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Abstract 

The aim of this study is to provide an overview of the core factors for the environmental performance of 

future Norwegian high‐speed rail (HSR) and to study their  likely development up to 2050  in a  life‐cycle 

assessment (LCA) perspective. The analysis included the infrastructure, rolling stock and operations.  

This  work  was  conducted  with  MiSA,  an  environmental  consulting  company  based  in  Trondheim, 

Norway. MiSA  recently  completed  a  life‐cycle  inventory  (LCI)  for HSR  in Norway.  To  start with,  core 

factors were chosen through a literature review. The corridor Oslo‐Trondheim was then modeled using 

the  new  LCI  in order  to  establish  a  set of  the  core  factors  to  analyze.  The  LCA was performed with 

SimaPro.  LCA  literature  is  the  preferred  source  for  emissions  data.  First  because  results  show  that 

emissions must  cover  life‐cycle  emissions  from  fuel,  electricity, materials  and  processing  (source‐to‐

wheel).  Second,  LCA  provides  guidelines  for  good  practice  for  environmental  accounting  and 

benchmarking of transport alternatives.  

Chapter 4 is an investigation of the core factors. Through the study of technical writings for current and 

future use of HSR  in Norway,  as well  as  sensitivity  analyses,  certain  core  factors were  earmarked  to 

produce detailed scenarios for future use up to 2050. 

Cement, steel, XPS, infrastructure, deforestation and the number of passengers per day are core factors. 

Cement, steel and XPS are the materials that have the most impact. The impact of the infrastructure of 

future Norwegian HSR  is high because the number of passengers and the carbon  footprint  (CF) of the 

electricity mix  used  for  operation  are  low.  Norwegian  HSR  is  lacking  passengers.  A  high  number  of 

passengers  in  the  Norwegian  context  constitutes  a  low  number  of  passengers  in  other  European 

countries. A high potential for change  is to abstract passengers from air travel, which  is the most used 

mode of transport in Norway in 2010. The energy used for operation and the energy per seat‐km are not 

core factors because the electricity mix used for operation has a low CF (166 g CO2/kWh).  

The impact of HSR is reduced on average by 17% by updating the database (scenario updated 2010). The 

impact  is reduced by 50%  in a  likely future (scenario 2050) by  improving the production technology of 

the materials  for  the  infrastructure and by having more passengers. Finally,  the  impact  is  reduced by 

60% by, in addition to changes from scenario 2050, setting specific requirement to the suppliers and by 

having an active yield management (scenario 2050+).  
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3. Implement the scenarios in a life‐cycle assessment of high‐speed rail in Norway 
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1 INTRODUCTION 

Background 

Norway is assessing the feasibility – financial costs, social and environmental impacts - of future 
high-speed rail (HSR). The size of potential market for HSR in Norway is assessed as much smaller 
than HSR markets already established in other countries such as France and Germany, but similar to 
that of Sweden (Atkins Ltd 2011). VWI (2006) conducted a feasibility study that shows several 
advantages for Norwegian HSR. HSR reduces travel times, greenhouse gases (GHG) and exhaust 
emissions. The accessibility between major cities and regions will increase. HSR transport reduces air 
transport considerably and will resolve airport capacity problems in the future.  

Experiences from other European countries show that the Norwegian context presupposes the 
following three conditions to achieve a positive result. Firstly, main markets should be concentrated 
on the major points off demand. In addition, only a few numbers of intermediate stops should be 
taken in greater communities with sufficient traffic demand. Secondly, planning of infrastructure 
should aim for single track, where technically possible, for cost optimization. Thirdly, additional 
regional services should play a feeder role for the high-speed network (VWI 2006). 

HSR means running 200 km/h or faster. Infrastructure, rolling stock and operation are part of an 
integrated concept. Rail has comparable travel times with air traffic and shorter travel times than car 
traffic in such an integrated system (VWI 2006). New lines need to be built. Their maximum speeds 
depend on topography and on the settlement structure. For instance in Norway, for an average 
running speed of about 150 km/h or more to be reached, it would not be possible to have many 
stops between the major cities. Additionally, new train technology with high power is required for 
fast acceleration. Usually, the new HSR infrastructure consists of a combination of existing and 
upgraded infrastructure (VWI 2006). This would be the case in Norway as well (Metier AS 2007). 

The figure below shows an estimate of the average number of passengers per day for Norwegian 
HSR on the left and the expected travel times on the right. The lines Oslo-Bergen and Oslo-
Trondheim are the most important connections in Norway for HSR (VWI 2006). This finding is shared 
by (Atkins Ltd 2011) and supported by international studies that show that high volumes of travel 
generally produce the best economic / financial case for HSR routes. These two lines are considered 
to be worth realizing.  

 

Figure 1-1: Basic network for Norwegian HSR, copied from VWI (2006) 
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Aim and scope 

Previous studies that have investigated the environmental performance of conventional rail and HSR 
have concluded that the treatment of temporal considerations is important for many of the 
controlling factors such as the energy efficiency of whole trains, seat capacity per train and seat 
utilization (Korsmo and Bergsdal 2010; UIC 2009; Network Rail 2010). Infrastructure as well plays a 
key role. Especially when the electricity mix used for operation has a low carbon footprint (CF) 
(Stripple and Uppenberg 2010; UIC 2009), which is the case in Norway. The materials used for the 
construction phase are worth a deeper study (Korsmo and Bergsdal 2010). 

The development of the energy supply for rail operation should also be included. Most HSR are 
operated with electricity. The future electrical system therefore becomes a particularly sensitive 
model decision. 

This work is conducted with MiSA1, an environmental consulting company. MiSA has recently 
completed a life-cycle inventory (LCI) for HSR in Norway, as well as the competing long-distance 
transport alternatives. This LCI for HSR is used in this project. The life-cycle assessment (LCA) is 
performed with SimaPro2

The aim of this study is not to compare HSR with other means of transportation, but rather to find 
out core factors for Norwegian HSR and to draw their likely development in a 60 years perspective in 
an LCA point of view. To do so, the corridor investigated in this study is Oslo-Trondheim. HSR will 
improve journey times from 6h45 currently to 2h45. If a new separate HSR line is built, this line is 
expected to attract around 4920 passengers per day in 2025 (Atkins Ltd 2011). 

. LCA literature is the preferred source for emissions data. First because 
results show that emissions must cover life-cycle emissions (source-to-wheel) from fuel, electricity, 
material and processing. Second, LCA provides guidelines for good practice for environmental 
accounting and benchmarking of transport alternatives (Svåna 2011). This LCA study will give a 
comprehensive picture of the reality, even if reality is simplified and distorted to a certain extent.  

Research questions 

The following questions are answered in this project: 

1. What are the core factors for the environmental performance of HSR in Norway? 
2. What are the likely development scenarios for these factors up to 2070? 
3. What are the results of the implementation of the scenarios in an LCA of HSR in Norway? 

  

                                                            
1 www.misa.no 
2 SimaPro is the most widely used LCA software. 
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Outline 

1. What are the core factors for the environmental performance of HSR in Norway? 

Core factors for the environmental performance of HSR in Norway are found out of the literature in 
chapter 2, and out of an LCA model called HSR-LCA model in a chapter 3. Chapter 2 consists of a 
literature review. In chapter 3, HSR-LCA, the model developed in this project is explained. HSR-LCA 
consists of three main parts: infrastructure, rolling stock and operation. Infrastructure and rolling 
stock are further divided into construction, maintenance and waste/end-of-life. Operation consists 
of two parts: operation of rolling stock and operation of infrastructure.  

In chapter 4, some of the core factors found in chapter 2 and 3 are investigated. In section 4.1, focus 
is put on elements from the background system (cement, steel and XPS). In section 4.2, elements 
from the foreground system are examined (electricity mixes, electricity required to run a train, 
number of passengers per day, seat capacity per train, load factor. Chapter 4 is organized in such a 
way that first, theory on the element is given. Additionally, for some elements, a sensitivity analysis 
is conducted. To make it clearer for the readers, sensitivity analysis are put in blue boxes. Sensitivity 
analyses are conducted on: 

Table 1-1: List of the sensitivity analyses conducted 

Cement Use of secondary material for clinker production 

Use of secondary fuel for clinker production 
Steel Energy efficiency 

Use of scrap 

Use of common steel for rails 
XPS Blowing agent 
Energy Energy per pkm 

Electricity mix used for operation 

 

The sensitivity analyses conducted were time-consuming. For instance, for steel production, to 
change the energy efficiency, a coefficient has been introduced to reduce all the energy sources. In 
SimaPro, steel production is organized in such a way that each process consists of a single box. 
Original processes from the database cannot be modified. They have to be copied and linked 
together again. The same has been done for cement production. Direct emissions have also been 
adjusted by introducing parameters. Please see appendix 2: “List of the parameters” for more 
details. 

Note:  At the beginning of chapter 2, 3 and 4 a short summary of the chapter is given. The sensitivity 
analyses are in blue boxes. 

2. What are the likely development scenarios for these factors up to 2070? 

The likely development scenarios for these factors are drawn up to 2050 and not 2070. This change 
of 20 years is due to the literature that mainly covers the time span up to 2050. The likely 
development of these factors is based on chapter 4. 
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3. What are the results of the implementation of the scenarios in an LCA of HSR in Norway? 

The scenarios are implemented and the results are given in chapter 5. 

The ISO14040:2006 (ISO 2006a) standard on LCA gives the framework and principles on what LCA is 
and why it should be applied. Details on the techniques, requirements and guidelines on LCA are 
found in the ISO14044:2006 (ISO 2006b). 

According to ISO14040:2006 life cycle is the “consecutive and interlinked stages of a product system, 
from raw material acquisition or generation from natural resources to final disposal” and Life cycle 
assessment (LCA) the “compilation and evaluation of the inputs, outputs and the potential 
environmental impacts of a product system throughout its life cycle”. LCA consists of four steps (ISO 
2006a, 2006b):  

1. Definition of goal, scope and functional unit   
“The goal and scope of an LCA shall be clearly defined and shall be consistent with the 
intended application. Due to the iterative nature of LCA, the scope may have to be refined 
during the study.” “The functional unit is the quantified performance of a product system for 
use as a reference unit.”       (ISO 2006b) 
 

2. Life cycle inventory (LCI)  
“phase of life cycle assessment involving the compilation and quantification of inputs and 
outputs for a product throughout its life cycle”    (ISO 2006a) 
 

3. Life cycle impact assessment (LCIA)  
“phase of life cycle assessment aimed at understanding and evaluating the magnitude and 
significance of the potential environmental impacts for a product system throughout the life 
cycle of the produce ”       (ISO 2006a) 
 

4. Interpretation of the study 
“phase of life cycle assessment in which the findings of either the inventory analysis or the 
impact assessment, or both, are evaluated in relation to the defined goal and scope in order 
to reach conclusions and recommendations”    (ISO 2006a) 
 

LCI is the most demanding task in performing LCAs. Data is collected for the background and 
foreground system. Background data is data for generic materials, energy, materials and waste 
management system. Usually, 80% of data is readily available in databases. Foreground data refers 
to specific data such as a particular product system or a particular specialized production system. In 
many cases, it has to be collected from companies. In the LCIA, the environmental relevance of all 
inputs and outputs is assessed. Usually, inventory results of an LCA contain hundreds of different 
emissions that have to be assigned to impact categories. For instance, CO2 and CH4 are both assigned 
to the impact category “Global Warming”. SO2 and NH3 are assigned to “Acidification”. Emissions are 
weighted through the use of characterization factors. For example, in a 100 years perspective, 1 kg 

1.1 LIFE-CYCLE ASSESSMENT 
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CH4 contributes 25 times more to global warming than 1 kg CO2. The impact category “Global 
Warming” being expressed in CO2 equivalents, the characterization factor is 1 for CO2 and 25 for CH4. 
A final and optional step consists of the normalization3

Important fields of applications of LCA are packaging and packaging materials, energy, building 
materials, detergent and other cleaning systems, TVs and computer systems or food (from 
traditional and organic culture) (Heijungs 2007).  

 of the results in order to show to what extent 
an impact category has a significant contribution to the overall environmental problem. The 
functional unit or unit of comparison makes it possible to compare products with different 
performance characteristics. For instance, A is a milk carton to be used only once and B a returnable 
milk bottle that can be used ten or more times. If the goal is the study of milk packaging systems, A 
and B cannot be compared directly. A more appropriate approach would be to compare ways of 
packaging in order to deliver 1000 liters of milk (Pré Consultants 2008). 

For more details on LCA mathematics, please see Appendix 1: “LCA Mathematics”. 

                                                            
3 Normalization is done by dividing the impact category by a normal value. The most common procedure to determine the 
normal value is the determination of the impact category indicators for a region during one year. If desired, the results can 
be divided further up by the number of inhabitants of a region. 
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2 CORE FACTORS FOR THE ENVIRONMENTAL PERFORMANCE OF HSR IN THE 

LITERATURE 

Core factors for the environmental performance of HSR are found in the literature. A total of seven 
studies are investigated. The first three are directly related to Norwegian HSR (Svånå 2011, Korsmo 
and Bergsdal 2010, Schlaupitz 2008), the fourth one to Swedish HSR (Stripple and Uppenberg 2010), 
the fifth one to European HSR (UIC 2009) and the sixth one to German HSR (Rozycki et al. 2003). The 
last one compares conventional rail with HSR (Network Rail 2010).  

The core factors for the environmental performance of future Norwegian HSR are first presented in 
the table below. The studies investigated are presented into more detail after the summarizing 
table.  

Table 2-1: Core factors in the literature 

Background system References 

Share of infrastructure on a system level  
Svånå (2011), Korsmo and Bergsdal (2010), Schlaupitz (2008), 

Stripple and Uppenberg (2010), UIC (2009), Rozycki et al. 
(2003), Network Rail (2010) 

Construction phase of infrastructure 
Svånå (2011), Korsmo and Bergsdal (2010), Stripple and 

Uppenberg (2010) 

Production of rails Stripple and Uppenberg (2010) 

Steel 
Korsmo and Bergsdal (2010), Schlaupitz (2008), Stripple and 

Uppenberg (2010), Rozycki et al. (2003), Network Rail (2010), 

Cement 
Korsmo and Bergsdal (2010), Schlaupitz (2008), Stripple and 
Uppenberg (2010), Rozycki et al. (2003), Network Rail (2010) 

XPS Korsmo and Bergsdal (2010) 

Use of more renewable energy in the 
steel/cement production process 

Stripple and Uppenberg (2010) 

Use of more recycled steel/cement Stripple and Uppenberg (2010) 

Deforestation Svånå (2011), Schlaupitz (2008), Stripple and Uppenberg (2010)  

Foreground system References 

Component based model Svånå (2011), Korsmo and Bergsdal (2010), UIC (2009) 

Electricity mixes 
Svånå (2011), Schlaupitz (2008), Stripple and Uppenberg 

(2010), UIC (2009), Rozycki et al. (2003), Network Rail (2010)  

Passengers per train 
Svånå (2011), Schlaupitz (2008), UIC (2009), Network Rail 

(2010) 

Traction energy Rozycki et al. (2003) 

Seat occupancy Svånå (2011), Schlaupitz (2008), UIC (2009); Network Rail 2010 

Improving maintenance to increase lifetime 
of components and thus, decrease 

emissions 
Stripple and Uppenberg (2010) 

Freight transport Schlaupitz (2008) 
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1. A Methodology for Environmental Assessment - Norwegian High Speed Railway Project 
Phase 2. 2011. Asplan Viak, MiSA, VWI, and Brekke Strand.  
Norway 

The Norwegian Rail Administration hired Asplan Viak AS to conduct the project “Environmental 
analyses”, as part of Phase 2 of the assessment of future Norwegian HSR. Asplan Viak took as 
partners MiSA, Verkehrswissenschaftliches Institut Stuttgart GmbH (VWI Stuttgart) and Brekke & 
Strand Akustikk AS. This project was supervised by Siv. ing Randi Birgitte Svånå.  

The report is divided into four subjects:  

� Subject 1 – Landscape analyses (Asplan Viak) 

� Subject 2 – Environmental intervention effects (Asplan Viak) 

� Subject 3 – Effects on noise (Brekke & Strand Akustikk AS, VWI) 

� Subject 4 – Assessment of climate related environmental effects (MiSA) 

Subject 4 only is of interest for this master thesis. The aim of subject 4 is “to describe the approach 
to calculate the temporal distribution of emissions of carbon dioxide equivalents (CO2e), as resulting 
from development or non-development of high speed rail (HSR) concepts for passenger and freight 
transport in Norway.”

To do so, a component based inventory was developed by MiSA. This modular approach provides 
the flexibility for later adjustments and refinements for implementation in Phase 3. The composition 
of the corridors and the technologies for railway infrastructure and rolling stock can be adjusted as 
well. Modules are developed for all modes of transportation; rail, road and air. The goal is to 
compare HSR with alternative mode of transport. Final calculation for the corridor alternatives will 
be carried out in phase 3. 

This master thesis is based on the component model developed by MiSA.  

