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Abstract

This thesis presents a method for fluid-structure interaction in a simplified 2D model of the human larynx using
the arbitrary Lagrangian–Eulerian (ALE) approach and a strictly stable high order finite difference method. The ALE
method is first tested for the fluid solver with a prescribed boundary movement, and then the method is extended to a
two-way coupled explicit fluid-structure interaction where the vocal folds interact with the airflow in the larynx.

In each case, the fluid is treated as a Newtonian fluid obeying the perfect gas law and laminar flow is always
assumed. Since the interest is ultimately phonation, the compressible Navier–Stokes equations are solved in order to
resolve both the flow field and the acoustic waves. Characteristic-based non-reflecting boundary conditions are used
so that no unphysical reflections occur at the outflow boundary of the limited computational domain.

The finite difference method relies on the summation by parts (SBP) technique which allows energy estimates
to be made for the discretized equations in an analogous way as for the continuous problem. In the interior, the
difference operator corresponds to the standard sixth order explicit difference method and is third order accurate near
the boundaries. The classical explicit fourth order Runge–Kutta method is used for time integration.

For the structure field, the linear elastic wave equation is formulated as a first order system. The spatial derivatives
are discretized by the same high order difference operator as employed for the flow equations. To implement boundary
conditions for displacement or traction, a simultaneous approximation term (SAT) method is derived. Verification
proves that the method is nearly fourth order accurate. The linear model is then extended to a nonlinear hyperelastic
model based on a neo-Hookean constitutive relation. The strict energy estimate is only valid for the linear equation,
but the SAT approach provides a consistent way to implement the traction boundary condition also for the nonlinear
equations.

Fluid-structure interaction simulations are performed with model parameters corresponding to the real geometry
of the human larynx and physical properties of the human vocal folds. Results for the vortex dynamics are investigated
and preliminary acoustic results are obtained.

Preface

The present doctoral thesis is submitted to the Norwegian University of Science and Technology (NTNU) for the
degree Doctor of Philosophy (Ph.D.). The work has been carried out in the Department of Energy and Process En-
gineering (EPT) under the supervision of Professor Bernhard Müller. The research has been funded by the Swedish
Research Council (Vetenskapsrådet) under the project "Numerical Simulation of Respiratory Flow".

Acknowledgments

First and foremost, I would like to thank my supervisor Bernhard Müller who first introduced me to computational
fluid dynamics and got me interested in numerical methods for fluid dynamics. His support has been a tremendous
driving force and his vast knowledge in the field has been an invaluable asset for the successful conclusion of this
project.

I am also grateful for the generous assistance and valuable input from my fellow Ph.D. students in the fluid
engineering group at NTNU, Asif Farooq, Claudio Walker and Joris Verschaeve.

Furthermore, I would like to thank professor Bjørn Skallerud at the Department of Structure Engineering at NTNU,
whose knowledge in structure dynamics has been a great aid and has helped to steer the project in the right direction.

Last but not least, I would like to thank the people at Aerodynamisches Institut, RWTH Aachen, Wolfgang
Schröder, Mathias Meinke and Kai Pielhop, and Siegfried Müller at the Institut für Geometrie und Praktische Mathe-
matik for assistance with verification of the fluid-structure interaction.

1



Contents

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Principles of voice production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Vocal fold models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 5

2.1 Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Arbitrary Lagrangian-Eulerian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Navier–Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Perturbation formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.6 Non-dimensional variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.7 ALE formulation for the Navier–Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Linear elastic wave equation in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Nonlinear kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Fluid-structure interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Fluid-structure models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Immersed boundary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Present FSI approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Numerical modeling 15

3.1 High order finite difference methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Energy method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Summation by parts operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Simultaneous approximation terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Summary of selected papers 17

5 Conclusions and outlook 18

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2



1 Introduction

1.1 Motivation

Fluid-structure interactions (FSIs) occur when a flexible structure interacts with a flowing fluid. The fluid flow ex-
erts an aerodynamic force on the structure which causes it to deform, while the flow induced deformation yields a
new structural boundary to which the flow adheres. This inherently two-way coupled interaction is responsible for
many different phenomena which are of crucial importance in engineering applications such as aircraft wing flutter
and bridge design, where structural motion is undesirable. The study of these phenomena, spurred in part by such
catastrophic events as the collapse of the Tacoma Narrows bridge in 1940, has given rise to the scientific field of
aeroelasticity.

In engineering applications, aeroelastic effects are usually to be avoided. A design goal for an engineer may be to
make a rotating propeller blade as quiet as possible or a bridge insensitive to vibrations caused by the wind. On the
other hand, the coupling between fluid flow and structural motion plays an important role in many biological systems
such as our cardiovascular and respiratory systems. The pulsatile blood flow in viscoelastic arteries and the transient
airflow in the upper airways are the prime examples where FSI effects are in fact desirable. A direct consequence of
FSI in the vocal tract is voice production, where the motion of the soft tissue in the vocal folds interacts dynamically
with the glottal airflow to produce sound.

Increasing the knowledge of respiratory flow by advanced numerical techniques will be decisive for developing
protective respiration concepts to reduce the mortality of artificial respiration. The numerical simulation of pulmonary
flow will not only have an impact on the understanding of the physiological conditions and of mechanical ventilation,
but also contribute to the investigation of human phonation. With the detailed flow and acoustics information, even
diagnostic tools like ultrasound can be further improved.

The vision is that numerical simulation of respiratory flow will contribute to Computer Aided Surgery. The surgeon
should be enabled to simulate the consequences of an operation on respiration and phonation before performing the
operation. Thus, the operation can be optimally prepared, and the risk for the patient can be minimized.

1.2 Principles of voice production

The vocal folds, also called vocal cords, are two symmetric membranes that protrude from the walls of the larynx at
the top of the trachea of humans and most mammals forming a slit-like opening known as the glottis in the airway. In
a simplified three-layer model, the vocal folds are composed of the thyroarytenoid muscle, also known as the vocal
fold muscle, and the vocal ligament covered by a mucous layer. The parts of the larynx can be seen in Figure 1.

During normal breathing, the vocal tract is open and air can pass unobstructedly. During phonation, the vocal fold
muscle is tensed in the longitudinal direction so that the glottal opening becomes narrower. The higher pressure air
expelled from the lungs is forced through this narrow opening and starts to push the stationary air column located
downstream of the glottis. As the air column gains momentum, pressure builds up behind it causing the vocal folds to
open up further. The increase in velocity is then followed by a pressure drop in the glottis according to the Bernouilli
principle. The decrease in pressure leads to an aerodynamic force which, together with the elastic force in the vocal
folds, strives to close the glottis. As the glottis begins to close, the air flow is restricted leading to a partial vacuum
downstream due to the inertia of the air column, contributing to the closure of the glottis. A build-up in pressure
upstream before the glottis results from the closure, leading to a pressure force which opens the vocal folds and allows
the passage of air. For certain values of vocal muscle tension and lung pressure, this process is able to repeat itself in
a self-sustained manner and is driven only by the pressure from the lungs. It is important to point out that no periodic
contraction of muscles occurs during phonation. The opening and closing of the glottis is, in this respect, a passive
process [28].

During normal speech, the vocal folds collide with each other, closing the glottis completely. However, in certain
types of phonation such as a very breathy voice or while whispering, the vocal folds do not necessarily make con-
tact. The outermost mucous layer of the vocal folds has been shown to play an important role in the self-sustained
oscillation, facilitating the vibrations of the much stiffer ligament [28, 27].

As the vocal folds oscillate rapidly, they generate a fundamental frequency. When we speak normally only the
lowest mode of vibration is excited, in which all the layers of the vocal folds vibrate symmetrically and as a whole.
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Figure 1: Schematic view of the human larynx, showing in particular the vocal folds and the trachea.

Higher modes of oscillation can, however, be excited to produce higher pitched tones for example when singing. By
stretching the vocal fold muscle, the vocal fold length changes as well as the stiffness, and higher modes can thus be
created. These higher modes correspond to an oscillation concentrated mainly to the ligament or the mucous layer.
The different modes of oscillation are commonly referred to as registers (modal, falsetto etc) and singers are often
particularly good at smoothing out the transition between these registers. Going from one register to the next is called
registration [27].

The signal resulting from the vocal folds themselves is then further modified by the vocal tract which functions as
an acoustic filter. By changing the shape of the vocal tract, different frequencies are amplified and suppressed so that
a multitude of different vowels can be formed from the same source signal.

The computational challenge in aeroelastic simulations for human phonation lies in having to deal with unsteady
flows at low to moderate Reynolds numbers, large deformations, moving interfaces, fluid-structure interactions and
intrinsically 3D motion [9, 28].

1.3 Vocal fold models

Computational models for self-oscillating vocal folds driven by the pressure predicted from the Bernoulli relation were
developed in the late 1960s and early 1970s [28, 26]. These very basic models for the vocal folds comprised one or
two masses coupled to a spring forming an oscillating mass-spring system. Multi-mass models were subsequently
developed in the mid-1970s and these models were used with variations until the mid-1990s when a body-cover for
the two-mass model was developed by Story and Titze [23] to incorporate the body-cover model of the vocal folds.
Even though the early lumped mass models were elegant in concept, there is considerable doubt that they represent
the actual geometry and viscoelastic properties of the vocal folds adequately enough to identify voice disorders and
special voice qualities [1]. Therefore, continuum models have been developed for such purposes.

In the mid-1990s, more elaborate models for the vocal folds were developed. Finite element analysis with a
continuum model was used by Alipour and Titze [3] to model the vocal fold deformation, coupled to the flow field
which was obtained through a Navier–Stokes solver. The advantage with the FEM (finite element method) over lumped
multi-mass models is its predictive power and accuracy.

Berry and Titze calculated the eigenmodes and eigenfrequencies of oscillation for a continuum model of the vocal
folds using the Ritz method [5]. The model is simplistic as the vocal fold is modeled as a rectangular parallelepiped
and aerodynamic forces are absent. However simple, the model is adequate to obtain the analytical eigenmodes. The
investigations showed that unlike in the lumped-mass models, two of the lower order modes lie closely spaced in
frequency over a wide range of tissue sizes and stiffnesses. These two eigenmodes play a major role in the self-
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sustained oscillation of the vocal folds. The fact that their relative frequency does not vary much over different
tissue parameters implies that the model is rather insensitive to such parameters. The vocal folds are assumed to be
elastic and transversely isotropic, meaning that the tissue is isotropic in the plane transverse to the fibers, while the
elastic properties in the direction of the fibers are different from those in the transverse plane. Small oscillations are
considered and the following assumptions are made: (1) the stress–strain relation is linear, and (2) all displacements
in the direction of the fibers are negligible.

In an attempt to improve over the aforementioned study, Alipour, Berry and Titze presented a model where aero-
dynamic forces are included and the layered structure of the vocal folds is accounted for [1]. The nonlinear time
dependent system of partial differential equations was solved using an FEM code developed at the authors’ lab. The
field variable that was solved for was the displacement vector. The glottal aerodynamics was modeled with a finite
volume solution of the incompressible Navier–Stokes equations [2]. An advantage with the FEM is the ability to han-
dle complex boundaries and driving forces. The simplifying assumptions were (1) small deformations of the structure
(linear elasticity), (2) the vibration takes place in a single plane, (3) the tissue layers are either isotropic or transversely
isotropic, and (4) the grid motion during finite-element space integration is neglected. The 3D geometry of the vocal
fold was divided into thin layers along its length, and a 2D finite element solution was used in each layer [2]. Therefore
it is a quasi-three-dimensional (hybrid) model [7].

Recently [7], the box model of the vocal folds first presented in [5] was analyzed further to determine the influence
of spatial dimensions on vibratory response in the continuum model and to investigate whether planar displacement is
a valid approximation. The material properties and model dimensions were the same as in [5]. But here both an FEM
and the Ritz method were used, as opposed to only the Ritz method in [5]. It was found that the eigenfrequencies
of the oscillatory modes were most sensitive to the vocal fold length in the longitudinal direction. The assumption
of planar displacement was found to be equivalent to infinite longitudinal stiffness E ′ (in the fiber direction). For
values of the stiffness ratio, n = E ′/E (where E is the transverse stiffness and n = 1 corresponds to isotropy) up to
20, this assumption did not lead to serious errors in the modal frequencies. However, there is currently not enough
empirical data to safely state that the stiffness ratio is below 20 [7]. It was also found that out-of-plane stresses have a
significant effect on the vibratory response of the continuum model. Thus, two-dimensional structure models may not
be sufficient to accurately model the vocal fold dynamics as these do not account for out-of-plane stresses.

Detailed measurements of the vocal fold and glottal channel shape have been performed in [21].

2 Theory

2.1 Fluid

2.1.1 Arbitrary Lagrangian-Eulerian approach

In an Eulerian reference frame, the motion of a fluid is specified at certain points in space through which the fluid
moves while the mesh remains fixed. For example, the fluid velocity u(x, t) and the pressure p(x, t) are defined as
functions of the space and time coordinates. In the Lagrangian formulation, on the other hand, the mesh moves with
the material. The motion in this case is expressed in terms of displacements from an initial configuration.

In practice, the fluid phase is almost universally described using an Eulerian reference frame (mainly due to its
inherent convenience in describing boundary conditions) while it is more natural to use a Lagrangian formulation for
the solid phase. Lagrangian descriptions can also be successfully used for contained fluids, but not so much for flowing
media, as the mesh would be highly distorted if required to follow the motion of the fluid [11]. These representations
are, however, incompatible [4]. But if the deformations are moderate, the Eulerian flow description and the Lagrangian
structure description can be combined in an arbitrary Lagrangian-Eulerian (ALE) formulation. An ALE formulation
comprises both pure Eulerian and pure Lagrangian formulations. This requires a continuous adaption of the mesh
without modification of the mesh topology. In an early contribution [11], the ALE formulation was implemented with
a finite-element method and applied to incompressible viscous flow.

In the derivation of the Eulerian equations, the velocity of the reference configuration is set to be zero. In an
ALE formulation, the mesh is required to adapt to the boundary of the structure. This gives rise to an advective term
containing the relative velocity and accounts for transport of material past the moving mesh. This additional term
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makes solving the ALE equations more difficult than solving the Lagrangian equations, where the relative velocity is
zero [22]. Implementation of the ALE equations can be done in two different ways, corresponding to two approaches
taken in implementing the Eulerian viewpoint in fluid mechanics.

– Solution of the fully coupled equations for CFD. This approach can only handle a single material within an
element.

– Operator split approach. The calculation for each step is divided into two phases: First a Lagrangian phase,
in which the mesh moves with the material. Changes in velocity and internal energy due to internal and ex-
ternal forces are calculated. In the second phase, transport of mass, internal energy and momentum across cell
boundaries are computed.

An example of the implementation of ALE for fluid-structure coupling, is given in [22]. The authors simulate an
underwater explosion where an outgoing spherical pressure wave is incident on a deformable plate. The results show
that the plate is able to deform in response to the increasing pressure.

2.1.2 Navier–Stokes equations

In fluid mechanics, the Navier–Stokes equations, named after the engineer Claude-Louis Navier and the mathematician
and physicist George Gabriel Stokes, a system of nonlinear partial differential equations, describe the motion of fluids.
They can be used to model a wide variety of phenomena on different scales, such as ocean currents, air flow in the
atmosphere and the human airways and blood flow in the arteries.

In Cartesian coordinates, the equations of continuity, momentum balance and energy balance can be written

∂ρ

∂ t
+

∂ui

∂xi

= 0 (1)

∂ρu j

∂ t
+

∂ (ρuiu j)

∂xi

=− ∂ p

∂x j

+
∂τi j

∂xi

+ρ f j (2)

∂ (ρE)

∂ t
+

∂ ((ρE + p)ui)

∂xi

=
∂

∂xi

(τi ju j)+ρ fiui − ∂qi

∂xi

+ r (3)

where the Einstein summation convention has been used (sum over repeated indices) and

• t is the time in seconds (s)

• ρ is the mass density in kg/m3

• ui are the Cartesian components of the Eulerian velocity field in m/s

• p is the pressure in Pa

• τi j are components of the viscous stress tensor in Pa

• fi is an external force density in N/kg

• E is the total energy per unit mass in J/kg

• qi is the heat flux in the i-direction in J/(m2 · s)
• r is the radiation heat loss density in J/(m3 · s).
These equations will now be simplified using a number of assumptions relevant to the flow of air in the human

airways and transformed to a form more suitable for computer implementation. One can reasonably assume that the
external force fi, e.g. gravity does not play an important role for the flow and that there are no radiation losses r.
Furthermore, perfect gas and Newtonian fluid are reasonable assumptions.
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2.1.3 Constitutive relations

The viscous stress tensor for a Newtonian fluid is under the Stokes hypothesis defined by

τi j = μ

(
∂ui

∂x j

+
∂u j

∂xi

)
− 2

3
μ

∂uk

∂xk

δi j

where the dynamic viscosity μ in units Pa · s has been introduced. Fourier’s law states that the heat flux is proportional
to the temperature gradient through the thermal conductivity κ in W/(K ·m) by the relation

qi =−κ
∂T

∂xi

.

The variation of viscosity as a function of temperature can for gases be modeled by Sutherland’s formula which states
that

μ(T ) =C1
T 3/2

T +C2

where the constants C1 = 1.458× 10−6 kg/(m · s · √K) and C2 = 110.4 K for air at STP (standard temperature and
pressure). For constant Prandtl number (Pr = 0.72 at STP), the thermal conductivity is related to the viscosity by

κ =
cp

Pr
μ

where cp = 1004.5 m2/(K · s2) is the specific heat at constant pressure.

2.1.4 Equation of state

The perfect gas law models a theoretical gas where the molecules behave as point particles and do not interact. For air
at standard conditions, it is a good assumption and the pressure can thereby be related to the internal energy according
to the equation

p = (γ −1)

(
ρE − 1

2
ρ|u|2

)
where the ratio of specific heats γ = 1.4 for air.

2.1.5 Perturbation formulation

When variations in the flow field are small compared to their respective stagnation values, as is often the case in
low Mach number flow, a finite difference discretization and other discretizations will suffer from cancellation errors.
Consider for example the pressure p = p∞ + p′ where p∞ is the stagnation value and p′ is the perturbation. If p′ � p∞

then both numbers in the numerator of the finite difference approximation (pi+1 − pi)/Δx of
∂ p

∂x
=

∂ p′

∂x
at x = xi, are

large and cancellation occurs. It is therefore preferable to approximate this derivative by (p′i+1 − p′i)/Δx where the
constant stagnation pressure has been removed. Expressing the conservative variables as U(x, t) = U∞(x, t)+U′(x, t),
i.e. as the sum of the stagnation flow state U∞(x, t) and the perturbation U′(x, t), does not change the equations, but
allows for a finite difference discretization or other discretization with minimized cancellation errors.

For the chosen stagnation flow state U∞(x, t) = (ρ∞,0,(ρE)∞), the Navier–Stokes equations in perturbation form
can be expressed as [17]

∂ρ ′

∂ t
+

∂

∂xi

(ρui)
′ = 0 (4)

∂

∂ t
(ρu j)

′+
∂

∂xi

((ρui)
′u′j) =−∂ p′

∂x j

+
∂τ ′i j

∂xi

+(ρ∞ +ρ ′) f j (5)

∂

∂ t
(ρE)′+

∂

∂xi

[((ρE)∞ +(ρE)′+ p∞ + p′)u′i] =
∂

∂xi

(τ ′i ju
′
j +(κ∞ +κ ′)

∂T ′

∂xi

)+(ρui)
′ fi (6)
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for the vector of unknowns U′(x, t) = (ρ ′,(ρu)′,(ρE)′)T, where the perturbation values for the primitive variables are
given by u′ = (ρu)′/(ρ∞ +ρ ′), p′ = (γ −1)[(ρE)′ − 1

2 (ρu)′ ·u′]. Furthermore,

τ ′i j = (μ∞ +μ ′)(
∂u′j
∂xi

+
∂u′i
∂x j

)− 2
3
(μ∞ +μ ′)

∂u′k
∂xk

δi j (7)

μ ′ = μ(T∞ +T ′)−μ(T∞),T
′ =

p′/R−ρ ′T∞

ρ∞ +ρ ′ ,κ ′ = κ(T∞ +T ′)−κ(T∞) (8)

2.1.6 Non-dimensional variables

It is often convenient to go from the dimensional form of the original equations to a non-dimensional form using certain
reference values for the variables. From a theoretical viewpoint, the advantage is that the relative importance of each
term is easily seen in the equations and which effect a change in any of the model parameters has on the equations.
Furthermore, the errors in the arithmetic computations performed by the computer are minimized when all variables
in the implementation are scaled to lie in approximately the same range. For internal low Mach number flow, it is
preferable to use the stagnation value ρ∞ for the density, the stagnation speed of sound c∞ and a characteristic length

scale of the domain L∞ as reference values. The stagnation pressure is given by p∞ =
ρ∞c2

∞

γ
. The non-dimensional

quantities are x∗ = x
L
,y∗ = y

L
,u∗i =

ui
c∞
, t∗ = tc∞

L
,ρ∗ = ρ

ρ∞
,T ∗ = T

T∞
, p∗ = p

ρ∞c2
∞
,E∗ = E

c2
∞
.

When non-dimensionalizing μ and κ , a special choice is made so that the non-dimensional equations assumes
exactly the same form as its dimensional counterpart. This choice consists of specifying

μ∗ =
1

Re∞

μ

μ∞

, k∗ =
1

(γ −1)Pr∞Re∞

κ

κ∞

(9)

where the reference Reynolds and Prandtl numbers are given by

Re∞ =
ρ∞c∞L∞

μ∞

, Pr∞ =
cpμ∞

κ∞

. (10)

Henceforth, the superscript ∗ is dropped from the notation and all variables are assumed dimensionless. Using the
non-dimensional variables in perturbation formulation, the 2D Navier–Stokes equations can be compactly written as

U′
t +F′

x +G′
y = 0, (11)

where U′(x, t) is the vector of conservative perturbation variables, and the perturbation fluxes split up into their viscous
and inviscid parts are F′ = Fc′ −Fv′ and G′ = Gc′ −Gv′. Explicit expressions are given below.

Fc′ =

⎛⎜⎜⎝
(ρu)′

(ρu)′u′+ p′
(ρv)′u′

((ρH)∞ +(ρH)′)u′

⎞⎟⎟⎠ , Gc′ =

⎛⎜⎜⎝
(ρv)′
(ρu)′v′

(ρv)′v′+ p′
((ρH)∞ +(ρH)′)v′

⎞⎟⎟⎠ (12)

Fv′ =

⎛⎜⎜⎝
0

τ ′xx

τ ′xy

u′τ ′xx + v′τ ′xy + kT ′
x

⎞⎟⎟⎠ , Gv′ =

⎛⎜⎜⎝
0

τ ′yx

τ ′yy

u′τ ′yx + v′τ ′yy + kT ′
y

⎞⎟⎟⎠ (13)

where the stagnation total enthalpy is given by (ρH)∞ = (ρE)∞ + p∞ and the total enthalpy perturbation (ρH)′ by
(ρH)′ = (ρE)′+ p′.
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Ωf

Ωs,1

Ωs,2

Figure 2: Typical mesh for the vocal tract. The time-dependent mesh region Ωf(t) is determined by the displacement
of the structure on the fluid-structure interface.

2.1.7 ALE formulation for the Navier–Stokes equations

To be able to perform calculations for general geometries such as the human larynx, cf. Fig. 2, the physical coordinates
x,y in the physical domain are transformed to Cartesian coordinates ξ ,η on a rectangular domain in the computational
plane. For moving geometries the transformation will also depend on time, i.e. for each time instant, the mapping
x = x(ξ ,η) will be different. The general coordinate transformation can be summarized as

x = x(ξ ,η ,τ)
y = y(ξ ,η ,τ)
t = τ

(14)

The time dependent metric terms and Jacobian determinant of the transformation are

J−1ξx = yη , J−1ξy =−xη , J−1ηx =−yξ , J−1ηy = xξ , J−1 = xξ yη − xη yξ . (15)

If analytical expressions for the inverse transformation are available, the 2D metric terms can be calculated analytically
[25]. If on the other hand the transformation is a result of a grid generation scheme, finite difference approximations
in the computational plane must be employed to obtain the metric terms. For example, the evaluation of J−1ηy = xξ

at a grid point i, j using a central second order approximation could be approximated as

(xξ )i, j ≈ xi+1, j − xi−1, j

2Δξ
(16)

where i, j are the grid point indices and Δξ is the grid spacing. As the domain changes with time, each point moves
with a certain velocity prescribed by the time dependent coordinate transformation ẋ = xτ , ẏ = yτ . These are the
velocities of the grid point at the location x,y. These give rise to the metric terms

ξt =−ξxẋ−ξyẏ

ηt =−ηxẋ−ηyẏ
(17)

The 2D Navier–Stokes equations in ALE form are then [20]

U′
τ =

1
J−1 (−F̂′

ξ − Ĝ′
η − (J−1)τ U′) (18)

where the transformed flux vectors are

F̂′ = J−1(ξtU
′+ξxF′+ξyG′), Ĝ′ = J−1(ηtU

′+ηxF′+ηyG′). (19)

The time derivative of the Jacobian determinant is given by the geometric conservation law

(J−1)τ +(J−1ξt)ξ +(J−1ηt)η = 0, (20)

because the ξ - and η-derivatives in (20) are calculated from the grid point velocities (17).
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2.2 Structure

2.2.1 Linear elasticity

The extension of a linear spring resulting from an applied force is expressed by the linear relation F =−kx known as
Hooke’s law, where F is the applied force, x is the displacement of the spring from its equilibrium length and k is the
spring constant in N/m. An elastic rod with cross sectional area A can be modeled as a linear spring. When the rod is
loaded with a force, its cross-section changes and the molecules rearrange which, if the deformations are large enough
changes the stress-strain relationship in the rod and Hooke’s law is no longer valid. However, for some materials under
certain loading conditions, i.e. within the elastic range of the material, Hooke’s law is a good approximation.

When we make the assumption that the deformations are small enough that the restoring force in the material is
proportional to the deformation, we arrive at the theory of linear elasticity. When the deformations are larger, the
response may be nonlinear, but the linear model will still hold as a first approximation in this case. For even larger
deformations, the bonds between the molecules in the material will break irreparably causing the material to adopt a
new configuration and undergo what is known as plastic deformation.

The displacement of a deformable solid is defined in terms of the displacement vector p from its equilibrium
position.

p = p(x,y,z, t) = p1(x,y,z, t)e1 + p2(x,y,z, t)e2 + p3(x,y,z, t)e3

The velocity is the time derivative of the displacement vector.

u = u(x,y,z, t) =
∂p

∂ t
= ṗ1(x,y,z, t)e1 + ṗ2(x,y,z, t)e2 + ṗ3(x,y,z, t)e3

The Cauchy strain tensor ε is defined in terms of the displacement vector by

εi j =
1
2

(
∂ pi

∂x j

+
∂ p j

∂xi

)
, i, j = 1, 2, 3

Note that the strain tensor is symmetric and therefore has 6 independent components in 3D.
Arranging the 6 independent components of the strain tensor into a 1D vector, Hooke’s law in 3D can be expressed

in the form σ = Sε where S is the 6×6 stiffness matrix and σ is the tensile (Cauchy) stress.
For the human vocal folds, the elastic properties in the longitudinal direction, i.e. along the vocal fold muscle

(here, the y-direction), deviate significantly from those in the plane perpendicular to this direction. Refering to Fig. 1
showing a cut in the xz-plane, the fibers of the vocal fold muscle extend in the direction perpendicular to the plane.
Assuming transverse isotropy, Hooke’s law takes the form [13]⎡⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε12

ε23

ε13

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣
1/E −ν ′/E ′ −ν/E 0 0 0

−ν ′/E 1/E ′ −ν ′/E 0 0 0
−ν/E −ν ′/E ′ 1/E 0 0 0

0 0 0 1/(2μ ′) 0 0
0 0 0 0 1/(2μ ′) 0
0 0 0 0 0 (1+ν)/E

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
σ11

σ22

σ33

σ12

σ23

σ13

⎤⎥⎥⎥⎥⎥⎥⎦
where primed variables represent quantities in the longitudinal fiber axis and unprimed variables stand for their trans-
verse counterparts. E and ν are Young’s modulus and Poisson’s ratio, respectively.

Inverting this matrix equation gives the stresses expressed as functions of the strains. When displacement in the
y-direction is neglected, using the definition of the strain tensor and taking the time derivative of the final result, the
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following system of evolution equations is obtained for the stress components,

∂

∂ t
σ11 = c1μ

∂u

∂x
+ c2μ

∂w

∂ z
(21)

∂

∂ t
σ22 = 0 (22)

∂

∂ t
σ33 = c2μ

∂u

∂x
+ c1μ

∂w

∂ z
(23)

∂

∂ t
σ12 = 2μ ′ ∂u

∂y
(24)

∂

∂ t
σ23 = 2μ ′ ∂w

∂y
(25)

∂

∂ t
σ13 = 2μ(

∂w

∂x
+

∂u

∂ z
). (26)

where c1 = 2(α − ν ′2)/(α(1− ν)− 2ν ′2), c2 = 2(αν − ν ′2)/(α(1− ν)− 2ν ′2), μ = E/2(1+ ν) and α = E ′/E.
Conservation of momentum gives

ρ
∂

∂ t
u =

∂σ11

∂x
+

∂σ12

∂y
+

∂σ13

∂ z
(27)

ρ
∂

∂ t
v = 0 (28)

ρ
∂

∂ t
w =

∂σ31

∂x
+

∂σ32

∂y
+

∂σ33

∂ z
(29)

Finally, in 2D, all variations in the y-direction are neglected and the following first-order system for the five
unknowns u,w,σ11,σ13,σ33 is obtained,

ρ
∂

∂ t
u =

∂σ11

∂x
+

∂σ13

∂ z
(30)

ρ
∂

∂ t
w =

∂σ13

∂x
+

∂σ33

∂ z
(31)

∂

∂ t
σ11 = c1μ

∂u

∂x
+ c2μ

∂w

∂ z
(32)

∂

∂ t
σ13 = 2μ(

∂w

∂x
+

∂u

∂ z
) (33)

∂

∂ t
σ33 = c2μ

∂u

∂x
+ c1μ

∂w

∂ z
(34)

where the symmetry of σ has been used.

