
Master of Science in Energy and Environment
June 2011
Ivar Ståle Ertesvåg, EPT
Geir Berge, Petrell AS

Submission date:
Supervisor:
Co-supervisor: 

Norwegian University of Science and Technology
Department of Energy and Process Engineering

Compressible flows in process
equipment: Problems, methods and
models

Stine Mia Rømmesmo Skrataas











II Abstract

Abstract

SIMPLE, SIMPLER, SIMPLEC and IDEAL are solution procedures originally
developed for incompressible flows and staggered grids. For SIMPLE, SIM-
PLER and SIMPLEC, extensions for collocated grids and for treatment of
flows at all speeds have already been proposed. For IDEAL, only an extension
for collocated grids has been found, and an extension for treatment of flows
at all speeds is proposed here. Extended versions of SIMPLE and SIMPLER
are implemented in Brilliant, a multiphysics CFD-program developed by Petrell
AS. These implemented algorithms are compared to the existing solution proce-
dure in Brilliant, an extended version of the SIMPLEC algorithm. As expected,
SIMPLE and SIMPLEC gave almost identical solutions for all the three pre-
sented test cases. The values given by the SIMPLER algorithm differed slightly
from the values given by the two other algorithms. When simulating a shock
tube, all three algorithms showed large deviations from the quasi-analytical
solution in some regions of the shock tube. The SIMPLER algorithm spent
the least CPU time for this simulation example, while SIMPLE and SIMPLEC
spent less CPU time than SIMPLER when simulating methane flow in a pipe.
Even though the CPU time was not registered for the last simulation exam-
ple, a pressure relief pipe, it was noticed that the time consumption was much
greater for the SIMPLER algorithm than for SIMPLE and SIMPLEC.



Sammendrag III

Sammendrag

SIMPLE, SIMPLER, SIMPLEC og IDEAL er løsningsalgoritmer som i ut-
gangspunktet er utviklet for inkompressibel strømning og forskjøvet nettverk.
Utvidelser for samlokalisert nettverk og for strømninger ved alle hastigheter
har allerede blitt foresl̊att for SIMPLE, SIMPLER og SIMPLEC. For IDEAL
er kun en samlokalisert utvidelse funnet, og en utvidelse for strømninger ved
alle hastigheter er her foresl̊att. Utvidede versjoner av SIMPLE og SIMPLER
er implementert i Brilliant, et multifysikk CFD-program utviklet av Petrell AS.
Metodene implementert i denne masteroppgaven ble sammenlignet med eksis-
terende løsningsmetode i Brilliant, en utvidet versjon av SIMPLEC-algoritmen.
Som forventet ga SIMPLE og SIMPLEC nesten identiske resultater for alle
de tre presenterte problemstillingene. Verdiene av variablene beregnet med
SIMPLER-algoritmen avvek noe fra verdiene gitt av de to andre algoritmene.
Ved simulering av et støtrør viste alle algoritmene store avvik fra analytisk
løsning i deler av røret. Simuleringen av dette støtrøret med SIMPLER tok min-
dre CPU-tid enn simulering med SIMPLE og SIMPLEC. SIMPLE og SIMPLEC
brukte mindre CPU-tid enn SIMPLER-algoritmen da strømning av metan i et
rør ble simulert. Selv om bruk av CPU-tid ikke er registrert for det siste ek-
sempelet, et trykkavlastningsrør, var det klart at SIMPLER brukte mye mer
CPU-tid enn hva SIMPLE og SIMPLEC gjorde.



IV Contents

Contents

Abstract II

Sammendrag III

Contents IV

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Theory 3
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Finite Volume Method . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Compressible and collocated extension of SIMPLE . . . 8
2.2.2 Compressible and collocated extension of SIMPLER . . 12
2.2.3 Compressible and collocated extension of SIMPLEC . . 13
2.2.4 Compressible and collocated extension of IDEAL . . . . 14
2.2.5 Comparison of the solution algorithms . . . . . . . . . . 17

3 Existing and implemented numerical procedures in Brilliant 19
3.1 Grid and discretisation . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Changes implemented in the solution procedure . . . . . . . . . 21

3.2.1 Pressure correction and momentum equation in SIMPLEC 21
3.2.2 Implementation of the SIMPLE algorithm . . . . . . . . 23
3.2.3 Implementation of the SIMPLER algorithm . . . . . . . 24
3.2.4 Implementation of the IDEAL algorithm . . . . . . . . . 26
3.2.5 Implementation of boundary conditions . . . . . . . . . 27

4 Results 33
4.1 Simulation example 1: Methane pipe flow . . . . . . . . . . . . 34
4.2 Simulation example 2: Shock tube . . . . . . . . . . . . . . . . 37
4.3 Simulation example 3: Pressure relief pipe . . . . . . . . . . . . 42
4.4 Importance of small adjustments in SIMPLER . . . . . . . . . 45

4.4.1 Methane pipe flow . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Shock tube . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Discussion of the simulation examples . . . . . . . . . . . . . . 46

5 Conclusion and further work 51

References 53

Appendix: 55



Contents V

A Shock tube problem 55



VI Contents

List of Figures

1 Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Grid in Brilliant, viewed with GL view Inova. . . . . . . . . . . 20
3 Solution procedure in Brilliant, changes made by Petrell early

2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Outlet velocity in the central point of the pipe. . . . . . . . . . 23
5 Implementation of SIMPLER. . . . . . . . . . . . . . . . . . . . 25
6 Implementation of IDEAL. . . . . . . . . . . . . . . . . . . . . 28
7 Grid and geometry of the pipe. . . . . . . . . . . . . . . . . . . 34
8 Properties in the midpoint of the outlet. . . . . . . . . . . . . . 35
9 SIMPLER and SIMPLEC with finer and coarser grid. . . . . . 36
10 Grid and geometry of the shock tube. . . . . . . . . . . . . . . 38
11 Shock tube calculations using the SIMPLE algorithm, compared

to the analytical solution after 0.7 ms (a0.7ms). . . . . . . . . . 39
12 Shock tube calculations using the SIMPLEC algorithm, com-

pared to the analytical solution after 0.7 ms (a0.7ms). . . . . . 40
13 Shock tube calculations using the SIMPLER algorithm, com-

pared to the analytical solution after 0.7 ms (a0.7ms). . . . . . 41
14 Grid for the pressure relief pipe. . . . . . . . . . . . . . . . . . 43
15 Properties in the centre of the outlet of the pressure relief pipe. 44
16 Properties in the midpoint of the outlet. . . . . . . . . . . . . . 46
17 Shock tube calculations using the modified and the old SIM-

PLER algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

List of Tables

1 Minimum CPU time for simulation example 1. . . . . . . . . . 36
2 Robustness example 1. . . . . . . . . . . . . . . . . . . . . . . 37
3 Minimum CPU time for simulation example 2. . . . . . . . . . 42
4 Robustness example 2. . . . . . . . . . . . . . . . . . . . . . . . 42



Nomenclature VII

Nomenclature

Greek symbols

α Relaxation factor

Γ Diffusion coefficient

γ Specific heat ratio

δ Kronecker delta

µ Dynamic viscosity

ρ Density

τ Viscous stress tensor

φ Scalar variable

Roman symbols

∆A Area shared between two adjacent CVs

a Coefficient

ḃ Source term

b Coefficient

c Speed of sound

d Coefficient

E Total energy

~f Volume forces

I Unit tensor

k Conductivity

n Normal vector

N1 Number of repetitions for the first inner iteration process

N2 Number of repetitions for the second inner iteration process

p Pressure

q Flux

R Specific gas constant

S Source term



VIII Nomenclature

Sa Dependent part of the source term

Sc Independent part of the source term

T Temperature

t Time

u Velocity in x direction

ui Velocity in xi direction

û Pseudo velocity

ū Weighted pseudo velocity

V Volume

v Velocity in y direction

~v Velocity vector

w Velocity in z direction

x Direction of movement

y Direction of movement

z Direction of movement

Subscripts and superscripts

′ Correction value

∗ Preliminary value

C SIMPLEC approximation

E SIMPLE approximation

e Energy

n Preliminary value

NB Neighbouring points

nb Neighbouring surface

P Grid point P

p Pressure

ρ Density

t− 1 Previous time step



Nomenclature IX

u Velocity

xi Direction of movement

xj Direction of movement

xk Direction of movement





1 Introduction

1.1 Background and motivation

The rapid increase in computer power provides the opportunity for more accu-
rate results when simulating complex problems involving fluid flows and ther-
modynamics. In many cases, experiments are not feasible due to economy, time
consumption, safety etc. For such cases, information can be gained through
simulations. In order to get reliable simulation results, there is a great need of
accuracy in the solution procedure.

Brilliant is a multiphysics CFD-program developed by Petrell AS. This CFD-
program shows some weaknesses for simulations involving compressible flows.
The existing solution procedure in Brilliant is based on the SIMPLEC algo-
rithm. Originally, the SIMPLEC algorithm was proposed for incompressible
flows and staggered grid, whereas the algorithm used in Brilliant is extended
to treat both incompressible and compressible flows on a collocated grid. The
SIMPLEC algorithm contains some approximations that could influence the
stability and the convergence rate. Therefore, Petrell AS would like to investi-
gate and implement new algorithms that might improve both the stability and
the convergence rate.

1.2 Limitations

The goal for this master’s thesis was implementation and testing of solution
algorithms in the CFD-program Brilliant by Petrell AS. This CFD-program



2 1 Introduction

treats both compressible and incompressible flows, and the solution procedure
is based on the finite volume method and collocated grids. As the existing
SIMPLEC-like solution procedure in Brilliant and its functionalities are used
as a foundation for new implementations, possible algorithms are here limited
to SIMPLE-like algorithms.

Even though Brilliant handles multiphase flows, the theoretical study and im-
plementation conducted in this master’s thesis are limited to single-phase.

Due to the CPU time needed for simulating the test cases and the limited time
for this master’s thesis, the minimal CPU time and whether or not the proce-
dure converges for different underrelaxation factors have only been registered
for two of the three simulation examples.



2 Theory

2.1 Governing equations

The governing equations are based on conservation principles, and can be ex-
pressed as follows [1].

Continuity equation:
The continuity equation expresses the conservation of mass:

∂

∂t
(ρ) +∇ · (ρ~v) = 0 (1)

where ρ is the density and ~v is the velocity.

Momentum equation:
As stated by Newton’s second law of motion, the rate of change of momentum
in a system equals the sum of forces acting on the system:

∂ρ~v

∂t
+∇ · (~v ⊗ ρ~v) = −∇p+∇ · (τ) + ~f (2)

where τ is the viscous stress tensor and ~f is the volume forces.

The viscous stress tensor can be expressed as follows:

τ = µ[∇~v +∇~vT ]− 2

3
µ∇ · ~vI (3)

where µ is the dynamic viscosity and I is the unit tensor.



4 2 Theory

The expressions for τ and ~v ⊗ ~v in tensor notation are:

τij = µ

[(
∂ui
∂xj

)
+

(
∂uj
∂xi

)]
− 2

3
µ

(
∂uk
∂xk

)
δij (4)

where δ is the kronecker delta (δij = 1 when i = j and δij = 0 for i 6= j ) and
xi, xj xk are directions of movement.

