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Abstract

The roughness is an important parameter in wall-bounded flows, as most surfaces
are rough. The main effect of the roughness is to increase the drag as the near wall
is affected by the roughness. In recent years a lot of efforts has been used to find
out what effect has the roughness on the outer layer. In other words is there any
differences in outer layer, boundary layer or channel flow, between rough and
smooth-surface?
Jimenez (2004) suggests that for δ/k > 40 there are no differences, in agreement
with Townsend’s hypothesis, the roughness merely acts to increase the surface
stresses, without changing the structure in the flow.
This was challenged by Krogstad et. al (1999) who showed, for boundary layer
over 2−D roughness, there is a difference in the outer layer due to the roughness.
However for a channel flow Krogstad et. al (2004) has found no differences.
The main impediment is how to obtain a reliable estimate for the friction velocity,
uτ, which is the main scaling parameter of principal interest. In channel flow
the uτ may be obtained directly from the stream-wise pressure gradient. A com-
mon technique for boundary layer over smooth surface is the Clauser chart. This
method is subjected to large uncertainties for rough surface, because the number
of unknowns is increased from one, Cf , for smooth surface to three, (Cf , ε, the
shift in origin and Δu/uτ shift in velocity), for rough surface.
The need for an independent measurement of the wall shear stress has led to the
present work.
A floating-balance has been designed to obtain the shear stress on the rough sur-
face. The balance was tested in channel flow, adverse pressure gradient flow and
zero pressure gradient boundary layer and the velocity field was investigated
using a two-component LDA system. The results showed that the shear stress,
from balance, was underestimated by ∼ 4%.
Turbulent boundary layer is a complicated nonlinear system; Clauser (1956) com-
pared it with a black box. A better understanding of this system may be obtained
by changing one of its inputs and to examine its output.
An experimental investigation on the response of a turbulent boundary layer to
sudden change in roughness, from smooth to rough, using floating balance to
measure the shear stress is also a part of the present work.
The structure of the turbulent boundary layer over 2 − D roughness was inves-
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tigated using LDA and PIV system. All the moments up to third order were
determined from the LDA measurements. From the PIV measurements two-
point correlations in x − y plane were obtained. The effect of large scales on the
features of the flow-using POD was also investigated.

Keywords
Floating-element, LDA, Internal boundary layer, high-order moments, PIV, POD.
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Nomenclature

Roman

a, b, d distances

A1, A2 area

Axz projected area of the floating element in xz plane

B, C constants

c thickness of the gap

Cf skin friction coefficient, Cf = 2 (uτ/Ue)
2

D width of the floating element, D=50 mm

E recovered energy from POD modes

F shear force, F = τw · Axz

Fα flatness of component α

FN force measured by balance

Fp pressure force

G Clauser’s shape parameter

g gap between the moving plate and surrounding wall

H shape parameter, H = θ/δ∗

h channel half height

K calibration constant

k hight of the roughness, k = 1.7 mm

L Length of the floating element, L=350 mm

LF lip force
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Lxpp length of Rpp in x direction

Lypp length of Rpp in y direction

M number of snapshots

M∗ size of the step change, M∗ = z01/z02

N normal force

Npod number of leading POD modes

q kinetic energy, q = 1/2uiui

Rpq two-point correlation of fluctuating components p and q

Ruv correlation coefficient, Ruv =< −uv > / (σuσv)

Reθ Reynold number based on the momentum thickness, θ

Sα skewness of component α

u stream wise velocity

Ue free stream velocity

uτ friction velocity, uτ =
√
τw/ρ

u(n)
L (x, y) reconstructed velocity field from the N leading POD modes

u(n)
R (x, y) residual velocity field

X distance from the step to the measurement point

z0 roughness length, for a rough surface z0 = (ν/uτ) exp [−κ (A + ΔU/uτ)]

Greek letters

β non-dimensional pressure gradient

ΔP pressure drop

ΔU+ vertical shift of the logarithmic curve

ΔX length

Δ Clauser’s thickness for turbulent layers, Δ = δ∗Ue/uτ

δ boundary layer thickness, defined as y for which u = 0.99Ue

δ∗ displacement thickness

vi



δi thickness of internal boundary layer

ε shift in origin

κ von Karman constant=0.41

λ roughness spacing

λci swirling strength

λi eigenvalue from POD

λs swirling strength with assigned sign based on ωz

ν kinematic viscosity of the air

ω(Π, y/δ) wake function

ωz vorticity in (x,y) plane

φi POD modes

Π wake strength

ρ density of the air

σp standard deviation of component p

τ total shear stress

θ momentum thickness

ks equivalent sand grain roughness

y spatial coordinate in spanwise direction

Superscripts

+ normalized with uτ

p coefficient in Elliot’s formula

Subscripts

l, m number of velocity components in a snapshot

p, q general index

Abbreviations

IBL internal boundary layer
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LDA Laser Doppler Anemometry

PIV Particle Image Velocimetry

POD Proper orthogonal decomposition
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Chapter 1

Introduction

1.1 Rough boundary layer

1.1.1 The boundary layer concept

The concept of boundary layer was introduced by Prandtl and defined as - a thin
layer of fluid adjacent to the solid surface within which the viscous effects are
dominant. The velocity near the wall is smaller than at a large distance from it.
The thickness of this layer is increasing along the flat plate in the downstream
region (Schlichting (1968)). The velocity distribution over a flat plate is shown
schematically in Figure (1.1). The boundary layer is a thin layer of retarded flow

Figure 1.1: Boundary layer over a flat plate (sketch)

of thickness δwhich increases from the leading edge in the downstream direction.
The nominal thickness, δ, is the distance at which the velocity is 0.99Ue, Ue being
the free stream velocity. The velocity approaches Ue asymptotically and δ is not
very easy to measure. Therefore the ill-defined δ is substituted by more precisely
defined momentum thickness, θ, or displacement thickness, δ∗.
The displacement thickness, δ∗, is the displacement of the streamlines from the
wall compared to inviscid solution, in order to obtain the same mass rate of flow
as in the real case. From Figure (1.2) the δ∗ can be defined:∫ ∞

0
udy =

∫ ∞

δ∗
Uedy⇒ δ∗ =

∫ ∞

0

(
1 − u

Ue

)
dy (1.1)
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CHAPTER 1. INTRODUCTION

Figure 1.2: Displacement thickness (sketch)

From Figure (1.2) follows that the area A1 is equal with area A2.
The momentum thickness, θ, is defined as:

ρU2
eθ = ρ

∫ ∞

0
(Ue − u)dy⇒ θ =

∫ ∞

0

u
Ue

(
1 − u

Ue

)
dy (1.2)

All of these thicknesses depend on the shape of velocity distribution. The ra-
tio between the momentum thickness and displacement thickness is called the
shape parameter, H.

H =
θ
δ∗

(1.3)

1.1.2 Boundary layer over smooth surface

The main goal of the present work is to study the structure of the boundary layer
over rough-surface but it is good to have an overview over boundary layer in
zero pressure gradient over a smooth surface. The boundary layer over smooth
surface must be divided into two regions; the inner region in which the viscosity
is an important parameter and outer region where flow is independent of the
viscosity. In the immediate vicinity of the wall we have

U
uτ
=

y · uτ
ν

(1.4)

where

uτ =
√
τwall

ρ
(1.5)

2



1.1. ROUGH BOUNDARY LAYER

Further from the wall we have the logarithmic law of the wall

U
uτ
=

1
κ

ln
(y · uτ
ν

)
+ B (1.6)

This is universal in the inner layer which for flat plate boundary layer is considered
as y/δ < 0.2.
For the outer layer, log region, exist a universal relation between (Ue − u/uτ) and
y/δ as

Ue − u
uτ

=
1
κ

ln
(y
δ

)
+ C (1.7)

Outside the log region we have:

Ue − u
uτ

= f
( y
δ

)
(1.8)

The Karman constant, κ ∼ 0.41 is considered to be universal. The constants B and
C are different from author to author, this might be connected with not enough
information about turbulent boundary layer.

1.1.3 Boundary layer over rough surface

Practically all surfaces are rough. The first rough-wall flow analysis was con-
ducted by Nicuradze (1933), who investigated the flow in sand-roughened pipes.
He found that the flow depended on the relative scale of the roughness k/d (k
is roughness scale and d pipe diameter) as well as the Reynolds number (Perry
et al). Flow dependent on k/d was termed f ully rough while the flow dependent
on both k/d and Reynolds number was termed transition f low.
The main effect of the roughness is to increase the friction coefficient, Cf , and to
shift data with the ΔU+ compared to smooth data as shown in Figure (1.3) where
ΔU+ is the vertical shift of the logarithmic curve caused by the roughness and has
the form (Clauser 1956)

ΔU+ =
1
κ

ln
(

kuτ
ν

)
+ const. (1.9)

Over either smooth or a rough wall the turbulent boundary layer consists of
an outer region (Raupach et al.) where the length scale is the boundary layer
thickness, δ, and a wall or inner region where the length scale is ν/uτ for smooth
wall and ν/uτ together with k to characterize the rough wall. The velocity profiles
for rough and smooth-surface in outer coordinates are shown in Figure (1.4). The
main conclusion from Figure (1.3) and Figure (1.4) is that

• in inner coordinates there is a region where the velocity profile is logarithmic
as for the smooth surface but shifted with a value ΔU+

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Velocity profile in inner coordinates

Figure 1.4: Velocity profile in outer coordinates

4



1.2. SKIN FRICTION MEASUREMENT

• in outer coordinates the equation (1.7) is valid for both smooth and rough
surface this indicate that the flow is similar in outer layer.

How is that possible a flow with different structure in inner layer could be similar
in outer layer?
U(y) is a function of y no doubt but we should be careful in defining the origin of
y for rough wall. The origin of y can be taken anywhere between the crest of the
roughness and the valley of roughness. The distance, ε, defines the origin of y for
profiles that will give a logarithmic distribution near the wall (Perry et al).

1.2 Skin Friction measurement

Any object moving through a fluid experiences a drag that can be decomposed
in pressure drag and skin friction drag. The problem of estimating turbulent
skin friction is important in many applications, such as aerospace research or the
structure of turbulent boundary layer. The shear stress is an important parameter
for the normalization of the velocity profiles. Only with accurate measurement
of the shear stress it is possible to establish reliable data for comparison with
numerical simulations or models.
Several methods for measuring the shear stress in the wall have been developed.
There is not a universal method to measure skin-friction because each problem
requires a specific geometry to be adapted and different techniques apply better
in different cases. Winter shows a review of the techniques used from 1940 to
1975 and range conditions required on each case. The modern developments are
presented by Naughton & Sheplak. The principal skin-friction techniques are:

• Direct measurement

• Liquid tracers

• Momentum balance

• Wall similarity technique

• Microelectromechanical systems (MEMS) technique

• Thin-oil-film techniques

1.2.1 Direct measurement

Direct measurement is a method, which gives the shear stress directly without any
assumptions about the flow. The skin friction balance is a direct measurement of
the skin friction. This is very simple and well established technique but with many
problems in practical application. A principle sketch of skin friction balance is
shown in Figure (1.5). The force due to flow with velocity U acting on the balance,

5



CHAPTER 1. INTRODUCTION

Figure 1.5: Floating element

for rough surface, consist of a frictional force F, F=τw · Axz, where τw is the wall
shear stress acting on the surface of the balance Axz and the pressure forces acting
on the frontal area of the roughness, Fp. What we measure is the force FN or the
displacement of the floating element. Usually the measured force is determined
as

FN = K ·
(
τw · Axz + Fp

)
(1.10)

where K is a calibration constant, which is determined by applying known loads
and measuring the displacement or the force of the floating element.
The main problems (Winter 1977), which should be considered:

• A device to measure very small forces or displacements

• The effect of the gaps around the floating element

• Forces arising from the pressure gradients

• The effects of misalignment of the floating element

• Effects of temperature changes and vibrations from the tunnel

• Effects of leaks

1.2.2 Momentum balance

For the flows in constant area ducts, such as channels or pipes the wall shear
stress can be obtained form the pressure gradient.

τwall =
1
2
ΔP
ΔX

h (1.11)

6



1.2. SKIN FRICTION MEASUREMENT

where h is either the pipe radius or channel height, ΔP is the pressure drop over a
lengthΔX (Haritonidis 1989). This method is limited because it applies to a rather
special type of flow and because the flow should be fully developed. However it
is ideal for calibration. (see Haritonidis 1989)
The application of the momentum balance to developing flow is less satisfactory.
In principle it is simple you have to use the momentum integral equation and to
solve for τwall. The main drawback is that the equation contains some derivatives
(Brown & Joubert 1969) of slowly varying quantities, such as the momentum thick-
ness of the boundary layer. These derivatives are very difficult to be determined
accurately.