2.2.2 Linear elastic wave equation in 2D

The linear elastic wave equation in second order form in 2D reads

ρ ptt = (λ +2μ)pxx +μ pyy +(λ +μ)qxy

ρqtt = (λ +2μ)qyy +μqxx +(λ +μ)pxy

Making the change of variables
u = pt

v = qt

f = (2μ +λ )px +λqy

g = μ(qx + py)
h = λ px +(2μ +λ )qy

11



leads to a first-order formulation
ρut = fx +gy

ρvt = gx +hy

ft = (2μ +λ )ux +λvy

gt = μ(vx +uy)
ht = λux +(2μ +λ )vy

(35)

which is identical to (30) after the substitutions

x −→ x, z −→ y, u −→ u, w −→ v

2μ −→ μ, c2μ −→ λ , c1μ −→ λ +2μ
σ11 −→ f , σ13 −→ g, σ33 −→ h.

Thus, the 2D linear elastic wave equation is the basic equation for describing the kinematics of a transversely isotropic
material. The Lamé parameters λ ,μ in (35) are given by the material properties E,E ′,ν ,ν ′ as the functions

μ = μ(E,E ′,ν ,ν ′), λ = λ (E,E ′,ν ,ν ′)

depending on the structure model.

2.2.3 Nonlinear kinematics

The basic equations for structure mechanics when large deformations and nonlinear effects are taken into account are
the Lagrangian field equations which arise from Newton’s second law applied to a continuum. For large deformation
elasticity a Lagrangian viewpoint is adopted, meaning that the motion of each material particle is expressed as a
function of its position in a reference configuration and time. Thus, the displacement field is p = p(x, t) where x is a
coordinate in the reference configuration, p(x, t) is the displacement of the particle situated at x and x′(x, t)= x+p(x, t)
is the current position of the particle.

Let a deformable body occupy some domain Ω0 in space. The set Ω0 is called the reference configuration of the
body. As the body translates, rotates and deforms through space, the particle originally at position x is at a later time
found at a new position x+p(x, t) in the current configuration of the body Ω. The basic measure of deformation in
the body is the deformation gradient F = 1+∇xp(x, t). An infinitesimal line element in the reference configuration
dx transforms to dx′i = (∂x′i/∂xα)dxα = Fiα dxα where x′i(x, t) = xi + pi(x, t) is the new position.

The Lagrangian field equations in 2D are [18]

ρ ptt = (S11)x +(S21)y

ρqtt = (S12)x +(S22)y

where S = ΣFT is the nominal stress tensor and the components of the deformation gradient are

F =

[
∂x′/∂x ∂x′/∂y

∂y′/∂x ∂y′/∂y

]
=

[
1+ px py

qx 1+qy

]
.

The components of the symmetric Piola-Kirchhoff stress tensor are functions of the deformation gradient, i.e.

Σ =

[
f g

g h

]
where f = f (px, py,qx,qy) and similarly for g and h.

2.2.4 Constitutive relations

The functional dependence of Σ comes from a constitutive model. Here, the neo-Hookean model is used. The stress
tensor is derived from a strain energy potential function and the resulting expression is

Σ= μ1+

(
λ

2
ln(detC)−μ

)
C−1. (36)
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where the right Cauchy–Green strain tensor C is given by C = FTF, cf. PAPER2 of this thesis for more details. The
constitutive relation (36) gives rise to the second Piola–Kirchhoff stress components

f = (2μ +λ )px +λqy +O(p2
x + p2

y +q2
x +q2

y)

g = μ(qx + py)+O(p2
x + p2

y +q2
x +q2

y)

h = λ px +(2μ +λ )qy +O(p2
x + p2

y +q2
x +q2

y).
(37)

When the deformations are small, the expressions (37) reduce to the linear elastic wave equation. Taking the time-
derivative of the constitutive relation Σ = Σ(px, py,qx,qy) gives a time evolution equation for each component of Σ,
namely

∂

∂ t
Σ =

∂

∂ t
Σ(px, py,qx,qy) =

∂Σ

∂ px

∂ px

∂ t︸︷︷︸
ux

+...

Furthermore, the time evolution of the displacement is determined by the velocity,

∂

∂ t
p = u,

∂

∂ t
q = v

and the Lagrangian field equations expressed in terms of components of the second Piola–Kirchhoff stress tensor are

ρut = [(1+ px) f + pyg]x +[(1+ px)g+ pyh]y
ρvt = [qx f +(1+qy)g]x +[qxg+(1+qy)h]y

which reduces to the linear elastic equations when the deformation gradient is small, i.e. |px| � 1 etc.
The close relation between the linear elastic wave equation and the nonlinear equation based on the neo-Hookean

model allows for simple theoretical models to be developed for the linear case and then to be directly applied to
the nonlinear equations. In PAPER5, simultaneous approximation term (SAT) expressions were derived for the linear
elastic wave equation which can be used for the nonlinear equations knowing that they are exact for small deformations
and a good approximation for larger deformations.

2.3 Fluid-structure interaction

2.3.1 Fluid-structure models

The structural motion is determined by a variety of force distributions, e.g. inertial, structural damping, stiffness and
aerodynamic forces [29]. When solving FSI problems one must consider the two-way coupling between the distinct
physical models, i.e. between fluid and solid mechanics. This can be accomplished in either direct or sequential
multidisciplinary approaches [12]. In the direct coupled field analysis approach, one tries to solve for all the degrees
of freedom of the system in one single sweep, whereas in the sequential coupling approach, the flow and structure
solvers are applied sequentially and coupling is achieved iteratively. For example, the results of one flow solver
iteration, is passed on as loads, e.g. pressure, to the structure solver and iterated until a convergence criterion has
been met for the loads, cf. [29, 8]. Treating the flow and structural equations as one monolithic system seems like
an attractive approach from a modeling point of view. In doing so, however, one has to sacrifice efficiency and to
restrict to smaller-scale aeroelastic problems [29]. Historically, solution techniques for the different physical fields
have evolved separately and naturally one seeks to make use of the mature techniques already available in the separate
fields. Therefore, sequential coupling procedures are almost always used in current research, treating the flow and
structure separately and coupling through a synchronization technique in space and time.

An interesting approach employing a three-field model (fluid, solid an acoustic) has been studied in [14]. The
incompressible Navier–Stokes equations are used to solve the flow field and Lighthill’s acoustic analogy is employed
to obtain the acoustic field.
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2.3.2 Immersed boundary methods

In the immersed boundary (IB) method, presented in [19], moving boundaries of a geometry are represented as a field
of forces on the rectangular fluid mesh. The author developed this method for the purpose of simulating blood flow
in the heart, where the tissue can be considered incompressible, i.e. of constant density ρ . A single divergence-free
velocity field was used to describe motion of the blood, valves and heart muscle. Instead of having to adapt the mesh
to the moving walls of the heart, the velocity field was defined on a larger fixed periodic domain filled with fluid. The
presence of the external fluid was assumed to have little effect on the internal flow pattern, provided that the periodic
mesh was big enough and that external sources and sinks are provided to account for volume changes in the heart
during the cardiac cycle. Because of the periodicity, no special treatment for external boundaries was required. To
describe the forces acting on the heart, a force density was introduced. This force density should be nonzero only in the
non-fluid regions and added as an external force to the Navier–Stokes system. The same equations could then be used
on the entire periodic domain. A Lagrangian representation was used to obtain the spatial configuration of the internal
boundary. This was needed in order to calculate the aforementioned force field due to the immersed boundary. A set
of massless points moving with the local fluid velocity was used to specify the configuration of the boundary, and a
force density expressed in terms of those points specified the boundary force field. Tension forces were imposed point-
wise and distributed to neighboring nodes. According to the author, the strength of this method lies in its generality.
Investigations can be performed for arbitrary complexity and design parameters of the heart or other structures without
changing the method.

In recent years, the popularity of IB methods has grown considerably [16], because they allow researchers to
easily develop computational models for flows with complex geometries and moving boundaries which would have
been difficult or impossible with boundary fitted mesh techniques. Without the need for complex grids, setting up
and initiating a simulation can be done with relative ease. The drawback with these methods is their accuracy. For
high Reynolds numbers, the solver needs to accurately resolve the boundary layers on the immersed surface, which
is challenging if the surface is not aligned with the grid lines. The local accuracy near the immersed boundary can
be improved by modifying the computational stencil near the surface and two methods for doing this are discussed in
[16]. The advantages of IB methods are that they are simple to implement, can be used on rectangular Cartesian grids,
allowing fast solvers to be used and are well-suited for flows with elastic boundaries.

Recently [15], immersed boundary methods have been applied to model phonation.

2.3.3 Present FSI approach

Consider the 2D linear elastic wave equation (35) written in first order form. The traction boundary condition, which
specifies an applied force per unit area on any part of the boundary, is given by Σn = T(x, t) where Σ is the symmetric
stress tensor, n is the outward unit normal on the boundary and T(x, t) is the given traction on the boundary. This leads
to a system of equations at each point on the boundary

f nx +gny = tx
gnx +hny = ty

where the symmetric stress components f ,g and h are to be determined. However, as there is not enough data to
determine all three of the variables, only linear combinations of f ,g and h can be determined. Hence the injection
method does not work for the traction boundary condition, i.e. it is not possible to give, say f , a definite value after a
complete time step in the Runge–Kutta method. These boundary conditions can, however, be implemented consistently
when employing the simultaneous approximation term (SAT) method, as was shown in PAPER5.

The force on the structure is calculated from the fluid stress σ = τ − p1 by T(x, t) = σn. The unit normal can be
calculated from the coordinate transformation as illustrated in PAPER5. Since both the flow and structure equations
are solved explicitly, no iterations are needed and the present FSI code is easily parallelizable. The time step is
determined by the stability condition for the Navier–Stokes equations. The fluid-structure interaction algorithm is
summarized below.

1. Generate the initial fluid mesh based on the reference configuration for the structure. ⇒ x0, ẋ0.

2. Give initial values for the fluid and the structure. ⇒ F0,S0.
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nT(x, t) = σ fn

Ωf

Ωs

x

(a) The traction vector T(x, t) exerted on the structure
by the fluid is calculated on the fluid-structure inter-
face as the fluid stress tensor times the outward unit
normal.

v

(i, j)
ẋi, j

Ωf

Ωs

(b) The grid point velocity ẋi, j at grid point (i, j) is
interpolated from the given velocity v of the structure
on the interface.

Figure 3: Illustration of fluid-structure interaction algorithm.

3. For time step n = 1,2, ..., do:

(a) Calculate the fluid stress on the boundary and calculate the force per unit area, i.e. traction, on the structure
via the unit normal. Store the traction vector Tn.

(b) Take one time step for the fluid: Fn+1 = F(xn, ẋn).

(c) Calculate the traction force from the fluid on the structure on the boundary, cf. Fig. 3(a). ⇒ Tn+1.

(d) Take one time step for the structure using the boundary conditions Tn: Sn+1 = S(Tn).

(e) Recalculate the fluid grid and the grid point velocities based on the new structure solution, cf. Fig. 3(b).
⇒ xn+1, ẋn+1.

4. Repeat from 3 with time step n+1 until the final time is reached.

3 Numerical modeling

3.1 High order finite difference methods

Throughout the history of CFD and computational mechanics, low order methods have held a dominant position,
mainly due to the simplicity of computer implementation of these algorithms. In recent years, however, high order
methods have gained momentum thanks to their efficiency. For problems where high accuracy is required, and espe-
cially in 2D and 3D applications, high order methods outperform their low order counterparts in terms of computer
power invested for a given error tolerance.

3.2 Energy method

The energy method is a general technique to prove sufficient conditions for well-posedness of partial differential
equations (PDE) and stability of difference methods with general boundary conditions [10].

Consider the solution of the model problem in 1D with

ut = λux, λ > 0, 0 ≤ x ≤ 1, t ≥ 0, u(x,0) = f (x), u(1, t) = g(t). (38)
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Here, the symbol λ represents a general eigenvalue of the hyperbolic system and should not be confused with the
Lamé parameter. Define the L2 scalar product for real functions v and w on the interval 0 ≤ x ≤ 1 as

(v,w) =

ˆ 1

0
v(x)w(x)dx (39)

which defines a norm of the continuous solution at some time t and an energy E(t) = ||u(·, t)||2 = (u,u). Using

integration by parts (v,wx) = v(1, t)w(1, t)−v(0, t)w(0, t)−(vx,w), we get dE
dt

= d||u||2
dt

= (ut ,u)+(u,ut) = λ [(ux,u)+

(u,ux)] = λ [(ux,u)+ [u2]10 − (ux,u)] = λ [u2(1, t)−u2(0, t)]. If λ > 0, the boundary condition u(1, t) = 0 yields a non-
growing solution, i.e. E(t)≤ E(0) = || f (x)||2. Note that periodic boundary conditions would also yield a non-growing
solution. Thus, the energy of the solution is bounded by the energy of the initial data. We know that the solution of
(38) exists and is unique. Hence, the problem is well-posed.

3.3 Summation by parts operators

The idea behind the summation by parts technique, cf. e.g. [24, 6, 10], is to use an operator Q to approximate ∂/∂x

and a quadrature rule H to approximate
´ 1

0 ...dx in order to satisfy the corresponding discrete property to integration
by parts of the continuous function, called the summation by parts (SBP) property. For the numerical solution of (38),
we introduce the equidistant grid x j = jh, j = 0, ...,N, h = 1/N, and a solution vector containing the solution at the
discrete grid points, u = (u0(t),u1(t), ...,uN(t))

T. The semi-discrete problem can be stated using a difference operator
Q approximating the first derivative,

du

dt
= λQu, ui(0) = f (xi). (40)

We also define a discrete scalar product and corresponding norm and energy by

(u,v)h = h∑
i, j

hi juiv j = huTHv, Eh(t) = ||u||2h = (u,u)h, (41)

where the symmetric and positive definite quadrature matrix H = diag(HL, I,HR) has components hi j. In order for (41)
to define a scalar product, HL and HR must be symmetric and positive definite. We say that the scalar product satisfies
the summation by parts property (SBP), if

(u,Qv)h = uNvN −u0v0 − (Qu,v)h. (42)

It can be seen that this property is satisfied if the matrix G=HQ satisfies the condition that G+GT = diag(−1,0, ...,0,1).
If Q and its corresponding quadrature matrix H satisfy the SBP property (42), then the energy method for the discrete
problem yields:

dEh

dt
=

d||u||2h
dt

= (ut ,u)h+(u,ut)h = λ [(Qu,u)h+(u,Qu)h] = λ [(Qu,u)h+u2
N −u2

0−(Qu,u)h] = λ [u2
N −u2

0]. (43)

For diagonal HL and HR there exist difference operators Q accurate to order O(h2s) in the interior and O(hs) near
the boundaries for s = 1,2,3 and 4. These operators have an effective order of accuracy O(hs+1) in the entire domain.
Explicit forms of such operators Q and norm matrices H were derived by Strand [24].

3.4 Simultaneous approximation terms

Since the term λu2
N in (43) is non-negative, strict stability, i.e. dEh/dt ≤ 0 here, does not follow when using the

injection method for the summation by parts operator, i.e. by using uN(t) = g(t) for injection affects the operator Q

and the SBP property (42). In contrast, the simultaneous approximation term (SAT) method is an approach where a
linear combination of the boundary condition and the differential equation is solved at the boundary. This leads to a
weak imposition of the physical boundary conditions. The imposition of SAT boundary conditions is accomplished
by adding a source term to the derivative operator, proportional to the difference between the value of the discrete
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solution uN and the boundary condition to be fulfilled. The SAT method for the semi-discrete advection equation (40)
can be expressed as

du

dt
= λQu−λτS(uN −g(t))

where S = h−1H−1(0,0, ...,0,1)T and τ is a free parameter.
The added term does not alter the accuracy of the scheme, since it vanishes when the analytical solution is substi-

tuted. Thus, we can imagine the SAT expression as a modification to the difference operator so that we are effectively
solving an equation ut = λ Q̃u with Q̃ = Q+Qsat without imposing the boundary conditions directly. When H is
diagonal, the scheme is only modified at one point on the boundary. We can now show that this scheme is strictly

stable for g(t) = 0. The energy rate for the solution of the semi-discrete equation is dEh
dt

=
d||u||2h

dt
= (ut ,u)h +(u,ut)h

= λ [(u,Qu− τSuN)h +(Qu− τSuN ,u)h] = λ [(u,Qu)h − τ(u,S)huN +(Qu,u)h − τ(S,u)huN ] = λ [(1− 2τ)u2
N − u2

0]
since (S,u)h = (u,S)h = huTHh−1H−1(0,0, ...,0,1)T = uN . The discretization is time stable if τ ≥ 1/2.

4 Summary of selected papers

Paper 1

M. Larsson, B. Müller: Numerical simulation of confined pulsating jets in human phonation. Computers and

Fluids 38 (2009), 1375–1383.

Using a fixed geometry, the flow field was calculated in a 2D domain representing the airways and the vocal folds.
A time dependent flow velocity was imposed at the inlet and non-reflecting boundary conditions were applied at
the outlet. The results displayed some similarities to other results published by other researchers but a quantitative
comparison was not possible since their results were for axisymmetric flow.

Paper 2

M. Larsson, B. Müller: Numerical Simulation of Fluid-Structure Interaction in Human Phonation. MekIT ’09:

Fifth national conference on Computational Mechanics, Trondheim 26–27 May 2009, editors Bjørn Skallerud

and Helge I. Andersson, Tapir Academic Press, 2009, 261–280.

The 2D compressible Navier–Stokes equations in ALE form were coupled to a structure solver to simulate fluid-
structure interaction for the vocal folds. A neo-Hookean material model was used for the structure and a constant
pressure difference was imposed across the glottis as driving force. The results captured the self-sustained oscillations
of the glottis.

Paper 3

M. Larsson, B. Müller: Numerical Simulation of Fluid-Structure Interaction in Human Phonation: Applica-

tion, Accepted for Proceedings of ENUMATH 2009 Eighth European Conference on Numerical Mathematics

and Advanced Applications, Uppsala, Sweden, to be published by Springer 2010

Paper 3 is a subset of Paper 2. The focus is on the high order finite difference solution of the 2D compressible
Navier–Stokes equations and results for the flow field.
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Figure 4: Typical result for fluid-structure interaction. The figure shows the absolute velocity of the velocity vector in
the fluid domain.

Paper 4

M. Larsson, B. Müller: Numerical Simulation of Fluid-Structure Interaction in Human Phonation: Verification

of Structure Part, Accepted for Proceedings of ICOSAHOM 09 International Conference on Spectral and High

Order Methods, Trondheim, Norway, to be published as a special volume of the Lecture Notes in Computational

Science and Engineering by Springer, 2010

Paper 4 focuses on the numerical boundary conditions for the structure equations. when using high order summation
by parts operators. Simultaneous approximation terms are derived and tested for the 2D linear elastic wave equation.

Paper 5

M. Larsson, B. Müller: Strictly stable high order difference method for the linear elastic wave equation, sub-

mitted to CiCP, 2010.

The numerical solution of the linear elastic wave equation, is investigated with regard to boundary and initial condi-
tions with the strictly stable SBP-SAT approach. The traction boundary condition is derived in the SAT framework.
Numerical experiments showed that a near 4th order convergence rate can be obtained.

Paper 6

M. Larsson, B. Müller: High order numerical simulation of fluid-structure interaction in human phonation,

Proceedings of ECCOMAS CFD 2010 conference, Lisbon, Portugal, 14–17 June 2010.

Paper 6 presents results for fluid-structure interaction with the 2D linear elastic wave equation coupled to the 2D
compressible Navier–Stokes equations via the SAT method.

5 Conclusions and outlook

5.1 Conclusions

In this thesis, three different approaches based on ALE methods to 2D fluid-structure interaction have been investi-
gated. In the first approach, the Lagrangian field equations for the nonlinear structure which are partial differential
equations of second order in time are transformed to a first order system in time by the introduction of the velocity as
an auxilliary variable and then integrated in time with a Runge–Kutta scheme. In this approach, the traction boundary
condition can be imposed by enforcing a momentum flux on the fluid-structure boundary. In the spatial discretization,
the momentum flux enters the finite-difference stencil at the boundary points. The finite-difference implementation
was shown to converge to a reference solution provided by a commercial code but the advantage of a high order method
was not evident.

In the second approach, the linear elastic wave equation written as a hyperbolic system in first order form is
integrated in time with the Runge–Kutta scheme. Here, a SAT approach was derived and used as an alternative to
injection to ensure strict stability of the method for general boundary conditions. A near fourth order convergence was
demonstrated for a manufactured solution and an academic IBVP.
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Figure 5: Acoustic pressure sampled at four equidistant points on a line perpendicular to the flow direction near the
outflow at x = 8H where H is the channel height, away from the glottis.

In the third approach, the previous method was extended to account for large deformations and nonlinear response
of the structure. This was accomplished with the Lagrangian field equations as a starting point by transforming them
to a form which reduces to the linear elastic wave equation when the deformations are small. The discretization is then
done in the same way except that the coefficient matrices are here dependent upon the gradient of the displacement
and the evolution equations for the stress components are nonconservative.

The compressible Navier–Stokes equations are discretized with a high-order finite difference scheme and coupled
to the structure equations in a two-way explicit fluid-structure interaction algorithm. Simulations have been performed
for the coupled system and results for vortex dynamics in the fluid domain (cf. Fig. 4) have been studied. Preliminary
results for the acoustics in the vocal tract have been obtained (cf. Fig. 5).

5.2 Outlook

To move the project further, a handful of options are available. A more detailed study of acoustic data can be made to
see the relation between the frequency spectrum of the sound waves in relation to model parameters. A rudimentary
result for acoustic pressure data has been plotted in Figure 5. Here, the acoustic pressure p′ = p− p∞ has been plotted
as a function of time at four equidistant points on a line situated 8 cm downstream of the glottis, perpendicular to the
flow direction. First, the acoustic pressure is zero because the acoustic signal has not yet reached the microphone
points. Then a large peak occurs due to the start-up of the flow from zero initial conditions. After this peak, the
acoustic pressure oscillates at an approximately constant frequency. There is little variation between the four points,
implying that the sound waves travel as plane waves down the channel. The flow field has not yet reached these points
and does therefore not interfere with the acoustic field.

Results for fluid-structure interaction with the nonlinear model remain to be published. A comparison between the
linear and nonlinear models will show what role nonlinear material response plays in the coupled dynamics.

To make predictions about real phonation, it would be necessary to create a 3D model with a realistic geometry for
the vocal folds. In addition, the collision that occurs in every oscillation cycle would need to be taken into account.
Contact in particular is difficult to handle in the present model, not only because the coordinate transformation for the
fluid domain breaks down when the cell volume goes to zero, but also because contact mechanics is in itself non-trivial
and an active field of research. Immersed boundary methods are better suited for complex geometries. When the fluid
is treated with an IB method, the collision of the vocal folds poses no problem. However, but a contact model is still
needed.
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a b s t r a c t

Confined pulsating jets in simplified two-dimensional models of the larynx are considered to study

human phonation. The jets are generated by periodically oscillating inlet velocities in stationary vocal

tracts. The jets are computed by solving the 2D compressible Navier–Stokes equations by a high order

finite difference method, which has been constructed to be strictly stable for linear hyperbolic and par-

abolic problems. Vortex dynamics is investigated.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When we speak or sing, an intermittent air flow through the vo-

cal folds from the trachea into the vocal tract is generated, giving

rise to audible sound [1,2]. The pressure of the respiration air

forced up the trachea from the lungs will eventually be high en-

ough to open the glottis, pushing the vocal folds apart and forming

a starting jet. As air passes through the glottis, the pressure in the

glottis decreases. Because of the drop in pressure and due to elastic

forces, the vocal folds will close again. The cycle then begins again

and a pulsating jet into the air column of the vocal tract is formed.

The acoustic waves from this pulsating jet are the main source for

human phonation. The various temporal features of the glottal

pressure waveform are the prerequisites for how the voice will

be perceived by the human ear.

The vocal folds take on three basic shapes during this cycle:

converging, uniform and diverging, cf. Fig. 1. The vocal fold tissue

can be thought of as a ribbon with multiple normal modes of oscil-

lation where the two sides of the ribbon do not move in phase. The

three different glottal shapes are then obtained at different phases

of the cycle.

Other sources of sound are turbulence in the glottal airstream,

vortex shedding from the moving walls, the interaction of the jet

vortices with the ventricular folds and transient sounds produced

by sudden onset and offset of phonation.

Recently, numerical simulations of phonation based on the

compressible Navier–Stokes equations have been performed [3–

5]. Like in direct numerical simulation, high order discretization

methods have been preferred for the numerical solution of the

compressible Navier–Stokes equations in aeroacoustics, because

higher order methods are more efficient for high accuracy require-

ments than low order methods.

We employ a high order finite difference approach based on

summation by parts (SBP) operators [6,7] to solve the compressible

Navier–Stokes equations. Opposed to conventional difference

approximations, our high order finite difference methods have

the advantage of being constructed to be strictly stable for linear

hyperbolic and parabolic problems even for non-periodic boundary

conditions. The sixth order SBP operator [7], which is third order

accurate near the boundaries, is employed to discretize the first

derivatives in the 2D compressible Navier–Stokes equations. The

operator has previously been used to simulate aeolian tones [8].

The Navier–Stokes equations in conservative form are expressed

in perturbation form [9,10,8] to minimize rounding errors caused

by cancellation in low Mach number flow computations. Another

high order approach relying on residual-based compact schemes

has recently been proposed by Lerat and Corre [11,12].

We consider the simplified models of vocal tracts with diverg-

ing and converging orifices, i.e. glottises, and similar pulsating in-

flow conditions as investigated by Zhao et al. [3]. However,

instead of axisymmetric flow studied in [3], we simulate 2D flow.

That allows us to investigate the differences between axisymmet-

ric and 2D flow and to study flow asymmetries due to the Coanda

effect.

The governing equations, i.e. the 2D and axisymmetric com-

pressible Navier–Stokes equations, are presented in perturbation

form for coordinate transformations in Section 2. The high order fi-

nite difference method is outlined in Section 3. In Section 4, results

for numerical simulations of confined pulsating jets are discussed

for Re ¼ 3000, M ¼ 0:2, Pr ¼ 1. Conclusions are stated in Section 5.

2. Navier–Stokes equations in perturbation form

The perturbation formulation is used to minimize cancellation

errors when discretizing the Navier–Stokes equations for com-

pressible low Mach number flow [9,8]. The 2D and axisymmetric

compressible Navier–Stokes equations in conservative form can

be expressed in perturbation form as [10]
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U0
t þ Fc0

x þ Gc0

y þ ‘Hc0 ¼ Fv0

x þ Gv0

y þ ‘Hv0 ; ð1Þ

where ‘ ¼ 0 for 2D flow and ‘ ¼ 1 for axisymmetric flow. The vector

U0 denotes the perturbation of the conservative variables with re-

spect to the stagnation values. U0 and the inviscid (superscript c)

and viscous (superscript v) flux vectors and axisymmetric source

terms are defined by

U0 ¼

q0

ðquÞ0

ðqvÞ0

ðqEÞ0

0
BBB@

1
CCCA; Fc0 ¼

ðquÞ0

ðquÞ0u0 þ p0

ðqvÞ0u0

ðq0H0 þ ðqHÞ0Þu0

0
BBB@

1
CCCA;

Gc0 ¼

ðqvÞ0

ðquÞ0v0

ðqvÞ0v0 þ p0

ðq0H0 þ ðqHÞ0Þv0

0
BBB@

1
CCCA;

Fv0 ¼

0

s0xx

s0xy

s0xxu
0 þ s0xyv

0 þ jT 0
x

0
BBBB@

1
CCCCA; Gv0 ¼

0

s0yx

s0yy

s0yxu
0 þ s0yyv

0 þ jT 0
y

0
BBBB@

1
CCCCA;

Hc0 ¼
1

y

ðqvÞ0

ðquÞ0v0

ðqvÞ0v0

ðq0H0 þ ðqHÞ0Þv0

0
BBB@

1
CCCA; Hv0 ¼

1

y

0

s0yx

s0yy � s0hh

s0yxu
0 þ s0yyv

0 þ jT 0
y

0
BBBB@

1
CCCCA:

The subscripts in (1) subsequently denote derivatives. We assume

perfect gas. The perturbation variables (superscript 0) are defined

with respect to their stagnation values (subscript 0), i.e. q0 ¼ q�

q0; ðquÞ
0 ¼ qu; ðqEÞ0 ¼ qE � ðqEÞ0; ðqHÞ

0 ¼ ðqEÞ0 þ p0; u0 ¼ ðquÞ0

q0þq0
; p0 ¼

ðc � 1Þ½ðqEÞ0 � 1
2
ððquÞ0 � u0Þ�; s0 ¼ lð$u0 þ ð$u0ÞTÞ� 2

3
l $ � u0 þ ‘ v0

y

� �
I,

s0hh ¼ � 2
3
lðu0

x þ v0yÞ þ
4
3

v0

y
, T 0 ¼ p0=R�q0T0

q0þq0
.

t is time, and x and y are the Cartesian coordinates. q denotes

the density, u and v the x- and y-direction velocities, E the specific

total energy, p the pressure, c ¼ 1:4 the ratio of specific heats for

air, R the specific gas constant, l viscosity determined from the

Sutherland law l

l0
¼ ð T

T0
Þ1:5 1þSc

T
T0
þSc

with the nondimensional Suther-

land constant Sc ¼
110

301:75
, j the heat conduction coefficient deter-

mined from the constant Prandtl number Pr ¼ 1. q0, ðqEÞ0 and

ðqHÞ0 denote the stagnation quantities of density, total energy den-

sity and total enthalpy density, respectively. The viscous flux vec-

tors Fv0 and Gv0 are the same as for the standard conservative form,

except for using the temperature perturbation T 0 instead of tem-

perature T for the heat flux terms. The momentum density and

velocity perturbations are taken as the same as their unperturbed

counterparts, i.e. ðquÞ0 ¼ qu and u0 ¼ u, cf. the definition of U0 with

respect to U0 ¼ ðq0;0;0; ðqEÞ0Þ
T above. The 2D conservative com-

pressible Navier–Stokes equations in perturbation form (1) are

written in dimensional form, while their nondimensional form

with q0, stagnation speed of sound c0, and q0c
2
0 as reference values

of density, velocity, and pressure, respectively, has actually been

used in the computations.

