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Abstract

This master thesis evaluates the fluctuating flow in a Francis turbine draft tube
at part load. The background for studying this subject is partly due to the worlds
increased energy demand. With variations in the price of energy and water levels
in the reservoirs, Hydro turbines operate at varying loads. Operating at full load
and part load causes pressure pulsations in the turbine, with one of the causes
being the instability of the draft tube flow. The main goal of this thesis is to
perform a CFD analysis of a Francis runner and draft tube operating at part load.

The results from the CFD analysis correspond well with the results from the
model test. At the best efficiency point, the draft tube flow is stable and sym-
metrical in both the model test and CFD analysis. At full load, the flow is also
stable and symmetrical, but there is a large low pressure zone below the runner
hub. In the model test, the low pressure caused the water to cavitate. At part
load the draft tube flow becomes unsteady, and pressure fluctuations were mea-
sured. The cork screw shaped vortex rope appears in the draft tube con during
the model test. The CFD analysis is single-phase, which means there is no possi-
bility of cavitation, but a pressure Iso-surface reveals a similar cork-screw shape
in the draft tube cone.

The pressure frequency measured at part operation correspond well with the
theoretical frequency for the same operating point.
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Sammendrag

Denne masteroppgaven evaluerer svingningene is sugerørsstrømingen til en Fran-
cis turbin ved dellast. Bakgrunnen for dette studiet er delvis på grunn av verdens
økende energibehov. Med varierende energipriser og vannivåer i magasinene op-
ererer vannturbiner på varierende last. Operasjon ved fullast og dellast skaper
trykkpulsasjoner i turbinen, hvor en av årsakene er ustabil strømning i sugerøret.
Hovedmålet med denne oppgaven er å gjennomføre en CFD-anaøyse av løpehjulet
og sugerøret i en Francis turbin ved dellast.

Resultatene fra CFD-analysen stemmer godt overens med modelltesten gjennom-
ført i Vannkraftlaboratoriet. Ved bestpunktet er sugerørsstrømingen symmetrisk
og stabil både i CFD-analysen og i laboratoriet. Ved fullast er søgerørsstrømn-
ingne også symmetrisk og stabil, men det er et stort lavtrykksområde under
løpehjulets boss. I laboratoriet kaviterte vannet på grunn av det lave trykket.
Ved dellast blir sugerørsstrømingen ustabil, og trykkpulsasjoner ble målt. En
sugerørsvirvel formet som en korketrekker oppstod i sugerørskonusen i laborato-
riet. CFD analysen er en-fase, uten mulighet for å kavitere, men en trykkoverflate
viser en tilsvarende virvelform i sugerørskonusen.

Frekvensen på trykkpulsasjonene målt ved dellast stemmer godt med den teo-
retiske frekvensen ved det samme operasjonspunktet.
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Chapter 1

Introduction

The increasing consumption of energy results in hydro turbines operating at
varying loads. Francis turbines operating at full and part load experience pressure
pulsations that can potentially damage the turbine, at great cost to the owner.
One of the causes of pressure pulsations in a Francis turbine is the unstable.

The purpose of this thesis is to evaluate the fluctuating flow in a Francis turbine
draft tube. A model test of the Tokke test turbine is performed in the Waterpower
Laboratory at NTNU. The draft tube flow is examined at three operating points:
the BEP, full load, and part load. A CFD analysis is then performed at the same
operating points.

The Tokke test turbine is designed at NTNU. The draft tube is a model scale
draft tube from Tokke Kraftverk. 3D models of the runner and draft tube are
created in ANSYS ICEM CFD. Structured meshes of the runner and draft tube
are created separately. In ANSYS CFX, the runner and draft tube are assem-
bled, and the boundary conditions and initial conditions of each operating point
is defined. There are three simulations for each operating point: steady state, 3
second transient analysis starting with no flow in the draft tube, and a 1 second
transient analysis starting with the last results from the three second transient
analysis. The hybrid turbulence model SST is used, with a high resolution ad-
vection scheme, and the upwind transient scheme. Pressure measurements are
taken at the surface, wall, and at a point on 9 cross sections through the draft
tube to evaluate flow stability. The final analysis of pressure fluctuation is done
with pressure measurements taken in the draft tube cone.

The draft tube flow is visually compared to the flow conditions experienced during
the model test. The frequency of the measured pressure fluctuations at part load

1



2 CHAPTER 1. INTRODUCTION

are compared with the theoretical frequency of the same operating conditions.

This thesis does not focus on the runner. Computational capacity limited a
detailed flow analysis of both the runner and the draft tube, so the runner in the
CFD analysis is merely used as an instrument to create a realistic velocity profile
at the draft tube inlet. As the draft tube vortex rope is a flow phenomenon
occurring close to the core of the draft tube cone, the Y+ of the mesh is not
sufficiently low for an accurate solution of the boundary layer flow. Due to
the time consumption of a detailed transient CFD analysis, turbulence models,
advection schemes, and time schemes are not evaluated.



Chapter 2

Francis Turbine

A Francis turbine is a reaction turbine, utilizing a drop in pressure from inlet to
outlet of the runner. A Francis turbine consists of the spiral casing, wicket gate,
runner and draft tube. Figure 2.1 shows a complete Francis turbine, with only
the cone of the draft tube visible. The stay vanes in the spiral casing distribute
the flow evenly around the wicket gate. The wicket gate, consisting of adjustable
guide vanes control the discharge, as well as the direction of the flow entering
the runner. The flow is constantly accelerated through the spiral casing, due to
the decrease in area. The stay vanes and guide vanes rotate the flow, so it enters
the runner at an angle rotating about the runner shaft. All the power conversion
takes place in the runner. The water flows out of the runner with little or no
rotation, and reduced pressure compared to the inlet. The runner converts the
kinetic and potential energy in the water into mechanical energy transfered to
the runner shaft.

2.1 Flow through the runner
The absolute velocity of the flow is c. The flow is described using a local coor-
dinate system, (~m,~n, ~u), where ~u is in the direction of the runner rotation, ~m is
tangential to the flow streamline, and ~n is normal to the flow streamline. Further,
the absolute flow velocity is broken down in equation (2.1).

~c = ~u+ ~w (2.1)

where ~u is in the tangential direction, and ~w is in the runner blade direction.
The absolute velocity can also be expressed by its components in the tangential

3



4 CHAPTER 2. FRANCIS TURBINE

Figure 2.1: Open Francis turbine.

and meridian direction, as in equation (2.2).

c1 =
√
c2
u1 + c2

m1 (2.2)

This is shown in figure 2.2. The angle between the absolute velocity ~c and its
component in the u-direction, ~cu, is called α. α is the outlet angle of the flow
from the guide vanes. β1 is the inlet angle of the flow to the runner.
Figure 2.3 shows the velocity triangles of a Francis runner at the inlet and outlet.
β2 is the outlet angle of the flow leaving the runner.

tan β2 = cm2

u2
(2.3)

A Francis runner is designed so the runner geometry matches the angles of the
flow in a desired operating condition.
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Figure 2.2: Relative and absolute flow path in the runner.[1]

Figure 2.3: Velocity triangles at the inlet and outlet of the runner.[1]
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2.2 Runner Dimensions
Figure 2.4 shows the general dimensions of a Francis runner. B0 is the height
of the guide vanes, D1 is the runner inlet diameter, and D2 is the runner outlet
diameter.

