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Abstract

This thesis investigates the development and use of interface-capturing
methods for detailed simulations of surfactant-covered drops in electric
fields.

A mathematical model is established for the full hydrodynamic behavior of
the drops, including both electric forces caused by an applied electric field
and forces due to the non-uniform surface tension caused by the presence of
surfactants. Equations for the electric field and for the coupled evolution of
surfactant on the interface and in the bulk are also considered.

Numerical methods suitable for the solution of the mathematical model are
investigated. Both the level-set method and the phase-field method are used.
For the level-set method, the ghost-fluid method which treats discontinuities
across the interface in a sharp manner is considered and compared to the
conceptually simpler continuous surface-force method. For the phase-field
method, sophisticated numerical approaches including nonlinear multigrid
methods on block-structured adaptive grids are used to enable simulations in
full 3D.

Several physical configurations are examined. It is shown how an electric
field can suppress the partial coalescence phenomenon occurring when a drop
coalesces with an interface. Is is demonstrated that the presence of a surfactant
can considerably slow down a sedimenting drop due to inhibition of internal
circulation. Conversely, an electric field speeds up the sedimentation due
to stretching which leads to reduced drag. The deformation of a surfactant-
covered leaky dielectric drop in an electric field is studied, and rich deformation
behavior due to the complex interaction between the electric field and the
surfactant is demonstrated. Finally, full 3D simulations of a drop in shear
flow are performed, with particular emphasis on the influence of a soluble
surfactant. It is shown that the deformation of a drop with soluble surfactant
in general lies between that of a clean drop and that of a drop covered with
insoluble surfactant. However, for the breakup of a drop, it is shown that for
the insoluble case, the drop can break up at a earlier time compared to a clean
drop, while for the soluble case, the drop can break up at a later time.
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1 Introduction

I really cannot see why so many of our compatriots should
find the scientific approach dull and dissapointing. It is a
common mistake to think that all that matters in science is
logic and the understanding and appliction of fixed laws. In
fact, imagination plays a decisive role in science, and
especially in natural science.

Werner Heisenberg (1901–1976)

Science is not formal logic – it needs the free play of the
mind in as great a degree as any other creative art.

Max Born (1882–1970), winner of the Nobel Prize in Physics

1.1 Background

Oil extracted from offshore oil wells typically contains a significant amount of
water. As a result of the oil-water mixture passing through valves and pumps,
this water takes the form of small drops, see Figure 1.1 for an example. Since
the density of water is larger than that of the oil, it is common to remove
the water by sedimentation, where the oil-water mixture is placed in large
separation tanks and the water drops eventually fall to the bottom of the tank
and is extracted. There is a trend towards moving oil production to floating
vessels, called floating production, storing and offloading (FPSO) units. These
units have restricted space, so the large separation tanks are problematic.
Also, due to uncertainties in future oil production, there is a push towards
developing heavier, more viscous oils. These issues create a need for more
efficient, and more compact separation units.

In order to understand the separation process, it is instructive to consider a
single, small water drop falling through a viscous oil. An approximation of the
terminal velocity of such a drop is given by Stokes’ law,

Vt = ΔρgD
2

18μ
. (1.1)
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Figure 1.1: Picture of a water-in-oil emulsion reproduced from Chiesa (2004).
The water drops appear black due to the image-capturing technique.

Here, Δρ is the density difference between water and oil, g is the gravitational
acceleration, D is the diameter of the drop and μ is the viscosity of the oil.
This formula makes it clear that for heavy, viscous oils and small water drops,
the sedimentation process can be very time consuming. It is also evident
that to speed up the process, the parameter that has the most significant
impact on the falling velocity is the drop diameter. Hence, the most efficient
way to speed up the sedimentation process is to obtain larger drops by drop
coalescence. This simple observation is utilized in electrostatic coalescers. Due
to the large difference in electrical conductivity between salt water and oil, the
water behaves as a conductor and the oil as an insulator. When an electric field
is applied to a water-in-oil mixture, the water drops are polarized as illustrated
in Figure 1.2. This leads to attractive forces between the water drops, which
again lead to coalescence.

A drop coalescence event can typically be divided into three stages. The
first is drop approach, where the drops are brought into contact. The second
is film-thinning, where the thin oil film between the drops is squeezed out
by the approaching interfaces. The third and final stage is film rupture and
coalescence. To see at which of stage the electric field has greatest influence, it
is elucidating to approximate the two drops as dipoles. This leads to a simple
expression for the force between them (see e.g. Klingenberg et al. (1991)),

F = 24πεE2
0R6

h4
, (1.2)

where ε is the permittivity of the oil, E0 is the electric field magnitude, R is the
drop radius and h is the distance between the drops. Due to the h−4 term, we
understand that the drops need to be very close in order for the electric forces
to have a significant impact. Therefore, the electric field mainly speeds up
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Figure 1.2: Illustration of the polarization of two conducting water drops in an
insulating oil when subjected to an electric field. The lines represent
electric field lines (taken from a numerical simulation).

the film-thinning process, and other forces are needed to bring the drops into
contact. In modern commercial electrocoalescers, the electrodes are typically
placed where the flow is turbulent. The turbulent forces increase the collision
frequency, and the electric forces increase the probability of coalescence during
a collision event.

Another factor that is important during the film-thinning process, is the
prescence of surface-active agents (surfactants). Surfactants are amphiphilic
organic compounds which are naturally present in the crude oil, and can be
adsorbed at the oil-water interface. The presence of surfactants reduce the
surface tension of the interface, and this can in turn significantly impact the
film-thinning process. When two drops approach each other, as illustrated in
Figure 1.3, surfactant molecules will be swept from the tip of the drop. This
will create a surface-tension gradient, which gives rise to tangential stresses
along the interface. These stresses will reduce the internal circulation in the
drop and inhibit the drainage of the intermediate oil film. It has been observed
(see e.g. Yang and Maa (1984); Leal (2004)) that the presence of surfactants may
significantly increase the coalescence time. The combined effect of surfactants
and electric fields on the coalescence process has received little attention
in the literature. However, the deformation of a single drop was studied
experimentally in Ha and Yang (1998) and it was found that the presence of
surfactants affected both the amount of deformation and the mode of breakup.

In order to obtain a deeper understanding of the electrocoalescence process,
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Figure 1.3: Illustration of the reduced drainage of the oil film between two ap-
proaching water drops in the presence of surface active molecules.

this work sets out to establish mathematical models for describing the above
processes. It is also necessary to develop the numerical methods needed to
solve the mathematical models in an accurate and efficient manner.

1.2 Relevance to other areas

It is important to emphasize that the present work has relevance reaching
beyond just the problem of electrocoalescence. The models and methods
developed here can easily be applied to a multitude of other interesting areas.

Electric fields are used to control or modify two-phase flows in several
different areas. These include enhanced heat transfer in heat exchangers (e.g.
Laohalertdecha et al. (2007)), drop generation in inkjet printers (e.g. Yu et al.
(2005); Shin et al. (2004)) and drop manipulation on lab-on-a-chip devices (e.g.
Link et al. (2006); Cristini and Tan (2004)),

The topic of surfactants is also important in other areas. Besides their
impact on drop break-up and coalescence (e.g. Hu et al. (2000); Hudson et al.
(2003); Leal (2004); Hameed et al. (2008)), surfactants play important roles
in vortex pair interaction (e.g., Tryggvason et al. (1992); Hirsa and Willmarth
(1994)), fingering (e.g. Troian et al. (1990); Matar and Troian (1999)) and are
also important in biomedical applications (e.g. Singh and Cameotra (2004) and
in the food industry (e.g. Nitschke and Costa (2007).

Solving the surfactant dynamics can be generalized to the problem of solving
an equation along a general, moving interface and where the bulk dynamics
and interface dynamics are coupled. Problems where this is important include
biomembranes where transmembrane proteins play an important role in intra-
and extra- cellular dynamics (e.g. Kockelkoren et al. (2003); Allain and Amar
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(2008); Levine and Rappel (2005); Gomez-Marin et al. (2007)), epitaxially grown
thin films where adsorbing/desorbing adatoms affect the dynamics and coars-
ening of the thin film (e.g. Fried and Gurtin (2004); Stocker and Voigt (2008);
Li et al. (2009a)), and electrochemical dissolution of binary alloys where one
component is removed selectively and dissolved in an electrolyte solution (e.g.
Erlebacher et al. (2001); Eilks and Elliott (2008)).
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2 Mathematical modelling and numerical methods

Essentially, all models are wrong, but some are useful.

George E. P. Box

Today you are in an entirely different situation. You don’t
have to put the problem on a Procrustean bed and mutilate
it before you attack it numerically.

Peter Lax - winner of the Abel Price 2005

In this chapter, a brief overview of the mathematical models and numerical
methods employed in this work are given. The flow dynamics in a many
industrial processes covers a wide range of scales, and it is impossible to
include all scales in a single model. Therefore, a multiscale approach to
modelling is envisioned, where different models suitable for each scale are
used together. Figure 2.1 shows an illustration of such a modelling hierarchy for
the electrocoalescence process. At the microscale, interface-tracking/capturing
methods are employed. These methods are capable of accurately resolving the
movement of the drops and the deformation of the interfaces. As demonstrated
in Cristini and Tan (2004), these methods are ideal for studying breakup and
coalescence phenomena. The level of detail of interface-capturing techniques
can in many cases provide information that is not immediately available from
experiments. However, they also require high grid resolutions, so the number
of drops that can be simulated is limited to small systems. Typically, only one
or two drops can be simulated within reasonable times on a single workstation.

In discrete particle methods, each drop is modelled as a spherical particle,
and force relationships between these particles are used to advance the solution
in time. This simplified arrangement allows for more drops to be simulated. In
Melheim (2007), electrocoalescence was simulated using 1 × 106 drops. The
quality of such a simulation is obviously highly dependent on the accuracy of
the models used to represent the forces between the particles.

Even larger systems may be taken into consideration using multi-fluid meth-
ods. Here, only the averaged effect of drops are taken into account. This gives
rise to unknown terms in the flow models, which need to be modelled to obtain
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electric forces. The Navier–Stokes equations are

ρ
(
∂u
∂t

+ (u · ∇)u
)
= −∇p +∇ · [μ(∇u+∇uT )]
+ fc + fe,

∇ · u = 0,

(2.1)

where ρ is the density, u is the velocity, p is the pressure and μ is the dynamic
viscosity. The effect of an interface, Γ , in the domain results in a singular
surface force which can be expressed by

fc(x, t) =
∫
Γ(t)

F(s, t)δ(x −X(s, t))ds, (2.2)

where s is the arc-length, X(s, t) is the parametrization of the interface, x is
the spatial position and δ is the Dirac delta function. F is given by

F = γκn+∇Γγ. (2.3)

Here, γ is the interfacial tension, κ the curvature and n is the inward pointing
unit normal vector. The surface gradient operator, ∇Γ can be written as

∇Γ = (I − n⊗ n)∇. (2.4)

The first term on the right-hand side of Equation (2.3) accounts for the capillary
force which acts perpendicularly to the drop interface. This force is present at
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all liquid interfaces. The second term is an additional force due to gradients
in the interfacial tension, which can occur if surfactants are present on the
interface. This force acts tangentially to the interface.

The electric force is given by the divergence of the Maxwell stress tensor,
fe =∇ ·M, where

M = ε
[
EE − 1

2
(E · E)I

]
. (2.5)

Here, E is the electric field and I is the identity tensor. We assume perfect
dielectric materials with no free charges. A conducting drop in an insulating
medium, which is the case for a water drop in oil, can then be approximated by
setting εwater � εoil.

With these assumptions, the electric potential, Ψ , can be calculated from the
following Laplace equation:

∇ · (εε0∇Ψ) = 0, (2.6)

The electric field can then be calculated as

E = −∇Ψ , (2.7)

With the above assumptions, ∇ ·M = 0 everywhere except at the interface.
Next, we assume that the interface is covered by surfactants, and we let f

denote the surfactant concentration defined on Γ . The presence of a surfactant
will decrease the interfacial tension of the interface. We assume that the
dependence of the interfacial tension is governed by a Langmuir equation of
state,

γ(f) = γ0

[
1+ RTf∞

γ0
ln

(
1− f

f∞

)]
, (2.8)

where R is the ideal gas constant, T is the absolute temperature, γ0 is the
interfacial tension of a clean interface and f∞ is the maximum interfacial
surfactant concentration. The dimensionless factor β = RTf∞/γ0 is often
denoted the surface elasticity parameter and expresses the sensitivity of the
interfacial tension to changes in the surfactant concentration. For a dilute
surfactant concentration, the above expression can be simplified to give a
linear equation,

γ(f) = γ0 −RTf . (2.9)

This expression is often used in the literature. A comparison between these
two expressions is given in Figure 2.3. It is evident that the linear equation of
state is a good match at low concentrations, but fails to reproduce the steep
gradient at higher concentrations. The non-linear equation of state is used for
all simulations in this work.
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Figure 2.3: Dependence of surface tension on surfactant concentration. Com-
parison of a linear and non-linear equation of state. β = 0.2.

Assuming that f may be extended off Γ , the sharp-interface representation
of the evolution of the surface surfactant is given by (see e.g. Xu and Zhao
(2003))

∂f
∂t

+ u ·∇f − n ·∇u · nf = Df(∇2 − n ·∇∇ · n− κn ·∇)f + j, (2.10)

where Df is the diffusion coefficient. The source term, j, accounts for adsorp-
tion and desorption of surfactant and is given by

j(f , F) = raFs (f∞ − f)− rdf . (2.11)

Here, ra and rd are adsorption and desorption coefficients, respectively, and Fs
is the surfactant concentration immediately adjacent to the surface.

Now, assume that f is soluble in Ω1, but not in Ω0. Let there be a bulk
concentration, F , in Ω1, which is governed by

∂F
∂t
+∇ · (Fu) = DF∇2F in Ω1, (2.12)

with the boundary condition at Γ

DF∇F · n = −j on Γ . (2.13)

Here, DF is the diffusion coefficient in the bulk.
The equations for the surfactant on the interface and in the bulk are coupled

through the source term, j. In order to simplify the mathematical representa-
tion, let δ be the surface delta function such that∫

Γ
f dΓ =

∫
Ω
fδdΩ. (2.14)

2.1. Mathematical formulation 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Surfactant concentration, f/f
∞

In
te

rf
ac

ia
l t

en
si

on
, γ

/γ
0

Non−linear
Linear

Figure 2.3: Dependence of surface tension on surfactant concentration. Com-
parison of a linear and non-linear equation of state. β = 0.2.

Assuming that f may be extended off Γ , the sharp-interface representation
of the evolution of the surface surfactant is given by (see e.g. Xu and Zhao
(2003))

∂f
∂t

+ u ·∇f − n ·∇u · nf = Df(∇2 − n ·∇∇ · n− κn ·∇)f + j, (2.10)

where Df is the diffusion coefficient. The source term, j, accounts for adsorp-
tion and desorption of surfactant and is given by

j(f , F) = raFs (f∞ − f)− rdf . (2.11)

Here, ra and rd are adsorption and desorption coefficients, respectively, and Fs
is the surfactant concentration immediately adjacent to the surface.

Now, assume that f is soluble in Ω1, but not in Ω0. Let there be a bulk
concentration, F , in Ω1, which is governed by

∂F
∂t
+∇ · (Fu) = DF∇2F in Ω1, (2.12)

with the boundary condition at Γ

DF∇F · n = −j on Γ . (2.13)

Here, DF is the diffusion coefficient in the bulk.
The equations for the surfactant on the interface and in the bulk are coupled

through the source term, j. In order to simplify the mathematical representa-
tion, let δ be the surface delta function such that∫

Γ
f dΓ =

∫
Ω
fδdΩ. (2.14)

2.1. Mathematical formulation 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Surfactant concentration, f/f
∞

In
te

rf
ac

ia
l t

en
si

on
, γ

/γ
0

Non−linear
Linear

Figure 2.3: Dependence of surface tension on surfactant concentration. Com-
parison of a linear and non-linear equation of state. β = 0.2.

Assuming that f may be extended off Γ , the sharp-interface representation
of the evolution of the surface surfactant is given by (see e.g. Xu and Zhao
(2003))

∂f
∂t

+ u ·∇f − n ·∇u · nf = Df(∇2 − n ·∇∇ · n− κn ·∇)f + j, (2.10)

where Df is the diffusion coefficient. The source term, j, accounts for adsorp-
tion and desorption of surfactant and is given by

j(f , F) = raFs (f∞ − f)− rdf . (2.11)

Here, ra and rd are adsorption and desorption coefficients, respectively, and Fs
is the surfactant concentration immediately adjacent to the surface.

Now, assume that f is soluble in Ω1, but not in Ω0. Let there be a bulk
concentration, F , in Ω1, which is governed by

∂F
∂t
+∇ · (Fu) = DF∇2F in Ω1, (2.12)

with the boundary condition at Γ

DF∇F · n = −j on Γ . (2.13)

Here, DF is the diffusion coefficient in the bulk.
The equations for the surfactant on the interface and in the bulk are coupled

through the source term, j. In order to simplify the mathematical representa-
tion, let δ be the surface delta function such that∫

Γ
f dΓ =

∫
Ω
fδdΩ. (2.14)

2.1. Mathematical formulation 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Surfactant concentration, f/f
∞

In
te

rf
ac

ia
l t

en
si

on
, γ

/γ
0

Non−linear
Linear

Figure 2.3: Dependence of surface tension on surfactant concentration. Com-
parison of a linear and non-linear equation of state. β = 0.2.

Assuming that f may be extended off Γ , the sharp-interface representation
of the evolution of the surface surfactant is given by (see e.g. Xu and Zhao
(2003))

∂f
∂t

+ u ·∇f − n ·∇u · nf = Df(∇2 − n ·∇∇ · n− κn ·∇)f + j, (2.10)

where Df is the diffusion coefficient. The source term, j, accounts for adsorp-
tion and desorption of surfactant and is given by

j(f , F) = raFs (f∞ − f)− rdf . (2.11)

Here, ra and rd are adsorption and desorption coefficients, respectively, and Fs
is the surfactant concentration immediately adjacent to the surface.

Now, assume that f is soluble in Ω1, but not in Ω0. Let there be a bulk
concentration, F , in Ω1, which is governed by

∂F
∂t
+∇ · (Fu) = DF∇2F in Ω1, (2.12)

with the boundary condition at Γ

DF∇F · n = −j on Γ . (2.13)

Here, DF is the diffusion coefficient in the bulk.
The equations for the surfactant on the interface and in the bulk are coupled

through the source term, j. In order to simplify the mathematical representa-
tion, let δ be the surface delta function such that∫

Γ
f dΓ =

∫
Ω
fδdΩ. (2.14)



12 2. Mathematical modelling and numerical methods

Also, let H be the Heaviside function,

H =
⎧⎨
⎩1 in Ω1,

0 in Ω0.
(2.15)

The equation for the interfacial surfactant, Equation (2.10), can now be
extended to the general domain Ω (see e.g. Rätz and Voigt (2006)),

∂
∂t
(f δ)+∇ · (f δu) = Df∇ · (δ∇f)+ δj, (2.16)

The formulation given by Equation (2.16) is considerably simpler than the
sharp-interface formulation.

Similarly, the bulk concentration can be generalized to the general domain
by

∂
∂t
(H F)+∇ · (H F u) = DF∇ · (H∇F)− δj, (2.17)

where the boundary condition has been included using the approach from Li
et al. (2009b). By introducing numerical regularizations of the delta function
and Heaviside function, the much simpler mathematical expressions can be
used to evolve the surfactant concentrations.

2.1.2 Interface relations

The variation in physical properties in the two domains gives rise to disconti-
nuities across the interface which need to be considered to complete the model.
The jump conditions for the two-phase problem without electric fields can be
found in e.g. Kang et al. (2000). In Hansen (2005); Bjørklund (2009) these are
extended to include electric fields, and in Lervåg (2008) the Marangoni stresses
are included. Here, we summarize the jump conditions as

[u] = 0, (2.18)

[p] = 2[μ]n ·∇u · n+ n · [M] · n+ σκ, (2.19)

[Ψ] = 0, (2.20)

[μ∇u] = [μ]((n ·∇u · n)nn+ (n ·∇u · t)nt
− (n ·∇u · t)tn+ (t ·∇u · t)tt)
− (t · [M] · n)tn− (t ·∇Γσ)tn,

(2.21)

[∇p] = 0, (2.22)

[εn ·∇Ψ] = 0. (2.23)
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With the complete models in place, the question remains how to tackle them
numerically. In particular, how to address the interface is the major challenge,
and this will be considered in the next section.

2.2 Numerical methods

In this work, the equations from the previous sections are solved using the
finite-difference method on Cartesian grids. Standard discretization methods
from the literature are employed, and more details can be found in the in-
dividual papers. This chapter will focus on how the interface is represented
and how the boundary conditions between the two phases are captured. Two
approaches are considered, the level-set method and the phase-field method.
Both are interface-capturing methods, which means that instead of tracking
the interface explicitly using a surface mesh, it is captured implicitly by an
auxiliary function defined in the entire domain. This leads to a significantly
simpler implementation, since Cartesian grids can be used and topological
changes are handled automatically.

2.2.1 The level-set method
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(2003)), the interface is defined implicitly by the zero level set

Γ = {x|φ(x, t) = 0}, (2.24)

where φ is the level-set function, which denotes the signed distance to the
interface. An example of how the level-set function looks for a drop is given
in Figure 2.4. The level-set function moves with the interface velocity uint

according to
∂φ
∂t

+ uint · ∇φ = 0. (2.25)

Note that this equation is a pure advection equation, and hence accurate
numerical schemes must be used to solve this equation. Additionally, to
discretize this equation numerically, the interface velocity must be extended
off the interface. Adalsteinsson and Sethian (1999) showed that the velocity
could be extrapolated orthogonally from the interface by solving

∂u
∂τ

+ S(φ0)n · ∇u = 0, (2.26)

where S is a sign function given by

S(φ) = φ√
φ2 + 2Δx2

. (2.27)

As the level-set function is advected, it will not remain an exact distance
function due to numerical errors. This can be alleviated using reinitialization
procedures, that attempt to keep the interface position intact while resetting the
level-set function to a distance function. The standard level-set reinitialization
procedure is used here, that is we solve the additional equation

∂φ
∂τ

+ S(φ0)(|∇φ| − 1) = 0,

φ(x,0) = φ0(x).
(2.28)

An attractive feature of the level-set method is the simple access to geometrical
properties, in particular the normal vector and the curvature. With the level-set
function as a signed distance function, the normal vector can be calculated as

n = ∇φ
|∇φ| , (2.29)

and the curvature as

κ = −∇ ·
(
∇φ
|∇φ|

)
. (2.30)

14 2. Mathematical modelling and numerical methods

(2003)), the interface is defined implicitly by the zero level set

Γ = {x|φ(x, t) = 0}, (2.24)

where φ is the level-set function, which denotes the signed distance to the
interface. An example of how the level-set function looks for a drop is given
in Figure 2.4. The level-set function moves with the interface velocity uint

according to
∂φ
∂t

+ uint · ∇φ = 0. (2.25)

Note that this equation is a pure advection equation, and hence accurate
numerical schemes must be used to solve this equation. Additionally, to
discretize this equation numerically, the interface velocity must be extended
off the interface. Adalsteinsson and Sethian (1999) showed that the velocity
could be extrapolated orthogonally from the interface by solving

∂u
∂τ

+ S(φ0)n · ∇u = 0, (2.26)

where S is a sign function given by

S(φ) = φ√
φ2 + 2Δx2

. (2.27)

As the level-set function is advected, it will not remain an exact distance
function due to numerical errors. This can be alleviated using reinitialization
procedures, that attempt to keep the interface position intact while resetting the
level-set function to a distance function. The standard level-set reinitialization
procedure is used here, that is we solve the additional equation

∂φ
∂τ

+ S(φ0)(|∇φ| − 1) = 0,

φ(x,0) = φ0(x).
(2.28)

An attractive feature of the level-set method is the simple access to geometrical
properties, in particular the normal vector and the curvature. With the level-set
function as a signed distance function, the normal vector can be calculated as

n = ∇φ
|∇φ| , (2.29)

and the curvature as

κ = −∇ ·
(
∇φ
|∇φ|

)
. (2.30)

14 2. Mathematical modelling and numerical methods

(2003)), the interface is defined implicitly by the zero level set

Γ = {x|φ(x, t) = 0}, (2.24)

where φ is the level-set function, which denotes the signed distance to the
interface. An example of how the level-set function looks for a drop is given
in Figure 2.4. The level-set function moves with the interface velocity uint

according to
∂φ
∂t

+ uint · ∇φ = 0. (2.25)

Note that this equation is a pure advection equation, and hence accurate
numerical schemes must be used to solve this equation. Additionally, to
discretize this equation numerically, the interface velocity must be extended
off the interface. Adalsteinsson and Sethian (1999) showed that the velocity
could be extrapolated orthogonally from the interface by solving

∂u
∂τ

+ S(φ0)n · ∇u = 0, (2.26)

where S is a sign function given by

S(φ) = φ√
φ2 + 2Δx2

. (2.27)

As the level-set function is advected, it will not remain an exact distance
function due to numerical errors. This can be alleviated using reinitialization
procedures, that attempt to keep the interface position intact while resetting the
level-set function to a distance function. The standard level-set reinitialization
procedure is used here, that is we solve the additional equation

∂φ
∂τ

+ S(φ0)(|∇φ| − 1) = 0,

φ(x,0) = φ0(x).
(2.28)

An attractive feature of the level-set method is the simple access to geometrical
properties, in particular the normal vector and the curvature. With the level-set
function as a signed distance function, the normal vector can be calculated as

n = ∇φ
|∇φ| , (2.29)

and the curvature as

κ = −∇ ·
(
∇φ
|∇φ|

)
. (2.30)

14 2. Mathematical modelling and numerical methods

(2003)), the interface is defined implicitly by the zero level set

Γ = {x|φ(x, t) = 0}, (2.24)

where φ is the level-set function, which denotes the signed distance to the
interface. An example of how the level-set function looks for a drop is given
in Figure 2.4. The level-set function moves with the interface velocity uint

according to
∂φ
∂t

+ uint · ∇φ = 0. (2.25)

Note that this equation is a pure advection equation, and hence accurate
numerical schemes must be used to solve this equation. Additionally, to
discretize this equation numerically, the interface velocity must be extended
off the interface. Adalsteinsson and Sethian (1999) showed that the velocity
could be extrapolated orthogonally from the interface by solving

∂u
∂τ

+ S(φ0)n · ∇u = 0, (2.26)

where S is a sign function given by

S(φ) = φ√
φ2 + 2Δx2

. (2.27)

As the level-set function is advected, it will not remain an exact distance
function due to numerical errors. This can be alleviated using reinitialization
procedures, that attempt to keep the interface position intact while resetting the
level-set function to a distance function. The standard level-set reinitialization
procedure is used here, that is we solve the additional equation

∂φ
∂τ

+ S(φ0)(|∇φ| − 1) = 0,

φ(x,0) = φ0(x).
(2.28)

An attractive feature of the level-set method is the simple access to geometrical
properties, in particular the normal vector and the curvature. With the level-set
function as a signed distance function, the normal vector can be calculated as

n = ∇φ
|∇φ| , (2.29)

and the curvature as

κ = −∇ ·
(
∇φ
|∇φ|

)
. (2.30)



2.2. Numerical methods 15

The density, viscosity and permittivity are discontinuous across the interface.
These are handled in two different ways in this work. The simplest and most
common method is the continuous surface force (CSF) method, introduced by
Brackbill et al. (1992), where the singular surface force is smoothed across a
narrow region,

fc = γκ∇HΓ − (∇Γγ)δΓ . (2.31)

where HΓ is the regularized Heaviside function, defined as

HΓ (φ) =

⎧⎪⎪⎨
⎪⎪⎩

0 φ < −ε
1
2 + φ

2ε + 1
2π sin

(
πφ
ε

)
|φ| ≤ ε

1 φ > ε.
(2.32)

Here, ε is the smearing width. In this work, the interface is smeared across
three grid cells, i.e. ε = 1.5h, where h is the grid spacing. The regularized
surface delta function, δΓ , is defined as

δΓ (φ) =
⎧⎨
⎩0 |φ| < ε

1
2ε

(
1+ cos πφε

)
|φ| ≥ ε. (2.33)

The physical properties are also smoothed according to

ρ(HΓ ) = ρ1HΓ + (1−HΓ )ρ2, (2.34)

μ(HΓ ) = μ1HΓ + (1−HΓ )μ2, (2.35)

1
ε
= HΓ
ε1
+ 1−HΓ

ε2
. (2.36)

It was shown by Tomar et al. (2007) that using a harmonic mean for the electrical
properties was beneficial over an arithmetic mean. Note that in principle, the
above regularizations of the delta function and Heaviside function could be
used to solve the surfactant equations from the previous section. However,
this was found not to work very well, which is believed to be because these
regularizations are not accurate enough. Recently, there has been a lot of work
on finding more accurate representations, for instance Smereka (2006); Towers
(2007); Min and Gibou (2008), which may lead to better results. In this work,
only an insouble, interfacial surfactant was considered together with the level-
set method, and the sharp-interface representation given by Equation (2.10)
was solved directly. This is also the approach taken in Xu and Zhao (2003); Xu
et al. (2006).

The second method of handling the discontinuities is the ghost-fluid method
(GFM) (see e.g. Fedkiw (1999)). Here, instead of smearing out the discontinuities,
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Figure 2.5: Illustration of the discretization of a discontinuous variable across
an interface.

they are handled in a sharp manner by employing the interface relations. This
gives a more accurate numerical method, at the expense of a more complex
implementation. The basic principle of the method will be illustrated by
considering the discretization of the following 1D Poisson equation:

du
dx

(
β

du
dx

)
= f . (2.37)

The GFM requires jump conditions, which are relations between the physical
quantities on each side of the interface. In the following, the interfacial jump is
denoted by [x] = x+−x−, where superscript + denotes the side of the interface
where φ is positive, and superscript − denotes the side of the interface where
φ is negative. For the purpose of this section, we assume that the interface
conditions are given by

[u] = a (2.38)[
β

du
dx

]
= b. (2.39)

We also assume that β is constant in each phase. Suppose that we have the
condition given in Figure 2.5, where an interface is located between k and k+ 1.
The standard, second-order discretization of Equation (2.37) is

βk+1/2
uk+1−uk
Δx − βk−1/2

uk−uk−1
Δx

Δx
= fk. (2.40)

This discretization gives second-order accuracy if f and u are smooth functions.
But here, because of the discontinuity between points k and k+ 1, there will be

16 2. Mathematical modelling and numerical methods

(1− θ )ΔxθΔx

Interface

u−

u+

u−I

u+I

k k+ 1k− 1

[u] = a

Figure 2.5: Illustration of the discretization of a discontinuous variable across
an interface.

they are handled in a sharp manner by employing the interface relations. This
gives a more accurate numerical method, at the expense of a more complex
implementation. The basic principle of the method will be illustrated by
considering the discretization of the following 1D Poisson equation:

du
dx

(
β

du
dx

)
= f . (2.37)

The GFM requires jump conditions, which are relations between the physical
quantities on each side of the interface. In the following, the interfacial jump is
denoted by [x] = x+−x−, where superscript + denotes the side of the interface
where φ is positive, and superscript − denotes the side of the interface where
φ is negative. For the purpose of this section, we assume that the interface
conditions are given by

[u] = a (2.38)[
β

du
dx

]
= b. (2.39)

We also assume that β is constant in each phase. Suppose that we have the
condition given in Figure 2.5, where an interface is located between k and k+ 1.
The standard, second-order discretization of Equation (2.37) is

βk+1/2
uk+1−uk
Δx − βk−1/2

uk−uk−1
Δx

Δx
= fk. (2.40)

This discretization gives second-order accuracy if f and u are smooth functions.
But here, because of the discontinuity between points k and k+ 1, there will be

16 2. Mathematical modelling and numerical methods

(1− θ )ΔxθΔx

Interface

u−

u+

u−I

u+I

k k+ 1k− 1

[u] = a

Figure 2.5: Illustration of the discretization of a discontinuous variable across
an interface.

they are handled in a sharp manner by employing the interface relations. This
gives a more accurate numerical method, at the expense of a more complex
implementation. The basic principle of the method will be illustrated by
considering the discretization of the following 1D Poisson equation:

du
dx

(
β

du
dx

)
= f . (2.37)

The GFM requires jump conditions, which are relations between the physical
quantities on each side of the interface. In the following, the interfacial jump is
denoted by [x] = x+−x−, where superscript + denotes the side of the interface
where φ is positive, and superscript − denotes the side of the interface where
φ is negative. For the purpose of this section, we assume that the interface
conditions are given by

[u] = a (2.38)[
β

du
dx

]
= b. (2.39)

We also assume that β is constant in each phase. Suppose that we have the
condition given in Figure 2.5, where an interface is located between k and k+ 1.
The standard, second-order discretization of Equation (2.37) is

βk+1/2
uk+1−uk
Δx − βk−1/2

uk−uk−1
Δx

Δx
= fk. (2.40)

This discretization gives second-order accuracy if f and u are smooth functions.
But here, because of the discontinuity between points k and k+ 1, there will be
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an error at the interface, which will smear the discontinuity. Instead, we would
like to use the value at the interface, i.e.

β−u
−
I −uk
θΔx − β−uk−uk−1

Δx
Δx

= fk. (2.41)

Here, θ is the normalized distance to the interface,

θ = xI − xk
Δx

. (2.42)

The main idea of the GFM is to use the jump conditions to find an approximation
of the interfacial value. Discretizing the second jump condition, Equation (2.39),
gives

β+
uk+1 −u+I
(1− θ)Δx − β

−u
−
I −uk
θΔx

= b. (2.43)

We can now find the approximated value at the interface by using the first jump
condition, Equation (2.38):

u−I =
1

θβ+ + (1− θ)β−
[
θβ+uk+1 + (1− θ)β−uk − θβ+a− θ(1− θ)Δxb

]
.

(2.44)
Finally, this can be inserted into Equation (2.41) to give the following symmetric
discretization:

β̂(uk+1 −uk)− β−(uk −uk−1)
Δx2

= fk + β̂a
Δx2

+ (1− θ)β̂b
β+Δx

, (2.45)

where β̂ is defined as

β̂ = β+β−

θβ+ + (1− θ)β− . (2.46)

This method can be applied in a dimension-by-dimension fashion, so an exten-
sion to two or three dimensions is straightforward.

2.2.2 The phase-field method

The phase-field method is used in a lot of different areas. For an overview of
its use in fluid mechanics, see e.g. Anderson et al. (1998); Jacqmin (1999). In
the phase-field method, the interface is defined implicitly through a phase-field
function, c, which is 1 in Ω0, and varies rapidly but smoothly to 0 in Ω1. More
precisely, the phase-field function is taken as

c(x, t) = 1
2

[
1− tanh

(
r(x, t)
2
√

2ε

)]
, (2.47)
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Figure 2.6: Illustration of the phase-field function representing a drop.

where ε is a small parameter related to the interface thickness. An example
of how the phase-field function looks for a drop is given in Figure 2.6. Here,
the radius of the drop is 0.15, and the interface thickness parameter is 0.01.
As is evident from the figure, the phase-field function can in the context of
two-phase flow be interpreted as a concentration.

To advect the phase-field function, a Cahn-Hilliard equation is solved,

∂c
∂t
+∇ · (cu) =∇ · (M(c)∇μc), (2.48)

μc = g′(c)− ε2∇2c, (2.49)

where M = √c2(1− c)2 is a mobility function and g = c2(1− c)2/4 is a double
well potential. μc is called the chemical potential and ε is a small parameter
related to the interface thickness. Note that the above equation system is
fourth-order and non-linear, which requires specialized numerical methods to
solve in an efficient manner.

Since the phase-field method uses a diffuse interface similar to the CSF
method, regularizations of the surface delta function and Heaviside function
are needed. In the phase-field context, several definitions of the delta function
are available from the literature. In this work, the approximation from Rätz
and Voigt (2006),

δΓ ≈ B(c) = 3
√

2
ε
c2(1− c)2, (2.50)

is used for the surface equation. For the surface-tension term and the boundary
condition in the bulk equation, the approximation

δΓ ≈ |∇c| (2.51)

18 2. Mathematical modelling and numerical methods

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

c

(a) 1D phase-field function (b) 2D phase-field function

Figure 2.6: Illustration of the phase-field function representing a drop.

where ε is a small parameter related to the interface thickness. An example
of how the phase-field function looks for a drop is given in Figure 2.6. Here,
the radius of the drop is 0.15, and the interface thickness parameter is 0.01.
As is evident from the figure, the phase-field function can in the context of
two-phase flow be interpreted as a concentration.

To advect the phase-field function, a Cahn-Hilliard equation is solved,

∂c
∂t
+∇ · (cu) =∇ · (M(c)∇μc), (2.48)

μc = g′(c)− ε2∇2c, (2.49)

where M = √c2(1− c)2 is a mobility function and g = c2(1− c)2/4 is a double
well potential. μc is called the chemical potential and ε is a small parameter
related to the interface thickness. Note that the above equation system is
fourth-order and non-linear, which requires specialized numerical methods to
solve in an efficient manner.

Since the phase-field method uses a diffuse interface similar to the CSF
method, regularizations of the surface delta function and Heaviside function
are needed. In the phase-field context, several definitions of the delta function
are available from the literature. In this work, the approximation from Rätz
and Voigt (2006),

δΓ ≈ B(c) = 3
√

2
ε
c2(1− c)2, (2.50)

is used for the surface equation. For the surface-tension term and the boundary
condition in the bulk equation, the approximation

δΓ ≈ |∇c| (2.51)

18 2. Mathematical modelling and numerical methods

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

c

(a) 1D phase-field function (b) 2D phase-field function

Figure 2.6: Illustration of the phase-field function representing a drop.

where ε is a small parameter related to the interface thickness. An example
of how the phase-field function looks for a drop is given in Figure 2.6. Here,
the radius of the drop is 0.15, and the interface thickness parameter is 0.01.
As is evident from the figure, the phase-field function can in the context of
two-phase flow be interpreted as a concentration.

To advect the phase-field function, a Cahn-Hilliard equation is solved,

∂c
∂t
+∇ · (cu) =∇ · (M(c)∇μc), (2.48)

μc = g′(c)− ε2∇2c, (2.49)

where M = √c2(1− c)2 is a mobility function and g = c2(1− c)2/4 is a double
well potential. μc is called the chemical potential and ε is a small parameter
related to the interface thickness. Note that the above equation system is
fourth-order and non-linear, which requires specialized numerical methods to
solve in an efficient manner.

Since the phase-field method uses a diffuse interface similar to the CSF
method, regularizations of the surface delta function and Heaviside function
are needed. In the phase-field context, several definitions of the delta function
are available from the literature. In this work, the approximation from Rätz
and Voigt (2006),

δΓ ≈ B(c) = 3
√

2
ε
c2(1− c)2, (2.50)

is used for the surface equation. For the surface-tension term and the boundary
condition in the bulk equation, the approximation

δΓ ≈ |∇c| (2.51)

18 2. Mathematical modelling and numerical methods

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

c

(a) 1D phase-field function (b) 2D phase-field function

Figure 2.6: Illustration of the phase-field function representing a drop.

where ε is a small parameter related to the interface thickness. An example
of how the phase-field function looks for a drop is given in Figure 2.6. Here,
the radius of the drop is 0.15, and the interface thickness parameter is 0.01.
As is evident from the figure, the phase-field function can in the context of
two-phase flow be interpreted as a concentration.

To advect the phase-field function, a Cahn-Hilliard equation is solved,

∂c
∂t
+∇ · (cu) =∇ · (M(c)∇μc), (2.48)

μc = g′(c)− ε2∇2c, (2.49)

where M = √c2(1− c)2 is a mobility function and g = c2(1− c)2/4 is a double
well potential. μc is called the chemical potential and ε is a small parameter
related to the interface thickness. Note that the above equation system is
fourth-order and non-linear, which requires specialized numerical methods to
solve in an efficient manner.