General geometries are treated by a coordinate transformation

x ¼ xðn; gÞ, y ¼ yðn; gÞ. The transformed 2D conservative compress-

ible Navier–Stokes equations in perturbation form read

bU0
t þ

bF0
n þ

bG0
g þ ‘bH0 ¼ 0; ð2Þ

where bU0 ¼ J�1U0; F̂0 ¼ J�1
nxðF

c0 � Fv0 Þ þ J�1
nyðG

c0 � Gv0 Þ; bG0 ¼

J�1
gxðF

c0 � Fv 0Þ þ J�1
gyðG

c 0 � Gv0 Þ; bH0 ¼ J�1ðHc0 �Hv0 Þ.

The x- and y-derivatives in the viscous flux vectors Fv0 and Gv0

are expressed using the chain rule, e.g. u0
x ¼ u0

nnx þ u0
ggx and

u0
y ¼ u0

nny þ u0
ggy. The Jacobian determinant of the transformation J

is determined by J�1 ¼ xnyg � xgyn, and the metric terms by

J�1
nx ¼ yg, J

�1
ny ¼ �xg, J

�1
gx ¼ �yn, J

�1
gy ¼ xn.

3. High order finite difference method

3.1. Summation by Parts (SBP) Operators

Let vj; j ¼ 0; . . .N, be an approximation to the exact solution

uðxjÞ at the grid point xj ¼ jh, where h ¼ 1=N. The discrete scalar

product and norm are [7]

ðu; vÞh ¼ hu
T
Hv; kuk2h ¼ ðu;uÞh; ð3Þ

where the norm matrix H is diagonal and positive definite.

The summation by parts (SBP) property, analogous to integration

by parts in the continuous case, is satisfied, if [7]

ðu;QvÞh ¼ uNvN � u0v0 � ðQu; vÞh ð4Þ

for a difference operator Q. Let

hQ ¼ H�1B: ð5Þ

The SBP property can be rewritten

hu
T
HQv ¼ uTdiagð�1;0; . . . ;0;1Þv� hðQuÞTHv ð6Þ

and rearranged to

hu
T
ðHQ þ QTHÞv ¼ uTdiagð�1;0; . . . ;0;1Þv: ð7Þ

Now, H was diagonal by definition so H ¼ HT, hence

uTðHhQ þ ðHhQÞTÞv ¼ uTdiagð�1;0; . . . ; 0;1Þv: ð8Þ

Using (5) and the fact that u and v are arbitrary, we get

Bþ BT ¼ diagð�1;0; . . . ;0;1Þ: ð9Þ

This defines B under the assumption (5). The difference operator Q

is an approximation to the first derivative, i.e. ðQvÞj �
duðxjÞ

dx
. If Q is

accurate of order 2s in the interior, then there is a diagonal norm

matrix H, such that Q is accurate of order s near the boundaries

[7]. When s ¼ 3 which is the case considered here, there is a one-

parameter family of operators Q. One of the elements in the matrix

of Q can be set to zero in such a way that the bandwidth of the
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Fig. 1. Characteristic variation of glottis cross-section: 1 & 9 closed, 2 opening, 3 & 4

converging, 5 uniform, 6 & 7 diverging, 8 closing. The air flows from the trachea on

the left into the vocal tract on the right.
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matrix is minimized to obtain a unique matrix Q which yields a

sixth order accurate operator in the interior. Thus, the global order

of accuracy of the present SBP operator Q is sþ 1 ¼ 4 [6].

Second derivatives are approximated by applying the SBP oper-

ator Q twice. Alternative discretizations of second derivatives

[13,14] are discussed in [8]. Opposed to conventional difference

operators, SBP operators allow energy estimates for the discrete

problems similar to the ones for the continuous problems, which

are approximated. Thus, SBP operators yield strictly stable schemes

for general boundary conditions.

If the x-derivative in the convection diffusion equation

ut þ aux ¼ buxx, where a and b are assumed to be constant and

b > 0, is approximated by a standard central pth order finite

difference operator Q ðpÞ
x and the time derivative by an explicit Run-

ge–Kutta method, the von Neumann stability analysis leads to the

stability condition Dtð�abQ ðpÞ þ bðbQ ðpÞÞ2Þ 2 S, where bQ ðpÞ is the Fou-

rier transform of Q ðpÞ
x and S the stability domain of the Runge–Kutta

method. bQ ðpÞ Dx
i
is the approximate wave number ~kDx. For SBP oper-

ators, the stability condition is more restrictive, because

Dtk � aQ ðpÞ
x þ bðQ ðpÞ

x Þ2k 6 R < R1 is required, where the open semi-

circle fz 2 Cjjzj < R1 and RealðzÞ < 0g is contained in the stability

domain S [15]. In practical computations, however, it has been pos-

sible to use von Neumann stability condition with a safety margin.

The von Neumann stability condition for the standard central sixth

order difference operator Q ð6Þ
x and the classical fourth order explicit

Runge–Kutta method reads CFL ¼ jajDt
Dx

6 1:783 for b ¼ 0 and

VNN ¼ jbjDt

Dx2
6 1:124 for a ¼ 0, while CFL 6 2:828 for b ¼ 0 and

VNN 6 2:828 for a ¼ 0 is required for the standard central second

order operator Q ð2Þ
x . Note that ðQ ð6Þ

x uÞj ¼
1
Dx

1
60
ujþ3 �

3
20
ujþ2þ

�
3
4
ujþ1 �

3
4
uj�1 þ

3
20
uj�2 �

1
60
uj�3Þ and bQ ð6Þ ¼ i

Dx
3
2
sinðkDxÞ � 3

10
sin

�
ð2kDxÞ þ 1

30
sinð3kDxÞ�, where k is the wave number in this

subsection.

3.2. Approach for Navier–Stokes equations

The transformed 2D compressible Navier–Stokes equations in

perturbation form (2) are solved on a rectangle, where n ¼ 1 and

n ¼ jmax represent the inlet and outlet boundaries of the vocal tract,

respectively, and g ¼ 1 and g ¼ kmax correspond to the lower and

upper walls of the vocal tract, respectively. The n- and g-derivatives

in the metric terms are discretized by Strand’s 3–6 SBP operator

[7]. The viscous flux vectors are discretized by approximating the

first n and g derivatives of u0, v0 and T 0, by Strand’s 3–6 SBP opera-

tor. After the flux vectors bF0 and bG0 are computed at all grid points,bF0
n and bG0

g are approximated by employing Strand’s 3–6 SBP oper-

ator once more.

The classical fourth order explicit Runge–Kutta method is used

for time integration. Spurious high wave number oscillations are

suppressed by a sixth order explicit filter [8].

3.3. Boundary conditions

No-slip adiabatic wall boundary conditions (uw ¼ vw ¼ 0,
oTw
on

¼ 0) and the Navier–Stokes Characteristic Boundary Conditions

(NSCBC) technique by Poinsot and Lele in [16] are employed. The

amplitudes of the characteristic waves.

L1 ¼ k1
op

ox
� qc

ou

ox

� �
; L2 ¼ k2 c2

oq

ox
�
op

ox

� �
; L3 ¼ k3

ov

ox
;

L4 ¼ k4
op

ox
þ qc

ou

ox

� �

are prescribed for ingoing waves. Non-reflecting boundary condi-

tions can be obtained by setting the ingoing waves to zero. Thus,

for reverse flow at the outlet, we set L1 ¼ L2 ¼ L3 ¼ 0.
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Fig. 2. Close-up of grid near the glottis region (not all points shown for clarity)
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4. Results for confined pulsating 2D jets

4.1. Grid

We consider a simplified model of the vocal tract without ven-

tricular folds as proposed by Zhao et al. [3]. The shape of the geom-

etry [3] is defined by

rwðxÞ ¼
D0 � Dg

4
tanhðsÞ þ

D0 þ Dg

4
þ
1

2
tanðaÞðxþ cDgÞð1� tanhðsÞÞ;

ð10Þ

where Dg is the minimum orifice diameter, D0 ¼ 5Dg is the diameter

of the uniform duct, b ¼ 1:4 is a constant and a ¼ �20� is the angle

of the orifice. The parameter c and the angle a are chosen as

c ¼ �0:39 and a ¼ �20� for the converging orifice and c ¼ 0:39

and a ¼ 20� for the diverging orifice. The symmetric function

s ¼ sðxÞ reads

s ¼
bjxj

Dg

�
bDg

jxj
: ð11Þ

As x ! 0, s ! �1 so tanhðsÞ ! �1 and as x ! 1, s ! 1 so

tanhðsÞ ! 1.

The spacing of the grid points was chosen such that the resolu-

tion is best in the region near the glottis where the flow is expected

to have the most complex structures. A close-up of the grid near

the glottis region is shown in Fig. 2.
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4.2. Inflow conditions

At the inflow, the velocity in the x-direction is specified simi-

larly to Zhao et al. [3] by

uinðy; tÞ ¼ U0ðtÞ tanh½40ðD0=2� jyjÞ=Dg �; ð12Þ

which is an almost uniform profile but zero at the boundaries

y ¼ �D0=2. Dg ¼ 4 mm is the minimum orifice diameter and

D0 ¼ 5Dg is the duct diameter. The time-varying maximum U0ðtÞ

is given by Zhao et al. [3]

U0ðtÞ ¼ 0:02004UM � 0:02UM cosð2pf0tÞ; ð13Þ

where UM ¼ 40 m=s is the maximum expected velocity at the throat

and f0 ¼ 125 l=s is the forcing frequency.

Dimensionless quantities for length, velocity and time are de-

fined with respect to Dg , the stagnation speed of sound c0 and

Dg=c0, respectively, hence

x� ¼
x

Dg

; y� ¼
y

Dg

; u� ¼
u

c0
; v� ¼

v

c0
; t� ¼

c0t

Dg

: ð14Þ

The stagnation speed of sound was artificially changed from

340 m=s to c0 ¼ 200 m=s in this study to increase the computational

efficiency. Thus, the maximum expected velocity corresponds to the

Mach number M ¼ 0:2 as in [3]. For subsonic flows at low Mach

numbers, this change is expected to have negligible effect [3].

The dimensionless forcing period is T�
0 ¼ 1=f �0 ¼ c0=Dgf0 ¼ 400.

The time-independent velocity profile u�
inðy

�; t�Þ=U�
0ðt

�Þ and the

time-dependent forcing function U�
0ðt

�Þ are shown in Fig. 3.
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The parameters 0.02004 and 0.02 in (13) are those given by

Zhao et al. [3] for an axisymmetric jet, and they are chosen to get

a maximum velocity of UM ¼ 40 m=s in the orifice. For the 2D sim-

ulations here (not considered by Zhao et al. [3]), these parameters

were changed so that the maximum velocity in the orifice would

be UM also for the 2D case. The velocity in a duct will in general

be smaller for the 2D case than in the axisymmetric case because

the cross-section area scales as y2 for the axisymmetric case but

only as y for the 2D case. Comparison with the velocity profile (Fig-

ure 4 in [3]) has led to the following nondimensional forcing func-

tion for the 2D case

U�
0;2Dðt

�Þ ¼
40

200
0:0835� 0:0833 cosð2pt�=400Þ½ �: ð15Þ

The Reynolds number based on UM and Dg was set to Re ¼ 3000 as

in [3] in order to be able to compare results.

The Prandtl number was set to Pr ¼ 1:0 as in [3]. More details

may be found in [17].

4.3. Diverging geometry

For the diverging geometry, a is set to þ20� in (10). The compu-

tational domain was set to reach from �4 to 35 in the x-direction

and �2.5 to 2.5 in the y-direction.

The grid was generated with 361	 121 points. The minimum x-

spacing in the middle of the orifice was 0.0325 and the maximum

x-spacing at the end of the domain was 0.7146. The uniform y-

spacing in the middle of the glottis was 0.0082 and increased to

0.0417 at the end of the domain. An exit zone was used at the

end of the domain.

The solution was marched from time t� ¼ 0 with zero initial

conditions for U0 to t� ¼ 8T�
0=3 where T�

0 is the forcing period of

the pulsating inflow. A variable time step technique was employed

so that the CFL number remained a constant equal to 1 during the

entire simulation. The maximum time step based on this CFL crite-

rion was 0.00539.

Results for the vorticity1 (z-component) are shown in Fig. 4. Only

the top half of the domain is shown. The solution is symmetric w.r.t.

the x-axis. The nondimensional vorticity is

ðr� 	 u�Þz ¼
ov�

ox�
�
ou�

oy�
: ð16Þ

A leading vortex is shed from the orifice at approximately t� ¼ T�
0=3.

It is convected downstream and grows in size as the absolute value

of vorticity is successively decreased in the center of the vortex. It

leaves a trail of vorticity and two new vortices are created inside

the trail at approximately t� ¼ 4T�
0=6. A smaller fourth vortex is

shed at t� ¼ 5T�
0=6.

The process then repeats itself. A new vortex is shed one period

of time after the first leading vortex left the orifice, and the con-

tours at later times are indeed very similar to the corresponding

contours at times one period earlier. This suggests that the influ-

ence of initial data is small.

The leading vortex is convected out of the domain but the smal-

ler ones get dissipated and only leave weak trails.

A profile of the velocity in the x-direction u through the center

vortex at position x� ¼ 0:799 and time t� ¼ T�
0=3 is shown in Fig. 7.

4.4. Coanda effect

Experimental investigations of the vortex dynamics in a

mechanical model of the vocal folds suggest asymmetries in the

jets [18]. Thus, for the diverging orifice, a study of asymmetries

in the flow was conducted. Instead of an adiabatic wall, the iso-

thermal boundary condition Tw ¼ T0 was used in this study. The

asymmetry was imposed by changing the no-slip boundary condi-

tion at the wall to one where a nonzero tangential velocity is given

on the boundary for a short period of time.

A grid with 481	 161 points was selected for a geometry

extending from �4 to 25 in the x-direction and from �2.5 to

2.5 in the y-direction. An exit zone at the outflow was intro-

duced. The minimum x-spacing in the middle of the orifice was

0.0136, the uniform x-spacing between the orifice and the exit

zone was 0.073 and the maximum x-spacing at the end of the

exit zone was 0.386. The uniform y-spacing was 0.0061 in the

orifice and 0.0312 near the outflow. The asymmetry was imposed

between times t� ¼ 0:30T�
0 to t� ¼ 0:45T�

0 by gradually increasing

and then decreasing the tangential velocity at the upper bound-

ary between x� ¼ �1 and x� ¼ 1, reaching a maximum value of

0.2 which corresponds to the maximum Mach number of the

flow.

Fig. 5 shows results for the vorticity contours at times

t� ¼ 0:1T�
0;0:2T

�
0; . . . ; 0:8T

�
0. The leading vortex starts to be shed

at approximately t� ¼ 0:30T�
0 and then the asymmetry starts to

build up. Even after the asymmetry has been turned off, the flow

stays very asymmetric, suggesting that only a small perturbation

is required for the flow to remain asymmetric at later times.
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4.5. Converging geometry

The parameters a and c in (10) were set to �20� and �0.39,

respectively, and a simulation was set up with otherwise the same

conditions as for the diverging case.

Results for the vorticity contours are shown in Fig. 6.

A few differences and similarities as compared to the diverging

case can be pointed out. The leading vortex is created at the same

time and convected in the same way. But only one additional vor-

tex is created within its trail during the first period. The absolute

value of vorticity in the leading vortex is smaller than that in the

diverging case. Also in this case, the process repeats itself after

one period, and the effect of initial data is small.

A profile of the velocity in the x-direction u through the center

vortex at position x� ¼ 1:593 and time t� ¼ T�
0=3 is shown in Fig. 8.

The reason for the leading vortices in the two cases to be at dif-

ferent locations is that the shedding point is not the same. Assum-

ing that shedding occurs at some critical velocity, the vortex in the

converging case will have a head start as the shedding point is fur-

ther to the right.

4.6. Verification

For the converging orifice, a comparison with Figure 6 in [3] can

be made. Whereas their dimensionless velocity is defined w.r.t. the

maximum expected velocity in the orifice UM , the velocities in this

study are nondimensionalized w.r.t. the stagnation speed of sound

c0. Thus, the nondimensional velocity and vorticity in [3] are a fac-

tor of c0=UM ¼ 5 larger than ours.

For example, the vorticity of Figure 6 in [3] should be compared

to Fig. 6 here. The absolute value of the dimensional vorticity with-

in the leading vortex at t�0 ¼ 2
6
T�
0 in the axisymmetric study [3]2 is

three times larger than in the present 2D investigation. The qualita-

tive appearance of the vorticity contours look the same as in [3] but

their high levels of vorticity are not reached here.

A similar difference between the axisymmetric results of Figure

5 in [3] and the present 2D results in Fig. 4 are observed for the

diverging orifice.

The velocity profile u=UM of Fig. 4 in [3] (lower subplot) shows

similar features as the corresponding profile in Fig. 7. Grid refine-

ment indicates that the general features of the pulsating jets are

well captured with the 361	 121 grids, whereas the resolution

of details in the vortex structures requires finer grids like the

721	 241 grids used for comparison in Figs. 7–9a–d.

5. Conclusions

The 2D compressible Navier–Stokes equations in perturbation

form are solved by a strictly stable fourth order difference method

to simulate confined pulsating jets at Re ¼ 3000,M ¼ 0:2 in simpli-

fied 2D models of the human vocal tract. The vortex dynamics is

investigated and compared to axisymmetric results by Zhao et al.

[3] indicating lower vorticity for 2D than axisymmetric flow.
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Summary Fluid-structure interaction in a simplified two-dimensional model of the larynx is
considered to study human phonation. The flow is driven by an imposed pressure gradient across
the glottis and interacts with the moving vocal folds in a self-sustained oscillation. The flow is
computed by solving the 2D compressible Navier–Stokes equations using a high order finite dif-
ference method, which has been constructed to be strictly stable for linear hyperbolic and parabolic
problems. The motion of the vocal folds is obtained by integrating the elastodynamic equations
with a neo-Hookean constitutive model. Fluid and structure interact in a two-way coupling us-
ing a similar high order difference method. In each time step at the fluid-structure interface, the
structure provides the fluid with new no-slip boundary conditions and new grid velocities, and the
fluid provides the structure with new traction boundary conditions. The frequency obtained in our
simulation is close to values observed in human phonation.

Introduction

Fluid-structure interaction (FSI) occurs when a flexible structure interacts with a fluid. The
fluid flow exerts a stress on the structure which causes it to deform and thereby generate a new
geometry for the fluid flow. This interaction is responsible for a wide range of phenomena which
are crucial in engineering applications such as aircraft design and bridge construction, where
structural motion is undesirable. The coupling between fluid flow and structural motion also
plays an important role in many biological systems such as the cardiovascular and respiratory
systems. The pulsatile blood flow in viscoelastic arteries and the transient airflow in the upper
airways are the prime examples. Numerically simulating FSI in such systems can help to better
understand the underlying biological mechanisms and potentially advance medical treatments
[7].

Figure 1: Cross sec-
tion of larynx.

A direct consequence of FSI in the vocal tract is voice generation, where
the motion of the soft tissue of the vocal folds (cf. fig. 1) interacts dy-
namically with the glottal airflow to produce sound. The self-sustained
oscillation of the vocal folds can be explained by the Bernoulli princi-
ple which states that in the absence of gravity for inviscid incompress-
ible steady flow, the velocity v, pressure p and density ρ are related by
p + ρv2/2 = const. The vocal folds being closed in their equilibrium po-
sition, initially at rest, are forced apart by the increasing lung pressure.
As the air starts flowing, the velocity in the glottis increases and thus the
pressure must decrease according to the Bernoulli principle. The pressure
drop together with restoring elastic forces results in a closure of the vocal
folds and a build-up of pressure. This cycle then repeats itself, driven only
by the lung pressure. The computational challenge in aeroelastic simula-
tions lies in dealing with unsteady flows at high Reynolds numbers, large
deformations, moving interfaces, fluid-structure interaction and intrinsi-
cally 3D motion [7].



Fluid-structure interaction modelling

When solving FSI problems one has to consider the two-way coupling between the distinct
physical models, i.e. fluid and structural mechanics. This can be accomplished in two ways:
either direct or sequential multidisciplinary approaches. In the direct coupled field analysis
approach, one solves for all the degrees of freedom of the system in one single sweep, whereas
in the sequential coupling approach, the results of one solver iteration (e.g. fluid motion) is
passed on as loads (traction) to the next one. Treating the flow and structural equations as one
monolithic system (direct coupling) seems like an attractive approach from a modeling point of
view. In doing so, however, one has to sacrifice efficiency and restrict to smaller-scale aeroelastic
problems [35]. Historically, solution techniques for the different physical fields have evolved
separately and naturally one seeks to make use of the matured techniques already available in
the separate fields. Therefore, sequential coupling procedures are usually preferred, since they
do not require a dedicated code [5].

Numerical models of phonation with fluid-structure interaction

Epithelium
Lamina Propria

Ligament

Vocalis muscle

Mucosa

Figure 2: Sketch of the layered structure of the vocal
fold. The mucosa (cover) consists of the epithelium
and the lamina propria. The ligament is between the
cover and the vocalis muscle.

The vibratory properties of the vocal folds are
mainly attributed to the lamina propria (cf.
figure 2) which is the main constituent in the
mucous membranes that line various tubes in
the body, particularly in the vocal tract. The
lamina propria by itself is a thin layer of loose
connective tissues which together with the ep-
ithelium constituate the mucosa. The func-
tional layers of the vocal fold, with respect to
phonation, can be divided into the vocal fold
cover (mucosa) and the vocal fold ligament.

Self-oscillating computational models for the
vocal folds, driven by the pressure predicted
from the Bernoulli relation were first devel-
oped in the late 1960s by Flanagan [6]. These
basic models for the vocal folds comprise one
or two masses coupled to a spring forming an
oscillating mass-spring system. These simple
but elegant models successfully captured the self-sustained vibration of the vocal folds. Multi-
mass models were subsequentially developed by Titze in the mid-1970s [29] and similar models
were used with variations until the mid-1990s when a body-cover model for the two-mass model
was developed by Story and Titze [27] to incorporate the multi-layered nature of the vocal folds.
Even though the early lumped mass models were elegant in concept, there is considerable doubt
whether they represent the actual geometry and viscoelastic properties of the vocal folds ade-
quately enough to identify voice disorders and special voice qualities [1].

In the mid-1990s, more elaborate models for the vocal folds were developed based on contin-
uum models. A finite element method was used by Alipour and Titze [3] to model the vocal fold
deformation, coupled to the flow field obtained through a Navier–Stokes solver. Finite element
methods proved much higher accuracy and predictive power than lumped multi-mass models,
and were also more suited for handling complex geometries and driving forces. More elaborate
models were developed [1, 2], accounting for the transverse isotropy and layered structure of



the vocal folds, still assuming small deformations. In 2003, the presence of the false vocal folds
was investigated in [23] using a finite element model. Recently, a sharp-interface immersed-
boundary method was developed in [15] to simulate the fluid-structure interaction between an
incompressible fluid flow and vocal folds with a linear viscoelastic model.

Recently, numerical simulations of phonation based on the compressible Navier–Stokes equa-
tions have been performed [33, 34, 32]. Like in direct numerical simulation, high order dis-
cretization methods have been preferred for the numerical solution of the compressible Navier–
Stokes equations in aeroacoustics, because higher order methods are more efficient for high
accuracy requirements than low order methods.

In this paper, we employ a high order finite difference approach based on summation by parts
(SBP) operators [28, 9, 8] to solve the compressible Navier–Stokes equations. The compressible
Navier–Stokes equations have been chosen to simulate not only the dynamics of the fluid motion
but also the generation and propagation of sound waves [31]. A high-order method was chosen
because of high accuracy requirements in fluid simulation of sound generation [31]. Opposed to
conventional difference approximations, our high order finite difference methods have the ad-
vantage of being constructed to be strictly stable for linear hyperbolic and parabolic problems
even for non-periodic boundary conditions. The sixth order SBP operator [28], which is third
order accurate near the boundaries, is employed to discretize the first derivatives in the 2D com-
pressible Navier–Stokes equations. The second derivatives in the compressible Navier–Stokes
equations and the elastodynamic equations are approximated by applying the SBP operator
for the first derivatives twice. The SBP operator has previously been used to simulate aeolian
tones [19]. The Navier–Stokes equations in conservative form are expressed in perturbation
form [25, 18, 19] to minimize rounding errors caused by cancellation in low Mach number flow
computations.

Utilizing similar high order finite difference methods, we have also developed an explicit solver
for the Lagrangean field equations of structural mechanics and coupled it to our solver for
the compressible Navier–Stokes equations in an ALE formulation. Since during phonation, the
vocal folds undergo large displacements from their equilibrium configuration, a finite-strain
model is needed to model the structure accurately. Our implementation for the structure solver
can solve for the dynamic response of the structure due to external loads such as the traction
force from a fluid flow. It differs from typical finite-element implementations, in particular with
regard to the traction boundary condition which is not trivial to impose in a strong formula-
tion. This issue is elaborated upon below. The advantage of this approach over unstructured
methods is that we can have structured grids in both domains (fluid and structure) and match-
ing grid points on the interface without need for interpolation, which increases the accuracy
of the computation. Finite element and Cartesian grid immersed-boundary methods have the
advantage over structured finite difference methods of handling complex domains better. In this
study, we only consider simple domains in 2D. P. Šidlof [26] notes that the vortex dynamics in
2D and 3D are substantially different and that only the 3D simulation can yield reliable results.
Nevertheless, 2D numerical methods are prerequisites for the development of 3D ones.

This paper is organized as follows: We start by describing finite strain theory of structural me-
chanics and continue to present the Navier–Stokes equations of fluid dynamics in perturbation
formulation. Then the explicit fluid-structure coupling scheme is outlined. In the next chapter,
we present the high order finite difference method and the explicit Runge–Kutta time integration
scheme. Results and conclusions are stated at the end.



Finite strain theory

Notation

Finite strain theory is well developed, but the different notations found in the literature can be
confusing and sometimes misleading. Therefore, a thorough explanation of basic quantities is
warranted here. Let a deformable body occupy some region Ω0 in space (cf. figure 3). With
every particle in the body a coordinate vector X = (X, Y, Z) called the reference coordinate
of the particle is associated. The set Ω0 is called the reference configuration of the body. As
the body translates, rotates and deforms through space, the particle originally at position X is
now at a new position x = (x, y, z) in the current configuration of the body Ω. A mapping can
be defined that associates each reference coordinate with the current coordinate, x = φ̃(X, t).
The displacement from the reference configuration is then φ(X, t) = φ̃(X, t) − X. A small
line element in the reference configuration dX transforms to dxi = (∂xi/∂Xα)dXα = FiαdXα,
where F = ∇Xφ̃(X, t) is the deformation gradient. For later convenience, also define B = F

−T

so that Biα = ∂Xα/∂xi. Tensor notation provides a compact way to write the equations. Here,
use will be made of both tensor and index notation.

Governing equations

Reference configuration Ω0

Current configuration Ω(t)

dX
dx

O
x2, X2

x3, X3

x1, X1

φ(X)

X

x

x = φ̃(X)

Figure 3: Variables in continuum deformation

Neglecting external forces, the Lagrangean
field equations [20] which describe the mo-
tion of the body, expressed in terms of the
nominal stress tensor S are

∂Sαi

∂Xα

= ρ0φ̈i. (1)

Here, ρ0 is the density of the body in the ref-
erence configuration. Superscript dots denote
Lagrangean time derivatives at fixed X, also
known as material time derivatives, i.e.

φ̇ ≡
∂φ(X, t)

∂t

∣∣∣∣
X

≡
∂φ

∂t
.

Constitutive relations

Define the right Cauchy–Green deformation tensor as C = F
T
F and the Green strain tensor

E = 1
2
(C− 1) where 1 is the identity tensor. It is often convenient to consider the elastic prop-

erties of a homogeneous material to be derived from a strain energy function W (E) depending
on the Green strain tensor only. Such a material is called hyperelastic and this assumption is
frequently used in modeling of biological tissues. With this functional dependence, objectivity
is asserted [21], i.e. the stored elastic energy is unaffected by superimposed rigid translations
and rotations. When there is no deformation, i.e. F = 1 and E = 0 the strain energy must
reduce to zero, so that W (0) = 0. The second Piola–Kirchhoff stress tensor (2PK for short) in
hyperelasticity is

Σ =
∂W (E)

∂E
= 2

∂W (C)

∂C
(2)

where the partial derivative is to be interpreted as Σij = ∂W/∂Eij . The nominal stress is in turn
obtained by S = ΣF

T. The constitutive model for the material is in the functional form of W



which can be an explicit expression for the components of E (strain-based formulation), but it is
often easier to define a material model in terms of the principal invariants of the Cauchy-Green
tensor C (invariant-based formulation), namely W = W (C) = W (I1(C), I2(C), I3(C)) where

I1(C) = tr(C), I2(C) =
1

2
(I1(C)2 − tr(C2)) and I3(C) = detC.

In the invariant-based framework, the derivatives of the invariants with respect to the symmetric
deformation tensor are

∂I1(C)

∂C
= 1,

∂I2(C)

∂C
= tr(C)1 − C and

∂I3(C)

∂C
= C

−1 detC. (3)

The recipe for obtaining the nominal stress in the body for a given deformation F is then F →
C → I1,2,3/E → W → Σ → S.

Invariant-based formulations

Consider the neo-Hookean type strain energy function given as W (C) = W (I1(C), I3(C)) =
μ
2
(I1 − 3) − μ

2
ln I3 + λ

8
(ln I3)

2. To obtain The 2PK stress for this model, use the definition (2)
and the invariant derivatives (3) to obtain

Σ = 2
∂W

∂C
= 2

∂W

∂I1

∂I1

∂C
+ 2

∂W

∂I3

∂I3

∂C
= μ1 +

(
λ

2
ln detC − μ

)
C

−1. (4)

For a rigid body motion, the deformation gradient is a an orthogonal tensor which implies that
C is the identity tensor. So, for this model, Σ(C = 1) = 0 and W (C = 1) = 0, as expected.