~v ⊗ ~v = uiuj (5)

Energy equation:
As stated by the first law of thermodynamics, the energy equation expresses
the conservation of energy:

∂ρE

∂t
+∇ · (ρE~v) = −∇ · (p~v) +∇ · (τ · ~v) + ρ~f · ~u−∇ · q (6)

where ~f represents the volume forces, E is the sum of internal and kinetic
energy per unit mass and q is the heat flux:

E = e+
1

2
|~v|2 (7)

Fourier’s law for heat conduction, q:

q = −k∇T (8)

where k is the thermal conductivity and T is the temperature.

The similar structure of Eqs. (1), (2) and (6) makes it possible to express a gen-
eral transport equation. A general transport equation expresses transportation
of other scalar properties needed to describe fluid dynamic problems as well,
like turbulence and mass fraction.

General transport equation:
The general transport equation expresses transportation of the general quantity,
φ:

∂

∂t
(ρφ)︸ ︷︷ ︸
I

+∇ · (ρ~vφ)︸ ︷︷ ︸
II

= ∇ · (Γ∇φ)︸ ︷︷ ︸
III

+ ~f︸︷︷︸
IV

(9)

I Transient term

II Convective term

III Diffusive term with the general diffusion coefficient Γ

IV Source or sink term



2.2 The Finite Volume Method 5

Equation of state for an ideal gas:
The pressure, temperature and density for an ideal gas are related through the
equation of state:

p = ρRT (10)

where R is the specific gas constant.

2.2 The Finite Volume Method

There are several approaches for solving the Navier-Stokes Equations
numerically. In the Finite Volume Method [1, 2], the equations are integrated
over a certain volume and the domain is then divided into several control vol-
umes, abbreviated CVs. The volume integrated conservation equations are
applied to each CV. For multiphase flows, each phase can be described by a
set of equations, and a source term in Eq. (1) expresses the transition between
phases. By using the Gauss divergence theorem and a lower order discretisation
scheme [1], the integral form of the governing equations, Eqs. (1), (2) and (9),
can be expressed as follows [1]:

(
∆(ρV )

∆t

)
P

+
∑
nb

(ρun∆A)nb = SP (11)

aP(ui)P −
∑
NB

aNB(ui)NB = −
∑
nb

(pni∆A)nb + bP (12)

aPφP −
∑
NB

aNB(φ)NB = bP (13)

where S is a source term, the coefficient b can be calculated from preliminary
and known values,

∑
nb denotes the sum over all surfaces and

∑
NB denotes

the sum of neighbouring CVs. (ρun∆A)nb in the continuity equation gives the
mass flow normal to the surface nb and ∆A is the shared area between the two
neighbouring control volumes. The source term, S, can be linearised as:

S = (Saφ)P + Sc (14)

where (Saφ)P is dependent of the variable, φ, in the central point and Sc is
the part of the source term independent of φ.

The discretisation of the Navier-Stokes Equations and the derivation of Eqs. (11),
(12) and (13) were discussed in more detail in the specialisation project [3].



6 2 Theory

For collocated grids, all variables are stored in the same point, which can be the
midpoint of the control volume. The collocated grid is illustrated in Fig. 1a. As
the momentum equation requires both the velocities and the pressure on the
surfaces of each control volume, their values must be found by interpolation.
If both the velocities and the pressure are linearly interpolated to the surface
of the control volume, the calculated pressure field could assume an unrealistic
checkerboard form [1]. In the staggered grid [4], however, the scalars are stored
in the central points of the CV, and the velocities are stored on the surfaces, as
illustrated in Fig 1b. With this kind of grid, there is no need for interpolation
of the pressure for the momentum equation, and the unrealistic checkerboard
form will not appear [5]. However, for three dimensional flows, it is necessary to
define four control volumes for each control volume defined by the collocated
grid, making the required storage memory large for the staggered grid com-
pared to the collocated grid [6, 7]. Therefore, special methods for interpolating
the velocities to the surfaces of the control volumes have been obtained, like
the Rhie-Chow interpolation [8]. This kind of interpolation, called momentum
interpolation, prevents the checkerboard form of the pressure from appearing
by involving the pressure when the velocities are interpolated to the surface of
the control volume. The Rhie-Cow interpolation is described in more detail in
the specialisation project [3].

(a) Collocated grid. (b) Staggered grid.

Figure 1: Grid.

The methods for solving the Navier-Stokes Equations numerically may be
divided into two main categories [9]: (1) density-based methods and (2)
pressure-based methods. The density-based methods are traditionally used for
solving compressible flows. In these methods, the continuity equation is used



2.2 The Finite Volume Method 7

as an equation for the density, while the pressure is solved through the energy
equation and state equations. This way of solving the Navier-Stokes Equations
is well suited for highly compressible flows. As the Mach number decreases,
however, the density changes are small and the interaction between the pres-
sure and density weakens. Therefore, the density-based methods might lead to
unstable solutions for low Mach number flows and for incompressible flows [10].
The pressure-based methods use the continuity equation as an equation for the
pressure. These methods can furthermore be divided into the direct approach
and the segregated approach. In the direct approach, the continuity equation
and the momentum equation are solved simultaneously, which guarantees good
interaction between the pressure and the velocity [9]. However, for nonlinear
problems, the coefficients are functions of the solved variables and the equa-
tions have to be solved several times with updated coefficients. In addition, for
three dimensional multiphase flow, the memory needed for storage of all the
coefficients for the different phases and equations is large. Therefore, the direct
approach is usually not favourable [5, 11]. The pressure correction method is
the most common segregated method [9]. In this method, the velocity is solved
from the momentum equation based on a guessed pressure field or a pressure
field calculated from initial values for velocity. As the velocity field calculated
from such a pressure field does not necessarily guarantee conservation of mass,
it has to be corrected or updated.

The volume integrated Navier-Stokes Equations can be solved explicitly or im-
plicitly with respect to time [1, 2]. For explicit calculations of the equations, the
neighbouring variables are known from previous iteration level or from previous
time step. When an equation is solved implicitly, for instance the momentum
equation Eq. (12), the central velocity and the neighbouring velocities are at
the same time step and iteration level, and a system of equations needs to be
solved. As the explicit scheme uses neighbouring velocities known from pre-
vious time step or iteration level, the velocity in the point P can be directly
calculated. The number of required operations is much larger for the implicit
scheme than for the explicit scheme, hence giving a significant difference in
CPU time required. As can be seen from Taylor truncation error analysis,
both schemes are first order. The implicit scheme is unconditionally stable.
The explicit scheme, however, is conditionally stable, hence limiting the size of
the time step.

In the SIMPLE algorithm [12], a set of pressure correction equations are solved.
The variables solved from this set of equations correct both the pressure and the
velocity. Many algorithms have been proposed in an attempt to improve the
performance of the SIMPLE algorithm. This group of SIMPLE-like algorithms
is often called the SIMPLE-family. The SIMPLE algorithm and its descendants
were originally proposed for incompressible and steady flows on staggered grids.
However, these SIMPLE-like algorithms can be extended to also treat unsteady
and compressible flows on collocated grids. Literature on extending SIMPLE,



8 2 Theory

SIMPLER and SIMPLEC can be found in [10, 11]. The IDEAL algorithm
has been extended to collocated grids [13], but no extension for flows at all
speeds has been found. Therefore, such an extension of the IDEAL algorithm
will be proposed in Sect. 2.2.4. The algorithms presented here are extensions
to the original algorithms. In the following, the algorithms called SIMPLE,
SIMPLER, SIMPLEC and IDEAL are extended versions of the algorithms.

2.2.1 Compressible and collocated extension of SIMPLE

In the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algo-
rithm by Patankar and Spalding [12], a preliminary guessed pressure field is
used to solve the implicit momentum equation. Since the coefficients for the
momentum equation depend on both the velocity and the density, these vari-
ables need a guessed initial value as well. As both the pressure and velocity
need an initially guessed value, their preliminary values are assumed indepen-
dently. The interconnection between the pressure and velocity is then neglected.

As the preliminary guessed values might be far from satisfying the momentum
equation and the continuity equation, the variables must be updated. The
updated values consist of preliminary values and correction values:

p = pn + p′ (15)

ui = u∗i + u′i (16)

ρ = ρ* + ρ′ (17)

where the superscripts n and ∗ denotes preliminary values and the prime, ′,
denotes correction values.

The discretised implicit momentum equation, Eq. (12), for an arbitrary central
point, P , can be expressed as follows:

aP(ui)
∗
P −

∑
NB

aNB(ui)
∗
NB = −

∑
nb

(pnni∆A)nb + (b∗m)P (18)

By subtracting the momentum equation based on preliminary variables, Eq. (18),
from the momentum equation based on the corrected variables, Eq. (12), a
correction-based momentum equation is obtained:

aP(ui)
′
P −

∑
NB

aNB(ui)
′
NB = −

∑
nb

(p′ni∆A)nb + b′P (19)



2.2 The Finite Volume Method 9

where the correction value of the coefficient b′ is zero as the value of b can be
calculated.

In order to simplify Eq. (19), the terms containing neighbouring velocity cor-
rection,

∑
NB aNB(u′i)NB, are neglected and the expression for the velocity

becomes:

(ui)
′
P = −

∑
nb

(p′ni∆A)nbd
E
P (20)

where dE = 1
a .

For a completely converged solution, all correction values are zero. There-
fore, the omission of terms including the neighbouring velocity corrections will
not influence the accuracy of the calculated variables if the solution procedure
converges. However, the neglection of these terms might influence both the
convergence rate and the stability [5]. By combining Eqs. (16) and (20), an
equation for the total velocity based on the pressure correction and the prelim-
inary velocity is obtained:

(ui)P = (ui)
∗
P −

∑
nb

(p′n∆A)nbd
E
P (21)

As for the momentum equation, a correction-based continuity equation can be
obtained by subtracting the continuity equation based on preliminary variables
from the continuity equation based on corrected variables:

[(
∆
(
(ρ∗ + ρ′)V

)
∆t

)
P

+
∑
nb

((ρ∗ + ρ′)(u∗ + u′)n∆A)nb − (S∗ + S′)P

]
−[(

∆(ρ*V )

∆t

)
P

+
∑
nb

(ρ∗u∗n∆A)nb − S∗P

]
= 0

(22)

When the accuracy of the calculated variables increases, the correction values
will decrease. Terms including the multiplication of two correction values de-
crease faster than terms including only one correction value, and are therefore
neglected: (

∆(ρ′V )

∆t

)
P

+
∑
nb

((ρ∗u′ + ρ′u∗)n∆A)nb = S′P (23)

The discretised continuity equation requires the velocities on the surfaces of
each control volume. Equation (20) expressed on the surface of an arbitrary
CV becomes:



10 2 Theory

(ui)
′
(P+1/2)i

= −
∑
NB

(pni∆A)NBd
E
(P+1/2)i

(24)

For incompressible flows, the density can be calculated and no correction is
needed. Therefore, the term ρ′u* in Eq. (23) equals zero. If compressible flows
should be treated as well, this term can be expressed through the pressure
correction. The relations between the pressure and the density for compressible
flows, and the speed of sound are given by thermodynamic relations for an ideal
gas [14]:

ρ′ =
∂ρ

∂p
p′ =

1

c2
p′ (25)

c =
√
γRT (26)

where c is the speed of sound and γ is the specific heat ratio.

As the term including u*p′

c2 is small for low Mach numbers, this term becomes

negligible compared to the term including p*u′ for incompressible flows [10],
and the expression for ρ′ can thus be used for both compressible and incom-
pressible flows.