Since the phase-field method uses a diffuse interface similar to the CSF
method, regularizations of the surface delta function and Heaviside function
are needed. In the phase-field context, several definitions of the delta function
are available from the literature. In this work, the approximation from Rätz
and Voigt (2006),

δΓ ≈ B(c) = 3
√

2
ε
c2(1− c)2, (2.50)

is used for the surface equation. For the surface-tension term and the boundary
condition in the bulk equation, the approximation

δΓ ≈ |∇c| (2.51)



2.2. Numerical methods 19

is used. This is to avoid any scaling of the equations. In the surface equation,
the constants in Equation (2.50) cancel out in the discretized equations. The
regularized Heaviside function, is simply taken as

H(c) ≈ 1− c. (2.52)

2.2.3 Discussion

The level-set method and the phase-field method share many similarities,
in particular when the level-set method is used in conjunction with the CSF
method for handling the interface discontinuities. In fact, some works exist that
borrow from both methods. For instance, in Olsson and Kreiss (2005), a level-
set method is designed that uses an interface profile similar to the phase-field
function. Artificial compression is then used to keep the shape and width of
the profile constant which leads to a conservative scheme with respect to mass
conservation. In Kronbichler and Kreiss (2008), a hybrid method was studied
where the level-set method was used for external flow, while the phase-field
method was used to capture contact-line dynamics near solid boundaries.

One of the key advantages of the phase-field method is that no artificial
compression or reinitialization is needed, these effects are already incorporated
in the Cahn-Hilliard equation. Another advantage is that the phase-field method
is more flexible with respect to complex physical effects. The diffuse interface
in the phase-field method can be viewed as a layer that stores a mixing energy
that gives rise to interfacial tension. The use of this energy formulation makes
it easy to include more complex physical effects. For instance, the phase-field
method was used to include viscoelasticity in Yu et al. (2005), contact-line
dynamics in Kronbichler and Kreiss (2008) and bending energy in the context
of vesicle membranes in Lowengrub et al. (2009). Another attractive feature
of the phase-field method is that it is possible to derive thermodynamically
consistent models, see e.g. Anderson et al. (1998); Penrose and Fife (1990).
In this work, the method is used to handle the problem of coupling the bulk
surfactant to the interfacial surfactant. This does not require any energy
considerations, but the approach takes advantage of the phase-field method’s
ability to incorporate complex boundary conditions on the interface in a simple
manner.

However, the complexity of the Cahn-Hilliard equation makes it difficult to
handle numerically. The use of a diffuse interface layer also makes the method
less accurate and robust for certain problems compared to the ghost-fluid
method. In other words, both numerical approaches used in this work are
useful, but their advantages and disadvantages should be taken into account
when deciding which method to use for a particular problem.
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3 Present contribution

You need the willingness to fail all the time. You have to
generate many ideas and then you have to work very hard
only to discover that they don’t work. And you keep doing
that over and over until you find one that does work.

John Backus (1924–2007)

If little labour, little are our gains:
Man’s fortunes are according to his pains.

Robert Herrick (1591–1674)

The main contribution of this work is six articles published in peer-reviewed
journals and conferences. In this section, a brief summary of each paper is
given.

Paper A – Sharp interface simulations of drop deformation in electric fields
Co-author: Svend Tollak Munkejord

In this paper, a thorough evaluation of the accuracy of the ghost-fluid method
in the context of electric fields is given. The method is compared both against
theoretical results and the simpler continuous surface-force method. Such
an evaluation was found lacking from Hansen (2005), where the use of the
ghost-fluid method for problems involving electric fields was first introduced.
The paper also extends the 2D method presented in Hansen (2005) to a more
physically relevant axisymmetrical geometry. Figure 3.1 demonstrates the
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3 Present contribution

You need the willingness to fail all the time. You have to
generate many ideas and then you have to work very hard
only to discover that they don’t work. And you keep doing
that over and over until you find one that does work.

John Backus (1924–2007)

If little labour, little are our gains:
Man’s fortunes are according to his pains.

Robert Herrick (1591–1674)

The main contribution of this work is six articles published in peer-reviewed
journals and conferences. In this section, a brief summary of each paper is
given.
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(b) Deformation of spherical drop test
case.

Figure 3.1: (a) shows the ghost-fluid method applied to a horizontal interface
test case. The pressure in the y-direction for a calculation with 10
grid points is compared to the exact solution. Note that the discon-
tinuity in pressure is sharply resolved. (b) shows a comparison of
the deformation of a drop in an electric field between theoretical
values and the CSF method and the GFM. Note that the GFM is closer
to the theoretical values.
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Paper B – A computational study of the coalescence process between a
drop and an interface in an electric field
Co-authors: Svend Tollak Munkejord and Erik Bjørklund

This paper considers the coalescence between a drop and a planar interface.
When no electric field is applied, partial coalescence may occur, where a small
portion of the drop does not coalesce but remain dispersed in the continuous
phase. It has been shown experimentally in e.g. Allan and Mason (1962) that
when an electric field is applied, this partial coalescence is suppressed. This
paper investigates the problem numerically using the previously validated
method. First, excellent agreement with experiments for a case without electric
fields is demonstrated. Then, it is shown that the results with an applied
electric field is in qualitative agreement with the experimental observations,
and a physical explanation of the process is suggested. A figure from the paper
demonstrating the difference with and without an electric field is shown in
Figure 3.2.
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Figure 3.2: Comparison of the neck thickness and drainage rate with and with-
out an electric field. The electric field gives a thicker neck and
increased emptying rate, which suppresses the pinching off of a
daughter drop.
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Paper C – Sharp interface simulations of surfactant-covered drops in elec-
tric fields
Co-authors: Karl Ynge Lervåg and Svend Tollak Munkejord

In this paper, a model for surfactants is introduced. To the authors’ knowl-
edge, this is the first time the ghost-fluid method has been applied to the
surfactant problem. The model is validated and used to study a falling drop.
It is shown that the surfactant generally reduces the deformation and the
terminal velocity of the drop. The reduction is most pronounced in the nearly
spherical regime where the drop behavior is similar to a solid sphere due to the
interface immobilization caused by the presence of a surfactant. This is shown
in Figure 3.3. The electric field increases the terminal velocity by stretching the
drop in the direction of the electric field which reduces the drag on the drop.
This effect is largest for the surfactant-covered drop, which is deformed more
due to the lower average interfacial tension.

(a) Clean (b) Contaminated

Figure 3.3: Low Re drop. Streamlines and velocity vectors in a coordinate
system moving with the drop centroid. Note how the internal
circulation is completely stopped in the contaminated case, making
the drop behave like a solid particle.
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Paper D – Influence of surfactant on drop deformation in an electric field
Co-author: Svend Tollak Munkejord

This paper investigates the influence of surfactants on the deformation of
a drop in an electric field. Instead of assuming a conducting drop and an
insulating continuous phase, we extend the model to support a finite conduc-
tivity in both phases. This gives a much wider range of deformation behaviors
and correspondingly interesting surfactant influence. The deformation can
be both prolate and oblate, depending on the ratio of conductivities and per-
mittivities. Additionally, the direction of the induced circulation can be both
clockwise and counter-clockwise for the prolate shapes. It was found that
for prolate deformation and counter-clockwise circulation, the presence of
surfactant leads to greater deformation at low surfactant concentrations. At
high surfactant concentrations and high electric capillary numbers, however,
the effect of surfactant dilution becomes stronger than the effect of reduced
interfacial tension at the tips, and the deformation decreases. For prolate defor-
mation and clockwise flow, the surfactants are swept in the opposite direction,
and cause a reduction in deformation. For oblate deformation, which always
gives clockwise flow, the results are similar to that of prolate deformation
and counter-clockwise flow, deformation is increased until dilatational effects
start to dominate. However, this occurs earlier here, since the surfactant is
not concentrated at the tips, but instead spread out over the equator of the
drop. Finally, it was shown that for smaller viscosity ratios, the influence of
surfactant is stronger, since the relative importance of the Marangoni stresses
becomes higher. Figure 3.4 shows the deformation as a function of electric
capillary number for various surfactant coverages at a low viscosity ratio.
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Figure 3.4: Deformation as a function of electric capillary number for various
surfactant coverages at viscosity ratio μr = 0.1. Note that for case
A, surfactant leads to more deformation, for case B surfactant leads
to less deformation while for case C, the deformation is negative
(oblate deformation instead of prolate) and surfactant leads to more
deformation.
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Figure 3.4: Deformation as a function of electric capillary number for various
surfactant coverages at viscosity ratio μr = 0.1. Note that for case
A, surfactant leads to more deformation, for case B surfactant leads
to less deformation while for case C, the deformation is negative
(oblate deformation instead of prolate) and surfactant leads to more
deformation.



26 3. Present contribution

Paper E – A diffuse-interface approach for modeling transport, diffusion
and adsorption/desorption of material quantities on a deformable inter-
face
Co-authors: Xiangrong Li, John Lowengrub, Fan Wang and Axel Voigt

This paper introduces changes in both mathematical modelling and numerical
methods. Instead of restricting the surfactant to the interface, we couple
the interfacial surfactant concentration to a concentration in the bulk. This
is a more physically realistic model. Instead of using the level-set method
to capture the interface, the phase-field method is employed. These share
many similarities, but the phase-field method makes it easier to handle the
complexity of the coupled bulk/interface problem. The model is solved using
semi-implicit time discretization and block-structured adaptive grids for the
spatial discretization. The semi-implicit time discretization allows longer time
steps to be taken, and the adaptive grids limit high resolution grids to regions
of interest. Additionally, a non-linear multigrid method is used to solve the
equation systems arising at every time step. All these improvements lead to a
much more efficient numerical method, suitable for full 3D simulations. The
paper introduces the numerical method, proves the convergence of the method
and demonstrates the accuracy and efficiency of the method on multiple test
cases. Figure 3.5 shows one of these test cases, the deformation of a 3D drop
in a deformation field.
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(a) Adaptive grid (b) Interfacial surfactant concentration

Figure 3.5: Sphere in 3D deformation field. Illustration of the adaptive grids
and interfacial surfactant concentration. Inside the black boxes,
the grid spacing is h = 1/64, inside the red boxes h = 1/128 and
inside the green boxes h = hmin = 1/256.
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28 3. Present contribution

Paper F – A diffuse-interface method for two-phase flows with soluble sur-
factants
Co-authors: John Lowengrub, Peng Song and Axel Voigt

In this paper, the phase-field method introduced in the previous paper is
coupled to a flow solver. The method is validated, and used to study the
influence of surfactant solubility on a drop in shear flow in both 2D and 3D.
It is shown that the deformation of a drop with soluble surfactant in general
lies between that of a clean drop and that of a drop covered with insoluble
surfactant. However, for the breakup of a drop, it is shown that for the insoluble
case, the drop can break up at a earlier time compared to a clean drop, while
for the soluble case, the drop can break up at a later time. Figure 3.6 shows the
breakup of the drop with soluble surfactant.
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Figure 3.6: Three-dimensional simulation of a drop in shear flow with soluble
surfactant. The left column shows the drop shape with the surface
colored according to the interface surfactant concentration. The
right column shows a slice of the bulk surfactant concentration
along the x-axis.
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4 Conclusions and recommendations for further work

The more I learn, the more I learn how little I know.

Socrates (469 BC–399 BC)

The more you know, the less you understand.

Laozi

In addition to the conclusions given in each separate paper, some general
conclusions can be drawn. The contributions made in this work can be divided
in to three parts, mathematical modelling, numerical methods and investigation
of physics.

First, consider the mathematical models. The models include the full Navier–
Stokes equations in each phase, with additional terms accounting for the effect
of an electric field and the effect of non-uniform surface tension. Equations for
the electric field and the coupled evolution of surfactant on the interface and in
the bulk were also considered. Several extensions to the model are possible. In
particular, for high concentrations of surfactant, an aggregate may form on the
interface. This film can be expected to behave in a viscoelastic manner. Models
for drops with viscoelastic membranes have been developed for the study of
biological flows and could also be considered for the present problem. Another
issue not discussed in this work is the presence of close-range forces when two
interfaces get close together, for instance the attractive van der Waals force. In
particular, steric repulsion forces may become important when aggregates form
causing a physical barrier against coalescence. In general, although such forces
have in some cases been considered in conjunction with interface-capturing
methods, the usefulness of this could be questioned since these forces become
important at length scales below what can typically be resolved with the current
numerical methods. This suggests a study at a lower level than the interface
tracking/capturing level, perhaps using molecular dynamics methods.

Next, consider the numerical methods. This work has investigated the use
of interface-capturing methods for multiphysics problems. Both the level-set
method and the phase-field method were used, and both were found capable of
handling the complex mathematical models considered. Although not tested
explicitly in this work, it is expected that the accuracy of the phase-field method
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32 4. Conclusions and recommendations for further work

performs relatively similar to the CSF level-set method. As shown in papers
A and C, the GFM is more accurate than the CSF method. This comes at the
expense of a more complex implementation. In particular, implementing a semi-
implicit solver for the GFM, as was done with the phase-field method, would
be very difficult. It could be interesting to investigate a compromise where
the simpler terms are treated using GFM and the more complex with CSF. The
advantage of a semi-implicit scheme is the removal of a particularly stringent
restriction on the time step where the time step is inversely proportional to
the square of the grid spacing. This restriction makes accurate simulations
of small, viscous drops very time consuming. Another issue is the need
for very high resolution during a coalescence or breakup event. The block-
structured, adaptive grid used here with the phase-field method helps alleviate
this problem. In particular, it was shown that full 3D simulations were feasible
using this method. However, only a serial implementation was developed for
this work. A parallelization of the code would allow the study of more complex
arrangements of drops.

Finally, consider the investigation of physics. It was shown how an electric
field can suppress the partial coalescence phenomenon occurring when a drop
coalesces with an interface. Next, it was demonstrated that the presence of a
surfactant can considerably slow down a sedimenting drop due to inhibition of
internal circulation. Conversely, an electric field speeds up the sedimentation
due to stretching which leads to reduced drag. Next, the deformation of a
surfactant-covered leaky dielectric drop was studied. This is not immediately
useful with respect to a water-in-oil emulsion, since the conductivity of water
is always several orders of magnitude higher than crude oil, but is interesting
for other applications. It was shown that the presence of surfactant could
lead to both more deformation and less deformation depending on the fluid
properties due to the complex interaction between the electric field and the
surfactant. Finally, the deformation of a drop in shear flow was studied, with
particular emphasis on the influence of a soluble surfactant. It was shown
that the deformation of a drop with soluble surfactant in general lies between
that of a clean drop and that of a drop covered with insoluble surfactant.
However, for the breakup of a drop, it was shown that for the insoluble case,
the drop can break up at a earlier time compared to a clean drop, while for the
soluble case, the drop can break up at a later time. In general, the usefulness
of the presented methods for studying drop dynamics in great detail was
demonstrated. Opportunities for future work are plentiful. Only a small
parameter set was considered in this work, so more in-depth studies of the same
setups would be interesting. Further, simulations of drops colliding in external
flows would be particularly elucidating. This would be an important step
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that of a clean drop and that of a drop covered with insoluble surfactant.
However, for the breakup of a drop, it was shown that for the insoluble case,
the drop can break up at a earlier time compared to a clean drop, while for the
soluble case, the drop can break up at a later time. In general, the usefulness
of the presented methods for studying drop dynamics in great detail was
demonstrated. Opportunities for future work are plentiful. Only a small
parameter set was considered in this work, so more in-depth studies of the same
setups would be interesting. Further, simulations of drops colliding in external
flows would be particularly elucidating. This would be an important step
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ABSTRACT

This paper describes numerical simulations of two-phase electrohydrodynamics using a 
sharp-interface method. Simulations are performed on typical test cases from the 
literature, and the results are compared to methods that use a smeared interface. The 
results show that the sharp-interface method gives significant improvements in 
accuracy . 

   Index Terms  —  Numerical analysis, electrohydraulics, dielectric materials, finite 
difference methods, hydrodynamics, interface phenomena. 

 
1 INTRODUCTION

ELECTROHYDRODYNAMIC flows are in general very 
complex due to the interactions between electric forces and 
flow dynamics, and analytical results are limited to simplified 
setups. The addition of more than one phase to the system 
further complicates the analysis. This inherent complexity 
encourages the use of numerical methods to gain additional 
insight into the physical phenomena.  

Early numerical simulations of electrohydrodynamics 
typically assume either Stokes flow or inviscid flow, which 
makes it possible to formulate the problem using integral 
equations. These equations can then be efficiently solved 
using the boundary-element method (BEM). In [1], the 
deformation of a drop was studied using this approach, and in 
[2], the interaction between drop pairs was investigated. 

In [3] and [4], a finite-element method which allowed a 
solution at finite Reynolds numbers was employed to study 
drop deformation in electric fields. It concluded that while the 
creeping-flow assumption was valid for low drop 
deformations, it was not able to predict phenomena occurring 
for higher deformations. 
 The methods mentioned so far do not take into account 
topological changes, e.g. the merging and breakup of drops. 
Recently, numerical methods have been developed that allow 

such topological changes. In the seminal paper [5], a front-
tracking method was presented that uses a set of connected 
marker points to represent the interface. The handling of 
topological changes is fairly complex. First, a search has to be 
made among the front elements to identify situations where a 
topology change is needed. Then, the elements have to be 
updated to account for the change. Additionally, when the 
interface is stretched, restructuring of the interface is 
necessary to maintain sufficient accuracy. This is a 
complicated process, especially in three dimensions. The 
jumps in physical properties across the interface is handled 
using smoothing. In [6], the front-tracking method was 
extended to account for electric fields, and the distribution of 
drops in a channel was investigated. This study, however, did 
not take the merging of colliding drops into account. 
 In [7], the Lattice-Boltzmann method (LBM) was used to 
study drop deformation in electric fields. The most attractive 
feature of the LBM for multiphase flow is that no explicit 
treatment of the interface is needed. Briefly, the main idea of 
the LBM is to model the flow on a mesoscopic scale. A 
particle distribution function is introduced whose evolution is 
governed by the collisions and propagation of the particles 
moving on a lattice. In order to simulate multiphase flows, a 
particle interaction force is introduced between the two 
components, which mimics the effect of a repulsive force. 

However, the resulting interface is diffusive, i.e. it is a 
transitional region where the jumps in physical properties 
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jumps in physical properties across the interface is handled 
using smoothing. In [6], the front-tracking method was 
extended to account for electric fields, and the distribution of 
drops in a channel was investigated. This study, however, did 
not take the merging of colliding drops into account. 
 In [7], the Lattice-Boltzmann method (LBM) was used to 
study drop deformation in electric fields. The most attractive 
feature of the LBM for multiphase flow is that no explicit 
treatment of the interface is needed. Briefly, the main idea of 
the LBM is to model the flow on a mesoscopic scale. A 
particle distribution function is introduced whose evolution is 
governed by the collisions and propagation of the particles 
moving on a lattice. In order to simulate multiphase flows, a 
particle interaction force is introduced between the two 
components, which mimics the effect of a repulsive force. 

However, the resulting interface is diffusive, i.e. it is a 
transitional region where the jumps in physical properties 
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ABSTRACT

This paper describes numerical simulations of two-phase electrohydrodynamics using a 
sharp-interface method. Simulations are performed on typical test cases from the 
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the LBM is to model the flow on a mesoscopic scale. A 
particle distribution function is introduced whose evolution is 
governed by the collisions and propagation of the particles 
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across the interface are smeared out. Unfortunately, in [7], the 
accuracy of this approach was not evaluated directly, but some 
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a drop in an electric field were found, and these were 
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method [9, 10], the surface is described via an implicit 
function defined as the signed distance to the interface. This 
allows automatic handling of topological changes, along with 
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disadvantage with the method is that it does not inherently 
conserve mass. The VOF method uses a volume-fraction 
function to describe the interface. This approach ensures good 
mass conservation, but it is complicated to calculate the 
curvature accurately. In addition, the position of the interface 
is not known exactly, but is constructed using splines. The 
CLSVOF method combines the advantages of the two 
methods, and eliminates some of the disadvantages. The 
method was used in [11] to investigate electrohydrodynamic 
effects on film boiling in perfect dielectrics and in [12], the 
method was used on the leaky dielectric model and some 
accuracy tests were performed. In both papers, the continuous-
surface-force (CSF) approach was used to handle surface-
tension forces and electric forces. In this approach, a 
Heaviside function is used to smear the properties in a region 
around the interface. In [12], it was shown that by using a 
modified approach to the smearing of electrical properties, the 
accuracy was improved considerably. 
 The method used in the present work was proposed in [13, 
14]. It also uses the level-set method to capture the interface, 
but instead of using a Heaviside function to treat the 
discontinuities, the ghost-fluid method (GFM) [15,16] is used. 
The ghost-fluid method modifies the numerical stencils near 
the interface to directly take the discontinuities into account. 
This gives improved accuracy in the computation of surface 
forces. The high accuracy also significantly reduces the errors 
in mass conservation.  

In [14], the ability of the method to simulate drop 
oscillations, drop breakup, and drop-drop coalescence due to 
electric fields were presented. However, no test cases were 
performed that quantitatively measured the accuracy of the 
method. This work attempts to give a thorough evaluation of 
the method, comparing it to the test cases used in [12] and also 
to theoretical results for drop deformation. The discussion is 
limited to perfect dielectric fluids. It is possible to employ the 
method on the leaky-dielectric model as well, but that is more 
complex due to jumps in tangential stresses across the 
interface, and hence beyond the scope of this work. 

 
2  GOVERNING EQUATIONS AND 

NUMERICAL METHODS 
The numerical method used for the calculations is described 

in detail in [13, 14], and will only be briefly reviewed here.  
The full Navier-Stokes equations are solved in each phase, 
and the interface between the two phases is captured using the 
level-set method. The ghost-fluid method is used to treat 
discontinuities across the interface in a sharp manner. To 
account for electric forces, a Poisson equation is solved for the 
electric potential, which is then used to calculate the jump in 
the Maxwell stress tensor across the interface. 

2.1 FLOW EQUATIONS 
The flow is governed by the incompressible Navier-Stokes 

equations, with additional terms accounting for surface-
tension forces and electric forces: 
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the relative permittivity of the fluid. The electric field can then 
be calculated as 
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and the Maxwell stress tensor as 
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Here,  is the identity tensor. With the above assumptions, I
M = 0  everywhere except at the interface. 

2.3 INTERFACE CAPTURING
The interface is captured using the level-set method [9,10]. 

This method allows accurate computation of the evolution of 
an interface, along with automatic handling of topological 
changes. The ghost-fluid method [15, 16] is used to take 
discontinuities across the interface into account. This method 
handles the jumps in physical properties directly in the 
numerical stencils, without the need for any smearing of 
properties.  

The interface is defined by the zero level set 
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and is evolved by 
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Here,  denotes the signed distance to the interface. u is 
the velocity on the interface. This velocity is not readily 
available, but in [17] it was shown that this velocity could be 
obtained by extrapolating the velocity orthogonally from the 
interface. This is achieved by solving  
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is used. Note that equation (2.11) is hyperbolic, so it is not 
necessary to solve it to steady state, since only the information 
a few grid points away from the interface is relevant to the 
evolution of the interface. 

The standard level-set reinitialization procedure presented 
in [9] is used to keep the level-set function as a signed 
distance function throughout the computation. This is 
accomplished by solving
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Reinitialization is performed every second time step. 
One of the advantages with the level-set method is the easy 

calculation of normal vectors and curvatures. The unit normal 
vector can be found as 
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Figure 1.  Illustration of the discretization of a discontinuous variable across 
an interface. 
 

The ghost-fluid method will be illustrated here by 
considering the discretization of the following 1D Poisson 
equation: 
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The ghost-fluid method requires jump conditions, which are 
relations between the physical quantities on each side of the 
interface. In the following, the interfacial jump is denoted by  
[ ]x x x , where x  is the interfacial value on the side of 
the interface where is positive, and x is on the other side. 
For the purpose of this section, we assume that the interface 
conditions are given by 
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we would like to use the value at the interface, 
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where is the normalized distance to the interface, 
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An approximation of the interfacial value can be found by 
using the jump conditions. Discretizing equation (2.18) gives 
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We can now find the approximated value at the interface by 
using equation (2.17): 
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available, but in [17] it was shown that this velocity could be 
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is used. Note that equation (2.11) is hyperbolic, so it is not 
necessary to solve it to steady state, since only the information 
a few grid points away from the interface is relevant to the 
evolution of the interface. 

The standard level-set reinitialization procedure presented 
in [9] is used to keep the level-set function as a signed 
distance function throughout the computation. This is 
accomplished by solving
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Reinitialization is performed every second time step. 
One of the advantages with the level-set method is the easy 

calculation of normal vectors and curvatures. The unit normal 
vector can be found as 
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where is the normalized distance to the interface, 

 I kx x
x

 (2.21) 

An approximation of the interfacial value can be found by 
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Finally, this can be inserted into (2.20) to give the following 
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where ˆ denotes the extrapolated value of the coefficient, 
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This method can be applied in a dimension-by-dimension 
fashion, so an extension to two and three dimensions is trivial. 
 The jump conditions for viscous, incompressible flow is 
given in [16] and for dielectric fluids in [13]. The jump in 
pressure is 
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For the electric potential, the jump conditions for perfect 
dielectrics are 
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2.4  NUMERICS 
A second-order projection scheme is used to solve the 

Navier-Stokes equations. First, a temporary vector field, , is 
calculated: 

a

  (2.29) ( · ) ·[ ( )].Ta u u u u

Then the pressure is found by solving 

 · p a· .  (2.30) 

Finally, the velocity field is calculated with 

 .p
t
u a  (2.31) 

The evolution in time for the Navier-Stokes equations, the 
level-set equation and the velocity extrapolation is performed 
using a four-step, third-order, strong stability preserving (SSP) 
Runge-Kutta (RK) method (see e.g. [18]), while a four-step, 
second order SSP RK method is employed for the 
reinitialization of the level-set equation. The equations are 
spatially discretized on a staggered grid, with scalar values 
stored in cell centers and vector values stored at cell 
boundaries. The convective terms are discretized using the 
fifth order Weighted Essentially Non-Oscillatory (WENO)  
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scheme [19], and viscous terms are discretized using standard 
second-order central differences. 
 

3 METHOD EVALUATION 
This section compares results from the CSF approach used 

in [12] and [11] with results from the sharp-interface method 
used here. The first test case is a horizontal interface in an 
electric field. This test case tests the ability of the numerical 
method to accurately predict the jumps across an interface. 
Then, results for the deformation of a dielectric drop subject 
to an electric field are presented. 
 

3.1 A HORIZONTAL INTERFACE IN AN ELECTRIC 
FIELD

An interface is placed between two parallel plates, the 
upper medium has permittivity 1 and the lower medium has 
permittivity . The upper parallel plate is given a potential  
while the lower plate is grounded. This configuration is 
illustrated in Figure 2. This test case is excellent for evaluating 
the handling of the discontinuity in electrical properties, and 
was considered in both [12] and [11]. In [11], an arithmetic 
mean is used to find the smoothed

2 0

 electric permittivities, while 
in [12], it was shown that using a harmonic mean gives 
significantly better results. In this section, these results are 
compared to the results obtained with the ghost-fluid method.  

The equation for the electric potential is a Laplace equation 
with constant coefficients in each phase. This equation can be 
solved by noting that the potential is continuous across the 
interface (equation (2.28)). The solution is 

 
1 0

1 2

2 0
2 1

12
/ 1

12 .
1 /

y L
L

y
L

0

 (3.1) 

The electric field in each phase can then be found by using 
equation (2.7): 

 

0
1

1 2

0
2

2 1

2 1
/ 1

2 1 .
1 /

E
L

E
L

 (3.2) 

The pressure jump is given by equation (2.26), which for this 
case is 

 

 1
1 [ (1 )

(1 )
(1 ) ].

I k ku u

a x

u

b
 (2.23) 

Finally, this can be inserted into (2.20) to give the following 
symmetric discretization: 

 

1 1
2

2

ˆ( ) ( )

ˆ (1 )

k k k k
k

u u u u

ˆ

f
x

a b
x x

 (2.24) 

where ˆ denotes the extrapolated value of the coefficient, 

 ˆ .
(1 )

 (2.25) 

This method can be applied in a dimension-by-dimension 
fashion, so an extension to two and three dimensions is trivial. 
 The jump conditions for viscous, incompressible flow is 
given in [16] and for dielectric fluids in [13]. The jump in 
pressure is 

 [ ] 2[ ] · · ·[ ]· · .Mp n u n n n n n  (2.26) 

The jumps in velocities are 

  (2.27) 
[ ] 0,

[ ] [ ] · ( · ) [ ] · ( · )
[ ] · ( · ) [ ] · ( · ) .

u
u n u n nn t u n

t u n tn t u t tt
nt

0.

For the electric potential, the jump conditions for perfect 
dielectrics are 

  (2.28) 
0

[ ] 0,
[ · ]n

2.4  NUMERICS 
A second-order projection scheme is used to solve the 

Navier-Stokes equations. First, a temporary vector field, , is 
calculated: 

a

  (2.29) ( · ) ·[ ( )].Ta u u u u

Then the pressure is found by solving 

 · p a· .  (2.30) 

Finally, the velocity field is calculated with 

 .p
t
u a  (2.31) 

The evolution in time for the Navier-Stokes equations, the 
level-set equation and the velocity extrapolation is performed 
using a four-step, third-order, strong stability preserving (SSP) 
Runge-Kutta (RK) method (see e.g. [18]), while a four-step, 
second order SSP RK method is employed for the 
reinitialization of the level-set equation. The equations are 
spatially discretized on a staggered grid, with scalar values 
stored in cell centers and vector values stored at cell 
boundaries. The convective terms are discretized using the 
fifth order Weighted Essentially Non-Oscillatory (WENO)  
 

 
�������������������
�������������������
�������������������
�������������������

�������������������
��������������������
�������������������
������������������

x
ε2

ε1

L

Ψ0

0
y

 
Figure 2.  Configuration of the horizontal-interface test case. 

 
scheme [19], and viscous terms are discretized using standard 
second-order central differences. 
 

3 METHOD EVALUATION 
This section compares results from the CSF approach used 

in [12] and [11] with results from the sharp-interface method 
used here. The first test case is a horizontal interface in an 
electric field. This test case tests the ability of the numerical 
method to accurately predict the jumps across an interface. 
Then, results for the deformation of a dielectric drop subject 
to an electric field are presented. 
 

3.1 A HORIZONTAL INTERFACE IN AN ELECTRIC 
FIELD

An interface is placed between two parallel plates, the 
upper medium has permittivity 1 and the lower medium has 
permittivity . The upper parallel plate is given a potential  
while the lower plate is grounded. This configuration is 
illustrated in Figure 2. This test case is excellent for evaluating 
the handling of the discontinuity in electrical properties, and 
was considered in both [12] and [11]. In [11], an arithmetic 
mean is used to find the smoothed

2 0

 electric permittivities, while 
in [12], it was shown that using a harmonic mean gives 
significantly better results. In this section, these results are 
compared to the results obtained with the ghost-fluid method.  

The equation for the electric potential is a Laplace equation 
with constant coefficients in each phase. This equation can be 
solved by noting that the potential is continuous across the 
interface (equation (2.28)). The solution is 

 
1 0

1 2

2 0
2 1

12
/ 1

12 .
1 /

y L
L

y
L

0

 (3.1) 

The electric field in each phase can then be found by using 
equation (2.7): 

 

0
1

1 2

0
2

2 1

2 1
/ 1

2 1 .
1 /

E
L

E
L

 (3.2) 

The pressure jump is given by equation (2.26), which for this 
case is 

 

 1
1 [ (1 )

(1 )
(1 ) ].

I k ku u

a x

u

b
 (2.23) 

Finally, this can be inserted into (2.20) to give the following 
symmetric discretization: 

 

1 1
2

2

ˆ( ) ( )

ˆ (1 )

k k k k
k

u u u u

ˆ

f
x

a b
x x

 (2.24) 

where ˆ denotes the extrapolated value of the coefficient, 

 ˆ .
(1 )

 (2.25) 

This method can be applied in a dimension-by-dimension 
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second order SSP RK method is employed for the 
reinitialization of the level-set equation. The equations are 
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scheme [19], and viscous terms are discretized using standard 
second-order central differences. 
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electric field. This test case tests the ability of the numerical 
method to accurately predict the jumps across an interface. 
Then, results for the deformation of a dielectric drop subject 
to an electric field are presented. 
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Runge-Kutta (RK) method (see e.g. [18]), while a four-step, 
second order SSP RK method is employed for the 
reinitialization of the level-set equation. The equations are 
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The pressure jump is given by equation (2.26), which for this 
case is 
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We now analyze the accuracy of the ghost-fluid method for 
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value at the interface in the discretization. Because the 
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accurately solved to machine precision, as expected. In [11] 
and [12], data is not provided for the accuracy of the CSF 
method when applied to the horizontal-interface test case. We 
found that for 10 grid points, the 2-norm of the relative error 
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ghost-fluid method for calculating the gradient of the potential 
and for the discretization of the pressure equation, so again we 
expect an exact solution for all grid sizes for this particular 
test case. Figure 4 and Figure 5 show the computed solutions 
of the electric field and the pressure, respectively, together 
with the analytical solutions, for a grid with 10 points. The 
relative error for the value of the electric field was 1512. 1 02  
and the error for the pressure jump was 1517. 4 06 . Clearly, 
the ghost-fluid method is significantly better than the CSF 
method for this test case. 

3.2  A SPHERICAL DROP SUBJECT TO AN 
ELECTRIC FIELD 

This test case serves to assess the accuracy of the ghost-
fluid method for an axisymmetric problem. Finding the 
potential around a dielectric sphere in an electric field is a 
classical problem in electrodynamics (see e.g. [20]), with the 
following solution in spherical coordinates: 
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with the analytical solutions, for a grid with 10 points. The 
relative error for the value of the electric field was 1512. 1 02  
and the error for the pressure jump was 1517. 4 06 . Clearly, 
the ghost-fluid method is significantly better than the CSF 
method for this test case. 

3.2  A SPHERICAL DROP SUBJECT TO AN 
ELECTRIC FIELD 

This test case serves to assess the accuracy of the ghost-
fluid method for an axisymmetric problem. Finding the 
potential around a dielectric sphere in an electric field is a 
classical problem in electrodynamics (see e.g. [20]), with the 
following solution in spherical coordinates: 

 
Table 1. Physical properties and analytical values for the horizontal-interface 
test case. 
 
Quantity 
 

 
Value 

 
Plate distance,  L 0.01 
Permittivity 1, 1  70  
Permittivity 2, 2  1  
Potential difference,  0 100  
Electric field 1,  1E 22.8169 10  
Electric field 2,  2E 41.9718 10  
Pressure jump, [ ]p  31.6959 10  
 

y / L

ψ
/ψ

0

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Analytical
Numerical

 
Figure 3.  The horizontal-interface test case. The electric potential in the y-
direction, scaled by the potential difference, for a calculation with 10 grid 
points. 
 

 2 2
0 1 1 2 2

1[ ] ·[ ]· ( ).
2

Mp E En n  (3.3) 

We now analyze the accuracy of the ghost-fluid method for 
this test case. The chosen physical parameters along with the 
computed analytical solutions are given in Table 1, and are 
equivalent to those used in [12]. 

The ghost-fluid method uses an extrapolated value for the 
value at the interface in the discretization. Because the 
solution is linear in this particular case, this should give an 
exact solution for all grid sizes. Figure 3 shows the solution 
for the potential for a grid with 10 grid points, compared with 
the analytical solution. The 2-norm of the relative error is 

, which means that the electric potential is 
accurately solved to machine precision, as expected. In [11] 
and [12], data is not provided for the accuracy of the CSF 
method when applied to the horizontal-interface test case. We 
found that for 10 grid points, the 2-norm of the relative error 
was 0.85% when using a harmonic mean to smear the 
permittivities, and 65.9% when using an arithmetic mean.  

1615. 9 02

For the error of the electric field of phase 1, together with 
the error in the pressure jump, [12] report  and 

, respectively, for a 40-point grid. We use the 

314 8 %0.
319 7 %0.

y / L

E
y
/E

1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Analytical
Numerical

 
Figure 4.   The horizontal-interface test case. The electric field in the y-
direction, scaled by the exact solution for phase 1, for a calculation with 10 
grid points. 

y / L

p
/p

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Analytical
Numerical

 
Figure 5.  The horizontal-interface test case. The pressure in the y-direction, 
scaled by the exact solution for phase 1, for a calculation with 10 grid points. 

 
ghost-fluid method for calculating the gradient of the potential 
and for the discretization of the pressure equation, so again we 
expect an exact solution for all grid sizes for this particular 
test case. Figure 4 and Figure 5 show the computed solutions 
of the electric field and the pressure, respectively, together 
with the analytical solutions, for a grid with 10 points. The 
relative error for the value of the electric field was 1512. 1 02  
and the error for the pressure jump was 1517. 4 06 . Clearly, 
the ghost-fluid method is significantly better than the CSF 
method for this test case. 

3.2  A SPHERICAL DROP SUBJECT TO AN 
ELECTRIC FIELD 

This test case serves to assess the accuracy of the ghost-
fluid method for an axisymmetric problem. Finding the 
potential around a dielectric sphere in an electric field is a 
classical problem in electrodynamics (see e.g. [20]), with the 
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Here,  is the permittivity ratio between the drop and the 
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Note that this is the electric field in the x-direction and y-
direction, but defined using r and  for the purpose of a more 
compact presentation. These values can be compared to those 
found by the present algorithm by taking only one time step, 
so that there is no deformation of the sphere. The physical 
properties used for the test case is given in Table 2. A domain 
size of  was used. The error in the potential, together 
with the convergence behavior, is given in Table 3. The order 
of convergence is defined as 

3 6R R

 2 1

2 1

/ ) ,
ln(
l

/
n(

)
E E
N N

 (3.6) 

Where  is the error on a grid with  grid points. The error 
is low even for small grid sizes, and the convergence is that 
expected of the ghost-fluid method. 

iE iN

Figure 6 shows a comparison of the potential contour lines 
for the analytical and numerical result. Figure 7, which shows 
stream-traces of the electric field, further demonstrates the 
accuracy of the ghost-fluid method. 
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Figure 7.  The spherical-drop test case. Comparison of analytical (solid) and 
numerical (dashed) electric field around a dielectric drop for . / 4R h 0
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highest, to the theoretical result. The pressure jump is given 
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Note that this is the electric field in the x-direction and y-
direction, but defined using r and  for the purpose of a more 
compact presentation. These values can be compared to those 
found by the present algorithm by taking only one time step, 
so that there is no deformation of the sphere. The physical 
properties used for the test case is given in Table 2. A domain 
size of  was used. The error in the potential, together 
with the convergence behavior, is given in Table 3. The order 
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Note that this is the electric field in the x-direction and y-
direction, but defined using r and  for the purpose of a more 
compact presentation. These values can be compared to those 
found by the present algorithm by taking only one time step, 
so that there is no deformation of the sphere. The physical 
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size of  was used. The error in the potential, together 
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direction, but defined using r and  for the purpose of a more 
compact presentation. These values can be compared to those 
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numerical (dashed) electric field around a dielectric drop for . / 4R h 0
 

In [12], they compared the pressure jump across the 
interface along the x-axis, where the jump in pressure is the 
highest, to the theoretical result. The pressure jump is given 
by equation (2.26), which for this particular problem becomes 

 2
0 02

2 9 1[ ]
2 ( 2)

p
R

E  (3.7) 

The error for the maximum pressure jump when using the 
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Table 4. The relative error for the maximum pressure jump across the 
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error is nearly equal to that reported in [12] for / 16R h 0 . 
This shows the superiority of the sharp-interface approach 
compared to the smeared-interface approach. The 
convergence behavior is similar for the two methods. 

3.3 DEFORMATION OF A SPHERICAL DROP 
SUBJECT TO AN ELECTRIC FIELD 

If an electric field is applied to an initially spherical drop in 
a matrix fluid of different permittivity, the drop will deform. 
As explained in [2], a perfect dielectric drop will always 
stretch in the direction of the electric field. The amount of 
stretching depends on the permittivity ratio, , and the ratio 
between electric forces and capillary forces, expressed by the 
dielectric Bond number, 
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An expression for the steady-state deformation was found in 
[21], by an energetic approach. Good agreement with finite-
element computations was reported. The expression can be 
written as 
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   For permittivity ratios above approximately 20, the 
elongation is no longer single-valued, and hysteresis may 
occur. The parameter range that allows hysteresis is very 
narrow, 20 25 . For other values, the drop shape is 
unstable, and the drop will begin to emit small drops from its 
tips to lower its radius and thereby reattain a stable value. A 
series of numerical calculations were performed to compare 
the numerical method to the above theoretical result.  To avoid 
having to run the simulations to steady state, the simulations 
were run for one oscillation period with viscosities equal to 
zero, and the average between the maximum and the minimum 
value was used as the steady state value. This will not be 
entirely correct due to numerical diffusion, but is considered 
sufficient for the present purpose. The computational domain 
was , and a grid size of 16  was used. For this 
grid size, the relative error in using the values for an inviscid 
computation compared to running to steady state was found to 
be for  when using the ghost-fluid 
method. 
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An example of the induced flow field is given in Figure 9. 
This is when the flow field reaches a maximum, just before 
the surface-tension forces begin reversing the flow. Note that 
the velocity is highest towards the pole of the drop. For high 
field strengths, this can lead to conical ends, as shown in [22].  
The flow tends to zero as the droplet reaches its equilibrium 
shape. 

