numeric interface normal and ε ∝ h or ε ∝

√
h.
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ε = 0.1 ·m−1/2. Figure 6 shows the interface position after
one revolution for m= 51. For the case where the reinitialisa-
tion was done with CR-1 the interface retains a circular shape
but the area is reduced significantly. On the other hand, if the
unconstrained reinitialisation is used, the area is conserved
but the interface loses its circular shape. Here we exagger-
ated this effect by the large number of reinitialisation steps.
If e.g. every 100 advection steps only 10 reinitialisation steps
are conducted, the interface position error is reduced by al-
most a factor of 16. If the interface is only advected and never
reinitialised, the area loss is smaller than for the CR-1 reini-
tialisation and the circular shape is retained. The area loss for
the three different reinitialisations is summarised in Table 2.
The reduction of ε leads only for the CLSM without CR-1
to a reduction in the area change. For the constrained CLSM
and if the circle is only advected, the area change decreases
with increasing ε . This is due to the fact that the conservative
level set function is less steep for larger ε , and therefore the
diffusive error of the advection scheme is reduced.
The large mass loss for the constrained reinitialisation can
be explained as follows. Initially the level set function can
be compared with a cylinder with height 1 and the radius of
the circle. If the circle has a radius of 1 then the volume of
the cylinder is π . Since the numerical advection is diffusive,
we assume the advected cylinder will transform to the shape
of a cone with height of 1. The conservative advection will
conserve the volume of the cylinder. For this reason the ra-
dius of the cone at a height of 0.5 will be only

√
3

2 instead of
1. During a constrained reinitialisation a new cylinder with
this smaller cross section will be created and the cycle starts
again.

51 101 201
10

−4

10
−3

10
−2

10
−1

10
0

m

 

 

e

e
p

area loss

m
−1

m
−2

m
−3

Figure 5: Errors for the advected circle after one revolution.

Table 2: Area change in % for the advected circle with m =
51.

ε 0.1 0.2 0.3

CLSM CR-1 −23.98 −11.14 −4.93
CLSM 0.10 0.60 0.65
Advection 14.49 5.60 1.43

CONCLUSION

We applied the constrained reinitialisation CR-1 by (Hart-
mann et al., 2010) to the reinitialisation of the conserva-
tive level set function. The larger modulus of the gradient
of the conservative level set function can cause instabilities
during the constrained reinitialisation, if the interface is lo-
cated close to a grid point. This instability can be avoided,
if the forcing is not divided equally between two neighbour-
ing points. Evidence was given that the constrained reini-
tialisation prevents spurious interface deformation during the
reinitialisation independent of the number of reinitialisation
steps, and that the convergence of the residual is accelerated.
However, numerical experiments showed that preventing the
interface from moving during reinitialisation spoils the mass
conservation of the CLSM. It was also shown that care has
to be taken that the number of reinitialisation steps of the
unconstrained CLSM is not too large such that the reinitiali-
sation introduces spurious interface deformations.
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