The pressure correction equation is obtained by substituting Eqs. (24) and (25)
into the correction-based continuity equation, Eq. (23):

(
p′V

c2∆t

)
P

+
∑
NB

aNB(p′P − p′NB) +
∑
nb

(
1

c2
p′u∗n∆A

)
nb

+

= (S)′P−
(
ρ′V

∆t

)t−1

P

(27)

This equation involves values for the pressure correction both in CV centres and
on CV surfaces. By using a differential scheme, such as the upwind scheme [1],
the pressure corrections on CV surfaces can be expressed by central points, and
the contributions from the surfaces are included in the central and neighbour
coefficients. The pressure correction can then be expressed as:

aPp
′
P −

∑
NB

aNBp
′
NB = bP (28)

As the neighbouring correction terms are neglected, the resulting equation tends
to over-predict the value of the pressure correction [11]. To stabilise the solu-
tion procedure and enhance the convergence rate, the pressure is underrelaxed,



2.2 The Finite Volume Method 11

hence updated by the sum of the old value and a fraction of the correction
value. The density is updated the same way:

pnew = pn + αpp
′ (29)

ρnew = ρ* + αρρ
′ (30)

The velocity is first solved from the implicit momentum equation, Eq. (18), and
corrected by the pressure correction, Eq. (21). Then, the corrected velocity and
the preliminary velocity are weighted in order to get the new velocity:

ui
new = αuui + (1− αu)ui

∗ (31)

As the coefficients for both the momentum equation and pressure correction
equation require values for the velocity on the surface of each control volume,
momentum interpolation, for instance Rhie-Chow interpolation [8], is used.
Rhie-Chow interpolation is described in detail in the specialisation project [3].
The pressure in the momentum equation, Eq. (18), is linearly interpolated to
the surface of the control volume.

Solution procedure for the extended SIMPLE algorithm:

1. Use initial values or values from the previous time step as preliminary
values for the pressure, velocity, temperature and any other variables
that might influence the coefficients or source terms. Calculate the den-
sity through thermodynamic relations, for instance the equation of state,
Eq. (10). Calculate the speed of sound, for instance through the equation
for an ideal gas, Eq. (26).

2. Calculate the coefficients and source terms for the momentum equation
and solve the momentum equation implicitly, Eq. (18).

3. Calculate the coefficients and source terms for the pressure correction
equation. Solve the pressure correction equation implicitly, Eq. (28).

4. Correct the pressure and density through Eqs. (25), (29) and (30). Update
the preliminary velocity field through Eq. (21). Find a new value for
the velocity by weighting the preliminary value and the updated value,
Eq. (31).

5. Solve the energy equation and any other relevant transport equations
through Eq. (13).

6. Update the speed of sound due to the new temperature through Eq. (26).



12 2 Theory

7. Return to step 2 with the updated values as a preliminary guess for the
next iteration level. Repeat until convergence.

2.2.2 Compressible and collocated extension of SIMPLER

Since the coefficients in the discretised Navier-Stokes Equations depend on the
velocity, both the pressure and the velocity require an initial guess in the SIM-
PLE algorithm. The initial velocity and pressure are then assumed indepen-
dently, and their interconnection is neglected. In SIMPLER (SIMPLE Revised)
by Patankar [5], the initial pressure and velocity are connected by introducing
the pseudo velocity, and hence solving an equation for the pressure, based on an
initially guessed velocity field. As the coefficients for the momentum equation
do not contain any contribution from the pressure, only the density and the
velocity need an initial guess.

The pseudo velocity is defined as:

(ûi)
∗
P =

∑
NB

(auni )NB + bP

aP
(32)

where the contribution from the neighbouring velocities, (auni )NB, are known
from a preliminary guessed velocity field.

The continuity equation requires an expression for the velocities on the surfaces
of the control volume. The pseudo velocity on the surface can be found by
interpolation, and the explicit momentum equation on the surface of the CV
can be expressed as:

(ui)(P+1/2)i
= (ûi)

*
(P+1/2)i

−
∑
NB

(pnni∆A)NBd
E
(P+1/2)i

(33)

An equation for the pressure is obtained by substituting the explicit momentum
equation into the continuity equation, Eq. (11):

(
ρV

∆t

)
P

+
∑
nb

[
(ρn∆A)nb

(
(ûi)

∗
nb−

∑
NB

(pnni∆A)NBd
E
nb

)]

= SP+

(
ρV

∆t

)t−1

P

(34)

For incompressible flows, the density can be calculated. For compressible flows,



2.2 The Finite Volume Method 13

on the other hand, the density is expressed through the pressure, using the
relation in Eq. (25). The pressure equation can be expressed as follows:

aPpP −
∑
NB

aNBpNB = bP (35)

This pressure field is regarded as a preliminary pressure field for the rest of the
solution procedure, which coincides with the solution procedure for the SIM-
PLE algorithm. However, in the SIMPLER algorithm, the pressure correction
corrects only the velocity and density, while the pressure is kept unchanged.

Solution procedure for the extended SIMPLER algorithm:

1. Use initial values or values from the previous time step as preliminary
values for the velocity, temperature, pressure and any other variables
that might influence coefficients or source terms. The pressure is used to
calculate the density through thermodynamic relations, for instance the
equation of state, Eq. (10). Calculate the speed of sound, for instance
through Eq. (26) for ideal gases.

2. Calculate the coefficients and source terms for the momentum equation.

3. Calculate the pseudo velocities through Eq. (32).

4. Calculate the coefficients and source terms for the pressure equation.
Solve the pressure equation, Eq. (35) implicitly, and use this pressure
field as a preliminary pressure field for the rest of the iteration level.

5. Follow Step 2 through Step 7 for the SIMPLE algorithm, but do not
correct the pressure in SIMPLE’s Step 4.

6. Return to Step 2 with the updated values as a preliminary guess for the
next iteration level. Repeat until convergence.

2.2.3 Compressible and collocated extension of SIMPLEC

The SIMPLEC algorithm (SIMPLE Consistent) by Van Doormaal and Raithby
[15] follows the same procedure as the SIMPLE algorithm. However, the correc-
tion contributions from neighbouring velocities are approximated rather than
neglected. In the SIMPLE algorithm, the velocity correction terms from neigh-
bouring control volumes are neglected while the velocity correction term from
the central point is kept. The values of the velocity correction from neighbour-
ing CVs are then assumed to be negligible compared to the velocity correction
in the central point. However, nearby velocity corrections are more likely of
the same magnitude.



14 2 Theory

In order to obtain the pressure correction equation,
∑

NB aNB(ui)
′
P is sub-

tracted from both sides of Eq. (19):

(
aP −

∑
NB

aNB

)
(ui)

′
P −

∑
NB

aNB(u′NB − (ui)
′
P) = −

∑
nb

(p′ni∆A)nbd
E
P (36)

Assuming that the velocity corrections in nearby CVs are of the same magni-
tude, the term

∑
NB aNB(u′NB − (ui)

′
P) can be neglected. The velocity correc-

tion can be expressed as:

(ui)
′
P = −

∑
nb

(p′ni∆A)nbd
C
P (37)

where:

dC =
1

a−
∑
NB

aNB

(38)

Solution procedure for the extended SIMPLEC algorithm:

The SIMPLEC algorithm follows the same solution procedure as the SIMPLE
algorithm. However, the coefficient dC differs from the coefficient dE used
in the SIMPLE algorithm. In the coefficient for the SIMPLEC algorithm,
the correction contribution from neighbouring velocities is subtracted from the
central coefficient.

2.2.4 Compressible and collocated extension of IDEAL

In the IDEAL (Inner Doubly Efficient Algorithm for Linked Equations) algo-
rithm, Sun et al. [16, 17] claim to almost fully overcome both of the two
main approximations in the SIMPLE algorithm:(1) The preliminary velocity
and pressure are assumed independently and (2) the velocity correction from
neighbouring CVs can be neglected. Each iteration level in IDEAL consists of
two inner iteration processes.

First inner iteration process:

The first inner iteration process connects the preliminary pressure and velocity
fields. As for the SIMPLER algorithm, pseudo velocities, Eq. (32), are calcu-
lated from known preliminary velocities. However, the pseudo velocity used
in the IDEAL algorithm is weighted between the pseudo velocity described in
Sect. 2.2.2, and the preliminary velocity:

(ūi)
∗
P = αu(ûi)

∗
P + (1− αu)(ui)

∗
P (39)



2.2 The Finite Volume Method 15

As described in Sect.2.2.1, the coefficients for the momentum equation requires
the velocities on the surface of the control volumes. These velocities are found
by momentum interpolation for the collocated grid. For the pseudo velocities,
on the other hand, linear interpolation is used. The pressure equation based on
these pseudo velocities, Eq. (35), is then solved. When the preliminary pressure
field is known, the explicit momentum equation gives updated values for the
velocity field:

(ui)P = αu(û)∗P −
∑
nb

(pni∆A)nbd
E
P + (1− αu)(ui)

∗
P (40)

where the preliminary velocity and the pseudo velocity are weighted in order
to get the updated velocity.

The velocities calculated from the explicit momentum equation are then re-
garded as new preliminary velocities, (ui)

* = (ui). This velocity field is used
to update the pseudo velocities, but the coefficients and source terms both
remain unchanged. Once more, the pressure equation is solved and updated
velocities are found. The first inner iteration process is repeated N1 times,
and the resulting pressure field from this iteration process is regarded as a
preliminary pressure field for the second inner iteration process, pn = p. The
resulting velocity field is solved from the implicit momentum equation, Eq. (18).

Second inner iteration process:

The second inner iteration process follows the same procedure as the first. For
this inner iteration process, the resulting velocity from the first inner iteration
process is used as a preliminary velocity field. The pseudo velocity is continu-
ously updated due to the new velocity from the previous iteration step. This
inner iteration process is repeated N2 times.

The number of repetitions for the first and second inner iteration processes, N1
and N2, are adjusted ensuring that the continuity equation and the momentum
equation are almost satisfied for each iteration level.

In the compressible extensions of SIMPLE, SIMPLER and SIMPLEC, the den-
sity is corrected through the pressure correction and the speed of sound. As
the pressure correction equation is not solved for the IDEAL algorithm, the
pressure correction is not known. For the compressible extension of the IDEAL
algorithm, the density can be updated due to changes in the pressure, hence
giving a correction-like update:

p′ = p− pn (41)



16 2 Theory

When the change in pressure is calculated, the density is updated as described
in Sect. 2.2.1.

Solution procedure for the extended IDEAL algorithm:

1. Use initial values or values from the previous time step as preliminary
values for the velocity, temperature, pressure and any other variables
that might influence the coefficients and source terms. Calculate the den-
sity through thermodynamic relations, for instance the equation of state,
Eq. (10). Calculate the speed of sound, for instance through Eq. (26) for
an ideal gas.

2. Calculate the coefficients and source terms for the momentum equation.
Calculate pseudo velocities based on the preliminary velocities through
Eqs. (32) and (39).

3. Calculate the coefficients for the pressure equation and solve the pressure
equation implicitly, Eq. (35).

4. Calculate the velocity field based on this pressure field through the explicit
momentum equation, Eq. (40).

5. Update the pseudo velocity due to the updated velocity, Eqs. (32) and (39).

6. Repeat Step 3 through Step 5 N1 times, and use the resulting pressure
field as a preliminary pressure field for Step 7.