1.2.3 Wall similarity technique

In has been accepted that near the wall, for smooth wall and y+ < 5, the velocity
distribution is given by U+ = y+ and hence the value of the skin friction can be
determined. This implies that we should measure very close to the wall in the
viscous sub-layer. This sub-layer is very thin for high Reynolds number so the
velocity cannot be determined correctly. Instead the logarithmic region is used.
The log-law for smooth surface is presented bellow:

U
uτ
=

1
κ

ln
(yuτ
ν

)
+ B (1.12)

The main problem with equation 1.12 is the universality of constants, κ and B. The
equation 1.12 is determined from the dimensional analysis while the constants κ
and B are determined experimentally. Several authors have challenged the con-
stants κ and B, Österlund & Johansson determined κ=0.38 and B=4.1.
The log law for rough surface, which is different from the meteorological commu-
nity, may be written

U
uτ
=

1
κ

ln

⎛⎜⎜⎜⎜⎜⎜⎝
[
y + ε

]
uτ

ν

⎞⎟⎟⎟⎟⎟⎟⎠ + B − ΔU+ (1.13)

Here ε is the shift in origin of the effective wall location and ΔU+ is the shift in the
log law due to the roughness effect on the mean flow. The two addition unknowns,
ε and ΔU+, for rough surface makes the fitting procedure more challenging. If
uτ is determined in an independent way, this will decrease the uncertainty of the
remaining two variables in the fitting procedure.
Other methods using the wall similarity technique are:

• Heat transfer

• Mass transfer

• Preston tubes

7



CHAPTER 1. INTRODUCTION

• Stanton tubes

More details about these methods can be obtained from Winter (1977).
The MEMS and thin-oil-film techniques are discussed in details in Naughton &
Sheplak (2002). Most of the measurement techniques were developed on the base
of smooth surface. If roughness is included then most of technique fail due to
the measurement principle used or the impossibility to accommodate to the new
geometric condition.
Most of the friction for rough surface is due to pressure drag. For simple roughness
geometry, the pressure drag can be measured by pressure tap on one or more
roughness elements. This was done by Perry et al. (1969) and by Antonia &
Luxton (1971) for square transverse bars. For a more general rough surface it is
necessary to use a balance to measure the force acting on a small area of surface.
The direct measurement of skin friction on a rough surface was performed earlier
by Karlsson (1980) or Acharya et al (1986).

1.3 The response of turbulent boundary layer to sud-
den perturbations

The turbulent boundary layer involve a complex combination of phenomena,
the relatively simple case is the constant pressure boundary layer (Clauser 1956).
We are interested to know what happens to the flow when the boundary layer is
subjected to a sudden perturbation. The flow subjected to sudden perturbations is
very often observed in nature. For example, when breezes encounter the coastline,
the sudden change in roughness can have an important effect on the flow (Smits &
Wood 1985). Another possible perturbations can be a sudden change in pressure
gradient or the curvature of the surface, blowing or suction of the flow applied
along a surface to control the flow. Apart form the practical reasons; the study of
behavior of a perturbed boundary layer is a way for better understanding of the
structure of turbulent boundary layer. The mechanism of the boundary layer is
very complicated and difficult to understand. Our goal is to try to understand it
by applying a sudden perturbation and to try to see what is the response to this
imposed condition. Following Tani (1968) there are two methods of introducing
the perturbations into boundary layer:

• The perturbation is applied as a sudden change in pressure or of a wall
roughness

• The perturbation is introduced of an obstacle in the flow or by the application
of injection or suction over a short region of the wall

8



1.3. THE RESPONSE OF TURBULENT BOUNDARY LAYER TO SUDDEN
PERTURBATIONS

1.3.1 Sudden change in roughness

Surface roughness can change from smooth to rough or rough to smooth. The
work presented in this thesis is connected with the perturbation as a sudden
change of a wall roughness, from smooth to rough.
The change in surface roughness is presented in Figure (1.6). When the turbulent

Figure 1.6: Sudden change in roughness

boundary layer flow run over a discontinuity in roughness is not anymore in
equilibrium. The region affected by the step change in roughness is called internal
boundary layer, δi. The boundary layer, upstream the step, is considered to be
fully developed and described by the equation (see Smits & Wood 1985):

U
uτ
=

1
κ

ln
(

y
z0

)
(1.14)

where z0 is the roughness length. For a smooth wall we have:

z0smooth =

(
ν
uτ

)
exp [−κB] (1.15)

For a rough surface,

z0rough =

(
ν
uτ

)
exp

[
−κ

(
B +
ΔU
uτ

)]
(1.16)

The size of the step change can be measured by M∗ = z01/z02, Smits & Wood (1985),
or by M = lnM∗, where 1 and 2 refers to the upstream and downstream values.
For M < 0 we have a step change from smooth to rough and for M > 0 we have a
step change from rough to smooth.
According to Wood (1981) a general correlation for δi after a step change in
roughness for zero pressure gradient boundary layer is

δi

z0
= f1

(
M∗,

X
z0

)
(1.17)

where X is the distance from the step; z0 can be either z01 or z02. The equation
(1.17) applies for the near wall region where δi/δ less than 0.2. Another correlation

9



CHAPTER 1. INTRODUCTION

assuming that δi ∼ xn is
δi

z0
= f2 (M∗)

(
X
z0

)n

(1.18)

At the small scales in the atmosphere, and in the wind tunnel (Garratt (1990)),
the internal boundary layer is found to grow as ∼ x4/5, for a smooth to rough
transition and slightly slower growth for the rough to smooth flow.

1.4 Motivation

The roughness is very important parameter for wall-bounded flows. The main
effect of the roughness, as mentioned above, is to increase the skin friction and to
shift data with ΔU+. Although a lot of experiments have been done, one of the
first being Nikuradze, the boundary layer over rough surface is far from being
elucidated.
The boundary layer over smooth or rough walls consists of outer and inner
layer. According to Townsend’s hypothesis the turbulence outside the roughness
sublayer is unaffected by surface condition. This implies that the Reynolds stresses
(Flack et al. 2005) normalized with uτ are universal outside the roughness sub-
layer. The roughness sub-layer extends ∼ (3−4)k from the wall. This is supported
by Flack et al. (2005), mesh and sand grain roughness, Volino et al. (2007), Wu &
Christensen (2007), wall with replicated turbine blade roughness.
For 2 − D roughness, k=1.7 mm and λ/k=8, Lee & Sung (2007) DNS, Volino et al.
(2009) have found changes in the turbulence in the outer layer which is consistent
with Krogstad & Antonia (1999), λ/k=4, λ is the roughness spacing.
Following the Jiménez (2004) for k << δ and k/δ > 40 the wall similarity is
expected. The similarity is expected when scaling with uτ which is very difficult
to determine correctly. The use of Clauser plot, is subjected to large uncertainties
(Acharya et al 1986) because the number of variables to be determined from
fitting procedure are: ε, ΔU+ and Cf compared with one, Cf , for smooth surface.
To decrease the uncertainty it is necessary to have an independent measurement
of Cf .
The development of a floating element for rough surface, which allows to measure
independently the Cf , followed by the measurement of the structure of rough
turbulent boundary layer using laser Doppler anemometry, LDA, and particle
image velocimetry, PIV, will be addressed in present thesis.

10
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Chapter 2

A Skin Friction Balance

The main problem that slowed down the understanding of the roughness effect
on the flow has been the difficulty to measure the skin friction. This quantity
is very important because it represents the main scaling parameter. In addition,
for the rough surface an independent measurement of uτ is essential for accurate
determination of the Δu/uτ and shift in origin, ε.
This led to the development of the skin-friction balance and a set of measurements
to investigate how accurate uτ can be measured.

2.1 Description of the balance

We spent around three years in our endeavor to build a balance to measure shear
stress for our rough wall. At the beginning it was a classical balance with springs
and non-contact sensor or laser displacement sensor to measure the displacement
of the floating element. The main problems with sensors were too much drift and
low sensitivity. The main challenge with the balance is the electronic part because
the forces or displacements are very small.
The system was designed around a standard, off the shell, laboratory balance.
The balance is shown in the Figure (2.1). The device is a single-pivot type and
consists of two main parts:

• The sensing element, which consists of a replica of the test surface (1) is
mounted on a thin plate. We have developed our balance for channel
flow and two-dimensional boundary layer applications taking advantage
of the spanwise homogeneity, so the sensing element is a rectangle with
dimensions (DxL) 50x350mm in the streamwise and spanwise directions,
respectively. The test plate is mounted on a vertical frame (2), which rests
on a knife edge (6). Through the lower part of the frame is an adjustable
horizontal bar (3) with two counter weights. The force is then transmitted to
the sensing element through the adjustable vertical arm (4). By varying the
ratio between arms (2) and (3) the "gain" of the system may be varied. Also
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CHAPTER 2. A SKIN FRICTION BALANCE

Figure 2.1: The skin friction balance.

balancing counter weights have been used to preload the sensing element
of the balance to ensure that the balance always operates in its linear range.

• The balance (5) is a commercial force sensing unit from Ohaus with a sensi-
tivity of 0.001g. Normal loads are of the order of 12g and for these loads the
vertical motion of the sensing unit was less than 100 μm as measured using
a micrometer dial gauge. The output from the balance was sampled on a
computer through a RS232 connection.

In unloaded condition the sensing element was centered in the slot cut in the floor
of the wind tunnel. The gap, g, between the movable plate and the surrounding
wall was nominally 0.6mm and g/D ∼ 0.012.
Figure (2.2) shows the setup of the balance in wind tunnel. The whole balance
could be positioned very accurately by means of three screws (3) controlling the
vertical movement and two screws (1) that could be used to shift the balance in
the horizontal plane. In addition the balance (5), Figure (2.1), has two more screw
for fine adjustment in vertical direction
Figure (2.3) presents a sketch of the forces acting on the floating element, friction
force, F, lip force, LF, normal force, N, force due to the pressure on frontal area of
roughness, Fp, and the force measured by balance, FN. Following Allen (1976), the
sum of moments about the moment center, the following equation was obtained:

FN =
a
b

[
Fp ·

(
1 +

k
2a

)
+ F +N · d

a
+
(
1 − c

2a

)
· LF

]
(2.1)
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Figure 2.2: The balance setup

The first two terms in equation 2.1 are the terms we want to measure, the first
term is zero for a smooth wall, for a rough wall the ratio Fp/F > 1, this indicate
that the main contribution to skin friction for rough wall is due to the pressure
drag. The last two terms, representing the normal force and the lip force, should
be zero for an ideal case. Thus this balance measure the total drag due to the
pressure and the skin friction drag. The last two terms are main source of errors
assuming that the calibration is perfect.
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CHAPTER 2. A SKIN FRICTION BALANCE

Figure 2.3: Forces acting on floating element

Because the balance is a single-pivot type, any normal force that does not pass
through the pivot point will create a moment in addition to that from the skin
friction. The moment due to the normal force, N, are different from zero in two
cases:

• If the pressure above and bellow the floating element are not equal ( Allen
(1976))

• because the balance is a pivot type, any misalignment, d � 0, will create a
momentum due to gravity force.

The moment due to normal force is not very big because the arm, d, usually is
very small compared with the length, a, arm for skin friction force.
Under ideal condition, when the protrusion is zero and the flow through the gap
around the floating element (Allen (1976)) and the surrounding surface is null,
the pressure around the floating element is constant creating no net force on the
lip. As long as there is a flow through the gap a net force will be created.
In order to reduce the effects of any flow through the gaps, the balance was
mounted in a sealed box (4) fitted under the test surface; see Figure (2.2). To
minimize the effect of structural vibrations, a gap exists between the box (4) and
the plate (6); see Figure (2.2). This gap is sealed with a polyethylene film (7),
Figure (2.2).
The lip force is mainly function of the protrusion of the element above and be-
low the surface. In our case we kept are negative protrusion of ∼ 0.06 mm which
should be negligible in our case because we have a thick boundary layer (see Allen
(1977)). We have a relatively big gap and this turns in our advantage because as
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Allen (1977) proved that the balance is less sensitive to protrusion errors at the
larger gaps.
The pressure variation across the floating element will create a force in the di-
rection of the skin friction force (see Hakkinen 2004), acting on the sides of the
floating element (Figure (2.4)). Hakkinen (2004) has shown that the relative error
caused by gap forces can be written as:

ε =

(
dp/dx

)
·D · c

τw ·D =

(
dp/dx

)
· c

τw
(2.2)

where τw is the shear force,
(
dp/dx · c ·D

)
is the net force, c and D are the thickness

of the gap and the length of the floating element. The main conclusion from the
equation (2.2) is that the relative error is direct proportional with the gap depth c.
This explains why we have a sharp edge on the floating element and the surface
around the element (Figure 2.1). This is equivalent to c ∼ 0.1 mm see Figure (2.3).

Figure 2.4: Gap forces.

The balance was calibrated in situ in the wind tunnel. The main problem in
calibrating the balance was to generate a force, which is acting parallel with
the sensing element. Using a calibrating device constructed in a similar way
as the arms of the balance, except that it was inverted, solved this problem. The
calibration device is presented in Figure (2.5). A frame (1), balanced by the weights
(7), mounted on knife-edge supported by frame (2), which sits on the rough wall
(4), is in contact with the floating element (5) through the arm (6). The vertical
arm has a sharp edge at one end, which is in contact with one bar from the floating
element. The container (3) is loaded with known masses necessary for calibrating.
In this way the calibration device is transferring the vertical force due to weights to
a force in the horizontal direction. The geometry of the calibration device doesn’t
change during the calibration because the displacement of the floating element is
negligible.
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Figure 2.5: The calibration device.

