
Master of Science in Product Design and Manufacturing
February 2011
Bernhard Müller, EPT
Joris Verschaeve, EPT

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Energy and Process Engineering

Curved Boundary Conditions for the
Lattice Boltzmann Method

Endre Joachim Mossige

Problem Description
Background and objective.
The lattice Boltzmann method is a new numerical method of computational fluid
dynamics (CFD). Conventional fluid solvers are based on the Navier-Stokes
equations describing fluid motion based on a continuous picture of matter. The lattice Boltzmann
method instead relies on discrete particles having an idealized movement on a
lattice. Similar to the case of particles with continuous movement, it can be shown that the Navier-
Stokes equations can be recovered from the statistical description of these particles. The
numerical solution of these lattice Boltzmann equations has computational advantages over
conventional solvers based on the Navier-Stokes equations. However, boundary conditions are still
an issue for this method, since there is no clear picture what happens with these particles at walls
or interfaces. In addition the method is only defined for equidistant Cartesian grids such that a
special treatment of boundary conditions not aligned with the grid axes is necessary.
The master thesis will focus on curved boundary conditions of the lattice Boltzmann method.

The following questions should be considered in the project work:

1 Implementation of curved boundary conditions for the Lattice Boltzmann method.
2 Analytical derivation of a similar formulation for moving walls.
3 Implementation of this new formulation.
4 Verification of the boundary conditions.

Assignment given: 27. August 2010
Supervisor: Bernhard Müller, EPT

Abstract

The lattice Boltzmann method is a modern method in computational fluid dynamics. Its
primary use is the simulation of incompressible flows. It has computational advantages
over conventional methods like the finite volume method. However, the implementation
of boundary conditions is still an unsolved topic for this method. The method is defined
on a Cartesian grid such that curved walls need special treatment as they are generally
not aligned with the grid lines.

We investigated a number of straight and curved boundary conditions and performed
four different benchmark tests to verify these. Based on a formulation for curved walls
with no-slip from the literature, we showed that this method could be extended to simulate
flows with arbitrary velocity boundary conditions. Our scheme conserved the second order
accuracy of the lattice Boltzmann method in time and space.

Sammendrag

Lattice Boltzmann metoden er en moderne metode innen numeriske strømningsbereg-
ninger. Dens primære bruksområde er simulering av inkompressibel strømning. Den har
numeriske fordeler i forhold til konvensjonelle løsere som endelig volum metoden. Imidler-
tid er implementeringen av grensebetingelser fortsatt et uløst emne for denne metoden.
Lattice Boltzmann metoden er definert på et kartesisk nett slik at krumme vegger trenger
spesiell behandling siden de generelt ikke sammenfaller med nettlinjene.

Vi undersøkte en rekke rette og krumme grensebetingelser og gjennomførte fire forskjel-
lige rettesnorstester (benchmark tests) for å verifisere disse. Basert på en formulering for
krumme vegger med heftbetingelse fra litteraturen viste vi at denne metoden kunne ut-
vides til også å kunne simulere strømning med vilkårlige grensebetingelser for hastighet.
Vårt skjema påviste å konservere lattice Boltzmann metodens andre ordens nøyaktighet
i tid og sted.

Contents

Introduction

1 Theoretical Background 1
1.1 Macroscopic quantities . 4
1.2 From LBE to the Navier-Stokes Equations 5

2 Straight Boundary Conditions 8
2.1 Jonas Lätt’s Non-Local Boundary Condition 9

3 Curved Boundary Conditions 13
3.1 Computing the Velocity on the Boundary Nodes 14
3.2 Computing the Rate of Strain on the Boundary Nodes 15
3.3 Computing the Density on the Boundary Nodes 15
3.4 Summary of the Algorithm . 17

4 Verification 20
4.1 Numerical Error . 20
4.2 Flow in a Slit Driven by Gravity . 21
4.3 Flow in a Slit Driven by a Pressure Gradient 22
4.4 Taylor-Couette Flow . 24
4.5 Taylor-Vortex Flow . 26

5 Conclusion 31

Acknowledgments 32

References 33

List of Figures

1.0.1 The D2Q9 Lattice . 2

2.1.1 Populations of Slitflow . 10

3.4.1 Nodeclassification . 18
3.4.2 Interpolationpoints . 18
3.4.3 How to choose link ~b . 19
3.4.4 How to calculate S on curved walls . 19

4.2.1 Error of Gravity Driven Slit-flow . 22
4.3.1 Velocity Error of Slit-Flow . 23
4.3.2 Pressure Error of Slit-Flow . 24
4.4.1 Velocity Profile of Taylor-Couette Flow . 25
4.4.2 Velocity Error of Taylor-Couette Flow . 26
4.5.1 Velocity and Pressure for Taylor-Vortex Flow 27
4.5.2 Velocity Error of Steady Taylor-Vortex Flow 29
4.5.3 Pressure Error of Steady Taylor-Vortex Flow 29
4.5.4 Velocity Error of Unsteady Taylor-Vortex Flow 30
4.5.5 Pressure Error of Unsteady Taylor-Vortex Flow 30

Introduction

The lattice Boltzmann method (LBM) has become popular in recent years to simulate fluid
flows[1]. Conventional CFD-methods are generally based on a discretization procedure of
the continuous partial differential equations that descibe fluid flows[2]. LBM instead uses
a ’particle’ model to decribe the dynamics of fluid flow. It can be shown via the so called
Chapman-Enskog multiscale analysis[3], that LBM recovers the continuous Navier-Stokes
equations[4]. Compared to conventional CFD-methods, LBM offers ease of programming
of fluids near boundaries and interfaces, and is therefore suited to simulate e.g. multiphase
flows[5] and flow in complex geometries[6].

The particles of lattice Boltzmann models live on the grid nodes of the computational
domain. Because of their point-like structure, only two types of mechanism is sufficient
to describe their dynamics. First is the local collision process, which corresponds to the
collision these particles undergo at the grid nodes. The other type of mechanism is the non-
local streaming process. Streaming corresponds to linear propagation of these particles
between the nodes of the computational domain. The particle distribution function is
the primary quantity in LBM. Macroscopic quantities, such as density and velocity, are
recovered via statistical moments of this function.

In the first chapter of this thesis, we descibe LBM in more detail. References to books
on the subject are given in the references[7][8][3] for the interested reader. In chapter
2, we move on by introducing some no-slip boundary conditions for straight walls. In
chapter 3, we investigate a no-slip boundary condition for curved walls with movement.

This thesis treats both straight and curved boundaries with the main focus on the
latter. We treat a general velocity boundary condition for curved walls, based on the
article on curved no-slip boundary conditions by Verschaeve and Müller[9]. It proved to
conserve the second order accuracy of LBM in time and space, for the benchmarks we
tested in chapter 4. In addition, we verified some straight boundary conditions in this
chapter. Finally, we sum up and conclude this thesis in chapter 5.

Chapter 1

Theoretical Background

This chapter treats the key elements of LBM necessary for the discussion in the rest
of this thesis. We restrict ourselves to the lattice Boltzmann Bhatangar-Gross-Kross
(LBGK) version of LBM[8][3]. The central quantity in the Boltzmann equation is the
particle distribution function f(t, ~x,~c), which is a function of time t, the position ~x and
the particle speed ~c. f(t, ~x,~c) corresponds to the probability of finding a particle at
position ~x with speed ~c at time t. Macroscopic quantities, such as fluid density and
velocity, are the statistical moments of the distribution function.