Since the electric field is abruptly applied at 0t , inertia 
will cause the drop to overshoot the asymptotic value for the 
deformation, and then oscillate about this value until the 
viscous effects have damped out the motion. This overshoot 
may cause the drop to become unstable at values lower than 
those predicted by equation (3.9). For the values used here, 
the theoretical expression predicts breakup at eBo 0.522 . 
However, at eBo 0.5 , the numerical calculations no longer 
reach a steady-state value. Predicting when breakup occurs 
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elongation is no longer single-valued, and hysteresis may 
occur. The parameter range that allows hysteresis is very 
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An example of the induced flow field is given in Figure 9. 
This is when the flow field reaches a maximum, just before 
the surface-tension forces begin reversing the flow. Note that 
the velocity is highest towards the pole of the drop. For high 
field strengths, this can lead to conical ends, as shown in [22].  
The flow tends to zero as the droplet reaches its equilibrium 
shape. 

Since the electric field is abruptly applied at 0t , inertia 
will cause the drop to overshoot the asymptotic value for the 
deformation, and then oscillate about this value until the 
viscous effects have damped out the motion. This overshoot 
may cause the drop to become unstable at values lower than 
those predicted by equation (3.9). For the values used here, 
the theoretical expression predicts breakup at eBo 0.522 . 
However, at eBo 0.5 , the numerical calculations no longer 
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   For permittivity ratios above approximately 20, the 
elongation is no longer single-valued, and hysteresis may 
occur. The parameter range that allows hysteresis is very 
narrow, 20 25 . For other values, the drop shape is 
unstable, and the drop will begin to emit small drops from its 
tips to lower its radius and thereby reattain a stable value. A 
series of numerical calculations were performed to compare 
the numerical method to the above theoretical result.  To avoid 
having to run the simulations to steady state, the simulations 
were run for one oscillation period with viscosities equal to 
zero, and the average between the maximum and the minimum 
value was used as the steady state value. This will not be 
entirely correct due to numerical diffusion, but is considered 
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An example of the induced flow field is given in Figure 9. 
This is when the flow field reaches a maximum, just before 
the surface-tension forces begin reversing the flow. Note that 
the velocity is highest towards the pole of the drop. For high 
field strengths, this can lead to conical ends, as shown in [22].  
The flow tends to zero as the droplet reaches its equilibrium 
shape. 

Since the electric field is abruptly applied at 0t , inertia 
will cause the drop to overshoot the asymptotic value for the 
deformation, and then oscillate about this value until the 
viscous effects have damped out the motion. This overshoot 
may cause the drop to become unstable at values lower than 
those predicted by equation (3.9). For the values used here, 
the theoretical expression predicts breakup at eBo 0.522 . 
However, at eBo 0.5 , the numerical calculations no longer 
reach a steady-state value. Predicting when breakup occurs 
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elongation is no longer single-valued, and hysteresis may 
occur. The parameter range that allows hysteresis is very 
narrow, 20 25 . For other values, the drop shape is 
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An example of the induced flow field is given in Figure 9. 
This is when the flow field reaches a maximum, just before 
the surface-tension forces begin reversing the flow. Note that 
the velocity is highest towards the pole of the drop. For high 
field strengths, this can lead to conical ends, as shown in [22].  
The flow tends to zero as the droplet reaches its equilibrium 
shape. 

Since the electric field is abruptly applied at 0t , inertia 
will cause the drop to overshoot the asymptotic value for the 
deformation, and then oscillate about this value until the 
viscous effects have damped out the motion. This overshoot 
may cause the drop to become unstable at values lower than 
those predicted by equation (3.9). For the values used here, 
the theoretical expression predicts breakup at eBo 0.522 . 
However, at eBo 0.5 , the numerical calculations no longer 
reach a steady-state value. Predicting when breakup occurs 



 

will then no longer be a function of just  and eBo , but will 
also depend on the viscosities and densities of the two media. 
Investigating such a criterion is beyond the scope of this work. 

4 CONCLUSION 
This work presented an evaluation of a sharp-interface 

approach to simulating two-phase, electrohydrodynamic 
flows. The sharp-interface method was shown to give 
significant improvements in accuracy compared to smeared-
interface approaches.  

The generality of the method allows it to be used in a wide 
range of problems involving two-phase flows and electric 
fields. The inherent handling of topological changes makes 
the method attractive for studying problems involving breakup 
or coalescence, for instance film boiling and emulsion 
stability.   

Only perfect dielectric fluids were considered in this work. 
A natural extension is to apply the method to the leaky 
dielectric model. This will be presented in a future work.  
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will then no longer be a function of just  and eBo , but will 
also depend on the viscosities and densities of the two media. 
Investigating such a criterion is beyond the scope of this work. 

4 CONCLUSION 
This work presented an evaluation of a sharp-interface 

approach to simulating two-phase, electrohydrodynamic 
flows. The sharp-interface method was shown to give 
significant improvements in accuracy compared to smeared-
interface approaches.  

The generality of the method allows it to be used in a wide 
range of problems involving two-phase flows and electric 
fields. The inherent handling of topological changes makes 
the method attractive for studying problems involving breakup 
or coalescence, for instance film boiling and emulsion 
stability.   

Only perfect dielectric fluids were considered in this work. 
A natural extension is to apply the method to the leaky 
dielectric model. This will be presented in a future work.  
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ABSTRACT

The coalescence process between a drop and an interface
may not be instantaneous, but result in the creation of a
smaller secondary drop. This process may be repeated
several times before the coalescence is complete. Exper-
iments have shown that an electric field can suppress this
phenomenon and give coalescence in a single stage. In
this paper, the influence of an electric field on the partial
coalescence process is studied using numerical simula-
tions. The results show that higher electric Bond num-
bers reduce the time from pinch-off of a secondary drop
to recoalescence, and eventually give single-staged coa-
lescence. A single-stage coalescence event is presented
in detail, and the mechanism producing it discussed. The
results support arguments from the literature that single-
staged coalescence is caused by an increased downward
momentum due to electrostatic attraction.

Keywords: Coalescence, electrocoalescence, electrohy-
drodynamics, level-set method, ghost-fluid method

NOMENCLATURE

δ Dirac delta function

� Electric potential [V]

� Interface

κ Curvature [m−1]

φ Level-set function

μ Dynamic viscosity [Pa · s]

μ� Viscosity ratio

ε Relative permittivity

ε0 Vacuum permittivity (= 8.85×10−12 F/m)

ε� Permittivity ratio

ρ Density [kg/m3]

ρ� Density ratio

σ Interfacial tension [N/m2]

τ Pseudo-time

τ2 Time from pinch-off to recoalescence

M Maxwell stress tensor [N/m2]

a Temporary vector field [m/s2]

e Electric field [V/m]

F Strength of surface force [N/m2]

f Arbitrary vector field

g Gravitational acceleration [m/s2]

n Unit normal vector

t Unit tangential vector

u Velocity [m/s]

X Interface parametrization [m]

x Spatial position [m]

F̂ Surface force [N/m3]

a x-aligned semi-axis of ellipse [m]

b y-aligned semi-axis of ellipse [m]

D Diameter [m]

e Ellipse eccentricity

p Pressure [Pa]

S Sign function

t Time [s]

tic Inertio-capillary time

Be Electric Bond number (= ε1ε0 DE2
0/σ )

Bo Bond number (= |ρ1 −ρ2|gD2/σ )

Oh Ohnesorge number (= μ1/
√

ρ1σ D)
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ABSTRACT

The coalescence process between a drop and an interface
may not be instantaneous, but result in the creation of a
smaller secondary drop. This process may be repeated
several times before the coalescence is complete. Exper-
iments have shown that an electric field can suppress this
phenomenon and give coalescence in a single stage. In
this paper, the influence of an electric field on the partial
coalescence process is studied using numerical simula-
tions. The results show that higher electric Bond num-
bers reduce the time from pinch-off of a secondary drop
to recoalescence, and eventually give single-staged coa-
lescence. A single-stage coalescence event is presented
in detail, and the mechanism producing it discussed. The
results support arguments from the literature that single-
staged coalescence is caused by an increased downward
momentum due to electrostatic attraction.

Keywords: Coalescence, electrocoalescence, electrohy-
drodynamics, level-set method, ghost-fluid method
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INTRODUCTION

Electric fields are currently being employed to speed up
the separation of water from oil during oil production
from offshore wells. An electric field increases the coa-
lescence rate between water drops which again enhances
the settling process. Numerical calculations may give ad-
ditional insight into the fundamental processes occurring
in an electrocoalescer, and thereby help to optimize the
separation process.

The partial coalescence phenomenon was made widely
known by Charles and Mason (1960a) and Charles and
Mason (1960b). They attributed the phenomenon to a
static Rayleigh-Plateau instability, and gave a criterion
for partial coalescence based on the viscosity ratio. How-
ever, in Blanchette and Bigioni (2006), it was demon-
strated that the Rayleigh-Plateau instability could not be
the cause of the instability, and instead proposed the con-
vergence of capillary waves on the tip of the droplet as
the dominating mechanism. A detailed study of the prop-
agation of these capillary waves was made in Gilet et al.
(2007), and it was concluded that other viscous mecha-
nisms also play an important role in the process.

In Thoroddsen and Takehara (2000), partial coalescence
was observed in a system with a viscosity ratio much
higher than the criterion stated in Charles and Mason
(1960b). Blanchette and Bigioni tried to give a crite-
rion based on the Ohnesorge number and the Bond num-
ber, and found that for low Bond numbers, i.e. for drops
with negligible gravitational effects, the critical Ohne-
sorge number was approximately 0.026. Yue et al. (2006)
made an extensive parameter study using numerical sim-
ulations, and found an expression for the critical Ohne-
sorge number based on the viscosity ratio. However, they
did not consider larger Bond numbers, so a universal cri-
terion for the occurrence of partial coalescence remains
elusive.

The influence of electric fields on the partial coalescence
phenomenon was discussed briefly in Charles and Mason
(1960b). It was observed that the rest time of the drop
decreased when an electric field was applied. Also, above
a critical field strength, the drop was found to coalesce
with the interface in a single stage. In Allan and Mason
(1961), the influence of electric fields was studied in more
detail. They proposed that single-stage coalescence was a
result of an additional downward momentum of the water
column due to electrostatic attraction, leading to a faster
emptying of the drop.

The present work investigates the influence of an electric
field on the partial coalescence process using numerical
simulations. First, the governing equations and numeri-
cal methods are presented. These are then validated by
comparison with experimental and theoretical results. Fi-
nally, calculations of the partial coalescence process with
applied electric fields are presented and discussed.

GOVERNING EQUATIONS AND NUMERICAL
METHODS

The numerical method used for the calculations is de-
scribed in detail in Bjørklund (2008) and Hansen (2005),
and will only be briefly reviewed here. The full Navier–
Stokes equations are solved in each phase, and the inter-
face between the two phases is captured using the level-
set method. The ghost-fluid method is used to treat dis-
continuities across the interface in a sharp manner. To
account for electric forces, a Poisson equation is solved
for the electric potential, which is then used to calculate
the Maxwell stress tensor.

Flow equations

The flow is governed by the incompressible Navier–
Stokes equations, with added terms for surface tension
forces and electric forces:

ρ

(
∂ u
∂t

+ (u·∇)u
)

= −∇ p +∇·[μ(∇u +∇uT )]+ρg

+ F̂ +∇·M,

∇·u = 0.

(1)
The effect of an interface, �, in the domain results in a
singular surface force which can be expressed by

F̂(x, t) =
∫

�(t)
F(s, t)δ(x − X(s, t))ds, (2)

where s is the arc-length, X(s, t) is the parametrization of
the interface, x is the spatial position and δ is the Dirac
delta function. F is given by

F = σκn. (3)

Here, σ is the interfacial tension, κ the curvature and n is
the outward pointing unit normal vector.

In this work, all equations are solved in an axisymmetric
geometry, so that the divergence operator and Laplacian
operator become

∇· f = 1

x

∂

∂x
(x fx )+ ∂ fy

∂x
= ∂ fx

∂x
+ ∂ fy

∂y
+ fx

x
, (4)

∇·(∇ f ) = 1

x

∂

∂x

(
x
∂ f
∂x

)
+ ∂2 f

∂y2
= ∂2 f

∂x2
+ ∂2 f

∂y2
+ 1

x

∂ f
∂x

(5)

where the subscripts indicate the component, and not the
partial derivative of the vector f . In addition to the above
Laplace operator, one has to add − fx/x2 to the viscous
term in the x–momentum equation.

Electric forces

We assume perfect dielectric materials with no free
charges. In Allan and Mason (1961), it was concluded
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that the ionic strength of the aqueous solution had lit-
tle influence on the coalescence process. Furthermore,
Brown and Hanson (1965) found that it is the electric
field at the interface, rather than the charge it carries, that
is dominating the process.

With these assumptions, the electric potential, �, can be
calculated from the following Laplace equation:

∇·(εε0∇�) = 0, (6)

The electric field can then be calculated as

e = −∇�, (7)

and the Maxwell stress tensor as

M = εε0

[
ee− 1

2
(e · e)I

]
, (8)

where I is the identity tensor. With the above assump-
tions, ∇·M = 0 everywhere except at the interface.

Interface capturing

The interface is captured using the level-set method
(Sussman et al. (1994); Osher and Fedkiw (2003)). This
method allows accurate computation of the evolution of
an interface, along with automatic handling of topolog-
ical changes. The ghost-fluid method (Fedkiw (1999);
Kang et al. (2000)) is used to take discontinuities across
the interface into account. This method handles the jumps
in physical properties directly in the numerical stencils,
without the need for any smearing of properties.

The interface is defined by the zero level set

� = {x|φ(x, t) = 0}, (9)

and is evolved by

∂φ

∂t
+ uint ·∇φ = 0. (10)

Here, uint is the velocity on the interface. To be able to
solve this equation numerically, the interface velocity is
extended off the interface. In Adalsteinsson and Sethian
(1999), it was shown that the velocity could be extrapo-
lated orthogonally from the interface by solving

∂u
∂τ

+ S(φ0)n ·∇u = 0, (11)

where S is a sign function given by

S(φ) = φ√
φ2 +2x2

. (12)

Note that this equation is hyperbolic, so it is not necessary
to solve it to steady state, since only the information a few
grid points away from the interface is relevant.

The standard level-set reinitialization procedure is used
to keep the level-set function as a signed distance func-
tion throughout the computation. This is accomplished
by solving

∂φ

∂τ
+ S(φ0)(|∇φ|−1) = 0,

φ(x,0) = φ0(x).

(13)

Reinitialization is performed every second time step.

The ghost-fluid method is used to handle the discon-
tinuities across the interface in a sharp manner. This
method requires jump conditions, which are relations be-
tween the physical quantities on each side of the inter-
face. In the following, the interfacial jump is denoted by
[x] = x+ − x−, where x+ is the interfacial value on the
side of the interface where φ is positive, and x− is on the
other side.

The jump in the velocity gradient is

[μ∇u] = [μ]n ·∇(u · n)nn +[μ]t ·∇(u · n)nt (14)

−[μ]t ·∇(u · n)tn (15)

+[μ]t ·∇(u · t)t t, (16)

where t the tangential vector. The jump in the pressure is

[p] = 2[μ]n ·∇u · n + n · [M] · n +σκn · n, (17)

The jump conditions for the electric potential and its gra-
dient are

[�] = 0, (18)

[εε0∇� · n] = 0. (19)

The latter is zero since we assume no free charges.

Numerics

A second-order projection scheme is used to solve the
Navier–Stokes equations. First, a temporary vector field,
a, is calculated:

a = −(u·∇)u +∇·[μ(∇u +∇uT )]. (20)

Then the pressure is found by solving

∇·
(∇ p

ρ

)
= ∇·a. (21)

Finally, the velocity field is calculated with

∂ u
∂t

= a − ∇ p

ρ
(22)

The evolution in time is performed using a third or-
der, strong stability preserving (SSP) Runge-Kutta (RK)
method (Gottlieb et al. (2001)), while a second order SSP
RK method is employed for the evolution of the level-set
equation, the reinitialization of the level-set equation and
extrapolation of the velocity field.

The equations are spatially discretized on a staggered
grid, with scalar values stored in cell centers and vector
values stored at cell boundaries. The convective terms
are discretized using the fifth order Weighted Essen-
tially Non-Oscillatory (WENO) scheme (Jiang and Peng
(2000)), and viscous terms are discretized using standard
second order central differences.

One substep in the RK solver can be summarized as fol-
lows:
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Kang et al. (2000)) is used to take discontinuities across
the interface into account. This method handles the jumps
in physical properties directly in the numerical stencils,
without the need for any smearing of properties.

The interface is defined by the zero level set

� = {x|φ(x, t) = 0}, (9)

and is evolved by

∂φ

∂t
+ uint ·∇φ = 0. (10)

Here, uint is the velocity on the interface. To be able to
solve this equation numerically, the interface velocity is
extended off the interface. In Adalsteinsson and Sethian
(1999), it was shown that the velocity could be extrapo-
lated orthogonally from the interface by solving

∂u
∂τ

+ S(φ0)n ·∇u = 0, (11)

where S is a sign function given by

S(φ) = φ√
φ2 +2x2

. (12)

Note that this equation is hyperbolic, so it is not necessary
to solve it to steady state, since only the information a few
grid points away from the interface is relevant.

The standard level-set reinitialization procedure is used
to keep the level-set function as a signed distance func-
tion throughout the computation. This is accomplished
by solving

∂φ

∂τ
+ S(φ0)(|∇φ|−1) = 0,

φ(x,0) = φ0(x).

(13)

Reinitialization is performed every second time step.

The ghost-fluid method is used to handle the discon-
tinuities across the interface in a sharp manner. This
method requires jump conditions, which are relations be-
tween the physical quantities on each side of the inter-
face. In the following, the interfacial jump is denoted by
[x] = x+ − x−, where x+ is the interfacial value on the
side of the interface where φ is positive, and x− is on the
other side.

The jump in the velocity gradient is

[μ∇u] = [μ]n ·∇(u · n)nn +[μ]t ·∇(u · n)nt (14)

−[μ]t ·∇(u · n)tn (15)
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where t the tangential vector. The jump in the pressure is

[p] = 2[μ]n ·∇u · n + n · [M] · n +σκn · n, (17)

The jump conditions for the electric potential and its gra-
dient are

[�] = 0, (18)

[εε0∇� · n] = 0. (19)

The latter is zero since we assume no free charges.

Numerics

A second-order projection scheme is used to solve the
Navier–Stokes equations. First, a temporary vector field,
a, is calculated:

a = −(u·∇)u +∇·[μ(∇u +∇uT )]. (20)

Then the pressure is found by solving

∇·
(∇ p

ρ

)
= ∇·a. (21)

Finally, the velocity field is calculated with
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∂t

= a − ∇ p

ρ
(22)

The evolution in time is performed using a third or-
der, strong stability preserving (SSP) Runge-Kutta (RK)
method (Gottlieb et al. (2001)), while a second order SSP
RK method is employed for the evolution of the level-set
equation, the reinitialization of the level-set equation and
extrapolation of the velocity field.

The equations are spatially discretized on a staggered
grid, with scalar values stored in cell centers and vector
values stored at cell boundaries. The convective terms
are discretized using the fifth order Weighted Essen-
tially Non-Oscillatory (WENO) scheme (Jiang and Peng
(2000)), and viscous terms are discretized using standard
second order central differences.

One substep in the RK solver can be summarized as fol-
lows:
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1. Solve Equation (6) for the electric potential

2. Calculate electric field and electric forces using
Equations (7)-(8)

3. Calculate a temporary vector field with Equa-
tion (20)

4. Solve Equation (21) to find the pressure

5. Calculate the final velocity field using Equation (22)

6. Extrapolate the velocity from the previous time step
by solving Equation (11)

7. Update the level-set function with Equation (10), us-
ing the extrapolated velocities

8. Reinitialize the level-set function by solving Equa-
tion (13)

Dimensionless groups

In Yue et al. (2006) the following four dimensionless
groups were used to describe the partial coalescence phe-
nomena:
The Ohnesorge number, relating viscous forces to inter-
facial tension forces

Oh = μ1√
ρ1σ D

, (23)

the Bond number, relating gravitational forces to interfa-
cial tension forces

Bo = |ρ1 −ρ2|gD2

σ
, (24)

the density ratio

ρ� = ρ1

ρ2
(25)

and the viscosity ratio

μ� = μ1

μ2
. (26)

Here, the subscripts 1 and 2 denote the drop and the ma-
trix phase, respectively. D is the diameter of the drop and
σ is the interfacial tension between the two phases. The
addition of an electric field gives three new variables in
the system; the initial electric field, E0, and the permittiv-
ities of the two phases, ε1 and ε2. This calls for two new
dimensionless variables to properly describe the system.
Here, we choose the electric Bond number, relating elec-
tric forces to interfacial-tension forces

Be = ε1ε0 D

σ
E2

0 , (27)

and the permittivity ratio

ε� = ε1

ε2
. (28)

Any other dimensionless quantity can now ideally be rep-
resented as a function of these dimensionless parameters.

We use the same time scale as Yue et al. (2006),

tic =
√

ρ1 D3

σ
. (29)

Quantity Value

Initial drop diameter, D0 1/3
Drop density, ρ1 1.0

Drop viscosity, μ1 1.0×10−2

Drop permittivity, ε1 180
Matrix density, ρ2 1.0

Matrix viscosity, μ2 1.0×10−2

Matrix permittivity, ε2 3
Interfacial tension, σ 1.0

Electric field, E0 6.42×104

Table 1: Numerical parameters for the oscillating drop
calculation.

CODE VALIDATION

Oscillating drop driven by an electric field

This test case aims at demonstrating the validity of the
model for the electric forces. An initially spherical drop
is exposed to an electric field. This will induce surface
forces on the interface between the two fluids, set up by
the permittivity difference, and result in a stretching of
the drop in the direction of the electric field. This process
is illustrated in Figure 1.

An expression for the steady-state elongation of the
droplet can be found by balancing the hydrodynamic
pressure with the electrostatic pressure (Garton and Kra-
sucki (1964); Taylor (1964)). For drops with finite per-
mittivities, this expression can be written as
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A series of calculations on varying grid sizes was per-
formed and compared with the analytic expression above.
The numerical parameters for the numerical calculations
are given in Table 1. For these values, the asymptotic
expression gives a = 0.3290 and b = 0.3422.

Figure 2 compares calculations with the axisymmetric
code to the asymptotic value. As expected, the calcula-
tions converge toward oscillating around the asymptotic
value.

Partial coalescence without electric field:
Comparison with experiment

In Chen et al. (2006), an experiment was performed of
a water droplet merging with an interface between 20%
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A series of calculations on varying grid sizes was per-
formed and compared with the analytic expression above.
The numerical parameters for the numerical calculations
are given in Table 1. For these values, the asymptotic
expression gives a = 0.3290 and b = 0.3422.

Figure 2 compares calculations with the axisymmetric
code to the asymptotic value. As expected, the calcula-
tions converge toward oscillating around the asymptotic
value.

Partial coalescence without electric field:
Comparison with experiment

In Chen et al. (2006), an experiment was performed of
a water droplet merging with an interface between 20%
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Figure 2: The evolution of the x-aligned semi-axis of an
initially spherical drop subjected to an electric field. The
dashed line indicates the theoretical steady state.

polybutene in decane and water, with no electric field
applied. They presented a particularly clear image se-
quence of a partial coalescence event, which is used here
for comparison with the numerical results. The physical
properties of the system used are given in Table 2. Note
that Chen et al. (2006) use a different definition of the
Ohnesorge number than this work.

A numerical calculation with the same properties was
performed to verify that the numerical method was ca-
pable of calculating the partial coalescence process. The
numerical setup is illustrated in Figure 3. The compu-
tational domain is given by R = 3D and H = 6D, the
height of the water interface is H1 = 2D and the initial
distance from the interface to the drop is H2 = 0.02D.
The grid size used was 100×200.

Figure 4 shows snapshots from the experiment performed
in Chen et al. (2006), and Figure 5 shows the comparable
snapshots from the numerical calculation. The simula-
tion is capable of reproducing the partial coalescence of
the experiment, and also captures the evolution of the in-
terface with quantitative precision. In particular, the nu-
merical method is capable of predicting the evolution of
the capillary wave, indicated by arrows in Figure 4.

Quantity Value

Drop diameter, D 1.1×10−3

Drop density, ρ1 1000

Drop viscosity, μ1 1.0×10−3

Matrix density, ρ2 760

Matrix viscosity, μ2 2.0×10−3

Interfacial tension, σ 2.97×10−2

Ohnesorge number, Oh 5.53×10−3

Bond number, Bo 9.59×10−2

Table 2: Physical properties of the partial coalescence
experiment performed by Chen et al. (2006).
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Figure 3: A schematic of the geometry for the numerical
simulation. Axisymmetry is imposed across the center-
line, so only the right half is actually part of the compu-
tational domain.

RESULTS AND DISCUSSIONS

In this section, the effect of an electric field on the par-
tial coalescence process is discussed. Calculations are
performed using the same numerical setup and physical
properties as in the previous section, but now a potential
difference is applied between the upper and lower bound-
ary. Additionally, the height of the numerical domain is
increased to H = 7.5D, to ensure that the drop is not af-
fected by the upper boundary. The grid size used for these
simulations was 90×225.

It should be noted that the initial conditions used here
does not take into account the approach of the drop and
the resting of the drop on the interface. Several authors
(Charles and Mason (1960b); Allan and Mason (1961);
Brown and Hanson (1965); Eow and Ghadiri (2003))
have found that an important effect of adding an electric
field is a reduction in rest time due to additional attrac-
tive forces during the approach of the drop. However, the
purpose of this study is to examine the actual coalescence
process, and not the reduction in rest time.
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Effect of the electric Bond number

Figure 6 shows the time interval from pinch-off to coa-
lescence of the secondary drop, denoted τ2, for different
electric Bond numbers. The interval decreases until sin-
gle stage coalescence is obtained at Be = 0.075. This
trend is equivalent to that observed in Allan and Mason
(1961). Single-staged coalescence is then observed at a
range of electric Bond numbers, until pinch-off occurs
again at Be = 0.15. The reappearance of multi-staged co-
alescence at higher field strengths was not observed by
Allan and Mason (1961) and Eow and Ghadiri (2003).
However, recent experiments (Hellesø (2008)) confirm
that this behaviour may occur.

Snapshots from the entire calculation for Be = 0.1 are
given in Figure 7. The potential drop across the drop
and the aqueous phase is nearly zero, which was also ob-
served in Allan and Mason (1961) and Brown and Han-
son (1965). In Figure 4 it is clearly shown that without
an electric field, the height of the liquid column increases
during the emptying. With an electric field applied, the
height decreases steadily throughout the entire event. The
actual pinch-off in Figure 5, (k), corresponds to (h) in
Figure 7. The liquid bridge for the simulation with an ap-
plied electric field is thicker, and the capillary forces are
not large enough for pinch-off to occur.

Allan and Mason attributed single-stage coalescence to
enhanced drainage of the drop due to electrostatic at-
traction. Figure 8 shows a comparison of the relative
pressure distribution with and without an applied electric
field at t = 4.0 × 10−4 s. The electric forces at the inter-
face gives a higher pressure inside the drop, and hence a
higher downward momentum. This is further illustrated
in Figure 9, which shows the magnitude of the velocity
in the y-direction. Without an electric field, the upper
part of the liquid column has a positive velocity. Only the
lower part of the column is emptied, which produces a
thin filament which eventually pinches off. With an elec-
tric field, the entire column has a negative velocity, which
additionally is everywhere larger than without an electric
field. This increased emptying rate prevents the liquid
bridge from pinching off. This also explains why the liq-
uid bridge gets thinner from (b) to (h) in Figure 7, while
it thickens thereafter. Initially, the capillary forces dom-
inate, which causes a thinning of the liquid bridge. The
capillary forces depend on the curvature, so they will get
lower as the drop turns into a liquid column. Meanwhile,
the pressure due to electric forces builds up inside the
drop and accelerates the fluid inside. This is what causes
the thickening and prevents pinch-off.

Effect of the permittivity ratio

Three simulations were performed at different permittiv-
ity ratios. The time from pinch-off to recoalescence is
plotted in Figure 10. It is evident that for values much
lower or higher than that used in the previous section, the
coalescence becomes multi-staged again.
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Figure 6: Time from pinch-off to recoalescence of sec-
ondary drop for varying electric Bond number. For an
intermediate range of electric Bond numbers, the coales-
cence is single-staged.

For a low permittivity ratio, this is because the electric
forces are too small to give the necessary downward mo-
mentum to prevent pinch-off.

For a high permittivity ratio, the increased stretching of
the drop outweighs the effect of the downward momen-
tum, which causes pinch-off to occur.

CONCLUSIONS

This article presented a computational investigation of
the partial coalescence phenomenon, with and without
electric fields applied.

It was shown that the numerical model is capable of re-
producing a partial coalescence event with near quantita-
tive precision in the absence of electric fields.

For the calculations with an applied electric field, the nu-
merical model was able to reproduce trends reported in
the literature. In particular, suppression of the partial co-
alescence process for higher electric fields observed in
experiments was reproduced.

Detailed information from a single-staged coalescence
event was presented that provides insight that is not
immediately available from experiments. These results
showed that the pressure inside the drop is higher when
an electric field is applied. This increases the emptying
rate of the drop, and thereby supports the argument that
single-stage coalescence is caused by an increased down-
ward momentum caused by the electric forces at the in-
terface.

The present results do, however, not give a complete pic-
ture of partial coalescence under the influence of elec-
tric fields. More simulations should be performed using
a wider range of the dimensionless parameters. In par-
ticular, only one Ohnesorge number and Bond number
was investigated here. An investigation of higher Bond

7

A computational study of the coalescence process between a drop and an interface in an electric field / CFD2008-78

Effect of the electric Bond number

Figure 6 shows the time interval from pinch-off to coa-
lescence of the secondary drop, denoted τ2, for different
electric Bond numbers. The interval decreases until sin-
gle stage coalescence is obtained at Be = 0.075. This
trend is equivalent to that observed in Allan and Mason
(1961). Single-staged coalescence is then observed at a
range of electric Bond numbers, until pinch-off occurs
again at Be = 0.15. The reappearance of multi-staged co-
alescence at higher field strengths was not observed by
Allan and Mason (1961) and Eow and Ghadiri (2003).
However, recent experiments (Hellesø (2008)) confirm
that this behaviour may occur.

Snapshots from the entire calculation for Be = 0.1 are
given in Figure 7. The potential drop across the drop
and the aqueous phase is nearly zero, which was also ob-
served in Allan and Mason (1961) and Brown and Han-
son (1965). In Figure 4 it is clearly shown that without
an electric field, the height of the liquid column increases
during the emptying. With an electric field applied, the
height decreases steadily throughout the entire event. The
actual pinch-off in Figure 5, (k), corresponds to (h) in
Figure 7. The liquid bridge for the simulation with an ap-
plied electric field is thicker, and the capillary forces are
not large enough for pinch-off to occur.

Allan and Mason attributed single-stage coalescence to
enhanced drainage of the drop due to electrostatic at-
traction. Figure 8 shows a comparison of the relative
pressure distribution with and without an applied electric
field at t = 4.0 × 10−4 s. The electric forces at the inter-
face gives a higher pressure inside the drop, and hence a
higher downward momentum. This is further illustrated
in Figure 9, which shows the magnitude of the velocity
in the y-direction. Without an electric field, the upper
part of the liquid column has a positive velocity. Only the
lower part of the column is emptied, which produces a
thin filament which eventually pinches off. With an elec-
tric field, the entire column has a negative velocity, which
additionally is everywhere larger than without an electric
field. This increased emptying rate prevents the liquid
bridge from pinching off. This also explains why the liq-
uid bridge gets thinner from (b) to (h) in Figure 7, while
it thickens thereafter. Initially, the capillary forces dom-
inate, which causes a thinning of the liquid bridge. The
capillary forces depend on the curvature, so they will get
lower as the drop turns into a liquid column. Meanwhile,
the pressure due to electric forces builds up inside the
drop and accelerates the fluid inside. This is what causes
the thickening and prevents pinch-off.

Effect of the permittivity ratio

Three simulations were performed at different permittiv-
ity ratios. The time from pinch-off to recoalescence is
plotted in Figure 10. It is evident that for values much
lower or higher than that used in the previous section, the
coalescence becomes multi-staged again.

τ2

0 0.05 0.1 0.15

0

0.1

0.2

0.3

0.4

Be

Figure 6: Time from pinch-off to recoalescence of sec-
ondary drop for varying electric Bond number. For an
intermediate range of electric Bond numbers, the coales-
cence is single-staged.

For a low permittivity ratio, this is because the electric
forces are too small to give the necessary downward mo-
mentum to prevent pinch-off.

For a high permittivity ratio, the increased stretching of
the drop outweighs the effect of the downward momen-
tum, which causes pinch-off to occur.

CONCLUSIONS

This article presented a computational investigation of
the partial coalescence phenomenon, with and without
electric fields applied.

It was shown that the numerical model is capable of re-
producing a partial coalescence event with near quantita-
tive precision in the absence of electric fields.

For the calculations with an applied electric field, the nu-
merical model was able to reproduce trends reported in
the literature. In particular, suppression of the partial co-
alescence process for higher electric fields observed in
experiments was reproduced.

Detailed information from a single-staged coalescence
event was presented that provides insight that is not
immediately available from experiments. These results
showed that the pressure inside the drop is higher when
an electric field is applied. This increases the emptying
rate of the drop, and thereby supports the argument that
single-stage coalescence is caused by an increased down-
ward momentum caused by the electric forces at the in-
terface.

The present results do, however, not give a complete pic-
ture of partial coalescence under the influence of elec-
tric fields. More simulations should be performed using
a wider range of the dimensionless parameters. In par-
ticular, only one Ohnesorge number and Bond number
was investigated here. An investigation of higher Bond

7

A computational study of the coalescence process between a drop and an interface in an electric field / CFD2008-78

Effect of the electric Bond number

Figure 6 shows the time interval from pinch-off to coa-
lescence of the secondary drop, denoted τ2, for different
electric Bond numbers. The interval decreases until sin-
gle stage coalescence is obtained at Be = 0.075. This
trend is equivalent to that observed in Allan and Mason
(1961). Single-staged coalescence is then observed at a
range of electric Bond numbers, until pinch-off occurs
again at Be = 0.15. The reappearance of multi-staged co-
alescence at higher field strengths was not observed by
Allan and Mason (1961) and Eow and Ghadiri (2003).
However, recent experiments (Hellesø (2008)) confirm
that this behaviour may occur.

Snapshots from the entire calculation for Be = 0.1 are
given in Figure 7. The potential drop across the drop
and the aqueous phase is nearly zero, which was also ob-
served in Allan and Mason (1961) and Brown and Han-
son (1965). In Figure 4 it is clearly shown that without
an electric field, the height of the liquid column increases
during the emptying. With an electric field applied, the
height decreases steadily throughout the entire event. The
actual pinch-off in Figure 5, (k), corresponds to (h) in
Figure 7. The liquid bridge for the simulation with an ap-
plied electric field is thicker, and the capillary forces are
not large enough for pinch-off to occur.

Allan and Mason attributed single-stage coalescence to
enhanced drainage of the drop due to electrostatic at-
traction. Figure 8 shows a comparison of the relative
pressure distribution with and without an applied electric
field at t = 4.0 × 10−4 s. The electric forces at the inter-
face gives a higher pressure inside the drop, and hence a
higher downward momentum. This is further illustrated
in Figure 9, which shows the magnitude of the velocity
in the y-direction. Without an electric field, the upper
part of the liquid column has a positive velocity. Only the
lower part of the column is emptied, which produces a
thin filament which eventually pinches off. With an elec-
tric field, the entire column has a negative velocity, which
additionally is everywhere larger than without an electric
field. This increased emptying rate prevents the liquid
bridge from pinching off. This also explains why the liq-
uid bridge gets thinner from (b) to (h) in Figure 7, while
it thickens thereafter. Initially, the capillary forces dom-
inate, which causes a thinning of the liquid bridge. The
capillary forces depend on the curvature, so they will get
lower as the drop turns into a liquid column. Meanwhile,
the pressure due to electric forces builds up inside the
drop and accelerates the fluid inside. This is what causes
the thickening and prevents pinch-off.

Effect of the permittivity ratio

Three simulations were performed at different permittiv-
ity ratios. The time from pinch-off to recoalescence is
plotted in Figure 10. It is evident that for values much
lower or higher than that used in the previous section, the
coalescence becomes multi-staged again.

τ2

0 0.05 0.1 0.15

0

0.1

0.2

0.3

0.4

Be

Figure 6: Time from pinch-off to recoalescence of sec-
ondary drop for varying electric Bond number. For an
intermediate range of electric Bond numbers, the coales-
cence is single-staged.

For a low permittivity ratio, this is because the electric
forces are too small to give the necessary downward mo-
mentum to prevent pinch-off.

For a high permittivity ratio, the increased stretching of
the drop outweighs the effect of the downward momen-
tum, which causes pinch-off to occur.

CONCLUSIONS

This article presented a computational investigation of
the partial coalescence phenomenon, with and without
electric fields applied.

It was shown that the numerical model is capable of re-
producing a partial coalescence event with near quantita-
tive precision in the absence of electric fields.

For the calculations with an applied electric field, the nu-
merical model was able to reproduce trends reported in
the literature. In particular, suppression of the partial co-
alescence process for higher electric fields observed in
experiments was reproduced.

Detailed information from a single-staged coalescence
event was presented that provides insight that is not
immediately available from experiments. These results
showed that the pressure inside the drop is higher when
an electric field is applied. This increases the emptying
rate of the drop, and thereby supports the argument that
single-stage coalescence is caused by an increased down-
ward momentum caused by the electric forces at the in-
terface.

The present results do, however, not give a complete pic-
ture of partial coalescence under the influence of elec-
tric fields. More simulations should be performed using
a wider range of the dimensionless parameters. In par-
ticular, only one Ohnesorge number and Bond number
was investigated here. An investigation of higher Bond

7

A computational study of the coalescence process between a drop and an interface in an electric field / CFD2008-78

Effect of the electric Bond number

Figure 6 shows the time interval from pinch-off to coa-
lescence of the secondary drop, denoted τ2, for different
electric Bond numbers. The interval decreases until sin-
gle stage coalescence is obtained at Be = 0.075. This
trend is equivalent to that observed in Allan and Mason
(1961). Single-staged coalescence is then observed at a
range of electric Bond numbers, until pinch-off occurs
again at Be = 0.15. The reappearance of multi-staged co-
alescence at higher field strengths was not observed by
Allan and Mason (1961) and Eow and Ghadiri (2003).
However, recent experiments (Hellesø (2008)) confirm
that this behaviour may occur.

Snapshots from the entire calculation for Be = 0.1 are
given in Figure 7. The potential drop across the drop
and the aqueous phase is nearly zero, which was also ob-
served in Allan and Mason (1961) and Brown and Han-
son (1965). In Figure 4 it is clearly shown that without
an electric field, the height of the liquid column increases
during the emptying. With an electric field applied, the
height decreases steadily throughout the entire event. The
actual pinch-off in Figure 5, (k), corresponds to (h) in
Figure 7. The liquid bridge for the simulation with an ap-
plied electric field is thicker, and the capillary forces are
not large enough for pinch-off to occur.

Allan and Mason attributed single-stage coalescence to
enhanced drainage of the drop due to electrostatic at-
traction. Figure 8 shows a comparison of the relative
pressure distribution with and without an applied electric
field at t = 4.0 × 10−4 s. The electric forces at the inter-
face gives a higher pressure inside the drop, and hence a
higher downward momentum. This is further illustrated
in Figure 9, which shows the magnitude of the velocity
in the y-direction. Without an electric field, the upper
part of the liquid column has a positive velocity. Only the
lower part of the column is emptied, which produces a
thin filament which eventually pinches off. With an elec-
tric field, the entire column has a negative velocity, which
additionally is everywhere larger than without an electric
field. This increased emptying rate prevents the liquid
bridge from pinching off. This also explains why the liq-
uid bridge gets thinner from (b) to (h) in Figure 7, while
it thickens thereafter. Initially, the capillary forces dom-
inate, which causes a thinning of the liquid bridge. The
capillary forces depend on the curvature, so they will get
lower as the drop turns into a liquid column. Meanwhile,
the pressure due to electric forces builds up inside the
drop and accelerates the fluid inside. This is what causes
the thickening and prevents pinch-off.