Boundary conditions

(i) Displacement boundary condition

On a boundary Γ1 where the body is fixed in space, the boundary condition is given directly
for the unknown displacements φ(X, t) = f(X), a given function of space. A commonly used
boundary condition is that the body should be fixed to its reference configuration on a part of
the boundary, in which case one would have f(X) = 0.

(ii) Condition of traction

If the body experiences traction on a boundary Γ2 (typically from a surrounding material, e.g.
a fluid), a traction condition must be specified on that boundary. In general, this condition can
be expressed as S

T
N = T where S is the nominal stress, N the outward unit normal and T a

given force per unit area on the boundary in the reference configuration.

As an example, consider the case of a static fluid pressure acting on the body. Naturally, the
fluid around the body does not recognize anything else than the current configuration Ω of
the body, which has some unit outward normal n. The force t exerted by the fluid on a small
area element da on the boundary of the body is then t = −pnda, where p is the static fluid
pressure. According to Nanson’s formula [20], the directed area element nda in Ω is related to
a corresponding element NdA in Ω0 through nda = det(F)BNdA with B = F

−T. Thus, the
force per unit area in the reference configuration can be written as T = t/dA = −p det(F)BN.
Extension from static pressure to shear stress from a viscous fluid flow is now straightforward.
A fluid with stress tensor σf exerts a force t = σf

nda on an area element da. Using Nanson’s
formula again, the force per unit area in the reference configuration can be written



T = det(F)σf
BN. (5)

This formula also includes the static fluid pressure case, for which σf = −p1. Furthermore, in
a compressible viscous fluid, the stress is

σf =

(
−p −

2

3
μf∇ · uf

)
1 + μf

(
∇u

f +
(
∇u

f
)T)

(6)

where μf is the fluid viscosity and u
f is the fluid velocity.

Transformation

In order to transform the reference configuration to a computational domain, a set of computa-
tional coordinates ξ, η is introduced. The coordinates in the reference configuration can then be
written X = X(ξ, η), Y = Y (ξ, η). Since the transformation is invertible, the opposite relations
ξ = ξ(X, Y ), η = η(X, Y ) hold as well. Differentiating these transformations yields two vector
equations for the Jacobian matrices where one must be the inverse of the other, hence the metric
identities are J−1ξX = Yη, J−1ξY = −Xη, J−1ηX = −Yξ, J−1ηY = Xξ where

J−1 = XξYη − XηYξ (7)

is the Jacobian determinant of the transformation. Transforming the Lagrangean field equations
to computational coordinates gives

J−1ρ0φ̈ = (J−1ξXS1 + J−1ξY S2)ξ + (J−1ηXS1 + J−1ηY S2)η

− S1[(J
−1ξX)ξ + (J−1ηX)η] − S2[(J

−1ξY )ξ + (J−1ηY )η], (8)

where the notation Sαi = (Sα)i has been used, i.e. S1 and S2 viewed as column vectors are the
columns of S

T. The terms in square brackets cancel because of the metric identities and the fact
that the partial derivatives commute. What remains is

φ̈ =
1

J−1ρ0

[
(Ŝ1)ξ + (Ŝ2)η

]
(9)

where Ŝ1 = J−1
S

T∇ξ and Ŝ2 = J−1
S

T∇η are transformed momentum flux vectors. Finally,
the transformed equations of motion (9) are rewritten as a system of equations with only first
time derivatives. Defining ψ = φ̇, the system becomes{

ψ̇ = 1
J−1ρ0

[
(Ŝ1)ξ + (Ŝ2)η

]
φ̇ = ψ

(10)

where the unknowns are the displacements φ and the velocities ψ. This system has 4 unknowns
in 2D.

Compressible Navier–Stokes equations

The perturbation formulation is used to minimize cancellation errors when discretizing the
Navier–Stokes equations for compressible low Mach number flow [25, 18]. The 2D compress-
ible Navier–Stokes equations in conservative form can be expressed in perturbation form as
[19, 14]

U
′
t + F

c′
x + G

c′
y = F

v ′
x + G

v ′
y , (11)



where the vector U
′ denotes the perturbation of the conservative variables with respect to the

stagnation values. U
′ and the inviscid (superscript c) and viscous (superscript v) flux vectors

are defined by

U
′ =

⎛⎜⎜⎝
ρ′

(ρu)′

(ρv)′

(ρE)′

⎞⎟⎟⎠ , F
c′ =

⎛⎜⎜⎝
(ρu)′

(ρu)′u′ + p′

(ρv)′u′

(ρ0H0 + (ρH)′)u′

⎞⎟⎟⎠ , G
c′ =

⎛⎜⎜⎝
(ρv)′

(ρu)′v′

(ρv)′v′ + p′

(ρ0H0 + (ρH)′)v′

⎞⎟⎟⎠ ,

F
v ′ =

⎛⎜⎜⎝
0
τ ′
xx

τ ′
xy

τ ′
xxu

′ + τ ′
xyv

′ + κT ′
x

⎞⎟⎟⎠ , G
v ′ =

⎛⎜⎜⎝
0
τ ′
yx

τ ′
yy

τ ′
yxu

′ + τ ′
yyv

′ + κT ′
y

⎞⎟⎟⎠ .

The subscripts in (11) subsequently denote derivatives. We assume perfect gas. The pertur-
bation variables (superscript ′) are defined with respect to their stagnation values (subscript
0), i.e. ρ′ = ρ − ρ0, (ρu)′ = ρu, (ρE)′ = ρE − (ρE)0, (ρH)′ = (ρE)′ + p′, u

′ = (ρu)′

ρ0+ρ′
,

p′ = (γ − 1)[(ρE)′ − 1
2
((ρu)′ · u′)], τ ′ = μ(∇u

′ + (∇u
′)T ) − 2

3
μ(∇ · u′)I , T ′ = p′/R−ρ′T0

ρ0+ρ′
.

Time is t, and x and y are the Cartesian coordinates. Denoted by ρ is the density, u and v the
x- and y-direction velocities, E the specific total energy, p the pressure, γ = 1.4 the ratio of
specific heats for air, R the specific gas constant, μ viscosity determined from the Sutherland
law μ

μ0

= ( T
T0

)1.5 1+Sc
T
T0

+Sc
with the nondimensional Sutherland constant Sc = 110

301.75
and κ the heat

conduction coefficient determined from the constant Prandtl number Pr = 1. The quantities
ρ0, (ρE)0 and (ρH)0 denote the stagnation quantities of density, total energy density and total
enthalpy density, respectively. The viscous flux vectors F

v ′ and G
v ′ are the same as for the

standard conservative form, except for using the temperature perturbation T ′ instead of tem-
perature T for the heat flux terms. The momentum density and velocity perturbations are taken
as the same as their unperturbed counterparts, i.e. (ρu)′ = ρu and u

′ = u, cf. the defini-
tion of U

′ with respect to U0 = (ρ0, 0, 0, (ρE)0)
T above. The 2D conservative compressible

Navier–Stokes equations in perturbation form (11) are written in dimensional form, while their
nondimensional form with ρ0, stagnation speed of sound c0, and ρ0c

2
0 as reference values of

density, velocity, and pressure, respectively, has actually been used in the computations.

General moving geometries are treated by a time dependent coordinate transformation τ = t,
ξ = ξ(t, x, y), η = η(t, x, y). The transformed 2D conservative compressible Navier–Stokes
equations in perturbation form read

Û
′
τ + F̂

′
ξ + Ĝ

′
η = 0 , (12)

where Û
′ = J−1

U
′ , F̂

′ = J−1(ξτU
′ + ξx(F

c′ − F
v ′) + ξy(G

c′ − G
v ′)) and Ĝ

′ =
J−1(ξτU

′+ηx(F
c′−F

v ′) + ηy(G
c′−G

v ′)). The x- and y-derivatives in the viscous flux vectors
F

v ′ and G
v ′ are expressed using the chain rule, e.g. u′

x = u′
ξξx + u′

ηηx and u′
y = u′

ξξy + u′
ηηy.

The Jacobian determinant of the transformation J is determined by J−1 = xξyη − xηyξ , and
the metric terms by J−1ξx = yη , J−1ξy = −xη , J−1ηx = −yξ , J−1ηy = xξ .

Fluid-structure interaction

ALE formulation for fluid solver



Fixed Flexible Fixed

Figure 4: The boundary of the fluid domain consists
of fixed and flexible parts. The velocity at the bound-
ary of the flexible part determines the internal grid
point velocity. Only half domain shown.

The displacement of the structure interface
determines the shape of the fluid domain and
the structure velocity at the interface deter-
mines the internal grid point velocities in the
fluid domain. The right and left boundaries of
the fluid domain are the out- and inflow, re-
spectively. The top and bottom parts of the
fluid domain are bounded by the flexible vo-
cal folds and the inner wall of the airpipe
which is assumed to be rigid. We do not as-
sume symmetry; the motion of the two vo-
cal folds are solved for individually. In our
ALE formulation, the positions and velocities
of the grid points in the fluid domain are a linear interpolation of the positions and velocities of
the structure at the interface. Figure 4 shows the given structure veolcity with a bold arrow and
the interpolated grid point velocities ẋ, ẏ (thin arrow) for three grid lines.

To obtain the time derivative of J−1 as needed in (12), a geometric invariant [30] is used. This
geometric conservation law states that (J−1)τ + (J−1ξt)ξ + (J−1ηt)η = 0. The time derivatives
of the computational coordinates ξ, η can here be obtained from the grid point velocities ẋ, ẏ as
ξt = −(ẋξx + ẏξy), ηt = −(ẋηx + ẏηy) which can be seen by differentiating the transformation
with respect to τ .

Traction boundary condition in transformed coordinates

The traction boundary condition is somewhat strange, because it does not directly give a relation
for the unknowns that must be satisfied, unlike the displacement boundary condition. Rather, as
will be shown, it specifies the flux of momentum on the boundary. As can be seen in equation
(5), the unit normal is needed for the boundary condition. This can easily be constructed from
the coordinate transformation. For example, a coordinate line where η = const is a level curve
for the function η(X, Y ). Hence, the gradient ∇Xη is perpendicular to this line and the unit nor-
mal is then simply N = ∇η/|∇η| (where the subscript X has been dropped for convenience),
pointing in the direction of increasing η. A boundary condition for viscous fluid stress on a
boundary where η = ηmax is then obtained by inserting the unit normal into S

T
N = T, with T

given by eq. (5), hence S
T∇η = det(F)σf

B∇η. Since B is just the inverse of a 2-by-2 matrix,
it can be explicitly calculated in terms of the deformation gradient components. Furthermore,
multiply both sides by J−1 to get the final expression for the momentum flux in the η-direction,

Ŝ2 ≡ J−1
S

T∇η
!
= J−1σf

(
F22 −F21

−F12 F11

)
∇η. (13)

This is the boundary condition that must be fulfilled, i.e. when calculating the η-derivative in
(9), we use the value (13) at the boundary. A boundary condition for the ξ-direction can be
constructed similarly if needed.

Description of fluid-structure interaction algorithm

First, we construct the fixed reference configuration for the structure, set the initial displace-
ments and velocities to zero. The initial fluid domain is then uniquely determined by the ref-
erence boundary of the structure. Initially, the fluid grid points have zero velocity and the wall



does not move. We then take one time step for the fluid with imposed pressure boundary condi-
tions at the inflow, zero initial conditions for the perturbation variables U

′ and adiabatic no-slip
conditions, i.e. u = 0 and ∂T/∂n = 0 on the wall. After the first fluid time step, the viscous
fluid stress on the wall is calculated based on the new fluid velocities and pressures using (6).
These fluid stresses are passed on to the structure via the traction boundary condition (13). With
this boundary condition imposed, one time step is taken for the structure. The solution for the
structure gives the velocity and displacement on the boundary (and all internal points) and these
are then used to generate the new fluid mesh and internal grid point velocities. This procedure
is then repeated for as many time steps as required.

High order finite difference method

Summation by parts operators

Let vj, j = 0, . . . N , be an approximation to the exact solution u(xj) at the grid point xj = jh
where h = 1/N . The discrete scalar product and norm are [28] (u, v)h = huT Hv, ||u||2h =
(u, u)h where the norm matrix H is diagonal and positive definite. The summation by parts

(SBP) property, analogous to integration by parts in the continuous case, is satisfied, if (u, Qv)h =
uNvN −u0v0−(Qu, v)h for a difference operator Q. Let the operator Q be defined in terms of B
as hQ = H−1B. The SBP property can be rewritten as huT HQv = uT diag(−1, 0, . . . , 0, 1)v−
h(Qu)T Hv and rearranged to huT (HQ+QT H)v = uT diag(−1, 0, . . . , 0, 1)v. Now, H is diag-
onal by definition so H = HT , hence uT (HhQ+(HhQ)T )v = uT diag(−1, 0, . . . , 0, 1)v. Using
the definition of Q and the fact that u and v are arbitrary, we get B+BT = diag(−1, 0, . . . , 0, 1).

The difference operator Q is an approximation to the first derivative, i.e. (Qv)j ≈
du(xj)

dx
. If Q

is accurate of order 2τ in the interior, then there is a diagonal norm matrix H , such that Q is
accurate of order τ near the boundaries [28]. When τ = 3 which is the case considered here,
there is a one-parameter family of operators Q. One of the elements in the matrix of Q can be
set to zero in such a way that the bandwidth of the matrix is minimized to obtain a unique matrix
Q which yields a 6th order accurate operator in the interior. Thus, the global order of accuracy
of the present SBP operator Q is τ + 1 = 4 [9, 8].

Second derivatives are approximated by applying the SBP operator Q twice. Alternative dis-
cretizations of second derivatives [16, 11] are discussed in [19]. Opposed to conventional dif-
ference operators, SBP operators allow energy estimates for the discrete problems similar to the
ones for the continuous problems, which are approximated. Thus, SBP operators yield strictly
stable schemes for general boundary conditions.

If the x-derivative in the convection diffusion equation ut + aux = buxx, where a and b are
assumed to be constant and b > 0, is approximated by a standard central pth order finite
difference operator Q

(p)
x and the time derivative by an explicit Runge-Kutta method, the von

Neumann stability analysis leads to the stability condition Δt(−aQ̂(p) + b(Q̂(p))2) ∈ S, where
Q̂(p) is the Fourier transform of Q

(p)
x and S the stability domain of the Runge–Kutta method.

Q̂(p) Δx
i

is the approximate wave number k̃Δx. For SBP operators, the stability condition is

more restrictive, because Δt ‖ −aQ
(p)
x + b(Q

(p)
x )2 ‖≤ R < R1 is required, where the open

semicircle {z ∈ C | |z| < R1 and Real(z) < 0} is contained in the stability domain S [12].
In practical computations, however, it has been possible to use von Neumann stability condi-
tion with a safety margin. The von Neumann stability condition for the standard central sixth
order difference operator Q

(6)
x and the classical fourth order explicit Runge-Kutta method reads

CFL = |a|Δt
Δx

≤ 1.783 for b = 0 and V NN = |b|Δt
Δx2 ≤ 1.124 for a = 0, while CFL ≤ 2.828 for



b = 0 and V NN ≤ 2.828 for a = 0 is required for the standard central second order operator
Q

(2)
x . Note that (Q

(6)
x u)j = 1

Δx
( 1

60
uj+3 − 3

20
uj+2 + 3

4
uj+1 − 3

4
uj−1 + 3

20
uj−2 − 1

60
uj−3) and

Q̂(6) = i
Δx

[3
2
sin(kΔx) − 3

10
sin(2kΔx) + 1

30
sin(3kΔx)], where k is the wave number in this

subsection. With this information, the stability condition of a second order central method for
the compressible Navier–Stokes equations in [17] can be easily generalized for the present high
order method.

Approach for compressible Navier–Stokes equations

The transformed 2D compressible Navier–Stokes equations in perturbation form (12) are solved
on a rectangle, where ξ = 1 and ξ = jmax represent the inlet and outlet boundaries of the vocal
tract, respectively, and η = 1 and η = kmax correspond to the lower and upper walls of the
vocal tract, respectively. The ξ- and η-derivatives in the metric terms are discretized by Strand’s
3-6 SBP operator [28]. The viscous flux vectors are discretized by approximating the first ξ and
η derivatives of u′, v′ and T ′, by Strand’s 3-6 SBP operator. After the flux vectors F̂

′ and Ĝ
′

are computed at all grid points, F̂
′
ξ and Ĝ

′
η are approximated by employing Strand’s 3-6 SBP

operator once more. The classical fourth order explicit Runge-Kutta method is used for time
integration (see below). Spurious high wave number oscillations are suppressed by a sixth order
explicit filter [19].

Boundary conditions

No-slip adiabatic wall boundary conditions and the Navier–Stokes Characteristic Boundary
Conditions (NSCBC) technique by Poinsot and Lele in [22] are employed.

At the inflow, pressure, temperature and velocity in the y-direction are imposed as p = patm +
Δp, T = T0 = 310 K, and v = 0, respectively. The x-velocity u at the inflow and the pressure p
at the solid walls are taken from the Navier–Stokes solution at those boundaries. At the outflow,
the amplitudes of the characteristic waves L1 = λ1 (px − ρcux), L2 = λ2 (c2ρx − px), L3 =
λ3vx, L4 = λ4 (px + ρcux) are set to zero for ingoing waves. Imposing the atmospheric pressure
patm at the outlet would lead to a well-posed problem but at the cost of numerical reflections.
To keep numerical reflections low and the pressure close to atmospheric pressure, the amplitude
of the ingoing wave is set to L1 = K(p − patm) where the constant K, proposed by Rudy and
Strikwerda [24] is taken as K = σ(1 − M2)c/L. Here, σ is a constant, M is the maximum
Mach number, c the speed of sound and L a characteristic size of the domain. The choice σ = 0
corresponds to a perfectly non-reflecting case but without information about the atmospheric
pressure. The value 0.25 was used in this study [22]. For reverse flow (i.e. negative x-velocity)
at the outlet, we set L1 = L2 = L3 = 0.

Approach for the Langrangean field equations

The transformed 2D Lagrangean field equations (10) are discretized in the same way as the
Navier–Stokes equations. The deformation gradient F and the derivatives of the flux vectors are
approximated at all grid points using Strand’s 3-6 SBP operator alike.

The computation of the right-hand side (9) for an internal grid point (i, j) is detailed below. At
and near boundaries, the corresponding coefficients of the SBP operator Q(6) are used.

1. Given the displacement field φ = (φ1, φ2)T , calculate the derivative with respect to the
computational coordinate ξ using the high-order finite difference scheme Q = Q(6)(

∂φk

∂ξ

)
i,j

≈ Qξφ
k
i,j = −

1

60
φk

i−3,j +
3

20
φk

i−2,j −
3

4
φk

i−1,j +
3

4
φk

i+1,j −
3

20
φk

i+2,j +
1

60
φk

i+3,j



for both components k of the displacement. Approximate the η derivative similarly. The
components of the deformation gradient at point (i, j)

(Fkα)i,j =

(
∂xk

∂Xα

)
i,j

= δkα +

(
∂φk

∂Xα

)
i,j

=

δkα +

(
∂φk

∂ξ

)
i,j

(
∂ξ

∂Xα

)
i,j

+

(
∂φk

∂η

)
i,j

(
∂η

∂Xα

)
i,j

.

are then approximated by using the approximation of (∂φk/∂ξ)i,j etc. above and by also
discretizing the metric terms (∂ξ/∂Xα)i,j etc. by the 6th order SBP operator.

2. Evaluate the components of the right Cauchy–Green deformation tensor according to
(Cαβ)i,j = (Fkα)i,j(Fkβ)i,j .

3. Form the necessary functions of C as required by the material model, e.g. (det(C))i,j =
(C11)i,j(C22)i,j − (C12)i,j(C21)i,j .

4. Calculate the components of the 2PK stress using the material model, e.g. (Σαβ)i,j =
μi,jδαβ +(λi,j ln(detC)i,j/2−μi,j)(C

−1)αβ where the space-dependent Lamé parameters
λ and μ are evaluated at grid point (i, j), i.e. λi,j = λ(Xi,j).

5. Evaluate the components of the nominal stress as (Sαk)i,j = (Σαβ)i,j(Fkβ)i,j .

6. Determine the momentum fluxes in the ξ and η directions,(
Ŝ1

)
i,j

= (J−1)i,j

[
(S11)i,j(∂ξ/∂X)i,j + (S21)i,j(∂ξ/∂Y )i,j

(S12)i,j(∂ξ/∂X)i,j + (S22)i,j(∂ξ/∂Y )i,j

]
,

(
Ŝ2

)
i,j

= (J−1)i,j

[
(S11)i,j(∂η/∂X)i,j + (S21)i,j(∂η/∂Y )i,j

(S12)i,j(∂η/∂X)i,j + (S22)i,j(∂η/∂Y )i,j

]
,

where again we use the discrete metric terms. The discrete Jacobian (J−1)i,j is calculated
from the discrete metric terms as shown earlier in (7).

7. The derivatives of the flux vectors with respect to the computational coordinates are ob-
tained with the 6th order central scheme, e.g. for the ξ-derivative,(

∂Ŝ1

∂ξ

)
i,j

≈ (QξŜ1)i,j = −
1

60
(Ŝ1)i−3,j +

3

20
(Ŝ1)i−2,j −

3

4
(Ŝ1)i−1,j+

3

4
(Ŝ1)i+1,j −

3

20
(Ŝ1)i+2,j +

1

60
(Ŝ1)i+3,j.

8. The right hand side of the momentum equation is calculated as

ψ̇i,j =
1

(J−1)i,jρ0

[
(QξŜ1)i,j + (QηŜ2)i,j

]
.



Time integration

Both the Navier–Stokes (12) and the Lagrangean field equations (10) can be written in the form

Φ̇
i

= f
i(t,Φi) with Φ

s = (φ, ψ) and Φ
f = Û

′, where i = s and i = f stand for structure
and fluid, respectively. The semi-discrete equations can be formulated as a 4th order explicit
Runge–Kutta scheme for both fields with a time step Δt as

k1 = f
i(tn,Φ

i,n)

k2 = f
i

(
tn +

Δt

2
,Φi,n +

Δt

2
k1

)
k3 = f

i

(
tn +

Δt

2
,Φi,n +

Δt

2
k2

)
k4 = f

i(tn + Δt,Φi,n + Δtk3)

Φ
i,n+1 = Φ

i,n +
Δt

6
(k1 + 2k2 + 2k3 + k4)

where Φ
i,n is the solution at the old time level n for field i.

Verification of structure method

Method of manufactured solution

An analytical test case for time-dependent problems in hyperelasticity is hard to find. Thus,
for verification of the implemented techniques, the method of manufactured solution is used.
The idea of the method is to construct a solution somewhat arbitrarily and insert it into the
equations to be solved, without any boundary conditions. Since the constructed solution does
not, in general, satisfy the equations, one ends up with a nonzero source term. If this source term
is included in the original equations, the constructed solution must satisfy the original equation
with the source term. To see how this works, rewrite the field equations (1) as

φ̈ − Div(S(φ))/ρ0 = 0 (14)

where Div is the divergence in reference coordinates. Now construct explicitly an arbitrary
solution ϕ(X, t) and insert it into the left hand side of (14) to obtain ϕ̈ − Div(S(ϕ(X, t))) =
R(X, t) where R is a residual source term. Thus, ϕ satisfies the PDE

φ̈ − Div(S(φ))/ρ0 = R(X, t). (15)

The source term R can be evaluated analytically for a given deformation ϕ by means of a
symbolic mathematical tool such as Maple.

Test cases

The manufactured solution can be chosen in many different ways, but on physical grounds, it
is reasonable to require that detF > 0 so that the physical domain (current configuration) does
not overlap itself. Keeping this requirement in mind, the following test case is considered:

The reference configuration X is a square occupying the region −1 ≤ X, Y ≤ 1. The defor-
mation is chosen such that the square changes size according to ϕ(X, t) = X

2
sin ωt, i.e. at

ωt = π/2, the square has increased its size to −3/2 ≤ x, y ≤ 3/2 where (x, y) = (X, Y ) + ϕ.
The neo-Hookean material (4) model is used.



Error analysis

Define the error in the discrete solution φi,j , at a certain time level, as the l2 norm of the error

e =

[∑
i,j

ΔAi,j|φi,j − ϕi,j|
2

]1/2

where ϕi,j = ϕ(Xi,j, t) is the analytical (constructed) solution evaluated at grid point (i, j) and
ΔAi,j is the cell volume (area) J−1 associated with grid point (i, j) in the reference configura-
tion.

Verification of time integration

The source term for the test case with given deformation is R(X, t) = −ω2 X

2
sin(ωt). It can

be shown that the contribution from the stress tensor vanishes for the neo-Hookean material.
The divergence of the stress in the material also vanishes, so the equation being solved is in fact
just φ̈ = R(X, t). Choosing ω = π and evaluating the solution at t = 1 where the analytical
solution is φ(X, t = 1) = ϕ(X, t = 1) = 0 for different time steps yields the results shown in
table 1. The 4th order convergence of the Runge–Kutta scheme is evident. The grid spacing is
insignificant here, since each point is decoupled from the others.

Comparison with Abaqus/Explicit

Δt e Order

1/32 9.1143 × 10−9

1/64 5.6952 × 10−10 4.0003
1/128 3.5593 × 10−11 4.0001
1/256 2.2244 × 10−12 4.0001
1/512 1.3921 × 10−13 3.9981
1/1024 8.8033 × 10−15 3.9831
1/2048 6.2144 × 10−16 3.8244

Table 1: Error as a function of time step
for the pulsating square case at time t = 1
and ω = π.

The test case only verified the time integration. To ver-
ify the space discretization and the boundary condi-
tions, we consider a square reference domain −1/2 ≤
X, Y ≤ 1/2 for a body where three segments of the
boundary are fixed in space and the fourth (top) is sub-
jected to a time-dependent fluid pressure load, see fig.
5(a). When simulating this simple test case, one can
ask, for example, what is the y-displacement of the
midpoint on the top boundary, as a function of time?
This question was investigated using both the previ-
ously described finite difference method and Abaqus, a
commercial finite-element analysis package developed
by Simulia [4].

The material model was the neo-Hookean material (4) with dimensionless Lamé parameters
μ = 1, λ = 1 and density ρ = 1. The time-dependent pressure on the top boundary was
P (t) = sin2(πt/4). The input parameters for Abaqus need to be given in the form C10 = μ/2
and D1 = 2/κ where κ = (3λ + 2μ)/3. For the finite-difference simulation, a 121 × 121 grid
was used and a sufficiently small time step so that time integration errors were not dominant.
For Abaqus, an unstructured mesh with 3206 linear plane-stress triangular elements was used.
The results shown in figure 5(c) indicate a good agreement between the two analyses. The time-
dependent behaviour of the displacement is captured well, both in terms of amplitude and phase.
This indicates that the traction boundary condition (13) is handled correctly.

Additionally, as a test for the coordinate transformation, a more general domain was considered.
For the case of a simple square, the coordinate transformation was X = ξ − 1/2, Y = η − 1/2
where ξ and η are computational coordinates 0 ≤ ξ, η ≤ 1. Consider now the transformation
X(ξ, η) = ξ − 1/2 + d(ξ, η), Y (ξ, η) = η − 1/2 + d(ξ, η) with d(ξ, η) = 0.08 sin(2π(ξ −



(a) Geometry for the pressure-loaded
square test case. The left, right and
bottom boundaries are fixed. The top
boundary is loaded with a time-
dependent pressure.

(b) Distorted grid.
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(c) Comparison of y-displacement of midpoint on top boundary of figure 5(a) in
Abaqus/Explicit (–) vs. finite difference method (×) for a square geometry with
pressure load, neo-Hookean material.

Figure 5: Geometry and results for test case



1/2)) sin(2π(η − 1/2)). The domain is still a square, but the internal grid lines are no longer
parallel, as seen in fig. 5(b). Computation on the distorted grid yields the same results as on the
Cartesian grid.

Results

Geometry

The initial geometry for the vocal folds is here based on the geometry used in [34] for an
oscillating glottis with a given time dependence. The initial shape of the vocal tract including
the vocal fold is given as

rw(x) =
D0 − Dmin

4
tanh s +

D0 + Dmin

4
, (16)

where rw is the is the half height of the vocal tract, D0 = 5Dg is the height of the channel,
Dg = 4 mm is the average glottis height, Dmin = 2 mm is the minimum glottis height, s =
b|x|/Dg − bDg/|x|, c = 0.42 and b = 1.4. For −2Dg ≤ x ≤ 2Dg, the function (16) describes
the curved parts of the reference configuration for the top and bottom (with a minus sign) vocal
folds.

Vocal fold material parameters

The density in the reference configuraiton is ρ0 = 1043 kg/m3, corresponding to the measured
density of vocal fold tissue as reported by [10]. The Poisson ratio was chosen as ν = 0.47
for the whole tissue, corresponding to a nearly incompressible material with ν = 0.5 being
the theoretical incompressible limit. A two-layer model for the vocal folds was used so that the
shear modulus varied smoothly1 from μc = 3.5kPa in the cover to μl = 4.4kPa in the ligament.
The Lamé parameter λ, as a function of space, was then obtained as λ = 2μν/(1 − 2ν). The
compressible neo-Hookean material model (4) was used.

Fluid model

We used a Reynolds number of 3000 based on the average glottis height Dg = 0.004 m and
an assumed average velocity in the glottis of Um = 40 m/s. We used these particular values in
order to be able to compare with previously published results by Zhao et al. [34, 32] and by
ourselves [13, 14]. The Prandtl number was set to 1.0, and the Mach number was 0.2, based
on the assumed average velocity and the speed of sound. We deliberately used a lower value
for the speed of sound, c0 = 200 m/s in order to speed up the computations. The air density
was 1.3 kg/m3 and the atmospheric pressure was patm = 101325 Pa. The equation of state was
the perfect gas law, and we assumed a Newtonian fluid. At the inlet, we imposed the acoustic
pressure pacoustic = p − patm = 2736 Pa, a typical lung pressure during phonation. The outlet
pressure was set to atmospheric pressure, i.e. p − patm = 0 Pa.