As the name implies, lattice-Boltzmann methods solve the Boltzmann equation on a
lattice. A lattice consists of the computational grid and an ensemble of velocity vectors
and weights accociated with these vectors. The velocity vectors interconnect the grid
nodes. They are restricted to certain values ci, i = 0, 1, ..., q−1, where q is the number of
possible velocities on the lattice. We treat only the D2Q9 lattice, see figure 1.0.1, having
9 possible velocities in 2 dimensions[7]. A necessary condition of LBM is that a particle
travels exactly one grid spacing per time step. If ∆x is the grid spacing and ∆t is the
time step, then

c = ∆x
∆t (1.0.1)

is the lattice constant. These constants are usually chosen as:

c = ∆x = ∆t = 1. (1.0.2)

The speed of sound for the D2Q9 lattice is:

cs = c√
3
. (1.0.3)

The neighboring nodes of a grid node with position ~x is thus ~x+~ci. The velocity vectors
are chosen in such a way that the system is isotropic, meaning that the numerical solution
to the macroscopic differential equation of interest does not depend to leading order on

2 Theoretical Background

the underlying grid structure. The magnitude of the velocity vector ~ci is such that the
particle propagates exactly the distance from one node to another in one time step. The
lattice weights, ti, adjust for the difference in length of the velocity vectors. For the D2Q9
lattice used throughout this thesis, the weights ti are

ti =


4/9 , i = 0
1/9 , i = 1,2,3,4
1/36 , i = 5,6,7,8

The set of vectors of the lattice is:

~ci =



(0, 0) , i = 0
(1, 0) , i = 1
(0, 1) , i = 2
(−1, 0) , i = 3
(0,−1) , i = 4
(1, 1) , i = 5
(−1, 1) , i = 6
(−1,−1) , i = 7
(1,−1) , i = 8

Note that ~c0 is the velocity vector of a particle at rest.

P c1

c2

c3

c4 c8

c5c6

c7

c0

PNE

PE

PSE

PNW

PW

PSW PS

PN

y

x

Figure 1.0.1: The D2Q9 lattice interconnecting grid node P to its neighboring nodes.

3

A physical quantity ϕ, e.g. length or velocity, is non-dimensionalized by ϕ∗ = ϕ/ϕch.
Here, subscript ′ch′ stands for characteristic. For instance, with (N+1) points to resolve
the length l∗, the grid resolution becomes δx = l∗/N . If l∗ is chosen to be unity, then
δx = 1/N . Since the lattice Boltzmann method is defined on a Cartesian grid, the
resolution is the same in all spatial directions.

Since the velocity space is reduced to a finite set of velocity vectors in LBM, the
continuous distribution function f(t, ~x,~c) can be written as a set of discrete functions:

f(t, ~x,~c) =



f0(t, ~x) if ~c = ~c0
... ...
fi(t, ~x) if ~c = ~ci .
... ...
fq−1(t, ~x) if ~c = ~cq−1

0 otherwise

fi is commonly referred to as a population and is responsible for carrying information
from one node to the neighboring one. A neighboring node is connected to the initial
node via the velocity vectors ~ci of the lattice. Each fi is carried along the direction of its
associated ~ci. A set of q equations has to be solved for each fi at each node to give the
future distributions. The lattice Boltzmann equation reads:

fi(t+ 1, ~x+ ~ci) = fi(t, ~x) + Ωi, (1.0.4)

where Ωi is the collision operator. Equation (1.0.4) can be divided into the collision
and streaming step. We denote the populations entering a collision by precoll and the
populations after collision by postcoll. The local collision step can then be written as:

fpostcolli (t, ~x) = fprecolli (t, ~x) + Ωi. (1.0.5)

The postcoll-populations are then subject to the non-local streaming process, given by:

fpoststreami (t+ 1, ~x+ ~ci) = fpostcolli (t, ~x), (1.0.6)

where the superscript poststream stands for ’post-streamed’. The superscript precoll will
often be dropped for convenience.

In its complete form, the collision operator Ωi is a non-linear integral operator. How-
ever, instead of using this complicated operator, the collision operator is modeled as a
relaxation towards equilibrium. This is known as the BGK-collision:

Ωi = −ω(fi − f eqi), (1.0.7)

where ω is the inverse of the collision relaxation time, i.e. the relaxation frequency. The

4 Theoretical Background

lattice Boltzmann equation (LBE) becomes:

fi(t+ 1, ~x+ ~ci) = fi(t, ~x)− ω(fi − f eqi), (1.0.8)

where the equilibrium distribution function f eqi is given by:

f eqi = tiρ

(
1 + 1

c2
s

~ci · ~u+ 1
2c4
s

Qi : ~u~u
)
. (1.0.9)

In the special case ~u = ~0, f eqi is simply the product between the weights and the macro-
scopic fluid density. This is particularly useful for the calculation of the fluid density for
walls at rest as will be shown in chapter 2. Eqn. (1.0.9) becomes in that case:

f eqi = tiρ
wall. (1.0.10)

The tensor Qi is defined as:

Qi = ~ci~ci − c2
sI (1.0.11)

where I is the identity matrix. Equation (1.0.9) can alternatively be written as:

f eqi = tiρ
(

1 + 3~ci · ~u+ 9
2(~ci · ~u)2 − 3

2~u
2
)
, (1.0.12)

when c is unity.

1.1 Macroscopic quantities

Macroscopic quantities are linked to microscopic quantities via statistical moments of the
distribution function:

Density: ρ =
q−1∑
i=0

fi (1.1.1)

Momentum density: ~j ≡ ρ~u =
q−1∑
i=0

~cifi (1.1.2)

Second-order tensor: Π =
q−1∑
i=0

~ci~cifi (1.1.3)

The macroscopic velocity ~u is simply:

~u = 1
ρ
~j = 1

ρ

q−1∑
i=0

~cifi. (1.1.4)

1.2 From LBE to the Navier-Stokes Equations 5

1.2 From LBE to the Navier-Stokes Equations

By means of the multiscale Chapman-Enskog expansion[10], it can be shown that the
macroscopic quantities from section 1.1 obey the incompressible Navier-Stokes equations
up to second order in time and space when compressible effects are negligible. The key
idea is that the distribution functions can be expanded by a small parameter ε, identified
as Kn, the Knudsen number1:

fi =
nmax∑
n=0

f
(n)
i εn. (1.2.1)

The zeroth-order term of the expansion is the equilibrium distribution, f eqi = f
(0)
i . This

term is responsible for the transport of information about ρ and ~u between the nodes of
the computational grid. Information about their gradients is described by the first order
distributions. Therefore, we identify the hydrodynamic terms of the Chapman-Enskog
expansion as the zeroth and first order distribution functions. The remaining terms are
thus neglected in the analysis. We take fneqi = fi − f eqi ≈ εf

(1)
i for this reason. To avoid

loss of mass during collision, the sum of the non-equilibrium parts has to be zero:

∑
i

fneqi = 0. (1.2.2)

Conservation of momentum requires:

∑
i

~cif
neq
i = ~0. (1.2.3)

Conservation of mass and momentum are important for the stability of CFD-methods.
Here, we refer to local conservation of these variables. Global conservation is not guaran-
teed, however, as one might lose or gain mass and momentum at boundaries[11].