Figure 2.4: Open Francis turbine.

2.2.1 Geometry and flow relations
The discharge and dimensions of the runner can be used to express the flow in the
turbine. Equation (2.4), defines the meridian velocity as a function of discharge,
inlet diameter, and guide vane height.

cm1 = Q

πD1B1
(2.4)
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The meridian velocity at the outlet is defined in equation (2.5):

cm2 = 4∗Q
πD2

2
(2.5)

The tangential velocity at the runner outlet is expressed as a function of rotational
speed and the outlet diameter in equation (2.6):

u2 = πD2n

60 (2.6)

The tangential velocity is a function of radius and rotational speed, expressed in
equation (2.7):

u = r · ω (2.7)

2.3 Energy conversion
Figure 2.5 shows the energy conversion in a Francis turbine. Half the specific
total energy at the inlet of the runner is kinetic energy. The energy is converted
to the runner shaft, and the draft tube converts the remaining kinetic energy into
static pressure.
The momentum exerted on the runner is expressed as:

~Mz = ṁ (c1ur1 − c2ur2) = ρQ (c1ur1 − c2ur2) (2.8)

The power transfered to the runner shaft is:

P = Mzω = ρQ (c1ur1 − c2ur2)ω = ρQEt = ρQgHn (2.9)

where Et is defined as the specific energy transfered from the water to the runner:

Et = ω (c1ur1 − c2ur2) = c1uu1 − c2uu2 (2.10)
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Figure 2.5: Energy conversion in a Francis turbine.

The total available energy in the runner is:

gHn =
(
gh1 + c2

1
2

)
−
(
gh3 + c2

3
2

)
(2.11)

The hydraulic efficiency of the runner is the ratio of energy converted compared
to the available energy. By using equations (2.10) and (2.11), the hydraulic
efficiency can be expressed as:

ηh = 1
gHn

(c1uu1 − c2uu2) (2.12)

Equation (2.12) is called the Euler turbine equation. It neglects viscous and tur-
bulent losses in both the runner and the draft tube, and the calculated efficiencies
are very high.

2.4 Runner outlet velocity
The velocity exiting the runner depends on the operating conditions of the tur-
bine.
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2.4.1 Best Efficiency Point

At the best efficiency point, the BEP, the flow leaving the runner has little or no
rotation. In theory, c2u is zero at the BEP. Figure 2.6 shows the outlet velocity
triangle at the BEP.

Figure 2.6: Velocity triangle for the outlet at BEP.[1]

2.4.2 Full load

At full load, the runner is unable to utilize all the rotation in the flow. The
flow leaving the runner has a reduced rotation in the same direction as the flow
entering the runner. Figure 2.7 shows the outlet velocity triangle for a runner at
full load. The flow entering the draft tube is rotating in the opposite direction
of the runner.

Figure 2.7: Velocity triangle for the outlet at full load.[1]
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2.4.3 Part load
At part load the rotation in the flow is reversed. The flow entering the draft tube
rotates in the same direction as the runner. Figure 2.8 shows the outlet velocity
triangle for a runner at part load.

Figure 2.8: Velocity triangle for the outlet at part load.[1]



Chapter 3

Draft Tube

A hydro power plant converts the potential energy between two water surfaces
into to mechanical or electrical energy. In a Francis turbine, the flow leaving the
runner has kinetic energy that can be utilized. To recover this kinetic energy,
the runner outlet is connected to a draft tube. The main task of the draft tube
is to convert the kinetic energy at the outlet of the runner into static pressure.
The industry standard is to have a vertical runner axis, as in figure 3.1. Due
to high construction costs, the draft tubes are normally bent at an elbow. The
cross section of the draft tube inlet is circular. As the water flows through the
draft tube, the cross section become elliptic and later rectangular with rounded
corners.

11
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Figure 3.1: Francis turbine cross section.[1]
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3.1 Flow in a draft tube
The flow in a draft tube is complex. The draft tube geometry creates further
difficulties in describing the flow. By straightening the draft tube, and assuming
circular cross sections through the entire draft tube, it becomes a diffuser. The
pressure recovery concept of the draft tube is better explained assuming it is
shaped as a straight diffuser.

3.1.1 Uniform flow in a diffuser
Assume the runner is operating at the BEP:

c2u = 0 (3.1)

Assuming no radial velocity, the flow is uniform at the inlet of the diffuser. The
uniform flow can be seen in figure 3.2.

Figure 3.2: Straight diffuser. [1]

[5] By rearranging the continuity equation the outlet velocity can be expressed
as:

c3 = A2

A3
c2 (3.2)
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Neglecting losses, and assuming the diffuser is horizontal, the incompressible
Bernoulli equation states:

p2 + 1
2ρc

2
2 = p3 + 1

2ρc
2
3 = constant (3.3)

Inserting the velocity expression from equation (3.2) and dividing by ρ, equation
(3.3) becomes:

p3 − p2

ρ
= 1

2
(
c2

2 + c2
3
)

= c2
2
2

(
1−

(
A2

A3

)2
)

(3.4)

The ideal pressure recovery coefficient of a draft tube, Cpid, is defined as:

Cpid = 1−
(
A2

A3

)2
(3.5)

By introducing losses to equation 3.4, it states:

p3 − p2

ρ
= 1

2
(
c2

2 + c2
3
)
− ξ c

2
2
2 = c2

2
2

(
1−

(
A2

A3

)2
)
− ξ c

2
2
2 = ηDT

c2
2
2 Cpid (3.6)

where ηDT is the draft tube efficiency, defined as:

ηDT = 1−
ξ
c2

2
2

c2
2
2 Cpid

(3.7)

The actual pressure recovery factor, Cp, is defined as:

Cp = p3 − p2
c2

2
2 ρ

(3.8)

ηDT can be expressed as:
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ηDT = Cp
Cpid

(3.9)

which means the draft tube efficiency is the relation between the actual pressure
recovery factor and the ideal pressure recovery factor. [1].
The result for an actual draft tube is more complex, because of geometrical
differences and different velocity profiles at both inlet and outlet. If turbulence
and boundary layers are introduced, the flow in the diffuser will have a velocity
profile as displayed in figure 3.3.

Figure 3.3: Diffuser flow with boundary layer. [1]

The velocity at the wall is 0, and the velocity at the center of the diffuser is U∞.
Note that U∞ is greater than the average velocity over the area, c3. The area of
increasing velocity is called the boundary layer. The boundary layer thickness,
δ, is defined as the distance from the wall to where the velocity equals 0,99 U∞.
This definition is impractical, because the transition to U∞ is unstable due to
turbulent fluctuations. For mathematical treatment of the boundary layer, a
displacement thickness, δ∗, is defined.
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δ∗ =
δ∫

0

(
1− u

U∞

)
dy (3.10)

where y is the distance from the wall towards the center.
If the area covered by δ∗ is omitted, the velocity U∞ can be treated as the mean
velocity over the remaining area, A∗. The definition of A∗ is:

A∗ = A−Aδ∗ (3.11)

The pressure recovery coefficient from equation 3.8 can now be written as:

Cp = 1−
(
U3∞

U2∞

)2
= 1−

(
A2

A∗3

)2
(3.12)

The boundary layer gives the flow a higher velocity at the outlet. This results
in a higher energy in the flow, which is not accounted for in the mean velocity
calculations.

