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Abstract

The Cartesian grid method is an alternative to the existing methods to solve
a physical problem governed by partial differential equations (PDEs) compu-
tationally. Researchers are interested in this method due to its simplicity of
grid generation, less computational effort and ease of implementation into a
computer code. One of the other options to solve a physical PDE problem is
by the body-fitted grid method. In the body-fitted grid method, the boundary
points are grid points. This is not the case with the Cartesian grid method
where the body wall is embedded as a boundary into a Cartesian grid resulting
in irregular cells near the embedded boundary. These irregular cells near the
embedded boundary are known as cut-cells. Instead of using special treat-
ments of the cut-cells or enforcing the presence of the embedded boundary
by adding source terms at the Cartesian grid points near the boundary, the
kinematic and other boundary conditions can be introduced in the Cartesian
grid method via ghost points. Those grid points which lie inside the embedded
boundary and are also a part of computation are called ghost points. Inactive
grid points inside the embedded boundary are referred to as solid points.

In the present Cartesian grid method, based on a ghost point treatment,
local symmetry conditions are imposed at the embedded wall boundary. The
ghost point treatments available in the literature are difficult to implement due
to complex procedures. We are introducing a new approach to approximate the
kinematics of the embedded boundary by a very simple ghost point treatment
called the simplified ghost point treatment. In this approach, we consider the
grid lines in the x- and y- directions as approximations of the lines normal to
the embedded boundary depending on whether the angle between the normal
and the x- or y-directions is closer.

For 1D hyperbolic nonlinear systems of conservation laws, we use the moving
normal shock wave as a test case for the 1D compressible Euler equations.
For the 2D compressible Euler equations, we test the simplified ghost point
treatment for an oblique shock wave generated by a wedge. Then, we verified
our approach for slender bodies, namely for supersonic flow over a circular arc
airfoil and for transonic flow over a circular arc bump in a channel. In a final
problem, we applied the simplified ghost point treatment to blunt body flow
and considered supersonic flows over a cylinder using the 2D compressible
Euler and Navier-Stokes equations. The results are good or comparable to
those found in the existing literature.

v





Preface
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Chapter 1

Introduction

Computational Fluid Dynamics, or CFD in short, has been an emerging al-
ternative field to the experiment. CFD is increasingly becoming important in
rheology, astrophysics, vehicle design, aircraft industry, aeroacoustics and me-
teorology. This has also introduced new fields such as computational rheology,
computational biology, computational science and engineering and computa-
tional astrophysics [2]. Recently, scientists have been able to simulate tsunami
waves with the help of CFD [3, 4]. This is an important development to save
the precious lives of people from such a devastating catastrophe. The reason of
the fame of CFD is due to its effectiveness in the solution of a complex problem
at the minimum cost as compared to the laboratory experiment. Generally,
the test of a physical problem requires a huge amount of money in the lab.
On the other hand, in CFD, thanks to the progress in computer technology,
we can test the same problem on a computer with minimum cost and can find
out the advantages and disadvantages of a particular idea. Even though the
experiments are successful due to accuracy, as it is more close to the reality,
but it costs large amounts of money to repeat an experiment. CFD, however,
is the solution to repeat the same problem and suggest a correction in the
experiment [2].

Since the introduction of a computer and the development of more powerful
computers, the interest in CFD has increased exponentially. This development
in computer technology also made the researcher capable of introducing new
ideas in science and engineering. In the early 1980’s, the solutions to the 2D
and 3D Euler equations were available [2]. After the solution of inviscid flows,
the interest in viscous flows has increased, leading to the search of solutions
for the Navier-Stokes equations [2]. This was the time when body-fitted struc-
tured grid methods were used [5, 6]. The structured grid method solved many
complex problems for the Euler and Navier-Stokes equations. In the 1990’s,
unstructured grid method appeared in the literature [7]. In the unstructured
grid method, the computational domain contains triangles, tetrahedra, prisms
and pyramids [2]. An unstructured grid can be composed of a mixture of
different elements. The important step in both structured and unstructured
grid method is to preserve the conservation properties [2]. The structured
grid method is more efficient in terms of accuracy and CPU time than the un-
structured grid method [2]. Although, the standard body-fitted grid method
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(structured and unstructured grid methods) has gained popularity due to suc-
cessful results in solving difficult problems, this method requires a lot of effort
to generate a grid. This is especially true for unstructured grid methods where
extensive effort is required to generate a grid. Nevertheless, the unstructured
grid method is often preferred, because unstructured grid generation can more
easily be automatized than structured grid generation for complex domains.

The Cartesian grid method is an alternative to the standard body-fitted
grid method. The Cartesian grid method [8, 9, 10, 11, 12] has been becoming
popular in the researcher community due to its ability to solve the problem
with ease and less computational effort for grid generation. The grid adapta-
tion is also possible in the Cartesian grid method. The Cartesian grid method
was introduced for incompressible flow in a famous paper [13]. In this ap-
proach, a force term is added in the incompressible momentum equation to
enforce the presence of the immersed boundary by kinetic conditions on the
Cartesian grid. But this approach is not so practical for compressible flow due
to sensitive coupling of all variables. It is named as the immersed boundary
method for incompressible flows, while for compressible flow this method is
often termed as the Cartesian grid method. The difference between the body-
fitted and the Cartesian grid methods lies in the representation of the body
boundaries on the grids. In the standard body-fitted grid method, the bound-
ary points are grid points. On the other hand, the embedded boundary in the
Cartesian grid method intersects the grid lines arbitrarily, hence producing
irregular cells near the embedded boundary. The key to solving the Euler and
Navier-Stokes equations lies near the embedded boundary where the grid is
not regular. Since the cells near the embedded boundary are not regular, we
can use different approaches to solve the problem.

1.1 The Cartesian Grid Method

The Cartesian grid method contains uniform grid spacings in x- and y-directions
except near the embedded boundary where the grid is irregular. The random
intersection of the embedded boundary and the grid lines creates irregular
cells near the embedded boundary. These irregular or cut-cells create prob-
lems for the scheme to be implemented. Due to these cut-cells, the stencils
near the embedded boundary require special treatment. Another weakness of
this Cartesian grid method is the stability issue due to the cut-cells. Near
the embedded boundary, the time step restriction is quite severe. The time
restriction is even more severe for the compressible Navier-Stokes equations
due to the presence of boundary layers. One of the solutions is to merge these
cut-cells with neighboring cells [14]. Another approach to deal with irregular
cells near the embedded boundary is to use the h-box method [15]. The basic
idea of the h-box method is to calculate the fluxes at the faces of the small
cells. Apart from that, a new approach called Building-Cube Method has
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been introduced [16]. In this method, a high density mesh is proposed on the
Cartesian grid. Near the wall boundary, a staircase with a high resolution is
produced to capture the features in the boundary layer. With the Building-
Cube Method, complex geometries can be treated, adaptive grids can be used,
and higher order schemes can be implemented.

Another approach is to use ghost point treatment near the embedded bound-
ary. In [17], one such ghost point treatment is introduced near the embedded
boundary. In this research work, we have also opted to use ghost point treat-
ment rather than the above mentioned treatments near the embedded bound-
ary. Since this approach is quite easy to implement into a computer program
relative to the above mentioned treatments.

One of the weaknesses of the Cartesian grid method is the lack of accuracy
near the embedded boundary. Due to the irregular cells near the embedded
boundary, we are bound to lose accuracy while using this method.

Fig. 1.1 shows an example of the Cartesian grid for a flow over a wedge.
As mentioned above, due to the arbitrary intersection of the grid lines and an
embedded boundary, the boundary points and grid points do not coincide with
each other. On the other hand, Fig. 1.2 shows a structured body-fitted grid
where the boundary points of the circular arc airfoil are grid points. Hence,
in the body-fitted grid method we do not need a ghost point treatment near
the embedded boundary.

Wedge

Figure 1.1: Embedded wedge in the Cartesian grid.

In this thesis, we investigate the accuracy of the Cartesian grid method
for 1D and 2D nonlinear PDEs. We impose wall boundary conditions at the
embedded boundary. The key to the Cartesian grid method is the ghost point
treatment near the embedded boundary. The main motivation of this thesis
is to introduce a simple ghost point treatment near the embedded boundary
for the Cartesian grid method. The ghost point treatments existing in the
literature are quite involved and difficult to apply. We are introducing a
new approach to handle the ghost points near the embedded boundary. The
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Figure 1.2: Standard body-fitted grid of a circular arc airfoil.

ghost point treatment introduced in this thesis is called the simplified ghost
point treatment. The simplified ghost point treatment is not only easy to
implement into a computer program, but also the order of the method can
easily be increased.

This thesis is outlined as follows. In Chapter 2, we present the governing
equations as well as the boundary conditions for the 2D compressible Euler and
Navier-Stokes equations. The introduction of the numerical methods is given
in Chapter 3. In Chapter 4, we give a brief overview of ghost point treatment
near the embedded boundary presented in [1]. The new approach called the
simplified ghost point treatment is also presented in Chapter 4. Results for
the 2D compressible Euler and Navier-Stokes equations are shown in Chapters
5 and 6, respectively. Conclusions are drawn in Chapter 7. Research papers
are given after Chapter 7.
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Chapter 2

Governing Equations

The motion of fluids is governed by the following fundamental conservation
laws

1. Conservation of mass

2. Conservation of momentum

3. Conservation of energy

The first conservation law states that the mass of the fluid remains con-
served. The second conservation law says that the motion of the fluid is based
on Newton’s second law of motion. The third conservation law is the first law
of thermodynamics for fluid motion.

In CFD, the conservation laws of mass, momentum and energy for a com-
pressible fluid are referred to as the compressible Navier-Stokes equations. For
inviscid flow, they simplify to the compressible Euler equations. Before mov-
ing on to these governing equations, it is important to be familiar with the
Burgers’ equation as a model equation.

The aim of this chapter is to introduce the reader not only to the model
equation but also to the governing equations for compressible inviscid and
viscous flows. The other purpose of this chapter is to include the basics of
boundary conditions necessary for numerical solutions.

This chapter is organised as follows. In section 2.1, the Burgers’ equation is
presented. The definition for compressible flow and the equations of state for
perfect gas is given in sections 2.2 and 2.3. The governing equations for the
2D compressible Euler and Navier-Stokes equations are presented in sections
2.4 and 2.5. Boundary conditions for the Euler and Navier-Stokes equations
are given in sections 2.6 and 2.7.

2.1 Burgers’ Equation

In order to understand the convection and diffusion of the fluid, we choose the
1D Burgers’ equation as a model equation. The 1D Burgers’ equation is given
as [18, 19]
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∂u

∂t
+

∂ u2

2

∂x
= ν

∂2u

∂x2
, (2.1)

with initial condition

u(x, 0) = f(x). (2.2)

The boundary conditions are given as

u(L1, t) = g(xa, t), u(L2, t) = g(xb, t). (2.3)

In (2.1), u is the conservative variable, and ν is the kinematic viscosity. The
equation (2.1) reduces to the inviscid Burgers’ equation for ν = 0. The detailed
solution of the inviscid Burgers’ equation is given in Paper 2 for a test case
with periodic boundary conditions u(0, t) = u(1, t).

2.2 Compressibility

In nature, certain fluids exist which largely retain their density when pressure
is applied on them. On the other hand, if the pressure is applied to gases, then
the density of the gases can be affected. If the density changes significantly
with the flow of the applied pressure, then the fluid is called a compressible
fluid. Its flow is called as compressible flow. The compressibility of the fluid
is also related to the speed of sound. We can relate the velocity of fluid to the
speed of sound by the Mach number [20]

M =
u

c
, (2.4)

where u is the velocity of the flow and c is the speed of sound. If the Mach
numberM < 0.3 and acoustic effects can be neglected, then the fluid is treated
as incompressible [20]. The speed of sound for a perfect gas is defined as

c =

√(
∂p

∂ρ

)
s

=

√
γp

ρ
. (2.5)

In (2.5), p, ρ, s and γ are pressure, density, entropy and ratio of specific heats,
respectively. The flow is categorized based on the value of Mach number M .

1. M < 1, subsonic flow

2. M > 1, supersonic flow

3. M = 1, sonic flow

4. M > 5, hypersonic flow

8



2.3 Equations for Perfect Gas

In this section, we consider the equations of state for perfect gas. The relation
between pressure p, density ρ and temperature T is given as

p = ρRT (2.6)

where T is temperature and R = cp− cv is the gas constant. cp and cv are the
specific heats at constant pressure and volume, respectively. The gas constant
is R = 287 m2

s2K for air at standard conditions. The specific internal energy and
enthalpy are given by

e = cvT, h = cpT. (2.7)

If we combine (2.6) and (2.7) then we obtain the following relationship for
pressure

p = (γ − 1)(ρE −
1

2
ρ(u2 + v2 + w2)), (2.8)

where E, u, v, w are the total energy and velocities in x-, y- and z-directions,
respectively. The above equation (2.8) is generally used to compute pressure
for perfect gas when solving the compressible Euler and Navier-Stokes equa-
tions, cf. below.

2.4 Compressible Euler Equations

The 2D compressible Euler equations serve as a model for 2D nonlinear hy-
perbolic systems. The 2D compressible Euler equations in conservative form
read

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0, (2.9)

where

U =

⎡
⎢⎢⎣

ρ
ρu
ρv
ρE

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p
ρuv

(ρE + p)u

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
(ρE + p)v

⎤
⎥⎥⎦ . (2.10)

In (2.10), ρ, u, v, E, and p denoting density, velocity components in x-and
y-directions, total energy per unit mass and pressure, respectively.

As mentioned above for perfect gas, we have the following relation

p = (γ − 1)(ρE −
1

2
ρ(u2 + v2)), (2.11)

where γ is the ratio of specific heats. We consider γ = 1.4 for air.
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If we insert v = 0 and ∂u
∂y

= 0 in (2.9) - (2.11) then we get 1D compressible

Euler equations. If we consider U = [u1, u2, u3]
T and flux function F =

[F1, F2, F3]
T and remove the y-momentum equation, then the Jacobian matrix

for the 1D compressible Euler equation can be written as

∂F

∂U
=

⎡
⎢⎢⎢⎢⎢⎣

∂F1

∂u1

∂F1

∂u2

∂F1

∂u3
∂F2

∂u1

∂F2

∂u2

∂F2

∂u3
∂F3

∂u1

∂F3

∂u2

∂F3

∂u3

⎤
⎥⎥⎥⎥⎥⎦ . (2.12)

The eigenvalues of the Jacobian matrix (2.12) for the 1D Euler equations are
λ1 = u + c, λ2 = u, λ3 = u − c. If all the eigenvalues are real and the
eigenvectors of ∂F

∂U
are linearly independent, then the system is hyperbolic. A

closer look at the eigenvalues λ1, λ2 and λ3 shows that all these eigenvalues
are real and distinct. Thus, the 1D compressible Euler equations constitute a
hyperbolic system [21]. Similarly, the 2D compressible Euler equations are a
hyperbolic system.

2.5 Compressible Navier-Stokes Equations

The 2D compressible Navier-Stokes equations in conservative form read as [22]

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0, (2.13)

where

U =

⎡
⎢⎢⎣

ρ
ρu
ρv
ρE

⎤
⎥⎥⎦ , (2.14)

F =

⎡
⎢⎢⎣

ρu
ρu2 + p− τxx
ρuv − τxy

(ρE + p)u− uτxx − vτxy + qx

⎤
⎥⎥⎦ , (2.15)

G =

⎡
⎢⎢⎣

ρv
ρuv − τxy

ρv2 + p− τyy
(ρE + p)v − uτxy − vτyy + qy

⎤
⎥⎥⎦ , (2.16)

with ρ, u, v, E, and p are density, velocities in x- and y-directions, total energy
per unit mass and pressure, respectively.

For perfect gas we have the following relation
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p = (γ − 1)(ρE −
1

2
ρ(u2 + v2)). (2.17)

The components of the shear stress and heat flux vector introduced in (2.15)
and (2.16) are given as [22]

τxx =
2

3
μ(2

∂u

∂x
−

∂v

∂y
), (2.18)

τyy =
2

3
μ(2

∂v

∂y
−

∂u

∂x
), (2.19)

τxy = τyx = μ(
∂u

∂y
+

∂v

∂x
), (2.20)

qx = −k
∂T

∂x
, (2.21)

qy = −k
∂T

∂y
. (2.22)

The Sutherland’s formula can be used to find the viscosity

μ =
C1T

3

2

T + C2
, (2.23)

where C1 and C2 are constants for a given gas with C1 = 1.458 × 10−6 kg

ms
√
K

and C2 = 110.4 K. We consider γ = 1.4 for air. The results presented in this
thesis are only obtained for a constant viscosity. The Prandtl number is used
to find the thermal conductivity

k =
cpμ

Pr
. (2.24)

For air at standard conditions Pr = 0.72. The specific heat at constant
pressure cp can be determined by the following equation

cp =
γR

γ − 1
. (2.25)

The value of cp is 1004.5 m2

s2K . Similarly, we get the specific heat at constant
volume cv from

cv =
R

γ − 1
. (2.26)

The value of cv is 717.5 m2

s2K .
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2.6 Boundary Conditions for Euler Equations

One of the important steps to solve the 2D compressible Euler equations is to
correctly prescribe boundary conditions. In a hyperbolic system, all the infor-
mation travels on the characteristics. The slope of the characteristics decides
how to implement boundary conditions. If the eigenvalues of the Jacobian ma-
trix of the flux in the inner normal direction are positive, then the information
travels from exterior to the interior. In this case, physical boundary conditions
must be given. If the propagation is from the interior to the exterior of the
domain, then numerical boundary condition must be given. In conclusion, the
sign of eigenvalues will define to use numerical or physical boundary conditions
[23].

2.6.1 Subsonic Inflow

In Fig. 2.1, we show the characteristics for subsonic inflow. If the inlet flow is
subsonic, then two eigenvalues are positive and one is negative. So we need to
prescribe three boundary conditions and one numerical boundary condition.

t

n

Exterior Interior

Figure 2.1: The subsonic inflow.

2.6.2 Subsonic Outflow

In Fig. 2.2, we show the characteristics for subsonic outflow. At the subsonic
outlet boundary, two eigenvalues are negative and one eigenvalue is positive.
Therefore, three numerical and one physical boundary condition must be set
at the outlet.

12



t

n

Interior Exterior

Figure 2.2: The subsonic outflow.

2.6.3 Supersonic Inflow

In Fig. 2.3, we show the characteristics for supersonic inflow. All the eigenval-
ues are positive so all boundary conditions must be physical and no numerical
boundary conditions must be given.

t

n

Exterior Interior

Figure 2.3: The supersonic inflow.

