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Abstract

In modeling of atmospheric freeze drying (AFD), the modeling of the product is of-
ten confined to either one-dimensional models or multi-dimensional models of very
basic geometries. Such models are not able to handle a product of complex shape,
and require simplifying assumptions on the geometry of the product in order to
work. In addition, although many models incorporate equations that account for
the effects of several physical phenomena, they often assume that the coefficients in
the equations are either constant or certain functions of external parameters, such
as the ambient temperature. The effects of local variations in the internal struc-
ture of the product, such as the effects of inhomogeneity or anisotropy on transport
properties, are rarely modeled.

The main goal of the work presented in this thesis was to develop a three-dimensional,
geometrically flexible framework for modeling AFD, in order to make handling of
complicated geometries not only possible, but also straightforward. To this end, the
definition of the geometry was made implicit, i.e. any surface or interface is defined
as the set of points where a certain geometry defining function (GDF) is zero. The
GDFs can be made time-dependent, to account for deformations (shrinkage) as time
goes by. Thus, we should in principle be able to model any product in any surround-
ings with this framework, as long as all surfaces and interfaces can be described by
GDFs. Moreover, we can encase an implicitly defined product in a box-shaped, fixed
domain. This makes the numerical grid simple and fixed, even if the product itself
shrinks with time.

Another important goal was to make the framework accommodate quasilinear trans-
port coefficients, i.e. that the coefficients could depend on local conditions, including
local moisture concentration. This allows the effects of inhomogeneity to be included.
By allowing different coefficients in different directions, the framework also allows
anisotropy to be modeled.

The emphasis was on modeling the mass transfer inside the product, which was as-
sumed to be caused by vapor diffusion through Darcy’s law. External mass transfer
was modeled as convective, with the ambient conditions as given boundary condi-
tions (i.e. not modeled). A mass transfer equation was developed to describe the
sublimation of ice and subsequent diffusion of vapor through the product. It was
based on the retreating ice front (RIF) assumption. A method of investigating the
validity of the RIF assumption was proposed and tested on pieces of cod fillet, using
a scanning electron microscope (SEM).
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It was verified that the equation was mathematically well posed, and a spectral
method was chosen to solve it numerically. The method was adapted to the specific
equation, and several improvements were made to it, to decrease memory costs and
time consumption.

To test the framework, simulations were carried out on pieces of cod fillet at -5 ◦C and
-10 ◦C. The calculated drying curves showed good agreement with experimental
results, and the qualitative properties were found to be satisfactory within certain
bounds on the parameters.
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1. INTRODUCTION

In this chapter we give a brief description of atmospheric freeze drying, present the
main ideas involved in the modeling work, and look at the structure and notation
of this thesis.

1.1 About atmospheric freeze drying

Atmospheric freeze drying (AFD) is a hybrid drying technology which combines the
sublimation mechanism of vacuum freeze drying (VFD) with an air/gas atmosphere
at about atmospheric pressure (cf. [13, Chapter 21] or [6]). As in VFD, the product
is frozen, so (ideally) both its water and dry structure are fixed in place, and the
dominant drying mechanism is that of sublimation and subsequent vapor transport.
This fixation not only preserves the structure and porosity of the product, but the
absence of liquid water prevents desirable substances (e.g. nutrients in foods) from
being dissolved, and subsequently removed from the product. This preserves the
quality of the product better than drying in warm air. On the other hand, the rate
of drying increases dramatically with temperature, and freeze drying is quite slow
in comparison to many other types of drying. And AFD is even slower than VFD,
because the driving vapor pressure difference between the sublimation site and the
product surroundings is smaller in the case of AFD.

However, VFD is very expensive, because it requires equipment capable of establish-
ing and maintaining a vacuum, as well as cooling equipment to keep the temperature
sufficiently low. The idea behind AFD is therefore to attain the product quality of
freeze dried products at lower costs than VFD. The lack of need to install and run
expensive vacuum equipment is the most obvious advantage AFD has over VFD,
but there are also some other advantages:

• The presence of an atmosphere enables convective heat and mass transfer to
and from the product. This simplifies and increases the heat supply, which in
VFD relies on conduction and/or radiation.
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1. Introduction

• AFD typically takes place at just a few degrees Celsius below zero, while VFD
takes place at much lower temperatures, so the cooling costs per unit time and
mass are lower for AFD.

• AFD can be used in conjunction with atmosphere-dependent technologies like
fluidized beds, and product units can continuously be added to/removed from
the drying chamber, without significantly disturbing the process. This is not
the case for VFD.

• In closed circuits, AFD can be used in conjunction with heat pumps, enabling
the heat surrendered by the vapor as it condenses to be used to heat the air
stream before it enters the drying chamber. This saves energy, compared to
drying without heat pumps (cf. [18]). Therefore, the energy efficiency is far
higher in AFD than in VFD.

It is also possible to combine AFD with warm air drying through a step-up program,
where the ambient temperature is raised towards the end of the drying. This speeds
up the final part of the drying considerably, without significantly reducing product
quality. This is an important point, because the main disadvantage with AFD is
that it is slow. The limiting factor in AFD is considered to be the rate of internal
mass transfer, so AFD is therefore in practice confined to small products.

1.2 About AFD modeling

There has not been done much modeling work on AFD (see [6] for a review of some
of it). Although the number of publications on AFD modeling has risen over the
last few years, the models are still typically restricted to specific geometries. But
the diversity of products, conditions and physical phenomena modeled has increased.

The predominant assumption in modeling the interior of products is the notion that
there is a sharp interface (called the ice front) where the sublimation takes place.
Outside the ice front, in the so-called dry region, the ice has been removed, and
vapor from the front travels through the open pores. The product still contains ice
in the pores in the moist region inside the ice front. Initially, the ice front starts out
near the product surface, but it gradually recedes towards the center of the product.
Models using this assumption are referred to as retreating ice front (RIF) models, or
uniformly retreating ice front (URIF) models (if the ice front is assumed to retreat
uniformly).
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1.3. The ideas behind the modeling framework

A characteristic of most existing AFD models is that they assume that the product
has a regular shape (e.g. spherical, cubic or slab-shaped), and that it keeps its size
and shape during the drying process (shrinkage is usually not a major concern in
AFD, and it is barely present i VFD). This is an assumption we will not rely on.

1.3 The ideas behind the modeling framework

The main idea behind the framework is generality. Instead of trying to develop a
specific model for a specific product, we wish to create a framework that can be
used to model just about any product under different circumstances. To this end,
the work presented in this thesis is based on the following ideas:

• The applicability of the framework should be limited by the (lack of) physical
data and knowledge, not by mathematical or numerical considerations, i.e.
we should be able to model complicated geometries and transport properties,
without having to make unrealistic assumptions on these.

• The geometry of the problem should be represented implicitly, to enable the
use of a fixed computational grid, and make it easier to model complicated
and time-dependent geometries. This way of representing the geometry might
be new to drying, but it is well known in mathematics (where it is called the
level set method, cf. e.g. [19]).

• The framework should be confined to pure freeze drying (i.e. no transport of
liquid water), and the emphasis should be on the moisture concentration and
mass transfer inside the product.

• Instead of starting with a very simplified problem and expanding the theory
into a more advanced one, the development of the framework should start at
the other end. It should start with as few assumptions as possible, and add
additional assumptions if and when they become necessary.

Of course, the framework might not be optimal for constructing a model for a par-
ticular product, but this is not the goal of this work. The goal is to construct a
tool which can be used to study and analyze different models for product
geometries and transport parameters.
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1. Introduction

1.4 Thesis structure and notation

The structure of the thesis is as follows:

1. In Chapter 2 we present some theory on implicit representation of geometry,
construct a method of approximating complicated geometries, present some
examples of how to use it in practice, and list advantages and disadvantages.

2. In Chapter 3 we consider the physical aspects of the drying process. We make
some assumptions on the fundamental mechanisms involved, as well as on the
distribution of ice inside the product during drying. Then we propose a method
of investigating this distribution, and present some electron microscope results
from a test of this method.

3. In Chapter 4 we make some more assumptions, construct an equation for the
mass transfer during drying, and verify that this equation is mathematically
well posed.

4. In Chapter 5 we derive a numerical scheme to solve the equation, and prove
some important properties of the matrices and vectors in this scheme.

5. In Chapter 6 we first show how to improve the efficiency of the numerical
implementation, then present simulation results for pieces of cod fillet.

6. In Chapter 7 we discuss and conclude on the results of the simulations, the
framework’s limitations and weaknesses, and possible improvements.

7. In Appendix A we give the source code for the simulations.

Since we will rely heavily on the mathematical and numerical theory in [2]-[4], we
will closely follow the notation therein (it is the same in all three papers).

We will write vectors and matrices in bold letters, except when referring to single
elements. We will also often skip the arguments of functions, when these are obvious
or unimportant.

We implement the framework in Matlab 2010a, so there will be some Matlab

notation as well. In particular, given a matrix E, we will write E(p, q) for the
element in row p and column q. We will also write

ones(m)
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1.4. Thesis structure and notation

for the array of size m = m1 × · · · × mk consisting of ones. The Matlab source
code in Appendix A contains a mix of commands which correspond directly to the
theory, and commands that have to do with the allocation of memory or infor-
mation. Many of the latter type of commands have obvious counterparts in other
programming languages, but there are also some Matlab specific commands. The
emphasis of many of the Matlab specific commands has been on saving memory
and/or time. Therefore, the source code is not as easy to read as it could have been
with a less efficient code.

To make the notation more compact and easy to read, we will often write certain
triples as vectors. We write

x for the point (x, y, z) in space,

a for the length triple (a, b, c),

p for the index triple (p, q, r),

s for the index triple (s, t, u),

α for the index triple (α, β, ζ),

κ for the index triple (κ, λ, ξ).

Finally, to avoid too much mathematical technicality, we will often use the somewhat
imprecise term smooth about mathematical functions. We will use it in the sense
smooth enough. In practice, this is rarely an issue, as one will typically use infinitely
differentiable functions.
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2. IMPLICIT REPRESENTATIONS OF
GEOMETRY

In this chapter we first see how to create implicit representations of geometry through
geometry defining functions (GDFs). Then we give three examples of such repre-
sentations, and finally, we look at the advantages and disadvantages to using GDFs.

2.1 Approximation by hyperbolic tangent

functions

A GDF is constructed to be zero on a surface or an interface. It has nonzero values
at other points, but these values do not necessarily indicate how close we are to the
surface/interface. They do however tell us on which side of it we are. In this section
we show how to include this information in equations.

Denote the entire domain by Ω. Suppose that we divide Ω into disjoint, open subsets
Ωk (i.e. Ω = ∪kΩk). If we want some function f to be smooth and behave like the
smooth function fk in Ωk for each k, we could write f as

f =
∑

k

χΩk
fk,

where the characteristic function χΩk
is defined by

χΩk
(x, y, z) =

{
1, (x, y, z) ∈ Ωk

0, (x, y, z) /∈ Ωk
.

Unfortunately, this makes f zero on the boundaries of the subsets, since each χΩk
is

zero on ∂Ωk. Then f is continuous on ∂Ωk if and only if fk is zero there. This puts a
restriction on the choice of each fk. To avoid this restriction, we can use hyperbolic
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2. Implicit representations of geometry

tangent approximations to χΩk
, as shown below.

Since a GDF is an indicator, we denote the GDF of Ωk by IΩk
, so that IΩk

> 0
defines Ωk. We also make the following assumption:

Assumption 1

We assume that every IΩk
is smooth in its arguments in all of Ω.

The smoothness of IΩk
implies the smoothness of

IΩk,m(x, y, z, t) = tanh(m · IΩk
(x, y, z, t)), where m > 0.

We next set

χΩk,m(x, y, z, t) =
1

2

(
1 + IΩk,m(x, y, z, t)

)
,

χΩk,m(x, y, z, t) =
1

2

(
1 − IΩk,m(x, y, z, t)

)
= 1 − χΩk,m(x, y, z, t).

Note that since IΩk,m has values in [-1,1], χΩk,m and χΩk,m have values in [0,1].

We now have the following result:

Theorem 2.1.1 (Approximation by hyperbolic tangents)

As m → ∞, IΩk,m, χΩk,m and χΩk,m converge pointwise:

lim
m→∞

IΩk,m = sgn(IΩk
) =

⎧⎨⎩
1, IΩk

> 0
0, IΩk

= 0
-1, IΩk

< 0
,

lim
m→∞

χΩk,m = χΩk,∞,

lim
m→∞

χΩk,m = χΩk,∞ = 1 − χΩk,∞,

where χΩk,∞ is χΩk
with value 1/2 on ∂Ωk.
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2.2. Examples

Proof:

1. If IΩk
= 0, then IΩk,m = 0 = sgn(IΩk

) for all m. If IΩk
�= 0, then

|IΩk,m − sgn(IΩk
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when m → ∞. So IΩk,m converges to sgn(IΩk
), but since the rate of con-

vergence depends on IΩk
= IΩk

(x, y, z, t), the convergence is pointwise, not
uniform.

2. χΩk,m and χΩk,m are linear in IΩk,m, and therefore converge pointwise in the
same manner:
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) is illustrated in Figure 2.1.

If we write f as

f =
∑

k

χΩk,mfk +
∑

j

χΩj ,mfj, (2.1)

we see that for finite m, the value of f extends smoothly from, say, Ωp to Ωq, with the
average value of fp and fq at their common boundary ∂Ωp ∩ ∂Ωq. We therefore use
coefficients of the form given in Eq. (2.1) in the equation we derive in Section 4.2.4.

2.2 Examples

In this section we derive implicit representations of the surfaces of three different
products. In some cases, the derived expression for a GDF may not be smooth in the

9

2.2. Examples

Proof:

1. If IΩk
= 0, then IΩk,m = 0 = sgn(IΩk

) for all m. If IΩk
�= 0, then

|IΩk,m − sgn(IΩk
)| = |tanh(mIΩk

) − sgn(IΩk
)|

=
|sinh(mIΩk

) − sgn(IΩk
) cosh(mIΩk

)|
|cosh(mIΩk

)| =
exp(−m|IΩk

|)
cosh(mIΩk

)
→ 0,

when m → ∞. So IΩk,m converges to sgn(IΩk
), but since the rate of con-

vergence depends on IΩk
= IΩk

(x, y, z, t), the convergence is pointwise, not
uniform.

2. χΩk,m and χΩk,m are linear in IΩk,m, and therefore converge pointwise in the
same manner:

χΩk,m =
1

2

(
1 + IΩk,m

)
→ 1

2

(
1 + sgn(IΩk

)
)

= χΩk,∞,

χΩk,m =
1

2

(
1 − IΩk,m

)
→ 1

2

(
1 − sgn(IΩk

)
)

= χΩk,∞.

�
The convergence of IΩk,m to sgn(IΩk

) is illustrated in Figure 2.1.

If we write f as

f =
∑

k

χΩk,mfk +
∑

j

χΩj ,mfj, (2.1)

we see that for finite m, the value of f extends smoothly from, say, Ωp to Ωq, with the
average value of fp and fq at their common boundary ∂Ωp ∩ ∂Ωq. We therefore use
coefficients of the form given in Eq. (2.1) in the equation we derive in Section 4.2.4.

2.2 Examples

In this section we derive implicit representations of the surfaces of three different
products. In some cases, the derived expression for a GDF may not be smooth in the

9

2.2. Examples

Proof:

1. If IΩk
= 0, then IΩk,m = 0 = sgn(IΩk

) for all m. If IΩk
�= 0, then

|IΩk,m − sgn(IΩk
)| = |tanh(mIΩk

) − sgn(IΩk
)|

=
|sinh(mIΩk

) − sgn(IΩk
) cosh(mIΩk

)|
|cosh(mIΩk

)| =
exp(−m|IΩk

|)
cosh(mIΩk

)
→ 0,

when m → ∞. So IΩk,m converges to sgn(IΩk
), but since the rate of con-

vergence depends on IΩk
= IΩk

(x, y, z, t), the convergence is pointwise, not
uniform.

2. χΩk,m and χΩk,m are linear in IΩk,m, and therefore converge pointwise in the
same manner:

χΩk,m =
1

2

(
1 + IΩk,m

)
→ 1

2

(
1 + sgn(IΩk

)
)

= χΩk,∞,

χΩk,m =
1

2

(
1 − IΩk,m

)
→ 1

2

(
1 − sgn(IΩk

)
)

= χΩk,∞.

�
The convergence of IΩk,m to sgn(IΩk

) is illustrated in Figure 2.1.

If we write f as

f =
∑

k

χΩk,mfk +
∑

j

χΩj ,mfj, (2.1)

we see that for finite m, the value of f extends smoothly from, say, Ωp to Ωq, with the
average value of fp and fq at their common boundary ∂Ωp ∩ ∂Ωq. We therefore use
coefficients of the form given in Eq. (2.1) in the equation we derive in Section 4.2.4.

2.2 Examples

In this section we derive implicit representations of the surfaces of three different
products. In some cases, the derived expression for a GDF may not be smooth in the

9

2.2. Examples

Proof:

1. If IΩk
= 0, then IΩk,m = 0 = sgn(IΩk

) for all m. If IΩk
�= 0, then

|IΩk,m − sgn(IΩk
)| = |tanh(mIΩk

) − sgn(IΩk
)|

=
|sinh(mIΩk

) − sgn(IΩk
) cosh(mIΩk

)|
|cosh(mIΩk

)| =
exp(−m|IΩk

|)
cosh(mIΩk

)
→ 0,

when m → ∞. So IΩk,m converges to sgn(IΩk
), but since the rate of con-

vergence depends on IΩk
= IΩk

(x, y, z, t), the convergence is pointwise, not
uniform.

2. χΩk,m and χΩk,m are linear in IΩk,m, and therefore converge pointwise in the
same manner:

χΩk,m =
1

2

(
1 + IΩk,m

)
→ 1

2

(
1 + sgn(IΩk

)
)

= χΩk,∞,

χΩk,m =
1

2

(
1 − IΩk,m

)
→ 1

2

(
1 − sgn(IΩk

)
)

= χΩk,∞.

�
The convergence of IΩk,m to sgn(IΩk

) is illustrated in Figure 2.1.

If we write f as

f =
∑

k

χΩk,mfk +
∑

j

χΩj ,mfj, (2.1)

we see that for finite m, the value of f extends smoothly from, say, Ωp to Ωq, with the
average value of fp and fq at their common boundary ∂Ωp ∩ ∂Ωq. We therefore use
coefficients of the form given in Eq. (2.1) in the equation we derive in Section 4.2.4.

2.2 Examples

In this section we derive implicit representations of the surfaces of three different
products. In some cases, the derived expression for a GDF may not be smooth in the

9



2. Implicit representations of geometry

Fig. 2.1: sgn(IΩk
) and some approximations IΩk,m, for different values of m.

whole of Ω (e.g. there might be a singularity at the origin). If so, we can remove any
singularities by adding terms that are small enough to have an insignificant impact
on value of the GDF (e.g. terms of size 10−10). This is done in the last two examples
in this section.

The plots in this section were made with the Maple 11 functions implicitplot and
implicitplot3d.

2.2.1 Cod slab

A very simple example is a cod slab 20 mm long, 20 mm wide and 5 mm high. It
can be represented by a superellipsoid, whose surface is given implicitly by

(x

a

)2p

+
(y

b

)2p

+
(z

c

)2p

= 1, where p is a positive integer. (2.2)

For p = 1, this is a normal ellipsoid with semi-axes a, b and c. As p increases,
the ellipsoid inflates and approximates its bounding box [−a, a] × [−b, b] × [−c, c].
Consequently, the cod slab can be well represented by setting

10

2. Implicit representations of geometry

Fig. 2.1: sgn(IΩk
) and some approximations IΩk,m, for different values of m.

whole of Ω (e.g. there might be a singularity at the origin). If so, we can remove any
singularities by adding terms that are small enough to have an insignificant impact
on value of the GDF (e.g. terms of size 10−10). This is done in the last two examples
in this section.

The plots in this section were made with the Maple 11 functions implicitplot and
implicitplot3d.

2.2.1 Cod slab

A very simple example is a cod slab 20 mm long, 20 mm wide and 5 mm high. It
can be represented by a superellipsoid, whose surface is given implicitly by

(x

a

)2p

+
(y

b

)2p

+
(z

c

)2p

= 1, where p is a positive integer. (2.2)

For p = 1, this is a normal ellipsoid with semi-axes a, b and c. As p increases,
the ellipsoid inflates and approximates its bounding box [−a, a] × [−b, b] × [−c, c].
Consequently, the cod slab can be well represented by setting

10

2. Implicit representations of geometry

Fig. 2.1: sgn(IΩk
) and some approximations IΩk,m, for different values of m.

whole of Ω (e.g. there might be a singularity at the origin). If so, we can remove any
singularities by adding terms that are small enough to have an insignificant impact
on value of the GDF (e.g. terms of size 10−10). This is done in the last two examples
in this section.

The plots in this section were made with the Maple 11 functions implicitplot and
implicitplot3d.

2.2.1 Cod slab

A very simple example is a cod slab 20 mm long, 20 mm wide and 5 mm high. It
can be represented by a superellipsoid, whose surface is given implicitly by

(x

a

)2p

+
(y

b

)2p

+
(z

c

)2p

= 1, where p is a positive integer. (2.2)

For p = 1, this is a normal ellipsoid with semi-axes a, b and c. As p increases,
the ellipsoid inflates and approximates its bounding box [−a, a] × [−b, b] × [−c, c].
Consequently, the cod slab can be well represented by setting

10

2. Implicit representations of geometry

Fig. 2.1: sgn(IΩk
) and some approximations IΩk,m, for different values of m.

whole of Ω (e.g. there might be a singularity at the origin). If so, we can remove any
singularities by adding terms that are small enough to have an insignificant impact
on value of the GDF (e.g. terms of size 10−10). This is done in the last two examples
in this section.

The plots in this section were made with the Maple 11 functions implicitplot and
implicitplot3d.

2.2.1 Cod slab

A very simple example is a cod slab 20 mm long, 20 mm wide and 5 mm high. It
can be represented by a superellipsoid, whose surface is given implicitly by

(x

a

)2p

+
(y

b

)2p

+
(z

c

)2p

= 1, where p is a positive integer. (2.2)

For p = 1, this is a normal ellipsoid with semi-axes a, b and c. As p increases,
the ellipsoid inflates and approximates its bounding box [−a, a] × [−b, b] × [−c, c].
Consequently, the cod slab can be well represented by setting

10



2.2. Examples

p = 5, a = b = 10−2 and c = 2.5 · 10−3 =
10−2

4

in Eq. (2.2). After rearranging, we get the following equation for the surface of the
slab:

IΩ1(x, y, z) = 10−20 − x10 − y10 − (4 · z)10 = 0. (2.3)

The slab is shown in Figure 2.2.

Fig. 2.2: The cod slab given implicitly by Eq. (2.3).

The simulations of a cod slab in Section 6.2 use a time-dependent version of Eq. (2.3)
(with p = 10), to account for shrinkage.

2.2.2 Strawberry

A product with a shape having cylindrical symmetry can be represented by a sur-
face of revolution. To construct such a surface, we begin by constructing a two-
dimensional representation of the boundary of its cross-section. A rotation of this
two-dimensional expression then turns it into a three-dimensional representation of
the whole product.

To illustrate this procedure, we consider an implicit representation of a strawberry.
The boundary of a typical strawberry cross-section is given, in polar coordinates, by
the equation
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2. Implicit representations of geometry

r = 0.02 − 0.008 · sin(θ)5 + 0.006 · sin(θ), (2.4)

where |r| =
√

x2 + z2, for x = |r| cos(θ) and z = |r| sin(θ).

Since r in Eq. (2.4) is positive, r = |r| =
√

x2 + z2, but Figure 2.3 shows that the
straightforward substitution from θ to x and z,

θ 	−→ arctan(tan(θ)) = arctan

(
sin(θ)

cos(θ)

)
= arctan

( |r| sin(θ)

|r| cos(θ)

)
= arctan

(z

x

)

does not work, since

f1(θ) = arctan

(
sin(θ)

cos(θ)

)
(2.5)

and its sine are discontinuous. This is because tan(θ) jumps from +∞ to −∞ at
θ = π/2 and θ = 3π/2. These values of θ correspond to x = 0, i.e. to a change of
sign in x, and thus a change of sign in z/x.

We therefore use the modified substitution

θ 	−→ f2(θ) = arctan

(
sin(θ)

|cos(θ)|
)

= arctan

( |r| sin(θ)

||r| cos(θ)|
)

= arctan

(
z

|x|
)

, (2.6)

which keeps both the arctangent and its sine continuous. Note from the dashed
curve in Figure 2.3(b) that this modified substitution produces a sine curve

sin(f2(θ)) = sin

(
arctan

(
sin(θ)

|cos(θ)|
))

,

which coincides with sin(θ), i.e. the modified substitution works well.
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2.2. Examples

(a) f1 (solid) and f2 (dashed) (b) sin(f1) (solid) and sin(f2) (dashed)

Fig. 2.3: The arctangents in Eqs. (2.5) and (2.6) (left), and their corresponding
sines (right).

In Cartesian coordinates, Eq. (2.4) thus gives us the following equation for the
boundary of the cross-section:

IΩ1(x, z) = 0.02 −
√

x2 + z2 − 0.008 · sin
(

arctan

(
z

|x|
))5

+ 0.006 · sin
(

arctan

(
z

|x|
))

= 0. (2.7)

The cross-section is shown in Figure 2.4.

The whole strawberry can now be constructed by rotating the cross-section about
the z-axis. This is done by simply replacing the one-dimensional length |x| by the
two-dimensional length

√
x2 + y2 and, correspondingly, x2 by x2 + y2 in Eq. (2.7):
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In Cartesian coordinates, Eq. (2.4) thus gives us the following equation for the
boundary of the cross-section:
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arctan
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))5
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The cross-section is shown in Figure 2.4.

The whole strawberry can now be constructed by rotating the cross-section about
the z-axis. This is done by simply replacing the one-dimensional length |x| by the
two-dimensional length

√
x2 + y2 and, correspondingly, x2 by x2 + y2 in Eq. (2.7):
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2. Implicit representations of geometry

Fig. 2.4: The shape of a strawberry cross-section, given implicitly by Eq. (2.7).

IΩ1(x, y, z) = 0.02 −
√

x2 + y2 + z2 + 10−10

− 0.008 · sin
(

arctan

(
z√

x2 + y2 + 10−10

))5

+ 0.006 · sin
(

arctan

(
z√

x2 + y2 + 10−10

))
= 0. (2.8)

Note the addition of terms of size 10−10 to avoid a singularity at the origin, as
explained above. The small term in the first square root is to prevent numeri-
cal problems at the origin for the derivatives of IΩ1 . The strawberry is shown in
Figure 2.5, where leaves given by

IΩ2(x, y, z) = 0.015 −
√

x2 + y2 + 10−10 − 4000 · (z − 0.02)2

+ 0.005 · sin
(

8 ·
(

arctan

(
y√

x2 + 10−10
+

π

16

)))3

= 0 (2.9)

have been added to enhance the visual impression.
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2.2. Examples

Fig. 2.5: The strawberry given implicitly by Eq. (2.8), with leaves given implicitly
by Eq. (2.9).

