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Problem Description
Background and objective:

The lattice Boltzmann method is a new numerical method of computational fluid dynamics (CFD).
Conventional fluid solvers are based on the Navier-Stokes equations describing fluid motion based
on a continuous picture of matter. The lattice Boltzmann method instead relies on discrete
particles having an idealized movement on a lattice. Similar to the case of particles with
continuous movement, it can be shown that the Navier-Stokes equations can be recovered from
the statistical description of these particles. The numerical solution of these lattice Boltzmann
equations has computational advantages over conventional solvers based on the Navier-Stokes
equations. However, boundary conditions are still an issue for this method, since there is no clear
picture what happens with these particles at walls or interface. The master thesis will focus on
boundary conditions of the lattice Boltzmann method.

The following questions should be considered in the project work:

1. Implementation of the mass conserving boundary conditions for walls at rest for the lattice
Boltzmann method.
2. Analytical derivation of a similar formulation for moving walls.
3. Implementation of this new formulation.
4. Verification of the boundary conditions.
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Abstract

Based on the no-slip boundary condition for walls at rest for the lattice
Boltzmann Bathnagar-Gross-Krook method by J.C.G. Verschaeve [10], a
no-slip boundary condition for walls with a tangential movement is derived.
Numerical tests verify that the present boundary condition is second order
accurate and stable for relaxation frequencies close to two.
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Part I

Introduction

Interest for the lattice Boltzmann method has been growing continuously in
the last 20 years [9]. The lattice Boltzmann method is a numerical scheme
used to solve the incompressible Navier-Stokes equation. Opposed to stan-
dard Navier-Stokes solvers it does not solve the incompressible Navier-Stokes
equations directly but instead adopts a ’particle’ perspective. The molec-
ular point of view of the method allows to handle complex flows such as
multiphase flows, or flows in porous media in a natural way [6].
In the lattice Boltzmann method the flow is described by models for colli-
sion between particles. Lattice Boltzmann algorithms consist of two steps.
One is a local step, called collision, describing changes of particle density
due to collisions at each grid node. The other, so called streaming step,
is not local and is responsible for streaming of particles from lattice nodes
to others. The particle distribution function is the essential object of the
method. Macroscopic quantities, such as density or momentum, are recov-
ered as statistical moments of this particle distribution function.
This thesis focuses on the no-slip boundary condition for walls with a tan-
gential movement. The present derivation is based on the no-slip boundary
condition for walls at rest by J.C.G. Verschaeve [10]. The difficulty of bound-
ary conditions in the lattice Boltzmann method is to assign proper values
to the particle distributions leaving the boundary into the bulk-fluid. The
adopted formulation is responsible for transmitting the wall effect to the
fluid. Thus the value of the velocity or the density is taken as an input
for the formulation, but further assumptions are necessary, respecting the
physics at the boundary. Such a formulation for the no-slip boundary con-
dition at tangentially moving walls is derived here. This formulation is then
applied to several benchmark cases in order to evaluate its accuracy and
stability.
We start by presenting different aspects of the method in part II p. 7. It is
meant to emphasize results from the numerous existing works, subsequently
used in the derivation of the boundary condition. A more detailed intro-
duction to the method and developed arguments should be looked for in the
works this section refers to. The part III p. 12 presents briefly two bound-
ary conditions we compare the present boundary condition to. In part IV
p. 14, the formulation for no-slip boundary condition at tangentially mov-
ing walls is derived following the ideas developed in the article of J.C.G.
Verschaeve [10]. The part V p. 22 shows the results obtained in the cases
of three steady flows, namely Poiseuille flow, half Poiseuille flow, Couette
flow, flow in a lid-driven cavity, and the unsteady periodic flow of the second
problem of Stokes. The flow in a lid-driven cavity apply the present bound-
ary condition on each of the four walls. An additional simulation has also
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been performed to compare the mass variations obtained with the present
formulation to the ones obtained with the two formulations presented in
part III. Apart from this additional case, the numerical verification focuses
on the method’s order of accuracy. The present discussion is concluded in
part VI p.35.
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Part II

Lattice Boltzmann
Bathnagar-Gross-Krook

This section presents the main aspect of the lattice Boltzmann method. We
treat only the lattice Boltzmann Bathnagar-Gross-Krook version of the lat-
tice Boltzmann method. More details on the lattice Boltzmann Bathnagar-
Gross-Krook method can be found in [6, 12]. The LB method considers
flows on a particle scale. Therefore we are interested in the particle density
distribution depending on space, velocity and time. Similar to the Boltz-
mann theory of gases for continuous systems, the particle density distribu-
tion function gives the probability to find a particle moving with a velocity
�⃗ at position x⃗ and time t. Such a continuous distribution function f(x⃗, t, �⃗)
is given in [12](p.139). It needs to be underlined that, apart from space and
time, this distribution depends on the particle velocity. The macroscopic
variables: density �, velocity u⃗ and pressure p usually inside the compu-
tations in classical CFD are in the LBM computed using the microscopic
variables: the particle distribution function.
The Boltzmann equation gives a basic kinetic model to describe the evolu-
tion of the particle distribution function [5]:

∂f

∂t
+ u⃗.∇⃗f = J(f). (II.1)

where the left hand side represents the free transport of the particles while
the right hand side describes their interactions and is called collision oper-
ator. This collision operator has to ensure the conservation of the collision
invariants: mass, momentum and energy and should allow the system to
tend towards a Maxwell-Boltzmann distribution. A broader discussion can
be found in [12] (p.143).

