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Experimental program for the validation of the design of a 150kWth Chemical Looping 

Combustion reactor system with main focus on stable operation achievement 

Background and objective 

There is an increasing interest in CO2 capture and storage as a measure to reduce man-made emissions 

of the greenhouse gas CO2. Several CO2 capture methods from power plants have been proposed and 

one of the best when it comes to costs and energy penalty is the Chemical Looping Combustion (CLC). 

The most promising way to realize this two steps combustion is the use of fluidized beds. One called 

Air Reactor (AR) uses air as fluidizing media. The oxygen of the air reacts exothermically with a 

metallic powder called Oxygen Carrier (OC) producing heat that can be used in a power cycle. While 

the depleted hot air is going out of the AR to a steam boiler or to a gas turbine the OC is collected and 

sent to another fluidized bed called Fuel Reactor (FR) and fluidized with gaseous fuel (e.g. methane). 

Here the fuel reacts with the oxygen carried by the metallic powder giving an endothermic or slightly 

exothermic reaction and the OC is ready to be collected and used again in the AR. In this way the 

exhaust gasses from the FR are just steam and “ready to capture” CO2. 

SINTEF Energy Research and the Norwegian University of Science and Technology (NTNU) designed 

a 150kWth Chemical Looping Combustion (CLC) reactor system which deals with many of the 

industrial and scale-up issues of this technology. It consists of a Double Loop Circulating Fluidized Bed 

(DLCFB) reactor system where both the AR and the FR are Circulating Fluidized Beds (CFB) meant to 

work in the fast fluidization regime and interconnected by divided loop-seals and a bottom extraction. 

The purpose of the divided loop-seals is both to avoid the gas mixing between the two reactors and to 

lead the flux of solids entrained by one reactor into the other one or re-circulate it back to the reactor of 

origin. In addition the bottom extraction is bringing part of the mass from the FR to the AR in order to 
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maintain steady state conditions. That is because according to the design of the hot rig in the FR there 

will be less fluidizing gas available compared to the AR, thus fewer solids will be transported.   

The air and fuel reactors have a height of 5 meters and respectively a diameter of approximately 0.25 

and 0.15 meters. A one to one scale Cold Flow Model (CFM) has been built in order to test the CLC 

reactor system hydrodynamics and to support the design of the 150kWth unit. A first experimental 

campaign was performed to prove that the AR and the FR are working according to design and to find 

the more suitable operational window in order to couple them in the double loop configuration. These 

analyses were carried out making use of the following measurement devices: pressure transducers 

distributed all over the reactor system and disc-valves located in the down-comers after the cyclones to 

estimate the solid flow entrained by the reactors. A second experimental campaign needs to be 

performed: it will have main focus on the achievement of a stable operation of the overall DLCFB by 

means of the divided loop-seal, air staging, total solids inventory and cyclones backpressure tuning. 

The following tasks should be considered in the project work: 

Read the literature material provided in order to build up a good general understanding of the CFB 

reactor systems (e.g. fluidization regimes and CFB components) and the CLC technology. Where 

required make further investigations.  

Gain a good understanding of the experimental set up together with the tools and measurement devices 

required to work in a powder technology laboratory (e.g. risk analysis, health and safety measures, 

pressure transducers, solenoid flap valve used to make solid flux measurements, etc.). 

Perform an experimental program in order to gain enough information to validate the current CLC 

reactor system design before starting the construction of a new 150kWth test rig. Main focus on the AR 

and FR coupled operation as well as on the divided loop-seal and FR bottom extraction fluidization 

optimization. 

Collect, evaluate and present the experimental results. 

The project work shall comprise 50 % of a semester. 

A progress plan (Planned activities and scheduled progress) shall be submitted to the responsible 

subject teacher/supervisors for comments within 14 days after the candidate has received the project 

description. 
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The work shall be edited as a scientific report, including a table of contents, a summary in Norwegian, 

conclusion, an index of literature etc. When writing the report, the candidate must emphasise a clearly 

arranged and well-written text. To facilitate the reading of the report, it is important that references for 

corresponding text, tables and figures are clearly stated both places.  

By the evaluation of the work the following will be greatly emphasised:  The results should be 

thoroughly treated, presented in clearly arranged tables and/or graphics and discussed in detail. The 

candidate is responsible for keeping contact with the subject teacher and teaching supervisors.   

According to “Utfyllende regler til studieforskriften for teknologistudiet/sivilingeniørstudiet ved 

NTNU” § 20, the Department of Energy and Process Engineering reserves all rights to use the results in 

connection with lectures, research and publications. 

The report must be submitted to the Department in 3 complete, bound copies.  Further, a separate page 

must be submitted, giving a short summary of the work and stating the author‟s name and title of the 

project work.  This information will be used in case of the work being referred to in journals, and must 

not exceed one typed page with double spacing. Additional copies should be given directly to the 

supervisor(s) involved in the project according to agreement with the supervisor(s). A CD with a 

complete copy of the main report in Word-format or similar, shall be submitted to both the subject 

teacher and the Department of Energy and Process Engineering. 

The main report from the project work shall be submitted to the Department of Energy and Process 

Engineering within                 , 2011.   

 

_________________________                                         __________________ 

     Trygve Magne Eikevik          Olav Bolland 

Deputy Head of Department     Subject teacher/Supervisor 

 

Principal Supervisor: Olav Bolland 

Co-Supervisor(s): Aldo Bischi 
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Summary 

Chemical Looping Combustion (CLC) is one of the most promising way to limit the CO2 

release to the atmosphere among the other technologies for Carbon Capture and Storage 

(CCS). It constitutes an indirect fuel combustion strategy, in which metal oxide is used as 

oxygen carrier, to transfer oxygen from the combustion air to the fuel, avoiding direct contact 

between air and fuel. It is basically an unmixed combustion process (fuel and air are never 

mixed) whose flue gases are mainly CO2 and steam. Thus, after condensation, the carbon 

dioxide can be easily separated from the exhaust. 

SINTEF Energy Research and the Norwegian University of Science and Technology (NTNU) 

have designed a 150kWth second generation chemical looping combustion reactor system. It 

consists of a double loop circulating fluidized bed (DLCFB) reactor system where both the air 

reactor and the fuel reactor are Circulating Fluidized Beds (CFB) meant to work in the fast 

fluidization regime and interconnected by divided loop-seals and a bottom extraction to 

achieve high solids circulation and be flexible in operation. The chosen design solutions are 

aiming at high operational flexibility and fuel conversion as well as compactness for the 

prospective of pressurizing the reactor as a further step.  

A Cold Flow Model
1
 (CFM) has been built to verify the design of the CLC reactor system. The 

CFM consists of two reactors, the fuel and the air reactor, with different diameters, each one 

having a loop seal
2
. No chemical reaction happens inside the CFM. The main goal of CFM is 

to have the understanding of the hydrodynamics of the system. 

An experimental campaign was performed in order to find the best conditions for the solid 

flux, reaching stability, and the proper flow regimes for the coupled reactors in the CFM. An 

investigation and mapping of the operating area of the coupled reactors was the target of the 

experiments. 

As the first step and for further research, the best set of operating conditions is selected by 

considering the stability and solid flux in order to meet the design targets. This set of 

                                                      
1
  A cold flow model was used for simulating the operation of CLC in order to study the fluid dynamics of a 150-

2
 Loop-seal, considered heart of a CFB, returns solids captured by cyclone to the base of the riser while preventing 

direct flow from high pressure riser to the low-pressure cyclone. 
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conditions is used as the reference case. Later, all other operational modes (are explained in 

following paragraphs) in the cold flow model which resembles CLC are evaluated against the 

base data obtained. 

Different operational modes of Chemical Looping Combustion were tested by means of the 

CFM to validate the CLC reactor system design. A significant effort was done to test the 

modes part-load, maximum power, maximum fuel reactor concentration and reforming. These 

experiments were done to define the best operational window for the CLC. In each of the 

mentioned modes, pressure profiles and concentration of the solids are compared to the 

reference case of the CFM. 

The loop seal plays a key role in the operation of the CFM, for assuring the solids movement in 

a steady state loop. Series of experiments were performed in the CFM in order to map the 

operational window of the loop seals. The sensitivity of the loop seal is evaluated by measuring 

the pressure difference in the bottom of the fuel reactor and air reactor during the operation of 

the CFM to obtain an operational window for the loop seal.  

For the last step, the effects of the total mass inventory circulating in the system for the five 

different operational modes were investigated by increasing and decreasing the inventory. For 

each case the pressure profiles and concentration of the solids is compared with the reference 

case and the results are shown in this thesis work. 

It was possible to operate the reactor system in a stable way and according to design targets. At the 

same time the hydrodynamic viability was addressed qualitatively, of several other chemical looping 

modes which in principle can be managed by the double loop circulating fluidized bed architecture: 

part-load, maximum power, maximum fuel reactor concentration and reforming. It was possible 

to find one or more configurations resembling each of them.  
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Nomenclature 
 

Abbreviations   

AR   Air reactor  

AR LS Air reactor loop seal  

ASTM American society for testing and materials  

CCS   Carbon capture and storage  

CFB  Circulating fluidized bed  

CFM  Cold flow model  

CLC  Chemical looping combustion  

CLR  Chemical looping reforming  

COP Conference of the parties  

DLCFB  Double loop circulating fluidized bed  

FR  Fuel reactor  

FRLS  Fuel reactor loop seal  

GDP Gross domestic product  

GHG Greenhouse gas  

HSE  Health, safety and environment  

IPCC  Intergovernmental panel on climate change  

LS  Loop-seal  

LHV Lower heating value  

NTNU Norwegian university of science and technology  

OC  Oxygen carrier  

PCC Post combustion capture  

PSD  Particle size distribution  

PT  Pressure transducer  

SD Standard deviation  

TSI  Total solids inventory  

UNEP United nations environment program  

UNFCCC United nations framework convention on climate change  

WMO World meteorological organization  
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Symbols 

  

d50  Mass median particle diameter [μm] 

D  Reactor diameter [m]   

Gs  Solids flux [kg·m
-2

·s
-1

]   

g  Gravitational acceleration [m·s
-2

]   

L, h   Reactor height [m] 

M Molecular mass  

Me Metal  

MeOα   Oxidized metal oxide  

MeOα-1   Reduced metal oxide  

P  Pressure [Pa]   

R Ratio  

U Gas velocity  

u0  Superficial gas velocity [m·s
-1

]   

umf  Particles minimum fluidization velocity [m·s
-1

]   

V Volume [m
3
] 

T  Temperature [ºC]   

t Time [sec] 

x Degree of oxidation  

 

Greek letters 

  

μ  Dynamic viscosity [Pa·s] 

ρ  Density [kg·m
-3

] 

φ  Particles sphericity  

ε Voidage  

λ Excess air ratio  
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Dimensionless numbers 

  

Ar Archimedes number  d50
3
·ρp·(ρp-ρg)·g·μ

-2
 

Fr Froud number  u0
2

·g
-1

·D
-1

 

Rep Particles Reynolds number  ρg·u0·d50·μ
-1

 

 

Subscripts 

  

g Gas  

mf Minimum fluidization  

o Oxygen  

oc Oxygen carrier  

p Particles  

red Reduced  

sph Sphericity  
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1. Introduction 

CO2 can be produced through either human activities like burning fossil fuels, deforestation, 

refrigerating systems, agriculture activities, or the carbon cycle naturally. If we take the 

industrial revolution in the period from the 18
th

 to the 19
th

 century as a starting point, the global 

atmospheric concentration of CO2 has increased by 35%. Human activities such as burning 

oil, coal, gas and deforestation are the reasons that have caused the increase of CO2 in the 

atmosphere. In the other hand, a natural source of CO2 occurs in the carbon cycle where 

billions of tons of atmospheric CO2 is removed from the atmosphere by ocean and plants, and 

released back into the atmosphere annually through natural processes e.g. in an ideal situation, 

carbon dioxide emissions and removals from the carbon cycle are almost equal, thus the whole 

system is in balance [1]. 

As said, CO2 is emitted principally from the burning of fossil fuels, both in large combustion 

units such as those used for electric power generation and in smaller, distributed sources such 

as automobile engines and furnaces used in residential and commercial buildings. CO2 

emissions also result from some industrial and resource extraction processes, as well as from 

the burning of forests during land clearance. 

It is also universally known that fossil energy conversion process create harmful emissions that 

have a huge impact on the greenhouse effect. It was scientifically demonstrated that the 

increase in anthropogenic greenhouse gases, due to the industrialization, was the cause for the 

temperature rise. In these last year‟s many laws have been enact in order to protect the 

environment by an effective control of hazardous pollutants emission. Therefore, knowing that 

carbon dioxide accounts for 64% of the enhanced greenhouse effect, interest in topics like CO2 

capture and storage has grown more and more. 

Energy consumption is always increasing and for sure it cannot be reduced or stopped; that is 

the reason why a long-term energy strategy for low or zero carbon-emission technology is 

needed.  

This plan also includes the utilization of renewable and nuclear energy. The latter plays now a 

remarkable role in electricity production, but it has always had social and political problems; 

there are safety issues yet to be solved and the debate on what to do with the radioactive waste 

http://www.greenfacts.org/glossary/abc/carbon-dioxide.htm
http://www.greenfacts.org/glossary/def/fossil-fuel.htm
http://www.greenfacts.org/glossary/abc/carbon-dioxide.htm
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is still open. Most of the people, on the contrary, vote for renewable energies, because of their 

regenerative and environment-friendly nature. However, they still have complex constraints 

and they probably will never be dominant in world‟s energy supply. For this reasons in the 

future fossil fuels will still be fundamental. 

 

Figure  1-1: green house gas emission by country 

 

As mentioned there is a big effort all over the World to reduce the human made emissions of 

greenhouse gasses, e.g. increasing investment in renewable energies and biomasses. 

Nevertheless greenhouse gases, emissions are still increasing because of the economical 

growth of the world requiring always more energy which is mainly produced utilizing fossil 

fuels because renewable energies are still not economically convenient.  
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Figure  1-2: Growth of global trade in goods, gross domestic product (GDP), energy use, CO2 

emissions, and global population, 1975–2007. Data obtained from World Bank Development 

Indicators (2010) 

A lot of research is therefore done to find concepts with low energy demand and hence low 

operating cost. Chemical Looping Combustion (CLC) is one of the most promising 

technologies when it comes to capture costs [2]. 

The idea standing behind CLC was first introduced by Lewis and Gilliland (1946) in a patent 

to produce a gas mixture of hydrogen and carbon monoxide. Later Richter and Knoche (1983) 

and Ishida et al. (1987) proposed the CLC principle to reduce the exergy loss of a conventional 

combustion process [3]. 

SINTEF Energy Research and the Norwegian University of Science and Technology (NTNU) 

have designed a 150kWth atmospheric CLC reactor system. The chosen design solutions are 

aiming at high operational flexibility and fuel conversion as well as compactness for the 

prospective of pressurizing the reactor as a further step [2]. 
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2. Background 

2.1. Carbon Capture and Storage (CCS) 

The proposed European strategy to meet the challenge of future energy supply is based, among 

others like e.g. renewable, on fossil fuel conversion and subsequent capture and sequestration
3
 

of the greenhouse gas CO2. The idea is to deposit concentrated CO2 in safe geological storages 

like gas fields instead of uncontrolled emission in the atmosphere [4]. 

This method has been selected as one of the most effective option for mitigating the global 

warming by the Intergovernmental Panel on Climate Change (IPCC). This organization was 

established in 1988 by the United Nations Environment Program (UNEP) and the World 

Meteorological Organization (WMO). Its tasks are to assess information on climate change and 

its effects on the environment; to discuss options for mitigating it and provide solutions for 

adapting to it. The IPCC is also responsible for communications, related to scientific/technical/ 

socio-economic advices, with other organizations, such as the Conference of the Parties (COP) 

and the United Nations Framework Convention on Climate Change (UNFCCC). In the past 

years many Reports and Technical Papers were produced; among them, the Special Report on 

CO2 Capture and Storage can be found. [5] 

This Report provides an exhaustive description about CCS. It is a process based on three steps: 

 Separation of carbon dioxide from fossil fuels combustion power plants and, in general, 

from industrial and energy-related sources; 

 Transport to a pre-established storage location; 

 Long-term isolation from the atmosphere. 

The first phase, or rather the CO2 capture, is the most energy-consuming between the three, so 

that it has to be deeply studied. It can be divided into separation and compression. At the 

beginning, the carbon dioxide has to be captured; this operation can be applied to large point 

sources, such as fossil fuel power plants, biomass energy facilities, natural gas production 

plants, synthetic fuel plants, fossil fuel-based hydrogen production plants and others. 