The second-order tensor is linked to the rate-of-strain-tensor via the first-order distri-
butions:

Π(1) = ~ci~cif
(1)
i = −2c2

s

ω
ρS. (1.2.4)

where S = (∇~u+ (∇~u)T)/2 is the rate of strain tensor.
In the presence of an external source such as gravity, a correction term must be added

prior to collision[12]:

~j =
q−1∑
i=1

~ci ~fi =
q−1∑
i=1

~cif
(0)
i︸ ︷︷ ︸

ρ~u

−
~F

2 , (1.2.5)

1Kn = lmfp/lch, where lmfp is the mean free path of the particles in the fluid

6 Theoretical Background

where ~f
(0)
i is the zeroth order moment of the distribution function. This result was

obtained by means of a multiscale Chapman-Enskog analysis[10]. Introducing an external
source can physically be interpreted as injecting momentum into the fluid[13]. Thus, it
has to be corrected by a force term. The collision operator in this case takes the following
form:

Ωi = ω (fi − f eqi) + Zi, (1.2.6)

where Zi is the force term, given by:

Zi =
(

1− ω

2

)
ti (3 (~ci − ~u) + 9 (~ci · ~u)~ci) · ~F (1.2.7)

when c2
s = 1/3. An alternative, however less accurate, force term is given by[12]:

Zi = ti
c2
s

~ci · ~F . (1.2.8)

The dimensionless formulation of the momentum and continuity equations for an isother-
mal and incompressible flow read:

∂

∂t
~u + (~u · ∇)~u = −∇p + 1

Re
∆~u + ~F (1.2.9)

∇ · ~u = 0.

The pressure is linked to the density via the equation of state for an ideal gas:

p = c2
sρ, (1.2.10)

and the lattice-viscosity is linked to the relaxation parameter by:

νL = c2
s

(1
ω
− 1

2

)
, (1.2.11)

which gives 0 < ω < 2. As ω → 2, numerical instabilities can arise as the viscosity
becomes arbitrarily small[14]. As viscosity tends to dampen numerical oscillations in the
solution, a very small viscosity allows these to grow freely which in turn gives numerical
instabilities.

Equations (1.2.9) are solved with three error contributions by the lattice Boltzmann
method: the spatial error, the temporal error and the error due to compressibility effects.
They scale with δx2, δt2 and Ma2, respectively, where Ma is the Mach number2. This
means that the continuous equations are recovered up to second order in time and space
if the error contribution from compressibility effects is negligible. Since the Mach number

2Ma=u/cs, where u is the fluid velocity and cs is the local speed of sound

1.2 From LBE to the Navier-Stokes Equations 7

itself scales with (δt/δx), the time step has to be reduced as

δt ∼ δx2 (1.2.12)

in order to obtain a second order accurate scheme. With this constraint on the time
stepping, eqns.(1.2.9) are solved with second order accuracy in time and space.

The numerical viscosity is related to the Reynolds number by:

νL = ULN

Re
= ULNν, (1.2.13)

where N is the spatial resolution, UL the lattice velocity and ν the non-dimensional
physical viscosity. For the benchmarks tests in chapter , we choose δt = δx2 to suppress
the influence from the compressible effects on the solution as much as possible. We choose
the lattice velocity to be equal to the distance the populations propagate per iteration.
That is, we choose a lattice velocity equal to one grid cell per time step. With this choice,
the lattice velocity becomes

UL = δt

δx
= δx, (1.2.14)

and the lattice-viscosity corresponds to the physical viscosity because

ν = νL
ULN

= δx2

δt|δt=δx2
νL = νL. (1.2.15)

With the choice of units presented here, the last step is to calculate the relaxation fre-
quency from eqn.(1.2.11). We adopt the present stategy for all the benchmark tests
presented in chapter 4.

It is worth mentioning that, in the LBM-community, it is often of interest to impose
a certain value for ω, e.g. when one wants to investigate the numerical stability of a
LBM-scheme[10]. Since the method gets unstable as the value of the relaxation frequency
approaches two, a LBM-scheme is said to have good stability properties if it is stable for
relaxation frequencies close to two. With this choice of parameters, UL is generally not
equal to δx.

Choosing ω = 1 is sometimes profitable because then only the equilibrium distribu-
tions, and none of the non-equilibrium distributions, enter the collision step. As insta-
bilities usually originate at the boundaries, and fneqi is responsible for the propagation of
information from the boundaries, choosing ω = 1 provides stability.

Chapter 2

Straight Boundary Conditions

There exists two main classes of boundary conditions for the lattice Boltzmann method:
bounce-back boundaries[7] and wet boundary conditions[1]. In the former case, nodes on
the boundary of the computational domain are thought of as being dry nodes. On these
nodes no collision or forcing is performed and the distributions are all bounced back[3]
into their opposite directions after streaming. That is, the macroscopic quantities such
as density are not computed on these nodes. Thus, all populations are known on the
boundary nodes, next to the dry nodes, after streaming. With bounce-back boundaries,
it is possible to achieve second order accuracy in time and space by defining the phys-
ical boundary to be midway between the boundary nodes and the dry nodes. This is
however an ad-hoc approach and the bounce-back rule is considered only to be a first
order accurate boundary condition. This is because only first order accuracy is achieved
when bounce-back is implemented on the walls in LBM. The bounce-back rule works as a
no-slip boundary condition and is popular because it assures exact conservation of mass
and momentum on the boundary nodes and because it is easy to implement in a computer
code.

The other group of boundary conditions is known as the wet boundary conditions.
The name ’wet’ comes from the fact that the macroscopic quantities are computed on all
nodes, that is, the entire computational domain is wetted by the fluid. The boundary
nodes for straight walls are in this case defined as the nodes being next to the boundary
inside the computational domain. Opposed to the bounce-back boundaries, parts of the
populations on a boundary node are unknown after streaming as they are streamed from
populations stemming from dry nodes outside the computational domain. Therefore,
the macroscopic density ρ and velocity ~u cannot be computed directly by eqn.(1.1.1),
eqn.(1.1.2) and eqn.(1.1.4) on these nodes.

The simplest wet boundary condition is the equilibrium boundary condition, where
the non-equilibrium distribution function is set to zero. Since only equilibrium distribu-
tions enter the collision step, important information about the gradients from the non-
equilibrium distributions at the walls is missing. The solution in the entire domain suffers

2.1 Jonas Lätt’s Non-Local Boundary Condition 9

from this, and the equilibrium boundary condition is only first order accurate for this
reason. By this, we mean that the numerical solution for the entire domain will be only
first order accurate.

We say that the order of a boundary condition is the order in which the global error is
reduced with grid refinement. That is, when we double the number of sections to resolve
a characteristic length in our computational domain, we expect the error to decrease
by a factor four when using second order accurate boundary conditions. A boundary
condition might only reduce the local error by first order. The global error, however,
can still be reduced by second order when that current boundary condition is part of a
LBM-algorithm. By ’error’ and ’accuracy’, we refer to the global quantities.

The accuracy of the boundary condition should not deteriorate the accuracy of the
method. They should therefore be second order accurate for the lattice Boltzmann
method. The wet boundary conditions discussed below are all second order accurate.
We distinguish between local and non-local boundary conditions. Local boundary condi-
tions get all the required information from the populations on the boundary node. The
unknown populations after streaming are found from the known ones via closure relations.
Therefore, all populations are known on a boundary node after streaming, and ρ and ~u
are computed directly from eqn.(1.1.1), eqn.(1.1.2) and eqn.(1.1.4) as for the fluid nodes.

In general, local boundary conditions are accurate at low Reynolds numbers, but
become unstable for high Reynolds number flows[11]. Non-local boundary conditions are
slightly less accurate, but provide much better stability and are therefore better suited
for high Reynolds number flows. We will use exclusively non-local boundary conditions
as second order accurate boundary conditions for the benchmark tests in chapter 4. More
specifically, we use the method derived by Lätt presented in the following.