7. Solve the implicit momentum equation, Eq. (18), based on the preliminary
pressure field.

8. Update the pseudo velocity due to the new velocity from the previous
step, Eqs. (32) and (39).

9. Solve the pressure equation implicitly, Eq. (35).

10. Calculate the velocity through the explicit momentum equation, Eq. (40).

11. Update the pseudo velocity based on the new velocity from the previous
step.

12. Repeat Step 9 through Step 11 N2 times.

13. Solve the energy equation and any other relevant transport equations
through Eq. (13).

14. Calculate the speed of sound, Eq. (26), and the change in pressure,
Eq. (41).

15. Update the density due to the change in pressure through Eqs. (17)
and (25).



2.2 The Finite Volume Method 17

16. Return to Step 2 with the updated values as a preliminary guess for the
next iteration level. Repeat until convergence.

2.2.5 Comparison of the solution algorithms

In the specialisation project [3], several of the algorithms in the SIMPLE-family
were described and evaluated. Due to literature presenting promising results for
some test cases for incompressible flows, the IDEAL algorithm was regarded as
the most interesting algorithm for Brilliant. As SIMPLE and SIMPLER share
some features with SIMPLEC and IDEAL, both SIMPLE and SIMPLER are
also described in this master’s thesis. The only difference between SIMPLE and
SIMPLEC is the calculation of the coefficient d in the pressure correction equa-
tion. Neither SIMPLER nor IDEAL corrects the pressure through the pressure
correction, and they both solve the pressure field through the pressure equation.

As mentioned in the previous section, the two main assumptions in the SIM-
PLE algorithm are [16]: (1) The preliminary velocity and pressure are assumed
independently and (2) the velocity correction contribution from neighbouring
control volumes can be neglected in the pressure correction equation. None
of these assumptions will affect the values of the calculated variables if the
solution procedure converges. However, both assumptions might influence the
convergence rate and the stability [5, 18].

In the SIMPLER algorithm, the preliminary pressure and velocity fields are
connected by solving an equation for the pressure based on the pseudo veloc-
ities. The pressure correction equation is solved, and both the velocity and
density are corrected by the pressure correction. As in the SIMPLE algorithm,
the velocity correction contributions from neighbouring CVs are neglected in
order to obtain the pressure correction equation.

As the SIMPLEC algorithm follows the same procedure as the SIMPLE algo-
rithm, the preliminary velocity and pressure field are assumed independently.
However, the second approximation is improved in the SIMPLEC algorithm, by
neglecting less significant terms than those neglected in the SIMPLE algorithm.

In the algorithms solving the pressure correction equation, assumptions about
the velocity correction contribution from neighbouring control volumes are
made in order to simplify the pressure correction equation. In the IDEAL
algorithm, Sun et al. [16, 17] claim to almost overcome both of the two main
assumptions made in the SIMPLE algorithm. The preliminary pressure field is
calculated based on preliminary velocities and the pressure correction equation
is not solved at all.



18 2 Theory

For all the presented algorithms, the convergence rate depends on when and
how often the coefficients, source terms and density are updated. The accuracy
of the density again depends on when and how often the energy equation is
solved. In the IDEAL algorithm, both the velocity field and the pressure field
are updated several times each iteration level. However, the coefficients and
hence the density are only updated once.



3 Existing and implemented numerical proce-
dures in Brilliant

Computational Fluid Dynamics (CFD) is a generic term for calculations and
analysis of fluids in motion and related topics, like heat transfer and chemical
reactions [1]. The system to be analysed can be divided into smaller parts by
a grid, and the discretised Navier-Stokes Equations are applied to each CV or
node in the grid.

Brilliant is a multiphysics CFD-program developed by Petrell AS. The program
code is object orientated and written in C++. Brilliant is used to analyse fluid
flow, fires, gas leakages or dispersion, radiation, conduction in solid material and
stress analysis. This CFD-program is also used as a platform for the simulation
program VessFire. VessFire is used in analysis of thermo-mechanical response
during blow-down of process segment and equipment.

3.1 Grid and discretisation

In structured grids [1], the coordinates of neighbouring control volumes are
automatically known. Information about each CV in the domain can easily
be stored in a three dimensional array due to geometric position. However, as
structured grids involve lines or curves that cannot be broken, very complex ge-
ometries are poorly represented by a structured grid. In unstructured grids [1],
the control volume could have any shape, but tetrahedral or hexahedral ele-
ments are the most common elements in three dimensional problems. Even
though many CVs can meet along a line, the surface of a CV is usually shared
with only one neighbouring CV. The unstructured grid gives larger geometric
flexibility than the structured grid. It is, however, more complicated to store



20 3 Existing and implemented numerical procedures in Brilliant

Figure 2: Grid in Brilliant, viewed with GL view Inova.

information related to the CVs in an organised way.

Brilliant uses a grid where the number of neighbouring CVs is arbitrary, here
called an irregular grid. Control volumes with different shapes are combined
in order to give a good representation of the domain. Information about the
neighbouring control volumes is directly connected to each control volume. This
kind of grid makes it possible to split or combine CVs during the simulation.
All variables are stored in the midpoint of the cells, and the velocities on the
surfaces are found by Rhie-Chow interpolation. Figure 2 shows a pipe gridded
in Brilliant. The irregular grid gives a good approximation of the geometry of
the pipe.

In Brilliant the finite volume method is applied for solving problems involving
fluids in motion, and the finite element method is applied for stress analysis.
Lower order differencing schemes [1] are used for the discretisation of convec-
tive terms, and the pressure and velocity are coupled through the SIMPLEC
algorithm.



3.2 Changes implemented in the solution procedure 21

3.2 Changes implemented in the solution procedure

Previously, the only solution procedure implemented in Brilliant was an ex-
tended version of the SIMPLEC algorithm. However, both the SIMPLE algo-
rithm and the SIMPLER algorithm were implemented in Brilliant as a part of
this master’s thesis. Since the SIMPLE-like algorithms more or less follow the
same solution procedure, the existing SIMPLEC algorithm was used as a foun-
dation for the implementation of both SIMPLE and SIMPLER. It was made an
attempt of implementing the IDEAL algorithm as well, but the implemented
procedure diverged even for simple test cases.

3.2.1 Pressure correction and momentum equation in SIMPLEC

As discussed in the specialisation project fall 2010 [3], Brilliant shows some in-
stability problems for simulations involving compressible fluid flows. The main
motivation for the specialisation project was finding literature on algorithms
that might improve both the stability and the convergence rate compared to
the existing SIMPLEC-like algorithm.

Early 2011 Petrell AS made some changes in the existing solution procedure.
The changes made in solution procedure are shown in Fig. 3: (1) The implicit
momentum equation in each direction were solved repeatedly with updated co-
efficients and (2) the pressure correction equation was solved repeatedly with
updated pressure, density, velocities and coefficients until convergence.

Because of (1), the velocities in one direction were repeatedly solved with up-
dated coefficients due to the newly calculated value for the velocity. The co-
efficients were updated due to changes in the velocity in one direction at the
time, and the rest of the variables were kept unchanged. In some cases, the
velocity in one direction could be forced to change due to deviations in another
variable. Because of (2), the continuity equation was solved repeatedly with
updated coefficients, making the variables satisfy only the continuity equation
and not the momentum equation. Both (1) and (2) could result in large errors
being brought into the next equation to be solved, and hence a possible source
to instability.

When loops A, B, C and D in Fig. 3 were removed, both the momentum
equation and the pressure correction equation were solved only once each time
entering Loop F.



22 3 Existing and implemented numerical procedures in Brilliant

Step 1: Guess the preliminary
pressure, velocity and
temperature and calculate the
speed of sound

Step 2a: Update the coefficients
and source terms for the x mo-
mentum equation and solve the
equation implicitly

Step 2b: Update the coefficients
and source terms for the y mo-
mentum equation and solve the
equation implicitly

Step 2c: Update the coefficients
and source terms for the z mo-
mentum equation and solve the
equation implicitly

Step 3: Calculate the coefficients
and source terms for the pressure
correction equation and solve the
pressure correction equation im-
plicity

Step 4: Correct the pressure,
velocity and density

Step 5: Solve the energy
equation and other transport
equations and update the speed
of sound

Step 6: Correct the density

Next time step

Loop A:
Repeat until
convergence

Loop B:
Repeat until
convergence

Loop C:
Repeat until
convergence

Loop D:
Repeat until
convergence

Loop E:
Repeat until
convergence

Loop F:
Repeat until
convergence

Figure 3: Solution procedure in Brilliant, changes made by Petrell early 2011.



3.2 Changes implemented in the solution procedure 23

Figure 4 shows a simulation example from the specialisation project, where
the central outlet velocity of air in a 5 m long pipe with a diameter of 0.0193
m is plotted. The fluid starts at rest, but with a fixed flow rate at the inlet
and a fixed pressure at the outlet. A sudden jump in mass flow results in an
oscillating outlet velocity.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

time (s)

ve
lo

ci
ty

 (
m

/s
)

(a) Old solution procedure

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

time (s)

ve
lo

ci
ty

 (
m

/s
)

(b) Updated solution procedure

Figure 4: Outlet velocity in the central point of the pipe.

As shown in Fig. 4 the changes made to the solution procedure resulted in a
more stable central velocity for the pipe flow example from the specialisation
project. However, the result calculated by use of the updated solution proce-
dure still contains some small instabilities which could cause problems for more
complex simulations.

3.2.2 Implementation of the SIMPLE algorithm

As described in Sect. 2.2.3, the SIMPLE algorithm and the SIMPLEC algo-
rithm follow the same solution procedure. However, the SIMPLE algorithm
neglects the velocity correction contribution from neighbouring CVs, whereas
the SIMPLEC algorithm approximates them. The solution procedures for SIM-
PLE and SIMPLEC can be illustrated by Fig. 3.

The modified solution procedure for the SIMPLEC algorithm in Brilliant was
used as a foundation for the implementation of the SIMPLE algorithm. Only
one minor modification is implemented in order to obtain the SIMPLE algo-
rithm.



24 3 Existing and implemented numerical procedures in Brilliant

Changes implemented in the existing solution procedure:

1. As the coefficient dE differs from the coefficient dC, the contribution from
neighbouring velocity corrections removed from the calculation of d.

The rest of the solution procedure for the SIMPLE algorithm coincides with
the solution procedure for the existing SIMPLEC-like algorithm, and was kept
unchanged.

3.2.3 Implementation of the SIMPLER algorithm

As described in Sect. 2.2.2, the SIMPLER algorithm does not follow the exact
same solution procedure as SIMPLE and SIMPLEC. The SIMPLER algorithm
connects the preliminary velocity and pressure by solving an equation for the
pressure based on guessed preliminary velocities. In addition to the implemen-
tation of the coefficients for the pressure equation, the calculation of pseudo
velocities is also implemented. However, as illustrated in Fig. 5, large parts of
the solution procedures coincide.

For the implementation of the SIMPLER algorithm, the existing solution proce-
dure for the SIMPLEC algorithm in Brilliant was used as a foundation. Steps
R1 and R2 shown in Fig. 5 had to be implemented in front of the existing
procedure. As for the SIMPLE algorithm, the correction contribution from
neighbouring velocities is neglected in the pressure correction equation.

Changes implemented in the existing solution procedure:

1. The calculation of the pseudo velocities as described in Sect. 2.2.2, includ-
ing special treatment for the control volumes adjacent to the boundaries,
is implemented.

2. The calculation of coefficients for the pressure equation, including special
treatment for the control volumes adjacent to the boundaries, is imple-
mented.