Effect of the permittivity ratio

Three simulations were performed at different permittiv-
ity ratios. The time from pinch-off to recoalescence is
plotted in Figure 10. It is evident that for values much
lower or higher than that used in the previous section, the
coalescence becomes multi-staged again.
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Figure 6: Time from pinch-off to recoalescence of sec-
ondary drop for varying electric Bond number. For an
intermediate range of electric Bond numbers, the coales-
cence is single-staged.

For a low permittivity ratio, this is because the electric
forces are too small to give the necessary downward mo-
mentum to prevent pinch-off.

For a high permittivity ratio, the increased stretching of
the drop outweighs the effect of the downward momen-
tum, which causes pinch-off to occur.

CONCLUSIONS

This article presented a computational investigation of
the partial coalescence phenomenon, with and without
electric fields applied.

It was shown that the numerical model is capable of re-
producing a partial coalescence event with near quantita-
tive precision in the absence of electric fields.

For the calculations with an applied electric field, the nu-
merical model was able to reproduce trends reported in
the literature. In particular, suppression of the partial co-
alescence process for higher electric fields observed in
experiments was reproduced.

Detailed information from a single-staged coalescence
event was presented that provides insight that is not
immediately available from experiments. These results
showed that the pressure inside the drop is higher when
an electric field is applied. This increases the emptying
rate of the drop, and thereby supports the argument that
single-stage coalescence is caused by an increased down-
ward momentum caused by the electric forces at the in-
terface.

The present results do, however, not give a complete pic-
ture of partial coalescence under the influence of elec-
tric fields. More simulations should be performed using
a wider range of the dimensionless parameters. In par-
ticular, only one Ohnesorge number and Bond number
was investigated here. An investigation of higher Bond
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Figure 7: Snapshots from numerical simulation with D = 1.1mm,Bo = 0.0959,Oh = 0.00417, and Be = 0.1, demon-
strating single stage coalescence. The time interval is t = 7.75×10−4 s, and the contour lines show the electric potential
with a 10V interval. The potential in the aqueous phase is close to uniform, due to the high relative permittivity.
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Figure 10: Time from pinch-off to recoalescence of sec-
ondary drop for varying permittivity ratio.

numbers, electric Bond numbers and permittivity ratios
requires a full simulation of the approach of the drop.

Finally, the influence of impurities on the interface has
not been taken into account in the numerical model-
ing. Such impurities may cause surface tension gradi-
ents which give rise to additional forces that may mod-
ify the coalescence behaviour. However, recent exper-
iments (Hellesø (2008)) performed with water drops in
real crude oils show the same qualitative behaviour as the
results presented here.
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ing. Such impurities may cause surface tension gradi-
ents which give rise to additional forces that may mod-
ify the coalescence behaviour. However, recent exper-
iments (Hellesø (2008)) performed with water drops in
real crude oils show the same qualitative behaviour as the
results presented here.
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Abstract. A level-set method for computations of interfacial flows with insoluble sur-
factants with electric fields is presented. The discontinuities at the interface are captured
in a sharp manner using the ghost-fluid method. The accuracy of the method is tested
and compared to the standard level-set method. The method is then used to study the
combined effect of insoluble surfactants and electric fields on the motion and deformation
of a falling drop. It is found that the surfactant generally reduces the deformation and the
terminal velocity of the drop. This reduction is most pronounced in the nearly spherical
regime where the drop behavior is similar to a solid sphere due to the interface immobi-
lization caused by the presence of a surfactant. The electric field increases the terminal
velocity by stretching the drop in the direction of the electric field. This effect is largest for
the surfactant-covered drop, which is deformed more due to the lower average interfacial
tension.

1 INTRODUCTION
The presence of surface-active agents (surfactants) at fluid interfaces can have a consid-

erable effect on flow dynamics. Surfactants are amphiphilic organic compounds, which can
be adsorbed at liquid-gas or liquid-liquid interfaces. The presence of surfactants typically
alters the interface dynamics by a reduction in the interfacial tension. An inhomogeneous
distribution of surfactants produces gradients in interfacial tension, which again gives rise
to tangential forces along the interface. Through this so-called Marangoni effect, surfac-
tants can play an important role in several physical phenomena, for instance vortex pair
interaction50,14, fingering49,29 and drop break-up and coalescence15,17,25,12.

The authors’ interest is the influence of surfactants on the breaking of water-in-oil
emulsions. In some oil fields, heavy oils with high viscosity combined with surface-active
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components like asphaltenes and resins make it hard to extract the water using traditional
sedimentation processes. In order to accelerate the sedimentation process, an electric field
can be applied to the emulsion8. This will introduce attractive forces between the water
drops, which increase the coalescence rate and thereby also the sedimentation rate.

Both the influence of surfactants and electric fields on drops have been studied numeri-
cally. However, to the authors’ knowledge, this is the first numerical study of the combined
effect of surfactant and electric fields. The available numerical methods for detailed sim-
ulations of two-phase flows can roughly be divided into two categories: interface-tracking
and interface-capturing methods. Interface-tracking methods use either a separate grid
for the interface, or a set of interconnected points to mark the interface. Examples
of methods which have been applied to both surfactants and electric fields include the
boundary-integral method41,32,31,40,24 and the front-tracking method19,56,34,16. In general,
interface-tracking approaches can be made very accurate, but can be relatively compli-
cated to implement, especially in three dimensions and for problems involving topological
changes.

In interface-capturing methods, the interface is not tracked explicitly, but instead is
implicitly defined through a regularization of the interface. This means that the evolution
of the interface is handled independently of the underlying grid, which greatly simplifies
gridding, discretization and handling of topological changes. Well known methods in
this category include the volume-of-fluid method39,18, the phase-field method46,47 and the
level-set method54,53,52,48,3. Other novel methods are the lattice-Boltzmann method with
electric fields57 and the smoothed particle hydrodynamics method with soluble surfac-
tants2.

In this paper, we build upon the previous work of Xu et al. (2006)53, and use the
level-set method to represent the interface. However, instead of using the immersed-
interface method26 (IIM) to handle discontinuities across the interface, we employ the
ghost-fluid method9 (GFM). For the case of constant coefficients in the jump conditions,
the GFM is a lower order version of the IIM. The main disadvantage of the IIM is that
discontinuity relations for higher-order derivatives must be developed and implemented.
For more complex physical systems, these may not be available a priori, in which case an
iterative method has to be used to calculate the discontinuites, leading to a more complex
implementation and a more expensive computation. The GFM has the advantages that it
is more accurate than the standard level-set method based on a diffuse interface, the so-
called continuous surface force (CSF) method, while remaining computationally efficient
and relatively easy to implement for both two- and three-dimensional problems. A ghost-
fluid method for electric fields was presented in Hansen (2008)3, and we use the same
methodology here.

The paper is organized as follows: In Section 2, we state the governing equations and
briefly discuss the numerical method. In Section 3 we present simulations demonstrating
the capabilities of the method. We first compare the accuracy to a diffuse-interface method
using a test case with an available analytical solution, then we present simulations of a
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and interface-capturing methods. Interface-tracking methods use either a separate grid
for the interface, or a set of interconnected points to mark the interface. Examples
of methods which have been applied to both surfactants and electric fields include the
boundary-integral method41,32,31,40,24 and the front-tracking method19,56,34,16. In general,
interface-tracking approaches can be made very accurate, but can be relatively compli-
cated to implement, especially in three dimensions and for problems involving topological
changes.

In interface-capturing methods, the interface is not tracked explicitly, but instead is
implicitly defined through a regularization of the interface. This means that the evolution
of the interface is handled independently of the underlying grid, which greatly simplifies
gridding, discretization and handling of topological changes. Well known methods in
this category include the volume-of-fluid method39,18, the phase-field method46,47 and the
level-set method54,53,52,48,3. Other novel methods are the lattice-Boltzmann method with
electric fields57 and the smoothed particle hydrodynamics method with soluble surfac-
tants2.

In this paper, we build upon the previous work of Xu et al. (2006)53, and use the
level-set method to represent the interface. However, instead of using the immersed-
interface method26 (IIM) to handle discontinuities across the interface, we employ the
ghost-fluid method9 (GFM). For the case of constant coefficients in the jump conditions,
the GFM is a lower order version of the IIM. The main disadvantage of the IIM is that
discontinuity relations for higher-order derivatives must be developed and implemented.
For more complex physical systems, these may not be available a priori, in which case an
iterative method has to be used to calculate the discontinuites, leading to a more complex
implementation and a more expensive computation. The GFM has the advantages that it
is more accurate than the standard level-set method based on a diffuse interface, the so-
called continuous surface force (CSF) method, while remaining computationally efficient
and relatively easy to implement for both two- and three-dimensional problems. A ghost-
fluid method for electric fields was presented in Hansen (2008)3, and we use the same
methodology here.

The paper is organized as follows: In Section 2, we state the governing equations and
briefly discuss the numerical method. In Section 3 we present simulations demonstrating
the capabilities of the method. We first compare the accuracy to a diffuse-interface method
using a test case with an available analytical solution, then we present simulations of a
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falling drop and discuss the influence of surfactants and electric fields. Section 4 concludes
the work.

2 GOVERNING EQUATIONS AND NUMERICAL METHODS
The full Navier–Stokes equations are solved in each phase, and the interface between

the two phases is captured using the level-set method. The ghost-fluid method is used to
treat discontinuities across the interface in a sharp manner.

2.1 Flow equations
The flow is governed by the incompressible Navier–Stokes equations, with added terms

for interfacial-tension forces and electric forces:

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+∇·[μ(∇u+∇uT )] + ρg + Fe + Fs,

∇·u = 0.
(1)

Here, ρ is the density, u is the velocity, p is the pressure, μ is the dynamic viscosity and
g is the gravitational acceleration. Fe is the force due to the presence of an electric field.
The effect of an interface, Γ, in the domain results in a singular interfacial force which
can be expressed by

Fs(x, t) =
∫

Γ(t)
F̂s(s, t)δ(x−X(s, t))ds, (2)

where s is the arc-length, X(s, t) is the parametrization of the interface, x is the spatial
position and δ is the Dirac delta function. For the present problem, F̂s is given by

F̂s = σκn−∇Γσ (3)

The first term accounts for the normal capillary force due to interfacial tension. Here,
σ is the coefficient of interfacial tension, κ the curvature and n is the outward pointing
unit normal vector. The second term is the Marangoni force, which is caused by gradients
in the interfacial tension and acts tangentially to the interface. The interfacial gradient,
∇Γ, is given by

∇Γ = (I − nn)∇, (4)
where I is the identity tensor.

2.2 Surfactants
Gradients in the interfacial tension occur due to the presence of an insoluble surfactant

on the interface. The dynamics of the surfactant concentration, f , is governed by54,53

∂f

∂t
+ u ·∇f − n ·∇u · nf
= Df

(
∇2f − n ·∇∇ · nf + κ(n ·∇f)

) (5)
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where Df is the surfactant diffusion coefficient. We employ the Langmuir equation of
state to relate the interfacial tension and surfactant concentration,

σ(f) = σ0

[
1 + β ln

(
1− f
f∞

)]
. (6)

Here, β = R̄Tf∞/σ0 is the interface elasticity number, which is a measure of the sensitivity
of interfacial tension to surfactant concentration. f∞ is the maximum surfactant packing,
R̄ is the universal gas constant, T the temperature and σ0 is the interfacial tension of a
clean interface.

In this paper, we will assume that the surfactant is restricted to the interface, i.e. it
will not be able to dissolve into the surrounding fluid. Surfactants behave as insoluble
monolayers in two limits37. The first corresponds to dilute bulk concentrations, for which
the diffusion flux from the bulk is slow compared to the interface convection flux. The
second limit corresponds to slow adsorption-desorption exchange, which can occur in
aqueous systems with long-chained surfactants.

Since we assume that the surfactant is insoluble, it is only defined on the interface.
In order to solve the evolution equation numerically, we must therefore first extend the
surfactant concentration off the interface58. This is accomplished by solving1

∂f

∂τ
+ S(φ0)n · ∇f = 0. (7)

Here, S is a sign function given by

S(φ) = φ√
φ2 + 2Δx2 . (8)

Note that this equation is hyperbolic, so it is not necessary to solve it to steady state,
since only the information a few grid points away from the interface is relevant.

2.3 Electric forces
We want to model a conductive drop in an otherwise dielectric medium, for instance a

water drop in oil. This can be achieved by assuming perfect dielectric materials with no
free charges, and then choosing a high permittivity ratio between the two phases30.

With these assumptions, the electric force is given by

F e =∇·M , (9)

whereM is the Maxwell stress tensor,

M = εε0
[
EE − 1

2(E ·E)I
]
. (10)
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Here, E is the electric field. With the above assumptions, ∇·M = 0 everywhere except
at the interface. The electric field is divergence free, such that

E = −∇Ψ, (11)

where Ψ is the electric potential. The electric potential is found from the following Laplace
equation:

∇·(εε0∇Ψ) = 0. (12)

2.4 Interface capturing
The interface is captured using the level-set method44,36. This method allows accurate

computation of the evolution of an interface, along with automatic handling of topological
changes. The ghost-fluid method9,21 (GFM) is used to take discontinuities across the
interface into account. This method handles the jumps in physical properties directly in
the numerical stencils, without the need for any smearing of properties.

The GFM requires jump conditions, which are relations between the physical quantities
on each side of the interface. The jump conditions for the present problem are21,3,13

[u] = 0, (13)
[p] = 2[μ]n ·∇u · n+ n · [M ] · n+ σκ, (14)
[Ψ] = 0, (15)

[μ∇u] = [μ]
(
(n ·∇u · n)nn+ (n ·∇u · t)nt

− (n ·∇u · t)tn+ (t ·∇u · t)tt
)

− (t · [M ] · n)tn− (t ·∇Γσ)tn,

(16)

[∇p] = 0, (17)
[εn ·∇Ψ] = 0. (18)

A well-known issue with the level-set method is that it does not conserve mass. The
more accurate ghost-fluid discretization somewhat alleviates the problem, but for long-
running simulations it is still an issue. In particular, since we use an explicit time-
integration method in this work, simulations at low Reynolds numbers (i.e. highly viscous
fluids) suffer from severe mass loss. We therefore introduce a simple mass correction
scheme for these simulations. At each time step, we add a constant, α, to the level-set
function, where α is found by solving the equation∫

Ω
H(φ)(φ+ α)dΩ =

∫
Ω
H(φ0)φ0dΩ. (19)

Here, φ0 is the initial level-set function. The effect of this correction scheme is to add any
lost mass back globally over the entire drop. Since mass loss typically occurs in regions
of high curvature and low resolution, this scheme works well for low Reynolds number

5

Knut Erik Teigen, Karl Yngve Lervåg and Svend Tollak Munkejord

Here, E is the electric field. With the above assumptions, ∇·M = 0 everywhere except
at the interface. The electric field is divergence free, such that

E = −∇Ψ, (11)

where Ψ is the electric potential. The electric potential is found from the following Laplace
equation:

∇·(εε0∇Ψ) = 0. (12)

2.4 Interface capturing
The interface is captured using the level-set method44,36. This method allows accurate

computation of the evolution of an interface, along with automatic handling of topological
changes. The ghost-fluid method9,21 (GFM) is used to take discontinuities across the
interface into account. This method handles the jumps in physical properties directly in
the numerical stencils, without the need for any smearing of properties.

The GFM requires jump conditions, which are relations between the physical quantities
on each side of the interface. The jump conditions for the present problem are21,3,13

[u] = 0, (13)
[p] = 2[μ]n ·∇u · n+ n · [M ] · n+ σκ, (14)
[Ψ] = 0, (15)

[μ∇u] = [μ]
(
(n ·∇u · n)nn+ (n ·∇u · t)nt

− (n ·∇u · t)tn+ (t ·∇u · t)tt
)

− (t · [M ] · n)tn− (t ·∇Γσ)tn,

(16)

[∇p] = 0, (17)
[εn ·∇Ψ] = 0. (18)

A well-known issue with the level-set method is that it does not conserve mass. The
more accurate ghost-fluid discretization somewhat alleviates the problem, but for long-
running simulations it is still an issue. In particular, since we use an explicit time-
integration method in this work, simulations at low Reynolds numbers (i.e. highly viscous
fluids) suffer from severe mass loss. We therefore introduce a simple mass correction
scheme for these simulations. At each time step, we add a constant, α, to the level-set
function, where α is found by solving the equation∫

Ω
H(φ)(φ+ α)dΩ =

∫
Ω
H(φ0)φ0dΩ. (19)

Here, φ0 is the initial level-set function. The effect of this correction scheme is to add any
lost mass back globally over the entire drop. Since mass loss typically occurs in regions
of high curvature and low resolution, this scheme works well for low Reynolds number

5

Knut Erik Teigen, Karl Yngve Lervåg and Svend Tollak Munkejord

Here, E is the electric field. With the above assumptions, ∇·M = 0 everywhere except
at the interface. The electric field is divergence free, such that

E = −∇Ψ, (11)

where Ψ is the electric potential. The electric potential is found from the following Laplace
equation:

∇·(εε0∇Ψ) = 0. (12)

2.4 Interface capturing
The interface is captured using the level-set method44,36. This method allows accurate

computation of the evolution of an interface, along with automatic handling of topological
changes. The ghost-fluid method9,21 (GFM) is used to take discontinuities across the
interface into account. This method handles the jumps in physical properties directly in
the numerical stencils, without the need for any smearing of properties.

The GFM requires jump conditions, which are relations between the physical quantities
on each side of the interface. The jump conditions for the present problem are21,3,13

[u] = 0, (13)
[p] = 2[μ]n ·∇u · n+ n · [M ] · n+ σκ, (14)
[Ψ] = 0, (15)

[μ∇u] = [μ]
(
(n ·∇u · n)nn+ (n ·∇u · t)nt

− (n ·∇u · t)tn+ (t ·∇u · t)tt
)

− (t · [M ] · n)tn− (t ·∇Γσ)tn,

(16)

[∇p] = 0, (17)
[εn ·∇Ψ] = 0. (18)

A well-known issue with the level-set method is that it does not conserve mass. The
more accurate ghost-fluid discretization somewhat alleviates the problem, but for long-
running simulations it is still an issue. In particular, since we use an explicit time-
integration method in this work, simulations at low Reynolds numbers (i.e. highly viscous
fluids) suffer from severe mass loss. We therefore introduce a simple mass correction
scheme for these simulations. At each time step, we add a constant, α, to the level-set
function, where α is found by solving the equation∫

Ω
H(φ)(φ+ α)dΩ =

∫
Ω
H(φ0)φ0dΩ. (19)

Here, φ0 is the initial level-set function. The effect of this correction scheme is to add any
lost mass back globally over the entire drop. Since mass loss typically occurs in regions
of high curvature and low resolution, this scheme works well for low Reynolds number
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drops, which tend to remain nearly spherical. We note that more sophisticated approaches
for dealing with the mass loss exist. These include coupling with Lagrangian particles7,
coupling with the VOF method43,51 and using modified advection procedures35,38,28.

2.5 Numerics
A second-order projection scheme is used to solve the Navier–Stokes equations. The

evolution in time is performed using a four-step third-order, strong stability-preserving
(SSP) Runge-Kutta (RK) method23,22, while a second-order SSP RK method is employed
for the evolution of the level-set equation, the reinitialization of the level-set equation and
extrapolation of the velocity field and surfactant concentration.

The equations are spatially discretized on an equidistant staggered grid with cell spac-
ing h, where scalar values are stored in cell centers and vector values are stored at cell
boundaries. The convective terms are discretized using the fifth order Weighted Es-
sentially Non-Oscillatory (WENO) scheme20, and Laplacian and gradient terms are dis-
cretized using the ghost-fluid version of standard, second-order central differences. The
Poisson equations for pressure and electric potential are solved using a multigrid algo-
rithm.

To reduce the computational costs, we use a simple scheme to move the domain along
with the falling drop. If the mass center of the drop moves to a neighboring grid cell, the
grid is shifted one cell in the opposite direction to account for this, and data is extrapolated
to the new grid cells.

3 RESULTS
In this Section, we present some numerical results on drop dynamics using the above

method. We begin by validating the implementation of the Marangoni stresses by simu-
lating a bubble rising due to thermocapillary effects. Here, we also compare the results to
the CSF method. The implementation of electric forces has been validated and compared
against the CSF method elsewhere46. Next, we investigate the influence of surfactants
and electric fields on a viscous drop falling through a viscous medium, e.g. a water drop
falling through oil. Two representative systems are studied, one at a low Reynolds number
where the drop remains spherical, and one at a high Reynolds number where the drop
deforms significantly.

3.1 Bubble rising due to thermocapillary effects
As a test case for the implementation of the interfacial-tension force, we will simulate

the thermocapillary migration of a bubble. It is well known that due to the dependence of
interfacial tension on temperature, there will be a discontinuity in the tangential stresses
across the interface for a bubble in a temperature gradient55. The result is a motion of the
drop in a direction that will reduce its interfacial free energy. The flow at the interface will
be from the warmer to the cooler pole of the bubble, and therefore, the bubble will move
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in the direction of the warmer pole. This motion is known as thermocapillary migration.
We assume that the temperature varies as

T (z)
T∞

= z
L
, (20)

where L is the domain height, and the relationship between temperature and interfacial
tension is

σ(z) = σ0

(
1− βT (z)

T∞

)
. (21)

We assume that the pressure in the surrounding fluid is zero. Then the pressure inside
the bubble is given by

p(z) = 2σ(z)
R
, (22)

where R is the bubble radius. For a viscous bubble in a linear temperature gradient, an
approximation for the terminal rise velocity is55

VY BG =
2
(
σ0βR/L−ΔρgR2(μ1 + μ2)/μ2

)
(6μ1 + 9μ2)

. (23)

Here, we choose a domain size 5R× 15R, and parameters μ1 = μ2 = 0.2 Pa, s, R = 0.5 m,
σ0 = 1.0 N/m and β = 1.0. Gravity effects are neglected. According to Eq. (23), this
should give a Reynolds number of Re = 0.0444, which is well within the creeping flow
regime for which the equation is valid.

We first compare the GFM and the CSF method with respect to Eq. (22) for the
pressure. Fig. 1a shows a close-up of pressure contours inside the bubble. In Fig. 1b,
the pressure along the vertical center line is compared to the analytical result for both
the GFM and the CSF method for R/h = 10. We see that with the GFM, the jump in
pressure at the interface is treated in a sharp manner, and that the pressure inside the
bubble is accurately captured. For the CSF, however, the discontinuity is smeared out,
and the jump in pressure is over-predicted. In Table 1, the relative error of the pressure
in the bubble center is given together with convergence rates for the GFM. The error
decreases in a first-order fashion, which is consistent with other results obtained with the
GFM3.

Next, we compare the simulated rise velocity to Eq. (23). The computational rise
velocity was calculated with

V (t) =
∫

ΩH(x, t)u(x, t) · ezdΩ∫
ΩH(x, t)dΩ , (24)

where H(x, t) is the smeared out Heaviside function and ez is the unit vector in the
z-direction. This integral was evaluated using the midpoint rule.
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Figure 1: Pressure after one time step for a bubble rising in a linear surfactant gradient.
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Figure 2: Velocity field at steady state and rise velocity versus time for the thermocapillary
migration test case.
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Table 1: Thermocapillary migration test case. Error and convergence for the pressure
inside the bubble after one time step.

R/h Relative error Order
(×10−2)

10 1.28 −
20 0.655 0.97
30 0.330 0.99
40 0.168 0.98

Table 2: Parameters for falling drop at low Reynolds number

Parameter Symbol Value
Drop radius R 1.03× 10−3 m
Drop density ρ1 1.128× 103 kg/m3

Matrix density ρ2 9.49× 102 kg/m3

Drop viscosity μ1 6.3× 10−3 Pa s
Matrix viscosity μ2 3.8× 10−2 Pa s
Interfacial tension σ 2.91× 10−3 N/m
Surfactant concentration f0 2.4× 10−6 mol/m2

Maximum surfactant packing f∞ 6.0× 10−6 mol/m2

Interface elasticity β 0.4
Diffusion coefficient Df 1× 10−6 m2/s
Electric field E0 8× 105 V/m
Drop relative permittivity ε1 250
Matrix relative permittivity ε2 1

The velocity field around the bubble at steady state is shown in Fig. 2a for a grid spacing
of R/h = 10. The figure is in good agreement with results from the literature34. Fig. 2b
shows the normalized rise velocity for both the GFM and the CSF method. After an initial
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rameters give an Eötvös number of Eo = ΔρgD2/σ = 0.256 and a Morton number of
Mo = Δρgμ4

2/ρ
2
2σ

3 = 1.65 × 10−4. For these low values, the drop moves slowly with a
nearly spherical shape4.

At low Reynolds numbers, we can compare our numerical results to the Hadamard-
Rybczynski formula for a viscous drop in creeping flow11,

VT,HR
2ΔρgR2(μ1 + μ2)
3μ2(3μ1 + 2μ2)

. (25)

For the parameters considered here, we get VT,HR = 1.53× 10−2 m/s, or Re = 0.785.
For the simulations, we choose a domain size of 16R × 32R and a grid spacing of

R/h = 20. The simulated terminal velocity is VT = 1.40× 10−2 m/s, which is close to the
predicted value. The discrepancy is most likely due to the simulation being performed in
a bounded domain, as opposed to the formula which is derived for an infinite domain.

Next, we look at the effect of having a surfactant on the interface. For the contaminated
drop, the simulated terminal velocity is reduced to VT = 0.96 × 10−2 m/s. The reason
for this becomes evident by looking at the velocity profiles given in Figure 3. For the
contaminated drop, the internal circulation nearly disappears, and the drop behaves close
to a rigid particle. The Stokes formula for a rigid, spherical particle in creeping flow,

VT,S
2ΔρgR2

9μ2
, (26)

gives VT,S = 1.09× 10−2 m/s, which is close to the terminal velocity for the contaminated
drop. Again, the discrepancy is attributed to the bounded domain.

Figure 4a shows the surfactant concentration as a function of the arc length, s, mea-
sured in the counter-clockwise direction. The surfactant concentration takes the shape of
an S-curve, and hence the Marangoni stresses are evenly distributed across the drop. The
consequence of this is illustrated in Figure 4b, which shows the interface velocity for both
the clean and the contaminated drop. The interface velocity of the contaminated drop is
greatly reduced across the entire drop interface.

We then consider the effect of an electric field. The drop is allowed to reach a steady
state before the electric field is switched on. The strength of the electric field can be
characterized by the electric capillary number, CaE = ε0ε2DE2

0/σ. A conductive drop
submitted to an electric field becomes unstable when CaE ≈ 0.4145. However, here the
gravitational force will act to stabilize the drop, allowing the use of an even higher CaE.
We choose CaE = 0.45, which gives E0 ≈ 8× 105 V/m.

Figure 5a illustrates the drop shape for the clean drop, along with electric field lines and
velocity vectors. The drop clearly stretches into a prolate shape. This more streamlined
profile gives a reduction in drag and hence a higher terminal velocity. The terminal
velocity was calculated to be VT = 1.50 × 10−2 m/s, an increase over the clean drop
without an electric field. The aspect ratio of the drop is 0.770, while theory predicts
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(a) Clean (b) Contaminated

Figure 3: Low Re drop. Streamlines and velocity vectors in a coordinate system moving
with the drop centroid. Velocity vectors are plotted at every other grid point.
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Figure 4: Low Re drop. Surfactant concentration and interface velocities as functions of
arc length.

11

Knut Erik Teigen, Karl Yngve Lervåg and Svend Tollak Munkejord

(a) Clean (b) Contaminated

Figure 3: Low Re drop. Streamlines and velocity vectors in a coordinate system moving
with the drop centroid. Velocity vectors are plotted at every other grid point.

f/f0

0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

1.05

1.1

s/πR

(a) Surfactant concentration

VΓ/VT

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4 Clean
Contaminated

s/πR

(b) Interface velocities

Figure 4: Low Re drop. Surfactant concentration and interface velocities as functions of
arc length.

11

Knut Erik Teigen, Karl Yngve Lervåg and Svend Tollak Munkejord

(a) Clean (b) Contaminated

Figure 3: Low Re drop. Streamlines and velocity vectors in a coordinate system moving
with the drop centroid. Velocity vectors are plotted at every other grid point.

f/f0

0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

1.05

1.1

s/πR

(a) Surfactant concentration

VΓ/VT

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4 Clean
Contaminated

s/πR

(b) Interface velocities

Figure 4: Low Re drop. Surfactant concentration and interface velocities as functions of
arc length.

11

Knut Erik Teigen, Karl Yngve Lervåg and Svend Tollak Munkejord

(a) Clean (b) Contaminated

Figure 3: Low Re drop. Streamlines and velocity vectors in a coordinate system moving
with the drop centroid. Velocity vectors are plotted at every other grid point.

f/f0

0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

1.05

1.1

s/πR

(a) Surfactant concentration

VΓ/VT

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4 Clean
Contaminated

s/πR

(b) Interface velocities

Figure 4: Low Re drop. Surfactant concentration and interface velocities as functions of
arc length.

11



Knut Erik Teigen, Karl Yngve Lervåg and Svend Tollak Munkejord

(a) Clean (b) Contaminated

Figure 5: Low Re drop with electric field. The left part of the drop shows streamlines of
the electric field and contours colored by the electric field magnitude. The right part of
the drop shows velocity vectors in a coordinate system moving with the drop centroid.
Velocity vectors are plotted at every other grid point.

a minimum aspect ratio of 0.52645. Since we have an electric field stronger than the
predicted critical value for a stationary drop, this demonstrates the stabilizing effect of
the gravitational force.

The contaminated drop with an electric field is shown in Figure 5b. For this drop, the
terminal velocity has increased to VT = 1.09 × 10−2 m/s compared to the contaminated
drop without an electric field. This increase in terminal velocity is much larger than for
the clean drop, which is caused by the lower average surface tension yielding a higher
degree of stretching. An aspect ratio of 0.700 is calculated for the contaminated drop
compared to 0.770 for the clean drop.

Finally, we observe that the electric field lines are close to perpendicular to the interface
at the drop interface, and that the electric field magnitude is close to zero inside the drop.
This indicates that our method of approximating a conductive drop in a dielectric medium
by simulating a dielectric/dielectric system with high permittivity ratio is satisfactory.

3.3 Falling drop at high Reynolds number
We now consider a drop at a relatively high Reynolds number. We use the same

parameters as above, with the exception of a higher radius, R = 5.15× 10−3, and a lower
matrix viscosity, μ2 = 0.19, to achieve a higher Reynolds number. The dimensionless
parameters for this case becomes Eo = 6.4 and Mo = 1.03× 10−5. For a clean drop, the
calculated terminal velocity was VT = 0.131 m/s which gives Re = 67.4. An experiment
performed with the same parameters gave Re = 67.933, which very close to the simulated
value. Since the viscosity of the matrix fluid is lower in this case, we expect the boundaries
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(a) Clean (b) Contaminated

Figure 6: High Re drop. Streamlines and velocity vectors in a coordinate system moving
with the drop centroid. Velocity vectors are plotted at every other grid point.

to have less influence for this drop. The excellent agreement with the experiment indicates
that this is indeed the case. Figure 6a shows the drop shape and velocity pattern. At this
higher Re, the drop deforms into an ellipsoidal shape, and a vortex is formed behind the
drop.

We then add surfactants to the system. It is well known that for contaminated drops
or bubbles moving at higher Reynolds numbers through an otherwise stagnant fluid, the
surfactants will be swept to the rear of the drop. This will create a region where the
interface is nearly immobile due to the resulting high Marangoni stresses, while the front
of the drop will be surfactant-free and mobile. The immobile region is often denoted the
stagnant cap. Several models have been developed which relate the cap angle to e.g. the
drag coefficient. The numerical method used here requires no assumption of a stagnant
cap, and no a priori estimate of the cap angle is necessary.

The resulting drop shape and velocity pattern for the contaminated drop is given
in Figure 6b. It is evident that the deformation is smaller than for the clean drop.
Additionally, we see that the center of the internal vortex has moved closer to the front,
and that the trailing vortex is larger for the contaminated drop. This results in a lower
terminal velocity of VT = 0.119 m/s compared to VT = 0.131 m/s for the clean drop. This
is a much lower difference than for the low Re drop.

The surfactant concentration is shown in Figure 7a. Here, the gradient in the surfactant
concentration does not vary smoothly like for the low Re drop. Instead, there is no
surfactant at the tip of the drop, followed by a sharp jump in concentration towards the
back of the drop. This jump in concentration will effectively immobilize this part of the
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Figure 7: High Re drop. Surfactant concentration and interface velocities as functions of
arc length.

drop, due to high Marangoni stresses. This is further illustrated in Figure 7b, which shows
the interface velocity for both the clean and contaminated drop. Here we clearly see that
for the contaminated drop the interface velocity is greatly reduced in the region of high
surfactant concentration.

We then consider the effect of an electric field. The electric capillary number is CaE =
0.7835, which gives an electric field of E0 = 5× 105 V/m. We use a higher CaE here since
the stabilizing convection is stronger. For the clean drop, the terminal velocity increases
to VT = 0.138 m/s. As can be seen in Figure 8a, there is little change compared to the
case without an electric field. For the contaminated drop, shown in Figure 8b, there is a
more pronounced change. This is also reflected in the terminal velocity, which increases
to the same as the clean drop, VT = 0.138 m/s. Again, this is caused by the lower surface
tension of the contaminated drop allowing a higher degree of stretching.

If the electric field is increased to E0 = 6 × 105 V/m, the clean drop remains stable,
while the contaminated drop becomes unstable. This is due to the stagnant cap, which
has a very low interfacial tension compared to the clean drop. This makes the drop less
resistant to the electric stresses and renders it unstable at a lower electric field strength.
The evolution of the drop is shown in Figure 9, with the drop revolved around the z-axis
and colored according to the surfactant concentration. When the electric field is switched
on, the back of the drop starts to stretch, while the front of the drop remains stable.
Eventually, the stretched part develops a pointed tip and we see the formation of a small
drop on the tip. It has been shown both experimentally and numerically that conduc-
tive drops become pointed and starts emitting small drops from the tips45,40,27,6,42. An
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tension of the contaminated drop allowing a higher degree of stretching.
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(a) Clean (b) Contaminated

Figure 8: High Re drop with electric field. The left part of the drop shows streamlines
of the electric field and contours colored by the electric field magnitude. The right part
of the drop shows velocity vectors in a coordinate system moving with the drop centroid.
Velocity vectors are plotted at every other grid point.

interesting observation is that as the tip starts to form, surfactant is swept from the tip
and towards the middle of the drop. The drop formed at the tip has a very low concen-
tration of surfactants. This is a fundamentally different process from surfactant-covered
drops being stretched in extensional flows or shear flows. For these flows, surfactant is
swept to the drop tips and contributes to the tip-streaming process32,5,39,47. This creates
small drops with high surfactant concentrations which consequently are very stable. The
present simulations suggest that this is not the case for drops broken due to electric fields.

Another interesting phenomenon suggested by the experimental results of Ha & Yang10

is that the presence of a surfactant can cause the break-up mode to change from bulbous
end formation to tip-streaming. The proposed physical mechanism was the same as for
drops in shear flows. Again, our numerical results suggest that this may not be the correct
explanation for the observed behavior.

4 CONCLUSIONS
A level-set method for computations of interfacial flows with insoluble surfactants and

electric fields was presented. It was shown that the method is more accurate than the
standard level-set method at handling the pressure jump at the interface. Currently,
the method only handles insoluble surfactants. A natural extension of the method is to
include solubility. For instance, the method proposed in Teigen et al.46 for the phase-field
method is also applicable to the level-set method.

The method was used to study an axisymmetric drop falling in an otherwise quiescent
fluid. It was found that the surfactant reduced the deformation and the terminal velocity
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Figure 9: Behavior of contaminated drop above the critical field strength. The drop
surface is colored according to surfactant concentration. The first frame shows the drop
before the electric field is switched on. The subsequent frames are at times 0.7, 1.0, 1.3,
1.6 and 1.7 seconds after the field has been switched on.

of the drop. The reduction was most pronounced at low Reynolds number, where the drop
remains spherical. Here, the surfactant-covered drop behaved similarly to a solid sphere.
These results are in agreement with experiments and simulations in the literature. The
effect of an electric field was mainly to increase the terminal velocity. This is due to the
drop stretching in the direction of the electric field, which gives a lower projected interface
area and hence lower drag. This effect was also more evident at lower Reynolds numbers,
which was attributed to lower convection forces which allowed the drop to stretch more.
The effect of an electric field on the contaminated drop was also to increase the terminal
velocity. However, the effect was slightly higher here, due to the overall lower interfacial
tension of the contaminated drop which gives a lower resistance to deformation.

Only two different drops were investigated in this study, and the surfactant parameters
and electric fields were not varied. It would be instructive to investigate a wider range
of drop shapes, and study the influence of the surfactant parameters and electric fields in
more detail. In particular, the observed behavior of an unstable drop is fundamentally
different from previous results for drops in extensional flows or shear flows, and this
warrants further studies.
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Influence of surfactant on drop deformation in an electric field
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1)Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU),
NO-7491 Trondheim, Norway
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The deformation of a surfactant-covered, viscous drop suspended in a viscous fluid under the influence of an
electric field is investigated using numerical simulations. The full Navier–Stokes equations are solved in both
fluid phases, and the motion of the interface and the interfacial discontinuities are handled using the level-set
method. The leaky-dielectric model is used to take into account the effect of an electric field. The surfactant
is assumed to be insoluble, and an evolution equation for the motion of surfactant is solved along the drop
surface. The surfactant concentration and the interfacial tension are coupled through a non-linear equation
of state.

The numerical results show that the effect of surfactant strongly depends on the relative permittivity and
conductivity between the fluids. The presence of surfactant can both increase and reduce the deformation,
depending on the shape of the deformation and the direction of the electrically induced circulation.

PACS numbers: 47.65.-d, 47.55.D-, 47.55.dk
Keywords: Drop deformation, two-phase flow, electrohydrodynamics, surfactant

I. INTRODUCTION

Electric fields are used to manipulate drops in several
industrial applications. These include taking advantage
of induced circulation to promote heat transfer in heat
exchangers16 and increasing the coalescence rate between
water drops to enhance demulsification in crude oils7. It
is common for such fluid systems to contain surface-active
agents, either naturally present as impurities or deliber-
ately added to modify the properties of the system. For
the case of demulsification of crude oils, crude oils contain
natural surfactants such as asphaltenes, resins, waxes and
naphthenic acids24, but surfactants are also added to the
system to act as a demulsifier.

The effect of surfactants on the steady-state deforma-
tion of a drop has been studied by, among others, Milliken
et al. 20 , Pawar and Stebe 22 and Eggleton et al. 5 , Eggle-
ton and Stebe 6 for a drop in extensional flow and by
Li and Pozrikidis 17 and Lai et al. 15 for a drop in shear
flow. Due to the external flow, surfactant will be swept
to the tips of the drop. This gives rise to gradients in
the interfacial tension which causes stresses tangential to
the surface, often denoted Marangoni stresses, that try
to redistribute the surfactant. The convection of surfac-
tant gives a higher interfacial tension at the middle of the
drop and a lower interfacial tension at the tips compared
to a clean surface, which promotes a higher deformation.
On the other hand, as the drop is stretched, the sur-
factant concentration is diluted due to the increase in
interfacial area. For high Marangoni stresses, the inter-
facial tension can increase over the entire drop, and this
dilatation can reduce deformation compared to a clean
drop. For relatively dilute surfactant concentrations, the

a)Electronic mail: knut.erik.teigen@ntnu.no
b)Electronic mail: svend.t.munkejord@sintef.no

Marangoni stresses are low, so that the first effect domi-
nates, and the deformation is larger than that of a clean
drop. For very high surfactant concentrations, however,
a small non-uniformity in surfactant gives rise to large
Marangoni stresses, and the effect of dilatation becomes
dominant, resulting in lower deformation compared to
a clean drop. The influence of surfactants on breakup
has been studied among others by Milliken et al. 20 and
Eggleton et al. 4 for a drop in extensional flow and by De
Bruijn 3 and Renardy et al. 23 for a drop in shear flow.
It was observed that for dilute concentrations of surfac-
tants, tip-streaming would occur, where the drop tips
would become highly curved and emit small drops.