2. Miljøbudsjett for Follobanen. 2010. Jernbaneverket Utbygging 
Norway 

Korsmo and Bergsdal (2010) conduct an LCA on the new double-track line, Follobanen, from Oslo to 
Ski. The performed LCA includes the compilation and quantification of input factors and emissions. It 
includes the construction, operation/maintenance and waste/disposal for a computation period of 
60 years. The LCA of infrastructure represents a complex model with many input factors and 
processes. The LCA has been computed with SimaPro. The data for the background system comes 
from the Ecoinvent-database while the data for the foreground are compiled by the authors. 

This HSR line, Follobanen, has three specificities. Firstly, 95% of the line will consist of a deep tunnel. 
Secondly, the tunnel will have a high proportion of shotcrete (betonginjisering) concrete in the 
mountains. Finally, the open tracks have extensive structures concentrated on short stretches.  

According to the Product Category Rules (PCR), the lifetime of Follobanen and all of its components 
is set to 60 years. This leads to overestimations of the components that have longer lifetime, such as 
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bridges and tunnels. On the other hand, the impacts of components with shorter lifetimes are 
underestimated.  

The data for the foreground used for this master project are taken from Follobanen. Additionally, 
scaling coefficient to switch from double-tracks tunnels and bridges to one-track tunnels and bridges 
were used. No scaling coefficient for open sections was used, since double-track open section is used 
as well in this master thesis. 

The LCA is structured as followed: 

Level 1:  Track options 

� Alternative 1: 1-tube tunnel (1-løpstunnel) , with double track 

� Alternative 2: 2-tubes tunnel (2-løpstunnel), with 1 track each 

Level 2: Life cycle phase 

� Construction 

� Maintenance 

� Waste from maintenance 

� Disposal after end-of-life 

Level 3: Track stretches 

� Tunnel stretches 

� Arrival to Ski 

Level 4: Components 

� Open track 

� Structures 

� Components of the tunnel 

� Railway techniques (incl. technique installations) 

The results for level 1 show that the tunnel option with two tubes has the highest impact. Most 
emissions are related to their construction. For level 2, it is the construction and the maintenance 
which are allocated 90% of the emissions in all impact categories. 
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Figure 2-1: Follobanen - Life-cycle phase  

On level 3, it is the tunnel stretches that clearly dominate. On a component level (level 4), it is the 
components of the tunnel that dominates. Steel, cement and concrete represent 75% of the climate 
gas emissions. Steel stands for 85% of the emissions for eutrophication. Extruded polystyrene foam 
(XPS) is allocated 80% of the emissions of ozone depletion. The production and combustion of diesel 
is accounted for 12% of the emissions of photochemical smog. 

The table below shows the results for infrastructure construction.  

Table 2-2: Follobanen - Infrastructure construction (kg CO2 eq per m*year) 

Lifetime = 60 years 

Open section (double track) 
Tunnel (double track) 

1 tube 2 tubes 

134 210 265 

 

3. Energi- og klimakonsekvenser av moderne transportsystemer-Effekter ved bygging av 
høyhastighetsbaner i Norge. 2008. Norges Naturvernforbund 
Norway 

Schlaupitz (2008) completed a study for GHG and energy for Norwegian HSR. The study does 
certainly present one of the technically most comprehensive inventories for infrastructure of 
Norwegian HSR, based on international studies. The lifetime is set to 100 years. This is to take into 
account the changes in electricity mixes and changes in technology. He assumes a decrease in 
energy consumption up to 2020 and 2030 due to an improvement in energy efficiency. He also 
addresses the issue of deforestation in terms of carbon release from trees and from the soil. Finally, 
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he compares infrastructures of other modes of transports such as roads and airports with the 
infrastructure of HSR. 

He found that the construction of a double track line would not increase the GHG emission by more 
than 25%. He thus recommends the building of a double track line so as to make the most profit 
from the infrastructure. This conclusion is quite surprising and does not match the findings of HSR-
LCA, where emissions increase by 70% from single to double track. Nevertheless, there are 
uncertainties related to the scaling of the single track to double tracks when it comes to the use of 
inputs (innsatsfaktorer) for construction and the maintenance (Korsmo and Bergsdal 2010). In this 
project, I also used scaling factors that give higher differences from one-track to double-track.  

The table below shows the results for infrastructure construction.  

Table 2-3: Schlaupitz - Infrastructure construction (kg CO2 eq per m*year) 

Lifetime = 100 years 

Open section Tunnel Bridge 

single double single double single double 

18 22 59 72 90 125 

 

4. Life cycle assessment of railways and rail transports. 2010. Swedish Environmental 
Research Institute (IVL) 
Sweden 

Stripple and Uppenberg (2010) have used an LCA model to address the environmental performance 
of the Botnia Line, in the north of Sweden. This line is one-track. The results have then been used to 
develop Environmental Product Declarations (EPDs). For passengers transport, deforestation, 
infrastructure construction work and infrastructure material contribute most significantly to climate 
impact. The calculation period is set to 60 years. The LCA software used is KCL-ECO 

The entire railway system has been divided up into 7 general railway component models:  

1. Railway track foundation model 
2. Railway track model  
3. Railway electric power and control system model 
4. Railway tunnel model 
5. Railway bridge model 
6. Railway passenger station and freight station and freight terminal model 
7. Passenger and freight train model including train operation 

In HSR-LCA, the five first general railway component models are grouped into 3 entities: track, 
tunnel and bridge. Track consist of 1, 2 and 3; tunnel of 2, 3 and 4; bridge of 2 and 5. Stations (6) are 
not included in HSR-LCA. Train and operation are each one entity in HSR-LCA. Train includes the 
construction, maintenance and end-of-life of rolling stock. Operation includes operation of train and 
infrastructure.  
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The table below shows the results for infrastructure construction.  

Table 2-4: Botnia Line - Infrastructure construction (kg CO2 eq per m*year) 

Lifetime = 100 years 

Bo
tn

ia
 L

in
e 

Track foundation 
(1) 

Track 
(2) 

Electric power and 
control system (3) 

Tunnel (4) 
Bridge 

(5) 
Station 

(6) 
short 

<1000m 
long 

>1000m 

15 6 17 25 166 45 4 

H
SR

-L
CA

 

Open section (1+2+3) 
Tunnel (2+3+4) 

Bridge (2+5) short 
<1000m 

long 
>1000m 

38 48 189 51 

 

LCI data has been obtained from different sources (literature, from single plants and processes in 
operation, from equipment supplier, from legislation and directives). As long as possible, specific 
electric power was used for the different processes. For instance, a Swedish electric power 
production mix has been used for general use. For operation (train and infrastructure), a “green” 
electric power production mix has been used because the Swedish Rail Administration buys that 
type of electric power in accordance to its environmental strategy. In 2008, “green” meant 99,2% 
hydropower and 0,8% biomass fuel based. 

Deforestation contributes to up to 20% of climate change. The Botnia Line has almost entirely been 
built on forest land. These forest areas have been cut down and transformed into railway areas. 
These changes are univocal and trees will not be replanted. Therefore, CO2 emissions arising from 
the cut down of biomass are accounted for as emissions of fossil CO2 which contribute to climate 
change. In Norway, forest area consists of almost 40% of the national landscape. Furthermore, 
mountainous areas consist of 44% of the territory, and wetlands, lakes and glaciers of 13% (SSB 
Statistisk sentralbyrå 2009). There is therefore high probability that trees will be cut. Deforestation 
should thus be addressed for Norwegian HSR also, in a way or another. 

Infrastructure construction work has significant contributions (emissions from machines like 
excavators, trucks, etc) and limited contributions (material transport, infrastructure and train 
operations). Raw material acquisition and production of materials used for construction of 
infrastructure are crucial contributors to environmental impact categories. Steel accounts for 43% of 
the total emissions and cement for 32%. 

Potentials for reducing climate impacts: For vehicle production, improvement potentials are found 
in designing vehicles in a way to transport more per ton and in the use of materials with lower 
emissions of CO2 per mass unit. For deforestation, locations out of forest areas could be chosen. 
However, given the Norwegian topology, the potential here is not very high. Protected areas have 
also to be considered in the balance. For construction machines, there is a minor potential in the 
planning and the management of vehicle usage and a major one in the use of more fuel efficient 
vehicles, and the shift to renewable energy such as biofuels or electricity.  

Potentials to reduce CO2 emissions embedded in steel and cement:  
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� To reduce the amount of steel/cement needed per km railway/tunnel/bridge and time unit. 
This can be achieved by the use of rail profiles with lower steel content per meter, and/or by 
maximizing the lifetime by improving the maintenance strategy.  

� To reduce the emissions of CO2 per tonne of steel/cement. This could be done by using more 
renewable energy in the steel/cement production process and/or by using more recycled 
steel/cement. These measures call for management routines and procurements 
requirements.  
 

5. Carbon Footprint of HSR infrastructure (Pre-Study) - Methodology and application of HSR 
operation of European Railways. 2009. UIC International Union of Railways  
Europe 

UIC (2009) developed a methodology to account for the infrastructure of high-speed passenger 
traffic. The transport system is modeled according to the components of operation, rolling stock and 
track system. They developed a calculator with individual accessible options such as electricity mix, 
share of bridges/tunnels, average numbers trains running one single track a day and load factor. 
They drew several conclusions:  

� The track system mainly determines the carbon footprint (CF) of the infrastructure. That 
is, the higher the share of tunnels/bridges, the higher the CF.  

� The share of infrastructure is not negligible. It ranges from 31% to 85%, depending on 
the electricity mix used for operation, the traffic on the rail network and the share of 
tunnels and bridges.  

� The CF of the transport system depends on the number of trains per day per track. For 
instance, the CF of an infrastructure is of 10.87 g CO2 per m with 25 trains per day on a 
single track while it is of 3.1 g CO2 per m with 90 trains per day on single track.  

� The share of infrastructure increases with a decrease in the CF of the electricity mix. 

The table below shows the results for infrastructure construction.  

Table 2-5: UIC (2009) - Infrastructure construction (kg CO2 eq per m*year) 

Lifetime = 100 years 

U
IC

 

Earth 
works for 
common 
track (1) 

Double 
railway 
track (2) 

Railway 
track, switch 

(3) 

Telecommunications 
and signalization 
equipments (4) 

Energy 
requirements 

(5) 

Tunnel 
(6) 

Bridge 
(7) 

9 22 20 1 2 79 186 

H
SR

-

LC
A

 Open section (1+2+3+4+5) Tunnel (2+4+5+6) Bridge (2+5+7) 

53 104 210 
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6. Ecology Profile of the German HSR Passenger Transport System, ICE. 2003. Rozycki, Koeser 
and Schwarz  
Germany 

CO2 emissions for the ICE transport system are equivalent to 69.4 kg per ICE km. This amount is 
dominated by the energy used for operation (rail electricity). For passenger rail transport, rail 
infrastructure is not allocated more than 15% of the overall CO2 emissions. The construction phase 
dominates the life cycle of most rail infrastructure components. The electricity mix consists of 63% 
fossil fuels (pit coal, lignite), 30% nuclear and 7% renewable (hydro, wind, photovoltaic). This 
underlines the findings by UIC (2009), that conclude that the share of infrastructure decreases with a 
increase in the CF of the electricity mix.  

From their sensitivity analysis, the following factors become evident to play a key role for the 
ecological footprint on the transport system: 

� Train capacity utilization (passenger per train)  

� Traction energy (consumption, diesel or electricity drive)  

� Train load (e.g. trains per day) on the track  

� The share of tunnels  
 

7. Comparing environmental impact of conventional and high speed rail. 2010. Network Rail 
United Kingdoms 

Performances of conventional rail are compared with HSR rolling stock likely to be put into services 
in the 2025-2030 timeframe. Nowadays, the energy for train in England is based on diesel. The 
following factors affecting comparisons of energy consumption and GHG emissions are highlighted: 

� Direct performance (energy consumption) of rail rolling stock: weight reduction, 
aerodynamic improvements, improvements in the overall electrical efficiency (including 
regenerative braking systems) 

� Seating occupancy levels and service frequency: HSR has higher energy uses than 
conventional rail. This additional energy use is counter-balanced by their higher occupancy 
level. 

� Direct and indirect GHG emissions from electricity production: In the timeframe the new 
rolling stock will be in use, significant decarbonisation of electricity in the UK is expected 

� Indirect emissions resulting from the construction, maintenance and decommissioning of 
rolling stock: The significance of this parameter will increase in the future as electricity 
generation decarbonizes. 

� Energy consumption/emission resulting from construction and use of new rail: The experts 
have not identified differences concerning the infrastructure of the conventional rail and 
HSR. Because the emissions will be spread over a higher number of passengers for similar 
routes, the embedded infrastructure emissions will be lower per passenger km. 
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3 CORE FACTORS FOR THE ENVIRONMENTAL PERFORMANCE OF HSR OUT OF 

THE MODEL 

Core factors for the environmental performance of HSR were found in the literature in chapter 2. In 
this chapter, core factors are found out of a LCA model. The data for the background system comes 
from the Ecoinvent-database version 2.2 while the data for the foreground is based on the LCI 
currently being established by MiSA for HSR in Norway. The LCA has been computed with SimaPro. 

In section 3.1, the general framework for LCA of HSR is described. In section 3.2, the model is applied 
to a specific case, the corridor Oslo-Trondheim, also called HSR-LCA. The Oslo-Trondheim HSR 
corridor consists of 83% open sections, 15% tunnels and 2% bridges (Metier AS 2007). Six categories 
are investigated: climate change, ozone depletion, human toxicity, terrestrial acidification, 
freshwater eutrophication and water depletion.  

The table below summarizes the results found in this chapter.  

Table 3-1: Core factors from the model 

Impact categories 

    
Climate 
change 

Ozone 
depletion 

Human 
toxicity 

Terrestrial 
acidification 

Freshwater 
eutrophication 

Water 
depletion 

Ba
ck

gr
ou

nd
 s

ys
te

m
 Steel  x x x x x x 

Cement x           

Diesel x x   x     

XPS   x         

Copper     x   x   

Blasting       x     

Gravel           x 

Fo
re

gr
ou

nd
 

sy
st

em
 

Share of infrastructure on a system level 

Construction phase of infrastructure 

Open sections 

Passengers per train 
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This section gives a brief description of HSR models. For more details, please see “A Methodology for 
Environmental Assessment - Norwegian High Speed Railway Project Phase 2” by Asplan Viak, MiSA, 
VWI, and Brekke Strand (2011) and ”Miljøbudsjett for Follobanen” by Korsmo, A.-R. and H. Bergsdal. 
(2010). 

HSR models consist of three main parts: infrastructure, rolling stock and operation.  

� Infrastructure: A complete assessment of the climate-related emissions for HSR must 
include the construction of infrastructure components. This calls for a component-based 
emissions model that distinguishes between tunnels, bridges and open sections since they 
have different carbon footprints. In this type of model, core parameters may be possible to 
change to fit corridor settings. Sensitivity analysis for controlling parameter is possible. 
Furthermore, stakeholders can investigate several assumptions for market, infrastructure 
use and future electricity supply (Svåvå 2011).  

� Rolling stock: Life-cycle of rolling stock is treated in a simple manner because infrastructure 
construction is much more important in a term of GHG emissions (ibid).  

� Operation: Energy use to run the trains in terms of per seat or per passenger transport is 
modeled in accordance with the scope of this study, in line with specific train system 
properties regarding train system, topography and temporal issues (Svåvå 2011). 

Functional unit 

The generic functional unit for HSR assessment is a transport service to meet the total transport 

demand. In the case of this project, the FU is a transport service to meet the total transport demand 

from Oslo to Trondheim. 

Background and foreground systems 

Background data is used for generic materials (e.g. cement or steel), energy, transport and waste 
management systems. Typically, it can be found in databases and literature. The background 
systems comprises of all inputs of energy, fuel, services and materials. All the inputs are modeled 
using the Ecoinvent4

Foreground data refers to specific data needed to model the system. It is typically data that 
describes a specific product system or a specific specialized production system (Pré Consultants 
2008).The foreground system of HSR models consists of (Svånå 2011): 

 LCA database version 2.2, with the latest updates in May 2010. 

� Energy use for operation 

� Corridor-specific factors for occupancy and load factors 

� Composition of infrastructure from major components 

                                                            
4 Ecoinvent is one of the most comprehensive international LCI databases with more than 4’000 LCI datasets in the areas of 
agriculture, energy supply, transport, biofuels and biomaterials, bulk and speciality chemicals, construction materials, 
packaging materials, basic and precious metals, metals processing, ICT and electronics as well as waste treatment. 

3.1 DESCRIPTION OF HIGH-SPEED RAIL MODELS 
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Land use and land use changes (LULUC) 

LULUC generate gas emissions that are not covered in this report. These emissions are generated 
through deforestation and release of soil carbon from the clearing of land required for new HSR 
corridors. Indirect LULUC emissions may also be caused by drainage of wetlands through change of 
water ways or other. Two previous studies have estimated GHG emissions from clearing vegetation 
on the track line. Stripple and Uppenberg (2010) estimate the GHG emissions from deforestation to 
be 20% of the total emissions, soil carbon not included. Schlaupitz (2008) finds a much lower 
contributions of GHG emissions from deforestation and soil carbon release resulting from a simpler 
estimation. Soil carbon and standing forest are both sources for climate change potentials from 
biogenic materials (Svånå 2011). One way to evaluate emissions from LULUC could be to use generic 
factors, separating between forest, grasslands, croplands and wetlands developed by (Müller-Wenk 
and Brandão 2010). Another way would be to systematically implement the vegetation and soil 
carbon in a geographic information system (GIS) model (Svånå 2011). 