If we would not impose any asymmetry in the system, the solution should be symmetric with
respect to the centerline at all times. However, this symmetric flow field is not stable, i.e. a small
perturbation on one side would cause an asymmetry to build up and never go away (this was
seen in our numerical experiments). Also, since the flow is not symmetric in nature, we chose
to impose a non-symmetric pressure profile at the inlet by multiplying the given inlet acoustic
pressure p−patm with a space varying factor (1+0.025 sin(2πη)) where η is a coordinate going
from η = 0 at the lower boundary to η = 1 at the top boundary.

1μ(η) = μaverage + Δμ tanh(−4.5(η − 0.5)), where μaverage = (μl + μc)/2, Δμ = (μl − μc)/2 and η is a
coordinate going from 0 in the ligament to 1 in the cover.



Numerical simulation

The computational domain is shown in figure 6 with the fluid domain in the middle, between
the two independent structuree domains. The inflow boundary is to the left and the outflow is
to the right. The part of the fluid boundary that is not in contact with the structure is a fixed
no-slip adiabatic wall. The fluid-structure interface is a no-slip adiabatic wall which is allowed
to deform due to the structure motion.

Structure 1

Structure 2

Fluid

Figure 6: Sketch showing the computational domain for the fluid and the two structure domains.

Both fluid and structure used the same set of variables for nondimensionalization and the same
time step was used for both fields so that the two solutions are always at the same time level.
The structure grid consisted of 81 × 61 points for each vocal fold, i.e. for the upper and the
lower vocal folds, and the fluid domain was 241 × 61 points. The time step was determined
by the stability condition for the fluid discussed above, which was satisfied here by requiring
CFL ≤ 1. Since the fluid domain changes with time, the CFL condition puts a stricter constraint
on the time step when the glottis is nearly closed. The solution was marched in time with given
initial and boundary conditions to dimensional time t = 20 ms or 416948 time steps, implying
an average dimensional time step of Δt = 48 ns.

Figures 7 and 8 show results for the vorticity and pressure at certain time instants. Initially,
the flow is symmetric with two start-up vortices followed by an elongated vortical structure on
each side of the centerline. After the start-up vortices leave the domain, the elongated structure
becomes unstable and breaks up into smaller circular vortices. As expected, the pressure is
lowest inside the vortices. The observed frequency of the oscillation is about 80 Hz, which is
close to the typical frequencies that occur in phonation, i.e. 100 Hz for men and 200 Hz for
women.

Conclusions

A solver for structural dynamics has been developed using a high order finite difference method
to simulate the behavior of biological tissues. This new structural solver has been coupled to an
existing compressible flow solver to simulate the fluid-structure interaction that occurs during
phonation. The key features of this approach are high order differencing schemes on structured
grids and matching grid points at the interface. The structural solver is verified with respect to
a test case using the method of manufactured solution and by comparison with a commercial
software package.

Our 2D model for the vocal folds and the air flow in the vocal tract proves to be able to capture



Figure 7: Vorticity contours at 2 ms intervals. Top left subplot is the vorticity at t = 2ms, top right is at
t = 4 ms and so on up to t = 20 ms (lower right). There are 20 equally spaced contour lines between
ω = 0 s−1 and ω = 5 × 104 s−1 in each subplot.



Figure 8: Pressure contours at 2 ms intervals. Top left image is the pressure at t = 2 ms, top right is at
t = 4 ms and so on up to t = 20 ms (lower right). There are 20 equally spaced contour lines between
pacoustic = −3546 Pa and pacoustic = 2837 Pa in each subplot, where pacoustic is the pressure deviation
from the atmospheric pressure, here patm = 101325Pa (at the outlet).



the self-sustained pressure-driven oscillations and vortex generation in the glottis. The simulated
frequency of 80 Hz is close to 100 Hz, typical for men.
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Numerical Simulation of Fluid–Structure

Interaction in Human Phonation: Application

Martin Larsson and Bernhard Müller

Abstract Fluid-structure interaction in a simplified two-dimensional model of the
larynx is considered in order to study human phonation. The flow is driven by an im-
posed pressure gradient across the glottis and interacts with the moving vocal folds
in a self-sustained oscillation. The flow is computed by solving the 2D compress-
ible Navier–Stokes equations using a high order finite difference method, which has
been constructed to be strictly stable for linear hyperbolic and parabolic problems.
The motion of the vocal folds is obtained by integrating the elastodynamic equa-
tions with a neo-Hookean constitutive model using a similar high order difference
method as for the flow equations. Fluid and structure interact in a two-way coupling.
In each time step at the fluid-structure interface, the structure provides the fluid with
new no-slip boundary conditions and new grid velocities, and the fluid provides the
structure with new traction boundary conditions.

1 Introduction

Fluid-structure interaction (FSI) occurs when a flexible structure interacts with a
fluid. The fluid flow exerts a stress on the structure which causes it to deform,
thereby generating a new geometry for the fluid flow. A direct consequence of FSI
in the vocal tract is voice generation, where the motion of the soft tissue of the vo-
cal folds interacts dynamically with the glottal airflow to produce sound. The self-
sustained oscillations of the vocal folds can be explained by the Bernoulli principle
which states that in the absence of gravity for inviscid incompressible steady flow,
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2 Martin Larsson and Bernhard Müller

the velocity v, pressure p and density ρ are related by p + ρv2/2 = const. The vo-
cal folds being closed in their equilibrium position, initially at rest, are forced apart
by the increasing lung pressure. As the air starts flowing, the velocity in the glottis
increases and thus the pressure must decrease according to the Bernoulli principle.
The pressure drop together with restoring elastic forces results in a closure of the
vocal folds and a build-up of pressure. This cycle then repeats itself, driven only
by the lung pressure. The computational challenge in aeroelastic simulations lies in
dealing with unsteady flows at high Reynolds numbers, large deformations, moving
interfaces, fluid-structure interaction and intrinsically 3D motion [1].

In this paper, we employ a high order finite difference approach based on sum-
mation by parts (SBP) operators [14, 3, 2] to solve the compressible Navier–Stokes
equations and the elastodynamic equations using a neo-Hookean model. Fluid and
structure interact in a two-way coupling. The approach has been tested for a 2D
model of the larynx and the vocal folds.

2 Governing equations

2.1 Compressible Navier–Stokes equations

The perturbation formulation is used to minimize cancellation errors when discretiz-
ing the Navier–Stokes equations for compressible low Mach number flow [13, 9].
The 2D compressible Navier–Stokes equations in conservative form can be ex-
pressed in perturbation form as [10, 6]

U′
t + Fc′

x +Gc′
y = Fv′

x +Gv′
y , (1)

where the vector U′ denotes the perturbation of the conservative variables with re-
spect to the stagnation values. U′ and the inviscid (superscript c) and viscous (su-
perscript v) flux vectors are e.g. defined in [6].

General moving geometries are treated by a time dependent coordinate transfor-
mation τ = t, ξ = ξ (t,x,y), η = η(t,x,y). The transformed 2D conservative com-
pressible Navier–Stokes equations in perturbation form read [6]

Û′
τ + F̂′

ξ + Ĝ′
η = 0 , (2)

where Û′ = J−1U′ , F̂′ = J−1(ξtU
′+ξx(F

c′−Fv′) + ξy(G
c′−Gv′)) and Ĝ′ =

J−1(ηtU
′ +ηx(F

c′ −Fv′) + ηy(G
c′ −Gv′)).

No-slip adiabatic wall boundary conditions and the Navier–Stokes Characteristic
Boundary Conditions (NSCBC) technique by Poinsot and Lele in [12] are employed
at the outflow [7]. At the inflow, pressure, temperature and velocity in the y-direction
are imposed as p = patm +Δ p,T = T0 = 310K, and v = 0, respectively.
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2.2 Elastodynamic equations

The governing equations for the motion of the structure are the Lagrangean field
equations [11]

∂Sαi

∂Xα
= ρ0φ̈i (3)

where X are reference coordinates, S the nominal stress tensor, φ the displacement
vector, ρ0 the density in the reference configuration and the dots stand for partial
time derivative at fixed X.

As a constitutive model to obtain the nominal stress as a function of the displace-
ment, the compressible neo-Hookean law

S =

[
μ1+

(
λ

2
ln(det(C))−μ

)
C−1

]
FT (4)

was used cf. e.g. [18]. Here, μ and λ are the Lamé parameters, F = 1+∇Xφ is the
deformation gradient and C = FTF is the right Cauchy–Green strain tensor.

At boundaries where the structure is fixed in place, the displacement boundary
condition φ(X, t) = 0 is used, and on the fluid-structure interface the traction bound-
ary condition STN = T specifies the stress from the fluid on the structure boundary.
If the stress tensor in the fluid is σ f, then the force on the structure is [7, 8]

T = det(F)σ fF−TN. (5)

By introducing a coordinate transformation from the reference configuration to
computational coordinates ξ = ξ (Xα),η = η(Xα) and a variable ψ = φ̇ for the
velocity, the Lagrangean field equations can be expressed as a first-order system in
time on an equidistant Cartesian grid{

ψ̇ = 1
J−1ρ0

[
(Ŝ1)ξ +(Ŝ2)η

]
φ̇ = ψ

(6)

where ρ0 is the material density in the reference configuration, J−1 = |∂ (ξ ,η)/∂ (X ,Y

is the Jacobian determinant of the coordinate transformation and Ŝi = J−1ST∇ξi,
i = 1,2, are transformed flux vectors.

The traction boundary condition specifies the momentum flux over the fluid-
structure boundary. It can be shown, cf. [7, 8], that

Ŝ2 = J−1σ f
(

F22 −F21

−F12 F11

)
∇η , (7)

where Fiα are components of the deformation gradient F, when the interface is at a
line of constant η .
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3 Fluid-structure interaction

3.1 Arbitrary Lagrangean–Eulerian (ALE) formulation

Fixed Flexible Fixed

Fig. 1 The boundary of the fluid domain consists of fixed and flexible parts. The velocity at the
boundary of the flexible part determines the internal grid point velocity. Only half domain shown.

The displacement of the structure interface determines the shape of the fluid do-
main and the structure velocity at the interface determines the internal grid point
velocities in the fluid domain. The right and left boundaries of the fluid domain are
the out- and inflow, respectively. The top and bottom parts of the fluid domain are
bounded by the flexible vocal folds and the inner wall of the airpipe which is as-
sumed to be rigid. As we do not assume symmetry, the motions of the two vocal
folds are solved for individually. In our arbitrary Lagrangean–Eulerian (ALE) for-
mulation, the positions and velocities of the grid points in the fluid domain are lin-
early interpolated from the positions and velocities of the structures at the interfaces.
Figure 1 shows the given structure veolcities with bold arrows and the interpolated
grid point velocities ẋ, ẏ (thin arrows) for three grid lines.

To obtain the time derivative of J−1 as needed in (2), a geometric invariant [15] is
used. This geometric conservation law states that (J−1)τ +(J−1ξt)ξ +(J−1ηt)η = 0.
The time derivatives of the computational coordinates ξ ,η can here be obtained
from the grid point velocities ẋ, ẏ as ξt = −(ẋξx + ẏξy), ηt = −(ẋηx + ẏηy) which
can be seen by differentiating the transformation with respect to τ .

3.2 Description of fluid-structure interaction algorithm

First, we construct the fixed reference configuration for the structure and set the ini-
tial displacements and velocities to zero. The initial fluid domain is then uniquely
determined by the reference boundary of the structure. We then take one time step
for the fluid with imposed pressure boundary conditions at the inflow, zero initial
conditions for the perturbation variables U′ and adiabatic no-slip conditions, i.e.
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u = 0 and ∂T/∂n = 0 on the wall. After the first fluid time step, the viscous fluid
stress on the wall is calculated based on the new fluid velocities and pressures. These
fluid stresses are passed on to the structure solver via the traction boundary condi-
tion (7). Using these boundary conditions, one time step is taken for the structure.
The solution for the structure gives the velocities and displacements on the bound-
ary, which in turn are used to generate the new fluid mesh and internal grid point
velocities. This procedure is then repeated for each time step.

4 High order finite difference method

The summation by parts (SBP) operator Q is an approximation to the first spatial
derivative. In the interior, Q corresponds to the standard 6th order explicit central op-
erator, while Q is third order accurate at and near the boundaries. Through a special
boundary treatment, SBP operators allow energy estimates for the discrete problems
similar to the ones for the continuous problems that are approximated. Thus, SBP
operators yield strictly stable schemes for general boundary conditions [14, 7]. The
global order of accuracy of the present SBP operator Q is 4 [3, 2]. Second deriva-
tives are approximated by applying the SBP operator Q twice. The classical fourth
order explicit Runge-Kutta method is used for time integration. Spurious high wave
number oscillations are suppressed by a sixth order explicit filter [10].

5 Results

The initial geometry for the vocal folds is here based on the geometry used in [17]
for an oscillating glottis with a given time dependence. The initial shape of the vocal
tract including the vocal fold is given as

rw(x) =
D0 −Dmin

4
tanhs+

D0 +Dmin

4
, (8)

where rw is the is the half height of the vocal tract, D0 = 5Dg is the height of the
channel, Dg = 4 mm is the average glottis height, Dmin = 2 mm is the minimum
glottis height, s = b|x|/Dg −bDg/|x|, c = 0.42 and b = 1.4. For −2Dg ≤ x ≤ 2Dg,
the function (8) describes the curved parts of the reference configuration for the top
and bottom (with a minus sign) vocal folds.

5.1 Vocal fold material parameters

The density in the reference configuraiton is ρ0 = 1043kg/m3, corresponding to
the measured density of vocal fold tissue as reported by [4]. The Poisson ratio was
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chosen as ν = 0.47 for the whole tissue, corresponding to a nearly incompressible
material with ν = 0.5 being the theoretical incompressible limit. A two-layer model
for the vocal folds was used so that the shear modulus varied smoothly from μc =
3.5 kPa in the cover to μl = 4.4 kPa in the ligament. The Lamé parameter λ , as a
function of space, was then obtained as λ = 2μν/(1− 2ν). A compressible neo-
Hookean material model was used, cf. [7].

5.2 Fluid model

We used a Reynolds number of 3000 based on the average glottis height Dg =
0.004m and an assumed average velocity in the glottis of Um = 40m/s. We used
these particular values in order to be able to compare with previously published
results by Zhao et al. [17, 16] and by ourselves [5, 6]. The Prandtl number was
set to 1.0, and the Mach number was 0.2, based on the assumed average velocity
and the speed of sound. We deliberately used a lower value for the speed of sound,
c0 = 200m/s in order to speed up the computations. The air density was 1.3kg/m3

and the atmospheric pressure was patm = 101325Pa. The equation of state was the
perfect gas law, and we assumed a Newtonian fluid. At the inlet, we imposed a
typical lung pressure during phonation with a small unsymmetric perturbance by
setting the acoustic pressure to pacoustic = p− patm = (1 + 0.025sin2πη)2736Pa,
where η = 0 at the lower edge and η = 1 at the upper edge of the inflow boundary.
The outlet pressure was set to atmospheric pressure, i.e. p− patm = 0Pa.

5.3 Numerical simulation

Both fluid and structure used the same set of variables for nondimensionalization
and the same time step was used for both fields so that the two solutions are always
at the same time level. The structure grid consisted of 81×61 points for each vocal
fold, i.e. for the upper and the lower vocal folds, and the fluid domain was 241×61
points. The time step was determined by the stability condition for the fluid, which
was satisfied here by requiring CFL ≤ 1. Since the fluid domain changes with time,
the CFL condition puts a stricter constraint on the time step when the glottis is
nearly closed. The solution was marched in time with given initial and boundary
conditions to dimensional time t = 20ms or 416948 time steps, implying an average
dimensional time step of Δ t = 48ns.

Figure 2 shows results for the vorticity at certain time instants. Initially, the flow
is symmetric with two start-up vortices followed by an elongated vortical structure
on each side of the centerline. After the start-up vortices leave the domain, the elon-
gated structure becomes unstable and breaks up into smaller circular vortices. The
observed frequency of the oscillation is about 80Hz, which is close to the typical
frequencies that occur in phonation, i.e. 100Hz for men and 200Hz for women.
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Fig. 2 Vorticity contours at 2ms intervals. Top left subplot is the vorticity at t = 2ms, top right
is at t = 4ms and so on up to t = 20ms (lower right). There are 20 equally spaced contour lines
between ω = 0s−1 and ω = 5×104 s−1 in each subplot.

6 Conclusions

Our 2D model for the vocal folds and the air flow in the vocal tract proves to be
able to capture the self-sustained pressure-driven oscillations and vortex generation
in the glottis. The simulated frequency of 80Hz is close to 100Hz, typical for men.

Acknowledgements The authors thank Bjørn Skallerud, Paul Leinan and Victorien Prot at the
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Numerical Simulation of Fluid–Structure

Interaction in Human Phonation: Verification of

Structure Part

Martin Larsson and Bernhard Müller

Abstract A high order finite-difference method has been developed to model fluid–
structure interaction during phonation in the human larynx. The motion of the vocal
folds is obtained by solving the elastic equations while the airflow is modeled by
solving the compressible Navier–Stokes equations. In this paper, we address the
problem of obtaining time-stable solutions for the linear elastic equations.

1 Introduction

Fluid–structure interaction in the human larynx generates our voice [9, 5]. We have
developed a high order difference method to simulate the interaction of compress-
ible flow in the larynx with the elastic structure of the vocal folds [3]. This paper
deals with obtaining time-stable solutions for the linear elastic wave equation in a
first-order formulation, which form the basis for more advanced structure models.

When written as a system of first order equations, the stability theory which
is well developed for hyperbolic systems, applies directly. The disadvantage com-
pared with a second order formulation in time is the increased computational effort
required for the additional variables. Our main motivation for using a first order for-
mulation is, however, related to the application of fluid-structure interaction where
the traction boundary condition dictates the stresses on the elastic body. In the first
order formulation, the traction boundary condition can be easily formulated as a
simple Dirichlet condition for a subset of the solution variables. Dirichlet boundary
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conditions are not at all straight-forward to impose in a second order formulation
[6].

2 Theory

The 2D linear elastic wave equation in first order form are

ut = (1/ρ) fx +(1/ρ)gy

vt = (1/ρ)gx +(1/ρ)hy

ft = (λ +2μ)ux +λvy

gt = μvx +μuy

ht = λux +(λ +2μ)vy

(1)

where u,v are the velocity components and f ,g,h are the three independent com-
ponents of the symmetric Cauchy stress tensor. The Lamé parameters λ ,μ and the
density ρ are here taken to be constant in space and time.

Introducing the solution vector q and coefficient matrices A and B allows us to
write the linear elastic wave equation (1) as a first order hyperbolic system

qt = Aqx +Bqy, (2)

where q = (u,v, f ,g,h)T. The wave speeds of the system are cs =
√

μ/ρ and
cp =

√
(λ +2μ)/ρ , referred to as secondary (or shear) and primary wave veloc-

ity, respectively. For convenience, we also define the parameter α = (λ +2μ)/λ =
c2

p/(c
2
p −2c2

s ).
In order to obtain simultaneous approximation (SAT) terms (to be explained be-

low) for the system, we need to transform the system to characteristic variables.
This can indeed be done, since the system (2) is hyperbolic. Thus, there exists an
invertible matrix T (k) for all directions k in 2D such that T−1(k)P(k)T (k) = Λ(k),
where P(k) = k1A+ k2B. The diagonal real eigenvalue matrix Λ(k) can be choosen
such that the eigenvalues occur in descending order. For the x- and y-directions, we
get the following characteristic variables for the system (2).

u(x) = T−1
x q =

1
2

⎡⎢⎢⎢⎢⎣
λu/cp + f/α
v+g/(ρcs)
−2 f/α +2h

v−g/(ρcs)
−λu/cp + f/α

⎤⎥⎥⎥⎥⎦ , u(y) = T−1
y q =

1
2

⎡⎢⎢⎢⎢⎣
λv/cp +h/α
u+g/(ρcs)
2 f −2h/α
u−g/(ρcs)

−λv/cp +h/α

⎤⎥⎥⎥⎥⎦ . (3)

Note that we use the symbol u to refer to both the vector of characteristic variables
and the first velocity component. The meaning of u should be clear from context.
The transformation back to flow variables is given by q = Tu.
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3 Summation by parts operators

The idea behind the summation by parts technique [8] is to construct a difference
operator Q which satisfies a discrete analogue to the continuous integration by parts
property. This is called a summation by parts (SBP) property and by the energy
method (cf. e.g. [2]), the discrete problem then satisfies the same energy estimate as
the continuous problem.

For diagonal norm matrices H, there exist difference operators Q accurate to
order O(h2s) in the interior and O(hs) near the boundaries for s= 1,2,3 and 4. These
operators have an effective order of accuracy O(hs+1) in the entire domain. Explicit
forms of such operators Q and norm matrices H have been derived by Strand [8].
For this study, we use an SBP operator based on the central sixth order explicit finite
difference operator (s = 3) which has been modified near the boundaries in order to
satisfy the SBP property giving an effective O(h4) order of accuracy in the whole
domain.

With the injection method, numerical solutions with stable schemes can still ex-
hibit a nonphysical growth in time which is not explained by the continuous equa-
tion. Simultaneous approximation terms (SAT) were devised to obtain time-stable
solutions [1]. In this approach, a linear combination of the boundary condition and
the differential equation is solved at the boundary instead of injecting the value at
the end of each Runge–Kutta stage. This leads to a weak imposition of the physical
boundary conditions. The imposition of SAT boundary conditions is accomplished
by adding a term to the derivative operator, proportional to the difference between
the value of the discrete solution uN and the boundary condition to be fulfilled.

The strictly stable SAT method for a hyperbolic system in one space dimension
with diagonal coefficient matrices was derived in [1] and is the basis for this work.
The continuous 1D model problem is ut = Λux, 0 ≤ x ≤ 1, with r unknowns and
r equations and the coefficient matrix Λ is chosen such that the eigenvalues are
in descending order, i.e. λ1 > λ2 > ... > λk > 0 > λk+1 > ... > λr. We split the
solution vector into two parts corresponding to positive and negative eigenvalues
uI = (u(1), ...,u(k))T and uII = (u(k+1), ...,u(r))T. For the variables in uI (each a grid
function of length N+1) we have boundary conditions at x = 1, and for uII we need
to specify boundary conditions at x = 0, as this is required for well-posedness.

Since we are here dealing with characteristic variables, we need to transform our
physical boundary conditions to boundary conditions for the characteristic variables.
This is done through the boundary functions gI(t) = (g(1)(t), ...,g(k)(t)), gII(t) =
(g(k+1)(t), ...,g(r)(t)) and the coupling matrices R and L defined by

uI(1, t) = RuII(1, t)+gI(t), uII(0, t) = LuI(0, t)+gII(t) (4)

The SAT method is then:

du(i)

dt
= λiQu(i)−λiτS(i)(u

(i)
N − (RuII)

(i)
N −g(i)(t)), 1 ≤ i ≤ k

du(i)

dt
= λiQu(i) +λiτS(i)(u

(i)
0 − (LuI)

(i−k)
0 −g(i)(t)), k+1 ≤ i ≤ r

(5)
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where S(i) = H−1(0,0, ...,1)T for 1 ≤ i ≤ k and S(i) = H−1(1,0, ...,0)T for k+1 ≤
i≤ r. Regarding the notation, (RuII)

(i)
N should be interpreted as follows: uII is an (r−

k)×1 vector where each component is a grid function of length N +1. Multiplying
R (being a k× (r− k) matrix) with uII yields a new vector of grid functions (k× 1
vector). Take the (i)th grid function in this vector and finally the Nth component in
the resulting grid function. As shown in [1], the SAT method is both stable and time
stable provided that

1−1
√

1−|R||L|
|R||L| ≤ τ ≤ 1+1

√
1−|R||L|

|R||L| (6)

with the additional constraint that |R||L| ≤ 1, where the matrix norm is defined as
|R|= ρ(RT R)1/2 and ρ is the spectral radius.

4 Application to elastic wave equation

Now, we shall apply the general method outlined above to derive SAT expressions
for boundary conditions on the velocity components. The vector of characteristic
variables in the x-direction is given in equation (3), but henceforth we drop the
superscript (x). The derivation for the y-direction is analogeous.

We let the grid functions u and v in 2D with points labeled 0 ≤ i ≤ N and 0 ≤
j ≤ M in the x- and y-directions, respectively, correspond to the solution variables u

and v in the discretization of the linear elastic wave equation. We label the boundary
i = 0 “left”, i = N “right”, j = 0 “bottom”, j = M “top”.

The boundary conditions for the velocity components in 2D are of the form u(x=
0,y, t) = uleft(y, t), i.e. a given function of time, which we write for the discrete
variables as u0, j(t) = uleft, j(t), with similar notation for the other edges and the
other solution variables. The SAT expressions, one for each spatial direction and for
each solution variable, will also be grid functions.

We split the vector of characteristic variables into two smaller vectors corre-
sponding to the positive and negative eigenvalues, omitting the characteristic with
zero eigenvalue as the corresponding SAT expression will be zero,

uI =
1
2

[
(λ/cp)u+(1/α) f

v+(1/cpρ)g

]
, uII =

1
2

[
v− (1/cpρ)g

(−λ/cp)u+(1/α) f

]
and define the coefficient matrices Λ I = diag(cp,cs), Λ II = diag(−cs,−cp). The
boundary functions gI, gII, and the matrices L and R are defined by the relations (4).

If we impose the boundary condition in the x-direction u(x= 1, t)= uright(t),v(x=
1, t) = vright(t), u(x = 0, t) = uleft(t),v(x = 0, t) = vleft(t), then the boundary matrices
and functions are given by

R =

[
0 1
−1 0

]
, L =

[
0 −1
1 0

]
, gI =

[
λuright(t)/cp

vright(t)

]
, gII(t) =

[
vleft(t)

−λuleft(t)/cp

]
.
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In the y-direction, dictating u(y = 1, t) = utop(t),v(y = 1, t) = vtop(t), u(y = 0, t) =
ubottom(t),v(y = 0, t) = vbottom(t), we get, likewise

R =

[
0 1
−1 0

]
, L =

[
0 −1
1 0

]
, gI =

[
λvtop(t)/cp

utop(t)

]
, gII(t) =

[
ubottom(t)

−λvbottom(t)/cp

]
.

Corresponding expressions can be derived for boundary conditions on the stress
components, but these are omitted here due to space limitations. We note that, as the
spectral radius of both L and R is 1 in each case, the inequalities (6) lend no other
choice than τ = 1 for time-stability.

Using the definition (5) with the expressions above, the SAT terms are first ob-
tained for the characteristic variables, and then for the flow variables by applying
the transformation matrices T for the x- and y-directions. The resulting expressions
are

SAT
x

i, j,1 = −cpτh−1
00

[
δiN

(
uN, j −uright, j(t)

)
+δi0

(
u0, j −uleft, j(t)

)]
SAT

x

i, j,2 = −csτh−1
00

[
δiN

(
vN, j − vright, j(t)

)
+δi0

(
v0, j − vleft, j(t)

)]
SAT

x

i, j,3 = −(λ +2μ)τh−1
00

[
δiN

(
uN, j −uright, j(t)

)−δi0
(
u0, j −uleft, j(t)

)]
SAT

x

i, j,4 = −μτh−1
00

[
δiN

(
vN, j − vright, j(t)

)−δi0
(
v0, j − vleft, j(t)

)]
SAT

x

i, j,5 = −λτh−1
00

[
δiN

(
uN, j −uright, j(t)

)−δi0
(
u0, j −uleft, j(t)

)] (7)

SAT
y

i, j,1 = −csτh−1
00

[
δ jM

(
ui,M −utop,i(t)

)
+δ j0 (ui,0 −ubottom,i(t))

]
SAT

y

i, j,2 = −cpτh−1
00

[
δ jM

(
vi,M − vtop,i(t)

)
+δ j0 (vi,0 − vbottom,i(t))

]
SAT

y

i, j,3 = −λτh−1
00

[
δ jM

(
vi,M − vtop,i(t)

)−δ j0 (vi,0 − vbottom,i(t))
]

SAT
y

i, j,4 = −μτh−1
00

[
δ jM

(
ui,M −utop,i(t)

)−δ j0 (ui,0 −ubottom,i(t))
]

SAT
y

i, j,5 = −(λ +2μ)τh−1
00

[
δ jM

(
vi,M − vtop,i(t)

)−δ j0 (vi,0 − vbottom,i(t))
]
,

(8)

where δi j is the Dirac delta function, i.e. δi j = 1 if i= j and 0 otherwise. The overline
stands for physical (flow) variables.

5 Discretization

We consider the mapping x = x(ξ ,η), y = y(ξ ,η) and introduce an equidistant
computational grid with coordinates ξi, i = 0, ...,N, η j, j = 0, ...,M. The Jacobian
determinant of the transformation is given by J−1 = xξ yη −xη yξ . The linear elastic
wave equation can then be written

q̂t = (Âq̂)ξ +(B̂q̂)η (9)

where the hats signify that the quantities are in transformed coordinates, i.e. q̂ =
J−1q, Â = ξxA+ξyB and B̂ = ηxA+ηyB.

Introduce a vector q̂ = (qi jk)
T = (q001, ...,q005,q101, ...,q105, ...,qNM5)

T where
the three indices i, j and k represent the ξ -coordinate, η-coordinate and the solu-
tion variable, respectively. We shall define our discretization in terms of Kronecker
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products. This formulation is convenient because it mimics the finite difference im-
plementation. Let Qξ = Qξ ⊗ Iη ⊗ I5 and Qη = Iξ ⊗Qη ⊗ I5 where Qξ is the 1D dif-
ference operator in the ξ -direction and Iξ is the unit matrix of size (N+1)×(N+1).
In the other direction, Qη and Iη are (M+1)× (M+1) matrices. The computation
of the spatial derivatives of q̂ can then be seen as operating on q̂ with one of the
Kronecker products, i.e. Qη q̂ operates on the second index and yields a vector of
the same size as q̂ representing the first derivative in the η-direction. To express the
semi-discrete linear elastic wave equation, we also need to define Â = Iξ ⊗ Iη ⊗ Â

and B̂ = Iξ ⊗ Iη ⊗ B̂. Note that these products are never actually explicitly formed
as they are merely theoretical constructs to make the notation more compact. Using
the Kronecker products defined above, the semidiscrete linear elastic wave equation
including the SAT term can be written

dq̂

dt
= ÂQξ q̂+ B̂Qη q̂+ ŜAT. (10)

This system of ordinary differential equations, including the SAT expression is
solved using the classical 4th order explicit Runge–Kutta method. No injection is
needed to impose boundary conditions, as this is taken care of by the SAT method.
A 6th order explicit filter [7] is used to suppress unresolved modes.