2.2.3 Maize kernel

Our third and final example is a maize kernel, which we model before and after
drying, using a procedure similar to that of the strawberry example above. In the
case of the strawberry, we started with a polar coordinate representation of the
boundary of a vertical cross-section, and turned it into an equation in x and z.
Here, we consider a horizontal cross-section with boundary given by

r = 0.004 + 0.0023 · sin(θ)9 − 0.003 · sin(θ)7

in polar coordinates. The resulting Cartesian coordinate equation in x and y be-
comes
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2. Implicit representations of geometry

IΩ1(x, y) = 0.004 −
√

x2 + y2 + 0.0023 · sin
(

arctan

(
y

|x|
))9

− 0.003 · sin
(

arctan

(
y

|x|
))7

= 0. (2.10)

The cross-section is shown in Figure 2.6.

Fig. 2.6: The shape of a maize kernel cross-section, given implicitly by Eq. (2.10).

This time we rotate the cross-section around the y-axis. Unlike in the strawberry
example, where the rotation was circular (x2 was replaced by x2 + y2), we use an
elliptical rotation here, i.e. x2 is not replaced by x2 + z2, but the substitution

x2 	−→ x2 +

(
2 + f(t) · cos

(π

2
· x

0.004

)4
)
· z2

is made instead. Here, f is an arbitrary (smooth) time-dependent function that
enables us to model changes in shape as time goes by.
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2.2. Examples

With the addition of terms of size 10−10 to prevent a singularity at the origin, the
four-dimensional equation for the maize kernel becomes

IΩ1(x, y, z, t) = 0.004 −
√

x2 +

(
2 + f(t) · cos

(π

2
· x

0.004

)4
)
· z2 + y2 + 10−10

+ 0.0023 · sin

⎛⎜⎜⎝arctan

⎛⎜⎜⎝ y√
x2 +

(
2 + f(t) · cos

(
π
2
· x

0.004

)4
)
· z2 + 10−10

⎞⎟⎟⎠
⎞⎟⎟⎠

9

− 0.003 · sin

⎛⎜⎜⎝arctan

⎛⎜⎜⎝ y√
x2 +

(
2 + f(t) · cos

(
π
2
· x

0.004

)4
)
· z2 + 10−10

⎞⎟⎟⎠
⎞⎟⎟⎠

7

= 0.

(2.11)

If we assume that f is zero initially, and 10 after drying, we get the deflation effect
shown in Figure 2.7.

(a) Initially (f(0) = 0) (b) After drying (f(t) = 10)

Fig. 2.7: The maize kernel given implicitly by Eq. (2.11), initially and after drying.
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2. Implicit representations of geometry

2.3 Advantages and disadvantages

We now look at the advantages and disadvantages to using an implicit representation
of the geometry.

2.3.1 Advantages

The most obvious advantage to representing a product’s geometry implicitly is that
we can use a simple computational domain, regardless of the product’s shape. We
need not worry about enforcing boundary conditions on the surface of a product of
a complicated and/or time-dependent shape. We can simply encase the product and
a small part of its surroundings in a box-shaped volume, which then becomes our
computational domain. The surface of the box forms a simple boundary on which
we can enforce the boundary conditions, instead of having to enforce them on the
surface of the product itself.

In addition to the geometry of the product surface, there might be other geometries
involved in the problem. For instance, in many types of drying, the product rests on
a base. This means that air travels past most of its surface, but its underside faces,
completely or partially, a solid surface. In this case, the boundary conditions are
obviously different at the top and bottom of the domain. Using GDFs, we can define
external interfaces that divide the surroundings into several smaller parts, and thus
handle all these parts simultaneously, cf. Eq. (2.1) and Section 6.2.

In some cases, the product might also have an internal structure where different
parts have significantly different properties (e.g. granular materials). Then it might
be practical to divide the product interior into smaller parts, each with its own
transport coefficients. Such a division requires internal interfaces, which can be rep-
resented implicitly by GDFs.

Finally, if we use GDFs, we do not need to redesign or reimplement a numerical
scheme when we change the product’s dimensions or proportions, or even when we
replace one product with a different one. We only need to modify the GDFs, and
possibly remove some of them or add some more.
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2.3. Advantages and disadvantages

2.3.2 Disadvantages

Although it offers significant advantages, there are also a couple of disadvantages to
representing the geometry implicitly.

One disadvantage is that transport coefficients become more complicated. Although
this increases the complexity of both the mathematical and numerical theory, this
does not cause a problem in practice, as long as the GDFs are smooth. The real
disadvantage lies in an increase in the number of numerical calculations, hence an
increase in the time it takes to run simulations.

A far more important disadvantage is the more difficult handling of convective
boundary conditions on the product surface, since this surface now becomes part
of the interior of the computational domain. Convective boundary conditions are
usually handled as specified flux conditions (Neumann conditions) on the domain
boundary. However, specifying the flux on an internal surface creates problems,
both in terms of mathematical theory and in terms of numerical implementation
(e.g. how to include the conditions when the grid points do not coincide with the
surface). The solution is to impose the flux conditions throughout the surroundings,
but this is not without its issues either (cf. Section 7.2.1).

19

2.3. Advantages and disadvantages

2.3.2 Disadvantages

Although it offers significant advantages, there are also a couple of disadvantages to
representing the geometry implicitly.

One disadvantage is that transport coefficients become more complicated. Although
this increases the complexity of both the mathematical and numerical theory, this
does not cause a problem in practice, as long as the GDFs are smooth. The real
disadvantage lies in an increase in the number of numerical calculations, hence an
increase in the time it takes to run simulations.

A far more important disadvantage is the more difficult handling of convective
boundary conditions on the product surface, since this surface now becomes part
of the interior of the computational domain. Convective boundary conditions are
usually handled as specified flux conditions (Neumann conditions) on the domain
boundary. However, specifying the flux on an internal surface creates problems,
both in terms of mathematical theory and in terms of numerical implementation
(e.g. how to include the conditions when the grid points do not coincide with the
surface). The solution is to impose the flux conditions throughout the surroundings,
but this is not without its issues either (cf. Section 7.2.1).

19

2.3. Advantages and disadvantages

2.3.2 Disadvantages

Although it offers significant advantages, there are also a couple of disadvantages to
representing the geometry implicitly.

One disadvantage is that transport coefficients become more complicated. Although
this increases the complexity of both the mathematical and numerical theory, this
does not cause a problem in practice, as long as the GDFs are smooth. The real
disadvantage lies in an increase in the number of numerical calculations, hence an
increase in the time it takes to run simulations.

A far more important disadvantage is the more difficult handling of convective
boundary conditions on the product surface, since this surface now becomes part
of the interior of the computational domain. Convective boundary conditions are
usually handled as specified flux conditions (Neumann conditions) on the domain
boundary. However, specifying the flux on an internal surface creates problems,
both in terms of mathematical theory and in terms of numerical implementation
(e.g. how to include the conditions when the grid points do not coincide with the
surface). The solution is to impose the flux conditions throughout the surroundings,
but this is not without its issues either (cf. Section 7.2.1).

19

2.3. Advantages and disadvantages

2.3.2 Disadvantages

Although it offers significant advantages, there are also a couple of disadvantages to
representing the geometry implicitly.

One disadvantage is that transport coefficients become more complicated. Although
this increases the complexity of both the mathematical and numerical theory, this
does not cause a problem in practice, as long as the GDFs are smooth. The real
disadvantage lies in an increase in the number of numerical calculations, hence an
increase in the time it takes to run simulations.

A far more important disadvantage is the more difficult handling of convective
boundary conditions on the product surface, since this surface now becomes part
of the interior of the computational domain. Convective boundary conditions are
usually handled as specified flux conditions (Neumann conditions) on the domain
boundary. However, specifying the flux on an internal surface creates problems,
both in terms of mathematical theory and in terms of numerical implementation
(e.g. how to include the conditions when the grid points do not coincide with the
surface). The solution is to impose the flux conditions throughout the surroundings,
but this is not without its issues either (cf. Section 7.2.1).

19



2. Implicit representations of geometry

20

2. Implicit representations of geometry

20

2. Implicit representations of geometry

20

2. Implicit representations of geometry

20



3. THE PHYSICS OF THE DRYING
PROCESS

In this chapter we look at the physics involved in AFD, and make some important
assumptions. We also present and test a method of investigating the distribution of
ice inside the product during drying.

3.1 Physical assumptions

In this section we make assumptions on the mechanisms of moisture removal during
AFD. We start with two very common assumptions:

Assumption 2 (No free liquid water)

Any liquid water in the product is assumed to be bound and unavailable for removal
by AFD. It is therefore ignored, and the removable water in the product is considered
to exist only as ice (in the moist regions) and vapor (in the dry region).

Disregarding bound water is clearly a source of error, but it also greatly simplifies
the modeling, because we do not have to worry about flow or evaporation of liquid
water. We can concentrate on the sublimation mechanism:

Assumption 3 (Retreating ice front)

At any given time during drying, each remaining moist region within the product
is separated from the dry region by a sharp interface, the ice front. As drying
continues, ice at the interface turns into vapor through sublimation. This removal
of ice causes the interface to recede deeper into the product, making the moist region
smaller and the dry region larger. The vapor is transported away from the interface
through the dry region. There is no moisture transport within the moist regions.

Asmp. 3 is a RIF assumption, so we get a moving boundary problem. The velocity
of this motion depends on the vapor flux through the dry region, which is porous,
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3. The physics of the drying process

so we can assume that flow through it is governed by Darcy’s law:

Assumption 4 (Internal mass transfer)

We assume that the transport of vapor through the dry region follows Darcy’s law.
We also assume that it is adiabatic, i.e. that the vapor is not heated by the air or
dry matter on its way from the ice front to the surface of the product.

Remark: The assumption of adiabatic vapor transport may seem somewhat du-
bious, since there will be a temperature difference between the ice front and the
ambient air (cf. Asmp. 7 below). This means that cold vapor from the ice front
will pass through warmer regions, which might heat it up. However, we can argue
that since the heat capacities of the air and vapor are several orders of magnitude
smaller than the latent heat of sublimation, practically all the supplied heat is used
for sublimation, instead of local heating of the air and vapor in the pores. �

3.2 Investigation of the sharp interface

assumption

In this section we present and test a method of investigating the validity of the sharp
interface assumption (Asmp. 3). The idea is to use salt crystals as markers for the
dry region of a sample, and study how sharply the concentration of these crystals
decreases as we move from the dry region to a moist one.

When studying the sample, it is best to use a scanning electron microscope (SEM).
Although the profile might be visible even to the naked eye, there are several ad-
vantages to using a SEM instead:

• The salt profile is protected by the vacuum in the vacuum chamber of the SEM
(cf. the first remark following Algorithm 1 below).

• It is easy to study the profile at different magnifications, making it possible to
look at both small details and the big picture.

• It is easy to create images of the profile. The images also contain a length
scale, making comparisons easy.

• A typical SEM has several different types of detectors able to detect the salt,
making the identification of the profile more reliable.
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3.2. Investigation of the sharp interface assumption

When studying a moist, organic sample, it is preferable to use an environmental
SEM (ESEM, cf. [8]) or a low vacuum SEM (LV-SEM). An LV-SEM is a SEM
with a relatively high chamber pressure (typically up to a few hundred Pa). A high
vacuum (typically a fraction of a Pa) would take a very long time to establish, and it
prevents the discharge of built-up negative charges in non-conducting (e.g. organic)
specimens, due to the electron bombardment. These charges eventually cause the
electron beam to be deflected and the signal to be lost.

3.2.1 Electron microscope detection of NaCl

There are at least four types of relevant SEM detectors for NaCl crystals:

• Secondary electron (SE) detector. Detects low energy electrons emitted
from the specimen when irradiated with electrons.

• Backscattered electron (BSE) detector. Detects high energy electrons
emitted from the specimen when irradiated with electrons. Heavier elements
produce stronger BSE signals than lighter.

• Cathodoluminescence (CL) detector. Detects light emitted from the
specimen when irradiated with electrons. The intensity of the CL signal de-
pends on the type of material.

• X-ray spectrometer. Detects X-rays emitted from the specimen when irra-
diated with electrons. Different elements emit X-rays at different energies, so
an X-ray detector can map the chemical composition of the specimen.

More information about these detectors can be found in [16, Chapter 3].

What makes NaCl a good indicator is that in organic samples, most of the atoms
are of light elements (like hydrogen, carbon, nitrogen and oxygen). In most types
of products, sodium and chlorine are only present in small quantities, and are easily
distinguishable with the detectors mentioned above (cf. Figure 3.1 and Figure 3.2).
The X-ray spectrometer can obviously identify sodium and chlorine, and these atoms
also produce a stronger BSE signal than the organic matter. In addition, the CL
signal appears to be much stronger from the crystalline NaCl than from the non-
crystalline organic matter, at least at some angles (in general, in the case of both
X-rays and CL, the strength of the signal can depend significantly on the angle
between the specimen surface and the detector).
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3. The physics of the drying process

(a) Magnified 40 times

(b) Magnified 300 times

Fig. 3.1: BSE images of small NaCl crystals inside a frozen pea.
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3.2. Investigation of the sharp interface assumption

(a) BSE image, center area (b) CL image, center area

(c) BSE image, edge (d) CL image, edge

(e) SE image, edge

Fig. 3.2: Visibility of NaCl in a frozen pea, for different detectors.
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3. The physics of the drying process

3.2.2 The method

A procedure for preparing and investigating samples is given in Algorithm 1:

Algorithm 1 (Dry region identification, using NaCl)

1. Store samples from the drying process at a temperature below the
eutectic temperature of NaCl brine (-21.2 ◦C).

2. Immerse each sample in saturated NaCl brine that is just above its
eutectic temperature. Assuming that the pores in the moist regions are
blocked by ice, and those in the dry region are not, the brine should penetrate
and rehydrate the dry region only. As the brine encounters ice, the ice will
begin to melt, causing the local temperature to decrease to the brine’s eutectic
temperature. Since the brine is already close to its eutectic temperature, only
a tiny amount of ice should melt before eutectic equilibrium between the brine
and the ice is reached, preventing further melting (and thus preventing the
brine from penetrating into the moist regions).

3. Immerse the rehydrated sample in liquid nitrogen. This rapid freezing
immediately turns the brine into ice, precipitating out the dissolved salt as tiny
crystals.

4. Remove the sample from the liquid nitrogen and break it in half.
At liquid nitrogen temperature, the sample should be brittle, and breaking it
in half exposes a cross-sectional surface where salt crystals indicate where the
dried (and later rehydrated) region is. If possible, one should avoid cutting
the sample with a knife, as the blade might smear the salt profile.

5. Transfer the sample to an ESEM or a LV-SEM and study the cross-
sectional salt profile. A sharp jump in the concentration of salt crystals
indicates a sharp interface, while a gradual change in concentration indicates
an unsharp interface.

Remark: In the last two steps in Algorithm 1, it is very important to prevent the
sample from thawing. This is because the presence of liquid water would dissolve the
salt crystals, destroying or blurring any salt profile. If possible, these steps should
take place in refrigerated rooms using a SEM with a cryo-stage (this was unfortu-
nately not possible in our case). If the ambient temperature cannot be kept low,
the transfer of the sample from the liquid nitrogen to the microscope must be very
quick. Once the sample is in the vacuum chamber of the SEM, the vacuum protects
the salt profile by quickly drying out the surface of the cross-section. �
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quick. Once the sample is in the vacuum chamber of the SEM, the vacuum protects
the salt profile by quickly drying out the surface of the cross-section. �

26

3. The physics of the drying process
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3.2. Investigation of the sharp interface assumption

Remark: Algorithm 1 is based on NaCl. This works fine as long as the product is
not already saturated with NaCl. If it is, another salt (or other practical substance)
must be used as the indicator, and the temperature in the algorithm must be changed
accordingly. �

3.2.3 A test of the method on cod slabs

The method in Algorithm 1 was tested on samples taken from drying experiments
conducted by Dr. Ingrid C. Claussen (cf. [5]). The drying was carried out at -5 ◦C,
and partially dried samples were taken out at random positions at different times
and stored at -24 ◦C. For each drying time, a few samples were immersed in NaCl
brine, each for a unique length of time, before being frozen in liquid nitrogen.

Unfortunately, the somewhat intricate process of breaking the frozen samples in half
and fastening one of the halves to a sample holder, took place at room temperature.
This resulted in about half of the samples being lost (i.e. rendered useless due to
thawing of the cross-sectional surface). After preparation, each usable sample was
transferred to a Hitachi S-3500N LV-SEM at NTNU’s Department of Materials Sci-
ence and Engineering, and studied at 270 Pa low vacuum. Figure 3.3 shows two
sample arrangements in the microscope’s vacuum chamber.

Some of the images from the investigations are shown in Figures 3.4-3.8. We see
that the increased salt concentration in the rehydrated region makes it clearly vis-
ible, and that there generally is a sharp jump in salt concentration at the interface
between the part of the sample that is rehydrated and the part that is not. In fact,
to the naked eye, each sample looked like a little piece of Brie cheese, with a beige
middle region surrounded by a white outer one. Comparing the images, we also see
from the length indicators that the thickness of the rehydrated region increases with
drying time (as expected).

We expect an increase in either immersion time or drying time (or both) to cause
the brine to penetrate the sample to a greater depth. Thus, if two or more samples
with the same drying time, but different immersion times, have rehydrated regions
of the same thickness, this could imply that this common thickness is the typical
dry region thickness after this drying time.
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3. The physics of the drying process

Fig. 3.3: Frozen samples of cod in the vacuum chamber of the LV-SEM.
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3.2. Investigation of the sharp interface assumption

(a) BSE image, point 1 (b) SE image, point 1

(c) BSE image, point 2 (d) CL image, point 2

(e) BSE image, point 3 (f) BSE image, point 4

Fig. 3.4: BSE, SE and CL images of a frozen cod sample dried for 5 h and immersed
in saturated NaCl brine for 30 s.
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3. The physics of the drying process

(a) BSE image, point 1 (b) BSE image, point 2

(c) Na counts, point 1 (d) BSE image, point 3

(e) Cl counts, point 1

Fig. 3.5: BSE images of a frozen cod sample dried for 5 h and immersed in satu-
rated NaCl brine for 300 s, with corresponding sodium and chlorine count
distributions.
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3.2. Investigation of the sharp interface assumption

(a) BSE image, point 1 (b) CL image, point 1

(c) BSE image, point 2 (d) CL image, point 2

(e) BSE image, point 3 (f) CL image, point 3

Fig. 3.6: BSE and CL images of a frozen cod sample dried for 11 h 30 min and
immersed in saturated NaCl brine for 30 s.
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3. The physics of the drying process

(a) BSE image, point 1 (b) BSE image, point 2

(c) CL image, point 1 (d) CL image, point 2

(e) Cl counts, point 1 (f) Cl counts, point 2

Fig. 3.7: BSE and CL images of a frozen cod sample dried for 14 h 15 min and
immersed in saturated NaCl brine for 240 s, with corresponding chlorine
count distributions (the sodium distributions were similar).
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3.2. Investigation of the sharp interface assumption

(a) X-ray spectrum, no drying (b) X-ray spectrum, 20 h 30 min drying

(c) Na counts, no drying (d) Na counts, 20 h 30 min drying

(e) Cl counts, no drying (f) Cl counts, 20 h 30 min drying

Fig. 3.8: X-ray spectra and distribution of sodium and chlorine counts in frozen
cod, after immersion in saturated NaCl brine (for 300 s for the undried
sample and 360 s for the dried sample).
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3. The physics of the drying process

The sample in Figure 3.4 seems to have a thinner dry region than the sample in
Figure 3.5, with equal drying times. Some conceivable reasons for this might be
that:

• The two samples have dried differently.

• The 30 s sample was not immersed in brine for a long enough time for the dry
region to be fully rehydrated. This is unlikely, since the sample in Figure 3.6
shows that a thicker rehydration region is possible for a 30 s immersion.

• The brine penetrated into the icy core of the 300 s sample. This should not
be the case if the theory in Algorithm 1 is sound.

Since the samples were collected at random, it seems plausible that there might be
a significant difference in the dryness of samples collected at the same time.

The undried and fully dried samples were uniform, without any distinct regions.
This is because the fully dried sample had no moist region left, so it was fully re-
hydrated by the brine (creating a high salt concentration everywhere), while the
undried sample (which had no dry region) was not rehydrated by the brine at all
(keeping its original, low salt concentration). We can see this in the X-ray spectra of
the undried and fully dried samples, shown in Figure 3.8. By comparing the relative
heights of the sodium and chlorine peaks with the oxygen peak in each spectrum,
we see that the salt concentration is clearly higher in the fully dried sample. The
absolute heights of the peaks can be ignored, because they represent the number of
counts of each element, so they depend on e.g. the scale of the vertical axis, the
length of the detection period and the distance and angle between the specimen and
the detector.

Remark: In X-ray analysis, elements having atomic number smaller than a certain
lower bound (depending on the type of X-ray detector, cf. [16, Table 3-9]) cannot
be detected. This is the reason why some of the main elements in organic matter
do not show up in the spectra in Figure 3.8. Hydrogen does not have an X-ray
spectrum, and carbon and nitrogen can be hard to detect (in our case, the carbon
peak is hidden inside the noise peak on the left edge in both spectra). �

The overall impression from these images (and others not shown here) is that there
is in general an easily observable and quite sharp jump in NaCl concentration. This
jump is consistent with the common sharp interface hypothesis.
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3.2. Investigation of the sharp interface assumption

Remark: This experiment was only meant to test the method itself, so only a few
samples were studied. We therefore emphasize that although the results in this
section are consistent with the sharp interface hypothesis, the number of samples
was simply too low to prove anything, especially regarding the quantitative evolution
of the moisture profile. Moreover, the information from this test is of course only
valid for cod slabs. �
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4. THE MATHEMATICS OF THE
FRAMEWORK

Any mathematical model must contain a system of one or more equations to describe
the physics of the problem at hand. Not only must this system give a satisfactory
description of the physics, it must also be mathematically well posed, i.e. there must
exist a unique solution that must depend continuously on the system parameters.
If a system cannot be solved, it has little value as a model, and if a solution is not
unique and/or does not depend continuously on the data, the results of the modeling
will be unreliable.

In this chapter we derive our framework, and show that it is well posed.

4.1 The general equation system

We base our mathematical theory on a slight modification of the equation system
in [4]. The theory therein uses the weak (i.e. integrated) formulation of the system
to prove its properties.

4.1.1 The general system

Let Ω ∈ R
n be the spatial domain and τ the total drying time. We write

Qτ = Ω × (0, τ)

for the set of relevant points in space and time. The general equation system in [4]
consists of k equations for the solution vector U = U(x, t). Equation i is given by
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4. The mathematics of the framework

∂U i(x, t)

∂t
=

n∑
l=1

∂

∂xl

{
k∑

j=1

n∑
m=1

C lm
ij (x, t,U(x, t))

∂U j(x, t)

∂xm

+ Bl
i(x, t,U(x, t))

}
+ Fi(x, t,U(x, t)), for (x, t) ∈ Qτ , (4.1)

and the corresponding initial condition by

U i(x, 0) = U i
0(x), for x ∈ Ω. (4.2)

In our drying problem, we know the ambient conditions, so we want to specify values
for the solution on the boundary ∂Ω (i.e. use Dirichlet boundary conditions). The
boundary conditions in [4] are of Neumann type (i.e. specified boundary flux), but
we can adapt the theory to the homogeneous Dirichlet conditions

U(x, t) = 0, for (x, t) ∈ ∂Ω × (0, τ). (4.3)

This adaptation is quite trivial, because, in the weak formulation of the equations,

• Neumann conditions are enforced by boundary integrals,

• homogeneous Dirichlet conditions are enforced by the basis functions.

Hence, to use homogeneous Dirichlet conditions, we only need to choose an ap-
propriate basis (this makes the boundary integrals vanish by themselves). We can
therefore formulate our problem with specified boundary values, and translate it
from a general Dirichlet problem to a homogeneous one, satisfying Eqs. (4.1)-(4.3).
This is done below, for the case of a single equation.

4.2 The particular system

Although the drying process in reality involves coupled heat and mass transfer, we
restrict the framework to modeling just mass transfer. This reduces our system to
just a single equation (i.e. k = 1, and the indices i and j become redundant). The
reasons why we do this are discussed in Section 7.2.1.

For simplicity, we also restrict the form of the diffusivity matrix, by assuming that
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4.2. The particular system

C lm = 0, for l �= m,

which makes m redundant as well. Note that this still allows for anisotropic diffu-
sivities, through the remaining index l.

4.2.1 Vapor diffusivity

Before we derive the transport equation for water vapor in the dry region, we make
a very common assumption:

Assumption 5 (Vapor as an ideal gas)

We assume that water vapor can be considered an ideal gas.

We have already assumed that the vapor travels through the dry region in accordance
with Darcy’s law (Asmp. 4). To allow for anisotropy, we write the permeability of
the product as a matrix,

K =

⎡⎣ K1 0 0
0 K2 0
0 0 K3

⎤⎦ ,

where we allow Kl = Kl(x, t,U(x, t)) ≥ 0, to include possible inhomogeneity.
Darcy’s law then becomes

vl = − 1

μvap

(K · ∇Pvap)l = − 1

μvap

Kl
∂Pvap

∂xl

,

where μvap is the dynamic viscosity of the vapor, and Pvap its local vapor pressure.
Since we also assume that the vapor transport is adiabatic (Asmp. 4), we can use
the adiabatic relation

PvapV
γ = P0V

γ
0 = constant

to relate the local vapor pressure to the local vapor density:

Pvap = P0

(
V0

V

)γ

= P0

(
ρvap

ρvap,0

)γ

=
P0

ργ
vap,0

ργ
vap.
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4. The mathematics of the framework

Here, γ is the adiabatic index of the vapor, given by

γ =
cp,vap

cV,vap

=
cp,vap

cp,vap − R
=

cp,vap/R

cp,vap/R − 1
∈ (1, 2), (4.4)

where cp,vap and cV,vap are the vapor’s molar heat capacities at constant pressure
and volume, respectively, and R = cp,vap − cV,vap the universal gas constant.

The diffusive mass flux through the dry region is thus given by

f l
diff = ρvapv

l = −ρvap

μvap

Kl
∂Pvap

∂xl

= − P0

μvapρ
γ
vap,0

ρvapKl

∂ργ
vap

∂xl

= − γP0

μvapρ
γ
vap,0

ργ
vapKl

∂ρvap

∂xl

. (4.5)

Next, we make a distinction between the density and the concentration of vapor:

Density: ρvap =
mass of vapor

volume of vapor
.

Concentration: ρ̂vap =
mass of vapor

porous volume
.

Mutual relation: ρ̂vap = φρvap. (4.6)

Porosity: φ =
volume of pores

porous volume

(
=

volume of vapor

porous volume

)
.

The porosity φ of the dry region is important for the mass transfer properties of the
product. We assume that it is constant:

Assumption 6

We assume that the porosity of the dry region is constant, and equal to the final
porosity of the dry product.