2.6.4 Supersonic Outflow

In Fig. 2.4, we show the characteristics of supersonic outflow. Since all eigen-
values are negative so all boundary conditions must be numerical. Numerical
boundary conditions can be given by extrapolation.
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t

n

Interior Exterior

Figure 2.4: The supersonic outflow.

2.6.5 Solid Wall Boundary Conditions

No mass or other convective fluxes penetrate through a solid wall. This implies
that the normal velocity is zero. One eigenvalue is positive so we need one
physical boundary condition. The other variables, i.e. tangential velocity
components, density and pressure have to be determined [23].

2.7 Boundary Conditions for Navier-Stokes Equations

2.7.1 No-Slip Boundary Conditions

At the stationary solid wall we use no-slip boundary conditions uw = 0 = vw.
This means the velocity of the fluid at the solid wall is equal to the velocity
of the wall.

2.7.2 Adiabatic Walls

For an adiabatic wall, there is no heat flux through the solid wall. Mathemat-
ically it means

∂T

∂n
= 0 (2.27)

at the solid wall.

2.7.3 Isothermal Walls

At the solid surface we can also keep the temperature fixed

T = Tw (2.28)
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Chapter 3

Numerical Methods

In this chapter, basic concepts of numerical methods are introduced. We focus
on finite volume methods to compute shock waves.

Two important distinctions can be made: shock capturing and shock fit-
ting numerical schemes. Then the important step is to discretize the basic
equations. The introduction of explicit methods is also given in this chapter.

This chapter is organised as follows. The discussion on shock capturing
or shock fitting methods is presented in section 3.1. The differentiation of
different types of discretization methods is drawn in section 3.2 The distinc-
tion between cell-vertex and cell-centred is drawn in section 3.3. The spatial
discretization for the 2D compressible Euler equations is presented in section
3.4. The total variation diminishing (TVD) property is defined in section 3.5.
Courant-Friedrichs-Levy (CFL) condition, MUSCL and spatial discretization
for the 2D Navier-Stokes equations are presented in sections 3.6, 3.7 and 3.8,
respectively. Time discretization is explained in section 3.9.

3.1 Shock Computations

The compressibility of the fluid can produce discontinuities in a solution. The
inviscid Burgers’ equation shows that nonlinearity in the model equation can
generate discontinuities [2]. A numerical method handles shocks in one of the
two following ways:

1. Shock Capturing Methods

2. Shock Fitting Methods

3.1.1 Shock Capturing Methods

Shock capturing techniques are very famous in the research community. This
is due to the fact that this method is easy to implement to compute shock
waves.

In this method, the governing equations are written in conservation form to
capture shocks. Total Variation Diminishing (TVD) schemes like the Godunov
method or approximate Riemann solvers can be used to compute shocks. The
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shocks captured in this way are quite smeared. In this method, contrary to
shock fitting methods, the location of the shock is not treated as a sharp dis-
continuity and moving boundary, but captured approximately over a number
of cells [2, 23, 22].

3.1.2 Shock Fitting Methods

Though, shock capturing methods are famous but the shock produced in this
process is quite smeared. To capture shocks correctly one uses shock fitting
methods. In this method, the exact location of the shock is calculated from
the compressible Euler equations using the Rankine-Hugoniot conditions at
the shock boundary, which is allowed to move [2].

3.2 Basic Discretization

Three basic kind of discretization schemes exist to solve a physical problem
governed by PDEs

1. Finite Volume Method (FVM)

2. Finite Difference Method(FDM)

3. Finite Element Method (FEM)

In FVM, a variable is placed at the centre of cells and the quantity is
averaged over the cells. The derivation involves the integrals which ensure
conservation properties and capturing discontinuities. The disadvantage of
this discretization is the difficulty of increasing the order of the method. It is
not effective due to low order restriction for high accuracy demands.

In FDM, the quantities are placed at the nodes of a grid. The advantage
involves the implementation in computer programs apart from the application
to higher order methods. For the first and second order discretizations, the
FVM and FDM are the same on Cartesian grids, except for the boundary
treatments.

One of the powerful techniques in numerical methods is FEM. In FEM, the
variables are distributed on the elements. The advantage of FEM is that it
is known for handling a complex geometry relatively easily as compared to
FDM.

3.3 Cell-Centred Scheme vs Cell-Vertex Scheme

We focus on finite volume methods, because their conservation property is a
prerequisite to correctly capture shocks. The computational domain can be
discretized by cells, elements or nodes. The solution data can be presented on
the computational domain in one of two ways:
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1. Cell-centred scheme

2. Cell-vertex scheme

3.3.1 Cell-Centred Scheme

In cell-centered schemes, the data is placed at the centroid of the cells and
represented as cell averages. The fluxes are calculated at the cell faces.

3.3.2 Cell-Vertex Scheme

In the cell-vertex scheme, the variables are located at the nodes contrary to
the cell-centred scheme. In some cases, the cell-vertex scheme is more suitable
and the cell-centred scheme in others. If we consider the accuracy between
cell-centred and cell-vertex schemes, then the cell-vertex scheme is first order
accurate even on deformed grids, while the cell-centred scheme might become
inconsistent [2].

3.4 Spatial Discretization for Compressible Euler

Equations

The node-centred finite volume method yields the following semi-discretization
of the 2D compressible Euler equations (2.9)

dUi,j

dt
= −

Fi+ 1

2
,j − Fi− 1

2
,j

Δx
−

Gi,j+ 1

2

−Gi,j− 1

2

Δy
. (3.1)

Where Ui,j is the approximation of the average of U in the cell

Ωi,j = [xi −
Δx
2 , xi +

Δx
2 ]× [yj −

Δy
2 , yj +

Δy
2 ], i.e.

Ui,j ≈
1

Δx.Δy

∫
Ωi,j

U(x, y, t) dxdy. (3.2)

If we interpret (3.1) as a conservative finite difference method, Ui,j is an ap-
proximation of the exact solution U(xi, yj, t). Fi+ 1

2
,j and Gi,j+ 1

2

are numerical

fluxes for the 2D compressible Euler equations. The vector of the conservative
variables U and the flux vectors F and G are defined in (2.10). We focus here
on the following numerical flux functions.

3.4.1 Local Lax-Friedrichs Scheme

The dissipative numerical fluxes of the local Lax-Friedrichs method for F and
G are defined as follows
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F lLF
i+ 1

2
,j
=

1

2
[F (Ui,j) + F (Ui+1,j)−max(|ui+1,j|

+ci+1,j , |ui,j|+ ci,j)(Ui+1,j − Ui,j)] , (3.3)

GlLF
i,j+ 1

2

=
1

2
[G(Ui,j) +G(Ui,j+1)−max(|vi,j+1|

+ci,j+1, |vi,j|+ ci,j)(Ui,j+1 − Ui,j)] . (3.4)

In equations (3.3) and (3.4), c is the speed of sound.

3.4.2 Lax-Friedrichs Scheme

The more dissipative Lax-Friedrichs fluxes for F and G are defined as

FLF
i+ 1

2
,j
=

1

2

[
F (Ui,j) + F (Ui+1,j)−

Δx

Δt
(Ui+1,j − Ui,j)

]
, (3.5)

GLF
i,j+ 1

2

=
1

2

[
G(Ui,j) +G(Ui,j+1)−

Δy

Δt
(Ui,j+1 − Ui,j)

]
, (3.6)

where Δx, Δy and Δt are spatial and temporal spacings.

3.5 Total Variation Diminishing (TVD)

We consider a two-level method for a scalar conservation law ut + f(u)x = 0
like the inviscid Burgers’ equation. Let un denote a grid function vectors (unj ),

j = −∞, ...,∞, at time tn = n.Δt. Let un+1 denote the numerical solution
of the two-level method of time tn+1. The two-level set method is called total
variation diminishing (TVD) if for any data un the numerical solution un+1

satisfies

TV (un+1) ≤ TV (un), (3.7)

where TV (u) =
∑

j |uj+1 − uj |. The meaning of the above equation (3.7) is
that the total variation of u is non-increasing. The idea of the TVD is to
prevent oscillations in the schemes. Usually, in numerical methods, the total
variation can increase or decrease with time. Discontinuities in computational
domain cause oscillations. The prevention of such oscillations can be achieved
by adding an extra term called numerical dissipation. The numerical dissi-

pation in the numerical flux is based on the characteristic speed
∣∣∣f ′

(u)
∣∣∣ for

the local Lax-Friedrichs scheme and Δx
Δt

for the Lax-Friedrichs scheme. Such
dissipative schemes are quite suitable for discontinuities.
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3.6 Courant-Friedrichs-Levy Condition

The CFL number for the 2D compressible Euler equations is defined as

CFL = Δtmax
i,j

(
sp(A1(Ui,j))

Δx
+

sp(A2(Ui,j))

Δy

)
, (3.8)

where sp(A1(Ui,j)) and sp(A2(Ui,j)) are the spectral radii of the Jacobian
matrices A1 = ∂F

∂U
and A2 = ∂G

∂U
, respectively. The CFL condition for the

explicit Euler method reads: CFL ≤ 1.

3.7 MUSCL

At cell face xi+ 1

2
,j between cells (i, j) and (i+ 1, j), the left and right extrap-

olated variables in the MUSCL (Monotone Upstream-centered Schemes for
Conservation Laws) approach [25] are defined as

UL
i+ 1

2
,j
= Ui,j +

1

2
minmod(Ui,j − Ui−1,j, Ui+1,j − Ui,j), (3.9)

UR
i+ 1

2
,j
= Ui+1,j −

1

2
minmod(Ui+2,j − Ui+1,j, Ui+1,j − Ui,j), (3.10)

where

minmod(a, b) =

⎧⎨
⎩
a if |a| ≤ |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0

(3.11)

= sign(a)max {0,min {|a| , sign(a)b}}

is the minmod limiter. The left and right variables Ui,j and Ui+1,j are replaced
by the extrapolated variables UL

i+ 1

2
,j
and UR

i+ 1

2
,j
to calculate the flux Fi+ 1

2
,j in

(3.3) and (3.5). The MUSCL approach is applied similarly to the numerical
fluxes Gi,j+ 1

2

in (3.4) and (3.6).

3.8 Spatial Discretization for Compressible
Navier-Stokes Equations

The Navier-Stokes equations contain convective and viscous fluxes. The dis-
cretization of the convective fluxes is the same as for the 2D compressible Euler
equations. In this section, we explain the discretization of viscous fluxes. The
five point stencils is shown in Fig. 3.1. Let us consider only the normal com-
ponent, for the sake of understanding, of the viscous stress which is given
as
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τxx =
2

3
μ(2

∂u

∂x
−

∂v

∂y
). (3.12)

The discretization of first term on the right hand side of (3.12) is as follows

4

3
μ
∂u

∂x
|i− 1

2
,j ≈

4

3
μ
ui,j − ui−1,j

Δx
, (3.13)

similarly, we can discretize second term on the right hand side of (3.12) as

2

3
μ
∂v

∂y
|i− 1

2
,j ≈

2

3
μ
vi,j+1 − vi,j−1 + vi−1,j+1 − vi−1,j−1

4Δy
. (3.14)

The discretization of the other terms involved in viscous fluxes can be dis-
cretized following the above path.

i - 1, j + 1

i - 1, j - 1 i, j - 1

i, j

i, j + 1

i - 1, j i + 1, j

i + 1, j -1

i + 1, j +1

Figure 3.1: Nine point stencil for viscous flows.

3.9 Time Discretization

The spatial discretization above leads to a system of ordinary differential equa-
tions (ODEs)

dU

dt
= R(U), (3.15)

with initial condition

U(x, 0) = U0(x), (3.16)

where U and R represent the grid functions of variable and residual, respec-
tively.

Two main types of methods exist to discretize any partial differential equa-
tions (PDEs) in time. One is the explicit and another is the implicit method.
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Since this thesis only deals with explicit methods because of their ease of ap-
plication, we do not use implicit schemes. In this thesis, we discuss explicit
first and third order time discretization schemes.

3.9.1 Explicit Euler Method

The time discretization with the explicit Euler method reads

Un+1 −Un

Δt
= R(Un), (3.17)

where R is the residual.

3.9.2 Explicit Third Order Runge-Kutta Method

The total variation diminishing third order Runge-Kutta method (TVD RK3)
is defined as

U(1) = Un +ΔtR(Un),

U(2) =
3

4
Un +

1

4
U(1) +

1

4
ΔtR(U(1)),

U(n+1) =
1

3
Un +

2

3
U(2) +

2

3
ΔtR(U(2)), (3.18)

where R is the residual.
The stability region of this method contains on the real axis [−2.5, 0] and

[−1.732, 1.732] on the imaginary axis.
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Chapter 4

Ghost Point Treatments

In this chapter, we present the treatment near the embedded boundary for the
Cartesian grid method. The main focus of this chapter is to emphasize the
ghost point treatments near the embedded boundary in 2D. The introduction
of the ghost point treatment by Sjögreen and Petersson [1] is also presented
in section 4.1. In the next step, the new approach called the simplified ghost
point treatment for slender and blunt bodies is presented in sections 4.2 and
4.3, respectively. At the end, the ghost point treatment for a 1D problem is
discussed in section 4.4.

4.1 Sjögreen and Petersson Ghost Point Treatment [1]

In this section, the description of the ghost point treatment presented in [1] is
described. In Fig. 4.1, we show a 2D graphical description of the ghost point
treatment at the embedded boundary [1]. The distance of the ghost point
g from the wedge is denoted by b. The straight line through g(i, j) normal
to the wedge is intersecting the horizontal lines at three points denoted by
the vertical lines. At the first intersection point I, the flow variables uI are
obtained by linear interpolation of the values at the neighboring horizontal
grid points. And similarly, the variables uII and uIII are obtained in [1]. The
linear interpolation is defined as

uI = w1ui−1,j+1 + (1− w1)ui,j+1, (4.1)

uII = w2ui−2,j+2 + (1− w2)ui−1,j+2, (4.2)

uIII = w3ui−2,j+3 + (1− w3)ui−1,j+3. (4.3)

Where (i − 1, j + 1), (i, j + 1) etc are neighboring points. w1, w2 and w3 are
the weights.

For flow variables u which have a Dirichlet boundary conditions u = uΓ at
the embedded boundary Γ, i.e. at an impermeable wall u.n = 0 for the Euler
equations and u = 0 = v for the Navier-Stokes equations, the values ui,j at
the ghost point (i, j) are imposed as follows. Points b1 and b2 (not shown in
Fig. 4.1) on the normal through ghost point xg = xi,j are determined with
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a distance Δ and 2Δ from Γ, respectively, where Δ =
∣∣xI − xi,j

∣∣. The ghost
point treatment then explained in [1] interpolates values along the normal.

Linear interpolation is applied for ub1 and ub2 as

ub1 =
b

Δ
uII + (1−

b

Δ
)uI , (4.4)

ub2 =
b

Δ
uIII + (1−

b

Δ
)uII . (4.5)

Then, the minmod limiter Smm is used to determine the boundary slope

SΓ = Smm(ub1 − uΓ, ub2 − ub1). (4.6)

The ghost point value is obtained as follows

ui,j = uΓ −
b

Δ
SΓ. (4.7)

For flow variables u, which do not have physical boundary conditions, simple
extrapolation with limited slope is used in [1]

ui,j = uI − S(uIII − uII , uII − uI), (4.8)

where S is a limiter, e.g. the minmod or another limiter.
Extrapolation (4.8) can give negative density or pressure. In that case, the
following simple extrapolation is employed in [1]

ui,j = uI . (4.9)

I

II

III

b
Δ

Wedge

Solid

Fluid

n

g(i,j)

Figure 4.1: Ghost Point Treatment [1].
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4.2 Simplified Ghost Point Treatment: A New

Approach

In this section, we explain a new approach to determine the ghost point values
near an embedded boundary for slender bodies. Let us consider the y-line and
the normal which are passing through the ghost point G as it is shown in
Fig. 4.2 and Fig. 4.3. The fluid point on the y-line closest to the embedded
boundary is denoted by F . Hence, the y-line is passing through fluid and ghost
points F and G in Fig. 4.2 and Fig. 4.3. Here, we make the assumption that
the y-line can be treated as an approximation to the actual normal line. So
rather than considering the normals to assign value for the ghost points, we
regard the y-lines as the normal lines to assign values to the ghost points from
fluid points. The other assumption we make here is that the wall boundary
is in the middle between fluid point F and ghost point G. This assumption
is usually not true. If it is true, then we get second order accuracy near the
embedded boundary. In the case, when the wall boundary is not in the middle
between fluid point F and ghost point G, we lose accuracy near the embedded
boundary and get only a first order approximation of the ghost point value.
The density ρ, pressure p, and the tangential velocity component at the ghost
point are symmetric with respect to the solid boundary and therefore, directly
determined by their values at F . The normal velocity component un at the
ghost point is anti-symmetric and thus gets the negative value of un at F .

The following mathematical equations are used to determine the ghost point
values

ρG = ρF , pG = pF , uG = uF−2(n1uF+n2vF )n1, vG = vF−2(n1uF+n2vF )n2,
(4.10)

where n1 and n2 are the x-and y-components of the outer unit normal n.

normal y-line

F

G

Figure 4.2: The idea of simplified ghost point treatment for slender bodies.
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F

y-line

G

normal

w

Figure 4.3: Closer look of the fluid and ghost points F and G, respectively, near
the embedded boundary.

4.3 Simplified Ghost Point Treatment for Blunt Bodies

In order to apply the simplified ghost point treatment for blunt bodies, we
need to modify the ghost point strategy of slender bodies. We consider fluid
point F on the grid line in the x-direction, if the angle between the x-axis
and the normal passing through the ghost point is less than 45 degrees in
the first quadrant. If the angle between normal and x-axis is greater than 45
degrees, then we choose fluid point F on the grid line in the y-direction in the
first quadrant. We employ the same strategy in the second, third and fourth
quadrants of the Cartesian grid to choose fluid point F and ghost point G.
We also assume that the embedded boundary lies in the middle of the fluid
point F and the ghost point G. The density ρ, the pressure p, and the tangen-
tial velocity component at the ghost point are symmetric with respect to the
solid boundary and therefore, directly determined by their values at F as for
the slender bodies. The normal velocity component un at the ghost point is
anti-symmetric and thus gets the negative value of un at F.

The mathematical description of this strategy reads

ρG = ρF , pG = pF , uG = uF −2(n1uF +n2vF )n1, vG = vF −2(n1uF +n2vF )n2,
(4.11)

where n1 and n2 are the x- and y-components of the outer unit normal n of the
embedded boundary, i.e. n = xG−xC

|xG−xC| , where xC is the vector of the center of
the cylinder.
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G

F

GF

Figure 4.4: Simplified ghost point treatment for a cylinder.