The calibration curve obtained in this way is shown in Figure (2.6). The calibrated
output is seen to be very linear with very little scatter. The ratio between the arms
(2) and (3) in Figure (2.1) was adjusted to be close to 5:1 and this may be seen to be
reflected in the five times higher output from the balance. The linear calibration

Figure 2.6: The calibration curve.

function fitted to the data was found to have a scatter typically better than 0.34%
of full load.
Figure (2.7) shows the Cf as function of k+. For fully rough conditions, k+ > 60,
the Cf should be constant. The differences between the averaged value, solid
line in Figure (2.7), and measured values, not for the first point, are ∼ ±1%. The
differences for the first point is ∼ 2% this is connected with the fact that the
measured force, F=0.0051 N, is too small.
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Figure 2.7: Cf versus k+.

2.2 Results

The main source of error is the pressure gradients (Hakkinen 2004); any small
pressure gradient could be a significant source of error by creating a pressure
difference between upstream and downstream gaps. To check the performances,
the balance was exposed to three different pressure gradients.
The experiments were conducted in a closed return wind tunnel. Both the ceiling
and the floor was covered with square rods 1.7x1.7 mm2. The pitch-to height ratio
λ/k = 8 which correspond to "k-type roughness". In addition the upper wall of
the wind tunnel is adjustable.
Measurements of velocity field was performed using a Dantec two-components
fiber-optic Laser Doppler Anemometry (LDA). In order to do near-wall measure-
ments the probe was tilted at a small angle. The flow was seeded with small
particles provided by Safex smoke generator. A total of 100 000 random velocity
samples were obtained in coincidence mode for each location during the mea-
surements. The probe was traversed to approximately 30 locations for case 1 and
40 locations for case 2 and 3. All the measurements were taken above the crest of
the roughness elements.
To determine the uτ the balance was used. The data from balance was sampled as
long as velocity measurement. The moving average of the data from balance was
in the limit of ±0.4%.
The variation of the non-dimensional pressure gradient (2.3) is shown in Table
2.2.

β = h · 1
ρ · u2

τ

·
∣∣∣∣∣ΔP
Δx

∣∣∣∣∣ (2.3)

The first experiment was fully developed channel flow as in Krogstad et al (2005).
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Table 2.2: Parameters for experiment. The symbols used for the plots.

Case h [mm] β ΔP/Δx Cf Symbol
1 50 1.027 < 0 0.0148 �
2 300 6.203 > 0 0.0048 �
3 210 0.083 ≈ 0 0.0067 �

The channel half height was h=0.05 m. Being a fully developed channel flow the
wall shear stress is easy to obtain by simply measuring the pressure drop along
the channel and compared with the wall shear derived from the balance.

τwch = h · ΔP
Δx

(2.4)

where h is the half channel height and dP/dx is the pressure gradient. To measure
the pressure-drop, the test section is fitted with taps in the sidewall and along the
centerline of the floor.
The axial mean-momentum equation for channel flow is:

−1
ρ

dP
dx
+ ν

d2U
dy2 −

d
dy
< uv >= 0 (2.5)

The integration of equation (2.5) from 0 to y

− y
ρ

dP
dx
− τw

ρ
+

[
ν

dU
dy
− < uv >

]
= 0 (2.6)

− 1
u2
τ

y
ρ

dP
dx
− 1 +

[
dU+

dy+
− < uv+ >

]
= 0 (2.7)

where superscript (+) means normalized with the shear stress, uτ, and the viscous
length scale, ν/uτ. The non-dimensional pressure gradient, β, can be included in
equation 2.7 and to obtain:

− < uv >+= 1 + β ·
(

y+

h+

)
− dU+

dy+
(2.8)

For a fully developed channel flow β should be 1, but combining the pressure
gradient obtained from the taps and the shear stress obtained from balance, βwas
found to be slightly higher than one, 1.027. This indicate that the combined error
in pressure and shear stress of less than 3%. The expected error from equation
(2.2) is 0.2%.
For the adverse pressure-gradient we raised the roof, from 2h=280 mm to 2h=
600 mm at the exit, to form a diffuser. The angle of the diffuser was around 3.0
degrees. This allowed flow to develop under an adverse pressure gradient. There
is no equilibrium condition in this case, so the only verification that can be used
is that the normalized shear stress extrapolates to one at the wall.
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The last was the zero pressure gradient boundary layer. To obtain almost a zero
pressure-gradient flow we changed the rough surface roof with a smooth surface
roof and lifted the roof to avoid any interference between the boundary layer on
the floor and roof of the tunnel. The roof was adjusted to obtain a zero pressure
gradient. The mean velocity profiles for the three cases plotted in inner variables
are shown in Figure (2.8). All cases show a linear log region with a different
magnitude of wake strength. For the channel flow the shift was found to be,
ΔU+ ∼ 15 for k+ = 210, the shift for adverse pressure gradient, k+ = 107, and
boundary layer, k+ = 116, was found to be almost the same, ΔU+ ∼ 14.4.

The normal stresses in outer coordinates are shown in Figure (2.9) and Figure

Figure 2.8: Mean velocity, U+. − smooth, −− ΔU+ = 15 Symbols as in Tab.2.2.

(2.10). The stresses, at centerline, are independent of the pressure gradient in the
channel. The < uu >+ and < vv >+, for adverse pressure gradient, are increased
throughout most of the outer layer compared with the channel and boundary
layer. This is due to the increased turbulence production away from the wall in
the case of the adverse pressure gradient. Figure (2.8) indicates that the slope,
dU+/dy, for adverse pressure is higher than for channel and boundary layer in the
outer layer. Combined with the increase in − < uv >+ in the outer layer, Figure
(2.11), this increases the production term for < uu >+ which indirectly increase
the < vv >+. The shear stress profiles are shown in Figure (2.11). For the channel
flow we have added the theoretical linear distribution defined by equation (2.8).
The agreement is quite good giving confidence to the direct drag measurements.
For the adverse pressure gradient the shear stress is seen to grow linearly near the
wall as expected and data extrapolates back to 1 at the wall when scaled with shear
stress obtained from the balance. For the zero pressure gradient profile, Figure
(2.12), we have included the shear stress computed using the method described
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Figure 2.9: Normal stress, uu+. Symbols as in Tab.2.2

Figure 2.10: Normal stress, vv+. Symbols as in Tab.2.2

Figure 2.11: Shear stress, uv+. Symbols as in Tab.2.2
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by Cebeci & Smith (1974),

τ
τw
= μ · ∂U

∂y
− ρ· < uv >= 1 +

(∫ η
0

f 2dη − f
∫ η

0
f dη

)
∫ 1

0
f
(
1 − f

)
dη

(2.9)

where f = U/Ue and η = y/δ. A combined logarithmic law and a wake function
was used to represent the mean velocity profile,

U
uτ
=

1
κ

ln
(yuτ
ν

)
+ B + w

(
Π,

y
δ

)
(2.10)

where w
(
Π, y/δ

)
is the outer wake function and Granville’s function was used to

represent w
(
Π, y/δ

)
,

w
(
Π,

y
δ

)
=

1
κ

(
(1 + 6Π)

(y
δ

)2

− (1 + 4Π)
(y
δ

)3
)

(2.11)

The agreement between the analytical and measured curve is seen to be good.

Figure 2.12: The shear-stress distribution, < uv >+. The � denotes measured data
and the solid line denotes the analytical solution.

The correlation coefficient, Ruv = − < uv > /
√
< uu >< vv >, looks almost iden-

tical for the three flows. The flow for channel and adverse pressure gradient
collapse for y/δ > 0.2 see Figure (2.13). This is in agreement with findings of
Skåre & Krogstad (1994) that the correlation coefficient is very little affected by
the pressure gradient effects.
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Figure 2.13: The correlation Ruv. Symbols as in Table 2.2

2.3 Discussion and Conclusions

The flow developing along the same rough surface, under fully developed chan-
nel flow; an adverse pressure gradient and zero pressure gradient boundary layer
conditions, was investigated using a two-component LDA system. The data ac-
quired has been scaled with shear stress obtained from the direct measurement
with a floating element.
For the channel flow the comparison was made with theoretical straight-line dis-
tribution, the agreement was quite good. For the adverse pressure gradient the
data is increasing linearly near the wall and the data set extrapolates back to one
at the wall when scaled with balance measurements. The measurements done for
the channel flow and zero pressure gradient boundary layer indicate that the nor-
malized shear stress are slightly higher than 1. This suggests that the combined
error in the shear stress, determined with balance, and pressure measurements of
∼ 4%. The relative error for channel flow, ε, calculated with equation (2.2) and
c = 0.1 mm is −0.2% while for adverse pressure gradient is +2.1%.
The presented balance, on rough walls, has proven to give reliable results under
different conditions. The balance has been used only for rough walls because the
shear stress is considered higher than for smooth wall. The Cf obtained in adverse
pressure gradient is almost twice the value expected for zero pressure gradient
for smooth wall experiments. This imply that in order to get the same output for
smooth wall we need to double the area of the floating element.
By using an "off the shelf" micro force measurement unit, with proven accuracy
and stability, we have designed a balance with high accuracy and linearity. The
results obtained from the balance are accurate and in good agreement with ana-
lytical solution.
Despite this, further experiments with smooth surface are needed to establish the
source of errors.
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Chapter 3

Turbulent boundary layer over a step
change: smooth to rough. LDV
measurements

The interaction between the inner and outer layer in turbulent boundary layer
is not well understood. A sudden change in roughness is used to study how
a perturbation develops through the boundary layer and to see if it eventually
changes the distributions of Reynolds stresses and high order moments in the
outer layer.

3.1 Experimental set-up

The experiments were conducted in a closed return wind-tunnel. The upper wall
is adjustable, which allows the adjustment of the pressure gradient. Because the
height of the exit section after contraction is only 280 mm we had to adjust the
upper wall as shown in Figure (3.1) with zero pressure gradient on the last half
(∼ 3 m).
The experimental set-up being investigated consist of a rough wall, the same as
used by Krogstad et al. (2005), covered with a thin plate Figure (3.1) to make a
smooth wall followed by a rough wall of length X + 200 mm. The plate is placed
on top of rough elements so that the top of roughness is below the smooth surface
with 2 mm the thickness of the smooth plate.
For smooth wall case all the test section was covered with a smooth plate, X = 0
means smooth-surface. Decreasing the length of the smooth plate will increase
the length, X, of the rough surface. This mean that the length of the smooth
surface is decreasing while the length of the rough surface is increasing.
The leading edge of the smooth plate, as shown in Figure (3.1), is bent to create
a small ramp for the flow. The boundary layer is allowed to transition naturally
without any wire trip.
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The experimental test conditions are given in Table (4.1). The rough surface is of
the ′k − type′ with a pitch-to-height ratio of 8 and cross section 1.7x1.7 mm2. The
length of the test section was about 6.4 m and all the measurements were taken at
the same position ∼ 6.2 m from the contraction.
Velocity measurements were obtained using a Dantec two-components fiber-optic
Laser Doppler Velocimeter. In order to perform near-wall measurements the
probe was tilted at a small angle (∼ 5◦). Additionally a 9.8 : 1 beam expander was
attached to the probe to reduce the size of the measurement volume. The size
of the measuring volume: diameter (d) was 123μm and length l of 1600μm. The
corresponding dimensions in viscous units for X = 0 are d+ = 4.3, l+ = 55.8 and
for X = 5.66 m are d+ = 7.4, l+ = 95.7.
The probe was traversed in vertical direction to approximately 35 positions using
a Mitutoyo traverse. The data were collected in coincidence mode, 50 000 samples
for X = 0 and 100 000 for X > 0. The flow was seeded with∼ 1μm smoke particles.
All the measurements were taken above the crest of the roughness element as in
the previous study of Krogstad et al. (2005).

Figure 3.1: Geometry of the surface.
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Table 3.1: Parameters for experiment. The symbols used for the plots.