A lattice Boltzmann simulation is performed on an equidistant Carte-
sian grid. The time stepping of the temporal discretization is constant. The
discretization of the particle distribution function requires, apart from the
spacial and temporal discretization, a discretization of the velocity space.
The lattice Boltzmann method resolves this difficulty by resorting to a re-
duction of the velocity space to a finite set of velocity vectors. These velocity
vectors are chosen in such a way that the system is isotropic and that the
velocities are interconnecting the grid nodes of the computational domain.
Weights are associated to each velocity in order to account for their differ-
ences in length [1]. The grid together with the sets of velocities and weights
form the lattice. The D2Q9 lattice is a common choice for problems in two
dimensions. It reduces the two-dimensional velocity space to a set of nine
velocities as defined in table II and shown in figure 1. The velocities
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i 0 1 2 3 4 5 6 7 8
ti 4/9 1/36 1/9 1/36 1/9 1/36 1/9 1/36 1/9
c⃗i (0, 0) (−1, 1) (−1, 0) (−1,−1) (0,−1) (1,−1) (1, 0) (1, 1) (0, 1)

Table 1: the lattice velocities c⃗i and the lattice weights ti of the D2Q9 lattice

c⃗1 c⃗8 c⃗7

c⃗6

c⃗5c⃗4c⃗3

c⃗2
c⃗0

x

y

Southern wall

Fluid

Figure 1: D2Q9 lattice

coordinates are here expressed in lattice units. In the lattice system of units
the grid spacing and time steps are usually:

Δx = Δt = 1. (II.2)

An implication of the model is that a particle travels the grid step Δx in
one time step Δt so that the particle speed or lattice constant c is given by:

c =
Δx

Δt
= 1. (II.3)

The speed of sound cs, characteristic of lattices, is then often defined as:

cs =
c√
3
. (II.4)

This value is the numerically most stable [6] and therefore commonly adopted.

The physical units are the units of the reference flow. The superscript
star is always meant to indicate the use of the physical units. The reference
flow is described by the usual set of dimensionless variables and the Reynolds
number. Thus the reference velocity U∗ and the characteristic length L∗ are
set to one and the variation of the Reynolds number is achieved by changing
the value of the kinematic viscosity �∗.

8



For the simulations the characteristic length L∗ is divided in a finite
number N of intervals. N is the spatial resolution of the simulation. Thus,
the space discretization in physical units writes as follows:

�x =
L∗

N
=

1

N
. (II.5)

The time stepping in physical units �t is defined relatively to �x as it will be
explained in section V.1 p. 22. The lower case � indicates here the physical
units.

Once the lattice defined, the particle distribution function is reduced to a
set of population functions, each of the populations fi describes the particle
distribution for one velocity c⃗i. Thus for the D2Q9 lattice, nine populations
describe the behaviour of the ensemble of particles and:

fi(x⃗, t) = f(x⃗, t, c⃗i). (II.6)

In the following all the formulations are given with respect to the D2Q9
lattice without loss of generality.

The Boltzmann equation for this set of populations gives a set of equa-
tions so called lattice Boltzmann equation [6]:

fi(x⃗+ c⃗i, t+ 1)− fi(x⃗, t) = Ji(f0, ..., f8)(x⃗, t), i=0,...,8. (II.7)

This equation is split into two steps in the algorithm of the lattice Boltzmann
method. The collision step stands for the collisions particles undergo at each
node and is a local transformation of the populations. The superscript in
and out indicate populations respectively entering the collision step and
going out of the collision step. Hence the collision is written as follows,
where the populations are taken at node x⃗ and time t:

fouti = f ini + Ji(f
in
0 , ..., f in8 ), i=0,...,8. (II.8)

The streaming step carries information from each node to its neighbour-
ing nodes. Thus at each node the populations are translated to one of the
neighbouring nodes according to the velocity component they are associ-
ated with. The superscript ps indicates populations which have just been
streamed. We have:

fpsi (x⃗+ c⃗i, t+ 1) = fouti (x⃗, t) (II.9)

On bulk-fluid nodes we have f ini = fpsi . On the other hand, at boundaries,
no population is streamed onto the node corresponding to the velocities
pointing out of the wall (indices 1,8 and 7 in figure 1), and therefore a
precollision (in) value has to be found for these missing populations. Defin-
ing appropriate values for the missing populations at the boundary node is
precisely the role of the boundary condition formulation.
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The lattice Boltzmann Bathnagar-Gross-Krook method is the simplest
lattice Boltzmann method and therefore enjoys a big popularity. The colli-
sion conserves mass and momentum. The collision operator is expressed as a
relaxation of the population fi towards an equilibrium distribution function
feqi :

Ji = −!(fi − feqi ). (II.10)