3.2 Boundary layer separation
The boundary layer theory in the previous section assumes no separation in
the diffuser. If the flow does not follow the walls, boundary layer separation
occurs. Consider a diffuser with length L, and diffuser angle α. By gradually
increasing the diffuser angle, different separation phenomena will occur. The
different phenomena are depicted in figure 3.4

1. The flow follows the walls, and no separation occurs. This is the case
described in the previous section.

2. The flow experiences an unstable separation, and a temporary eddy is gen-
erated. The flow is reattached behind the eddy, and continues to follow the
wall.

3. The flow experiences a stable separation. The separation occurs at one
wall, and the flow follows the other wall.

4. The flow experiences complete separation. Separation occurs at both walls,
and the flow is a free jet between both eddies.
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Figure 3.4: Boundary layer separation phenomena. [1]



18 CHAPTER 3. DRAFT TUBE



Chapter 4

Draft Tube Vortex Rope

Figure 4.1: Flow in the draft tube cone at full load and part load. [1]

4.1 Flow
At the BEP, the flow leaving the runner has, in theory, no rotation. In practice,
there is a small but insignificant amount of swirl in the flow. At part load, the
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flow leaving the runner rotates in the same direction as the runner. When the
turbine is operating at full load, the flow leaving the runner is rotating in the
opposite direction of the runner. This is visible in figure 4.1. If the swirl entering
the draft tube is above a certain level, the flow becomes unstable and draft tube
surge occurs. Draft tube surge causes pressure fluctuations that can result in
vibration, penstock resonance, and power swings.

Pure axial flow through a straight tube is stable as long as the flow is fully
turbulent. By introducing rotation to the flow, the flow pattern is changed.
The axial velocity decreases in the center, and increases along the walls. The
peripheral velocity increases near the walls. A stagnation point is developed,
and the flow along the centerline, both upstream and downstream, is directed
towards this point. The development of this stagnation point is known as vortex
breakdown. Experiments performed by J. J. Cassidy investigated the nature of
the vortex breakdown in order to better understand draft tube surging[6]. As the
rotation of the flow increases, the stagnation point moves upstream to the outlet
of the runner. The flow in the draft tube cone develops into a rotating helical
vortex. It is this vortex that causes the pressure fluctuations in the draft tube.

A helical vortex causes asynchronous pressure fluctuations in the draft tube. As
high pressure develops on one side of the draft tube, low pressure is simultaneously
developed on the opposite side. In a hydro turbine, the pressure can become
low enough to cavitate the helical vortex. This creates a visible vortex in the
draft tube cone. The vortex rope cavity pulsates, creating synchronous pressure
fluctuations in the draft tube. These fluctuations occur at twice the asynchronous
frequency [7].

Experiments performed by Yutaka Hosoi show that the precession rate of the
draft tube vortex under constant operating conditions remains unchanged. The
experiments also show that the draft tube vortex is both rotating and revolving
[2]. It is observed that the vibration forces are greater at high load that at partial
load.

The sizes of the vortex cores differ depending on the head, flow rate, and runner
speed. When the vortex core attains a diameter above a certain size, the top
of the spiral vortex becomes an ogival shape core with no whirling. When the
vortex core has a small diameter, the length of the spiral is short, and the vortex
will appear and disappear irregularly.
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4.1.1 Parameters for Describing Draft Tube Surging
The torque entering the runner minus the torque created by the runner equals
the moment of momentum of swirl leaving the runner. The torque entering the
runner is determined by the geometry of the flow passing through the wicket
gates. Equation (4.1) approximates the flux of angular momentum leaving the
wicket gates.

Ω1 = ρQ2R sin (α)
BNS

(4.1)

where:

B = height of the wicket gates
N = number of wicket gates
Q = discharge
R = radius to the centerline of the gate opening
S = minimum width of flow passing through the wicket gate
α = angle between the flow vector and the radius
ρ = water density

The speed characteristics of the runner, the discharge, and the head combine to
determine the torque produced by the turbine. From this, the swirl leaving the
runner can be calculated in (4.2).

ΩD
ρQ2 = DR sin (α)

BNS
− P11D

2
√

2gρΦQ2
11D

2
2

(4.2)

The term on the left side of (4.2) is the swirl parameter. Using (4.2) combined
with a model test to determine the surge characteristics of a turbine is known as
the swirl parameter method. Experiments performed by Falvey and Cassidy [8]
showed that surging begins at a swirl parameter of about 0, 3.

4.1.2 Rotating flow at turbine outlet
Consider the velocity of the rotational flow forming a vortex core in the draft
tube in terms of the velocity streamlines passing through the runner. Based on
the velocity diagram in figure 4.2, the velocity may be expressed as:

Cu = Va −Wa cos γ (4.3)



22 CHAPTER 4. DRAFT TUBE VORTEX ROPE

Figure 4.2: Velocity diagram at runner outlet. [2]

where Cu is the peripheral velocity component, Va is the peripheral velocity of
the runner, Wa is the relative velocity of the water flow, and γ is the blade outlet
angle. By expressing these quantities in terms of values per unit head, (4.3)
becomes:

Cu1 = Va1 −Wa1 cos γ (4.4)

where:

Cu1 = Cu√
H

Va1 = Va√
H

Wa1 = Wa√
H
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H = effective head.

By introducing the expressions:

N1 = N√
H

Q1 = Q√
H

the following functions are obtained:

Va1 = 2πra
60 N1

Wa1 = 1
bZ

Q1

where:

ra = blade outlet radius
b = sectional area at outlet between blades
Z = number of blades

From this, (4.4) can be written as:

Cu1 = 2πra
60 N1 −

1
bZ

cos γQ1 (4.5)

From this, Cu1 can be considered a function of N1 and Q1, since 2πra

60 and 1
bZ cos γ

in (4.5) are constant for the turbine runner. This is, however, the theoretical
average peripheral velocity component of the runner. Experiments show that
as the rotational speed of the flow leaving the runner increases, the effects of
the centrifugal forces increase. The water is forced towards the draft tube walls,
and a ineffective area is generated in the center of the draft tube. Experiments
performed by Yutaka Hosoi show the difference between theoretical and actual
rotational flow exiting the runner [2].
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4.2 Frequency models
Further experiments performed by Yutaka Hosoi, focusing on pressure surges in
the draft tube, show a breakdown of the pressure fluctuations measured in a
Francis turbine model rig at different operating points. The results showed two
pressure fluctuations with a natural frequency corresponding with the revolution
speed of the pump in the test rig. These high frequency, low amplitude fluctu-
ations were excluded from the analysis. The third fluctuation had a low-cycle
frequency and a varying amplitude depending on the operating conditions of the
turbine. These pressure fluctuations reached amplitudes that influenced the pen-
stock pressure at a defined value of N1 depending on the gate opening. These
results correspond well with the theory of pressure fluctuations as a function of
the peripheral velocity from the outlet of the runner [2].
To express the frequency in terms of quantity per unit head:

n1 = n√
H

(4.6)

Frequency in Heavy Pressure Surge

After analyzing the results, Hosoi expressed a relation between the pressure surges
in the draft tube and the runner speed:

n1 = N1

3
1
60 [cycles per second] (4.7)

where:

n1 = c/s per unit head.

N1 = rpm per unit head.