3. As for the SIMLPE algorithm, the coefficient dE differs from dC, and the
contribution from neighbouring velocity corrections is removed from the
calculation of d.

4. The pressure correction corrects only the velocity and the density, and
the correction of the pressure is removed.



3.2 Changes implemented in the solution procedure 25

Step 1: Guess the preliminary
pressure, velocity and
temperature and calculate the
speed of sound

Step 2a: Update the coeffi-
cients and source terms for the
x-momentum equation and solve
the equation implicitly

Step 2b: Update the coeffi-
cients and source terms for the
y-momentum equation and solve
the equation implicitly

Step 2c: Update the coeffi-
cients and source terms for the
z-momentum equation and solve
the equation implicitly

Step 3: Calculate the coefficients
and source terms for the pressure
correction equation and solve the
pressure correction equation im-
plicitly

Step 4: Correct the pressure,
velocity and density

Step 5: Solve the energy
equation and other transport
equations and update the speed
of sound

Step 6: Correct the density

Next time step

Loop E:
Repeat until
convergence

Loop F:
Repeat until
convergence

Step R1: Find the pseudo
velocity in x, y and z directions

Step R2: Calculate the coeffi-
cients for the pressure equation,
and solve the equation implicitly

Figure 5: Implementation of SIMPLER.



26 3 Existing and implemented numerical procedures in Brilliant

The rest of the solution procedure for the SIMPLER algorithm coincides with
the solution procedure for the existing SIMPLEC-like algorithm, and was kept
unchanged.

In order to enclose the domain, the calculations of both the pseudo velocities
and the coefficients for the pressure equation need special treatment for the
control volumes adjacent to the boundaries. The treatment of these control
volumes depends on the kind of boundary condition given. Implementation of
the boundary conditions will be described in detail in Sect. 3.2.5.

Some of the implemented functionalities are used by both SIMPLER and
IDEAL. Therefore, some of the functionalities used by the SIMPLER algo-
rithm were changed during the implementation of the IDEAL algorithm. The
pseudo velocity used by the IDEAL algorithm is weighted between the pseudo
velocity described for the SIMPLER algorithm, Sect. 2.2.2, and the preliminary
velocity. In order to find the pseudo velocities on the surfaces of each control
volume, Rhie-Chow interpolation was first used for the SIMPLER algorithm.
However, as described in Sect. 2.2.4, the pseudo velocities on the surfaces are
found by linear interpolation for the IDEAL algorithm. The functionalities
used by the IDEAL algorithm were tested and used for the SIMPLER algo-
rithm as well.

3.2.4 Implementation of the IDEAL algorithm

As illustrated in Fig. 6 and described in Sect. 2.2.4, the solution procedure for
the IDEAL algorithm contains large differences from the existing SIMPLEC-
like algorithm in Brilliant. The IDEAL algorithm connects the preliminary
pressure and velocity through an inner iteration process, where the pseudo
velocities, implicit pressure equation and an explicit momentum equation are
solved repeatedly. The pressure correction equation is not solved at all, and
the density is therefore updated due to changes in the calculated pressure field.

Because of the large differences between the solution procedures for SIMPLEC
and IDEAL, the existing procedure was not used as a foundation, and a com-
pletely new solution procedure was implemented.

Implementation of the IDEAL algorithm:

1. As illustrated in Fig. 6, a completely new solution procedure is imple-
mented.

2. As for SIMLPE and SIMPLER, the coefficient dE differs from the coeffi-
cient dC, and the contribution from neighbouring velocity corrections is



3.2 Changes implemented in the solution procedure 27

removed from the calculation of d.

3. The calculation of the pseudo velocity used by the IDEAL algorithm is
slightly different from the pseudo velocity implemented during the work
on the SIMPLER algorithm. The pseudo velocity used by the IDEAL
algorithm is weighted between the pseudo velocity implemented for the
SIMPLER algorithm and the preliminary velocity.

4. The calculation of the explicit momentum equation, including special
treatment for the boundaries, is implemented.

5. Since the pressure correction equation is not solved, the density is up-
dated due to the difference between the preliminary pressure field and
the updated pressure field.

6. The existing test for convergence was partly based on the pressure cor-
rection, and a new test of convergence is needed.

Even though the solution procedure for the IDEAL algorithm contains large
differences from the procedure for both SIMPLEC and SIMPLER, some of
the existing functionality could be used by the IDEAL algorithm as well, for
instance the implicit momentum equation, implicit pressure equation, scalar
equations and the calculation of the pseudo velocities.

The treatment of the boundary conditions for the explicit momentum equation
is described in detail in the next section.

During this master’s thesis, it was made an attempt to implement the IDEAL
algorithm for flows at all speeds and collocated grids. However, the solution
procedure diverged even for simple test cases. The reason for the divergence is
believed to be problems with the boundary conditions for the explicit momen-
tum equation. The implemented boundary conditions, described in the next
section, give a slightly overpredicted velocity at the outlet, hence emptying the
mass in the domain.

3.2.5 Implementation of boundary conditions

In order to enclose the domain, boundary conditions are needed. For the equa-
tions implemented during the work on this master’s thesis, two boundary con-
ditions are implemented in Brilliant: (1) A given mass flow boundary and (2)
a given pressure boundary. The boundary with the given mass flow is used for
the inflow area of the domain and the boundary with the given pressure is used
for the outflow area.



28 3 Existing and implemented numerical procedures in Brilliant

Step 1: Guess the preliminary
pressure, velocity and
temperature and calculate the
density and the speed of sound

Step 2: Calculate the coefficients
and the source terms for the
momentum equations in x, y and
z direction

Step 3: Calculate the pseudo
velocities based on the
preliminary velocity field

Step 4: Calculate the coefficients
for the pressure equation, and
solve the equation implicitly

Step 5: Calculate the velocity
field from the explicit momentum
equation

Step 6: Solve the implicit
momentum equation based on the
preliminary pressure field

Step 7: Calculate the pseudo
velocities based on the
preliminary velocity field

Step 8: Calculate the coefficients
for the pressure equation, and
solve the equation implicitly

Step 9: Calculate the velocity
through the explicit momentum
equation

Step 10: Solve the energy
equation and other transport
equations. Calculate the speed
of sound and update the density.

Next time step

Loop N1: Repeat
N1 times, and use the

resulting pressure
field as a preliminary

pressure in the next step

Loop N2: Re-
peat N2 times

Loop B: Repeat until
convergence

Loop A: Repeat until
convergence

Figure 6: Implementation of IDEAL.



3.2 Changes implemented in the solution procedure 29

Both the implemented coefficients and pseudo velocities need to be treated dif-
ferently for the control volumes adjacent to the boundaries than for the CVs
in the rest of the domain. Some of the unknowns are given on the boundary
and others are not specified. An adiabatic boundary condition, which means
that the first order derivative equals zero, is already implemented in the matrix
solver used by Brilliant. Since the variables do not change over the adiabatic
boundary, the neighbouring coefficient is set to zero and it gives no contribution
to the central coefficient.

Pseudo velocity

In order to calculate the pseudo velocities, the coefficients from the momen-
tum equation and the neighbouring velocities must be known. As the existing
implicit momentum equation in Brilliant is used, boundary conditions for the
coefficients in the momentum equation are already implemented.

For the boundary with the given mass flow, the velocity can be calculated, and
there is no need for special treatment for the control volumes adjacent to this
boundary.

As the boundary at the outlet only contains information about the pressure,
the velocity is unknown. The neighbouring coefficients for the control volumes
represented by the boundaries are then set to zero, and the pseudo velocity
depends only on the upstream velocities. It should be noticed that if back flow
occurs at the outlet, these velocities would no longer represent the upstream
velocities. So, if back flow occurs, the domain should be expanded until the
back flow no longer appears at the outlet.

In order to calculate the coefficients for the pressure equation for the control
volume adjacent to the outlet boundary, the pseudo velocity on the given pres-
sure boundary is required. This pseudo velocity is calculated on the basis of the
pseudo velocity in the control volume adjacent to the boundary and the change
in pressure from the adjacent control volume to the known pressure boundary:

(ūi)
∗
(P+1/2) = (ūi)

∗
P + (pP − pBp

)dEP(nA)(P+1/2) (42)

where the central coefficient on the boundary is unknown, and the upstream
central coefficient is used instead.

Pressure equation

The continuity equation requires the velocity on each surface of the control
volume. In order to obtain the pressure equation, the momentum equation



30 3 Existing and implemented numerical procedures in Brilliant

with known pseudo velocities is, for each surface, inserted into the continuity
equation. For the boundary with the given mass flow, the velocity can be
calculated, and there is no need for inserting the momentum equation into the
continuity equation for this surface:

(
ρV

∆t

)
P

+
∑
NB

NB6=BMF

(
aNB(pnP − pnNB)

)
+

∑
nb

nb 6=BMF

(ρn∆Aū∗)nb =

(Sc)P +

(
ρV

∆t

)t−1

P

− (uρnA)BMF

(43)

The summation in Eq. (43) includes all neighbouring surfaces, except for the
boundary with the given mass flow. This neighbouring coefficient is set to zero,
and gives no contribution to the central coefficient.

For the control volume adjacent to the given pressure boundary, the neighbour-
ing pressure and coefficient are known and therefore included in the constant
term:

aPpP −
∑
NB

NB6=Bp

aNBpNB = b− aBp
pBp

(44)

where the summation includes all neighbouring control volumes, except for the
boundary with the known pressure.

Explicit momentum equation

In order to calculate the velocity in the control volumes adjacent to the given
mass flow boundary from the explicit momentum equation, the pressure on the
boundary must be known. As the pressure is known for all the control volumes
inside the domain, the pressure on the given mass flow boundary is found by
extrapolation.

For the control volume adjacent to the pressure boundary, the boundary condi-
tion is already included in the calculation of the pseudo velocity, and no special
treatment is needed.

In order to examine whether or not the mass is conserved for a given iteration
level, the convective term on all surfaces of each control volume in the domain
are summarised. For the boundary with the given mass flow, the convective
term is given. However, for the given pressure boundary, the velocity is not
known. The velocity on this boundary is calculated by the central velocity in



3.2 Changes implemented in the solution procedure 31

the control volume adjacent to the given pressure boundary and the change in
pressure from this control volume to the given pressure boundary:

(ui)(P+1/2) = (ui)P + (pP − pBp
)dEP(nA)(P+1/2) (45)

where the central coefficient on the boundary is unknown. Therefore, the cen-
tral coefficient for the control volume adjacent to the given pressure boundary
is used.





4 Results

Three examples are simulated by use of the implemented versions of SIMPLE
and SIMPLER: (1) Methane pipe flow, (2) a shock tube and (3) a pressure relief
pipe. The variables calculated by use of SIMPLE and SIMPLER are compared
to the variables calculated by use of the existing SIMPLEC algorithm. For
the shock tube problem, a quasi-analytical solution can be obtained, and the
variables calculated by all three algorithms are compared to this solution.

As discussed in Sect. 3.2.3, some of the functionalities used by the SIMPLER
algorithm were adjusted during the implementation of the IDEAL algorithm.
The modified algorithm is used for the simulation examples in Sects. 4.1, 4.2
and 4.3. In Sect. 4.4, the two variants of SIMPLE-like algorithms are compared.