4.4 Ghost Point Treatment for 1D Embedded Boundary

wall xb

ui
ui−1

ui−2

xixi−1xi−2 xm xg

um

ug = −um

δ1δ1

Figure 4.5: Ghost point treatment in 1D.

In 1D, the boundary ghost point treatment is shown in Fig. 4.5. In Fig.
4.5, the full black circles denote grid points. The embedded boundary is a wall
located between fluid point xi and ghost point xg. The location of the wall is
represented by xb. The procedure to determine the flow variables at the ghost
point in 1D is explained as follows:

Step 1: Find the distance between the ghost point and the wall

δ1 = xg − xb, (4.12)

Step 2: Determine the location of the mirror point xm in the fluid domain

xm = xb − δ1, (4.13)
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Step 3: Apply linear or quadratic interpolation to get the interpolated val-
ues. Linear interpolation yields

Vm = Vi−1 +
Vi − Vi−1

Δx
(xm − xi−1), (4.14)

where V = (ρ, u, p)T is the vector of the primitive variables for 1D com-
pressible Euler equations. For quadratic interpolation, the values of Vi, Vi−1

and Vi−2 are used to determine Vm.
Step 4: Use reflective boundary conditions to obtain the ghost point values

ug = −um, pg = pm, ρg = ρm (4.15)
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Chapter 5

Two-Dimensional Compressible Euler
Equations

First, we test the simplified ghost point treatment presented in Chapter 4
for a very simple problem i.e., an oblique shock wave generated by a wedge.
In the next step, the simplified ghost point treatment is tested for a curved
embedded boundary. We choose a circular arc airfoil for this purpose to test
the ghost point treatment for slender bodies. In this chapter, we present new
results for blunt bodies. The case under consideration is supersonic flow over
a cylinder. We use the first order local Lax-Friedrichs method for spatial
discretization. To increase the order of our method, we use MUSCL with the
minmod limiter. For time integration, we use the first order explicit Euler and
third order total variation diminishing Runge-Kutta (TVD RK3) methods. We
compare our results of supersonic flow over a cylinder with results presented
in the literature.

In section 5.1, the flagging strategy and the ghost point treatment for the
supersonic flow over the cylinder is presented. Boundary conditions are given
in section 5.2. Results are shown and discussed in section 5.3.

5.1 Flagging Strategy and Ghost Point Treatment for

Cylinder

In Fig. 5.1(a), we sketch the flagging strategy for the simplified ghost point
treatment. We flag fluid, ghost and solid points by assigning them 1, 0 and
−1 values, respectively. In Fig. 5.1(b), we show two examples of the choice of
the fluid and ghost points as F and G, respectively, in the second quadrant.
In the simplified ghost point treatment, we consider the fluid point F on the
horizontal or the vertical line through G adjacent to the boundary as the
mirror point depending on the angle between the normal passing through the
ghost point and the x-axis.
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ment for cylinder.

Figure 5.1: Left: Flagging strategy for cylinder. Right: The simplified ghost
point treatment for cylinder.

5.2 Boundary Conditions

For supersonic flow in the x-direction for blunt bodies, the conservative vari-
ables at inflow are given as Dirichlet boundary conditions, cf. Fig. 5.2. No
boundary condition must be given at outflow, because the flow is supersonic.

Extrapolation boundary conditions are given at the lower boundary

∂U

∂y
|lower boundary = 0

Similarly, extrapolation boundary conditions are also assumed at the upper
boundary

∂U

∂y
|upper boundary = 0

5.2.1 Approximation of Boundary Conditions

The inflow boundary conditions for supersonic flow , cf. Fig. 5.2, are imposed
as

U1,j(t) = U∞, (5.1)

where U∞ is the vector of the conservative variables for uniform flow in the
x−direction. The flow variables at the outflow are approximated as

UI,j(t) = UI−1,j(t), (5.2)

i.e. by constant extrapolation. This approximation implies that the upwind
finite volume method is used to determine the numerical fluxes FI− 1

2
,j.
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Lower boundary

Outflow

Upper boundary

Figure 5.2: Boundaries for flow over blunt bodies.

The extrapolation boundary conditions are implemented at the lower bound-
ary

Ui,1(t) = Ui,2(t). (5.3)

The boundary conditions at the upper boundary are treated as

Ui,J(t) = Ui,J−1(t). (5.4)

5.3 Results

We consider a supersonic flow past a cylinder of radius 0.5 m as a test case for
the simplified ghost point treatment. We use the CFL number 0.5, n = 80000
time steps for the first order method, n = 50000 time steps for the second order
method and 321 × 321 grid points. For spatial discretization we use the first
order local Lax-Friedrichs method. To increase the order of the method we use
MUSCL with the minmod limiter. For time integration we use the explicit
Euler method for the first order local Lax-Friedrichs scheme and the third
order TVD RK3 method for the local Lax-Friedrichs scheme with MUSCL
and the minmod limiter. The lengths of the domain in x-and y-directions are
Lx = 4 and Ly = 4, respectively. The supersonic upstream flow conditions are
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M∞ = 3, p∞ = 105 Pa, ρ∞ = 1.2
kg

m3
(5.5)

x

y

Density contours, Number of points =  321x321, CFL= 0.5, Mach number = 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a) Density contours for a supersonic flow over
a cylinder with M∞ = 3.
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Figure 5.3: Left: Density ρ contours for the first order method. Right: Entropy
contours for the first order method. (321 × 321 grid)
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(b) Pressure p contours for supersonic flow over
a cylinder M∞ = 3.

Figure 5.4: Left: Mach number contours for the first order method. Right:
Pressure p contours for the first order method. (321 × 321 grid)

In Figs. 5.3(a) and 5.3(b), we show the density ρ and entropy contours for
the supersonic flow past a cylinder. When the supersonic flow hits the front
part of the cylinder, a shock wave is produced that is called a bow shock.
The bow shock intersects with the upper and lower boundaries of the domain.
The entropy remains constant along streamlines for steady compressible flow,
except for shocks. The entropy is defined by s

cv
= ln( p

p∞
/( ρ

ρ∞
)γ). The flow
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behind the cylinder does not have any physical significance, because the flow
separation depends on viscous effects that are not taken into account here.

Figs. 5.4(a) and 5.4(b) show the Mach number and pressure contours. The
Mach number is uniform upstream of the bow shock. The flow downstream
of the bow shock and in front of the cylinder becomes subsonic. When the
flow passes the front part of the cylinder, then the velocity of the fluid keeps
increasing from the stagnation point at x = −0.5 m and it becomes supersonic
at x ≈ −0.34 m until the outflow boundary except for parts in the unphysical
wake.
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(a) Density contours for the supersonic flow over
a cylinder with M∞ = 3.
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Figure 5.5: Left: Density ρ contours for the second order method. Right: Entropy
contours for the second order method. (321 × 321 grid)
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(b) Pressure p contours for the supersonic flow
over a cylinder M∞ = 3.

Figure 5.6: Left: Mach number contours for the second order method. Right:
Pressure p contours for the second order method. (321 × 321 grid)
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Figure 5.7: Left: Pressure coefficient for the first and second order methods
(Present results with 161 × 161 and 321 × 321 grids) Right: Pressure coefficients
results from [1]. (305 × 305 grid)

In Figs. 5.5(a) and 5.5(b), we show the density ρ and entropy contours for
the supersonic flow past a cylinder for the second order method. As before,
when the supersonic flow hits the front part of the cylinder a bow shock is
produced. This shock wave is now sharper resolved than by the first order
method. As in the first order results, the flow computed behind the cylinder
does not have any physical significance, because the flow separation depends
on viscous effects that are not taken into account to produce these results.

Figs. 5.6(a) and 5.6(b) show the Mach number and pressure contours for
the second order method. The bow shock in front of the cylinder is also quite
sharp compared to the first order results for the Mach numbers and pressure
contours. While density, entropy, Mach number and pressure contours between
bow shock and cylinder are quite similar computed with the first and second
order methods, large differences can be seen in the unphysical wake computed
with the compressible Euler equations, cf. Figs. 5.3 - 5.6.

Finally, we show the first and second order pressure coefficient results in
Fig. 5.7(a) on different grid levels. We draw a comparison of the pressure
coefficient of the simplified ghost point treatment and the results of [1] in Figs.
5.7(a) and 5.7(b). We can see a good agreement of the simplified ghost point
treatment and the results in [1]. In the present results, we see a kink where
we change direction from x- to y-axis for the simplified ghost point treatment.
It is pertinent to note that we observe our 321 × 321 grid results to compare
well with the literature. This shows that we can also achieve similar results
even using our simplified ghost point treatment rather than the more involved
ghost point treatment in [1].
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Chapter 6

Two-Dimensional Compressible
Navier-Stokes Equations

This chapter is a continuation of a test cases used to verify the new approach
called the simplified ghost point treatment. In this chapter, we include the
results for the 2D compressible Navier-Stokes equations. Supersonic flow over
two cylinders has been calculated. This shows the wide range of applicability
of the simplified ghost point treatment. The convective flux is discretized as
for the 2D compressible Euler equations. The viscous terms are discretized
with the central difference scheme. We use second order spatial discretization.
For time integration we use the third order TVD RK3 method.

In section 6.1, the flagging strategy and the simplified ghost point treat-
ment is the same except a slight change in getting the ghost point values of
velocities u and v. The simplified ghost point treatment with modification in
mathematical form is repeated here to make it understandable and to present
the change made in the simplified ghost point treatment for the 2D compress-
ible Navier-Stokes equations. Boundary conditions are given in section 6.2.
Results and discussions are given in section 6.3.

6.1 Flagging Strategy and Ghost Point Treatment for

cylinder

In this section, we repeat the flagging strategy for blunt body, i.e. for cylin-
der. We present this flagging strategy for one cylinder immersed in the com-
putational domain but the results presented contain supersonic flow past two
cylinders.

In Fig. 6.1(a), we sketch the flagging strategy for the simplified ghost point
treatment for 2D compressible Navier-Stokes equations. We flag fluid, ghost
and solid points by assigning them 1, 0 and −1 values, respectively as discussed
in Chapter 4. In Fig. 6.1(b), we show two examples of the choice of the
fluid and ghost points F and G, respectively, in the second quadrant. In
the simplified ghost point treatment, we consider the fluid point F on the
horizontal or the vertical line through G adjacent to the boundary as the
mirror point depending on the angle between the normal passing through the
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ghost point and the x-axis. We consider fluid point F on the grid line in the
x-direction if the angle between the x-axis and the normal passing through
ghost point is less than 45 degrees in the first quadrant. If the angle between
normal and x-axis is greater than 45 degrees then we choose fluid point F on
the grid line in the y-direction in the first quadrant. We employ the same
strategy in the second, third and fourth quadrants of the Cartesian grid to
choose fluid points F and ghost points G. We also assume that the embedded
boundary lies between fluid point F and ghost point G. The density ρ and the
pressure p are symmetric with respect to the solid boundary and are therefore
directly determined by their values at F as before for the 2D compressible
Euler equations. Both the tangential and normal velocity components ut and
un at the ghost point for 2D compressible Navier-Stokes equations are anti-
symmetric and thus get the negative values of ut and un at F . The symmetry
conditions for ρ and p implies that the embedded boundary is assumed to be
an adiabatic wall, i.e. ∂T

∂n
= 0, and that viscous effects on the normal pressure

gradient are neglected, i.e. ∂p
∂n

= 0 is assumed.

The mathematical description of this strategy is given as

ρG = ρF , pG = pF , uG = −uF , vG = −vF , (6.1)

where n1 and n2 are the x-and y-components of the outer unit normal n of
the boundary, i.e. n = xG−xC

|xG−xC| , where xC is the vector of the centre of the
cylinder.
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(b) The simplified ghost point treat-
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Figure 6.1: Left: Flagging strategy for cylinder. Right: The simplified ghost
point treatment for cylinder.
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6.2 Boundary Conditions

For supersonic flow in the x-direction for blunt bodies, the conservative vari-
ables at the inflow are given as Dirichlet boundary conditions as for the 2D
compressible Euler equations, cf. Fig. 6.2. At the embedded boundary, no-slip
boundary conditions are assumed u = 0 = v and an adiabatic wall ∂T

∂n
= 0.

The normal pressure gradient is approximated by ∂p
∂n

= 0.
Extrapolation boundary conditions are given at lower boundary

∂U

∂y
|lower boundary = 0

Similarly, extrapolation boundary conditions are also assumed at upper bound-
ary

∂U

∂y
|upper boundary = 0

Inflow

Lower boundary

Outflow

Upper boundary

Figure 6.2: Boundaries for flow over blunt bodies.

6.2.1 Approximation of Boundary Conditions

The inflow boundary conditions, cf. Fig. 6.2, are imposed as

U1,j(t) = U∞, (6.2)
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where U∞ is the vector of the conservative variables for uniform flow in the
x−direction. The flow variables at the outflow are approximated as

UI,j(t) = UI−1,j(t), (6.3)

i.e. by constant extrapolation.
The extrapolation boundary conditions are implemented at the lower bound-

ary

Ui,1(t) = Ui,2(t). (6.4)

The boundary conditions at the upper boundary are treated as

Ui,J(t) = Ui,J−1(t). (6.5)

6.3 Results

We consider supersonic flow past two cylinders as a test case for the simplified
ghost point treatment. We use the CFL number 0.8 and 141 × 141 grid points.
We use 6000 time steps to calculate the supersonic flow over two cylinders. We
use the second order method (except for extrema) for spatial discretization.
For time integration we use the third order TVD RK3 method. The lengths
of the domain in x-and y-directions are Lx = 4 and Ly = 4, respectively. The
supersonic upstream flow conditions are

M∞ = 3, p∞ = 105 Pa, ρ∞ = 1.207
kg

m3
, P r = 0.72, Re∞ = 500 (6.6)

In Figs. 6.3(a) and 6.3(b), we show the density ρ and Mach number M
contours for the supersonic flow past two cylinders. When the supersonic flow
hits the front part of the cylinder a bow shock is produced, which intersects
with the upper and lower boundaries of the domain. The subsonic wake behind
the first cylinder strikes the second cylinder.

Figs. 6.4(a) and 6.4(b) show the velocities u and v contours. In both of
these Figs. 6.4(a) and 6.4(b) the wake behind the first cylinder hits with the
second cylinder in downstream with low velocity components. We can only
see one bow shock in front of the first cylinder. The wake behind the cylinder
is physical due to the viscous flow simulation.
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(a) Density contours for supersonic flow over
two cylinders with M∞ = 3, Re∞ = 500.
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Figure 6.3: Left: Density ρ contours for second order method. Right: Mach
number M contours for second order method. (141 × 141 grid)
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(a) Velocity u contours for supersonic flow over
two cylinders with M∞ = 3, Re∞ = 500.
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Figure 6.4: Left: Velocity u contours for second order method. Right: Velocity
v contours for second order method. (141 × 141 grid)
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Chapter 7

Conclusions and Outlook

The main aim of this research work was to find an alternative method to treat
the ghost point treatment for the Cartesian grid method. The ghost point
treatments presented in the literature are quite involved and difficult to apply,
as one example of such a ghost point treatment given in Chapter 4 [1] shows.
We introduced a new approach called the simplified ghost point treatment to
treat ghost points near the embedded boundary. This simplified ghost point
treatment is very easy to apply and to implement in computer programs. The
extension from first order to second order is quite easy: we just needed one
additional ghost point for second order. The main advantage of the simplified
ghost point treatment presented in this thesis work is that no interpolation is
needed near embedded boundaries.

The ghost point treatment presented in [1] might be more accurate than
the simplified ghost point treatment. But, the main concern, as mentioned
above, is the procedure of the ghost point treatment mentioned in [1]. It
is a trade off whether to use a more accurate ghost point treatment or use
a simple procedure to obtain ghost point values. The common weakness of
both of these ghost point treatments is the lack of conservation property near
embedded boundaries.

The simplified ghost point treatment is based on two assumptions

1. The x- or y-line passing through fluid and ghost point can be treated as
an approximation of the actual normal at the embedded boundary.

2. The wall boundary is in the middle between fluid and ghost points.

As far as the first assumption is concerned, this is a valid justification.
This assumption is justified quite well as we tested the simplified ghost point
treatment for simple geometries. In fact, the first assumption has made this
treatment very simple. The second assumption is not always true, because the
embedded boundary cuts the grid lines arbitrarily. If the wall boundary is in
the middle of fluid and ghost points then the ghost point values are second
order, otherwise they are first order.

We have also learned from this research work that we need a larger number
of grid points for the Cartesian grid method compared to the body-fitted grid
method. This might be one disadvantage of using the Cartesian grid method.
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We investigated the accuracy of the Cartesian grid method for the 1D and
2D compressible Euler equations as well as for the 2D compressible Navier-
Stokes equations. We used first and second order methods for spatial dis-
cretization. We applied the first order explicit Euler method and the third
order total variation diminishing Runge-Kutta method (TVD RK3) for time
integration. Local symmetry boundary conditions have been applied near
the embedded boundary. For 1D inviscid flows, we tested the code for the 1D
Burgers’ equation and 1D compressible Euler equations. We verified the ghost
point treatment for a moving normal shock wave. To apply the Cartesian grid
method for 2D problems, we introduced a new approach called the simplified
ghost point treatment near the embedded boundary. We first tested this new
approach for a very simple test case, i.e. for supersonic flow over a wedge gen-
erating an oblique shock wave. Then, we moved to slender bodies and tested
this approach for supersonic and subsonic flow over a circular arc airfoil and
a circular arc bump. In order to increase the validity and applicability of the
simplified ghost point treatment for blunt bodies, we chose a supersonic flow
over a cylinder for the 2D compressible Euler equations. We needed to change
the strategy of applying the simplified ghost point treatment for this case as
it is explained in Chapter 4. We successfully applied and tested the simplified
ghost point treatment for simple to more complex problems.

In the end of this research work, we tested the simplified ghost point treat-
ment for the 2D viscous flows. We chose a supersonic flow over two cylinders
for the 2D compressible Navier-Stokes equations. The simplified ghost point
treatment is modified near the embedded boundary for the ghost point treat-
ment in order to implement the no-slip condition near the wall boundary.

The simplified ghost point treatment can be further improved by taking
curvature of the embedded boundary into account. In a current method, the
ghost point values of density and pressure have been directly taken from fluid
points without considering the curvature of the embedded boundary. If we
consider the curvature of the embedded boundary, then we can expect an
improvement of this method.