Case Symbol X[m] Wall Ue Reθ Cf x 10−3 δ+ k+ k+s /k+

0 − DNS smooth - 2400 3.39 - - -
1 • 0.00 smooth 14.6 13386 2.55 4203 - -
2 � 0.19 rough 14.5 14526 10.15 9045 117.3 9.1
3 � 0.70 rough 14.7 15824 9.46 9078 114.4 10.1
4 � 1.20 rough 15.3 17922 8.38 8953 112.1 8.4
5 � 1.70 rough 15.8 19187 8.24 8734 115.2 10.0
6 � 2.20 rough 15.2 20832 7.89 8704 106.7 13.3
7 ◦ 2.70 rough 15.4 22094 7.95 9115 110.1 13.7
8 � 3.20 rough 14.9 22353 7.85 9315 106.2 10.3
9 � 3.82 rough 15.3 24802 7.06 9911 103.1 10.9

10 � 4.82 rough 15.3 28384 7.28 12057 104.8 10.8
11 � 5.66 rough 15.4 32624 6.78 13292 101.6 12.2

3.1.1 Wall-shear stress

The major problem when analyzing rough surface boundary layer experiments
is to determine the friction velocity correctly. There are few techniques for rough
surfaces based on the modified Clauser plot. The main problem is a large un-
certainty because the number of quantities to be determined, for rough surface,
is high compared with smooth surface and in addition the method is based on
the existence of the logarithmic region. To avoid all this uncertainties we have
designed a floating element device (Efros & Krogstad (2009)) to measure the Cf for
rough surfaces. The friction velocity on the smooth wall is determined by fitting
data to log-law. The Cf obtained from the floating element device is shown in
Figure (3.2). There is a sudden jump of Cf from smooth to rough surface, followed
by a decrease towards a full rough-surface value. First the velocity field is slowed
down by new surface condition and Cf is increasing. Then Cf is decreasing due
to flow adjustment the new surface. The trend of Cf denotes that the flow is
perturbed by the new surface.
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Figure 3.2: Variation of Cf , vs. X and Reθ.
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3.2 Results

3.2.1 Mean flow

The mean velocity profiles for smooth and rough surfaces are presented in Figure
(3.3). The mean velocity profile, described by logarithmic-law, was calculated as,

U
uτ
=

1
κ

ln

⎛⎜⎜⎜⎜⎜⎜⎝
[
y + ε

]
uτ

ν

⎞⎟⎟⎟⎟⎟⎟⎠ + B − ΔU+ (3.1)

where ε is the shift in origin from the measurement coordinate system to the
effective wall location and ΔU+ is the shift in the log law due to the roughness
effect on the mean flow. In our experiment the log-law constants k = 0.41, B = 5.2,
ε = 0 and the origin of y is at the bottom of the groove, see Figure (3.1). The
variation of ΔU+ and δ/k vs. k+ are depicted in Figure (3.4) and Figure (3.5). The
shift in log law is almost constant for all cases.

Figure 3.3: Mean-velocity distribution for smooth- and rough-surfaces. Symbols:
− DNS smooth, • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, �
5.66.

The velocity-defect profiles as a function of y/δ and y/Δ are plotted in Figure (3.6).
where Δ = δ∗ · Ue/uτ. Note that the thickness of the boundary layer δ cannot be
precisely determined (see Rotta; Monin & Yaglom) . A better collapse is obtained
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Figure 3.4: Shift in mean velocity, ΔU+ vs. k+.

Figure 3.5: The variation of δ/k vs. k+.
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when the data is plotted as function of y/Δ. This is because:

Δ = δ∗
Ue

uτ
=

∫ ∞

0

(
Ue − u

uτ

)
dy⇒

∫ ∞

0

(
Ue − u

uτ

)
d
( y
Δ

)
= 1 (3.2)

and
Δ

δ
=
δ∗

δ
Ue

uτ
=

1 +Π
κ

(3.3)

For more detailes about how to obtain equation (3.3) see Castro (2007). Therefore
if the wakes are the same and Reθ sufficiently high you will always get a complete
collapse.
A combination between δ and δ∗ is the velocity scale, (Ueδ∗/δ), proposed by
Zaragola & Smits (1998) which is similar to one proposed by Rotta (1962).

Ue
δ∗

δ
=

∫ ∞

0
(Ue − u) d

(y
δ

)
⇒
∫ ∞

0

(
Ue − u

uτ

)
d
(

yuτ
δ∗Ue

)
= 1 (3.4)

Velocity-defect profiles, using Zaragola & Smits scaling, are presented in Figure
(3.7). The collapse of the velocity profiles using Zaragola & Smits scaling is quite
good and shows no effect of roughness except near the wall. Again, this method
guarantees collapse if Π(y/δ) is the same and can only distinguish differences in
the shape of the wake.
The scaling of velocity-defect profiles using Ue as scaling parameter is also in-
cluded in Figure (3.7). The profiles depicted in Figure (3.7) show no collapse
of data. This is in agreement with Akinlade et al. (2004), who showed that the
roughness is eliminated when the defect profile is scaled with Ueδ∗/δ and that the
effect of roughness is more evident when the defect profile is scaled with Ue.
The Clauser’s shape parameter is defined as,

G =
1
Δ

∫ ∞

0

(
Ue − u

uτ

)2

dy (3.5)

and has a value of 6.8 for constant pressure turbulent boundary layers (Clauser
1956) and Reθ > 10 · 103 (Bandyopadhyay 1992). For X > 2.7 m the value of G for
rough surfaces is about 6.5 which is slightly lower than the measured value for
smooth surface, X = 0, which is 6.7. Using the value of G = 6.6 an indirect check
was carried out using the equation:

H =

⎡⎢⎢⎢⎢⎣1 − G
(

Cf

2

)0.5⎤⎥⎥⎥⎥⎦
−1

(3.6)
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Figure 3.6: Velocity defect profiles , vs. y/δ and y/Δ. Symbols: • X=0, � 0.2, � 0.7,
� 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.7: Velocity defect profiles. a) Zagarola & Smits scaling b) George &
Castillo. Symbols: • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8,
� 5.66.
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Figure 3.8: Skin-friction results obtained from balance compared with the eqn(3.6)

For X > 2.2 m a good agreement is obtained between equation (3.6) and mea-
sured value see Figure (3.8). The Figure (3.8) confirms the relation between H and
Cf (see equation (3.6)) but only for fully developed flows.
The displacement thickness δ∗ and the momentum thickness θ depicted in Fig-
ure (3.9) have almost linear increase with X. The deviation of the displacement
thickness, δ∗, from the linear trend shown in Figure (3.9) is in agreement with the
velocity defect-law (see Figure (3.6)). This reveals that the retardation of the flow
due to the wall effects are constant for X > 1.7 m and flow develops differently.

Following Rotta (1962) the relation between the friction coefficient, Cf , and
displacement thickness, δ∗, can be written:√

2
Cf
=

1
κ

ln

⎛⎜⎜⎜⎜⎜⎜⎝δ∗k
√

2
Cf

⎞⎟⎟⎟⎟⎟⎟⎠ + const (3.7)

The skin friction plotted according to equation (3.7) are shown in Figure (3.10).
The data exhibit collapse, with experimental uncertainty, to a line with slope 1/κ.
The same correlation was found by Acharya et. al. (1986).

36



3.2. RESULTS

Figure 3.9: Distribution of δ∗(◦) and θ (•)

Figure 3.10: Skin friction versus displacement thickness
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Figure 3.11: Momentum thickness θ.

Figure 3.12: Skin friction as function of (X − X0)
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Using the relation between θ and δ∗,

θ = δ∗
⎛⎜⎜⎜⎜⎜⎝1 − G

√
Cf

2

⎞⎟⎟⎟⎟⎟⎠ (3.8)

in equation (3.7) we can obtain:√
2

Cf
= −1
κ

⎡⎢⎢⎢⎢⎢⎣ln k
θ
+ ln

⎛⎜⎜⎜⎜⎜⎝1 − G

√
Cf

2

⎞⎟⎟⎟⎟⎟⎠ + 1
2

ln
Cf

2

⎤⎥⎥⎥⎥⎥⎦ + const (3.9)

This equation gives a relation between skin friction, Cf , and momentum thickness,
θ, see Rotta (1962). This mean that being given θ as function of X or X − X0, Cf

can be calculated as a function of X or respectively as a function of X−X0. Figure
(3.11) presents the θ = f (X − X0) data. The Cf = f (X − X0) using G = 6.6 and
θ = 0.0029(X−X0) obtained as best fit from Figure (3.11) is shown in Figure (3.12).
The trend between the calculated and experimental value is quite good except
for the first two points. It appears the the skin friction coefficient, Cf , can be
computed quite well based on the available distribution of momentum thickness.
The shape parameter H = δ∗/θ is shown in Figure (3.13). It increases from a value
of 1.3 on smooth-surface to a maximum value of 1.76 for X = 2.2 m and slowly
decreasing with further increasing of the X to a value of 1.6.
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Figure 3.13: The shape parameter H.

3.2.2 Internal Boundary layer

For X = 0, we have a fully developed turbulent boundary layer over a smooth
surface. Increasing the length, X, of rough surface changes the roughness of the
surface. The change in roughness is usually measured by the roughness step
M. The roughness step is defined as M = ln(z01/z02) where z0 is the equivalent
roughness length. The value for z0 was determined using the equation (3.10):

z0 =
ν
uτ

exp
(
κ

(
ΔU
uτ
− B

))
(3.10)

The value obtained for X = 0 is z01 = 0.0034 mm and for X = 5.66 m is z02 = 0.585
mm. With the value for z01 and z02 calculated from above we found M = −5.15.
The value found by Antonia & Luxton (1971a) was M = −4.6 which points out
that the perturbations due to the rough surface is higher in our case.
After a change in surface roughness an internal boundary layer develops down-
ward of the discontinuity. The internal layer will be in equilibrium with the
rough-surface while the outer layer will have the characteristics determined by
the smooth-surface. The internal layer depends on the length X and the type of
the rough surface. With increasing the length X we expect the internal layer to
increase until there is no outer layer determined by the smooth-surface.
The height of the internal boundary layer has been defined and determined in
many ways - e.g. Antonia & Luxton (1971a) used half-power method of plotting
mean profiles U/U∞ vs. y0.5 and from the ’knee’ point, to estimate the position of
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the edge of internal boundary layer. Using this method Antonia & Luxton (1971a)
obtained a growth rate of internal layer δi ∼ x0.72. In our case the thickness of
internal layer δi was determined, similar to Krogstad & Nickels (2006), by fitting
the internal and outer layer of stream wise stresses < uu > with a straight line.
The intersection of these two lines was considered the merging point of the two
layers.
A fit to all points is given by δi ∼ x0.73, which is in good agreement with Antonia
& Luxton and close to the result of Krogstad & Nickels (2006) δi ∼ x0.7. The vari-
ation of boundary layer thickness and of internal boundary layer with length, X,
of rough surface is presented in Figure (3.14). The Figure (3.14) shows that the
internal boundary layer has grown to the edge of the boundary layer at X ∼ 2.7 m.
Figure (3.15) presents the data corresponding to Elliot’s (1958) formula for growth

Figure 3.14: The variation of boundary layer thickness δ (•) and internal boundary
layer thikness δi (◦) with X

of the internal boundary layer:

δi

z02
= a

(
X
z02

)p

(3.11)

The coefficient a was calculated according to the relation (see Pendergrass & Arya
1984).

a = 0.75 − 0.03M (3.12)

For the present experiment the magnitude of a calculated with equation (3.12)
was ∼ 0.90. A better agreement is obtained with a = 0.37 see Figure 3.15. This is
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in agreement with (Pendergrass & Arya 1984), they found a = 0.38. The value for
p was 0.8 in Elliot’s formula in agreement with Schlichting (1968) who showed
that boundary layer thickness, for turbulent boundary layer, increases as δ ∼ x0.8.
Using equation (3.11), with a = 0.37, we obtained a good result with p = 0.78,
see Figure (3.15), that is in good agreement with the one, p = 0.79, obtained by
Antonia & Luxton using the same equation (3.11).

Figure 3.15: Comparison of the experimental development δi (•) with he theory
of Elliot (1958) −− δi/z02 = 0.90(X/z02)0.8, − δi/z02 = 0.37(X/z02)0.78
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3.2.3 Reynolds stresses