Remark: In inhomogeneous products, the dry region might not have a uniform
porosity, but we model this effect on the local mass transfer properties through the
permeability K instead. �
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4.2. The particular system

Asmp. 6, Eqs. (4.5)-(4.6) and the porous continuity equation

∂(φρvap)

∂t
+ ∇ · (ρvapv) = 0,

give us a diffusion equation for the transport of vapor through the dry region:

∂ρ̂vap

∂t
= −∇ · fdiff =

3∑
l=1

∂

∂xl

(
γP0

μvapρ
γ
vap,0

ργ
vapKl

∂ρvap

∂xl

)

=
3∑

l=1

∂

∂xl

((
γP0

μvapρ
γ
vap,0

Kl

ρ̂ γ
vap

φγ+1

)
∂ρ̂vap

∂xl

)
. (4.7)

4.2.2 Convection

The convective mass flux fconv from the surface of the product is given by

fconv = hm(ρvap − ρvap,air)n, (4.8)

where hm is the convective mass transfer coefficient, ρvap the local vapor density,
ρvap,air the ambient vapor density, and n the outer unit normal for the product sur-
face. Usually, this expression is used as a boundary condition, but since our domain
boundary does not coincide with the product surface, we must extend Eq. (4.8) from
the surface into the surroundings.

In the surrounding air, φ = 1, so ρvap = ρ̂vap, and the continuity equation yields

∂ρ̂vap

∂t
= −∇ · fconv = ∇ · (−hm(ρ̂vap − ρvap,air)n). (4.9)

Remark: In the ambient air, the convective mass transfer coefficient hm is given by
fluid dynamics, through the Sherwood number (cf. Eq. (6.15)). �
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4. The mathematics of the framework

4.2.3 Sublimation

Modeling the phase change from ice to vapor presents a challenge, because the two
phases have very different concentrations (ρ̂ice/ρ̂vap ∼ 105). This makes it hard to
model the mass balance at the ice front, because a microscopic decrease in the local
ice concentration implies a significant increase in the local vapor concentration. If
the two concentrations are modeled separately, this very easily causes the system to
become unstable.

We avoid this problem by using a trick. We model the mass transfer as if the
ice itself is being transported, according to the vapor transport equation.
This of course makes no sense physically, but since we use the coefficients from the
vapor transport equation, the mathematical result is just a massively scaled up ver-
sion of the vapor transport. The major advantage is that we get away with using
only one equation, which does not involve phase change, and is stable (cf. the dis-
cussion in Section 7.2.1).

At the ice front, we can assume that the ice concentration is equal to the initial
ice concentration ρ̂ice,0. In fact, we define the moist region to be where
ρ̂ice > Kiceρ̂ice,0, for some constant Kice close to 1. The ice front thus be-
comes the interface where this inequality turns into an equality.

Next, we assume that the vapor at the ice front is saturated:

Assumption 7 (Conditions at the ice front)

We assume that the temperature at the ice front is equal to the wet bulb temperature
Twb of the ambient air, and that the density of water vapor at the ice front is equal
to the saturation density ρsat(Twb) at that wet bulb temperature.

This assumption is sensible when the ice front is close to the product surface, and
once the sublimation has started, its energy consumption should balance the energy
supply to the ice front, keeping the temperature at the ice front reasonably stable.

Asmp. 7 raises the question of how the ambient wet bulb temperature Twb evolves.
It depends implicitly on the ambient conditions:

Twb = Twb(Tair, ρvap,air) = Tair +
νairΔHsub

kairPr
[ρvap,air − ρsat(Twb)]. (4.10)
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4.2. The particular system

Here, Tair is the ambient temperature, ρvap,air the ambient vapor density, ΔHsub the
latent heat of sublimation, Pr the Prandtl number, and νair and kair the kinematic
viscosity and thermal conductivity of air, respectively. We make an assumption on
the first two:

Assumption 8 (Constant ambient temperature and humidity)

We assume that the ambient temperature and humidity are constant.

Remark: If the product rests on a solid base, the humidity inside this base is in
reality of course not ρvap,air, but zero. But since hm = 0 inside the base, the true
value of ρvap there does not matter to the modeling anyway. �

We next define the ratio of the concentrations of ice and vapor:

ω =
ρ̂ice

ρ̂vap

, evaluated at the ice front. (4.11)

Note that Asmp. 7 and Eq. (4.6) imply that

ω =
ρ̂ice,0

φρsat(Twb(Tair, ρvap,air))
. (4.12)

Now to the mass flux at the ice front. It must be continuous, so fice,diff = fdiff, and
Eqs. (4.7), (4.11) and (4.12) imply that

∂ρ̂ice

∂t
= −∇ · fice,diff = −∇ · fdiff =

3∑
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∂xl
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∂xl
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=

3∑
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∂xl
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K̂l ρ̂ γ

ice

) ∂ρ̂ice

∂xl

)
, (4.13)

where

K̂l =
γP0

μvapρ
γ
vap,0

(
ρsat(Twb(Tair, ρvap,air))

ρ̂ice,0

)γ+1

Kl. (4.14)

Eqs. (4.11)-(4.14) are in principle valid only at the ice front, but our aforementioned
trick is that we extend them to the whole of the dry region. We can do
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4. The mathematics of the framework

this because we do not need ρ̂ice to be physically meaningful outside the ice front
(because we know that there is no ice there anyway). Therefore, we define ρ̂ice

to be the ice concentration when we are inside the ice front, and just an
indicator function when we are outside it.

We can extend ρ̂ice to the surroundings as well, using the same procedure:

∂ρ̂ice

∂t
= −∇ · fice,conv = −∇ · fconv = ∇ · (−hm(ρ̂vap − ρvap,air)n)

= ∇ ·
(
−hm

ω
(ρ̂ice − ω ρvap,air)n

)
, (4.15)

by Eq. (4.9). The obvious choice of boundary condition then becomes

ρ̂ice(x, t) = ω ρvap,air = constant, for (x, t) ∈ ∂Ω × (0, τ). (4.16)

4.2.4 The mass transfer equation

We now rewrite Eqs. (4.1)-(4.3) as a single equation in (x, t). After removing F ,
this equation becomes

∂U(x, t)

∂t
=

3∑
l=1

∂

∂xl

{
C l(x, t, U(x, t))

∂U(x, t)

∂xl

+ Bl(x, t, U(x, t))

}
, for (x, t) ∈ Qτ ,

(4.17)

with the initial condition

U(x, 0) = U0(x), for x ∈ Ω,

and the boundary condition

U(x, t) = 0, for (x, t) ∈ ∂Ω × (0, τ). (4.18)

We set

U(x, t) = ρ̂ice(x, t) − ω ρvap,air.
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}
, for (x, t) ∈ Qτ ,

(4.17)

with the initial condition

U(x, 0) = U0(x), for x ∈ Ω,

and the boundary condition

U(x, t) = 0, for (x, t) ∈ ∂Ω × (0, τ). (4.18)

We set

U(x, t) = ρ̂ice(x, t) − ω ρvap,air.
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4.2. The particular system

It is clear from Eq. (4.16) that U satisfies Eq. (4.18), and, assuming that

Kl is nonzero only in the dry region,

hm is nonzero only in the air,

we can merge the contributions from Eqs. (4.13) and (4.15) into Eq. (4.17), for

Bl(x, t, U(x, t)) = −hm(x, t)

ω
(ρ̂ice − ω ρvap,air)nl(x, t) = −hm(x, t)

ω
U(x, t)nl(x, t),

and

C l(x, t, U(x, t)) = K̂l(x, t, U(x, t)) ρ̂ice(x, t)γ

= K̂l(x, t, U(x, t)) [U(x, t) + ω ρvap,air]
γ,

for

K̂l(x, t, U(x, t)) =
γP0

μvapρ
γ
vap,0

(
ρsat(Twb(Tair, ρvap,air))

ρ̂ice,0

)γ+1

Kl(x, t, U(x, t)).

However, to reflect the fact that the transport coefficients Kl and hm only apply in
the dry region and the surroundings, respectively, we write them on the form (2.1).
Let Ω1 be the product. We allow Kl and hm to have the following composite forms:

hk
m(x, t) =

∑
i

χΩi,k(x, t) hm,i(x, t) +
∑

j

χΩj ,k(x, t) hm,j(x, t), for disjoint Ωi, Ωj,

and

Kk
l (x, t, U(x, t)) = χΩice,k

(U(x, t))
∑

i

χΩi,k(x, t) Kl,i(x, t), for disjoint Ωi and

Ωice = {(x, t) ∈ Qτ

∣∣ (U(x, t) + ωρvap,air)
2 > (Kiceρ̂ice,0)

2}, for Kice just below 1.
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4. The mathematics of the framework

These new coefficients allow us to model highly composite products. The factor
χΩice,k

makes Kk
l ≈ 0 in the moist regions.

We accordingly redefine Bl and C l as

Bl
k(x, t, U(x, t)) = −hk

m(x, t)

ω
U(x, t)nl(x, t), (4.19)

and

C l
k(x, t, U(x, t)) = ε + K̂k

l (x, t, U(x, t)) |U(x, t) + ω ρvap,air|γ, (4.20)

where

K̂k
l (x, t, U(x, t)) =

γP0

μvapρ
γ
vap,0

(
ρsat(Twb(Tair, ρvap,air))

ρ̂ice,0

)γ+1

Kk
l (x, t, U(x, t)).

Here, ε is a very small parameter we add to prevent C l
k from becoming zero. Note

that we take the absolute value of U+ω ρvap,air in C l
k. This is because (U+ω ρvap,air)

γ

becomes complex if U < −ω ρvap,air. In practice, U is nonnegative, but we need C l
k

to be written in this way in the proof of Theorem 4.2.1 below.

Now that we have made B and C depend on k, the solution U will also depend on
k, according to the equation

∂Uk(x, t)

∂t
=

3∑
l=1

∂

∂xl

{
C l

k(x, t, Uk(x, t))
∂Uk(x, t)

∂xl

+ Bl
k(x, t, Uk(x, t))

}
,

for (x, t) ∈ Qτ . (4.21)

The boundary condition (4.18) becomes

Uk(x, t) = 0, for (x, t) ∈ ∂Ω × (0, τ), (4.22)

and we choose

Uk(x, 0) = Uk,0(x) = χΩ1,k(x, 0) [ρ̂ice,0 − ω ρvap,air], for x ∈ Ω, (4.23)

which approximately satisfies Eq. (4.22) at t = 0, for k sufficiently large.
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4.2. The particular system

4.2.5 Well-posedness

In [4], the authors prove the well-posedness of (4.1)-(4.2) with Neumann boundary
conditions. As mentioned above, by choosing a basis of functions that are zero on
the boundary, we can use their theory on our homogeneous Dirichlet problem as
well. We therefore make the following assumptions:

Assumption 9 (Properties of the solution and the transport coefficients)

We assume that the following relations hold for the system (4.21):

1. Bl
k and C l

k are continuous in Qτ × R. This translates to each hm,i, hm,j, Kl,i

and nl being continuous (and thus bounded) in Qτ .

2. The first order derivatives of a solution U are continuous in Qτ . Note that we
have already indirectly assumed this in the derivations above.

These assumptions are sufficient to ensure the well-posedness of our system:

Theorem 4.2.1 (Well-posedness)

With the assumptions in Asmp. 9, the system (4.21)-(4.23), with coefficients given
by Eqs. (4.19) and (4.20), is well posed.

Proof:

1. Since (hk
mnl)/ω is bounded in Qτ and Bl

k is linear in U , Bl
k is Lipschitz con-

tinuous in U :

|Bl
k(·, ·, V ) − Bl

k(·, ·, W )| ≤ max
(x,t)∈Qτ

∣∣∣∣hk
mnl

ω

∣∣∣∣ |V − W |,

for all V, W in the space V2(Qτ ). Note that C l
k can be written on the form

C l
k(x, t, U) = ε + fl(x, t) χΩice,k

(U) |U + ωρvap,air|γ,

where fl is bounded and nonnegative. We see that for A = (Kiceρ̂ice,0)
2 and

g = g(U) = |U + ωρvap,air|,
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4. The mathematics of the framework

χΩice,k
(U) |U + ωρvap,air|γ =

1

2

(
1 − tanh(k(g2 − A))

)
gγ

=
1

2

(
cosh(k(g2 − A)) − sinh(k(g2 − A))

cosh(k(g2 − A))

)
gγ

= exp
(−k(g2 − A)

) gγ

exp(k(g2 − A)) + exp(−k(g2 − A))

=
gγ

1 + exp(2k(g2 − A))
, (4.24)

which is bounded for k > 0. Hence,

ε ≤ C l
k ≤ ε + max

Qτ

fl · max
g≥0

{
gγ

1 + exp(2k(g2 − A))

}
≤ Cmax = constant.

This implies that, for any y ∈ R
3,

ε

3∑
l=1

y2
l ≤

3∑
l=1

ylC
l
kyl ≤ Cmax

3∑
l=1

y2
l , and

3∑
l=1

(C l
kyl)

2 ≤ C2
max

3∑
l=1

y2
l .

Furthermore, let g1 = |V + ωρvap,air| and g2 = |W + ωρvap,air|. Since γ > 1, the
function

g 	−→ 1

2

(
1 − tanh(k(g2 − A))

)
gγ

has a bounded first order derivative in [0,∞), and is thus Lipschitz continuous
for nonnegative g. Eq. (4.24) then implies that

|C l
k(·, ·, V ) − C l

k(·, ·, W )|
≤ max

Qτ

fl

∣∣∣∣12 (
1 − tanh(k(g2

1 − A))
)
gγ
1 − 1

2

(
1 − tanh(k(g2

2 − A))
)
gγ
2

∣∣∣∣
≤ KC |g1 − g2| = KC | |V + ωρvap,air| − |W + ωρvap,air| |

≤ KC | (V + ωρvap,air) − (W + ωρvap,air) | ≤ KC |V − W |,

for some constant KC , i.e. C l
k is Lipschitz continuous. Since [4, Eq. (2.16)]

implies [4, Eq. (2.5)], Asmps. 2.1 and 2.2 in [4] are thus satisfied (except for
Eq. (2.3), which is redundant for homogeneous Dirichlet conditions).
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4.2. The particular system

2. The existence of a solution to the system now follows from [4, Theorem 4.1].

3. With the addition of the second assumption in Asmp. 9, the uniqueness of the
solution follows from [4, Theorem 5.1].

4. Finally, the continuous dependence of the solution on the problem data follows
from [4, Theorem 6.1].

�
Remark: According to [4, Theorem 4.2], the solution in Theorem 4.2.1 belongs to
the Banach space V1,0

2 (Qτ ) of functions U satisfying

|U |2Qτ
=

3∑
l=1

∫ τ

0

∫
Ω

(
∂U(x, t)

∂xl

)2

dx dt + max
t∈[0,τ ]

∫
Ω

U(x, t)2 dx < ∞.

In practice, the solution will have more smoothness than the minimum necessary to
satisfy this requirement. �
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5. NUMERICAL THEORY

In this chapter we develop a numerical scheme to solve (4.21)-(4.23). This scheme
is based on a spectral extrapolation method by Cannon and Ewing [3]. The ex-
trapolations require the solution at the two previous time steps to be known, so we
must use another method to calculate the solution at the first time step. This other
method is a spectral predictor-corrector method by the same authors [2].

Both these methods are made for solving a system of partial differential equations
coupled to a system of ordinary differential equations. However, our system does not
include ordinary differential equations, so we drop the dependence on their solutions
(denoted Y in [2] and [3]) in our theory.

In addition, the methods are made for solving Neumann problems, while we have
a homogeneous Dirichlet problem. But, as mentioned in the theory in the previous
chapter, we can fix this problem by using a basis of functions that vanish on ∂Ω.

5.1 The choice of basis

Our chosen numerical methods require a basis for a subspace of H1(Ω). As mentioned
above, the basis functions must all be zero on ∂Ω. We denote the subspace of
functions in H1(Ω) that are zero on ∂Ω by H1

0(Ω). The choice of basis determines
the subspace of H1

0(Ω) in which we seek a solution, as well as the properties of the
resulting discrete, linear system. We give two possible basis alternatives below.

5.1.1 Alternative 1: Associated Legendre functions

Perhaps the most intuitive alternative is to use associated Legendre functions. A
k-th degree, second order associated Legendre function P 2

k is given by

P 2
k (x) = (1 − x2)

d2Pk(x)

dx2
,
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5. Numerical theory

where Pk is the k-th degree ordinary Legendre polynomial. The set {P 2
k }∞k=2 forms

a basis for the space L0
2(−1, 1), which includes H1

0(−1, 1). The basis is orthogonal
in [-1,1], and each function is zero on the boundary, i.e.

P 2
k (±1) = 0, for all k. (5.1)

Since Ω = (−a, a)× (−b, b)× (−c, c) is just (−1, 1)× (−1, 1)× (−1, 1) stretched by
the three factors a, b and c, a possible basis for H1

0(Ω) is the set {vpqr}∞p,q,r=2, where

vpqr(x, y, z) = P 2
p

(x

a

)
P 2

q

(y

b

)
P 2

r

(z

c

)
. (5.2)

The basis of functions given by Eq. (5.2) is orthogonal in Ω, and

vpqr(±a, y, z) = vpqr(x,±b, z) = vpqr(x, y,±c) = 0, (5.3)

by Eq. (5.1). This is thus our first basis alternative.

5.1.2 Alternative 2: Modified complex Fourier basis

Since the solution to (4.21)-(4.23) must be zero whenever x = ±a, y = ±b or z = ±c,
we can consider it to be periodic, with periods 2a in x, 2b in y and 2c in z. Periodic
functions in H1

0(Ω) can be expanded in a real or complex Fourier basis. We will
consider the complex alternative here.

Remark: The numerical methods in [2] and [3] are real, and must be adapted to
handle a complex basis. This is straightforward. We only need to replace all the
real inner products and norms by their complex counterparts, e.g.

∫
Ω

f · g dx 	−→
∫

Ω

f · g dx,

for the L2(Ω) inner product. �
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5.1. The choice of basis

Ordinary complex Fourier basis functions are of the form

exp(πi(px/a)) ,

where p is an integer and i the imaginary unit. Unfortunately, we cannot use

vpqr(x, y, z) = exp(πi (px/a + qy/b + rz/c))

as a basis function, because |vpqr| is everywhere equal to one, so the zero boundary
value condition is violated. The solution to this problem is to use a modified complex
Fourier basis instead. This new basis consists of linear combinations of ordinary
Fourier basis functions:

vpqr(x, y, z) =
∑
α,β,ζ

vαβζ
pqr exp(πi(αx/a + βy/b + ζz/c)) . (5.4)

The coefficients vαβζ
pqr must be chosen so that vpqr = 0 on ∂Ω.

These modified basis functions are unfortunately not orthogonal with repect to the
complex L2 inner product:

∫
Ω

vpqr(x, y, z) vstu(x, y, z) dx

=
∑
α,β,ζ

∑
κ,λ,ξ

(
vαβζ

pqr vκλξ
stu

3∏
l=1

∫ al

−al

exp(πi(αl − κl)xl/al) dxl

)

=
∑
α,β,ζ

∑
κ,λ,ξ

(
vαβζ

pqr vκλξ
stu

3∏
l=1

(2alδαlκl
)

)
= 8abc

∑
κ,λ,ξ

(
vκλξ

pqr vκλξ
stu

)
. (5.5)

This is, however, not a major issue (it just increases the complexity of the scheme).
The basis of functions given by Eq. (5.4) is our second basis alternative.
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5. Numerical theory

5.1.3 Selecting a basis

We now compare the two basis alternatives:

1. Arithmetic: Advantage Legendre
The associated Legendre basis requires real arithmetic, while the modified
complex Fourier basis requires complex arithmetic, which is much slower.

2. Orthogonality: Advantage Legendre
The associated Legendre basis is orthogonal, so the resulting linear system
requires fewer computations to construct than that of the modified complex
Fourier basis, which is not orthogonal.

3. Symmetries: Advantage Fourier
The modified complex Fourier basis results in a linear system with several
types of symmetry, while the associated Legendre basis results in a linear
system which is only symmetric. In general, the more symmetries a linear
system has, the faster it can be solved.

4. Numerical integration: Decisive advantage Fourier
With any basis, we must calculate a huge number of integrals. With the
modified complex Fourier basis, we can do this very fast and simultaneously,
using a three-dimensional fast Fourier transform (FFT) (cf. Section 6.1.1). The
associated Legendre basis results in integrals which must be calculated one by
one, which is extremely slow.

The last point in this list simply rules out the associated Legendre basis in practice.
Our choice is therefore to use the modified complex Fourier basis.

The coefficients vpqr in Eq. (5.4) must satisfy Eq. (5.3) for all (x, y, z). We therefore
rewrite vpqr as

vpqr(x, y, z) =
3∏

l=1

(exp(πi(plxl/al)) − (−1)pl) , (5.6)

for p, q, r = −N, . . . ,−1, 1, . . . , N . Note that p, q, r �= 0, since, if any of them are
zero, vpqr is identically zero. It is easy to see that vpqr in Eq. (5.6) does satisfy
Eq. (5.3).
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5.2. Some important matrices

Using vpqr from Eq. (5.6) and vstu from Eq. (5.4), we get,

∫
Ω

vpqr(x, y, z) vstu(x, y, z) dx

=
∑
κ,λ,ξ

vκλξ
stu

3∏
l=1

∫ al

−al

exp(πi(pl − κl)xl/al) − (−1)plexp(−πi(κlxl/al)) dxl

= 8abc
∑
κ,λ,ξ

vκλξ
stu

3∏
l=1

(δplκl
− (−1)plδκl0), (5.7)

for p, q, r �= 0. Comparing Eqs. (5.5) and (5.7), we get a possible choice for vκλξ
pqr :

vκλξ
pqr =

3∏
l=1

(δplκl
− (−1)plδκl0), for p, q, r �= 0. (5.8)

5.2 Some important matrices

In this section we present some matrices that are essential ingredients in our discrete
system.

5.2.1 The basis generation matrix

We define the rearrangement function ψ by

ψ(p, q, r, N) = �(2N + 1)3/2� + p + q · (2N + 1) + r · (2N + 1)2,

i.e. ψ rearranges the triples {(p, q, r)}N
p,q,r=−N into the same order as the Matlab

function ndgrid. Note that the smallest number, ψ(−N,−N,−N, N) is equal to one,
not zero. This is in accordance with the indexing of Matlab arrays. Note also that

ψ(−p,−q,−r,N) = (2N + 1)3 + 1 − ψ(p, q, r, N), (5.9)

which is illustrated in Table 5.1 for N = 1.
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5. Numerical theory

(p, q, r) ψ(p, q, r, 1) ψ(−p,−q,−r, 1) (2 · 1 + 1)3 + 1 − ψ(p, q, r, 1)
(-1,-1,-1) 1 27 27
(0,-1,-1) 2 26 26
(1,-1,-1) 3 25 25
(-1,0,-1) 4 24 24
(0,0,-1) 5 23 23
(1,0,-1) 6 22 22
(-1,1,-1) 7 21 21
(0,1,-1) 8 20 20
(1,1,-1) 9 19 19
(-1,-1,0) 10 18 18
(0,-1,0) 11 17 17
(1,-1,0) 12 16 16
(-1,0,0) 13 15 15
(0,0,0) 14 14 14
(1,0,0) 15 13 13
(-1,1,0) 16 12 12
(0,1,0) 17 11 11
(1,1,0) 18 10 10

(-1,-1,1) 19 9 9
(0,-1,1) 20 8 8
(1,-1,1) 21 7 7
(-1,0,1) 22 6 6
(0,0,1) 23 5 5
(1,0,1) 24 4 4
(-1,1,1) 25 3 3
(0,1,1) 26 2 2
(1,1,1) 27 1 1

Tab. 5.1: The values of ψ(p, q, r, 1), ψ(−p,−q,−r, 1) and (2·1+1)3+1−ψ(p, q, r, 1)
for different values of (p, q, r).
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5.2. Some important matrices

Using ψ and Eq. (5.8), we can construct a matrix G by first setting

G(ψ(κ, λ, ξ, N), ψ(p, q, r, N)) =

{
vκλξ

pqr , p, q, r �= 0
0, otherwise

, (5.10)

for p, q, r, κ, λ, ξ = −N, . . . , N , and then removing the zero columns. We call the
resulting (2N + 1)3 × 8N3 matrix G our basis generation matrix.

Remark: Every column ψ(p, q, r, N), p, q, r �= 0 in G has precisely 8 nonzero ele-
ments, regardless of the size of N , so G is very sparse. This is because there are
only two values for each κl that cause the factor (δplκl

− (−1)plδκl0) in Eq. (5.8) to
be nonzero, namely κl = 0 and κl = pl �= 0. Since there are three such factors, a
total of 23 = 8 elements are nonzero (and all these are either +1 or -1). �

We see from Eqs. (5.5) and (5.10) that element (ψ(s, t, u, N), ψ(p, q, r, N)) of the
matrix GHG is equal to

∑
κ,λ,ξ

(
vκλν

pqr vκλξ
stu

)
=

1

8abc

∫
Ω

vpqr(x, y, z) vstu(x, y, z) dx,

which by Eq. (5.6) is equal to

1

8abc

3∏
l=1

∫ al

−al

(exp(πi(plxl/al)) − (−1)pl) (exp(−πi(slxl/al)) − (−1)sl) dxl

=
1

8abc

3∏
l=1

[
2al(δplsl

− (−1)plδsl0 − (−1)slδpl0 + (−1)pl+sl)
]

=
3∏

l=1

(δplsl
+(−1)pl+sl),

for p, q, r, s, t, u = −N, . . . ,−1, 1, . . . , N . Hence,

GHG = Ĝ⊗ Ĝ⊗ Ĝ,

where

Ĝ(N + 1 + sl − δsl,|sl|, N + 1 + pl − δpl,|pl|) = δplsl
+ (−1)pl+sl ,

for pl, sl = −N, . . . ,−1, 1, . . . , N,
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resulting (2N + 1)3 × 8N3 matrix G our basis generation matrix.