The other improvement in this method can be done for supersonic flow over
a cylinder. Since we need to modify the simplified ghost point treatment for
this particular case. In the supersonic flow over a cylinder, we need to change
the ghost point treatment strategy if the angle of normal is less or greater
than 45 degrees. In that case, where we change the direction of the ghost
point treatment, we observe the kink in the pressure coefficient for a cylinder
as it is shown in results of Fig. 5.7(a), Chapter 5. The simplified ghost
point treatment can be improved where we make a transition from horizontal
direction to vertical direction. One of the options is to further extend the line
with a slope of 45 degrees and consider to include neighboring fluid points.

In future, the accuracy of the transient problem can be checked. The motion
of moving objects can be calculated. Local grid refinement is also possible.
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The gridless method can be used near the embedded boundary for accurate
solutions. The extension to 3D is straightforward. Parallelization of the code
is also easily possible.
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[33] D. Appelö and N. A. Petersson, A stable finite difference method for the
elastic wave equation on complex geometries with free surfaces,
Communications in Computational Physics 5 (2009), no. 1 84–107.

[34] R. Donat and A. Marquina, Capturing shock reflection: An improved
flux formula, Journal of Computational Physics 125 (1996) 1–33.

[35] B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen, On Godunov-type
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[47] H. Luo, J. D. Baum, and R. Löhner, A hybrid building-block and gridless
method for compressible flows, International Journal for Numerical
Methods in Fluids 59 (2008) 459–474.

45



[48] M. D. de Tullio, P. D. Palma, G. Iaccarino, G. Pascazio, and
M. Napolitano, An immersed boundary method for compressible flows
using local grid refinement, Journal of Computational Physics 225
(2007) 2098–2117.

[49] D. Ingram, D. Causon, and C. Mingham, Developments in Cartesian cut
cell methods, Mathematics and Computers in Simulation 61 (2003) 561–
572.

[50] H. Ji, F.-S. Lien, and E. Yee, A robust and efficient hybrid
cut-cell/ghost-cell method with adaptive mesh refinement for moving
boundaries on irregular domains, Computer Methods in Applied
Mechanics and Engineering 198 (2008) 432–448.

[51] J. Revstedt and L. Fuchs, Handling complex boundaries on a Cartesian
grid using surace singularities, International Journal for Numerical
Methods in Fluids 35 (2001) 125–150.

[52] K. Karagiozis, R. Kamakoti, and C. Pantano, A low numerical
dissipation immersed interface method for the compressible
Navier-Stokes equations, Journal of Computational Physics 229 (2010)
701–727.

[53] D. J. Kirshman and F. Liu, A gridless boundary condition method for
the solution of the Euler equations on embedded Cartesian meshes with
multigrid, Journal of Computational Physics 201 (2004) 119–147.

[54] H.-O. Kreiss, N. A. Petersson, and J. Yström, Difference approximations
for the second order wave equation, SIAM Journal on Numerical
Analysis 40 (2002) 1940–1967.

[55] D. Kirshman and F. Liu, Cartesian grid solution of the Euler equations
using a gridless boundary condition treatment, AIAA Paper 2003-3974
(2003).

[56] M. J. Berger and R. J. LeVeque, A rotated difference scheme for
Cartesian grids in complex geometries, AIAA Paper CP-91-1602 (1991)
1–9.

[57] J. Liu, N. Zhao, and O. Hu, The ghost cell method and its applications
for inviscid compressible flow on adaptive tree Cartesian grids, Advances
in Applied Mathematics and Mechanics 1 (2009) 664–682.
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Summary. The accuracy of the Cartesian grid method has been investigated for the 1D
Burgers’ equation and the 1D and 2D compressible Euler equations. Wall boundary conditions
are imposed at ghost points by interpolating the numerical solution at the corresponding mirror
points linearly or quadratically. We find that linear interpolation does not affect the accuracy
of our node-centred finite volume method. When we employ the MUSCL approach with slope
limiters, the convergence rate of the Cartesian grid method is reduced similar to corresponding
standard body-fitted methods.

1 INTRODUCTION

The Cartesian grid method1,2,3 has been becoming popular among researchers due to its
simplicity, ease of programming and less computational effort compared to body-fitted grid
methods. We have been using the ghost point treatment for embedded boundaries.

In this study we analyze the accuracy of the Cartesian grid method for the 1D inviscid
Burgers’ equation and the 1D and 2D compressible Euler equations. We impose wall boundary
conditions at ghost points by interpolating the numerical solution at the mirror points in the
fluid domain and mirroring the interpolated values to ensure reflective wall boundary conditions.
First order total variation diminishing (TVD) methods are applied for smooth as well as for shock
problems. The order of our method is increased by the MUSCL approach with minmod limiter.
The first order explicit Euler and the third order TVD Runge-Kutta methods are used for time
integration.

For the scalar problem the Cartesian grid method is applied to a smooth solution. For the 1D
compressible Euler equations the Cartesian grid method is applied to a normal shock reflection.
For the 2D compressible Euler equations we apply the Cartesian grid method to an oblique
shock wave.
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2 GOVERNING EQUATIONS

2.1 Inviscid Burgers’ Equation

The conservative form of the 1D scalar inviscid Burgers’ equation with the initial condition
reads

ut + (
1
2
u2)x = 0, u(x, 0) = sin

(
πx

xb

)
, (1)

where xb is the location of the wall.

2.2 Compressible Euler Equations

The 2D compressible Euler equations for perfect gas in conservative form are given as

Ut + (F )x + (G)y = 0, (2)

where U = [ρ, ρu, ρv, ρE]T , F = [ρu, ρu2+p, ρuv, (ρE+p)u]T and G = [ρv, ρuv, ρv2+p, (ρE+
p)v]T are the vector of the conservative variables and the flux vectors in x− and y−directions,
respectively.

3 NUMERICAL METHODS

3.1 DISCRETIZATION SCHEMES

For the spatial discretization we apply the upwind method for inviscid Burgers’ equation. We
apply the Lax-Friedrichs (LF) and local Lax-Friedrichs (LLF) method for the 1D compressible
Euler equations and local Lax-Friedrichs (LLF) method for the 2D compressible Euler equations.
To obtain higher order we apply MUSCL with minmod limiter. For time integration we use the
first order explicit Euler and the third order TVD Runge-Kutta methods.

3.2 GHOST POINT TREATMENT

Figure 1: 2D ghost point treatment

In Fig. 1 we show a simplified ghost point treatment
for the 2D case. The mathematical form of the ghost point
treatment can be written as follows

un,G = −un,M , ut,G = ut,M , (3)
ρG = ρM , pG = pM ,

where un, ut, ρ and p denote normal and tangential veloc-
ity with respect to the embedded wall boundary, density
and pressure, respectively. In Fig. 1, M and G are the
mirror and ghost points, respectively. δ is the distance
between the ghost point G and the boundary point on the
vertical grid line. The ghost point G in the solid is mir-
rored to the mirror point M in the fluid with respect to the
wall (boldface line) on a grid line. The numerical solution
at M is interpolated on that grid line.
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4 RESULTS

4.1 INVISCID BURGERS’ EQUATION

In this section we present results for the 1D inviscid Burgers’ equation. The wall is located
at xb = 0.5001 and end time is tend = 0.02. In Tables 1 and 2 we show the convergence rates of
the first and higher order methods while using linear and quadratic interpolation at the mirror
points. It is clear from these tables that linear and quadratic interpolations yield the same error
and are not affecting the accuracy of the first and higher order methods.

Inviscid Burgers’ Equation
Linear Interpolation Quadratic Interpolation

N Order L2-norm Order L2-norm
101 - 0.0018 - 0.0018
201 0.9729 0.009 0.9729 0.009
401 0.9865 0.005 0.9865 0.005
801 0.9932 0.002 0.9932 0.002
1601 0.9965 0.001 0.9965 0.001
3201 0.9980 0.001 0.9980 0.001

Table 1: First order TVD method.

Inviscid Burgers’ Equation
Linear Interpolation Quadratic Interpolation

N Order L2-norm Order L2-norm
101 - 0.1772 × 10−3 - 0.1772 × 10−3

201 1.5906 0.0588 × 10−3 1.5906 0.0588 × 10−3

401 1.5940 0.0195 × 10−3 1.5940 0.0195 × 10−3

801 1.6000 0.0064 × 10−3 1.6000 0.0064 × 10−3

1601 1.6045 0.0021 × 10−3 1.6045 0.0021 × 10−3

3201 1.6079 0.0007 × 10−3 1.6079 0.0007 × 10−3

Table 2: Higher order TVD method.

4.2 1D COMPRESSIBLE EULER EQUATIONS

In this section we present results for the 1D compressible Euler equations. The wall is located
at xb = 0.8001. At the mirror point we apply linear interpolation. For the spatial discretization
we apply the higher order LF and LLF TVD methods. In Figs. 2(a) and 2(b) we present results
for a moving normal shock wave. In Fig. 2(a) we draw a comparison between the exact and
numerical solutions of density. We observe that the density is lower after reflection from the
wall. The convergence rate of the higher TVD method is shown in 2(b). The convergence rate
is low (∼ 0.5 in the L2-norm) due to the shock wave.

(a) Comparison of incident and reflected shock for
density using the higher order TVD method.

(b) Convergence rate of density for higher order TVD
method.

Figure 2: Normal shock wave.
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4.3 2D COMPRESSIBLE EULER EQUATIONS

In this section we present results for the 2D compressible Euler equations. We verified our 2D
code for an oblique shock wave. We apply the simplified ghost point treatment adjacent to the
embedded boundary and use linear interpolation at the mirror points. For spatial discretization
we apply the local Lax-Friedrichs (LLF) method. For time integration we employ the explicit
Euler method. In Fig. 3(a) we present pressure results for an oblique shock wave at M∞ = 2
and wedge angle of Θ = 15 degrees. In Fig. 3(b) we compare the results for three grids with
the exact solution and observe grid convergence for the first order method.

(a) Computed pressure for M∞ = 2 and wedge angle
Θ = 15 degrees.

(b) Comparison of exact and numerical solutions for
different grids.

Figure 3: Oblique shock wave.

5 CONCLUSIONS

We applied the Cartesian grid method to the scalar 1D inviscid Burgers’ equation and the 1D
and 2D compressible Euler equations, and both normal and oblique shock waves were computed.
Local symmetry boundary conditions were implemented at each ghost point. Accuracy and
convergence rate of the Cartesian grid method proved to be similar to standard body fitted
methods. We observed the same accuracy for both linear and quadratic interpolation.
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Abstract— The accuracy of the Cartesian grid method has 
been investigated for the 1D Burgers’ equation as well as the 
1D and 2D compressible Euler equations. Wall boundary 
conditions are imposed at ghost points by interpolating the 
numerical solution at the corresponding mirror points 
either linearly or quadratically. We find that linear 
interpolation does not affect the accuracy of our second 
order node-centered finite volume method. For smooth 
problems, our Cartesian grid method exhibits second order 
convergence. When we employ the MUSCL approach with 
slope limiters, the convergence rate of the Cartesian grid 
method is reduced similar to the corresponding standard 
body fitted methods.   

I. INTRODUCTION

   The Cartesian grid method has recently become one of 
the widely used methods in CFD [1-7]. This is due to its 
simplicity, faster grid generation, simpler programming, 
lower storage requirements, lower operation count, and 
easier post processing compared to body fitted structured 
and unstructured grid methods. The Cartesian grid 
method is also advantageous in constructing higher order 
methods. Problems occur at the boundary, when this 
method is applied to complex domains [8]. When the 
Cartesian grid method is applied at curved boundaries the 
cells at the boundaries are not rectangular and these cut-
cells create problems for the scheme to be implemented. 
One method to solve the time step restriction problem 
caused by small cut-cells is to merge the cut-cells with 
neighboring cells [4].  The second method is to use ghost 
point treatment at the boundary [14]. Here ghost points 
are introduced outside the domain near the boundary and 
symmetry conditions are imposed at the ghost points to 
reflect the presence of the boundary. However, 
conservativity is lost in this process. 
    Researchers have been looking into the Cartesian grid 
method to solve the incompressible Navier-Stokes 
equations. Often, the immersed boundary method has 
been used to model the effect of solid boundaries cutting 
a Cartesian grid by a force term in the incompressible 
momentum equation [9]. Since this approach is not so 
practical for compressible flow due to the sensitive 
coupling of all flow variables, it has not been used for 
compressible flow simulation except for [10], [2]. 
Instead, the effect of the tangency or slip condition at 
solid boundaries for inviscid compressible flow is used in 
the Cartesian grid method to determine the flow variables 
in ghost cells or at ghost points near solid boundaries [11-
16]. In the ghost point treatment we divide our domain 

into three types of cells: fluid, ghost and solid cells. For 
first and second order schemes the methods require one 
and two ghost points, respectively. Solid and ghost points 
are flagged inactive.   
   The goal of the present study is to analyze the accuracy 
of the Cartesian grid method for the 1D inviscid Burgers’ 
equation and the 1D and 2D compressible Euler 
equations. Because of its simplicity, we chose the ghost 
point treatment rather than the cut-cell approach. We 
impose the wall boundary conditions at the ghost points 
by interpolating the numerical solution in the fluid 
domain and mirroring the interpolated values to ensure 
reflective boundary conditions. We use first order 
methods for spatial discretization for smooth as well as 
for shock problems. To increase the accuracy we apply 
the MUSCL approach with minmod limiter. For time 
integration we use the first order explicit Euler and the 
third order TVD Runge-Kutta (RK3) methods. For the 
scalar Burgers’ problem we simulate a smooth solution. 
For the 1D compressible Euler equations, we use a 
moving normal shock wave as a test case. For the 2D 
compressible Euler equations we verify the 2D code for 
an oblique shock wave.   
   The paper is organized as follows. In Section II we 
present the governing equations for the Burgers’ equation 
as well as for the 1D and 2D compressible Euler 
equations. In Section III we outline the discretization 
techniques. In Section IV we explain the ghost point 
treatment at the embedded boundary. In section V we 
present results and discussions. Conclusions are given in 
section VI.   

II. GOVERNING EQUATIONS

    We consider the inviscid Burgers’ equation as a 
model for a 1D scalar nonlinear hyperbolic problem, cf. 
section A. 

    The 1D and 2D compressible Euler equations serve 
as models for 1D and 2D nonlinear hyperbolic systems, cf. 
section B. 

A. Inviscid Burgers’ equation 
     The one dimensional scalar inviscid Burgers’ 

equation in conservative form reads 
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     The initial condition for the inviscid Burgers’ 
equation is given as 
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B. Compressible Euler Equations 

The 2D compressible Euler equations in conservative 
form read 
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with ,   ,u ,v E and p denoting density, velocities in 
x  and y directions, total energy per unit mass and 
pressure,  respectively. 

For perfect gas we have the following relation 

         ),(
2
1)(1( 22 vuEp                           (5) 

where is the ratio of specific heats. We consider =
1.4 for air.  

For 0 and  we obtain from (3) to (5) 
the 1D compressible Euler equations. 

v 0/ yG

For supersonic flow in the x -direction, the 
conservative variables at x 0 are given as Dirichlet 
boundary conditions U(0, y , t ) = g(y, t). In 1D, we have 
U(0, t) = g(t). No boundary conditions must be given at 
the outflow boundary x  = L 1 , because the flow is 
supersonic. 

Symmetry boundary conditions at y = 0 imply:  
( ),,)(,,(),,)(,, tyxEutyxEu )

and
),,(),,( tyxvtyxv

Extrapolation boundary conditions are assumed at 
y= :2L

.0),,(
y

tyxU

III. DISCRETIZATION

A. Spatial Discretization 

We assume a rectangular domain [0 L1 ] [0 L ] and  
a (I+1)

2
(J+1) Cartesian grid with equidistant grid spacing 

x =L 1 /I and y =L /J. The Cartesian coordinates of 
the grid points (i, j) are ( ,y ), where = i

2

ix j ix x , i = 0, 

1, …, I , and  = jjy y , j = 0, 1, …, J. 

The node-centered finite volume method yields the 
following semi-discretization of the 2D compressible 
Euler equations (3) 

),(1)(1

2
1,

2
1,,

2
1,

2
1

, n

ji

n

ji

n

ji

n

ji

ji GG
y

FF
xdt

dU

                                                                                      (6) 

Where U is the approximation of the average of U in 

the cell 

ji ,

j,i = [
2

,
2

xxxx ii
] [

2
,

2
yyyy jj

], i.e.

                
ji

dxdytyxU
yx

U ji
,

.),,(
.
1

,
       (7) 

If we interpret (6) as a conservative finite difference 
method, U is an approximation of the exact solution 

U( ).  F and G are numerical fluxes 
for the 2D compressible Euler equations. The vector of the 
conservative variables U and the flux vectors F and G are 
defined in (4). The numerical fluxes of the local Lax-
Friedrichs method for F and G are defined as follows 

ji ,

tyx ji ,, ji ,2/1 2/1, ji

)),)(,max()()((
2
1

,,1,1,1,,,1,,
2
1 jijijijijijijiji

LLF

ji
UUcucuUFUFF

                                                                                          (8)              
)),)(,max()()((

2
1

,1,1,1,,,1,,
2
1, jijijijijijijiji

LLF

ji
UUcvcvUGUGG

                                                                                                                      
                                                                                      (9) 
In equations (8) and (9), c is the speed of sound. The 

CFL number for the 1D compressible Euler equations is 

defined as 
x

tcu
CFL

iii
)(max

. And the CFL 

number for the 2D compressible Euler equations is 
defined as 

t
y
UAsp

x
UAsp

CFL jiji

ji
)

))(())((
(max ,2,1

,
,

where  and  are the spectral radii of the 
Jacobian matrices =

)( 1Asp )( 2Asp

1A UF and =2A UG ,
respectively. We choose CFL = 0.9 and CFL = 0.5 for the 
results of the 1D and 2D compressible Euler equations, 
respectively. In (8) we replace by j,iU L

jiU .21
and

Proceedings of International Bhurban Conference on Applied Sciences & Technology 
Islamabad, Pakistan, January 10 – 13, 2011 



jiU ,1
by R

jiU ,21
using the MUSCL approach with the 

minmod limiter to obtain higher order accuracy and also 
to get rid of undesired oscillations. The extrapolated 
variables are defined as 

),,mod(min
2
1

,,1,1,,,2/1
L
iU                                                            

                                                                                               

jijijijijij UUUUU

                                                                              (10)                             

).,mod(min
2 ,,1,1,2,1
1

jijijijiji UUUUU,2/1
R

jiU

                                                                                  (11) 

   The MUSCL approach is applied similarly to the 
numerical fluxes 

21, jiG  in (9). 