The Reynolds stresses normalized with inner and outer variables are shown in
Figure (3.16) to Figure (3.18) together with the results of smooth wall DNS by
Schlatter et al. (2009) at Reθ = 2400. Figure (3.16) shows the < uu+ > component.
The maximum value of < uu+ >, for smooth surface, is located at y+ ≈ 17 which
is in a good agreement with the DNS data. For X = 5.66 m we can notice that
< uu+ > is increasing from y+ ≈ 150 (1.35k) until it reaches a peak at y+ ≈ 700
(5.5k). The same can be noticed for X = 3.8 m and X = 4.8 m. From the DNS
(see Sung et al. 2007) we know that there is a peak near the wall followed by a
valley and a second peak further from the wall. Our measurements show the
second peak and suggest the possibility to have a minimum at y+ ≈ 150. The
second peak, for high Renolds number, was noticed also by Marusic et al. 2009
and Metzger et al. 2007. Marusic et al. 2009 associated the second peak with very
large-scale structure, while Metzger et al. 2007 associated it with roughness effect.
For low Reynolds number, the second peak for rough-surface was noticed in the
DNS (Sung et al. 2007), but only over the roughness element. It is evident that the
second peak for smooth surface is an effect of the high Reynolds number while
for the rough-surface we have in addition the effect of the roughness.
Increasing the length of rough-surface X affects the < uu+ > in two ways.
First, the peak, max(< uu+ >), increases in magnitude with increasing the length
X, from 3.5 at X = 0.2 m to 5.2 at X = 5.66 m, and moves from y+ ≈ 255 (2.2k) at
X = 0.2 to y+ ≈ 723 (7k) at X = 5.66 m.
Second, the < uu+ > extends progressively further into outer layer of initially
boundary layer over smooth surface as X is increasing. The second observation is
valid also for< vv+ > and< uv+ > component. The streamwise Reynolds stresses,
< uu+ >, in outer variables, show good agreement between the rough-, X > 1.7 m,
and smooth-surfaces in the region 0.15 < y/δ < 0.9. This is in agreement with
Flack et al. (2007) and with the data discussed by Raupach et al. (1991).
The fluctuating component v, normal to the wall, provides information about
the turbulence transport and production of shear stress. Figure (3.17) shows the
< vv+ > component in inner and outer variables. Reynolds number similarity is
noticed for y+ < 150, for smooth surface, with good agreement between experi-
ment and DNS.
The change in surface will create a peak in < vv+ > at around y+ = 200 (1.8k),
X = 0.2 m, followed by a drop. The peak near the wall for X > 0 is a character-
istic of the roughness and is in agreement with DNS of Sung et al. (2007). The
position of near wall peak for < vv+ > is close to the position of minimum for
< uu+ > which indicate that the reduction in < uu+ > has been compensated by
the increase in < vv+ >. Increasing further the length X of the rough surface will
create a plateau which for X > 2.7 m will result in a second top, y/δ ≈ 0.2. For
X = 5.66 m the first peak is situated at y+ ≈ 185 (1.8k), the minimum is at y+ ≈ 380
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(3.5k) and the second peak is situated at y+ ≈ 2500 (24.8k). The magnitude of
first and second peak is almost the same, 1.52 and 1.54, the valley for < vv+ >,
as position, is close to the second top for < uu+ >. In our case the ratio between
the first and the second peak is almost one while in DNS of Sung et al. (2007) this
ratio is 0.5. This suggests that the second peak is increasing with increasing the
length of the rough surface, X, and the Reynolds number. According to Fernholz
& Finley (1996), for smooth surface, some data display an increase in the outer
peak when increasing the Reynolds number, some display to be independent of
the Reynolds number.
The Reynolds shear stress < −uv+ > is the dominant part of the shear stress and
is a significant part in the production term for the kinetic energy (Fernholz &
Finley (1996)). The < uv+ > component in inner and outer variables is shown in
Figure (3.18). Similar to < vv+ >, for smooth surface, the data collapse well for
y+ < 150. The maxim value for − < uv >+ obtained from measurements for X = 0
is ∼ 0.96 which is similar to the value ∼ 0.95 obtained by DNS (see Schlatter &
Örlü 2010). This indicate that the measurements are not affected by any probe
effects (Fernholz & Finley (1996)). The change in surface, X = 0.2 m, will create
a peak in < uv+ > close to the position of the first peak in < vv+ >. Increasing
further the length, X, of the rough surface the < uv+ > will display a plateau
similar to the smooth surface. For X = 5.66 m the plateau extends from y+ ≈ 200
(1.8k) to y+ ≈ 2000 (19k).
The effect of roughness on outer flow is small when the velocity is scaled with
uτ. To make the effect of roughness more evident the results are normalized with
Ue. The longitudinal and vertical stresses normalized with U2

e are shown in Fig-
ure (3.19). With increase in the length, X, of the rough surface the profiles are
shifted upward making a clear distinction between smooth and rough surface. It
is observed that the increase in Reynolds stresses is delimited by the thickness
of internal layer δi. For X > 2.2 m the flow has fully recovered from the effect of
the roughness. Near the wall the peak of < uu > /U2

e is almost constant while
the peak for < uv > /U2

e and < vv > /U2
e overshoots the equilibrium value and

decreases with increasing X towards the value of full rough surface. The same
was noticed by Pendergrass & Arya (1984). The − < uv > profiles normalized
with U2

e are presented in Figure (3.20). The distribution of − < uv > shows the
same trend as < vv > profiles.
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Figure 3.16: Streamwise normal stress, < uu+ > vs. y/δ and y+. Symbols:
� DNS smooth surface, −− DNS rough surface, • X=0, � 0.2, � 0.7, � 1.2, �

1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.17: Wall-normal stress, < vv+ > vs. y/δ and y+. Symbols:
� DNS smooth surface, −− DNS rough surface, • X=0, � 0.2, � 0.7, � 1.2, �

1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.18: Shear stress, − < uv+ > vs. y/δ and y+. Symbols: �DNS smooth, −−
DNS rough surface, • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8,
� 5.66.
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Figure 3.19: Reynolds stresses normalized with U2
e . Symbols: • X=0, � 0.2, � 0.7,

� 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.20: Shear stress profiles normalized with U2
e . Symbols: • X=0, � 0.2, �

0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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3.2.4 Transport equation for Reynolds stresses

The transport equation for turbulent stresses, < uiuj >, is:
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(3.13)

The turbulent kinetic energy is the sum of all normal Reynolds stresses q = 1/2 < uiui >.
Setting the indices i = j in equation (3.13) and dividing by two we obtain the equa-
tion for the turbulent kinetic energy:
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(3.14)

The pressure-strain term, which appears only in equation (3.13), promotes isotropy
of turbulence by redistribution of turbulent fluxes among the normal Reynolds
stresses. The diffusive term or the transport term represent the spatial transport
of turbulent fluxes or turbulent energy, its integral over the flow volume must be
zero. The triple correlation, < uiukuj >, is a part of the diffusion term. The triple
correlations, < u3 >, < u2v >, < uv2 > and < v3 >will be presented in next chapter.
The production term is the term that links the Reynolds stresses, < uiuj >, with the
mean rate of strain (Cebeci & Smith). This is the only term which provides energy
interchange between the mean flow and the fluctuations.
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3.2.5 Higher-order Moments

Velocity triple-product is a part of the transport term for Reynolds stresses and
turbulent-energy equations. The main role of the transport term is to move energy
from one place to another.
The consequence of increasing the length, X, of rough surface, with Ue ∼ const, is
an increase in Reynolds number, Reθ. Murlis, Tsai & Bradshaw (1982) mentioned
that the triple products normalized by the local shear stress rise slowly with
Reynolds number.
The triple-product measurements, normalized with uτ, are presented in Figure
(3.21) to Figure (3.24). There are a number of things to be remarked which are
common for all cases:

• all profiles show a difference from the smooth-surface case in the vicinity of
the wall.

• as the length of rough surface is increased X > 2.2 m, for y/δ > 0.4, the
profiles show good agreement with the smooth-surface data.

• outside the internal boundary layer the slope of higher order moments are
very small almost negligible

• the agreement with DNS for smooth surface is quite good

Figure (3.21) shows the < uuu+ > profiles in inner and outer variables. Schultz
& Flack (2007) showed that the < uuu+ > over rough surface changes sign and
becomes positive near the wall while it stays negative over smooth surface. The
trend over rough surface is confirmed by our measurements. The effect of increas-
ing the length, X, of the rough-surface is increase in the near wall peak from 1.5 for
X = 0.2 m to 3.8 for X = 5.66 m. Furthermore the smooth-wall < uuu+ > changes
sign from positive to negative at y+ ≈ 18 (y/δ = 0.03) and for the rough-surfaces
it occurs between y+ ∼ 300 (2.5k) for X = 0.2 m and y+ = 1000 (10k) for X = 5.66 m,
indicating that the motion correlated with u > 0, sweep motion (u > 0, v < 0) and
outward interaction (u > 0, v > 0), is higher for the rough-surface than for the
smooth surface. This is in agreement with the results of Flack (2005) and DNS of
Sung (2007).
The < uuv+ > and < uvv+ > are part of the transport term, wall-normal direction,
for < uu+ > and < −uv+ > components. All the transport terms should be zero at
the wall since there is no flow through the surface.
The < uuv+ > profiles in inner and outer variables are depicted in Figure (3.22). A
strong negative peak followed by a positive slope, for smooth-surface and rough-
surfaces, is observed at y+ = 10 and y+ ≈ 150 respectively. The positive slope of
< uuv+ > indicates a transport of < uu+ > outward from the wall region. In the
outer layer the slope of < uuv+ >, for the smooth surface, is almost constant fol-
lowed by a negative slope after y/δ ∼ 0.8 showing a transport of < uu+ > towards
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the wall. For X > 1.2 m in the region 0.3 < y/δ < 0.65 the slope, for < uuv+ >, is
positive and larger than for the smooth surface. It changes sign after y/δ ∼ 0.65.
Similar behaviour is noticed for < uvv+ > and < vvv+ > in the same region. The
< vvv > and < uvv > are part of the transport term for turbulent kinetic energy.
This indicate that the transport of kinetic energy away from the wall is enhanced
by the roughness. This is in agreement with DNS of Sung (2007).
Figure (3.23) shows the < uvv+ > profiles in inner and outer variables. The
< uvv+ > for smooth surface is negative for most part of the boundary layer ex-
cept near the wall where it changes sign at y+ ≈ 22. It occurs at the same position
as < uuv+ > but is opposite in sign. For rough-surfaces, X < 1.2 , there is a strong
negative peak at y+ ≈ 250 (2.2k for X = 0.2), indicating a transport of < −uv+ >
outward from the wall. The peak is increasing with increase in the length, X, of
rough surface from -0.7 for X = 0.2 m to -0.2 for X = 5.66 m.
The < vvv >+ profiles, which represent the transport of < vv > in wall normal di-
rection, are shown in Figure (3.21). The triple moment< vvv+ >, for rough surface,
is positive across the entire boundary layer while for smooth-surface it is positive
only for y+ > 35. The main differences between smooth and rough-surface, in
inner variables, is the existence of a peak near the wall, (1.8k for X = 0.2 m), for
rough surface. This indicates that the transport of the < vv+ > from the wall is
stronger for the rough surfaces than for the smooth surface.
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Figure 3.21: Third order moment, < uuu+ > vs. y/δ and y+. Symbols: • X=0, �
0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.22: Third order moment mixed moment, < uuv+ > vs. y/δ and y+.
Symbols: � DNS smooth surface, −− DNS rough surface, • X=0, � 0.2, � 0.7, �
1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.23: Third order moment mixed moment, < uvv+ > vs. y/δ and y+.
Symbols: � DNS smooth surface, −− DNS rough surface, • X=0, � 0.2, � 0.7, �
1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.24: Third order moment, < vvv+ > vs. y/δ and y+. Symbols: • X=0, �
0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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3.2.6 Skewness and Flatness

Skewness and flatness are related to the third and fourth order moments of the
probability density function of the velocity fluctuation distribution and are de-
fined as

Sα =
< α3 >

(< α2 >)3/2 and Fα =
< α4 >

(< α2 >)2 (3.15)

where α is one of velocity fluctuations u or v.
The third order moment describes the skewness or the asymmetry of the proba-
bility distribution. A positive value of the Su implies that the positive value of u
are more frequent than negative ones (Fernholz & Finley (1996)). Su = 0 implies
that the function is symmetric about the origin.
The distribution of skewness factor Su and Sv for all cases are depicted in Fig-
ure (3.25) and Figure (3.26). The Su for smooth surface is positive near the wall
and changes sign at y+ ≈ 18 which is the same position with max value for< uu+ >
and the point where the ejection start to dominate the sweep events (see Gad-el-
Hak & Bandyopadhyay 1994). The Su and Sv for smooth surface is in agreement
with the DNS data of Schlatter (2010) see Figure (3.25) and Figure (3.26) . For
X > 0, Su is positive near the roughness and change sign with increasing the y+,
y+ ≈ 290 (2.5k) for X = 0.2 m and y+ ≈ 1000 (10k) for X = 5.66 m. The Sv for smooth
surface changes sign from negative to positive at y+ ≈ 35. For rough-surfaces,
X > 2.2 m, Su change sign at y+ ≈ 1000 and Sv changes sign at y+ ≈ 150. The Su > 0
and Sv < 0 is associated with sweep events and Su < 0 and Sv > 0 with ejection
events (see Gad-el Hak & Bandyopadhyay (1994)).
The sign of Su and Sv indicates that near the wall, y+ < 20, for smooth surface the
sweeps are predominant mechanism while for rough-surfaces, y+ > 100 both Su

and Sv are positive which are associated with the interaction mechanism.
Fourth order moment, Fu, of the u component is a measure of the frequency of
occurrence of events far from the axis (Fernholz & Finley (1996)). The distribution
of flatness factor Fu and Fv are shown in Figure (3.27) to Figure (3.28). The flatness
has high value in the outer layer indicating that the flow field is highly intermit-
tent in this region. The flatness factor Fu and Fv, for X > 1.7 m and 0.1 < y/δ < 0.6,
is close to 3, indicating that the flatness is independent of the surface roughness.
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Figure 3.25: Skewness factor, Su vs. y/δ and y+. Symbols: �DNS smooth surface,
−− DNS rough surface, • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, �
4.8, � 5.66.
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Figure 3.26: Skewness factor, Su vs. y/δ and y+. Symbols: �DNS smooth surface,
−− DNS rough surface, • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, �
4.8, � 5.66.
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Figure 3.27: Flatness factor Fu vs. y/δ and y+. Symbols: � DNS smooth surface,
−− DNS rough surface, • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, �
4.8, � 5.66.
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Figure 3.28: Flatness factor Fv vs. y/δ and y+. Symbols: � DNS smooth surface,
−− DNS rough surface, • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, �
4.8, � 5.66.
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3.2.7 Quadrant decomposition

In order to get more details and possible differences in flow structure due to
roughness, a quadrant analysis method of Lu & Willmarth (1973), was carried
out. The method consist in dividing the Reynolds shear stress in four quadrants
according to sign of u and v, see Figure 3.29. The quadrants (Q3) and (Q4), ’inward’

Figure 3.29: Quadrant decomposition (sketch)

interaction and ’sweep’ events, contribute to downward transfer of momentum
while (Q1) and (Q2) are outward transfer of momentum.
The contribution to < uv > from a certain quadrant may be written as:

(< uv >)Q = lim
T→∞

1
T

∫ T

0
uv · IQ(t)dt (3.16)

where Q denotes the quadrant of interest and IQ is a trigger function defined as:

IQ(t) =
{

1 when |uv|Q ≥ H
√
< uu >

√
< vv >

0 otherwise
(3.17)

where H is a hyperbolic hole. The hyperbolic hole H gives us information about the
contribution of large |uv| to Reynolds stresses . Figure (3.30) shows the normalized
contribution, from ejection and sweeps H = 0, to total shear stress. Comparison
with Figure (3.18) shows similar shape. Contribution from ejections and sweeps,
near the wall, to total shear-stress for H = 0 is about the same, < uv+Q2 >≈ 0.74 <
uv+Q4 >≈ 0.70. The sum gives us 144%, this indicate that the interaction mechanism
will represent∼ 44%. For y/δ > 0.3 and X > 2.2 m the smooth- and rough- surfaces
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distribution are almost the same. This is in agreement with Flack but not with
the data of Keisbulck & Labraga who found that both sweeps and ejections were
much affected by the roughness.
Figure (3.31) shows contribution to shear stress due to strong ejection and sweep
events H = 4. For H = 4 the ejections on smooth-surface are almost constant
for entire boundary layer, 0.05 < y/δ < 0.7. For rough-surfaces, X > 1.7 m, the
ejection events are increasing with the y/δ and for y/δ > 0.4 they are higher than
on smooth surface.
The sweep events, for H = 4, are very small for smooth and rough-surfaces
when y/δ > 0.6 this point out that the sweep events are significant near the
wall and are not as dominant as ejection events throughout the entire boundary
layer. The profiles in Figure (3.30) show that for the X > 1.7 m in the outer layer,
0.2 < y/δ < 0.6, the sweep and ejection events are similar for smooth and rough-
surfaces. Close to the wall, y/δ < 0.2, there is small differences, for sweep events,
between rough and smooth surface both for H = 0 and H = 4.
Figure (3.32) and Figure(3.33) shows the ratio α =< uv+ >Q2 / < uv+ >Q4 for
H = 0 and H = 4. Close to the surface the sweep events predominate the ejection
events both for smooth surface, y+ < 18, and for rough-surfaces, y+ < 200 (2k) for
X = 5.66 m. After y+ ≈ 18, for smooth surface, the ejection events start to prevail
over sweep events in accordance with the observation from the skewness. In the
case of rough-surfaces, y+ ≈ 200, is the point after which the ejection events starts
to overcome the sweep events. This point is not correlated with change in sign
for Su or maximum value for < uu+ > as for smooth surface which confirm that
we have a different mechanism compared with smooth surface.
Apart from the area delimited by the inner layer X < 2.2 m, α is slightly higher for
smooth surface than for rough-surfaces (see Figure 3.32). This difference is more
evident for H = 4, Figure (3.33), which indicates that ejections on smooth-surface
are stronger, more dominant, than for rough surfaces, X > 1.7 m.
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Figure 3.30: Contribution to < uv+ > from quadrant 2 and 4 H=0. Symbols: •
X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.31: Contribution to < uv+ > from quadrant 2 and 4 H=4. Symbols: •
X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.32: Ratio of contribution to < uv+ > from quadrants 2 and 4. H=0,.
Symbols: • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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Figure 3.33: Ratio of contribution to < uv+ > from quadrants 2 and 4. H=4.
Symbols: • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 3.8, � 4.8, � 5.66.
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3.2.8 Conlcusions

Studying the effect of surface change from smooth to rough over turbulent bound-
ary layer is the same as studying the flow with two equilibrium conditions. The
internal boundary layer is determined by the wall condition and outer layer is
determined by the upstream wall condition. Increasing the length, X, of the
rough-surface makes the effects, of rough wall, to be diffused outward. After
about 18 boundary layer thicknesses over the smooth wall, X=0, the flow has
adapted to new wall conditions both in mean velocity and Reynolds stresses.
The velocity defect profiles have adjusted to new wall conditions and display
similarity for X > 1.7 m. The effect of the wall condition on the Reynolds stresses,
normalized with uτ, is not noticed beyond the internal boundary layer. The
Reynolds stresses are perturbed only in the internal boundary layer.
The perturbation effect on Reynolds stresses can clearly be seen when normalized
with Ue. Outside the internal boundary layer Reynolds stresses have the char-
acteristics of the upstream wall condition. The Reynolds stresses, − < uv > and
< vv > normalized with Ue, shows a overshoot for X < 2.2 m.
For X ≥ 2.2 m there is good agreement between rough- and smooth-surface in
velocity defect form. The Reynolds stresses and high order moments, X ≥ 2.2 m,
for smooth and rough-surfaces indicate no differences in the outer layer providing
support for similarity hypothesis. This is in agreement with Jimenez (2004) hy-
pothesis. Jimenez suggested that δ/k should be greater than 40, in our experiments
δ/k > 78 and k+ > 104, similarity is expected in outer layer.
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Chapter 4

Turbulent boundary layer over a step
change: smooth to rough. PIV
measurements

Further progress and understanding of the effect on the flow from a perturbation
at the wall can be achieved by studying the flow structure using two point cor-
relations. In addition the impact of perturbation at the wall on small and large
scales is obtained through POD analysis.

4.1 Experimental set-up
The experimental set-up is the same as for LDA measurements. The experimental
test conditions are given in Tabel (4.1). Two-dimensional PIV measurements
were performed in x− y plane at the same position with the LDA measurements.
The flow was seeded with smoke particles, ∼ 1μm in diameter, generated with
SAFEX F2010 Fog generator. The flow is illuminated using a Nd: YAG laser
from New Wave Research (532nm 15Hz 120mJ). The laser sheet was directed
through a slot in the roof of the tunnel, as shown schematically in Figure (4.1).
An 80C60 Flow Sense 2M camera, with 1600 × 1186 pixel resolution, was used to
capture the images. Nikkor 60mm f 2.8 lenses were used with camera. The field
of view was 100 × 80 mm2 equivalent to 0.78δ × 0.64δ for X = 0 and 0.46δ × 0.37δ
for X = 5.66 m. In order to measure the entire boundary layer the camera was
translated in vertical direction four times for X = 5.66 m and three times for the
other cases. For each position 2500 image pairs were acquired.
The interrogation window was kept constant for all measurements
(32 × 32 pixels ∼ 2.13 × 2.13mm2). In wall units the window size for X = 0 and X =
5.66 m is 85 and 141 units respectively, corresponding to Reτ of 5014 and 14438. The
vector field calculation was done with a 50% overlap using FlowManager v 4.71.
The particle displacement was determined using adaptive correlation technique
with high accuracy sub-pixel scheme.
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Figure 4.1: PIV setup.

Table 4.1: Parameters for experiment. The symbols used for the plots.

Case Symbol X[m] Wall ue Reθ δ/k
1 • 0.00 smooth 17.5 16251 -
2 � 0.19 rough 17.6 17410 77.1
3 � 0.70 rough 17.7 18666 75.3
4 � 1.20 rough 17.7 19825 78.0
5 � 1.70 rough 17.7 21526 76.9
6 � 2.20 rough 18.1 23245 79.6
7 ◦ 2.70 rough 17.6 23546 82.6
8 � 3.20 rough 17.8 25437 86.3
9 � 5.66 rough 17.0 34774 128.4
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4.2 Results

4.2.1 Validation of mean profiles

The skin friction velocity for the smooth case was determined using the Clauser
chart method. For all the rough cases the skin friction was estimated using the Cf

obtained from the balance in the LDA measurements. The comparison between
LDA and PIV measurement of mean profiles for X = 0 and X = 5.66 m is shown
in Figure (4.2). The agreement between the mean profiles obtained with PIV and
LDA indicates that the friction velocity was determined correctly.
The velocity defect-profiles plotted as a function of y/δ and y/Δ, Δ = δ∗ · ue/uτ,

(a)

(b)

Figure 4.2: Mean velocity profiles inner scalings. a)X = 0 smooth, b)X = 5.66 full
rough. Symbols: • LDA measurements, ◦ PIV measurements.
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are shown in Figure (4.3). It shows that the differences in velocity profile are
decreasing when increasing the length, X, of rough surface. Differences between
X = 5.66 m and X = 0 at y/δ ≤ 0.4 indicate that the effect on the flow of this two
surfaces are different. The comparison between the displacement thickness δ∗ and
momentum thickness θ obtained with PIV and LDA are presented in Figure (4.4).
The agreement for momentum thickness is better than displacement thickness.
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(a)

(b)

Figure 4.3: Velocity-defect profiles, vs . y/δ and y/Δ. Symbols: • X=0, � 0.2, �
0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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(a)

(b)

Figure 4.4: Distribution of δ∗ and θ. • LDA measurements, ◦ PIV measurements
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4.2.2 Effects of spatial resolution

The Reynolds stresses comparison between LDA and PIV measurements are
shown in Figure (4.5) to Figure (4.8). It is apparent that the PIV has failed to
solve the near wall region for u and v fluctuations mainly due to the spatial reso-
lution problem.
The effect of spatial resolution is obviously more visible for the normal stresses
< vv >. This is expected because the energy for the wall normal component is
mainly in small scales and when increasing the Reynolds number the small scales
become smaller.
The ability of PIV system to resolve small scales is limited by the spatial resolu-
tion or the measurement volume. Scales smaller than the measurement volume
cannot be resolved. This can lead to significant errors in the measurements of the
velocity field.
The measurement volume is defined by the interrogation area and the time delay,
dT, between image pairs. The interrogation area was kept constant for all cases,
32x32 pixels. The time delay was adjusted such that the displacement between
images was kept in the limits of 5 to 11 pixels.
Increasing the spatial resolution from 32x32 pixels to 16x16 pixels has shown only
small differences. This is considered to be the extra noise introduced by smaller
interrogation area.
From Figure (4.5) it is evident that the agreement between LDA and PIV measure-
ments is good for X = 0, 0.2, 0.7 m and X = 5, 66 m but not for the ones between.
This indicates that the differences are not only due to the resolution problem.
Since the experimental set up is almost the same for all cases the only issues that
can make a difference are background noise, velocity gradient and the seeding
density.
A velocity gradient within the interrogation area increases the chance that ei-
ther the initial or the final particle position will be outside the interrogation area
which will result in biased data. The displacement will be biased to a lower value
because particle with small displacement will be more frequent than those with
higher displacement Raffel et al. (1998) . Increasing the seeding density can solve
this problem. A high seeding density correlated with small interrogation area
will decrease the uncertainty of the measurement and increase the valid detection
rate (see Raffel et al. (1998)).
Because of these problems the analysis of the PIV data are concentrated on the
outer layer at the reference distance from the wall y/δ = 0.4.
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(a) (b)

(c) (d)

Figure 4.5: Streamwise Reynolds stresses < uu+ >, a)X = 0, b)X = 0.2, c)X = 0.7,
d)X = 1.2. • LDA measurements, ◦ PIV measurements
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(e) (f)

(g) (h)

(i)

Figure 4.6: Streamwise Reynolds stresses< uu+ > , e)X = 1.7, f )X = 2.2, g)X = 2.7,
h)X = 3.2, i)X = 5.66. • LDA measurements, ◦ PIV measurements
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(a) (b)

(c) (d)

Figure 4.7: Normal Reynolds stresses < vv+ >, a)X = 0, b)X = 0.2, c)X = 0.7,
d)X = 1.2. • LDA measurements, ◦ PIV measurements
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(e) (f)

(g) (h)

(i)

Figure 4.8: Normal Reynolds stresses < vv+ >, e)X = 1.7, f )X = 2.2, g)X = 2.7,
h)X = 3.2, i)X = 5.66. • LDA measurements, ◦ PIV measurements
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4.2.3 Two-point correlations