                                                      
3
 Carbon sequestration is the process of removing carbon from the atmosphere and depositing it in a reservoir. 
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Capturing CO2 requires considerable energy. In a „generic‟ power generation plant such as that 

shown in Figure 2-1, there is a significant loss of conversion efficiency, and indeed a 

significant portion of the CO2 produced comes from the CCS operation. To calculate the real 

(or net) reduction of emissions to the atmosphere, different quantities have to be analyzed: the 

fraction of CO2 captured and the increased CO2 production caused by the decrease of the plant 

efficiency. The increased CO2 production resulting from the loss in overall efficiency of power 

plants due to the additional energy required for capture, transport and storage and any leakage 

from transport result in a larger amount of CO2 produced per unit of product (lower bar) 

relative to the reference plant (upper bar) without capture. [6] 

 

Figure  2-1: CO2 capture and storage from power plant [6] 

The additional energy required by a plant equipped with a CCS system can be considered, in 

average, equal to 10-40% of the energy needed by a plant of equivalent output, without CCS. 

The existing techniques usually can capture about 85-95% of the carbon dioxide that passes 

through the capture plant. Hence the net reduction in CO2 emissions to the atmosphere, using 

CCS, will be around 80-90%. 

So, accurate calculations are necessary to assess the real advantages of the application of this 

method. 
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2.2. Methods of CO2 Capturing  

There are three primary methods of capturing CO2: Pre-combustion, or separating CO2 

from gasified fossil fuel prior to combustion; post-combustion, which captures CO2 from 

the flue gas stream after the fossil fuel is burned; and oxy fuel combustion, where the 

combustion of fuel takes place in an oxygen-rich environment, resulting in flue gas more 

ready for sequestration. 

 

Figure  2-2: Three CO2 capture processes [7] 

 

2.2.1. Post-Combustion Capture (PCC) 

This process, as the name can suggest, is used to rinse existing emissions. A significant issue in 

this area is the real composition of the flue gases from power stations, and in particular the 

presence of impurities has to be considered. In fact, not only O2, N2, CO2 and H2O will be 

found, but also unwanted pollutants like particulates, NOx, SOx, heavy metals and others. The 

percentages of these elements depend on the type of fuel used, but in any case impurities have 

to be removed before proceeding with capture, leading to an increase in costs.  

Therefore, many problems have yet to be solved; this is the reason why this process is not 

considered the best. However, several different techniques have been studied and implemented, 
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most of them commercially available. Among them, the one based on the absorption process 

carried out by chemical solvents is seen as the preferred choice, because of its high capture 

efficiency and selectivity, as well as lower costs and energy use in comparison with other post-

combustion methods. This technique works as it follows. 

At first the flue gases are subjected to cooling, in order to reach temperature levels compared to 

those required for efficient carbon dioxide absorption; after that they are inserted into a CO2 

absorber. Here they have to pass through an absorbing solution, containing a chemical solvent 

which reacts with the CO2 and manages to absorb up to 85% of the gas. After that, this quantity 

is removed from the solution by heating, so that the process can restart; in fact, at higher 

temperatures the capacity of the absorbent to maintain the gas attached decreases. In the 

meantime, the clean flue gases are released into the atmosphere. The carbon dioxide is then 

compressed and cooled; the result of this operation is that it is transformed into liquid, easier to 

handle for transport and storage [9]. 

 

Figure  2-3: The basic principle of post-combustion [8]  

One of the clearest benefits of this method is the fact that it can be used for retrofitting, i.e. it 

can be added to an already existing plant: it is not necessary to anticipate its presence in the 

first design phases, and usually there is no need to modify the original structure. [10] 

Many things though are fundamental for the efficiency of the process, for example the correct 

choice of the solvent, related to the fuel used; the addition of equipment for eliminating 

impurities and for maintaining the solution quality, avoiding, as much as possible, corrosion or 

degradation of materials; an evaluation or the energy required for the entire system, also taking 

into account the one necessary for CO2 compression. The amount of energy is thus very high 

and this causes a significant decrease of the power plant efficiency. For this reason, several 

studies are still ongoing; for instance, different types of solvent are being analyzed so that to 
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achieve a reduction in energy consumption. Innovative process designs are also being 

introduced. However, it is yet to be proved that these methods will bring to real advantages.  

[11] 

 

2.2.2. Pre-Combustion Capture 

In this case, the goal is to remove CO2 from the fossil fuel prior to the combustion phase. The 

process usually is constituted by this sequence of operations. 

At first, it is necessary to convert the fuel into a mixture of hydrogen, H2, and carbon 

monoxide, CO. This can be obtained following two different paths: 

Steam reforming, based on the addition of steam to the primary fuel. The basic reaction 

(endothermic) in this instance is: 

                 
 

 
    (2-1) 

Partial oxidation (alias gasification if solid fuels are used), based on the addition of oxygen to 

the primary fuel. Basic reaction (exothermic): 

     
 

 
       

 

 
   (2-2) 

The following reaction is required to transform CO in CO2, and it is generally called “shift” 

reaction. It is basically an addition of steam: 

              (2-3) 

Then the separation of CO2 is made, following a similar process as the one in the post-

combustion capture. In this case, however, the fuel used has a reduced content of carbon, 

leading to a smaller amount of gas that has to be separated and processed. [11] 
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Figure  2-4: The basic principle of pre-combustion [8] 

So, it can be noticed that pre-combustion process may be used for two distinct aims: 

 H2 production, as this is nowadays studied as a possible fuel above all for vehicles, but 

also for power plants. Unfortunately the element will not be perfectly pure, but it will 

contain a certain percentage of impurities like methane, CO and CO2, even if in small 

quantities. 

 Carbon reduction in fuels, by the capture and storage of carbon dioxide. 

Unlike the previous method, this cannot be added at an already existing plant, because 

substantial changes have to be made on the original structure. Thus, pre-combustion regards 

only new plants, and it has to be designed at the same time as the entire system.  

On the other hand, it has been demonstrated that by the application of this method up to 90% of 

the carbon dioxide can be captured. 

However, using pre-combustion capture leads to a significant increase of the costs (about twice 

as high as the ones resulting from using post-combustion); so, even in this case, further 

analysis are required to find a way to reduce investments, ensuring in the meantime a good 

efficiency of the process. [10] 

 

2.2.3. Oxy-fuel combustion for CO2 capture  

The process of fuel which is burned with pure oxygen instead of air as the primary oxidant 

is called oxy-fuel combustion. Since the nitrogen part of air is not heated, the fuel consumption 
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is reduced, and it is possible to obtain higher flame temperature. The idea behind the oxy-

combustion is to let the combustion occur with pure oxygen, because it prevents the 

combustion products to be diluted by nitrogen (and the presence of other pollutants such as 

NOx). Further, having zero oxygen excess avoids the combustion products of being diluted 

with oxygen [8]. 

 

Figure  2-5: The basic principle of oxy-combustion [8] 

In this way, the quantity of nitrogen will be significantly reduced (there will always be a small 

percentage, depending on the type of fuel used) and the products will be, mainly, just water 

vapor and carbon dioxide, which can be easily separated through a cooling process. After the 

condensation of the vapor, a CO2 rich gas-stream is created, containing around 80-98% of the 

dioxide, also depending on the fuel used. These gases are then compressed and dried; they can 

also be further purified before being sent to storage. 

The efficiency of the capture system in this case can be considered equal to 100%; this means 

that almost 100% of the carbon dioxide can be captured [10]. 

The challenges for these processes which should be pointed out are with substituting the 

combustive agent, the combustion temperature will change; in particular, the temperature in a 

reaction using oxygen can reach up to 3500 °C. This temperature is unsustainable by materials 

that are generally used in power plants, and it brings to high stresses in these materials. So, the 

heating must be controlled, usually by a strict evaluation of the proportion of flue gas and 

water recycled back in the combustion chamber. Moreover, new materials, with higher 

resistance, are being studied. 
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The production of pure oxygen also constitutes a problem. Different techniques can be utilized; 

among them, the most used is distillation at cryogenic temperatures. This option consists in the 

compression of the air followed by its purification: adsorbers remove hydrocarbons, water, 

CO2 and N2O. After that, air passes through heat exchangers for cooling and finally it is 

separated into O2 and N2 with a distillation process. These operations, unfortunately, lead to 

major energy costs, so this technique is very expensive. This is the reason why a lot of efforts 

are concentrated on research about a different solution: polymeric membranes, or oxygen 

transport membranes. These components are made by ceramic and metal oxides, and they have 

certain oxygen permeability, depending on the oxygen ion vacancies in the metal oxide lattice. 

This technique may be really efficient, but it still is at an early stage of development; it will 

require more years of researches. [11] 

In general, oxy-fuel combustion is still not ready to be used, but several studies are being 

conducted in order to find solutions for the problems previously discussed. Between the 

emerging technologies, the chemical looping combustion process is gaining more and more 

importance. 

Figure 2-6 shows classification of Oxy-combustion power cycles based on integration of the air 

separation process and the power cycle. 
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Figure ‎2-6: Classification of oxy-combustion methods for CO2 captures [8] 

 

As shown in the figure 2-6, Chemical looping combustion (CLC) is closely related to oxy-fuel 

combustion as the chemically bound oxygen reacts in a stoichiometric ratio with the fuel. In 

the CLC
 
process the overall combustion reaction takes place in two reaction

 
steps in two 

separate reactors. In the reduction reactor, the
 
fuel is oxidized by the oxygen carrier, i.e., the 

metal oxide MeO. The metal oxide is reduced to a metal
 
oxide with a lower oxidation number, 

Me, in the reaction
 
with the fuel. In this manner, pure oxygen is supplied

 
to the reaction with 

the fuel without using a traditional
 
air separation plant, like cryogenic distillation of air [12]. 
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3. Theory 
 

3.1. Chemical Looping Combustion (CLC) 

 

Combustion is defined as a rapid chemical reaction of oxidants with fuels, during which heat is 

produced. Chemical looping combustion constitutes an indirect fuel combustion strategy, in 

which metal oxide is used as oxygen carrier, to transfer oxygen from the combustion air to the 

fuel, avoiding direct contact between air and fuel. It is basically an unmixed combustion 

process (fuel and air are never mixed) whose flue gases are mainly CO2 and steam. Thus, after 

condensation, the carbon dioxide will be easily separated from the exhaust. Moreover, during 

the normal combustion process, irreversibilities cause penalties in the efficiency of the 

conversion of fuel energy into work. With CLC these penalties are reduced precisely for the 

presence of multiple sub-reactions and chemical intermediates. For these reasons, this 

technology is seen as one of the most promising way to limit the CO2 releases in the 

atmosphere.  

In 1946 for the first time the basic principle of CLC was introduced by Lewis and Gilliland, 

whose aim was the production of a gas mixture of hydrogen and carbon monoxide. The idea of 

using this principle in order to reduce the exergy loss of a conventional combustion process 

was proposed by Richter and Knoche, in 1983, and Ishida et al. in 1987. Thereafter, it has been 

studied as a possible technique for capturing CO2 [3]. 

Different approaches for chemical looping combustion have been investigated. Basically, there 

are three possible choices of reactor set-up: 

Move feed 

In this method, the oxygen carrier material is maintained static in a fixed bed and the feed is 

switched to the reactor between different gas compositions. For this reason, a complicated 

system of valves is required in order to allow variations in the feed and also in the outlets for 

the effluent gases. The basic process consists in four steps: 

 Full oxidation of natural gas by the OC material 

 Flushing (in general using steam) 
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 Re-oxidation of the OC with air 

 Flushing 

The main problems of this model are mostly related to the valves; the system needed is very 

sophisticated and for a full scale power plant there can be troubles in the calculation of valve 

size. In addition, changes in particle volume during operation are not well tolerated. This can 

lead to formation of fines due to particle crushing. A solution can be found in adding post 

reactor cyclones to remove the fines. 

Move reactor 

In this approach is considered the idea of moving a fixed reactor between different gas streams. 

One of the most interesting examples is the study of a rotating bed reactor where the oxygen 

carrier material is rotated between the natural gas stream and the air stream, by means of a 

doughnut shaped fixed bed. To avoid the mixing of the two reacting gases is important to 

provide streams of an inert gas (for example steam) between them. The fact that the reaction is 

exothermic causes an increase in moles of gas and in gas temperature, which leads to volume 

expansion. For this reason a radially directed gas flow is adopted, so that the expansion can be 

compensated by the radial reactor volume increase. 

The goals that the rotating bed reactor should reach are compactness and easiness to operate, 

especially in comparison with the move feed concept [13]. 

 

Figure  3-1: Rotating bed reactor with radial gas flow. In this drawing, the thick black lines 

represent separation walls, while the light blue parts are the sectors where the gases are fed, 

and the green area is the rotating oxygen carrier bed [13] 
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Move material 

The third alternative consists in moving the oxygen carrier material. 

One of the most promising and followed scheme is made of two different fluidized beds 

reactors where a metallic powder circulates, playing the role of oxygen carrier. This gets 

oxidized and then reduced cyclically: in the oxidizer (air reactor) combustion takes place, 

while the oxygen present in the air reacts with the oxygen carrier. This reaction is strongly 

exothermic, and can be schematized as it follows: 

                                (3-1) 

The air heated up and depleted of the oxygen can be utilized for two main purposes: steam 

production or expansion in a turbine, if the reaction occurs in a pressurized environment.  

After that, the metal oxide generated during the oxidation is moved to the reducer (fuel 

reactor), where the particles are reduced by the introduction of fuel. This reaction can be 

endothermic or slightly exothermic, depending on the type of particles and fuel; the products 

are mainly CO2 and H2O, as can be seen in the following: 

    
 

 
              

 

 
         

 

 
    (3-2) 

The separation of the carbon dioxide will be complete after the condensation of the steam. It 

has been proved that the overall reaction (oxidation + reduction) is equivalent to the 

conventional combustion of the fuels, releasing the same amount of energy. Moreover, the fact 

that the process consists in an indirect fuel conversion in two different reactors leads to a 

reduction in the exergy loss. The exergy is defined as the maximum amount of available work 

that can be extracted from a system during a transformation from a reference state to the 

equilibrium. Every non-ideal process causes an exergy loss, but this can be minimized by 

analyzing and finding the most effective energy management. A way to increase the overall 

energy conversion efficiency of the process is the integration of energy with a low exergy rate 

into energy with higher exergy rates, where the exergy rate is the ratio between the usable work 
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and the total amount of energy. During the chemical looping combustion, low grade heat is 

recuperated while producing a larger amount of high grade heat. 

 

Figure  3-2: Basic scheme of chemical looping combustion [3] 

 

Most of the chemical looping combustion cycles are designed to operate with a solid oxygen 

carrier. It was proved, however, that by using liquid and particularly gas phase carriers the 

thermodynamic advantages of CLC can be maximized. Richter and Knoche suggested as a 

possible carrier Cadmium; this should have been in vapor or liquid phase for at least part of the 

cycle. After that, another suggestion came from McGlashan et al.: using Zn as a carrier the 

cycle could have reached high theoretical efficiency and for this reason there could have been 

the possibility of generating both hydrogen and power. Recently, another model was proposed, 

using Na instead of Zn. This choice was made because Na2O, the principal Na oxide stable at 

high temperature, is in the liquid state while produced in the oxidizer (that means less 

difficulties in transfer it to the reducer and less fouling in the reactors). This method has 

advantages as well as disadvantages; many issues have still to be solved, from corrosion 

problems due to the high reactivity of Na, to errors caused by the assumption of considering 

ideal liquid mixtures [14]. 
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In general, further improvements are strongly requested for gaseous fuels: they require an 

increase in fuel and metal oxide conversion efficiencies in the reducer, or anyway a minimum 

carbon deposition, higher solids circulation rates and reactor dimensions. Thus, solid fuels are 

gaining importance, especially because of their potential economic impact. However, even in 

this case there are still a lot of unresolved questions, mostly concerning ash removal, solids 

feeding and mixing, solid fuel conversion, OC interaction with pollutants like sulfur or 

mercury [4]. Moreover, the oxygen carrier should respond to precise criteria, which will be 

soon presented. 

Before introducing in details the model developed by SINTEF Energy Research and 

Norwegian University of Science and Technology (NTNU), some issues about particles and 

hydrodynamics have to be discussed. 
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3.2. Hydrodynamics 

3.2.1. Regimes of Fluidization 

“Fluidization is defined as the operation through which fine solids are transformed into a fluid-

like state through contact with a gas or a liquid” [15]. 

Different hydrodynamic regimes of fluidization can be obtained, as the gas velocity increases. 