For the inviscid Burgers’ equation (1), the numerical 
flux for the local Lax-Friedrichs method reads 

)).)(,max(
22

(
2
1

11

2
1

2

2
1 iiii

iiLLF

i
uuuuuuF

                                                                                      (12) 

To obtain the Lax-Friedrichs and upwind method we 

replace ),max( 1ii uu by tx and )(
2
1

1ii uu

, respectively  in (12).

B.  Approximation of Boundary Conditions 

The inflow boundary conditions for supersonic flow at 
 are imposed as 0x

              
 .                                 (13) ),()(,0 tygtU jj

The flow variables at the outflow boundary 1Lx are 
approximated as  

                 
,                                (14) )()( ,1, tUtU jIjI

i.e. by constant extrapolation. This approximation 
implies that the upwind finite volume method is used to 
determine the numerical fluxes .,21 jIF

The symmetry boundary conditions are implemented by 
considering an extra line below . There we use 0y

          
)()1,1,1,1()( 3,1, tUdiagtU ii   .             (15) 

The boundary conditions at are treated as2Ly

               .                                (16) )()( 1,, tUtU JiJi

The ghost point treatment is described in the next 
section. 

IV. GHOST POINT TREATMENT AT  EMBEDDED 
BOUNDARY

  In Fig. 1 we show the flagging strategy. We flag the 
ghost and solid points by assigning them 0 and -1 values. 
The fluid points are assigned values equal to 1. In Fig. 2 
we show a 2D graphical description of the treatment at the 
boundary. We divide our domain into fluid and ghost 
points. A ghost point is denoted by G. We used a 
simplified ghost point treatment at the boundary. The 
mathematical description of this strategy is given as 

.,
,)(2
,)(2

221

121

FGFG

FFFG

FFFG

pp
nvnunvv
nvnunuu

(17) 

                                                          
Where u , v , p and denote the velocities in x  and y 

directions, pressure and density respectively. In (17) 
and 2  are the components of the unit normal at the 
boundary. 

1n
n

The location of the fluid point (  , ) whose flow 
conditions are mirrored to the ghost point (  , ) =  

(  , )  is chosen as (  , ) = (  , ),  cf.
Fig. 2. The 1D boundary treatment is indicated in Fig. 3. 
In Fig. 3 we show three points , and  as fluid 
and ghost points. The wall is located between fluid and 
ghost points. The location of the wall is represented by .
The procedure to find the ghost points in 1D is explained 
as follows: 

Fx

F

i ix

Fy

iGx

1

Gx

iGy

gx

Gy

1iGx iGy Fx y

x

bx

Step 1: Find the distance between the ghost point and 
the wall 

                                  bg xx1                              (18) 

Step 2: In this step we determine the mirror point 

                                   1bm xx                            (19) 

Step 3: After steps 1 and 2 we approximate the flow 
variables at the mirror point in the fluid domain. Here we 
apply linear or quadratic interpolation to get the 
interpolated values. Linear interpolation yields 

         ))(( 1
1

1 ii
im

im VV
x
xxVV .            (20)                       

Where V = ( pu,, ) T here. Now we use reflective 
boundary conditions to obtain the ghost point values.  

                          mgmgmg ppuu ,,  .     (21)      
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G

F

The procedure to find the second ghost point for the 
quadratic interpolation is similar as explained above.  

For the inviscid Burgers’ equation, the ghost point 
treatment is the same as for the velocity u in the 1D 
compressible Euler equations above. 

Fluid

Solid
        Fluid Point 

        Ghost Point 

Figure 1. Flagging strategy for fluid, ghost and solid points. Using 
flags 1, 0 and -1 respectively. 

Figure 2. 2D treatment at the boundary. 

Figure 3. 1D treatment at the boundary. 

V. RESULTS

A. Inviscid Burgers’ Equation 
In this section we present results for the inviscid 

Burgers’ equation. We apply the first order upwind 
method as well as MUSCL with minmod limiter for 
spatial discretization. For time integration we use the first 
order explicit Euler method and the third order TVD 

Runge-Kutta method. Results for the inviscid Burgers’ 
equation are obtained at CFL = 0.1. The wall is located at 

5001.0bx  and we use linear and quadratic interpolation 
to obtain the ghost point values.  

In Table I we present results for the inviscid Burgers’ 
equation. For the spatial discretization we use the first 
order upwind method and time is integrated with the 
explicit Euler method. We determine the order and l 2 -
norm of linear and quadratic interpolation. We observe 
that the l 2 -norm of the error for linear and quadratic 
interpolation is the same. 

TABLE I. CONVERGENCE RATE FOR FIRST ORDER METHOD 
WITHOUT MUSCL.

Inviscid Burgers’ Equation 
Linear Interpolation Quadratic Interpolation 

N Order 
l -norm 2

Order  
l -norm 2

101 - 0018.0 - 0018.0
201 9729.0 009.0 9729.0 009.0
401 9865.0 005.0 9865.0 005.0
801 9932.0 002.0 9932.0 002.0
1601 9965.0 001.0 9965.0 001.0
3201 9980.0 001.0 9980.0 001.0

    In Table II we show results for the inviscid Burgers’ 
equation. For the spatial discretization we use the higher 
order MUSCL scheme with minmod limiter and for time 
integration we use the third order TVD Runge-Kutta 
method. We obtain the same order and l -norm of the 
error for linear and quadratic interpolation. 

2

TABLE II. CONVERGENCE RATE FOR NUMERICAL SOLUTION WITH 
MUSCL AND TVD RK3.

gxix1ix

11

iumu mg uu

u

x

1iu

mx

1 1 1 1 1

1 1 1 1

1 1 1

1 1 0 -1

0 -1

0

-1

Inviscid Burgers’ Equation 
Linear Interpolation Quadratic Interpolation 

N Order  Order 
l -Norm 2 l -Norm 2

101   3101772.0 -        - 3101772.0

201 5906.1 3100588.0 5906.1
3100588.0

401 5940.1 3100195.0 5940.1
3100195.0

801 6000.1 3100064.0 6000.1
3100064.0

1601 6045.1 3100021.0 6045.1
3100021.0

3201 6079.1

Wall bx

3100007.0 6079.1
3100007.0
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     In Fig. 4 we present the convergence rate of the first 
order upwind method for the inviscid Burgers’ equation 
for a smooth solution. We get the same convergence rate 
for linear and quadratic interpolation. 

10-4 10-3 10-2
10-5

10-4

10-3

10-2

x

 ||
er

ro
r||

2

Convergence rate of first order method for inviscid Burgers' equation

p = 1

p = 0.99

Convergence rate with linear interpolation
Convergence rate with quadratic interpolation
Theoretical convergence rate

Figure 4. Convergence rate for inviscid Burgers’ equation. 

In Fig. 5 we present the convergence rate of the upwind 
method with MUSCL and minmod limiter for the inviscid 
Burgers’ equation for a smooth solution. The computed 
convergence rate is lower than the theoretical 
convergence, because the MUSCL scheme gives lower 
order at the extrema of the smooth solution. We see that 
for the MUSCL scheme, too, the convergence rates for 
linear and quadratic interpolation are the same. 
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Convergence rate with linear interpolation
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Figure 5. Convergence rate for inviscid Burgers’ equation.                                   

B. 1D Compressible Euler Equations 

In this section we present results for a moving normal 
shock wave. A normal shock wave is moving from left to 
right with upstream Mach number M = 2, pressure p = 

Pa and density510 32.1 mkg . The downstream 
conditions can be obtained by the normal shock wave 
relations. A wall is placed at x  = 0.8001 in Figs. 6-8. The 

incident normal shock wave is shown at x  = 0.7, and the 
reflected normal shock wave is shown at x  = 0.5. 
    In Fig. 6 we show results of the moving normal shock 
wave for density . The Lax-Friedrichs (LF) and local 
Lax-Friedrichs (LLF) methods with MUSCL and minmod 
limiter for spatial discretization are applied. For time 
integration the third order TVD Runge-Kutta method is 
employed. We notice that the computed density is lower 
than the exact one after reflection from the wall. We also 
observe a wavy behavior behind the normal shock wave 
which travels along with the shock.  
    In Fig. 7 we show results of the moving normal shock 
wave for velocity u.  We apply the LF and LLF methods 
with MUSCL and minmod limiter for spatial 
discretization. We observe a wavy behavior behind the 
normal shock wave but this wavy behavior disappears 
after the reflection.
    In Fig. 8 we show results of the moving normal shock 
wave for pressure p. Again we observe little wavy 
behavior behind the incident normal shock wave. This 
wavy behavior disappears after the reflection.  

In Fig. 9 we show the convergence rate for density .
The convergence rate is low ( 0.5 in the l 2 -norm) due to 
the shock wave. The error l

2
-norm of the reflected wave 

is higher than for the incident wave. 
In Fig. 10 we show the convergence rate of velocity u.  

Again, the convergence rate is low ( 0.5 in the l -norm) 
due to the shock wave. 

2

In Fig. 11 we show the convergence rate for the 
pressure p. Here again the convergence rate is low ( 0.5 
in the l 2 norm) due to the shock wave. The error l

2
-norm 

of the reflected wave is higher than for the incident wave. 
-
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Figure 6. Reflected normal shock waves of density with MUSCL.                                 
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Figure 7. Reflected normal shock waves of velocity with MUSCL.                                             
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Figure 8.  Reflected normal shock waves of pressure with MUSCL.                                          
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Figure 9. Convergence rates of density for incident and reflected 
normal shock waves with MUSCL.                                            
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Figure 10.  Convergence rates of velocity for incident and reflected 
normal shock waves with MUSCL.  
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Figure 11.   Convergence rates of pressure for incident and reflected 
normal shock waves with MUSCL.                               

C. 2D Compressible Euler Equations 
We verify our 2D code of the Cartesian grid method for 

an oblique shock wave. A supersonic flow moves from 
left to right and hits a wedge resulting in a stationary 
oblique shock wave. The wedge angle is 15
degrees. The supersonic upstream flow conditions are 
given as 

2M , =10 Pa,p 5 =1.2 kg/m (22) 3
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Figure 12.  Oblique shock wave of density.                              

For the spatial discretization the local Lax-Friedrichs 
method is used. The explicit Euler method is employed for 
time integration. 

 In Fig. 12 we present results for the oblique shock 
wave for density.  The apex of the wedge is placed at x
=0.4.

In Fig. 13 we compare the exact and numerical 
solutions for density at x = 0.75. We observe that the 
density is getting closer to the exact solution as we refine 
the grid. However, there is some discrepancy between the 
exact and computed solutions near the wall of the wedge.
      In Fig. 14 we compare the exact and numerical 
solutions for velocity u at x = 0.75. The computed 
velocity u is becoming closer to the exact solution as we 
refine the grid but still there is a discrepancy near the wall 
of the wedge. 

 In Fig. 15 we compare the exact and numerical 
solutions for velocity v at x = 0.75. The computed results 
are in good agreement with the exact solution. 

In Fig. 16 we compare the exact and numerical 
solutions for pressure p at x = 0.75. The computed 
pressure is in good agreement with the exact solution.  

In Fig. 17 we show density contours. This confirms that 
the variation is occurring at the place where we observe 
the oblique shock wave. The proximity of the oblique 
shock wave is unperturbed.  

In Fig.18 we show the l -norm of the residual 2
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Figure 13. Comparison of exact and numerical solutions for density at 
different grid levels at x = 0.75.                                               
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Figure 14. Comparison of numerical and exact solutions for velocity u 
at different grid levels at x = 0.75. 
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,  of the density. We see that the residual 

becomes stationary after 5500 time levels. It means at this 
corresponding time we achieved the stationary oblique 
shock wave solution. 

Figure 15. Comparison of exact and numerical solutions for velocity v 
at different grid levels at x = 0.75. 

Proceedings of International Bhurban Conference on Applied Sciences & Technology 
Islamabad, Pakistan, January 10 – 13, 2011 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 105

y

pr
es

su
re

, p
Comparison of exact and numerical solution of p in view of different grids

Number of points = 161*161
 Number of points = 321*321
 Number of points = 641*641
Exact solution

Proceedings of International Bhurban Conference on Applied Sciences & Technology 
Islamabad, Pakistan, January 10 – 13, 2011 

Figure 16. Comparison of exact and numerical solutions for pressure at 
different grid levels at x = 0.75.                                               
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Figure 17. Contour lines for density. 
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-norm of residual of density.                                      [17] M. J. Berger, C. Helzel and R. J. Leveque, “h-box methods for 
the approximation of hyperbolic conservation laws on irregular 
grids”, SIAM J. Numer. Anal, vol.41, pp. 893-918, 2003.VI. CONCLUSIONS

We applied the Cartesian grid method to the scalar 1D 
inviscid Burgers’ equation and the 1D and 2D 
compressible Euler equations, and both normal and 

oblique shock waves were computed. Local symmetry 
boundary conditions were implemented at each ghost 
point. Accuracy and convergence rate of the Cartesian 
grid method proved to be similar to standard body fitted 
methods. We observed the same accuracy for both linear 
and quadratic interpolation.  
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Summary The Cartesian grid method has been investigated for the 2D compressible Euler equa-
tions. We impose wall boundary conditions by a simplified ghost point treatment for compressible
inviscid flows with immersed boundaries. In the simplified ghost point treatment we assume the
solid boundary lie in the middle between two grid points in the y direction. Symmetry conditions
are used to determine density, pressure, wall tangential, and wall normal velocity components at
the ghost points. A first order node-centered finite volume formulation has been used to calculate
compressible flows. The order of this formulation is increased by employing MUSCL with the
minmod limiter. The code is tested for external flows over a circular arc airfoil. We compare our
results for the simplified ghost point treatment with a standard body-fitted grid method. We ob-
tain similar results for the Cartesian grid method as for the standard body-fitted grid method for
external flows.

Introduction
The Cartesian grid method has recently become one of the widely used methods in CFD [1, 2,
3, 4, 5, 6, 7, 8, 9]. Since solid boundaries are immersed in a Cartesian grid method with constant
grid spacings, the Cartesian grid method is also called immersed boundary method, in particular
in application to the incompressible Navier-Stokes equations. The popularity of the Cartesian
grid method is due to its simplicity, faster grid generation, simpler programming, lower stor-
age requirements, lower operation count, and easier post processing compared to body fitted
structured and unstructured grid methods. The Cartesian grid method is also advantageous in
constructing higher order methods. Problems occur at the boundary, when this method is applied
to complex domains [10]. When the Cartesian grid method is applied at curved boundaries the
cells at the boundaries are not rectangular and these cut-cells create problems for the scheme to
be implemented [11]. The time step restriction problem caused by small cut-cells can be solved
by merging those cut-cells with neighboring cells [7].
Cut cells are avoided altogether by ghost point treatment at the boundary. In this method sym-
metry conditions with respect to the boundary are imposed at ghost points in the solid adjacent
to the boundary [12]. However, conservativity is lost in this process. Nevertheless, the sim-
plicity of the ghost point treatment has motivated us to use that approach instead of the more
complicated cut-cells.
Often the effect of solid boundaries cutting a Cartesian grid has been modelled by a force
term in the incompressible momentum equations [13]. Since this approach is not so practical
for compressible flow due to the sensitive coupling of all flow variables, it has not been used
for compressible flow simulation except for [14, 2]. Instead, the effect of the tangency or
slip condition at solid boundaries for inviscid compressible flow is used in the Cartesian grid
method to determine the flow variables in ghost cells or at ghost points near solid boundaries
[15, 16, 17, 12, 18, 19]. In the ghost point treatment we divide our domain into three types of
points: fluid, ghost and solid points. For first and second order schemes the methods require one
and two ghost points, respectively. Solid and ghost points are flagged inactive.
In this paper we employ a simplified ghost point treatment for the 2D compressible Euler equa-
tions. In the simplified ghost point treatment we assume the solid boundary lie in the middle



between two grid points in the y direction. Symmetry conditions are used to determine density,
pressure, wall tangential, and wall normal velocity components at the ghost points. We employ
the local Lax-Friedrichs (lLF) method for the spatial discretization. To increase the accuracy
we apply the MUSCL approach with the minmod limiter. For time integration we use the first
order explicit Euler method for spatially first order method and the third order TVD Runge-
Kutta (RK3) method with the more accurate MUSCL approach. As a test case, we consider
supersonic external over a circular arc airfoil and solve the 2D compressible Euler equations by
time stepping for the steady state.
The paper is organized as follows. First we present the governing equations, i.e. the 2D com-
pressible Euler equations then we outline the boundary conditions and explain the ghost point
treatment at the embedded boundary. We present the discretization method, results and discus-
sion and give conclusions.

Compressible Euler Equations
The 2D compressible Euler equations serve as a model for a 2D nonlinear hyperbolic system.
In conservative form the 2D compressible Euler equations read

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0, (1)

where

U =

⎡
⎢⎢⎣

ρ
ρu
ρv
ρE

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
(ρE + p)u

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
(ρE + p)v

⎤
⎥⎥⎦ , (2)

with ρ , u, v, E, and p are density, velocity components in x-and y-directions, total energy per
unit mass and pressure, respectively.
For perfect gas we have the following relation

p = (γ − 1)(ρE −
1

2
ρ(u2 + v2)), (3)

where γ is the ratio of specific heats. We consider γ = 1.4 for air.

Approximation of Boundary Conditions
Boundary Conditions for External Flow
The inflow boundary conditions for supersonic flow at x = 0 are imposed as

U1,j(t) = U∞, (4)

where U∞ is the vector of the conservative variables for uniform flow in the x− direction. The
flow variables at the outlet x = L1 are approximated as

UI,j(t) = UI−1,j(t), (5)



i.e. by constant extrapolation. This approximation implies that the upwind finite volume method
is used to determine the numerical fluxes FI− 1

2
,j.

The symmetry boundary conditions at y = 0 are implemented by considering an extra line
below y = 0. There we use

Ui,1(t) = diag(1, 1,−1, 1)Ui,3(t). (6)

The boundary conditions at y = L2 are treated as

Ui,J(t) = Ui,J−1(t). (7)

Ghost Point Treatment at Embedded Boundary
Simplified Ghost Point Treatment for Two Dimensional Embedded Boundary
In Fig. 1(a) we show the flagging strategy. We flag the ghost and solid points by assigning them 0
and -1 values. The fluid points are assigned values equal to 1. In Fig. 1(b) we show a simplified
ghost point treatment at the solid boundary. A ghost point is denoted by G. In the simplified
ghost point treatment we consider the fluid point F on the vertical grid line through G adjacent
to the boundary as the mirror point. Then, we assume the boundary is in the middle between
ghost and fluid points. The density ρ, pressure p, and the tangential velocity component at the
ghost point are symmetric with respect to the solid boundary and therefore directly determined
by their values at F. The normal velocity component un at the ghost point is anti-symmetric and
thus gets the negative value of un at F. The mathematical description of this strategy is given as

ρG = ρF , pG = pF , uG = uF − 2(n1uF + n2vF )n1, vG = vF − 2(n1uF + n2vF )n2, (8)

where n1 and n2 are the x-and y-components of the outer unit normal n of the boundary.
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(b) Simplified ghost point treatment over a
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Figure 1: Ghost point treatment.

