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I. Background and motivations

a. Oxy-fuel combustion

BIGCO2 project considers it as a great
potential among the CCS technologies

CO2 capture achieved through simple 
water removal from flue gas

High flame temperature reduced by using
flue gas recirculation

Great potential for retro-fitting current
gas-fired plants

Main limit: O2 supply is energy-consuming

Literature:
- Well documented for system and processes
- Not well documented about fundamentals on
CO2-diluted oxy-fuel flames

CH4 + O2 → CO2 + 2 H2O
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I. Background and motivations

b. Research topic

Aims of the research:
- Look at turbulent oxy-fuel flame structure
- Create data library eventually used for 
validation of turbulent combustion codes

Specific objective:
- Investigate turbulent non-premixed CO2-diluted 
oxy-fuel jet flame from a coflow burner

Flame properties:
- 32 % O2 in oxidizer
- Overall equivalence ratio: 1.25

Flame %H2 in 
fuel ReFuel

Jet speed 
(m/s)

Coflow 
speed (m/s)

A-1 55 15,000 98.2 0.778

A-2 45 15,000 84.4 0.755

A-3 37 15,000 75.8 0.739

B-1 55 12,000 78.6 0.622

B-2 55 15,000 98.2 0.778

B-3 55 18,000 117.8 0.933

Coflow burner
- Fuel nozzle:

- Fuel: CH4/H2
- 5mm ID
- Wall thickness 0.5 mm
- Squared-off end

- Coflow tube:
- Oxidizer: O2/CO2
- 96.5 mm ID

- Air coflowing at 0.5 m/s 
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II. Experimental methods

a. Experimental setup

© Sandia National Laboratories

© Sandia National Laboratories

Simultaneous line imaging of
Raman/Rayleigh laser diagnostics

Capture on a single-shot basis:
- Local flame temperatures
- Local Concentrations of CO2, O2, CO, 
N2, CH4, H2O and H2.

Note: CO-LIF and OH-PLIF not used 
here.

Laser system:
- 3 frequency-doubled Nd:YAG
- Pulse strecher
- 1 J/pulse at 532 nm for 400 ns

Spatial resolution:
- 0.104 mm along 6-mm section 
of focused beam
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II. Experimental methods

b. Data processing technique

Hybrid method (Fuest, 2011):

- Based on RAMSES spectra simulation code (Geyer, 2005)

-> Generates Raman spectra libraries for most species over large 
temperature range (290 K to 2500 K) relatively to optical setup

-> Short series of calibration measurements (one per species) are sufficient 
to provide most Raman and cross-talk coefficients

- CH4 and some cross-talk coefficients are not available through RAMSES and 
are found with calibration measurements over the temperature range

Corrections:

- Signals corrected for CCD background, flat-field, total Nd:YAG laser energy, 
interferences from laser induced fluorescence, broadband flame luminosity, 
beam steering through flames and bowing effect through Raman optics
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II. Experimental methods

c. Limits and uncertainties

Scalar Precision
σ (%)

Accuracy (flat 
flames, %)

Accuracy (turbulent 
flames, %)

T 0.6 2 2

N2 0.7 2 3

CO2 3.0 4 6

H2O 2.2 3 6

FB 2.1 5 8

CO 5 10 10

H2 7.5 10 10 (Barlow, 2009)

Limits:
- Soot formation at the flame tip leading to interferences on spectra
- OH-PLIF and CO-LIF could not be applied
- Jet Reynolds number limited by CO2 supply

Uncertainties:
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III. Results analysis

a. Localized extinction (1/3)

Localized extinction: 
- Occurs when turbulent mixing rates between fuel and oxidizer become 
competitive with critical rates of chemical reactions
- Takes place in the near-field
- Probability of localized extinction increases with decreasing H2 content in fuel 
and increasing jet Reynolds number.
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III. Results analysis

a. Localized extinction (2/3)

Leads to local temperatures 
drops due to increasing heat 
removal rates from 
convection and diffusion 
along with decreasing 
chemical reaction rates.

Fully burning probability:
- Enables to quantify the degree of extinction
- Based on pdf of temperatures above Tb in the mixture 
fraction region FB-St ± σ
- Here, with Tb = 1700 K and σ = 0.02
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III. Results analysis

a. Localized extinction (3/3)

Flame structure:
- Unburnt oxidizer shows up in the fuel-rich region (cf. O2 mass fraction)
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III. Results analysis

b. Differential diffusion (1/3)

Comparison with laminar diffusion flame calculations:
- Match made with CO mass fraction
- Near-field: strong influence of differential diffusion
- Downstream: shift towards equal diffusivities transport regime
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III. Results analysis

b. Differential diffusion (2/3)

Differential diffusion parameter:
- Strong influence in near-field but plays minor role farther downstream
- Rich-side less affected by differential diffusion
- Calculations show that influence of differential diffusion is reduced with lower 
H2 content in fuel.

z = FH - FC
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III. Results analysis

b. Differential diffusion (3/3)

B-1   z/d = 3A-3   z/d = 3 A-3   z/d = 20A-3   z/d = 1
Reaction zone:

Stronger influence 
when the reaction 
zone is very thin 
compared to 
molecular diffusivity 
length scales. 

-> Helps diffusion of 
small molecules 
such as H2 through 
the reaction zone. 

-> Less influence 
farther downstream 
as the reaction zone 
thickens
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III. Results analysis

c. High CO levels

Conditional mean of CO mass fraction locally reached up to 0.18

Due to high CO2-dilution levels:
- CO2 was not inert but competed primarily with O2 for atomic hydrogen and lead to 

formation of CO through the reaction CO2 + H → CO + OH 
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IV. Conclusions and remarks

The objective was to investigate the influence of H2 content in fuel and jet Reynolds 
number on localized extinction and flame structure

Localized extinction:
- Higher contents of O2 on the rich side of the flame
- Fully burning probability was calculated

Differential diffusion:
- Significant level of differential diffusion in the near-field
- Farther downstream, minimized influence as reaction zone thickens

CO levels:
- Enhanced CO2 + H → CO + OH  reaction leading to high CO levels

Next steps: 
- Make the whole set of results available
- Investigation of influence of O2 content in oxidizer
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Thank you for your attention!

Contact: Alexis.sevault@ntnu.no
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