Service inputs 

Service inputs such as insurance, banking and others may be significant for the environmental 
footprint of other transportations systems such as private cars or airplanes that are compared to 
HSR (Chester and Horvath 2010). Nevertheless, they are generally left out of most transport studies. 
Service inputs could be systematically implemented through the use of input-output methodologies.  
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LCA model for HSR has been applied to the corridor Oslo-Trondheim. The case study is called HSR-
LCA. HSR-LCA consists of three main parts: infrastructure, rolling stock and operation. The lifetime of 
HSR-LCA is set to 60 years. 

 

Figure 3-1: HSR-LCA - Overview 

Infrastructure 

Numbers for the amount of open sections, tunnels and bridges are based on the report by Metier AS 
(2007). Oslo-Trondheim has the highest number of open section and the lowest number of tunnels 
and bridges. The total amount of km is equal to 486 (403 km of open section, 72 km of tunnels and 
11 km of bridges).  

Processes from the foreground system are modeled using the LCI compiled by MiSA. More precisely, 
open sections and tunnels are based on the LCI for Follobanen developed by Korsmo and Bergsdal 
(2010) while bridges are based on the new LCI developed by MiSA. Coefficients to switch from 
double-track tunnels and bridges to single-track tunnels and bridges were used. A coefficient of 0,8 
was used to switch from double track tunnel (2 tubes with 1 track in each). A coefficient of 0,6 was 
used to switch from double track bridge to single track bridge. I have set these two coefficients 
based on my observations of the current Norwegian railway network. Open sections were not 
modified since they already had a double-track. I have also added maintenance for bridges. I added 
40% of the materials used for construction. The 40% is based on Korsmo and Bergsdal (2010) who 
found numbers for maintenance of tunnels and open section in this range. The maintenance of 

3.2 CASE STUDY: OSLO-TRONDHEIM 
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bridge� requires� further� investigation.� However,� bridges� consisting� of� 2%� of� the� line� HSR�LCA,� this�
point�was�not�given�the�most�attention.�

Processes�from�the�background�system�(materials�used�for�the�infrastructure)�are�modeled�using�the�
Ecoinvent�database�which�refers�to�European�conditions,�and�thus�to�European�electricity�mixes.�The�
CF�is�of�531�g�CO2�eq�per�kWh.�

Rolling�stock�

To�determine�the�amount�of�train�required�for�the�calculation�period�of�60�years,�I�have�assumed�the�
following�schedule:�one�train�is�running�every�hour�from�6am�to�12pm,�from�Oslo�to�Trondheim�and�
from�Trondheim�to�Oslo.�This�means�a�total�of�38�journeys�per�day.�The�distance�of�the� journey� is�
486�km�(Metier�AS�2007).�The�lifetime�of�a�train�(15’000’000�km)�is�used�as�denominator�to�find�the�
final�number�of�train�required�to�carry�all�the�passengers�for�the�period�of�time�of�60�years.��

�������	
��
 ���� �������	
���� �

	��������
���������� ������

� �� !"#$%&� � � � � � � (1)�

Two�trains�are�added�extra�for�any�cases�of�reparation�or�emergency�leading�to�a�total�of�29�trains.�

The�train�used�from�the�database�is�the�ICE�from�Ecoinvent�version�2.2.�The�technology�used�is�a�mix�
of�the�ICE�1�(40%)�and�the�ICE�2�(60%).�I�modified�it�to�match�the�technology�used�for�the�ICE�3.�That�
is,� I� switched� aluminium� used� for� ICE� production� from� primary� to� secondary� and� I� increased� the�
number�of�seats�from�309�(Spielmann�et�al.�2007)�to�650�to�match�the�weight�per�seat�of�the�ICE�3�
(Svånå�2011).�With�all�these�modifications,�the�CF�per�passenger�due�to�production�decreases�from�
7,83� ton� CO2� eq.� per� seat� to� 2,94� ton� CO2� eq.� per� seat.� I� modified� as� well� consequently� the�
maintenance.�

Operation�

A�consumption�mix�based�on�NORDEL�consumption�2006�2008�(166�g�CO2�eq/kWh)�is�used�for�the�
foreground� system.� The� mix� consists� of� 61%� renewable,� 21%� nuclear� and� 18%� fossil� sources.� It� is�
developed�by� MiSA�based�on� the�most� recent� statistics5.�The�CF� is�of� 166�g� CO2�eq�per�kWh.�This�
electricity�mix�used�is�very�close�to�the�one�used�for�Europabanan�–�a�proposed�high�speed�rail�track�
in�Sweden�–which�is�equal�to�160�g�CO2�eq/kWh�(Åkerman).�

I� assume� trains� with� 250� seats� and� a� load� factor� of� 55%� (source).� This� gives� a� number� of� 5225�
passengers�per�day�(pday)�to�be�carried.�

�'( )��*
*��+, � (-'' .�))�,/��

)��* � 01 *��+,
2�� � '��' 34#5� � � � � � � (2)�

This� number� is� very� close� from� the� 4920� pday� (scenario� D:� building� of� new� separate� HSR� line)�
expected�by�Atkins�Ltd�(2010)�for�2024.�

� �
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5�https://www.entsoe.eu/index.php?id=65�
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3.2.1 IMPACTS�OF�HSR�LCA�

The�results�for�HSR�LCA�are�presented�to�consider�all�spheres�of�the�earth:�atmosphere,�biosphere,�
lithosphere�and�hydrosphere.�Six�impacts�categories�are�investigated�to�represent�them:�

1. Climate�change�(CO2�eq),�atmosphere�
2. Ozone�depletion�(CFC�11�eq),�atmosphere�
3. Human�toxicity�(1,4�DB�eq),�biosphere�
4. Terrestrial�acidification�(SO2�eq),�lithosphere�
5. Freshwater�eutrophication�(P�eq),�hydrosphere�
6. Water�depletion�(m3),�hydrosphere�

Results� are� presented� on� a� system� level,� on� a� section� level,� on� a� component� level� and� finally� per�
pkm.��

3.2.1.1 SYSTEM�LEVEL�

�

Figure�3�2:�HSR�LCA���Life�cycle�

Infrastructure�accounts�for�a� large�share�of�the�emissions;�from�88%�for�climate�change�to�94%�for�
terrestrial� acidification.� It� is� not� surprising� to� find� a� large� amount� for� infrastructure� since� the�
electricity�mix�used�for�operation�has�a� low�CF�(166�g�CO2�eq�per�kWh).�This�corresponds�with�the�
findings� by� UIC� (2009),� Network� Rail� (2010� and� Rozycki� (2003)� that� emphasize� the� larger� share� of�
infrastructure�with�a�electricity�mix�with�low�CF�for�operation�and�the�lower�share�of�infrastructure�
with�an�electricity�mix�with�high�CF.�For�instance,�UIC�(2009)�found�shares�for�infrastructure�ranging�
from�9%�with�an�electricity�mix�with�high�CF�for�operation�to�31�85%�for�electricity�mix�with�low�CF.�
The�88%�of�HSR�LCA�are�a�bit�upper�this�scale.�Amongst�others�factors,�this�could�be�due�to�the�small�
numbers�of�trains�running�on�the� infrastructure,� leading�to�a� low�use�of�electricity�for�operation,�a�
small�total�of�emissions�for�operation�and�thus�a�larger�share�for�infrastructure.�

� �
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Table�3�2:�HSR�LCA���Life�cycle�

Infrastructure Operation Rolling�Stock�
Climate�change�(ton�CO2�eq)� 5,82E+06� 7,69E+05� 4,49E+04�
Ozone�depletion�(ton�CFC�11�eq)� 7,16E�01� 5,75E�02� 2,91E�03�
Human�toxicity�(ton�1,4�DB�eq)� 3,28E+06� 2,96E+05� 6,79E+04�
Terrestrial�acidification�(ton�SO2�eq)� 3,14E+04� 1,97E+03� 1,46E+02�
Freshwater�eutrophication�(ton�P�eq)� 2,50E+03� 2,87E+02� 4,77E+01�
Water�depletion�(km3)� 7,93E+04� 1,01E+04� 2,71E+02�

�

Focus�is�put�on�infrastructure,�since�it�represents�88�to�94%�of�the�total�impact�of�HSR�LCA.�

�

Figure�3�3:�HSR�LCA���Life�cycle�phases�of�the�infrastructure�

As� found� for� Follobanen� (Korsmo� and� Bergsdal� 2010)� and� for� the� Botnia� Line� (Stripple� and�
Uppenberg�2010),�construction�is�the�life�cycle�phase�which�is�allocated�most�of�the�emissions.�

3.2.1.2 SECTION�LEVEL��

The� figure� below� shows� the� impacts� of� the� construction� phase� only.� The� first� raw� represents� the�
share�of�km�between�open�section�(403�km),�tunnel�(72�km)�and�bridge�(11�km).�The�open�section�
has�double�tracks�while�tunnels�and�bridges�have�single�track.�

�

Figure�3�4:�HSR�LCA���Impacts�of�the�construction�of�the�sections�

The�open�section�has�the�highest�share�for�all�impact�categories.�Nevertheless,�for�ozone�depletion,�
tunnel� and� open� section� have� very� close� shares� (50%� for� open� section� and� 49%� for� tunnels).� This�
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might� be� due� to� the� XPS� used� in� tunnels.� For� Follobanen� �which� consists� of� 95%� tunnels�� XPS�
accounts�for�80%�of�the�emissions�for�ozone�depletion.�

Only�the�construction�phase�of�each�section�is�considered.�It�eases�the�scaling�to�adjust�the�lifetimes.�
For� instance� HSR�LCA,� the� Follobanen� and� the� Botnia� Line� have� a� lifetime� of� 60� years.� Schlaupitz�
(2008)�and�the�UIC�(2009)�used�a�lifetime�of�100�years.��

Table�3�3:�HSR�LCA���Impacts�of�the�construction�of�the�sections�

�� Bridge�(1�track) Open�Section�(2�tracks)� Tunnel�(1�track)�

Climate�change� kg�CO2�eq/m*y� 146� 131� 167
Ozone�depletion� kg�CFC�11�eq/m*y� 0,000006� 0,000009� 0,000040�
Human�toxicity� kg�1,4�DB�eq/m*y� 85 71� 60�
Terrestrial�acidification� kg�SO2�eq/m*y�� 0,40� 0,69 1,41
Freshwater�eutrophication� kg�P�eq/m*y� 0,049� 0,057� 0,046�
Water�depletion� m3/m*y� 1,99� 2,40� 2,12�

�

The�construction�of�1�m�of�tunnels�with�single�track�is�the�most�intensive�section�in�half�of�the�impact�
categories.�Nevertheless,�the�construction�of�1�m�of�bridge�is�the�most�intensive�process�for�human�
toxicity.� This� high� result� is� due� to� the� steel� used� for� a� steel� bridge� and� to� the� steel� used� as�
reinforcement�for�a�concrete�bridge.�The�higher�results�for�open�sections�are�due�to�the�use�of�steel�
of�low�quality�and�copper�for�freshwater�eutrophication�and�to�the�use�of�gravel�used�for�the�ballast�
for�water�depletion.�

The� results� found� for� the� construction� of� the� infrastructure� of� HSR�LCA� are� now� compared� with�
other�studies:�Stripple�and�Uppenberg� (2010)� for�the�Botnia�Line� in�Sweden,�Korsmo�and�Bergsdal�
(2010)�for�the�Follobanen�in�Norway,�Schlaupitz�(2008)�for�future�Norwegian�HSR�and�UIC�(2009)�for�
the�European�context.�In�order�to�do�so,�scaling�coefficients�were�used.�The�table�below�shows�the�
coefficients�used.�

Table�3�4:�Coefficients�to�scale�the�sections�from�double�to�single�track�

HSR�LCA�(Grossrieder�2011)� Schlaupitz�(2008)�

Tunnel�(1�tube)� 0,8� 0,82�

Tunnel�(2�tubes)� 0,6� ��

Bridge� 0,7� 0,72�

Open�section� 0,6� 0,81�

�

Coefficients� for�HSR�LCA�are�based�on�my�observations�of�the�current�Norwegian�railway�network.�
Coefficients� from� Schlaupitz� (2008)� are� obtained� by� dividing� results� for� single� track� by� results� for�
double�track.�My�coefficients�are�smaller,�leading�to�higher�differences�from�double�to�single�track.�
This�is�especially�true�for�open�sections.�Åkerman�(2011)�uses�coefficients�of�1,8�for�tunnels,�1,6�for�
bridges�and�1,76�for�open�sections�to�scale�the�Botnia�Line�from�single�to�double�track.�By�inversing�
������������������������������������������������������������
6�The�coefficient�of�1,9�is�the�average�of�the�three�coefficients�used�for�open�sections�:�1,9�for�railway�track,�1,25�for�railway�
track�foundations�and�2�for�power,�signaling�and�telecom�systems�(Åkerman�2011)�
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the�coefficients�to�find�the�coefficients�to�scale�from�double�to�single,�we�find�coefficients�of�0,56�for�
tunnels,� 0,63� for� bridges� and� 0,58� for� open� sections.� The� coefficients� that� I� used� for� HSR�LCA� are�
close�to�the�coefficients�used�by�Åkerman�(2011)�for�the�Botnia�Line�for�all�the�sections.�

Table�3�5:�Comparison�of�the�impacts�of�the�construction�of�the�sections�(kg�CO2�eq�per�m*y)�

� �
HSR�LCA� Botnia�Line� Follobanen�

Norwegian�
context�

EU�
context

� �
Grossrieder�

(2011)�

Stripple�and�
Uppenberg�

(2010)�

Korsmo�and�
Bergsdal�
(2010)�

Schlaupitz�
(2008)�

UIC�
(2009)�

Lifetime� 60� 100� 60� 100� 60� 100� 100� 100�

Open�
section�

single�track� 79� 47� 38� 23� 80� 48� 18� 32�
double�track� 131� 79� 63� 38� 134 80� 22� 54�

Tunnel�
single�track� 167� 100� 189� 151� 159 100� 59� 83�

double�track� 278� 167� 315� 189� 210 126� 72� 104�

Bridge�
single�track� 161� 97� 51� 30� ��� ��� 90� 147�

double�track� 230� 138� 72� 43� ��� ��� 125� 210�
�

adjusted�number�of�track� adjusted�lifetime�

�

Results�for�HSR�LCA�are�found�in�the�middle�of�the�scale�tunnels�and�bridges.�For�open�sections,�they�
are�found�on�the�top�of�the�scale.�They�are�closest�to�Follobanen�results,�which�is�not�surprising�since�
the�data�for�the�materials�used�are�the�same.�

Open�section�(double�track,�lifetime=100�years)�

22�(Schlaupitz)�<�38�(Botnia�Line)�<�54�(EU)�<�79�(HSR�LCA)�<�80�(Follobanen)��

80�(Follobanen)�=�22�(Schlaupitz)*3,6�

Schlaupitz� and�Botnia�Line�have� similar� results.�EU� is� in� the�middle.�HSR�LCA�and�Follobanen�have�
similar�and�higher�results.��

Tunnel�(single�track,�lifetime=100�years)�

59�(Schlaupitz)�<�83�(EU)�<�96�(Follobanen)�<�100�(HSR�LCA)�<�113�(Botnia�Line)�

113�(Botnia�Line)�=�59�(Schlaupitz)*1,9�

The�difference�between�the�lowest�and�the�highest�results�is�not�as�significant�as�for�tunnels.�

Bridge�(single�track,�lifetime�=�100�years)�

30�(Botnia�Line)�<�90�(Schlaupitz)�<�97�(HSR�LCA)�<�147�(EU)�

175�(EU)�=�30�(Botnia�Line)*4,9�
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The�largest�differences�are�found�for�bridges.�This�is,�the�EU�bridge�has�4,9�times�as�much�impact�as�
the�bridge�from�the�Botnia�Line.�Railway�bridges�can�be�designed�in�several�different�ways7,�which�
might�be�one�of�the�reasons�for�the�difference.�Also,�the�amount�of�material�is�quite�high�for�bridges,�
which�might�lead�to�even�larger�differences,�depending�on�the�database�used.��

3.2.2 COMPONENT�LEVEL�

Table�3�6:�Results���Core�infrastructure�components�

Climate�
change�

Ozone�
depletion�

Human�
toxicity�

Terrestrial�
acidification�

Freshwater�
eutrophication�

Water�
depletion�

Steel�(low�quality)� 39�%� 18�%� 52�%� 21�%� 58�%� 32�%�

Steel�(high�quality)� 14�%� 6�%� 15�%� 11�%� 17�%� 6�%�

Steel�(total)� 53�%� 24�%� 67�%� 32�%� 75�%� 38�%�

Cement� 21�%� 6�%� 3�%� 5�%� 2�%� 4�%�

Diesel� 10�%� 24�%� �� 12�%� �� ��

XPS� �� 36�%� �� �� �� ��

Copper� �� �� 18�%� 2�%� 14�%� ��

Blasting� 2�%� �� �� 41�%� �� ��

Gravel� 2�%� �� 2�%� 2�%� 2�%� 37�%�
�

Steel�and�cement�are�the�components�emitting�the�most� in�terms�of�climate�change.�This� is� in� line�
with�findings�from�previous�studies.�Steel�is�responsible�for�the�majority�of�the�emissions�for�climate�
change,�human�toxicity�and�freshwater�eutrophication.�For�ozone�depletion,�diesel�is�the�leader.�For�
terrestrial�acidification,�blasting�is�on�top.�For�water�depletion,�gravel�used�as�ballast�material�is�the�
major�culprit.��

� �

������������������������������������������������������������
7�The�three�commonly�types�of�bridges�used�in�Sweden�are:�“concrete�portal�frame�bridge”�(small�bridges�with�two�piers),�
“steel�girder�bridge”�(large�bridges�with�several�concrete�piers�and�a�superstructure�made�of�steel�girder�with�an�overlay�
structure� of� concrete),� “concrete�beam� bridge”� (large� bridges� with� several� concrete� piers� and� a� superstructure� made� of�
concrete)�(Stripple�and�Uppenberg�2010)�
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3.2.3 RESULTS PER PKM 

The different compartments of the model (infrastructure, rolling stock and operation) are 
standardized into vehicle-kilometer (vkm) and further down to person-kilometer (pkm). In 
accordance with Anderson and Lukaszewicz (2006), the weight of passenger is neglected for energy 
consumption. See section “4.2.1: Energy required to run a train” for more details. 