2.1 Jonas Lätt’s Non-Local Boundary Condition

The local tensor Π(1) appears in the hydrodynamic equations of the Chapman-Enskog
expansion and is linked to the non-equilibrium distributions via eqn.(1.2.4). Parts of the
populations in Π(1) are unknown at the boundary nodes after the streaming step, but
these could be computed based on the known ones via closure relations.

The non-local ’Finite-difference velocity gradient method’ by Lätt[11] abandons the
idea of finding the unknown non-equilibrium distributions and replaces all distributions,
unknown and known ones, on a boundary node prior to collision. This method exploits
the fact that Π(1) is proportional to the rate-of-strain tensor and approximates fneqi by:

fneqi ≈ − ρti
c2
sω

Qi : S. (2.1.1)

The rate of strain tensor S is computed by finite differencing schemes prior to collision

10 Straight Boundary Conditions

from ~u. On straight walls, the velocity gradients of S normal to the wall are computed
by asymmetric finite differences, and the gradients paralell to the wall are computed by
central finite differences. The rate of strain tensor S gets particularly simple on straight
walls with the no-slip condition as the diagonal elements, Sxx and Syy, are zero. When the
y-component of the velocity is zero, as for the slit flow treated below, the only non-zero
components of S are ∂ux/∂y, which lie on the off-diagonal of S. Finally, the distributions
on the boundary nodes prior to collision are updated by:

fprecolli (ρ, ~u,S) = f eqi (ρ, ~u) + fneqi (ρ,S), (2.1.2)

followed by the usual collision and streaming step. This procedure is called the regularized
LBM. It is implemented for all benchmarks in chapter 4.

On straight walls, there are three unknown populations on a wall boundary node after
streaming. A special case is when only one of the three macroscopic quantities ρ, ux or uy
is unknown. We can then compute the unknown macroscopic quantity from the known
ones and the known populations. This algorithm was derived by Zou and He[15].

1

52

3

6

0

NORTHERN WALL

47 8

1

52

3

6

0

47 8

SOUTHERN WALL

IN
LE

T
O

U
T

LE
T

Flow

1

52

3

6

0

47 8

1

52

3

6

0

47 8

y

x

Figure 2.1.1: Figure showing pressure driven slit flow in section 2.1. The unknown pop-
ulations on the boundary nodes after streaming are shaded. The inlet density, the wall
density and the outlet x-velocity are the unknown macroscopic quantities.

2.1 Jonas Lätt’s Non-Local Boundary Condition 11

Consider the pressure driven flow in a slit in figure 2.1.1. We impose a constant pressure
at the outlet and a velocity profile at the inlet. The y-component of the velocity is set to
zero. On the northern and southern walls, we impose the no-slip condition. We therefore
have three unknown macroscopic quantities on the boundaries: the outlet x-velocity, the
inlet density and the wall density. We solve for the unknown x-velocity at the outlet first.
We combine eqn.(1.1.1) with eqn(1.1.2) and get:

ρ =
∑
i

fi = f3 + f6 + f7︸ ︷︷ ︸
Unknown

+ f1 + f2 + f4 + f5 + f8 + f0︸ ︷︷ ︸
Known after streaming

(2.1.3)

and

ρux =
∑
i

cixfi = − f3 + f6 + f7︸ ︷︷ ︸
Unknown

(f1 + f5 + f8)︸ ︷︷ ︸
Known after streaming

. (2.1.4)

We solve for the x-velocity at the outlet:

ux,outlet = −1 + f2 + f4 + f9 + 2 (f1 + f5 + f8)
ρ

. (2.1.5)

With the non-local boundary condition of Lätt, the unknown populations, f3, f6 and f7,
are not computed via closure relations from the known ones as is the procedure with local
boundary conditions. Instead, they are replaced by the ’pre-collision’ populations in the
regularization procedure given by eqn.(2.1.1)-(2.1.2).

After ux,outlet has been computed from eqn.(2.1.5), the velocity is known on all the
boundary nodes. The next step is to compute the rate of strain tensor S from the velocity
~u, which is used in eqn.(2.1.1) to approximate the non-equilibrium distributions.

In the particular case described above, the main flow is in the x-direction and the
velocity component in the y-direction is zero on all nodes. The latter is not always the
case, however. Placing a obstacle inside the channel, for instance, will induce periodic
vortices downstream for a given range of the Reynolds number. This phenomenon is
known as the Von-Karman vortex street. The y-velocity will be non-zero in this case.
As the expression for uy with the method described above will give more unknowns than
there are equations, it is not possible to solve for this quantity at the outlet. It must
therefore be set to zero. This will introduce a small local error contribution. However,
this error is advected downstream with the flow and out of the domain. The global error
will therefore not suffer from this approximation.

The next step is to compute the inlet density. We combine eqn.(1.1.1) with eqn.(1.1.2)
and get:

ρ =
∑
i

fi = f1 + f5 + f8︸ ︷︷ ︸
Unknown

+ f2 + f3 + f4 + f6 + f7 + f0︸ ︷︷ ︸
Known after streaming

(2.1.6)

12 Straight Boundary Conditions

and

ρux =
∑
i

cixfi = f1 + f5 + f8︸ ︷︷ ︸
Unknown

− (f3 + f6 + f7)︸ ︷︷ ︸
Known after streaming

. (2.1.7)

The unknown density at the inlet is found by combining equation (2.1.6) and (2.1.7):

ρinlet = f2 + f4 + f0 + 2 (f3 + f6 + f7)
1− ux

. (2.1.8)

We see from this that the inlet density is computed from the known post-streamed popula-
tions and the known velocity. As for the computation of the outlet velocity, the unknown
populations, f1, f5 and f8, are replaced in the regularization step given by eqn.(2.1.1)-
(2.1.2).

Zou and He’s algorithm is simple to implement in a computer program but does not
work on curved boundaries. Also, it does not guarantee local mass conservation:

mpostcoll = mpoststream. (2.1.9)

Local mass conservation requires that the sum of the populations streamed onto a bound-
ary node from its fluid neighbors after streaming exactly balances the outgoing populations
from the collision step on the node.

From eqn.(3.3.8) in chapter 3, it is possible to obtain a simple relation for the density
for walls at rest[11]. The result, which aims at conserving mass locally on a boundary
node, reads:

ρwall = 6mpoststream. (2.1.10)

Here, mpoststream is the sum of the known populations after streaming, i.e. the sum of the
populations streamed from the fluid nodes onto a boundary node. From figure 2.1.1, we
get:

mpoststream
NORTHERN = f2 + f5 + f6 (2.1.11)

mpoststream
SOUTHERN = f4 + f7 + f8 (2.1.12)

In general, internal corner nodes need special treatment because there are more unknown
populations than there are equations on these nodes. In section 3.3, we present a method
to approximate the density on curved boundary nodes which we also use to compute the
density on corner nodes.

An alternative approach to approximate the corner density is to extrapolate the density
by means of second-order extrapolation schemes from the neighboring fluid nodes[11].

Chapter 3

Curved Boundary Conditions

For curved boundaries, as for straight boundaries, parts of the populations on the bound-
ary nodes are unknown after the streaming step. Curved boundaries differ from straight
ones in that the number of unknown populations is different for each boundary node.
Also, the distance from the boundary nodes to the wall is different for each node for
curved boundaries.

One could define a boundary node in different ways. Some authors, like Guo et.
al[16], define a boundary node as being part of the dry domain, but having at least one
link to a fluid node. Here, we define a boundary node instead as being a node in the fluid
domain (wet node) having at least one of its velocity vectors, ~ci pointing onto a solid node
(dry node). By this configuration, boundary nodes lie in-between fluid nodes where ~u is
known after streaming and the wall where we impose the no-slip boundary condition. The
velocity on a boundary node is therefore calculated by means of an interpolation scheme.
We will take a closer look at this procedure in section 3.1.