Considering a bed of granular solids on the bottom of the column, the injection of gas through 

it will cause the changing of the regimes, as shown in the picture below [16]. 

 

Figure  3-3: Hydrodynamics regimes of fluidization. The transitions between one and the other 

are due to variations in the gas velocity (U) and in the voidage (ε) [16] 

When the velocity of the gas injected is very low, the particles lay stationary on the bottom part 

of the column, creating a fixed or packed bed, where the gas flows through interstices in the 

solids. In this type of bed, solids are not able to move respect to each other, even if it is 

possible to have moving packed bed where the particles are in motion respect to the walls of 

the column. 
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Increasing the velocity of the gas, the first change occurs, the result being the presence of 

bubbles and thus the starting of the bubbling phase. The bubbles, which can be considered gas 

voids where the presence of solids is little or even null, are surrounded by the so called 

emulsion phase, i.e. the gas-solid suspension. The bubbles will rise in the bed, thanks to the 

buoyancy force, transporting the gas from the bottom to the top of the column [15]. Transition 

from fixed bed to fluidization is reached when the velocity equals the value for the minimum 

fluidization velocity, i.e. the lowest gas velocity that allows the suspension by the gas for all 

the particles contained in the bed [17]. The bubbles form as soon as the superficial gas velocity 

equals the value for the minimum bubbling velocity. All these values for the velocities have 

been estimated by scientists and can be calculated by means of dimensional correlations.  

Increasing further the superficial gas velocity, the dimensions of the bubbles increase. When it 

is reached a size comparable to the width of the bed (or the column diameter), the transition to 

the slug flow occurs. In this regime, bubbles flows through the bed as a slug. Even in this case 

is possible to estimate a minimum slugging velocity thanks to previous studies. However, the 

slugging phase does not occur always: it is impossible when having shallow beds, columns 

with very large diameter or very fine particles (dp < 60 μm), because it would be impossible for 

the bubbles to reach dimensions that can be compared to the column diameter. 

Going even higher with the velocity leads to turbulent beds, in which rapid coalescence and 

breakup of bubbles can be observed. For this reason, it cannot be identified a proper bubble 

phase, but there will be a high expansion characterized by violent activities and particles 

thrown away from the bed surface. Visually, in the flow will still be found voids, like in the 

previous ones, but here they will be considerably smaller and more regular [16]. This regime 

has a lot of advantages while doing the comparison with the lower velocity regimes. First, the 

heat transfer is increased, due to a much higher value for the heat transfer coefficient, caused 

also by the fact that it is obtained a better gas – solids contact. Moreover, the temperature will 

be more uniform than in the other cases.  

Heat transfer coefficients are further increased with the transition from turbulent regime to fast 

fluidization that occurs, as in the previous cases, when the superficial gas velocity is increased. 

Here the interface between the dense bed and a more dilute freeboard region becomes less and 

less distinct.  Visually, the main features of this regime are the presence of clusters, 
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continuously forming and disintegrating, moving up and down in a flowing gas – solid 

continuum, high slip velocity between the solids and the gas, and the best mixing achievable. 

Having an excellent contact between solids and gas deals also to an even more uniform 

temperature in the system and to the fact that the residence time distribution for the particles 

can be considered almost equal to the one related to the condition of perfect mixing. 

The effects of the different variables on fluidized bed are shortened in the following table.  

 

Table  3-1: Features of fluidized beds in different flow regimes [18] 

 

 

 

3.2.2. Circulating Fluidized Beds 

A consequence of the existence of several regimes of fluidization is the presence of different 

configurations to choose to reach the established contact between solids and gas in order to 

have the desired reactions.  

Fixed beds were already mentioned. Those, as well as fluidized beds, characterized by the fact 

that a distributor situated in the bottom of the column is used to introduce gas or liquid that 

support the particles, have been widely utilized in combustion processes.  

In the past two decades another kind of beds has gained more and more importance, especially 

when dealing with major applications. It is the case of circulating fluidized beds (CFB); a 
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general understanding of how they work can be found just analyzing the name. „Circulating‟ is 

referred to the fact that the solids, usually introduced near the bottom of the column, should be 

entrained to the top by a sufficient upwards flow of fluid (in the riser), but then the majority of 

them should be captured and returned continuously to the bottom (through the downcomer). 

„Fluidized bed‟ underlines the need for the particles to be supported by a fluid [17]. 

 

Figure  3-4: Basic scheme of a circulating fluidized bed system [17] 

The CLC reactor system designed by SINTEF and NTNU take advantage of this technology. 

 

3.3. Particles characterization 

 

In order to analyze the behavior of the system is important to pay attention to the particles and 

their characteristics. 

Two parameters are used to characterize the particles in a circulating fluidized bed. These are 

sphericity    and equivalent spherical diameter dsph, and they are defined as it follows: 

 

    
                   

                     
 
           

 (3-3) 
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 (3-4) 

Multiplying the two parameters, the particle size dp can be found. All the particle properties 

depend from this value. For example, reducing it the particle strength is increasing, and 

phenomenon like agglomeration become more important, because of a greater surface/volume 

ratio for the particles. Other than that, more difficulties will be found in particle separation, 

while there will be higher reactivity and solubility due to the increase of the specific area 

(defined as surface area of the particle divided by its volume). 

Moreover, attention should be paid to the type of particles involved. In fluidizing solids with 

gases four different behaviors can clearly be recognized; following the Geldart classification, 

these are the groups: 

Group A  

This group includes particles that have a small mean size and/or a low density, lower than 1.4 

g/cm
3
. These characteristics lead to bed that can expand significantly before the start of the 

bubbling phase, and that usually collapses slowly cutting off the gas supply.  

The mixing is very quick because of the high circulation of the powder obtained even when 

there are few bubbles. 

Group B 

Here we have materials with mean size between 40 μm and 500 μm and density between 1.4 

g/cm
3
 and 4 g/cm

3
. Bubbles start to appear at the minimum fluidization velocity of just above 

it. The bed does not expand considerably and collapses very quickly when cutting off the gas 

supply. While not in the bubbling phase, the circulation of the powder is very little or absent. 

Group C 

In this group we find all the particles that are in any way cohesive. The inter-particle forces are 

higher than the ones that can be exerted on the material by the gas, and this makes the 

fluidization of the particles extremely difficult. It is not impossible though, in fact it can be 

reached with the help of vibrators or mechanical devices. 
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Anyway, for particles belonging to this group the mixing is very low and thus the heat transfer 

between the bed and a surface decreases, compared to what happens for materials belonging to 

the other groups. 

Group D 

This last category comprises large and/or very dense particles. 

Even in this case the solids mixing are very poor, and the flow regime can be turbulent leading 

to problems due to particle attrition.  

However, the fluidization can be obtained in the case of relatively sticky materials, because of 

the risk of agglomeration is avoided by large particle momentum and low particle-particle 

contacts.  

A certain type of bed, defined as spouted bed, can be formed with these materials, if the gas is 

injected only through a hole located in a centered position. [19] 

 

 



 

24 

 

 

Figure  3-5: Geldart‟s particle classification for fluidization [19] 

 

The particles used in the reactor built by SINTEF and NTNU should belong to the group A in 

order to reach the established fluidization regime and adequate mixing and heat transfer
4
. 

  

                                                      
4
 More info at section 3.5.1 
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3.4. 150 kWth DCFB CLC reactor – Hot rig 

Following the described principles of the third alternative for chemical looping combustion, 

move material, SINTEF Energy Research and Norwegian University of Science and 

Technology – NTNU have designed a 150 kWth double loop circulating fluidized bed reactor 

system (DLCFB), aimed to work as a steam boiler. Other than for chemical looping 

combustion, this system is meant to be able to operate also as a chemical looping reformer 

(section 5.4.4) The main purpose of this project is to be strongly industrial oriented in order to 

make the step from lab-scale to industrial application easier. Before being able to build the hot 

rig, however, it was necessary to design a cold flow model (CFM), in which there are no 

chemical reactions, to verify the hydrodynamic viability of the system and to predict the gas 

and the solids behavior [20]. In the CFM, air will be used as a fluidizing medium, while the hot 

rig is designed to operate with steam. 

 

Figure  3-6: Process diagram of the CLC rig [3] 

In order to develop the project in an industrial context, the system has to be very compact. 

Other advantages derive from this quality: the costs will be reduced because of the smaller 
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amount of the material required and of the easier handling; the quantity of the material not 

taking part of the reactions (“parasitic” oxygen carrier) will be reduced [3]. 

Regarding the hydrodynamics, in this system both the AR and the FR are circulating fluidized 

beds. For this reason, the rig can be called double loop circulating fluidized bed reactor system 

(DLCFB): two loops are present, and the coupling of the two reactors is possible thanks to the 

presence of two essential components, the loop seals. These are the elements that allow the 

circulation of the solids between the reactors. 

Moreover, the FR is designed to operate in a fast fluidization regime in order to have all the 

advantages previously discussed: a better gas – solids contact with a higher fuel conversion, 

maximizing the solids concentration in the upper part (exit) of the reactor while minimizing it 

in the bottom part, having in this way a more homogeneous particle distribution and a steep 

concentration profile in the FR (but not vertical) [3]. The AR can operate in turbulent or fast 

fluidization. To decide which one is the best, the oxygen conversion X (which will be 

presented in section 3.1.1) should be calculated; then should be chosen the option that allows 

the higher X.  

 

Figure  3-7: Fluidization regime of the AR and FR according to the classification of Lim et al., 

1995[3] 
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The injection of steam, air and fuel is one of the key factors that help making it possible to 

control the hydrodynamic behavior of the system, and it is accomplished using injection 

nozzles, located in strategic places in such a way to obtain the required fluidization regime. 

Each reactor is equipped with three injection nozzles: the primary one, located at the bottom of 

the reactor, and two levels of secondary ones, placed above, but still along the bottom part of 

the reactor. This part should not be perfectly cylindrical; instead, the section should be tapered, 

in order to avoid the presence of particles agglomerates increasing the gas velocity in that area. 

Other than that, a uniform superficial gas velocity profile across the secondary air injections 

would be achieved, dealing to a more even acceleration of the solids, closer to the conditions of 

fully developed flow. Both the reactors are then also equipped with a heavy load cyclone, 

integrated into the external solids recycle loop, to perform the particle separation from the exit 

air and fuel streams. To avoid particle losses, their role is essential, especially when dealing 

with gas turbine application, where the fluid circulating in the system must have precise 

characteristics, not to create problems or malfunctions. More about the cyclones will be 

discussed in the following section. Moreover, the rig needs a cooling system. The cooling 

panels selected are integrated into the reactor body and they are a type of industrial protruding 

panels. Their position should be established after some considerations. In fact, not only they 

cannot be placed too close to the exit of the reactors because they will cause problems in the 

solids flow, but also not too close to the bottom part because they could disturb the 

achievement of a fully developed solid flux [3]. Besides, to further increase the circulation 

between the reactors, and especially the solids entrainment from the fuel to the air reactor, a lift 

was added to the design.  

To better understand the behavior of the rig and the process, insights about some important 

issues are needed, other than more details about the components of the system. 

3.4.1. Oxygen Carrier 

 

Choosing the best oxygen carrier is crucial in the development of the CLC reactors, because it 

affects the oxygen transport, therefore the reaction and the behavior of the whole system. 

It will depend on the type of fuel used, but it should have: 



 

28 

 

- high mechanical stability, in order to sustain several oxidation-reduction cycles without 

showing signs of chemical or mechanical degradation and to avoid a loss of reactivity; 

- high oxidation and reduction reaction rates, to limit the necessary residence time; 

- high enough oxygen transportation capacity, to reduce the necessary solids circulation rate in 

the CLC; 

- good resistance to attrition; 

- high availability; 

- low cost; 

- environmental harmlessness, in such a way to be acceptable to health, safety and environment 

(HSE) standards in force [4]. 

Other than that, specific properties have to be analyzed to characterize the oxygen transport 

capability of oxygen carriers and to evaluate the necessary solid circulation rate in a chemical 

looping system. 

 Oxygen Ratio 

               
              

      
 (3-5) 

Where: 

MOC,ox = molar mass of fully oxidized OC 

MOC,red = molar mass of fully reduced OC 

This parameter can be defined as the ratio between the mass of oxygen in the fully oxidized 

material and its total mass, and it is an index of the maximum quantity of oxygen that can be 

theoretically extracted from the air. The higher R0, the less solid circulation is required to the 

functioning of the rig. 
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 Conversion (degree of oxidation) 

            
                  

              
 (3-6) 

Where: 

MOC,actual = actual molar mass of OC 

This parameter consists in the ratio between the actual mass of oxygen in the OC and the 

maximum quantity of oxygen in the fully oxidized state, and it is important to state the 

difference between the conversion at the entrance of one reactor and its exit (ΔX) that can be 

seen as an index of the exploitation of the maximum oxygen capacity. The higher the 

conversion difference between the two reactors, the lower is the necessary solid circulation 

rate, while there is an increase in the necessary solids inventory due to the smaller amount of 

oxidized oxygen carrier particles in the fuel reactor. 

Based on the 2010 study of Fossdal et al. at SINTEF Material and Chemistry about industrial 

tailings and by-products, the choice of the most promising material to be used as an oxygen 

carrier was made, and a specific manganese ore was selected. At the design temperature of 

1000°C, the oxides present in the reducer and in the oxidizer will be MnO and Mn3O4. The 

reactions, considering methane the reference fuel, will be: 

- Oxidation in the AR 

                                                     (3-7) 

- Reduction in the FR 

 

 
               

 

 
                                           (3-8) 

Where ΔH is the variation of enthalpy that occurs during the reaction.  

Thus, the overall reaction will be: 

   
 

 
        

 

 
                                     (3-9) 
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In this way the oxygen ratio R0 for the CLC cold rig proposed by SINTEF and NTNU will be 

equal to 0.07. However, it was established that the manganese oxide alone was not sufficient to 

meet the required mechanical strength. For this reason 40 45% of manganese ore, on a weight 

basis, was mixed with an inert support material like alumina, Al2O3, decreasing the value of the 

oxygen ratio to 0.03. In the meantime, considering the residence time of the OC particles in the 

FR as being equal to 8 seconds (results evaluated from tests on the cold rig, [3]) and knowing 

the reversible oxygen capacity of the manganese ore (measured without inert support) ΔX will 

be around 0.2. Thanks to these values is possible to calculate the required OC mass flow 

between AR and FR, depending on the fuel input. So, 12 
 

   of oxygen are needed to fully 

oxidize the fuel in the case of the 150 kWth rig. Exploiting 20% of the maximum oxygen ratio 

R0 of 3% the OC mass flow required will be 2 
  

  .  

However, it has to be pointed out that there will be a variation in density of 14.9% because of 

the transition between MnO and Mn3O4; this can lead to stress and fragility for the material. 

For this reason, it was decided by Fossdal et al. (2010) to add calcium in such a way to obtain 

perovskite phases, gaining a better mechanical stability. In this way, the value for R0 will 

further decrease to 0.056, even if fundamental parameters like the kinetics and the reversible 

cyclic capacity will not be too different from the ones obtained in the case of pure manganese 

ore, there will be just a variation in the  H calculated for the oxidation and reduction reactions 

[3]. 
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3.4.2. Components 

The 150 kWth DLCFB CLC reactor (hot rig) consists of the following different components: 

loop seal, downcomer, lifter, air reactor riser, fuel reactor riser, cyclone and also some 

measurement equipment. In the following section the different parts are explained briefly. 

3.4.2.1. Loop seals (LSs) 

The key factor for a good operation of a circulating fluidized bed is assuring the solids 

movement in an endless loop. To obtain that, particular devices should be used, and as long as 

the amount of particles to be moved is usually very large, these devices should be non-

mechanical, to avoid possible wear or seizure and higher costs. Furthermore, between the 

possible choices the best seems to be the loop seal. 

As already mentioned, it is a non-mechanical device, i.e. just aeration gas is required to govern 

the flow rates of solids.  

 

Figure  3-8: Schematic drawing of the loop seals used in the CLC Model developed by SINTEF 

and NTNU 
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Figure  3-9: On site picture of loop seal which is used in Cold Flow Model rig 

A loop seal usually consists of different sections. The ones in the model designed by SINTEF 

and NTNU are divided into a supply chamber and two recycle chambers (because of the two 

coupled reactors; just one is needed when having one reactor), and their main goal is to prevent 

unwanted gas mixing between the two reactors. The supply chamber is situated in the bottom 

section of the standpipe (or downcomer) and its aim is to supply the solids to the recycle 

chambers, which will transfer them to air and fuel reactor respectively by means of fluidization 

that will allow them to behave like a liquid [15]. Three injection nozzles are in place, one at the 

bottom of each section. They provide air injection for the CFM; it will be steam injection for 

the hot rig. They can be regulated in order to reach the desired level of fluidization and to 

control the distribution of the solids flow between the two exits. Other than those three, there is 

another air injection, which is usually situated in strategic places in the loop seal, called grease 

air. The aim of this air is to help the movement of the solids through the system: in fact it 

reduces not only the friction between the wall and the particles, but also the inter-particle 

frictional forces, acting like a lubricant. The amount of air injected should be strictly controlled 

to avoid problems; it should not exceed the minimum fluidization velocity for the average 

particle size of the circulating solids [15]. 