The equilibrium distribution function can be seen as a truncated expansion
of the Maxwellian distribution [12] [6]. It is defined in the LBGK model by:

feqi = �ti
(
1 +

1

c2
s

c⃗i.u⃗+
1

2c4
s

Q⃗i : u⃗⊗ u⃗
)

(II.11a)

with Q⃗i = c⃗i ⊗ c⃗i − c2
s I⃗ , a second order tensor. (II.11b)

The flow velocity u and the flow density � are recovered by computing the
statistical moments of the distribution functions as shown thereafter:

�(x⃗, t) =
8∑
i=0

fi(x⃗, t) (II.12a)

(�u⃗)(x⃗, t) =
8∑
i=0

c⃗ifi(x⃗, t) (II.12b)

The third order statistical moment yields a second order tensor used subse-
quently:

Π =
8∑
i=0

c⃗ic⃗ifi. (II.13)

The Chapman-Enskog multiscale analysis allows to recover the governing
equations for these mascroscopic quantities. The method treats the ”physi-
cal phenomena occurring at different scales” separately [6]. The populations
are expanded with respect to a small parameter � identified with the Knud-
sen number1.

fi = f
(0)
i + �f

(1)
i + �2f

(2)
i + ... (II.14)

To reach the governing equations the populations must be expanded around
the equilibrium functions, so the zeroth order term of each population is

identified with the matching equilibrium distribution function, f
(0)
i = feqi .

The rest of first order is called non equilibrium part of the populations and
written fi − feqi = fneqi . With these notations, a necessary condition to
ensure mass conservation during collision reads:∑

i

fneqi = 0. (II.15)

1the Knudsen number is the ratio � = �
L

between the molecules mean free path and
the reference length
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A necessary condition to ensure momentum conservation during collision
reads: ∑

i

c⃗if
neq
i = 0⃗. (II.16)

The first order terms of the populations are explicitly given by the Chapman-
Enskog multiscale analysis [6]:

f
(1)
i = − ti

c2
s!

(
Qi : �∇u⃗− c⃗i∇ : �u⃗u⃗+

1

2c2
s

(c⃗i.∇)(Qi : �u⃗u⃗)

)
. (II.17)

The multiscale analysis shows that the macroscopic quantities obey the in-
compressible Navier-Stokes equations for small Mach and Knudsen numbers.

∇.u⃗ = 0⃗, (II.18)

∂t�u⃗+∇.(�u⃗u⃗) = −∇p+∇.�, (II.19)

where the pressure is given by the equation of state for an ideal gas,

p = c2
s�. (II.20)

The stress tensor � is defined in terms of the rate of strain tensor S =(
∇u⃗+ (∇u⃗)T

)
/2 as,

� = 2��S. (II.21)

The kinematic viscosity is found to be related to the relaxation frequency
by:

� = c2
s(

1

!
− 1

2
). (II.22)

The rate of strain tensor is expressed in terms of the first order part of the
statistical moment Π1:

Π(1) =
∑
i

c⃗ic⃗if
(1)
i = −2c2

s

!
�S. (II.23)

When deriving the incompressible Navier-Stokes equations II.18, II.19 as
well as equation II.17 from the lattice Boltzmann equations, terms of second
order and higher in space, time and Mach number were neglected. Therefore,
equations II.18, II.19, II.17 are respected up to the following error composed
of three contributions:

E = O(�x2) +O(�t2) +O(Ma2). (II.24)

The third contribution scaling like M2
a is the compressibility error. In the

next sections, if a result contains the error defined in (II.24), it is indicated
by the expression ”up to second order”.
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Part III

Some wet boundary conditions for
LBGK

With wet boundary conditions the boundary nodes are infinitesimally close
to the wall, but still in the fluid. They are opposed to the bounce-back
boundary condition that places the wall at half way between the boundary
nodes and the first row of fluid nodes. The bounce-back rule sets a zero
velocity on the boundary. It needs a grid dependent treatment of the wall
position in order to conserve the second-order accuracy of the lattice Boltz-
mann method. Therefore it won’t be used in the simulations of part V. It
is important to remark that for wet boundary conditions the collision step
is performed on all the lattice, including on boundary nodes, because the
boundary nodes are inside the bulk-fluid domain. With the bounce-back
boundary condition, this is not the case since the boundary nodes lie out-
side the fluid. The present boundary condition is a wet boundary condition.
It is compared to two other wet boundary conditions in the simulations: the
boundary condition of Zou and He and the local regularized boundary con-
dition of Jonas Lätt. The two latter formulations can be applied as inflow
and outflow conditions, and do not deteriorate the second order accuracy of
the method.

We present briefly here the two wet boundary conditions which the
present boudary condition will be compared to. We reduce this presentation
to a two-dimensional flow simulated with a D2Q9 lattice. Furthermore we
only look at the case of a node on a southern wall that we allow to move tan-
gentially (Un = 0). We start by explaining the general problem of boundary
conditions for the lattice Boltzmann method.