We group the neighboring nodes of a boundary node into fluid nodes F, boundary
nodes B and solid nodes S. The indices i of ~ci of a boundary node pointing onto fluid
nodes are then the elements of F. In figure 3.4.1, we get

F = {6} (3.0.1)

The ensemble of indices pointing on to itself or other boundary nodes in figure 3.4.1 is

B = {0, 2, 3, 5, 7} , (3.0.2)

and the remaining populations are the solid indices S. The entire ensemble of indices is
then M = F ∪B ∪ S. In figure 3.4.1 the solid indices are:

S = {1, 4, 8} . (3.0.3)

After streaming, the unknown populations on a boundary node are those streamed from

14 Curved Boundary Conditions

nodes belonging to the dry domain, outside the wet domain. Thus, these are the opposite
of the solid nodes indices. In figure 3.4.1, these are

Sopposite = {2, 3, 6} . (3.0.4)

After streaming, the macroscopic quantities ~u and ρ can be computed on the fluid nodes
by equations (1.1.1), (1.1.2) and eqn.(1.1.4) from the post-streamed populations. On the
boundary nodes, parts of the post-streamed populations are missing. The macroscopic
quantities ~u, S and ρ needed for the regularization procedure can therefore not be com-
puted by eqn.(1.1.1)-(1.1.4) on these nodes. We therefore need approximation schemes to
compute ~u, S and ρ on the boundary nodes.

3.1 Computing the Velocity on the Boundary Nodes

On the fluid nodes, ~u is found after streaming by eqn.(1.1.1) and eqn.(1.1.2). On the
boundary nodes, the velocity is unknown because parts of the populations are streamed
from dry nodes, which lie outside the computational domain. The wall velocity ~u0 is given
by the velocity boundary condition there. The velocity ~uP on boundary node P in figure
3.4.2 is found by interpolating the velocity between the known velocities at H2, H1 and
H0. When the number of elements in F > 1, we choose the link that forms the smallest
angle with the wall normal. That is, we choose the link ~b by: ~b = ~cj/ ‖~cj‖, where j gives
the maximum value of ~ci · ~n/ ‖~ci‖ , i ∈ F. Here, ~n is the wall normal through point P ,
see figure 3.4.3. The approximation of ~uP is performed with Lagrangian interpolation
schemes, given by

~uP = ~u0l0 + ~u1l1 + ~u2l2, (3.1.1)

where ~u0, ~u1 and ~u2 are the velocities at points H0, H1 and H2, respectively. The
interpolation polynomials of the distances bH0, bH1 and bH2 evaluated at point P are
given by li, i = 0, 1, 2:

l0(bP) = (bP − bH1)(bP − bH2)
bH1bH2

, (3.1.2)

l1(bP) = bP (bP − bH2)
bH1(bH1 − bH2) , (3.1.3)

l2(bP) = bP (bP − bH1)
bH2(bH2 − bH1) , (3.1.4)

where bHi, i = 0, 1, 2, P is the distance from node Hi to the wall. By this definition of
bHi, we have bH0 = 0.

3.2 Computing the Rate of Strain on the Boundary Nodes 15

3.2 Computing the Rate of Strain on the Boundary
Nodes

Having approximated the velocity on the boundary nodes, we compute the rate of strain.
We define nodes intersected by the wall as being dry nodes, thus bp is always positive and
central finite differences could be used both for the derivatives in x, and for the derivatives
in y, of the velocity ~u on the boundary nodes, see figure 3.4.4. The nodes used to compute
the velocity gradients at node P are the four neighbors PN , PS, PE and PW , where the
subscripts stand for the four cardinal points relative to P . If the wall intersects the line
interconnecting P with PN,S,E,W , then the neighboring velocity takes the velocity at the
intersection, that is, the wall velocity.

It would be appropriate to perform a weighting procedure between the velocities that
enter the velocity gradient computation. However, this is not done for the benchmarks
tested in chapter 4. The velocity gradients at P are computed by:

∂~u

∂x
≈ ~uE − ~uW∥∥∥−−−−→PWPE

∥∥∥ , (3.2.1)

and

∂~u

∂y
≈ ~uN − ~uS∥∥∥−−−→PSPN

∥∥∥ . (3.2.2)

Expanding eqn.(3.2.1)-(3.2.2) by Taylor series yields only a first order scheme. However,
approximating the rate of strain tensor S by these equations did not detoriorate the second
order accuracy of LBM for the benchmarks in chapter 4.

3.3 Computing the Density on the Boundary Nodes

We present here an algorithm to compute the density on corner nodes. It takes advantage
of the fact that the distributions are separable in ρ, such that:

f eqi = ρ ti

(
1 + 1

c2
s

~ci · ~u+ 1
2c4
s

Qi : ~u~u
)

︸ ︷︷ ︸
geq

i

. (3.3.1)

Similarly, for the non-equilibrium part:

fneqi ≈ ρ

(
− ti
c2
sω

Qi : S
)

︸ ︷︷ ︸
gneq

i

. (3.3.2)

Thus, g is not a function of ρ, and eqn.(3.3.1) and eqn.(3.3.2) can be written as:

16 Curved Boundary Conditions

f eqi (ρ, ~u) = ρgeqi (~u) (3.3.3)

fneqi (ρ,S) = ρgneqi (S) . (3.3.4)

That is, as soon we know ~u and S, then geqi and gneqi can be computed directly. The
ensemble of known indices after streaming is the opposite fluid indices plus the opposite
boundary indices:

KN = Fopposite ∪Bopposite. (3.3.5)

The known indices could alternatively be chosen only to include the populations streamed
from the fluid nodes:

KN = Fopposite. (3.3.6)

Eqns.(3.3.3)-(3.3.6), together with assuming that the mass of the post-streamed popula-
tions approximately equals the mass entering a collision:

mpoststream ≈ mprecoll, (3.3.7)

yields an approximate formulae for the corner or boundary node density:

ρ ≈
∑
i∈KN f

poststream
i∑

i∈KN g
precoll
i

(3.3.8)

where gprecolli = geqi + gneqi . Choosing KN as in eqn.(3.3.5) is in line with the definition
of a wet boundary as it includes the populations streamed from the boundary nodes in
the mass budget. It has been observed, however, that this approach can give rise to
numerical instabilities[17] for reasons that are beyond the scope of this work. Thus, we
choose KN = Fopp for the benchmark tests in chapter 4. This gives KN = 8 in figure
3.4.1.

3.4 Summary of the Algorithm 17

3.4 Summary of the Algorithm

We conclude this chapter by summing up the algorithm:
1: Determine the direction of link ~b based on the angle

the possible candidates for ~b form with the wall normal.
2: Approximate the velocity ~u on the boundary nodes by

interpolation schemes.
3: Approximate the rate of strain tensor S from

~u by central finite difference stencils.
4: Compute the density ρ on the boundary nodes locally.
5: Apply the collision and streaming step on all nodes in that order.

18 Curved Boundary Conditions

P
1

2

3

4

56

7 8

Wall

Fluid

Solid

Figure 3.4.1: Close up look of boundary node P and its neighbors. The ensemble of flu-
idnodes is F = {6}, the ensemble of boundary nodes B = {0, 2, 3, 5, 7}, and the ensemble
of solid nodes is S = {1, 4, 8}. The boundary nodes are shaded grey.

P

Wall

Fluid

Solid

H1

H2

H0

Figure 3.4.2: The velocity at boundary point P is approximated by an interpolation
polynomial interpolating the velocity at H0, H1 and H2 along the link.