A fundamental parameter, while analyzing this component, is the loop seal exit pressure. This 

value has to be higher than the pressure in the bottom of the reactors; if this condition is not 

accomplished, there will be no pressure seal in the loop seal. 
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3.4.2.2. Cyclones 

As already mentioned, large cyclones are required in circulating fluidized bed reactors to 

perform an efficient separation of the solids flowing in the system.  

The mixed stream enters the cyclone from the top and is exposed to a radial centrifugal force. 

In this way, the solid particles will strike the outside wall and exit the component from the 

bottom end, while the air will flow in a spiral pattern from the top to the bottom, exiting then 

on the top, following a strait path in the center of the cyclone. 

 

Figure  3-10: Picture of the Cyclones which are used in the Cold Flow Model rig 
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Figure ‎3-11: Typical cyclone configuration (Left), Flow simulation of a cyclone separator 

(Right) [21] 

 

The cyclones used in the CLC rig proposed by SINTEF and NTNU are heavy load cyclones. 

That means that they are designed to deal with a high amount of solids in the gas stream. Their 

efficiency has to be as high as possible in order to satisfy particle emissions requirements, 

other than making possible for the system to be integrated in a gas turbine cycle, reducing the 

oxygen carrier refilling and thus the operational costs.  

Several studies have been developed on the design of the cyclones for circulating fluidized bed 

reactors to find a configuration which allows the achievement of all the targets just discussed. 

However, the knowledge is still limited and still the proper design has not been found. Is it 

proved, nevertheless, that the maximal achievable separation efficiency is usually higher while 

increasing the solids load, because of the formation of strands in the inlet area of the cyclone. 

To increase the separation efficiency is also essential that the gas-solids suspension entering 

the cyclone is continuously accelerated, to have a higher solids momentum flux in the inlet 

part. In addition, another factor that concurs to reach the same goal is having fine particles with 
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a narrow particle size distribution, as long as it also causes an increasing solids momentum flux 

[22]. 

3.4.2.3.  Reactors risers 

The risers are represents the places where the reactions take place.  

In the AR riser, the oxygen carrier is oxidized by the air injections (primary, secondary one, 

secondary two). This reaction is strongly exothermic and, considering a reactors temperature of 

1000 °C, the heat release in the AR will be 169.1 kW. To survive this high temperature, proper 

insulation and cooling panels are required. At the top of the reactor is situated the exit section 

for the depleted air.  

In the FR riser the reduction reaction takes place. The oxidized oxygen carrier is introduced in 

the bottom part of the reactor, where it is fluidized with the injections of steam and gaseous 

fuel, reaching usually the fast fluidization regime. The injection of steam is essential to achieve 

the desired fluidization regime, securing sufficient gas velocities and good gas-solid contact. It 

is used steam instead of air to avoid possible reactions with the fuel.  

 

 

Figure ‎3-12: Place of different nozzles in the riser 

 

 

  



 

36 

 

3.4.2.4. Reactors Downcomers 

The downcomer is the pipe used to connect the cyclone to the loop seal; thus, it transports the 

particles from a low pressure area to a high pressure area, just taking advantage of the 

gravitational force. 

 

 

Figure  3-13: Simple sketch of Downcomer 

 

3.4.2.5. Lifter 

As already mentioned, the lifter is a pipe added to design in order to further enlarge the 

exchange of mass between the two reactors, and especially from the fuel reactor back to the air 

reactor. This is obtained thanks to the presence of two steam injection nozzles, the primary one 

placed in the bottom part and the secondary one higher in the lifter. Other than that, the 

pressure difference between the reactors helps the solids flow: in fact, the pressure is usually 

higher in the bottom of the FR.  
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Figure  3-14: On site picture of Lifter  Figure  3-15: Schematic of Lifter 

 

3.4.3.  Design Parameters and Main Dimensions 

Table 3-2 shows the main design dimensions and parameters for the Chemical Looping 

Combustion. 

 

Table  3-2: Design parameters for the CLC rig 

Design parameters Value Unit 

Fuel Thermal input 150 [kWth] 

Excess air ratio (λ) 1.2 [-] 

Fuel LHV (methane) 50.01 [MJ/kg] 

Reactors design temperature 1000 [°C] 

Oxygen carrier oxygen ratio R0 0.03 [-] 

Oxygen carrier conversion ΔXFR 0.2 [-] 

Oxygen carrier circulation rate 2 [kg/s] 

Heat release AR 169 [kW] 

Heat release FR -19 [kW] 

Particle diameter d50 70 [μm] 

Particle density 2000 [kg/m
3
] 

Particle sphericity ≈1 [-] 

AR diameter 0.25 [m] 

FR diameter 0.15 [m] 

Reactor height 5 [m] 
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3.5. 150 kWth DCFB CLC reactor – Cold Flow Model 

 

To better investigate the hydrodynamic behavior of the double loop circulating fluidized beds 

system different options can be used. A Computational Fluid Dynamics analysis is often 

chosen to have a more detailed simulation of which conditions are going to be achieved. In the 

industrial field, however, is usually preferred the scaling strategy, which consists in building a 

smaller model operating at ambient conditions instead of high temperatures. This was the 

option selected by SINTEF and NTNU. A 1:1 scaled cold model of the hot rig was built, using 

air injection to simulate steam injection, and non-reacting metallic powder instead of the 

oxygen carrier. 

This choice allowed the possibility of testing the components design. The goal was to find a 

way to operate the single components, loop seals, cyclones, risers and lifter, and the whole 

system, in order to reach the desired flow regime, a high gas-solids contact efficiency, and a 

good solids circulation rate between the reactors, as long as a good solids distribution in the 

riser. All these objectives can be achieved finding the optimal volume flows for each air 

injection nozzles, trying always to maintain a certain mass balance between air and fuel 

reactor. A way to analyze the hydrodynamic behavior of the rig is plotting the pressure profiles 

of the reactors as a function of height.  

Before introducing the experimental part, the scaling strategy will be briefly explained. 

3.5.1. Scaling strategy 

A fundamental feature, studied in the development of the cold flow model design, is the 

maintenance of scaling relationships. Without paying attention to this, in fact, the simulation of 

the hydrodynamic behavior of the rig would not be trustworthy.  

The approach used by SINTEF Energy Research/NTNU can be defined a „triangular 

correlation‟, as shown in the picture below. 
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Figure  3-16: Triangular scaling strategy [20] 

The first design was the one regarding the hot 150 kWth rig. After that, an estimation of the 

industrial prototype was made, deciding to set the thermal load around 15 MWth (that means 

increasing the diameter of a 10 factor). The industrial application had some certain values in 

common with the hot rig, namely operating temperature and pressure, particle size distribution 

and sphericity, gas composition. Other parameters, like the gas velocity, are established in a 

way so that they can assure the achievement of the desired fluidization regime. The last step 

was the design and building of the cold rig, following a 1:1 scale compared to the hot rig.  

In this case the Glicksman scaling relationships were used. They can be obtained after non-

dimentionalizing the equations for conservation of momentum and motion regarding to the 

fluid and the particles. These equations are considered the most precise and useful when 

dealing with scaling between cold and hot models. Actually two different sets of equations 

exist: the full and the simplified set. In the former, the non-dimentionalizing leads to several 

dimensionless parameters. However, it is usually complicated and impractical to match all 

these parameters in the design of the models, especially because they imply restrictions to the 

dimensions of the cold rig: it has to be ¼ of the original atmospheric one. In this case a higher 

freedom was required, in order to be able to choose a different scale. Thus, the simplified set 

was selected. This set is valid only for high or low Reynolds particles numbers: in the case of 

the cold CLC rig proposed by SINTEF and NTNU, Re is low, so the reduced version of the 

equations is applicable. 

The dimensionless parameters to analyze are the following: 
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 Froud Number  
  
 

  
 

 Particle/gas density ratio  
  

  
 

 Reactor height/diameter ratio  
 

 
 

 Superficial gas velocity/minimum fluidization velocity ratio  
  

   
 

 Dimensionless flux  
  

    
 

 Particle sphericity    

 Dimensionless particle size distribution  PSD 

These quantities should have the same values for both the hot rig and the cold rig; thus, a lot of 

design parameters for the cold model were calculated as to reach this goal. However, this 

condition is hardly ever verified. In fact, it is very complicated to handle parameters such as 

particles size and density or fluidizing gas viscosity and density; moreover, it can happen that, 

while trying to reach the equality between the values, the changes lead to unwanted 

modifications in the fluidization regime and in the behavior of the system. This is the reason 

why several scaled cold models have mismatching for some parameters (the difference can be 

up to tens of percentage points).  

SINTEF and NTNU decided to build a cold rig of the same dimensions of the hot one, because 

it was proved that the bigger the size is, the smaller is the rate of change of hydrodynamic 

parameters with the diameter. Regarding the particles characteristics, two different ways of 

calculation were investigated. 

The first attempt followed the intention of verifying as much as possible the Glicksman 

equations (the simplified set). On top of that, in order to reach a higher precision, two 

dimensionless numbers were added: 

 Particle Reynolds number      

 Archimedes number              
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This addition was made so that it would have been possible to check that the fluidization 

regime remained the same as the one in the hot rig. Moreover, the particles from the two rigs 

should have been in the same Geldart group of powder. The results of these evaluations were: 

- Mass median diameter          

- Density         
  

    

Obviously it was impossible to fulfill the similarity for all the dimensionless scaling numbers, 

and it was necessary to come to compromises to calculate the most effective particle 

characteristics. 

The alternative doesn‟t imply any scaling calculations: the same values as the hot rig of the two 

parameters above mentioned have to be chosen. That means: 

- Mass median diameter            

- Density          
  

    

The velocity will be selected in a way to obtain the same fluidization regime. So far, tests were 

made just using the first option; the second one still needs experimentation. 

Thus, after using the cold rig to establish the operating guidelines and the process control 

methodologies, it will be possible to build the hot rig. This will allow the analysis of start-up 

and shutdown procedures, of equipment reliability during long period operations and of 

particle attrition, issues that will be fundamental for the design of the industrial application. For 

information about hydrodynamics, such as residence time evaluation, pressure and particle 

concentration profile, solids exchange and gas bypassing, we can rely on the cold rig [20]. 
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4. Experimental Part 
 

4.1. Overall view of the CFM 

The CFM built by SINTEF and NTNU is located inside the laboratory of the Energy and 

Process Department of NTNU (Varme Teknisk Laboratorie). To avoid vibrations during 

operation, or at least reduce them, a steal bearing structure was added to contain the rig. To 

further protect people working on it from unexpected explosions, a plastic-glass plate (Lexan 

shield) was also installed.  

 

Figure  4-1: 3D CAD General assembly of reactor system 

14 are the air injection points, each of them having a mass flow controller (Brooks® Mass 

Flow Meter Model 5863).  Two are located in the lifter (primary and secondary). Then each 

reactor has six: three in the bottom of the different sections if the loop seal (central, external, 

internal section) and the other three in the riser (primary, secondary 1 and secondary 2, placed 

respectively at 0 m, 0.4 m, 0.8 m from the bottom).  

Two flap valves are installed in the downcomers to measure the fluxes in the system. 
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Figure  4-2: CFM scheme in which are shown all the positions for the air injections and the two 

flap valves. 

 

Essential is the presence of a filter box, downstream the cyclone separators, in order to prevent 

the particles coming from the cyclones to escape. Extracting the particles from the filter box 

and weighting them allow the calculations for the cyclone efficiency, for all the different 

operating conditions. The particles are extracted during the experiments, after a certain amount 

of time that the rig has been running; this varies every time, depending on the test. 
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Figure  4-3: On site picture of filter box 

For the particles circulating in the system, it was chosen to use Fe-Si powder, which does not 

react with the air injections. Other characteristics of the particles: 

 Particle size d50 = 34 μm 

 Density ρp = 7000 kg/m
3
 

 System inventory 120 kg 

 Shape: irregular 

Figure 4-4, shows the PSD, both the cumulative volume and the volume frequency, measured 

by means of a Coulter Counter LS230. The sample was taken according to ASTM standards B 

215[23]. 
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Figure  4-4: Particle Size Distribution (PSD) of the Fe-Si Powder used in the Cold Flow Model 

(CFM) experiments 

 

Several pressure transmitters are installed in different points of the Cold Flow Model, selected 

in a way to have the measurements required to plot the pressure profiles for the reactors. 

Details will be added in the following section.  
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Figure  4-5: CFM scheme in which the positions of the pressure transmitters are shown. 
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4.2.  Measurement equipment 

 

4.2.1. Mass flow controllers (Brooks® Mass Flow Meter Model 5863)   

These elements were installed in the rig so that it would have been possible to control the 

solids circulation and fluidization, regulating the air entering the system. They accurately 

measure and control the gas flow allowing the operator to perform quick changes when 

necessary, having a fast response to command changes. Their design was made to control the 

actual flow dynamics, in such a way that the transition to steady state flow would be shorter 

and smoother [24]. 

 

Figure  4-6: ® Mass Flow Meter Model 5863 

 

 

4.2.2. Pressure Transducers 

As shown in Fig. 23, many pressure transmitters are connected the rig by plastic tubes. 

32 of them (the ones with the numbers from 1 to 26, plus 28-29, 31-32 and 74-75) are of the 

type Fuji FCX-AII. After setting a reference pressure, they measure the relative pressure 

difference. 

In the SINTEF – NTNU CFM, the reference pressures are P10 for the AR and P23 for the FR, 

located at the top of the reactors. Their measurements are referenced to atmospheric pressure. 
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About P74 and P75, they were changed during the experimental campaign: at first they were, 

like the others, referenced to P10 and P23, respectively (and their numbers were 27 and 30; 

then they were modified and now they are referenced to the atmosphere, so they can be moved 

in different positions, according to where needed.  

 

 

Figure  4-7: Electric FCX-AII V5 Differential Pressure Transmitters [25] 

 
Figure  4-8: Picture of the pressure transmitter which are in used in the Clod Flow Model rig 

 



 

49 

 

Other 11 PTs are installed in the system. They all are referenced to the atmosphere. 7 have the 

numbers from 50 to 56, and they are plugged in the reactors in established places. They are of 

the type LAB TP14, with 2.5 mbar accuracy. The other 4 (70 – 73) are meant to be moved 

where required, depending on which part of the system the tests are focusing on. The type is 

the same of the previous 1-32. 

All the PTs were calibrated individually at two different points: high and low pressure, in order 

to have a linear conversion curve, used then to have a pressure reading proportional to the 

digital current signal.  

Moreover, all of them (apart from 50-56) are equipped with a flushing device, i.e. the tubes 

that connect the PTs with the rig are coupled by a magnet valve that allows the so-called 

flushing: a countercurrent air flow applied to the tubes, to avoid possible errors in the 

measurements caused by presence of solids inside the tubes. 

 

4.2.3. Scales 

 

Two are the scales used in the CFM. One is used for online scaling of the particles collected in 

the filter box; the other one is used to weight the new particles that have to be added to the 

system during the experiments to compensate the losses, in order to have always the same 

inventory.  

The weights are of the type Mettler Toledo XS 32000L, characterized by a high accuracy. 

 
Figure  4-9: Mettler Toledo XS 32000L 
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Table  4-1: Technical data for the weight Mettler Toledo XS 32000L 

Technical data XS32000L 

Stand alone weighing platform X32000L 

Maximum capacity 32100 g 

Readability 1 g 

Repeatability (sd) 600 mg 

Linearity 600 mg 

Eccentric load deviation (test load) 1 g (10 kg) 

Sensitivity offset 6×10
-5

 •Rnt 

Sensitivity temperature drift 1.5 ×10
–5

/ºC •Rnt 

Sensitivity stability 5×10
–5

/a •Rnt 

Settling time 1.2 s 

Interface update rate 23 /s 

a= year, Rnt= net weight, sd= standard deviation 

 

4.3. Software (LabVIEW) 

To operate the model and for the data acquisition, LabVIEW was used to design a control 

system. Meaning Laboratory Virtual Instrumentation Engineering Workbench, LabVIEW is 

the development environment for a visual programming language from National Instruments, 

producer of measurement equipment. 