 

 

Figure 3-5: Calculation of demand factors for transport service, developed from UIC (2009) 

Below are results for: 

� Infrastructure: 14’400 g CO2 eq per vkm, 105 g CO2  eq per pkm 

� Operation: 1900 g CO2 eq per vkm, 14 g CO2 eq per pkm 

� Rolling stock: 111 g CO2 eq per vkm, 0,81 g CO2 eq per pkm 

� TOTAL: 16’411 g CO2 eq per vkm, 120 g CO2 eq per pkm 

These results fit well with the results found by UIC (2009). Before starting discussing, it is important 
to note that Norwegian conditions are very specific. A low Norwegian share of tunnels and bridges 
corresponds to an average European share of tunnels and bridges. Furthermore, a high Norwegian 
number of pday per line correspond to a low European numbers pday per line.  

For the specific case of HSR-LCA, the conditions are as following, for an European scale: electricity 
mix with low CF, low traffic and low load factor, average share of tunnels and bridges. 

Infrastructure 

UIC (2009) found numbers ranging from 2 g CO2 eq per pkm (average share of tunnels and bridges, 
high traffic and high load factor) to 67 g CO2 eq per pkm (high share of tunnels and bridges, low 
traffic and low load factor). The 105 g CO2 eq per pkm found in this study are above these numbers.
It is not possible to scale the results directly here because not only the construction phase is 
included, but also the maintenance and end of life. The impact of the construction phase could be 
decreased by a longer lifetime. However, this is not the case for maintenance and end of life. A 
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longer lifetime results in an increase of maintenance, which results in an increase of materials used 
and an increase of the impact of end of life.  

An approach that could sound more correct is to assume that the maintenance of the infrastructure 
of HSR-LCA is quite high, compared to others study and thus, reduce a little bit the 105 g CO2. 
Nevertheless, even the 105 g CO2 found for HSR-LCA are overestimated due to shorter lifetime and 
high maintenance, it is likely that they will still be on the top of the UIC’s scale, even after scaling. 

Operation 

UIC (2009) found numbers ranging from 4 g CO2 eq per pkm (electricity with low CF8, high traffic and 
high load factor), 11 g CO2 eq per pkm (electricity with low CF, low traffic and low load factor), to 20 
g CO2 eq per pkm (electricity with high CF9

Rolling stock 

, high traffic and high load factor). The 14 g CO2 eq per 
pkm found in this study are close of the case of the 11 g CO2 eq per pkm found by UIC(2009). They 
correspond to electricity with low CF, low traffic and low load factor. These are the typical conditions 
for HSR-LCA.  

UIC (2009) found numbers ranging from 0,49 g CO2 eq per pkm (high traffic of 90 trains per day and 
high load factor of 80%) to 1,47 g CO2 eq per pkm (low traffic of 25 trains per day and low load factor 
of 25%). One may have thought to find results at the top of the scale. However, this is not the case. 
This is due to the fact that the technology used by UIC (2009) is based on calculations by who use a 
combination of 40% ICE1 and 60% ICE2. In this project, the combination used by Rozyki el al. (2003) 
has been modified to correspond with ICE3 production technology. Thus, even if the traffic is low (38 
trains per day) and the load factor on average (55%), result for rolling stock are low due to cleaner 
production technology.  

                                                            
8 UIC (2009) el mix with low CF = 50% nuclear, 10% fossil fuel (natural gas, coal), 40% renewable (hydro, wind) 
9 UIC (2009) el mix with high CF = 27% nuclear, 56% fossil fuel (natural gas, coal), 17% renewable (hydro, wind) 
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4 CORE FACTORS INVESTIGATED 

Core factors for future Norwegian HSR have been discussed in the two previous chapters, first from 
the literature in chapter 2 and then from the model in chapter 3. It is not possible to investigate all 
the core factors for the environmental performance of HSR in Norway. Nevertheless, many of them 
are investigated in this chapter. In the background system, cement, steel and XPS are examined. In 
the foreground system, electricity mixes, electricity requirements to run a train, number of 
passengers per day, seat capacity per train, load factor, lifetimes of components, and recycling and 
reuse are addressed.  

This chapter is organized in such a way that first, theory on the core factor is given. The theory first 
refers to the production technology of today. Then, the time horizon is widened to 2050. This is in 
order to build up scenarios up to 2050 presented in chapter 5. Additionally, for some elements, a 
sensitivity analysis is conducted. To make it clearer for the readers, sensitivity analyses are put in 
blue boxes. The table below summarizes the findings of the sensitivity analyses. An x indicates where 
the potential is relevant. No x was marked for energy per pkm because with an electricity mix use for 
operation with a low CF, the energy per pkm only influences to a less extent the overall performance 
of HSR-LCA. Note that it is not the electricity mix used for operation that is a core factor but the 
choice of the electricity mix used for operation. 

Table 4-1: Sensitivity analyses – Summary of the findings 
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Cement Use of secondary materials for clinker 
production 

x           

Use of secondary fuel for clinker production x x     x   
Steel of low 
quality 

Energy efficiency x x x x x   

Use of scrap x     x x x 
Steel of 
high quality 

Energy efficiency x x x x x   

Use of scrap x     x x   

Use of common steel for rails x x x x x   
XPS Blowing agent   x         
Energy Energy per pkm             

Choice of electricity mix used for operation x x x x x x 

Electricity mix used for operation 

 

The sensitivity analyses conducted were time consuming. In SimaPro, production systems are 
organized in such a way that each process consists of a single box. Original processes from the 
database cannot be modified. They have to be copied, modified and linked together again. Please 
see appendix 2: “Details on model changes” to see the list of the parameters used. 
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Background data is data for generic materials, energy, materials and waste management system. 
Usually, 80% of data is readily available in databases.  

4.1.1 CEMENT 

The cement industry is energy intensive. It consumes 9% of the overall energy consumption by 
industries and is allocated 25% of the global direct CO2 emissions by industries (Rubel et al. 2009). 
On a global level, the cement industry is responsible for approximately 5% of global anthropogenic 
CO2 emissions. On a process level, 0.9 tonne of CO2 are emitted for 1 tonne of cement produced. The 
production of clinker is the most energy intensive process. Regular fuels oil, petcokes and coal are 
usually used as energy source (Vos et al. 2007).The figure below shows the stages in the 
manufacture and use of cement. 

 

Figure 4-1: Stages in the manufacture and use of cement, developed from Kellenberger et al. (2007 

Emissions  

The primary emissions for the manufacture of Portland cement are particulate matter (PM and PM-
10), NOx, SO2, CO and CO2. NOx are emitted during the fuel combustion by oxidation of chemically-
bound nitrogen in the fuel and by thermal fixation of nitrogen in the combustion air. The quantity 
and type of NOx generated is affected by the type of fuel used. SO2 are generated from both the 
sulfur compounds in the raw materials and from sulfur in fuel. CO2 emissions from Portland cement 
manufacturing are generated by two mechanisms: 1. combustion of fuel at high-temperatures and 2. 
calcining of limestone or other calcareous material (Vos et al. 2007).  

Co-processing (use of secondary material and secondary fuel) 

CEMBUREAU (2009) states co-processing as the optimum way to recover energy and material from 
waste. It will both reduce the dependency to fossil fuels and contribute to lower the environmental 
footprint of cement production. Alternative fuels must have a significant calorific value and mineral 
components of alternative raw materials must be suitable for the production of clinker or cement. 
Some materials provide both a calorific value and mineral components. For instance, the Austrian 
cement industry started to co-process tyres in 1980 already. The clinker burning process of tyres 
offers the simultaneous recovery of energy and material. The high calorific value of rubber is used to 

4.1 BACKGROUND SYSTEM 
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substitute fossil fuels and the inert components, mainly iron and alumina, to substitute raw 
materials.  

The shares for secondary fuels are subject to strong fluctuations, depending on the offer and 
demand and the political situations. For instance, meat-and-bone meal and animal fat has been 
more easily available after the bovine spongiform encephalopathy (BSE) crisis (Kellenberger et al. 
2007). In 2006, the European cement industry used 18% of alternative fuels, saving about 5Mt of 
coal and resulting in a reduction of 8Mt of CO2 emissions. For this same year, alternative materials 
consisted of about 5% of the raw materials used in the production of clinker, accounting for 14.5 
Mt/year (CEMBUREAU 2009). 

Typical alternative fuels used by the cement industry consist of domestic waste, discarded tyres, 
waste oil and solvents, plastics, textiles and paper residues. Typical biomass consist of animal meal, 
logs, wood chips and residues, recycled wood and paper, agricultural residues like rice husk, 
sawdust, sewage sludge and biomass crops (WBSCD 2010). The table below shows the different 
possible sources to substitute clinker. 

Table 4-2: Sources to substitute clinker (WBSCD and IEA 2009) 

Clinker substitute Source Availability 

Ground blast 
furnace slag 

Iron or steel production 
Future iron and steel production volumes are 
very difficult to predict 

Fly ash Flue gases from coal-fired furnaces 
Future number and capacity of coal-fired power 
plants is very difficult to predict 

Natural 
pozzolanas 

Volcanoes, some sedimentary 
rocks, other industries 

Depends on local situation 

Artificial 
pozzolanas 

Specific manufacture Very limited due to economic constraints 

Limestone Quarries Readily available 

 

Carbon capture and storage (CCS), thermal and electric efficiency 

CCS is a new technology that has not yet been proven on an industrial scale for cement production 
yet that is potentially promising. As estimated, 80% of all new cement capacity until 2050 will be 
located in developing countries. Therefore, prospective studies on CO2 storage must be expanded 
and cover these countries. The original design of an installation largely defines its thermal efficiency. 
The savings on a per unit basis range from 0.2 to 3.5 GJ/t clinker. In 1990, the weighted average 
thermal energy consumption for a current state of the art dry manufacturing clinker kiln was 3.605 
MJ/t clinker. In 2006, it reduces by 6% to 3.382MJ/t clinker (WBSCD and IEA 2009).  

Low and carbon-negative cements 

Pilot projects on low-carbon or carbon-negative cements have been developed by start-up 
companies. These new processes are still in the developmental stage and pilot plants are expected 
to be built in 2010/11. These cements appear to have similar mechanical properties than Portland 
cement. Currently, they have not been tested as being economically viable or tested for their long-
term suitability and none have been accepted in the construction industry where strong material 
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and buildings standards exist. For all of these reasons is it unknown whether or not they can have an 
impact on the future of the cement industry. Nevertheless, they are presented below (WBSCD and 
IEA 2009): 

� Novacem: Based on magnesium silicates rather than limestone as used in Ordinary Portland 
Cement. Magnesium silicates are converted to magnesium oxide using a low-carbon and 
low-temperature process, adding minerals additives that accelerate strength development 
and CO2 absorption, offering a prospect of carbon-negative cement. 

� Calera: mixture of calcium and magnesium carbonates 

� Calix’s: includes capture of CO2 emissions 

� Geopolymer cement: makes use of waste materials from the power industry (fly ash, 
bottom ash), the steel industry (slag), and from concrete waste to produce alkali-activated 
cement. 

Roadmap indicators up to 2050 

 

Table 4-3: : Cement roadmap indicators 2012-2050 (WBSCD and IEA 2009) 

  2012 2015 2020 2025 2030 2050 
Thermal energy consumption per tonne 
clinker [GJ/tonne] 

3.9 3.8 3.5-3.7 3.4-3.6 3.3-3.4 3.2 

Share of alternative fuel and biomass 
use 

5-
10% 

10-12% 12-15% 
15-
20% 

23-
24% 

37% 

CCS             

    no of pilots plants 2 3         

    no of demo plants operating   2 6       

    no of commercial plants operating       10-15 50-70 200-400 

    Mt stored 
0.1 0.4 5-10 20-35 

100-
160 

490-920 

Tonne CO2 emission per tonne cement 0.75 0.66 0.62 0.59 0.56 0.42 
 

Sensitivity analysis (secondary material and secondary fuel)10

The impact of cement for the construction of the infrastructure is given one more time in the table 
below to remind which impact categories are more sensitive to changes.  

 

Table 4-4: HSR-LCA - Construction of infrastructure - impact of cement 

Climate 
change 

Ozone 
depletion 

Human 
toxicity 

Terrestrial 
acidification 

Freshwater 
eutrophication 

Water 
depletion 

Cement 21 % 6 % 3 % 5 % 2 % 4 % 
 

                                                            
10 It is assumed that clinker consists of 0% secondary material and 0% secondary fuel in the base case. However, this is not 
exact. Clinker consists of 7% secondary materials and 4% secondary fuels. 
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In Ecoinvent, all secondary raw materials enter the system without burdens as they are declared 
waste. The product or process from which from the secondary materials are by-products are 
allocated 100% of the burdens (Kellenberger et al. 2007). In other words, it is “free” to use 
secondary materials. Only direct emissions are accounted for. Direct emissions are accounted for in 
CO2 emissions11

 

. This is why only CO2 eq emissions decrease in the figure below. Please see Appendix 
3 for more details on emissions of secondary material. 

Figure 4-2: Cement – Sensitivity of secondary material in clinker production 

To introduce secondary fuel, heating values are used as converting factor. An average heating value 
of 22.4 MJ is used per kg secondary fuel and of 32.5 MJ per kg primary fuel (Künniger et al. 2001). 
The figure below shows a sensitivity analysis of the introduction of secondary fuel for clinker 
production.  

 

Figure 4-3: Cement - Sensitivity of secondary fuel in clinker production 

                                                            
11 Around 75% of the original waste mass is transferred to gaseous compounds such as CO2, N2, H20 and minor trace gases. 
Out of these elements, only CO2 has an environmental relevance and thus poses the majority of the emissions from the 
municipal solid waste incinerators site. On the other hand, the practically unavoidable emission of CO2 reflects the 
achievement of the last decades to make waste incineration cleaner by the installation of flue gas purification systems 
which mainly prevent emissions to air. Emissions of CO2 are discerned according to the fossil or biogenic origin of the 
carbon in the incinerated waste (Doka 2003). 
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4.1.2 STEEL 

Steel has become essential to modern society. It is fundamental in a greener world. For instance for 
lighter more efficient vehicles, the construction of smart electrical grids, transport infrastructure, 
development or high energy efficient residential housing and commercial buildings. Over 1.3 billion 
tons of steel are manufactured and put to use every year. At present, close to 50% of steel is 
produced and used in China. The volume of steel produced will continue to grow, in particular in 
developing areas like Latin America, Asia, Africa and the Indian sub-continent. In these regions more 
than 60% of steel consumption will be used for the creation of new infrastructure (World Steel 
Association 2010). Steel is an energy and emissions-intensive industry, relying strongly on fossil 
fuels. Iron and steel industries represent 21% of the global energy consumption by industries and 
account for around 4-5% of total world CO2 emissions. On average, the production of every tonne of 
steel is allocated 1.9 tonnes of CO2. Figure below shows the basic flows of steel production as it is 
modeled in Ecoinvent (Classen et al. 2009) 

 

Figure 4-4: Steel production, developed from Classen et al. (2009) 

� Mining: Iron ore is extracted. 

� Agglomeration: The iron ore agglomeration process improves the iron content and/or 
physical properties of ore.  

� Cokemaking: Coke is an essential part of integrated steelmaking. It provides the carbon to 
remove the oxygen from iron ore and the heat to produce molten iron in the blast furnace  

� Ironmaking: Iron ore is reduced to metallic iron through the removal of the oxygen. This 
conversion is the most energy-intensive stage of the steel process and has the potential to 
emit the largest CO2 emissions. The most common way –and only way described in 
Ecoinvent- to produce iron involves the blast furnace. It accounts for 90% of world iron 
production (Asia Pacific Partnership for Clean Development and Climate 2007). Two other 
possible and proven routes are the Direct Reduction (DR) process e.g. MIDREX or the 
Smelting Reduction (SR) process e.g. COREX. These two routes may prevent the necessity for 
coking plants and sinter machines (European Commission 2001). 