3.4 Summary of the Algorithm 19

P

Wall

Fluid Solid

H2

n

b

Figure 3.4.3: When there are multiple possible links to choose between, we choose the
link ~b that forms the smallest angle α with the wall normal ~n.

P

Wall

Fluid

Solid
PE

PS

PN

PW

y

x

Figure 3.4.4: The figure shows how to compute S on boundary node P . PN ,PS,PE and
PW indicate the four cardinal points relative to P . Derivatives in x , ∂x, are computed
along the horizontal line, and derivatives in y, ∂y, along the vertical line.

Chapter 4

Verification

We present in this chapter results from four different benchmark test cases. The two first
are meant to verify the boundary conditions for straight walls: flow in a slit driven by
gravity and flow in a slit driven by a pressure gradient. The last two benchmarks aim
to verify the curved boundary conditions. They are: Taylor-Couette flow in-between two
rotating cylinders, and steady and time-periodic Taylor-vortex flow. All flows are steady
except from the last one.

4.1 Numerical Error

For incompressible flows, the error is always computed after the compressible effects have
decayed. The spatial error contribution is computed for steady flows such that the tempo-
ral error can be neglected. The lattice-Boltzmann method is defined on a Cartesian grid.
Therefore the spatial resolution is the same in both directions i.e. δx = δy = 1/N for
two dimensional problems. For steady flows, the l2 norm of the spatial error in velocity
is computed by:

ε(NI)l2 =

√√√√√∑(i,j)∈NI

∣∣∣~u(~x)numU−1
L − ~u∗(~x)

∣∣∣2
NI

≤ CN−κI , (4.1.1)

where NI is the ensemble of sections in the domain, C is an error constant and κ is the
order in which the error is decreased. With the refinement strategy presented in section
1.2, we unscale the numerical velocity ~unum by the inverse lattice velocity U−1

L . ~u∗ is taken
as the non-dimensional solution. The pressure error is found in a similar way.

4.2 Flow in a Slit Driven by Gravity 21

We compute the error of a cross-section by means of the l1-norm instead. When, for
instance, we want to compute the error of a velocity profile in a slit and want to minimize
the influence from the inlet or outlet on the global error, we choose the l1-norm. We
compute the l1-norm by:

ε(NI)l1 = 1
NI

∑
(i,j)∈NI

|φ(~x)num − φ∗(~x)| ≤ CN−κI , (4.1.2)

where NI is the ensemble of sections to resolve the cross-sectional length and φ is ρ, u or
v. When we compute the l1-norm, we must also unscale the numerical quantities by the
lattice velocity.

4.2 Flow in a Slit Driven by Gravity

Both the source term and the boundary conditions get particularly simple for this bench-
mark, which we solve on a square computational domain. The gravitational forcing term,
which drives the flow, is in the x-direction. The domain is unbounded in x. Numerically,
this is represented by periodic boundaries on the inlet and on the outlet (eastern and west-
ern walls). On the northern and southern walls, we impose a no-slip condition which we
implement with bounce-back, the equilibrium boundary and finally with the second order
finite-difference boundary condition of Lätt. In the latter two cases, we compute the wall
density after streaming by eqn.(2.1.10). The solution of the incompressible Navier-Stokes
equations for this flow is:

ux(y) = 4umax
h2 (h− y) y, (4.2.1)

where umax is the maximum velocity which occurs midway between the walls at y = h/2.
With uch = umax = 1 and lch = h = 1, the non-dimensional solution is:

u∗x(y∗) = 4 (1− y∗) y∗, (4.2.2)

with the source term:

~F ∗x = 8
Re

. (4.2.3)

The Reynolds number is fixed to Re = 10 for all simulations. The relaxation frequency
becomes:

ω = 1
3
Re

+ 1
2

= 5
4 . (4.2.4)

The influence of the force term is corrected in the collision step by eqn.(1.2.7).
From figure 4.2.1 we see that bounce-back and the equilibrium boundary conditions

22 Verification

both gave first order accuracy for the velocity, as expected. There is a discrepancy in
the error constant C between the two obtained solutions of a factor 2 in favor of the
equilibrium boundary condition.

The finite difference boundary condition, presented in section 2.1 gave the expected
second order accuracy (see figure 4.3.1). All three simulations were performed with be-
tween 10 and 80 sections.

10
1

10
2

10
−2

10
−1

10
0

Error of gravity driven Poiseuille flow with different BCs

N

E
rr

or

Complete Bounceback
Equilibrium BC
Slope = −1

Figure 4.2.1: Error plot for the gravity driven flow in a slit with first order boundary
conditions. The points obtained with bounceback is indicated by ∗ and the points obtained
by the equilibrium boundary condition is indicated by �. The solid line has slope -1.

4.3 Flow in a Slit Driven by a Pressure Gradient

The flow in section 4.2 was driven by gravity. We now choose to let a pressure difference
drive the flow instead. The Reynolds number is Re = 10 and ω = 5/4 as for the gravity
driven flow. This benchmark is also solved numerically on a square domain. We impose
the no-slip condition on the walls using Lätt’s finite-difference boundary condition. The
velocity field is given by eqn.(4.2.2) with pressure gradient:

∇∗p∗ = − 8
Re

. (4.3.1)

The Poiseuille flow profile given by eqn.(4.2.2) is the inlet boundary condition, and a
constant zero pressure is the outlet boundary condition. We use Zou and He’s method to
compute the unknown inlet pressure and outlet x-velocity. The resulting equations are
eqn.(2.1.8) for the inlet pressure, and eqn.(2.1.5) for the x-velocity.

As expected, the error in velocity was decreased with second order. It has been
shown[18] that the introduction of velocity boundary conditions leads to a decrease of the

4.3 Flow in a Slit Driven by a Pressure Gradient 23

order of accuracy of the pressure. Therefore, the pressure error is only decreased with first
order. The results for velocity and pressure are presented in figure 4.3.1 and figure 4.3.2,
respectively. We computed the error using the l1-norm on a section mid-way between the
inlet and the outlet. We observe that the pressure driven slit flow is more accurate than
the one driven by gravity which is the same conclusion obtained by Guo and Zheng[16].

To study the influence of entry and exit effects on the solution, we simulated the
pressure driven flow in-between two parallel plates of length lx = 2l∗ = 2 as well. The
characteristic length is still the separation distance h. Numerically, we represent this by
solving this benchmark test on a rectangle with length 2 and height 1. The analytical
solution is the same as for the pressure driven flow solved on a square domain described
earlier in this section.

The velocity and pressure are still recovered with second and first order accuracy,
respectively, using the l1-norm mid-way between the inlet and the outlet to compute the
error. However, there was a discrepancy between the two error constants for the pressure
of a factor 1.5 in favor of the slit flow with length 2. First, this is natural since the entry
and exit effects introduce additional error, which have a relatively smaller influence on the
pressure field in a longer domain. Second, the distance from the inlet and outlet to where
the l1-norm of the error was computed was twice as long for the long channel compared
to the shorter one. The velocity error was decreased with approximately the same error
constant for the short as for the longer channel. The results are presented in figure 4.3.1
and figure 4.3.2.

10
1

10
2

10
−4

10
−3

10
−2

10
−1

Velocity Error with FD boundary conditions of Lätt

N

E
rr

or

Gravity driven
Pressuredriven lx=1

Pressuredriven lx=2

Slope = −2

Figure 4.3.1: Error plot of velocity for the flow in a slit with second order boundary
conditions of Lätt. The symbol x indicates gravity driven, ∗ indicates pressure driven
with lx = 1, and the dots · indicate pressure driven with lx = 2. The solid line has slope
-2.