The peculiarity of this language is that of being graphic; in fact it is called G-language, short 

for Graphic Language.  

In the CFM it is extremely important, because it is the feature that allows operating the system, 

controlling and monitoring the air flow through the injection nozzles other than monitoring the 

pressures in all the different positions on the reactors. It is also used to perform the flushing for 

the pressure transmitters, to give the signal to take the measurement, and to adjust the filter 

frequency. 
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Figure  4-10: The control system layout for the CFM. 

Another essential characteristic of the LabVIEW program is that to provide the desired signal, 

both the incoming and the outgoing signals are processed. This signal processing is for instance 

the responsible of the fact that even if the pressure transducers operate based on a digital 

current signal (mA), the pressure is displayed in mbar. 

Last but not least, fundamental is the capacity of this program to log and store all the 

parameters required to analyze the system. In a file are saved all the data regarding pressure 

measurements, volume flows and temperature. The logging frequency can be modified 

according to the number of samplings needed. In our case, data are saved every second. 

4.4. Mass flux Measurement 

As already mentioned, two flap valves installed in the downcomers give the possibility to take 

measurements.  
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Figure  4-11: Picture of the flap valve which is used in Cold Flow Model rig 

The measurement consists in closing automatically the valve (the one located in the AR 

downcomer to measure the flux in the AR; similarly for the FR) for an established period of 

time, checking then, visually, the height of the particles accumulated above the valve.  

Using the following equations, then, the mass flux can be estimated. 

                
        

  
       

  

 
  (4-1) 

           
    

  
       

  

   
  (4-2) 

Where: 

r = radius of the downcomer [m] 

ρ = particle density, measured on a sample of particles collected in the lab [kg/m
3
] 

Δh = measured height of particles in the downcomer [m] 

Δt = amount of time in which the valve was closed [s] 
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4.5. Health and safety 

Many issues have to be considered regarding health and safety. 

 Dust explosion risk 

The explosion conditions can be reached for different causes.  

If the air flow rate in the rig is too high, it can happen the formation of high pressure gradients 

between top and bottom of the riser, other than in the lifter and in the downcomer. This 

situation may cause an explosion. 

If, on the other hand, the amount of particles in the rig is too large (overloading), the air flow 

injected by the nozzles is not able to fluidize the particles and to let them circulate in the 

system. Thus, the pressure in the bottom of the riser will suddenly increase, leading to an 

explosion.  

Moreover, incorrect set of the closing time for the flap valves can cause accumulation of 

particles over the valves in the downcomers. This will bring to an explosion too. To avoid bad 

consequences, the first thing to do for the operators is a visual control, just after the 

measurement, of the downcomer, checking that the particles are not accumulating; also, the 

pressure profiles in the LabVIEW program should be controlled in order to see if something 

unexpected is happening. In case the conditions seem to get too risky, an emergency switch is 

installed on the steel structure that protects the rig. If the operators are not able to control the 

situation, a mechanical device will intervene. A U-tube pressure manometer is installed in the 

rig; after that there is a water seal. If the pressure goes too high and reaches a critical level, the 

water will blow out. The advantage of having this device is that the overpressure in the reactor 

can be always monitored by the operators, while running the rig. Other than that, being 

mechanical means no malfunction in case of an electrical failure. 

 Ambient air quality 

The particles used in the CFM are not intrinsically harmful, but their inhalation is not healthy. 

To assess the risks for the operators connected to inhalation, measurements of the 

concentration of particles in the air during the experiments were performed. During the 
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ordinary operation of the rig, the level was proved to be not dangerous. On the other hand, 

while emptying the filter box and refilling the particles in the rig, the concentration was too 

high. Therefore, operators have to wear additional protective equipment during these phases, as 

it will be discussed in the next paragraph.  

 Personal protective equipment 

The operators are obliged to wear special clothes for their own safety. During the tests, they 

have to wear helmets with goggles and protective footwear. During the refilling operations is 

also necessary to wear a protective mask, to avoid inhalation, and it is highly recommended to 

wear gloves.  

 

Figure  4-12: Picture of protective mask 

 

4.6. Accuracy and Errors 

All measurements have errors and uncertainties, no matter how hard we might try to minimize 

them.  Understanding possible errors is an important issue in any experiments. Uncertainty in a 

measurement can arise from three possible origins: the measuring device, the procedure of how 

you measure, and the observed quantity itself. 

Equipment has certain measuring range, was defined in the LabVIEW. For accurate result, the 

potential error source should be considered. Getting the correct data and result needs to 

calibrate of all equipments as an important features before starting the experimental campaign.   
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As mentioned above, the procedure of measuring is a great source for possible uncertainties in 

data. For example for measuring the flux, a flap valve was installed in the downcomers. After 

closing the flap valve and measure the height of the column of particles accumulating during a 

certain time interval, the mass flux can be calculated. The process of measuring the height of 

the particles above the flap valve is done visually.  

The operator was tried to minimize all the source of uncertainties for these project. Most of the 

measurements were taken two or three times after consuming some times for stabilization of 

the reactors
5
 . With increasing the numbers of measurements, the deviation of results decreases 

in reasonable way and they are close to standard deviation in engineering experiments (less 

than 10%). 

  

                                                      
5
 5- 10 min for each measurement depend on the experiments 
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5. Experiments and Results 
 

5.1. Procedure for Starting the Experiments  

The experimental campaign, the main goal of which is finding a stable condition for the 

system, is started to verify the achievement of the targeted fluidization regime and solids 

exchange between the AR and FR. The pressure across the reactor system was constantly 

measured by means of 32 differential pressure transducers. Performing an analysis of the 

pressure profiles the solids concentration and the amount of solids inventory present in the 

reactor bodies can be calculated, i.e. the active inventory. These calculations were done 

equating the measured static pressure drop to the mass weight, neglecting friction and 

acceleration. The solids flow/flux entrained by the reactors was determined by the visual 

measurement of the particles accumulation in the loop-seals‟ downcomers after a sharp loop-

seal fluidization interruption. The solids flow measurement of each operating condition was 

done two times for each reactor and the average value was taken into consideration. If the two 

measurements were different more than 10% of the average value, a third measurement was 

taken. The stable Operating conditions were selected between the cases when the pressures in 

the bottom of the loop-seals and in the bottom and top of each of the two reactors oscillate 

around a constant average value, over a 5 minutes period [20]. The time span between each of 

these measurements was 3 to 10 minutes depending on how easy the stable conditions were 

achieved in the system. It means that the duration of each operating condition was at least 

around fifteen minutes, up to above forty minutes. The outlet pipes at the cyclones exit are 

merging into a common filter box equipped with a frequency controlled fan that allows setting 

the overall backpressure. Each pipe is equipped with a manual valve that allows differentiating 

the AR and FR backpressures if required. The filter box is positioned over an accurate scale 

that allows weighting the mass losses on line and allows estimation of the overall reactor 

system cyclones efficiency. Inventory losses were refilled regularly to preserve a rather 

constant total solids inventory (TSI) [20]. 
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Table  5-1: Procedure for start up and turn off the rig 

Step Start-up Turn off 

1 Check all the pipes and 

connections and mass flow 

controllers 

Set all mass controller and filter 

frequency to zero 

2 Check the rig for leakages Run PT flush for removing all 

the particles stick to the wall 

3 Turn the main fan button on Close the main air flow valve 

gradually (V-2) 

4 Open the filter box valves 

(AR&FR) 

Close the mass flow controller 

valves (V-23 and V-24) 

5 Check the main air flow valve 

(V-21)Close 

Turn off the power 

6 Check the safety of the rig 

(water level in U tube, nets, 

Lexan sheets…) 

Close the filter box valves 

7 Turn the electricity button on Turn off the fan button 

8 Check the main screen of the 

software (LabVIEW) for error 

messages 

Check the filter box for  

leakages 

9 Set the value for all mass flow 

controller in the LabVIEW to 

zero 

Run the filter box and extract the 

particles 

10 Open the mass flow controller 

valves (V-23 and V-24) 

Add new particles to the rig 

11 Open the main air flow valve 

gradually (V-21) 

- 

 Set the filter frequency - 

12 Running the PT flush in both 

reactors 

- 
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5.2. Overview of experiments 

 

The experimental campaign started on 16/02/2011 until 14/06/2011. During this period, 4 main 

case studies was tested and analyzed which are consist of validating the data and reaching the 

design conditions, component sensitivity, different operational mode as a consequence of 

design parameters for hot rig, and the effect of the amount of the inventory on operational 

modes. 

162 experiments were done with CFM to achieve the best state of the stability and proper flow 

regimes. Two measurements were done for the majority of experiments to validate the data. In 

some of the experiments, one measurement is taken to explore the condition of reactors and 

inspecting the fluidization regime. All the experiments were done in the coupled reactors with 

around 5min duration time for each measurement to stabilize the circulation of particles. 

Estimation of the pure time for 162 experiments and 101 times of using filter box and refilling 

the new particles to the reactors is: 

                                                        

Average Time for each experiment: 25 [min] 

Average time for refilling: 20 [min] 

Determination of test matrix was done in weekly meeting with SINTEF and NTNU senior 

researchers, but some of the test matrixes were determined during the operation. 
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5.3. Validating the data and design condition 

 

Here, one case of steady state conditions achieved for an operating condition approaching the 

design target is shown in Figure 5-1. The TSI inside the system was approximately 120 kg, 

while the superficial gas velocity in the AR was 2.4 ms
-1

 and 2.6 ms
-1

 in the FR. The lift was 

operated in turbulent mode with a superficial gas velocity of 1.5 m s
-1

 and in the AR loop-seal 

was injected a total amount of air of 165 Nl min
-1

 while in the FR 95 Nl min
-1

. Solids exchange 

in line with reactor system was here operated without internal recirculation (i.e. with 100% of 

exchange between AR and FR); 1.9 kg s
-1

 (~46 kg m
-2

 s
-1

) coming from the AR to the FR and 

0.75 kg s
-1

 (~46 kg m
-2

 s
-1

) from the FR to the AR through the cyclones and the loop-seals. The 

missing 1.15 kg s
-1

 from FR to AR was exchanged through the bottom lift/extraction. In order 

to have stable particles column heights in the downcomers and smooth flow of solids, the loop-

seals were fluidized. Around 60 cm of moving packed bed (with some bubbles) were reached 

in the AR downcomer versus 45 cm of bubbling bed in the FR downcomer. The AR 

downcomer and loop-seal have to process a much higher solids flux than the FR ones due to 

the fact that the solids flow is higher but they have the same dimensions [20]. 

 

Figure  5-1: Pressure measurements in some key points along the AR (left) and FR (right) 
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It is possible to observe how several pressures measured across the reactor system, both AR 

(left) and FR (right) in Figure 5-1, are keeping a constant value along the almost 15 minutes of 

test. Moreover, the same operational condition was tested several times, always with 

acceptable results and good repeatability. The pressures before the primary bottom nozzle are 

presented by P13 and P26, the FR one was originally dimensioned for less air flow, and this 

explains such high pressure. P1 and P14 are located 14cm above the reactors bottom while P2 

and P15 are just about 20 cm above them. Due to its high particles concentration, the bottom 

bed section can easily gain tens of mbar of pressure in such a short distance. P10 and P23 are at 

the reactors exits while P5 and P18 are located at the end of the conical bottom part. P23 is 

higher than P10, due to the higher gas velocities reached in the FR cyclone inlet duct, whose 

dimensions should be reconsidered; in comparison to the AR one, it gives a higher pressure 

drop. P11 and P24 are located at the exit of the cyclones, and the filter fan is used to retain the 

exit pressures at around zero. Figure 5-2, depicts the pressures measured at the bottom of the 

AR (left) and FR (right) loop-seals, respectively P28 and P31. The reactor system loop-seals 

are divided into several loop-seals, hence each of them has two return legs. This is a quite 

common solution in conventional CFB boilers [21] where the two return legs are directed back 

to two different points located at the same height of the same boiler/reactor, in that case facing 

roughly the same pressure. In the present set-up, one return leg is directed to the FR and the 

other one to the AR reactor. Having stable operation requires each of the loop-seals bottom 

pressures to be higher than the ones experienced in both the return points, and it must also have 

a safety margin. In other respects, there will be back flow of gas and it will flood the cyclones 

with a huge loss of inventory in few minutes. The AR is fulfilling this task easily, but not the 

FR where the internal return leg seems to merge the FR reactor body too low facing a high 

pressure equal to P14. As a matter of fact, there is a very small margin between the FR loop-

seal bottom pressure (P31) and P14, as shown in Figure 5-2 (right). In Figure 5-2, it is also 

possible to notice when the solids flow measurements were taken in the AR (e.g. around 260 s) 

and in the FR (e.g. around 430 s) which shows a clear reduction of the pressure measured at the 

loop-seals bottom due to the abrupt fluidization shut down. In Figure 5-1, it is shown how 

these pressure disturbances caused by the measurements were affecting the reactor system, 

especially the measurements taken in the AR; however the stable operating conditions were 

quickly recovered after each measurement [20]. 
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Figure  5-2: Pressure measurements at the bottom AR (left) and FR (right) loop-seals, plotted as 

function of the time. Example of reactor system operation in steady state conditions. Each of 

them is plotted together with the AR and FR pressures measured at the points where the two 

loop-seals return legs are merging 

 

The pressure profile of the DLCFB reactor system and the corresponding solids concentration 

along the reactors height, are plotted in Figure 5-3, respectively which are based on average 

values of the above mentioned pressure measurements. The active solids inventory calculated 

inside the AR body is around 25 kg while the FR is almost 16 kg. These two items represent 

together slightly more than thirty percent of the TSI in the system. It can be identified from 

these graphs that both the reactors operate in the border between fast fluidization and turbulent 

regime. In fact, it is possible to recognize the lower particles concentration, below 1%, in the 

upper part and the high solids density at the reactors bottom section. Cyclones losses were also 

monitored and their total efficiency is above 99.9%. It is still not possible to have precise 

conclusions since the two cyclones losses merge into the same filter box and the AR cyclone is 

processing much more solids than the FR one and is also having a lower pressure drop [20]. 
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Figure  5-3: left) Pressure profile measured across the DLCFB reactor system in stable 

operation, which gave high solids exchange, approaching 2kg/s. right) corresponding 

estimation of the particles concentration along the reactor bodies. 

 

The high pressure experienced in the bottom section of the FR together with the consequent 

different pressures between AR and FR are the main challenges faced to attain stable operation 

of the DLCFB reactor system. In this way the divided loop-seals expose to a very high pressure 

in their FR return leg and an overall pressure unbalance. This may cause problems like solids 

circulation limitations and gas leakages between reactors. In the worst case, it prevents the 

formation of the required pressure seal in the downcomers, to “close” the overall pressure loop, 

resulting in large powder losses through the cyclone; cyclone flooding. Design reasons and 

operational reasons are among the potential ones. When it comes to the design, the FR cyclone 

inlet duct is causing a high pressure drop, which affects to somehow the bottom pressure. 

However, there is not an overall FR pressure curve translation towards higher values. One of 

the reasons of this pressure unbalance is the return leg location, as highlighted during the 

description of Figure 5-2(right), and a higher location of the FR internal return leg of just 20cm 
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will intrinsically increase the operational window, consequently increasing the flexibility of the 

reactor system. Nevertheless, there is a possibility to find a way to operate the reactor system 

with the actual design. In fact, the bottom extraction/lift fluidization is the key operational 

parameter. It is clearly illustrated in Figure 5-4 (right) how an increase of the total amount of 

fluidizing air in the lift reduces the FR bottom pressure, thus the amount of mass in the FR 

bottom section which helps in equalizing the AR and FR bottom pressures, allowing the actual 

design to work in a stable way. As a result both fluidizing air and solid entrainment increase 

inside the AR. Figure 5-4 (left) shows the AR response to the fluidizing air increase and as can 

be seen, AR cyclone pressure drop increases with the pressure curve shifting towards higher 

pressures, mainly in the upper part. Finally, the way the loop-seals are fluidized may play a 

role in overcoming the reactors pressure difference. Before drawing clear conclusions, more 

tests in this respect need to be performed. Anyhow the actual loop-seal fluidization system has 

shown that it cannot overcome such big pressure difference on its own; without the pressure 

balancing due to increasing the lift fluidization [20]. 