As explained in the first part (p. 9), we need values for the populations
entering the collision step f ini for i=0,...,8. The available information lies
in the set of streamed populations fpsi for i=1,7,8,0,2,6. Equations (II.12a)
and (II.12b) yield the following system taking in account the values of the
macroscopic variables on the boundary.⎧⎨⎩

� =
∑8

i=0 fi
�Ut = f7 − f1 + f6 − f2 + f5 − f3

� Un︸︷︷︸
0

= f1 − f3 + f8 − f4 + f7 − f5
(III.1)

The populations pointing towards the wall (3,4,5) and the tangential popu-
lations (0,2,6) are known after streaming:

f ini = fpsi , i=3,4,5,0,2,6. (III.2)
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The three populations pointing in the bulk-fluid domain (1,7,8) are un-
known. The density is also unknown but not the tangential velocity. Thus
the system (III.1) has three equations but four unknowns.

1 Boundary condition of Zou and He [13] for a
southern tangentially moving wall

The idea of this boundary condition, enunciated by Zou and He in their arti-
cle in 1997, is to bounce back only the non-equilibrium part of the incoming
population normal to the wall, which has the index 4 in our case,

f in8 = feq8 + fneq4 . (III.3)

This equation is a closure relation for the system (III.1).
For a Dirichlet inlet condition in velocity the system can be solved similarly
except that Ut = 0 and Un ∕= 0.
With the equation of state (II.20), knowing the density is equivalent to
knowing the pressure. Therefore for a Dirichlet outlet condition in pressure
the system can be solved, using once again the assumption of bounce back
of the non-equilibrium parts of the incoming normal population.

2 Local regularized boundary condition of J. Lätt [6]
for a southern tangentially moving wall

The regularization method of Jonas Lätt is developed in his PhD thesis [6]
in the chapter four. In this method, the knowledge of �, u⃗ and S allows
to reconstruct the population at each node. The non-equilibrium parts are
obtained by the formula:

fneqi ≈ − �ti
c2
s!

Qi : S (III.4)

Then the populations are reconstructed using fi = feqi + fneqi . For the local
regularized boundary condition of Lätt (ref. [6] in chapter 5 and ref. [7]),
the non-equilibrium part of every incoming population normal to the wall
(3,4,5) is bounced back into the fluid:

f ini = feqi + fneqj for (i, j) ∈ (1, 3), (8, 4), (7, 5). (III.5)

Then a reconstruction step as presented above is performed.
Similarly to the one from Zou and He, the local regularized boundary con-
dition can be used for Dirichlet inlet and outlet condition in pressure and
velocity.
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Part IV

LBGK no-slip boundary condition
for tangentially moving walls

The no-slip boundary conditions for tangentially moving walls is derived here
using the same physical arguments as the ones used by J.C.G. Verschaeve in
his article [10] to derive the no-slip boundary condition for walls at rest. This
section regularly refers to the fourth part of this latter article and borrows
its structure. Thus, it begins by some results for the rate of strain tensor at
the no-slip boundary from hydrodynamic consideration. Then implications
for the non-equilibrium parts of the populations are detailed. The derivation
is performed after these necessary preliminaries .

1 Hydrodynamic implications at the no-slip bound-
ary

We are interested here in the case where the velocity is tangential and con-
stant along a straight wall. The word ”constant” means here independent of
the x coordinate if the x-axis is set along the wall. The implications of the
no-slip boundary are actually the same as they were for non-moving walls.
In particular the implications are still true even if the tangential velocity is
time dependent (as in the 2nd problem of Stokes).

First we look at the case of a southern wall and we set the x-axis along it.
The wall has a tangential velocity, independant of the x coordinate. Thus
the no-slip condition yields on the wall:

∂u

∂x
=
∂v

∂x
= 0. (IV.1)

The continuity equation for a two dimensional incompressible flow is ∂u
∂x +

∂v
∂y = 0. Together with (IV.1), it implies:

∂v

∂y
= 0. (IV.2)

Thus the rate of strain tensor writes, similarly to the case of walls at rest:

S =

[
0

∂yux
2

∂yux
2 0

]
. (IV.3)

At an internal corner(figure 2) 2, we have S = 0, which is the again the
same result as in the case of a non-moving wall.

2In the present work, no simulation is done for which external corner are needed.
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c⃗1 c⃗8 c⃗7

c⃗6

c⃗5c⃗4c⃗3

c⃗2 c⃗0

x

y Fluid
Wall at rest

Tangentially moving wall

Figure 2: Internal corner with one tangentially moving wall

2 Implications for the leading order term of the
non-equilibrium parts

We recall equation II.17 (ref. [6]),

f1
i = − ti

c2
s!

(
Qi : �∇u⃗− c⃗i∇ : �u⃗u⃗+

1

2c2
s

(c⃗i.∇)(Qi : �u⃗u⃗)

)
.

We have to compute separately the three terms between parenthesis.

� For the first term, we have from the no-slip equation that:

∇u⃗ =

[
0 1
0 0

]
∂u

∂y
.

It follows similarly to the case of walls at rest, since only velocity
derivatives play a role here, that:

Qi : �∇u⃗ = 0, for i=0,2,4,6,8.

Qi : �∇u⃗ = −∂u
∂y
, for i=1,5.

Qi : �∇u⃗ =
∂u

∂y
, for i=3,7.