The two point-correlation are defined by,

Rpq(x, yre f ) =
< q(x, yre f )p(x + Δx, y + Δy) >

σq(x, yre f )σp(x, yre f )
(4.1)

where p and q are the velocity fluctuations separated in the streamwise direction
by Δx and in wall normal direction by Δy, σp and σq are standard deviations of p
and q quantities.
Figure (4.9) and Figure (4.10) presents the two-point correlation, Ruu, contours
at y/δ = 0.4 for all cases. Visual investigation of Ruu contours do not reveal too
much information. All the contours are elongated in the streamwise direction and
slightly tilted away from the wall.
Figure (4.12) presents the slices through the correlations presented in Figure (4.9)
and Figure (4.10). The 2 − D slices of Ruu, X > 0, show good agreement with the
smooth surface in streamwise and wall-normal direction. This indicate that the
change in roughness has no effect on Ruu.
The Ruu in Figure (4.12) reaches a value ∼ 0.2 at ΔX = 0.8δ, X = 0 and a value
of ∼ 0.4 at ΔX = 0.8δ, X = 5.66 m. This indicates that the size of experimental
domain is not enough to capture the elongated tail of autocorrelation.
The Ruu contours can be examined in more details by computing the length scales
Lxuu and Lyuu. The streamwise and wall-normal extent of Ruu, based on con-
tour Ruu = 0.7, is illustrated in Figure (4.11). The distance Lxuu is defined as in
Christensen & Wu (2005), Volino et al. (2007) as twice the distance from the self-
correlation peak to the most downstream location on a particular contour. There is
no clear effect on Lxuu when X > 0.2 m. If the contour Ruu = 0.6 is used, the Lxuu/δ
for smooth surface will increase to 0.4 for y/δ = 0.1, 0.49 for y/δ = 0.4 and 0.45 for
y/δ = 0.6. These values are in good agreement with the value of 0.43 obtained by
Volino etal. (2007), between y/δ = 0.1 and y/δ = 0.6. The wall normal extent of Ruu

is determined as in Volino et al. (2007), based on the wall normal distance between
the points closest and farthest from the wall on a particular contour. Similar to
the Lxuu there is no clear effect on the Lyuu for X > 0.2 .
For isotropic turbulence Frenkiel (1948) showed that the longitudinal scale of tur-
bulence is equal to twice the transverse scale of turbulence.
The ratio of Lxuu/Lyuu for y/δ = 0.4 vary between 2.2 for X = 0 and 2.05 for
X = 5.66 m. For both rough and smooth-wall Volino et al. (2007) reported a value
of 2.5. Nakagawa & Hanratty (2001) reported a value of 2.8 for smooth wall
and 3.4 for a flow over a wave wall. For the same type of roughness but lower
Reynolds number, Reθ = 4260, Volino et al. (2009) found a value of ∼ 2.14 which
is in good agreement with our result. Hence, the Ruu indicate a tendency towards
isotropy caused by 2-D roughness in agreement with results of Krogstad & Anto-
nia (1994).
The inclination angle for Ruu which should be related to the inclination of vortex
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structure was determined by fitting an ellipse through the points of Ruu contours
see Figure (4.15). In the present study the ellipse was fitted only to contour levels
0.7. The inclination angle of Ruu, β is presented in Figure (4.15). A clear trend
is not evident and the angle appears to be insensitive to the length, X, of the
rough surface and is approximately 8o. Based on contours level, Ruu = 0.5, Volino
et al. (2007) found 13o for smooth surface and 15.8o for rough surface while Wu
& Christensen (2010) found an angle of 9o for y/δ = 0.1, which increases with
the wall-normal position, 13o for y/δ = 0.4 . It is difficult to compare the results
because the angle depends on the length scale associated with it. (see Krogstad &
Kaspersen 2002)
Figure (4.11) and Figure (4.12) presents the two-point correlation, Rvv, contours
at y/δ = 0.4. The Rvv is less elongated in streamwise directions compared with
Ruu. It appears that the increase of rough surface X does not affect the Rvv. Figure
(4.17) shows the one-dimensional profiles of Rvv in the streamwise and wall nor-
mal directions. The profiles of Rvv indicate that the change in surface condition,
moving from smooth surface X = 0 towards fully rough surface X = 5.66 m, has
no effect on the small scales in streamwise and wall normal direction.
The length scales Lxvv and Lyvv, defined as Lxuu and Lyuu, for Rvv = 0.7 are pre-
sented in Figure (4.16). The ratio Lxvv/Lyvv, for y/δ = 0.4, vary between 0.67 for
X = 0 and 0.76 for X = 5.66 m. This value is less than the value of 0.8 obtained by
Volino etal. (2007) and 0.85 obtained by Nakagawa & Hanratty (2001) for Rvv = 0.5.
The discrepancy in value may be attributed to the uncertainty in measurements
and due to the different contour level used.
Figure (4.18) presents the comparison between the Ruu and Rvv obtained with PIV
and LDA at y/δ = 0.4 for X = 0, X = 3.2 m and X = 5.66 m. The Ruu and Rvv from
LDA measurement are calculated using the Taylor’s hypothesis with mean veloc-
ity as convection velocity. The agreement between PIV and LDA results is quite
good with a difference less than 10%. This indicates that the Taylor’s hypothesis
is valid for rough surface.
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(a) (b)

(c) (d)

Figure 4.9: Velocity correlation coefficients Ruu for y/δ = 0.4, a)X = 0, b)X = 0.2,
c)X = 0.7, d)X = 1.2
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(e) (f)

(g) (h)

(i)

Figure 4.10: Velocity correlation coefficients Ruu for y/δ = 0.4, e)X = 1.7, f )X = 2.2,
g)X = 2.7, h)X = 3.2, i)X = 5.66
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Figure 4.11: Streamwise and wall normal extent of Ruu = 0.7. Symbols: • X=0, �
0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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Figure 4.12: One dimensional profiles of Ruu. Symbols: • X=0, � 0.2, � 0.7, � 1.2,
� 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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(a) (b)

(c) (d)

Figure 4.13: Velocity correlation coefficients Rvv for y/δ = 0.4, a)X = 0, b)X = 0.2,
c)X = 0.7, d)X = 1.2
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(e) (f)

(g) (h)

(i)

Figure 4.14: Velocity correlation coefficients Rvv for y/δ = 0.4, e)X = 1.7, f )X = 2.2,
g)X = 2.7, h)X = 3.2, i)X = 5.66
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Figure 4.15: Inclination angle of Ruu. Symbols: • X=0, � 0.2, � 0.7, � 1.2, � 1.7, �
2.2, ◦ 2.7, � 3.2, � 5.66.
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Figure 4.16: Streamwise extent of Rvv = 0.7. Symbols: • X=0, � 0.2, � 0.7, � 1.2, �

1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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Figure 4.17: One dimensional profiles of Rvv. Symbols: • X=0, � 0.2, � 0.7, � 1.2,
� 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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(X=0) (X=0)

(X=3.2) (X=3.2)

(X=5.66) (X=5.66)

Figure 4.18: The Ruu and Rvv obtained from PIV and LDA, for y/δ = 0.4. • LDA
measurements, ◦ PIV measurements.
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4.2.4 Swirling Strength

Chong & Perry (1990) showed that the characteristic equation (4.2) represents the
best way to identify the various streamline patterns that can occur in a three-
dimensional flows.

λ3 + Pλ2 +Qλ + R = 0 (4.2)

where:

P = −Sii ≡ 0⇒ incompressible flow

Q =
1
2

(
P2 − SijSij − RijRij

)
R =

1
3

(
−P3 + 3PQ − SijSjkSki − 3RijRjkSki

)
Sij =

1
2

(
∂ui

∂xj
+
∂uj

∂xi

)

Rij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)

The characteristic equation has many solutions but we are interested only when
we have one real root (λr) and a conjugate pair of complex roots (λc + λci). When
(λr) > 0, Chong & Perry (1990) demonstrated that the motion of a particle is a
spiral motion.
The solution above is based on a three-dimensional flow field, the PIV velocity
fields obtained are only 2D. The solution came from Adrian et al. (2000); they
computed a two-dimensional form based on the PIV data.∣∣∣∣∣∣∣

∂u
∂x − λ ∂u

∂y
∂v
∂x

∂v
∂y − λ

∣∣∣∣∣∣∣ = 0 (4.3)

From which we obtain the solution:

λ =
1
2

(
∂u
∂x
+
∂v
∂y

)
+

1
2

√(
∂u
∂x
+
∂v
∂y

)2

− 4
(
∂u
∂x
∂v
∂y
− ∂u
∂y
∂v
∂x

)
(4.4)

λ =
1
2

(
∂u
∂x
+
∂v
∂y

)
+

1
2

√(
∂u
∂x
− ∂v
∂y

)2

+ 4
(
∂u
∂y
∂v
∂x

)
(4.5)

Swirling strength λci is defined as the imaginary part of λ,

λci =
1
2

√√∣∣∣∣∣∣∣
(
∂u
∂x
− ∂v
∂y

)2

+ 4
(
∂u
∂y
∂v
∂x

)∣∣∣∣∣∣∣ (4.6)

The advantage with the swirling strength is that it does not detect regions of
shear stress that have no rotation. The swirling strength does not give the sense
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of rotation, λci is positive by definition, a sign can be assigned based on the sign
of the local vorticity,

λs = λci

(
ωz

|ωz|
)

(4.7)

Contours of swirling strength,λci , can be interpreted as representing the vortex
cores (Adrian et al. 2000). The outermost contour of Rλλ can be defined as a rep-
resentative length scale of largest vortex cores (Ganapathisubramani et al. 2006).
Figure (4.19) and Figure (4.20) present contours of Rλλ in x−y plane. Figures (4.19)
and (4.20) show the resolution problem, due to the high Reynolds number and the
large field of view, the vortex cores are not fully resolved. The shape or size of the
the Rλλ contours, except X = 5.66 m, are seen to be unaffected by increasing the
length, X, of rough surface. The visual analysis reveal that the contours of Rλλ for
X = 5.66 m has shrunk compared with smooth surface. If this is due to roughness
or high Reynolds number is not yet clear. The Reynolds number for X = 5.66 m is
twice than for X = 0. According to Head & Bandyopadhyay (1981) hypothesis, the
vortices become skinnier (stretched) when increasing the Reynolds number. For
(Reθ)rough = 4260 and (Reθ)smooth = 6069, Volino et al.(2009), found that the spatial
extensions was larger in two-dimensional roughness than on smooth surface.
The streamwise and wall normal slices of Rλλ for y/δ = 0.4, outer- and inner-
scaled, are depicted in Figure (4.21). Scaling in outer variable underline the
reduction of Rλλ for X = 5.66 m.
Inner-scaled Rλλ shows a good agreement for X > 0 in both directions indicating
that the size of vortices scales with viscous variables, ν/uτ. Calier & Stanislas
(2005), for smooth-surface, come to conclusion that all the physical characteristics
of the vortices, in log-law region, scale in wall units. The differences noticed in
Figure (4.21), inner-scaled Rλλ, between X = 0 and X > 0 may be explained as
follows:

• the scatter in measurements due to the resolution problem and background
noise

• the size of vortices, for smooth-surface, do not scale on inner variables
outside the logarithmic region

• the vortices, X > 0, are produced in the wall region and transported in the
outer region

The extent of Rλλ, Lxλλ and Lyλλ, are presented in Fig. (4.22). The extent of
Rλλ in streamwise direction and wall-normal direction has the largest value for
X = 0 and the smallest value for X = 5.66 m. The difference is decreasing when
increasing the y/δ. The effect of increasing the length, X, of rough surface is a
decrease in the extent of Rλλ compared with smooth surface, X = 0. The results
are in agreement with Volino et al.(2007) but not with Volino et al.(2009).
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(a) (b)

(c) (d)

Figure 4.19: Contours of Rλλ for y/δ = 0.4, outermost contour Rλλ = 0.1, contour
spacing 0.1, a)X = 0, b)X = 0.2, c)X = 0.7, d)X = 1.2
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(e) (f)

(g) (h)

(i)

Figure 4.20: Contours of Rλλ for y/δ = 0.4, outermost contour Rλλ = 0.1, contour
spacing 0.1, e)X = 1.7, f )X = 2.2, g)X = 2.7, h)X = 3.2, i)X = 5.66
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(a) (b)

(c) (d)

Figure 4.21: Swirling strength correlation coefficients Rλλ for y/δ = 0.4 in the x− y
plane, (a− b) outer-, (c− d) inner-scaled. Symbols: • X=0, � 0.2, � 0.7, � 1.2, � 1.7,
� 2.2, ◦ 2.7, � 3.2, � 5.66.
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(a)

(b)

Figure 4.22: Streamwise and wall-normal extent of Rλλ for y/δ = 0.4. Symbols: •
X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66. The solid line is k/δ = 0.008
for X = 5.66.
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4.2.5 Proper orthogonal decomposition analysis

The main conclusion from two point correlations is that the roughness has little
effect on the small scales. To study further the effect of roughness on the small
and large scales of the flow we will use POD analysis. Proper orthogonal decom-
position (POD) is an effective tool to identify the dominant features in a flow. The
method of snapshots is used, as it is more suitable for the PIV measurements. The
snapshot POD has the advantage of being computationally efficient as it reduces
the order of the eigenvalue problem to that of the number of snapshots and not
the physical mesh (Sen et al. (2007)). Following the J. M. Pedersen (2003) and J.
Kostas etal. (2005), POD is a technique based on the two-point velocity correlation,
the goal is to find an orthogonal decomposition for a random vector based on a
POD modes φi satisfying the orthonormality condition. Mathematically this can
be expressed as:

u(x, y, t) =
M∑
j=1

a( j)φ( j)(x, y) (4.8)

Consider the u and v the fluctuating velocity. Based on u and v a matrix U (see J
M Pedersen (2003)) can be constructed:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(1)
1 u(2)

1 · · · u(M)
1

u(1)
2 u(2)

2 · · · u(M)
2

...
...
. . .

...

u(1)
lm u(2)

lm · · · u(M)
lm

v(1)
2 v(2)

2 · · · v(M)
2

v(1)
2 v(2)

2 · · · v(M)
2

...
...
. . .

...

v(1)
lm v(2)

lm · · · v(M)
lm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

where M is the number of snapshots, l,m number of velocity components in a
snapshot. A correlation matrix, from the matrix U, can be calculated as

C =
1
M

UT ·U (4.10)

and the eigenvalue problem can be written

C ·A = λ ·A (4.11)

Solving the equation and ordering solutions descending:

λ(1) > λ(2) > · · · > λ(M) = 0 (4.12)

The eigenvalues λi are real and positive and represents contribution to the turbu-
lent kinetic energy of mode φi.