When the velocity field is induced by an electric field as
opposed to externally applied through e.g. a shear flow,
we may expect the drop behavior to be different. Of
particular interest is the fact that a drop in an electric
field may deform into either a prolate shape or an oblate
shape depending on the electrical properties of the fluid
system18,26. For the case of prolate deformation, the in-
duced circulation can in addition run both from pole to
equator and vice-versa, which will obviously affect the
deformation when a surfactant is present.

To the authors’ knowledge, the only study of the com-
bined effect of electric fields and surfactants is Ha and
Yang 9 . They demonstrated that for a relatively highly
conducting drop, the change in deformation is only due
to a uniform lowering of interfacial tension. This is not
surprising, since for such a conductive drop, the elec-
tric field lines will be close to perpendicular to the drop
interface, and the electric field inside the drop will be
close to zero. Hence, the drop is unable to support a
tangential stress and as the drop reaches a steady state
the induced flow will tend to zero. The surfactant will
eventually redistribute itself due to diffusion and the de-
formation will become equal to that of a clean surface
(given the proper scaling of the electric field strength).
For a leaky-dielectric system in which the drop deformed
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the case of demulsification of crude oils, crude oils contain
natural surfactants such as asphaltenes, resins, waxes and
naphthenic acids24, but surfactants are also added to the
system to act as a demulsifier.

The effect of surfactants on the steady-state deforma-
tion of a drop has been studied by, among others, Milliken
et al. 20 , Pawar and Stebe 22 and Eggleton et al. 5 , Eggle-
ton and Stebe 6 for a drop in extensional flow and by
Li and Pozrikidis 17 and Lai et al. 15 for a drop in shear
flow. Due to the external flow, surfactant will be swept
to the tips of the drop. This gives rise to gradients in
the interfacial tension which causes stresses tangential to
the surface, often denoted Marangoni stresses, that try
to redistribute the surfactant. The convection of surfac-
tant gives a higher interfacial tension at the middle of the
drop and a lower interfacial tension at the tips compared
to a clean surface, which promotes a higher deformation.
On the other hand, as the drop is stretched, the sur-
factant concentration is diluted due to the increase in
interfacial area. For high Marangoni stresses, the inter-
facial tension can increase over the entire drop, and this
dilatation can reduce deformation compared to a clean
drop. For relatively dilute surfactant concentrations, the
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Marangoni stresses are low, so that the first effect domi-
nates, and the deformation is larger than that of a clean
drop. For very high surfactant concentrations, however,
a small non-uniformity in surfactant gives rise to large
Marangoni stresses, and the effect of dilatation becomes
dominant, resulting in lower deformation compared to
a clean drop. The influence of surfactants on breakup
has been studied among others by Milliken et al. 20 and
Eggleton et al. 4 for a drop in extensional flow and by De
Bruijn 3 and Renardy et al. 23 for a drop in shear flow.
It was observed that for dilute concentrations of surfac-
tants, tip-streaming would occur, where the drop tips
would become highly curved and emit small drops.

When the velocity field is induced by an electric field as
opposed to externally applied through e.g. a shear flow,
we may expect the drop behavior to be different. Of
particular interest is the fact that a drop in an electric
field may deform into either a prolate shape or an oblate
shape depending on the electrical properties of the fluid
system18,26. For the case of prolate deformation, the in-
duced circulation can in addition run both from pole to
equator and vice-versa, which will obviously affect the
deformation when a surfactant is present.

To the authors’ knowledge, the only study of the com-
bined effect of electric fields and surfactants is Ha and
Yang 9 . They demonstrated that for a relatively highly
conducting drop, the change in deformation is only due
to a uniform lowering of interfacial tension. This is not
surprising, since for such a conductive drop, the elec-
tric field lines will be close to perpendicular to the drop
interface, and the electric field inside the drop will be
close to zero. Hence, the drop is unable to support a
tangential stress and as the drop reaches a steady state
the induced flow will tend to zero. The surfactant will
eventually redistribute itself due to diffusion and the de-
formation will become equal to that of a clean surface
(given the proper scaling of the electric field strength).
For a leaky-dielectric system in which the drop deformed
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into an oblate shape, however, it was found that the pres-
ence of surfactant gave a larger deformation than that of
a clean surface.

The aim of this work is to study the deformation of a
surfactant-covered drop in an electric field using numer-
ical simulations. In Section II we give the mathematical
formulation of the problem and present our numerical
method. In Section III we investigate the steady-state de-
formation for different configurations of electrical proper-
ties and the influence of surfactants. Concluding remarks
and proposals for future work are given in Section V.

II. MATHEMATICAL MODEL AND NUMERICAL
METHOD

A. The level-set method

We consider a system of two immiscible phases sepa-
rated by an interface, Γ. We use the level-set method21,25

to capture this interface, which allows handling of the
discontinuities at the interface in a simple and accurate
manner.

In the level-set method, the interface is defined implic-
itly by the zero level set

Γ = {x|φ(x, t) = 0}, (1)

where φ is the level-set function, which denotes the signed
distance to the interface. The level-set function moves
with the interface velocity uint according to

∂φ

∂t
+ uint · ∇φ = 0. (2)

To allow this equation to be solved numerically, the inter-
face velocity is extended off the interface. Adalsteinsson
and Sethian 1 showed that the velocity could be extrap-
olated orthogonally from the interface by solving

∂u

∂τ
+ S(φ0)n · ∇u = 0, (3)

where S is a sign function given by

S(φ) = φ√
φ2 + 2Δx2

. (4)

The standard level-set reinitialization procedure is
used to keep the level-set function as a signed distance
function throughout the computation. This is accom-
plished by solving

∂φ

∂τ
+ S(φ0)(|∇φ| − 1) = 0,

φ(x, 0) = φ0(x).
(5)

Reinitialization is performed every other time step.
With the level-set function as a signed distance func-

tion, the normal vector (inward) can be calculated as

n = ∇φ|∇φ| , (6)

and the curvature as

κ = −∇ ·
( ∇φ
|∇φ|
)
. (7)

The density, viscosity, permittivity and conductivity
are discontinuous across the interface. We smooth these
properties over a narrow transition region using

ρ(HΓ) = ρ1HΓ + (1−HΓ)ρ2, (8)
μ(HΓ) = μ1HΓ + (1−HΓ)μ2, (9)

1
ε

= HΓ
ε1

+ 1−HΓ
ε2
, (10)

1
σ

= HΓ
σ1

+ 1−HΓ
σ2
, (11)

where HΓ is the regularized Heaviside function, defined
as

HΓ(φ) =

⎧⎪⎨
⎪⎩

0 φ < −ε
1
2 + φ

2ε + 1
2π sin

(
πφ
ε

)
|φ| ≤ ε

1 φ > ε.

(12)

Here, ε is the smearing width. We employ a smearing
width of ε = 1.5h, where h is the grid spacing.

It was shown by Tomar et al. 27 that using a harmonic
mean for the electrical properties was beneficial over an
arithmetic mean.

We also define the regularized surface delta function,

δΓ(φ) =
{

0 |φ| < ε
1
2ε

(
1 + cos πφε

)
|φ| ≥ ε. (13)

B. Governing equations for the flow

We assume that the flow is governed by the axisym-
metric Navier–Stokes equations in each phase, with addi-
tional terms accounting for interfacial-tension forces and
electric forces. The Navier–Stokes equations are

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · [μ(∇u+∇uT )]

+ fc + fe,
∇ · u = 0,

(14)
where ρ is the density, u is the velocity, p is the pressure,
μ is the dynamic viscosity, fc is the capillary force and
fe is the electric force. The capillary force is given by
the divergence of the capillary-pressure tensor, Fc :

fc =∇ · Fc = γκ∇HΓ − (∇Γγ)δΓ. (15)

Here, γ is the interfacial tension, δΓ is the regularized
delta function, I is the identity tensor, n is the inward-
pointing normal vector, κ is the mean curvature and
∇Γ = (I − n⊗ n)∇ the surface-gradient operator.
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The electric force is given by the divergence of the
Maxwell stress tensor, fe =∇ ·M, where

M = ε
[
EE − 1

2(E ·E)I
]
. (16)

Here, E is the electric field. We assume that the fluids
are leaky dielectric. That is, we assume that the vol-
ume charges reach steady state in a much shorter time
than the fluid. This means that the equation for charge
conservation

Dqv
Dt +∇ · J = 0, (17)

where J = σE is the current density, can be simplified
to

∇ · J =∇ · (σE) = 0, (18)

where σ is the conductivity. Because the electric field is
divergence free, this can be written as

∇ · (σ∇Ψ) = 0, (19)

where Ψ is the electric potential. We do not calculate the
Maxwell tensor directly, but instead calculate the elec-
tric force using an equivalent volume-force representation
given by

fe = −1
2(E ·E)∇ε+ qvE, (20)

where qv =∇ · (εE) is the volume-charge density.
Next, we assume that there is an insoluble surfactant

present on the interface, which modifies the interfacial
tension. The dynamics of the surfactant concentration,
f , is governed by28,29

∂f

∂t
+ u ·∇f − n ·∇u · nf
= Df

(∇2f − n ·∇∇ · nf + κ(n ·∇f)) , (21)

where Df is the surfactant diffusion coefficient. We em-
ploy the Langmuir equation of state to relate the inter-
facial tension and surfactant concentration,

γ(f) = γ0
[
1 + β ln

(
1− f
f∞

)]
. (22)

Here, β = R̄Tf∞/γ0 is the surface elasticity number,
and f∞ is the maximum surfactant packing. R̄ is the
universal gas constant, T the temperature and γ0 is the
interfacial tension of the clean surface.

Since we assume that the surfactant is insoluble, it
is only defined on the interface. In order to solve the
evolution equation numerically, we must therefore first
extend the surfactant concentration off the interface30.
We solve an equation similar to Eq. (3) for the extension
of the velocities,

∂f

∂τ
+ S(φ0)n · ∇f = 0. (23)

C. Non-dimensionalization

We solve the above equations in their dimensional
form, but express the results in terms of relevant non-
dimensional quantities. To cast the mathematical model
in nondimensional form, we introduce the following
nondimensional variables, denoted with a ∗,

x∗ = x
R
, t∗ =

√
γe
ρ2R3 t, u∗ = u

√
ρ2R
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Here, the time scale is based on the frequency of a freely
oscillating drop of radius R, and the pressure scale is
based on the capillary pressure. Subscript 2 denotes the
continuous phase. The electric field scale, E∞, is found
by dividing the potential difference by the domain height.
The interfacial tension is scaled by the equilibrium inter-
facial tension, denoted by subscript e. This means that
only the effect of a non-uniform interfacial tension is high-
lighted, and not the effect of a uniform lowering of the
interfacial tension.

The above scalings yield the Navier–Stokes equations
as

ρ∗
(
∂u∗

∂t∗
+ (u∗ · ∇)u∗

)
=−∇p∗

+ Oh∇ · [μ∗(∇u∗ +∇u∗T )]
+ f∗c + CaEf

∗
e

∇ · u∗ = 0,
(28)

where f∗c and f∗e are equivalent to fc and fe,
only with dimensionless quantities. Two dimension-
less quantities appear, the Ohnesorge number, Oh =
μ2/
√
ρ2γeR, which indicates the ratio of viscous force to

interfacial-tension force, and the electric capillary num-
ber, CaE = ε2R(E ·E)∞/γe, which is the dimensionless
strength of the external electric field.

The equation for the electric potential becomes

∇ · (σ∗∇Ψ∗) = 0, (29)

and the surfactant equation becomes

∂f∗

∂t
+ u∗ ·∇f∗ − n ·∇u∗ · nf∗

= 1
Pe
(∇2f∗ − n ·∇∇ · nf∗ + κ∗(n ·∇f∗)) ,

(30)
where Pe = RU/Df is the surface Peclet number.

Henceforth we will omit the superscript ∗ for the non-
dimensional quantities.
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The electric force is given by the divergence of the
Maxwell stress tensor, fe =∇ ·M, where

M = ε
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2(E ·E)I
]
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Here, E is the electric field. We assume that the fluids
are leaky dielectric. That is, we assume that the vol-
ume charges reach steady state in a much shorter time
than the fluid. This means that the equation for charge
conservation

Dqv
Dt +∇ · J = 0, (17)

where J = σE is the current density, can be simplified
to

∇ · J =∇ · (σE) = 0, (18)

where σ is the conductivity. Because the electric field is
divergence free, this can be written as

∇ · (σ∇Ψ) = 0, (19)

where Ψ is the electric potential. We do not calculate the
Maxwell tensor directly, but instead calculate the elec-
tric force using an equivalent volume-force representation
given by

fe = −1
2(E ·E)∇ε+ qvE, (20)

where qv =∇ · (εE) is the volume-charge density.
Next, we assume that there is an insoluble surfactant

present on the interface, which modifies the interfacial
tension. The dynamics of the surfactant concentration,
f , is governed by28,29
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where Df is the surfactant diffusion coefficient. We em-
ploy the Langmuir equation of state to relate the inter-
facial tension and surfactant concentration,

γ(f) = γ0
[
1 + β ln
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f∞

)]
. (22)

Here, β = R̄Tf∞/γ0 is the surface elasticity number,
and f∞ is the maximum surfactant packing. R̄ is the
universal gas constant, T the temperature and γ0 is the
interfacial tension of the clean surface.

Since we assume that the surfactant is insoluble, it
is only defined on the interface. In order to solve the
evolution equation numerically, we must therefore first
extend the surfactant concentration off the interface30.
We solve an equation similar to Eq. (3) for the extension
of the velocities,
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D. Numerical method

The equations are spatially discretized on a Cartesian
staggered grid, with scalar values stored in cell centers
and vector values stored at cell boundaries. The convec-
tive terms are discretized using the fifth order Weighted
Essentially Non-Oscillatory (WENO) scheme11, and vis-
cous terms are discretized using standard second-order
central differences.

A second-order projection scheme is used to solve the
Navier–Stokes equations. First, a temporary vector field,
a, is calculated:

a =− (u · ∇)u+ Oh∇ · [μ(∇u+∇uT )]
+ fc + CaEfe.

(31)

Then the pressure is found by solving

∇ ·
(∇p
ρ

)
=∇ · a. (32)

Finally, the velocity field is calculated with

∂u

∂t
= a− ∇p

ρ
. (33)

The evolution in time is calculated using a four-step
third-order, strong stability-preserving (SSP) Runge-
Kutta (RK) method12,13. This method is also used for
the level-set equation and the surfactant equation, while
a four-step second-order SSP-RK method is employed for
the reinitialization of the level-set equation and extrapo-
lation of the velocity field and surfactant.

One substep in the main RK solver can be summarized
as follows:

1. Solve Eq. (19) for the electric potential and find the
electric field.

2. Calculate electric forces using Eq. (20).

3. Find the interfacial tension using Eq. (22) and cal-
culate interfacial-tension forces with Eq. (15).

4. Calculate a using Eq. (31) and solve Eq. (32) for
pressure.

5. Extrapolate the velocity from the previous time
step by solving Eq. (3).

6. Calculate the rate of change of the level-set function
using Eq. (2). Here, the extrapolated velocities are
employed.

7. Extrapolate the surfactant concentration from the
previous time step by solving Eq (23).

8. Calculate the rate of change of the surfactant con-
centration using Eq. (21).
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FIG. 1. Illustration of the computational domain.

III. RESULTS AND DISCUSSION

We first present a comparison with theoretical re-
sults for the steady-state deformation of a clean drop
to validate our implementation and establish a frame
of reference for the simulation with surfactants. Then,
we present results for the steady-state deformation of
a surfactant-covered drop for various electrical proper-
ties. Finally, we discuss the influence of surfactants on
the transient deformation of a conductive drop when the
electric field is so high that no steady-state solution ex-
ists.

The computational domain is illustrated in Fig. 1. The
simulations are performed in an axisymmetric, cylindri-
cal coordinate system, where the axis of symmetry is
aligned with the electric field. Additionally, it is assumed
that the fluid mechanics are symmetric about the r-axis,
while the electric problem is anti-symmetric. This means
that the simulations are only performed in one quadrant
of the drop, which reduces the computational complexity.
The domain size was 4R× 4R, and the grid spacing was
h = R/20. Since we use a transient numerical method,
we stop the simulation when the relative change in de-
formation from one time step to the next is less than
1× 10−4.

An issue with level-set simulations is mass conserva-
tion. We ensured that for all the simulations presented
here, the change in mass for both fluid and surfactant
was less than 1 %.

A. Comparison with small-deformation theory for clean
drops

In the limit of small perturbations, an expression for
the deformation of a leaky-dielectric drop in a leaky-
dielectric medium was derived by Taylor 26 to the first or-
der, and later extended to second order by Ajayi 2 . This
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III. RESULTS AND DISCUSSION
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to validate our implementation and establish a frame
of reference for the simulation with surfactants. Then,
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ties. Finally, we discuss the influence of surfactants on
the transient deformation of a conductive drop when the
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electric field.

2. Calculate electric forces using Eq. (20).

3. Find the interfacial tension using Eq. (22) and cal-
culate interfacial-tension forces with Eq. (15).

4. Calculate a using Eq. (31) and solve Eq. (32) for
pressure.

5. Extrapolate the velocity from the previous time
step by solving Eq. (3).

6. Calculate the rate of change of the level-set function
using Eq. (2). Here, the extrapolated velocities are
employed.

7. Extrapolate the surfactant concentration from the
previous time step by solving Eq (23).

8. Calculate the rate of change of the surfactant con-
centration using Eq. (21).
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III. RESULTS AND DISCUSSION

We first present a comparison with theoretical re-
sults for the steady-state deformation of a clean drop
to validate our implementation and establish a frame
of reference for the simulation with surfactants. Then,
we present results for the steady-state deformation of
a surfactant-covered drop for various electrical proper-
ties. Finally, we discuss the influence of surfactants on
the transient deformation of a conductive drop when the
electric field is so high that no steady-state solution ex-
ists.

The computational domain is illustrated in Fig. 1. The
simulations are performed in an axisymmetric, cylindri-
cal coordinate system, where the axis of symmetry is
aligned with the electric field. Additionally, it is assumed
that the fluid mechanics are symmetric about the r-axis,
while the electric problem is anti-symmetric. This means
that the simulations are only performed in one quadrant
of the drop, which reduces the computational complexity.
The domain size was 4R× 4R, and the grid spacing was
h = R/20. Since we use a transient numerical method,
we stop the simulation when the relative change in de-
formation from one time step to the next is less than
1× 10−4.

An issue with level-set simulations is mass conserva-
tion. We ensured that for all the simulations presented
here, the change in mass for both fluid and surfactant
was less than 1 %.

A. Comparison with small-deformation theory for clean
drops

In the limit of small perturbations, an expression for
the deformation of a leaky-dielectric drop in a leaky-
dielectric medium was derived by Taylor 26 to the first or-
der, and later extended to second order by Ajayi 2 . This
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can be written as

D = b− a
b+ a = k1CaE + k2Ca2

E , (34)

where a and b are the drop extensions along the r-axis
and z-axis, respectively. The coefficients k1 and k2 are
given by
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Here, subscript r denotes the ratio between phase 1 and
phase 2. The form of deformation is given by fd. If
fd > 0, the drop will have a prolate shape. If fd < 0,
the shape will be oblate. If εr < σr, then fd > 0 and the
deformation will always be prolate. For εr > σr, however,
both kinds of deformation may occur. Additionally, when
the deformation is oblate, the induced flow pattern is
always clockwise in the first quadrant of the drop. For
the prolate shape, the flow can be both clockwise and
counterclockwise. A map of these situations is given in
Fig. 2.

Simulations of four different configurations were per-
formed at various electric capillary numbers and com-
pared to Eq. (34). The different configurations were cho-
sen to correspond to the different deformation types and
flow patterns given in Fig. 2, and are summarized in Ta-
ble I. The viscosity ratio is set to unity.

The results are shown in Fig. 3. For small CaE , the
numerical simulations are in good agreement with the
first-order theory, while for higher numbers, they start

TABLE I. The parameters used for validation of the electric
forces, together with the predicted deformation types and flow
patterns. C=Clockwise, CC=Counterclockwise.

Case σr εr fd Deformation Flow pattern
A 3 1 1.22 Prolate CC
B 3 3.5 0.25 Prolate C
C 1 2 -3.50 Oblate C
D 2 2.2857 0.00 None C
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FIG. 3. Comparison of numerical results (circles) and the
small deformation theory of Taylor 26 (dashed lines) and
Ajayi 2 (solid lines) for the parameters given in Table I.

to deviate. This behavior is expected since the theory
is only valid for small deformations, and our results are
in line with other numerical investigations8,10,27. The
second-order theory is a better match to the simulations,
which was also observed in Lac and Homsy 14 .

The drop morphology along with induced flow patterns
for CaE = 0.4 are shown in Fig. 4. We see that for case
A, the flow is from pole to equator, for case B, the flow
is from equator to pole, and for case C, the flow is from
pole to equator. These patterns match those predicted
from the theory.

B. Influence of surfactants on steady-state deformation

We now turn our attention to the steady-state defor-
mation of a drop with a surfactant present on the inter-
face.

To limit the parameter space, we will consider the
above cases A, B and C, and vary the electric capillary
number and surfactant coverage. For the surfactant, we
choose an elasticity of β = 0.2 and a surfactant Peclet
number of Pe = 10. The Ohnesorge number is set to
Oh = 0.1 and the viscosity ratio is set to unity unless
otherwise noted.
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which was also observed in Lac and Homsy 14 .

The drop morphology along with induced flow patterns
for CaE = 0.4 are shown in Fig. 4. We see that for case
A, the flow is from pole to equator, for case B, the flow
is from equator to pole, and for case C, the flow is from
pole to equator. These patterns match those predicted
from the theory.

B. Influence of surfactants on steady-state deformation

We now turn our attention to the steady-state defor-
mation of a drop with a surfactant present on the inter-
face.

To limit the parameter space, we will consider the
above cases A, B and C, and vary the electric capillary
number and surfactant coverage. For the surfactant, we
choose an elasticity of β = 0.2 and a surfactant Peclet
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phase 2. The form of deformation is given by fd. If
fd > 0, the drop will have a prolate shape. If fd < 0,
the shape will be oblate. If εr < σr, then fd > 0 and the
deformation will always be prolate. For εr > σr, however,
both kinds of deformation may occur. Additionally, when
the deformation is oblate, the induced flow pattern is
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pared to Eq. (34). The different configurations were cho-
sen to correspond to the different deformation types and
flow patterns given in Fig. 2, and are summarized in Ta-
ble I. The viscosity ratio is set to unity.

The results are shown in Fig. 3. For small CaE , the
numerical simulations are in good agreement with the
first-order theory, while for higher numbers, they start

TABLE I. The parameters used for validation of the electric
forces, together with the predicted deformation types and flow
patterns. C=Clockwise, CC=Counterclockwise.

Case σr εr fd Deformation Flow pattern
A 3 1 1.22 Prolate CC
B 3 3.5 0.25 Prolate C
C 1 2 -3.50 Oblate C
D 2 2.2857 0.00 None C

D

0 0.2 0.4 0.6

-0.1

-0.05

0

0.05

0.1

0.15
Ajayi (1978)
Taylor (1966)
Simulation

σr=3,
εr=1

σr=3,
εr=3.5

σr=2,
εr=2.2857

σr=1,
εr=2

CaE

FIG. 3. Comparison of numerical results (circles) and the
small deformation theory of Taylor 26 (dashed lines) and
Ajayi 2 (solid lines) for the parameters given in Table I.

to deviate. This behavior is expected since the theory
is only valid for small deformations, and our results are
in line with other numerical investigations8,10,27. The
second-order theory is a better match to the simulations,
which was also observed in Lac and Homsy 14 .

The drop morphology along with induced flow patterns
for CaE = 0.4 are shown in Fig. 4. We see that for case
A, the flow is from pole to equator, for case B, the flow
is from equator to pole, and for case C, the flow is from
pole to equator. These patterns match those predicted
from the theory.
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face.
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number of Pe = 10. The Ohnesorge number is set to
Oh = 0.1 and the viscosity ratio is set to unity unless
otherwise noted.
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phase 2. The form of deformation is given by fd. If
fd > 0, the drop will have a prolate shape. If fd < 0,
the shape will be oblate. If εr < σr, then fd > 0 and the
deformation will always be prolate. For εr > σr, however,
both kinds of deformation may occur. Additionally, when
the deformation is oblate, the induced flow pattern is
always clockwise in the first quadrant of the drop. For
the prolate shape, the flow can be both clockwise and
counterclockwise. A map of these situations is given in
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sen to correspond to the different deformation types and
flow patterns given in Fig. 2, and are summarized in Ta-
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to deviate. This behavior is expected since the theory
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in line with other numerical investigations8,10,27. The
second-order theory is a better match to the simulations,
which was also observed in Lac and Homsy 14 .

The drop morphology along with induced flow patterns
for CaE = 0.4 are shown in Fig. 4. We see that for case
A, the flow is from pole to equator, for case B, the flow
is from equator to pole, and for case C, the flow is from
pole to equator. These patterns match those predicted
from the theory.

B. Influence of surfactants on steady-state deformation

We now turn our attention to the steady-state defor-
mation of a drop with a surfactant present on the inter-
face.

To limit the parameter space, we will consider the
above cases A, B and C, and vary the electric capillary
number and surfactant coverage. For the surfactant, we
choose an elasticity of β = 0.2 and a surfactant Peclet
number of Pe = 10. The Ohnesorge number is set to
Oh = 0.1 and the viscosity ratio is set to unity unless
otherwise noted.
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1. Case A

We first study the effect of surfactants on the sys-
tem with prolate deformation and counter-clockwise flow.
The deformation as a function of electric capillary num-
ber for different surfactant coverages is shown in Fig. 5.
For low CaE , higher surfactant concentrations lead to
higher deformation. This is due to the induced flow
which for this case is from the equator to the poles (see
Fig. 4(a)). This will transport surfactant to the tip of the
drop, which reduces interfacial tension at the poles. Since
there must be a balance between the normal interfacial-
tension forces, the hydrodynamic pressure and the elec-
tric pressure, the drop extends more to yield a higher
mean curvature. However, as the drop is stretched fur-
ther, the average interfacial tension increases due to di-
lution of the surfactant. This will act to reduce defor-
mation, and eventually this effect becomes stronger than
the effect of reduced interfacial tension at the tips, lead-
ing to less deformation. This is clearly seen for f0 = 0.7
in the figure. At low CaE , the deformation is higher than
for the lower f0 numbers, but at high CaE , it becomes
lower.

In Figure 6 we illustrate the drop shapes and velocity
patterns for electric capillary numbers 0.2, 0.8 and 1.2,
and for a clean and surfactant-covered drop. We immedi-
ately see the reduced velocities for the surfactant-covered
drop, which is due to the Marangoni stresses acting in
the opposite direction to the electrically induced shear
stresses. An important application area of electrically
induced flow is enhanced mixing, for instance in heat ex-
changers. Here, we see that the presence of surfactants
may significantly inhibit the internal circulation, and this
may be important for industrial applications.

Additionally, we observe that for the higher CaE , the
velocities are larger near the tip of the drop. This leads to
an increase in surfactant convection here. This is further
illustrated in Figure 7, which shows the interfacial tension
as a function of arc length, s, starting from the tip of the
drop and moving in the clockwise direction. For low CaE ,
the interfacial tension follows a smooth S-curve, but for
higher CaE , there is a sharper gradient near the drop
pole and very little change near the equator.

In Figure 8, we plot the actual surfactant concentration
for CaE = 1.2. At low concentrations, the area around
the equator is nearly depleted, and then there is a sharp
gradient towards the tip. However, since the concen-
tration is low, this only leads to modest gradients in the
interfacial tension as shown in Figure 7(c). At higher con-
centrations, the concentration at the tips approaches the
maximum surfactant packing. This leads to larger gra-
dients in the interfacial tension than for the low concen-
trations, and correspondingly higher Marangoni stresses
which lead to more uniform surfactant profiles. The gra-
dient of the interfacial tension, which is the main compo-
nent of the Marangoni stresses, is shown in Figure 9 for
CaE = 1.2. From this we see that the Marangoni stresses
is largest in the area near the tip, where the convection is
strongest, and that higher surfactant concentrations lead
to higher Marangoni stresses.
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an increase in surfactant convection here. This is further
illustrated in Figure 7, which shows the interfacial tension
as a function of arc length, s, starting from the tip of the
drop and moving in the clockwise direction. For low CaE ,
the interfacial tension follows a smooth S-curve, but for
higher CaE , there is a sharper gradient near the drop
pole and very little change near the equator.

In Figure 8, we plot the actual surfactant concentration
for CaE = 1.2. At low concentrations, the area around
the equator is nearly depleted, and then there is a sharp
gradient towards the tip. However, since the concen-
tration is low, this only leads to modest gradients in the
interfacial tension as shown in Figure 7(c). At higher con-
centrations, the concentration at the tips approaches the
maximum surfactant packing. This leads to larger gra-
dients in the interfacial tension than for the low concen-
trations, and correspondingly higher Marangoni stresses
which lead to more uniform surfactant profiles. The gra-
dient of the interfacial tension, which is the main compo-
nent of the Marangoni stresses, is shown in Figure 9 for
CaE = 1.2. From this we see that the Marangoni stresses
is largest in the area near the tip, where the convection is
strongest, and that higher surfactant concentrations lead
to higher Marangoni stresses.
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stresses. An important application area of electrically
induced flow is enhanced mixing, for instance in heat ex-
changers. Here, we see that the presence of surfactants
may significantly inhibit the internal circulation, and this
may be important for industrial applications.

Additionally, we observe that for the higher CaE , the
velocities are larger near the tip of the drop. This leads to
an increase in surfactant convection here. This is further
illustrated in Figure 7, which shows the interfacial tension
as a function of arc length, s, starting from the tip of the
drop and moving in the clockwise direction. For low CaE ,
the interfacial tension follows a smooth S-curve, but for
higher CaE , there is a sharper gradient near the drop
pole and very little change near the equator.

In Figure 8, we plot the actual surfactant concentration
for CaE = 1.2. At low concentrations, the area around
the equator is nearly depleted, and then there is a sharp
gradient towards the tip. However, since the concen-
tration is low, this only leads to modest gradients in the
interfacial tension as shown in Figure 7(c). At higher con-
centrations, the concentration at the tips approaches the
maximum surfactant packing. This leads to larger gra-
dients in the interfacial tension than for the low concen-
trations, and correspondingly higher Marangoni stresses
which lead to more uniform surfactant profiles. The gra-
dient of the interfacial tension, which is the main compo-
nent of the Marangoni stresses, is shown in Figure 9 for
CaE = 1.2. From this we see that the Marangoni stresses
is largest in the area near the tip, where the convection is
strongest, and that higher surfactant concentrations lead
to higher Marangoni stresses.
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2. Case B

Here, we consider the case where the drop deforms in
a prolate fashion, but the induced flow is from the poles
to the equator. The deformation as a function of elec-
tric capillary number for different surfactant coverages is
shown in Fig. 10. We see that a higher concentration of
surfactant consistently gives a lower degree of deforma-
tion. The reason for this is that now surfactant is swept
towards the equator instead of the poles. The interfacial
tension will therefore become higher at the tips, and give
a larger resistance against deformation than for a clean
drop.

Note that the deformation is relatively low for the CaE
considered here. We would expect that dilatational ef-
fects would occur here as well for higher deformations.
However, for this case these effects would only give an
even lower deformation, further increasing the difference
between the clean and surfactant-covered drops. We
would also expect, as we will see in the next section,
that the dilatational effects would occur sooner than for
case A. This is because when surfactant is swept towards
the equator instead of towards the poles, it will be spread
over a larger surface area and thereby contribute less to-
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2. Case B

Here, we consider the case where the drop deforms in
a prolate fashion, but the induced flow is from the poles
to the equator. The deformation as a function of elec-
tric capillary number for different surfactant coverages is
shown in Fig. 10. We see that a higher concentration of
surfactant consistently gives a lower degree of deforma-
tion. The reason for this is that now surfactant is swept
towards the equator instead of the poles. The interfacial
tension will therefore become higher at the tips, and give
a larger resistance against deformation than for a clean
drop.

Note that the deformation is relatively low for the CaE
considered here. We would expect that dilatational ef-
fects would occur here as well for higher deformations.
However, for this case these effects would only give an
even lower deformation, further increasing the difference
between the clean and surfactant-covered drops. We
would also expect, as we will see in the next section,
that the dilatational effects would occur sooner than for
case A. This is because when surfactant is swept towards
the equator instead of towards the poles, it will be spread
over a larger surface area and thereby contribute less to-

7

z

-1 0 10

1

2

r

(a) CaE = 0.2

z

-1 0 10

1

2

r

(b) CaE = 0.8

z

-1 0 10

1

2

3

r

(c) CaE = 1.2

FIG. 6. Case A. Drop deformation and induced flow pattern. The right quadrant shows the clean drop and the left quadrant
shows the surfactant-covered drop with f0 = 0.7. The velocity scale is different in the three figures.

γ

0 0.5 1 1.5

0.96

0.98

1

1.02 Clean
f0=0.1
f0=0.3
f0=0.5
f0=0.7

s

(a) CaE = 0.2

γ

0 0.5 1 1.5

0.8

0.9

1

1.1

Clean
f0=0.1
f0=0.3
f0=0.5
f0=0.7

s

(b) CaE = 0.8

γ

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

1.2

Clean
f0=0.1
f0=0.3
f0=0.5
f0=0.7

s

(c) CaE = 1.2

FIG. 7. (Color online) Case A. Interfacial tension along the interface for various surfactant coverages.

f

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1
Clean
f0=0.1
f0=0.3
f0=0.5
f0=0.7

s

FIG. 8. (Color online) Case A. Deformation as a function of
electric capillary number for various surfactant coverages.

∇Γγ

0 0.5 1 1.5 2 2.5 30

50

100

Clean
f0=0.1
f0=0.3
f0=0.5
f0=0.7

s

FIG. 9. (Color online) Case A. Deformation as a function of
electric capillary number for various surfactant coverages.

2. Case B

Here, we consider the case where the drop deforms in
a prolate fashion, but the induced flow is from the poles
to the equator. The deformation as a function of elec-
tric capillary number for different surfactant coverages is
shown in Fig. 10. We see that a higher concentration of
surfactant consistently gives a lower degree of deforma-
tion. The reason for this is that now surfactant is swept
towards the equator instead of the poles. The interfacial
tension will therefore become higher at the tips, and give
a larger resistance against deformation than for a clean
drop.

Note that the deformation is relatively low for the CaE
considered here. We would expect that dilatational ef-
fects would occur here as well for higher deformations.
However, for this case these effects would only give an
even lower deformation, further increasing the difference
between the clean and surfactant-covered drops. We
would also expect, as we will see in the next section,
that the dilatational effects would occur sooner than for
case A. This is because when surfactant is swept towards
the equator instead of towards the poles, it will be spread
over a larger surface area and thereby contribute less to-
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2. Case B

Here, we consider the case where the drop deforms in
a prolate fashion, but the induced flow is from the poles
to the equator. The deformation as a function of elec-
tric capillary number for different surfactant coverages is
shown in Fig. 10. We see that a higher concentration of
surfactant consistently gives a lower degree of deforma-
tion. The reason for this is that now surfactant is swept
towards the equator instead of the poles. The interfacial
tension will therefore become higher at the tips, and give
a larger resistance against deformation than for a clean
drop.

Note that the deformation is relatively low for the CaE
considered here. We would expect that dilatational ef-
fects would occur here as well for higher deformations.
However, for this case these effects would only give an
even lower deformation, further increasing the difference
between the clean and surfactant-covered drops. We
would also expect, as we will see in the next section,
that the dilatational effects would occur sooner than for
case A. This is because when surfactant is swept towards
the equator instead of towards the poles, it will be spread
over a larger surface area and thereby contribute less to-
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wards a change in the balance between capillary forces
and electrical forces.

3. Case C

Next, we consider the case of oblate deformation, with
induced flow from the poles to the equator. The deforma-
tion as a function of electric capillary number for different
surfactant coverages is shown in Fig. 11. For the chosen
parameter set, we see that the effect of surfactant is very
small at low CaE . As shown in the closeup in Fig. 11(b),
the deformation is slightly larger for increasing surfactant
concentrations. This is again because surfactant is swept
towards the drop equator by the induced flow, and the
resulting low interfacial tension here gives a correspond-
ing lower resistance towards deformation. The change in
deformation is lower because the surfactant now is spread
across the equator instead of concentrated at the tips.

This also means that the relative effect of dilatation
will occur earlier than for case A. This can be seen at
higher CaE from Fig. 11. For higher CaE (but still
low D compared to case A), the differences in deforma-
tion is completely reversed such that the clean drop has
the highest deformation and the surfactant-covered drop
with f0 = 0.7 has the lowest deformation.

4. Influence of viscosity ratio

We end by presenting results on the influence of viscos-
ity ratio. This parameter has proved to be an important
parameter for the deformation of a drop in extensional
flow. In Milliken and Leal 19 it was shown that smaller
viscosity ratios gave a larger sensitivity to surfactant. We
therefore rerun our previous simulations with a viscosity
ratio of μr = 0.1. The results for all three cases are pre-
sented in Figure 12. It is evident that the difference in
deformation due to surfactants here is higher. The rea-
son for this is that for higher viscosity ratios, the internal
circulation is already retarded due to viscosity, and the
contribution from the additional Marangoni stresses will
become relatively smaller than for lower viscosity ratios.
Since the circulation is higher here, more surfactant will
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FIG. 11. (Color online) Case C. Deformation as a function of
electric capillary number for various surfactant coverages.

be swept towards the tips and the change in deforma-
tion will be higher. The stronger Marangoni stresses at
lower viscosity ratios also make the dilatational effects
less prominent. For instance, we see that for the oblately
deformed drop, Fig 12(c), the deformation is now higher
for higher surfactant coverages, even at high CaE .

IV. CONCLUSIONS

A level-set model for two-phase flows, coupled with
models for electrohydrodynamic forces and surface-active
agents was developed to investigate the influence of sur-
factants on the steady-state deformation of a drop in an
electric field.

Leaky-dielectric fluids can deform into both prolate
and oblate shapes, depending on the ratio of conductivi-
ties and permittivities. Additionally, the direction of the
induced circulation can be both clockwise and counter-
clockwise for the prolate shapes. It was found that for
prolate deformation and counter-clockwise circulation,
the presence of surfactant leads to greater deformation
at low surfactant concentrations. At high surfactant con-
centrations and high electric capillary numbers, however,
the effect of surfactant dilution becomes stronger than
the effect of reduced interfacial tension at the tips, and
the deformation decreases. This behavior is similar to
that of a drop in extensional flow.

For prolate deformation and clockwise flow, the sur-
factants are swept in the opposite direction, and cause
a reduction in deformation. Although not shown here,
it seems clear that dilatational effects will lead to an
additional reduction in deformation for the surfactant-
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and electrical forces.

3. Case C

Next, we consider the case of oblate deformation, with
induced flow from the poles to the equator. The deforma-
tion as a function of electric capillary number for different
surfactant coverages is shown in Fig. 11. For the chosen
parameter set, we see that the effect of surfactant is very
small at low CaE . As shown in the closeup in Fig. 11(b),
the deformation is slightly larger for increasing surfactant
concentrations. This is again because surfactant is swept
towards the drop equator by the induced flow, and the
resulting low interfacial tension here gives a correspond-
ing lower resistance towards deformation. The change in
deformation is lower because the surfactant now is spread
across the equator instead of concentrated at the tips.

This also means that the relative effect of dilatation
will occur earlier than for case A. This can be seen at
higher CaE from Fig. 11. For higher CaE (but still
low D compared to case A), the differences in deforma-
tion is completely reversed such that the clean drop has
the highest deformation and the surfactant-covered drop
with f0 = 0.7 has the lowest deformation.

4. Influence of viscosity ratio

We end by presenting results on the influence of viscos-
ity ratio. This parameter has proved to be an important
parameter for the deformation of a drop in extensional
flow. In Milliken and Leal 19 it was shown that smaller
viscosity ratios gave a larger sensitivity to surfactant. We
therefore rerun our previous simulations with a viscosity
ratio of μr = 0.1. The results for all three cases are pre-
sented in Figure 12. It is evident that the difference in
deformation due to surfactants here is higher. The rea-
son for this is that for higher viscosity ratios, the internal
circulation is already retarded due to viscosity, and the
contribution from the additional Marangoni stresses will
become relatively smaller than for lower viscosity ratios.
Since the circulation is higher here, more surfactant will
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be swept towards the tips and the change in deforma-
tion will be higher. The stronger Marangoni stresses at
lower viscosity ratios also make the dilatational effects
less prominent. For instance, we see that for the oblately
deformed drop, Fig 12(c), the deformation is now higher
for higher surfactant coverages, even at high CaE .