 

Figure  5-4: Pressure profiles of the DLCFB reactor system at the variation of the bottom extraction/lift 

superficial gas velocity. Pressures of AR (left) and FR (right) are presented separately for sake of 

simplicity 
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After that the targeted operation of the DLCFB reactor system was accomplished, some 

sensitivity tests were done to understand the FR fluidization better. In Figure 5-5 (left), it is 

shown that how the FR pressure curves shift towards higher values in the upper part with 

increased gas flow, but not so much in the lower part. It means that there is a strong reduction 

of the particles concentration in the lower section of the FR (Figure 5-5, right) as well as a 

slight increase of concentration in the upper part of the reactor body, which is accountable for 

the increase of FR solids entrainment (Figure 5-5, right). For sake of simplicity and brevity, the 

analogous AR pressure and concentration profiles are not shown since they almost did not 

change [20]. 

 

 

Figure  5-5: Pressure (left) and concentration (right) profiles of the fuel reactor (FR) of the 

DLCFB reactor system at the variation of the FR superficial gas velocity. Pressure of AR is not 

presented for sake of simplicity, because it was almost not influenced 
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both the reactors operate in the border between fast fluidization and turbulent regime. This set 

of experiment is used as reference case, i.e. a starting point for the other cases which are 

analyzed the different possibilities to reach other, previously established, targets. All other 

experiments start to run for 10 min as the operating time with these given conditions in order to 

reach the stability, right before changing any other variables (For each experiment we set these 

values and we waited 10 minutes before changing any variable, in order to allow the system to 

reach stability). 

The shown values in the following table are corresponding to the operating conditions for the 

“standard” experiment. 

Table  5-2: Amount of air injections in STANDARD test 

Air Injections Position of 

Injection 

Air 

flow[Nl/min] 

Total amount 

of air [m/s] 

Share in percent% 

Air Reactor Loop Seal External 120 0.1 73 

 Center 40  24 

 Internal 0  0 

 Grease 5  3 

Fuel Reactor Loop 

Seal 
External 80 0.11 84 

 Center 10  11 

 Internal 0  0 

 Grease 5  5 

Air Reactor Primary 3000 2.4 55 

 Secondary 1 1250  22.5 

 Secondary 2 1250  22.5 

Fuel Reactor Primary 1200 2.6 50 

 Secondary 1 1000  42 

 Secondary 2 200  8 

Lifter Primary 500 1.5 70 

 Secondary 200  30 
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Figure  5-6: The place of air injections (Blue Arrows), and  the path of flow in coupled 

experiment along the body of reactors(White Arrows) in “Standard experiment” 

The velocity profiles for “standard test”  are calculeted as a function of height and are shown in 

figure 5-6. The friction factor and pressure drop is supposed to be zero along the body of riser 

after secondary air injection. As result of velocity profiles, the main reduction of occurs after 

the primary air injection in the bottom of the AR while this point for FR has higher position, 

after secondary air injection. The maximum velocity is reached at the inlet duct of the cyclones 

due to the special geometry of the cyclone. 
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Figure  5-7: Velocity profile along the risers and duct of cyclones in “standard” experiment 
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5.4. Operational Modes 

 

During the experimental campaign, different conditions for the rig were tested. In each case the 

goal of the tests was to reach stability, to prove that the system can operate in those conditions. 

Following experiments were done as a consequence of design parameters for hot rig.  

The most important test for operating the CLC in a safe way is the so called part-load, which 

consists in injecting a lower amount of fuel to the system, having in this way a lower power.  

Another interesting condition to test was the maximum power, increasing the amount of 

oxygen carriers and the fuel to analyze the performance of the rig with more than 150 kw. 

Increasing the total power of the rig with higher values of the injections for both AR and FR 

When the Hot rig will be built, this test will be performed by increasing both the amount of the 

fuel and air.  

Moreover, several tests were done in order to get a better concentration of the particles in the 

FR, obtained by increasing both the residence time and the entrainment inside the body of the 

FR. This goal was reached thanks to the loop-seals and the possibility of internal recirculation. 

Last, but not least, reforming experiments with different rate of exchange between the reactors 

were done, to see if the system can be used in Chemical Looping Reforming other than 

Combustion. More about the reforming will be explained in 4.4.4. 

5.4.1.  Part Load 

It is important to test the behavior of the rig under part load conditions. These conditions are 

obtained reducing the amount of fuel introduced in the fuel reactor while the air/fuel ratio is 

kept constant, as well as the temperature and the total mass inventory [28]. 

This option also can be reached either injecting more oxygen carrier than the constant ratio to 

combust all the fuel inside the FR body or lowering the amount of oxygen in the FR. Both 

options were tested to analyze the performance of the cold flow model. But the most stable 

conditions in terms of stability inside the downcomers and cyclone efficiencies were reached 

under the previous condition which is called design operation mode for air reactor.  
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One of the important aspects that we were able to observe and analyze during the part load 

experiments on cold flow model is the effect of the air injections in the loop seals on the total 

stability of the system. In order to reach the part load, the total amount of air in both AR and 

FR was decreased to reach less entrainment. As a consequence, the simulated power, which is 

an output variable, is decreased. We noticed that the only way to stabilize the whole system 

was decreasing the total amount of air injections in the LSs. The amount of reduction ratio of 

the air injections in the ARLS and FRLS is calculated as function of reduction of air flow in 

AR and FR, respectively. 

The shown values in the following table are corresponding to the operating conditions for the 

“part-load” experiment. 

 

Table  5-3: Amount of air injections in PART-LOAD test 

Air Injections Position of 

Injection 

Air 

flow[Nl/min] 

Total amount 

of air [m/s] 

Share in percent% 

Air Reactor Loop Seal External 80 0.06 84 

 Center 10  11 

 Internal 0  0 

 Grease 5  5 

Fuel Reactor Loop Seal External 40 0.05 80 

 Center 5  10 

 Internal 0  0 

 Grease 5  10 

Air Reactor Primary 2700 2 60 

 Secondary 1 950  20 

 Secondary 2 950  20 

Fuel Reactor Primary 600 1.3 50 

 Secondary 1 400  33 

 Secondary 2 200  17 

Lifter Primary 500 1.5 70 

 Secondary 200  30 
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 a1) a2) 

 

 b1) b2) 

 

Figure  5-8: Pressure and solids concentration profiles of AR (a1 and b1) and FR (a2 and b2) at 

part load conditions of 75% and 50% fuel load 
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The capability of varying the thermal power is another important issue for the chemical 

looping reactor system and its hydrodynamic viability was verified by means of the CFM. 

During the part-load experiments, several tests were done reducing the amount of fluidizing air 

injected in the FR to resemble a reduction of injected fuel. At the same time other control 

parameters were varied in order to compensate the FR and look for an overall stable 

configuration. In Figure 5-8 are shown two power reductions from the design case to 75% and 

down to 50% of the fuel load. In the first case the system was capable to find a balance 

intrinsically and no other control parameters were varied, in addition the solids exchange 

reduced as well down to a value of approximately 75% of the design one. The second case 

affected much more the overall system and it required taking some actions finalized to 

maintain the equilibrium: first the FR loop-seal fluidization was reduced to fit to the smaller 

entrainment and avoid that the FR down-comer bubbling bed became a slugging bed with too 

much air from the loop-seal and damaging the cyclone efficiency. In addition also the AR 

fluidization was reduced, together with the AR loop-seal, in order to have a smaller solids 

exchange going down to approximately the 50% consistently with the fuel load. (heating 

issues). Looking at Figure 5-8 a1), it is possible to notice how the AR bottom pressure 

increases, due to higher amount of mass, and the upper one reduces, mainly because of the 

smaller cyclone pressure drop which is the consequence of the smaller solids flow and air flow. 

While in the second case, those are the clear consequences of the smaller fluidizing air 

injected, in the first case the AR solids entrainment may be a consequence of the big AR 

inventory increase which is kind of choking the solids entrainment because of constant 

superficial gas velocity. In Figure 5-8 b1), the respective concentration profile is showing how 

it increases in the bottom part of the reactors contributing to the increase of active mass 

inventory in the reactor body, but it decreases in the upper part reducing the solids entrainment. 

In Figure 5-8 b1), the FR pressure profile is shown; while the bottom pressure is rather 

constant the upper one is reducing dramatically because of the big reduction in air and solids 

flow, and it happen proportionally to the load reduction (cyclone efficiency). This implies also 

an inventory increase because of a big increase of the overall reactor delta P mainly 

accumulated in the lower part.  

Looking at the concentration profile in Figure 5-8 b2), there is a clear reduction proportional to 

the load reduction in the upper part of the reactor body (zoom). In the bottom part an unusual 
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behavior was registered, in fact there is a reduction in the pressure gradient, thus calculated 

concentration, which at the beginning was interpreted as a measurement problem, but it seems 

to happen just above the secondary air injection, both secondary one and secondary two, and is 

proportional to the increase on secondary air injection. In fact the overall fluidizing air 

reduction in the FR is mainly done by primary air reduction, thus increasing the relative 

importance of the secondary air injections. This seems to create a kind of concentration 

increase just above the injection point. 

5.4.2. Maximum Power 

Opposite to the part load condition is the maximum power. In this series of tests the total 

amount of the air injection is increased, both in the AR and in the FR, trying to find the values 

that guarantee the achievement of stable conditions. The purpose of these experiments was to 

test if it was possible for the system to work with a higher power, with a higher exchange flux.  

After many attempts, the best conditions are achieved, always basing our decisions on the 

visual stability of the downcomers, the mass losses from the cyclones and the flux 

measurements. The chosen values are shown in the following table. 

Table  5-4: Amount of air injections in Maximum Power test 

Air Injections Position of 

Injection 

Air 

flow[Nl/min] 

Total amount 

of air [m/s] 

Share in percent% 

Air Reactor Loop Seal External 120 0.1 73 

 Center 40  24 

 Internal 0  0 

 Grease 5  3 

Fuel Reactor Loop Seal External 80 0.1 84 

 Center 10  11 

 Internal 0  0 

 Grease 5  5 

Air Reactor Primary 3300 2.6 55 

 Secondary 1 1350  22.5 

 Secondary 2 1350  22.5 

Fuel Reactor Primary 1200 3.2 41 

 Secondary 1 1500  52 

 Secondary 2 200  7 

Lifter Primary 500 1.5 70 

 Secondary 200  30 
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 a1) a2) 

 

 b1) b2) 

 

Figure  5-9: Pressure and solids concentration profiles of AR (a1 and b1) and FR (a2 and b2) 

resembling a power increase and a gas turbine application 
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The air injection in the FR was increased resembling an increase of fuel injected, while at the 

same time also the AR fluidizing gas was increased to provide more OC exchange which is 

required to oxidize the higher amount of fuel. The circulation rate increased of the 15%, while 

the FR air injection was increased of slightly higher value. This means that the load increase to 

consider corresponds to the 15% of solids exchange, because the further increase of gas will 

not have enough oxygen to be fully oxidized. For this reason the other parameter to consider 

independent for the power increase is the AR fluidization which controls the solids exchange. 

The loop-seals accomplished to their task without the need of modifying the fluidizing gas 

injected and the down-comers didn‟t have major level changes. The pressure profile of the AR 

has a bigger cyclone pressure drop while the derived concentration profile is rather constant as 

well as the active mass inventory, with an increase in the last three meters which explains the 

higher entrainment. The FR has as well a big cyclone delta P increase together with a 

concentration reduction in the lower part and increase in the upper part, as it happened in the 

case of FR flux maximization. Another configuration tested was the gas turbine one. In fact the 

FR fuel load was kept constant and at the same time the AR air flow was increased. In 

pressurized hot conditions this means that the amount of gas in the exothermic reactor is 

increased providing a higher amount of flow expanding in the gas turbine and reducing, ideally 

down to zero, the usage of the cooling devices for the AR. In fact whether the CLC reactor 

system is used as a steam boiler heat needs to be extracted by the exothermic reactor, but in the 

case it is pressurized and used as a gas turbine combustion chamber the amount of air to fuel 

ratio (λ in the design case was 1.2) has to be increased to higher values. Here it is shown just 

an attempt to get closer to such kind of reactor usage coping with the intrinsic limitations of the 

design which is actually meant to work as a steam boiler; for this reason the Lift fluidizing air 

was increased in order to avoid the FR getting full and having a too high pressure in the 

bottom. Looking at the pressure profiles, the AR is behaving very similar to the previous case 

of load increase, while the FR is just slightly increasing the pressure drop most likely because 

of the higher amount of air due to the increase of primary lift fluidization. The FR 

concentration is smaller compare to the design case both in the lower and upper part because of 

the big solids exchange happening through the bottom extraction. 
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5.4.3. Maximum Fuel Reactor Concentration 

This condition is reached increasing the fuel reactor air injection, other than playing with the 

loop seals air injections. In fact, in this case an important role is related to the internal section 

of the fuel reactor loop seal, here used to have an internal recirculation in the FR.  

This is done in order to simulate the increase of fuel and steam injection in the FR, assisted by 

the internal recirculation, which will allow the hot rig to achieve a higher concentration. Higher 

concentration means better entrainment, i.e. better solids-gas contact, for a more uniform 

reaction, that leads to a better combustion. 

Thus, the total amount of air injected in the FR was increased, together with the external 

section of the air reactor loop seal and the internal one of the fuel reactor loop seal, while the 

injections in the lifter were decreased. All these changes were made, as explained before, in 

such a way to have a higher exchange flux in the FR. The air reactor air injections stay the 

same as the standard case. The values selected as the ones that can lead to the best (more 

stable) conditions are shown in the following table. 

 

Table  5-5: Amount of air injections in Maximum Fuel Reactor Concentration test 

Air Injections Position of 

Injection 

Air 

flow[Nl/min] 

Total amount 

of air [m/s] 

Share in percent% 

Air Reactor Loop Seal External 180 0.14 80 

 Center 40  18 

 Internal 0  0 

 Grease 5  2 

Fuel Reactor Loop Seal External 30 0.25 13 

 Center 10  4 

 Internal 198  83 

 Grease 0  0 

Air Reactor Primary 3000 2.4 55 

 Secondary 1 1250  22.5 

 Secondary 2 1250  22.5 

Fuel Reactor Primary 1350 3.5 43 

 Secondary 1 1600  51 

 Secondary 2 200  6 

Lifter Primary 400 1.2 73 

 Secondary 150  27 
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 a1) a2) 

 

 b1) b2) 

 

Figure  5-10: Pressure and solids concentration profiles of AR (a1 and b1) and FR (a2 and b2) 

at FR maximum solids flux/concentration achieved 
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Among the chemical looping configurations investigated several attempts were done to 

increase the concentration in the upper part of the FR and consequently the solids entrainment 

together with a reduction of the bottom inventory. The aim is to provide an overall better 

contact between gas and particles in the upper region (risers) avoiding a very dense bottom 

zone, typical of turbulent beds. This is expected to improve the fuel conversion of the 150kWth 

set up despite the smaller particles residence time, especially for highly reactive OC. This task 

was not straightforward; because of design limitations which made the reactor system less 

flexible, therefore a significant increase of solids concentration in the FR upper part was the 

consequence of several simultaneous actions, which separately haven‟t been so effective. First 

of all, the FR superficial gas velocity was increased and assumed to resemble in the hot set-up 

a CO2 recirculation, while a fuel increase would have required a corresponding increase of OC 

exchange to oxidize the increased amount of fuel. This should help entraining more solids from 

the dense bottom zone to the lean one, shifting the fluidization regime more toward fast 

fluidization. The external air injection in the FR loop-seal was brought down to a smaller value 

and at the same time the internal one was increased up to the maximum allowed. The high 

internal fluidization is meant to increase as much as possible the internal recirculation, thus the 

OC residence time increasing the probability of having several FR loops; in addition it will 

eventually lead to a steady state characterized by a higher amount of mass in the fuel reactor 

body, especially above the return point. The external leg of the FR loop-seal was kept fluidized 

because it will increase the area available to the solids flow, leading towards higher FR 

entrainment. The lateral air injection was switched off because of the high increase of the 

overall bottom injections considering that a share of it goes anyhow through the down-comer; 

in fact the down-comer was clearly fluidized as bubbling bed. At the same time a third 

operation was done: the bottom extraction lift superficial gas velocity was reduced, to keep 

more mass in the FR body. A reduction of lift fluidization will increase the FR bottom pressure 

because of the increase of mass, anyhow it is compensated by the increase of fluidizing air 

which combined with the mass increase should shift more of it in the upper part of the reactor. 

The FR solids entrainment was increased of almost the 20%, which is the consequence of a 

high concentration increase in the FR upper body (highlighted in figure 5-10 b2) from around 

15% of the design case value at 1m height up to almost 40% of the design case at the reactor 

exit. At the same time the bottom pressure drop, thus concentration, decreased pretty much; 
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this means a big reduction of mass in the bottom zone of the reactor leading to an overall mass 

active mass reduction of almost 50%. This fact reduces the residence time to half, without 

considering the recirculation but just determining it as inventory divided by the solids flow. 