Remark: Every column ψ(p, q, r, N), p, q, r �= 0 in G has precisely 8 nonzero ele-
ments, regardless of the size of N , so G is very sparse. This is because there are
only two values for each κl that cause the factor (δplκl

− (−1)plδκl0) in Eq. (5.8) to
be nonzero, namely κl = 0 and κl = pl �= 0. Since there are three such factors, a
total of 23 = 8 elements are nonzero (and all these are either +1 or -1). �

We see from Eqs. (5.5) and (5.10) that element (ψ(s, t, u, N), ψ(p, q, r, N)) of the
matrix GHG is equal to

∑
κ,λ,ξ

(
vκλν

pqr vκλξ
stu

)
=

1

8abc

∫
Ω

vpqr(x, y, z) vstu(x, y, z) dx,

which by Eq. (5.6) is equal to

1

8abc

3∏
l=1

∫ al

−al

(exp(πi(plxl/al)) − (−1)pl) (exp(−πi(slxl/al)) − (−1)sl) dxl

=
1

8abc

3∏
l=1

[
2al(δplsl

− (−1)plδsl0 − (−1)slδpl0 + (−1)pl+sl)
]

=
3∏

l=1

(δplsl
+(−1)pl+sl),

for p, q, r, s, t, u = −N, . . . ,−1, 1, . . . , N . Hence,

GHG = Ĝ⊗ Ĝ⊗ Ĝ,

where

Ĝ(N + 1 + sl − δsl,|sl|, N + 1 + pl − δpl,|pl|) = δplsl
+ (−1)pl+sl ,

for pl, sl = −N, . . . ,−1, 1, . . . , N,
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5. Numerical theory

i.e. GHG is a Kronecker product of the 2N × 2N matrix Ĝ. Note that Ĝ is equal
to the identity matrix plus a matrix where the elements in any given column are all
+(−1)sl or all −(−1)sl , sl = −N, . . . ,−1, 1, . . . , N . The latter matrix has rank one,

so it has 2N − 1 zero eigenvalues and one that is equal to the trace 2N . Hence, Ĝ
has 2N − 1 eigenvalues equal to one and one that is equal to 2N + 1. Thus, it is
invertible, and it follows that

(GHG)−1 = Ĝ
−1 ⊗

(
Ĝ

−1 ⊗ Ĝ
−1

)
. (5.11)

To save memory, we never construct (GHG)−1 explicitly in the numerical imple-
mentation. Instead, we use Eq. (5.11) and [10, Eq. (4.5.19)] when calculating w0 in
Eq. (5.15) (cf. Code A.5).

5.2.2 Other important matrices

Differentiating the complex exponential functions produces imaginary factors, which
we store (without the imaginary unit) in the (2N +1)3× (2N +1)3 diagonal deriva-
tive factor matrices D1, D2 and D3, defined by

Dl(ψ(κ, λ, ξ, N), ψ(α, β, ζ,N)) =
πκl

al

δαlκl
.

Since each Dl is a real diagonal matrix, it obviously satisfies

DH
l = Dl = Dl.

We also introduce the m × m exchange matrix Jm:

Jm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 1
... . .

.
1 0

... . .
.

. .
.

. .
. ...

0 1 . .
. ...

1 0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, e.g. J3 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ .

Note that Jm is orthogonal:

Jm = JH
m = J−1

m .

58

5. Numerical theory

i.e. GHG is a Kronecker product of the 2N × 2N matrix Ĝ. Note that Ĝ is equal
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5.3. Derivation of the discrete system

The effect of multiplying a matrix by Jm from the left side, from the right side and
from both sides is to reverse the order of its rows, to reverse the order of its columns,
and to rotate it by 180◦, respectively.

5.3 Derivation of the discrete system

We are now in position to derive our discrete, linear system. The theory in this
section is based on a complex extension of the equations (3.5) in [3] and (3.6) in
[2]. Both sets of equations are based on the weak (integrated) formulation of the
problem, so we shall use the test functions ηstu, given by

ηstu = vstu.

With a time step size of Δt, we write the approximate solution at time step tn = nΔt
as Wn, given by

Wn(x, y, z) =
N∑

p,q,r=−N
p,q,r �=0

wn,pqrvpqr(x, y, z), (5.12)

where vpqr are the basis functions given by Eq. (5.4), with coefficients given by
Eq. (5.8).

A key ingredient in the discrete system is the (2N + 1)3 × 1 vector of Fourier coef-
ficients of f . We write it as Fourierf , where

Fourierf (ψ(κ, λ, ξ,N)) =
1

8abc

∫
Ω

f(x) exp(−πi(κx/a + λy/b + ξz/c)) dx. (5.13)

Remark: We derive a more general numerical scheme than necessary, with the
source term F = F (x, t, U(x, t)) back in place. �
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5. Numerical theory

5.3.1 The discrete initial condition

We start by deriving the discrete initial condition. Given the initial function U0, the
equation for the initial solution W0 becomes

∫
Ω

W0 ηstu dx =

∫
Ω

U0 ηstu dx. (5.14)

The left side of Eq. (5.14) becomes

∫
Ω

W0 ηstu dx =

∫
Ω

( N∑
p,q,r=−N
p,q,r �=0

w0,pqrvpqr

)
vstu dx

=
N∑

p,q,r=−N
p,q,r �=0

(
N∑

α,β,ζ=−N

N∑
κ,λ,ξ=−N

vαβζ
pqr vκλξ

stu

3∏
l=1

∫ al

−al

exp(πi(αl − κl)xl/al)) dxl

)
w0,pqr

= 8abc
N∑

p,q,r=−N
p,q,r �=0

(
N∑

κ,λ,ξ=−N

vκλξ
pqr vκλξ

stu

)
w0,pqr,

which is element ψ(s, t, u, N) in the vector

8abc(GHG) w0.

The right side becomes

∫
Ω

U0 ηstu dx =
N∑

κ,λ,ξ=−N

vκλξ
stu

∫
Ω

U0(x) exp(−πi(κx/a + λy/b + ξz/c)) dx,

which is element ψ(s, t, u, N) in the vector

8abc GHFourierU0 .

Comparing the left and right sides for all (s, t, u), we get the initial basis coefficients:

w0 = (GHG)−1GHFourierU0 . (5.15)
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p,q,r=−N
p,q,r �=0

(
N∑

κ,λ,ξ=−N

vκλξ
pqr vκλξ

stu

)
w0,pqr,

which is element ψ(s, t, u, N) in the vector
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8abc GHFourierU0 .
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5.3. Derivation of the discrete system

5.3.2 The discrete equations

Now we derive the discrete system itself. The first time step requires a different
approach than the rest, as mentioned at the beginning of this chapter. The equations
in [2] and [3] are the same, except for different function arguments and a slight
difference in notation: In [3, Eq. (3.5)], Wn is written as W∗n, while in [2, Eq. (3.6)],
it is written as W∗n or W∗∗n. We simply write Wn and treat both cases together. To
further simplify the notation, we define

the difference operator Δ, given by Δnf = fn+1 − fn,

the average operator Θ, given by Θnf =
fn+1 + fn

2
. (5.16)

We use a constant time step Δt (without the index n, since it is a constant), and
write

tn = n Δt, and tn+1/2 = Θnt =
tn+1 + tn

2
.

The main equation then becomes (with the boundary term removed)

∫
Ω

ΔnW

Δt
ηstu dx = −

∫
Ω

3∑
l=1

(
∂ηstu

∂xl

C l(x, tn+1/2, ·) ∂(ΘnW )

∂xl

)
dx

−
∫

Ω

3∑
l=1

(
∂ηstu

∂xl

Bl(x, tn+1/2, ·)
)

dx +

∫
Ω

ηstu F (x, tn+1/2, ·) dx, (5.17)

where (·) is a temporary wildcard that symbolizes the dependence on some approx-
imation of Wn+1/2.

Remark: In both [2] and [3], the integral involving F in Eq. (5.17) has a negative
sign in front of it. This is a misprint. �
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5. Numerical theory

The left side of Eq. (5.17) becomes

∫
Ω

ΔnW

Δt
ηstu dx =

∫
Ω

( N∑
p,q,r=−N
p,q,r �=0

(Δnw)pqr

Δt
vpqr

)
vstu dx

=
N∑

p,q,r=−N
p,q,r �=0

(
N∑

α,β,ζ=−N

N∑
κ,λ,ξ=−N

vαβζ
pqr vκλξ

stu

3∏
l=1

∫ al

−al

exp(πi(αl − κl)xl/al) dxl

)
(Δnw)pqr

Δt

= 8abc

N∑
p,q,r=−N
p,q,r �=0

(
N∑

κ,λ,ξ=−N

vκλξ
pqr vκλξ

stu

)
(Δnw)pqr

Δt
,

which is element ψ(s, t, u, N) in the vector

8abc

Δt
(GHG) (Δnw). (5.18)

The first term on the right side becomes

−
∫

Ω

3∑
l=1

(
∂ηstu

∂xl

C l(x, tn+1/2, ·) ∂(ΘnW )

∂xl

)
dx

= −
N∑

p,q,r=−N
p,q,r �=0

(
N∑

α,β,ζ=−N

N∑
κ,λ,ξ=−N

vαβζ
pqr vκλξ

stu

3∑
l=1

[ (
πiαl

al

) (
−πiκl

al

)

·
∫

Ω

C l(x, tn+1/2, ·) exp(πi((α − κ)x/a + (β − λ)y/b + (ζ − ξ)z/c)) dx

])
(Θnw)pqr.

It can be shown that this equals element ψ(s, t, u, N) in the vector

−
3∑

l=1

GHDlM
l
n(·)DlG (Θnw), (5.19)

where each Ml
n(·) is a (2N + 1)3 × (2N + 1)3 integral matrix, defined by
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5.3. Derivation of the discrete system

M l
n(·)(ψ(κ, λ, ξ, N), ψ(α, β, ζ,N))

=

∫
Ω

C l(x, tn+1/2, ·) exp(πi((α − κ)x/a + (β − λ)y/b + (ζ − ξ)z/c))) dx. (5.20)

The second term becomes

−
∫

Ω

3∑
l=1

(
∂ηstu

∂xl

Bl(x, tn+1/2, ·)
)

dx

= −
3∑

l=1

N∑
κ,λ,ξ=−N

vκλξ
stu

(
−πiκl

al

) ∫
Ω

Bl(x, tn+1/2, ·) exp(−iπ(κx/a + λy/b + ξz/c)) dx,

which is element ψ(s, t, u, N) in the vector

i 8abc

3∑
l=1

GHDlFourierBl(x,tn+1/2,·). (5.21)

The third term becomes

∫
Ω

ηstu F (x, tn+1/2, ·) dx

=
N∑

κ,λ,ξ=−N

vκλξ
stu

∫
Ω

F (x, tn+1/2, ·) exp(−iπ(κx/a + λy/b + ξz/c)) dx,

which is element ψ(s, t, u, N) in the vector

8abc GHFourierF (x,tn+1/2,·). (5.22)

Collecting Eqs. (5.19), (5.21) and (5.22) and equating them with Eq. (5.18) for all
(s, t, u), we get

8abc

Δt
(GHG) (Δnw) = −

3∑
l=1

GHDlM
l
n(·)DlG (Θnw)

+ i 8abc

3∑
l=1

GHDlFourierBl(x,tn+1/2,·) + 8abc GHFourierF (x,tn+1/2,·),
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5. Numerical theory

i.e.

GH

(
I(2N+1)3 +

Δt

16abc

3∑
l=1

DlM
l
n(·)Dl

)
Gwn+1

= GH

(
I(2N+1)3 − Δt

16abc

3∑
l=1

DlM
l
n(·)Dl

)
Gwn

+ ΔtGH

(
3∑

l=1

(iDl)FourierBl(x,tn+1/2,·) + FourierF (x,tn+1/2,·)
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5.4. Properties of the discrete system

Algorithm 2 (Modified complex Cannon & Ewing spectral method)

1. Initial condition: Calculate w0 from Eq. (5.15) and W0 from Eq. (5.12).

2. Time step 1, prediction: Solve

A0(W0)(Θ0w) = GHGw0 +
e0(W0)

2

for Θ0w. Then calculate w1 from Eq. (5.16) and W1 from Eq. (5.12).

3. Time step 1, correction: Solve

A0((W1 + W0)/2)(Θ0w) = GHGw0 +
e0((W1 + W0)/2)

2

for Θ0w. Then calculate w1 from Eq. (5.16) and W1 from Eq. (5.12).

4. All other time steps: For all remaining time steps, solve

An(EWn)(Θnw) = GHGwn +
en(EWn)

2

for Θnw. Then calculate wn+1 from Eq. (5.16) and Wn+1 from Eq. (5.12). The
arguments EWn are given by [3, Eq. (3.6a)] as

EWn =
3

2
Wn − 1

2
Wn−1.

5.4 Properties of the discrete system

In this section we show that each of the systems in Algorithm 2 have certain prop-
erties which enable us to solve them faster. First we recall that an m × k matrix E
is centrohermitian (CH) if

E = JmEJk,

or, equivalently,

E(p, q) = E(m + 1 − p, k + 1 − q), (5.24)
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5. Numerical theory

i.e. if it equals a 180◦ rotation of its complex conjugate. Note that the following
matrices are CH:

• Linear combinations of CH matrices, if the coefficients are real.

• Products of CH matrices.

• Hermitian transposes of CH matrices.

• Inverses of CH matrices.

The quantities in our system (5.23) have this property, and some others:

Theorem 5.4.1 (Properties of the linear system)

In Eq. (5.23), the matrix An is Hermitian positive definite (HPD) and centrohermi-
tian, and the vectors GHGwn + en/2 and Θnw are centrohermitian as well.

Proof: We frequently rely upon the identities (5.9) and (5.24) in the theory below.

1. Let p, q, r, κ, λ, ξ ∈ −N, . . . ,−1, 1, . . . , N . Then we see from Eqs. (5.8) and
(5.10) that row ψ(κ, λ, ξ, N) in G consists of the elements

∑3
l=1 δplκl

. This
evaluates to one when (p, q, r) = (κ, λ, ξ), and zero otherwise. Hence, the col-
umn corresponding to (p, q, r) is the only column to have a nonzero element
in this row, i.e. it is linearly independent of the other columns. Repeating
the argument for the other triples (κ, λ, ξ) shows that all columns are linearly
independent, i.e. G has full column rank.

Furthermore, we see from Eq. (5.8) that

v−κ−λ−ξ
−p−q−r = vκλξ

pqr .

Consider now the construction of G in Eq. (5.10):

G(ψ(κ, λ, ξ,N), ψ(p, q, r, N)) =

{
vκλξ

pqr , p, q, r �= 0
0, otherwise

}
=

{
v−κ−λ−ξ
−p−q−r , p, q, r �= 0

0, otherwise

}
= G(ψ(−κ,−λ,−ξ, N), ψ(−p,−q,−r,N))

= G((2N + 1)3 + 1 − ψ(κ, λ, ξ, N), (2N + 1)3 + 1 − ψ(p, q, r, N)),

i.e. G was CH before its zero columns were removed. But this removal did
not not alter the order of the nonzero columns, so G is still CH.
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5.4. Properties of the discrete system

2. Eq. (5.20) implies that

M l
n(ψ(κ, λ, ξ,N), ψ(α, β, ζ,N)) = M l

n(ψ(−κ,−λ,−ξ, N), ψ(−α,−β,−ζ, N))

= M l
n((2N + 1)3 + 1 − ψ(κ, λ, ξ, N), (2N + 1)3 + 1 − ψ(α, β, ζ,N)),

so Ml
n is CH.

3. Because the identity matrix is (trivially) CH and

J(2N+1)3(iDl)J(2N+1)3 = iDl,

the matrix

Ân = I(2N+1)3 − Δt

16abc

3∑
l=1

(iDl)M
l
n(iDl)

is CH, since it consists of sums and products of CH matrices. Then

An = GHÂnG

is a product of CH matrices, and is therefore itself CH.

4. Next, we see from Eq. (5.20) that

M l
n(ψ(κ, λ, ξ,N), ψ(α, β, ζ,N)) = M l

n(ψ(α, β, ζ,N), ψ(κ, λ, ξ,N)),

i.e. Ml
n is Hermitian. It follows that An is Hermitian:

AH
n =

[
GH

(
I(2N+1)3 +

Δt

16abc

3∑
l=1

DlM
l
nDl

)
G

]H

= GH

(
IH
(2N+1)3 +

Δt

16abc

3∑
l=1

DH
l (Ml

n)HDH
l

)
G

= GH

(
I(2N+1)3 +

Δt

16abc

3∑
l=1

DlM
l
nDl

)
G = An.

67

5.4. Properties of the discrete system

2. Eq. (5.20) implies that

M l
n(ψ(κ, λ, ξ,N), ψ(α, β, ζ,N)) = M l

n(ψ(−κ,−λ,−ξ, N), ψ(−α,−β,−ζ, N))

= M l
n((2N + 1)3 + 1 − ψ(κ, λ, ξ, N), (2N + 1)3 + 1 − ψ(α, β, ζ,N)),

so Ml
n is CH.

3. Because the identity matrix is (trivially) CH and

J(2N+1)3(iDl)J(2N+1)3 = iDl,

the matrix
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Ân = I(2N+1)3 − Δt

16abc

3∑
l=1

(iDl)M
l
n(iDl)

is CH, since it consists of sums and products of CH matrices. Then

An = GHÂnG
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n(ψ(κ, λ, ξ,N), ψ(α, β, ζ,N)) = M l

n(ψ(α, β, ζ,N), ψ(κ, λ, ξ,N)),

i.e. Ml
n is Hermitian. It follows that An is Hermitian:

AH
n =

[
GH

(
I(2N+1)3 +

Δt

16abc

3∑
l=1

DlM
l
nDl

)
G

]H

= GH

(
IH
(2N+1)3 +

Δt

16abc

3∑
l=1

DH
l (Ml

n)HDH
l

)
G

= GH

(
I(2N+1)3 +

Δt

16abc

3∑
l=1

DlM
l
nDl

)
G = An.
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5. Numerical theory

5. Let (x̃, ỹ, x̃) = ((πx)/a, (πy)/b, (πz)/c) and Ω̃ = (−π, π) × (−π, π) × (−π, π).
We have

∫
Ω

C l(x) exp(πi((α − κ)x/a + (β − λ)y/b + (ζ − ξ)z/c)) dx =

8abc

(2π)3

∫
Ω̃

C l(ax̃/π, bỹ/π, cz̃/π) exp(−i((κ − α)x̃ + (λ − β)ỹ + (ξ − ζ)z̃)) dx̃,

so for C l = C l
k ≥ ε, a three-dimensional generalization of [17, Theorem 2.1]

shows that the smallest eigenvalue of Ml
n is positive, i.e. Ml

n is positive definite.

Let y �= 0 be an arbitrary nonzero vector and z = Gy. Because G has full
column rank, z �= 0, and we have

yHAny = yHGHGy +
Δt

16abc

3∑
l=1

(
yHGHDlM

l
nDlGy

)
= zHz +

Δt

16abc

3∑
l=1

(DH
l z)

HMl
n(DH

l z).

This quantity is positive, because the first term is positive and the three terms
in the sum are all nonnegative (because Ml

n is positive definite). Hence, An

is positive definite.

6. Next, we see from Eq. (5.13) that Fourierf is CH for all real f :

Fourierf (ψ(κ, λ, ξ,N)) = Fourierf (ψ(−κ,−λ,−ξ, N))

= Fourierf ((2N + 1)3 + 1 − ψ(κ, λ, ξ, N)).

7. We have already established that G, An and Fourierf are CH. The implication
chart in Figure 5.1 shows that they imply that several other matrices and
vectors, among them GHGwn + en/2 and Θnw, are also CH.

�

In Section 6.1.2, we use the properties mentioned in Theorem 5.4.1 to speed up
the solution of the systems in Algorithm 2. The numerical implementation of the
algorithm is given in Code A.5.
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5.4. Properties of the discrete system

G
⇓

GHG
⇓

(GHG)−1

⇓
w0 = (GHG)−1GHFourierU0 ⇐ Fourierf

⇓ ⇓
A0 GHGw0 + e0/2 ⇐ e0

⇓ ⇓ ⇑
A−1

0 ⇒ Θ0w = A−1
0

(
GHGw0 + e0/2

)
GH and (iDl)

⇓
w1 = 2Θ0w−w0 Fourierf

⇓ ⇓
A1 GHGw1 + e1/2 ⇐ e1

⇓ ⇓ ⇑
A−1

1 ⇒ Θ1w = A−1
1

(
GHGw1 + e1/2

)
GH and (iDl)

⇓
w2 = 2Θ1w−w1

⇓
and so on for all n

Fig. 5.1: Chart showing how some centrohermitian matrices and vectors cause
other matrices and vectors to become centrohermitian as well.
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6. NUMERICAL SIMULATIONS

In this chapter we test the framework by simulating AFD of pieces of cod fillet at
-5 ◦C and -10 ◦C. Before we present the results of these simulations, we present some
ways to make the numerical implementation more efficient, and show how to plot
the results.

6.1 Improving performance and plotting results

In this section we show how to create cross-sectional plots of the product, and how
to dramatically improve the performance of the numerical implementation. Without
these improvements, the simulations would run very slowly.

6.1.1 Evaluating the integrals

We need to evaluate a large number of Fourier integrals, i.e. integrals of the form

∫
Ω

f(x) exp(πi(κx/a + λy/b + ξz/c)) dx.

We can evaluate all such integrals very fast, by using the three-dimensional FFT
method in [11].

First, we must define a uniform spatial grid in Ω. Let m = (m1, m2, m3) be the num-
ber of grid points in the three directions, and let j = (j1, j2, j3) and k = (k1, k2, k3).
Then, for

ãl = −al +
al

ml

=

(
1

ml

− 1

)
al,

the points
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6. Numerical simulations

xjl

l = ãl +
2al

ml

jl =

(
2jl + 1

ml

− 1

)
al, where 0 ≤ jl ≤ ml − 1, (6.1)

define a uniform partition of (−al, al).

The size m three-dimensional discrete Fourier transform (DFT) and its inverse are
defined by

DFTk(gj;m) =

m1−1∑
j1=0

m2−1∑
j2=0

m3−1∑
j3=0

gj exp

(
−2πi

3∑
l=1

jlkl/ml

)
,

DFT−1
k (gj;m) =

1

m1m2m3

m1−1∑
j1=0

m2−1∑
j2=0

m3−1∑
j3=0

gj exp

(
2πi

3∑
l=1

jlkl/ml

)
,

for a three-dimensional array g of size m, and 0 ≤ jl, kl ≤ ml − 1, l = 1, 2, 3.

In our case, we let g be of size 2m, and

gj = f(xj1 , yj2 , zj3) exp(2πi(κj1/m1 + λj2/m2 + ξj3/m3)) , (6.2)

for 0 ≤ jl ≤ ml − 1, l = 1, 2, 3, and zero otherwise.

Note that the one-dimensional DFT of a vector of only ones is

DFTkl
(ones(2ml); 2ml) =

2ml−1∑
jl=0

exp(−2πi(jlkl/ml)) = 2mlδkl0,

for 0 ≤ kl ≤ 2ml − 1. Hence, the product

DFTk(gj; 2m)
3∏

l=1

DFTkl
(ones(2ml); 2ml)

= 8m1m2m3 DFT000(gj; 2m) δk10δk20δk30

becomes nonzero only for k = (0, 0, 0). This greatly simplifies the theory, because
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6.1. Improving performance and plotting results

DFT−1
k (8m1m2m3 DFT000(gj; 2m) δk10δk20δk30 · ones(2m); 2m) = DFT000(gj; 2m),

i.e. a constant, independent of k.

In our notation, the integral in [11, Eq. (4.1)] reads

∫ c

−c

∫ b

−b

∫ a

−a

f(x) exp(i [πκ/a, πλ/b, πξ/c] · x) dx dy dz,

for r = s = 1.

It then follows from the above simplifications and [11, Eq. (4.8)] that

∫
Ω

f(x) exp(πi(κx/a + λy/b + ξz/c)) dx

=

∫ c

−c

∫ b

−b

∫ a

−a

f(x) exp(i [πκ/a, πλ/b, πξ/c] · x) dx dy dz

� 8abc

m1m2m3

exp(i(ã1πκ/a1 + ã2πλ/a2 + ã3πξ/a3)) DFT000(gj; 2m)
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6. Numerical simulations

kl =

{ −κl, κl ≤ 0,
ml − κl, κl > 0

, (6.3)

for l = 1, 2, 3. Combining the last three equations, we finally get

∫
Ω

f(x) exp(πi(κx/a + λy/b + ξz/c)) dx

=
8abc

m1m2m3

exp(πi((1/m1 − 1)κ + (1/m2 − 1)λ + (1/m3 − 1)ξ)) DFTk(f ;m),

(6.4)

i.e. we can use the three-dimensional FFT to evaluate the integrals, as promised in
Section. 5.1.3. The FFT simultaneously calculates the DFT for all values of k, so
all the integrals in An and en can be calculated very fast.

Remark: Note that to ensure that all kl in Eq. (6.3) are nonnegative, we need each
ml to be greater than the maximum value of κl (i.e. N), or, in the case of the inte-
grals in Mn (given in Eq. (5.20)), greater than the maximum value of αl − κl (i.e.
2N). In addition, we should choose each ml equal to a power of 2, since this is the
optimal choice for the FFT. �

The formula (6.3)-(6.4) is implemented in Code A.2.

6.1.2 Solving the linear system

We now turn our attention to solving Eq. (5.23), using the properties mentioned in
Theorem 5.4.1.

Since An is HPD, we could solve Eq. (5.23) as it stands, using the complex Cholesky
factorization. However, we can do better.

Let Qk be the k × k matrix in [15, Eq. (2.2)], defined by
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6.1. Improving performance and plotting results

Qk =
1√
2

[
Im iIm

Jm −iJm

]
, for k = 2m,

Qk =
1√
2

⎡⎣ Im 0 iIm

0
√

2 0
Jm 0 −iJm

⎤⎦ , for k = 2m + 1.

This matrix is unitary, i.e. QkQ
H
k = Ik, so we can rewrite Eq. (5.23) as

(
QH

8N3AnQ8N3

) (
QH

8N3(Θnw)
)

= QH
8N3

(
GHGwn + en/2

)
.

The matrix

Rn = QH
8N3AnQ8N3

is real, according to [15]. Since Q1 = 1, the vectors

yn = QH
8N3(Θnw) = QH

8N3(Θnw)Q1

and zn = QH
8N3

(
GHGwn + en/2

)
= QH

8N3

(
GHGwn + en/2

)
Q1

are real as well. This implies that we can solve the real system

Rnyn = zn

instead of Eq. (5.23), and then obtain wn+1 from

wn+1 = 2Q8N3yn −wn.

Moreover, since Q8N3 is unitary, Rn retains the symmetry and positive definiteness
of An, so we can use the real Cholesky factorization, which is much faster than the
complex one.
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6. Numerical simulations

6.1.3 Accelerating convergence

To achieve an acceptable level of accuracy, we need to use a certain number of ba-
sis functions vpqr to represent our solution. The number of basis functions grows
as (2N + 1)3, so it quickly becomes so large that the memory costs and time usage
become unacceptable. Fortunately, we can reduce the number of basis functions nec-
essary to obtain the desired accuracy, by accelerating the convergence of the Fourier
expansion of the solution. We do this by using a three-dimensional generalization
of the one-dimensional Lanczos sigma filter in [14, pp. 65-75].