This conclusion corresponds well with the empirical results collected by Rhein-
gans [9] in 1940, who published the following formula after examining several
power plants experiencing heavy pressure surges:

f = n

c
(4.8)
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where:

f = surge frequency, cycles per second
n = runner speed, rotations per second
3, 2 ≤ c ≤ 4, 0

4.2.1 Mathematical model
The flow conditions of the draft tube vortex were investigated by Michele Fanelli,
who made a simplified model shown in figure 4.3. From the simplified model, the
following equations can be derived from the geometry in figure 4.4.

Figure 4.3: A simplified figure of the vortex flow. [3]

R1

sin β = `

sinα (4.9)

R2

sin (α+ β) = `

sinα (4.10)
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` =
√
R2

1 +R2
2 − 2R1R2 cosα (4.11)

Figure 4.4: Simplified figure of the vortex flow. [3]

Assuming the vortex filaments have no radial velocity, their kinematical condi-
tions are described by the following equations:

Γ2

2π` sin (α+ β) = Q

2πR1h
(4.12)

Γ1

2π` sin β = Q

2πR2h
(4.13)

where:

Q = nQ0
n < 1
Q0 = discharge resulting in zero swirl

If the two vortices have the same angular velocity, the formulas is:
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ωT = 1
R1

Γ2

2π` cos (α+ β) = 1
R2

Γ1

2π` cosβ (4.14)

m is a non-dimensional coefficient:

m = Q0

2πhr2
igω0

(4.15)

where:

rig = runner outlet radius
ω0 = runner angular velocity
m < 1

Quantification of outlet circulation Γ1:

Γ1 = 2πr2
ig (1− n)ω0 (4.16)

From these equations, the following relationships can be derived:

ρ = R2

R1
=
√

1 + 1− n
nm

(4.17)

ωT
ω0

= (1− n+ nm)
(
rig
R2

)2
(4.18)

α = π

2 − 2β (4.19)

β = arcsin
√

nm

1 + (2m− 1)n (4.20)
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Γ2

Γ1
= 1 (4.21)

Fanelli found through mathematical modeling that the angular velocity of the
vortex rope varies between 0,3 and 0,35 times the angular velocity of the runner.
This corresponds well with the model in equation (4.8).
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CFD Analysis of Vortex
Ropes

Simulations performed by Ruprecht et al. [4] shows the influence and importance
of the turbulence model. A Francis runner was simulated in steady state at part
load, and the resulting outlet velocity profile was set as the inlet of the draft tube.
Constant pressure at the outlet of the draft tube was assumed. The simulations
were done in FENFLOSS, based on the RANS-equations. The standard κ − ε
turbulence model had a strong damping, and no vortex rope appeared. When
using the extended Kim & Chen κ−ε turbulence model, the vortex rope appeared.
Figure 5.1 shows the effects of turbulence damping in the simulations.
The extension of the turbulence model consists of an additional term in the ε-
equation, shown in (5.1).

∂ε

∂t
+Uj

∂ε

∂xj
= ∂

∂xj

((
ν + νt

σε

)
∂ε

∂xj

)
+C1ε

ε

κ
Pκ −C2ε

ε2

κ
+C3ε

(
Pκ
κ

)
Pκ︸ ︷︷ ︸

extension term

(5.1)
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Figure 5.1: Damping effects of the standard κ-ε turbulence model. [4]
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The results from the simulation using the Kim & Chen κ − ε turbulence model
show unsteady flow behavior in the draft tube. The resulting vortex rope has
the shape of a rotating cork-screw. The change in size of the vortex rope over
time indicates pressure surges in the draft tube. This means the draft tube is
subjected to synchronous pressure fluctuations. This effect is shown in figure 5.2.

(a) One timestep (b) Another timestep

Figure 5.2: Varying vortex rope size with time. [4]

To verify the simulations, the pressure is measured at the same location in the
experiment and simulations, shown in figure 5.3.

Figure 5.3: Position of pressure measurements in experiment and simulation. [4]

As expected, the frequency of the pressure fluctuations are similar. The am-
plitude of the pressure fluctuations decreases in as the distance from the inlet
increases. This is most likely due to damping of the swirl in the simulations. A
Fast Fourier Transformation is performed on the measured and simulated values.
The dominating frequency is 7 Hz, which is the frequency of the vortex rope. It
is 33% of the runner speed. The numerical comparison is shown in figure 5.4.
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Figure 5.4: Comparison of experimental and simulated pressure measurements.
[4]

The pressure fluctuations in the draft tube causes oscillations in the water passage
of the power plant. This results in a time dependent variation in the discharge.
This is not taken into account in a steady state runner simulation, and therefore
the draft tube simulations are not accurate. To include the dynamic behavior
of the power plant in the simulations, a simple power plant is considered. The
power plant, shown in figure 5.5, consists of upper basin, penstock, turbine, draft
tube and lower basin.
By using the 1-DMethod of Characteristics, the dynamic behavior of the penstock
is calculated. The turbine is represented by its linearized steady state hill chart,
and the draft tube is simulated with CFD.The pressure at the draft tube inlet is
averaged in each time step of the transient CFD analysis, and used as a boundary
condition in the MoC. The MoC results in a new value for the discharge, which
is reintroduced to the CFD simulation as a change in the axial velocity. This
coupled simulation leads to a synchronous pressure oscillation of approximately
3% and a resulting discharge variation of approximately 1%. The time dependent
fluctuations in pressure and discharge are shown in figure 5.6.



33

Figure 5.5: Simplified power plant for dynamic simulations. [4]

Figure 5.6: Results from the dynamic simulation of the power plant. [4]
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Ruprecht et al. [4] concluded that the damping of the turbulence model used
in the simulation greatly affect the prediction of vortex ropes. An improved
turbulence model is necessary to obtain accurate simulation results. When ap-
plying Large Eddy Simulation (LES) to a simulation, large parts of the turbulent
spectrum have to be resolved by the computation. This is impossible for high
Reynolds numbers. A simpler approach to LES, Very Large Eddy Simulation
(VLES) only solves the dominant frequencies ,and most of the turbulent spec-
trum is modeled. This is schematically shown in figure 5.7.

Figure 5.7: Schematic procedure for VLES. [4]

By using the same method of comparing turbulence models as in figure 5.1, the
extended κ− ε turbulence model is compared to the VLES approach. The result
is visible in figure 5.8.

Figure 5.8: Vortex rope comparison between the extended κ-ε model and VLES.
[4]
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Experimental Methods

6.1 Francis turbine test rig
When performing a model test on a Francis turbine, the water flows through a
closed loop. Figure 6.1 shows the main parts of the test rig. The water is pumped
to the pressure tank on the left. It then passes through the turbine and into the
reservoir tank downstream the turbine. From the reservoir, the water flows back
to the pump to complete the cycle. The Francis rig is according to IEC 60193.

Figure 6.1: Test rig in the laboratory.

6.1.1 Measuring instruments
Generator

The generator is connected to a DC converter, which is connected to the power
grid. This enables the operator to chose the operating point of the turbine by
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altering the rpm with a change in power to the generator. The generator is not
used to measure the energy output of the turbine, as this is done with torque
measurements.

RPM

The rpm of the turbine is measured by an optical sensor on the shaft between
the runner and the generator.

Torque

The rig has two torque measurements, generator torque and friction torque. Both
torques are measured by multiplying force with arm length. The force is measured
by a load cell transmitting an electrical current corresponding to the force. The
effect of the measured torque is given by the torque multiplied with the speed
of rotation of the turbine. Both the torque measuring cells must be calibrated
before a model test.