� Steelmaking: Basic oxygen furnace (BOF) is the traditional way for steelmaking. Coal is used 
as the energy source in BOF. Electric arc furnace (EAF) are used to produce secondary steel. 
Scrap can be inserted into electric arc furnace (EAF) or BOF.  
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Energy efficiency 

The steel industry has reduced its energy consumption per tonne of steel produced by 50% in the 
last 50 years. Due to this dramatic improvement in energy efficiency, it is estimated to have only a 
marginal further improvement on the basis of existing technology (World Steel Association 2010). A 
highly promising way to reduce energy consumption is the higher use of scrap. Minimills (EAF), 
which base their steel production mainly on scrap, consume about half as much energy as integrated 
steel works. By changing from open blast-furnaces to electric arc furnaces, the steel industry could 
also reduce its use of energy by 50% (Kram et al. 2001).  

Recycling 

Steel products can be easily recycled through smelting. Steel that is finally melted from waste can be 
recycled by being added to new product. Proportions vary from 10 to 100%, depending upon the 
end product and its quality requirements. In the long term, all steel should be used in closed cycles 
in order to maximize recycling (Berge 2009). The limiting factor is scrap availability. This factor is not 
likely to increase significantly for the years to come. Global scrap availability is today about 0.4 ton 
of scrap per ton of crude steel produced. If by 2050 today’s level of crude steel production were to 
double, scrap availability is estimated to amount to about 0.6 ton per ton of crude steel (Rubel et al. 
2009) 

Sensitivity analysis (energy efficiency +recycling rate+ quality) 

The impact of steel for the construction of the infrastructure is given one more time in the table 
below to remind which impact categories are more sensitive to changes.  

Table 4-5: HSR-LCA - Construction of infrastructure - impact of steel 

Climate 
change 

Ozone 
depletion 

Human 
toxicity 

Terrestrial 
acidificatio

n 

Freshwater 
eutrophication 

Water 
depletion 

Steel (low quality) 39 % 18 % 52 % 21 % 58 % 32 % 
Steel (high quality) 14 % 6 % 15 % 11 % 17 % 6 % 
 

The figure below shows the potential for energy efficiency for steel of high and low quality.  
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Figure 4-5: Steel – Sensitivity analysis of energy efficiency 

The figure below shows the potential for the use of scrap for steel of high and low quality. The major 
feedstock for the production of recycled steel is ferrous scrap. Scrap can consist of scrap from inside 
the steel-works, cuts-offs from steel product manufacturers (e.g. vehicle builders) and capital or post 
consumer scrap (e.g. end of life products) (Classen et al. 2009). Emissions of heavy metals depend 
largely on the scrap quality. Cadmium is one of the main contributors to human toxicity. This heavy 
metal is principally used for the production of rechargeable nickel cadmium , for other end uses such 
as pigments, coatings and plating and as a stabilizer for plastics (USGS 2011). For instance, if end of 
life products are used as scrap source, unavoidably an amount of cadmium will enter the secondary 
steel production system due to, for example, coatings. Because cadmium being one of the main 
contributor to human toxicity, human toxicity increases with the increase of the use of scrap. 

0 %
20 %
40 %
60 %
80 %

100 %

0 % 20 % 40 % 60 % 80 %

Em
is

si
on

s 
of

 p
ro

du
ci

ng
1 

to
nn

e 
st

ee
l 

Reduction in energy use

Steel of high quality (energy efficiency)

Climate change

Ozone depletion

Human toxicity

Terrestrial acidification

Freshwater eutrophication

Water depletion

0 %
20 %
40 %
60 %
80 %

100 %

0 % 20 % 40 % 60 % 80 %

Em
is

si
on

s 
of

 p
ro

du
ci

ng
1 

to
nn

e 
st

ee
l

Reduction in energy use

Steel of low quality (energy efficiency)

Climate change

Ozone depletion

Human toxicity

Terrestrial acidification

Freshwater eutrophication

Water depletion



4 - Core factors investigated 

34 

 

 

Figure 4-6: Steel - Sensitivity analysis of recycling rate 

The figure below shows the potential for the decrease of the use of chromium steel.  

 

Figure 4-7: Steel of high quality - Sensitivity analysis of quality 
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4.1.3 EXTRUDED POLYSTYRENE (XPS) 

XPS foam, technically referred to as extruded polystyrene has many attributes such as stable R-
value12

Figure below shows the basic flows of XPS production as it is modeled in Ecoinvent (Kellenberger et 
al. 2007). XPS is made by melting polystyrene granulate. A blowing agent is injected into the mixture 
to form gas bubble. The blowing agent can be CO2, HFC-134 or HFC-152a.  

 (thermal resistance), moisture resistance and high compressive strength which renders it an 
outstanding building material. Furthermore, because it is a plastic material, it does not corrode, rot 
or support the growth of mold or mildew. It is resistant to soil microorganisms and does not provide 
nutrient value to vermin. All these durable qualities makes XPS in many applications such as cold 
storage, frost protected shallow foundations or protected roof membrane assemblies the only 
recommended or approved material (Fabian et al. 2004).  

 

Figure 4-8: XPS production, developed from Kellenberger et al. (2007) 

Recycling and reuse 

There is both an environmental as well as an economic benefit from the reuse or recycling of XPS. 
Nevertheless, there are still enormous challenges to overcome concerning the easy removal or 
collection, current conservative building facilities practices and the low potential of XPS being 
removed from existing buildings (Fabian et al. 2004). 

Other insulation materials 

Vacuum insulation panels (VIP) could be used instead of XPS as insulation material. It is considered 
one of today’s most promising high performance thermal insulation material on the market. The 
downsides are their fragility and the fact that they cannot be cut on site (Baetens et al. 2010). Glass 
wool might be an option as well. However, as XPS is being used amongst other factors for its high 
compressive strength, it is not certain that VIP and glass wool have such a property. Schonhardt 
(2003) computed impacts for XPS, VIP and glass wool using the eco-indicator 99 (H) methods. The 
figure below shows the total impact in milli-points per m2.  

                                                           
12 “Thermal resistance is a measure of the resistance (opposition) of heat flows as a result of suppressing conduction, 
convection and radiation. It is a function of material thermal conductivity, thickness and density. Thermal resistance, R-
value is expressed in m2-K/W.”(Al-Homoud 2005) 
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Figure 4-9: Comparison of glass wool, XPS and VIP with the method Eco-indicator 99 (Schonhardt et al. 2003) 

Sensitivity analysis (production technology for XPS) 

The impact of XPS for the construction of the infrastructure is given one more time in the table 
below to remind which impact categories are more sensitive to changes.  

Table 4-6: HSR-LCA - Construction of infrastructure - impact of XPS 

Climate 
change 

Ozone 
depletion 

Human 
toxicity 

Terrestrial 
acidification 

Freshwater 
eutrophication 

Water 
depletion 

XPS - 36 % - - - - 
 

 

Figure 4-10: XPS - Sensitivity analysis of blowing agent 
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Foreground data refers to specific data such as a particular product system or a particular specialized 
production system. In many cases, it has to be collected from companies. The foreground of HSR-
LCA consists of the energy required to run a train, the electricity mix used for operation, market 
considerations such as the number of passengers per day, the lifetime of main components and the 
recycling and reuse of elements. 

4.2.1 ENERGY REQUIRED TO RUN A TRAIN 

The energy consumption of trains has been reduced by 25-30% per seat-km or per passenger-km 
from 1994 to 2002-2005, for comparable operations. The reasons for this improvement in the 
energy performance are due to (Anderson and Lukaszewicz 2006): 

1. Improved aerodynamics that reduces air drag 
2. Regenerative braking 
3. Lower train mass per seat 
4. Improved energy efficiency in power supply  

Energy per seat-km or passenger-km 

All other factors being equal, the higher speed of modern trains would have increased the energy 
consumption by 63%. Nevertheless, energy consumption per seat-km or passenger-km is reduced by 
25-30%. This is made possible by wide bodies that increase the seating capacity by 25% compared to 
a carbody with normal width. Some new cars are also longer. This results in less train mass and 
lower aerodynamic drag (Anderson and Lukaszewicz 2006). 

Aerodynamic considerations 

Modern trains, designed to run at high speed, have a better aerodynamic performance than older 
trains. They have longer and more streamlined noses in the front and rear and are smoother along 
the roof and walls. This reduces the energy consumption by 22% (Anderson and Lukaszewicz 2006). 

Energy recovery 

A train consumes energy when it is accelerating, running uphill, but also due to air drag, mechanical 
(rolling) resistance and comfort needs. The electric energy consumed to accelerate is converted into 
kinetic energy and into potential energy for running uphill (with exception for losses). These kinetic 
and potential energies can be converted back to electric energy if the electric motors are switched 
over to electrical generators. The newly generated electric energy can be fed back to the train. 
Despite the losses of this reverse process, if the braking is made totally by the electric regenerative 
brakes13

                                                            
13 Motors are working as generators in regenerative braking mode and electric energy is fed back via the pantograph of the 
catenary. This energy can usually be used by other trains on the line. If other trains are not able to make use of this 
regenerated amount of energy, the energy may be fed back to the public network if converter stations are consequently 
technically equipped. If the total amount of regenerated energy cannot be absorbed, the voltage of the catenary will rise. If 

  (except at very low speeds) a modern electric train can regenerate and recover as much as 

4.2 FOREGROUND SYSTEM 
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60�70%�of�the�energy�inputs�to�accelerate�and�to�run�uphill.�On�the�other�hand,�the�energy�needed�
to�surmount�the�air�drag�and�the�mechanical�resistance�is�dissipative�and�cannot�be�recovered�at�all.�
The�energy�to�provide�a�comfortable�environment�in�the�train�cannot�be�recovered�either.�Thus,�the�
total� percentage� amount� of� energy� recovery� is� usually� 17%� of� the� input� into� the� pantograph�
(Anderson�and�Lukaszewicz�2006).�

Seasonal�variations�

More�energy�is�required�to�run�a�train�in�winter.�On�the�one�hand,�the�amount�of�comfort�energy�is�
increased� due� to� heating.� On� the� other� hand,� air� density� is� higher� at� low� temperature,� leading� to�
higher�amount�of�air�drag,�proportional�to�air�density.�Seasonal�variations�are�especially�important,�
for� high� speed� trains� running� at� speeds� of� around� 200� km/h� or� more,� since� these� type� of� trains�
usually�have�50%�of�their�energy�consumption�due�to�air�drag�(Anderson�and�Lukaszewicz�2006).��

Impacts�of�tunnels�

The�aerodynamic�resistance�of�a�train� is�higher�when�passing�through�tunnels�than�on�open�track.�
The�main�factors�are�(VWI�2006):�

1. Cross�sectional�area�of�tunnel�and�train��
2. Length�of�tunnel�and�train�
3. Frictional�drag�of�tunnel�and�train�surface�

When�entering�a�tunnel,�a�train�can�be�compared�to�a�piston�entering�a�cylinder.�The�larger�the�cross�
section,� the� less� aerodynamic� resistance� and� lower� energy� consumption.� From� this,� ftunnel� can� be�
derived:� 

6*7,,�8 � #9":45%#;$< "9&$&!#%<9 "#!$: � !"#$%=& <":&& &9<!$:%!>%%9?=& <":&& &9<!$:%�

The�longer�the�tunnel,�the�higher�the�amount�of�energy�required�to�push�the�air�towards�the�end�of�
the�tunnel.�Two�near�linear�function�can�be�assumed:�one�for�tunnels�shorter�than�1km�and�one�for�
tunnels�longer�than�1km�(Gackenholz�1974).�

�

�

Figure�4�11:�Tunnel�impact�on�specific�energy�consumption,�adapted�from�Svånå�(2011)�

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
the�voltage�is�rising�too�high,�the�regeneration�is�stopped�automatically�and�the�braking�is�made�by�mechanical�or�magnetic�
brakes.�
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Impacts�of�the�number�of�stops�

For�lower�speeds,�the�specific�energy�consumption�rises�with�stop�quantity.�However,�the�opposite�
occurs�for�high�speed;�with�a�rising�number�of�stops,�specific�energy�consumption�tends�to�decline.�
This�non�intuitive�founding�is�explained�further�with�the�table�below.�

Table�4�7:�Effects�of�stop�quantity�for�the�ICE3�at�a�permitted�track�speed�of�330�km/h�(Svånå�2011)�

�� 1�stop� 2�stops� 3�stops� 6�stops� 11�stops�

Eel,acc� 1'030� 2'060� 3'090� 6'181� 11'331�

Eel,const� 8'926� 8'208� 7'458� 5'206� 1'454�

Eel,aux� 844� 868� 901� 999� 1'162�

Eel,dec� �384� �784� �1'176� �2'351� �4'311�

E_el� 10'416� 10'353� 10'0273� 10'034� 9'636�
�

E_el� is� made� up� of� four� components:� Energy� to� accelerate� Eel,acc� to� run� at� constant� speed� Eel,const,�
auxiliary�energy�Eel,aux�and�energy�recovered�with�regenerative�braking�Eel,dec.�If�braking�energy�is�not�
recovered,� energy� consumption� rises� with� stop� quantity.� In� contrast,� the� energy� consumed� to�
accelerate�rises�more�than�the�energy�consumed�to�run�at�constant�speed,�as�the�number�of�stops�
increases.� If� energy� is� recovered,� the� amount� of� energy� recovered� from� braking� is� enough� to�
compensate�for�the�rising�energy�consumption�to�accelerate�more�(Svånå�2011).�

Sensitivity�analysis�(energy�per�pass�km)��

The�figure�below�shows�the�influence�of�the�energy�used�per�pkm14�on�the�overall�emissions�of�HSR�
LCA.�For�the�same�amount�of�energy�used�per�pkm,�the�impact�is�minor�with�an�electricity�mix�with�
low�CF�(166�g�CO2�eq�per�kWh)�and�is�notable�for�an�electricity�mix�with�a�high�CF�(531�g�CO2�eq�per�
kWh).�

������������������������������������������������������������
14�0,075�kWh�per�pkm�(0,0425�kWh�seat�km,�55%�load�factor,�X2000�in�2004)�corresponds�to�HSR�LCA,�0,085�kWh�per�pkm�
to�ICE�1�and�2�(Spielmann�et�al.�2007),�0,06�kWh�per�pass�km�(0,0425�kWh�per�seat�km,�70%�load�factor)�to�X2000�in�2007�
and�0,05�kWh�per�pkm�the�energy�use�expected�for�Europabanan,�a�proposed�high�speed�rail�track�in�Sweden�(Lukaszewicz�
and�Anderson�2009).�
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Figure�4�12:�Energy���Sensitivity�analysis�of�kWh�per�pass�km�

4.2.2 ELECTRICITY�MIXES�

Electricity�mix�is�a�core�factor�for�the�environmental�performance,�especially�when�the�electricity�mix�
used�for�operation�has�a�low�CF,�which�is�the�case�in�Norway�(UIC�2009;�Network�Rail�2010;�Rozycki�
et�al.�2003;�Schlaupitz�2008).��

Sensitivity�analysis�(el�mix�for�operation)�

Six�electricity�mixes�(medium�voltage)�for�operation�are�tested�below�to�investigate�the�fluctuation�
of� the�share�of� infrastructure,�operation�and�rolling�stock.�Transmission�and� losses�are� included� in�
the�electricity�mixes.�The�figure�below�show�the�results�for�electricity�mixes�ranging�from�a�CF�of�7�g�
CO2� eq/kWh� for� hydropower� to� 976� g� CO2� eq/kWh� for� coal.� The� general� framework,� where� the�
share�of�infrastructure�increases/decreases�with�a�decrease/increase�of�the�CF�of�the�electricity�mix�
is� verified� here.� The� results� are� given� in� %.� The� purpose� is� to� show� the� share� of� infrastructure,�
operation�and�rolling�stock.�The�share�of�operation�would�never�be�counterbalanced�by�the�share�of�
infrastructure,�even�with�an�el�mix�with�very�high�CF.� In�order�to�do�so,�more�trains�should�run�on�
the�infrastructure.�
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Figure�4�13:�Sensitivity�analysis���Electricity�mix�for�operation�

4.2.3 MARKET�CONSIDERATIONS�

After�all�the�technical�aspect�of�HSR�considered�until�now�the�focus�is�put�on�market�considerations�
such�as� the� number�of�passengers�per� day,� the� seat� capacity�per� train� and� the� seat�occupancy� or�
load�factor.�

Passengers�per�day�(pday)�

It�is�difficult�to�find�out�numbers�for�total�passengers�per�day�for�all�means�of�transportation�for�the�
corridor�Oslo�Trondheim�for�a�given�year.�The� following�system�was�used�as�starting�point.�Firstly,�
the�number�of�passengers�from�Oslo�airports�to�Trondheim�airport�and�back�have�been�taken�from�
Norwegian� statistics� for� 2010� (SSB� 2011).� Secondly,� other� means� of� transport� (classic� rail,� car� and�
coach)�have�been�scaled�up�by�using�the�percentages�from�Atkins�Ltd�(2011).��

� �
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Table�4�8:�Number�of�passengers�for�Oslo�Trondheim�(2010)��

�� share�(Atkins�Ltd�2011)� per�year� per�day�

Air� 47�%� 1,59�millions�(SSB�2011)�� 4354�

Car� 31�%� 1,05�millions� 2872�

Rail� 17�%� 575'000� 1575�

Coach� 4�%� 48'900� 134�

Total� �� 3,26�millions� 8935�
�

Air� is� the�mode�of� transport� that�clearly�dominates� the�corridor�Oslo�Trondheim.�The�Table�below�
distinguishes�between�business�and�leisure.��

Table�4�9:�Share�of�business�and�leisure�travels�for�Oslo�Trondheim�(2010)�(Atkins�Ltd�2011)�

�� Air� Classic�rail� Car� Coach�

Business�demand� 57�%� 18�%� 8�%� 8�%�

Leisure�demand� 43�%� 82�%� 92�%� 6�%�
�

Air�is�dominated�by�business�travels.�Passengers�with�high�value�of�time�usually�take�flight.�Journey�
times�and�frequency�of�services�are�core�factors.�In�2010,�classic�rail�only�provided�5�services�a�day,�
buses�2�while�28�flights�were�offered�per�day�for�Oslo�Trondheim.�On�the�other�hand,�leisure�travel�
is� more� uniformly� shared� between� car,� air� and� rail.� This� is� due� to� the� importance� put� by� leisure�
travelers�on�minimizing�travel�costs�and�the�ability�to�travel�as�a�group.�Also,�traveling�by�car�is�very�
convenient� for� tourism� trips� or� for� making� visits� of� extended� duration,� such� as� out�of�town�
sightseeing�for�instance�(ibid).��

The�key�market�potential� for�HSR�in�Norway�is�air�travel,�which�is�currently�dominated�by�business�
travel.� This� finding� is� shared� by� Schlaupitz� (2008).� International� studies� have� shown� that� after�
introducing� HSR,� some� air� corridors� have� been� canceled.� Nevertheless,� HSR� has� the� potential� to�
attract� leisure�travelers� from� long�distance�routes,�partly�because�HSR�may�allow�the�possibility�of�
out�and�back�travel�within�a�day,�avoiding�the�hotel�costs�associated�with�car�use.�To�compete�with�
air�travel,�HSR�will�need�to�provide�a�competitive�service,�in�terms�of�frequency,�journey�times,�fares,�
accessibility�and�comfort�(ibid).�

Norsk�Bane�(2009)�is�expecting�around�8’800�pday�in�2025�between�Oslo�and�Trondheim�for�rail.�On�
the�other�hand,�Atkins�Ltd�(2010)�is�expecting�492015�pday�(scenario�D:�building�of�new�separate�HSR�
line).�The�baseline�case�of�this�project�has�been�modeled�with�522516�pday.�Thus,�the�baseline�case�is�
between�the�findings�from�Norsk�Bane�(2009)�and�Atkins�Ltd�(2010).�8’800�pday�(Norsk�Bane�2009)�

������������������������������������������������������������
15�The�numbers�from�Atkins�Ltd�have�been�computed�by�using�the�Norwegian�Long�Distance�Transport�Model�(NMT5).�For�
more�information�on�the�NTM5�model,�please�see�the�“Evaluation�of�the�Norwegian�long�distance�transport�model�(NTM5)�
by�(Rekdal�2006)�

16�38�journeys�per�day,�train�with�250�seats,�load�factor�of�55%�



4���Core�factors�investigated�

43�

seem� to� be� quite� high.� It� corresponds� to� the� total� passengers� traveling� today� from� Oslo� to�
Trondheim�with�all�modes�of�transport�in�2011.��

Seat�capacity�per�train�

Seat�capacities�per�train�are�ranging�from�140�to�360.�Note�that�the�first�four�numbers�for�HSL,�AGV�
and�“California�HSR�project”�are�projected�numbers.�The�average�seat�capacity�of�trains�in�use�today�
is�ranging�from�200�for�X�2000�to�300�for�AVE�in�Spain.�

�

Figure�4�14:�Seat�capacity�per�train,�international�review�

Seat�occupancy�or�load�factor�

Local�or�regional�trains�usually�need�to�have�large�seat�capacity�or�standing�areas�for�peaks�in�rush�
hours.� These� capacities� are� not� used� most� of� the� day� or� year� leading� to� low� load� factors,� ranging�
from�20�40%.�In�contrast,�modern�high�speed�trains�with�competitive�travel�time�and�ticket�pricing�
usually� have� high� load� factors� ranging� from� 50�75%� and� that� is� comparable� to� most� domestic� air�
lines.� For� instance,� in� 2004,� the� load� factor� for� X� 2000,� a� Swedish� high� speed� train� was� of� 55%�
(Anderson�and�Lukaszewicz�2006).��

The� load� factor�@ ,7AB�� CD .�))�,/��EFA
CDD���2 ,7AB�� CD )��*EFAG�is� the� main� determinant� of� energy� consumption� per�

passenger�km.�In�Scandinavia,�load�factors�for�fast�regional�services�with�electric�trains�vary�from�20�
to� about� 40%� and� the� energy� consumption� ranges� from� 0.07� kWh/� pass�km� for� the� highest� load�
factor� to� 0.18kWh/pass�km.� In� contrast,� for� long�distance� operations,� load� factors� are� quite� high�
typically� 55�60%� and� energy� consumption� is� around� 0.08kWh/pass�km.� However,� X� 200017�trains�
nowadays�transport�more�passenger�than�assumed�previously.�This�is�partly�due�to�longer�train�and�
partly�to�higher� load� factors�than�anticipated� in�1994.� In�2004,� the� load�factor�was� in�the�order�of�
55%�instead�of�44%,�resulting�in�specific�energy�consumption�of�0.075kWh/passenger�km�(Anderson�
and�Lukaszewicz�2006).�Anderson�and�Lukaszewicz�(2009)�show�in�a�recent�study�a�further�increase�
of� the� load� factor� for� X200� to� 60%,� resulting� mainly� from� a� more� active� yield� management.�

������������������������������������������������������������
17�Swedish�high�speed�train�with�maximum�speed�in�service�of�200�km/h�and�a�mass�of�366�tonnes�
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Furthermore,� they� note� that� the� average� load� factor� for� future� high�speed� trains� might� even� be�
higher.�

The�figure�below�presents�technical� lifetimes�used� in�previous�environmental�assessment� for�high�
speed.�They�range�from�10�to�100�years.�The�first�three�are�used�in�Norwegian�(N)�studies,�the�next�
two� for� Swedish� (S)� studies� and� the� last� three� for� European� studies� (D=Germany,� F=France,�
EU=Europe).�

�

Figure�4�15:�Lifetime�min�and�max�from�previous�environmental�assessment�

Swård� (2006),� through� an� empirical� study,� highlighted� the� extension� of� lifetimes� thanks� to� good�
maintenance� and,�hence,� the� reduction�of�wearing.�For� instance,� this�can�be�achieved�by�grinding�
and� lubricating� the� rails.� On� the� other� hand,� the� lifetimes� might� be� reduced� by� more� reusable�
designs�that�might�reduce�the�weight�of�the�components�and�thereby�their�lifetime.��

4.4.1 COMPONENT�LEVEL�

For� Swedish� railways,� ballast�material,� cables,� rails� and� railway� ties� are� reused.� Ballast�material� if�
sorted�out�in�the�cleaning�process,�can�be�mixed�with�others�materials,�and�used�further�down�in�an�
embankment.�It�can�also�be�used�at�marshalling�yards�or�as�filling�material�when�constructing�roads.�
A�market� is� starting�to�develop� in�this� last�area.�However,�materials�are�often�polluted,�and�might�
not� be� used� for� environmental� reasons.� Cables� are� not� reused� but� can� be� recycled� material.� Rails�
taken�away�from�the�track�go�through�a�quality�control�before�they�can�be�reused.�X�rays�are�used�to�
find� tendencies� to� fracture.� Nevertheless,� it� is� not� possible� for� rails� to� go� back� to� their� original�
condition�and�standards�exist�on�how�much�the�head�of�the�rail�is�allowed�to�be�worn�down.�Railway�
ties� are� reused� when� possible.� The� major� quantity� is� usually� worn� out� when� exchanged.� Reuse� of�
railway�ties�have�good�potential�to�increase�in�the�future,�as�the�new�railway�ties�with�the�pandrol�
attachment�appliances�are�more�durable.�On� the�other�hand�contact�wire� systems�are�not� reused�
nor� recycled.� Components� of� contact� wire� systems� get� too� worn� out� and� therefore� cannot� be�
reused.�They�are�often�alloyed,�making�them�more�difficult�to�recycle�(Swärd�2006).�
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4.4.2 MATERIAL�LEVEL�

Network�Rail�(2010)�conducted�a�sensitivity�analysis�on�embedded�GHG�emissions.�A�very�significant�
impact�on�the�final�results�is�caused�by�the�percentage�of�recycling�of�materials�at�the�end�of�life�of�
infrastructure�and� trains,� to�a�much� lesser�degree.�Because� the�effect�of�embedded� infrastructure�
emissions� dominates� the� overall� assessment,� the� importance� of� designing� easily� recyclable�
infrastructure�is�highlighted.�

Steel�

Steel� structures� are� usually� easy� to� disassemble.� They� are� most� often� produced� in� standardized�
dimensions� and� quite� easy� to� re�use.� On� the� other� hand,� steel� used� in� reinforced� concrete� is� not�
possible� to�reuse�and�must�be�recycled.�Steel�content�can�be�up�to�20%� in�reinforcement�and�the�
extracting�process�is�relatively�expensive�and�complex.�Machines�are�used�for�crushing�the�concrete,�
electromagnets� for� separating,� etc� Steel� in� electric� cables� is� nearly� impossible� to� recycle� due� to�
copper.�Another� issue�for�steel�of�high�quality�–�or�chromium�steel�–� is�the�surface�treatment�that�
can�lead�to�complications�when�recycling�(Berge�2009).��

Cement�

Cement� is� used� to� make� concrete� that� is� used� in� construction.� Basically,� cement� is� mixed� with�
chemical�admixtures�and�water�to�make�concrete.�Therefore,�it�is�difficult�to�recycle�cement�per�se�
but�it�is�possible�to�recycle�concrete�that�is�made�out�of�cement�(Collins�2010).�
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5 SCENARIOS�UP�TO�2050�

The�first�question� in�this�project�“What�are�the�core�factors�for�the�environmental�performance�of�
HSR� in�Norway?”�was�answered� in�chapters�2�and�3.�Some�core� factors� found� in�chapters�2�and�3�
were� investigated� further� in� chapter� 4.� In� chapter� 5,� the� last� questions:� “What� are� the� likely�
development� scenarios� for� these� factors� up� to� 2070?”� and� “What� are� the� results� of� the�
implementation�of�the�scenarios�in�an�LCA�of�HSR�in�Norway?”�are�answered.�

“2010”�consists�of�HSR�LCA�without�any�updates�in�the�database.�Additionally,�three�scenarios�have�
been�developed:�

1. Updated� 2010:� Only� the� background� system� has� been� adjusted.� This� is� to� account� for� the�
time�span�between�the�modeling�of�the�LCA�data�from�the�database�for�the�background�and�
their�use�in�HSR�LCA.�
�

2. 2050:� The� background� and� foreground� system� have� been� changed.� The� numbers� for� the�
background�system�are�based�on�literature�studies�for�2050.�This�means�that�this�scenario�is�
feasible�based�on�production�technique�and�material�available.�
�

3. 2050+:�The�background�and�foreground�system�have�been�modified.�The�numbers�are�based�
on� scenario� 2050.� However,� scenario� 2050+� is� beyond� the� average� production� techniques�
and� quantity� of� materials� available� at� that� time.� To� reach� the� goals� set� in� 2050+,� the�
organization� running� the� train� and� the� infrastructure� will� have� to� dress� a� list� of� specific�
requirements� to� its� suppliers� in� order� to� “deliver� the� transport� service� to� meet� the� total�
transport� demand”� (functional� unit).� The� requirements� concern� the� materials� and� energy�
used� in� the� production� process.� For� instance,� one� could� require� from� cement� producers�
cement� with� 60%� secondary� materials� and� secondary� fuel.� Concerning� operation� the�
objective�could�be�to�drive�the�trains�with�a�“clean�electricity�mix”.�

� �

5.1 SCENARIOS�DEVELOPMENT
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Table�5�1:�Values�for�the�parameters�used�in�the�scenarios�

�
� � �

Units� 2010�
Updated�

2010�
2050� 2050+�

Ba
ck

gr
ou

nd
�

Cement�

secondary�
material�

%�of�secondary�
material�

7�%� 5�%� 37�%� 60�%�

secondary�fuel�
%�of�secondary�

fuel�
4�%� 18�%� 37�%� 60�%�

Steel�

energy�
%�of�decrease�in�

energy�use��
��� 10�%� 20�%� 40�%�

quality�
%�of�chromium�

steel�in�rails�
100�%� 10�%� 10�%� 10�%�

U
se

�o
f�r

ec
yc

le
d�

st
ee

l�

high�
quality�

%� ��� 37�%� 60�%� 80�%�

low�
quality�

%� 37�%� 37�%� 60�%� 80�%�

rails� %� ��� 37�%� 60�%� 80�%�

XPS�

bl
ow

in
g�

ag
en

t�

CO2�

%�

50�%� 70�%� 90�%� 100�%�

HFC�134a� 25�%� 10�%� ��� ���

HFC�152a� 25�%� 20�%� 10�%� ���

Fo
re

gr
ou

nd
�

El�mixes�for�operation�
CF�(g�CO2 per�

kWh)�
166� 166� 130� 100�

Energy�per�seat�km� kWh�per�seat�km� 0,041� 0,041� 0,035� 0,035�

Load�factor� %� 55�%� 55�%� 70�%� 80�%�

Energy�per�pass�km� kWh�per�pkm� 0,075� 0,075� 0,050� 0,044�

Passenger�per�day�
person�(share�of�

HSR)�
5223�����
(43%)�

5223�� ��
(43%)�

8685�
(72%)�

9899�
(82%)�

Trains�per�day� train� 38� 38� 49� 49�

Reuse� rails�
%�being�reused�

further�
��� ��� ��� 18�%�

�

Notes��

1. Please�see�again�figure�3:�“Overview�of�HSR�LCA”.�The�parameters�used�for�the�scenarios�are�
“jumping”�directly�from�the�background�system�to�the�system�level.�Because�the�parameters�
are� taken� from� the� core� factors� investigated� in� chapter� 4.� No� parameters� is� inserted� into�
either�the�section�level�or�the�component�level.�For�instance,�on�a�section�level,�there�is�no�
variable�to�address�the�fluctuation�of�the�overall�impact�of�HSR�LCA�if�it�were�built�not�only�
with�double�track�but�a�mix�of�double�and�single�track.�On�a�component�level,�a�parameter�
could�have�been�used�to�account�for�the�reduction�of�the�amount�of�steel/cement�needed�
per�component,�as�proposed�by�Stripple�and�Uppenberg�(2010)�as��potentials�to�reduce�CO2�

emissions�embedded�in�steel�and�cement.��
�

� �
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2. CCS� is� chosen� as� a� solution� to� get� a� cleaner� cement� in� the� 2050� horizon� (WBSCD� and� IEA�
2009).�Because�the�majority�of�the�emissions�for�the�production�are�occurring� in�CO2�eq,� it�
was�tempting�to�use�CCS�to�get�rid�of�the�CO2�eq�emissions.�However,�in�an�LCA�perspective,�
the� emissions� are� assessed� from� “source�to�wheel”.� Therefore,� the� impact� of� a� CCS� plant�
should� also� be� included.� Also,� no� CCS� technology� is� modeled� in� the� Ecoinvent� database,�
making�it�difficult�to�use�in�this�LCA�study.�

Cement�

The� base� case� consists� of� 7%� of� secondary� materials� and� 4%� secondary� fuel.� Both� numbers� have�
been�changed�to�correspond�with�the�European�industry�that�used�about�5%�of�secondary�material�
and�18%�secondary� fuel� in�2006�(CEMBUREAU�2009).�WBSCD�and� IEA� (2009)�predict�a�use� rate�of�
37%� for� both� secondary� materials� and� secondary� fuel� in� 2050.� The� share� of� 60%� for� secondary�
materials�for� in�scenario�2050+�is�based�based�on�Geopolymer�cement�(WBSCD�and�IEA�2009)�that�
make� use� of� waste� material� from� the� power� industry� (fly� ash,� bottom� ash)� and� the� steel� industry�
(slag).� The� share� of� 60%� for� secondary� fuel� in� scenario� 2050+� is� to� reflect� the� share� of� secondary�
material.�

Steel�

The�update�of�10%�in�energy�efficiency�is�based�on�my�estimations.�This�number�might�be�too�high�
for� the�overall� steel� production�modeled� in� the� foreground� system.�A� more� appropriate� approach�
would�have�been� to�apply� this� increase� in�energy�efficiency� to� the�oldest� process�of� the�database�
only.�The�20%�is�based�on�the�International�Energy�Agency�that�set�the�energy�efficiency�potential,�
based�on�today’s�best�available�technologies�(IEA�2009).�Nevertheless,�by�changing�from�open�blast�
furnaces�to�electric�arc�furnaces,�the�steel�industry�could�also�reduce�its�use�of�energy�by�50%�(Kram�
et�al.�2001),�leading�to�the�number�of�40%�energy�saving.��

The�quantity�of�chromium�steel�used�in�rails�has�been�decreased�due�to�an�overestimation�in�“2010”.��

The� share� of� recycled� steel� has� been� increased� to� 37%� for� the� three� different� steels� in� “updated�
2010”to�match�with�the�steel�of�low�quality�of�“2010”.�Global�scrap�availability�is�today�about�0.4�ton�
of�scrap�per�ton�of�crude�steel�produced.�If�by�2050�today’s�level�of�crude�steel�production�were�to�
double,�scrap�availability�is�estimated�to�amount�to�about�0.6�ton�per�ton�of�crude�steel�(Rubel�et�al.�
2009).�“2050”�has�60%�recycled�steel,�based�on�scrap�available� in�2050.�“2050+”�has�80%�recycled�
steel,�implying�that�a�commitment�has�to�be�taken�to�buy�“steel�that�is�made�out�of�80%�of�scrap”.�

XPS�

The� use� of� CO2� as� blowing� agent� is� increased.� CO2� is� more� environmentally� than� HFC�134� and�
HFC152a�as�blowing�agents.�

Electricity�mix�for�operation�

The�mix�for�scenario�2050�consists�of�70%�renewable�(hydro),�16%�fossils�(8%�coal,�8%�natural�gas)�
and� 10%� nuclear.� The� mix� for� scenario� 2050+� consists� of� 80%� renewable� (hydro),� 12%� fossils� (6%�
coal,� 6%� natural� gas)� and� 10%� nuclear.� I� have� developed� these� new� electricity� mixes� using� the�
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Ecoinvent�data�version�2.2.�It�is�difficult�to�know�what�electricity�mixes�will�be�representative�of�the�
average� electricity� mix� offered� on� the� market� in� 2050.� For� instance,� Graabak� and� Feilberg� (2011)�
quantify�the�emissions�of�CO2�from�the�power�system�in�Europe� in�a�time�perspective�up�to�2050.�
They�created�scenarios�on�variations�in�demand.�The�specific�emissions�from�the�electricity�mixes�are�
ranging�from�361�g�CO2�/kWh�to�31�g�CO2�/kWh.��

Energy�per�seat�km��

The�numbers�are�based�on�the�report�by�Lukaszewicz�and�Anderson�(2009)�who�estimate�green�train�
energy�consumption�for�high�speed�rail�operations.�

Load�factor�

In�2004,� the� load� factor�was� in� the�order�of�55%�for� the�X2000� (Anderson�and�Lukaszewicz�2006).�
Anderson�and�Lukaszewicz�(2009)�show�in�a�recent�study�a�further�increase�of�the�load�factor�for�the�
X2000�to�60%,�resulting�mainly�from�a�more�active�yield�management.�Furthermore,�they�note�that�
the�average�load�factor�for�future�high�speed�trains�might�even�be�higher.�The�70%�for�scenario�2050�
are� is� an� increase� based� on� the�estimation�of� the� author� from� the� load� factor� of� 55%� in� 2010.� To�
reach�the�80%�of�scenario�“2050+”,�an�active�yield�management�will�be�required.�

Energy�per�pass�km�

The�energy�per�pass�km�is�obtained�by�dividing�the�energy�per�seat�km�by�the�load�factor.�

Passengers�per�day�

The� original� number� of� 1214718�pday� for� all� mode� of� transportat� is� kept� and� developed� further� in�
scenario�2050�and�2050+.�In�scenario�2050,�HSR�gains�benefit�from�all�mode�of�transport�that�loose�
50%�of�their�passengers.�Additionally,�in�scenario�2050+,�the�airline�Oslo�Trondheim�is�deleted.�

Trains�per�day�

Trains�per�day�are� increased�by�30%�(38�to�49)� to� satisfy� the�demand�of� the� increased�number�of�
pday� from�scenario�2010� to�scenario�2050+.�Note�that� the�number�of� seats�of�250�seats�per� train�
remains�constant.�

Reuse�

The� reuse� of� rail� is� estimated� at� 18%.� This� number� is� taken� from� Swärd� (2006)� who� allocates� 38�
GJ/year�to�rails�used�on�main�line�tracks�and�7�GJ/year�to�rails�used�in�regional�tracks.��

� �
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18�5223pdy/43%,�43%=�share�of�HSR�
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The�figure�below�shows�the�results�for�the�three�scenarios�for�the�six� impact�categories.�Emissions�
are�on�average�of�83%�of�the�total�for�scenario�Updated�2010,�of�57%�of�the�total�for�scenario�2050�
and� of� 48%� of� the� total� for� 2050+19.� Emissions� could� be� reduced� by� almost� 20%� by� adjusting� the�
database,�by�50%�in�a�likely�future�and�by�60%�by�setting�specific�objectives�to�have�a�“green�HSR”.�It�
appears� as� though� the� potential� for� reducing� emissions� for� HSR� transport� service� is� huge.� For� all�
scenarios,�human�toxicity�consists�of�the�upper�limit�and�ozone�depletion�of�the�lower�limit.��

�

�

Figure�5�1:�Results�of�the�scenarios�

� Climate�change:�The�decrease�comes�to�a�large�extent�from�the�use�of�secondary�materials�
in� the� clinker� production� for� cement,� to� the� higher� use� of� recycled� steel� for� steel� of� low�
quality.�To�a� lesser�extent,� it�comes�from�the� increase� in�energy�efficiency�for�steel�of�high�
and� low� quality,� from� the� use� of� recycled� steel� for� steel� of� high� quality� and� from� the�
decrease�of�use�of�chromium�steel�for�rails�

� Ozone�depletion:�All�the�impact�categories�are�following�a�general�trend.�Nevertheless,�the�
slope�for�ozone�depletion�is�sharper�from�2010�to�“updated�2010”.�This�is�due�to�the�shift�in�

������������������������������������������������������������
19�Each�impact�category�is�given�the�same�weight.�How�correct�it�is�to�allocate�the�same�weight�to�all�the�impacts�could�be�
discussed� further.� For� example,� the� 83%� would� go� up� quickly� if� less� weight� would� be� given� to� ozone� depletion.�
Nevertheless,�the�idea�here�is�to�give�an�indication�of�the�overall�impact�of�each�scenario.�

2010
Updated�

2010
2050 2050+

Climate�change 100�% 93�% 49�% 40�%

Ozone�depletion 100�% 76�% 35�% 31�%

Human�toxicity 100�% 99�% 63�% 58�%

Terrestrial�acidification 100�% 94�% 54�% 46�%

Freshwater�eutrophication 100�% 93�% 49�% 40�%

Water�depletion 100�% 98�% 54�% 46�%
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blowing�agent�in�XPS�production�to�a�large�extend�and�to�the�use�of�secondary�fuel�in�clinker�
production�and�the�increase�in�energy�efficiency�for�steel�of�high�and�low�quality�to�a�minor�
extend.��

� Human�toxicity:�The�curve�follows�the�general�trend.�The�decrease�comes�from�the�increase�
in� energy� efficiency� for� production� of� steel� of� low� quality� to� a� large� extent� and� from� the�
increase� in� energy� efficiency� for� production� of� steel� of� high� quality� to� a� lesser� extent.�
Nevertheless,�the�reason�why�the�slope�of�the�curve�is�less�sharp�is�due�to�the�increase�use�
of�recycled�steel.��
The�major�feedstock�for�the�production�of�recycled�steel� is�ferrous�scrap.�Scrap�can�consist�
of�scrap�from�inside�the�steel�works,�cuts�offs�from�steel�product�manufacturers�(e.g.�vehicle�
builders)�and�capital�or�post�consumer�scrap�(e.g.�end�of�life�products)�(Classen�et�al.�2009).�
Emissions�of�heavy�metals�depend�largely�on�the�scrap�quality.�Cadmium�is�one�of�the�main�
contributors�to�human�toxicity.�This�heavy�metal�is�principally�consumed�for�the�production�
of�rechargeable�nickel�cadmium�,�for�other�end�uses�such�as�pigments,�coatings�and�plating�
and�as�stabilizers�for�plastics�(USGS�2011).�If�end�of�life�products�are�used�as�scrap�source,�an�
unavoidable� amount�of� cadmium�will� enter� the� secondary� steel� production� system� due� to�
for�example�coatings.�Cadmium�being�one�of�the�main�contributor�of�human�toxicity,�this�is�
one�of�the�reason�of�why�human�toxicity�increases�with�the�increase�of�the�use�of�scrap.�

� Terrestrial�acidification:�The�decrease�comes�mainly�from�the� increase�in�energy�efficiency�
for�both�steel�of�high�and�low�quality�and�the�increase�rate�of�recycled�steel�for�steel�of�low�
quality.�

� Freshwater� eutrophication:� The� decrease� comes� mainly� from� the� increase� in� energy�
efficiency�and�the�increase�rate�of�recycled�steel�for�steel�of�low�quality.��

� Water�depletion:�The�decrease�is�mainly�due�to�the�increase�use�of�recycled�steel�for�steel�of�
high�and�low�quality�

� �
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System�level�

The�table�below�shows�the�results�on�a�system�level�for�climate�change�only.�

Table�5�2:�Scenarios�results���System�level���climate�change�

2010� Updated�2010� 2050� 2050+�

Infrastructure� g�CO2�eq�per�pkm� 104,74� 96,69� 52,38� 40,73�
Operation� g�CO2�eq�per�pkm� 13,75� 13,75� 5,08� 5,79�

Rolling�stock� g�CO2�eq�per�pkm� 0,81� 0,81� 1,07� 0,94�
HSR�LCA� g�CO2�eq�per�pkm� 119,29� 111,25� 58,52� 47,45�

�

� The�results�for�infrastructure�decrease.�From�“2010”�to�“updated�2010”,�the�decrease�is�due�
to�changes�of�technology�in�material�production�in�the�background�system.�For�“2050”�and�
“2050+”,� the� decrease� is� due� to� changes� of� technology� in� material� production� in� the�
background� system� and� in� increased� numbers� of� passengers� per� day� in� the� foreground�
system.�

� On�the�one�hand,�the�results�remain�constant�from�“2010”�to�“updated�2010”�for�operation.�
This�is�not�uprising�since�no�changes�are�made�in�the�foreground�system.�On�the�other�hand,�
it� is� interesting� to� note� that� even� if� the� number� of� passengers� increases,� the� overall�
emissions� for�operation�per� pkm� decrease� from�“2050”� to�“2050+”.�This� is�due� to� cleaner�
electricity�mixes�used,�higher�load�factor�and�lower�energy�per�seat.�

� The� results� for� rolling� stock� first� remain� constant� and� then� increase.� As� for� operation,� no�
change�is�made�in�the�foreground�system�from�“2010”�to�“updated�2010”,�leading�to�a�satus�
quo� for� rolling� stock� as� well.� The� increase� from� “updated� 2010”� to� “2050”� is� due� to� the�
higher�number�of�trains�used.�The�results�decrease�from�“2050”�to�“2050+”�because�even�if�
the�number�of�trains�remains�constant,�the�load�factor�is�higher,�leading�to�a� lower�impact�
per�passenger.�

�
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6 DISCUSSION�

The� six� impact� categories� chosen� gave� a� larger� perspective� than� previous� studies.� For� instance,�
Stripple� and� Uppenberg� (2010)� addressed� climate� change� only.� For� the� construction� of� the�
infrastructure�of�the�Botnia�Line,�they�found�an�impact�of�1%�for�copper�and�3%�for�explosives.�For�
the�construction�of�the� infrastructure�of�HSR�LCA,� I� found�an� impact�of�18%�for�copper�for�human�
toxicity�and�an�impact�of�41%�for�explosives�for�terrestrial�acidification.��

Nevertheless,� there� are� many� sources� of� railway� traffic� pollutants� and� not� all� of� them� were�
addressed.�For�instance,�the�emissions�of�particle�were�not�addressed.�Particles�have�several�sources�
such�as�the�dust�created�by�the�excavation�and�construction�work,�the�emissions�arising�due�to�the�
maintenance� of� the� rails� and� the� railway� wear� particles.� Gustafsson� et� al.� (2007)� underline� the�
importance�of�the�inhalable�fraction�of�railway�wear�particles.�Even�if�the�magnitude�of�the�different�
sources�is�not�clear,�wear�of�rails,�wheels�and�brakes�have�been�pointed�out.�The�composition�of�the�
railway� wear� particles� consists� mainly� of� iron.� Other� metals� such� as� zinc,� manganese,� copper,�
chromium�and�nickel�are�found�in�lower�concentration.�Submicron�particles,�which�are�considerably�
smaller�than�railway�wear�particles,�are�emitted�from�traffic.�Their�origin�is�unknown.��

To�reassess�the�results,�it�would�be�interesting�to�apply�the�updates�of�scenario�“updated�2010”�on�
the�model�and�to�apply�the�updated�model�on�another�corridor�with�a�higher�number�of�tunnels�and�
bridges,�for�example�the�corridor�Oslo�Bergen�(Metier�2007).�

The� use� of� secondary� materials� for� cement� production� has� been� pointed� out� as� one� of� the� main�
potential�to�reduce�the�impact�of�climate�change.�However,�an�allocation�issue�remains.�The�case�of�
metallurgical�slags�from�steel�production�is�described�below�to�explain�this�issue:�

The�production�of�steel�generates�by�products.�The�most�significant�by�product�is�metallurgical�slags.�
They�can�either�be�used�as�civil�works�aggregates�or�as�substitute�for�clinker�in�cement�production.�
The�cement� industry,�by�adopting�extensive�use�of�such�slags�could�play�a�key�role�in�reducing�the�
CO2�emissions� from�both� industries.�The�remaining�question� is:�how�will�both� industries� share� the�
benefits� of� this� emission� reduction� in� their� overall� carbon� footprint?� Clinker� production� for� use� in�
cement� consumes� by� far� the� largest� percentage� of� energy� and� is� allocated� most� of� the� industry’s�
emissions.� By� using� blast� furnace� slag,� the� clinker� content� in� typical� Portland� cement� could� be�
reduced�from�90%�down�to�about�30%,�or�even�below�that�level�(Rubel�et�al.�2009).�According�to�the�
International�Energy�Agency,�this�substitution�will�lead�to�reductions�in�annual�energy�consumption�
up�to�0.5�exajoule�and�up�to�200�million�tons�of�CO2�emissions,�annually.�

� �
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On the one hand, future Norwegian HSR will only carry passengers (Pettersen 2011). On the other 
hand, the impact of the infrastructure of future Norwegian HSR is high, mainly because it is lacking 
passengers. 

Nowadays, Norwegian freight transport is dominated by road (47%) and sea transport (46%). Rail 
transport only accounts for 7% (Monsrud, 2009). There is a huge potential to transfer freight to rail. 
If tripling the capacity for rail freight transport by 2030, Statens vegvesen (2010) expects a reduction 
of 165’000 tonnes of GHG emissions. 

If HSRs infrastructure was not only used for passenger transport but also for freight, the 
environmental impacts of constructing and maintaining it would not only be divided up by 
passengers, but by passengers and freight. Simonsen (2010) proposed a method to give different 
weights to passengers and freight for the construction, operation and maintenance of road 
infrastructure. These numbers could be used as basis to find out specific numbers to rail.  

Schlaupitz (2008) underlines the importance of including freight already in the construction phase in 
order to find out solutions for the use of infrastructure.  

 

Figure 6-1: HSR-LCA – Overview of the parts investigated 

The parts of the model that were investigated in this project are circled in red.  

6.4 USE OF HIGH-SPEED TRAIN FOR PASSENGER AND/OR FREIGHT 

6.5 FUTURE WORK 
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� Background system: The production of materials was investigated carefully. An additional 
step could be to analyze specific electrical power for the different processes, as did Stripple 
and Uppenberg (2010) for the Botnia Line. 
 

� Component level: The effect of a change of choice, amount or design of material for a 
component could be investigated. For instance, steel has a very long lifetime. Steel’s 
strength and durability allow for long product life cycles. For instance, buildings and bridges 
made with steel last from 40 to 100 years, or longer with proper maintenance (World Steel 
Association 2008). Therefore, not only the emission due to the initial production should be 
considered but a key contribution from the steel industry is to work closely with its 
customers to optimize the design and use of steel in steel-using products in order to reduce 
the overall footprint (World Steel Association 2010). 
 

� Section level: The results found for HSR-LCA indicated that open sections have a high 
impact. When comparing open sections of HSR-LCA with other studies, they are found at the 
top of the scale of the results of the different open-sections. The open sections of HSR-LCA 
are based directly on the open section developed by Korsmo and Bergsdal (2010) for the 
Follobanen. The Follobanen has the specificity of having extensive structures concentrated 
on short stretches. This could be one of the reasons for this high result. Future work should 
reconsider the open sections and base them on other existing HSR lines. Also, Oslo-
Trondheim consists of the line with the lower share of tunnels and bridges. It would be 
interesting to see results for the line Oslo-Bergen, which has a high share of tunnels and 
bridges (Metier 2007). 
 