Discretization of the Euler Equations
Spatial Discretization
We assume a rectangular domain [0 L1] × [0 L2] and a (I + 1) × (J + 1) Cartesian grid with
equidistant grid spacing Δx = L1/I and Δy = L2/J . The Cartesian coordinates of the grid
points (i, j) are (xi, yj), where xi = iΔx , i = 0, 1, ..., I , and yj = jΔy, j = 0, 1, ..., J .



The node-centered finite volume method yields the following semi-discretization of the 2D
compressible Euler equations (1)

dUi,j

dt
= −

Fi+ 1

2
,j − Fi− 1

2
,j

Δx
−

Gi,j+ 1

2

− Gi,j− 1

2

Δy
. (9)

Where Ui,j is the approximation of the average of U in the cell Ωi,j = [xi−
Δx
2

, xi +
Δx
2

]× [yj −
Δy

2
, yj + Δy

2
], i.e.

Ui,j ≈
1

Δx.Δy

∫
Ωi,j

U(x, y, t)dxdy. (10)

If we interpret (9) as a conservative finite difference method, Ui,j is an approximation of the
exact solution U(xi, yj, t). Fi+ 1

2
,j and Gi,j+ 1

2

are numerical fluxes for the 2D compressible Euler
equations at the cell faces (i + 1

2
, j) and (i, j + 1

2
), respectively. The vector of the conservative

variables U and the flux vectors F and G are defined in (2). The numerical fluxes of the local
Lax-Friedrichs (lLF) method are defined as follows

F lLF
i+ 1

2
,j

=
1

2
[F (Ui,j) + F (Ui+1,j) − max(|ui+1,j| + ci+1,j, |ui,j| + ci,j)(Ui+1,j − Ui,j)] , (11)

GlLF
i,j+ 1

2

=
1

2
[G(Ui,j) + G(Ui,j+1) − max(|ui,j+1| + ci,j+1, |ui,j| + ci,j)(Ui,j+1 − Ui,j)] . (12)

In equations (11) and (12), c is the speed of sound. The CFL number for the 2D compressible
Euler equations is defined as CFL = Δtmax

i,j

(
sp(A1(Ui,j))

Δx
+

sp(A2(Ui,j))

Δy

)
, where sp(A1(Ui,j))

and sp(A2(Ui,j)) are the spectral radii of the Jacobian matrices A1 = ∂F
∂x

and A2 = ∂G
∂y

, respec-
tively. We choose CFL = 0.5 for the results of the 2D compressible Euler equations presented
below. In (11) we replace Ui,j by UL

i+ 1

2
,j

and Ui+1,j by UR
i+ 1

2
,j

using the MUSCL approach with
the minmod limiter to obtain second order accuracy except for extrema without undesired os-
cillations. The extrapolated variables are defined as

UL
i+ 1

2
,j

= Ui,j +
1

2
minmod(Ui,j − Ui−1,j, Ui+1,j − Ui,j), (13)

UR
i+ 1

2
,j

= Ui+1,j −
1

2
minmod(Ui+2,j − Ui+1,j, Ui+1,j − Ui,j). (14)

where

minmod(a, b) =

⎧⎨
⎩

a if |a| ≤ |b| and ab > 0
b if |b| < |a| and ab > 0
0 ifab ≤ 0

(15)

= sign(a)max {0, min {|a| , sign(a)b}}

is the minmod limiter. The MUSCL approach is applied similarly to the numerical fluxes Gi,j+ 1

2

in (12).



Temporal Discretization
For time integration we use the explicit Euler method and the total variation diminishing third
order Runge-Kutta (TVD RK3) method. The explicit Euler method is defined as follows

Un+1 = Un + ΔtRes(Un), (16)

where Res(Un) at (i,j) is the residual, i.e. the right hand side of (9). The TVD RK3 method is
given as

U (1) = Un + ΔtRes(Un),

U (2) =
3

4
Un +

1

4
U (1) +

1

4
ΔtRes(U (1)),

U (n+1) =
1

3
Un +

2

3
U (2) +

2

3
ΔtRes(U (2)). (17)

Results
Two Dimensional Compressible Euler Equations
We verify our 2D code of the Cartesian grid method for external flow over a circular arc airfoil.
For the spatial discretization we use the local Lax-Friedrichs (lLF) method, and to increase the
order of our method we employ the MUSCL scheme with the minmod limiter. For time inte-
gration we use the first order explicit Euler and third order TVD Runge-Kutta (RK3) methods.
We use the CFL number 0.5 and 81 × 81 grid points to calculate the density ρ, velocities u and
v, and pressure p.

External Flow Over a Circular Arc Airfoil
A supersonic flow moves from left to right and hits a circular arc airfoil of which we only
consider the upper half. We consider the length of domain in x−and y−directions is L1 = 2m
and L2 = 1m respectively. The height of the half circular arc airfoil is 10 % of its chord length
which is assumed to be 1m. The supersonic upstream flow conditions are given as

M∞ = 2, p∞ = 105Pa, ρ∞ = 1.2kg/m3 (18)

Results for the Cartesian Grid Method
In Fig. 2(a) and Fig. 2(b) we present Mach number and density contours for external flow at
M∞ = 2 over the circular arc airfoil. We compute only the flow over the upper half with a
height of 10 % chord. The supersonic flow is moving from left to right and hits the leading edge
of the circular arc airfoil. A shock wave is produced at the leading edge. Near the trailing edge
another shock wave turns the flow back in the x−direction.
In Fig. 3(a) and Fig. 3(b) we present contours of the velocity components u and v.
Fig. 4(a) shows the behavior of the pressure for external flow over a circular arc airfoil.
In Fig. 4(b) the l2-norm of the density change, which is equivalent to the density residual,
indicated that the density is becoming stationary after around n = 2500 iterations. We have not
yet explored the kink in the convergence curve leading to slower convergence.
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Figure 2: Left: Mach number contours for first order method. Right: Density contours for first order
method .
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(a) Velocity u component contours for supersonic ex-
ternal flow over a circular arc airfoil.
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Figure 3: Left: Velocity component u contours for first order method. Right: Velocity v component con-
tours for first order method.
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(a) Pressure contours for supersonic external flow
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Figure 4: Left: Pressure contours for first order method. Right: Residual l2-norm of density for first order
method.
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Figure 5: Left: Mach number contours for MUSCL with the minmod limiter. Right: Density contours for
MUSCL with the minmod limiter.
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Figure 6: Left: Velocity component u contours for MUSCL with the minmod limiter. Right: Velocity v
component for MUSCL with the minmod limiter.
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Figure 7: Pressure contours for MUSCL with the minmod limiter.



Now we turn to the results obtained with the higher order method. We use the local Lax-
Friedrichs method for spatial discretization with MUSCL and minmod limiter and TVD RK3
method for time integration. We obtain sharp shock waves at the leading and trailing edges , cf.
Fig. 5(a) and Fig. 5(b) for Mach number and density contours. Whereas the first order results in
Figs. 2, 3, 4(a) yield a detached shock like for blunt body flow, the second order MUSCL results
(first order at extrema) indicate an attached oblique shock in agreement with the corresponding
body-fitted grid results, cf. below.
In Fig. 6(a) and Fig. 6(b) we present results over the circular arc airfoil for the velocity com-
ponents u and v for higher order method for external flows. The shock wave at the leading and
trailing edges is sharper than for the first order method, cf. Fig. 3.
Also the pressure contours with the higher order method in Fig. 7(a) indicate sharper leading
and trailing edge shocks than the first order method, cf. Fig. 4(a).

Results for the Standard Body-Fitted Grid Method
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(b) Mach number contours for supersonic external
flow over a circular arc airfoil.

Figure 8: Left: Standard body-fitted grid of a circular arc airfoil. Right: Mach number contours for
standard body-fitted method.

The grid spacing in the x−direction is the same as for the Cartesian grid method, i.e. Δx = 1
40

.
The grid points are clustered towards y = 0 and the circular arc airfoil (Δymin = 0.0037 at
y = 0 and Δymax = 0.0208 at y = 1). The body-fitted grid for the the domain has 121 × 81
grid points (cf. Fig. 8(a)), because the left and right boundaries are one chord length away from
the leading and trailing edges respectively.
The cell-centered finite volume method with Roe’s approximate Riemann solver is used, which
is less diffusive than the local Lax-Friedrichs method. The MUSCL approach is applied to
the primitve variables, not in the conservative variables as in (13) and (14). While the minmod
limiter is used for density and pressure, the less diffusive van Albada limiter is employed for the
velocity components. Harten’s entropy fix is employed to enforce the entropy condition [20, 21].
The contours for Mach number, density, velocities components u and v and pressure contours in
Fig. 8(b), Fig. 9 and Fig. 10 for a same supersonic flow over the circular arc airfoil show that the
standard-body fitted grid method yields sharper shocks at the leading and trailing edges. Note
that density, velocities components u and v and pressure are non-dimensionalized with respect
to reference density ρ∞, velocity u∞ and pressure ρ∞u2

∞
, respectively. But otherwise, there is
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(a) Density contours for supersonic external flow
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Figure 9: Left: Density contours for standard body-fitted method. Right: Velocity component u contours
for standard body-fitted method.
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Figure 10: Left: Velocity contours for standard body-fitted method. Right: Pressure contours for standard
body-fitted method.

good qualitative agreement between the body-fitted results and the Cartesian grid method with
MUSCL, cf. Fig. 5, Fig. 6 and Fig. 7(a). Note that the wiggles behind the leading edge shock
for Mach number M, density ρ and velocity u are not present for the Cartesian grid method.

Conclusions
We investigated the Cartesian grid method for the 2D compressible Euler equations. We used
the first order local Lax-Friedrichs method for spatial discretization and increased the accuracy
by MUSCL with the minmod limiter. For time integration we used the first order explicit Euler
method and the third order TVD RK3 method. At the immersed solid boundary we employed
a simplified ghost point treatment in which the fluid point F is chosed on the vertical grid line
through G adjacent to the boundary as the mirror point. We tested the 2D code for supersonic
external flow over a circular arc airfoil. The comparison between the Cartesian grid method and
the standard body-fitted grid method indicated good qualitative agreement.
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Accuracy assessment of the Cartesian grid method for
compressible inviscid flows using a simplified ghost point
treatment

M. Asif Farooq and B. Müller

Summary. We introduce a new approach to treat ghost points near embedded boundaries to
solve the 2D compressible Euler equations on a Cartesian grid. Solid wall boundary conditions
are imposed by our new approach called simplified ghost point treatment for compressible invis-
cid flows with embedded boundaries. In the simplified ghost point treatment, we assume the solid
boundary to lie in the middle between two grid points in the y-direction. Symmetry conditions
are used to determine density, pressure, wall tangential, and wall normal velocity components
at the ghost points. A cell-vertex finite volume formulation has been used to calculate transonic
internal flows over a circular arc bump in a channel.

Key words: compressible Euler equations, Cartesian grid method, simplified ghost point treat-

ment, cell-vertex finite volume method

Introduction

In Computational Fluid Dynamics (CFD) two methods are popular in the scientific com-
munity. One is the standard body fitted grid method and the other is the Cartesian grid
method. In the former solid boundaries and grid lines conform to each other but in the
latter this is not the case. Standard body fitted grid methods both with structured and
unstructured grids successfully solved many complex problems in the past [1–4]. But these
methods involve a numerical complexity which is sometime discouraging for the scientific
community. The popularity of the Cartesian grid method [5–9] is due to its simplicity,
faster grid generation, simpler programming, lower storage requirements, lower operation
count, and easier post processing compared to body fitted structured and unstructured
grid methods. The Cartesian grid method is also advantageous in constructing higher
order methods. A disadvantage of this method shows up when it is applied to complex
domains. At curved boundaries the cells are not rectangular and these cut-cells create a
problem in time-stepping for a scheme to be implemented. The solution to this cut-cell
problem is to merge these cut-cells with neighboring cells. The main disadvantage of the
cut-cell approach is the complexity of the method in which fluxes are calculated at the
interfaces near the embedded boundary.

We avoided the cut-cell approach [10] and opt for the ghost point treatment at the
boundary [11]. The main motivation has been the simplicity of the ghost point treatment
over the more complicated cut-cell approach. The advantage of the present simplified
ghost point approach resides in its ability of implementing the method with ease and
extending it to a higher order method. In the ghost point treatment, we divide our
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domain into three types of points: fluid, ghost and solid points. Only fluid and ghost
points are treated in the scheme, and solid points are cut out of the present computation.

In [11] we successfully compared supersonic external flow results over a circular arc
airfoil with standard body fitted grid results. In this paper, we further analyse the simpli-
fied ghost point treatment for the 2D compressible Euler equations to simulate transonic
internal flow. In the simplified ghost point treatment, we assume the solid boundary to
lie in the middle between two grid points in the y-direction. Our assumption is based
on the fact that the normal to the wall boundary in slender bodies can be assumed to
lie in the y-direction. Symmetry conditions are used to determine density, pressure, wall
tangential, and wall normal velocity components at the ghost points. We employ the
local Lax-Friedrichs (lLF) method for the spatial discretization. The local Lax-Friedrichs
method is chosen over other numerical methods like Roe’s method because of its simplic-
ity. We apply the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL)
approach with the minmod limiter to get a second order method except for extrema. For
time integration we use the third order Total Variation Diminishing Runge-Kutta (TVD
RK3) method with the MUSCL approach. As a test case, we consider transonic internal
flow over a circular arc bump in a channel and solve the 2D compressible Euler equations
by time stepping to the steady state. We compute a shock in the channel with the circular
arc bump and compare these results with the results presented in the literature. We need
a larger number of grid points than standard body fitted grid methods to obtain results
comparable with [12].

In the following section, we discuss the governing equations, i.e. for 2D compressible
Euler equations. In the next sections, we outline Boundary conditions, Discretization and
Approximation of boundary conditions. Simplified ghost point treatment and Results are
discussed in the next two sections. Conclusions are drawn at the end.

2D compressible Euler equations

The 2D compressible Euler equations in conservative form read

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0, (1)

where

U =

⎡
⎢⎢⎣

ρ
ρu
ρv
ρE

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p
ρuv

(ρE + p)u

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
(ρE + p)v

⎤
⎥⎥⎦ , (2)

with ρ, u, v, E, and p denoting density, velocity components in x and y-directions, total
energy per unit mass and pressure, respectively. We employ the equation of state for
perfect gas

p = (γ − 1)(ρE −
1

2
ρ(u2 + v2)), (3)

where γ is the ratio of specific heats. We consider γ = 1.4 for air.

Boundary conditions

We consider the following boundaries: (1) subsonic inflow, (2) Subsonic outflow and (3)
lower and upper wall. At the subsonic inflow x = xa in Fig. 1, three flow variables,
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e.g. total enthalpy, entropy and velocity component v, are given as Dirichlet boundary
conditions and one numerical boundary condition is used. At the subsonic outflow x = xb,
we prescribe one Dirichlet boundary condition, e.g. atmospheric pressure, and three
numerical boundary conditions. The straight parts of the lower and upper walls are
treated as symmetry boundaries. Symmetry boundary conditions near y = yc imply:

(ρ, ρu, ρE)(x, yc + y, t) = (ρ, ρu, ρE)(x, yc − y, t)

and
ρv(x, yc + y, t) = −ρv(x, yc − y, t)

Similar symmetry boundary conditions are imposed near y = yd. On the curved part of
the lower wall, local symmetry boundary conditions with respect to the wall are employed.

0 1Lower wall

Upper wall

Inflow Outflow

xa xb

yc

yd

y

x

Figure 1. Computational domain and Cartesian grid for channel flow with a circular arc bump.

Discretization

Spatial discretization

We assume Cartesian coordinates (x, y), where xa ≤ x ≤ xb, yc ≤ y ≤ yd and a Cartesian
grid with (Nx + 1) × (Ny + 1) grid points. The grid points of the Cartesian coordinates
are denoted by (xi, yj), where xi = xa + iΔx , with i = 0, 1, ..., Nx, Δx = (xb − xa)/Nx

and yj = yc + jΔy, with j = 0, 1, ..., Ny, Δy = (yd − yc)/Ny. The semi-discretization of
the 2D compressible Euler equations (1) yields the following form

dUi,j

dt
= −

Fi+ 1

2
,j − Fi− 1

2
,j

Δx
−

Gi,j+ 1

2

−Gi,j− 1

2

Δy
. (4)

Ui,j is the approximation of the average of U in the cell Ωi,j = [xi −Δx/2, xi +Δx/2]×
[yj −Δy/2, yj +Δy/2], i.e.

Ui,j ≈
1

ΔxΔy

∫
Ωi,j

U(x, y, t) dxdy. (5)

Thus, we have been using the cell-vertex finite volume method. We opted for this approach
to have a conservative method with the unknowns at the grid points. In (4), Fi+ 1

2
,j and
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Gi,j+ 1

2

are numerical fluxes for the 2D compressible Euler equations and Ui,j is also an

approximation of the exact solution U(xi, yj, t). The numerical fluxes Fi+ 1

2
,j and Gi,j+ 1

2

are chosen as the local Lax-Friedrichs method for F and G, which are defined as follows

F lLF
i+ 1

2
,j
=

1

2
[F (Ui,j) + F (Ui+1,j)−max(|ui+1,j|+ ci+1,j , |ui,j|+ ci,j)(Ui+1,j − Ui,j)] , (6)

GlLF
i,j+ 1

2

=
1

2
[G(Ui,j) +G(Ui,j+1)−max(|vi,j+1|+ ci,j+1, |vi,j |+ ci,j)(Ui,j+1 − Ui,j)] , (7)

where c is the speed of sound. Our choice of the local Lax-Friedrichs method has been mo-
tivated by the simplicity of its numerical flux functions (6) and (7) and its total variation
diminishing (TVD) property for scalar conservation laws with convex flux functions. The
time step restriction of the 2D compressible Euler equations is related to the Courant-
Friedrichs-Levy (CFL) number. The CFL number is defined as

CFL = Δt max
i,j

(
sp(A1(Ui,j))

Δx
+

sp(A2(Ui,j))

Δy

)
, (8)

where sp(A1(Ui,j)) and sp(A2(Ui,j)) are the spectral radii of the Jacobian matrices A1 =
∂F (U)/∂U and A2 = ∂G(U)/∂U , respectively. We choose CFL = 0.5 for the results of
the 2D compressible Euler equations. In (6) we replace Ui,j by UL

i+ 1

2
,j
and Ui+1,j by UR

i+ 1

2
,j

using the MUSCL [13] approach with the minmod limiter to obtain higher order accuracy
and also to avoid undesired oscillations. The extrapolated variables are defined as

UL
i+ 1

2
,j
= Ui,j +

1

2
minmod(Ui,j − Ui−1,j , Ui+1,j − Ui,j), (9)

UR
i+ 1

2
,j
= Ui+1,j −

1

2
minmod(Ui+2,j − Ui+1,j , Ui+1,j − Ui,j), (10)

where

minmod(a, b) =

⎧⎨
⎩
a if |a| ≤ |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0

(11)

= sign(a)max {0,min {|a| , sign(a)b}}

is the minmod limiter. The MUSCL approach is applied similarly to the numerical fluxes
Gi,j+ 1

2

in (7).