The superficial gas velocity and solids entrainment increases (figure 5-10 a2) had the 

consequence to increase very much the FR cyclone pressure drop. The AR behaviour is not 

changing so much except an slight increase of concentration both in the lower and upper part 

leading to a slight solids entrainment increase and to an overall active mass increase of around 

25%. 

 

5.4.4. Chemical Looping Reforming 

 

Other than CO2 capture, the concept of Chemical Looping Combustion can be developed in 

order to obtain the production of synthesis gas by means of reforming processes. 

Synthesis gas or syngas is mainly composed by H2 and CO2 and it is mostly used as a fuel or as 

a source of H2 in the production of ammonia. This gas can be produced following various 

reactions. A first classification can be made considering the different type of fuel used. 

For heavy fuels‟ reforming is mainly used a partial oxidation, slightly exothermic: 

     
 

 
       

 

 
   (5-1) 

For light fuels we have another reaction, the steam reforming reaction, highly endothermic: 

                 
 

 
    (5-2) 

If is required synthesis gas with a high CO content, the reaction to choose is called CO2 

reforming and is highly endothermic as well: 

               
 

 
   (5-3) 

Nowadays, the most used between the three is the steam reforming.  
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However, a further step is required if the goal of the reforming is the production of pure H2: the 

water-gas shift reaction, slightly exothermic, in which CO and H2O are transformed in CO2 and 

H2, as it follows: 

              (5-4) 

Thus, the result is a gas mixture consisting in almost just CO2 and H2. The latter has to be 

separated from the former, and there are different ways to perform this, but in any case a purity 

of over 99.99% is obtained [28]. 

Using the separation of carbon dioxide to produce hydrogen, two are the processes that have 

been studied: 

 

5.4.4.1. Chemical looping Auto-Thermal Reforming [CLR(a)] 

 

In this option, the reaction in the air reactor is the same as in a normal chemical looping 

combustion cycle. The only difference is in the air/fuel ratio, which in this case is reduced. So, 

there will be a smaller amount of oxygen that is transported from the air to the fuel reactor, due 

to a lower circulation rate of the oxygen carrier that besides has been subjected to a smaller 

oxidation. In the fuel reactor the situation is more complicated because various reactions take 

place, such as the full oxidation, the partial oxidation, the steam reforming and the CO2 

reforming.  

The main advantage of this technique lies in the fact that is not required an Air Separation Unit 

(ASU), component that usually is one of the most energy demanding [28]. 
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Figure  5-11: basic process of CLR(a) 

 

5.4.4.2. Chemical Looping Steam reforming [CLR(s)] 

 

Here, an H2/CO2 stream is used as a fuel for a chemical looping combustion cycle that in this 

way generates the heat required by a conventional steam reformer. The reaction takes place in 

reformer tubes that can be located inside the fuel reactor or in a separated fluidized bed heat 

exchanger fed by the air reactor. Thus, all the technologies needed are conventional, and this is 

the main advantage of using this second option.  

 

Table  5-6: Amount of air injections in reforming test 

Air Injections Position of 

Injection 

Air 

flow[Nl/min] 

Total amount 

of air [m/s] 

Share in percent% 

Air Reactor Loop Seal External 80 0.07 76 

 Center 20  19 

 Internal 0  0 

 Grease 5  5 

Fuel Reactor Loop Seal External 80 0.1 84 

 Center 10  11 

 Internal 0  0 

 Grease 5  5 

Air Reactor Primary 2500 1.9 56 

 Secondary 1 1000  22 

 Secondary 2 1000  22 

Fuel Reactor Primary 1200 2.6 50 

 Secondary 1 1000  42 
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 Secondary 2 200  8 

Lifter Primary 500 1.5 70 

 Secondary 200  30 

 

The last chemical looping process presented in the paper is the chemical looping reforming. 

The feasibility of auto-thermal chemical looping reforming has already been proven by Vienna 

University of technology, by a reduction of AR fluidization which reduces the OC entrainment 

and consequently the amount of oxygen provide to the FR reduction reaction where an 

incomplete combustion will take place producing CO and H2. Two CLR were tested, the first 

one is based on the same principle of Vienna and the AR fluidizing air was reduced together 

with the AR loop-seal fluidization. 

The pressure profiles behave as expected: the AR has a smaller cyclone delta P and higher 

bottom pressure drop with consequent higher concentration in the bottom and lower in the 

upper part and a total active inventory increased of the 35%. The FR pressure profile changes 

slightly in the upper part giving a smaller concentration, in addition because of the smaller 

solids flow arriving from the AR the FR total almost halves mainly due to a dramatic reduction 

in concentration in the lower part.  In this case it was possible to see how the reactor system 

reacts to an almost 40% of solids exchange reduction. In the second case the AR fluidization 

was kept constant and the OC exchange was reduced making use of the divided loop-seal, the 

internal leg of the loop-seal was fluidized in order to re-circulate part of the entrained solids. 

Ideally 50% in this case, but it has been proven that with the actual loop-seal design the split 

between the two legs is determined both by the air injected and the pressure difference between 

the reactors (out of paper scope). In this case the AR inventory increases due to the internal 

recirculation while the FR loses mass because of the less amount of solids coming from the FR, 

with a big reduction in concentration in the bottom part, partly balanced by the lift fluidization 

reduction. 
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 a1) a2) 

 

 b1) b2) 

 

Figure  5-12: Pressure and solids concentration profiles of AR (a1 and b1) and FR (a2 and b2) 

resembling two reforming applications 
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5.5. Inventory 

After having tested several times the five different operational modes, the best condition for 

each experiment which is evaluated as stable, is chosen as a reference case. The effect of the 

total mass inventory circulating in the system and especially for operational modes was 

investigated for the next step. 

This was done in order to test the flexibility of the rig, and to discover if the behavior was, or 

not, influenced by the amount of solids. 

It was decided to try two different options: reducing the inventory of 20 kg, and increasing it of 

20 kg, from the original quantity. This means that the total entrainment would have been: 

 100 kg in the first case 

 140 kg in the second 

In both cases, the rig should have been run repeating all the five operational modes and 

checking the behavior of the components and the fluxes. 

At first, it was decided to start with lowering the inventory. The most effective way to do it 

was selected to be the loss of the quantity requested from the cyclones. To obtain this, the 

system was run in very unstable conditions for a few minutes. The main parameters that made 

the behavior unstable were: 

 The lifter was set with very low values of the air injections; 

 The heights of the mass in the various chambers of the loop seals were not equal. 

The first thing made the exchange between the two reactors lower: more mass was 

accumulating in the FR. The second caused instabilities and fluctuations in both the 

downcomers of the reactors. These two reasons leaded to very big fluctuations in the FR 

downcomer, which caused high quantities of solids going through the back pipe which are 

connected the cyclones to the filter. 

The filter, and the second scale present in the lab as a double-check, were used to measure the 

amount of mass which had been extracted from the cold flow model, so that to be sure that the 
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numbers were coherent with the ones established. Thus, 20 kg were removed, and the final 

inventory was reduced to 100 kg. 

The five operational modes were then tested, in this order: standard conditions (design), part 

load, maximum power, maximum FR concentration and reforming. 

For the first two sets, standard and part load, the stability was reached in a few minutes: 

visually, the system was behaving like it did with 120 kg of mass. The only difference was that 

bubbles were seen in the FR downcomer, as a consequence of the smaller quantity of solids 

circulating in the system. The grease air in the loop seals is used to help the fluidization in the 

downcomer, but when the amount of mass is lower, there is no need to use it because the fast 

fluidization regime is already fully achieved. 

Besides, problems were founded in testing the maximum fuel reactor concentration conditions. 

Fluctuations were visible in the FR downcomer, with a lot of particles going to the filter. More 

tests were done to find a solution for the instability problem. Again, the solution was playing 

with the loop seals air injections; another evidence of the fact that the role of these components 

is fundamental for a correct behavior of the system. So, the internal recirculation was 

maintained, but some values were changed: the grease air injection was working again, the one 

in the internal section was a bit decreased while the external one increased, in order to gain 

more balance. The lifter was set on higher values, to avoid the unwanted accumulation of too 

much mass in the FR, but still trying to achieve the goal of the set, i.e. having a better 

gas/solids contact in the reactor. 

Curious results were shown when the system was set on the reforming case. Visually, the 

behavior was perfectly stable: no fluctuations in the downcomers, and also during the 

measurements. However, from the analysis of the pressure profiles, it was noticed that the 

pressure in the bottom of the AR had a slightly increasing trend during the whole experiment. 

This is normally a sign of the fact that the reactor is getting full. So, the test was repeated again 

with the same values, but the behavior was exactly the opposite: while having still stable visual 

conditions, the pressure profile of the bottom pressure in the AR had a decreasing trend; the 

reactor was getting empty. This set is a proof of the influence of the mass inventory on the 
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global behavior of the system, and of the fact that in some cases precautions have to be taken to 

avoid stability problems. 

After these sets of experiments, the total inventory is increased up to 140 kg. The additional 

quantity was simply added to the reactors such as normal refilling, trying to add equal amounts 

in the two reactors, to avoid unbalances in the system. 

Due to accumulations of particles in both down comers, it was impossible to run the rig. In 

many cases the down comers height is became really high, with the mass almost reaching the 

cyclones. Also, a lot of static electricity was recorded to be present in the downcomers. 

The inventory was then reduced again to 120 kg, and the standard conditions were tested again. 

The system was working normally. 

Therefore, just 10 kg of particles added to the system, and total amount of inventory become 

130 kg. With this value, the five operational cases were tested, and the model did not show any 

malfunctioning. 

In conclusion, these tests are evidences of the fact that the inventory cannot be modified 

without thinking of the consequences. Like every other parameter, it affects the whole behavior 

of the system and it can create problems, in some cases serious problems that can even lead to 

the impossibility of running the rig. In this respect, the experiments made show that; in general, 

bigger problems are caused by bigger additions of solids. 

The comparison of the pressure profiles and solid concentration for operational modes with 

different solid inventory in the system are shown in the appendix I. 
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5.6. Loop seal sensitivity 

A specific set of tests was dedicated to the understanding of the maximum pressure difference 

a divided loop-seal can handle during operation when just one of its return legs is on use. In 

fact it was noticed that when just one of the two return legs is used to circulate solids, there is 

the bigger risk of gas leakages through the one not in use which provides an easy path to the 

gas coming from the reactor body high pressure which affects the loop-seal sealing capability 

and cyclone efficiency.  

The selected loop-seal was the AR one which was re-circulating internally the entrained flux 

while the FR was used as a pressure chamber. The valve located on the back-pipe was partially 

closed and at the same time the FR superficial gas velocity was varied in order to set the 

desired pressure in correspondence of the AR loop-seal return leg merging into the FR (P15). 

The AR was operated at constant conditions with superficial gas velocity of 2.4m/s and a rather 

conventional LS fluidization injecting 40Nl/min in the central nozzle and 120 Nl/min in the 

internal one, inverted with what usually is the external that in this case is not fluidized. 

 The solids entrainment was constantly monitored as well as the downcomer height and the 

solids losses. Figure 5-13 is summarizing some key parameters measured as function of the 

pressure measured in the point where the loop-seal return leg merges in the FR reactor. 

Looking at the solids losses it can be easy to see that below 100 mbar of pressure the mass 

losses are constant, while above it they increases dramatically. Anyhow visually it was possible 

to see strong fluctuations just above 115mbars, for the last two points. Those two were not 

operable in a stable way and also the pressure fluctuations, looking at the raw data were much 

bigger. This means that the visual observation is enough to understand if it is possible to 

achieve a steady state condition, but may not be enough to understand which should be the 

optimal condition and it may have affected to some extent the whole test campaign. In an 

infinite time interval, none of those are stable, but the “visual” one will clearly last much less 

because of the mass losses. 

Other interesting information that can be derived is the fact that such big pressure will affect 

both the bottom loop-seal pressure and the reactor one in the return point of the loop-seal leg in 
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use. The loop-seal bottom has proven in many other tests that fits to the reactor one and can 

keep intrinsically the equilibrium. These results mean that the divided loop-seal not in use 

propagates the effects not just to the loop-seal, but also to the hydrodynamics of the reactor. 

 

 

 5-13: pressure measurement in the point where the loop-seal return leg merges in the FR 

reactor 
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6. Conclusion 

A complete overview of the most common scaling criteria for designing cold flow models 

(CFM) was finalized to study. A new scale-up fluidized bed system has been provided for this 

experimental study. The most common approach in academia consists of building a small scale 

CFM resembling the hydrodynamics of a larger hot rig by keeping constant set of 

dimensionless numbers. On the other hand, the approach of the industry is mainly  consists of 

building full scale CFMs which can be used to better understand the influence of design 

solutions and operation on the system performance, to test process control and measurement 

methodologies.  

The CFM built by SINTEF Energy Research and the Norwegian University of Science and 

Technology (NTNU) was designed as full scale, i.e. with the same dimensions as a 150kWth 

hot unit which is at the final stage of construction. The aim is to fulfill both the above 

mentioned approaches to estimate the hydrodynamics of a larger industrial prototype plant of 

size ~15MWth, and to troubleshoot the 150kWth hot unit to be built. The combined use of the 

150kWth hot pilot rig and the 1:1 scale CFM represents an important tool in further scale-up of 

chemical looping processes under investigation [20]. 

The cold flow model was commissioned and is using Geldart A particles since it has quick 

mixing properties during the operation, and also has the flexibility to choose wide range of 

operating modes. The CFM performance is described, in terms of solid flux, rate of circulation 

and solid exchange between reactors by considering pressure and concentration behavior.  

The system has been validated against the design target of 2kg/s (solid exchange) between the 

air reactor and fuel reactor. This targeted solid exchange was obtained when the TSI inside the 

system is 120kg. This is referred as the design case (standard condition).  Also, it can be 

identified from the mentioned graphs
6
 that both the reactors operate in the border between fast 

fluidization and turbulent regime. This set of experiments is used as reference case, i.e. a 

starting point for the other cases which are analyzed with different possibilities of operational 

modes in chemical looping combustion resembling cold flow model.  

                                                      
6
 Section 4.3 
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The cyclone efficiency as well as velocity profile along the reactors was calculated. During the 

study the cyclone showed collective efficiency at approximately 99%. 

The solids flux entrainment and the pressure profiles along the air reactor and the fuel reactor 

were examined. The sensitivity of solid flux and pressure profiles was analyzed in relation to 

superficial gas velocity, secondary air injection, solid inventory and loop-seal fluidization. 

Especially the way loop-seal affects the reactors performance was systematically analyzed in 

order to find the best combination of air flow to the central, internal and lateral air injections. 

At the same time the system hydrodynamic and sensitivity to the fluidization of components 

such as the bottom extraction/lift and the fuel reactor was studied. Some of the specific design 

issues were addressed, especially when it comes to the location of the divided loop-seals return 

legs, which is discussed in detail at section 4.3. 

Series of experiments were done in order to validate the operational modes of CLC by means 

of CFM. The most important test for operating the CLC in a safe way is operating in part-load 

condition, which consists of injecting a lower amount of air to the system. Compared to the 

design case this causes lower power output from the system.  Another interesting condition was to 

study the maximum power mode. The air injection in FR was increased to resemble an increase 

in fuel injection, while AR fluidizing gas was increased to provide more OC exchange which is 

required to oxidize the higher amount of fuel. 

Moreover, several tests were done in order to get a better concentration of the particles in the 

FR, obtained by increasing both the residence time and also by entrainment inside the body of 

the FR. The aim is to provide an overall better contact between gas and particles in the upper 

region (risers) avoiding a very dense bottom zone. 

Reforming experiments were done by reduction of AR fluidization which reduces the OC 

entrainment and consequently the amount of oxygen provide to the FR reduction reaction. So 

that an incomplete combustion will take place producing CO and H2. Another way to conduct 

reforming was by reducing fluidized air in the AR together with the AR loop-seal fluidization. 

It was possible to operate the reactor system in a stable way and according to design targets. At 

the same time the hydrodynamic viability was addressed qualitatively, of several other 
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chemical looping configurations which in principle can be managed by the double loop 

circulating fluidized bed architecture: FR fast fluidization regime, load flexibility with 

variation from 50% to 120%, gas turbine combustor and chemical looping reforming (CLR). It 

was possible to find one or more configurations resembling each of them. On one hand the 

hydrodynamics were balanced to get the CFM running stably in steady state [20]. 