 

� System level: The construction and maintenance phases of infrastructure are heavy. The 
maintenance will be done in the future, while the construction will be done “today”. New 
technologies that might be found in the near future should definitely be considered for 
maintenance.  
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7 CONCLUSION 

The conclusion is presented by answering the three research questions. 

What are the core factors for the environmental performance of HSR in Norway? 

� Cement 

� Steel 

� XPS 

� Infrastructure 

� Deforestation 

� Passengers per day 

Cement, steel and XPS are the materials that have the most impact. The share of the infrastructure 
of future Norwegian HSR is high because of the impacts of the materials used but also because of 
the low number of passengers and the low CF of the electricity mix used for operation. A high 
Norwegian number of passengers consists of a low European number of passengers (UIC 2009). 
Norwegian HSR is lacking passengers. A high potential to have more passengers on HSR is to abstract 
passenger from air, which is the most used mode of transport in Norway at this time (Atkins 2011).  

The energy used for operation and the energy per seat-km are not core factors because the 
electricity mix used for operation has a low CF (166 g CO2/kWh). Deforestation has been identified as 
a core factor. Nevertheless, it has not been modeled.  

What are the likely development scenarios for these factors up to 2050? 

� Cement: Decrease of the impact due to an increase of the use of secondary materials and 
secondary fuel for the production of clinker.  

� Steel: Increase in energy efficiency by 20% and use of scrap up to 60%  

� XPS: Use of CO2 as blowing agent only 

� Infrastructure: Decrease of impact due to changes of technology in material production in 
and to increased numbers of passengers per day  

� Passengers per day: Increase due to the transfer of passengers from other mode of transport 
to HSR 

What are the results of the implementation of the scenarios in an LCA of HSR in Norway? 

The impact of future Norwegian HSR is reduced on average by 17% by updating the database, by 
50% in a likely future and by 60% in a scenario where more resources than available are used. For 
instance, for steel, more than the scrap amount available by 2050 is used. If more scrap than 
available is used for HSR in Norway, it means that less will be available elsewhere. The impact of HSR 
will decrease while the global emissions will still increase as the emissions will emitted elsewhere. 
Furthermore, in HSR-LCA, no distinction is made between local and global emissions. Are the heavy 
emissions from the production of steel allocated to Norway, even if no steel is produced in Norway 
or to the country that is producing the steel that Norway buys for its HSR infrastructure? 
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9 APPENDICES�

LCA�mathematics�are�the�same�as�input�output�analysis�(IOA)�mathematics�which�are�based�on�flows�
between�economic�agents.�As�a�rule,�physical�flows�(products,�materials,�energy�and�waste)�between�
economic� agents�are� accompanied�by�monetary� flows.�Usually,�physical�and�monetary� flows� go� in�
opposite�directions.�For�instance�an�electric�power�plant�sends�electricity�to�a�steel�factory.�In�return,�
the�steel�factory�sends�some�money�back�to�the�power�plant.�In�some�cases,�physical�and�monetary�
flows�can�have�the�same�direction.�A�factory�which�sends�chemical�waste�to�a�waste�incinerator�has�
to�send�money�in�that�direction�as�well�(Suh�2007).��

While�LCA�flows�are�usually�accounted�for�in�physical�flows,�IOA�flows�are�usually�physical.�LCA�are�
conducted� to� assess� the� impacts� of� a� given� product� or� production� system.� IOAs� are� generally�
conducted� for� macroeconomic� assessments.� For� instance,� an� IOA� can� be� used� to� assess� the�
production� of� average� primary� aluminium� while� an� LCA� can� distinguish� further� between� different�
aluminium� alloys.� Both� LCAs� and� IOAs� describe� inter�process� relations.� On� the� one� hand,� an� LCA�
gives�a�better�level�of�details�than�an�IOA.�On�the�other�hand,�IOAs�are�generally�more�complete�at�
the�national�level�(Strømman�and�Suh�2007).�

IOA�and�LCA�mathematics�

After� World� War� II,� Wassily� Leontief� (1905�1999)� was� concerned� with� the� conversion� of� the� US�
economy�(Polenske�2004).�In�the�late�1930s,�he�devised�the�revolutionary�IO�method�that�can�depict�
the�inter�industry�relation�of�an�economy�by�showing�how�the�output�of�an�industry�is�the�input�of�
another� industry.� He� could� then� predict� the� effect� of� the� changes� of� an� industry� on� another� and�
analyze�the�interdependence�of�industries�in�an�economy.�Today,�input�output�analysis�had�become�
one�of�the�most�widely�applied�methods�in�economics�(Miller�and�Blair�1985).�

The� following� methodology� is� taken� from� the� handbook� of� input�output� table� compilation� and�
analyses�(United�Nations�1999):�

1. Goods�flows�between�industries�

Consider�three�producers�and�their�transactions.� ijF �are�the�flow�of�goods�from�industry�i�to�j.��

� �

9.1 APPENDIX�1:�LCA�MATHEMATICS
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Table�9�1:�IO�flow�table�and�accounts�

�� Industry�1� Industry�2� Industry�3� Final�demand� Total�output�

Industry�1� F11� F12 F13 y1 x1�

Industry�2� F21� F22 F23 y2 x2�

Industry�3� F31� F32 F33 y3 x3�

Total�input� x1� x2� x3� �� ��

�

2. Technical�relationships�between�industries�

A�fundamental�assumption�is�that�for�a�given�time�period�the�interindustry�flow�Fij�depends�entirely�
and� exclusively� on� the� total� output� xj� of� sector� j� for� that� same� time� period.� Input� and� output�
relationships�are�transformed�into�technical�relationships�by�using�technical�coefficients�aij:�

ij
ij

j

F
a

x
� � � � � � � � � � � � (3)�

All�the�coefficients�#+H can�be�grouped�in�an�A�matrix:�

I#�� J #�HK L K#+� J #+H
M���������� � � � � � � � � � (4)�

3. Effects�along�the�value�chain�

With�the�input�structure�represented�by�the�A�matrix,�it� is�possible�to�obtain�the�amount�of�all�the�
inputs�each�industry�requires�in�order�to�produce�one�unit�of�its�output.�However,�this�does�not�tell�
us�anything�about�the�inputs�required�before,�all�along�the�value�chain.�The�production�of�a�product�
generates� a� long� chain� of� interaction� in� the� production� processes.� Each� product� can� be� used� as�
inputs�for�other�products�but�also�as�input�for�itself.�This�creates�a�chain�of�requirement�that�goes�to�
infinity:�

2 1

0
lim ... ( )

i n
i n

n i
A I A A A I A L

�
�

��
�

� � � � � � � �� � � � � � � (5)�

L� is� the�Leontief� inverse�matrix�that�depicts� the�full� impact�of�an� increase�of� final�demand�5�on�all�
industries.�The�total�output�is�obtained�by�multiplying�the�Leontief�inverse�matrix�N�by�the�vector�of�
final�demand 5.��

O � @P Q RGE�5 � N5�������� � � � � � � � � (6)�
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Note�that�even�if�the�mathematics�of�input�output�economics�are�not�too�complicate,�especially�now�
with�powerful�computers�available�to�compile�and�inverse�the�matrices,�the�data�requirements�are�
enormous�because�the�expenditures�and�revenues�of�each�branch�of�economic�activity�have�to�be�
represented.�

4. Computations�of�the�emissions��

The�total�output�x�of�the�system�above�is�multiplied�by�a�stressor�matrix�S�in�order�to�have�the�total�
emissions�for�a�given�demand�y.�S�gives�the�emissions�emitted�by�each�process.�

T:!#? 9;$&&$:%& � SN5�� � � � � � � � � (7)�

� �
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The� table� below� gives� the� list� of� the� parameters� used� in� HSR�LCA,� their� value� in� the� base� case�
(scenario�2010),�the�process(es)�where�they�are�used.�

Table�9�2:�List�of�the�parameters�used�in�HSR�LCA�

�
Parameters�

Base�
case�

Processes� Remarks�

Ba
si

s�
st

ep
s�

A� 0� Cement,�at�plant/CH�U_PARAMETER�

��

�� Betongstøp�

�� Sement�

�� Sikringsstøp�

�� Betong,�elementer�

�� Stål�(lavkvalitet)�

B� 1� Cement,�at�plant/CH�U_PARAMETER�

�� Betong,�elementer�

�� Betongstøp�

�� Sikringsstøp�

�� Sement�

�� �� Stål�(lavkvalitet)�

Ce
m

en
t�

clinker_1mat� 1� Clinker,�at�plant/CH�U_PARAMETER� 7%�sec�material�

clinker_1fuel� 1� Clinker,�at�plant/CH�U_PARAMETER�
take�specific�MJ/kg�into�

account�to�change�it��

clinker_2fuel� 1� Clinker,�at�plant/CH�U_PARAMETER�
take�specific�MJ/kg�into�

account�to�change�it��

En
er

gy
�e

ff
ic

ie
nc

y�

steel_coke� 1�
Steel,�converter,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

can�vary�from�1�to�0�

�� �� Pig�iron,�at�plant/GLO�U_PARAMETER�

�� ��
Steel,�converter,�unalloyed,�at�plant/RER�
U_PARAMETER�

�� �� Sinter,�iron,�at�plant/GLO�U_PARAMETER�

�� ��
Ferronickel,�25%�Ni,�at�plant/GLO�
U_PARAMETER�

steel_ng� 1�
Steel,�converter,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

can�vary�from�1�to�0�

�� �� Pig�iron,�at�plant/GLO�U_PARAMETER�

�� ��
Steel,�converter,�unalloyed,�at�plant/RER�
U_PARAMETER�

�� ��
Steel,�electric,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

�� ��
Steel,�electric,�un��and�low�alloyed,�at�
plant/RER�U_PARAMETER�

�� �� Sinter,�iron,�at�plant/GLO�U_PARAMETER�

�� ��
Pellets,�iron,�at�plant/GLO�
U_PARAMETER�

�� ��
Ferronickel,�25%�Ni,�at�plant/GLO�
U_PARAMETER�

steel_coalmix� 1� Pig�iron,�at�plant/GLO�U_PARAMETER�
can�vary�from�1�to�0�

�� ��
Steel,�electric,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

9.2 APPENDIX�2:�LIST�OF�THE�PARAMETERS
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�� ��
Steel,�electric,�un��and�low�alloyed,�at�
plant/RER�U_PARAMETER�

�� ��
Pellets,�iron,�at�plant/GLO�
U_PARAMETER�

steel_diesel� 1�
Ferronickel,�25%�Ni,�at�plant/GLO�
U_PARAMETER�

can�vary�from�1�to�0�

D
ec

re
as

e�
in

�d
ir

ec
t�e

m
is

si
on

s�
du

e�
to

�in
cr

ea
se

�in
�e

ne
rg

y�
ef

fic
ie

nc
y�

direct_coal� 1�
Steel,�converter,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

�=�steel_coalmix�

�� �� Pig�iron,�at�plant/GLO�U_PARAMETER�

�� ��
Steel,�electric,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

�� ��
Steel,�electric,�un��and�low�alloyed,�at�
plant/RER�U_PARAMETER�

�� ��
Pellets,�iron,�at�plant/GLO�
U_PARAMETER�

�� ��
Ferronickel,�25%�Ni,�at�plant/GLO�
U_PARAMETER�

direct_ng� 1�
Steel,�converter,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

�=�steel_ng�

�� �� Pig�iron,�at�plant/GLO�U_PARAMETER�

�� ��
Steel,�converter,�unalloyed,�at�plant/RER�
U_PARAMETER�

�� ��
Steel,�electric,�chromium�steel�18/8,�at�
plant/RER�U_PARAMETER�

�� ��
Steel,�electric,�un��and�low�alloyed,�at�
plant/RER�U_PARAMETER�

�� �� Sinter,�iron,�at�plant/GLO�U_PARAMETER�

�� ��
Pellets,�iron,�at�plant/GLO�
U_PARAMETER�

�� ��
Ferronickel,�25%�Ni,�at�plant/GLO�
U_PARAMETER�

direct_coke� 1� Pig�iron,�at�plant/GLO�U_PARAMETER�

�=�steel_coke��� ��
Steel,�converter,�unalloyed,�at�plant/RER�
U_PARAMETER�

�� �� Sinter,�iron,�at�plant/GLO�U_PARAMETER�

Re
cy

cl
in

g�

steel_high_chrom� 1� Stål�(høykvalitet)_rails�
%�of�chromium�steel�for�steel�

of�high�quality,�can�vary�from�1�
to�0��

steel_high_2ndqual� 0� Stål�(høykvalitet)_rails� 1�steel_high_chrom�

steel_rec_high� 0� Stål�(høykvalitet)�
%�of�recycling�of�steel�of�high�
quality,�can�vary�from�0�to�1�

steel_primary_high� 1� Stål�(høykvalitet)� 1�steel_rec_high�

steel_rec� 0,37�
Reinforcing�steel,�at�plant/RER�
U_PARAMETER�

%�of�recycling�of�steel�of�low�
quality,�can�vary�from�0�to�1�

steel_primary� 0,63�
Reinforcing�steel,�at�plant/RER�
U_PARAMETER�

1�steel_rec�

steel_rec_rails� 0� Stål�(høykvalitet)_rails�
%�of�recycling�of�steel�for�rails,�

can�vary�from�0�to�1�

steel_primary_rails� 1� Stål�(høykvalitet)_rails� 1�steel_rec_rails�

� �
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Bl
ow

in
g�

ag
en

ts
�

XPS_CO2� 0,5�
Polystyrene,�extruded�(XPS),�at�
plant/RER�U_PARAMETER� can�vary�from�0�to�1,�

XPS_CO2+XPS_134+XPS_152=1�
XPS_134� 0,25�

Polystyrene,�extruded�(XPS),�at�
plant/RER�U_PARAMETER�

XPS_152� 0,25�
Polystyrene,�extruded�(XPS),�at�
plant/RER�U_PARAMETER�

�=�1�XPS_CO2�XPS_134�

El
ec

tr
ic

ity
�m

ix
�fo

r�o
pe

ra
tio

n�

el_op_baseline� 1� Operation�(kWh),�Tot_strekning_60years� ��

�� �� Operation�vkm� ��

CF_130� 0� Operation�(kWh),�Tot_strekning_60years�

Electricity�mixes�used�for�the�
scenarios�

�� �� Operation�vkm�

CF_100� 0� Operation�(kWh),�Tot_strekning_60years�

�� �� Operation�vkm�

el_op_coal� 0� Operation�(kWh),�Tot_strekning_60years�

Electricity�mixes�used�for�the�
sensitivity�analysis�

�� �� Operation�vkm�

el_op_wind� 0� Operation�(kWh),�Tot_strekning_60years�

�� �� Operation�vkm�

el_op_nuclear� 0� Operation�(kWh),�Tot_strekning_60years�

�� �� Operation�vkm�

el_op_hydro� 0� Operation�(kWh),�Tot_strekning_60years�

�� �� Operation�vkm�

el_op_europe� 0� Operation�(kWh),�Tot_strekning_60years�

�� �� Operation�vkm� ��

En
er

gy
�re

qu
ir

ed
�

e_skm� 0,041� �� only�for�calculations�

load_factor� 0,55� Infrastructure_pkm� can�vary�from�0�to�1�

�� �� Operation�(kWh),�Tot_strekning_60years� ��

�� �� Operation�vkm� ��

�� �� Operation_pkm� ��

�� �� Oslo�Trondheim_pkm� ��

�� �� Rolling�stock_pkm� ��

e_pkm� 0,0745� Operation�(kWh),�Tot_strekning_60years�
�=�e_skm/load_factor�

�� �� Operation�vkm�

Tr
ai

ns
�

train_day� 38� Infrastructure_vkm� ��

�� �� Operation�(kWh),�Tot_strekning_60years� ��

�� �� Operation�vkm� ��

increase_trains� 1� Rolling�Stock_60years_livsløp� ��

�� �� Rolling�stock_vkm� ��

Re
us

e�

rails_reuse� 1� Strekning3_Jernbaneteknikk�

1=�no�reuse,�0=100%�reused��� �� Strekning2_1løp_Jernbaneteknikk�

�� �� Strekning2_2løp_Jernbaneteknikk�

� �
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Co
ef

fic
ie

nt
s�

to
�s

w
itc

h�
fr

om
�1

�to
�2

�tr
ac

ks
�

bridge2_1� �� ConcreteBridge_1track_construction�

Coefficient�to�switch�from�
double�to�single�track�for�

bridges�

�� �� ConcreteBridge_1track_EndofLife�

�� �� ConcreteBridge_1track_EndofLife�

�� �� ConcreteBridge_1track_Waste�

�� �� ConcreteBridge_1track_Waste_EndofLife�

�� �� SteelBridge_1track_Construction�

�� �� SteelBridge_1track_Maintenance�

�� �� SteelBridge_1track_Waste_EndofLife�

tunnel2_1� �� Tunnel_1track_Construction�

Coefficient�to�switch�from�
double�to�single�track�for�

tunnels�

�� �� Tunnel_1track_EndofLife�

�� �� Tunnel_1track_Maintenance�

�� �� Tunnel_1track_Waste�

�� �� Tunnel_1track_Waste_EndofLife�

�
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