The equations (7) and (8) give the expressions in Cartesian coordinates. However,
we need the SAT expression for curvilinear coordinates. These can be obtained by
considering the system q̂t = (kxA+ kyB)k for the two spatial directions k = ξ ,η . As
the expressions become quite long, they are omitted here (cf. [4]).

6 Numerical experiment

We consider now a simple test for our 2D discretization: a square domain occupies
the region −1m ≤ x ≤ 1m, −1m ≤ y ≤ 1m. At t = 0s, we give an initial condition
for the stress component g(x,y, t = 0) = g0(x,y), while all other variables are ini-
tially zero. The initial condition is defined by g0(x,y) = s(2r1 +0.5)− s(2r2 +0.5),
where r2

1 = (x−0.5m)2 + y2, r2
2 = (x+0.5m)2 + y2 and

s(r) =

{
exp(−1/r−1/(1− r)+4)kg/(m · s2), if 0m < r < 1m

0, otherwise.
(11)

Thus, g0(x,y) is a smooth function with infinitely many derivatives and compact
support representing two sources located at (±0.5,0) meters. The material param-
eters are λ = μ = 1.0kg/(m · s2), ρ = 1.0kg/m3. We integrate the solution with
CFL number 0.8 and impose homogeneous Dirichlet boundary conditions for u and
v using the SAT approach (10). We plot the solution evaluated at time t = 0.5s in
Figures 1(a) and 1(b). Since the largest wave speed cp =

√
(λ +2μ)/ρ =

√
3m/s,

at t = 0.5s the P-wave will have reached and been reflected from the left and right
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boundaries which are situated a distance 0.5m from the sources. As the solution is
symmetric with respect to the center lines x = 0 and y = 0, only the first quadrant
is shown. The value of the velocity components at the boundary is zero, as enforced
by the SAT term.
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(a) Contour levels of solution variable u
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(b) Contour levels of solution variable v

Fig. 1 Contour plots showing the absolute value of the velocity components u and v with contour
levels spaced 0.01m/s apart.

N ×M k e
(k)
2 log2(e

(k+1)
2 /e

(k)
2 )

32×32 6 3.646×10−2 −
64×64 5 6.800×10−3 2.423

128×128 4 8.521×10−4 2.996
256×256 3 7.421×10−5 3.521
512×512 2 4.558×10−6 4.025

1024×1024 1 2.710×10−7 4.072
2048×2048 0 0 −
Table 1 2-norms of error and rates of convergence.

For the same set of param-
eters and initial/boundary con-
ditions, we compute the solu-
tion at different grid resolu-
tions and consider the solution
at the finest grid to be exact.
We can then calculate the er-
ror at each grid level and thus
determine the rate of conver-
gence. We define the 2-norm of
the error at any grid level k as

e
(k)
2 =

[
1

NM
∑

φ∈{u,v, f ,g,h}

N

∑
i=0

M

∑
j=0

∣∣∣φ (k)
i, j −φ

(k)
exact,i, j

∣∣∣2
]1/2

, (12)

where φ
(k)
exact is the restriction of the solution φ (0) on the finest grid to the grid on

level k. As can be seen in Table 1, the order in the 2-norm approaches 4 as N and M

increase, which is what we expected.
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7 Conclusions

We have derived simultaneous approximation terms (SAT) for the 2D linear elastic
wave equation in first-order form to yield strictly stable schemes for general Dirich-
let boundary conditions. The implementation of the SAT approach for a fourth order
difference scheme has proved that the convergence rate is indeed fourth order for a
test case with smooth data. The advantage of our approach is that Dirichlet bound-
ary conditions can easily be imposed for either the velocity or the stress components
which is required for fluid-structure interaction. In the future, we plan to apply this
approach to the nonlinear elastic equations based on a Neo-Hookean model.
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Department of Structural Engineering, NTNU for valuable discussions on the structure model and
for Abaqus support. The current research has been funded by the Swedish Research Council under
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Abstract

A strictly stable high order finite difference method has been developed for the linear elastic wave equation as
a first order hyperbolic system. With summation by parts (SBP) operators and simultaneous approximation terms
(SAT), a time stable solution can be guaranteed. We derive the SAT expressions for the 2D linear elastic wave
equation in Cartesian and curvilinear coordinates and verify high convergence rate for smooth solutions (and low
dispersion errors for a discontinuous solution).

1 Introduction

The numerical solution of wave equations finds applications in many fields including seismology, acoustics and general
relativity. The main motivation for solving the linear elastic wave equations has been to model seismological waves
in the Earth and wave propagation in inhomogeneous or discontinuous media. The linear elastic wave equation is
often solved in a second order formulation because this formulation reduces the number of variables which need to be
integrated [12, 5, 14].

When written as a system of first order equations, the well developed stability theory for hyperbolic systems applies
directly. The disadvantage of the first order formulation of the wave equation is the increased computational effort
required for the additional variables. Our main motivation for using a first order formulation is, however, related to
the actual physical system that we want to simulate. In fluid-structure interaction, the traction boundary condition
dictates the stresses on the elastic body. In the first order formulation, the traction boundary condition can be easily
formulated as a simple Dirichlet condition for a subset of the solution variables. Dirichlet boundary conditions are not
at all straightforward to impose in a second order formulation [12].

For simulations of wave propagation over large times, high order methods are superior to their low order counter-
parts in terms of accuracy per amount of computational power invested, especially in two and three space dimensions.
Schemes that converge to the true solution as the grid size goes to zero and are stable in the classical sense may,
however, still exhibit a non-physical growth of the solution as time increases. It is therefore important to make sure
that schemes are time stable, also known as strictly stable (cf. e.g. [15]). This can be achieved by using of summation
by parts operators [17, 10] together with simultaneous approximation terms (SAT) [2] for imposing boundary condi-
tions. This gives an energy estimate for the discrete equations similar to the one for the continuous equations, which
guarantees a non-growing energy and therefore strict stability for the discretized homogeneous wave equation. It is
straightforward to derive SAT expressions for the Dirichlet boundary conditions in the first order formulation.

Faccioli et al. [6] used a spectral method with domain decomposition to model 3D elastic waves in the Earth
employing non-reflecting boundary conditions to effectively approximate an infinite domain and the leap-frog method
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for time integration. Discrete Galerkin methods have been used by Käser and Dumbser in [11] to solve the elastic wave
equation in heterogeneous media on unstructured triangular grids. Fornberg and Ghrist [8] investigated different types
of finite difference approximations for wave equations, leading to the conclusion that high order accurate compact
schemes and staggered grids are computationally effective techniques for approximating the first derivatives in space
for wave equations. The related study [9] investigated the stability and accuracy of different time integrators for finite
difference discretizations of linear wave equations on staggered grids. It was found that staggered schemes have a
smaller truncation error than their non-staggered counterparts. Casadei et al. [4] presented a hybrid spectral/finite
element method for solving elastic wave propagation problems using a mortar method to handle the interface between
spectral and finite elements. The method handles heterogeneous media and complex geometries. Appelö and Petersson
[1] presented a stable second order accurate method for the elastic wave equation in second order formulation and
curvilinear coordinates using summation by parts operators.

In this paper, we present a strictly stable high-order method for the linear elastic wave equation in curvilinear
coordinates written as a hyperbolic system. We present all the ingredients necessary to implement SAT expressions
both for velocity components and stress components.

Outline of presentation

The objective is to obtain simultaneous approximation term (SAT) expressions (cf. section 3.3) for the 2D linear elastic
wave equation in transformed (curvilinear) coordinates. We accomplish this by diagonalizing the hyperbolic system
in one spatial direction at the time in order to obtain the SAT expression for that direction in primitive variables. The
corresponding 1D SAT expression in real (flow) variables is then the transformation matrix times the SAT expression
in primitive variables, and finally the full 2D SAT expression is the sum of the contributions from the two coordinate
directions. To keep the discussion simple, the main body of the text concerns SAT in Cartesian coordinates while the
generalization to curvilinear grids is placed in the appendix.

In section 2, we introduce the governing equations, i.e. the linear elastic wave equations in first order form written
as a hyperbolic system and describe how to decouple the system using characteristic variables in each space dimen-
sion. We then proceed in section 3 to give the details of the summation by parts (SBP) operators and simultaneous
approximation terms applied to the decoupled hyperbolic systems. Numerical results for three different test cases are
presented in section 4 and the conclusions are stated in section 5.

2 Linear elastic wave equation

The 2D linear elastic wave equation in first order form reads in Cartesian coordinates

ut = (1/ρ) fx +(1/ρ)gy

vt = (1/ρ)gx +(1/ρ)hy

ft = (λ +2μ)ux +λvy

gt = μvx + μuy

ht = λux +(λ +2μ)vy

(1)

where u,v are the velocity components and f ,g,h are the three independent components of the symmetric Cauchy
stress tensor σ . The Lamé parameters λ ,μ and the density ρ are here taken to be constant in space and time.

Introducing the solution vector q and coefficient matrices A and B allows us to write the linear elastic wave equation
(1) as a first order hyperbolic system

qt = Aqx +Bqy, (2)

where q = (u,v, f ,g,h)T and

A =

⎡⎢⎢⎢⎢⎣
0 0 1/ρ 0 0
0 0 0 1/ρ 0

λ +2μ 0 0 0 0
0 μ 0 0 0
λ 0 0 0 0

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
0 0 0 1/ρ 0
0 0 0 0 1/ρ
0 λ 0 0 0
μ 0 0 0 0
0 λ +2μ 0 0 0

⎤⎥⎥⎥⎥⎦ .
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The linear combination P(kx,ky) = kxA + kyB where k = (kx,ky) ∈ R
2 can be diagonalized with real eigenvalues

and linearly independent eigenvectors. The eigenvalue matrix is defined as the diagonal matrix with the eigenvalues
of P(kx,ky) in decreasing order,

Λ̃(kx,ky) = (k2
x + k2

y)
1/2diag(cp,cs,0,−cs,−cp) = diag

{
λ̃i(kx,ky)

}5

i=1
, (3)

where the wave speeds are cs =
√

μ/ρ and cp =
√

(λ +2μ)/ρ , referred to as secondary (or shear) and primary wave
velocity, respectively. For convenience, we also define the parameter α = (λ +2μ)/λ = c2

p/(c2
p −2c2

s ). We will need
to transform the system to characteristic variables in order to derive the SAT expression.

Since the system (2) is hyperbolic, there exists an nonsingular matrix T (kx,ky) for all directions k such that
T−1(kx,ky)P(kx,ky)T (kx,ky) = Λ(kx,ky). For the x-direction, kx = 1,ky = 0 gives the transformation matrix Tx =
T (1,0) and its inverse

Tx =

⎡⎢⎢⎢⎢⎣
cp/λ 0 0 0 −cp/λ

0 1 0 1 0
α 0 0 0 α
0 csρ 0 −csρ 0
1 0 1 0 1

⎤⎥⎥⎥⎥⎦ , T−1
x =

1
2

⎡⎢⎢⎢⎢⎣
λ/cp 0 1/α 0 0

0 1 0 1/(ρcs) 0
0 0 −2/α 0 2
0 1 0 −1/(ρcs) 0

−λ/cp 0 1/α 0 0

⎤⎥⎥⎥⎥⎦ .

The characteristic variables u(x) in the x-direction are then

u(x) = T−1
x q =

1
2

⎡⎢⎢⎢⎢⎣
λu/cp + f /α
v+g/(ρcs)
−2 f /α +2h

v−g/(ρcs)
−λu/cp + f /α

⎤⎥⎥⎥⎥⎦ . (4)

Note that we use the symbol u to refer to both the vector of characteristic variables and the first velocity component.
The meaning of u should be clear from the context. The decoupled characteristic equations in 1D are obtained by
premultiplying (2) by T−1

x and setting the y-derivative to zero,

u
(x)
t = Λu

(x)
x (5)

where Λ = diag(cp,cs,0,−cs,−cp). The transformation back to the flow variables is given by q = Txu(x).
Likewise for the y-direction, the transformation matrix, its inverse, the characteristic variables and the transforma-

tion back are

Ty =

⎡⎢⎢⎢⎢⎣
0 1 0 1 0

cp/λ 0 0 0 −cp/λ
1 0 1 0 1
0 ρcs 0 −ρcs 0
α 0 0 0 α

⎤⎥⎥⎥⎥⎦ , T−1
y =

1
2

⎡⎢⎢⎢⎢⎣
0 λ/cp 0 0 1/α
1 0 0 1/(ρcs) 0
0 0 2 0 −2/α
1 0 0 −1/(ρcs) 0
0 −λ/cp 0 0 1/α

⎤⎥⎥⎥⎥⎦ , (6)

u(y) =
1
2

⎡⎢⎢⎢⎢⎣
λv/cp +h/α
u+g/(ρcs)
2 f −2h/α
u−g/(ρcs)

−λv/cp +h/α

⎤⎥⎥⎥⎥⎦ , q = Tyu(y). (7)

2.1 Coordinate transformation

To treat curvilinear grids we introduce the mapping x = x(ξ ,η), y = y(ξ ,η) and introduce an equidistant computational
grid with coordinates ξi, i = 0, ...,N, η j, j = 0, ...,M. The Jacobian determinant J of the transformation is given by
J−1 = xξ yη − xη yξ . The linear elastic wave equation can then be written as

q̂t = (Âq̂)ξ +(B̂q̂)η (8)

3



where the hats signify that the quantities are in transformed coordinates, i.e. q̂ = J−1q, Â = ξxA + ξyB and B̂ =
ηxA+ηyB.

3 Strictly stable high order difference method

3.1 Energy method

The energy method is a general technique to prove sufficient conditions for well-posedness of partial differential
equations (PDE) and stability of difference methods with general boundary conditions.

Consider the solution of the model problem in 1D with

ut = λux, λ > 0, 0 ≤ x ≤ 1, t ≥ 0, u(x,0) = f (x), u(1, t) = g(t). (9)

The symbol λ represents here a general eigenvalue for the hyperbolic system and should not be confused with the
Lamé parameter. Define the L2 scalar product for real functions v and w on the interval 0 ≤ x ≤ 1 as

(v,w) =

ˆ 1

0
v(x)w(x)dx (10)

which defines a norm of the continuous solution at some time t and an energy E(t) = ||u(·, t)||2 = (u,u). Using

integration by parts (v,wx) = v(1, t)w(1, t)−v(0, t)w(0, t)−(vx,w), we get dE
dt

= d||u||2

dt
= (ut ,u)+(u,ut) = λ [(ux,u)+

(u,ux)] = λ [(ux,u) + [u2]10 − (ux,u)] = λ [u2(1, t)− u2(0, t)]. If λ > 0, the boundary condition u(1, t) = 0 yields a
non-growing solution (note that periodic boundary conditions would also yield a non-growing solution), i.e. E(t) ≤
E(0) = || f (x)||2. Thus, the energy of the solution is bounded by the energy of the initial data. Hence the problem is
well-posed.

3.2 Summation by parts operators

The idea behind the summation by parts technique (cf. e.g. [10]) is to use an operator Q which satisfies the corre-
sponding discrete property as the integration by parts of the continuous function, called the summation by parts (SBP)
property. For the numerical solution of (9), we introduce the equidistant grid x j = jh, j = 0, ...,N, h = 1/N, and
a solution vector containing the solution at the discrete grid points, u = (u0(t),u1(t), ...,uN(t))T. The semi-discrete
problem can be stated using a difference operator Q approximating the first derivative,

du

dt
= λQu, ui(0) = f (xi). (11)

We also define a discrete scalar product and corresponding norm and energy by

(u,v)h = h∑
i, j

hi juiv j = huTHv, Eh(t) = ||u||2h = (u,u)h, (12)

where the symmetric and positive definite norm matrix H = diag(HL, I,HR) has components hi j. In order for (12) to
define a scalar product, HL and HR must be symmetric and positive definite. We say that the scalar product satisfies
the summation by parts property (SBP), if

(u,Qv)h = uNvN −u0v0 − (Qu,v)h. (13)

It can be seen that this property is satisfied if the matrix G = HQ satisfies the condition that G+GT = diag(−1,0, ...,0,1).
If Q and its corresponding norm matrix H satisfy the SBP property (13), then the energy method for the discrete prob-
lem yields:

dEh

dt
=

d||u||2h
dt

= (ut ,u)h +(u,ut)h = λ [(Qu,u)h +(u,Qu)h] = λ [(Qu,u)h +u2
N −u2

0−(Qu,u)h] = λ [u2
N −u2

0]. (14)
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How to obtain dEh/dt ≤ 0 is the topic of the next section.
For diagonal HL and HR there exist difference operators Q accurate to order O(h2s) in the interior and O(hs) near

the boundaries for s = 1,2,3 and 4. These operators have an effective order of accuracy O(hs+1) in the entire domain.
Explicit forms of such operators Q and norm matrices H were derived by Strand [17].

For this study, we use an SBP operator based on the central sixth order explicit finite difference operator (s = 3)
which has been modified near the boundaries in order to satisfy the SBP property giving an effective O(h4) order of
accuracy in the whole domain.

3.3 Simultaneous approximation term

Since one of the terms in (14) is non-negative, strict stability does not follow when using the injection method for
the summation by parts operator, i.e. by using uN(t) = g(t). In contrast, the simultaneous approximation term (SAT)
method is an approach where a linear combination of the boundary condition and the differential equation is solved at
the boundary. This leads to a weak imposition of the physical boundary conditions. The imposition of SAT boundary
conditions is accomplished by adding a source term to the derivative operator, proportional to the difference between
the value of the discrete solution uN and the boundary condition to be fulfilled. The SAT method for the semidiscrete
advection equation (11) can be expressed as

du

dt
= λQu−λτS(uN −g(t))

where S = h−1H−1(0,0, ...,0,1)T and τ is a free parameter.
The added term does not alter the accuracy of the scheme since it vanishes when the analytical solution is substi-

tuted. Thus, we can imagine the SAT expression as a modification to the difference operator so that we are effectively
solving an equation ut = λ Q̃u with Q̃ = Q + Qsat without imposing the boundary conditions directly. When H is
diagonal, the scheme is only modified at one point on the boundary. We can now show that this scheme is strictly

stable for g(t) = 0. The energy rate for the solution of the semi-discrete equation is dEh
dt

=
d||u||2h

dt
= (ut ,u)h +(u,ut)h

= λ [(u,Qu− τSuN)h +(Qu− τSuN ,u)h] = λ [(u,Qu)h − τ(u,S)huN +(Qu,u)h − τ(S,u)huN ] = λ [(1− 2τ)u2
N − u2

0]
since (S,u)h = (u,S)h = huTHh−1H−1(0,0, ...,0,1)T = uN . The discretization is time stable if τ ≥ 1/2.

We now present analogously but without proof (cf. [2]) the strictly stable SAT method for a hyperbolic system in
one space dimension with diagonal coefficient matrices with the aim to obtain SAT expressions for the diagonalized
linear elastic wave equation (5). In general, the continuous system is ut = Λux with r unknowns and r equations (r = 5
here). The coefficient matrix Λ is chosen such that the eigenvalues are in descending order, i.e. λ1 > λ2 > ... > λk >
0 > λk+1 > ... > λr. We split the solution vector into two parts corresponding to positive and negative eigenvalues
uI = (u(1), ...,u(k))T and uII = (u(k+1), ...,u(r))T, where the components u(i) are grid functions of length N +1. For the
components in uI we have boundary conditions at x = 1, and for uII we need to specify boundary conditions at x = 0,
as this is required for well-posedness.

Since we are here dealing with characteristic variables, we need to transform our physical boundary conditions to
boundary conditions for the characteristic variables. This is done by the boundary functions gI(t) = (g(1)(t), ...,g(k)(t)),
gII(t) = (g(k+1)(t), ...,g(r)(t)) and the coupling matrices R and L defined by

uI(1, t) = RuII(1, t)+gI(t), uII(0, t) = LuI(0, t)+gII(t). (15)

The SAT method is then:

du(i)

dt
= λiQu(i) −λiτS(i)(u

(i)
N − (RuII)

(i)
N −g(i)(t)), 1 ≤ i ≤ k

du(i)

dt
= λiQu(i) +λiτS(i)(u

(i)
0 − (LuI)

(i−k)
0 −g(i)(t)), k +1 ≤ i ≤ r

(16)

where S(i) = h−1H−1(0,0, ...,1)T for 1≤ i≤ k and S(i) = h−1H−1(1,0, ...,0)T for k+1≤ i≤ r. Regarding the notation,

(RuII)
(i)
N should be interpreted as follows: uII is an (r−k)×1 vector where each component is a grid function of length

N + 1. Multiplying R (being a k× (r− k) matrix) with uII yields a new vector of grid functions (k× 1 vector). Take
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the (i)th grid function in this vector and finally the Nth component in the resulting grid function. As shown in [2], the
SAT method is both stable and time stable provided that

1−
√

1−|R||L|

|R||L|
≤ τ ≤

1+
√

1−|R||L|

|R||L|
(17)

with the additional constraint that |R||L| ≤ 1, where the matrix norm is defined as |R|= ρ(RT R)1/2 and ρ is the spectral
radius.

3.4 SAT expressions for elastic wave equation

Here we shall show how the SAT expression is derived for the 2D linear elastic wave equation in Cartesian coordinates,
but first we need to make a short digression on notation.

Notation

The Kronecker product of an n×m matrix C and a k× l matrix D is the n×m block matrix

C⊗D =

⎡⎢⎣ c11D · · · c1mD
...

. . .
...

cn1D · · · cnmD

⎤⎥⎦ . (18)

This notation will become useful later for writing the discretization in a compact form.
We adopt the notation u(k0, t) = ū(k = k0, t) to represent a 1D boundary condition on the solution variable u in

any direction k where k = x or k = y and ū(k, t) is the given functions of time on the boundaries k = 0 and k = 1
which the solution variable u should match on those boundaries. For example, ū(x = 1, t) is the given u-velocity on
the boundary x = 1 and u(1, t) is the corresponding solution to the equations. In 2D, the boundary condition also
dependends on the second coordinate direction, which we indicate by ū(x = 1,y, t) and ū(x,y = 1, t) for boundary
conditions in the x- and y-direction, respectively. Finally, for the discretized 2D boundary conditions, we write instead
ū j(x = 1, t) = ū(x = 1,y j, t) and ūi(y = 1, t) = ū(xi,y = 1, t).

3.4.1 Derivation of SAT expressions

The vector of characteristic variables in the x-direction is given in Eq. (4), but henceforth we drop the superscript (x).
The derivation for the y-direction is analogous.

We split (4) into two vectors corresponding to the positive and negative eigenvalues, omitting the characteristic
variable corresponding to the zero eigenvalue (the omission is justified since the resulting SAT expression is propor-
tional to the zero eigenvalue)

uI =
1
2

[
(λ/cp)u+(1/α) f

v+(1/csρ)g

]
, uII =

1
2

[
v− (1/csρ)g

(−λ/cp)u+(1/α) f

]
and define the coefficient matrices ΛI = diag(cp,cs), ΛII = diag(−cs,−cp). The boundary functions gI, gII, and the

matrices L and R are defined by the relations (15). For example, the identify uI =

[
0 1
−1 0

]
uII +

[
λu/cp

v

]
defines

R =

[
0 1
−1 0

]
and gI(t) = gI(t)⊗EN where gI(t) =

[
λ ū(x = 1, t)/cp

v̄(x = 1, t)

]
for the boundary conditions u(1, t) = ū(x =

1, t), v(1, t) = v̄(x = 1, t) and the matrix EN is

EN =

⎡⎢⎢⎢⎣
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 1

⎤⎥⎥⎥⎦ . (19)
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Boundary condition R gI(t)

u(1, t) = ū(x = 1, t),v(1, t) = v̄(x = 1, t)

[
0 1
−1 0

] [
λ ū(x = 1, t)/cp

v̄(x = 1, t)

]
f (1, t) = f̄ (x = 1, t), g(1, t) = ḡ(x = 1, t)

[
0 −1
1 0

] [
(1/α) f̄ (x = 1, t)
ḡ(x = 1, t)/(ρcs)

]
Table 1: Boundary conditions at x = 1 (right)

Boundary condition L gII(t)

u(0, t) = ū(x = 0, t), v(0, t) = v̄(x = 0, t)

[
0 −1
1 0

] [
v̄(x = 0, t)

−λ ū(x = 0, t)/cp

]
f (0, t) = f̄ (x = 0, t), g(0, t) = ḡ(x = 0, t)

[
0 1
−1 0

] [
−ḡ(x = 0, t)/(ρcs)
(1/α) f̄ (x = 0, t)

]
Table 2: Boundary conditions at x = 0 (left)

The expressions for some important combinations of boundary conditions are given in Tables 1 and 2. Other combina-
tions of boundary conditions are possible, e.g. u and g given, but these are physically not interesting and are therefore
not included here. We do not consider non-reflecting boundary conditions here. The corresponding boundary condi-
tions for the characteristic variables in the y-direction are stated in tables 3 and 4.

The discrete 1D SAT expression (16) is formed using the first rows of Tables 1, 2, 3 and 4 for boundary conditions
on the velocity components. We let the grid functions u and v in 2D with points labeled i∈ {0, ...,N} and j ∈ {0, ...,M}
in the x- and y-directions, respectively, correspond to the solution variables u and v in the discretization of the linear
elastic wave equation. The SAT expressions, one for each spatial direction and for each solution variable are also
grid functions of the same size as u and v but only nonzero on the boundaries. The SAT expressions in characteristic
variables are given in Table 5. Note that δi j in Table 5 denotes the Kronecker delta, i.e. the SAT expressions are
nonzero only on the boundaries.

Remark

We note that, as the spectral radius of both L and R is 1 (cf. Tables 1, 2, 3 and 4), for all types of boundary conditions
considered here, the inequalities (17) lend no other choice than τ = 1 to guarantee time-stability.

3.5 Discretization

Introduce a vector q̂ = (qi jk)
T = (q001, ...,q005,q101, ...,q105, ...,qNM5)

T where the three indices i, j and k represent
the ξ -coordinate, η-coordinate and the solution variable, respectively. We define difference operators in terms of
Kronecker products that operate on one index at a time.

Let Qξ = Qξ ⊗ IM ⊗ I5 and Qη = IN ⊗Qη ⊗ I5 where Qξ and Qη are 1D difference operators in the ξ - and η-
directions satisfying the SBP property (13). The identity operators IN and IM are unit matrices of size (N +1)×(N +1)
and (M +1)× (M +1), respectively. The computation of the spatial derivatives of q̂ can then be seen as operating on
q̂ with one of the Kronecker products, i.e. Qη q̂ operates on the second index and yields a vector of the same size as q̂

Boundary condition R gI(t)

u(1, t) = ū(y = 1, t),v(1, t) = v̄(y = 1, t)

[
0 1
−1 0

] [
λ v̄(y = 1, t)/cp

ū(y = 1, t)

]
g(1, t) = ḡ(y = 1, t), h(1, t) = ḡ(y = 1, t)

[
0 −1
1 0

] [
ḡ(y = 1, t)/α

ḡ(y = 1, t)/(ρcs)

]
Table 3: Boundary conditions at y = 1 (top)
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Boundary condition L gII(t)

u(0, t) = ū(y = 0, t),v(0, t) = v(y = 0, t)

[
0 −1
1 0

] [
ū(y = 0, t)

−λv(y = 0, t)/cp

]
g(0, t) = ḡ(y = 0, t), h(0, t) = ḡ(y = 0, t)

[
0 1
−1 0

] [
−ḡ(y = 0, t)/(ρcs)

ḡ(y = 0, t)/α

]
Table 4: Boundary conditions at y = 0 (bottom)

SAT BC on u,v BC on f ,g or g,h

SATx
i, j,1 = −λτ(hxhNN)−1δiN (uN, j − ū j(x = 1, t)) (−cp/α)τ(hxhNN)−1δiN

(
fN, j − f̄ j(x = 1, t)

)
SATx

i, j,2 = −csτ(hxhNN)−1δiN (vN, j − v̄ j(x = 1, t)) (−1/ρ)τ(hxhNN)−1δiN (gN, j − ḡ j(x = 1, t))

SATx
i, j,3 = 0 0

SATx
i, j,4 = −csτ(hxh00)

−1δi0
(
v0, j − v̄ j(x = 0, t)

)
(1/ρ)τ(hxh00)

−1δi0
(
g0, j − ḡ j(x = 0, t)

)
SATx

i, j,5 = λτ(hxh00)
−1δi0

(
u0, j − ū j(x = 0, t)

)
(−cp/α)τ(hxh00)

−1δi0
(

f0, j − f̄ j(x = 0, t)
)

SATy
i, j,1 = −λτ(hyhMM)−1δ jM (vi,M − v̄i(y = 1, t)) (−cs/α)τ(hyhMM)−1δ jM

(
hi,M − h̄i(y = 1, t)

)
SATy

i, j,2 = −csτ(hyhMM)−1δ jM (ui,M − ūi(y = 1, t)) (−1/ρ)τ(hyhMM)−1δ jM (gi,M − ḡi(y = 1, t))

SATy
i, j,3 = 0 0

SATy
i, j,4 = −csτ(hyh00)

−1δ j0 (ui,0 − ūi(y = 0, t)) (1/ρ)τ(hyh00)
−1δ j0 (gi,0 − ḡi(y = 0, t))

SATy
i, j,5 = λτ(hyh00)

−1δ j0 (vi,0 − v̄i(y = 0, t)) (−cp/α)τ(hyh00)
−1δ j0

(
hi,0 − h̄i(y = 0, t)

)
Table 5: Explicit forms of SAT expressions in characteristic variables in the x-direction (first five rows) and in the y-
direction (last five rows). The Kronecker delta δi j is defined by δi j = 1 if i = j and δi j = 0 if i �= j. The parameter τ is
defined by Eq. (17). Here: τ = 1. The constant grid spacings in the x- and y-directions are hx and hy, respectively. The
components of the norm matrix H are denoted by hi j. The SAT expressions corresponding to eigenvalue 0 disappear
in each case because the SAT expressions are all proportional to the eigenvalue.

representing the first derivative in the η-direction. To express the semi-discrete linear elastic wave equation, we also
need to define Â = IN ⊗ IM ⊗ Â and B̂ = IN ⊗ IM ⊗ B̂. Note that these products are never actually explicitly formed as
they are merely theoretical constructs to make the notation more compact. The products correspond well to the actual
finite difference implementation, i.e. the first derivatives are calculated by operating on successive lines of values in
the computational domain. Using the Kronecker products defined above, the semi-discrete linear elastic wave equation
with constant coefficients including the SAT expression can be written as

dq̂

dt
= Qξ (Âq̂)+Qη(B̂q̂)+ ŜAT (20)

where ŜAT is the SAT expression in transformed coordinates. To illustrate the procedure, we give the SAT expression
in Cartesian coordinates in section 3.5.1 and give the generalization to curvilinear coordinates in the appendix.