The ordinary, infinite Fourier series of a function f is given by

f(x, y, z) =
∞∑

p,q,r=−∞
fpqr exp(πi(px/a + qy/b + rz/c)) . (6.5)

Of course, we must restrict ourselves to a finite approximation of this series. The
default alternative is to use the truncated Fourier series:

f(x, y, z) ≈ fN(x, y, z) =
N∑

p,q,r=−N

fpqr exp(πi(px/a + qy/b + rz/c)) ,

but the graph of this series will typically oscillate vigorously, and display significant
overshoots and undershoots compared to the graph of f . However, we can reduce
this unwanted effect by replacing fN with the function fN

k , k > 0, averaged over
(x − a/k, x + a/k) × (y − b/k, y + b/k) × (z − c/k, z + c/k):

fN
k (x, y, z) =

k3

8abc

∫ c/k

−c/k

∫ b/k

−b/k

∫ a/k

−a/k

fN(x + α, y + β, z + ζ) dα dβ dζ

=
N∑

p,q,r=−N

k3

8abc

3∏
n=1

(∫ al/k

−al/k

exp(πi(pl(xl + αl)/al)) dαl

)
fpqr

=
N∑

p,q,r=−N

k3

8abc

3∏
n=1

(
exp(πi(plxl/al))

∫ al/k

−al/k

exp(πi(plαl/al)) dαl

)
fpqr.
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k
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(πpl

k
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δpl �=0
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2al

k
sinc

(πpl

k

)
,

for each l, it follows that

fN
k (x, y, z) =

N∑
p,q,r=−N

fk
pqr exp(πi(px/a + qy/b + rz/c)) ,

where the Fourier coefficients of fN
k are

fk
pqr = sinc

(πp

k

)
sinc

(πq

k

)
sinc

(πr

k

)
fpqr = σk

pqrfpqr.

The factors

σk
pqr = sinc

(πp

k

)
sinc

(πq

k

)
sinc

(πr

k

)
are known as Lanczos sigma factors. As expected, when k → ∞,

σk
pqr → 1, and thus fk

pqr → fpqr and fN
k (x, y, z) → fN(x, y, z).

When |p| , |q| , |r| ≤ k − 1, we see that σk
pqr ∈ (0, 1]. Hence,

∣∣fk
pqr

∣∣ ≤ |fpqr| , (6.6)

i.e. the sigma factors reduce the amplitudes of the complex wave functions, making
the graph of fN smoother. We therefore choose k = N+1, and use the approximation

f(x, y, z) ≈
N∑

p,q,r=−N

fN+1
pqr exp(πi(px/a + qy/b + rz/c)) .
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6. Numerical simulations

Because the original series (6.5) converges, Eq. (6.6) implies that this approximation
converges when N → ∞ (and often faster than the original series). Since the sigma-
filtered series is just another Fourier series, we can apply the filter again (as many
times as we wish). The more times the filter is applied, the smoother the graph
of the approximation, but at the expense of a larger and larger deviation from f
in areas where f changes rapidly (cf. [14, Figure 10, p. 68] in the one-dimensional
case).

6.1.4 Calculating point values at grid points

We now turn to the problem of efficient calculation of point values from Fourier coef-
ficients. We use the grid points (xj1 , yj2 , zj3), given by Eq. (6.1), for 0 ≤ jl ≤ ml −1,
l = 1, 2, 3.

Given the coefficients wn, we must efficiently calculate Wn(xj1 , yj2 , zj3) for each grid
point (xj1 , yj2 , zj3). By Eqs. (5.12) and (5.4),

Wn(xj1 , yj2 , zj3) =
N∑

p,q,r=−N
p,q,r �=0

wn,pqrvpqr(x
j1 , yj2 , zj3)

=
N∑

p,q,r=−N
p,q,r �=0

wn,pqr

(
N∑

α,β,ζ=−N

vαβζ
pqr exp

(
πi(αxj1/a + βyj2/b + ζzj3/c)

))

=
N∑

α,β,ζ=−N

⎛⎜⎜⎝ N∑
p,q,r=−N
p,q,r �=0

wn,pqrv
αβζ
pqr

⎞⎟⎟⎠ exp
(
πi(αxj1/a + βyj2/b + ζzj3/c)

)
.

If we set

fαβζ =
N∑

p,q,r=−N
p,q,r �=0

wn,pqrv
αβζ
pqr = (Gwn)(ψ(α, β, ζ,N)),

we see that we get a finite Fourier expansion for Wn:

Wn(xj1 , yj2 , zj3) =
N∑

α,β,ζ=−N

fαβζ exp
(
πi(αxj1/a + βyj2/b + ζzj3/c)

)
.
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6.1. Improving performance and plotting results

In practice, we will also apply the sigma filter σN+1
αβζ m times, so we get

Wn(xj1 , yj2 , zj3) =
N∑

α,β,ζ=−N

fN+1,m
αβζ exp

(
πi(αxj1/a + βyj2/b + ζzj3/c)

)
, (6.7)

where

fN+1,m
αβζ = (σN+1

αβζ )mfαβζ is element ψ(α, β, ζ,N) of the vector Sm
NGwn,

for the (2N + 1)3 × (2N + 1)3 diagonal matrix SN , defined by

S(ψ(κ, λ, ξ,N), ψ(α, β, ζ,N)) = σN+1
αβζ δακδβλδζξ.

Next, we rewrite Eq. (6.7) to a more compact form,

Wn(xj1 , yj2 , zj3) =
N∑

α,β,ζ=−N

fN+1,m
αβζ exp

(
πi

3∑
l=1

αlx
jl

l /al

)
, (6.8)

and use Eq. (6.1) to split the exponentials:

exp

(
πi

3∑
l=1

αlx
jl

l /al

)
= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
exp

(
πi

3∑
l=1

(αl + N)xjl

l /al

)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
exp

(
πi

3∑
l=1

[(αl + N)((2jl + 1)/ml − 1)]

)
=

exp

(
−Nπi

3∑
l=1

xjl

l

al

)
exp

(
πi

3∑
l=1

αl + N

ml

(1 − ml)

)
exp

(
2πi

3∑
l=1

αl + N

ml

jl

)
. (6.9)

We set

gN+1,m
(α+N)(β+N)(ζ+N) = fN+1,m

αβζ exp

(
πi

3∑
l=1

(αl + N)(1/ml − 1)

)
, (6.10)

if −N ≤ αl ≤ N , l = 1, 2, 3, and zero otherwise.
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Wn(xj1 , yj2 , zj3) =
N∑

α,β,ζ=−N

fN+1,m
αβζ exp

(
πi

3∑
l=1

αlx
jl

l /al

)
, (6.8)

and use Eq. (6.1) to split the exponentials:

exp

(
πi

3∑
l=1

αlx
jl

l /al

)
= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
exp

(
πi

3∑
l=1

(αl + N)xjl

l /al

)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
exp

(
πi

3∑
l=1

[(αl + N)((2jl + 1)/ml − 1)]

)
=

exp

(
−Nπi

3∑
l=1

xjl

l

al

)
exp

(
πi

3∑
l=1

αl + N

ml

(1 − ml)

)
exp

(
2πi

3∑
l=1

αl + N

ml

jl

)
. (6.9)

We set

gN+1,m
(α+N)(β+N)(ζ+N) = fN+1,m

αβζ exp

(
πi

3∑
l=1

(αl + N)(1/ml − 1)

)
, (6.10)

if −N ≤ αl ≤ N , l = 1, 2, 3, and zero otherwise.
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6. Numerical simulations

Let kl = αl + N . Then Eq. (6.10) becomes

gN+1,m
k1k2k3

= fN+1,m
αβζ exp

(
πi

3∑
l=1

(1/ml − 1)kl

)
, (6.11)

if 0 ≤ kl ≤ 2N , l = 1, 2, 3, and zero otherwise.

Inserting Eqs. (6.9) and (6.11) in Eq. (6.8) results in

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
N∑

α,β,ζ=−N

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

(αl + N)jl/ml

)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
2N∑

k1,k2,k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
.

We can extend the upper limit of kl from 2N to m1 − 1, because gN+1,m
k1k2k3

is zero if
one or more kl are larger than 2N . Consequently,

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
m1−1∑
k1=0

m2−1∑
k2=0

m3−1∑
k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
= m1m2m3 exp

(−Nπi
(
xj1/a + yj2/b + zj3/c

))
DFT−1

j1,j2,j3
(gN+1,m

k ;m),

so all Wn(xj1 , yj2 , zj3) can be calculated simultaneously, using the three-dimensional
inverse FFT. This is done in Code A.3.

80

6. Numerical simulations

Let kl = αl + N . Then Eq. (6.10) becomes

gN+1,m
k1k2k3

= fN+1,m
αβζ exp

(
πi

3∑
l=1

(1/ml − 1)kl

)
, (6.11)

if 0 ≤ kl ≤ 2N , l = 1, 2, 3, and zero otherwise.

Inserting Eqs. (6.9) and (6.11) in Eq. (6.8) results in

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
N∑

α,β,ζ=−N

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

(αl + N)jl/ml

)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
2N∑

k1,k2,k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
.

We can extend the upper limit of kl from 2N to m1 − 1, because gN+1,m
k1k2k3

is zero if
one or more kl are larger than 2N . Consequently,

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
m1−1∑
k1=0

m2−1∑
k2=0

m3−1∑
k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
= m1m2m3 exp

(−Nπi
(
xj1/a + yj2/b + zj3/c

))
DFT−1

j1,j2,j3
(gN+1,m

k ;m),

so all Wn(xj1 , yj2 , zj3) can be calculated simultaneously, using the three-dimensional
inverse FFT. This is done in Code A.3.

80

6. Numerical simulations

Let kl = αl + N . Then Eq. (6.10) becomes

gN+1,m
k1k2k3

= fN+1,m
αβζ exp

(
πi

3∑
l=1

(1/ml − 1)kl

)
, (6.11)

if 0 ≤ kl ≤ 2N , l = 1, 2, 3, and zero otherwise.

Inserting Eqs. (6.9) and (6.11) in Eq. (6.8) results in

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
N∑

α,β,ζ=−N

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

(αl + N)jl/ml

)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
2N∑

k1,k2,k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
.

We can extend the upper limit of kl from 2N to m1 − 1, because gN+1,m
k1k2k3

is zero if
one or more kl are larger than 2N . Consequently,

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
m1−1∑
k1=0

m2−1∑
k2=0

m3−1∑
k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
= m1m2m3 exp

(−Nπi
(
xj1/a + yj2/b + zj3/c

))
DFT−1

j1,j2,j3
(gN+1,m

k ;m),

so all Wn(xj1 , yj2 , zj3) can be calculated simultaneously, using the three-dimensional
inverse FFT. This is done in Code A.3.

80

6. Numerical simulations

Let kl = αl + N . Then Eq. (6.10) becomes

gN+1,m
k1k2k3

= fN+1,m
αβζ exp

(
πi

3∑
l=1

(1/ml − 1)kl

)
, (6.11)

if 0 ≤ kl ≤ 2N , l = 1, 2, 3, and zero otherwise.

Inserting Eqs. (6.9) and (6.11) in Eq. (6.8) results in

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
N∑

α,β,ζ=−N

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

(αl + N)jl/ml

)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
2N∑

k1,k2,k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
.

We can extend the upper limit of kl from 2N to m1 − 1, because gN+1,m
k1k2k3

is zero if
one or more kl are larger than 2N . Consequently,

Wn(xj1 , yj2 , zj3)

= exp

(
−Nπi

3∑
l=1

xjl

l /al

)
m1−1∑
k1=0

m2−1∑
k2=0

m3−1∑
k3=0

gN+1,m
k1k2k3

exp

(
2πi

3∑
l=1

jlkl/ml

)
= m1m2m3 exp

(−Nπi
(
xj1/a + yj2/b + zj3/c

))
DFT−1

j1,j2,j3
(gN+1,m

k ;m),

so all Wn(xj1 , yj2 , zj3) can be calculated simultaneously, using the three-dimensional
inverse FFT. This is done in Code A.3.

80



6.1. Improving performance and plotting results

6.1.5 Plotting the results

We must be able to display the solution in the interior of the product. This can be
done by defining a plane that cuts through the product, thereby defining a cross-
sectional surface. The plane can be defined by one of its points, x0 = (x0, y0, z0)
(which positions it in space) and a normal vector n = (n1, n2, n3) (which orients it,
by pointing upwards from the plane). The plane then consists of the points satisfying

f(x, y, z) = n · (x− x0) = n1(x − x0) + n2(y − y0) + n3(z − z0) = 0.

If IΩ1 = 0 defines the product surface, plotting the points that satisfy

min{IΩ1(x, y, z), f(x, y, z)} = 0, (6.12)

ensures that:

• The surroundings are not plotted, because IΩ1 < 0.

• The part of the product that lies below the cross-sectional plane is not plotted,
because f < 0.

• The interior of the product above the plane is not plotted, because f, IΩ1 > 0.

• The part of the product surface that lies above the cross-sectional plane is
plotted, because IΩ1 = 0 < f .

• The intersection of the product and the plane (i.e. the cross-section) is plotted,
because f = 0 ≤ IΩ1 .

The next section contains plots created by plotting the points that satisfy Eq. (6.12).
The plotting is implemented in Code A.1.
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6. Numerical simulations

6.2 Simulations of cod AFD

To test the usefulness of the framework, we have simulated the AFD experiments
on pieces of cod fillet in [5], using background data from those experiments. In this
section we present the results and parameter values from those simulations. The
results are discussed in Section 7.1.

The physical parameters are slightly different in the two simulations, so they are
given separately in Tables 6.2 and 6.3. Some geometrical parameters, such as the
radii (rx, ry, rz), are given in the source codes Code A.6 and Code A.7. In both
simulations, the product rests on a perforated plate, with circular holes of diameter
3 mm. For the cod slab given by Eq. (2.2), with p = 10, a = b = 0.01 and c = 0.0025,
the GDFs for the holes are

Iholes,1(x, y, z) = 1 −
(

sin
(

πx
0.005

)2

sin
(

π0.0015
0.005

)2 +
sin

(
πy

0.00866

)2

sin
(

π0.0015
0.00866

)2 + (1.25 + 100z)20

)
, (6.13)

Iholes,2(x, y, z) = 1 −

⎛⎜⎝sin
(

π(x−0.0025)
0.005

)2

sin
(

π0.0015
0.005

)2 +
sin

(
π(y−0.00433)

0.00866

)2

sin
(

π0.0015
0.00866

)2 + (1.25 + 100z)20

⎞⎟⎠ .

(6.14)

The product and the perforated plate are plotted in Figure 6.1. In the source
codes, the GDFs are slightly different, to account for the actual average
size of the real samples, including shrinkage.

The air flow in the simulations is a laminar flow over plane sides, so the Sherwood
number is given by [1, Eq. (11.64)]:

Shy = 0.332 Sc1/3Re1/2
y = 0.332 Sc1/3

(
Vair y

νair

)1/2

,

where Sc is the Schmidt number. By [1, Eqs. (11.65)-(11.66)], this implies that

hm,max(y) =
νairShy

y Sc
= 0.332 Sc−2/3

(
Vair νair

y

)1/2

(6.15)

in the ambient air. Since y ∈ (−b, b) can become negative, we use the expression
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codes, the GDFs are slightly different, to account for the actual average
size of the real samples, including shrinkage.

The air flow in the simulations is a laminar flow over plane sides, so the Sherwood
number is given by [1, Eq. (11.64)]:

Shy = 0.332 Sc1/3Re1/2
y = 0.332 Sc1/3

(
Vair y

νair

)1/2

,

where Sc is the Schmidt number. By [1, Eqs. (11.65)-(11.66)], this implies that

hm,max(y) =
νairShy

y Sc
= 0.332 Sc−2/3

(
Vair νair

y

)1/2

(6.15)

in the ambient air. Since y ∈ (−b, b) can become negative, we use the expression
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6.2. Simulations of cod AFD

Fig. 6.1: Maple 11 plots of a cod slab on a perforated plate with holes given by
Eqs. (6.13)-(6.14).

hm,max(y, t) = 0.332 Sc−2/3

(
Vair νair

2b + y − ry(t)

)1/2

instead, to avoid taking the square root of a negative number. We set hm = 0 in the
metal of the plate, and hm = 0.80 · hm,max in the air in the holes (to account for the
fact that the thickness of the plate causes the underside of the cod and the airstream
beneath the plate to be separated by a small distance). The resulting expression for
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6. Numerical simulations

hm becomes

hk
m(x, y, z, t) = hm,max(y, t) · [(χ{z>−rz(0)},k(z) − χ{Iprod>0},k(x, y, z, t))

+0.80 · (χ{Iholes,1>0},k(x, y, z) + χ{Iholes,2>0},k(x, y, z))
]
.

Furthermore, the permeabilities become

Kk
l (x, t, U(x, t)) = χΩice,k

(U(x, t)) χ{Iprod>0},k(x, t) Kl(x, t).

For the saturation density of water vapor, we use the Goff-Gratch equation for vapor
over pure ice:

ρsat(T ) =
610.71

RH2OT

(
273.16

T

)−3.56654

· 10−9.09718(273.16/T−1)+0.876793(1−T/273.16),

where RH2O (= 461.52364 J/(kg·K), [9]) is the specific gas constant for water vapor.
We calculate the wet bulb temperature from Eq. (4.10) and γ from Eq. (4.4).

When estimating the mass fraction of ice, we use Table 9.3 and Eq. (9.5) in the 2006
ASHRAE Handbook - Refrigeration. The initial freezing point for cod is -2.2 ◦C, and
the initial product temperature -20 ◦C.

Some chosen non-physical parameters are given in Table 6.1.

Parameter Matlab name Value
Geometry approximation parameter n app 1010

Ice indication threshold (Kice) ice level 0.99
Number of basis functions N 7
Number of grid points m [64,64,64]
Relative convection strength, holes hole fac 0.80
Semi-axes (a, b, c) a,b,c 125 % of initial radii
Small parameter (ε) epsilon 10−30

Tab. 6.1: Chosen parameter values in both -5 ◦C and -10 ◦C cod slab simulations.
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6.2. Simulations of cod AFD

6.2.1 Results for -5 ◦C

We have simulated 35 h of drying at -5 ◦C (300 time steps of length 7 min). Physical
parameter values for this simulation are given in Table 6.2.

The measured and calculated drying curves are shown in Figure 6.2, and the calcu-
lated moisture concentration evolution is shown in Figures 6.3-6.5.

Parameter Matlab name Value Source
Air velocity V a 3.3 [5]

m/s
Ambient relative humidity RH 0.40 [5]

1
Ambient temperature T surr 268.15 [5]

K
cp/R c p R 4.0262 [7, Table 2]

1 (estimated)
(γP0K1)/(μvapρ

γ
vap,0) C fac 1 0.037 fitted value

(γP0K2)/(μvapρ
γ
vap,0) C fac 2 m3γ+2/(s kgγ)

(γP0K3)/(μvapρ
γ
vap,0) C fac 3

Initial total mass m init 1.886 ·10−3 [5]
kg

Kinematic viscosity, air nu a 1.2883 ·10−5 [12, Table A-1]
m2/s (estimated)

Latent heat of sublimation Delta H sub 2835607 [9, Table 4]
J/kg (estimated)

Porosity phi 0.5583 [5, Table 1]
1

Prandtl number Pr 0.7185 [12, Table A-1]
1 (estimated)

Schmidt number Sc 0.60 [12, Table A-18]
1

Thermal conductivity, air k a 0.023687 [12, Table A-1]
W/(m·K) (estimated)

Tab. 6.2: Physical parameter values in -5 ◦C cod slab simulations.
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6. Numerical simulations

(a) Wet basis drying curve (b) Dry basis drying curve

Fig. 6.2: The measured (points) and calculated (curve) drying curves for -5 ◦C.

(a) Initially (b) After 4 h 40 min

(c) After 9 h 20 min (d) After 14 h

Fig. 6.3: The calculated moisture concentration profile at different times for -5 ◦C.
The cross-section shown is defined by x0 = (0, 0, 0) and n = (0, 1, 0).
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6.2. Simulations of cod AFD

(a) Initially (b) After 4 h 40 min

(c) After 9 h 20 min (d) After 14 h

Fig. 6.4: The calculated moisture concentration profile at different times for -5 ◦C.
The cross-section shown is defined by x0 = (0, 0, 0) and n = (1, 0, 0).

(a) x0 = (0, 0, 0),n = (0, 0,−1) (b) x0 = (0,−0.5ry, 0),n = (1, 2,−2)

Fig. 6.5: The calculated moisture concentration profile after 4 h 40 min for -5 ◦C.
Alternative cross-sections.
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6. Numerical simulations

6.2.2 Results for -10 ◦C

We have simulated 100 h of drying at -10 ◦C (450 time steps of length 13 min 20 s).
Physical parameter values for this simulation are given in Table 6.3.

The measured and calculated drying curves are shown in Figure 6.6, and the calcu-
lated moisture concentration evolution is shown in Figures 6.7 and 6.8.

Parameter Matlab name Value Source
Air velocity V a 3.3 [5]

m/s
Ambient relative humidity RH 0.40 [5]

1
Ambient temperature T surr 263.15 [5]

K
cp/R c p R 4.0246 [7, Table 2]

1 (estimated)
(γP0K1)/(μvapρ

γ
vap,0) C fac 1 0.013 fitted value

(γP0K2)/(μvapρ
γ
vap,0) C fac 2 m3γ+2/(s kgγ)

(γP0K3)/(μvapρ
γ
vap,0) C fac 3

Initial total mass m init 2.180 ·10−3 [5]
kg

Kinematic viscosity, air nu a 1.2453 ·10−5 [12, Table A-1]
m2/s (estimated)

Latent heat of sublimation Delta H sub 2836633 [9, Table 4]
J/kg (estimated)

Porosity phi 0.7531 [5, Table 1]
1

Prandtl number Pr 0.72 [12, Table A-1]
1 (estimated)

Schmidt number Sc 0.60 [12, Table A-18]
1

Thermal conductivity, air k a 0.023292 [12, Table A-1]
W/(m·K) (estimated)

Tab. 6.3: Physical parameter values in -10 ◦C cod slab simulations.
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Initial total mass m init 2.180 ·10−3 [5]
kg

Kinematic viscosity, air nu a 1.2453 ·10−5 [12, Table A-1]
m2/s (estimated)

Latent heat of sublimation Delta H sub 2836633 [9, Table 4]
J/kg (estimated)

Porosity phi 0.7531 [5, Table 1]
1

Prandtl number Pr 0.72 [12, Table A-1]
1 (estimated)

Schmidt number Sc 0.60 [12, Table A-18]
1

Thermal conductivity, air k a 0.023292 [12, Table A-1]
W/(m·K) (estimated)

Tab. 6.3: Physical parameter values in -10 ◦C cod slab simulations.
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6.2. Simulations of cod AFD

(a) Wet basis drying curve (b) Dry basis drying curve

Fig. 6.6: The measured (points) and calculated (curve) drying curves for -10 ◦C.

(a) Initially (b) After 8 h

(c) After 24 h (d) After 40 h

Fig. 6.7: The calculated moisture concentration profile at different times for -10 ◦C.
The cross-section shown is defined by x0 = (0, 0, 0) and n = (0, 1, 0).
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6. Numerical simulations

(a) Initially (b) After 8 h

(c) After 24 h (d) After 40 h

Fig. 6.8: The calculated moisture concentration profile at different times for -10 ◦C.
The cross-section shown is defined by x0 = (0, 0, 0) and n = (1, 0, 0).
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7. DISCUSSION

In this chapter we discuss different aspects of the framework.

7.1 Simulation results

In the simulations in Chapter 6, the drying curves were fitted to the experimental
data by adjusting the parameters

C fac 1 =
γP0

μvapρ
γ
vap,0

K1,

C fac 2 =
γP0

μvapρ
γ
vap,0

K2,

C fac 3 =
γP0

μvapρ
γ
vap,0

K3,

for which we chose the constant values 0.037 (in the -5 ◦C case) and 0.013 (in the
-10 ◦C case). The resulting diffusivity values became 3.54 · 10−11 and 3.22 · 10−12

m2/s, respectively.

7.1.1 General comments

We observe the following from the figures in Section 6.2:

• We were able to fit the calculated drying curves quite well to the experimental
data, down to between 30 and 40 % wet basis water content. At this point, the
calculated drying curves stopped decreasing, because all of the ice was gone,
and the framework does not model drying of bound water. The initial water
contents were somewhat underestimated (see below).
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7. Discussion

• The calculated drying curves are somewhat jagged in the -10 ◦C case. This
is a result of the mechanism with which we model the movement of the ice
front. We have defined the location of the ice front to be where the indicator
function ρ̂ice intersects a threshold Kiceρ̂ice,0 (cf. Section 4.2.3). The evolution
of the indicator function as time goes by is shown in Figure 7.1. In each of the
two figures:

– The figure shows the value of the ice indicator ρ̂ice = U + ω ρvap,air along
the z axis, i.e. from x = (0, 0,−c) to x = (0, 0, c). The different curves
represent different times, from blue (initially) down to red.

– The solid black square curve is the initial curve U0+ω ρvap,air. It represents
the initial surface of the product.

– The dashed black square curve represents the surface of the product at
the last plotted time (i.e. corresponding to the red curve).

– The horizontal black line is the ice threshold Kiceρ̂ice,0. The ice is where
the ice indicator is above this line.

We see that as time goes by, the indicator function works its way inwards,
representing the retreat of the ice front. The blue curve should approximate
the black square curve, but we see that there is a significant round-off error
in this approximation. Ideally, the blue curve should intersect the threshold
at the product surface, but the intersection takes place just inside the surface
in practice. It is this round-off effect that causes the initial water
contents to be underestimated. Adjusting the blue curve involves finding
a good combination of domain dimensions (a, b, c) and number of sigma filtra-
tions.

Increasing the number of basis functions will of course reduce this problem,
but this is a very expensive measure, in terms of memory costs.

• The calculated moisture concentration profiles seem reasonable. The evolution
of the profiles agree qualitatively with the SEM images in Section 3.2.3, but
the growth of the dry region is faster in the simulations than in the images. Of
course, the quantitative aspects of the SEM images are very uncertain, since
only a few samples were studied. We do however note that the calculated
drying curves in Figure 6.2 suggest that the ice disappeared at between 16
and 18 h of drying. The SEM images suggest that this happened at some time
between 14 h 15 min and 20 h 30 min.

• The plotting procedure in Section 6.1.5 works well.
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7.1. Simulation results

(a) -5 ◦C, three times sigma filtered

(b) -10 ◦C, twice sigma filtered

Fig. 7.1: Indicator function curves along the z axis at different times.
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7. Discussion

We have also tested the effect of changing just one parameter in the above simula-
tion (to test the qualitative properties of the framework). The results are shown in
Table 7.1. Note that in the case of increased ambient temperature, only the tem-
perature itself was altered, although increasing it in reality changes the values of
most of the other physical parameters as well, as shown in Tables 6.2 and 6.3. Note
that the large difference in the fitted diffusivity factors C fac 1, C fac 2 and C fac 3
indicate that the diffusivity depends significantly on the ambient temperature.

Change in single parameter Change in drying rate
Increased ambient temperature Marginal increase
Decreased ambient humidity Significant increase
Increased air velocity Moderate increase
Increased diffusivity Significant increase
Increased hole diameter Moderate increase
Decreased hole convection strength Marginal decrease
Increased final porosity Significant increase

Tab. 7.1: The effect of altering one parameter at a time in the -5 ◦C simulation.

7.1.2 Numerical stability

The results in Table 7.1 confirm that the framework reacts correctly to moderate
changes in single parameter values. But if we change some of the parameters too
much, we end up in trouble. A too high increase in ambient humidity, or a too high
decrease in porosity, causes the boundary value (4.16) to become larger than the
initial ice concentration, causing U to become negative and making the framework
produce incorrect results.