� For the second term we use (IV.1), (IV.2) and v = 0 (tangential ve-
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locity):

−c⃗i∇ : �u⃗u⃗ = −�
(
cix(

∂u2

∂x
+
∂uv

∂y
) + ciy(

∂v2

∂y
+
∂uv

∂x
)

)
= −�

(
cix(2u

∂u

∂x︸︷︷︸
0

+u
∂v

∂y︸︷︷︸
0

+

0︷︸︸︷
v

∂u

∂y
) + ciy(2

0︷︸︸︷
v

∂v

∂y︸︷︷︸
0

+u
∂v

∂x︸︷︷︸
0

+

0︷︸︸︷
v

∂u

∂x︸︷︷︸
0

)

)

= 0

� The third term is fully developed thereafter.

c⃗i.∇
(
Qi : �u⃗u⃗

)
= cix

∂

∂x

(
Qi : �u⃗u⃗

)
+ ciy

∂

∂y

(
Qi : �u⃗u⃗

)
,

and
Qi : �u⃗u⃗ = �(Qixxu

2 + 2Qixyuv +Qiyyv
2).

Hence we have to derive w.r.t. x (� is dropped for convenience),

∂

∂x

(
Qixxu

2+2Qixyuv+Qiyyv
2
)

= 2Qixxu
∂u

∂x︸︷︷︸
0

+2Qixy(
∂u

∂x︸︷︷︸
0

v+u
∂v

∂x︸︷︷︸
0

)+2Qiyyv
∂v

∂x︸︷︷︸
0

,

With (IV.1) and (IV.2), this derivate equals zero. And we still have
to derive w.r.t. y,

∂

∂y

(
Qixxu

2+2Qixyuv+Qiyyv
2
)

= 2Qixxu
∂u

∂y
+2Qixy(

∂u

∂y

0︷︸︸︷
v +u

∂v

∂y︸︷︷︸
0

)+2Qiyy

0︷︸︸︷
v

∂v

∂y︸︷︷︸
0

,

after have used (IV.1), (IV.2) and v = 0, this derivate writes 2Qixxu
∂u
∂y .

Hence,
1

2c2
s

c⃗i.∇
(
Qi : �u⃗u⃗

)
=

�

c2
s

ciyQixxu
∂u

∂y

Finally, we have up to second order:

fneqi = −� ti
c4
s!
ciyQixxu

∂u

∂y
, i=0,2,4,6,8. (IV.5)

fneqi = − ti
cs!

∂u

∂y

( �
c2
s

ciyQixxu− 1
)
, i=1,5. (IV.6)

fneqi = − ti
cs!

∂u

∂y

( �
c2
s

ciyQixxu+ 1
)
, i=3,7. (IV.7)

We remark that ciy = 0 for i=0,2,6 and thus we have the equations:

fneqi = 0, i = 0, 2, 6. (IV.8)

These last equations are used to derive the formulation in the following part.
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3 Mass conservation

Mass conservation is respected by the collision operator on the bulk-fluid
nodes. However, on boundaries, the BGK collision is preceded by the ap-
plication of the boundary condition and the whole operation has to ensure
mass conservation. Thus the mass streamed onto a boundary node from the
bulk fluid has to equal the mass streamed out from this boundary node,

mps = mout. (IV.9)

The mass streamed in and the mass streamed out can be defined following
two different perspectives.

Hollis e.a. [4] adopt a fluid-boundary perspective. According to the fluid-
boundary perspective, mps is the sum of all the populations streamed from
nodes of the computational domain, e.g. bulk-fluid and boundary nodes.
Similarly mout is the sum of all the populations about to be streamed on
the computational domain.

Chopard and Dupuis [2] adopt a fluid perspective whose condition will
be used in the derivation of the present boundary condition. mps is the sum
of all populations streamed from bulk-fluid nodes only. Similarly mout is the
sum of all the populations about to be streamed to bulk-fluid nodes only.
On a straight southern wall, it gives,

mps = fps3 + fps4 + fps5 ,

mout = fout1 + fout8 + fout7 ,

and on a south west internal corner with one wall moving tangentially (fig-
ure 2),

mps = fps3 ,

mout = fout7 .

4 Derivation

We begin by deriving the conditions for a straight southern wall moving
tangentially (figure 1) and we establish the conditions for an internal corner
(figure 2) at the end of the section.

4.1 Straight southern wall with tangential velocity

We seek values for the populations f ini after the streaming step. We have
the populations fps3 , fps4 , fps5 streamed from bulk-fluid nodes and the pop-
ulations fps0 , fps2 , fps6 streamed from boundary nodes. The wall velocity
u⃗wall is known but not the wall density �wall. We recall that we can write
f ini = feqi + fneqi . Then the constraints for the non-equilibrium parts of the
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populations fneqi are listed as done in ref. [10] p.7. They consist of the colli-
sion invariance of mass (II.15), the collision invariance of momentum (II.16)
and the expression for the rate of strain tensor (II.23) where f1

i have been
replaced by fneqi . Since the rate of strain tensor S keeps the same writing
as for walls at rest, the system remains identical:

fneq1 + fneq2 + fneq3 = 0 (IV.12a)

fneq5 + fneq6 + fneq7 = 0 (IV.12b)

fneq1 + fneq8 + fneq7 = 0 (IV.12c)

fneq3 + fneq4 + fneq5 = 0 (IV.12d)

fneq0 + fneq2 + fneq6 = 0 (IV.12e)

fneq2 − fneq4 + fneq6 − fneq8 = 0 (IV.12f)