Temporal Discretization

We choose the TVD RK3 method because it has a favorable stability domain. The TVD
RK3 method [14] is given as

U
(1) = U

n +ΔtR(Un),

U
(2) =

3

4
U

n +
1

4
U

(1) +
1

4
ΔtR(U (1)),

U
(n+1) =

1

3
U

n +
2

3
U

(2) +
2

3
ΔtR(U (2)). (12)

where Ri,j = −(Fi+ 1

2
,j − Fi− 1

2
,j)/Δx − (Gi,j+ 1

2

−Gi,j− 1

2

)/Δy is the residual of the 2D

compressible Euler equations define in equation (4).
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Approximation of boundary conditions

The inflow and outflow boundary conditions for internal subsonic flow are imposed by
means of the local Lax-Friedrichs method (6) at the edge (1 + 1

2
, j) and (Nx −

1
2
, j), re-

spectively. Since the flow at the inlet is subsonic, there is one characteristic curve (the left
going Mach line with an acoustic wave) coming from the interior and two characteristics
(the pathline with the entropy and vorticity waves and the right going Mach line with
an acoustic wave) are entering from the exterior. Therefore, we need one numerical and
three physical boundary conditions. But at the inlet we simply use freestream variables
U1,j(t) = U∞ and let the approximate Riemann solver determine a flux approximation
(6) with the correct wave information at the cell face (1 + 1

2
, j) between the boundary

point (1, j) and its eastern neighbor (2, j) [15]. At the outlet the flow is subsonic and
two characteristics are leaving the domain from the interior and one characteristic curve
is entering from outside of the domain. So we need three numerical boundary conditions
and one physical boundary condition. As before, we use freestream boundary conditions
at the outlet UNx,j(t) = U∞ and let the approximate Riemann solver determine a flux
approximation (6) with the correct wave information at the cell face (Nx −

1
2
, j) between

the boundary point (Nx, j) and its western neighbor (Nx − 1, j) [15]. Since the ingoing
characteristic variables at inlet and outlet are unchanged, the computation of the numer-
ical fluxes at the adjacent cell faces is based on 1D non-reflecting boundary conditions in
the x-direction [15]. In summary we use the following numerical boundary conditions at
x = xa

U1,j(t) = U∞, (13)

and at x = xb

UNx,j(t) = U∞. (14)

We emphasize that the uniform flow conditions (13) and (14) at x = xa and x = xb,
respectively, are not considered to be the natural boundary conditions, but suitable flow
conditions to get the numerical fluxes approximately correct at the adjacent cell faces, cf.
the discussion above. The symmetry boundary conditions are implemented by considering
an extra line below y = yc. There we use

Ui,1(t) = diag(1, 1,−1, 1)Ui,3(t). (15)

The symmetry boundary conditions are also implemented at an extra line above y = yd
where we use

Ui,Ny+1(t) = diag(1, 1,−1, 1)Ui,Ny−1(t). (16)

Simplified ghost point treatment at embedded boundary

In Fig. 2 we show the flagging strategy. We flag the ghost and solid points by assigning
them 0 and -1 values, respectively. The fluid points are assigned values equal to 1. In Fig.
3 we show a simplified ghost point treatment at the solid boundary [11]. A ghost point
is denoted by G. In the simplified ghost point treatment we consider the fluid point F
on the vertical grid line through G adjacent to the boundary as the mirror point. Then,
we assume the boundary is in the middle between ghost and fluid points. The density
ρ, pressure p, and the tangential velocity component at the ghost point are symmetric
with respect to the solid boundary and therefore directly determined by their values at
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F. The normal velocity component un at the ghost point is anti-symmetric and thus gets
the negative value of un at F. The mathematical description of this strategy is given as

ρG = ρF , pG = pF , uG = uF − 2(n1uF + n2vF )n1, vG = vF − 2(n1uF + n2vF )n2, (17)

where n1 and n2 are the x-and y-components of the outer unit normal n of the boundary
at the intersection with the grid line between F and G.

1

01

1

1

1

-1 -1 -1 0

1

1

1 1 1 1

1

1 1

1

10 0

11

0

1

1

Figure 2. Flagging strategy for fluid (1), ghost (0) and solid points (-1).

F

G

Figure 3. Simplified ghost point treatment over a circular arc bump.

If the embedded solid boundary is in the middle between ghost point G and fluid
point F, then the expected normal velocity component at the solid boundary wall (index
w below) is zero because the ghost point treatment (17) yields:

(un)w =
1

2
((un)F + (un)G) = 0. (18)

If the embedded solid boundary is not in the middle between G and F as in Fig. 4, we
do not get zero for the arithmetic average of the normal velocity components, but

(un)w =
1

2
((un)F + (un)G) = (un)F (1−

2(yF − yw)

Δy
). (19)

So, we get an error of order O(yF − yw) = O(Δy), unless yF − yW = Δy/2 when (19)
corresponds to (18). For the tangential velocity component, density and pressure, we get
for the arithmetic averages at the solid boundary wall, e.g. for pressure, from the ghost
point treatment (17)

pw =
1

2
(pF + pG) = pF . (20)

Using Taylor’s expansion around the wall, we get

pF = (pw)exact +O(yF − yw) = (pw)exact +O(Δy) (21)
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Thus with (20) and (new formula for pF ), we see that the simplified ghost point treatment
(17) leads to a first order approximation at the embedded solid boundary when assuming
that the boundary valves are described by the arithmetic averages at the ghost and fluid
points. We see that the normal velocity component is only zero, if the embedded boundary
is in the middle between ghost and fluid points.

F

G
w

Figure 4. Detail of simplified ghost point treatment near embedded boundary.

Results

Subsonic flow in a channel with a circular arc bump flows from left to right. We use the
CFL number 0.5 and 241 × 241 grid points. We assume the lengths of the domain in
x-and y-directions are xb − xa = 3 m and yd − yc = 1 m, respectively. The height of the
circular arc bump is 10 % of its chord length which is assumed to be 1 m. The subsonic
upstream flow conditions are chosen as

M∞ = 0.7, p∞ = 140510 Pa, T∞ = 316.2240 K (22)

x

y

Mach number contour lines

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

0.4

0.6

0.8

1

Figure 5. Mach number contours for channel flow over a circular arc bump with 241 × 241 grid points.

In Fig. 5 and Fig. 6, we compare the Mach number contours for internal flow over
the circular arc bump with Hirsch [12]. In Fig. 5, we clearly see a shock wave near the
downward slope of the circular arc bump. We also see that the our results are lower than
Hirsch’s results with a structured 65 × 33 grid. The subsonic region in our result shown
in Fig. 5 is smaller and further upstream than Hirsch’s result in Fig. 6. The reason
for getting lower Mach numbers and the supersonic region and the shock wave shifted in
the upstream direction is probably due to a relatively coarser grid. As we have shown
in [11], we need a larger number of grid points compared to body-fitted grid methods.
This observation is also confirmed by the results presented in the literature [6]. Probably,
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Figure 6. Mach number contours for channel flow over a circular arc bump from [12].

we could have achieved more accurate and thus less diffusive results with fewer grid points
by using e.g. Roe’s method instead of the local Lax-Friedrichs method (6) and (7).
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Figure 7. Density contours for channel flow over a circular arc bump with 241 × 241 grid points.

In Figs. 7, 8 and 9, we present the density ρ, velocity component u and pressure p
contours for internal flow over the circular arc bump. In Figs. 7, 8 and 9, we see again the
shock wave near the downward slope of the circular arc bump. The convergence history
for our method based on the local Lax-Friedrichs method, MUSCL and TVD RK3 is
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Figure 8. Velocity component u contours for channel flow over a circular arc bump with 241 × 241 grid
points.
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Figure 9. Pressure contours for channel flow over a circular arc bump with 241 × 241 grid points.

presented in Fig. 10. For the current results with the 241 × 241 grid, the steady state
is reached at n = 20000. The steady state is reached at around n = 10000 for the 121 ×
121 grid (not shown).
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Figure 10. Residual of density for channel flow over a circular arc bump with 241 × 241 grid points.
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Figure 11. Pressure coefficient for channel flow over a circular arc bump with 241 × 241 grid points at
y = 0 and on the bump surface.

In Fig. 11, we show the pressure coefficient cp for internal flow over the circular arc
bump on the x-axis y = 0 and on the bump surface. The pressure increases from the
inflow boundary to the leading edge of the circular arc bump. The pressure decreases due
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Figure 12. Mach number distribution for channel flow over a circular arc bump with 241 × 241 grid
points at y = 0 and on the bump surface.

to the acceleration over the circular arc bump and reaches a minimum downstream of the
maximum point of the bump. The shock is clearly visible in Fig. 11 and much sharper
than with a 121 × 121 grid (not shown). We observe a pressure increase over the shock
and towards the trailing edge and a subsequent decrease towards the outflow boundary.
In Fig. 12 we show the distribution of the Mach number M for internal flow over the
circular arc bump. We observe supersonic flow between x ≈ 0.3 and ≈ 0.6m. Again, the
shock at x ≈ 0.6m is clearly visible.

Conclusions

In this work, we introduced a new approach to account for ghost points at embedded
boundaries for the Cartesian grid method. At an embedded solid boundary we employ a
simplified ghost point treatment in which the fluid point F is chosen on the vertical grid
line through ghost point G adjacent to the boundary as the mirror point. We investigate
the accuracy of the Cartesian grid method for the 2D compressible Euler equations sim-
ulating transonic flow over a circular arc bump. We use the local Lax-Friedrichs method
and the MUSCL approach for spatial discretization. For time integration we use the third
order TVD Runge-Kutta method. The Cartesian grid method needs a larger number of
grid points than body fitted grid methods to get accurate results. In our Cartesian grid
results, the location of the shock is upstream compared to the body-fitted grid result.
Further grid refinement is expected to improve the shock location and the quantitative
results. This expectation is supported by our observation that the simulated Mach num-
bers and the supersonic region get larger and closer to the body-fitted grid results when
going from a coarse to a finer grid.
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Erratum of Paper 5

 Erratum to “Accuracy assessment of the Cartesian 
grid method for compressible inviscid flows using a simplified 
ghost point treatment” [Rakenteiden Mekaniikka (Journal of 
Structural  Mechanics) Vol. 44. No. 3, 2011, pp. 279-291]. 





Erratum to ”Accuracy assessment of the Cartesian grid
method for compressible inviscid flows using a simplified
ghost point treatment” [Rakenteiden Mekaniikka (Journal
of Structural Mechanics) Vol. 44. No. 3, 2011, pp. 279-
291]

M. Asif Farooq and B. Müller

The purpose of this note is to correct Figs. 5, 7-12 and the discussion of those figures
in our publication [1].

After detecting and correcting a bug in our 2D internal inviscid flow code, we produced
the correct figures which we present below. We include the unchanged Fig. 6 from [2].

The new result only affect the discussion of the Mach number contours, i.e. the text
between Figs. 5 and 7 in [1], the number of time steps for convergence, i.e. the numbers
n = 20000 and n = 10000 on page 287 in [1], the location of supersonic flow, i.e. x ≈ 0.3
and ≈ 0.6 m on page 289 in [1] and the shock location, i.e. x ≈ 0.6 m before ’Conclusions’
in [1]. Moreover, the last part of the conclusions in [1] is affected by the corrected results.

For completeness, we present the complete corrected sections ’Results’ and ’Conclu-
sions’ here, although a large part of the text is unchanged as detailed above.

Results

Subsonic flow in a channel with a circular arc bump flows from left to right. We use the
CFL number 0.5 and 241 × 241 grid points. We assume the lengths of the domain in
x-and y-directions are xb − xa = 3 m and yd − yc = 1 m, respectively. The height of the
circular arc bump is 10 % of its chord length which is assumed to be 1 m. The subsonic
upstream flow conditions are chosen as

M∞ = 0.7, p∞ = 140510 Pa, T∞ = 316.2240 K (1)

In Fig. 5 and Fig. 6, we compare the Mach number contours for internal flow over
the circular arc bump with Hirsch [2]. In Fig. 5, we clearly see a shock wave near the
downward slope of the circular arc bump. We also see that our result with a 241 × 241
Cartesian grid is in good agreement with Hirsch’s result with a structured 65 × 33 grid.
The supersonic region in our result shown in Fig. 5 has a similar location as in Hirsch’s
result in Fig. 6. The maximum Mach numbers in our and Hirsch’s results agree to lie
above 1.4. Even with a 121 × 121 grid, we get similar results (not shown) as with the
241 × 241 grid. However, still the Cartesian grid method needs a larger number of grid
points compared to body-fitted grid methods. This observation is also confirmed by our
external inviscid flow simulations [3] and by results presented in the literature [4].

In Figs. 7, 8 and 9, we present the density ρ, velocity component u and pressure p
contours for internal flow over the circular arc bump. In Figs. 7, 8 and 9, we see again
the shock wave near the downward slope of the circular arc bump.
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Figure 5. Mach number contours for channel flow over a circular arc bump with 241 × 241 grid points.

Figure 6. Mach number contours for channel flow over a circular arc bump from [2].

The convergence history for our method based on the local Lax-Friedrichs method,
MUSCL and TVD RK3 is presented in Fig. 10. For the current results with the 241 ×
241 grid, the steady state is reached at n = 43000. The steady state is reached at around
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Figure 7. Density contours for channel flow over a circular arc bump with 241 × 241 grid points.
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Figure 8. Velocity component u contours for channel flow over a circular arc bump with 241 × 241 grid
points.
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Figure 9. Pressure contours for channel flow over a circular arc bump with 241 × 241 grid points.
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Figure 11. Pressure coefficient for channel flow over a circular arc bump with 241 × 241 grid points at
y = 0 and on the bump surface.
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Figure 12. Mach number distribution for channel flow over a circular arc bump with 241 × 241 grid
points at y = 0 and on the bump surface.
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n = 20000 for the 121 × 121 grid (not shown).
In Fig. 11, we show the pressure coefficient cp for internal flow over the circular arc

bump on the x-axis (y = 0) and on the bump surface. The pressure increases from the
inflow boundary to the leading edge of the circular arc bump. The pressure decreases due
to the acceleration over the circular arc bump and reaches a minimum downstream of the
maximum point of the bump. The shock is clearly visible in Fig. 11 and much sharper
than with a 121 × 121 grid (not shown). We observe a pressure increase over the shock
and towards the trailing edge and a subsequent decrease towards the outflow boundary.
In Fig. 12 we show the distribution of the Mach number M for internal flow over the
circular arc bump. We observe supersonic flow between x ≈ 0.35 and ≈ 0.8 m. Again,
the shock at x ≈ 0.8 m is clearly visible.

Conclusions

In this work, we introduced a new approach to account for ghost points at embedded
boundaries for the Cartesian grid method. At an embedded solid boundary we employ a
simplified ghost point treatment in which the fluid point F is chosen on the vertical grid
line through ghost point G adjacent to the boundary as the mirror point. We investigate
the accuracy of the Cartesian grid method for the 2D compressible Euler equations sim-
ulating transonic flow over a circular arc bump. We use the local Lax-Friedrichs method
and the MUSCL approach for spatial discretization. For time integration we use the third
order TVD Runge-Kutta method. Our Cartesian grid results are in good agreement with
body fitted grid results. However, The Cartesian grid method needs a larger number of
grid points than body fitted grid methods to get accurate results.
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Abstract—The accuracy of the Cartesian grid method has 
been explored for the 2D compressible Euler equations. We 
prescribe wall boundary conditions at ghost points near 
embedded boundaries by using local symmetry conditions. 
We test two ghost point treatments for supersonic flow over 
a wedge. In the standard ghost point treatment, the 
numerical solution at the corresponding mirror points is 
interpolated either linearly or quadratically. The accuracy 
of our second order node-centered finite volume method is 
independent of a linear or quadratic interpolation. In a 
simplified ghost point treatment, we consider the closest 
grid point in y-direction as mirror points of the ghost points. 
The simplified ghost point treatment exhibits lower or 
comparable mass flow error than the standard ghost point 
treatment. Moreover, the Cartesian grid and the body-fitted 
grid methods are applied to supersonic flow over a circular 
arc airfoil. The comparison of these two methods depicts the 
requirement of a larger number of grid points for the 
Cartesian grid method than the body-fitted grid method.   

I. INTRODUCTION 
The advancement in computer technology paved the 

way for researchers and scientists to propose new 
computational techniques. Two methods are introduced in 
the literature which have gained popularity among 
researchers. One of these is the standard body-fitted grid 
method (structured and unstructured grid methods) and the 
other is the Cartesian grid method. In the standard body-
fitted grid method, the grid points are aligned with the 
embedded boundary. The advantage of the body-fitted 
grid method is its potential to resolve the flow features 
near body surfaces. The disadvantage is the requirement 
of a great deal of effort for grid generation and connecting 
different shape elements with each other.  

The Cartesian grid method has recently become one of 
the widely used methods in CFD [1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14]. This is due to its simplicity, faster grid 
generation, simpler programming, lower storage 
requirements, lower operation count, and easier post 
processing compared to body-fitted structured and 
unstructured grid methods. The Cartesian grid method is 
also advantageous in constructing higher order methods. 
Problems occur at the boundary, when this method is 
applied to complex domains [15, 16, 17]. In the Cartesian 
grid method, the intersection of a curved embedded 
boundary and a computational domain create rectangular 
cells. These cells are known as cut-cells. These cut-cells 
create problem for the scheme to be implemented due to 
time step restriction. One solution to the time step 
restriction problem caused by small cut-cells is to merge 

the cut-cells with neighboring cells [8, 18]. Another option 
is to use ghost points at the immersed boundary. In this 
method, symmetry conditions with respect to the 
boundary are imposed at ghost points in the solid adjacent 
to the boundary [19]. While applying ghost point 
treatment, mass is lost in the process, hence the scheme is 
no longer conservative. Nevertheless, we preferred the 
ghost point treatment over a complicated cut-cells 
approach because of the simplicity of the former 
approach.  