IV. CONCLUSIONS

A level-set model for two-phase flows, coupled with
models for electrohydrodynamic forces and surface-active
agents was developed to investigate the influence of sur-
factants on the steady-state deformation of a drop in an
electric field.

Leaky-dielectric fluids can deform into both prolate
and oblate shapes, depending on the ratio of conductivi-
ties and permittivities. Additionally, the direction of the
induced circulation can be both clockwise and counter-
clockwise for the prolate shapes. It was found that for
prolate deformation and counter-clockwise circulation,
the presence of surfactant leads to greater deformation
at low surfactant concentrations. At high surfactant con-
centrations and high electric capillary numbers, however,
the effect of surfactant dilution becomes stronger than
the effect of reduced interfacial tension at the tips, and
the deformation decreases. This behavior is similar to
that of a drop in extensional flow.

For prolate deformation and clockwise flow, the sur-
factants are swept in the opposite direction, and cause
a reduction in deformation. Although not shown here,
it seems clear that dilatational effects will lead to an
additional reduction in deformation for the surfactant-
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3. Case C

Next, we consider the case of oblate deformation, with
induced flow from the poles to the equator. The deforma-
tion as a function of electric capillary number for different
surfactant coverages is shown in Fig. 11. For the chosen
parameter set, we see that the effect of surfactant is very
small at low CaE . As shown in the closeup in Fig. 11(b),
the deformation is slightly larger for increasing surfactant
concentrations. This is again because surfactant is swept
towards the drop equator by the induced flow, and the
resulting low interfacial tension here gives a correspond-
ing lower resistance towards deformation. The change in
deformation is lower because the surfactant now is spread
across the equator instead of concentrated at the tips.

This also means that the relative effect of dilatation
will occur earlier than for case A. This can be seen at
higher CaE from Fig. 11. For higher CaE (but still
low D compared to case A), the differences in deforma-
tion is completely reversed such that the clean drop has
the highest deformation and the surfactant-covered drop
with f0 = 0.7 has the lowest deformation.

4. Influence of viscosity ratio

We end by presenting results on the influence of viscos-
ity ratio. This parameter has proved to be an important
parameter for the deformation of a drop in extensional
flow. In Milliken and Leal 19 it was shown that smaller
viscosity ratios gave a larger sensitivity to surfactant. We
therefore rerun our previous simulations with a viscosity
ratio of μr = 0.1. The results for all three cases are pre-
sented in Figure 12. It is evident that the difference in
deformation due to surfactants here is higher. The rea-
son for this is that for higher viscosity ratios, the internal
circulation is already retarded due to viscosity, and the
contribution from the additional Marangoni stresses will
become relatively smaller than for lower viscosity ratios.
Since the circulation is higher here, more surfactant will
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be swept towards the tips and the change in deforma-
tion will be higher. The stronger Marangoni stresses at
lower viscosity ratios also make the dilatational effects
less prominent. For instance, we see that for the oblately
deformed drop, Fig 12(c), the deformation is now higher
for higher surfactant coverages, even at high CaE .

IV. CONCLUSIONS

A level-set model for two-phase flows, coupled with
models for electrohydrodynamic forces and surface-active
agents was developed to investigate the influence of sur-
factants on the steady-state deformation of a drop in an
electric field.

Leaky-dielectric fluids can deform into both prolate
and oblate shapes, depending on the ratio of conductivi-
ties and permittivities. Additionally, the direction of the
induced circulation can be both clockwise and counter-
clockwise for the prolate shapes. It was found that for
prolate deformation and counter-clockwise circulation,
the presence of surfactant leads to greater deformation
at low surfactant concentrations. At high surfactant con-
centrations and high electric capillary numbers, however,
the effect of surfactant dilution becomes stronger than
the effect of reduced interfacial tension at the tips, and
the deformation decreases. This behavior is similar to
that of a drop in extensional flow.

For prolate deformation and clockwise flow, the sur-
factants are swept in the opposite direction, and cause
a reduction in deformation. Although not shown here,
it seems clear that dilatational effects will lead to an
additional reduction in deformation for the surfactant-
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FIG. 10. (Color online) Case B. Deformation as a function of
electric capillary number for various surfactant coverages.

wards a change in the balance between capillary forces
and electrical forces.

3. Case C

Next, we consider the case of oblate deformation, with
induced flow from the poles to the equator. The deforma-
tion as a function of electric capillary number for different
surfactant coverages is shown in Fig. 11. For the chosen
parameter set, we see that the effect of surfactant is very
small at low CaE . As shown in the closeup in Fig. 11(b),
the deformation is slightly larger for increasing surfactant
concentrations. This is again because surfactant is swept
towards the drop equator by the induced flow, and the
resulting low interfacial tension here gives a correspond-
ing lower resistance towards deformation. The change in
deformation is lower because the surfactant now is spread
across the equator instead of concentrated at the tips.

This also means that the relative effect of dilatation
will occur earlier than for case A. This can be seen at
higher CaE from Fig. 11. For higher CaE (but still
low D compared to case A), the differences in deforma-
tion is completely reversed such that the clean drop has
the highest deformation and the surfactant-covered drop
with f0 = 0.7 has the lowest deformation.

4. Influence of viscosity ratio

We end by presenting results on the influence of viscos-
ity ratio. This parameter has proved to be an important
parameter for the deformation of a drop in extensional
flow. In Milliken and Leal 19 it was shown that smaller
viscosity ratios gave a larger sensitivity to surfactant. We
therefore rerun our previous simulations with a viscosity
ratio of μr = 0.1. The results for all three cases are pre-
sented in Figure 12. It is evident that the difference in
deformation due to surfactants here is higher. The rea-
son for this is that for higher viscosity ratios, the internal
circulation is already retarded due to viscosity, and the
contribution from the additional Marangoni stresses will
become relatively smaller than for lower viscosity ratios.
Since the circulation is higher here, more surfactant will
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FIG. 11. (Color online) Case C. Deformation as a function of
electric capillary number for various surfactant coverages.

be swept towards the tips and the change in deforma-
tion will be higher. The stronger Marangoni stresses at
lower viscosity ratios also make the dilatational effects
less prominent. For instance, we see that for the oblately
deformed drop, Fig 12(c), the deformation is now higher
for higher surfactant coverages, even at high CaE .

IV. CONCLUSIONS

A level-set model for two-phase flows, coupled with
models for electrohydrodynamic forces and surface-active
agents was developed to investigate the influence of sur-
factants on the steady-state deformation of a drop in an
electric field.

Leaky-dielectric fluids can deform into both prolate
and oblate shapes, depending on the ratio of conductivi-
ties and permittivities. Additionally, the direction of the
induced circulation can be both clockwise and counter-
clockwise for the prolate shapes. It was found that for
prolate deformation and counter-clockwise circulation,
the presence of surfactant leads to greater deformation
at low surfactant concentrations. At high surfactant con-
centrations and high electric capillary numbers, however,
the effect of surfactant dilution becomes stronger than
the effect of reduced interfacial tension at the tips, and
the deformation decreases. This behavior is similar to
that of a drop in extensional flow.

For prolate deformation and clockwise flow, the sur-
factants are swept in the opposite direction, and cause
a reduction in deformation. Although not shown here,
it seems clear that dilatational effects will lead to an
additional reduction in deformation for the surfactant-
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FIG. 12. (Color online). Deformation as a function of electric capillary number for various surfactant coverages at viscosity
ratio μr = 0.1.

covered drop, and thereby increase the differences be-
tween the clean and surfactant-covered case further.

For oblate deformation, which always gives clockwise
flow, the results are similar to that of prolate deformation
and counter-clockwise flow, deformation is increased until
dilatational effects start to dominate. However, this oc-
curs earlier here, since the surfactant is not concentrated
at the tips, but instead spread out over the equator of
the drop. Finally, it was shown that for smaller viscosity
ratios, the influence of surfactant is stronger, since the
relative importance of the Marangoni stresses becomes
higher.

In this work, only steady-state deformation was con-
sidered. At high electric capillary numbers, no steady
state exists and the drop will stretch further and eventu-
ally break up. It would be of interest to investigate the
influence of surfactants on this breakup behavior. In par-
ticular, for a conductive drop in an otherwise dielectric
medium, the influence of surfactant may be important
even though it has no influence on the steady-state de-
formation. The presented numerical method is applicable
to such a study as well.
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covered drop, and thereby increase the differences be-
tween the clean and surfactant-covered case further.

For oblate deformation, which always gives clockwise
flow, the results are similar to that of prolate deformation
and counter-clockwise flow, deformation is increased until
dilatational effects start to dominate. However, this oc-
curs earlier here, since the surfactant is not concentrated
at the tips, but instead spread out over the equator of
the drop. Finally, it was shown that for smaller viscosity
ratios, the influence of surfactant is stronger, since the
relative importance of the Marangoni stresses becomes
higher.

In this work, only steady-state deformation was con-
sidered. At high electric capillary numbers, no steady
state exists and the drop will stretch further and eventu-
ally break up. It would be of interest to investigate the
influence of surfactants on this breakup behavior. In par-
ticular, for a conductive drop in an otherwise dielectric
medium, the influence of surfactant may be important
even though it has no influence on the steady-state de-
formation. The presented numerical method is applicable
to such a study as well.
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covered drop, and thereby increase the differences be-
tween the clean and surfactant-covered case further.

For oblate deformation, which always gives clockwise
flow, the results are similar to that of prolate deformation
and counter-clockwise flow, deformation is increased until
dilatational effects start to dominate. However, this oc-
curs earlier here, since the surfactant is not concentrated
at the tips, but instead spread out over the equator of
the drop. Finally, it was shown that for smaller viscosity
ratios, the influence of surfactant is stronger, since the
relative importance of the Marangoni stresses becomes
higher.

In this work, only steady-state deformation was con-
sidered. At high electric capillary numbers, no steady
state exists and the drop will stretch further and eventu-
ally break up. It would be of interest to investigate the
influence of surfactants on this breakup behavior. In par-
ticular, for a conductive drop in an otherwise dielectric
medium, the influence of surfactant may be important
even though it has no influence on the steady-state de-
formation. The presented numerical method is applicable
to such a study as well.
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covered drop, and thereby increase the differences be-
tween the clean and surfactant-covered case further.

For oblate deformation, which always gives clockwise
flow, the results are similar to that of prolate deformation
and counter-clockwise flow, deformation is increased until
dilatational effects start to dominate. However, this oc-
curs earlier here, since the surfactant is not concentrated
at the tips, but instead spread out over the equator of
the drop. Finally, it was shown that for smaller viscosity
ratios, the influence of surfactant is stronger, since the
relative importance of the Marangoni stresses becomes
higher.

In this work, only steady-state deformation was con-
sidered. At high electric capillary numbers, no steady
state exists and the drop will stretch further and eventu-
ally break up. It would be of interest to investigate the
influence of surfactants on this breakup behavior. In par-
ticular, for a conductive drop in an otherwise dielectric
medium, the influence of surfactant may be important
even though it has no influence on the steady-state de-
formation. The presented numerical method is applicable
to such a study as well.
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Abstract. A method is presented to solve two-phase problems involving a material quantity on
an interface. The interface can be advected, stretched, and change topology, and material can be
adsorbed to or desorbed from it. The method is based on the use of a diffuse interface framework, which
allows a simple implementation using standard finite-difference or finite-element techniques. Here,
finite-difference methods on a block-structured adaptive grid are used, and the resulting equations
are solved using a non-linear multigrid method. Interfacial flow with soluble surfactants is used as
an example of the application of the method, and several test cases are presented demonstrating its
accuracy and convergence.
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1. Introduction Many problems in the biological, physical and engineering
sciences involve systems of equations that need to be solved in evolving domains with
complex shapes. In addition, the solutions in the bulk domain may couple with the
surface through adsorption of mass from the bulk to the surface and desorption from the
surface to the bulk. Furthermore, the evolution of the domain boundary may depend
on the distribution of the surface concentration through the modification of interfacial
forces. Surfactants are a classic example where the amphiphilic organic compounds may
adsorb to and desorb from a liquid/liquid or liquid/gas interface and lower the surface
tension on the interface. Thus, inhomogeneous distribution of surfactants produces
Marangoni forces — tangential forces along the interface — that affect the dynamics;
surfactants play important roles in vortex pair interaction (e.g., [86, 34]), fingering (e.g.,
[84, 63]) and drop break-up and coalescence (e.g., [35, 36, 48, 32]). Other examples
include biomembranes where transmembrane proteins play an important role in intra-
and extra-cellular dynamics (e.g., [46, 2, 51, 29]), epitaxially grown thin films where
adsorbing/desorbing adatoms affect the dynamics and coarsening of the thin film (e.g.,
[23, 81, 52]), and electrochemical dissolution of binary alloys where one component is
removed selectively and dissolved in an electrolyte solution (e.g., [19, 15]).
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1010 COUPLED INTERFACIAL AND BULK MASS TRANSPORT

From a numerical point of view, solving a coupled bulk/surface system of equations
on a moving, complex domain is highly challenging; the domain boundary may
stretch, break-up or coalesce with other interfaces. Adsorption of mass to, and
desorption of mass from, the interfaces poses another challenge. Furthermore, the
surface concentration may only be soluble in either the exterior or interior of the
domain (e.g., amphiphilic nature of surfactants). The available numerical methods for
solving these problems can roughly be divided into two categories: interface tracking
and interface capturing methods. Interface tracking methods use either through a
separate grid for the interface, or a set of interconnected points to mark the interface.
For example, boundary integral methods use a surface mesh to track the interface.
In the context of surfactants, a boundary integral method for studying the effect of
insoluble surfactants on drop deformation was developed in [82]. This method was
extended to arbitrary viscosity ratios in [67], and to soluble surfactants in [66]. Another
tracking method is the front-tracking method, where a fixed grid is used to compute
the flow, while a set of connected marker particles is used to track the interface and any
interfacial quantities. A front-tracking method for insoluble surfactants was developed
in [39], and this method was extended to handle soluble surfactants in [91] and [69].
Lagrangian approaches are typically very accurate, but can be relatively complicated
to implement, especially in three dimensions and for problems involving topological
changes.

In interface capturing methods, the interface is not tracked explicitly, but instead
is implicitly defined through a regularization of the interface. This means that the
solution of the problem can be done independently of the underlying grid, which
greatly simplifies gridding, discretization, and handling of topological changes. For
example, a volume-of-fluid (VOF) method for insoluble surfactants was developed in
[75]. A more general method which allows non-linear equations of state for surface
tension was then developed in [38]. A level-set method for solving the surfactant
equation was presented in [89], and later coupled to an external flow solver in [88]. An
alternative approach tracking and approach was developed in [90, 32], using the so-
called Arbitrary Lagrangian-Eulerian (ALE) method. An immersed interface boundary
method for interfacial flows with insoluble surfactants was recently developed in [47].
In the context of thin films, a level-set method for the simulating the motion of thin
films under surface diffusion with free adatoms was developed in [81]. In addition,
an immersed interface method was developed to simulate electrodeposition in an
evolving complex domain [77]. Level-set methods for solving more general equations
on implicitly defined, but stationary, surfaces have also been developed in [5, 30].

Other approaches for solving equations in complex domains include fictitious
domain methods (e.g., [27, 28, 65, 31, 70, 12, 74, 72, 56, 33]), immersed interface
methods (e.g., [49, 54, 37]), modified finite volume/embedded boundary/cut-cell
methods (e.g., [41, 64, 62, 40, 42, 76, 59]) and ghost fluid methods (e.g., [20, 24, 25,
26, 60, 61]). All these methods, however, require non-standard tools typically not
available in standard finite element and finite difference software packages.

The diffuse-interface, or phase-field, method represents yet another approach for
simulating solutions of equations in complex, evolving domains. In this method, which
we follow here, the complex domain is represented implicitly by a a phase-field function,
which is an approximation of the characteristic function of the domain. The domain
boundary is replaced by a narrow diffuse interface layer such that the phase-field
function rapidly transitions from one inside the domain to zero in the exterior of the
domain. The boundary of the domain can thus be represented as an isosurface of
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extended to arbitrary viscosity ratios in [67], and to soluble surfactants in [66]. Another
tracking method is the front-tracking method, where a fixed grid is used to compute
the flow, while a set of connected marker particles is used to track the interface and any
interfacial quantities. A front-tracking method for insoluble surfactants was developed
in [39], and this method was extended to handle soluble surfactants in [91] and [69].
Lagrangian approaches are typically very accurate, but can be relatively complicated
to implement, especially in three dimensions and for problems involving topological
changes.

In interface capturing methods, the interface is not tracked explicitly, but instead
is implicitly defined through a regularization of the interface. This means that the
solution of the problem can be done independently of the underlying grid, which
greatly simplifies gridding, discretization, and handling of topological changes. For
example, a volume-of-fluid (VOF) method for insoluble surfactants was developed in
[75]. A more general method which allows non-linear equations of state for surface
tension was then developed in [38]. A level-set method for solving the surfactant
equation was presented in [89], and later coupled to an external flow solver in [88]. An
alternative approach tracking and approach was developed in [90, 32], using the so-
called Arbitrary Lagrangian-Eulerian (ALE) method. An immersed interface boundary
method for interfacial flows with insoluble surfactants was recently developed in [47].
In the context of thin films, a level-set method for the simulating the motion of thin
films under surface diffusion with free adatoms was developed in [81]. In addition,
an immersed interface method was developed to simulate electrodeposition in an
evolving complex domain [77]. Level-set methods for solving more general equations
on implicitly defined, but stationary, surfaces have also been developed in [5, 30].

Other approaches for solving equations in complex domains include fictitious
domain methods (e.g., [27, 28, 65, 31, 70, 12, 74, 72, 56, 33]), immersed interface
methods (e.g., [49, 54, 37]), modified finite volume/embedded boundary/cut-cell
methods (e.g., [41, 64, 62, 40, 42, 76, 59]) and ghost fluid methods (e.g., [20, 24, 25,
26, 60, 61]). All these methods, however, require non-standard tools typically not
available in standard finite element and finite difference software packages.

The diffuse-interface, or phase-field, method represents yet another approach for
simulating solutions of equations in complex, evolving domains. In this method, which
we follow here, the complex domain is represented implicitly by a a phase-field function,
which is an approximation of the characteristic function of the domain. The domain
boundary is replaced by a narrow diffuse interface layer such that the phase-field
function rapidly transitions from one inside the domain to zero in the exterior of the
domain. The boundary of the domain can thus be represented as an isosurface of
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the phase-field function. The bulk and surface PDEs are then extended on a larger,
regular domain with additional terms that approximate the adsorption-desorption flux
boundary conditions and source terms for the bulk and surface equations respectively.
Standard finite-difference or finite-element methods may be used. Here, we focus on a
finite difference approach.

The diffuse interface method, which has a long history in the theory of phase
transitions dating back to van der Waals (e.g., [79, 3]), was used in [46] to study
diffusion inside a cell with zero Neumann boundary conditions at the (stationary)
cell-boundary (see also [8, 9]), and later was used to simulate electrical waves in the
heart [21]. This approach has been extended [51] to simulate coupled bulk diffusion
with an ordinary-differential equation description of reaction-kinetics on the bounding
surface of a stationary domain to simulate membrane-bound Turing patterns. More
recently, general diffuse-interface methods have been developed for solving PDEs on
stationary surfaces [73], evolving surfaces [13, 14, 16, 17] and for solving PDEs in
complex evolving domains with Dirichlet, Neumann and Robin boundary conditions
[53].

As shown in the previous paragraphs, bulk/surface problems are important in a
wide range of areas. Here, we combine and refine previous work on diffuse-interface
methods to develop a new method for solving coupled bulk/surface problems on general,
evolving domains. The method is very simple compared to other methods, and can
handle advection, diffusion and adsorption/desorption in a straight-forward manner.
Matched asymptotic expansions are used to demonstrate that the diffuse interface
system converges to the original sharp interface equations as the interface thickness
tends to zero. The use of a non-linear multigrid method and block-structured, adaptive
grids also make the method computationally efficient. We present several test cases
demonstrating the accuracy and convergence of the proposed method.

The paper is organized as follows. In section 2, the governing equations for the
surface concentration and the bulk concentration are introduced, and the interface
representation presented. Section 3 presents an asymptotic analysis of the proposed
method. Section 4 then details the numerical implementation. In section 5, the
performance of the numerical method is evaluated on a set of test cases. Finally,
section 6 contains conclusions and discussions of future work.

2. Mathematical formulation

2.1. Governing equations Consider a domain Ω⊂R
2,3, which contains a

closed interface, Γ. The interior of the interface is Ω0⊂Ω, and the exterior is Ω1⊂Ω.
See figure 2.1 for an illustration. Let f denote a surface concentration defined on Γ. We
suppose that f is extended off Γ constant in the normal direction (i.e., ∇f ·n=0) so
that f is defined in a neighborhood of Γ. Then, the sharp interface mass conservation
equation is

∂f

∂t
+u ·∇f =∇Γ ·(Df∇Γf)−f∇Γ ·uΓ−fκun +j, (2.1)

where u is the velocity, ∇Γ =(I−nn)∇ is the surface gradient, n is the normal vector
to Γ pointing into Ω0, Df is the diffusion coefficient, uΓ =(I−nn)u, un =u ·n, κ is
the total curvature of Γ (positive for a sphere), and j is a source term that arises from
adsorption to and desorption from Γ

j = raF −rdf, (2.2)
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Fig. 2.1: Illustration of the mathematical domain.

where ra and rd are adsorption and desorption coefficients, respectively, and F is the
bulk concentration (evaluated immediately adjacent to Γ). Note that in the context of
surfactants, the interface may become saturated and instead one may use

j = raF (f∞−f)−rdf, (2.3)

where f∞ is the maximum interface concentration. An equivalent formulation is

∂f

∂t
+∇Γ ·(uf)=∇Γ ·(Df∇Γf)+j. (2.4)

We refer the reader also to [11] for further discussion of formulations involving interfacial
transport using constant normal extensions and to [38] for Eulerian formulations of
the dynamics of surface concentrations.

Assume that the surface concentration f is soluble in Ω1, but not in Ω0. Then,
define the bulk concentration in Ω1 to be F , which evolves according to the bulk mass
conservation equation

∂F

∂t
+∇·(Fu)=DF ∇2F in Ω1, (2.5)

with the boundary condition at Γ

DF ∇F ·n=−j on Γ. (2.6)

Note that if the surface concentration were soluble in Ω0, then an additional mass
conservation equation would need to be posed. Our formulation is sufficiently general
to handle this case.

Next, we consider a distribution formulation of equation (2.4) by introducing a
surface delta function δΓ, such that∫

Γ

f dΓ=
∫

Ω

fδΓdΩ, (2.7)
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where Ω=Ω1∪Ω0 (actually the above equation holds for any domain Ω that contains
Γ). The mass conservation equation may be rewritten accordingly as

∂

∂t
(f δΓ)+∇·(f δΓu)=∇·(δΓDf∇f)+δΓj. (2.8)

This distribution formulation formally holds in Ω.
Analogously, the bulk equation (2.5) may be extended to hold in Ω in distribution

form. Introducing the Heaviside function

H =
{

1 in Ω1,
0 in Ω0,

(2.9)

the bulk concentration equation (2.5) and boundary condition (2.6) may be reformu-
lated as

∂

∂t
(HF )+∇·(HF u)=DF ∇·(H∇F )−δΓj, (2.10)

where the boundary condition has been included as a singular source term following
[53].

2.2. Interface representation A phase-field function c may be used to ap-
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+v ·∇r =0, (2.12)

where v is an extension of u off the interface which is constant in the normal direction
[1]. Alternatively, an advective Cahn-Hilliard equation can be used,
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+u ·∇c=∇·(M(c)∇μ), (2.13)

μ=g′(c)−ε2∇2c, (2.14)

where μ is a chemical potential. Here, we take g(c)= 1
4c2(1−c)2 as the double well

potential. Note that this polynomial energy does not constrain c∈ [0,1] but the
deviation from this interval is typically O(ε) at most. Alternative choices (e.g., double-
obstacle [6, 7] or logarithmic potentials [4]) may be used that do constrain c∈ [0,1].
The mobility M is localized on the interface and is taken to be M(c)=

√
4g(c). This

equation is fourth-order and nonlinear and thus requires specialized numerical methods
to solve in an efficient manner. This is discussed further in section 4.

2.3. Regularized delta and Heaviside functions In order to evaluate equa-
tion (2.8) and equation (2.10) numerically, regularizations of the surface delta function
and Heaviside function are needed. In the phase-field context, several definitions of
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the delta function are available from the literature. In this work, the approximation
from [73],

δΓ≈ 3
√

2
ε

B(c), B(c)= c2(1−c)2, (2.15)

is used for the surface equation. Note that other choices may be used [17]. For the
boundary condition in the bulk equation, the approximation

δΓ≈|∇c| (2.16)

is used, which avoids additional scaling issues in the equation [53]. Further, the
regularized Heaviside function is simply taken to be [53]

H(c)≈ c. (2.17)

The final system of equations can now be summarized as

∂

∂t
(B(c)f)+∇·(B(c)f u)=∇·(DfB(c)∇f)+B(c)j, (2.18)

∂

∂t
(cF )+∇·(cF u)=DF ∇·(c∇F )−|∇c|j. (2.19)

3. Asymptotic analysis In this section, the method of matched asymptotic
expansions is used to provide a formal justification for the diffuse interface approach.
To make the system slightly more general, we may add reaction terms to the bulk
and surface equations, i.e., Rf (f) and RF (F ) may be added to equations (2.18) and
(2.19) respectively. In this approach, the domain Ω is separated into two regions —
the regions far from Γ (outer region, i.e., the portions of Ω1 and Ω0 away from Γ) and
the region near Γ (inner region). In each region, the variables are expanded in powers
of the diffuse interface thickness. In the outer region, the variables are expanded as

c(x,t)= c0(x,t)+εc1(x,t)+ ..., (3.1)

and analogously for the other variables. In the region near Γ, we introduce a new
coordinate system.

3.1. New Coordinate Introduce the following local normal-tangential coor-
dinate system with respect to the curve Γ. Let Γ=X(s,t)=(X(s,t),Y (s,t),Z(s,t)),
where s=(s1,s2) is a parametrization of the surface and t is time. Let r= r(x;ε) be
the signed distance along the normal from a point x to Γ, and is positive when outside
Γ (i.e. in Ω1). Then, if Γ is smooth, there exists a neighborhood

Uε :={x∈Ω: |r(x,ε)|<ρ}

of Γ for some 0<ρ�1, such that the local coordinate transformation from (x,y,z)
to (r,s1,s2) is valid, e.g., x=X(s,t)+rn(s,t). Near the interface, we introduced a
stretched normal coordinate z = r

ε . Note that as ε→0, the inner region extends from
−∞<z <∞. We then assume that the variables may be expanded in regular power
series in ε in the stretched coordinate system:

c(x,t)=C(z,s,t)=C0(z,s,t)+εC1(z,s,t)+ ..., (3.2)
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and analogously for the other variables. Furthermore, in this coordinate system we
have

∂t =−ε−1V̂0∂z +∂t +O(ε), (3.3)

∇= ε−1n∂z +∇Γ +O(ε), (3.4)

where V̂0 is the leading term of the normal velocity of Γ.

3.2. Matching Condition Assuming that there is an overlapping region where
both the inner and outer expansions are valid, we may write the outer expansion in
the local coordinate system as

c(x,t)= c(r,s,t)= c0(r,s,t)+εc1(r,s,t)+ ..., (3.5)

and analogously for the other variables. Matching the inner and outer expansions in
this region, the following matching conditions hold [10, 71, 22]

lim
r→0±

F0 = lim
z→±∞F̂0, (3.6)

lim
r→0±

f0 = lim
z→±∞ f̂0, (3.7)

lim
r→0±

n ·∇F0 = lim
z→±∞∂zF̂1, (3.8)

lim
z→±∞∂zF̂0 =0. (3.9)

Analogous matching conditions hold for the other variables.

3.3. Bulk Equation

3.3.1. Outer expansion The O(ε0) term of equation (2.19) gives:

∂F0

∂t
+∇ ·(F0u0)=∇ ·(DF ∇F0)+RF (F0). (3.10)

Thus at leading order equation (2.5), with the reaction term, is recovered. To determine
the boundary conditions on Γ, we match with the inner expansion.

3.3.2. Inner expansion At O(ε−2), we obtain

∂z(C0DF ∂zF̂0)=0, (3.11)

which implies ∂zF̂0 =0. At O(ε−1) we obtain(
UN,0− V̂0

)
∂z

(
C0F̂0

)
=∂z(C0DF ∂zF̂1)+

(
raF̂0−rdf̂0

)
∂zC0. (3.12)

Since UN,0 = V̂0 by the asymptotic analysis of the advective Cahn-Hilliard equation
[58], F̂0 is independent of z and, as we show below, f̂0 is also independent of z, we
may integrate equation (3.12) and use that

∫ +∞
−∞ ∂zC0 dz =1, again taken from [58],

to obtain

DF lim
z→+∞∂zF̂1 =−(raF̂0−rdf̂0). (3.13)

Together with equation (3.8), we therefore recover the Neumann boundary condition
(2.6) for the outer solution at leading order

DF lim
r→0+

n ·∇F0 =DF lim
z→+∞∂zF̂1 =−(raF0−rdf0), (3.14)

where we have set f̂0 =f0 since f̂0 is independent of z. Next, we turn to the surface
concentration equation.
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where V̂0 is the leading term of the normal velocity of Γ.
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the local coordinate system as

c(x,t)= c(r,s,t)= c0(r,s,t)+εc1(r,s,t)+ ..., (3.5)

and analogously for the other variables. Matching the inner and outer expansions in
this region, the following matching conditions hold [10, 71, 22]
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z→±∞F̂0, (3.6)
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r→0±
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z→±∞ f̂0, (3.7)

lim
r→0±
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3.4. Surface Equation Here, we only focus on the inner expansion since the
equation is localized around the interface. At O(ε−2), we obtain

∂z

(
DfB(C0)∂z f̂0

)
=0, (3.15)

which implies ∂z f̂0 =0, as claimed above. The O(ε−1) term gives

0=∂z(B(C0)∂z f̂1), (3.16)

where we have used that UN,0 = V̂0. Equation (3.16) implies that ∂z f̂1 =0 also. At
O(ε0), we obtain

∂t(B(C0)f̂0)+∇Γ ·
(
B(C0)f̂0U0

)
=∂z(DfB(C0)∂z f̂2)+∇Γ ·

(
DfB(C0)∇Γf̂0

)
+B(C0)(raF̂0−rdf̂0)+B(C0)Rf (f0).

(3.17)

Since f̂0 is independent of z, we may integrate equation (3.17) in z from −∞ to +∞,
and divide by

∫ +∞
−∞ B(C0)dz >0 to obtain

∂tf0 +∇Γ ·(f0u0)=∇Γ ·(Df∇Γf0)= raF0−rdf0 +Rf (f0), (3.18)

where we taken f̂0 =f0, F̂0 =F0 and we also have assumed that UΓ,0 is independent of
z (which implies there is no jump in velocity across Γ) so that we may write U0 =u0.
Thus, equation (2.4), with the reaction term, is recovered at leading order.

4. Numerical methods This section briefly describes the numerical methods
used to solve the above equations. The algorithm follows the one developed in [87]. In
particular, the equations are discretized using finite differences in space and a semi-
implicit time discretization. A block-structured, adaptive grid is used to increase the
resolution around the interface in an efficient manner. The nonlinear equations at the
implicit time level are solved using a non-linear Adaptive Full Approximation Scheme
(AFAS) multigrid algorithm. For a detailed discussion of the adaptive algorithm and
the multigrid solver, the reader is referred to [87].

The equations are discretized on a rectangular domain. The surface concentration,
the bulk concentration, the phase-field function and the chemical potential are defined
at the cell-centers, while the velocity components are defined on cell-edges.

Special care has to be taken for the temporal discretization. The Cahn-Hilliard
system is fourth order in space, and requires the use of an implicit method to avoid
severe limitations in the time step. Here, Crank-Nicholson type schemes are used [45],

ck+1−ck

Δt
=− 1

2
[∇d ·(uk+1ck+1)+∇d ·(ukck)

]
+

1
2

[∇d ·(Mk+1∇dμ
k+1)+∇d ·(Mk∇dμ

k)
]
,

(4.1)

μk+1 =g′(ck+1)−ε2∇2
dc

k+1. (4.2)

In [45, 87] this approach was shown to be robust and efficient. The equations for
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surface concentration and bulk concentration are discretized in a similar fashion,

δk+1
Γ fk+1−δk

Γfk

Δt
=− 1

2
[∇d ·(uk+1δk+1

Γ fk+1)+∇d ·(ukδk
Γfk)

]
+

Df

2
[∇d ·(δk+1

Γ ∇df
k+1)+∇d ·(δk

Γ∇df
k)

]
+

1
2

[
δk+1
Γ jk+1 +δk

Γjk
]
,

(4.3)

Hk+1F k+1−HkF k

Δt
=− 1

2
[∇d ·(uk+1Hk+1F k+1)+∇d ·(ukHkF k)

]
+

Df

2
[∇d ·(Hk+1∇dF

k+1)+∇d ·(Hk∇dF
k)

]
+

1
2

[|∇dc
k+1|jk+1 + |∇dc

k|jk
]
,

(4.4)

where, in the above equations, we set δk+1
Γ =B(ck+1)+α and Hk+1 =

√
(ck+1)2 +α2,

with α being a small parameter (α=10−6) that is used to ensure that division by zero
does not occur; the results are found to be quite insensitive to the precise choice of
α provided it is sufficiently small. The operator ∇d represents the standard second-
order finite-difference discretization. The convective terms of the form ∇·(uφ) are
discretized using the third-order WENO reconstruction method [78, 55]. The WENO
reconstruction method has the advantage that it handles steep gradients well, which
may occur in the type of dynamics described in this work. Additionally, fewer grid
points are needed to achieve a high order solution. This is particularly important for
the efficiency of the adaptive grid, because fewer ghost cell values have to be calculated
at the boundaries of each grid block.

Homogeneous Neumann far-field boundary conditions are prescribed for all vari-
ables. This is imposed by introducing a set of ghost cells around the domain. These
ghost cells are updated before every smoothing operation.

The AFAS multigrid algorithm is used to solve the discretized equations at every
time step. The full description of the AFAS multigrid method will not be given here,
the details can be found in [87] and in the reference text [85]. The ideal run-time
complexity of this algorithm is optimal, i.e., O(N) where N is the number of grid points.
The present implementation achieves this complexity, which is shown in section 5.6.

5. Code validation

5.1. Surface diffusion on a stationary circle First, a problem without bulk
concentration is considered. This tests the validity of the diffuse interface representation
of the surface equation, and of the correct implementation of the diffusion term.

Consider a stationary circle of radius R, with an initial surface concentration given
by

f0(θ)=
1
2
(1−cosθ), (5.1)

where θ denotes the angle measured in the counter-clockwise direction from the y-axis.
The surface concentration equation can now be written in polar coordinates as

∂f(θ,t)
∂t

=
Df

R2

∂2f(θ,t)
∂θ2

, (5.2)
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The AFAS multigrid algorithm is used to solve the discretized equations at every
time step. The full description of the AFAS multigrid method will not be given here,
the details can be found in [87] and in the reference text [85]. The ideal run-time
complexity of this algorithm is optimal, i.e., O(N) where N is the number of grid points.
The present implementation achieves this complexity, which is shown in section 5.6.

5. Code validation

5.1. Surface diffusion on a stationary circle First, a problem without bulk
concentration is considered. This tests the validity of the diffuse interface representation
of the surface equation, and of the correct implementation of the diffusion term.

Consider a stationary circle of radius R, with an initial surface concentration given
by

f0(θ)=
1
2
(1−cosθ), (5.1)

where θ denotes the angle measured in the counter-clockwise direction from the y-axis.
The surface concentration equation can now be written in polar coordinates as

∂f(θ,t)
∂t

=
Df

R2

∂2f(θ,t)
∂θ2

, (5.2)
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with initial condition f0 and periodic boundary condition in the θ-direction. This
equation can be solved analytically, yielding

f(θ,t)=
1
2

(
1−e−

Df

R2 tcosθ
)

. (5.3)

A series of simulations are performed comparing the numerical solution to the
analytical solution. The computational domain chosen for the simulations is [−2,2]×
[−2,2] and a circle with radius R=1 is placed in the center of the domain. The
phase-field function is initialized by

c(x,y)=
1
2

[
1−tanh

(√
x2 +y2−R

2
√

2ε

)]
. (5.4)

The initial surface concentration is given by the analytical solution, and the time step
is Δt=1×10−2.

In the numerical code, the surface concentration is defined at grid points near the
interface. To enable a direct comparison with the analytical solution, the concentration
at the interface is needed. This is done by using a marching squares algorithm (see e.g.
[57]) to generate a set of points at the 0.5 isocontour of the phase-field function. Bilinear
interpolation is then used to interpolate the grid values of the surface concentration
to these interface points. Note that this will introduce extra uncertainties, so the
absolute errors given later may not be exact values. The order of convergence results
should not be affected by this.

An example of the adaptive grid is shown in figure 5.1. Clearly, the grid follows
the circle shape very well. No significant difference between the solutions on adaptive
grids and uniform grids was found for this test case for the same effective resolution.
Figure 5.2 shows comparisons between the numerical solution and the analytical
solution at various times and surface diffusion coefficients. Good agreement is observed.
The error in the infinity norm between the interpolated values and the exact values
at the interface is given in Table 5.1. The numerical solution converges towards the
exact solution in a first order fashion, as predicted by the asymptotic analysis.

Table 5.1: The error and convergence order for the surface diffusion test case at t=1.
The interface thickness is defined as ε=1.6hmin, where hmin the minimum grid size.

Grid spacing Error Order
(×10−2)

1/8 4.29 -
1/16 2.35 0.87
1/32 1.18 0.99
1/64 0.60 0.98
1/128 0.30 1.00

5.2. Surface diffusion on an advected circle Now, the circle in the above
test case is put in a constant velocity field, u=(2,0). The analytical solution is the
same, only translated in the computational domain. The computational domain is
extended by two in the x-direction to accomodate the translation.
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Fig. 5.1: Example of the adaptive grid for the surface diffusion on a fixed circle. The
root level has 32×32 grid points and there are three levels of refinement, giving an
effective resolution at the interface of 256×256.
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(a) Surface concentration profiles at times t=
0.0,0.25,0.5,0.75 and 1 for Df =1.
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different Df .

Fig. 5.2: Comparison of the numerical and exact solutions for the surface diffusion
test case. Because the solution is symmetric with respect to the y-axis, only one half
of the circle is shown here. The grid spacing is hmin =1/64.

The initial and final surface concentration is given in figure 5.3. As shown in
Table 5.2, the convergence is first order as in the diffusion only test case. The error is
slightly higher due to the additional errors caused by the advection.
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The initial and final surface concentration is given in figure 5.3. As shown in
Table 5.2, the convergence is first order as in the diffusion only test case. The error is
slightly higher due to the additional errors caused by the advection.



1020 COUPLED INTERFACIAL AND BULK MASS TRANSPORT

Table 5.2: The error and convergence order for the diffusion on a translating circle at
t=1. The interface thickness is defined as ε=1.6hmin.

Grid spacing Error Order
(×10−2)

1/8 4.60 -
1/16 2.47 0.90
1/32 1.23 1.01
1/64 0.62 0.99
1/128 0.31 1.01

Fig. 5.3: The initial and final surface concentration for the advected circle test case.

5.3. Surface concentration evolution on an expanding circle A circle is
placed in the velocity field given by

u=cosθ,v =sinθ, (5.5)

which is illustrated in figure 5.4(a). In the absence of diffusion, the surface concentration
is just a function of the circle circumference, so the mass conservation equation reduces
to

f(t)=
C0

C(t)
f0, (5.6)

where C =2πR is the surface area, and subscript 0 denotes the initial condition.
For this test case, the computational domain was set to Ω=[−16,16]× [−16,16]

to accomodate the expansion. The initial radius was set to R0 =1, and the initial
surface concentration was set to f0 =0.5. Instead of solving the Cahn-Hilliard system,
equations (2.13)–(2.14), the phase-field function is evolved analytically for this test
case. No significant difference is observed if the interface is evolved according to the
Cahn-Hilliard system, as is done below.
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Fig. 5.4: Numerical setup and results for the expanding circle test case.