3.5.1 SAT expressions in Cartesian coordinates

In table 5 are listed the SAT expressions in characteristic variables in the x-direction and y-directions for all combina-
tions of boundary conditions that make sense physically. These SAT expressions can be transformed to flow variables,
indicated in the equations with an over-line, by operating with the transformation matrix, given in section 2, on the
last index, i.e. SAT

x
= (IN ⊗ IM ⊗T x)SATx and SAT

y
= (IN ⊗ IM ⊗T y)SATy, which yields for boundary conditions

on u,v in the x-direction

SAT
x

i, j,1 = −cpτh−1
x

[
h−1

NNδiN (uN, j − ū j(x = 1, t))+h−1
00 δi0

(
u0, j − ū j(x = 0, t)

)]
SAT

x

i, j,2 = −csτh−1
x

[
h−1

NNδiN (vN, j − v̄ j(x = 1, t))+h−1
00 δi0

(
v0, j − v̄ j(x = 0, t)

)]
SAT

x

i, j,3 = −(λ +2μ)τh−1
x

[
h−1

NNδiN (uN, j − ū j(x = 1, t))−h−1
00 δi0

(
u0, j − ū j(x = 0, t)

)]
SAT

x

i, j,4 = −μτh−1
x

[
h−1

NNδiN (vN, j − v̄ j(x = 1, t))−h−1
00 δi0

(
v0, j − v̄ j(x = 0, t)

)]
SAT

x

i, j,5 = −λτh−1
x

[
h−1

NNδiN (uN, j − ū j(x = 1, t))−h−1
00 δi0

(
u0, j − ū j(x = 0, t)

)] (21)
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and in the y-direction we get, similarly,

SAT
y

i, j,1 = −csτh−1
y

[
h−1

MMδ jM (ui,M − ūi(y = 1, t))+h−1
00 δ j0 (ui,0 − ūi(y = 0, t))

]
SAT

y

i, j,2 = −cpτh−1
y

[
h−1

MMδ jM (vi,M − v̄i(y = 1, t))+h−1
00 δ j0 (vi,0 − v̄i(y = 0, t))

]
SAT

y

i, j,3 = −λτh−1
y

[
h−1

MMδ jM (vi,M − v̄i(y = 1, t))−h−1
00 δ j0 (vi,0 − v̄i(y = 0, t))

]
SAT

y

i, j,4 = −μτh−1
y

[
h−1

MMδ jM (ui,M − ūi(y = 1, t))−h−1
00 δ j0 (ui,0 − ūi(y = 0, t))

]
SAT

y

i, j,5 = −(λ +2μ)τh−1
y

[
h−1

MMδ jM (vi,M − v̄i(y = 1, t))−h−1
00 δ j0 (vi,0 − v̄i(y = 0, t))

] (22)

Remark

There is one small technical detail to consider: In a corner, say i = 0, j = 0 where the bottom and left edges meet,
we must choose whether to impose the boundary condition u0,0 = ū0(x = 0, t) from the boundary condition in the
y-direction, or u0,0 = ū0(y = 0, t) from the x-direction and then only include the SAT expression corresponding to
either one of these cases. The same goes for the variable v and the other three corners.

3.6 Time integration

The system (20) of ordinary differential equations can readily be solved by the classical 4th order explicit Runge–
Kutta method. Calling the right-hand side of (20) f(tn, q̂

n) at the time level n, we advance the solution to level n+1 by
performing the steps

k1 = f(tn, q̂
n)

k2 = f

(
tn +

Δt

2
, q̂n +

Δt

2
k1

)
k3 = f

(
tn +

Δt

2
, q̂n +

Δt

2
k2

)
k4 = f(tn +Δt, q̂n +Δtk3)

q̂n+1 = q̂n +
Δt

6
(k1 +2k2 +2k3 +k4).

Remark

If the time-dependent boundary conditions for the classical 4th order Runge–Kutta method are injected at the end of
each internal stage, then the cancellation of errors in the Taylor expansion of the method is ruined and the 4th order
convergence rate is lost, cf. [7, 3]. The first order error O(Δt) at the boundary leads to second order convergence only.
On the other hand, injecting the value on the boundary only after the final stage gives the theoretical convergence but
at the cost of a more restrictive CFL condition. With the SAT method, the boundary conditions are in effect part of the
derivative operator and should be evaluated at the same time as the current stage in the Runge–Kutta method.

3.6.1 Choice of time step

Using explicit time integration for the discrete equations, we need to make sure that the CFL condition is satisfied.
The maximum CFL number depends on which particular time and space discretization we use, but we can generally
state that a condition of the form

Δt ≤
CFL
cp

min

⎧⎨⎩ hξ

maxi, j

√
(ξ 2

x )i, j +(ξ 2
y )i, j

,
hη

maxi, j

√
(η2

x )i, j +(η2
y )i, j

⎫⎬⎭ (23)

must hold, as cp is always the largest wave speed. For a 1D problem with periodic boundary conditions, the maximum
CFL number when using the 4th order explicit Runge–Kutta method in time and a 6th order central difference method
in space, is about 1.7. Here, in 2D with non-periodic boundaries, we expect the maximum CFL number to be a bit
lower, say 1.3 grosso modo.
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3.7 Explicit filter

Waves with wave number k = π/h where h is the grid spacing, are not damped by standard central difference operators
like the sixth order one which our SBP operator Q corresponds to in the interior. To get rid of these waves, we
use an explicit filter [13] which is applied to the solution after each time step. Defining the Kronecker products

D
(6)
ξ

= D
(6)
ξ

⊗ IM ⊗ I5 and D
(6)
η = IN ⊗D

(6)
η ⊗ I5 the filtered solution at time level n+1 is obtained as

q̂n+1 ←− q̂n+1 −
[
D

(6)
ξ

q̂+D
(6)
η q̂
]n+1

(24)

where D
(p)
ξ

u represents the central difference approximation

(D
(p)
ξ

u)i, j =
(−1)p/2

2p
δ

(p)
ξ

ui, j (25)

and δ
(2)
ξ

ui, j = ui+1, j −2ui, j + ui−1, j is the finite difference approximation of h2
ξ

∂ 2u(ihξ , jhη)

∂ξ 2 with analogous defini-

tions for the η-direction. With p = 6, the filter suppresses modes with the highest wave number k = π/h while modes
in the region k ≤ 0.8/h are essentially undamped.

4 Numerical experiments

4.1 2D test case

We consider now a simple test for our 2D discretization: a square domain occupying the region −1≤ x≤ 1, −1≤ y≤ 1
in dimensionless variables. At t = 0 we give an initial condition for the stress component g(x,y, t = 0) = g0(x,y) while
all other variables are initially zero. The initial condition is defined by

g0(x,y) = s(2r1 +0.5)− s(2r2 +0.5) (26)

where r2
1 = (x−0.5)2 + y2, r2

2 = (x+0.5)2 + y2 and

s(r) =

{
exp(−1/r−1/(1− r)+4), if 0 < r < 1

0, otherwise.
(27)

Thus, g0(x,y) is a smooth function with infinitely many derivatives and compact support, representing two sources
located at (±0.5,0). The material parameters are λ = μ = 1.0 and density ρ = 1.0. We integrate the solution with
CFL number 0.8 and impose homogeneous Dirichlet boundary conditions for u and v using the SAT approach (21-22).
Hence no displacement is imposed on the boundary. To obtain the displacement δ (t) = δ (0)+

´ t

0 u(τ)dτ , we integrate
the velocity numerically at each grid point using the 4th order explicit Runge–Kutta method. We plot the solution
evaluated at time t = 0.5 in figures 1(a), 1(c) and 2. Since the largest wave speed cp =

√
(λ +2μ)/ρ =

√
3, at t = 0.5

the P-wave will have reached and been reflected from the right boundary which is situated a distance 0.5 from the
center of the source.

The numerical solution to the 2D test case is shown in Figures 1(a) and 1(c) computed on a 2049×2049 grid, and
in Figures 1(b) and 1(d) is shown the magnitude of the error in the solution on a 513×513 grid when compared with
the solution on the finest grid. The positions of the wave fronts are best seen in the error plots; we see that waves have
been reflected on the right and top boundaries and that the error is largest where the wave fronts meet.

As the solution is symmetric with respect to the center lines x = 0 and y = 0, only the first quadrant is shown. The
value of the velocity components at the boundary is zero, as enforced by the SAT term.

For the same set of parameters and initial/boundary conditions, we compute the solution at different grid resolu-
tions and consider the solution on the finest grid to be exact. We can then calculate the error at each grid level and thus
determine the convergence rate. We define the 2-norm of the error at any grid level k as
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Figure 1: 2D test case in first quadrant: contour plots of velocity components (top) and modulus of displacement
vector (bottom) evaluated at t = 0.5.

11



0 1x

0

1

y

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 2: 2D test case: Contour levels spaced 0.001 apart for modulus of displacement vector

N ×M k e
(k)
2 e

(k)
∞ log2(e

(k+1)
2 /e

(k)
2 ) log2(e

(k+1)
∞ /e

(k)
∞ )

32×32 6 3.646×10−2 7.540×10−2 − −

64×64 5 6.800×10−3 1.563×10−2 2.423 2.271
128×128 4 8.521×10−4 2.652×10−3 2.996 2.559
256×256 3 7.421×10−5 4.827×10−4 3.521 2.458
512×512 2 4.558×10−6 5.642×10−5 4.025 3.097

1024×1024 1 2.710×10−7 6.456×10−6 4.072 3.128
2048×2048 0 0 0 − −

Table 6: Errors and convergence rates in 2-norm and maximum norm for 2D test case at t = 0.5.

e
(k)
2 =

[
1

NM
∑

φ∈{u,v, f ,g,h}

N

∑
i=0

M

∑
j=0

∣∣∣φ (k)
i, j −φ

(k)
exact,i, j

∣∣∣2]1/2

, (28)

where φ
(k)
exact is the restriction of the solution φ (0) on the finest grid to the grid on level k. The ∞-norm is likewise

defined as
e(k)

∞ = max
φ∈{u,v, f ,g,h}

max
i, j

|φ
(k)
i, j −φ

(k)
exact,i, j|.

As can be seen in Table 6, the convergence rate in the 2-norm approaches 4 as N and M increase, which is what we
expected. However, we do not yet see a fourth order convergence rate in the ∞-norm, but only a little better than third
order.

4.2 Wave propagation in 1D

As a second verification case, we consider elastic wave propagation in 1D by not imposing any boundary conditions
in one of the two spatial directions. If we assume no variation in the x-direction, we are effectively solving the system
qt = Bqy with q = (u,v, f ,g,h)T. From the characteristic variables in the y-direction (7), we know that a disturbance
in u will will travel at speed cs and a disturbance in v will propagate with wave speed cp. Thus, if we solve the
1D linear elastic wave equation in a domain 0 ≤ y ≤ L with zero initial conditions and the boundary conditions
ū(y = 0, t) = v̄(y = 10) = 1, ū(y = 10) = v̄(y = 0) = 0 we expect a discontinuous solution propagating back and forth
in the domain with different speeds for the variables u and v. Numerically, we locate the discontinuities by finding the
point where the first derivative of the solution is maximum.
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Figure 3: Results for 1D wave propagation experiment: The lines represent the position of the wave-fronts as a function
of time. The theoretical position is also plotted but it is hard to distinguish since it is so near the numerically predicted
value.

In figure (3) is plotted the analytical and numerically calculated wavefront positions for a domain of length L = 10
discretized with 200 points in the direction of propagation. The analytical wave speeds are cs = 1 and cp =

√
3. The

numerical results reproduce the analytical solution quite well as seen in the figure. Surface plots of the solution are
shown in figures 4(a) and 4(a). The Gibbs phenomenon is visible near the discontinuities. This simple test case verifies
that we get the correct numerical wave speeds in our high order discretization for a discontinuous solution and that the
filter does a good job at suppressing the high frequency waves in the solution.

4.3 Manufactured solution

Using the method of manufactured solution [16], we can test the accuracy of the method with reference to an exact
solution and without referring to the numerical solution on a finer grid. We choose to consider the rectangle −1≤ x≤ 1,
−1 ≤ y ≤ 1 and the vector-valued function

q̃ = (ũ, ṽ, f̃ , g̃, h̃)T = (sin(πx/2)sin(πy/2)sin(ωt),−sin(πx/4)sin(πy/4)sin(ωt),0,0,0)T (29)

with ω = 2π . Inserting the function into the continuous equation yields a source term q̃t −Aq̃x −Bq̃y. Including
the corresponding source term in the equations forces the function to be the analytical solution. The time dependent
boundary conditions given by the analytical solution ũ and ṽ are enforced on all four boundaries by the SAT procedure.

With a CFL number of 0.8, we evaluated the numerical solution at the time t = 0.5, at which the analytical solution
is zero. At different grid resolutions, we obtained the results shown in Table 7. Since there are no high frequency
components in the solution, we did not use a filter here. In the 2-norm, the order of accuracy is about 3.5. It is unclear
why we don’t get 4 but it is possible that the time dependence in the source term gives rise to a dominant error term if
ωΔt is large.

With the manufactured solution, we can calculate the error exactly at each time level. To see how the CFL number
affects the error in the solution, we used a fixed grid of size 129×129 and integrated the manufactured solution up to
t = 4.0 for different CFL numbers while calculating the error at each time level. The results shown in Figure 5 indicate
that a CFL number below 0.2 has little effect on the error in the solution. The error then grows as the CFL number is
increased until the solution becomes unstable at CFL = 1.0. The error oscillates in time at the same frequency as the
driving function. However, there is no overall tendency of an increase in the error.
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Figure 4: Results for 1D wave propagation experiment: Surface plot of solution variables at time t = 27, CFL = 0.8.
The boundary conditions are ū(y = 0, t) = v̄(y = 10) = 1, ū(y = 10) = v̄(y = 0) = 0, enforced via the SAT method.
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Figure 5: L2 error as a function of time for different CFL numbers while computing the manufactured solution on a
129×129 grid. The lowest errors are obtained for CFL = 0.1 and CFL = 0.2 which correspond to the two lowest lines
in the graph. The other lines correspond to CFL = 0.3 up to and including CFL = 1.0.

N ×M k e
(k)
2 e

(k)
∞ log2(e

(k+1)
2 /e

(k)
2 ) log2(e

(k+1)
∞ /e

(k)
∞ )

32×32 6 4.258×10−4 2.871×10−3 − −

64×64 5 3.563×10−5 3.917×10−4 3.580 2.873
128×128 4 3.248×10−6 4.495×10−5 3.455 3.123
256×256 3 2.730×10−7 6.293×10−6 3.573 2.836
512×512 2 2.522×10−8 6.225×10−7 3.436 3.338

1024×1024 1 2.215×10−9 8.797×10−8 3.509 2.823

Table 7: Error and convergence rate for manufactured solution in 2- and ∞-norms.
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5 Conclusions

We have derived simultaneous approximation terms (SAT) for the 2D linear elastic wave equation in first order form
to yield strictly stable high order difference operators for general Dirichlet boundary conditions. The implementation
of the SAT approach for a fourth order difference scheme has proved that the convergence rate is indeed fourth order
for a test case with smooth data. The advantage of our approach is that Dirichlet boundary conditions can easily be
imposed for either the velocity or the stress components which is required for fluid-structure interaction.

Appendix: SAT in transformed coordinates

To obtain SAT expressions for the transformed coordinates we need to find the characteristic variables for the trans-
formed equation where the coefficient matrices are linear combinations of the coefficient matrices in the x- and y-
directions

q̂t = ((kxA+ kyB)q̂)k (30)

where k = ξ ,η . We form the linear combination P(kx,ky) = kxA+kyB. The coefficient matrices A and B have the same
set of eigenvalues Λ = diag(cp,cs,0,−cs,−cp), whereas for the linear combination P(kx,ky) we get Λ̃(kx,ky) = (k2

x +

k2
y)

1/2Λ. To find the linearly independent eigenvectors of P(kx,ky), we solve the underdetermined system (P(kx,ky)−

λ̃iI)vi = 0 for i = 1, ...,5. These five eigenvectors vi become the columns in the matrix

T (kx,ky) =

⎡⎢⎢⎢⎢⎣
kxc̃p/λ −ky/k̄ 0 −ky/k̄ −kxc̃p/λ
kyc̃p/λ kx/k̄ 0 kx/k̄ −kyc̃p/λ

k2
xα + k2

y −2kxkyc̃sρ/(k̄r2) k2
y 2kxkyc̃sρ/(k̄r2) k2

xα + k2
y

2kxkyμ/λ ρ c̃s −kxky −ρ c̃s 2μkxky/λ
k2

yα + k2
x 2kxkyc̃sρ/(k̄r2) k2

x −2kxkyc̃sρ/(k̄r2) k2
yα + k2

x

⎤⎥⎥⎥⎥⎦ (31)

We have some degrees of freedom in choosing T , each column could for example be scaled by any nonzero constant.
The inverse of this matrix is obtained with a symbolic computer program, the result being

T−1(kx,ky) =
1

2r2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kxλ

c̃p

kyλ

c̃p

k2
x

αr2 2
kykx

αr2

k2
y

αr2

−kyk̄ kxk̄ −
k̄kxky

ρ c̃s

k̄2r2

ρ c̃s

k̄kxky

ρ c̃s

0 0 −
2k̄

α
+

4k2
y

β r2 −8
kxky(λ + μ)

r2(λ +2μ)

2k̄

α
+4

k2
x

β r2

−kyk̄ kxk̄
k̄kxky

ρ c̃s

−
k̄2r2

ρ c̃s

−
k̄kxky

ρ c̃s

−
λkx

c̃p

−
λky

c̃p

k2
x

αr2 2
kykx

αr2

k2
y

αr2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(32)

where the parameters are defined by k̄ = (k2
x −k2

y)/(k2
x +k2

y), r = (k2
x +k2

y)
1/2, c̃p = rcp, c̃s = rcs, α = (λ +2μ)/λ and

β = αλ/μ . The astute reader will readily verify that T−1(kx,ky)P(kx,ky)T (kx,ky) = Λ̃(kx,ky).
The characteristic variables are u(kx,ky) = T−1(kx,ky)q̂ where q̂ = J−1(u,v, f ,g,h)T and since T−1 is dense for

general coordinates, four of the characteristic variables have contributions from all five physical variables. We form the
two sub-vectors corresponding to positive and negative eigenvalues as uI(kx,ky) = (u1,u2)

T and uII(kx,ky) = (u4,u5)
T

with the aim to form boundary conditions with the matrices R and L. At a first glance, it might seem like a hopeless
predicament to derive expressions for L, R, gI and gII in transformed coordinates but thanks to the symmetry in
T−1(kx,ky), we are so lucky that the same L and R as we used for Cartesian coordinates also work for transformed
coordinates, since they also isolate the right components of uI,II(kx,ky) in Eq. (15). Eq. (15) now gives our new
boundary functions gI(kx,ky, t) and gII(kx,ky, t) as

gI(kx,ky, t) = ūI(kx,ky,k = 0, t)−RūII(kx,ky,k = 0, t), gII(kx,ky, t) = ūII(kx,ky,k = 1, t)−LūI(kx,ky,k = 1, t)
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where the functions ūI,II are the previously defined uI,II but with the solution variables substituted for their correspond-
ing boundary conditions. Note that L and R are independent of the direction. For boundary conditions on u and v, we
get, using L and R from Tables 1 and 2

gI(kx,ky, t) =
J−1

r2

⎡⎣ λ

c̃p

(kxū(k = 1, t)+ kyv̄(k = 1, t))

k̄(−kyū(k = 1, t)+ kxv̄(k = 1, t))

⎤⎦ (33)

gII(kx,ky, t) =
J−1

r2

⎡⎣ k̄(−kyū(k = 0, t)+ kxv̄(k = 0, t))
λ

c̃p

(−kxū(k = 0, t)− kyv̄(k = 0, t))

⎤⎦ (34)

where ū(k, t), v̄(k, t) are the given boundary conditions on u,v on the boundaries. Similarly, for boundary conditions
on the stress components using the appropriate R and L, we obtain

gI(kx,ky, t) =
J−1

r2

⎡⎢⎣
1

αr2 (k2
x f̄ (k = 1, t)+2kykxḡ(k = 1, t)+ k2

y h̄(k = 1, t))

k̄

ρ c̃s

(−kxky f̄ (k = 1, t)+(k2
x − k2

y)ḡ(k = 1, t)+ kxkyh̄(k = 1, t))

⎤⎥⎦ (35)

gII(kx,ky, t) =
J−1

r2

⎡⎢⎣ k̄

ρ c̃s

(kxky f̄ (k = 0, t)− (k2
x − k2

y)ḡ(k = 0, t)− kxkyh̄(k = 0, t))

1
αr2 (k2

x f̄ (k = 0, t)+2kykxḡ(k = 0, t)+ k2
y h̄(k = 0, t))

⎤⎥⎦ . (36)

These expressions reduce to their Cartesian counterparts for the case when either of kx,ky is zero.

Remark

Seemingly, equations (35) and (36) require all three stress components f ,g,h to be known on each boundary. However,
we know from the characteristic analysis that we can only give information on the two characteristics that enter the
computational domain. Typically, the boundary conditions on the stresses come from a traction boundary condition

of the form σn = t̄ where t̄ = (t̄x, t̄y)
T is the given traction vector and σ is the Cauchy stress tensor

[
f g

g h

]
. The

unit normal n can be expressed in terms of the coordinate transformation (cf. Figure 6) as n = (1/r)(kx,ky)
T and the

components of gI and gII can thus be rewritten as

gI(kx,ky, t) =
J−1

r2

⎡⎢⎣
1

αr
(kxt̄x(k = 1, t)+ kyt̄y(k = 1, t))

rk̄

ρ c̃s

(−kyt̄x(k = 1, t)+ kxt̄y(k = 1, t))

⎤⎥⎦

gII(kx,ky, t) =
J−1

r2

⎡⎢⎣ rk̄

ρ c̃s

(kyt̄x(k = 0, t)− kxt̄y(k = 0, t))

1
αr

(kxt̄x(k = 0, t)+ kyt̄y(k = 0, t))

⎤⎥⎦
and therefore it is sufficient to specify the two parameters t̄x and t̄y on each boundary, which does not violate well-
posedness.

Remark

Our definition of the unit normal n differs from the traditional notion of an outward unit normal in that our normal is
only pointing out of the domain on the lines ξ = 1 and η = 1. On ξ = 0 and η = 0, the outward unit normal is −n in
our notation.
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n =

[
ξx

ξy

]
1√

ξ 2
x +ξ 2

y

n =

[
ηx

ηy

]
1√

η2
x +η2

y

ξ = 0
ξ = 1

η = 0

η = 1

Figure 6: Coordinate transformation

Complete SAT expressions for boundary conditions on u,v

Inserting (33) and (34) into the definition, the following 1D SAT expression in primitive variables and transformed
coordinates is obtained:

SAT(k)
i (kx,ky, t) = −

τJ−1

hkr2

⎡⎢⎢⎢⎢⎣
λh−1

NNδiN [kx(uN − ū(k = 1, t))+ ky(vN − v̄(k = 1, t))]
c̃sk̄(hNN)−1δiN [−ky(uN − ū(k = 1, t))+ kx(vN − v̄(k = 1, t))]

0
c̃sk̄(h00)

−1δi0[−ky(u0 − ū(k = 0, t))+ kx(v0 − v̄(k = 0, t))]

λh−1
00 δi0[−kx(u0 − ū(k = 0, t))− ky(v0 − v̄(k = 0, t))]

⎤⎥⎥⎥⎥⎦ (37)

Here, k can be either one of the coordinates ξ , η , i.e. hk is the grid spacing in either the ξ - or η-direction. N is the
maximum index in the corresponding direction. We have used i as general coordinate index. When k = η , we would
instead call the index j and the maximum index would be M. To go back to flow variables, we apply the transformation
matrix,

SAT
(k)
i = T (kx,ky)SAT(k)

i (kx,ky) (38)

for k = ξ and η . The full expressions are lengthy and add nothing to the discussion so they are omitted here. In 2D,
the total SAT expression is then the sum of the two contributions from the two coordinate directions.

ŜATi, j = SAT
(ξ )
i, j (ξx,ξy)+SAT

(η)
i, j (ηx,ηy) (39)
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Abstract. Fluid-structure interaction in a simplified two-dimensional model of the
larynx is considered in order to study human phonation. The flow is driven by an imposed
pressure gradient across the glottis and interacts with the moving vocal folds in a self-
sustained oscillation. The flow is computed by solving the 2D compressible Navier–Stokes
equations using a high order finite difference method, which has been constructed to be
strictly stable for linear hyperbolic and parabolic problems. The motion of the vocal folds is
obtained by integrating the linear elastic wave equation using a similar high order difference
method as for the flow equations. Fluid and structure interact in a two-way coupling. In
each time step at the fluid-structure interface, the structure provides the fluid with new no-
slip boundary conditions and new grid velocities, and the fluid provides the structure with
new traction boundary conditions which are imposed via the simultaneous approximation
term (SAT) approach.
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1 INTRODUCTION

Fluid-structure interaction (FSI) occurs when a flexible structure interacts with a fluid.
The fluid flow exerts a stress on the structure which causes it to deform, thereby generating
a new geometry for the fluid flow. A direct consequence of FSI in the vocal tract is voice
generation, where the motion of the soft tissue of the vocal folds interacts dynamically
with the glottal airflow to produce sound. The self-sustained oscillations of the vocal folds
can be explained by the Bernoulli principle which states that in the absence of gravity for
inviscid incompressible steady flow, the velocity v, pressure p and density ρ are related
by p + ρv2/2 = const. The vocal folds being closed in their equilibrium position, initially
at rest, are forced apart by the increasing lung pressure. As the air starts flowing, the
velocity in the glottis increases and thus the pressure must decrease according to the
Bernoulli principle. The pressure drop together with restoring elastic forces results in a
closure of the vocal folds and a build-up of pressure. This cycle then repeats itself, driven
only by the lung pressure. The computational challenge in aeroelastic simulations lies
in dealing with unsteady flows at high Reynolds numbers, large deformations, moving
interfaces, fluid-structure interaction and intrinsically 3D motion [3].

In this paper, we employ a high order finite difference approach based on summation
by parts (SBP) operators [16, 5, 4] to solve the compressible Navier–Stokes equations and
the linear elastic wave equation on first order form. Fluid and structure interact in a
two-way coupling, meaning that fluid stresses deform the flexible structure which in turn
causes the fluid to conform to the new structural boundary via boundary conditions. The
approach has been tested for a 2D model of the larynx and the vocal folds.

2 GOVERNING EQUATIONS

2.1 Compressible Navier–Stokes equations

The perturbation formulation is used to minimize cancellation errors when discretizing
the Navier–Stokes equations for compressible low Mach number flow [15, 12]. The 2D
compressible Navier–Stokes equations in conservative form can be expressed in perturba-
tion form as [13, 8]

U ′
t + F c′

x + Gc′
y = F v ′

x + Gv ′
y , (1)

where the vector U ′ denotes the perturbation of the conservative variables with respect
to the stagnation values. U ′ and the inviscid (superscript c) and viscous (superscript v)
flux vectors are e.g. defined in [8].

General moving geometries are treated by a time dependent coordinate transformation
τ = t, ξ = ξ(t, x, y), η = η(t, x, y). The transformed 2D conservative compressible Navier–
Stokes equations in perturbation form read [8]

Û ′
τ + F̂ ′

ξ + Ĝ′
η = 0 , (2)

where Û ′ = J−1U ′ , F̂ ′ = J−1(ξtU
′ + ξx(F

c′ − F v ′) + ξy(G
c′ − Gv ′)) and Ĝ′ =

J−1(ηtU
′ + ηx(F

c′ − F v ′) + ηy(G
c′ − Gv ′)).
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No-slip adiabatic wall boundary conditions and the Navier–Stokes Characteristic Bound-
ary Conditions (NSCBC) technique by Poinsot and Lele in [14] are employed at the outflow
[9]. At the inflow, pressure, temperature and velocity in the y-direction are imposed as
p = patm + Δp, T = T0 = 310 K, and v = 0, respectively.

2.2 Linear elastic wave equation

The 2D linear elastic wave equation written as a first order hyperbolic system reads in
Cartesian coordinates

qt = Aqx + Bqy, (3)

where the unknown vector q = (u, v, f, g, h)T contains the velocity components u, v and
the stress components f, g, h and the coefficient matrices A, B (cf. e.g. [2, 11, 10]) depend
on the the Lamé parameters λ, μ and the density ρ which are here all taken to be constant
in space and time.

The linear combination P (kx, ky) = kxA+kyB can be diagonalized with real eigenvalues
and linearly independent eigenvectors. The eigenvalue matrix is defined as the diagonal
matrix with the eigenvalues of P (kx, ky) in decreasing order,

Λ̃(kx, ky) = (k2
x + k2

y)
1/2diag(cp, cs, 0,−cs,−cp) = diag

{
λ̃i(kx, ky)

}5

i=1
, (4)

where the wave speeds are cp =
√

(λ + 2μ)/ρ and cs =
√

μ/ρ, referred to as primary and
secondary (or shear) wave velocity, respectively.