24 Verification

10
1

10
2

10
−2

10
−1

10
0

Pressure Error with FD boundary conditions of Lätt

N

E
rr

or

Pressuredriven lx=1

Pressuredriven lx=2

Slope = −1

Figure 4.3.2: Error plot of the pressure for the pressure driven flow in a slit with Lätt’s
finite-difference boundary conditions. The symbol ∗ indicates pressure driven with lx = 1,
and the diamonds � indicate lx = 2. The solid line has slope -1.

4.4 Taylor-Couette Flow

A classical benchmark case to verify no-slip curved boundary conditions for moving walls
is flow between two circular cylinders. The inner cylinder, with radius r0, rotates with
a constant angular velocity, whereas the outer cylinder, with R0 > r0, is at rest. There
exists an analytical solution to this problem, given in non-dimensionless units by

~u(r) = u0β

1− β2

(
R0

r
− r

R0

)
~eθ, (4.4.1)

where u0 = r0Ω is the rotational speed of the inner wall and β = r0/R0. The superscript
(*) is skipped for convenience. Note that the velocity field is independent of the angular
position, i.e. the fluid particles experience no acceleration in this direction. The Reynolds
number is Re= u0 (R0 − r0) /ν and β = (1/2). The Reynolds number is Re = 10 and
ω = 5/4. We impose a zero pressure at the outer cylinder wall, that is, p (R0)=0. The
pressure distribution takes the following form:

p∗ = p (r)
p0

=
(

β

1− β2

)2 (
r2

R2
0
− R2

0
r2 − 4 ln r

R0

)
, (4.4.2)

where p0 = ρu2
0/2. We compute the density on the inner boundary nodes locally by

equation (3.3.8) and the nodes on the outer boundary by the interpolation scheme used

4.4 Taylor-Couette Flow 25

to compute ~u at the boundary nodes.
Whereas u0 on the inner cylinder in polar coordinates is constant, its x-component

and y-component vary with x and y. By decomposing the normal vector ~n from figure
3.4.3 into its x and y-component, we obtain the resulting x and y-components of u0:
〈u0x, u0y〉T = 〈−nyu0, nxu0〉T .

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

Node N

u y

Velocity component uy of TC−flow with 40 sections

Numerical
Analytical

Figure 4.4.1: Profile of the uy-component of ~u for the Taylor-Couette flow with N=40
sections to resolve the length. The analytical solution is indicated by the solid line, and
the numerical solution by ∗.

Opposed to the benchmarks used to verify the straight boundary conditions, generally
all components of S are non-zero on curved boundary nodes. Thus, the error stemming
from the approximation of the diagonal components of S contributes to the total error
for curved boundary conditions. As we saw in section 3.2 and in figure 3.4.4, the velocity
gradients on boundary nodes close to the wall are approximated without taking into
account the distance from P , where we compute uP , to its neighbors, where we get the
velocity components we need to compute ∂x and ∂y. We expect this approximation to
increase the error introduced by S, but not to detoriorate the order of the method.

Our results show that the error decreases with δx2 for this stationary flow. The ac-
curacy of the method is dictated by how we approximate ρ, ~u and S. The reason why
these approximations dictate the order in which the error is decreased is that we know
that the other steps in the algorithm, like reconstruction, streaming and collision on the
boundary nodes, do not detoriorate the second order accuracy of the lattice Boltzmann
method. Any error introduced by these approximation schemes propagates through the
entire domain and thus dictates the overall error. We therefore conclude that the approx-
imations of ρ, ~u and S for curved walls presented in chapter 3 conserve the second order
accuracy in space of the lattice Boltzmann method for the current benchmark test.

26 Verification

10
1

10
2

10
−4

10
−3

10
−2

10
−1

N

E
rr

or

Velocity Error Plot for Taylor−Couette Flow

Error velocity
Slope −2

Figure 4.4.2: Velocity error of Taylor-Couette flow. The solid line has slope -2.

4.5 Taylor-Vortex Flow

We simulated steady and unsteady Taylor-vortex flow with and without curved boundaries
in an infinite physical domain. This benchmark deviates from the other benchmarks in
several ways. First, we do not assume the velocity components normal to the wall to be
zero as is the case of the no-slip condition. Instead, we impose a more general velocity
boundary condition at the wall. Second, both the pressure gradient and the external force
are non-zero for this benchmark test. Third, the current flow is time-dependent.

We represent the unbounded physical domain numerically by solving this benchmark
on a unity square with periodic boundaries. On this domain, we construct a solution
by the method of manufactured solutions[19]. The velocity components in the x and
y-direction, respectively, are given by:

ux(x, y, t) = − 1
2π cos(ωt)cos(2πx)sin(2πy) (4.5.1)

uy(x, y, t) = 1
2π cos(ωt)sin(2πx)cos(2πy). (4.5.2)

The pressure is given by:

p(x, y, t) = − 1
16π2 (cos(4πx) + cos(4πy))cos(ωt)2, (4.5.3)

where ω is the frequency determining the period of the flow. The velocity and pressure are
given in non-dimensional units. The time-dependent forcing term is obtained by injecting

4.5 Taylor-Vortex Flow 27

~u = 〈ux, uy〉T into the momentum equation (eqn.(1.2.9)). We chose Re = 1 such that
the different terms in the momentum equation get the same influence. With Re = 1, the
value of the relaxation frequency becomes 5/40 for this benchmark.

First, we solved this problem without curved boundaries. No reconstruction formalism
is performed in this case, and thus the populations prior to collision are identical to the
post-streamed populations. We used eqn. (1.2.5) and (1.2.7) from section 1.2 to introduce
the force into the lattice Boltzmann method. We performed a series of simulations with
different grid resolution between 11 and 81 nodes. We simulated the steady flow (ω = 0) in
addition flow the time-dependent flow. With 81 nodes to resolve the length, the frequency
had to be really low (ω ≈ 5π/2 · 104) to capture the time-evolution of the flow. As soon
as the flow had come to a stable oscillation, we computed the error on one period.

subfig

0
50

100
150

200

0

50

100

150

200
−0.2

−0.1

0

0.1

0.2

(a) X-Velocity
0

50
100

150
200

0

50

100

150

200
−0.2

−0.1

0

0.1

0.2

(b) Y-Velocity 0
50

100
150

200

0

50

100

150

200
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

(c) Pressure

Figure 4.5.1: Velocity and Pressure for Taylor-Vortex Flow

We then placed a cylinder @ (x,y) = (1/2, 1/2), i.e. in the middle of the domain, with
radius r0=1/4. On the cylinder walls, we imposed the velocity field given by eqn.(4.5.1)-
(4.5.2). We computed the density locally at the boundary nodes by eqn. (3.3.8) and
(3.3.6). We simulated the steady case (ω = 0) first. Thereafter, we simulated the unsteady
case (ω 6= 0). The error contribution from the approximation of ρ, ~u and S is found
by comparing the error from the simulation without a curved boundary with the error
from the simulation with a curved boundary. This is because the approximations of
these quantities is the only additional source of error introduced by inserting the curved
boundaries.

For the case without curved boundaries, we got the expected second order error de-
crease for the velocity. Figure 4.5.2 shows the error plot for steady flow, and figure 4.5.4
shows the time-dependent error reduction. As explained in section 4.3, we expect the
pressure error to decrease with second order, since we do not impose a velocity boundary
condition. The error plots in figure 4.5.3 and 4.5.5 show that the pressure was recovered
with the expected second order accuracy.