The numerical and analytical solutions are compared in figure 5.4(b), and excellent
agreement is observed. The convergence behaviour is given in Table 5.3, and as in
previous test cases, the method converges in a first-order fashion.

Table 5.3: The error and convergence order for the expanding circle test case. The
error is measured as the maximum deviation of the mean surface concentration to the
analytical concentration. The interface thickness ε=1.6hmin.

Grid spacing Error Order
(×10−2)

1 13.6 -
1/2 6.60 1.04
1/4 3.30 1.00
1/8 1.62 1.03

5.4. Bulk diffusion and bulk-surface mass transfer This test case was
introduced in [69] in the context of surfactants, to test the coupling between a bulk
concentration and a surface concentration. Consider an initially clean circle of radius
a in a domain which contains an initial bulk concentration F∞. A simplified version
of the source term is used, where mass moves from the bulk to the interface,

j = raF. (5.7)
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Table 5.4: Values used in the bulk diffusion and bulk-surface mass transfer test case.

Quantity Value

Radius, a 1.0
Adsorption rate, ra 1.0
Diffusion coefficient, DF 1.0
Initial bulk concentration, F∞ 1.0

The evolution of the bulk concentration can now be described with the heat equation
in an infinite, hollow cylinder,

∂F

∂t
=DF

(
∂2F

∂r2
+

1
r

∂F

∂r

)
, (5.8)

with boundary conditions

∂F

∂r

∣∣∣∣
r=a

= raF (r =a), (5.9)

F (r =R)=F∞, (5.10)

where R is the extent of the domain; R is taken to be 4. In lieu of an analytical solution,
a fourth-order accurate finite-difference discretization of the above 1D problem is used
for comparison to the diffuse-interface solution. The grid size for this problem was
chosen high enough to give a resolution independent solution. The physical properties
used in the simulations are given in Table 5.4.

A visual comparison between the 1D solution and the diffuse-interface results for
the bulk concentration at various time steps is given in figure 5.5(a). Apart from the
small errors close to the interface during the early times due to the sharp gradients,
the agreement is excellent.

The amount of mass accumulated on the interface can be found from the 1D
solution via mass conservation,

Mf (t)=MF (0)−2π

∫ R

a

F (t)rdr. (5.11)

Figure 5.5(b) shows that the diffuse-interface solution is in good agreement with the
1D solution.

The error and convergence for both the bulk concentration and the surface con-
centration is given in Table 5.5. The error decreases in a second-order fashion. The
reason for this is that for this test case, the surface concentration is uniform, so there
is no surface diffusion.

Next, the effect of varying the surface diffusion coefficient relative to the bulk
diffusion coefficient, D =Df/DF , is investigated. The initial bulk concentration is set
to

F0(y)=(ymax−y)×10−3 (5.12)

instead of the previous uniform concentration and we consider both adsorption and
desorption. There is a non-uniform adsorption to the interface which gives rise to
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Fig. 5.5: Comparison of the 4th order 1D solution and the phase-field solution for the
bulk diffusion and bulk-surface mass transfer test case. hmin =1/128, ε=1/80.

Table 5.5: The error in the infinity norm and convergence order for the bulk concen-
tration and the accumulated surface mass in the bulk diffusion and bulk-surface mass
transfer test case. The interface thickness is ε=1.6hmin.

Bulk concentration Surface mass
Grid spacing Error Order Error Order

(×10−2) (×10−3)

1/8 11.38 - 9.66 -
1/16 5.21 1.13 4.50 1.10
1/32 1.57 1.73 1.20 1.91
1/64 0.343 2.20 0.22 2.44
1/128 0.0473 2.86 0.036 2.61

diffusion effects on the surface. Additionally, desorption is added to yield more complex
dynamics. The radius is set to r=0.15 and the drop is centered at (0.5,0.5). The
adsorption and desorption rates are ra = rd =100 and the bulk diffusion coefficient
is DF =1.0. Figure 5.6 shows the concentration in the bulk and on the surface at
t=0.08 for varying diffusion ratios. A grid spacing of h=1/256 was employed, along
with interface thickness ε=0.004. Because of the non-uniform bulk distribution, the
adsorption will be higher at the bottom of the circle than at the top. As the surface
diffusion coefficient increases, mass is diffused from the bottom to the top of the circle
faster, which further reduces the adsorption at the top. This effectively increases the
diffusion and leads to a more uniform concentration distribution in the bulk. This
is illustrated in figure 5.7, which shows the bulk concentration along x=0.5. The
larger surface diffusion also leads to lower total interface concentration, since mass is
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diffusion effects on the surface. Additionally, desorption is added to yield more complex
dynamics. The radius is set to r=0.15 and the drop is centered at (0.5,0.5). The
adsorption and desorption rates are ra = rd =100 and the bulk diffusion coefficient
is DF =1.0. Figure 5.6 shows the concentration in the bulk and on the surface at
t=0.08 for varying diffusion ratios. A grid spacing of h=1/256 was employed, along
with interface thickness ε=0.004. Because of the non-uniform bulk distribution, the
adsorption will be higher at the bottom of the circle than at the top. As the surface
diffusion coefficient increases, mass is diffused from the bottom to the top of the circle
faster, which further reduces the adsorption at the top. This effectively increases the
diffusion and leads to a more uniform concentration distribution in the bulk. This
is illustrated in figure 5.7, which shows the bulk concentration along x=0.5. The
larger surface diffusion also leads to lower total interface concentration, since mass is
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transfer test case. The interface thickness is ε=1.6hmin.
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diffusion effects on the surface. Additionally, desorption is added to yield more complex
dynamics. The radius is set to r=0.15 and the drop is centered at (0.5,0.5). The
adsorption and desorption rates are ra = rd =100 and the bulk diffusion coefficient
is DF =1.0. Figure 5.6 shows the concentration in the bulk and on the surface at
t=0.08 for varying diffusion ratios. A grid spacing of h=1/256 was employed, along
with interface thickness ε=0.004. Because of the non-uniform bulk distribution, the
adsorption will be higher at the bottom of the circle than at the top. As the surface
diffusion coefficient increases, mass is diffused from the bottom to the top of the circle
faster, which further reduces the adsorption at the top. This effectively increases the
diffusion and leads to a more uniform concentration distribution in the bulk. This
is illustrated in figure 5.7, which shows the bulk concentration along x=0.5. The
larger surface diffusion also leads to lower total interface concentration, since mass is
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Fig. 5.5: Comparison of the 4th order 1D solution and the phase-field solution for the
bulk diffusion and bulk-surface mass transfer test case. hmin =1/128, ε=1/80.

Table 5.5: The error in the infinity norm and convergence order for the bulk concen-
tration and the accumulated surface mass in the bulk diffusion and bulk-surface mass
transfer test case. The interface thickness is ε=1.6hmin.
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Grid spacing Error Order Error Order
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diffusion effects on the surface. Additionally, desorption is added to yield more complex
dynamics. The radius is set to r=0.15 and the drop is centered at (0.5,0.5). The
adsorption and desorption rates are ra = rd =100 and the bulk diffusion coefficient
is DF =1.0. Figure 5.6 shows the concentration in the bulk and on the surface at
t=0.08 for varying diffusion ratios. A grid spacing of h=1/256 was employed, along
with interface thickness ε=0.004. Because of the non-uniform bulk distribution, the
adsorption will be higher at the bottom of the circle than at the top. As the surface
diffusion coefficient increases, mass is diffused from the bottom to the top of the circle
faster, which further reduces the adsorption at the top. This effectively increases the
diffusion and leads to a more uniform concentration distribution in the bulk. This
is illustrated in figure 5.7, which shows the bulk concentration along x=0.5. The
larger surface diffusion also leads to lower total interface concentration, since mass is
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D =1.0 and D =10.
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Fig. 5.7: Bulk concentration along x=0.5 for three different diffusion coefficient
ratios at t=0.08. A larger surface diffusion coefficient increases the transport of bulk
concentration and gives a more uniform profile.

desorbed back into the bulk.

5.5. Bulk-surface coupling on a perturbed circle In this test case, the
surface evolution on, and the bulk evolution inside, a perturbed circle is considered.
The circle is given by

r(θ)=1+0.1cos(3θ), (5.13)

and forcing functions are added to the surface and bulk equations so that the exact
solution is known. More specifically,

∂f

∂t
=∇2

sf −f +F +ζ1 on Γ (5.14)

∂F

∂t
=∇2F −F +ζ2 in Ω0 (5.15)

is solved subject to the boundary condition

∇F ·n=f −F on Γ. (5.16)

The forcing functions are chosen such that the solution in Ω0 is

F =
1
4
(x2 +y2)e−3t, (5.17)

and the solution on Γ is

f =
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Fig. 5.8: The solutions at t=2.0×10−3 for the bulk-surface coupling on a perturbed
circle.

The diffuse-interface representation of the above system is

∂

∂t
(f B(c))=∇·(B(c)∇f)−B(c)(f +F +ζ1) (5.19)

∂

∂t
(HF )=∇·(H∇F )−HF +Hζ2 +(f −F )|∇c|, (5.20)

where the Heaviside function is now given by

H(c)=1−c, (5.21)

instead of equation (2.17) since the bulk concentration is required in Ω0 (not in Ω1).
The simulation was run to time t=2.0×10−3, and the interface thickness was

scaled as ε=1.28hmin. Figure 5.8 shows the final solution for the surface concentration
and the bulk concentration for a grid spacing of hmin =1/128. The analytical solutions
given by equations (5.17) and (5.18) are compared to the numerical results in figure 5.9.
Excellent agreement is observed. In Table 5.6, the respective errors compared to the
analytical solutions are listed together with the convergence order. Again, first order
convergence results are obtained.

5.6. Bulk-surface coupling in a 2D vortical flow A circle with radius
r =0.15 is placed at x=(0.5,0.75) in a domain Ω=[0,1]× [0,1]. The circle is advected
by a prescribed velocity field defined by the stream function

Ψ=−cos(πt)
1
π

sin2(πx)sin2(πy), (5.22)

which gives the individual velocity components as

u=−2 cos(πt)sin2 (πx)sin(πy)cos(πy), (5.23)

v =2cos(πt) sin2 (πy)sin(πx)cos(πx). (5.24)
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Fig. 5.9: Comparison between the analytical solutions and numerical solutions for
h=1/128 at t=2.0×10−3 s for the perturbed circle test case.

Table 5.6: The error in the infinity norm and convergence order for the bulk concen-
tration and the interface concentration in the perturbed circle test case. The interface
thickness is ε=1.28h.

Bulk concentration Surface concentration
Grid spacing Error Order Error Order

(×10−3) (×10−2)

1/16 17.0 - 11.0 -
1/32 9.5 0.84 4.4 1.32
1/64 5.1 0.90 1.5 1.55
1/128 2.6 0.97 0.74 1.02

The initial condition is illustrated in figure 5.10. This is a demanding test case for
both the interface advection and the adaptive grid, because the interface undergoes
large deformations. Because of the periodicity of the flow field, it is common to
compare the initial solution to the solution after one period. However, with diffusion
and adsorption/desorption, the solution is not time-reversible. Here, a comparison
with the results from [90] is first considered as a validation case, before simulations
with bulk/interface coupling are presented.

For the validation case, the diffusion is set to Df =10−3 for the surface concen-
tration, and the evolution of the bulk concentration is not considered. Hence, there
is no coupling between the bulk and surface for this test case. The initial surface
concentration is f0 =1.0. An effective grid spacing of hmin =1/512 was used along with
an interface thickness ε=0.002. Figure 5.11(a) shows the evolution of the interface and
the adaptive grid. The grid clearly tracks the interface in an efficient manner, and the
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Fig. 5.10: Illustration of the vortical velocity field and initial surface position.

morphology at t=0.5 matches that of figure 11(b) in [90]. The surface concentration
along the interface is shown in figure 5.11(b). Due to the complex flow field, mass
is swept to the lower and upper part of the stretching circle. The concentration
is particularly high at the upper part. This profile is in good agreement with the
equivalent figure 11(c) in [90].

Next, the effect of varying the surface diffusion coefficient relative to the bulk
diffusion coefficient, D=Df/DF , is investigated. The initial surface concentration
is f0 =10−4 and the initial bulk concentration is given by the non-uniform profile
F0 =10−4y. Additionally, the bulk and interface is coupled, with adsorption coefficient
ra =100 and desorption coefficient rd =200. The bulk diffusion coefficient is DF =0.1,
while the surface diffusion coefficient is varied. An effective grid spacing of hmin =1/256
was employed, along with interface thickness ε=0.004.

The concentration at t=0.5 for the bulk and the interface for three different
diffusion coefficient ratios is shown in figure 5.12. When the surface diffusion coefficient
is low, the main transport mechanism is the convection. Some mass is adsorbed onto
the interface, but the low diffusion coefficient leads to a highly non-uniform profile. As
the surface diffusion coefficient increases, more mass is adsorbed from the upper part
of the domain, where the bulk concentration is high, then diffused along the interface
and finally desorbed in the lower part of the domain. This leads to a more uniform
bulk distribution around the advected circle.

Finally, a test of the efficiency of the multigrid algorithm and the adaptive grid was
performed on this test case. This was done by comparing the time taken to complete
1000 time steps on several grid sizes on both uniform and adaptive grids. The time
step size was kept constant, and low enough so that the number of V-cycles on each
time step was equivalent for all grid sizes. The results are shown in figure 5.13. Both
the uniform and adaptive run-times increase in a linear fashion, which indicates that
the numerical implementation achieves the optimal O(N) run-time complexity of the
multigrid algorithm, where N is the total number of grid points. Additionally, the
slope for the adaptive simulations is much lower than the corresponding slope for the
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multigrid algorithm, where N is the total number of grid points. Additionally, the
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Fig. 5.11: Evolution of a circle in a vortex field, depicted at t=0.0,0.25,0.5. The
parent grid level has spacing h=1/32, and there are 4 levels of refinement, giving an
effective grid spacing of hmin =1/512.
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Fig. 5.12: Bulk concentration and interface concentration at t=0.5 for the vortex test
case with non-uniform initial bulk concentration and bulk/interface coupling. From
top to bottom, D =0.1, D =1.0 and D =10.
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Fig. 5.13: Run-time of the vortex simulation versus grid size for both uniform and
adaptive grids.

uniform simulations, which is a demonstration of the efficiency of block-structured,
adaptive grids for these types of simulations.

5.7. Bulk-surface coupling in a 3D deformation field Finally, a three-
dimensional test problem is considered. The flow field is the one proposed by [50],
which combines a deformation in the x-y plane with one in the x-z plane. The velocity
components are

u=2 cos
(

πt

3

)
sin2 (πx)sin(2πy)sin(2πz), (5.25)

v =− cos
(

πt

3

)
sin(2πx)sin2 (πy)sin(2πz), (5.26)

w=− cos
(

πt

3

)
sin(2πx)sin(2πy)sin2 (πz), (5.27)

and a sphere of radius 0.15 is placed at (0.35,0.35,0.35) in a unit cube computational
domain. The initial surface concentration is f0 =10−4 and the initial bulk concentration
is given by the non-uniform profile F0 =10−4y. Additionally, the bulk and interface is
coupled, with adsorption coefficient ra =100 and desorption coefficient rd =200. The
bulk and surface diffusion coefficients are matched with DF =Df =1. A grid with
spacing h=1/32 at the root level and three levels of refinement is used (hmin =1/256),
along with the interface thickness ε=0.004.

Figure 5.14(a) shows the evolution of the sphere. The morphology agrees well with
figure 29 from [18], where the same problem was solved with the level set method, only
without any surface quantities. As the interface stretches, the surface concentration
becomes lower. The concentration is higher at the front of the deforming sphere,
because of adsorption from the bulk. The bulk concentration increases in the y-
direction, and the front of the sphere moves through this part, thereby increasing
the local concentration on the front. This can be seen from the slice of the bulk
concentration, figure 5.14(b), at time 1.0, where the concentration is lower near the
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region that the interface has moved through. The middle of the stretched sphere has a
much lower concentration, due to the fact that it has experienced a large deformation
and is in a region of low bulk concentration.

Figure 5.15 shows a sequence of the block-structured grids used in the simulation.
The boxes denote grid level boundaries, so that inside each box the resolution is
doubled. This demonstrates that the adaptive grid algorithm also works well for
three-dimensional problems.

6. Conclusion A diffuse-interface method for solving problems involving trans-
port, diffusion, and adsorption/desorption of a material quantity on a deformable
interface was presented. The method was shown to perform well on a wide range of
test cases. The efficiency of the numerical implementation, using adaptive grids and a
multigrid method, was also demonstrated.

The asymptotic analysis suggests, and numerical evidence confirms, that the
convergence to the sharp interface system is first order in the interface thickness
parameter ε. It may be possible to gain second order accuracy in ε by explicitly
removing the corresponding term in the asymptotic expansion as can be done in the
context of solidification to enable simulations with arbitrary kinetic coefficients [43, 44].
This should be explored.

A natural extension of the method is to couple it to an external flow solver.
The ability of the diffuse-interface method to handle complex fluids and interfacial
dynamics makes this a very attractive combination. We are currently developing such
an algorithm to simulate the dynamics of interfacial flows with soluble surfactants.
Another interesting extension is to couple the method with models of cellular mechanics
to simulate cell-polarization and motility.

Finally, this work used a phase-field function to represent the interface. Alterna-
tively, a level-set function could be used instead. Accurate representations of delta
functions and Heaviside functions in the level-set context can be found in for example
[80, 83, 68].
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(a) Surface concentration (b) Slice of bulk concentration

Fig. 5.14: Sphere in 3D deformation field. The left column shows the interface and
the surface concentration at times 0, 0.5 and 1.0. The right column shows slices of the
bulk concentration at the same times and y-positions 0.35, 0.5 and 0.6, respectively.
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Fig. 5.15: Sphere in 3D deformation field. Illustration of the adaptive grids at times
(from top to bottom) 0, 0.5 and 1.0. Two different angles are shown for each time step.
Inside the black boxes, the grid spacing is h=1/64, inside the red boxes h=1/128 and
inside the green boxes h=hmin =1/256.
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Abstract

A method is presented to solve two-phase problems involving soluble surfactants. The
incompressible Navier–Stokes equations are solved along with equations for the bulk

and interfacial surfactant concentrations. A non-linear equation of state is used to relate

the surface tension to the interfacial surfactant concentration. The method is based on

the use of a diffuse interface, which allows a simple implementation using standard

finite difference or finite element techniques. Here, finite difference methods on a

block-structured adaptive grid are used, and the resulting equations are solved using a

non-linear multigrid method. Results are presented for a drop in shear flow in both 2D
and 3D, and the effect of solubility is discussed.
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1. Introduction

The presence of surface active agents (surfactants) at fluid interfaces can have a consid-

erable effect on flow dynamics. Surfactants are amphiphilic organic compounds, which

can be adsorbed at liquid/gas or liquid/liquid interfaces. The presence of surfactant

typically alters the interface dynamics by a reduction in the surface tension of the
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interface. An inhomogeneous distribution of surfactants produces gradients in surface

tension, which again gives rise to tangential forces along the interface. Through this

so-called Marangoni effect, surfactants can play an important role in several physical

phenomena such as vortex pair interaction (e.g., [1]), fingering (e.g., [2]), drop break-up

and coalescence (e.g., [3, 4, 5]) and tip-streaming (e.g., [6, 4]).

From a numerical point of view, solving the problem of soluble surfactants is highly

challenging. A coupled bulk/surface system of equations must be solved on a moving,

complex domain, where the domain boundary may stretch, break-up or coalesce with

other interfaces. Adsorption of mass to, and desorption of mass from, the interfaces

poses another challenge. Further, the surface concentration may only be soluble in

either the exterior or interior of the domain (e.g., amphiphilic nature of surfactants). The

available numerical methods for solving these problems can roughly be divided into

two categories: interface tracking and interface capturing methods. Interface tracking

methods use either a separate grid for the interface, or a set of interconnected points to
mark the interface. For example, boundary integral methods use a surface mesh to track

the interface. In the context of surfactants, a boundary integral method for studying the

effect of insoluble surfactants on drop deformation was developed in [7]. This method

was extended to arbitrary viscosity ratios in [8], to 3D in [9, 4] and to soluble surfactants

in [10]. See the review [11]. Another tracking method is the front-tracking method

(see the review [12]), where a fixed grid is used to compute the flow, while a set of

connected marker particles is used to track the interface and any interfacial quantities. A

front-tracking method for insoluble surfactants was developed in [13], and this method

was extended to handle soluble surfactants in [14] and [15]. A related front tracking

method is the immersed boundary method (see the review [16]), which was recently used

to simulate interfacial flows with insoluble surfactants using a surfactant-conserving

algorithm [17]. A ghost-cell immersed boundary method was introduced in [18], and

was used to study the effects of a diffusion controlled surfactant on a viscous drop

injected into a viscous medium [19]. A hybrid level-set/front-tracking approach was

used to study the dynamics of capillary waves with insoluble surfactant [20]. Another

front-tracking method which combines a finite element methodology with adaptive

body-fitted meshes was used to simulate the deformation and break-up of axisymmetric

liquid bridges [21] and thin filaments [22] with insoluble surfactants. Very recently,

Booty & Siegel [80] developed a hybrid numerical method to simulate bubbles in Stokes

flow by combining a boundary integral method with a fixed grid solution of the bulk

surfactant equation (using a mapped domain) that incorporates a singular perturbation

analysis to account for the rapid variation of the bulk surfactant concentration near the
interface when the bulk Peclet number is large. In general, interface tracking methods

can be made very accurate but can be relatively complicated to implement, especially in

three dimensions and for problems involving topological changes.

In interface capturing methods, the interface is not tracked explicitly, but instead is

implicitly defined through an auxilliary function (e.g. level-set, color or phase-field

function). This means that the solution of the problem can be done independently of

the underlying grid, which greatly simplifies gridding, discretization and handling of

topological changes. For example, a volume-of-fluid (VOF) method (see the review

[23]) for insoluble surfactants was developed in [24]. A more general method which
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allows non-linear equations of state for surface tension was later developed in [25].

Very recently, a VOF method was developed for soluble surfactants in the limit of

large sorption rates where there is an analytic relationship between the surface and bulk

concentrations at the interface [26]. A level-set method [27] for solving the surfactant

equation was presented in [28], and later coupled to an immersed-interface external flow

solver in [29]. See the review [30] for fluid dynamics applications. An alternative ap-

proach for simulating fluid interfaces with insoluble or soluble surfactant was developed

in [31, 5, 32], using the so-called Arbitrary Lagrangian-Eulerian (ALE) method (see

the review [33]) together with a coupled level-set and volume of fluid method. Very

recently, surfactant dynamics was simulated using a conservative smoothed particle

hydrodynamics algorithm [34].

The diffuse-interface, or phase-field, method represents yet another approach for simu-
lating solutions of equations in complex, evolving domains (see the reviews [35, 36]).

In this method, which we follow here, the complex domain is represented implicitly

by a phase-field function, which is an approximation of the characteristic function of

the drop or matrix fluid domain. The domain boundary is replaced by a narrow diffuse
interface layer such that the phase-field function rapidly transits from one inside the

domain to zero in the exterior of the domain. The boundary of the domain can thus be

represented as an isosurface of the phase-field function. The bulk and surface PDEs

are then extended on a larger, regular domain with additional terms that approximate

the adsorption-desorption flux boundary conditions and source terms for the bulk and

surface equations respectively. Standard finite-difference or finite-element methods may

be used. Here, we focus on a finite difference approach.

The diffuse interface method, which has a long history in the theory of phase transitions

dating back to van der Waals (e.g., [37, 35, 36]), has been used to simulate multiphase

flows in simple geometries including drop coalescence and break-up, electrowetting,

and viscoelasticity (e.g., [38, 39, 40, 41, 42, 43, 44, 45]). In [46], a diffuse interface

model is implemented using a lattice Boltzmann scheme to simulate the effect of

surfactant adsorption on droplet dynamics; preliminary simulations were performed. The

interaction of multiphase flows with complex boundaries has also been investigated using

the diffuse interface method including contact line dynamics and the effect of wetting

(e.g., [47, 48, 49]). More generally, diffuse interface methods have been developed for
solving PDEs on stationary surfaces [50], evolving surfaces [51, 52, 53, 54] and for

solving PDEs in complex stationary [55, 56, 57] and evolving domains with Dirichlet,

Neumann and Robin boundary conditions [58]. Extending previous work [56], in [59] it

was shown how to solve the coupled bulk/surface problem on general, evolving domains

with the diffuse interface method.

Here, we couple the diffuse interface approach from [59] with the solution of the Navier–

Stokes equations, and use the method to simulate a drop in shear flow in the presence of

a soluble surfactant. The method is very simple compared to previous methods, and can

handle advection, diffusion and adsorption/desorption in a straightforward manner. The

use of a non-linear multigrid method and block-structured, adaptive grids also make

the method computationally efficient. Results are presented for a drop in shear flow

in both 2D and 3D, and the effect of surfactant solubility is discussed. As observed
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by Milliken and Leal [10] in the context of drop deformation in extensional flows,

solubility mitigates many of the surfactant effects by making the surface concentration

more uniform. In particular, while an insoluble surfactant can immobilize a surface,

solubility may remobilize the surface due to surfactant exchange with the bulk.

The paper is organized as follows. In Section 2, the mathematical formulaton of the

problem is stated. The governing equations for the interfacial surfactant and the bulk

surfactant are introduced, and the interface representation is presented. Section 3 then

details the numerical implementation of the mathematical formulation and Section 4

presents some validation test cases of the method. In Section 5, a drop in shear flow

is studied in detail and the effect of solubility discussed. Finally, Section 6 provides

conclusions and discusses future work.

2. Mathematical formulation

2.1. Governing equations

Consider a domain Ω ⊂ R
2,3, which contains a closed interface, Γ. The interior of the

interface is Ω0 ⊂ Ω, and the exterior is Ω1 ⊂ Ω. See Figure 1 for an illustration.

We assume that the flow inside the domain Ω is governed by the incompressible Navier–

Stokes equations, which in dimensional form are

ρ∗
(

∂uuu∗

∂t
+(uuu∗ ···∇∇∇)uuu∗

)
= −∇∇∇p∗ +∇∇∇ ···

(
μ∗(∇∇∇uuu∗ +∇∇∇(uuu∗)T )

)
+FFF∗,

∇∇∇ ···uuu∗ = 0.

(1)

where ρ is the density, uuu∗ is the velocity, p∗ is the pressure, μ is the dynamic viscosity,

and FFF∗ is the interfacial force, given below in Eq. (5). The density and viscosity can be
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discontinuous across the interface. We will only consider cases where the densities and

viscosities are equal in the two phases in this work, but the discontinuity can in general

be handled by interpolating their values using an indicator or characteristic function χ
that varies from 0 to 1 across the interface (characteristing function of Ω1), such that

μ∗ = μ0(1−χ)+μ1χ (2)

ρ∗ = ρ0(1−χ)+ρ1χ. (3)

In practice, χ may be smoothed so that the transition from 0 to 1 is steep but finite. An
example of a smoothed characteristic function is given in Section 2.3.

We consider the deformation of an initially circular drop of radius a, placed in a shear

flow of shear rate γ̇. Choosing L = a as the length scale and T = γ̇−1 as the time scale,

and U = γ̇a as the velocity scale, the nondimensional Navier–Stokes equations can be

written as
∂uuu

∂t
+(uuu ···∇∇∇)uuu = −∇∇∇p+

1

Re
∇∇∇2uuu+

1

ReCa
FFF ,

∇∇∇ ···uuu = 0,

(4)

where Re = ρ1γ̇a2/μ1 is the Reynolds number, which measures the relative strength

of the inertial and viscous forces, and Ca = μ1γ̇/σ0 is the Capillary number which

measures the relative strength of the viscous and surface tension forces, where σ0 is the

surface tension of a clean drop. The influence of these parameters on a clean interface

has been extensively studied in the literature (e.g., [60, 61, 62, 63]). For example, as the

capillary number is increased, the drop will become increasingly elongated. There exists

a critical capillary number, above which the drop will no longer attain a steady shape, but

continue to stretch until it breaks into smaller droplets. The value of the critical capillary

number increases with increasing Reynolds numbers and viscosity ratios λ = μ0/μ1.

Larger viscosity ratios serve to reduce the deformation, and for creeping flow there

exists a limit where there is no critical capillary number. However, for flows with higher
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decrease the surface tension of the interface. We assume that the dependence of the

surface tension is governed by the Langmuir equation of state,

σ∗( f ∗) = σ0

[
1+

R T f∞

σ0
ln

(
1− f ∗

f∞

)]
, (7)

where R is the ideal gas constant, T is the absolute temperature, σ0 is the surface tension

of a clean interface and f∞ is the maximum interfacial surfactant concentration. Let fe

denote the average of f ∗ at time t = 0. We define f = f ∗/ fe to be the dimensionless

surfactant concentration, which gives the dimensionless surface tension

σ( f ) = 1+β ln(1− x f ) , (8)

where β = R T f∞/σ0 is the elasticity number and x = fe/ f∞ is the dimensionless

surfactant coverage. The elasticity number is a measure of the sensitivity of the surface

tension to the surfactant concentration, and thus a larger elasticity number increases the

deformation. In this definition, β is independent of x, see [64].

For low surfactant concentrations, Eq. (8) can be simplified to

σ( f ) = 1−βx f , (9)

which is known as the linear equation of state. These two expressions are compared

in Figure 2. We see that the expressions are similar for low surfactant concentrations,

but deviate significantly for higher concentrations. Also note that for large elasticity

numbers and surfactant concentrations close to 1/x, the non-linear equation of state

may give unphysical (negative) values of surface tension. In [15], a minimum surface

tension was introduced to alleviate this problem. However, in [65], it was argued that

high elasticity numbers rarely occur in real systems. We use Eq. (8) directly for all the
simulations in this work and do not encounter negative surface tension.

In [66], the sharp-interface representation of the surfactant mass balance equation is

d f ∗

dt
−uuu∗ ·∇∇∇s f ∗ + f ∗(uuu∗ ·nnn)(∇∇∇s ·nnn) = −∇∇∇s · ( f ∗uuu∗s )+D f ∇∇∇2

s f ∗ (10)

where d
dt is the material derivative, uuu∗s = (I−nnn⊗nnn)uuu∗ is the tangential velocity, D f is

the diffusion coefficient, and j∗ is the source term. Assuming that f ∗ may be extended
off Γ, the time derivative term can be changed to

d f ∗

dt
=

∂ f ∗

∂t
+uuu∗ ·∇∇∇ f ∗ (11)

Since

−uuu∗ ·∇∇∇s f ∗ = −uuu∗ ·∇∇∇ f ∗ +(uuu∗ ·nnn)nnn ·∇∇∇ f ∗, (12)

f ∗(uuu∗ ·nnn)(∇∇∇s ·nnn) = κ f ∗uuu∗ ·nnn, (13)

∇∇∇s · ( f ∗uuu∗s ) = uuu∗ ·∇∇∇ f ∗ − (uuu∗ ·nnn)uuu∗ ·∇∇∇ f ∗ −κ f ∗uuu∗ ·nnn− f ∗nnn ·∇∇∇uuu∗ ·nnn, (14)

∇∇∇2
s f ∗ = (I−nnn⊗nnn)∇∇∇ · (I−nnn⊗nnn)∇∇∇ f ∗

= ∇∇∇2 f ∗ −nnn ·∇∇∇∇∇∇ f ∗ ·nnn−κnnn ·∇∇∇ f ∗, (15)
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Figure 2: Dependence of surface tension on surfactant concentration. Comparison of a

linear and non-linear equation of state. β = 0.3, x = 0.5.

Eq. (10) is equivalent to

∂ f ∗

∂t
+uuu∗ ·∇∇∇ f ∗ − f ∗ (nnn ·∇∇∇uuu∗ ·nnn) = D f (∇∇∇2 f ∗ −nnn ·∇∇∇∇∇∇ f ∗ ·nnn−κnnn ·∇∇∇ f ∗)+ j∗, (16)

The source term, j∗, is given by

j∗( f ∗,F∗) = raF∗
s ( f∞ − f ∗)− rd f ∗, (17)

where ra and rd are adsorption and desorption coefficients, respectively, and F∗
s is the

bulk surfactant concentration immediately adjacent to the surface. For dilute concentra-

tions, this can be simplified to

j∗( f ∗,F∗) = ra f∞F∗
s − rd f ∗. (18)

In this work, we use the full nonlinear form in Eq. (17).

Now, assume that f ∗ is soluble in Ω1, but not in Ω0. The bulk concentration, F∗, in Ω1,

evolves according to

∂F∗

∂t
+∇∇∇ ··· (F∗uuu∗) = DF ∇∇∇2F∗ in Ω1, (19)

with the boundary condition at Γ

DF ∇∇∇F∗ ·nnn = − j∗ on Γ. (20)

The equation for the surface surfactant concentration, Eq. (16), can be extended to the

general domain Ω by introducing a surface delta function, δΓ, such thatZ
Γ

f ∗ dΓ =
Z

Ω
f ∗δΓ dΩ. (21)
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s is the
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j∗( f ∗,F∗) = ra f∞F∗
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Following [59], Eq. (16) can be rewritten in distribution form as

∂
∂t

( f ∗ δΓ)+∇∇∇ ··· ( f ∗ δΓ uuu∗) = D f ∇∇∇ ··· (δΓ∇∇∇ f ∗)+δΓ j∗, (22)

The formulation given by Eq. (22) is considerably simpler than the sharp-interface

formulation.

Similarly, the bulk concentration equation (19) can be extended to Ω by using the

characteristic function χ

χ =
{

1 in Ω1,
0 in Ω0.

(23)

In distribution form, Eq. (19) becomes

∂
∂t

(χF∗)+∇∇∇ ··· (χF∗ uuu∗) = DF ∇∇∇ ··· (χ∇∇∇F∗)−δΓ j∗, (24)

where the boundary condition has been included using the approach from [58, 59].

Let F = F∗/Fe be the dimensionless surfactant concentration in the bulk fluid, where

Fe average of the initial bulk concentration. Then, Eqs. (22) and (24) can be written in

dimensionless form as

∂
∂t

( f δΓ)+∇∇∇ ··· ( f δΓ uuu) =
1

Pe f
∇∇∇ ··· (δΓ∇∇∇ f )+δΓ j, (25)

∂
∂t

(χF)+∇∇∇ ··· (χF uuu) =
1

PeF
∇∇∇ ··· (χ∇∇∇F)−hδΓ j, (26)

where Pe f = γ̇a2/D f is the surface Peclet number, PeF = γ̇a2/DF is the bulk Peclet

number and h = fe/(aFe) is the adsorption depth. The dimensionless source term, j, is

given by

j(F, f ) = Bi

[
kFs

(
1

x
− f

)
− f

]
(27)

The dimensionless parameters are Bi = rd/γ̇ (Biot number) and k = raFe/rd (adsorption

number). In our simulations, we assume that fe and Fe are in equilibrium such that

j∗( fe,Fe) = 0. Consequently, the following relations hold:

k =
x

1− x
, (28)

h =
ra f∞

rda
(1− x). (29)

An insoluble surfactant may be characterized by Bi = 0. The Biot number is the ratio of

the desorption rate to the interfacial surfactant convection due to shear. For large Biot

numbers, there is strong coupling between the surface and the bulk.
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2.2. Interface representation

To represent the interface implicitly, we may either use a level-set function or a phase-

field function. For example, taking r(xxx, t) to be a signed distance function from Γ to

xxx, the interface Γ is the r = 0 isosurface. Alternatively, using a phase field function c,

which is 1 in Ω0 and 0 in Ω1, we may define Γ(t) = {xxx ∈ Ω | c(xxx, t) = 1
2}. We follow

the latter here and evolve the phase field function using an advective Cahn-Hilliard

equation

∂c

∂t
+∇∇∇ ··· (cuuu) = ∇∇∇ ··· (M(c)∇∇∇μc), (30)

μc = g′(c)− ε2∇∇∇2c, (31)

where M =
√

c2(1− c)2 is a mobility function, and g = c2(1− c)2/4 is a double well

potential. The function μc is called the chemical potential and ε is a small parameter

related to the interface thickness. Note that the above equation system is fourth-order

and non-linear, which requires specialized numerical methods to solve in an efficient

manner. Note that for small ε, the following relation holds near Γ

c(xxx, t) ≈ 1

2

[
1− tanh

(
r(xxx, t)
2
√

2ε

)]
. (32)

2.3. Regularized delta and characteristic functions

To be able to evaluate Eqs. (3), (25) and (26) numerically, regularizations of the surface

delta function and characteristic function are needed. In the phase-field context, several

definitions of the delta function are available from the literature. In this work, the

approximation from [50],

δΓ ≈ B(c) =
3
√

2

ε
c2(1− c)2, (33)

is used for the surface equation. For the surface tension term and the boundary condition

in the bulk equation, the approximation

δΓ ≈ |∇∇∇c| (34)

is used. This is to avoid any scaling of the equations. Note that in the surface equation

(25), the constants in Eq. (33) cancel out in the discretized equations.

The regularized characteristic function, is simply taken as [58]

χ ≈ 1− c. (35)

In [59], it was shown that the regularized equations for the interfacial surfactant and the

bulk surfactant converge to the sharp interface equations in the sharp interface limit.
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3. Numerical methods

This section briefly describes the numerical methods used to solve the above equations.

The algorithm follows that developed in [67]. In particular, the equations are discretized

using finite differences in space and a semi-implicit time discretization. A block-

structured, adaptive grid is used to increase the resolution around the interface in an

efficient manner. The nonlinear equations at the implicit time level are solved using a

non-linear Adaptive Full Approximation Scheme (AFAS) multigrid algorithm.

Special care has to be taken for the temporal discretization. The Cahn-Hilliard system

is fourth order in space, and requires the use of an implicit method to avoid severe

limitations in the time step. Here, we employ a combination of explicit Adam-Basforth

schemes for the convective terms and implicit Crank-Nicholson schemes for other terms.

First, the Cahn-Hilliard system is solved to find the phase-field function at the new time

step. This is solved using

ck+1 − ck

Δt
= −∇∇∇ ··· (uuuc)k+ 1

2 +
1

2

(
∇∇∇d ··· (Mk+1∇∇∇dμk+1

c )+∇∇∇d ··· (Mk∇∇∇dμk
c)

)
, (36)

μk+1
c = g′(ck+1)− ε2∇∇∇2

dck+1. (37)

The operator ∇∇∇d represents the standard, second-order, finite-difference discretization.

The convective terms of the form, ∇∇∇ ··· (uuuφ), are discretized using the third-order WENO

reconstruction method [68, 69]. The WENO reconstruction method has the advantage

that it handles steep gradients well, which may occur in the type of dynamics described

in this work. Additionally, fewer grid points are needed to achieve a high order solution.

This is particularly important for the efficiency of the adaptive grid, because fewer ghost

cell values have to be calculated at the boundaries of each grid block.

The velocities and concentration at the half-step are found by extrapolation, uuuk+ 1
2 =

1
2 (3uuuk −uuuk−1) and ck+ 1

2 = 1
2 (3ck −ck−1). The velocities at the cell-edges are needed to

construct the convective term. These are found by

ui+ 1
2 , j =

ui, j +ui+1, j

2
− Ψi+1, j −Ψi, j

h
(38)

vi, j+ 1
2

=
vi, j + vi, j+1

2
− Ψi, j+1 −Ψi, j

h
, (39)

where Ψ is the MAC projection found by solving

∇∇∇2
dΨ = ∇∇∇c

d ·uuuk+ 1
2 , (40)

with ∇Ψ · n = 0 on ∂Ω (assumed to be along Cartesian directions). In the AFAS

nonlinear multigrid method used to solve Eqs. (36)-(37), the non-linear term in the

chemical potential equation, g′(ck+1), is linearized in the smoother (local linearization)

by
g′ (cm) ≈ g′

(
cm−1

)
+g′′

(
cm−1

)(
cm − cm−1

)
, (41)

where m is the V-cycle iteration index. See [67] for details.
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This is particularly important for the efficiency of the adaptive grid, because fewer ghost

cell values have to be calculated at the boundaries of each grid block.

The velocities and concentration at the half-step are found by extrapolation, uuuk+ 1
2 =

1
2 (3uuuk −uuuk−1) and ck+ 1

2 = 1
2 (3ck −ck−1). The velocities at the cell-edges are needed to
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2 , j =
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h
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− Ψi, j+1 −Ψi, j

h
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by
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(
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)(
cm − cm−1

)
, (41)

where m is the V-cycle iteration index. See [67] for details.
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Next, the surfactant concentration on the surface and in the bulk at the new time step

is found. Because of the regularized delta functions and characteristic functions, no

special treatment of these equations are needed. We use the method from [59], and solve

(B f )k+1 − (B f )k

Δt
=−∇∇∇ ··· (uuuB f )k+ 1

2

+
1

2Pe f

(
∇∇∇d ··· (Bk+1∇∇∇d f k+1)+∇∇∇d ··· (Bk∇∇∇d f k)

)

+
1

2

(
(B j)k+1 +(B j)k

)
.