−fneq1 + fneq3 − fneq5 + fneq7 = −2c2
s�

!
Sxy (IV.12g)

The equation (IV.12g) is removed from the system for the reason given in
ref. [10], which is that the off-diagonal component of the rate of strain tensor
is usually an unknown for a straight wall. Again similarly to what is done
in ref. [10], the populations coming from bulk-fluid nodes are kept,

f ini = fpsi for i=3,4,5, (IV.13)

but not the populations coming from the wall. From this point we have
therefore a system of six equations but seven unknowns. The mass conser-
vation according to the perspective of Chopard and Dupuis allows to define
the density at the wall.
At the boundary nodes the equilibrium part of the population has the fol-
lowing form:

feqi = ti�wall

[
1 +

cixux
c2
s

+
1

2c4
s

(c2
ix − c2

s)u
2
x

]
, (IV.14)

We have taken here U⃗wall = (ux, 0) where we can have for example ux = u(t)
or ux = constant.
Using equation (IV.12c) the outgoing mass writes:

mout = fout1 + fout8 + fout7 ,

= (1− !)(fneq1 + fneq8 + fneq7 ) + feq1 + feq8 + feq7

= feq1 + feq8 + feq7 , (IV.15)

and the mass conservation condition (IV.9) yields:

mps = fps3 + fps4 + fps5 (IV.16)

= mout

= fout1 + fout8 + fout7 , (IV.17)
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We compute the summation (IV.16) with the help of the expression (IV.14)
and replacing the weights ti and the sound speed c2

s by their actual value
for the D2Q9 lattice,

mps = fps3 + fps4 + fps5 ,

= �wall

[
1

6
+

9

36
u2
x −

3

12
u2
x︸ ︷︷ ︸

0

]
,

=
1

6
�wall. (IV.18)

We remark that the underlined expression is zero for all value of the tangen-
tial velocity. Thus we obtain a definition for the density at the wall similar
to the one found by J.C.G. Verschaeve in his article [10]:

�wall = 6mps. (IV.19)

Using again expression (IV.14) and the identity (IV.13), we have,

feq3 + feq4 + feq5 =6�wall,

=fps3 + fps4 + fps5 ,

=f in3 + f in4 + f in5 .

Hence equation (IV.12d) is respected by mass conservation.
As done in ref. [10], it could be equally shown here that equations (IV.12c)
and (IV.12d) actually lead to the mass conservation in the fluid perspective.
Since the condition (IV.12d) is fulfilled by the definition (IV.19) for the
wall density, it can be removed from the system and the set of remaining
constraints is similar to the one in ref. [10]:

fneq1 + fneq2 = −fneq3 ,

fneq6 + fneq7 = −fneq5 ,

fneq1 + fneq8 + fneq7 = 0,

fneq0 + fneq2 + fneq6 = 0,

fneq2 + fneq6 − fneq8 = fneq4 .

There are now five equations for six unknowns fneqi for i=0,1,2,6,7,8. We
use one of the three closures proposed in ref. [10] to solve the system. This
closure is called ”no-slip B” in the referenced article and is the one making
use of the hydrodynamic implications presented p. 16. For this closure,
fneq2 and fneq6 are taken as inputs and set to the values suggested by the
equation (IV.8), fneq2 = fneq6 = 0. Hence the solutions for the remaining
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populations write:

fneq1 =
1

2
fneq4 +

1

2
(fneq5 − fneq3 ),

fneq7 =
1

2
fneq4 − 1

2
(fneq5 − fneq3 ),

fneq8 = −fneq4 ,

fneq0 = 0.

4.2 Internal corner

We treat here the case of an internal corner at the intersection of a wall at
rest and a tangentially moving wall (see figure 2. This problem is actually
over-defined and a choice has to be made in the implementation with regard
to the discontinuity of the velocity at the intersection. First we derive the
boundary condition without precising a value for ux, then we discuss the
possible choices. The off-diagonal component of the rate of strain tensor is
known, Sxy = 0, and we have to take in account equations (IV.12a)-(IV.12g).
The only population coming from bulk-fluid nodes is f3 as we can see on
figure 2. Hence the mass conservation relation of Chopard and Dupuis reads:

mps = fps3 ,

= mout,

= fout7 ,

= (1− !)fneq7 + feq7 ,

= (1− !)fneq7 + t7�wall

[
1 +

ux
c2
s

+
1− c2

s

2c4
s

u2
x

]
,

= (1− !)fneq7 +
1

36
�wall

[
1 + 3ux + 3u2

x

]
.