When finding the minimum CPU time needed by an algorithm for simulating
a given case, the underrelaxation factors must be adjusted. The optimal value
of the underrelaxation factors may vary from algorithm to algorithm, and their
values must be adjusted individually in order to ensure the optimal performance
for all algorithms [19]. The robustness of an algorithm can be measured by the
algorithm’s ability to converge for a wide range of underrelaxation factors [20].

Both the robustness and the minimum CPU time needed are investigated for
the first two simulation examples. When the robustness is investigated, the
different underrelaxation factors are given the same value, αu,v,w,e, ρ, p’, p = α.
Due to the large amount of CPU time needed for simulating the pressure relief
pipe, the minimum CPU time needed and robustness are not investigated for
this simulation example.



34 4 Results

4.1 Simulation example 1: Methane pipe flow

A 150 m long pipe with a diameter of 0.5 m is filled with methane. The
methane starts at rest, and a sudden jump in mass flow is applied to the inlet
after 0.5 sec. After the sudden jump, the mass flow fixed at 0.1 kg/s through-
out the rest of the simulation. The temperature at the inlet is 281 K, and the
pressure at the outlet is 100000 Pa. Figure 7 shows the grid and the geometry
in GL View Inova.

Figure 7: Grid and geometry of the pipe.

In Fig. 8 the density, temperature, pressure and velocity calculated by use of
the extended versions of SIMPLE, SIMPLER and SIMPLEC are plotted in
the central point of the pipe’s outlet. All the four variables calculated by using
SIMPLE and SIMPLEC are distributed almost identically. The steady velocity
calculated by use of the SIMPLER algorithm coincides with the steady veloc-
ity calculated by SIMPLE and SIMPLEC. Some time after the sudden jump in
mass flow, however, the velocity calculated by use of the SIMPLER algorithm is



4.1 Simulation example 1: Methane pipe flow 35

slightly greater than the velocity calculated by the two other algorithms. Even
though the velocity given by the SIMPLER algorithm stations some time after
the sudden jump in mass flow, the density keeps increasing gradually, while the
temperature decreases gradually. This behaviour is not seen in the temperature
or density given by SIMPLEC and SIMPLE. However, the changes in both the
temperature and density calculated by the SIMPLER algorithm are very small.

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

SIMPLE SIMPLEC SIMPLER

(a) Velocity

0 10 20 30 40 50 60 70 80
0.6885

0.6885

0.6885

0.6885

0.6886

0.6886

0.6886

0.6886

0.6886

0.6887

time (s)

de
ns

ity
 (

kg
/m

3 )

 

 

SIMPLE SIMPLEC SIMPLER

(b) Density

0 10 20 30 40 50 60 70 80
280.95

280.96

280.97

280.98

280.99

281

281.01

281.02

time (s)

te
m

pe
ra

tu
re

 (
K

)

 

 

SIMPLE SIMPLEC SIMPLER

(c) Temperature

0 10 20 30 40 50 60 70 80
9.9995

9.9996

9.9997

9.9998

9.9999

10

10.0001

10.0002

10.0003
x 10

4

time (s)

pr
es

su
re

 (
P

a)

 

 

SIMPLE SIMPLEC SIMPLER

(d) Pressure

Figure 8: Properties in the midpoint of the outlet.

The methane pipe flow simulation was conducted on a relatively fine grid, re-
sulting in 11490 solved control volumes. SIMPLEC and SIMPLER were also
tested on both finer and coarser grid, with 2260 and 24060 solved CVs respec-
tively. The velocity in the central point of the outlet is plotted in Fig. 9, where
R gives the result calculated by the SIMPLER algorithm and C gives the result
calculated by the SIMPLEC algorithm.



36 4 Results

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

R 2260 C 2260 C 24060

(a) Velocity on coarse grid

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

R 24060 C 24060

(b) Velocity on fine grid

Figure 9: SIMPLER and SIMPLEC with finer and coarser grid.

For the coarse grid in Fig. 9, the velocities calculated by SIMPLER and SIM-
PLEC are compared to the velocity calculated by the SIMPLEC algorithm on
the fine grid. Both SIMPLER and SIMPLEC give inaccurate results when sim-
ulating the methane pipe flow on the coarsest grid. For both algorithms, the
calculated steady velocity is slightly greater than the steady velocity calculated
by the SIMPLEC algorithm on the fine grid. For the SIMPLER algorithm, the
largest deviation appears some time after the sudden jump in mass flow. Here,
the velocity calculated by the SIMPLER algorithm is a bit greater than the
velocities calculated by the SIMPLEC algorithm on both the coarse and the
fine grid.

When simulating the methane pipe flow on the finest grid, the steady velocity
calculated by use of the SIMPLER algorithm is slightly lower than the steady
velocity calculated by the SIMPLEC algorithm. However, in total, the dif-
ferences between the velocities calculated by the two algorithms are relatively
small for the fine grid.

Table 1: Minimum CPU time for simulation example 1.

CPU
time

αu αp’ αρ αe αp

SIMPLE 1050.41 0.9 0.9 0.8 1 -

SIMPLER 7873.97 0.9 0.9 0.5 0.5 0.9

SIMPLEC 1095.66 0.9 0.9 0.3 0.3 -



4.2 Simulation example 2: Shock tube 37

Table 1 gives the minimum CPU time when simulating the methane pipe flow
on the medium-sized grid by use of SIMPLE, SIMPLEC and SIMPLER. In
order to find the minimum CPU time needed by the different algorithms, the
underrelaxation factors are adjusted. The SIMPLE algorithm uses the least
CPU time, closely followed by the SIMPLEC algorithm. However, the CPU
time needed by the SIMPLER algorithm for this simulation example is very
large compared to the CPU time spent when simulating by SIMPLE and SIM-
PLEC.

Table 2 gives the range of convergence for all three algorithms with various
underrelaxation factors. Both SIMPLEC and SIMPLER converge for all tested
values of α. Even though the SIMPLE algorithm used the least CPU time with
optimal underrelaxation factors, it is the only algorithm not converging for all
values of α. The SIMPLE algorithm converges for values of α in the range
0.9− 0.1.

Table 2: Robustness example 1.

Convergence? α

SIMPLE

No 1.0

Yes 0.9-0.1

SIMPLER

Yes 1.0-0.1

SIMPLEC

Yes 1.0-0.1

4.2 Simulation example 2: Shock tube

In this example, nitrogen starts at rest in a 1 m long tube with height and
width of 0.1 m. The tube consists of fluid only, and has no walls. The initial
condition is divided in two at the length 0.5 m; a high pressure side and a
low pressure side. The high pressure side is initiated at 180000 Pa and 2.145
kg/m3, while the low pressure side is initiated at 100000 Pa and 1.191 kg/m3.
The initial temperature is 283 K. Figure 10 shows the grid and the geometry
in GL View Inova.

This simulation example with slightly different initial conditions is known as
Sod’s shock tube problem [21]. Assuming a polytropic equation of state and



38 4 Results

isentropic flow everywhere, except across the shock, a quasi-analytical solution
of the shock tube can be obtained [22, 23]. Until the shock and the expansion
fan have reached the two ends of the tube, the solution can be divided into five
different regions. The regions are: An undisturbed high pressure side, a rar-
efaction wave, two constant-regions separated by a contact discontinuity and an
undisturbed low pressure side separated from the second constant region by a
shock. The velocity, density and pressure calculated when simulating the shock
tube by use of SIMPLE, SIMPLER and SIMPLEC are compared to the values
calculated by the quasi-analytical solution. The equations used for calculating
the quasi-analytical values of the velocity, pressure and density are presented
in App. A.

Figure 10: Grid and geometry of the shock tube.

Figures 11, 12 and 13 give the velocity, pressure and density distributions over
the length of the shock tube calculated by use the extended versions of respec-
tively SIMPLE, SIMPLEC and SIMPLER. The distribution of the different
variables for the time 0 ms, 0.7 ms and 1.2 ms after the initial state are plotted
in the figures. In addition, the analytical solutions 0.7 ms after the initial state
are plotted in each figure as well.



4.2 Simulation example 2: Shock tube 39

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

distance (m)

ve
lo

ci
ty

 (
m

/s
)

 

 

0s 0.7ms 1.2ms a0.7ms

(a) Velocity

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

distance (m)

de
ns

ity
 (

kg
/m

3 )

 

 

0s 0.7ms 1.2ms a0.7ms

(b) Density

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

5

distance (m)

pr
es

su
re

 (
P

a)

 

 

0s 0.7ms 1.2ms a0.7ms

(c) Pressure

Figure 11: Shock tube calculations using the SIMPLE algorithm, compared to the
analytical solution after 0.7 ms (a0.7ms).

Between the rarefaction wave and the shock, the velocity calculated by the
quasi-analytical solution is constant. The velocity calculated by use of the
SIMPLE algorithm, however, contains a sudden jump in the midpoint of the
shock tube, where the high and the low pressure side initially were separated.
The value of the velocity on the high density side of the constant regions is very
low compared to the value of the quasi-analytical velocity, and the value of the
velocity on the low density side of constant regions is only slightly lower than
the quasi-analytical velocity. Both the pressure and density calculated by the
SIMPLE algorithm contain a sudden jump in the midpoint of the tube as well,
and the density contains no sudden change where the quasi-analytical solution
gives the contact discontinuity. For all three calculated variables, the SIMPLE
algorithm gives more accurate values on the low density side of the constant



40 4 Results

regions than on the high density side. Compared to the quasi-analytical solu-
tion, the location of both the shock and rarefaction wave calculated by use of
the SIMPLE algorithm is quite good. However, all three variables calculated
by the SIMPLE algorithm contain oscillations in vicinity to both the shock and
the rarefaction wave.

As can be seen from Figs. 11 and 12, the values of all three variables calculated
using the SIMPLEC algorithm are almost identical to the values calculated by
use of the SIMPLE algorithm, thus giving the same remarks as those discussed
in previous paragraph.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

distance (m)

ve
lo

ci
ty

 (
m

/s
)

 

 

0s 0.7ms 1.2ms a0.7ms

(a) Velocity

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

distance (m)

de
ns

ity
 (

kg
/m

3 )

 

 

0s 0.7ms 1.2ms a0.7ms

(b) Density

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

5

distance (m)

pr
es

su
re

 (
P

a)

 

 

0s 0.7ms 1.2ms a0.7ms

(c) Pressure

Figure 12: Shock tube calculations using the SIMPLEC algorithm, compared to the
analytical solution after 0.7 ms (a0.7ms).



4.2 Simulation example 2: Shock tube 41

In the two constant regions of the shock tube, the value of the velocity calcu-
lated by the SIMPLER algorithm is low compared to the velocity given by the
quasi-analytical solution. In the central point of the tube, the velocity given by
the SIMPLER algorithm contains a large undershoot, while the density con-
tains a large overshoot. As for SIMPLE and SIMPLEC, there is no sudden
change in the density where the quasi-analytical solution places the contact
discontinuity, but the location of both the shock and the rarefaction wave is
quite good. All three variables calculated by the SIMPLER algorithm contain
oscillations in vicinity of both the shock and the rarefaction wave. Except for
the oscillations and a small jump in the central point of the tube, the pressure
calculated from the SIMPLER algorithm contains only small deviations from
the quasi-analytical solution.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

distance (m)

ve
lo

ci
ty

 (
m

/s
)

 

 

0s 0.7ms 1.2ms a0.7ms

(a) velocity

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

distance (m)

de
ns

ity
 (

kg
/m

3 )

 

 

0s 0.7ms 1.2ms a0.7ms

(b) density

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

5

distance (m)

pr
es

su
re

 (
P

a)

 

 

0s 0.7ms 1.2ms a0.7ms

(c) pressure

Figure 13: Shock tube calculations using the SIMPLER algorithm, compared to the
analytical solution after 0.7 ms (a0.7ms).