Flow

The flow is measured with an electromagnetic flow meter at a known cross section
upstream the turbine. A magnetic field is created by two magnetic coils, and the
fluid acts as a conductor. The signal given out by the flow meter is proportional
to the velocity. The flow meter must be calibrated before a model test, using the
calibration tank in the laboratory.

Pressure

Pressure is measured at the inlet and the outlet of the turbine. The absolute
pressure is measured at the inlet, and the pressure difference from inlet to outlet
is measured at the outlet. Both the pressure transducers must be calibrated
before a model test.

Oxygen

The oxygen content of the water is measured between the reservoir tank and the
pumps. The sensor measures the amount of dissolved oxygen.

Temperature

The temperature of the water is measured upstream the turbine.
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6.2 Model test
The model test is performed with a Hn = 10m. When performing a model test
in the laboratory, the test starts at the turbines BEP. The guide vane opening
is then set to a predetermined angle, and the rpm of the turbine is altered to
log information at different operating points. As the turbine rpm is changed,
the pump rpm must be changed in order to maintain a 10 meter net head. The
logging procedure for each guide vane angle is to start at the rpm of the BEP,
and reduce the turbine rpm in small increments. The same operating points are
measured on the way back to the BEP rpm. The turbine rpm is then increased
in small increments, and the operating points are logged coming from and going
to the BEP rpm.

6.2.1 Guide vane openings
The following guide vane openings are evaluated:

• α = 6◦

• α = 7◦

• α = 8◦

• α = 9◦

• α = 10◦

• α = 11◦

• α = 12◦

• α = 13◦

• α = 14◦
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Chapter 7

Numerical Methods

7.1 Geometry

The geometry used in the simulations is in the same scale as the model turbine in
the laboratory, which can be seen in figure 7.1. The geometry of the draft tube
and runner are generated separately.

Figure 7.1: The Francis turbine rig in the Waterpower laboratory.
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7.1.1 Draft Tube
By using technical drawings of the draft tube, it is regenerated in ANSYS ICEM
CFD, and adapted for optimal meshing. The geometry created in ICEM contains
only the inner surface of the draft tube. Figure 7.2 shows the 2D AutoCad
drawing of the draft tube, and the 3D model created in ICEM based on the
technical information of cross section through the geometry.

(a) 2D AutoCAD Drawing (b) 3D model in ANSYS ICEM CFD

Figure 7.2: The draft tube geometry from the Tokke model turbine.

The inlet of the draft tube, shown in figure 7.3 is not a plane surface. This is
done to improve the computation conditions for the model assembly. The center
of the inlet is covered with a circular surface, which will be used as the rotating
tip of the runner hub. The runner is a rotating domain in the computations,
while the draft tube is stationary. By connecting the runner outlet and draft
tube inlet close to the runner blades, the effects of the rotating runner domain
on the stationary area below the blades is reduced.

(a) Side view (b) Top view

Figure 7.3: The draft tube inlet geometry.
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7.1.2 Runner
The runner is designed at the Waterpower Laboratory at NTNU. As the geome-
try files are not compatible with ANSYS ICEM CFD, the geometry is exported
from ProE and regenerated for optimal meshing. Figure 7.4 shows the runner
geometry from ProE, and the new geometry created in ICEM. The original ge-
ometry contains a detailed geometry of the solid part of the runner, while the
new geometry is a detailed geometry of the waterways of the runner.

(a) Runner geometry in ProE (b) Adapted runner geometry in ANSYS
ICEM CFD.

Figure 7.4: The Tokke model runner geometry.

Figure 7.5 shows how the geometry of the runner outlet is created from the tip
of the runner hub to the bottom of the shroud. As mentioned earlier, this is to
improve the computation conditions of the model assembly. Note the reduced
gap between the runner blades and the runner outlet.

Figure 7.5: The runner outlet geometry.
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7.2 Mesh
The geometry is meshed with a structured grid in ANSYS ICEM CFD.

7.2.1 Draft Tube
The draft tube is meshed using the blocking function in ICEM. To maintain a
high mesh quality in the circular cross sections, an O-grid is used. Figure 7.6
shows the O-grid at the inlet and outlet. The blocking function ensures an equal
amount of nodes in the cross section along the draft tube.

(a) Inlet (b) Outlet

Figure 7.6: O-grid through the draft tube.

Figure 7.7 shows the entire draft tube mesh. The mesh is dense at the inlet
and cone, and the density decreases along the flow direction of the draft tube.
Because this master thesis is focusing on the flow behavior right after the runner
outlet, the mesh density near the draft tube outlet is not a priority.

Figure 7.7: Total draft tube mesh.
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7.2.2 Runner
The runner is also meshed with the blocking function in ICEM. The geometry
of the runner is more difficult than that of the draft tube, which means the
meshing is more time consuming. Figure 7.9 the step by step procedure used
to mesh the runner. The starting point is the main curves of the runner. A
block is inserted, surrounding the runner geometry. The block corners are called
vertices, and the block lines are called edges. The block is split into several
connected blocks, and the vertices are associated with the appropriate geometry
point. After the vertices are associated with the correct geometrical points, the
edges are associated with the geometry curves. The amount of nodes on each
edge is defined, and the end result of the blocking process is a structure of blocks
with predetermined geometrical associations and a defined amount of nodes. The
resulting mesh created with the blocking process is shown in figure 7.8.

Figure 7.8: The final runner mesh.

7.2.3 Grid sensitivity analysis
To evaluated the grid sensitivity, several meshes are created with an increasing
number of nodes for both the runner and the draft tube. Due to limitations in
computer memory, a limit of combined nodes is set at 1.500.000 nodes.
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(a) Runner curves (b) Blocking vertices

(c) Blocking edges (d) Association of edges

(e) Defining nodes (f) Blocks

Figure 7.9: The meshing process for the runner.
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7.3 Pre-processing
The two meshes are assembled in CFXPre, as the runner domain and the draft
tube domain. The assembled Francis turbine is shown in figure 7.10.

Figure 7.10: Runner and draft tube assembly in CFXPre.

Three operating points are evaluated, the BEP, full load and part load. The
operating conditions for the simulations are taken from the Hill chart created by
the model test of the turbine. Each operating point has a specific guide vane
opening angle, flow factor, and speed factor. From these values, the boundary
conditions for the simulations are calculated. Table 7.1 shows the operating
conditions for the three operating points.

Table 7.1: Operating conditions from the Hill chart.

Variable BEP Full load Part load
Guide vane opening (α) 10 11 7
Flow factor (Qed) 0,152 0,175 0,093
Speed factor (ned) 0,18 0,165 0,205

7.3.1 Boundary conditions
Runner

The runner domain, shown in figure 7.11 is to rotate about the z-axis. The speed
of rotation is defined by the operating point being simulated. Equations (7.1)
and (7.2) show the relation between ned and the turbine rpm in the simulations.
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n [rps] = ned ·
√
gH

D2
(7.1)

[rpm] = n · 60 (7.2)

Table 7.2 shows the rpm values for the three operating points in the simulations.
As the model runner rotates in the clockwise direction when seen from above,
the rpm value in CFXPre must be set as negative.

Table 7.2: RPM values for the operating points in CFXPre.