In the ghost point treatment, the domain is categorized 
into the following types of points: 1. fluid 2. ghost, and 3. 
solid. At the embedded boundary, the first and second 
order stencils require one and two ghost points, 
respectively. In this paper, we present results for the 
second order method which require two ghost points at the 
embedded boundary. In order not to have any impact of 
solid and ghost points on our computation, we flagged 
these points to remain inactive.  

This paper is an extension of our work presented in 
[20]. The goal of the present study is two-fold. One aim of 
this paper is to check the accuracy of the two ghost point 
treatments. The second aim is to compare the results of the 
Cartesian grid method and the body-fitted grid method. In 
this way, the pros and cons of the two ghost point 
treatments are addressed and the accuracy of the Cartesian 
grid method is related to the accuracy of the structured 
grid method for the 2D compressible Euler equations. The 
standard ghost point treatment and a simplified ghost 
point treatments are compared. In the standard ghost point 
treatment, we impose the wall boundary conditions at the 
ghost points by interpolating the numerical solution at 
mirror points in the fluid domain and mirroring the 
interpolated values to insure reflective boundary 
conditions. In the simplified ghost point treatment, we 
consider the nearest grid points as mirror points of the 
ghost points. To increase the accuracy, we apply the 
MUSCL [21] approach with the minmod limiter. The third 
order TVD Runge-Kutta (RK3) method is used for time 
integration. The two ghost point treatments have been 
investigated for an oblique shock wave and the simplified 
ghost point treatment is applied to a circular arc airfoil.  

The paper is organized as follows. In section II., the 
governing equations for 2D compressible Euler equations 
are introduced. An outline of the discretization techniques 
is given in section III. In section IV., the ghost point 
treatments at embedded boundaries are explained. Results 
and discussion of 2D application are given in section V. In 
the end, conclusions are drawn in section VI. 
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y  II. COMPRESSIBLE EULER EQUATIONS 
The 2D compressible Euler equations in conservative 

form read 
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with ,   ,u ,v E and denoting density, velocities in p
x  and y directions, total energy per unit mass and 
pressure,  respectively. 

For perfect gas, we have the following relation 
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where is the ratio of specific heats. We consider = 
1.4 for air. 

For supersonic flow in the x -direction, the 
conservative variables at  are given as Dirichlet 

boundary conditions U( , y , t ) = g(y, t),  cf. Fig. 1.  No 

boundary conditions must be given at , because 
the flow is supersonic. 
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Figure 1. Sketch of domain and Cartesian grid for supersonic flow 

over a circular arc airfoil. 

III. DISCRETIZATION 

A. Spatial Discretization 

We assume a rectangular domain [  , ]ax bx  [  , 

] and  a (I+1)
cy

dy (J+1) Cartesian grid with equidistant 

grid spacing x = (  - )/I and =(  - )/J. 
The Cartesian coordinates of the grid points (i, j) are 
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The node-centered finite volume method yields the 

following semi-discretization of the 2D compressible 
Euler equations (1) 
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If we interpret (4) as a conservative finite difference 
method, U is an approximation of the exact solution 

U( ).  F and G are numerical fluxes 
for the 2D compressible Euler equations. The vector of the 
conservative variables U and the flux vectors F and G are 
defined in (2). The numerical fluxes of the local Lax-
Friedrichs method for F and G are defined as follows 
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In equations (6) and (7), c is the speed of sound.  And 
the CFL number for the 2D compressible Euler equations 
is defined as 

t
UAspUAsp
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where  and  are the ))(( ,1 jiUAsp ))(( ,2 jiUAsp

trices 1A = UF and 

2A = UG , respectively. We choose CFL = 0.5 for 
the 2D compressible Euler equations, 

respectively. In (6) we replace jiU , by 
the results of 

L
jiU .21
and 
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by R

jiU ,21  
using the MUSCL [21] ap with 

nmo er to obtain higher order accuracy and 
also to avoid undesired oscillations. The extrapolated 
variables are defined as 
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is the minmod limiter. The MUSCL approach is applied 
similarly to the numerical fluxes 

21, jiG  in (7). 

B. Approximation of Boundary Conditions 
c flow at 

             ,                              (11)               

where is the vector of the conservative variables 
fo

The inflow boundary conditions for supersoni

ax , cf. Fig.  1, are imposed as x
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U
m flr unifor ow in the x -direction. The flow variables at 

the outlet x = bx  are ap roximated as p
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i.e. by constant extrapolation. This approximation 

implies that the upwind finite volume method is used to 
determine the numerical fluxes

jI
F

,
2
1 . 

The symmetry boundary conditions at 0y  are 
implemented by considering an extra line below 0y . 
There we use 
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The boundary conditions at  are treated as dyy
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C. Temporal Discretization 
For time integration, we use the third order TVD RK3 

method. This method has been chosen because it has a 
favorable stability domain and preserves the total variation 
diminishing (TVD) property. Moreover, the TVD RK3 
method will be useful for the accuracy of time dependent 
computations. The TVD RK3 method [22] is given as 
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is a residual of the 2D compressible Euler equations. 
 

IV. GHOST POINT TREATMENT AT EMBEDDED 
BOUNDARY 

A. Standard Ghost Point Treatment for Embedded 
Boundary in 2D 

Fig. 2 illustrates the flagging strategy for 2D flow over 
a wedge, which we consider as an example of an 
embedded boundary. We flag the ghost and solid points 
by assigning them 0 and -1 values, respectively. The fluid 
points are assigned values equal to 1. In Fig. 3, we show a  
2D graphical description of the treatment at the embedded 
boundary using the standard ghost point treatment which 

Proceedings of International Bhurban Conference on Applied Sciences & Technology 
Islamabad, Pakistan, January 9 – 12, 2012 



is a modification of the ghost point treatment mention in 
[23]. 
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        Fluid Point 
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Figure 2. Flagging Strategy for fluid (1), ghost (0) and  

solid points (-1). 

 

 
Figure 3. Standard ghost point treatment at the embedded boundary. 

 
We call this ghost point treatment as the standard ghost 
point treatment. We divide our domain into fluid, 
boundary, ghost and solid points. A ghost point is denoted 
by g. The distance of g from the wedge wall is denoted by 

1 . The wall unit vector is denoted by n. The wall normal 
line through g is intersecting the horizontal grid lines at 
three points denoted by vertical lines in Fig. 3. At the first 
intersection point, we obtain the value of variable vector 
V  by linear interpolation of the values at the neighboring 
horizontal grid points. And similarly we get V  and 
V . After knowing V , V  and V  we proceed as 
follows. Subtract the distance from the boundary on the 
normal to obtain the mirror point  between V  and 

V  in the normal direction. Here, we apply linear 
interpolation between V  and V  and quadratic 
interpolation among V I , V II  and III  for the normal 
and tangential components of velocity, pressure p and 
density . The mathematical description of this strategy to 
determine the linearly and quadratically interpolated 
variable vectors V m  at the mirror point m, cf. (18) and 
(19), respectively, is expressed as follows. 
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where V =  ( , u, v, p) and . Then we 

use reflection boundary conditions 
III sss

,,,, mgmgngntt ppuuuu
mmg

(20) 

where  and denote the tangential and normal 
components of the velocity vector, respectively. 

tu nu

 

B. Simplified Ghost Point Treatment for Embedded 
Boundary in 2D 

 
 
 
 

 
 

 
 

 
 

 
 

Figure 4. Simplified ghost point treatment [20]. 

Fig. 4 sketches a simplified ghost point treatment at the 
embedded boundary of a wedge. A ghost point is denoted 
by G. In the simplified ghost point treatment, the fluid 
point F adjacent to the embedded boundary on a grid line 
parallel to the y-axis is chosen as mirror point. Then, we 
assume the embedded boundary is in the middle between 
ghost and fluid points. The density, pressure and 
tangential velocity component at F are imposed at G, 
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while the negative value of the normal velocity 
component u.n at F is taken at G. The mathematical 
description of this strategy is given by 
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where u, v, p and  denote velocity components in  x and 
-directions, pressure and density, respectively, cf. [24] 

for interpolated mirror points. In (21) 1 and 2 are the 
components of the unit normal vector n at the boundary. 
For a curved embedded boundary, the wall normal is 
taken at the intersection of the boundary and the grid line 
connecting G and F. The location of the fluid point 
( ) whose flow conditions are mirrored to the 
ghost point ( ) = ( ) is chosen as ( ) 

= ( ), cf. Fig. 4. If the fluid point happens to lie 
on the embedded boundary , we move it one j-index up to 
obtain proper symmetry conditions with respect to the 
embedded boundary, i.e. then we choose ( ) = 

( ). 
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V. 2D TESTS 

A. Test Case: An Oblique Shock Wave 
 
We verify our 2D code of the Cartesian grid method for 

an oblique shock wave. For spatial discretization we use 
the local Lax-Friedrichs (lLF) method, and to increase the 
order of our method we use the MUSCL approach with 
the minmod limiter. For time integration, we use TVD 
RK3 methods. We use the CFL number CFL = 0.5 and N 
= 101 × 101 grid points to calculate the oblique shock 
wave. A supersonic flow moves from left to right and hits 
a wedge resulting in a stationary oblique shock wave. The 
wedge angle is  = 15 degrees. The supersonic upstream 
flow conditions are given as 

2M , =10 5 Pa, p =1.2 kg/m (22) 3

B. Results for Simplified Ghost Point Treatment 
In Fig. 5 and 6, contour lines for the density  and 

velocity component u are presented. The apex of the 
wedge is placed at x = 0.4 m. When the supersonic flow 
moves from left hits the wedge, then an oblique shock 
wave is produced which starts from the apex of the wedge 
and intersects the right boundary. Figs. 5 and 6 show the 
flow variation in the proximity of the oblique shock wave. 
A comparison of the exact and numerical solutions for 
density  and velocity component u at x = 0.75 m is 
presented in Figs. 7 and 8. The computed density  and 
velocity component u are becoming closer to the exact 
solution as the grid is refined. However, there is some 
discrepancy between the exact and computed solutions 
near the wall of the wedge. This might be due to the ghost 

point method not guaranteeing conservativity and due to 
numerical problems near the apex of the wedge. In Figs. 9 
and 10, we have shown the density  and velocity u at the 
bottom wall and wedge.  
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Figure 5. Density contours with MUSCL (101 ×101 grid). 
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Figure 6. Velocity component u contours with MUSCL (101 ×101 
grid). 
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Figure 7. Comparison of exact and numerical solutions of density  at 
different grid levels with MUSCL. 
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Figure 8. Comparison of exact and numerical solutions of velocity 
component u at different grid levels with MUSCL. 
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Figure 9. Density  at the bottom wall and wedge with MUSCL. 
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Figure 10. Velocity component u at the bottom wall and wedge with 
MUSCL. 

C. Results for Standard Ghost Point Treatment 
In this section, results for the standard ghost point 

treatment are presented and compared with the simplified 
ghost point treatment.  

Figs. 11 and 12 show results for the velocity v and 
pressure p. We observe almost the same behavior of the 
standard ghost point treatment as for the simplified ghost 
point treatment. However, as expected, the standard ghost 
point treatment is slightly more accurate. Both ghost point 
treatments yield similar results also for density  and 
velocity component u (not shown). 

In Tables I and II, the mass flow errors for the standard 
and simplified ghost point treatments are presented. The 

mass flow  of the numerical 

solutions is approximated by the trapezoidal rule to 

yield . The mass flow error  is defined 

by , where .1m is the exact 
mass flow. The mass flow errors with the standard ghost 
point treatment using the MUSCL scheme with linear and 
quadratic interpolation are larger than those for the 
simplified ghost point treatment shown in Table II. The 
simplified ghost point treatment is probably more accurate 
for the mass flow than the standard one, because the 
former uses the higher order method up to the embedded 
boundary due to the use of two ghost points while the later 
drops to first order adjacent to the embedded boundary 
due to the use of only one ghost point. 
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Figure 11. Comparison of simplified and standard ghost point 

treatments for velocity component v with MUSCL at x = 0.75 m (161 
× 161 grid). 
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Figure 12. Comparison of simplified and standard ghost point 
treatments for pressure with MUSCL at x = 0.75 m (161 × 161 grid). 

TABLE I. MASS FLOW ERROR FOR STANDARD GHOST POINT 
TREATMENT FOR LINEAR AND QUADRATIC INTERPOLATION WITH 

MUSCL. 

2D Compressible Euler Equations 
Number 
of points 

Linear Interpolation with 
MUSCL

Quadratic Interpolation 
with MUSCL 

N × M .
m

m
m
.

%
.

m
m
m
.

%

41 × 41 23.8161 2.9932 22.7270 2.8525 
81 × 81  11.7625 1.4563 11.1839 1.3837 
161 × 161 5.7399 0.7054 5.4271 0.6667 

 

TABLE II. MASS FLOW ERROR FOR SIMPLIFIED GHOST POINT 
TREATMENT WITH MUSCL [25]. 

2D Compressible Euler Equations 
Number 
of points  

Second Order Method 

N × M
s

kgm
.

m
m
.

%

41 × 41 17.0569                       2.1275 
81 × 81  8.3530                       1.0298 
161 × 161 4.0201                        0.4930    
 

D. Test Case: Supersonic Flow Over a Circular Arc 
Airfoil

Supersonic flow moves from left to right and hits a 
circular arc airfoil of which we only consider the upper 
half. We consider the lengths of the domain in x and y-
directions to be 3m and 1m, respectively. The height of 
the half circular arc airfoil is 10 % of its chord length 
which is assumed to be 1m. We use N = 121 × 121 grid 
points to calculate supersonic flow over that circular arc 
airfoil at the following uniform flow conditions.  

2M , =10 Pa, p 5 =1.2 kg/m (23) 3

1) Results for the Cartesian Grid Method 
We use the local Lax-Friedrichs method for spatial 

discretization with MUSCL and minmod limiter and the 
TVD RK3 method for time integration. We obtain sharp 
shock waves at the leading and trailing edges, cf. Fig. 13 
for Mach number. The second order MUSCL results (first 
order extrema) indicate an attached oblique shock in 
agreement with the corresponding body-fitted grid results, 
cf. below. The convergence history for the higher order 
method is presented in Fig. 14. The steady state is reached 
at around n = 2500.  

The Mach number distribution on the stagnation 
streamline is given in Fig. 15. We observe that the flow 
remains supersonic throughout the domain. At the leading 
edge, the Mach number decreases due to the shock wave. 
Then, the Mach number increases from the leading edge 
to the trailing edge of the arc airfoil due to the flow 
acceleration. At the trailing edge, the Mach number 
decreases due to the shock wave and then remains almost 
constant up to the outlet. 
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Figure 13. Mach number contours for supersonic flow over a circular 

arc airfoil. 
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Figure 14. Convergence history for MUSCL with minmod limiter (121 
× 121 grid). 
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Figure 15.  Mach number distribution at the lower wall and circular arc 
airfoil for supersonic flow over a circular arc airfoil. 

2) Results for the Standard Body-Fitted Grid 
Method 
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Figure 16. Standard body-fitted grid of a circular arc airfoil. 
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Figure 17. Mach number contours for standard body-fitted grid. 

The body-fitted grid for the domain has 121 × 81 grid 
points, cf. Fig. 16. The grid spacing in the x -direction is 

the same as for the Cartesian grid method, i.e. x = 
40
1

. 

The grid points are clustered towards y = 0 and the 
circular arc airfoil (  = 0.0037 at y = 0 and  = 
0.0208 at y = 1). 

miny maxy

The cell-centered finite volume method with Roe’s 
approximate Riemann solver is used, which is less 
diffusive than the local Lax-Friedrichs method. The 
MUSCL approach is applied to the primitive variables, not 
to the conservative variables as in (8) and (9). While the  
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Figure 18. Convergence history for the standard body-fitted grid 

method. 
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Figure 19. Mach number distribution at y = 0 and circular arc airfoil for 
supersonic flow over a circular arc airfoil for standard body-fitted grid 

method. 

 
minmod limiter is used for density and pressure, the less 
diffusive van Albada limiter is employed for the velocity 
components. Harten’s entropy fix is employed to enforce  
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Figure 20. Comparison of pressure coefficient for the Cartesian grid and 

the standard body-fitted grid methods at different grid levels. 

 
 
the entropy condition [26]. A low-storage second order 
Runge-Kutta method was used for time discretization 
[27]. 

The contours for Mach number in Fig. 17 for the same 
supersonic flow over the circular arc airfoil show that the 
standard body-fitted grid method yields sharper shocks at 
the leading and trailing edges.  

The convergence history for the body-fitted grid 
method is presented in Fig. 18. The steady state is reached 
at around n = 600. Note that the -norms of the changes 

of the conservative variables stagnate at about , 
because single precision was used. The convergence to 
steady state was accelerated by using local time stepping. 
The Mach number distribution for the body-fitted grid 
method in Fig. 19 is similar to the one for the Cartesian 
grid method in Fig. 15. However, the Mach number at the 
leading edge and from the trailing edge to outlet is lower 
than with the Cartesian grid method.  

2l
610

In Fig. 20, we compare the pressure coefficient results 
obtained with the Cartesian grid method for 121 × 121 and 
241 × 241 grids and the standard body-fitted method for 
the 121 × 81 grid. The Cartesian grid pressure coefficient 
is lower than the pressure coefficient of the standard body-
fitted method for a coarser grid. For the Cartesian grid 
method, we need a larger number of points to compare 
with the standard body-fitted method. To achieve a grid 
spacing corresponding to of the body-fitted 
grid, the Cartesian grid method has to employ J + 1 grid 

points in the y-direction such that =

y miny

y
J
1

miny . 

VI. CONCLUSIONS 
We applied the Cartesian grid method to solve the 2D 

compressible Euler equations. Local symmetry boundary 
conditions were implemented at each ghost point. The two 
ghost point treatment are applied and compared for an 
oblique shock wave. The comparison for a circular arc 
airfoil is drawn between the Cartesian grid method and the 
standard body-fitted grid method for supersonic flow over 

a circular arc airfoil. We observed the same accuracy for 
both linear and quadratic interpolation for the standard 
ghost point treatment. For the supersonic wedge flow, the 
presented simplified ghost point treatment proved to be 
almost as accurate as the standard ghost point treatment, 
and the mass flow was even predicted slightly better by 
the former than the latter. For the supersonic arc airfoil 
flow, e.g. for predicting the pressure coefficient, the 
Cartesian grid method was found to require a larger 
number of points.  
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