E =
M∑

i=1

λi (4.13)
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where E is twice the turbulent kinetic energy of the flow.
The discrete POD modes of the snapshot POD are calculated as:

φ(i)(x, y) =
∑M

n=1 A(i)
n U(x, y)n∣∣∣∣∣∣∑M

n=1 A(i)
n U(x, y)

∣∣∣∣∣∣ , i = 1, ...,M (4.14)

The expansion coefficients were calculated by projecting the PIV field onto the
calculated modes,

a(n) = φ(n)T ·U(x, y) (4.15)

A reconstruction of velocity field using the NPOD leading POD modes can be done
as (see Wu & Christensen (2010)):

u(n)
L (x, y) =

NPOD∑
i=1

a(n)
i φ

(n)
i (x, y) (4.16)

and residual field,

u(n)
R (x, y) =

M∑
i=NPOD+1

a(n)
i φ

(n)
i (x, y) = u(n)(x, y) − u(n)

L (x, y) (4.17)

Results POD

The analysis is carried out for the near wall region, y/δ < 0.5 for X ≤ 3.2 m and
y/δ < 0.3 for X = 5.66 m, using 2500 instantaneous flow fields. Figure (4.23(a))
presents the fractional energy distribution, calculated with equation (4.18).

Ei =
λi∑M
j=1 λ j

· 100% (4.18)

The lower modes which are the most energetic modes are associated with the large
scale in the flow, and the higher modes are less energetic modes, and correspond
to small scales. The fractional energy distributions over the first 10 modes for all
cases is presented in Tabel (4.18). The first mode gives the largest contribution to
the energy. There is no clear effect of increasing the length, X, of rough surface on
the fractional energy content for the first mode when X ≤ 2.7 except for X = 0.2
where a decrease of ∼ 15% on the fractional energy is noticed. For X ≥ 3.2 there
is an increase of ∼ 11% for X = 3.2 m and ∼ 40% for X = 5.66 m.
Figure (4.23(b)) depicts the distribution of the cumulative energy defined as:

(cumulativ energy)m =

m∑
j=1

Ej (4.19)

calculated from the fractional energy Figure (4.23(a)). The first six modes for
0 < X < 2.7 and four modes for X > 2.7 capture around 50% of the resolved
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Table 4.18: Fractional energy contribution to the first 10 POD modes

X
Mode 0.00 0.2 0.7 1.2 1.7 2.2 2.7 3.2 5.66

1 0.260 0.227 0.277 0.270 0.260 0.276 0.259 0.289 0.366
2 0.108 0.108 0.099 0.100 0.104 0.109 0.103 0.106 0.098
3 0.049 0.049 0.048 0.053 0.053 0.053 0.050 0.054 0.049
4 0.042 0.039 0.041 0.044 0.045 0.042 0.039 0.040 0.038
5 0.023 0.029 0.028 0.028 0.030 0.026 0.025 0.027 0.024
6 0.021 0.022 0.022 0.022 0.022 0.023 0.021 0.022 0.023
7 0.019 0.019 0.020 0.021 0.021 0.021 0.018 0.019 0.017
8 0.014 0.015 0.016 0.015 0.015 0.014 0.014 0.015 0.016
9 0.013 0.014 0.013 0.014 0.014 0.013 0.013 0.013 0.013
10 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.013 0.012

energy. The first ∼ 700 modes are needed to capture 95% of the resolved energy
for X = 0 and X = 3.2 m. Using POD for turbulent boundary layer, over smooth
surface at Reθ = 12000, Wu & Christensen (2010) found that the first six modes
and more than 400 modes were necessary to capture 50% and 95% of the resolved
energy. This points out the resolution problem and the inability of the system to
capture the small scales.
A useful aspect of the POD is possibility to separate the flow in large and small

scales. This enables us to study the effect of roughness on large and small scales
separately. Large-scale flow fields are reconstructed using the equation (4.16) and
the small scales, or residual, flow fields are generated using the equation (4.17).
The large-scale flow fields are based on the number of modes, N, necessary to
reconstruct 50% of energy, thus six modes were necessary to reconstruct the flow
fields for the smooth case (X = 0) and four modes for X = 3.2 m. The small-scale
flow fields are reconstructed starting with the mode N + 1 until the mode nec-
essary to reconstruct the remaining 49% of energy. Thus the total reconstructed
fluctuating flow contains 99% of the resolved energy. Figure (4.24) and Figure
(4.25) presents, random selected, large- and small-scale representations of fluctu-
ating velocity field for X = 0 and X = 3.2 m. Visual examinations does not give
any quantitative information regarding to what happens to the flow structure
when we increase the length X of the rough surface. A solution is to calculate
contribution of large and small-scales to the Reynolds stresses separately.
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Figure 4.23: POD energy. (a) Fractional contribution of each mode(b) Cumulative
energy distribution. Symbols: • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2,
� 5.66. Not every mode is shown for clarity (1 − 6, 11, 16, 21, · · · )
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(a)

(b)

(c)

Figure 4.24: (a) fluctuating velocity field for X=0 (b) large-scale representation of
(a) (projected on the first six modes). (c) small scale representation of (a) (projected
on 7-1724 modes). Not every vector is shown.
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(a)

(b)

(c)

Figure 4.25: (a) fluctuating velocity field for X=3.2 (b) large-scale representation
of (a) (projected on the first four modes). (c) small scale representation of (a)
(projected on 5-1751 modes). Not every vector is shown.
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Figure (4.26) presents the profiles of < uu >+ and < vv >+, obtained from PIV
measurements; calculated from POD, using equation (4.16), by recovering 50% of
energy and the profiles associated with small scales using equation (4.17). The
energy recovered in large and small scales contains 99% of the total energy.
The contribution to the < uu >+ is dominated by large scales for y/δ > 0.1 while
the small scales dominate the near wall region, y/δ < 0.1. For smooth surface at
y/δ = 0.2 the contribution of large scales represents ∼ 70% while at y/δ = 0.02 it
represents only ∼ 35%. The main contribution to the < vv >+ is due to the small
scales and only ∼ 20% is due to the large scales. This is in agreement with Wu &
Christensen (2010). The large and small scales show no effect on the outer layer.
A qualitative evaluation of the character of flow structure is obtained through the
two-point correlations. Figure (4.27) to Figure (4.29) present the contours of two-
point correlations, streamwise and wall-normal component, for X = 0, 0.2, 3.2.
The (Ruu)L, computed from large scales, is similar in shape to the Ruu, computed
from PIV, but is more elongated in streamwise direction. The (Ruu)R, residual or
computed from the small scales, is more compact than (Ruu) and has a streamwise
extension similar to Rvv. The inclination angle for (Ruu)R is zero.
The (Rvv)R has a shape similar to the Rvv but less elongated in streamwise direction,
∼ 25% less for X = 0.
Figure (4.30) presents the one-dimensional profiles for Ruu and Rvv, in streamwise
direction computed from PIV (a−b), large scales POD (c−d) and small scales POD
(e− f ). The (Ruu)L shows small differences when increasing the length X of rough
surface. The (Rvv)L is reduced when increasing the length X of rough surface. The
small-scale correlation (Rvv)R is similar to (Rvv) indicating that the main contribu-
tion to v component is due to the small scales. Further the streamwise (Rvv)L falls
bellow zero and rises again to reach a second top.
Wall-normal correlation coefficients are presented in Figure (4.31). The Ruu and
Rvv for large and small scales, in wall normal direction, show no differences with
increasing the length, X, of rough surface.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.26: Comparison of Reynolds stresses obtained from PIV and POD modes,
a) < uu+ >, b) < vv+ > from PIV; c) < uu+ >, d) < vv+ > recalculated from POD
by recovering 50% of energy; e) < uu+ >, f ) < vv+ > residual velocity field (small
scales). Symbols: • X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.27: Contours of (a) Ruu (b) Rvv (c) (Ruu)L (d) (Rvv)L (e) (Ruu)R (f) (Rvv)R for
X = 0 at y/δ = 0.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.28: Contours of (a) Ruu (b) Rvv (c) (Ruu)L (d) (Rvv)L (e) (Ruu)R (f) (Rvv)R for
X = 0.2 at y/δ = 0.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.29: Contours of (a) Ruu (b) Rvv (c) (Ruu)L (d) (Rvv)L (e) (Ruu)R (f) (Rvv)R for
X = 3.2 at y/δ = 0.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.30: Streamwise velocity correlation, Ruu and Rvv, at y/δ = 0.2. Symbols:
• X=0, � 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Wall-normal correlation, Ruu and Rvv, at y/δ = 0.2. Symbols: • X=0,
� 0.2, � 0.7, � 1.2, � 1.7, � 2.2, ◦ 2.7, � 3.2, � 5.66.
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4.2.6 Conlcusions

An experimental study of the response of a turbulent boundary layer to a smooth-
to-rough change in surface condition was carried out using a PIV. The results are
focused on the spatial structure of the flow in the x − y plane.
Increasing the length X of rough surface does not seem to affect the two point
correlations, Ruu and Rvv. The inclination angle of the flow structure is similar to
all surfaces which indicates that increasing X will not affect the alignment of the
flow structure. Further, the swirling strength correlation, Rλλ, is slightly affected
by the X. The increases of X, decreases the extent of Rλλ at y/δ = 0.4 in streamwise
and wall-normal direction.
Possibility of decomposing flow into large and small scales using POD has re-
vealed only incomplete answers due to resolution problem in the near wall region.
The two-point correlations of large scales at y/δ = 0.2 indicate that the stream-
wise extension of v component is reduced by increasing the length, X, of rough
surface. The correlations for small scales are almost unchanged in the presence of
the roughness.
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Chapter 5

Summary and Conclusions

The main goal of this work was to reduce the uncertainty in rough wall measure-
ments by determining independently the skin friction, Cf .
To do this we have build a skin friction balance to measure shear force for rough
surface. The skin friction balance is a direct method for measuring skin friction.
This is a very accurate method but very difficult to deal with. It took around three
years to get good results.
The main source of errors is the pressure variation across the floating element. To
investigate this we tested our balance under three different pressure gradients:
channel flow, zero pressure gradient boundary layer and adverse pressure gradi-
ent (diffuser) flow.
The main conclusions are:

• For channel flow the measured value and the theoretical straight-line dis-
tribution are in good agreement. The combined error in pressure measure-
ments and u2

τ is around 3%.

• For zero pressure gradient the uncertainty in u2
τ is around 4%. The agreement

between the analytical curve distribution and measured − < uv+ > is seen
to be good.

• For adverse pressure gradient we don’t have any analytical distribution for
shear stress. We know that the shear stress should extrapolate to one; from
the measurements we have this trend.

The balance has proved to be reliable and accurate in different conditions. The
Cf measured in adverse pressure gradient is almost half of that over a smooth
surface. This suggest that the balance can be used also for zero pressure gradient
boundary layer over a smooth surface.
Clauser (1956) associated turbulent boundary layer with a "black box". In order
to understand the inner mechanism(s) of the "black box" we can apply different
inputs and then measure the outputs.
Using this technique we have applied a step change in roughness, from smooth
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to rough, to our boundary layer. The skin friction was measured with the floating
element balance and the velocity field was measured using a two component LDA
and PIV.
The main conclusions from LDA measurements:

• The mean velocity defect profiles, normalized with uτ, shows the effect of
the wall conditions on the outer layer for X < 2.2 m

• The effect of the wall conditions on Reynolds stresses are not noticed outside
the internal boundary layer (IBL).

• The growth of the IBL is proportional with δi ∼ x0.73 and is in good agreement
with the Elliot’s formula for growth of the IBL, δi/z02 = 0.37 (X/z02)0.78

• The flow has adapted to new wall conditions both in mean and Reynolds
stresses after ∼ 18 boundary layer thicknesses over the smooth wall.

• The Reynolds stresses < vv > and < −uv > normalized with Ue show an
overshoot for X < 2.2 m

• Reynolds stresses and higher order moments for X ≥ 2.2 m indicate no
differences i outer layer, between smooth and rough-surfaces, providing
support for the similarity theory.

• The quadrant analysis indicate similarity between sweep and ejection events
for smooth and rough-surfaces, except that they are shifted further from the
wall for the rough wall. The ratio between the ejection and sweep events
are slightly higher on the smooth surface except from the IBL.

The last measurements are the PIV measurements. The conclusions from PIV are
affected by:

• Resolution problem, too high Reynolds number

• Small field of view

The main conclusions from PIV measurements are:

• Increasing the length of the rough surface, X, will not affect the Ruu and Rvv

• The inclination angle of the flow structure is similar for all surfaces.

The POD decomposition of the flow field has revealed that the large scales have
a main contribution to the < uu > component while the small scale have a main
contribution to the < vv > component.
A further investigation of the skin friction balance is required to find the source of
the ∼ 4% error. An experiment with a gap less than ∼ 0.6 mm should provide an
answer if the source of the error is connected with the dimension of the gap. For
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PIV measurements is necessary a camera with better resolution and a better field
of view compared with the δ. In our PIV measurements we got only incomplete
answers.
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