BEP Full load Part load
RPM -306 -280 -349

Figure 7.11: Rotating domain in CFXPre.

The hub, shroud, and blades of the runner are set as smooth walls. Because they
are part of the rotating domain, they will automatically rotate at the same rmp
as the domain. Figure 7.12 shows the walls of the runner.
Figure 7.13 shows the runner inlet. The inlet boundary conditions depend on the
operating point. Equations (7.3) shows the relation between Qed and the mass
flow in the simulations. Table 7.3 shows the mass flows for the three operating
points in CFXPre.



7.3. PRE-PROCESSING 47

(a) Hub (b) Shroud (c) Runner blades

Figure 7.12: Smooth wall boundaries of the runner in CFXPre.

Figure 7.13: Inlet boundary in CFXPre.

ṁ = Qρ = QedD
2
2
√
gHρ (7.3)

Table 7.3: Mass flow values for the operating points in CFXPre.

BEP Full load Part load
Mass flow 183 211 112

In order to account for the guide vane opening angle, the flow direction at the
inlet is set in cylindrical coordinates. The axial velocity component is assumed
to be zero. The tangential velocity component is set as -1 for all the simulations,
and the radial component is altered to change the inlet angle. The radial velocity
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component for each operating point is calculated using equation (7.4). Table 7.4
shows the velocity components for the simulations.

~Vr = ~Vθ tanα (7.4)

Table 7.4: Inlet velocity components for the operating points in CFXPre.

BEP Full load Part load
Axial 0 0 0
Tangential -1 -1 -1
Radial -0,176326 -0,19438 -0,122784

Draft tube

The draft tube domain, shown in figure 7.14, is set as stationary. The walls of
the draft tube are set as smooth walls, and the outlet is set as an opening with
−75kPa as the outlet pressure. The draft tube outlet is shown in figure 7.15.

Figure 7.14: Stationary domain in CFXPre.

Runner-Draft tube interface

The interface between the runner and the draft tube, shown in figure 7.16, is
a critical part of the simulation. The interface consists of the runner outlet on
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Figure 7.15: Outlet boundary in CFXPre.

one side, and the draft tube inlet on the other side. The connection is a general
connection with a frozen rotor. In order to get the effects of the runner rotation
in the draft tube flow, the pitch change is set to none.

Figure 7.16: Domain interface between runner and draft tube in CFXPre.

7.3.2 Solver definitions

The operating points are evaluated in both steady state- and transient analysis.
The two simulation types do not have the same solver setup.
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Turbulence

The hybrid turbulence model SST is used in both steady state- and transient
simulations. For a description of the SST turbulence model, see appendix A.
The turbulence numerics option is set for high resolution.

Advection scheme

The steady state simulations use a high resolution advection scheme, while the
transient simulations use the upwind advection scheme.

Convergence criteria

The convergence criteria for the steady state simulations is set at 10−4 for the
MAX residuals, while the transient simulations are set at 10−4for the RMS resid-
uals. In case there are convergence problems due to the unstable nature of the
draft tube flow, the pressure difference from inlet to outlet is monitored. If the
residuals do not converge, but the pressure difference stabilizes, the general be-
havior of the draft tube can still be analyzed.

Transient time treatment

The timestep in the transient analysis is 0,01 seconds. This is a very large
timestep considering the short distance between nodes in the mesh and the high
velocities. A sufficiently small timestep can be calculated using the stability
criterium in equation (7.5)

C = u∆t
∆x ⇒ ∆t = C · x

u
(7.5)

The analysis is only stable for values of C < |1| [10]. The solver uses the
Second Order Backward Euler scheme in time.
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7.4 Simulation
A total of nine simulations are performed, three simulations for each operating
point. Table shows the simulations performed.

Table 7.5: Simulations performed in CFX.

Sim. Operation Type ∆t [s] Total time Initial time
1 BEP Steady state n/a n/a n/a
2 BEP Transient 0,01 3 s 0 s
3 BEP Transient 0,01 1 s 3 s
4 Full load Steady state n/a n/a n/a
5 Full load Transient 0,01 3 s 0 s
6 Full load Transient 0,01 1 s 3 s
7 Part load Steady state n/a n/a n/a
8 Part load Transient 0,01 3 s 0 s
9 Part load Transient 0,01 1 s 3 s

The 3 second transient simulations start with no flow in the draft tube, to al-
low the natural flow of the operating point to develop. The 1 second transient
simulations continues from 3 to 4 seconds, with a finer output of results. The
3 second transient analysis creates a results file every 25 timesteps, while the 1
second analysis creates a results file for every timestep. The results from 3 to
4 seconds are used for the final analysis of the draft tube flow at the operating
points.
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7.5 Post-processing
The post-processing focuses on examining the flow in the draft tube. By speci-
fying locations in the draft tube, CFX can calculate the variables of interest at
these locations.

7.5.1 Surfaces
For flow visualization, a cross section of the entire draft tube is created. Figure
7.17 shows the draft tube cross section. This plane is the location for pressure
and velocity contours, as well as velocity vectors to examine backflow.

Figure 7.17: Cross section of the draft tube in the ZX plane at Y=0.

To examine numerical results, cross sections normal to the flow direction are
created through the draft tube. The cross sections are shown in figure 7.18.
These cross sections also function as locations for velocity and pressure contours,
and velocity vectors. There are 9 cross sections through the draft tube. The first
cross section is located at the runner outlet. The second cross section is located
25 cm below the runner outlet in the draft tube cone. The draft tube outlet
is the last cross section. The steady state simulations, as well as the 3 second
transient simulations, calculate numerical values at all the cross sections. This is
in order to ensure the flow is developed fully before the final 1 second transient
simulations start. The 1 second simulations focuses on the cross section in the
draft tube cone, shown in figure 7.19. This is located 25 cm below the runner,
and is also a normal location for pressure measurements in model tests.
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Figure 7.18: Cross sections through the draft tube.

7.5.2 Walls
At the intersection between the draft tube wall and the cross sections in figure
7.18, polylines are created. The pressure measurements at these polylines ex-
amine general pressure pulsations in the draft tube. The polylines are shown in
figure 7.20.

7.5.3 Points
A point is placed on each of the polylines in figure 7.20. These points examine
asynchronous pressure pulsations in the draft tube, and are the basis for the
comparison with pressure measurements in the model test.

7.5.4 Iso-surface
To examine the shape of the vortex rope, an Iso-surface of pressure is created.
The pressure level can be adjusted to reveal the general shape of a vortex rope.
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Figure 7.19: Cone cross section.

Figure 7.20: Polylines and points on the draft tube wall.



Chapter 8

Experimental Results

8.1 Hill Chart
The results from the model test performed at the beginning of this study suffered
from measurement deviations due to calibration errors and defects in some of the
measuring instruments. Figure 8.1 shows the hill chart generated from the model
test performed by Jørgen Ramdal at the laboratory in 2007.

8.2 Pressure pulsations
There were not performed any pressure measurements in the draft tube cone
during this thesis, due to limitations in time and proper equipment. Figure 8.2
shows a FFT of the pressure pulsations measured during the model test performed
in 2007 by Jørgen Ramdal at three different operating points.