We set fneq7 = 0 as suggested by the hydrodynamic implications in equa-
tion (IV.7). This yields a definition for the corner density:

�wall = 36mps
[
1 + 3ux + 3u2

x

]−1
. (IV.24)

The populations 1 and 5 do not play a role, therefore we take fneq1 = fneq5 =
0. It then follows

fneqi = 0 for i=0,...,8. (IV.25)

The bulk-fluid sees only the population fout7 because all the other popula-
tions are either streamed on the boundary (fouti , i=0,6,8) or simply erased
(fouti , i=1,2,3,4,5). We have whatever the value chosen for ux,

fout7 = feq7 = fps3 , (IV.26)

20



therefore it is concluded that the choice of the value of the corner velocity
has no influence on the bulk-fluid. However a choice is made in the imple-
mentation taking ux = 0. This choice can be seen in the results part V.
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Part V

Numerical verification

The numerical verification consists of five benchmark cases with increas-
ing complexity. The code used is called Palabos. It is developed in C++
by Jonas Lätt, Orestis Malapinas and other contributors at the university
of Geneva and the Ecole Polytechnique Fédérale de Lausanne. This code
can be downloaded from their website dedicated to the lattice Boltzmann
method [8]. The present boundary condition is implemented creating two
new C++ class, one containing the dynamics of the boundary condition and
an other responsible for the instantiation of the boundary condition. The
implementation thus uses a similar structure to the implementation of the
other boundary conditions available in Palabos.

1 Numerical errors and setting of some parame-
ters

An important requirement of the present boundary condition is to not deteri-
orate the second order accuracy of the method. Thus in the four benchmark
cases, Poiseuille flow, half Poiseuille flow, Couette flow and second problem
of Stokes, the l2 norm of the difference between the numerical solution and
the theoretical solution is computed for different resolutions N :

�(N) =
�x

�t

√∑
(i,j)∈I ∥u⃗num −

�t
�x u⃗
∗
tℎeo∥2

NI
. (V.1)

The letter I denotes the set formed by all the grid points, which cardinal
number is NI . Inside the square root the units are the lattice ones 3, there-
fore the error is unscaled by the reference lattice velocity ulattice = �x

�t [6]. For
the verification of the numerical solution for the second problem of Stokes,
the previous error is computed several times per temporal period and the
average value of each sample is taken.

As seen in the first part p. 11, the error of the method has three contri-
butions. Since we are only considering incompressible flow here, the com-
pressibility component of the error is controlled in all the simulations by
setting, as suggested in ref. [5]:

�t = �x2, (V.2)

Hence the total error scales like �x2. It implies that the lattice viscosity
equals the viscosity in physical units, i.e. that the relaxation frequency !,

3u∗
tℎeo is in physical units but converted to lattice units by the factor �t

�x
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defined in relation (II.22), is independent of the grid refinement.
Successive refinement of the grid leads to a set of values �(N) for the numer-
ical error. The numerical error can be written with respect to the resolution
N as:

�(N) ≤ C�xk, (V.3)

where C and k are constant independent of N . k is the order of convergence
the method.

Except for the second problem of Stokes the chosen benchmark cases are
steady flows. Therefore a precise numerical condition of the steady state
has to be defined. In the simulations of Poiseuille flow, Couette flow and
flow in a lid-driven square cavity, evolution of the velocity field between two
consecutive time steps is measured using again the l2 norm of a difference:

Δ =
�x

�t

√∑
(i,j)∈I ∥u⃗new − U⃗old∥2

NI
. (V.4)

Numerical steady state is reached as soon as Δ < tol, with a threshold tol
being about 10−14.

2 Poiseuille flow

As a first basic test for the present boundary condition, a Poiseuille flow
in two-dimensional channel was simulated. When applied on boundaries
with zero velocity, the present boundary condition is exactly the same as
the one derived by J.C.G. Verschaeve in his article [10], therefore we wanted
to recover similar results to the ones he found (ref. [10], Poiseuille flow,
p. 11). The x-axis of the coordinate system is set along the channel walls
and the y-axis along the inlet. The reference velocity of the flow is the
maximum velocity U∗max reached along the longitudinal axis of symmetry of
the channel. The reference length L∗ is the width of the channel. We set
both variables to 1 and therefore the theoretical solution reads in physical
units:

u∗x = 4y∗(1− y∗), (V.5a)

u∗y = 0. (V.5b)

The flow pressure is linearly decreasing along the channel with gradient:

∇p∗ = −8�. (V.6)

The Reynolds number writes:

Re =
1

�
=

1

c2
s

1
1
! −

1
2

. (V.7)
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At the inlet and at the outlet a Poiseuille velocity profile (V.5a) is set,
using the formulation of Zou and He [13]. Thus the flow is driven by the
boundary conditions of the inlet and outlet in this simulation. As initial
condition, we impose u⃗ = 0⃗, and a linearly decreasing pressure along the
channel using the value of the gradient (V.6). To impose these values we
insert them in the equilibrium parts and set fi = feqi at all the nodes of the
bulk-fluid domain. At ! = 10

11 (so Re = 5), we performed series of simula-
tions with values of the resolution going from N = 60 to N = 190. Three
series were performed in order to compare the present boundary condition
with the formulation of Zou and He and the local regularized formulation
of Jonas Lätt. The three resulting series of errors �(N) computed with the
formula (V.1) are plotted against the resolution in figure 3. All the bound-

