

INVESTIGATION OF TURBULENT OXY-FUEL JET FLAMES Using Raman/Rayleigh Laser Diagnostics

Alexis Sevault, Robert S. Barlow, Matthew Dunn and Mario Ditaranto

I. Background and motivations

a. Oxy-fuel combustion

BIGCO2 project considers it as a great potential among the CCS technologies

CO₂ capture achieved through simple water removal from flue gas

High flame temperature reduced by using flue gas recirculation

Great potential for retro-fitting current gas-fired plants

Main limit: O₂ supply is energy-consuming

Literature:

- Well documented for system and processes
- Not well documented about fundamentals on CO₂-diluted oxy-fuel flames

I. Background and motivations

b. Research topic

Aims of the research:

- Look at turbulent oxy-fuel flame structure
- Create data library eventually used for validation of turbulent combustion codes

Specific objective:

- Investigate turbulent non-premixed CO₂-diluted oxy-fuel jet flame from a coflow burner

Flame properties:

- 32 % O₂ in oxidizer
- Overall equivalence ratio: 1.25

Flame	%H ₂ in fuel	Re _{Fuel}	Jet speed (m/s)	Coflow speed (m/s)
A-1	55	15,000	98.2	0.778
A-2	45	15,000	84.4	0.755
A-3	37	15,000	75.8	0.739
B-1	55	12,000	78.6	0.622
B-2	55	15,000	98.2	0.778
B-3	55	18,000	117.8	0.933

Coflow burner

- Fuel nozzle:
 - Fuel: CH₄/H₂
 - 5mm ID
 - Wall thickness 0.5 mm
 - Squared-off end
- Coflow tube:
 - Oxidizer: O₂/CO₂
 - 96.5 mm ID
- Air coflowing at 0.5 m/s

a. Experimental setup

Laser system:

- 3 frequency-doubled Nd:YAG
- Pulse strecher
- 1 J/pulse at 532 nm for 400 ns

Spatial resolution:

- 0.104 mm along 6-mm section of focused beam

Simultaneous line imaging of Raman/Rayleigh laser diagnostics

Capture on a single-shot basis:

- Local flame temperatures
- Local Concentrations of CO₂, O₂, CO, N_2 , CH_4 , H_2O and H_2 .

Note: CO-LIF and OH-PLIF not used here.

b. Data processing technique

Hybrid method (Fuest, 2011):

- Based on RAMSES spectra simulation code (Geyer, 2005)
 - -> Generates Raman spectra libraries for most species over large temperature range (290 K to 2500 K) relatively to optical setup
 - Short series of calibration measurements (one per species) are sufficient to provide most Raman and cross-talk coefficients
- CH₄ and some cross-talk coefficients are not available through RAMSES and are found with calibration measurements over the temperature range

Corrections:

- Signals corrected for CCD background, flat-field, total Nd:YAG laser energy, interferences from laser induced fluorescence, broadband flame luminosity, beam steering through flames and bowing effect through Raman optics

c. Limits and uncertainties

Limits:

- Soot formation at the flame tip leading to interferences on spectra
- OH-PLIF and CO-LIF could not be applied
- Jet Reynolds number limited by CO₂ supply

Uncertainties:

Scalar	Precision σ (%)	Accuracy (flat flames, %)	Accuracy (turbulent flames, %)
T	0.6	2	2
N ₂	0.7	2	3
CO ₂	3.0	4	6
H ₂ O	2.2	3	6
F _B	2.1	5	8
СО	5	10	10
H ₂	7.5	10	10

(Barlow, 2009)

a. Localized extinction (1/3)

Localized extinction:

- Occurs when turbulent mixing rates between fuel and oxidizer become competitive with critical rates of chemical reactions
- Takes place in the near-field
- Probability of localized extinction increases with decreasing H₂ content in fuel and increasing jet Reynolds number.

a. Localized extinction (2/3)

Leads to local temperatures drops due to increasing heat removal rates from convection and diffusion along with decreasing chemical reaction rates.

Fully burning probability:

- Enables to quantify the degree of extinction
- Based on pdf of temperatures above T_b in the mixture fraction region $F_{B\text{-}St} \pm \sigma$
- Here, with $T_b = 1700 \text{ K}$ and $\sigma = 0.02$

a. Localized extinction (3/3)

Flame structure:

- Unburnt oxidizer shows up in the fuel-rich region (cf. O₂ mass fraction)

b. Differential diffusion (1/3)

Comparison with laminar diffusion flame calculations:

- Match made with CO mass fraction
- Near-field: strong influence of differential diffusion
- Downstream: shift towards equal diffusivities transport regime

b. Differential diffusion (2/3)

Differential diffusion parameter:

$$z = F_H - F_C$$

- Strong influence in near-field but plays minor role farther downstream
- Rich-side less affected by differential diffusion
- Calculations show that influence of differential diffusion is reduced with lower H₂ content in fuel.

b. Differential diffusion (3/3)

Reaction zone:

Stronger influence when the reaction zone is very thin compared to molecular diffusivity length scales.

- -> Helps diffusion of small molecules such as H₂ through the reaction zone.
- -> Less influence farther downstream as the reaction zone thickens

c. High CO levels

Conditional mean of CO mass fraction locally reached up to 0.18

Due to high CO₂-dilution levels:

- CO₂ was not inert but competed primarily with O₂ for atomic hydrogen and lead to formation of CO through the reaction $CO_2 + H \rightarrow CO + OH$

The objective was to investigate the influence of H₂ content in fuel and jet Reynolds number on localized extinction and flame structure

Localized extinction:

- Higher contents of O₂ on the rich side of the flame
- Fully burning probability was calculated

Differential diffusion:

- Significant level of differential diffusion in the near-field
- Farther downstream, minimized influence as reaction zone thickens

CO levels:

- Enhanced $CO_2 + H \rightarrow CO + OH$ reaction leading to high CO levels

Next steps:

- Make the whole set of results available
- Investigation of influence of O₂ content in oxidizer

Thank you for your attention!

Contact: Alexis.sevault@ntnu.no

References:

- **F. Fuest**; R. S. Barlow; D. Geyer; F. Seffrin; A. Dreizler, Proceedings of the Combustion Institute 33 (1) (2011) 815-822.
- **D. Geyer**, 1D-Raman/Rayleigh Experiments in a Turbulent Opposed-Jet, PhD Thesis, TU Darmstadt, VDI-Verlag, Düsseldorf (2005) ISBN 3-18-353306-5.
- **R. S. Barlow**; H. C. Ozarovsky; A. N. Karpetis; R. P. Lindstedt, Combustion and Flame 156 (11) (2009) 2117-2128 DOI 10.1016/j.combustflame.2009.04.005.