8.3 Vortex rope
The part load vortex rope is not visible during the model test, however, when
altering the pressure in the reservoir tank a vortex rope appears. The vortex
ropes at full load and part load are shown in figure 8.3.
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Figure 8.1: Hill chart for the Tokke model turbine.
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(a) ned = 0, 179

(b) ned = 0, 183

(c) ned = 0, 186

Figure 8.2: FFT of the pressure pulsations measured in 2007.
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(a) Full load (b) Part load

Figure 8.3: Vortex ropes during the model test.



Chapter 9

Numerical Results

9.1 Grid Sensitivity Analysis
Figure 9.1 shows the grid sensitivity analysis for the runner and the draft tube,
respectively. The analysis is inconclusive, as there is no clear indication that the
difference in calculated values decrease towards the denser meshes. The meshes
used in the simulations have 912.787 nodes for the draft tube, and 642.000 nodes
for the runner.

9.2 Steady state simulations
The pressure measurements at the cross sections for the steady state simulations
are listed in table 9.1.
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(a) Runner

(b) Draft tube

Figure 9.1: Grid sensitivity analysis for the runner and draft tube.
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Table 9.1: Pressure measurements from the steady state simulations.

Cross section Location BEP Full load Part load

Runner outlet
Surface -76,90 kPa -80,98 kPa -76,10 kPa
Wall -77,22 kPa -76,97 kPa -75,03 kPa
Point -77,64 kPa -77,13 kPa -75,65 kPa

Cone
Surface -76,60 kPa -78,59 kPa -76,37 kPa
Wall -76,04 kPa -75,88 kPa -75,64 kPa
Point -76,06 kPa -75,88 kPa -75,60 kPa

3
Surface -75,97 kPa -76,71 kPa -76,14 kPa
Wall -75,78 kPa -75,68 kPa -75,72 kPa
Point -76,06 kPa -76,00 kPa -75,92 kPa

4
Surface -75,53 kPa -75,76 kPa -75,79 kPa
Wall -75,44 kPa -75,32 kPa -75,44 kPa
Point -75,88 kPa -75,93 kPa -75,84 kPa

5
Surface -75,43 kPa -75,57 kPa -75,72 kPa
Wall -75,32 kPa -75,24 kPa -75,52 kPa
Point -75,64 kPa -75,60 kPa -75,54 kPa

6
Surface -75,51 kPa -75,74 kPa -75,22 kPa
Wall -75,49 kPa -75,57 kPa -75,21 kPa
Point -75,57 kPa -76,05 kPa -75,32 kPa

7
Surface -75,49 kPa -75,69 kPa -75,18 kPa
Wall -75,49 kPa -75,55 kPa -75,18 kPa
Point -75,54 kPa -75,66 kPa -75,20 kPa

8
Surface -75,17 kPa -75,23 kPa -75,06 kPa
Wall -75,17 kPa -75,23 kPa -75,06 kPa
Point -75,16 kPa -75,22 kPa -75,06 kPa

Outlet
Surface -75,00 kPa -75,00 kPa -75,00 kPa
Wall -75,00 kPa -75,00 kPa -75,00 kPa
Point -75,00 kPa -75,00 kPa -75,00 kPa
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9.3 3 second transient simulations
The pressure is measured at the surface, wall, and point of each cross section.
Figures 9.2 and 9.3 show the pressure measured at the points on the cross sections
as the flow develops from the initial conditions. The measurements span over 3
second, with a sampling every 0,25 seconds. The development of the wall pressure
is shown in figure 9.4, and the surface pressure is shown in figure 9.5.

Figure 9.2: Pressure measurements through the draft tube at part load.
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Figure 9.3: Pressure measurements through the draft tube at BEP and full load.
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Figure 9.4: Wall pressure through the draft tube.
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Figure 9.5: Surface pressure through the draft tube.
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9.4 1 second transient simulations
Figures 9.6 and 9.7 show the pressure measurements from the cone cross section
in the draft tube. The simulation time is from 3 to 4 seconds, with sampling
every 0,01 seconds.

Figure 9.6: Pressure in the draft tube cone at part load.
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Figure 9.7: Pressure in the draft tube cone at BEP and full load.
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9.5 Flow visualization
In order to see the influence the operating point has on the draft tube flow, images
from the post-processing are shown for a visual comparison. The results are from
the last file of the 1 second transient analysis.

9.5.1 Velocity streamlines
Figure 9.8 shows velocity streamlines through the turbine starting at the runner
inlet. The view is close to the runner and draft tube cone, to emphasize the flow
difference at the runner outlet between the operating points. The figure clearly
shows the difference in flow rotation at the runner outlet.

9.5.2 Draft tube cross section
Figure 9.9 shows the pressure contour on the cross section of the draft tube. The
BEP pressure contour shows a small symmetrical zone of low pressure at the tip
of the runner hub. When operating at full load, the pressure contour shows a
much larger symmetrical zone of low pressure. In the part load operating point,
the low pressure zone below the runner hub has become asymmetrical. This is
treated in the discussion.
Figure 9.10 shows the velocity contour on the draft tube cross section. Again,
the BEP and full load simulations show a symmetric profile, with the full load
velocity being greater at the center of the runner axis. The part load simulation
shows an asymmetrical velocity compared to the BEP and full load simulations.
Figure 9.11 shows velocity vectors on the draft tube cross section. The BEP and
full load simulations both give the same visual impression as the velocity contour
in figure 9.10. The part load simulation clearly shows backflow, which is treated
in the discussion.

9.5.3 Cone cross section
Figure 9.12 shows the pressure contour, velocity contour, and the velocity vectors
at the cross section of the cone. The radial distribution of velocity and pressure
indicate stable flows for both the BEP and the full load simulations. Note the
opposite direction of the velocity vectors for full load and part load. The asym-
metric properties of the part load simulations are treated in the discussion.

9.5.4 Pressure Iso-surface
Figure 9.13 shows an Iso-surface of pressure at -77 kPa in the draft tube. The
figure gives the same impression as the pressure contour. The BEP and full load
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operating points have respectively a small and large symmetrical surface, while
the part load surface has a cork-screw shape.
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(a) BEP

(b) Full load

(c) Part load

Figure 9.8: Velocity streamlines leaving the runner.
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(a) BEP

(b) Full load

(c) Part load

Figure 9.9: Pressure contour at the cross section of the draft tube.
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(a) BEP

(b) Full load

(c) Part load

Figure 9.10: Velocity contour at the cross section of the draft tube.
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(a) BEP

(b) Full load

(c) Part load

Figure 9.11: Velocity vectors at the cross section of the draft tube.
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(a) BEP Pressure (b) BEP Velocity (c) BEP Vector

(d) Full load Pressure (e) Full load Velocity (f) Full load Vector

(g) Part load Pressure (h) Part load Velocity (i) Part load Vector

Figure 9.12: Pressure, Velocity, and Vectors in the cone cross section.
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(a) BEP

(b) Full load

(c) Part load

Figure 9.13: Pressure Iso-surface at -77 kPa in the draft tube.
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Chapter 10

Discussion

Because the BEP and full load simulations resulted in stable and uniform draft
tube flows, the discussion will focus on the draft tube flow at part load.

10.1 Flow development
The simulations show a decrease in pressure over time at the draft tube cone.
Figure 10.1 shows a comparison between the pressure measured at the draft
tube cone in the steady state analysis, and the transient analysis. Although the
transient pressure measurements fluctuate about the steady state pressure, the
bottom peaks show a decrease in pressure for every period. The flow is therefore
most likely not fully stabilized.