The overview of results (operational modes) is depicted in the appendix II. 

Still further research is needed in order to establish a complete mapping of the reactor system 

operability. The cyclones separation efficiency needs to be evaluated more precisely. 

Another area of further study is the impact of Total Solid Inventory (With different size and 

type of particles) at the above mentioned operational modes. 
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8. Appendix 

8.1. Appendix I 

 

Standard 

 

Figure  8-1: Pressure and solids concentration profiles of AR and FR in standard condition with different 

inventories 
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Part load 

 

Figure  8-2: Pressure and solids concentration profiles of AR and FR in part load operation with 

different inventories 
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 Maximum power 

 

Figure  8-3: Pressure and solids concentration profiles of AR and FR in maximum power condition with 

different inventories 
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 Maximum fuel reactor concentration 

 

Figure  8-4: Pressure and solids concentration profiles of AR and FR in maximum fuel reactor 

concentration condition with different inventories 
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 Reforming 

 

Figure  8-5: Pressure and solids concentration profiles of AR and FR in reforming condition with 

different inventories 
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8.2. Appendix II 

 

Design case 
 
Control parameters 

Reactors‟ superficial gas velocity: 

AR: 2.4, FR: 2.6, Lift: 1.5 [m/s] 

Loop Seal air injection: 

External/Central/Internal/Lateral 
AR: 120/40/0/5[Nl/min] 

FR: 80/10/0/5[Nl/min] 

 

Measured results 

Reactors‟ solids entrainment, 

Flow: AR ~1.88, FR ~0.74 [kg/s]. 

Flux: AR ~45.2, FR ~45.7 [kg/m
2
s]. 

Reactors‟ active mass: 

AR ~26, FR ~15 [kg]. 

Down-comers‟ and lift flux: 

AR ~230, FR ~91, Lift ~139 [kg/m
2
s]. 

Down-comers‟ height: 

AR ~0.60, FR ~0.43 [m]. 

Part load 75% fuel  
 

Control parameters 

Reactors‟ superficial gas velocity: 

AR: 2.4, FR: 1.8 (-31%), Lift: 1.5 [m/s] 

Loop Seal air injection: 

External/Central/Internal/Lateral 

AR: 120/40/0/5[Nl/min] 

FR: 80/10/0/5[Nl/min] 

 

Measured results 

Reactors‟ solids entrainment, 

Flow: AR ~1.50 (-20%), FR ~0.33 (-55%) [kg/s]. 

Flux: AR ~36.2, FR ~20.1 [kg/m
2
s]. 

Reactors‟ active mass: 

AR ~36 (+48%), FR ~15[kg]. 

Down-comers‟ and lift flux: 

AR ~184, FR ~40, Lift ~147 (+6%) [kg/m
2
s]. 

Down-comers‟ height: 

AR ~0.30÷0.35, FR ~0.40÷0.45[m]. 
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Part load 50% fuel 
 

Control parameters 

Reactors‟ superficial gas velocity: 

AR: 2.0 (-17%), FR: 1.3 (-50%), Lift: 1.5 [m/s] 

Loop Seal air injection: 

External/Central/Internal/Lateral 

AR: 80 (-33%)/10 (-75%)/0/5[Nl/min] 

FR: 40 (-50%)/5 (-50%)/0/5[Nl/min] 

 

Measured results 

Reactors‟ solids entrainment, 

Flow: AR ~0.93 (-51%), FR ~0.12 (-84%) [kg/s]. 

Flux: AR ~22.5, FR ~7.7 [kg/m
2
s]. 

Reactors‟ active mass: 

AR ~38 (+46%), FR ~15[kg]. 

Down-comers‟ and lift flux: 

AR ~114, FR ~15, Lift ~99 (-29%) [kg/m
2
s]. 

Down-comers‟ height: 

AR ~0.37, FR ~0.4[m]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FR flux/concentration 

maximization 
 

Control parameters 

Reactors‟ superficial gas velocity: 

AR: 2.4, FR: 3.5 (+35%), Lift: 1.2 (-20%) [m/s] 

Loop Seal air injection: 

External/Central/Internal/Lateral 

AR: 180 (+50%)/40/0/5[Nl/min] 

FR: 30 (-62.5%)/10/198 (+undef.)/0 (-

100%)[Nl/min] 

 

Measured results 

Reactors‟ solids entrainment, 

Flow: AR ~2.08 (+11%), FR ~0.88 (+19%) [kg/s]. 

Flux: AR ~50.2, FR ~54.2 [kg/m
2
s]. 

Reactors‟ active mass: 

AR ~33 (+27%), FR ~8 (-47%)[kg]. 

Down-comers‟ and lift flux: 

AR ~255, FR ~108, Lift: und. [kg/m
2
s]. 

Down-comers‟ height: 

AR ~0.70, FR ~0.40 [m]. 
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Power increase 
 

Control parameters 

Reactors‟ superficial gas velocity: 

AR: 2.6 (+8%), FR: 3.2 (+23%), Lift: 1.5 [m/s] 

Loop Seal air injection: 

External/Central/Internal/Lateral 

AR: 120/40/0/5[Nl/min] 

FR: 80/10/0/5[Nl/min] 

 

Measured results 

Reactors‟ solids entrainment, 

Flow: AR ~2.16 (+15%), FR ~0.80 (+8%) [kg/s]. 

Flux: AR ~52.1, FR ~49.2 [kg/m
2
s]. 

Reactors‟ active mass: 

AR ~28 (+8%), FR ~11 (-27%)[kg]. 

Down-comers‟ and lift flux: 

AR ~270, FR ~98, Lift ~167 (+20%) [kg/m
2
s]. 

Down-comers‟ height: 

AR ~0.70, FR ~0.45÷0.47[m]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical Looping Reforming 

(AR entrainment reduction) 
 

Control parameters 

Reactors‟ superficial gas velocity: 

Flow:AR: 1.9 (-21%), FR: 2.6, Lift: 1.5 [m/s] 

Loop Seal air injection: 

External/Central/Internal/Lateral 

AR: 80 (-33%)/20 (-50%)/0/5[Nl/min] 

FR: 80/10/0/5[Nl/min] 

 

Measured results 

Reactors‟ solids entrainment, 

Flow: AR ~1.14 (-39%), FR ~0.65 (-12%) [kg/s]. 

Flux: AR ~27.5, FR ~39.6 [kg/m
2
s]. 

Reactors‟ active mass: 

AR ~35 (+35%), FR ~8 (-47%)[kg]. 

Down-comers‟ and lift flux: 

AR ~140, FR ~79, Lift ~61 (-56%) [kg/m
2
s]. 

Down-comers‟ height: 

AR ~0.72, FR ~0.40 [m]. 
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Chemical Looping Reforming 

(AR Internal recirculation) 
 

Control parameters 

Reactors‟ superficial gas velocity: 

Flow:AR: 2.4, FR: 2.6, Lift: 1.2 (-20%) [m/s] 

Loop Seal air injection: 

External/Central/Internal/Lateral 

AR: 40 (-67%)/20 (-50%)/40 (+undef.)/5[Nl/min] 

FR: 80/10/0/5[Nl/min] 

 

Measured results 

Reactors‟ solids entrainment, 

Flow: AR ~1.90 (+1%), FR ~0.56 (-24%) [kg/s]. 

Flux: AR ~45.7, FR ~34.6 [kg/m
2
s]. 

Reactors‟ active mass: 

AR ~33 (+27%), FR ~9 (-40%)[kg]. 

Down-comers‟ and lift flux: 

AR ~233, FR ~69, Lift: und. [kg/m
2
s]. 

Down-comers‟ height: 

AR ~0.79, FR ~0.45[m]. 
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8.3. Appendix III 

 

Problems during experiments 

 

Date Task Specification Problem 

16/02/2011 -Remove the seals between the AR & FR  body (located 

in the lifter) for starting the coupled operation 

-Start point: Reach the pervious conditions(last stable 

operation 16/11/2010)  

-Compare the results of the secondary air injection place 

with the same total amount of air  in FR (specially 

pressure profiles) and analyze the effect of the air 

injection place on concentration of the FR 

 
 

Total amount of air in 

the FR: 2400 lit/min 

-Due to the 

leakage in the 

cyclone of the fuel 

reactor the 

operation has 

stopped. 

-Duration between 

this experiment 

and the next one, 

the calibration for 

PTs is changed by 

lab technicians.  

28/02/2011 -The place of the secondary air injection in FR is 

changed to lower part of riser  

 
-The position of P29 changed in AR as you see below 

due to see the effect of position changed in the cyclone 

and also analyze the pressure drop between these two 

point in the cyclone when the new PTs will be installed 

 

 

 

The same 

specification with 

pervious test matrix 

except the place of 

the secondary air 

injection in FR  

Leakage in FR(the 

connection part 

between cyclone 

and riser) 
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03/03/2011 -Repeating the pervious test matrix  The same with 

pervious test 

Leakage in FR in 

the same place 

07/03/2011 -Repeating the pervious test matrix  The same with 

pervious test 

Leakage in the AR 

loop-seal P28 

(operator glued 

the leakage place 

to remove the 

problem ) 

08/03/2011 - Repeating the pervious test matrix  The same with 

pervious test 

The flow of main 

air injection to the 

system decrease 

suddenly, due to 

the problem in the 

other section of 

the lab. 

10/03/2011 - Repeating the pervious test matrix  The same with 

pervious test 

The flow of main 

air injection 

decrease again 

during the 

experiment. 

Operators tried to 

use the pervious 

Ver. Of LabVEIW 

to solve the 

problem 

  

14/03/2011 - Repeating the pervious test matrix  The same with 

pervious test 

Sudden increase in 

back pressure 

pipes to the filter. 

Operators found 

out that the 

problem was the 

misplacement of 

the filter fan 

located at 

downstairs. Also 

the online scaling 

system didn‟t 

work but with 

defining the new 

range for zero in 

the setting, this 

problem was 

abolished. 

15/03/2011 - Repeating the pervious test matrix  

-Increase the internal recirculation of the FR with adding 

-The same with 

pervious test 

Without any 

problem 
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the air flow in the internal section of FR loop-seal -Total amount of air 

to FRLS is the same 

with pervious test(the 

share of air to internal 

and external part is 

50% for each)  

16/03/2011 -The effect of the total air injection in AR on FR 

concentration and mass exchange between the reactors 

-The place of the PTs at the top of the cyclones(FR&AR) 

is changed due to gain better result without any 

disturbance of flowing air   

-The total amount of 

air in the AR 

increased 500 lit/min 

in each step 

Losing large 

amount of 

particles because 

of unstable 

condition and high 

air flow in AR 

17/03/2011 -With analyzing the pressure profiles, the inventory of 

FR reduced after a while so tried to increase the 

inventory with changing the condition for internal and 

external section of ARLS  

-The share of the air 

injection to ARLS 

external and internal 

are 50%-50%, 75%-

25%, 25%-75% 

Without any major 

problem 

18/03/2011 -Analyze the effect of the total air injection to FR on 

concentration and amount of mass exchange in reactors 

-The position of P32 changed in FR as you see below 

due to see the effect of position changed in the cyclone 

and also analyze the pressure drop between these two 

point in the cyclone when the new PTs will be installed 

 

 
 

-total amount of air of 

FR increased 500 

lit/min in each step 

Without any 

problem 

21/03/2011 - - The main 

controller of the 

rig (laptop) didn‟t 

work. The 

operators placed a 

new laptop in the 

section which is 

borrowed from 

other section 

SINTEF 

24/03/2011 -The effect of the place of the air flow injection to AR, 

FR and together with the same total amount of air 

flow(for FR:2400& for AR:5500)  

-changing 500lit/min 

for each reactor from 

primary to secondary 

Without any 

problem 

25/03/2011 -Increasing the air injection to external part of ARLS and 

internal part of FRLS in different arrangements to 

increase the inventory and concentration in FR 

-the ratio for 

increasing the air was 

0.75 

Without any 

problem 

28/03/2011 -An analyze of reaching to stable condition with online 

refilling for one hour and see the effect of the 

measurements and calculating the time to reaching the 

stable condition after each measurement  

-specification is the 

same with 

16/02/2011 

Operators forget 

to save the 

logging file 

29/03/2011 -Repeat the pervious experiment  Without any 

problem 
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04/04/2011 -Lifter sensitivity in design conditions 

-The metal cyclone is in placed in the FR   

-total amount of air in 

lifter is started from 

300lit/min up to 

104lit/min in 4 steps 

Without any 

problem 

05/04/2011 - Analyze the effect of the LPs on circulation rate and try 

to increase the entrainment in the FR 

-The position of P26 and p17 is changed to the bottom 

and top of the lifter, respectively 

 

-the share of the air 

injections to the LSs 

is changed as 

following:  

External  Internal 

100%         0% 

70%          30% 

50%          50% 

 

The flow of main 

air injection to the 

system decrease 

suddenly, due to 

the problem in the 

other section of 

the lab. 

06/04/2011 -Continue the pervious program -Increase the amount 

of total air injection 

in the LSs with the 

same share as 

previous experiment 

Without any 

problem 

07/04/2011 -LSs sensitivity in design conditions - different share of 

the LSs was tested 

with the same amount 

of total air injections 

in the LSs 

Without any 

problem 

08/04/2011 -Maximum FR concentration - the best condition 

was reached with 

225lit/min and 

240lit/min total 

amount of air in the 

ARLS and FRLS, 

respectively 

Without any 

problem 

11/04/2011 -P17 moved to the bottom of FR 

-P28 moved to the upper part of the FRLS 

-P31 moved to the upper part of the ARLS 

-P13 moved to the lifter 

  

12/04/2011 -Reduce the amount mass going to FR and less mass 

exchange based on Reforming operation in the CLC 

-reduce AR air 

injections 

-reduce the lateral air 

injection in ARLS 

-decrase lifter 

-increase internal air 

injection in the FRLS 

-reduce the FR 

fluidization 

Without any 

problem 

20/04/2011 -Reduce the amount of circulation based on Part-Load 

operation in the CLC 

-reduce the total 

amount of air 

injection in AR and 

FR 

- reduce the total 

amount of air 

injection in ARLS 

and FRLS 

 

Packed bed in the 

ARDC, stop the 

operation and 

using the flushing 

system  

P26 

P17 
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29/04/2011 -The new version of LabVIEW is installed  and the plan 

for installing the new pressure transmitters was 

confirmed 

-Test the components and air injections in the new 

version of LabVIEW  

- P28 does not work 

in the new version 

of software 

02/05/2011 -Continue the Part-Load experiments 

-The new hole for P28 is drilled 

- Without any 

problem 

03/05/2011 -Continue the Part-Load experiments - Without any 

problem 

04/05/2011 -Continue the Part-Load experiments - Without any 

problem 

05/05/2011 -The new 6 pressure transmitters are installed in the rig 

 

 

 

 

 

 

 

 

 

 

-The Reforming experiments repeat with these new 

pressure transmitters  

- Without any 

problem 

06/05/2011 -Continue the previous program for Reforming - Without any 

problem 

16/05/2011 -Reduce the inventory to 100kg and repeat the 5 

reference experiments(Standard, Part-Load, Maximum 

Power, Maximum FR Concentration, Reforming) 

- Without any 

problem 

24/05/2011 -Change the position of new PTs 

-repeat the pervious experiments 

- System shut down 

because of a 

leakage in the FR 

cyclone 

25/05/2011 -Increase the inventory to 140kg and repeat the 5 

reference experiments(Standard, Part-Load, Maximum 

Power, Maximum FR Concentration, Reforming) 

- The height of the 

ARDC is very 

high, operate the 

system is 

impossible 

26/05/2011 -Reduce the inventory to 120kg to reach the stability  - Without any 

problem 

07/06/2011 -Increase the inventory to 130kg and repeat the 5 

reference experiments(Standard, Part-Load, Maximum 

Power, Maximum FR Concentration, Reforming) 

- Without any 

problem 

10/06/2011 -Reduce the inventory to 120kg 

-Reach the normal distribution 

-Block the external pipe of the FRLS 

-Seal the connection pipe between the filter box and FR 

cyclone 

 Without any 

problem 

14/06/2011 -Operational window for LS 

 

Changing the botoom 

pressure of the FR 

and calculate the 

cyclone efficiency for 

each set of 

experiments(bottom 

pressure is increased 

Without any 

problem 

ARDC FRDC 

Flap Valves 

P74 

P70 

P71 

P75 

P72 

P73 
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from 100mbar to 

160mbar in 3 steps 

and also decreased to 

0 mbar in 3 steps ) 

27/06/2011 -Repeat the previous experiments to validate the data - Without any 

problem 
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