Although the framework is in principle independent of the choice of numerical
method, the chosen method has had a major influence on its design. It turns out
that this numerical method has a low tolerance for unfavorable parameter values.
This makes it difficult to construct a robust and reliable framework, so we have had
to make certain sacrifices (cf. the next section).

There are a few alternatives to the numerical methods in [2]-[3], but most of them
use the weak formulation of the equation system, so they end up with a scheme that
is similar to ours. Perhaps a finite difference method, such as the one proposed in
[20], would work better.
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7.2. Other issues

7.2 Other issues

Before we conclude, we briefly consider three other issues:

7.2.1 Modeling of temperature

The drying process is clearly a coupled heat and mass transfer problem, so we should
definitely model heat transfer. Unfortunately, we have not been able to do this in a
satisfactory manner. There are two reasons for this:

1. It has turned out to be very difficult to model the sublimation heat sink at the
ice front by equations that fit the system in [2]-[4]. The main cause for this
problem is the fact that the front moves.

2. It turns out that if we try to model thermal convection in the same manner as
we have modeled mass convection, we get divergence. The numerical method
is simply not able to handle the heat flux, and there is a very simple reason
why. The basis functions are simply too few to be able to represent very small
temperature gradients. So, when heat is supplied to the product surface, the
basis functions are not able to sufficiently even out the temperature difference,
causing it (and thus the heat flux) to remain artificially high. As a result, the
local temperature starts to oscillate more and more, and get out of control.

The modeling of mass convection works well with the current framework, because
the convective mass transfer coefficient hk

m becomes divided by the large parame-
ter ω (Eq. (4.19)). This effectively works as a very strong natural underrelaxation.
Without this effect, we would have similar problems with the mass transfer as with
the heat transfer. Stabilizing the thermal convection requires either a very strong
artificial underrelaxation or a miniscule time step.

The omission of local temperature modeling forces us to make assumptions on the
temperature profile (Asmp. 7). Any model of the internal temperature profile would
be hard to verify anyway, since it is very hard to measure the internal temperature
profile inside the product during drying.

7.2.2 Modeling of bound moisture removal

This framework does not consider the removal of bound water. This is an obvious
weakness, but in terms of proportions, bound water makes up only a small fraction
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The drying process is clearly a coupled heat and mass transfer problem, so we should
definitely model heat transfer. Unfortunately, we have not been able to do this in a
satisfactory manner. There are two reasons for this:

1. It has turned out to be very difficult to model the sublimation heat sink at the
ice front by equations that fit the system in [2]-[4]. The main cause for this
problem is the fact that the front moves.

2. It turns out that if we try to model thermal convection in the same manner as
we have modeled mass convection, we get divergence. The numerical method
is simply not able to handle the heat flux, and there is a very simple reason
why. The basis functions are simply too few to be able to represent very small
temperature gradients. So, when heat is supplied to the product surface, the
basis functions are not able to sufficiently even out the temperature difference,
causing it (and thus the heat flux) to remain artificially high. As a result, the
local temperature starts to oscillate more and more, and get out of control.

The modeling of mass convection works well with the current framework, because
the convective mass transfer coefficient hk

m becomes divided by the large parame-
ter ω (Eq. (4.19)). This effectively works as a very strong natural underrelaxation.
Without this effect, we would have similar problems with the mass transfer as with
the heat transfer. Stabilizing the thermal convection requires either a very strong
artificial underrelaxation or a miniscule time step.

The omission of local temperature modeling forces us to make assumptions on the
temperature profile (Asmp. 7). Any model of the internal temperature profile would
be hard to verify anyway, since it is very hard to measure the internal temperature
profile inside the product during drying.

7.2.2 Modeling of bound moisture removal

This framework does not consider the removal of bound water. This is an obvious
weakness, but in terms of proportions, bound water makes up only a small fraction

95

7.2. Other issues

7.2 Other issues

Before we conclude, we briefly consider three other issues:

7.2.1 Modeling of temperature

The drying process is clearly a coupled heat and mass transfer problem, so we should
definitely model heat transfer. Unfortunately, we have not been able to do this in a
satisfactory manner. There are two reasons for this:

1. It has turned out to be very difficult to model the sublimation heat sink at the
ice front by equations that fit the system in [2]-[4]. The main cause for this
problem is the fact that the front moves.

2. It turns out that if we try to model thermal convection in the same manner as
we have modeled mass convection, we get divergence. The numerical method
is simply not able to handle the heat flux, and there is a very simple reason
why. The basis functions are simply too few to be able to represent very small
temperature gradients. So, when heat is supplied to the product surface, the
basis functions are not able to sufficiently even out the temperature difference,
causing it (and thus the heat flux) to remain artificially high. As a result, the
local temperature starts to oscillate more and more, and get out of control.

The modeling of mass convection works well with the current framework, because
the convective mass transfer coefficient hk

m becomes divided by the large parame-
ter ω (Eq. (4.19)). This effectively works as a very strong natural underrelaxation.
Without this effect, we would have similar problems with the mass transfer as with
the heat transfer. Stabilizing the thermal convection requires either a very strong
artificial underrelaxation or a miniscule time step.

The omission of local temperature modeling forces us to make assumptions on the
temperature profile (Asmp. 7). Any model of the internal temperature profile would
be hard to verify anyway, since it is very hard to measure the internal temperature
profile inside the product during drying.

7.2.2 Modeling of bound moisture removal

This framework does not consider the removal of bound water. This is an obvious
weakness, but in terms of proportions, bound water makes up only a small fraction

95



7. Discussion

Fraction of total mass Fraction of water
Ice, -5 ◦C 73.88 % 88.88 %
Bound water, -5 ◦C 9.25 % 11.12 %
Dry matter, -5 ◦C 16.88 %
Ice, -10 ◦C 74.92 % 88.88 %
Bound water, -10 ◦C 9.38 % 11.12 %
Dry matter, -10 ◦C 15.70 %

Tab. 7.2: Calculated initial mass fractions from the simulations.

of the total initial mass of water in the product (cf. Table 7.2). The wet basis drying
curves give an exaggerated impression of the amount of bound water in the product,
but the corresponding dry basis curves give a better impression.

There are two reasons why we do not model removal of bound water:

• We do not want a second source of vapor. If both ice and bound water were
removed simultaneously, they would both form vapor, and we would then have
to model what fraction of the vapor each of them were responsible for.

• By assuming removal of just ice, we have boiled down our problem to just
tracking the ice front. A similar strategy might not work with bound water,
and its concentration is of the same magnitude as that of ice, so the stability
issues concerning modeling of phase change (cf. Section 4.2.3) are present for
bound water as well.

Being able to model drying of bound water would be a definite advantage. Even
though most of the water in the product is ice, much (if not most) of the drying
time is usually spent on removing the bound water at the end of the process.

7.2.3 Modeling of shrinkage

We have chosen to model shrinkage through predefined, time-dependent functions.
It might seem strange that we must specify the shrinkage beforehand, when the
usual way to model shrinkage is to adjust the dimensions of the product according
to the current water content. Unfortunately, this has not been an option.

The reason why we cannot use the current water content to adjust for shrinkage
is that it requires knowledge of the current moisture concentration throughout the
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7.3. Conclusions

product. Our equation is a partial differential equation, i.e. the coefficients are
functions of local information only. Including water content as an argument in the
coefficients requires a different type of equation, e.g. a functional differential equa-
tion. There is some theory on quasilinear functional differential equations, but the
numerical methods are not as well developed for these types of equations as for par-
tial differential equations.

It is possible to base shrinkage on water content, and still use this framework. This
can be done by dividing the simulation into smaller parts. Instead of running a
simulation with prescribed shrinkage for the entire period (0, τ), we can run several
smaller simulations, where we adjust the product geometry between each one. We
start the first simulation with a certain geometry and with the ordinary initial
condition. When it stops, we calculate the water content and adjust the geometry
accordingly. Then we start a new simulation, using the end result of the first one as
initial condition. We repeat this process for all the remaining simulations.

7.3 Conclusions

Lastly, we present some thoughts on using the framework, and on further develop-
ment.

7.3.1 Modeling AFD with the framework

The framework has not been extensively tested, but the test performed on the cod
example did feature some interesting geometrical aspects. It showed that the im-
plicit geometrical modeling works well. Not only were we able to model the three-
dimensional geometry of the cod slab itself (including shrinkage). We were also able
to easily model the perforated plate on which the cod slab rested, and the framework
did detect the effect of these perforations (cf. Table 7.1). This is important, as the
product rests on some sort of base in many types of drying. Being able to model the
effect of the structure of the base is highly relevant. In general, just about any
geometrical feature could in principle be modeled, as long as we can find
a GDF for it. However, complicated geometrical features make the fluid dynamics
needed to model the convective mass transfer coefficient more difficult.

We did not try variable diffusivities in the test, but simply used fitted constant
values. Since the fitted values were so much higher in the -5 ◦C case than in the
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7. Discussion

-10 ◦C case, it seems clear that the diffusivities should depend on ambient tempera-
ture in some way. Determining what such a dependence should look like mathemat-
ically, requires many more tests on data for other temperatures.

In general, the framework needs comprehensive background data. There
are many physical and non-physical parameters, and finding suitable values for these
generally involves a lot of trial and error. Part of the difficulty in finding suitable
values is that the three-dimensional nature of the framework means that memory
demands quickly become very large, so we are typically not able to use as many basis
functions as we would like. This limits the accuracy and stability of the framework.

However, when the necessary background data is available, and the framework is
well calibrated, the cod test showed that the framework can be a useful modeling
tool.

7.3.2 Improvement and further development

When the work on the framework started, the initial idea was to make it as sophis-
ticated as possible. As expected, more and more simplifying assumptions became
necessary as work progressed. In the end, the framework has essentially reduced a
complicated physical problem into a pure front-tracking problem, through the RIF
assumption and the omission of bound water from the modeling. Since it has become
so focused on tracking the ice front, it is difficult to see how the current framework
can be adapted to include many other physical mechanisms and phenomena. Find-
ing a formulation that works both physically, mathematically and numerically has
been a surprisingly hard challenge.

However, if such an attempt is made, there are some basic considerations to make.
If new phenomena (like temperature and/or bound water) are added to the current
framework, these must be modeled by separate, new equations. These equations
must fit the general equation system (4.1)-(4.3). Since we have already developed
a numerical scheme for this type of system, we can easily add new equations to
the framework. However, implementing the framework in another numerical scheme
may perhaps provide more stability, and thus allow model formulations that in prac-
tice do not work with the current scheme.

One natural extension of the current formulation would be to develop a framework
for modeling VFD. Since there is no convection in VFD, the convection-related sta-
bility problems mentioned above would not exist, and temperature could be modeled.
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7.3. Conclusions

In fact, temperature would have to be modeled, as the AFD assumption of wet bulb
temperature at the ice front is clearly not applicable in VFD.

Finally, even though the complete framework is tailored to modeling AFD, some
of its features might perhaps be applicable in totally different areas. This is in
particular true for the implicit geometrical modeling.
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A. MATLAB SOURCE CODE

Code A.1 (Plotting a product with cross-section)

The file Plot3D.m, which creates a three-dimensional plot of the moisture concen-
tration in the part of the product lying above a plane given by one of its points and
a normal vector.

1 func t i on Plot3D ( I prod , rho hat w , x , y , z , n 1 , n 2 , n 3 , x 0 , y 0 , z 0 , ts p1 , t )
2 % Plot s 3D moisture concent ra t i on in a c r o s s s e c t i o n
3 %
4 % INPUT
5 %
6 % I prod = GDF fo r the product s u r f a c e
7 % rho hat w = matrix conta in ing moisture concent ra t i on va lue s
8 % x = matrix conta in ing the x va lue s o f the g r id po in t s
9 % y = matrix conta in ing the y va lue s o f the g r id po in t s

10 % z = matrix conta in ing the z va lue s o f the g r id po in t s
11 % n 1 = x component o f normal vec to r o f c ro s s−s e c t i o n a l plane
12 % n 2 = y component o f normal vec to r o f c ro s s−s e c t i o n a l plane
13 % n 3 = z component o f normal vec to r o f c ro s s−s e c t i o n a l plane
14 % x 0 = x value o f po int in cros s−s e c t i o n a l plane
15 % y 0 = y value o f po int in cros s−s e c t i o n a l plane
16 % z 0 = z value o f po int in cross−s e c t i o n a l plane
17 % ts p1 = time step number + 1
18 % t = actua l time (h)
19
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A. Matlab source code

10 %
11 % f = func t i on va lue s at the g r id po in t s
12 % gr i d sp = gr id spac ing s = 2∗ [ a/m(1) b/m(2) c/m(3) ]
13 % m = vecto r conta in ing the number o f g r i d po in t s in each d i r e c t i o n
14 % N = kappa , lambda , x i bounds
15
16 [ kappa , lambda , x i ] = ndgrid(−N:N) ;
17 k1 = ((1/m(1) ) − 1) ∗kappa ( : ) ;
18 k2 = ((1/m(2) ) − 1) ∗ lambda ( : ) ;
19 k3 = ((1/m(3) ) − 1) ∗ x i ( : ) ;
20 k123 = k1 + k2 + k3 ;
21
22 k1 = ( kappa ( : ) > 0) ∗m(1) − kappa ( : ) ;
23 k2 = ( lambda ( : ) > 0) ∗m(2) − lambda ( : ) ;
24 k3 = ( x i ( : ) > 0) ∗m(3) − x i ( : ) ;
25 v perm = m(1) ∗m(2) ∗k3 + m(1) ∗k2 + k1 + 1 ;
26
27 f = f f t n ( f ) ;
28 i n t e g r a l s = prod ( g r i d sp ) ∗( exp (1 i ∗ pi ∗k123 ) .∗ f ( v perm ) ) ;

Code A.3 (Evaluating point values)

The file FourierEval.m, which calculates point values for a three-dimensional Fourier
expansion, given grid points and Fourier coefficients.

1 func t i on W = Four ierEval (v ,N, x , y , z , a , b , c )
2 % For p , q , r = −N, . . . , N, eva lua t e s the sum of
3 % v (p , q , r ) ∗exp ( p i ∗ i ∗(p∗x/a + q∗y/b + r ∗z/c ) )
4 %
5 % OUTPUT:
6 %
7 % W = the va lue s at d i f f e r e n t po in t s (x , y , z )
8 %
9 % INPUT:

10 %
11 % v = a vec to r o f s i z e (2∗N + 1) ˆ3 x 1
12 % N = summation bounds
13 % x = x va lues in (−a , a )
14 % y = y va lues in (−b , b)
15 % z = z va lue s in (−c , c )
16 % a = x bounds
17 % b = y bounds
18 % c = z bounds
19
20 m = s i z e ( x ) ;
21 K = 2∗N + 1 ;
22
23 g = ze ro s ( s i z e ( x ) ) ;
24 g ( 1 :K, 1 :K, 1 :K) = reshape (v ,K,K,K) ;
25 [ k 1 , k 2 , k 3 ] = ndgrid ( 0 : (m(1) − 1) , 0 : (m(2) − 1) , 0 : (m(3) − 1) ) ;
26 g = g .∗ exp ( p i ∗1 i ∗ ( (1/m(1) − 1) ∗k 1 + (1/m(2) − 1) ∗k 2 + (1/m(3) − 1) ∗k 3 ) ) ;
27 W = prod (m) ∗exp(−N∗ pi ∗1 i ∗( x/a + y/b + z/c ) ) .∗ i f f t n ( g ) ;
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Code A.4 (Calculating predefined tables)

The file CreateTables.m, which creates matrices used by Code A.5. Only depends
on the problem size N .

1 func t i on CreateTables (N)
2 % Creates p r ede f i n ed t ab l e s f o r CannonEwing3D .m
3 %
4 % INPUT
5 %
6 % N = number o f ba s i s f un c t i on s (2∗N in each d i r e c t i o n )
7
8 %#ok<∗NASGU>
9

10 % Use fu l cons tants
11 K1 = 2∗N + 1 ;
12 K2 = K1ˆ3 ;
13 K3 = 4∗N + 1 ;
14 K4 = f l o o r ( 0 . 5∗K2) ;
15 K5 = 2∗N;
16 K6 = 4∗Nˆ3 ;
17 K7 = c e i l ( 0 . 5∗K3ˆ3) + K3ˆ3 ;
18
19 % Def in ing index vec to r s
20 [ kappa , lambda , x i ] = ndgrid(−N:N) ;
21 kappa = kappa ( : ) ;
22 lambda = lambda ( : ) ;
23 x i = x i ( : ) ;
24
25 % Lanczos sigma f a c t o r s
26 s igma fun = @(p , q , r ) s i n c (p . / (N + 1) ) .∗ s i n c ( q . / (N + 1) ) .∗ s i n c ( r . / (N + 1) ) ;
27 v sigma = sigma fun ( kappa , lambda , x i ) ;
28
29 % Creat ing permutation matr i ce s
30 p = repmat ( kappa . ’ ,K4, 1 ) − repmat ( kappa ( 1 :K4) ,1 ,K2) ;
31 q = repmat ( lambda . ’ ,K4, 1 ) − repmat ( lambda ( 1 :K4) ,1 ,K2) ;
32 r = repmat ( x i . ’ ,K4 , 1 ) − repmat ( x i ( 1 :K4) ,1 ,K2) ;
33
34 pos = @(p , q , r ) c e i l ( 0 . 5∗K3ˆ3) + (K3ˆ2) ∗ r + K3∗q + p ;
35 M perm = t r i l ( pos (p ( : , 1 :K4) , q ( : , 1 :K4) , r ( : , 1 :K4) ) ,−1) ;
36 M perm = M perm . . .
37 + t r i u ( f l i p l r ( pos (p ( : , (K4 + 2) : end ) , q ( : , (K4 + 2) : end ) , r ( : , (K4 + 2) : end ) ) ) ) ;
38 M perm = M perm + (K3ˆ3) ∗ eye (K4) ;
39 i f max(max(M perm) ) <= intmax ( ’ uint16 ’ )
40 M perm = uint16 (M perm) ;
41 e l s e
42 M perm = uint32 (M perm) ;
43 end
44
45 % Creat ing ba s i s matr i ce s
46 K3 = K5ˆ3 ;
47 G = ze ro s (K2,K3) ;
48 pos = @(p , q , r ) (K1ˆ2) ∗ r + K1∗q + p + K4 + 1 ;
49 [ nz , ˜ ] = f i nd ( prod ( [ kappa lambda x i ] , 2 ) ) ;
50 p = kappa ( nz ) . ’ ;
51 q = lambda ( nz ) . ’ ;
52 r = x i ( nz ) . ’ ;
53 G( sub2ind ( s i z e (G) , pos (p , q , r ) , 1 :K3) ) = 1 ;
54 G( sub2ind ( s i z e (G) , (K4 + 1) ∗ ones ( s i z e (p) ) , 1 :K3) ) = (−1) . ˆ ( p + q + r + 3) ;
55 G( sub2ind ( s i z e (G) , pos (p , q , 0 ) , 1 :K3) ) = (−1) . ˆ ( r + 1) ;
56 G( sub2ind ( s i z e (G) , pos (p , 0 , r ) , 1 :K3) ) = (−1) . ˆ ( q + 1) ;
57 G( sub2ind ( s i z e (G) , pos (0 , q , r ) , 1 :K3) ) = (−1) . ˆ ( p + 1) ;

105

Code A.4 (Calculating predefined tables)

The file CreateTables.m, which creates matrices used by Code A.5. Only depends
on the problem size N .

1 func t i on CreateTables (N)
2 % Creates p r ede f i n ed t ab l e s f o r CannonEwing3D .m
3 %
4 % INPUT
5 %
6 % N = number o f ba s i s f un c t i on s (2∗N in each d i r e c t i o n )
7
8 %#ok<∗NASGU>
9

10 % Use fu l cons tants
11 K1 = 2∗N + 1 ;
12 K2 = K1ˆ3 ;
13 K3 = 4∗N + 1 ;
14 K4 = f l o o r ( 0 . 5∗K2) ;
15 K5 = 2∗N;
16 K6 = 4∗Nˆ3 ;
17 K7 = c e i l ( 0 . 5∗K3ˆ3) + K3ˆ3 ;
18
19 % Def in ing index vec to r s
20 [ kappa , lambda , x i ] = ndgrid(−N:N) ;
21 kappa = kappa ( : ) ;
22 lambda = lambda ( : ) ;
23 x i = x i ( : ) ;
24
25 % Lanczos sigma f a c t o r s
26 s igma fun = @(p , q , r ) s i n c (p . / (N + 1) ) .∗ s i n c ( q . / (N + 1) ) .∗ s i n c ( r . / (N + 1) ) ;
27 v sigma = sigma fun ( kappa , lambda , x i ) ;
28
29 % Creat ing permutation matr i ce s
30 p = repmat ( kappa . ’ ,K4, 1 ) − repmat ( kappa ( 1 :K4) ,1 ,K2) ;
31 q = repmat ( lambda . ’ ,K4, 1 ) − repmat ( lambda ( 1 :K4) ,1 ,K2) ;
32 r = repmat ( x i . ’ ,K4 , 1 ) − repmat ( x i ( 1 :K4) ,1 ,K2) ;
33
34 pos = @(p , q , r ) c e i l ( 0 . 5∗K3ˆ3) + (K3ˆ2) ∗ r + K3∗q + p ;
35 M perm = t r i l ( pos (p ( : , 1 :K4) , q ( : , 1 :K4) , r ( : , 1 :K4) ) ,−1) ;
36 M perm = M perm . . .
37 + t r i u ( f l i p l r ( pos (p ( : , (K4 + 2) : end ) , q ( : , (K4 + 2) : end ) , r ( : , (K4 + 2) : end ) ) ) ) ;
38 M perm = M perm + (K3ˆ3) ∗ eye (K4) ;
39 i f max(max(M perm) ) <= intmax ( ’ uint16 ’ )
40 M perm = uint16 (M perm) ;
41 e l s e
42 M perm = uint32 (M perm) ;
43 end
44
45 % Creat ing ba s i s matr i ce s
46 K3 = K5ˆ3 ;
47 G = ze ro s (K2,K3) ;
48 pos = @(p , q , r ) (K1ˆ2) ∗ r + K1∗q + p + K4 + 1 ;
49 [ nz , ˜ ] = f i nd ( prod ( [ kappa lambda x i ] , 2 ) ) ;
50 p = kappa ( nz ) . ’ ;
51 q = lambda ( nz ) . ’ ;
52 r = x i ( nz ) . ’ ;
53 G( sub2ind ( s i z e (G) , pos (p , q , r ) , 1 :K3) ) = 1 ;
54 G( sub2ind ( s i z e (G) , (K4 + 1) ∗ ones ( s i z e (p) ) , 1 :K3) ) = (−1) . ˆ ( p + q + r + 3) ;
55 G( sub2ind ( s i z e (G) , pos (p , q , 0 ) , 1 :K3) ) = (−1) . ˆ ( r + 1) ;
56 G( sub2ind ( s i z e (G) , pos (p , 0 , r ) , 1 :K3) ) = (−1) . ˆ ( q + 1) ;
57 G( sub2ind ( s i z e (G) , pos (0 , q , r ) , 1 :K3) ) = (−1) . ˆ ( p + 1) ;

105

Code A.4 (Calculating predefined tables)

The file CreateTables.m, which creates matrices used by Code A.5. Only depends
on the problem size N .

1 func t i on CreateTables (N)
2 % Creates p r ede f i n ed t ab l e s f o r CannonEwing3D .m
3 %
4 % INPUT
5 %
6 % N = number o f ba s i s f un c t i on s (2∗N in each d i r e c t i o n )
7
8 %#ok<∗NASGU>
9

10 % Use fu l cons tants
11 K1 = 2∗N + 1 ;
12 K2 = K1ˆ3 ;
13 K3 = 4∗N + 1 ;
14 K4 = f l o o r ( 0 . 5∗K2) ;
15 K5 = 2∗N;
16 K6 = 4∗Nˆ3 ;
17 K7 = c e i l ( 0 . 5∗K3ˆ3) + K3ˆ3 ;
18
19 % Def in ing index vec to r s
20 [ kappa , lambda , x i ] = ndgrid(−N:N) ;
21 kappa = kappa ( : ) ;
22 lambda = lambda ( : ) ;
23 x i = x i ( : ) ;
24
25 % Lanczos sigma f a c t o r s
26 s igma fun = @(p , q , r ) s i n c (p . / (N + 1) ) .∗ s i n c ( q . / (N + 1) ) .∗ s i n c ( r . / (N + 1) ) ;
27 v sigma = sigma fun ( kappa , lambda , x i ) ;
28
29 % Creat ing permutation matr i ce s
30 p = repmat ( kappa . ’ ,K4, 1 ) − repmat ( kappa ( 1 :K4) ,1 ,K2) ;
31 q = repmat ( lambda . ’ ,K4, 1 ) − repmat ( lambda ( 1 :K4) ,1 ,K2) ;
32 r = repmat ( x i . ’ ,K4 , 1 ) − repmat ( x i ( 1 :K4) ,1 ,K2) ;
33
34 pos = @(p , q , r ) c e i l ( 0 . 5∗K3ˆ3) + (K3ˆ2) ∗ r + K3∗q + p ;
35 M perm = t r i l ( pos (p ( : , 1 :K4) , q ( : , 1 :K4) , r ( : , 1 :K4) ) ,−1) ;
36 M perm = M perm . . .
37 + t r i u ( f l i p l r ( pos (p ( : , (K4 + 2) : end ) , q ( : , (K4 + 2) : end ) , r ( : , (K4 + 2) : end ) ) ) ) ;
38 M perm = M perm + (K3ˆ3) ∗ eye (K4) ;
39 i f max(max(M perm) ) <= intmax ( ’ uint16 ’ )
40 M perm = uint16 (M perm) ;
41 e l s e
42 M perm = uint32 (M perm) ;
43 end
44
45 % Creat ing ba s i s matr i ce s
46 K3 = K5ˆ3 ;
47 G = ze ro s (K2,K3) ;
48 pos = @(p , q , r ) (K1ˆ2) ∗ r + K1∗q + p + K4 + 1 ;
49 [ nz , ˜ ] = f i nd ( prod ( [ kappa lambda x i ] , 2 ) ) ;
50 p = kappa ( nz ) . ’ ;
51 q = lambda ( nz ) . ’ ;
52 r = x i ( nz ) . ’ ;
53 G( sub2ind ( s i z e (G) , pos (p , q , r ) , 1 :K3) ) = 1 ;
54 G( sub2ind ( s i z e (G) , (K4 + 1) ∗ ones ( s i z e (p) ) , 1 :K3) ) = (−1) . ˆ ( p + q + r + 3) ;
55 G( sub2ind ( s i z e (G) , pos (p , q , 0 ) , 1 :K3) ) = (−1) . ˆ ( r + 1) ;
56 G( sub2ind ( s i z e (G) , pos (p , 0 , r ) , 1 :K3) ) = (−1) . ˆ ( q + 1) ;
57 G( sub2ind ( s i z e (G) , pos (0 , q , r ) , 1 :K3) ) = (−1) . ˆ ( p + 1) ;

105

Code A.4 (Calculating predefined tables)

The file CreateTables.m, which creates matrices used by Code A.5. Only depends
on the problem size N .