Figure 10.1: Pressure measurements in the draft tube cone at part load.
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10.2 Pressure pulsation frequency
The pressure pulsation at the draft tube cone is shown in figure 10.2. The period
is measured from the bottom peaks, as they are clearly defined.

Figure 10.2: Period of pressure pulsation.

With a period of 0,59 seconds, the frequency of the pressure pulsations is calcu-
lated as:

frequency = 1
T

= 1
0, 59 = 1, 694915 ≈ 1, 7
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10.3 Flow conditions during one period
The pressure pulsation in the 1 second transient analysis, has a rounded top peak
compared to the bottom peak. The cause of this is examined by evaluating the
flow conditions through the period, to look for natural causes. Figures ?? shows
the pressure conditions in the draft tube cone cross section through one period.
The pressure is measured at a point, which is visible as a black dot at the right
of the cross section. From the figure, it is clear that the low pressure zone in
contact with the draft tube wall is smaller than the opposite high pressure zone.
This explains the difference in pressure peaks.

10.4 Comparison with model tests
Figures 10.4 and 10.5 show the vortex ropes from the model test and CFD anal-
ysis, respectively. The model test vortex rope has a higher angle than the vortex
rope from the CFD-analysis.

10.5 Comparison with theoretical frequency
The theoretical definition of the pressure fluctuating frequency, defined in equa-
tion (4.8) is:

f = n

c

with n being the runner speed in rotations per second and c being a number be-
tween 3,2 and 4. By rearranging the equation, the frequency from the simulations
can be compared.

c = n

f
= 5, 816

1, 7 = 0, 29

The simulation frequency is lower than the theoretical frequency. This could be
caused by a number of errors. The vortex rope in the simulation is an ISO-
surface of water, which means the draft tube cone contains only water. The
velocity, especially the rotating velocity component, cu, can be changed when
passing through the domain interface between the dunner and the draft tube.
This would give the draft tube inlet a velocity profile of a runner with slower
rotating speed.
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(a) 0,05s (b) 0,10s (c) 0,15s

(d) 0,20s (e) 0,25s (f) 0,30s

(g) 0,35s (h) 0,40s (i) 0,45s

(j) 0,50s (k) 0,55s (l) 0,60s

Figure 10.3: Pressure contour in cone cross section at through one period.
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Figure 10.4: Draft tube vortex rope during model test.
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Figure 10.5: Draft tube vortex rope in CFX.
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Conclusion

In this thesis the fluctuating draft tube flow in a Francis turbine operating at
part load is investigated. Two types of test are used. A model test of the turbine
in the Waterpower laboratory is performed at Hn = 10m, and the flow entering
the draft tube is analyzed at three operating points, the BEP, full load, and part
load. The three operating points are then recreated in a CFD analysis in ANSYS
CFX. The primary goal is to perform a transient CFD analysis of the runner and
draft tube at part load, and compare the results with experiences from the model
test.
The draft tube used in the tests is the Tokke model turbine draft tube in the
Waterpower laboratory, and the runner is designed at NTNU.
3D models of the draft tube and runner geometry are created in ANSYS ICEM
CFD, and a structured mesh is created for the system. 3 simulations are per-
formed on each operating point, steady state, 3 second transient starting with
zero flow in the draft tube, and 1 second transient starting from the last results
of the 3 second analysis. The simulation conditions are identical to the model
test, with reduced pressure at the draft tube outlet. The CFD solver uses the
SST turbulence model, with a high resolution advection scheme and an upwind
scheme for the resolution in time.
The simulation results are compared with the model test results and theoretical
predictions. Even though the simulations are performed with a single-phase flow,
the cork screw shaped draft tube vortex appears at part load. The pulsating fre-
quency of the vortex rope is lower that the theoretical frequency at this operating
points, which is most likely caused by numerical dissipation and averaging of the
velocity profile from the runner outlet to the draft tube inlet.
Based on the results one can conclude that the CFD simulations at part load
produce results that fit with the mathematical models of the draft tube vortex.
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The numerical investigations of the turbine enables a more precise evaluation of
the flow variables believed to cause draft tube vortex ropes. With increasing
computational capacity, this complex flow phenomenon will soon be thoroughly
explained.
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Further work

With increased computational capacity, the mesh density can be increased to
ensure a grid independent solution. The mesh density near the outlet is not
prioritized in this thesis, which can be a source of errors. A denser mesh will
also reduce the numerical dissipation of the solutions. Longer transient simu-
lations could examine the pressure drop experienced in this thesis, and verify
a fully developed flow. More turbulence models should be examined, to exam-
ine possible dissipation reduction in the fluctuating draft tube flow. In order to
have a theoretically stable transient solution, the timesteps should be reduced
drastically, which would demand an increased computer capacity. In addition,
different advection schemes should be examined, which could also contribute to
the reduction of the numerical dissipation.
As this thesis focuses on the draft tube flow, the runner performance has not
been evaluated numerically. A sufficiently dens runner mesh could evaluate the
effects of draft tube surging on the runner performance. This would include a
reduction in the Y+ of the mesh, in order to resolve the boundary layer flow
along the walls of the runner. The effect of the runner geometry should also be
examined. Hub extensions have been proven to reduce the vortex rope, which is
an interesting topic for further numerical investigations.
If the above mentioned problems are solved, it is possible to create an accurate
Hill chart with CFD methods only. By simulating the turbine with a two-phase
flow, the actual cavitating vortex rope can be examined more thoroughly. In
addition, by introducing the spiral casing to the simulations, the impact of the
vortex ropes can be investigated to a greater extent.
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Appendix A

ANSYS CFX

A.1 SST Turbulence model
The SST turbulence model combines advantages of both the standard κ−ε model
and the κ − ω model. The SST model modifies the turbulence production term
in the turbulent kinetic energy equation. The production term from the κ − ω
model is:

Pt = µtΦ (A.1)

The SST model replaces it with:

Pt = min (µtΦ, Clmtε) (A.2)

By default, the limiting value of Clmt is set to 1015, so equation A.2 is es-
sentially the same as with equation A.1. However, equation A.2 allows the SST
model to eliminate the excessive build-up of turbulence in stagnation regions for
some flow problems with the use of a moderate value of Clmt. Further, the SST
model adds a new dissipation source term in the specific dissipation rate equation:

(1− F1) 2ρσω2

ω

[
∂κ

∂x

∂ω

∂x
+ ∂κ

∂y

∂ω

∂y
+ ∂κ

∂z

∂ω

∂z
+
]

(A.3)

Here, F1 is a blending function that is one near the wall surface and zero
far away from the wall. The expression of the bending function F1 is given by
Menter [11], and with the help of F1, the SST model automatically switches to
the κ−ω model in the near wall region and the κ− ε model away from the walls.
The model coefficients are all calculated as functions of F1:
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ϕ = F1ϕ1 + (1− F1)ϕ2 (A.4)

Here, ϕ stands for the model coefficients σκ, σω, β
′ , and γ of the SST model,

and ϕ1 and ϕ2 stand for the model coefficient of the κ− ω model and the κ− ε
model respectively. Default values for the various constants in the SST model
are given in table A.1

Table A.1: SST model coefficients

Constant Default value in CFX
Clmt 1015

σκ1 1,176
σω1 2,0
γ1 0,5532
β

′

1 0,075
σκ2 1,0
σω2 1,168
γ2 0,4403
β

′

2 0,0828
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