The results for the pressure recovery show that by inserting the cylinder, and thereby
introducing velocity boundary conditions, the order in which the pressure error was re-
duced went from two to one. The accuracy in velocity, on the other hand, actually

28 Verification

increased when we inserted the cylinder into the domain. This is somewhat counter intu-
itive, since imposing the wall boundary condition introduces error from the approximation
of ρ, ~u and S. However, at the wall, we impose the analytical solution for ~u for every time
step, which is used in the approximation of the velocity at the boundary nodes. There-
fore, the velocity ~u is accurately represented on these nodes. This effect propagates to
the bulk fluid nodes, and the result is that the velocity field with a cylinder inside the
domain is more accurately represented than the velocity field without the cylinder inside.
We computed the error based on the value of ρ and ~u on the wet nodes (r>1/4) for the
simulations with and for the simulations without the cylinder inside.

The method described in chapter 3 proved to resolve the velocity and pressure field
with second and first order accuracy, respectively, for the time-dependent Taylor-Vortex
flow with arbitrary curved velocity boundary conditions.

4.5 Taylor-Vortex Flow 29

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

N

E
rr

or

Velocity error of stationary TV−flow

Velocity error (no cylinder)
Velocity error (cylinder)
Slope −2

Figure 4.5.2: Velocity error of steady Taylor-Vortex flow. Points ∗ indicate ’without
cylinder’, and points � indicate ’with cylinder’. Solid line has slope -2.

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

N

E
rr

or

Pressure error of stationary TV−flow

Pressure error (no cylinder)
Pressure error (cylinder)
Slope −2
Slope −1

Figure 4.5.3: Pressure error of steady Taylor-Vortex flow. Points ∗ indicate ’without
cylinder’, and points � indicate ’with cylinder’. Solid line has slope -2, and dashed line
has slope -1.

30 Verification

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

N

E
rr

or

Velocity error of time−dependent TV−flow

Velocity error (no cylinder)
Velocity error (cylinder)
Slope −2

Figure 4.5.4: Velocity error of unsteady Taylor-Vortex flow. Points ∗ indicate ’without
cylinder’, and points � indicate ’with cylinder’. Solid line has slope -2.

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

N

E
rr

or

Pressure error of time−dependent TV−flow

Pressure error (no cylinder)
Pressure error (cylinder)
Slope −2
Slope −1

Figure 4.5.5: Pressure error of unsteady Taylor-Vortex flow. Points ∗ indicate ’without
cylinder’, and points � indicate ’with cylinder’. Solid line has slope -2, and dashed line
has slope -1.

Chapter 5

Conclusion

We treated a number of local and non-local boundary conditions for straight and curved
walls for the LBGK version of LBM in this thesis. The straight boundary conditions were
discussed in chapter 2. In chapter 3, we investigated a no-slip boundary condition for
curved walls with non-zero velocity aimed at solving two dimensional fluid flow problems.
This curved boundary condition was derived by Verschaeve and Müller[9] and is based on
the regularization procedure developed by Lätt[11] for straight walls.

We performed four different benchmark tests in chapter 4 to verify the straight and
curved boundary conditions. The gravity driven flow in a slit and the same flow driven by
a pressure gradient were the benchmark tests performed to verify the straight boundary
conditions. We verified the curved no-slip boundary condition from chapter 3 by simu-
lating steady Taylor-Couette flow in-between two rotating cylinders. The last benchmark
test was the time-periodic Taylor-Vortex flow. With this benchmark, we verified a more
general case of the curved boundary conditions than the no-slip condition, where the ve-
locity components normal to the wall are zero. Instead, we imposed an arbitrary velocity
field at the wall with generally no non-zero velocity components. The results from this
benchmark showed that our scheme conserved the second order accuracy of the lattice
Boltzmann method in time and space.

Further work should focus on a method to move curved walls between the nodes of
the computational domain.

Acknowledgments

First, I would like to thank my research advisor Joris Verschaeve for follow-up through
every step of the process of writing this thesis. I would also like to thank my adademic
supervisor Berhard Müller for good advise and interest in the progress.

Bibliography

[1] Shiyi Chen and Gary D. Doolen. Lattice boltzmann method for fluid flows. Annual
Review of Fluid Mechanics, 30:329–364, 1998.

[2] W Malalasekera H K Versteeg. An Introduction to Computational Fluid Dynamics.
The Finite Volume Method. Pearson, 2007.

[3] Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann Mod-
els. An Introduction. Springer, 2000.

[4] Ronald L. Panton. Incompressible Flow, Third Edition. Wiley, 2005.

[5] R. R. Nourgaliev, T. N. Dinh, T. G. Theofanous, and D. Joseph. The lattice boltz-
mann equation method: theoretical interpretation, numerics and implications. In-
ternational Journal of Multiphase Flow, 29(1):117 – 169, 2003.

[6] S. J. Humby, M. J. Biggs, and U. Tüzün. Explicit numerical simulation of fluids
in reconstructed porous media. Chemical Engineering Science, 57(11):1955 – 1968,
2002.

[7] Michael C. Sukop and Daniel T. Thorne. Lattice Boltzmann Modeling. An Introduc-
tion for Geoscientists and Engineers. Springer, 2005.

[8] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Ox-
ford Science Publications, 2001.

[9] Joris C. G. Verschaeve and Bernhard Müller. A curved no-slip boundary condition for
the lattice boltzmann method. J. Comput. Phys., 229:6781–6803, September 2010.

[10] J. Lätt. Hydrodynamic Limit of Lattice Boltzmann Equations. PhD thesis, Université
de Genève, 2007.

[11] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and Andreas Mich-
ler. Straight velocity boundaries in the lattice boltzmann method. Phys. Rev. E,
77(5), 2008.

34 BIBLIOGRAPHY

[12] Michael Junk, Axel Klar, and Li-Shi Luo. Asymptotic analysis of the lattice boltz-
mann equation. Journal of Computational Physics, 210(2):676 – 704, 2005.

[13] Junfeng Zhang. Lattice boltzmann method for microfluidics: models and applica-
tions. Microfluidics and Nanofluidics, 10:1–28, 2011. 10.1007/s10404-010-0624-1.

[14] Pierre Lallemand and Li-Shi Luo. Theory of the lattice boltzmann method: Dis-
persion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E,
61(6):6546–6562, Jun 2000.

[15] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice
boltzmann bgk model. Phys. Fluids, 9:1591, 1997.

[16] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the
forcing term in the lattice boltzmann method. Phys. Rev. E, 65(4):046308, Apr
2002.

[17] Joris C. G. Verschaeve. Analysis of the lattice boltzmann bhatnagar-gross-krook
no-slip boundary condition: Ways to improve accuracy and stability. Phys. Rev. E,
80(3):036703, Sep 2009.

[18] M. Junk and Z. Yang. Analysis of lattice boltzmann boundary conditions. PAMM,
3(1):76–79, 2003.

[19] Patrick J. Roache. Code verification by the method of manufactured solutions. Jour-
nal of Fluids Engineering, 124(1):4–10, 2002.

	Title Page
	Problem Description
	oppgavetekst
	master.pdf
	Introduction
	Theoretical Background
	Macroscopic quantities
	From LBE to the Navier-Stokes Equations

	Straight Boundary Conditions
	Jonas Ltt's Non-Local Boundary Condition

	Curved Boundary Conditions
	Computing the Velocity on the Boundary Nodes
	Computing the Rate of Strain on the Boundary Nodes
	Computing the Density on the Boundary Nodes
	Summary of the Algorithm

	Verification
	Numerical Error
	Flow in a Slit Driven by Gravity
	Flow in a Slit Driven by a Pressure Gradient
	Taylor-Couette Flow
	Taylor-Vortex Flow

	Conclusion
	Acknowledgments
	References