1 func t i on CreateTables (N)
2 % Creates p r ede f i n ed t ab l e s f o r CannonEwing3D .m
3 %
4 % INPUT
5 %
6 % N = number o f ba s i s f un c t i on s (2∗N in each d i r e c t i o n )
7
8 %#ok<∗NASGU>
9

10 % Use fu l cons tants
11 K1 = 2∗N + 1 ;
12 K2 = K1ˆ3 ;
13 K3 = 4∗N + 1 ;
14 K4 = f l o o r ( 0 . 5∗K2) ;
15 K5 = 2∗N;
16 K6 = 4∗Nˆ3 ;
17 K7 = c e i l ( 0 . 5∗K3ˆ3) + K3ˆ3 ;
18
19 % Def in ing index vec to r s
20 [ kappa , lambda , x i ] = ndgrid(−N:N) ;
21 kappa = kappa ( : ) ;
22 lambda = lambda ( : ) ;
23 x i = x i ( : ) ;
24
25 % Lanczos sigma f a c t o r s
26 s igma fun = @(p , q , r ) s i n c (p . / (N + 1) ) .∗ s i n c ( q . / (N + 1) ) .∗ s i n c ( r . / (N + 1) ) ;
27 v sigma = sigma fun ( kappa , lambda , x i ) ;
28
29 % Creat ing permutation matr i ce s
30 p = repmat ( kappa . ’ ,K4, 1 ) − repmat ( kappa ( 1 :K4) ,1 ,K2) ;
31 q = repmat ( lambda . ’ ,K4, 1 ) − repmat ( lambda ( 1 :K4) ,1 ,K2) ;
32 r = repmat ( x i . ’ ,K4 , 1 ) − repmat ( x i ( 1 :K4) ,1 ,K2) ;
33
34 pos = @(p , q , r ) c e i l ( 0 . 5∗K3ˆ3) + (K3ˆ2) ∗ r + K3∗q + p ;
35 M perm = t r i l ( pos (p ( : , 1 :K4) , q ( : , 1 :K4) , r ( : , 1 :K4) ) ,−1) ;
36 M perm = M perm . . .
37 + t r i u ( f l i p l r ( pos (p ( : , (K4 + 2) : end ) , q ( : , (K4 + 2) : end ) , r ( : , (K4 + 2) : end ) ) ) ) ;
38 M perm = M perm + (K3ˆ3) ∗ eye (K4) ;
39 i f max(max(M perm) ) <= intmax ( ’ uint16 ’ )
40 M perm = uint16 (M perm) ;
41 e l s e
42 M perm = uint32 (M perm) ;
43 end
44
45 % Creat ing ba s i s matr i ce s
46 K3 = K5ˆ3 ;
47 G = ze ro s (K2,K3) ;
48 pos = @(p , q , r ) (K1ˆ2) ∗ r + K1∗q + p + K4 + 1 ;
49 [ nz , ˜ ] = f i nd ( prod ( [ kappa lambda x i ] , 2 ) ) ;
50 p = kappa ( nz ) . ’ ;
51 q = lambda ( nz ) . ’ ;
52 r = x i ( nz ) . ’ ;
53 G( sub2ind ( s i z e (G) , pos (p , q , r ) , 1 :K3) ) = 1 ;
54 G( sub2ind ( s i z e (G) , (K4 + 1) ∗ ones ( s i z e (p) ) , 1 :K3) ) = (−1) . ˆ ( p + q + r + 3) ;
55 G( sub2ind ( s i z e (G) , pos (p , q , 0 ) , 1 :K3) ) = (−1) . ˆ ( r + 1) ;
56 G( sub2ind ( s i z e (G) , pos (p , 0 , r ) , 1 :K3) ) = (−1) . ˆ ( q + 1) ;
57 G( sub2ind ( s i z e (G) , pos (0 , q , r ) , 1 :K3) ) = (−1) . ˆ ( p + 1) ;

105



A. Matlab source code

58 G( sub2ind ( s i z e (G) , pos (p , 0 , 0 ) , 1 :K3) ) = (−1) . ˆ ( q + r + 2) ;
59 G( sub2ind ( s i z e (G) , pos (0 , q , 0 ) , 1 :K3) ) = (−1) . ˆ ( p + r + 2) ;
60 G( sub2ind ( s i z e (G) , pos (0 , 0 , r ) , 1 :K3) ) = (−1) . ˆ ( p + q + 2) ;
61 G = spar s e (G) ;
62
63 G hat inv = G( : , 1 :K5) . ’ ∗G( : , 1 :K5) /4 ;
64 G hat inv = G hat inv \ eye (K5) ;
65
66 Q = [ speye (K6) 1 i ∗ speye (K6) ; f l i p l r ( speye (K6) ) −1 i ∗ f l i p l r ( speye (K6) ) ] / sq r t (2 ) ;
67 GQ = G∗Q;
68 GQH GQ = r e a l (GQ’∗GQ) ;
69 GQ = GQ(1 :K4 , : ) ;
70
71 opts .SYM = true ;
72 opts .POSDEF = true ;
73
74 c l e a r K1 K2 K3 K6 sigma fun nz p q r pos
75 whos
76
77 save ( [ ’ Tables ’ num2str (N) ] ) ;

Code A.5 (Solving the linear system)

The file CannonEwing3D.m, which solves the linear system (5.23).

1 func t i on U = CannonEwing3D(C,B, U in i t , h m , a , b , c , x , y , z , De l ta t , . . .
2 t saved , t a l l ,N,m, gr id sp , N sigma )
3 % Ca l cu l a t e s i c e i nd i c a t o r
4 %
5 % OUTPUT
6 %
7 % U = matrix conta in ing i c e i nd i c a t o r va lue s
8 %
9 % INPUT

10 %
11 % C = c e l l array conta in ing d i f f u s i v i t y f unc t i on s
12 % B = c e l l array conta in ing convect ion f unc t i on s
13 % U in i t = i n i t i a l va lue s
14 % h m = convec t ive mass t r a n s f e r c o e f f i c i e n t
15 % a = x bounds
16 % b = y bounds
17 % c = z bounds
18 % x = matrix conta in ing the x va lue s o f the g r id po in t s
19 % y = matrix conta in ing the y va lue s o f the g r id po in t s
20 % z = matrix conta in ing the z va lue s o f the g r id po in t s
21 % De l ta t = time step
22 % t saved = times to be saved
23 % t a l l = a l l t imes
24 % N = number o f ba s i s f un c t i on s (2∗N in each d i r e c t i o n )
25 % m = vecto r conta in ing the number o f g r i d po in t s in each d i r e c t i o n
26 % gr i d sp = gr id spac ing s = 2∗ [ a/m(1) b/m(2) c/m(3) ]
27 % N sigma = number o f t imes to apply sigma f i l t e r
28
29 %#ok<∗NODEF>
30
31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 % PREPARATIONS
33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34
35 load ( [ ’ Tables ’ num2str (N) ] ) ;
36 K8 = length ( t saved ) ;
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26 % gr i d sp = gr id spac ing s = 2∗ [ a/m(1) b/m(2) c/m(3) ]
27 % N sigma = number o f t imes to apply sigma f i l t e r
28
29 %#ok<∗NODEF>
30
31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 % PREPARATIONS
33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34
35 load ( [ ’ Tables ’ num2str (N) ] ) ;
36 K8 = length ( t saved ) ;
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37 v sigma = v sigma . ˆ N sigma ;
38
39 kappa = kappa∗ pi /a ;
40 lambda = lambda∗ pi /b ;
41 x i = x i ∗ pi /c ;
42 kappa sh = kappa ( 1 :K4) ;
43 lambda sh = lambda ( 1 :K4) ;
44 x i s h = x i ( 1 :K4) ;
45 D 1 sh sq = spd iags ( kappa sh . ˆ2 , 0 ,K4 ,K4) ;
46 D 2 sh sq = spd iags ( lambda sh . ˆ2 , 0 ,K4 ,K4) ;
47 D 3 sh sq = spd iags ( x i s h . ˆ2 , 0 ,K4 ,K4) ;
48
49 U = ze ro s ( [m K8 ] ) ;
50
51 % Ca l cu la t ing i n i t i a l b a s i s c o e f f i c i e n t s
52 Four i e r 0 = conj ( I nv e r a r i t y ( U in i t , g r id sp ,m,N) ) /(8∗ a∗b∗c ) ;
53 w n = reshape ( kron ( G hat inv , G hat inv ) ∗( reshape (G’∗ Four ier 0 , 4∗Nˆ2 ,2∗N) . . .
54 ∗G hat inv ’ ) ,8∗Nˆ3 ,1) ;
55 w 0 = w n ;
56
57 % Ca l cu la t ing i n i t i a l po int va lue s
58 U( : , : , : , 1 ) = r e a l ( Four ierEval ( v sigma . ∗ (G∗w 0 ) ,N, x , y , z , a , b , c ) ) ;
59 U( : , : , : , K8) = U( : , : , : , 1 ) ;
60
61 De l ta t abc = 0.5∗ De l ta t /(8∗ a∗b∗c ) ;
62
63 t imeind = 1 ;
64 t ime r e f = 0 ;
65 d i sp ( ’ Preproce s s ing done ! ’ )
66 t i c ;
67
68 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 % CALCULATING SOLUTION
70 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71
72 f o r t po i n t =1: l ength ( t a l l )
73
74 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 % Preparat ions
76 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77
78 t nph = 0 . 5∗ ( t a l l (max( t po i n t − 1 ,1) ) + t a l l (max( t po int , 2 ) ) ) ;
79 arg U = 0.5∗ (3∗U( : , : , : , K8) − U( : , : , : , 1 ) ) ;
80 arg h = h m(x , y , z , t nph ) ;
81
82 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 % Ca l cu la t ing ba s i s c o e f f i c i e n t s
84 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85
86 d i sp ( ’ Ca l cu l a t ing c o e f f i c i e n t s . . . ’ )
87
88 z n = −conj (1 i ∗( kappa . . .
89 .∗ I n v e r a r i t y (B{1}(x , y , z , t nph , arg U , arg h ) , g r id sp ,m,N) + . . .
90 lambda .∗ I n v e r a r i t y (B{2}(x , y , z , t nph , arg U , arg h ) , g r id sp ,m,N) . . .
91 + x i .∗ I n v e r a r i t y (B{3}(x , y , z , t nph , arg U , arg h ) , g r id sp ,m,N) ) ) ;
92 z n = r e a l (Q’ ∗ (G’ ∗ ( De l ta t abc ∗ z n + G∗w n) ) ) ;
93
94 v i n t = De l ta t abc ∗kron ( [ 1 0 . 5 ] , . . .
95 I nv e r a r i t y (C{1}(x , y , z , t nph , arg U ) , g r id sp ,m,K5) ) ;
96 M int = bsxfun (@times , bsxfun (@times , v i n t (M perm) , kappa sh ) , kappa sh . ’ ) ;
97 v 1 = v in t (K7) ;
98
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A. Matlab source code

99 v i n t = De l ta t abc ∗kron ( [ 1 0 . 5 ] , . . .
100 I nv e r a r i t y (C{2}(x , y , z , t nph , arg U ) , g r id sp ,m,K5) ) ;
101 M int = M int . . .
102 + bsxfun (@times , bsxfun (@times , v i n t (M perm) , lambda sh ) , lambda sh . ’ ) ;
103 v 2 = v in t (K7) ;
104
105 v i n t = De l ta t abc ∗kron ( [ 1 0 . 5 ] , . . .
106 I nv e r a r i t y (C{3}(x , y , z , t nph , arg U ) , g r id sp ,m,K5) ) ;
107 M int = M int + bsxfun ( @times , bsxfun (@times , v i n t (M perm) , x i s h ) , x i s h . ’ ) ;
108 v 3 = v in t (K7) ;
109
110 R n = 2∗ r e a l (GQ’ ∗ ( ( t r i l ( M int ,−1) + v 1∗D 1 sh sq + v 2∗D 2 sh sq . . .
111 + v 3∗D 3 sh sq ) ∗GQ − t r i u ( M int ) ∗ conj (GQ) ) ) ;
112 R n = (R n + R n . ’ ) + GQH GQ;
113
114 w n = 2∗Q∗ l i n s o l v e (R n , z n , opts ) − w n ;
115
116 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
117 % Ca lcu la t ing po int va lue s
118 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119
120 d i sp ( ’ Ca l cu la t ing po int va lue s . . . ’ )
121
122 i f t po i n t == 1 % Pred ictor−c o r r e c t o r method f o r the f i r s t time step
123 U( : , : , : , 1 ) = 2∗U( : , : , : , 1 ) . . .
124 − r e a l ( Four ierEval ( v sigma . ∗ (G∗w n) ,N, x , y , z , a , b , c ) ) ;
125 w n = w 0 ;
126 cont inue % Skipping po int value c a l c u l a t i o n s
127 end
128
129 % Stor ing o ld va lue s
130 U( : , : , : , 1 ) = U( : , : , : , K8) ;
131
132 % New va lues
133 U( : , : , : , K8) = r e a l ( Four ierEval ( v sigma . ∗ (G∗w n) ,N, x , y , z , a , b , c ) ) ;
134
135 i f ismember ( t a l l ( t po i n t ) , t saved )
136 t imeind = timeind + 1 ;
137 U( : , : , : , t imeind ) = U( : , : , : , K8) ;
138 end
139
140 t ime r e f = toc − t ime r e f ;
141 d i sp ( [ ’ Time step ’ i n t 2 s t r ( t po i n t − 1) ’ done in ’ num2str ( t ime r e f ) . . .
142 ’ seconds ! ’ ] )
143 t ime r e f = toc ;
144
145 i f t imeind == K8
146 break % Exit loop i f no more r e s u l t s are to be saved
147 end
148 end
149
150 % Re ins ta t ing i n i t i a l va lue s
151 U( : , : , : , 1 ) = r e a l ( Four ierEval ( v sigma . ∗ (G∗w 0 ) ,N, x , y , z , a , b , c ) ) ;
152
153 d i sp ( ’ So lu t i on c a l c u l a t i o n s done ! ’ )
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120 d i sp ( ’ Ca l cu la t ing po int va lue s . . . ’ )
121
122 i f t po i n t == 1 % Pred ictor−c o r r e c t o r method f o r the f i r s t time step
123 U( : , : , : , 1 ) = 2∗U( : , : , : , 1 ) . . .
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Code A.6 (Script for -5 ◦C )

The file Cod 5.m, which simulates AFD for slabs of cod fillet at -5 ◦C.

1 % Sc r i p t s imu la t ing drying o f a cod s l ab at −5 C.
2
3 % METHOD PARAMETERS:
4
5 % APPROXIMATION PARAMETERS:
6 N = 7 ;
7 n app = 1e10 ;
8 ep s i l o n = 1e−30;
9

10 % CALCULATION DOMAIN:
11 % Product s i z e ( r a d i i in m)
12 r x = @( t ) 0 . 001∗0 . 5∗ ( 19 . 485 + (18 .858 − 19 .485) ∗( t /(34 .25∗3600) ) ˆ(1/3) ) ;
13 r y = @( t ) 0 . 001∗0 . 5∗ ( 19 . 758 + (19 .325 − 19 .758) ∗( t /(34 .25∗3600) ) ˆ(1/3) ) ;
14 r z = @( t ) 0 . 001∗0 . 5∗ ( 4 . 285 + (3 . 895 − 4 .285 ) ∗( t /(34 .25∗3600) ) ˆ(1/3) ) ;
15 Vol = @( t ) 8∗ r x ( t ) ∗ r y ( t ) ∗ r z ( t ) ; % Product volume
16 % Product su r f a c e GDF
17 I prod = @(x , y , z , t ) (1 − ( ( x . / r x ( t ) ) .ˆ20 + (y . / r y ( t ) ) .ˆ20 . . .
18 + ( ( z + r z (0 ) − r z ( t ) ) . / r z ( t ) ) . ˆ 20 ) ) ;
19 % Hole GDFs
20 I h o l e s 1 = @(x , y , z ) (1 − ( ( s i n ( p i ∗x/(5 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3)/(5 e−3) ) ˆ2 . . .
21 + ( s i n ( p i ∗y /(8 . 66 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3) / (8 . 66 e−3) ) ˆ2 . . .
22 + (1 + 100∗( z + r z (0 ) ) ) . ˆ 20 ) ) ;
23 I h o l e s 2 = @(x , y , z ) (1 . . .
24 − ( ( s i n ( p i ∗( x − 2 .5 e−3)/(5 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3)/(5 e−3) ) ˆ2 . . .
25 + ( s i n ( p i ∗( y − 4 .33 e−3) / (8 . 66 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3) / (8 . 66 e−3) ) ˆ2 . . .
26 + (1 + 100∗( z + r z (0 ) ) ) . ˆ 20 ) ) ;
27 % Unit normal f o r product s u r f a c e = −grad ( I prod ) / | grad ( I prod ) |
28 I prod dx = @(x , t ) −20∗(x . ˆ19 ) . / ( r x ( t ) . ˆ 20 ) ;
29 I prod dy = @(y , t ) −20∗(y . ˆ19 ) . / ( r y ( t ) . ˆ 20 ) ;
30 I prod dz = @( z , t ) −20∗(( z + r z (0 ) − r z ( t ) ) . ˆ 19 ) . / ( r z ( t ) . ˆ 20 ) ;
31 abs g rad I prod = @(x , y , z , t ) r e a l s q r t ( I prod dx (x , t ) . ˆ2 + I prod dy (y , t ) . ˆ2 . . .
32 + I prod dz ( z , t ) . ˆ 2 ) ;
33 n = {@(x , y , z , t ) −I prod dx (x , t ) . / abs g rad I prod (x , y , z , t ) , . . .
34 @(x , y , z , t ) −I prod dy (y , t ) . / abs g rad I prod (x , y , z , t ) , . . .
35 @(x , y , z , t ) −I p rod dz ( z , t ) . / abs g rad I prod (x , y , z , t ) } ;
36 % Ind i c a t o r f unc t i on s
37 ch i i hb = @( I ) 0 . 5∗ (1 + tanh ( n app .∗ I ) ) ;
38 chi ohb = @( I ) 0 . 5∗ (1 − tanh ( n app .∗ I ) ) ;
39 % Subset i nd i c a t o r f unc t i on s
40 ch i = c e l l ( 4 , 1 ) ;
41 ch i {1} = @(x , y , z , t ) ch i i hb ( I prod (x , y , z , t ) ) ; % In s i d e the product
42 ch i {2} = @( z ) ch i i hb ( z + r z (0 ) ) ; % Above the p l a t e
43 ch i {3} = @(x , y , z ) ch i i hb ( I h o l e s 1 (x , y , z ) ) ; % Holes
44 ch i {4} = @(x , y , z ) ch i i hb ( I h o l e s 2 (x , y , z ) ) ; % Holes
45 m = [64 64 6 4 ] ;
46 a = 1.25∗ r x (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
47 b = 1.25∗ r y (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
48 c = 1.25∗ r z (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
49
50 % TIME:
51 % Number o f time s t ep s
52 N t = 300 ;
53 % Total time i s 35 h ( s )
54 t t o t = 3600∗35;
55 % Time step length ( s )
56 De l ta t = t t o t /N t ;
57 % Number o f time s t ep s between each s to r ed time step
58 N save = 20 ; % Store every 20 th time step
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The file Cod 5.m, which simulates AFD for slabs of cod fillet at -5 ◦C.

1 % Sc r i p t s imu la t ing drying o f a cod s l ab at −5 C.
2
3 % METHOD PARAMETERS:
4
5 % APPROXIMATION PARAMETERS:
6 N = 7 ;
7 n app = 1e10 ;
8 ep s i l o n = 1e−30;
9

10 % CALCULATION DOMAIN:
11 % Product s i z e ( r a d i i in m)
12 r x = @( t ) 0 . 001∗0 . 5∗ ( 19 . 485 + (18 .858 − 19 .485) ∗( t /(34 .25∗3600) ) ˆ(1/3) ) ;
13 r y = @( t ) 0 . 001∗0 . 5∗ ( 19 . 758 + (19 .325 − 19 .758) ∗( t /(34 .25∗3600) ) ˆ(1/3) ) ;
14 r z = @( t ) 0 . 001∗0 . 5∗ ( 4 . 285 + (3 . 895 − 4 .285 ) ∗( t /(34 .25∗3600) ) ˆ(1/3) ) ;
15 Vol = @( t ) 8∗ r x ( t ) ∗ r y ( t ) ∗ r z ( t ) ; % Product volume
16 % Product su r f a c e GDF
17 I prod = @(x , y , z , t ) (1 − ( ( x . / r x ( t ) ) .ˆ20 + (y . / r y ( t ) ) .ˆ20 . . .
18 + ( ( z + r z (0 ) − r z ( t ) ) . / r z ( t ) ) . ˆ 20 ) ) ;
19 % Hole GDFs
20 I h o l e s 1 = @(x , y , z ) (1 − ( ( s i n ( p i ∗x/(5 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3)/(5 e−3) ) ˆ2 . . .
21 + ( s i n ( p i ∗y /(8 . 66 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3) / (8 . 66 e−3) ) ˆ2 . . .
22 + (1 + 100∗( z + r z (0 ) ) ) . ˆ 20 ) ) ;
23 I h o l e s 2 = @(x , y , z ) (1 . . .
24 − ( ( s i n ( p i ∗( x − 2 .5 e−3)/(5 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3)/(5 e−3) ) ˆ2 . . .
25 + ( s i n ( p i ∗( y − 4 .33 e−3) / (8 . 66 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3) / (8 . 66 e−3) ) ˆ2 . . .
26 + (1 + 100∗( z + r z (0 ) ) ) . ˆ 20 ) ) ;
27 % Unit normal f o r product s u r f a c e = −grad ( I prod ) / | grad ( I prod ) |
28 I prod dx = @(x , t ) −20∗(x . ˆ19 ) . / ( r x ( t ) . ˆ 20 ) ;
29 I prod dy = @(y , t ) −20∗(y . ˆ19 ) . / ( r y ( t ) . ˆ 20 ) ;
30 I prod dz = @( z , t ) −20∗(( z + r z (0 ) − r z ( t ) ) . ˆ 19 ) . / ( r z ( t ) . ˆ 20 ) ;
31 abs g rad I prod = @(x , y , z , t ) r e a l s q r t ( I prod dx (x , t ) . ˆ2 + I prod dy (y , t ) . ˆ2 . . .
32 + I prod dz ( z , t ) . ˆ 2 ) ;
33 n = {@(x , y , z , t ) −I prod dx (x , t ) . / abs g rad I prod (x , y , z , t ) , . . .
34 @(x , y , z , t ) −I prod dy (y , t ) . / abs g rad I prod (x , y , z , t ) , . . .
35 @(x , y , z , t ) −I p rod dz ( z , t ) . / abs g rad I prod (x , y , z , t ) } ;
36 % Ind i c a t o r f unc t i on s
37 ch i i hb = @( I ) 0 . 5∗ (1 + tanh ( n app .∗ I ) ) ;
38 chi ohb = @( I ) 0 . 5∗ (1 − tanh ( n app .∗ I ) ) ;
39 % Subset i nd i c a t o r f unc t i on s
40 ch i = c e l l ( 4 , 1 ) ;
41 ch i {1} = @(x , y , z , t ) ch i i hb ( I prod (x , y , z , t ) ) ; % In s i d e the product
42 ch i {2} = @( z ) ch i i hb ( z + r z (0 ) ) ; % Above the p l a t e
43 ch i {3} = @(x , y , z ) ch i i hb ( I h o l e s 1 (x , y , z ) ) ; % Holes
44 ch i {4} = @(x , y , z ) ch i i hb ( I h o l e s 2 (x , y , z ) ) ; % Holes
45 m = [64 64 6 4 ] ;
46 a = 1.25∗ r x (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
47 b = 1.25∗ r y (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
48 c = 1.25∗ r z (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
49
50 % TIME:
51 % Number o f time s t ep s
52 N t = 300 ;
53 % Total time i s 35 h ( s )
54 t t o t = 3600∗35;
55 % Time step length ( s )
56 De l ta t = t t o t /N t ;
57 % Number o f time s t ep s between each s to r ed time step
58 N save = 20 ; % Store every 20 th time step
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A. Matlab source code

59 % Stored time s t ep s to be p l o t t ed
60 t p l o t = [1 3 5 6 7 8 ] ;
61
62 % PHYSICAL PARAMETER VALUES:
63
64 % MISCELLANEOUS:
65 gamma = 4.0262/(4 .0262 − 1) ;
66 R H2O = 461 .52364 ;
67 rho sa t = @(T) ( ( 6 1 0 . 7 1 . / (R H2O.∗T) ) .∗ ( 10 . ˆ ( −9 . 09718 .∗ ( 273 . 16 . /T − 1) . . .
68 + 0 .876793 .∗ ( 1 − T/273 .16) ) ) . ∗ ( 2 7 3 . 1 6 . /T) .ˆ( −3.56654) ) ;
69 rho sat dT = @(T) (4 e−17) ∗ (1 .785400132 e14 − (2 .30617171 e8 ) ∗(T. ˆ 2 ) . . .
70 + (8 .008367955 e10 ) ∗T) . / (R H2O∗T.ˆ0 . 56654 ) ;
71 Delta H sub = 2835607;
72 % Measured water content , with t imes (h)
73 X wb meas = [83 .1214329 72.15796098 62.10824762 53.45253889 45.30650736 . . .
74 27.99496966 11 . 93179059 ] ;
75 X db meas = X wb meas . / (100 − X wb meas ) ;
76 t wb meas = [0 5 8 11 .5 14 .25 20 .5 3 4 . 2 5 ] ;
77
78 % COD:
79 phi = 0 . 5583 ;
80 m in i t = 1.886 e−3;
81 % I n i t i a l mass o f moisture ( kg )
82 m w init = X wb meas (1 ) ∗m in i t /100 ;
83 % I n i t i a l mass f r a c t i o n o f i c e (%)
84 x i c e = 1.105∗X wb meas (1 ) /(1 + 0.7138/ log (1 + (−2.2) − (−20) ) ) ;
85 % I n i t i a l mass f r a c t i o n o f bound water (%)
86 x bw = X wb meas (1 ) − x i c e ;
87 % Mass o f bound water ( kg )
88 m bw = x bw∗m in i t /100 ;
89 % Mass o f dry matter ( kg )
90 m dry = m in i t − m w init ;
91 % I n i t i a l i c e concent ra t i on ( kg/mˆ3)
92 r h o h a t i c e i n i t = ( x i c e ∗m in i t /100) /Vol (0 ) ;
93
94 % SURROUNDINGS:
95 T surr = 268 . 1 5 ;
96 RH = 0 . 4 0 ;
97 rho su r r = RH∗ rho sa t ( T surr ) ;
98 V a = @( t ) 3 . 3 ;
99 nu a = 1.2883 e−5;