42 4 Results

Table 3: Minimum CPU time for simulation example 2.

CPU
time

αu αp’ αρ αe αp

SIMPLE 150.141 1 1 0.9 0.8 -

SIMPLER 133.544 1 1 0.4 1 1

SIMPLEC 150.362 0.9 1 1 1 -

Table 3 gives the minimum CPU time spent when simulating the shock tube
by use of SIMPLE, SIMPLER and SIMPLEC. In order to find the minimum
CPU time needed by the different algorithms, the underrelaxation factors were
adjusted. SIMPLE and SIMPLEC spend approximately the same amount of
CPU time for the simulation of the shock tube. The SIMPLER algorithm
spends less CPU time than the others.

In Tab. 4, the range of convergence for the shock tube problem by use of the
three different algorithms is given. For the simulation of the shock tube exam-
ple, all algorithms converged for all tested values of the underrelaxation factor,
α.

Table 4: Robustness example 2.

Convergence? α

SIMPLE

Yes 1.0-0.1

SIMPLER

Yes 1.0-0.1

SIMPLEC

Yes 1.0-0.1

4.3 Simulation example 3: Pressure relief pipe

In this example, methane flows from a tank and into a 19.9 m long pressure
relief pipe, with an inner diameter of 0.36354 m. The initial pressure and tem-
perature in the tank is 15395800 Pa and 264 K, and the initial mass flow into
the tank is 80.503 kg/s. Both the mass flow from the tank and the pressure
decrease with time. The temperature decreases to a certain minimum before it
slowly increases throughout the simulation. The grid and geometry of the pipe
can be seen in Fig. 14.



4.3 Simulation example 3: Pressure relief pipe 43

Figure 14: Grid for the pressure relief pipe.

In Fig. 15 the velocity, density, temperature and pressure in the central point
of the outlet calculated by all three algorithms are plotted. As for the two
previous simulation examples, SIMPLE and SIMPLEC give almost identical
results for all the four calculated variables. The pressure calculated using the
SIMPLER algorithm give only minor deviations from the pressure calculated
by the two other algorithms. As the pressure is given on the outlet boundary,
this result was expected. However, the velocity, temperature and density given
by the SIMPLER algorithm deviates highly from the values calculated by use
of SIMPLE and SIMPLEC. Due to the large differences in the calculated vari-
ables, it was further examined and verified that the mass was conserved for all
algorithms. The velocity and temperature calculated by all algorithms contain
oscillations and sudden changes. As the calculated temperature and velocity
contain large instabilities, errors might be brought into the next time step,
hence a possible source of errors for all three algorithms. For all algorithms,
and especially for the SIMPLER algorithm, the need of underrelaxation was
great, indicating poor stability for the simulation of the pressure relief pipe.
This might cause the large differences in the calculated velocities and temper-
atures.

In order to find the minimum CPU time for the different algorithms, the under-
relaxation factors have to be optimised. The CPU time needed for simulation



44 4 Results

example 3 is much larger than for the two other simulation examples, and
the underrelaxation factors were only adjusted until convergence was reached.
Even though the underrelaxation factors were not optimised, it is noticed that
the CPU time spent by the SIMPLER algorithm is about two to three times
greater than the CPU time needed for this simulation example using SIMPLE
and SIMPLER.

0 200 400 600 800 1000 1200
−2

0

2

4

6

8

10

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

SIMPLE SIMPLEC SIMPLER

(a) Velocity

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

time (s)

de
ns

ity
 (

kg
/m

3 )

 

 

SIMPLE SIMPLEC SIMPLER

(b) Density

0 200 400 600 800 1000 1200
180

190

200

210

220

230

240

250

260

270

time (s)

te
m

pe
ra

tu
re

 (
K

)

 

 

SIMPLE SIMPLEC SIMPLER

(c) Temperature

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16
x 10

6

time (s)

pr
es

su
re

 (
P

a)

 

 

SIMPLE SIMPLEC SIMPLER

(d) Pressure

Figure 15: Properties in the centre of the outlet of the pressure relief pipe.

Due to the CPU time needed for this simulation example, the ability to con-
verge for different underrelaxation factors was not recorded either. However,
more adjustments are needed in order to reach convergence for the SIMPLER
algorithm than for both SIMPLE and SIMPLEC.



4.4 Importance of small adjustments in SIMPLER 45

4.4 Importance of small adjustments in SIMPLER

First, the SIMPLER algorithm was implemented with a pseudo velocity as de-
scribed in Sect. 2.2.2. The pseudo velocities were interpolated to the surfaces
of the control volumes by Rhie-Chow interpolation and the velocities on the
pressure boundary were set equal to the upstream velocity. As earlier discussed,
some of the functionalities changed during the work on the IDEAL algorithm
were used for the SIMPLER algorithm as well:

1. The pseudo velocity is now weighted between the pseudo velocity de-
scribed in Sect. 2.2.2 and the preliminary velocity.

2. The pseudo velocities are now linearly interpolated to the surfaces of the
control volumes.

3. The pseudo velocity on the known pressure boundary is now found as
described in Sect. 3.2.5.

In order to compare the two different variants of the SIMPLER algorithm,
simulations of the methane pipe flow and the shock tube are conducted by
both algorithms.

4.4.1 Methane pipe flow

In Fig. 16, the velocity, density, temperature and pressure calculated by the
old and the modified SIMPLER algorithm are plotted. The velocity calculated
from the old SIMPLER algorithm contains a large overshoot some time after
the sudden jump in mass flow, and the steady velocity is greater than the ve-
locity calculated by the modified SIMPLER algorithm. The density calculated
from the modified SIMPLER algorithm is increasing, while the temperature
decreases. The changes, however, are small.

4.4.2 Shock tube

In Fig. 17, the velocity, density and pressure calculated by the old and the mod-
ified SIMPLER algorithm are plotted. There are only small differences in the
pressure and density calculated by use of the two algorithms. For the velocity,
however, greater differences can be seen. The velocity calculated from both
algorithms contain a large undershoot where the high and low pressure side
initially were separated, and both algorithms give oscillations in vicinity to the
shock and the rarefaction wave. Except for the oscillations and undershoots,
the velocity calculated from the modified SIMPLER algorithm is more or less
constant between the rarefaction wave and the shock. However, the calculated



46 4 Results

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

New SIMPLER Old SIMPLER

(a) velocity

0 10 20 30 40 50 60 70 80
0.6883

0.6884

0.6885

0.6886

0.6887

time (s)

de
ns

ity
 (

kg
/m

3 )

 

 

New SIMPLER Old SIMPLER

(b) density

0 10 20 30 40 50 60 70 80
280.94

280.96

280.98

281

281.02

281.04

281.06

281.08

time (s)

te
m

pe
ra

tu
re

 (
K

)

 

 

New SIMPLER Old SIMPLER

(c) temperature

0 10 20 30 40 50 60 70 80
1

1

1

1

1

1

1

1

1
x 10

5

time (s)

pr
es

su
re

 (
P

a)

 

 

New SIMPLER Old SIMPLER

(d) pressure

Figure 16: Properties in the midpoint of the outlet.

value is lower than the value calculated from the analytical solution. In this
region, the velocity calculated from the old SIMPLER algorithm is greater on
the initial high pressure side than on the initial low pressure side. Both algo-
rithms give a large overshoot in the calculated density in the midpoint of the
shock tube. The instabilities in both the velocity and density are smaller for
the modified SIMPLER algorithm than for the old one.

4.5 Discussion of the simulation examples

For all three simulation examples, the values of the variables calculated by use
of the extended versions of SIMPLE and SIMPLEC are almost identical. As
discussed in Sect. 2.2.5, SIMPLE and SIMPLEC follow the same solution pro-
cedure, and none of the assumptions made in the two algorithms should affect



4.5 Discussion of the simulation examples 47

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

distance (m)

ve
lo

ci
ty

 (
m

/s
)

 

 

New Old a

(a) Velocity

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

distance (m)

de
ns

ity
 (

kg
/m

3 )

 

 

New Old a

(b) Density

0 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

5

distance (m)

pr
es

su
re

 (
P

a)

 

 

New Old a

(c) Pressure

Figure 17: Shock tube calculations using the modified and the old SIMPLER
algorithm.

the values of the calculated variables if the procedure converges. As both SIM-
PLE and SIMPLEC converged for all three simulation examples, the results
were expected to coincide. The SIMPLER algorithm, however, does not follow
the exact same solution procedure as SIMPLE and SIMPLEC, and the results
given by the extended SIMPLER algorithm differ from the results given by the
two other algorithms.

For the methane pipe flow example, the variables calculated using SIMPLER
and SIMPLEC on the coarse grid are compared to the variables calculated by
use of the SIMPLEC algorithm on the fine grid. The velocities calculated by
both SIMPER and SIMPLEC on the coarse grid are only a bit greater than the
velocity calculated on the fine grid. On the fine grid, the velocity calculated



48 4 Results

using the SIMPLER algorithm only contains small deviations from the velocity
calculated by use of the SIMPLEC algorithm.

For the shock tube, the variables calculated using SIMPLE, SIMPLER and
SIMPLEC are compared to a quasi-analytical solution. The variables calcu-
lated by use of all three algorithms deviate a lot from the quasi-analytical
solution in some regions of the shock tube. None of the algorithms manage
to deal with the contact discontinuity, and all variables calculated by use of
the three algorithms contain sudden jumps where the high and low pressure
side initially were separated. All variables oscillate in vicinity of the shock and
rarefaction wave as well. The velocity and density given by the SIMPLER al-
gorithm contain large overshoots and undershoots in the midpoint of the tube.
However, the most accurate calculated variable is the pressure calculated by
use of the SIMPLER algorithm. The reason for this is unknown, but it should
be noticed that this is the only variable not corrected by the pressure correction.

In order to reach convergence, the need for underrelaxation is greater for the
SIMPLER algorithm than for SIMPLE and SIMPLEC when simulating the
pressure relief pipe. The velocity and temperature calculated by use of the
SIMPLER algorithm deviate greatly from the velocity and temperature calcu-
lated using SIMPLE and SIMPLER. All variables given by the three algorithms
contain oscillations and sudden changes. As no experimental data is known for
this simulation example, it is difficult to discuss the accuracy of the different
algorithms.

When finding the minimal CPU time needed by the different algorithms, the
underrelaxation factors were adjusted in order to find the optimal performance
of each algorithm. For the simulation of the methane pipe flow, the CPU time
needed by the SIMPLER algorithm is very large compared to the CPU time
needed by the two other algorithms. For the shock tube the CPU time needed
by the SIMPLER algorithm is slightly lower than the CPU time needed by
SIMPLE and SIMPLEC. Because of the limited time for this master’s thesis,
and the time required to simulate the pressure relief pipe, the minimum CPU
time for simulation example 3 is not found. Still, when the underrelaxation
factors were adjusted until convergence was reached, it was noticed that the
CPU time used by the SIMPLER algorithm was large compared to the CPU
time used by both SIMPLE and SIMPLEC.