To treat curvilinear grids we introduce the mapping x = x(ξ, η), y = y(ξ, η). The
Jacobian determinant J of the transformation is given by J−1 = xξyη − xηyξ and the
linear elastic wave equation can then be written as

q̂t = (Âq̂)ξ + (B̂q̂)η (5)

where the hats signify that the quantities are in transformed coordinates, i.e. q̂ = J−1q,
Â = ξxA + ξyB and B̂ = ηxA + ηyB.

2.3 Characteristic variables

In order to describe the SAT expressions in transformed coordinates we need to find
the characteristic variables for the transformed equation in which the coefficient matrices
are linear combinations of the coefficient matrices in the x- and y-directions.

q̂t = ((kxA + kyB)q̂)k (6)

where k = ξ, η. We form the linear combination P (kx, ky) = kxA + kyB. The coefficient
matrices A and B have the same set of eigenvalues Λ = diag(cp, cs, 0,−cs,−cp), whereas
for the linear combination P (kx, ky) we get Λ̃(kx, ky) = (k2

x + k2
y)

1/2Λ. To find the linearly

3
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independent eigenvectors of P (kx, ky), we solve the underdetermined system (P (kx, ky)−
λ̃iI)vi = 0 for i = 1, ..., 5. These five eigenvectors vi become the columns in the matrix

T (kx, ky) =

⎡⎢⎢⎢⎢⎣
kxc̃p/λ −ky/k̄ 0 −ky/k̄ −kxc̃p/λ
ky c̃p/λ kx/k̄ 0 kx/k̄ −ky c̃p/λ

k2
xα + k2

y −2kxky c̃sρ/(k̄r2) k2
y 2kxky c̃sρ/(k̄r2) k2

xα + k2
y

2kxkyμ/λ ρc̃s −kxky −ρc̃s 2μkxky/λ
k2

yα + k2
x 2kxky c̃sρ/(k̄r2) k2

x −2kxky c̃sρ/(k̄r2) k2
yα + k2

x

⎤⎥⎥⎥⎥⎦ (7)

We have some degrees of freedom in choosing T , because each column can be scaled by
any nonzero constant. The inverse of this matrix is obtained with a symbolic computer
program, the result being

T−1(kx, ky) =
1

2r2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kxλ

c̃p

kyλ

c̃p

k2
x

αr2
2
kykx

αr2

k2
y

αr2

−kyk̄ kxk̄ −
k̄kxky

ρc̃s

k̄2r2

ρc̃s

k̄kxky

ρc̃s

0 0 −
2k̄

α
+

4k2
y

βr2
−8

kxky(λ + μ)

r2(λ + 2μ)

2k̄

α
+ 4

k2
x

βr2

−kyk̄ kxk̄
k̄kxky

ρc̃s

−
k̄2r2

ρc̃s

−
k̄kxky

ρc̃s

−
λkx

c̃p

−
λky

c̃p

k2
x

αr2
2
kykx

αr2

k2
y

αr2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

where the parameters are defined by k̄ = (k2
x − k2

y)/(k2
x + k2

y), r = (k2
x + k2

y)
1/2, c̃p = rcp,

c̃s = rcs, α = (λ + 2μ)/λ and β = αλ/μ. For all directions (kx, ky) we have that
T−1(kx, ky)P (kx, ky)T (kx, ky) = Λ̃(kx, ky). The transformation to characteristic variables
u is given by u(k) = T−1(kx, ky)q̂ for each of the two coordinate directions k = ξ, η. The
transformation back to flow variables is given by q̂ = T (kx, ky)u

(k).

3 STRICTLY STABLE HIGH ORDER DIFFERENCE METHOD

3.1 Energy method

The energy method is a general technique to prove sufficient conditions for well-
posedness of partial differential equations (PDE) and stability of difference methods with
general boundary conditions.

Consider the solution of the model problem in 1D with

ut = λux, λ > 0, 0 ≤ x ≤ 1, t ≥ 0, u(x, 0) = f(x), u(1, t) = g(t). (9)

The symbol λ represents here a general eigenvalue for the hyperbolic system and should
not be confused with the Lamé parameter. Define the L2 scalar product for real functions
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v and w on the interval 0 ≤ x ≤ 1 as

(v, w) =

∫ 1

0

v(x)w(x)dx (10)

which defines a norm of the continuous solution at some time t and an energy E(t) =
||u(·, t)||2 = (u, u). Using integration by parts (v, wx) = v(1, t)w(1, t) − v(0, t)w(0, t) −

(vx, w), we get dE
dt

= d||u||2

dt
= (ut, u) + (u, ut) = λ[(ux, u) + (u, ux)] = λ[(ux, u) + [u2]10 −

(ux, u)] = λ[u2(1, t) − u2(0, t)]. If λ > 0, the boundary condition u(1, t) = 0 yields a non-
growing solution (note that periodic boundary conditions would also yield a non-growing
solution), i.e. E(t) ≤ E(0) = ||f(x)||2. Thus, the energy of the solution is bounded by
the energy of the initial data. Hence the problem is well-posed.

3.2 Summation by parts operators

The idea behind the summation by parts technique (cf. e.g. [4]) is to use an operator
Q which satisfies the corresponding discrete property as the integration by parts of the
continuous function, called the summation by parts (SBP) property. For the numerical so-
lution of (9), we introduce the equidistant grid xj = jh, j = 0, ..., N , h = 1/N , and a solu-
tion vector containing the solution at the discrete grid points, u = (u0(t), u1(t), ..., uN(t))T.
The semi-discrete problem can be stated using a difference operator Q approximating the
first derivative,

du

dt
= λQu, ui(0) = f(xi). (11)

We also define a discrete scalar product and corresponding norm and energy by

(u,v)h = h
∑
i,j

hijuivj = hu
THv, Eh(t) = ||u||2h = (u,u)h, (12)

where the symmetric and positive definite norm matrix H = diag(HL, I, HR) has compo-
nents hij. In order for (12) to define a scalar product, HL and HR must be symmetric
and positive definite. We say that the scalar product satisfies the summation by parts
property (SBP), if

(u, Qv)h = uNvN − u0v0 − (Qu,v)h. (13)

It can be seen that this property is satisfied if the matrix G = HQ satisfies the condition
that G + GT = diag(−1, 0, ..., 0, 1). If Q and its corresponding norm matrix H satisfy the
SBP property (13), then the energy method for the discrete problem yields:

dEh

dt
=

d||u||2h
dt

= (ut, u)h + (u, ut)h = λ[(Qu, u)h + (u, Qu)h] (14)

= λ[(Qu, u)h + u2
N − u2

0 − (Qu, u)h] = λ[u2
N − u2

0]. (15)

How to obtain dEh/dt ≤ 0 is the topic of the next section.
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For diagonal HL and HR there exist difference operators Q accurate to order O(h2s) in
the interior and O(hs) near the boundaries for s = 1, 2, 3 and 4. These operators have an
effective order of accuracy O(hs+1) in the entire domain. Explicit forms of such operators
Q and norm matrices H were derived by Strand [16].

For this study, we use an SBP operator based on the central sixth order explicit finite
difference operator (s = 3) which has been modified near the boundaries in order to satisfy
the SBP property giving an effective O(h4) order of accuracy in the whole domain.

3.3 Simultaneous approximation term

Since one of the terms in (15) is non-negative, strict stability does not follow when us-
ing the injection method for the summation by parts operator, i.e. by using uN(t) = g(t).
In contrast, the simultaneous approximation term (SAT) method is an approach where
a linear combination of the boundary condition and the differential equation is solved at
the boundary. This leads to a weak imposition of the physical boundary conditions. The
imposition of SAT boundary conditions is accomplished by adding a source term to the
difference operator, proportional to the difference between the value of the discrete solu-
tion uN and the boundary condition to be fulfilled. The SAT method for the semidiscrete
advection equation (11) can be expressed as

du

dt
= λQu − λτS(uN − g(t))

where S = h−1H−1(0, 0, ..., 0, 1)T and τ is a free parameter.
The added term does not alter the accuracy of the scheme since it vanishes when

the analytical solution is substituted. Thus, we can imagine the SAT expression as a
modification to the difference operator so that we are effectively solving an equation
ut = λQ̃u with Q̃ = Q + Qsat without imposing the boundary conditions directly. When
H is diagonal, the scheme is only modified at one point on the boundary. We can now
show that this scheme is strictly stable for g(t) = 0. The energy rate for the solution of

the semi-discrete equation is dEh

dt
=

d||u||2
h

dt
= (ut,u)h + (u,ut)h = λ[(u, Qu − τSuN)h +

(Qu−τSuN ,u)h] = λ[(u, Qu)h−τ(u,S)huN +(Qu,u)h−τ(S,u)huN ] = λ[(1−2τ)u2
N −u2

0]
since (S,u)h = (u,S)h = hu

THh−1H−1(0, 0, ..., 0, 1)T = uN . The discretization is time
stable if τ ≥ 1/2.

The extension to hyperbolic systems (cf. [1]) of the strictly stable SAT method for
hyperbolic systems ut = Λux in one space dimension with diagonal coefficient matrices
(r unknowns and r equations) is done in the following way. The coefficient matrix Λ is
chosen such that the eigenvalues are in descending order, i.e. λ1 > λ2 > ... > λk > 0 >
λk+1 > ... > λr. The solution vector is split into two parts corresponding to positive
and negative eigenvalues uI = (u(1), ..., u(k))T and uII = (u(k+1), ..., u(r))T, where u(i) is
the eigenvector, i.e. the characteristic variable corresponding to the eigenvalue λ(i). We
define u

I = (u(1), ...,u(k))T and u
II = (u(k+1), ...,u(r))T, where the components u

(i) are
grid functions of length N + 1.

6
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For the components in u
I we have boundary conditions at x = 1, and for u

II we need
to specify boundary conditions at x = 0, as this is required for well-posedness.

Since we are here dealing with characteristic variables, we need to transform our phys-
ical boundary conditions to boundary conditions for the characteristic variables. This is
done by the boundary functions g

I(t) = (g(1)(t), ..., g(k)(t)), g
II(t) = (g(k+1)(t), ..., g(r)(t))

and the coupling matrices R and L defined by

u
I(1, t) = Ru

II(1, t) + g
I(t), u

II(0, t) = Lu
I(0, t) + g

II(t). (16)

The SAT method is then:

du(i)

dt
= λiQu

(i) − λiτS
(i)(u

(i)
N − (Ru

II)
(i)
N − g(i)(t)), 1 ≤ i ≤ k

du(i)

dt
= λiQu

(i) + λiτS
(i)(u

(i)
0 − (Lu

I)
(i−k)
0 − g(i)(t)), k + 1 ≤ i ≤ r

(17)

where S
(i) = h−1H−1(0, 0, ..., 1)T for 1 ≤ i ≤ k and S

(i) = h−1H−1(1, 0, ..., 0)T for k + 1 ≤

i ≤ r. Regarding the notation, (Ru
II)

(i)
N should be interpreted as follows: u

II is an
(r−k)×1 vector where each component is a grid function of length N +1. Multiplying R
(being a k × (r − k) matrix) with u

II yields a new vector of grid functions (k × 1 vector).
Take the (i)th grid function in this vector and finally the Nth component in the resulting
grid function. As shown in [1], the SAT method is both stable and time stable provided
that

1 −
√

1 − |R||L|

|R||L|
≤ τ ≤

1 +
√

1 − |R||L|

|R||L|
(18)

with the additional constraint that |R||L| ≤ 1, where the matrix norm is defined as
|R| = ρ(RT R)1/2 and ρ is the spectral radius.

4 SAT EXPRESSIONS FOR THE LINEAR ELASTIC WAVE EQUATION

Notation for boundary conditions

We adopt the notation u(k0, t) = ū(k = k0, t) to represent a 1D boundary condition
on the solution variable u in any direction k where k = x or k = y and ū(k, t) is the
given functions of time on the boundaries k = 0 and k = 1 which the solution variable
u should match on those boundaries. For example, ū(x = 1, t) is the given u-velocity
at the boundary x = 1 and u(1, t) is the corresponding solution to the equations. In
2D, the boundary condition also dependends on the second coordinate direction, which
we indicate by ū(x = 1, y, t) and ū(x, y = 1, t) for boundary conditions in the x- and
y-direction, respectively. Finally, for the discretized 2D boundary conditions, we write
instead ūj(x = 1, t) = ū(x = 1, yj, t) and ūi(y = 1, t) = ū(xi, y = 1, t).

4.1 Presentation of SAT expressions

SAT expressions for the linear elastic wave equation were derived in [10], here we
summarize the findings.

7
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The characteristic variables are u(kx, ky) = T−1(kx, ky)q̂ where q̂ = J−1(u, v, f, g, h)T

We form the two sub-vectors corresponding to positive and negative eigenvalues as

uI(kx, ky) = (u1, u2)
T, uII(kx, ky) = (u4, u5)

T (19)

with the aim to form boundary conditions with the matrices R and L. Since many
components in T−1(kx, ky) occur in positive/negative pairs, it is easy to find 2×2 matrices
L and R which, when applied to uI,II(kx, ky) in Eq. (16), isolate the components which
we need in order to state the boundary conditions. Eq. (16) now gives our new boundary
functions gI(kx, ky, t) and gII(kx, ky, t) as

gI(kx, ky, t) = ūI(kx, ky, k = 0, t) − RūII(kx, ky, k = 0, t) (20)

gII(kx, ky, t) = ūII(kx, ky, k = 1, t) − LūI(kx, ky, k = 1, t) (21)

where the functions ūI,II(kx, ky, k, t) are the previously defined uI,II(kx, ky) from Eq. (19)
but with the solution variables substituted for their corresponding time-dependent bound-
ary conditions. Note that L and R are independent of the direction, but depend on the
particular type of boundary condition to impose (velocity or traction). For boundary con-
ditions on the velocities u and v, we get using the definitions (20)–(21) and choosing L
and R so that the appropriate components of the characteristic variables u are recovered,
the following expressions

gI(kx, ky, t) =
J−1

r2

⎡⎣ λ

c̃p

(kxū(k = 1, t) + kyv̄(k = 1, t))

k̄(−kyū(k = 1, t) + kxv̄(k = 1, t))

⎤⎦ , R =

[
0 1
−1 0

]
(22)

gII(kx, ky, t) =
J−1

r2

⎡⎣ k̄(−kyū(k = 0, t) + kxv̄(k = 0, t))
λ

c̃p

(−kxū(k = 0, t) − kyv̄(k = 0, t))

⎤⎦ , L =

[
0 −1
1 0

]
(23)

where ū(k, t), v̄(k, t) are the given boundary conditions on u, v at the boundaries.
The boundary conditions on the stresses come from a traction boundary condition of

the form σn = t̄ where t̄ = (t̄x, t̄y)
T is the given traction vector from the fluid and σ is

the Cauchy stress tensor in the structure

[
f g
g h

]
. The unit normal n can be expressed

in terms of the coordinate transformation (cf. Figure 1) as n = (1/r)(kx, ky)
T and the

components of gI and gII for traction boundary conditions can be written as

gI(kx, ky, t) =
J−1

r2

⎡⎢⎣
1

αr
(kxt̄x(k = 1, t) + ky t̄y(k = 1, t))

rk̄

ρc̃s

(−ky t̄x(k = 1, t) + kxt̄y(k = 1, t))

⎤⎥⎦ , R =

[
0 −1
1 0

]
(24)

gII(kx, ky, t) =
J−1

r2

⎡⎢⎣ rk̄

ρc̃s

(ky t̄x(k = 0, t) − kxt̄y(k = 0, t))

1

αr
(kxt̄x(k = 0, t) + ky t̄y(k = 0, t))

⎤⎥⎦ , L =

[
0 1
−1 0

]
(25)
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n =

[
ξx

ξy

]
1√

ξ 2
x +ξ 2

y

n =

[
ηx

ηy

]
1√

η2
x +η2

y

ξ = 0
ξ = 1

η = 0

η = 1

Figure 1: Coordinate transformation

and therefore it is sufficient to specify the two parameters t̄x and t̄y on each boundary
instead of all of the three f̄ , ḡ, h̄, which might otherwise violate well-posedness.

Inserting the definitions of gI,II and R, L gives with Eq. (17) a SAT expression (which
we call simply SAT) for each of the five equations in characteristic variables. For each
of the two spatial directions, the transformation matrix T (kx, ky) is applied to get the
corresponding SAT expressions in flow variables.

SAT
(k)

i = T (kx, ky)SAT
(k)
i (kx, ky) (26)

for k = ξ and η. Finally, the total SAT expression is then the sum of the two contributions
from the two coordinate directions.

ŜATi,j = SAT
(ξ)

i,j (ξx, ξy) + SAT
(η)

i,j (ηx, ηy) (27)

5 FLUID-STRUCTURE INTERACTION

5.1 Arbitrary Lagrangean–Eulerian (ALE) formulation

The displacement of the structure interface determines the shape of the fluid domain
and the structure velocity at the interface determines the internal grid point velocities
in the fluid domain. The right and left boundaries of the fluid domain are the out- and
inflow, respectively. The top and bottom parts of the fluid domain are bounded by the
flexible vocal folds and the inner wall of the airpipe which is assumed to be rigid. As we
do not assume symmetry, the motions of the two vocal folds are solved for individually. In
our arbitrary Lagrangean–Eulerian (ALE) formulation, the positions and velocities of the
grid points in the fluid domain are linearly interpolated from the positions and velocities
of the structures at the interfaces. Figure 2 shows the given structure velocities with bold
arrows and the interpolated grid point velocities ẋ, ẏ (thin arrows) for three grid lines.

To obtain the time derivative of J−1 as needed in (2), a geometric invariant [17] is used.
This geometric conservation law states that (J−1)τ + (J−1ξt)ξ + (J−1ηt)η = 0. The time
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Fixed Flexible Fixed

Figure 2: The boundary of the fluid domain consists of fixed and flexible parts. The velocity at the
boundary of the flexible part determines the internal grid point velocity. Only half domain shown.

derivatives of the computational coordinates ξ, η can here be obtained from the grid point
velocities ẋ, ẏ as ξt = −(ẋξx + ẏξy), ηt = −(ẋηx + ẏηy) which can be seen by differentiating
the transformation with respect to τ .

5.2 Description of fluid-structure interaction algorithm

At the start of a simulation, we construct the fixed reference configuration for the
structure and set the initial variables to zero (no internal stresses and zero velocity).
Zero initial conditions are taken for the perturbation variables U ′ in the fluid domain
(stagnation conditions). In the first time step, the fluid domain is uniquely determined
by the reference boundary of the structure. To go from time level n to n + 1, we first
take one time step for the fluid with imposed pressure boundary conditions at the inflow
and adiabatic no-slip conditions on the walls, i.e. u = 0 and ∂T/∂n = 0. After the first
fluid time step, the viscous fluid stress on the wall is calculated based on the new fluid
velocities and pressures. These fluid stresses σf are passed on to the structure solver via
the traction boundary condition. The force per unit area exerted on a surface element
with unit normal n is t̄ = σfn, where n is here the inward unit normal in the structure,
calculated from the displacement vector field.

The traction computed at time level n for the fluid is then used to advance the structure
solution to time level n+1. The solution for the structure at the new time level gives the
velocities and displacements on the boundary, which in turn are used to generate the new
fluid mesh and internal grid point velocities. This procedure is repeated for each time
step.

10
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6 DISCRETIZATION

Notation

The Kronecker product of an n×m matrix C and a k× l matrix D is the n×m block
matrix

C ⊗ D =

⎡⎢⎣ c11D · · · c1mD
...

. . .
...

cn1D · · · cnmD

⎤⎥⎦ . (28)

This notation will be useful for writing the discretization in a compact form.

6.1 Linear elastic wave equation

Introduce a vector q̂ = (q̂ijk)
T = (q̂001, ..., q̂005, q̂101, ..., q̂105, ..., q̂NM5)

T where the three
indices i, j and k represent the ξ-coordinate, η-coordinate and the solution variable, re-
spectively. We define difference operators in terms of Kronecker products that operate on
one index at a time.

Let Qξ = Qξ ⊗ IM ⊗ I5 and Qη = IN ⊗ Qη ⊗ I5 where Qξ and Qη are 1D difference
operators in the ξ- and η-directions satisfying the SBP property (13). The identity op-
erators IN and IM are unit matrices of size (N + 1) × (N + 1) and (M + 1) × (M + 1),
respectively. The computation of the spatial differences of q̂ can then be seen as operat-
ing on q̂ with one of the Kronecker products, i.e. Qηq̂ operates on the second index and
yields a vector of the same size as q̂ representing the first derivative approximation in
the η-direction. To express the semi-discrete linear elastic wave equation, we also need to
define Â = IN ⊗ IM ⊗ Â and B̂ = IN ⊗ IM ⊗ B̂. Note that these products are never actu-
ally explicitly formed as they are merely theoretical constructs to make the notation more
compact. The products correspond well to the actual finite difference implementation,
i.e. the first derivatives are calculated by operating on successive lines of values in the
computational domain. Using the Kronecker products defined above, the semi-discrete
linear elastic wave equation with constant coefficients including the SAT expression can
be written as

dq̂

dt
= Qξ(Âq̂) + Qη(B̂q̂) + ̂

SAT (29)

where ̂
SAT is the SAT expression in transformed coordinates, defined in Eq. (27).

6.2 Navier–Stokes equations

For the fluid equations, we employ a similar procedure, i.e. we define vectors for the
solution variables Û

′ = (Û ′
ijk)

T = (Û ′
001, ..., Û

′
004, Û

′
101, ..., Û

′
104, ..., Û

′
NM4)

T, and the two flux

vectors F̂
′ and Ĝ

′ similarly defined, where, again, the three indices i, j and k represent the
ξ-coordinate, η-coordinate and the solution variable, respectively. The same derivative
operators are used as for the linear elastic equation. The discretized fluid equation can
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thus be written
dÛ′

dτ
= −QξF̂

′ − QηĜ
′ (30)

6.3 Time integration

The systems (29) and (30) of ordinary differential equations can readily be solved by
the classical 4th order explicit Runge–Kutta method. For the linear elastic wave equation,
calling the right-hand side of (29) f(tn, q̂

n) at the time level n, we advance the solution
to level n + 1 by performing the steps

k1 = f(tn, q̂
n)

k2 = f

(
tn +

Δt

2
, q̂n +

Δt

2
k1

)
k3 = f

(
tn +

Δt

2
, q̂n +

Δt

2
k2

)
k4 = f(tn + Δt, q̂n + Δtk3)

q̂
n+1 = q̂

n +
Δt

6
(k1 + 2k2 + 2k3 + k4)

and similar expressions for the fluid equations (30). The boundary conditions are updated
only after all four stages for the respective field have been completed. That is to say, the
structure solution at level n + 1 is obtained using only the fluid stress at time level n.
Likewise, the fluid solution at time level n + 1 is based only on the position and velocity
of the structure at time level n.

7 RESULTS

Verification

Our fluid solver has previously been verified and tested for numerical simulation of
Aeolian tones [13] and qualitatively tested for simulation of human phonation on fixed
grids [8] as well as moving grids in ALE formulation [7].

The solver for the linear elastic equations with SAT term has been tested with a
manufactured solution and an academic 2D test case in [10] where we obtained a rate of
convergence of 3.5 to 4 in 2-norm.

7.1 Problem parameters

The initial geometry for the vocal folds is here based on the geometry used in [19] for
an oscillating glottis with a given time dependence. The initial shape of the vocal tract
including the vocal fold is given as

rw(x) =
D0 − Dmin

4
tanh s +

D0 + Dmin

4
, (31)
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where rw is the half height of the vocal tract, D0 = 5Dg is the height of the channel,
Dg = 4 mm is the average glottis height, Dmin = 1.6 mm is the minimum glottis height,
s = b|x|/Dg − bDg/|x|, c = 0.42 and b = 1.4. For −2Dg ≤ x ≤ 2Dg, the function (31)
describes the curved parts of the reference configuration for the top and bottom (with a
minus sign) vocal folds. The x-coordinates for the in- and outflow boundaries are −4Dg

and 10Dg, repectively.

7.2 Vocal fold material parameters

The density in the reference configuraiton is ρ0 = 1043 kg/m3, corresponding to the
measured density of vocal fold tissue as reported by [6]. The Poisson ratio was chosen as
ν = 0.47 for the tissue, corresponding to a nearly incompressible material with ν = 0.5
being the theoretical incompressible limit. The Lamé parameters were chosen as μ =
3.5 kPa and λ given by λ = 2μν/(1 − 2ν).

7.3 Fluid model

We used a Reynolds number of 3000 based on the average glottis height Dg = 0.004 m
and an assumed average velocity in the glottis of Um = 40 m/s. We used these particular
values in order to be able to compare with previously published results by Zhao et al.
[19, 18] and by ourselves [7, 8]. The Prandtl number was set to 1.0, and the Mach
number was 0.2, based on the assumed average velocity and the speed of sound. We
deliberately used a lower value for the speed of sound, c0 = 200 m/s in order to speed
up the computations. The air density was 1.3 kg/m3 and the atmospheric pressure was
patm = 101325 Pa. The equation of state was the perfect gas law, and we assumed a
Newtonian fluid. At the inlet, we imposed a typical lung pressure during phonation with
a small unsymmetric perturbance by setting the acoustic pressure to pacoustic = p−patm =
(1 + 0.025 sin 2πη)2736 Pa, where η = 0 at the lower vertex and η = 1 at the upper
vertex of the inflow boundary. The outlet pressure was set to atmospheric pressure, i.e.
p − patm = 0 Pa.

7.4 Numerical simulation

Both fluid and structure used the same set of variables for nondimensionalization and
the same time step was used for both fields so that the two solutions are always at the
same time level. The structure grid consisted of 81× 61 points for each vocal fold, i.e. for
the upper and the lower vocal folds, and the fluid domain was 241× 61 points. The time
step was determined by the stability condition for the fluid, which was satisfied here by
requiring CFL ≤ 1. Since the fluid domain changes with time, the CFL condition puts
a stricter constraint on the time step when the glottis is nearly closed. The solution was
marched in time with given initial and boundary conditions to dimensional time t = 12 ms
(total number of time steps 277310).

The solution was first integrated to time t = 6 ms so that the effect of initial conditions
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would be negligible. After that, the solution was recorded at consecutive 2 ms intervals as
shown in Figure 3 where the vorticity is depicted in the left column and the corresponding
pressure field is on the right.

Initially, a starting jet is formed in the glottis which becomes unstable near the exit and
creates the beginnings of vortical structures at time t = 6 ms. Since the boundary condi-
tions are not symmetric with respect to the centerline, also the solution is not symmetric.
In the following, vortices are shed near the glottis and propagated downstream driven by
the pressure gradient. The pressure plots indicate a sharp pressure drop just before the
orifice. Downstream, the pressure minima occur in the vortex centers, as expected.

8 CONCLUSIONS

Our 2D model for the vocal folds based on the linear elastic wave equation in first
order form and the air flow based on the compressible Navier–Stokes equations in the
vocal tract proves to be able to capture the self-sustained pressure-driven oscillations and
vortex generation in the glottis. The high order method for the linear elastic wave equation
with a SAT formulation for the boundary conditions ensures a time-stable solution. The
fluid and structure fields are simultaneously integrated explicitly in time and boundary
data is exchanged only at the end of a time step. With this formulation, there is no need
to do iterations in order to find the equilibrium displacement for the structure depending
on the fluid stresses. For the problem we consider here, the limiting factor on the time
step is the CFL condition from the compressible Navier–Stokes equations. Since the fluid
grid has many more grid points, the effort of integrating the linear elastic wave equation,
to get the structure displacement, is sub-dominant.

9 ACKNOWLEDGEMENTS

The authors thank Bjørn Skallerud, Paul Leinan and Victorien Prot at the Department
of Structural Engineering, NTNU for valuable discussions on the structure model and for
Abaqus support. The current research has been funded by the Swedish Research Council
under the project ”Numerical Simulation of Respiratory Flow”.

REFERENCES

[1] M. H. Carpenter, D. Gottlieb, and S. Abarbanel. Time-stable boundary conditions for
finite-difference schemes solving hyperbolic systems: Methodology and application to
high-order compact schemes. J. Comp. Phys., 111:220 – 236, 1994.

[2] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge University
Press, 1998.

[3] J.B. Grotberg and O.E. Jensen. Biofluid mechanics in flexible tubes. Annu. Rev.
Fluid Mech, 36:121 – 147, 2004.

14



Martin Larsson and Bernhard Müller

Figure 3: Vorticity and pressure contours at 2 ms intervals. The left column shows vorticity contours,
the right column shows pressure contours. The top row shows the solution evaluated at t = 6 ms, the
second row is at t = 8 ms and so on up to t = 14 ms (last row). The colorbar in the vorticity column
stretches from 0 to 50 000 s−1 and the contour levels are spaced 3 750 s−1 apart. For the pressure column,
the inflow is at p = p∞ +Δp, the outflow is at (approximately) p = p∞ and the contour levels are spaced
71 Pa apart.

15



Martin Larsson and Bernhard Müller

[4] B. Gustafsson. High order difference methods for time-dependent PDE. Springer-
Verlag Berlin Heidelberg, 2008.

[5] B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time Dependent Problems and Difference
Methods. John Wiley & Sons, New York, 1995.

[6] E.J. Hunter, I.R. Titze, and F. Alipour. A three-dimensional model of vocal fold
abduction/adduction. J. Acoust. Soc. Am., 115(4):1747 – 1759, 2004.

[7] M. Larsson. Numerical Simulation of Human Phonation, Master Thesis, Uppsala
University, Department of Information Technology, 2007.

[8] M. Larsson and B. Müller. Numerical simulation of confined pulsating jets in human
phonation. Computers & Fluids, 38:1375 – 1383, 2009.

[9] M. Larsson and B. Müller. Numerical simulation of fluid-structure interaction in hu-
man phonation. In B. Skallerud and H.I. Andersson, editors, MekIT 09 Fifth national
conference on Computational Mechanics, pages 261 – 280, Trondheim, Norway, 2009.
Tapir Academic Press.

[10] M. Larsson and B. Müller. Strictly stable high order difference method for the linear
elastic wave equation. 2010. Submitted to Commun. Comput. Phys.

[11] R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge University
Press, 2002.

[12] B. Müller. Computation of compressible low Mach number flow, Habilitation Thesis,
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