100 k a = 0 .023687 ;
101 Pr = 0 . 7185 ;
102 Sc = 0 . 6 0 ;
103 % Convective mass t r a n s f e r c o e f f i c i e n t (m/ s )
104 h m max = @(x , y , z , t ) . . .
105 0 .332∗ ( Scˆ(−2/3) ) ∗ r e a l s q r t (V a ( t ) .∗ nu a . / ( 2∗b + y − r y ( t ) ) ) ;
106 h o l e f a c = 0 . 8 0 ;
107 h m = @(x , y , z , t ) h m max(x , y , z , t ) . ∗ ( ch i {2}( z ) − ch i {1}(x , y , z , t ) . . .
108 + ho l e f a c ∗( ch i {3}(x , y , z ) + ch i {4}(x , y , z ) ) ) ;
109 % Wet bulb temperature (K)
110 syms Twb
111 T wb = double ( s o l v e ( ( Delta H sub ∗nu a /( k a∗Pr ) ) ∗( rho su r r − rho sa t (Twb) ) . . .
112 + T surr − Twb,Twb) ) ;
113 % Concentrat ion r a t i o
114 omega = r h o h a t i c e i n i t /( phi ∗ rho sa t (T wb) ) ;
115 % Modif ied moisture concent ra t i on in the surroundings ( kg/mˆ3)
116 rho ha t su r r = omega∗ rho su r r ;
117
118 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119 % PREPARATIONS
120 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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121
122 % Generating g r id
123 g r i d sp = 2∗ [ a/m(1) b/m(2) c/m(3) ] ; % Grid spac ings
124 [ x , y , z ] = ndgrid ((−a + 0.5∗ g r i d sp (1 ) ) : g r i d sp (1 ) : a , . . .
125 (−b + 0.5∗ g r i d sp (2 ) ) : g r i d sp (2 ) : b,(− c + 0.5∗ g r i d sp (3 ) ) : g r i d sp (3 ) : c ) ;
126
127 % Generat ing t imes
128 N t = N t + 1 ;
129 t a l l = ze ro s (N t , 1 ) ;
130 t saved = ze ro s ( c e i l ( N t/N save ) ,1 ) ;
131 K1 = length ( t saved ) ;
132 j = 2 ;
133 f o r k=1:(N t − 1)
134 t a l l ( k + 1) = De l ta t ∗k ;
135 i f mod(k , N save ) == 0
136 t saved ( j ) = De l ta t ∗k ;
137 j = j + 1 ;
138 end
139 end
140
141 % Ice bound
142 K ice = 0 . 9 9 ;
143 K ice = K ice ∗ r h o h a t i c e i n i t ;
144
145 % Def in ing d i f f u s i v i t i e s
146 C fac 1 = @(x , y , z , t ) 0 . 0 3 7 ;
147 C fac 2 = @(x , y , z , t ) 0 . 0 3 7 ;
148 C fac 3 = @(x , y , z , t ) 0 . 0 3 7 ;
149 C fac = @(U) ( ( rho sa t (T wb) / r h o h a t i c e i n i t ) ˆ(gamma + 1) ) . . .
150 ∗ ( ( (U + rho ha t su r r ) . ˆgamma) .∗ ch i ohb (U + rho ha t su r r − K ice ) ) ;
151
152 C ice 1 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 1 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
153 C ice 2 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 2 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
154 C ice 3 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 3 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
155
156 C = {C ice 1 , C ice 2 , C i c e 3 } ;
157
158 B = {@(x , y , z , t ,U, h m) − h m .∗U.∗n{1}(x , y , z , t ) /omega , . . .
159 @(x , y , z , t ,U, h m) − h m .∗U.∗n{2}(x , y , z , t ) /omega , . . .
160 @(x , y , z , t ,U, h m) − h m .∗U.∗n{3}(x , y , z , t ) /omega } ;
161
162 % I n i t i a l cond i t i on . Although t h i s exp r e s s i on does not vanish at the
163 % boundary , i t s modi f i ed Four i e r approximation w i l l .
164 U in i t = ( r h o h a t i c e i n i t − rho ha t su r r ) ∗ ones ( s i z e ( x ) ) ;
165
166 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
167 % SOLVING THE EQUATION
168 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
169
170 rho ha t i c e = CannonEwing3D(C,B, U in i t , h m , a , b , c , x , y , z , De l ta t , . . .
171 t saved , t a l l ,N,m, gr id sp , 3 ) ;
172
173 % Remaining mass o f water ( i gno r i ng vapor ) ( kg )
174 m w = ze ro s (K1, 1 ) ;
175 rho hat w = rho ha t i c e ;
176 f o r k=1:K1
177 rho ha t i c e ( : , : , : , k ) = rho ha t i c e ( : , : , : , k ) + rho ha t su r r ;
178 rho hat w ( : , : , : , k ) = ( rh o ha t i c e ( : , : , : , k ) >= K ice ) .∗ r h o ha t i c e ( : , : , : , k ) ;
179 m w(k ) = m bw + Inv e r a r i t y ( rho hat w ( : , : , : , k ) . . .
180 .∗ ch i {1}(x , y , z , t saved (k ) ) , g r id sp ,m, 0 ) ;
181 rho hat w ( : , : , : , k ) = rho hat w ( : , : , : , k ) + m bw/Vol ( t saved (k ) ) ;
182 end
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122 % Generating g r id
123 g r i d sp = 2∗ [ a/m(1) b/m(2) c/m(3) ] ; % Grid spac ings
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144
145 % Def in ing d i f f u s i v i t i e s
146 C fac 1 = @(x , y , z , t ) 0 . 0 3 7 ;
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A. Matlab source code

183
184 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 % DISPLAYING RESULTS
186 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
187
188 % Ca l cu l a t ing water content
189 X wb calc = 100∗m w. / (m w + m dry ) ;
190 X db calc = X wb calc . / (100 − X wb calc ) ;
191
192 t saved = t saved /3600 ; % Converting from seconds to hours ( f o r p l o t t i n g )
193
194 % Plo t t i ng drying curves
195 f i g u r e ( ’Name’ , ’Wet ba s i s water content (%) at d i f f e r e n t t imes (h) ’ )
196 hold on
197 p lo t ( t wb meas , X wb meas , ’ ∗b ’ )
198 p l o t ( t saved , X wb calc , ’ r ’ )
199 hold o f f
200 f i g u r e ( ’Name’ , ’ Dry ba s i s water content at d i f f e r e n t t imes (h) ’ )
201 hold on
202 p lo t ( t wb meas , X db meas , ’∗b ’ )
203 p l o t ( t saved , X db calc , ’ r ’ )
204 hold o f f
205
206 % Plo t t ing i c e concent ra t i on
207 f o r k=1: l ength ( t p l o t )
208 Plot3D ( I prod , permute ( rho hat w , [ 2 1 3 4 ] ) , permute (x , [ 2 1 3 4 ] ) , . . .
209 permute (y , [ 2 1 3 4 ] ) , permute ( z , [ 2 1 3 4 ] ) , 0 , 1 , 0 , 0 , 0 , 0 , . . .
210 t p l o t ( k ) , t saved ( t p l o t ( k ) ) )
211 Plot3D ( I prod , permute ( rho hat w , [ 2 1 3 4 ] ) , permute (x , [ 2 1 3 4 ] ) , . . .
212 permute (y , [ 2 1 3 4 ] ) , permute ( z , [ 2 1 3 4 ] ) , 1 , 0 , 0 , 0 , 0 , 0 , . . .
213 t p l o t ( k ) , t saved ( t p l o t ( k ) ) )
214 end
215
216 % Drying s t a t i s t i c s
217 m rem = 1000∗(m w(1) − m w(K1) ) ;
218 d i sp ( [ ’ Mass o f water removed : ’ num2str (m rem) ’ g ( ’ . . .
219 num2str ( 0 . 1∗m rem/m w(1) ) ’ % o f i n i t i a l mass o f water removed ) ’ ] )
220 E phase = m rem∗Delta H sub ∗(1 e−6) ;
221 d i sp ( [ ’ Energy spent on sub l imat ion : ’ num2str ( E phase ) ’ kJ ’ ] )
222
223 % Time usage
224 TU = toc ;
225 Time usage . Min = f l o o r (TU/60) ;
226 Time usage . Sec = mod(TU,60 ) ;
227 d i sp ( [ ’ Time spent : ’ num2str ( Time usage . Min) ’ minute ( s ) and ’ . . .
228 num2str ( Time usage . Sec ) ’ seconds ’ ] )
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189 X wb calc = 100∗m w. / (m w + m dry ) ;
190 X db calc = X wb calc . / (100 − X wb calc ) ;
191
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196 hold on
197 p lo t ( t wb meas , X wb meas , ’ ∗b ’ )
198 p l o t ( t saved , X wb calc , ’ r ’ )
199 hold o f f
200 f i g u r e ( ’Name’ , ’ Dry ba s i s water content at d i f f e r e n t t imes (h) ’ )
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202 p lo t ( t wb meas , X db meas , ’∗b ’ )
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222
223 % Time usage
224 TU = toc ;
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227 d i sp ( [ ’ Time spent : ’ num2str ( Time usage . Min) ’ minute ( s ) and ’ . . .
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Code A.7 (Script for -10 ◦C )

The file Cod 10.m, which simulates AFD for slabs of cod fillet at -10 ◦C.

1 % Sc r i p t s imu la t ing drying o f a cod s l ab at −10 C.
2
3 % METHOD PARAMETERS:
4
5 % APPROXIMATION PARAMETERS:
6 N = 7 ;
7 n app = 1e10 ;
8 ep s i l o n = 1e−30;
9

10 % CALCULATION DOMAIN:
11 % Product s i z e ( r a d i i in m)
12 r x = @( t ) 0 . 0 01∗0 . 5∗ ( 2 0 . 4 + (18 .988 − 20 . 4 ) ∗( t /(102∗3600) ) ˆ(1/3) ) ;
13 r y = @( t ) 0 . 001∗0 . 5∗ ( 20 . 273 + (17 .315 − 20 .273) ∗( t /(102∗3600) ) ˆ(1/3) ) ;
14 r z = @( t ) 0 . 0 01∗0 . 5∗ ( 4 . 5 1 + (4 . 08 − 4 . 51 ) ∗( t /(102∗3600) ) ˆ(1/3) ) ;
15 Vol = @( t ) 8∗ r x ( t ) ∗ r y ( t ) ∗ r z ( t ) ; % Product volume
16 % Product su r f a c e GDF
17 I prod = @(x , y , z , t ) (1 − ( ( x . / r x ( t ) ) .ˆ20 + (y . / r y ( t ) ) .ˆ20 . . .
18 + ( ( z + r z (0 ) − r z ( t ) ) . / r z ( t ) ) . ˆ 20 ) ) ;
19 % Hole GDFs
20 I h o l e s 1 = @(x , y , z ) (1 − ( ( s i n ( p i ∗x/(5 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3)/(5 e−3) ) ˆ2 . . .
21 + ( s i n ( p i ∗y /(8 . 66 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3) / (8 . 66 e−3) ) ˆ2 . . .
22 + (1 + 100∗( z + r z (0 ) ) ) . ˆ 20 ) ) ;
23 I h o l e s 2 = @(x , y , z ) (1 . . .
24 − ( ( s i n ( p i ∗( x − 2 .5 e−3)/(5 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3)/(5 e−3) ) ˆ2 . . .
25 + ( s i n ( p i ∗( y − 4 .33 e−3) / (8 . 66 e−3) ) . ˆ 2 ) / s i n ( p i ∗ ( 1 . 5 e−3) / (8 . 66 e−3) ) ˆ2 . . .
26 + (1 + 100∗( z + r z (0 ) ) ) . ˆ 20 ) ) ;
27 % Unit normal f o r product s u r f a c e = −grad ( I prod ) / | grad ( I prod ) |
28 I prod dx = @(x , t ) −20∗(x . ˆ19 ) . / ( r x ( t ) . ˆ 20 ) ;
29 I prod dy = @(y , t ) −20∗(y . ˆ19 ) . / ( r y ( t ) . ˆ 20 ) ;
30 I prod dz = @( z , t ) −20∗(( z + r z (0 ) − r z ( t ) ) . ˆ 19 ) . / ( r z ( t ) . ˆ 20 ) ;
31 abs g rad I prod = @(x , y , z , t ) r e a l s q r t ( I prod dx (x , t ) . ˆ2 + I prod dy (y , t ) . ˆ2 . . .
32 + I prod dz ( z , t ) . ˆ 2 ) ;
33 n = {@(x , y , z , t ) −I prod dx (x , t ) . / abs g rad I prod (x , y , z , t ) , . . .
34 @(x , y , z , t ) −I prod dy (y , t ) . / abs g rad I prod (x , y , z , t ) , . . .
35 @(x , y , z , t ) −I p rod dz ( z , t ) . / abs g rad I prod (x , y , z , t ) } ;
36 % Ind i c a t o r f unc t i on s
37 ch i i hb = @( I ) 0 . 5∗ (1 + tanh ( n app .∗ I ) ) ;
38 chi ohb = @( I ) 0 . 5∗ (1 − tanh ( n app .∗ I ) ) ;
39 % Subset i nd i c a t o r f unc t i on s
40 ch i = c e l l ( 4 , 1 ) ;
41 ch i {1} = @(x , y , z , t ) ch i i hb ( I prod (x , y , z , t ) ) ; % In s i d e the product
42 ch i {2} = @( z ) ch i i hb ( z + r z (0 ) ) ; % Above the p l a t e
43 ch i {3} = @(x , y , z ) ch i i hb ( I h o l e s 1 (x , y , z ) ) ; % Holes
44 ch i {4} = @(x , y , z ) ch i i hb ( I h o l e s 2 (x , y , z ) ) ; % Holes
45 m = [64 64 6 4 ] ;
46 a = 1.25∗ r x (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
47 b = 1.25∗ r y (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
48 c = 1.25∗ r z (0 ) ; % 25 % l a r g e r than i n i t i a l r ad iu s
49
50 % TIME:
51 % Number o f time s t ep s
52 N t = 450 ;
53 % Total time i s 100 h ( s )
54 t t o t = 3600∗100;
55 % Time step length ( s )
56 De l ta t = t t o t /N t ;
57 % Number o f time s t ep s between each s to r ed time step
58 N save = 18 ; % Store every 18 th time step
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59 % Stored time s t ep s to be p l o t t ed
60 t p l o t = [1 3 5 7 9 1 1 ] ;
61
62 % PHYSICAL PARAMETER VALUES:
63
64 % MISCELLANEOUS:
65 gamma = 4.0246/(4 .0246 − 1) ;
66 R H2O = 461 .52364 ;
67 rho sa t = @(T) ( ( 6 1 0 . 7 1 . / (R H2O.∗T) ) .∗ ( 10 . ˆ ( −9 . 09718 .∗ ( 273 . 16 . /T − 1) . . .
68 + 0 .876793 .∗ ( 1 − T/273 .16) ) ) . ∗ ( 2 7 3 . 1 6 . /T) .ˆ( −3.56654) ) ;
69 rho sat dT = @(T) (4 e−17) ∗ (1 .785400132 e14 − (2 .30617171 e8 ) ∗(T. ˆ 2 ) . . .
70 + (8 .008367955 e10 ) ∗T) . / (R H2O∗T.ˆ0 . 56654 ) ;
71 Delta H sub = 2836633;
72 % Measured water content , with t imes (h)
73 X wb meas = [ 8 4 . 3 75.302145 48.35722565 20.34261018 14.74214693 14 . 69997103 ] ;
74 X db meas = X wb meas . / (100 − X wb meas ) ;
75 t wb meas = [0 6 .5 30 .5 58 82 1 0 2 ] ;
76
77 % COD:
78 phi = 0 . 7531 ;
79 m in i t = 2.180 e−3;
80 % I n i t i a l mass o f moisture ( kg )
81 m w init = X wb meas (1 ) ∗m in i t /100 ;
82 % I n i t i a l mass f r a c t i o n o f i c e (%)
83 x i c e = 1.105∗X wb meas (1 ) /(1 + 0.7138/ log (1 + (−2.2) − (−20) ) ) ;
84 % I n i t i a l mass f r a c t i o n o f bound water (%)
85 x bw = X wb meas (1 ) − x i c e ;
86 % Mass o f bound water ( kg )
87 m bw = x bw∗m in i t /100 ;
88 % Mass o f dry matter ( kg )
89 m dry = m in i t − m w init ;
90 % I n i t i a l i c e concent ra t i on ( kg/mˆ3)
91 r h o h a t i c e i n i t = ( x i c e ∗m in i t /100) /Vol (0 ) ;
92
93 % SURROUNDINGS:
94 T surr = 263 . 1 5 ;
95 RH = 0 . 4 0 ;
96 rho su r r = RH∗ rho sa t ( T surr ) ;
97 V a = @( t ) 3 . 3 ;
98 nu a = 1.2453 e−5;
99 k a = 0 .023292 ;

100 Pr = 0 . 7 2 ;
101 Sc = 0 . 6 0 ;
102 % Convective mass t r a n s f e r c o e f f i c i e n t (m/ s )
103 h m max = @(x , y , z , t ) . . .
104 0 .332∗ ( Scˆ(−2/3) ) ∗ r e a l s q r t (V a ( t ) .∗ nu a . / ( 2∗b + y − r y ( t ) ) ) ;
105 h o l e f a c = 0 . 8 0 ;
106 h m = @(x , y , z , t ) h m max(x , y , z , t ) . ∗ ( ch i {2}( z ) − ch i {1}(x , y , z , t ) . . .
107 + ho l e f a c ∗( ch i {3}(x , y , z ) + ch i {4}(x , y , z ) ) ) ;
108 % Wet bulb temperature (K)
109 syms Twb
110 T wb = double ( s o l v e ( ( Delta H sub ∗nu a /( k a∗Pr ) ) ∗( rho su r r − rho sa t (Twb) ) . . .
111 + T surr − Twb,Twb) ) ;
112 % Concentrat ion r a t i o
113 omega = r h o h a t i c e i n i t /( phi ∗ rho sa t (T wb) ) ;
114 % Modif ied moisture concent ra t i on in the surroundings ( kg/mˆ3)
115 rho ha t su r r = omega∗ rho su r r ;
116
117 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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121 % Generating g r id
122 g r i d sp = 2∗ [ a/m(1) b/m(2) c/m(3) ] ; % Grid spac ings
123 [ x , y , z ] = ndgrid ((−a + 0.5∗ g r i d sp (1 ) ) : g r i d sp (1 ) : a , . . .
124 (−b + 0.5∗ g r i d sp (2 ) ) : g r i d sp (2 ) : b,(− c + 0.5∗ g r i d sp (3 ) ) : g r i d sp (3 ) : c ) ;
125
126 % Generat ing t imes
127 N t = N t + 1 ;
128 t a l l = ze ro s (N t , 1 ) ;
129 t saved = ze ro s ( c e i l ( N t/N save ) ,1 ) ;
130 K1 = length ( t saved ) ;
131 j = 2 ;
132 f o r k=1:(N t − 1)
133 t a l l ( k + 1) = De l ta t ∗k ;
134 i f mod(k , N save ) == 0
135 t saved ( j ) = De l ta t ∗k ;
136 j = j + 1 ;
137 end
138 end
139
140 % Ice bound
141 K ice = 0 . 9 9 ;
142 K ice = K ice ∗ r h o h a t i c e i n i t ;
143
144 % Def in ing d i f f u s i v i t i e s
145 C fac 1 = @(x , y , z , t ) 0 . 0 1 3 ;
146 C fac 2 = @(x , y , z , t ) 0 . 0 1 3 ;
147 C fac 3 = @(x , y , z , t ) 0 . 0 1 3 ;
148 C fac = @(U) ( ( rho sa t (T wb) / r h o h a t i c e i n i t ) ˆ(gamma + 1) ) . . .
149 ∗ ( ( (U + rho ha t su r r ) . ˆgamma) .∗ ch i ohb (U + rho ha t su r r − K ice ) ) ;
150
151 C ice 1 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 1 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
152 C ice 2 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 2 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
153 C ice 3 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 3 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
154
155 C = {C ice 1 , C ice 2 , C i c e 3 } ;
156
157 B = {@(x , y , z , t ,U, h m) − h m .∗U.∗n{1}(x , y , z , t ) /omega , . . .
158 @(x , y , z , t ,U, h m) − h m .∗U.∗n{2}(x , y , z , t ) /omega , . . .
159 @(x , y , z , t ,U, h m) − h m .∗U.∗n{3}(x , y , z , t ) /omega } ;
160
161 % I n i t i a l cond i t i on . Although t h i s exp r e s s i on does not vanish at the
162 % boundary , i t s modi f i ed Four i e r approximation w i l l .
163 U in i t = ( r h o h a t i c e i n i t − rho ha t su r r ) ∗ ones ( s i z e ( x ) ) ;
164
165 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
166 % SOLVING THE EQUATION
167 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
168
169 rho ha t i c e = CannonEwing3D(C,B, U in i t , h m , a , b , c , x , y , z , De l ta t , . . .
170 t saved , t a l l ,N,m, gr id sp , 2 ) ;
171
172 % Remaining mass o f water ( i gno r i ng vapor ) ( kg )
173 m w = ze ro s (K1, 1 ) ;
174 rho hat w = rho ha t i c e ;
175 f o r k=1:K1
176 rho ha t i c e ( : , : , : , k ) = rho ha t i c e ( : , : , : , k ) + rho ha t su r r ;
177 rho hat w ( : , : , : , k ) = ( rh o ha t i c e ( : , : , : , k ) >= K ice ) .∗ r h o ha t i c e ( : , : , : , k ) ;
178 m w(k ) = m bw + Inv e r a r i t y ( rho hat w ( : , : , : , k ) . . .
179 .∗ ch i {1}(x , y , z , t saved (k ) ) , g r id sp ,m, 0 ) ;
180 rho hat w ( : , : , : , k ) = rho hat w ( : , : , : , k ) + m bw/Vol ( t saved (k ) ) ;
181 end
182
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180 rho hat w ( : , : , : , k ) = rho hat w ( : , : , : , k ) + m bw/Vol ( t saved (k ) ) ;
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115

121 % Generating g r id
122 g r i d sp = 2∗ [ a/m(1) b/m(2) c/m(3) ] ; % Grid spac ings
123 [ x , y , z ] = ndgrid ((−a + 0.5∗ g r i d sp (1 ) ) : g r i d sp (1 ) : a , . . .
124 (−b + 0.5∗ g r i d sp (2 ) ) : g r i d sp (2 ) : b,(− c + 0.5∗ g r i d sp (3 ) ) : g r i d sp (3 ) : c ) ;
125
126 % Generat ing t imes
127 N t = N t + 1 ;
128 t a l l = ze ro s (N t , 1 ) ;
129 t saved = ze ro s ( c e i l ( N t/N save ) ,1 ) ;
130 K1 = length ( t saved ) ;
131 j = 2 ;
132 f o r k=1:(N t − 1)
133 t a l l ( k + 1) = De l ta t ∗k ;
134 i f mod(k , N save ) == 0
135 t saved ( j ) = De l ta t ∗k ;
136 j = j + 1 ;
137 end
138 end
139
140 % Ice bound
141 K ice = 0 . 9 9 ;
142 K ice = K ice ∗ r h o h a t i c e i n i t ;
143
144 % Def in ing d i f f u s i v i t i e s
145 C fac 1 = @(x , y , z , t ) 0 . 0 1 3 ;
146 C fac 2 = @(x , y , z , t ) 0 . 0 1 3 ;
147 C fac 3 = @(x , y , z , t ) 0 . 0 1 3 ;
148 C fac = @(U) ( ( rho sa t (T wb) / r h o h a t i c e i n i t ) ˆ(gamma + 1) ) . . .
149 ∗ ( ( (U + rho ha t su r r ) . ˆgamma) .∗ ch i ohb (U + rho ha t su r r − K ice ) ) ;
150
151 C ice 1 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 1 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
152 C ice 2 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 2 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
153 C ice 3 = @(x , y , z , t ,U) ch i {1}(x , y , z , t ) .∗ C fac 3 (x , y , z , t ) .∗ C fac (U) + ep s i l o n ;
154
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159 @(x , y , z , t ,U, h m) − h m .∗U.∗n{3}(x , y , z , t ) /omega } ;
160
161 % I n i t i a l cond i t i on . Although t h i s exp r e s s i on does not vanish at the
162 % boundary , i t s modi f i ed Four i e r approximation w i l l .
163 U in i t = ( r h o h a t i c e i n i t − rho ha t su r r ) ∗ ones ( s i z e ( x ) ) ;
164
165 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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A. Matlab source code

183 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
184 % DISPLAYING RESULTS
185 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
186
187 % Ca l cu l a t ing water content
188 X wb calc = 100∗m w. / (m w + m dry ) ;
189 X db calc = X wb calc . / (100 − X wb calc ) ;
190
191 t saved = t saved /3600 ; % Converting from seconds to hours ( f o r p l o t t i n g )
192
193 % Plo t t i ng drying curves
194 f i g u r e ( ’Name’ , ’Wet ba s i s water content (%) at d i f f e r e n t t imes (h) ’ )
195 hold on
196 p lo t ( t wb meas , X wb meas , ’ ∗b ’ )
197 p l o t ( t saved , X wb calc , ’ r ’ )
198 hold o f f
199 f i g u r e ( ’Name’ , ’ Dry ba s i s water content at d i f f e r e n t t imes (h) ’ )
200 hold on
201 p lo t ( t wb meas , X db meas , ’∗b ’ )
202 p l o t ( t saved , X db calc , ’ r ’ )
203 hold o f f
204
205 % Plo t t ing i c e concent ra t i on
206 f o r k=1: l ength ( t p l o t )
207 Plot3D ( I prod , permute ( rho hat w , [ 2 1 3 4 ] ) , permute (x , [ 2 1 3 4 ] ) , . . .
208 permute (y , [ 2 1 3 4 ] ) , permute ( z , [ 2 1 3 4 ] ) , 0 , 1 , 0 , 0 , 0 , 0 , . . .
209 t p l o t ( k ) , t saved ( t p l o t ( k ) ) )
210 Plot3D ( I prod , permute ( rho hat w , [ 2 1 3 4 ] ) , permute (x , [ 2 1 3 4 ] ) , . . .
211 permute (y , [ 2 1 3 4 ] ) , permute ( z , [ 2 1 3 4 ] ) , 1 , 0 , 0 , 0 , 0 , 0 , . . .
212 t p l o t ( k ) , t saved ( t p l o t ( k ) ) )
213 end
214
215 % Drying s t a t i s t i c s
216 m rem = 1000∗(m w(1) − m w(K1) ) ;
217 d i sp ( [ ’ Mass o f water removed : ’ num2str (m rem) ’ g ( ’ . . .
218 num2str ( 0 . 1∗m rem/m w(1) ) ’ % o f i n i t i a l mass o f water removed ) ’ ] )
219 E phase = m rem∗Delta H sub ∗(1 e−6) ;
220 d i sp ( [ ’ Energy spent on sub l imat ion : ’ num2str ( E phase ) ’ kJ ’ ] )
221
222 % Time usage
223 TU = toc ;
224 Time usage . Min = f l o o r (TU/60) ;
225 Time usage . Sec = mod(TU,60 ) ;
226 d i sp ( [ ’ Time spent : ’ num2str ( Time usage . Min) ’ minute ( s ) and ’ . . .
227 num2str ( Time usage . Sec ) ’ seconds ’ ] )
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