Many comparisons between the SIMPLE-like algorithms have been conducted
in the past. In the specialisation project [3], some of these comparisons were
discussed. The different comparisons favour different algorithms, making it dif-
ficult to suggest how the algorithms are expected to perform compared to one
another. Here, the amount of CPU time needed by the SIMPLER algorithm
was great compared to the CPU time needed by SIMPLE and SIMPLEC for



4.5 Discussion of the simulation examples 49

two out of three simulation examples. The extended versions of SIMPLE and
SIMPLER were implemented during the work on this master’s thesis. Only
minor changes were needed in order to change the solution procedure from the
existing SIMPLEC-like algorithm to the extended SIMPLE algorithm. The
SIMPLER algorithm solves an equation for the pressure, and larger changes
were needed in order to implement the extended version of this algorithm. For
such iterative processes, the performance can greatly depend on where and how
often certain quantities are updated. As shown in Sect. 4.4, only minor changes
can greatly improve the performance of the algorithms.





5 Conclusion and further work

SIMPLE and SIMPLEC follow the same solution procedure, but they differ
in the calculation of the coefficients in the pressure correction equation. SIM-
PLE neglects the velocity correction contribution from neighbouring control
volumes, whereas SIMPLEC approximates them. As correction terms tend to-
wards zero when the solution procedure converges, this difference should not
affect the values of the calculated variables for a converged procedure. As ex-
pected, all the variables calculated by use of the extended versions of SIMPLE
and SIMPLEC are almost identical for the three presented simulation exam-
ples; methane pipe flow, a shock tube and a pressure relief pipe. The solution
procedure for the SIMPLER algorithm differs from the procedure for SIMPLE
and SIMPLEC, as SIMPLER solves an equation for the pressure based on the
preliminary velocity. As the pressure is solved from the pressure equation, the
pressure is not corrected through the pressure correction equation. The values
of the variables calculated by use of the extended SIMPLER algorithm differ
from those calculated by use of the two other algorithms.

When simulating the shock tube, the SIMPLER algorithm uses less CPU time
than SIMPLE and SIMPLEC. For the two other simulation examples, however,
the SIMPLER algorithm needs a great amount of CPU time compared to SIM-
PLE and SIMPLEC. For the methane pipe flow and for the shock tube, almost
no underrelaxation was needed in order to reach convergence. For the pressure
relief pipe, however, the need of underrelaxation was great for all algorithms,
especially for the SIMPLER algorithm.

All three algorithms were compared to a quasi-analytical solution for the simu-
lation of the shock tube. The SIMPLER algorithm gives large overshoots and
undershoots in the midpoint of the shock tube, where the high and low pres-
sure side initially were separated. The results calculated by use of SIMPLE



52 5 Conclusion and further work

and SIMPLEC also show large deviations from the quasi-analytical solution in
some parts of the shock tube. All variables calculated by the three algorithms
give oscillations in vicinity to the rarefaction wave and the shock, and none of
the algorithms manage to deal with the contact discontinuity. It is noticed that
the most accurate calculated variable is the only variable not corrected by the
pressure correction, the pressure calculated by use of the SIMPLER algorithm.

An attempt of implementing the extended IDEAL algorithm was made. How-
ever, the solution procedure diverged even for simple test cases. This is proba-
bly due to problems with the boundary conditions for the explicit momentum
equation. Therefore, further work on this topic should investigate the bound-
ary conditions. It should be tested where and how often the density and co-
efficients should be updated in order to lower the CPU time needed for the
IDEAL algorithm. For the SIMPLER algorithm only minor changes affected
the performance greatly, and it should be investigated if other adjustments
could further improve the performance of this algorithm. Both IDEAL and
SIMPLER should be extended to also treat multiphase flow.



REFERENCES 53

References

[1] H.K. Versteeg and W. Malalasekera. An introduction to computational
fluid dynamics. Pearson Education Limited, 2007.

[2] J.H. Ferziger and M. Perić. Computational methods for fluid dynamics.
Springer, 1999.

[3] S.M.R. Skrataas. Gjennomgang av numeriske algoritmer for kompressible
strø mninger. Technical report, NTNU, 2010.

[4] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface. Physics of Fluids,
8(12):2182–2189, 1965.

[5] S.V. Patankar. Numerical heat transfer and fluid flow. Hemisphere Pub-
lishing Corp, 1980.

[6] H. F. Meier, J. J. N. Alves, and M. Mori. Comparison between staggered
and collocated grids in the finite-volume method performance for single
and multi-phase flows. Computers & Chemical Engineering, 23(3):247 –
262, 1999.

[7] B. Yu, W-Q. Tao, J-J. Wei, Y. Kawaguchi, T. Tagawa, and H. Ozoe. Dis-
cussion on momentum interpolation method for collocated grids of incom-
pressible flow. Numerical Heat Transfer Part B: Fundamentals, 42(2):141–
166, 2002.

[8] C.M Rhie and W.L. Chow. Numerical study of the turbulent flow past
an airfoil with trailing edge separation,. AIAA Journal, 21(11):1525–1532,
1983.

[9] W.Q. Tao and Y.L. Qu, Z.G.and He. A novel segeregated algorithm for
incompressible fluid flow and heat transfer problems - CLEAR (Coupled
and Linked Equations Algorithm Revised) part I: Mathematical formula-
tion and solution procedure. Numerical Heat Transfer, Part B, 45(1):1–17,
2004.

[10] I. Demirdžić, Ž. Lilek, and M. Perić. A collocated finite volume method
for predicting flows at all speeds. International Journal for Numerical
Methods in Fluids, 16(12):1029–1050, 1993.

[11] F. Moukalled and M. Darwish. A unified formulation of the segeregated
class of algorithms for fluid flow at all speeds. Numerical Heat Transfer
Part B: Fundamentals, 37(1):103–139, 2000.

[12] S.V. Patankar and D.B. Spalding. A calculation procedure for heat, mass
and momentum transfer in three-dimensional parabolic flows. Interna-
tional Journal of Heat and Mass Transfer, 15(10):1787 – 1806, 1972.



54 References

[13] D.L. Sun, Z.G. Qu, Y.L. He, and W.Q. Tao. Implementation of an efficient
segregated algorithm-ideal on 3d collocated grid system. Chinese Science
Bulletin, 54:929–942, 2009.

[14] M.J. Moran and H.N. Shapiro. Fundamentals of engineering thermody-
namics. John Wiley and Sons Ltd., 2006.

[15] J.P. Van Doormaal and G.D. Raithby. Enhancements of the simple method
for predicting incompressible fluid flows. Numerical heat transfer, 7(2):147
– 163, 1984.

[16] D.L. Sun, Z.G. Qu, Y.L. He, and W.Q. Tao. An efficient segregated algo-
rithm for incompressible fluid flow and heat transfer problems ideal (inner
doubly iterative efficient algorithm for linked equations) part i: Mathemat-
ical formulation and solution procedure. Numerical heat transfer. Part B,
Fundamentals, 53(1):1 – 17, 2008.

[17] D.L. Sun, Z.G. Qu, Y.L. He, and W.Q. Tao. An efficient segregated al-
gorithm for incompressible fluid flow and heat transfer problems—ideal
(inner doubly iterative efficient algorithm for linked equations) part ii:
Mathematical formulation and solution procedure. Numerical heat trans-
fer. Part B, Fundamentals, 53(1):18 – 38, 2008.

[18] D.L. Sun, Z.G. Qu, Y.L. He, and W.Q. Tao. Performance analysis of
ideal algorithm for three-dimensional incompressible fluid flow and heat
transfer problems. International Journal for Numerical Methods in Fluids,
61(10):1132–1160, 2009.

[19] J.J. McGuirk and J.M.L.M. Palma. The efficiency of alternative pressure-
correction formulations for incompressible turbulent flow problems. Com-
puters & Fluids, 22(1):77 – 87, 1993.

[20] M. Zeng and W. Tao. A comparison study of the convergence charac-
teristics and robustness for four variants of simple-family at fine grids.
Engineering Computations, 20(3):320–340, 2009.

[21] G. A. Sod. A survey of several finite difference methods for systems of
nonlinear hyperbolic conservation laws. Journal of Computational Physics,
27(1):1 – 31, 1978.

[22] J. F. Hawley, L. L. Smarr, and J. R. Wilson. A numerical study of non-
spherical black hole accretion. i equations and test problems. Astrophysical
Journal, Part 1, 277:296 – 311, 1984.

[23] C. Pfrommer, V. Springel, T. A. Enßlin, and M. Jubelgas. Detecting
shock waves in cosmological smoothed particle hydrodynamics simulations.
Monthly Notices of the Royal Astronomical Society, 367(1):113–131, 2006.



55

A Shock tube problem

For the shock tube described in Sect. 4.2, a quasi-analytical solution can be ob-
tained by assuming polytropic equation of state and isentropic flow everywhere,
except across the shock. The shock tube can be divided into five regions: (5)
An undisturbed high pressure side, (4) a rarefaction wave, (3) a region with
constant properties separated from (2) another region with constant properties
by a contact discontinuity and (1) an undisturbed low pressure side separated
from the second constant region by a shock.

The equations used for the calculation of the analytical solution are here shown.
Deviations of the equations can be found in [23] and [22].

The polytropic equation of state and the speed of sound:

p = Kργ (46)

c2 = γp/ρ (47)

By combining Eqs. (47) and (46) with equations for conservation of mass, mo-
mentum and energy, equations for the density, velocity and pressure are ob-
tained:

ρ =



ρ5 if x ≤ −c5t

ρ5

(
−g2 x

c5t
+ (1− g2)

)2/(γ−1)
if −c5t < x ≤ −vtt

ρ3 if −vtt < x ≤ v2t
ρ2 if v2t < x ≤ vst
ρ1 if x > vst

(48)

p =



p5 if x ≤ −c5t

p5

(
−g2 x

c5t
+ (1− g2)

)2γ/(γ−1)
if −c5t < x ≤ −vtt

p3 if −vtt < x ≤ v2t
p2 = p3 if v2t < x ≤ vst
p1 if x > vst

(49)

v =



0 if x ≤ −c5t
(1− g2)

(
x
t + c5

)
if −c5t < x ≤ −vtt

v3 if −vtt < x ≤ v2t
v2 = v3 if v2t < x ≤ vst
0 if x > vst

(50)

where vt is the propagation speed of the tail of the rarefaction wave and vs is
the shock speed.



56 A Shock tube problem

g2 =
γ − 1

γ + 1
(51)

The post shock pressure, p2, and velocity, v2, are found in the intersection
between possible post shock states and possible values for the rarefaction wave:

(
p2
p1
− 1

)√
1− g2

γ(p2/p1 + g2)
− 2c5

(γ − 1)c1

1−

(
p2
p5

)(γ−1)/(2γ)
 = 0 (52)

When the post shock pressure, p2 = p3, is known, the density on each side of
the contact discontinuity can be found from the polytropic equation of state
and the Rankine-Hugoniot conditions:

ρ3 = ρ5

(
p2
p5

)1/γ

(53)

ρ2 = ρ1

(
p2 + g2p1
p1 + g2p2

)
(54)

Values for the velocity in the rarefaction wave are obtained by a rarefaction
wave equation:

v2 = v3 =
2c5
γ − 1

(
1−

(
p2
p5

)(γ−1)/2γ
)

(55)

The speed of the tail of the rarefaction wave, vt, and the speed of the shock,
vs, are obtained from Eq. (50) and the conservation of mass:

vt = c5 −
v2

1− g2
(56)

vs =
v2

1− ρ1/ρ1
(57)


	Title Page
	masteroppgave.pdf