(42)

(χF)k+1 − (χF)k

Δt
=−∇∇∇ ··· (uuuχF)k+ 1

2

+
1

2PeF

(
∇∇∇d ··· (χk+1∇∇∇dFk+1)+∇∇∇d ··· (χk∇∇∇dFk)

)
− 1

2

(
|∇∇∇dck+1|(h j)k+1 + |∇∇∇dck|(h j)k

)
(43)

as a coupled system, where we use χ = 1− c. The source terms at the new time step are

lagged in the V-cycle of the multigrid algorithm [59], i.e. jk+1 ≈ jk+1,m−1 where m is

the V-cycle iteration index. This did not degrade the multigrid performance, the residual

is typically reduced by an order of magnitude for each iteration.

The Navier–Stokes equations are solved using a second-order projection method. The

details can be found in [70, 71, 44].

3.1. Mesh adaptivity

We use block-structured, adaptive mesh refinement to increase the resolution around the

interface in an efficient manner. Near the interface, patches of overlapping, uniform,

Cartesian grids are applied.

At every time step, we check grid cells for refinement using a simple undivided gradient

test. Since it is essential for our problem to have a fine resolution in the diffuse interface

region, this test marks grid cells where the finite difference of the phase-field function is

large. In particular, we mark a cell for refinement if√
(ci+1, j − ci−1, j)2 +(ci, j+1 − ci, j−1)2) > Ck, (44)

where Ck is the tolerance for level k. We note that more sophisticated refinement criteria

could also be applied. For instance, [72] used a criteria based on curvature and vorticity

with a level-set method. It may also be important to refine where finite differences of f
and F are large; in particular this is needed when Pe f and/or PeF are large. After the

cells are marked for refinement, they are grouped together into rectangular patches, and

populated with data from the old grid. For a detailed discussion of all the aspects of the

adaptive algorithm, the reader is referred to [67].
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4. Code validation

In this section, three test cases are presented to validate the proposed numerical method.

Because the bulk/surface coupling was thoroughly tested in [59], we will here focus on

validating the flow solver and the coupling between the flow solver and the surfactant

concentration.

In the numerical implementation, surface quantities are defined at grid points near the

interface. To find values on the interface, we use a marching squares algorithm (see e.g.

[73]) to generate a set of points on the 0.5 isocontour of the phase-field function. Bilinear

interpolation is then used to interpolate the grid values of the surface concentration to

these interface points.

4.1. Oscillations of a capillary wave

First a two-phase system without surfactants is considered to test the Navier–Stokes

solver and the adaptive grid algorithm. The test problem is the damping of a sinusoidal,

capillary wave. For the case of small amplitudes and matched viscosities, an analytical

solution for the amplitude was found in [74].

The frequency of a wave with wavenumber k = 2π/λ, where λ is the wave length, is

given by

ω2
0 =

σk3

ρ0 +ρ1
. (45)

Assuming the amplitude is small, the analytical solution for the amplitude a(t) is given

in dimensional form by

a(t) =
4(1−4b)k4ν2

8(1−4b)k4ν2 +ω2
0

a0erfc
(
νk2t

)1/2

+
4

∑
i=4

zi

Zi

(
ω2

0a0

z2
i −νk2

− ȧ0

)
exp[(z2

i −νk2)t]erfc
(

zit
1/2

)
,

(46)

where the zi’s are the four roots of the algebraic equation

z4 −4b(k2ν)1/2z3

+2(1−6b)k2νz2 +4(1−3b)(k2ν)3/2z+(1−4b)k4ν2 +ω2
0 = 0

(47)

and Zi = (z2 − z1)(z3 − z1)(z4 − z1) with Z2,Z3,Z4 obtained by circular permutation of

the indices. Further, b is given by

b =
ρ0ρ1

(ρ0 +ρ1)2
. (48)

Here, we will consider a computational domain given by a unit square box, with an

interface given by
y = 0.5−0.01cos(2πx). (49)
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+2(1−6b)k2νz2 +4(1−3b)(k2ν)3/2z+(1−4b)k4ν2 +ω2
0 = 0

(47)

and Zi = (z2 − z1)(z3 − z1)(z4 − z1) with Z2,Z3,Z4 obtained by circular permutation of

the indices. Further, b is given by

b =
ρ0ρ1

(ρ0 +ρ1)2
. (48)

Here, we will consider a computational domain given by a unit square box, with an

interface given by
y = 0.5−0.01cos(2πx). (49)

12



0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

0 2 4 6 8

−0.01

−0.005

0

0.005

0.01

Time

A
m

pl
itu

de

Linear theory
Simulation

Figure 3: Capillary wave test case. An adaptive grid with root level 16×16 and three

levels of refinement are used. ε = 5×10−3. Left: Computational domain with intial

interface position and adaptive grid; Right: Amplitude of capillary wave, simulation

versus linear theory.

We choose dimensional variables ρ0 = ρ1 = 18.3, μ0 = μ1 = 0.078 and σ = 1.0, giving

ω2
0 = 6.778. Periodic boundary conditions are used in the horizontal direction, no-slip

boundary conditions are imposed on the upper and lower boundaries, and an interface

thickness parameter of ε = 5×10−3 is used along with a time step of Δt = 5×10−3.

The initial condition is shown in Figure 3 (left). An adaptive grid with 16×16 grid points

at the root level and three levels of mesh refinement are used (hmax = 6.25×10−2 and

hmin = 7.8125×10−3). There are 8-10 grid points across the interface layer. Figure 3

(right) shows the evolution of the amplitude compared to the analytical solution. The

numerical method is clearly capable of accurately simulating the oscillatory behavior.

4.2. Rising drop in a linear surfactant gradient

In [75], an approximation for the rise velocity of a viscous drop in a linear temperature

gradient was found. This approximation is used here to test the implementation of

the Marangoni stresses. Instead of a temperature gradient, the interfacial surfactant

concentration is assumed to vary linearly in the vertical direction.

In dimensional variables, consider an axisymmetric drop of radius R in a channel of

radius 5R and height L = 15R. Let the interfacial surface concentration be given by

f (z)
f∞

=
z

L
, (50)

and the relationship between surfactant and surface tension as

σ(z) = σs

(
1−β

f (z)
f∞

)
, (51)
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Figure 4: Velocity field at steady state shown every fourth grid point (left) and rise

velocity versus time (right), compared to the theoretical result, for the linear surfactant
gradient test case.

then an approximation for the terminal rise velocity is [75]

VY BG =
2(σsβsR/L−ΔρgR2(μ0 +μ1)/μ1

(6μ0 +9μ1)
. (52)

We choose dimensional parameters ρ0 = ρ1 = 0.2, μ0 = μ1 = 0.1, R = 0.5, σs = 1.0 and

βs = 1.0. According to Eq. (52), this should give a Reynolds number of Re = 0.0889,

which is well within the creeping flow regime for which the equation is valid.

Because of the relatively large domain needed to keep the boundary conditions from

interfering with the solution, this test case lends itself very well to an adaptive grid. Here,

a root level grid spacing of hmax = 5/64 = 7.8125×10−2 is chosen with three levels of

refinement hmin = 5/512 = 9.76×10−3. The number of nodes is approximately 9000

throughout the simulation, compared to the 196608 nodes needed for a uniform grid.

An interface thickness parameter of ε = 6.0×10−3 is used (8-10 grid points across the

interface), and the time step is Δt = 5.0×10−4. The rise velocity is calculated by

V =
R

Ω c(xxx, t)uuu(xxx, t) · eeezdΩR
Ω c(xxx, t)dΩ

, (53)

where eeez is the unit vector in the z-direction. This integral was evaluated using the

midpoint rule.

The velocity field around the drop at steady state is shown in Figure 4 (left). The figure

is in good agreement with the corresponding Figure 10a in [15]. Figure 4 (right) shows

the normalized rise velocity. After an initial acceleration phase, the velocity approaches

the theoretical prediction asymptotically.

14

0 0.25 0.5 0.75
3

3.25

3.5

3.75

4

4.25

4.5

r

z

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Time (t*)

D
ro

p 
ve

lo
ci

ty
 (V

/V
Y

B
G

)

Numerical
Young−Block−Goldstein

Figure 4: Velocity field at steady state shown every fourth grid point (left) and rise

velocity versus time (right), compared to the theoretical result, for the linear surfactant
gradient test case.

then an approximation for the terminal rise velocity is [75]

VY BG =
2(σsβsR/L−ΔρgR2(μ0 +μ1)/μ1

(6μ0 +9μ1)
. (52)

We choose dimensional parameters ρ0 = ρ1 = 0.2, μ0 = μ1 = 0.1, R = 0.5, σs = 1.0 and

βs = 1.0. According to Eq. (52), this should give a Reynolds number of Re = 0.0889,

which is well within the creeping flow regime for which the equation is valid.

Because of the relatively large domain needed to keep the boundary conditions from

interfering with the solution, this test case lends itself very well to an adaptive grid. Here,

a root level grid spacing of hmax = 5/64 = 7.8125×10−2 is chosen with three levels of

refinement hmin = 5/512 = 9.76×10−3. The number of nodes is approximately 9000

throughout the simulation, compared to the 196608 nodes needed for a uniform grid.

An interface thickness parameter of ε = 6.0×10−3 is used (8-10 grid points across the

interface), and the time step is Δt = 5.0×10−4. The rise velocity is calculated by

V =
R

Ω c(xxx, t)uuu(xxx, t) · eeezdΩR
Ω c(xxx, t)dΩ

, (53)

where eeez is the unit vector in the z-direction. This integral was evaluated using the

midpoint rule.

The velocity field around the drop at steady state is shown in Figure 4 (left). The figure

is in good agreement with the corresponding Figure 10a in [15]. Figure 4 (right) shows

the normalized rise velocity. After an initial acceleration phase, the velocity approaches

the theoretical prediction asymptotically.

14

0 0.25 0.5 0.75
3

3.25

3.5

3.75

4

4.25

4.5

r

z

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Time (t*)

D
ro

p 
ve

lo
ci

ty
 (V

/V
Y

B
G

)

Numerical
Young−Block−Goldstein

Figure 4: Velocity field at steady state shown every fourth grid point (left) and rise

velocity versus time (right), compared to the theoretical result, for the linear surfactant
gradient test case.

then an approximation for the terminal rise velocity is [75]

VY BG =
2(σsβsR/L−ΔρgR2(μ0 +μ1)/μ1

(6μ0 +9μ1)
. (52)

We choose dimensional parameters ρ0 = ρ1 = 0.2, μ0 = μ1 = 0.1, R = 0.5, σs = 1.0 and

βs = 1.0. According to Eq. (52), this should give a Reynolds number of Re = 0.0889,

which is well within the creeping flow regime for which the equation is valid.

Because of the relatively large domain needed to keep the boundary conditions from

interfering with the solution, this test case lends itself very well to an adaptive grid. Here,

a root level grid spacing of hmax = 5/64 = 7.8125×10−2 is chosen with three levels of

refinement hmin = 5/512 = 9.76×10−3. The number of nodes is approximately 9000

throughout the simulation, compared to the 196608 nodes needed for a uniform grid.

An interface thickness parameter of ε = 6.0×10−3 is used (8-10 grid points across the

interface), and the time step is Δt = 5.0×10−4. The rise velocity is calculated by

V =
R

Ω c(xxx, t)uuu(xxx, t) · eeezdΩR
Ω c(xxx, t)dΩ

, (53)

where eeez is the unit vector in the z-direction. This integral was evaluated using the

midpoint rule.

The velocity field around the drop at steady state is shown in Figure 4 (left). The figure

is in good agreement with the corresponding Figure 10a in [15]. Figure 4 (right) shows

the normalized rise velocity. After an initial acceleration phase, the velocity approaches

the theoretical prediction asymptotically.

14

0 0.25 0.5 0.75
3

3.25

3.5

3.75

4

4.25

4.5

r

z

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Time (t*)

D
ro

p 
ve

lo
ci

ty
 (V

/V
Y

B
G

)

Numerical
Young−Block−Goldstein

Figure 4: Velocity field at steady state shown every fourth grid point (left) and rise

velocity versus time (right), compared to the theoretical result, for the linear surfactant
gradient test case.

then an approximation for the terminal rise velocity is [75]

VY BG =
2(σsβsR/L−ΔρgR2(μ0 +μ1)/μ1

(6μ0 +9μ1)
. (52)

We choose dimensional parameters ρ0 = ρ1 = 0.2, μ0 = μ1 = 0.1, R = 0.5, σs = 1.0 and

βs = 1.0. According to Eq. (52), this should give a Reynolds number of Re = 0.0889,

which is well within the creeping flow regime for which the equation is valid.

Because of the relatively large domain needed to keep the boundary conditions from

interfering with the solution, this test case lends itself very well to an adaptive grid. Here,

a root level grid spacing of hmax = 5/64 = 7.8125×10−2 is chosen with three levels of

refinement hmin = 5/512 = 9.76×10−3. The number of nodes is approximately 9000

throughout the simulation, compared to the 196608 nodes needed for a uniform grid.

An interface thickness parameter of ε = 6.0×10−3 is used (8-10 grid points across the

interface), and the time step is Δt = 5.0×10−4. The rise velocity is calculated by

V =
R

Ω c(xxx, t)uuu(xxx, t) · eeezdΩR
Ω c(xxx, t)dΩ

, (53)

where eeez is the unit vector in the z-direction. This integral was evaluated using the

midpoint rule.

The velocity field around the drop at steady state is shown in Figure 4 (left). The figure

is in good agreement with the corresponding Figure 10a in [15]. Figure 4 (right) shows

the normalized rise velocity. After an initial acceleration phase, the velocity approaches

the theoretical prediction asymptotically.

14



0 0.25 0.5 0.75
3

3.25

3.5

3.75

4

4.25

4.5

r

z

 

 

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2 3 4 5
0

0.5

1

1.5

2

2.5

z
p

 

 

Numerical
Analytical

Figure 5: Pressure after one time step for a drop rising in a linear surfactant gradi-

ent. Left: Pressure contours (color online), Right: Pressure along vertical centerline

compared to analytical result, Eq. (54).

Assuming the pressure in the surrounding fluid is zero, the pressure inside the drop is

given by

p(z) =
2σ(z)

R
. (54)

Figure 5 shows a closeup of pressure contours inside the drop (left), and the pressure

along the vertical center line compared to the analytical result (right). Good agreement

is observed.

4.3. Drop stretching in linear flow

In [7], an expression was presented for the deformation of a surfactant-covered drop

in the creeping flow limit under the assumptions Ca � 1, Pe f � 1 and λ = O(1). This

can be written as

D =
L−B

L+B
≈ 3Ca ·br

4+Ca ·br
, (55)

where L and B denote the drop extension along the z and x axes, respectively, and the

coefficient br is given by

br =
(80+95λ)+ 4βPe f

Ca(1−β)

40(1+λ)+ 2βPe f

Ca(1−β)

. (56)

Here, we simulate a 3D drop in a velocity field given by uuu = (−x,−y,2z), with varying

Ca. The viscosity ratio is set to λ = 1 and the surfactant parameters are Pe = 0.1 and

β = 0.5. Due to symmetry, we only simulate one octant of the drop, and the domain
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compared to analytical result, Eq. (54).

Assuming the pressure in the surrounding fluid is zero, the pressure inside the drop is
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R
. (54)
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compared to analytical result, Eq. (54).

Assuming the pressure in the surrounding fluid is zero, the pressure inside the drop is

given by

p(z) =
2σ(z)

R
. (54)
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compared to analytical result, Eq. (54).

Assuming the pressure in the surrounding fluid is zero, the pressure inside the drop is

given by
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R
. (54)

Figure 5 shows a closeup of pressure contours inside the drop (left), and the pressure

along the vertical center line compared to the analytical result (right). Good agreement

is observed.
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can be written as
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Figure 6: Comparison of small deformation theory and numerical simulations for a drop

stretching in linear flow.

size is 4R×4R×4R. We use an adaptive mesh with three levels of adaptivity, where the

finest level has grid spacing h = 1/64. The interface thickness parameter is ε = 0.025.

Figure 6 shows the simulated results together with small deformation theory and results

from [7]. We see that there is good agreement with the theory at low Ca and then the

discrepancy gets larger at higher Ca. Our results are also in good agreement with the

boundary-integral simulations of [7].

5. Influence of soluble surfactant on drop deformation and break up in shear flow

In this section, we consider the deformation of an initially circular drop placed in a shear

flow. We begin by presenting 2D results. The (nondimensional) computational domain

chosen for the simulations is a rectangular domain of size 12×4. The nondimensional

velocity, u = y is imposed on the upper and lower boundaries, and periodicity is assumed

in the horizontal direction. In effect, we are simulating an infinite array of drops placed

8 units (in drop radii) apart. The root level grid spacing is hmax = 1/16, and three

levels of refinement are used (hmin = 1/128), unless otherwise specified. The interface

thickness parameter is ε = 1/160, and we choose a time step of 1×10−3. There are

approximately 8-10 grid points across the interface layer. We use Ca = 0.5, Re = 1.0,

viscosity ratio λ = 1.0, and Pe f = 10 for all simulations unless otherwise noted.

5.1. Insoluble surfactant

First, we compare the evolution of a clean drop with a drop covered with insoluble

surfactant using Bi = 0. We take β = 0.3, x = 0.5 and the initial surfactant distribution

to be uniform: f |t=0 = 1.0.
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Figure 6 shows the simulated results together with small deformation theory and results

from [7]. We see that there is good agreement with the theory at low Ca and then the

discrepancy gets larger at higher Ca. Our results are also in good agreement with the

boundary-integral simulations of [7].
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In this section, we consider the deformation of an initially circular drop placed in a shear

flow. We begin by presenting 2D results. The (nondimensional) computational domain

chosen for the simulations is a rectangular domain of size 12×4. The nondimensional

velocity, u = y is imposed on the upper and lower boundaries, and periodicity is assumed

in the horizontal direction. In effect, we are simulating an infinite array of drops placed

8 units (in drop radii) apart. The root level grid spacing is hmax = 1/16, and three

levels of refinement are used (hmin = 1/128), unless otherwise specified. The interface

thickness parameter is ε = 1/160, and we choose a time step of 1×10−3. There are

approximately 8-10 grid points across the interface layer. We use Ca = 0.5, Re = 1.0,

viscosity ratio λ = 1.0, and Pe f = 10 for all simulations unless otherwise noted.

5.1. Insoluble surfactant

First, we compare the evolution of a clean drop with a drop covered with insoluble

surfactant using Bi = 0. We take β = 0.3, x = 0.5 and the initial surfactant distribution

to be uniform: f |t=0 = 1.0.
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Figure 7: Comparison of drop shapes for clean and insoluble surfactant-covered drops

in a shear flow at times t = 0,4,8. Blue: Clean, Magenta: Insoluble-surfactant-covered.

Color online.

Figure 7 shows the morphology of a clean drop and an insoluble surfactant-covered

drop at times 0, 4 and 8. As expected, the surfactant-covered drop exhibits a larger de-

formation and rotates faster due to the lower surface tension. Figure 8 shows the surface

quantities surfactant concentration, surface tension, capillary force and Marangoni force

as a function of arc length s at times 0, 4 and 8. The point s = 0 corresponds to the point

y = 0 on the right side of the drop and s increases counterclockwise along the drop. The

capillary forces are calculated as − 1
Ca σκ, while the Marangoni forces are calculated

as 1
Ca ∇∇∇sσ · ttt, where ttt is the unit tangential vector. Surfactant is swept to the drop tips,

which lowers the surface tension. This reduces the drop the resistance to stretching.

Correspondingly, the drop thins, elongates and rotates. The capillary forces reach a

maximum at the tips due to the high curvature. The presence of surfactant does not alter

the capillary forces significantly, but does lower the forces near the tips (not shown).

Due to symmetry, the Marangoni forces are zero at the drop tips. Near the tips, the

Marangoni force has local maxima and minima. The maxima occur on the upper part of

the drop interface near the right tip and on the lower part of th interface near the left

tip. The minima occur on the lower region near the right tip and the upper region near

the left tip. The velocity near the maxima is larger, which leads to increased surfactant
convection and thereby larger surface tension gradients.

A common problem with interface capturing methods is that they do not exactly conserve

mass. In the above simulation, there is about a 0.3 % loss of surfactant mass throughout

the simulation. The mass is measured by evaluating m f =
R

Ω B f dΩ using the midpoint

rule. In [29], a simple mass correction scheme was used where the surfactant is

multiplied by a constant to preserve mass. This scheme could also be easily adapted to

our approach. The mass loss for the phase-field concentration was only 5.6×10−5%
(measured by the total integral

R
Ω c dΩ using the midpoint rule).
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Figure 8: Surface quantities as a function of arclength for a insoluble surfactant-covered

drop in shear flow.

5.2. Soluble surfactant

We next investigate the effect of surfactant solubility. We again take β = 0.3, x = 0.5,

and the initial surface surfactant distribution to be uniform: f |t=0 = 1.0. The adsorption

number is k = 1.0 and the adsorption depth is h = 0.5. We take the drop to be in

equilibrium with the bulk at the start of the simulation, i.e. j|t=0 = 0, which gives the

initial bulk concentration F |t=0 = 1.0. We vary the Biot number and the bulk Peclet

number.

5.2.1. Influence of Biot number

We first set the bulk Peclet number PeF = 1, and vary the Biot number. The morphology

of the drops for varying Biot numbers is shown in Figure 9. The inner (magenta) drop

corresponds to Bi = 0 and the outer drop (black) corresponds to Bi = ∞, simulated

by enforcing f = 1 throughout the simulation. The drop deformation is an increasing

function of Bi. The reason for this is that surfactant adsorption/desorption decreases

the surface tension gradients and hence Marangoni forces. If the Biot number tends to

infinity, the surface surfactant should be uniform and the Marangoni force vanishes.

This is further elucidated in Figure 10. The left column of Figure 10 shows the surfactant

concentration, the surface tension, the capillary force and the Marangoni force at t = 4.

We see that by increasing the Biot numbers, the surfactant concentration becomes more

uniform. This leads to lower surface tension gradients and thereby lower Marangoni

forces, which enables the drop to deform more. The capillary force is dominated by the

curvature, and remains largely unaffected by the variation in surface tension.
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Figure 9: Comparison of drop shapes for various Biot numbers. The times shown are

t = 0,4,8. Magenta: Bi = 0 (insoluble), blue: Bi = 0.1, red: Bi = 1, green: Bi = 10,

and black: uniform (Bi = ∞). The inset shows a close-up of the drop tip for t = 8. Color

online.
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Figure 10: Influence of the Biot number on a drop in shear flow at t = 4. Left column

shows from top to bottom: Surfactant concentration, surface tension, capillary force and

Marangoni force. The right column shows the bulk surfactant concentration, from top

to bottom: Bi = 0.1,Bi = 1 and Bi = 10.
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Figure 10: Influence of the Biot number on a drop in shear flow at t = 4. Left column

shows from top to bottom: Surfactant concentration, surface tension, capillary force and

Marangoni force. The right column shows the bulk surfactant concentration, from top

to bottom: Bi = 0.1,Bi = 1 and Bi = 10.
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Figure 10: Influence of the Biot number on a drop in shear flow at t = 4. Left column

shows from top to bottom: Surfactant concentration, surface tension, capillary force and

Marangoni force. The right column shows the bulk surfactant concentration, from top
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Figure 11: Comparison of drop shapes for various Peclet numbers. The times shown

are t = 0,4,8. Magenta: Insoluble, blue: PeF = 0.1, red: PeF = 1 and green: PeF = 10.

The inset shows a close-up of the drop tip for t = 8. Color online.

The right column of Figure 10 shows the bulk concentration at t = 4. It is evident that

a larger Biot number leads to a faster depletion of bulk surfactant due to the higher

adsorption at the interface. At the drop tips, there is desorption of surfactant off the

interface leading to increased surfactant concentration in the bulk. Also note that the

change in dynamics from Bi = 1 to Bi = 10 is not as significant as the change from

Bi = 0.1 to Bi = 1. This is because the bulk diffusion is not large enough to maintain a

high adsorption/desorption rate. The process has become diffusion-limited.

5.2.2. Influence of Peclet number

Next, we examine the effect of the bulk Peclet number PeF . The Biot number is

Bi=1. Figure 11 shows the morphology of the drops for varying Peclet numbers. The

deformation is larger for smaller Peclet numbers since stronger diffusion in the bulk

enables the redistribution of bulk surfactant to maintain a more uniform bulk distribution.

This in turn supports a larger rate of surfactant adsorption along the drop sides that keeps

the surface surfactant concentration more uniform and thus decreases the Marangoni

force.

The left column of Figure 12 shows the surfactant concentration, the surface tension,

the capillary force and the Marangoni force at t = 4. Again, we see that the surface

surfactant concentration becomes more uniform due to the mass transfer process when

the Peclet number is smaller, thereby decreasing the Marangoni forces. However, the

effect is most pronounced away from the drop tips. At the drop tips, the surfactant

concentration (surface tension and Capillary force) are somewhat insensitive to PeF

because convection is relatively more important here than on the sides. In particular,

at the sides surfactant is adsorbed to the interface, then swept by convection towards

the tips, leaving room for more adsorption along the sides. This depletes the bulk

concentration near the sides but at the tips, there is increased bulk concentration above
F∞ = 1 because surfactant desorbs to the bulk. A small Peclet number is needed to

redistribute bulk surfactant to maintain a more uniform bulk distribution and thus a
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Figure 12: Influence of bulk Peclet number on drop in shear flow at t = 4. Left column

shows from top to bottom: Surfactant concentration, surface tension, capillary force and

Marangoni force. The right column shows the bulk surfactant concentration, from top

to bottom: PeF = 0.1,PeF = 1 and PeF = 10. Color online.
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high adsorption rate along the drop sides. In fact, when the Peclet number is small, the

adsorption rate is not large enough to adsorb all the available bulk surfactant. Thus

the differences between the results from PeF = 0.1 to PeF = 1 are less pronounced

than the differences from PeF = 1 to PeF = 10. This is because the process becomes

adsorption-limited for small Peclet numbers.

This is further illustrated in Figure 14, which shows the source term j for the three

Peclet numbers. Away from the drop tips, j is positive, which means that surfactant is

transported from the bulk to the interface. At the tips, the transportation is reversed due to

the accumulation of surfactant here. For a high Peclet number, the mass transfer is lower,

because the bulk diffusion is not large enough to transport desorbed surfactant away

from the interface or to replenish surfactant adsorbed to the interface. This effect is even

more pronounced when the Peclet number is significantly increased to PeF = 1000 as

seen in Figure 13. At this large Peclet number, a narrow boundary layer of depleted bulk

surfactant is observed along the drop sides while the bulk concentration is significantly

increased near the drop tips. In order to simulate this case, another level of refinement is

required such that hmin = 1/256 and in addition the mesh is refined where the undivided

gradient of F is sufficiently large; the finest mesh covers the surfactant boundary layer.
The thickness of the surfactant boundary layer along the drop sides is approximately

0.14 while at the drop tips the boundary layer thickness is approximately 0.69. For

reference, the thickness, O(ε), of the diffuse interface describing the drop boundary is

approximately 0.06.

5.2.3. Convergence study

A convergence study was carried out for the fluid velocity, the interface surfactant and

the bulk surfactant for the case where PeF = 1 and Bi = 1. Since the analytical solution

is not available, we use the solution for a fine mesh as a reference solution and measure

the deviation from this solution in the L2 norm. The L2 norm is calculated as

|| fff ||2 =
√

∑ fff 2, (57)

and the rate of convergence as

rate =
ln(e2h/eh)

ln2
, (58)

where h denotes grid spacing. All simulations here are carried out on a uniform mesh.

Since the variables are collocated, they do not coincide when the mesh is refined. Linear

interpolation is used to interpolate the values.

The results are summarized in Table 1. The rate of convergence is around two for

the velocities and one for the surfactant concentrations. The result for the surfactant

concentrations are in line with what was found in [59].

5.3. Three-dimensional results

Finally, we present some results from three-dimensional simulations. In particular, we

investigate drop break up in a shear flow. The grid spacing at the root level is hmax = 1/4,
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Figure 13: Influence of large bulk Peclet number PeF = 1000 on a drop in shear flow

at t = 4. Top: Bulk surfactant distribution, Bottom: Adaptive mesh. Four levels of

refinement are used (black: level 0, blue: level 1, green: level 2, red: level 3, yellow:

level 4). Color online.
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Figure 14: Comparison of the source term j along the interface for different Peclet
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Table 1: Error in L2 norm and convergence rate for the fluid velocities and the surfactant

concentrations.
Grid ||u−uref||2 Rate ||v− vref||2 Rate

(×10−2) (×10−1)

1/16 4.03 - 8.49 -
1/32 1.84 1.13 5.20 0.71
1/64 0.503 1.87 1.57 1.73
1/128 0.0754 2.74 0.203 2.95

|| f − fref||2 Rate ||F −Fref||2 Rate

(×10−1) (×10−1)

1/16 2.93 - 5.96 -
1/32 2.23 0.39 3.64 0.71
1/64 1.58 0.50 1.19 0.92
1/128 0.686 1.20 0.834 1.20

three levels of refinement are used such that hmin = 1/32. To elucidate the effects of

the interface thickness parameter ε, we simulated two different cases: ε = 1/80 and

1/40. There are approximately 5-6 grid points across the interface for smaller ε. These

simulations took approximately 3 days to complete on one core of an Intel i7 processor.

We take Ca = 0.42 and Re = 0.4, which while smaller than used in 2D are still above

the critical threshold for the existence of steady state solutions. This allows us to run

the simulation until the drop breaks up to demonstrate the ability of our method to

handle topological changes. A similar simulation was presented in [62], although their

simulation used Re = 0. For the surfactant, we assume a dilute concentration of x = 0.1
and a relatively strong coupling between surfactant and surface tension with β = 0.2.

For the parameters associated with solubility, we again choose initial conditions at

equilibrium, k = 1/9 and h = 0.9. The bulk Peclet number is set to PeF = 10.

The results for a clean drop and a drop covered by an insoluble surfactant are shown

in Figure 15 (left and right columns respectively). After an initial regime of stretching,
necks form near the two drop tips. These become thinner until the drop breaks up. In

each case, two tiny satellite drops can be observed after the necks pinch off. In the

surfactant case, the satellite drops are very small and are covered with nearly uniform

surfactant. We see that the surfactant-covered drop breaks up at an earlier time. There are

two principal reasons for this behavior. First, the non-uniform distribution of surfactant

leads to larger deformation, as shown in the previous sections, which thins the drop

more than the clean case. Second, in the necks, the surfactant concentration is low,

which gives a larger surface tension (similar to the surface tension of a clean drop).

Since the necks are thinner in the surfactant-laden drop this leads to faster breakup.

In Figure 16, the break-up of a clean drop is shown for a larger value of interface

thickness ε (ε = 1/40 compared to ε = 1/80 in Figure 15). For the larger value of ε, the

drops break up at an earlier time and satellites are not observed. A similar behavior is
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necks form near the two drop tips. These become thinner until the drop breaks up. In

each case, two tiny satellite drops can be observed after the necks pinch off. In the

surfactant case, the satellite drops are very small and are covered with nearly uniform

surfactant. We see that the surfactant-covered drop breaks up at an earlier time. There are

two principal reasons for this behavior. First, the non-uniform distribution of surfactant

leads to larger deformation, as shown in the previous sections, which thins the drop

more than the clean case. Second, in the necks, the surfactant concentration is low,

which gives a larger surface tension (similar to the surface tension of a clean drop).

Since the necks are thinner in the surfactant-laden drop this leads to faster breakup.

In Figure 16, the break-up of a clean drop is shown for a larger value of interface

thickness ε (ε = 1/40 compared to ε = 1/80 in Figure 15). For the larger value of ε, the

drops break up at an earlier time and satellites are not observed. A similar behavior is
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Table 1: Error in L2 norm and convergence rate for the fluid velocities and the surfactant

concentrations.
Grid ||u−uref||2 Rate ||v− vref||2 Rate

(×10−2) (×10−1)

1/16 4.03 - 8.49 -
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1/128 0.0754 2.74 0.203 2.95

|| f − fref||2 Rate ||F −Fref||2 Rate

(×10−1) (×10−1)
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1/128 0.686 1.20 0.834 1.20

three levels of refinement are used such that hmin = 1/32. To elucidate the effects of

the interface thickness parameter ε, we simulated two different cases: ε = 1/80 and

1/40. There are approximately 5-6 grid points across the interface for smaller ε. These

simulations took approximately 3 days to complete on one core of an Intel i7 processor.

We take Ca = 0.42 and Re = 0.4, which while smaller than used in 2D are still above

the critical threshold for the existence of steady state solutions. This allows us to run

the simulation until the drop breaks up to demonstrate the ability of our method to

handle topological changes. A similar simulation was presented in [62], although their

simulation used Re = 0. For the surfactant, we assume a dilute concentration of x = 0.1
and a relatively strong coupling between surfactant and surface tension with β = 0.2.

For the parameters associated with solubility, we again choose initial conditions at

equilibrium, k = 1/9 and h = 0.9. The bulk Peclet number is set to PeF = 10.

The results for a clean drop and a drop covered by an insoluble surfactant are shown

in Figure 15 (left and right columns respectively). After an initial regime of stretching,
necks form near the two drop tips. These become thinner until the drop breaks up. In

each case, two tiny satellite drops can be observed after the necks pinch off. In the

surfactant case, the satellite drops are very small and are covered with nearly uniform

surfactant. We see that the surfactant-covered drop breaks up at an earlier time. There are

two principal reasons for this behavior. First, the non-uniform distribution of surfactant

leads to larger deformation, as shown in the previous sections, which thins the drop

more than the clean case. Second, in the necks, the surfactant concentration is low,

which gives a larger surface tension (similar to the surface tension of a clean drop).

Since the necks are thinner in the surfactant-laden drop this leads to faster breakup.

In Figure 16, the break-up of a clean drop is shown for a larger value of interface

thickness ε (ε = 1/40 compared to ε = 1/80 in Figure 15). For the larger value of ε, the

drops break up at an earlier time and satellites are not observed. A similar behavior is

24

Table 1: Error in L2 norm and convergence rate for the fluid velocities and the surfactant

concentrations.
Grid ||u−uref||2 Rate ||v− vref||2 Rate

(×10−2) (×10−1)

1/16 4.03 - 8.49 -
1/32 1.84 1.13 5.20 0.71
1/64 0.503 1.87 1.57 1.73
1/128 0.0754 2.74 0.203 2.95

|| f − fref||2 Rate ||F −Fref||2 Rate

(×10−1) (×10−1)

1/16 2.93 - 5.96 -
1/32 2.23 0.39 3.64 0.71
1/64 1.58 0.50 1.19 0.92
1/128 0.686 1.20 0.834 1.20

three levels of refinement are used such that hmin = 1/32. To elucidate the effects of

the interface thickness parameter ε, we simulated two different cases: ε = 1/80 and

1/40. There are approximately 5-6 grid points across the interface for smaller ε. These

simulations took approximately 3 days to complete on one core of an Intel i7 processor.

We take Ca = 0.42 and Re = 0.4, which while smaller than used in 2D are still above

the critical threshold for the existence of steady state solutions. This allows us to run

the simulation until the drop breaks up to demonstrate the ability of our method to

handle topological changes. A similar simulation was presented in [62], although their

simulation used Re = 0. For the surfactant, we assume a dilute concentration of x = 0.1
and a relatively strong coupling between surfactant and surface tension with β = 0.2.

For the parameters associated with solubility, we again choose initial conditions at

equilibrium, k = 1/9 and h = 0.9. The bulk Peclet number is set to PeF = 10.

The results for a clean drop and a drop covered by an insoluble surfactant are shown

in Figure 15 (left and right columns respectively). After an initial regime of stretching,
necks form near the two drop tips. These become thinner until the drop breaks up. In

each case, two tiny satellite drops can be observed after the necks pinch off. In the

surfactant case, the satellite drops are very small and are covered with nearly uniform

surfactant. We see that the surfactant-covered drop breaks up at an earlier time. There are

two principal reasons for this behavior. First, the non-uniform distribution of surfactant

leads to larger deformation, as shown in the previous sections, which thins the drop

more than the clean case. Second, in the necks, the surfactant concentration is low,

which gives a larger surface tension (similar to the surface tension of a clean drop).

Since the necks are thinner in the surfactant-laden drop this leads to faster breakup.

In Figure 16, the break-up of a clean drop is shown for a larger value of interface

thickness ε (ε = 1/40 compared to ε = 1/80 in Figure 15). For the larger value of ε, the

drops break up at an earlier time and satellites are not observed. A similar behavior is

24



Figure 15: Three-dimensional simulation of a drop in shear flow with interface thickness

ε = 1/80. The left column shows a drop with no surfactant. The right column shows a
drop with insoluble surfactant. The times shown are from top to bottom: 10, 25, 34, and

35.16.

Figure 16: Drop evolution in shear flow without surfactant at times t = 25 (left) and

35.16 (right) with ε = 1/40. All other parameters are the same as in Figure 15.
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observed in the presence of surfactant.

The results for soluble surfactant are shown in Figure 17, using ε = 1/80. The right

column, which shows a slice of the bulk concentration, indicates that surfactant is

adsorbed to the surface at the middle of the drop, and desorbed at the tips. This leads

to a more uniformly distributed surfactant concentration. Comparing Figure 17 with

Figure 15 we can see the soluble-surfactant-covered drop breaks up at a later time than

the clean drop. The principle reason is the adsorption and desorption of surfactant.

Since adsorption occurs over a larger surface area than desorption, which just occurs at

the drop tips, the interfacial surfactant concentration becomes larger across the entire

drop. This means that the deformation becomes larger and that there is significant

concentration of surfactant near the drop necks. This slows the thinning of the necks

since the surface tension is smaller. Thus, the drop breaks up at a later time than for the

clean drop. This shows that the influence of solubility can have an important influence
on drop dynamics.

6. Conclusions and future work

A diffuse-interface method to simulate two-phase flows with soluble surfactants was

presented. The method handles advection, diffusion and adsorption/desorption of

surfactant, and is easy to implement using standard numerical techniques.

As an example of the applicability of the method, results were presented on the influence

of solubility on a drop in shear flow. It was shown that solublity could have a consider-

able influence on the flow dynamics. Simulations in 3D were also performed, which

showed that the influence of soluble surfactants is important for the breakup behavior of

the drop.

Although not presented here, asymptotic and numerical evidence suggests that the con-

vergence to the sharp interface system is first order in the interface thickness parameter

ε [59]. It may be possible to gain second order accuracy in ε by explicitly removing

the corresponding term in the asymptotic expansion as can be done in the context of

solidification to enable simulations with arbitrary kinetic coefficients [76, 77]. Also,

more consistent projection methods for collocated grids were recently presented in [78].

These two improvements to the proposed method should be explored. In addition, as we

have seen, when the bulk Peclet number is large, thin boundary layers develop near the

deforming drop. Adaptive meshes can enable accurate simulations for a range of Peclet

numbers but in some applications, the bulk Peclet number can reach 105-106 (e.g., [79])

at which point it is infeasible to use adaptive meshes. Instead, following the approach

recently developed by Booty & Siegel [80], a singular perturbation analysis should be

incorporated in the numerical algorithm.
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Figure 17: Three-dimensional simulation of a drop in shear flow with soluble surfactant,

ε = 1/80. The left column shows the drop shape with the surface colored according

to the interface surfactant concentration. The right column shows a slice of the bulk

surfactant concentration along the x-axis. The times shown are from top to bottom: 10,

25, 34 and 35.16.
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to the interface surfactant concentration. The right column shows a slice of the bulk
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25, 34 and 35.16.

27

�� � �
��
��

�
�
�

�

�

�

�

�	�

�	
�

�	
�

�	�

�	��

�� �� �� � � � �
��

��

�

�

�

�

�

�� �� �� � � � �
��

��

�

�

�

�

�

�� �� �� � � � �
��

��

�

�

�

�

�

Figure 17: Three-dimensional simulation of a drop in shear flow with soluble surfactant,

ε = 1/80. The left column shows the drop shape with the surface colored according

to the interface surfactant concentration. The right column shows a slice of the bulk

surfactant concentration along the x-axis. The times shown are from top to bottom: 10,

25, 34 and 35.16.
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