Figure 3: Error scaling of the velocity field for different boundary
conditions for Poiseuille flow at ! = 10

11 .

ary conditions conserve the second-order accuracy of the lattice Boltzmann
method. The values for the present boundary condition are very close to the
ones for the local boundary condition of Jonas Lätt, whereas the boundary
condition of Zou and He give slightly smaller values. Thus the constant C
for this last condition is inferior to the constant for the other boundary con-
ditions. Thus, applying the present boundary condition for the Poiseuille
flow, we recovered the results presented in [10]. Regarding stability, similar
results to [10] were also found. At N = 60, the simulation with the bound-
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ary condition of Zou and He became unstable at ! ≈ 1.76 (Re = 44). The
simulation with the present boundary condition became equally unstable at
! ≈ 1.76 if the boundary condition of Zou and He was used on the inlet
and outlet. On the other hand, if the regularized local boundary condition
of Lätt was used on the inlet and outlet, the simulation with the present
boundary condition stayed stable until ! ≈ 1.99 (1.993).

3 Half Poiseuille flow

We verified, with a half Poiseuille flow, the ability of the present boundary
condition to transmit a tangential non-zero velocity to the fluid. This flow is
the southern half part of a Poiseuille flow of width 2. Thus the width of the
domain of the problem is here 1. The reference velocity is equally set to 1 and
is reached on the northern boundary of the domain. The coordinate system
is set similarly to the way it was in the previous section. The theoretical
solution reads in physical units:

u∗x = y∗(2− y∗), (V.8a)

u∗y = 0. (V.8b)

The gradient is different from the one we had in the previous section for the
Poiseuille flow since the total width of the channel has doubled,

∇p∗ = −2�, (V.9)

The Reynolds number with respect to the full Poiseuille flow is doubled,

Re =
2

�
=

2

c2
s

1
1
! −

1
2

. (V.10)

On the inlet and outlet, the profile (V.8a) is set similarly to the way it was
in the previous section e.g. with the formulation of Zou and He for velocity
boundary conditions. As initial condition, we impose u⃗ = 0⃗ and a linearly
decreasing pressure along the y-axis using the value of the gradient (V.9).
At ! = 10

11 (so Re = 5), we performed a series of simulations (60 < N <
190) for each of the three boundary conditions (B.C. of Zou and He, local
regularized B.C. and the present B.C.). The three resulting series of errors
�(N) computed with the formula (V.1) are plotted against the resolution in
figure 4.

This figure shows that the present boundary condition is second-order
accurate, similarly to the boundary condition of Zou and He and the local
regularized boundary condition of J. Lätt. The constant C is slightly smaller
for the boundary condition of Zou and He. Regarding stability, at N = 60,
the simulation using only the boundary condition of Zou and He became
unstable at ! ≈ 1.76, while the one using the present boundary condition
on the walls and the local regularized boundary condition on the inlet and
outlet stayed stable until ! ≈ 1.99 (1.992).
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Figure 4: Error scaling of the velocity field for different boundary
conditions for half Poiseuille flow at ! = 10

11 .

4 Couette flow

The Couette flow is a second verification of the ability of the present bound-
ary condition to transmit a non-zero velocity to the fluid. For this problem,
the geometry and the coordinate system are the same as for the Poiseuille
flow. The maximum velocity U∗ = 1 is set on the northern boundary. The
theoretical velocity is a simple linear profile:

u∗x = y∗, (V.11a)

u∗y = 0. (V.11b)

The pressure is constant along the channel. The Reynolds number is the
same as for the Poiseuille flow.

Opposed to the two previous cases, we set here a periodic streaming
between the inlet and outlet. A periodic streaming is performed by con-
necting the inlet and outlet nodes in a circular manner. For example, the
populations on the outlet nodes pointing out of the fluid are streamed onto
the inlet nodes. Thus no boundary condition is applied on the inlet and
outlet and the flow undergoes only the influence of the boundary condition
of the two walls. A constant density � = 1 and a zero velocity are applied all
over the channel as initial condition. The linear Couette profile was actually
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solved with a precision close to machine accuracy in all the simulations we
performed with the three boundary conditions. The machine accuracy was
reached independently of the resolution, thus resulting in an error of the
order of magnitude 10−14 for all resolution (tested from N = 3 to N = 120).

5 Flow of the second problem of Stokes [11]

The foregoing benchmark tests certified the second-order accuracy of the
present boundary condition for steady flow. In this section we certified the
accuracy of the present boundary condition for an unsteady flow simulation
with an unsteady tangentially moving wall. The second problem of Stokes
can be readily implemented and compared to its analytical solution and
therefore has been chosen.

The solution of the second problem of Stokes is an unsteady time-periodic
flow. The flow is aligned with the channel walls (x axis) and only a function
of the normal (y axis) and time, such that the convective terms become zero.
The southern wall oscillates tangentially with a frequency �∗,

U∗wall (t) = cos (�∗t∗) . (V.12)

The analytical velocity profile for this flow writes as follows [11],

u∗ (t∗, y∗) = exp

(
−
√
�∗

2�
y∗

)
cos

(
�∗t∗ −

√
�∗

2�
y∗

)
. (V.13)

The pressure is constant along the channel. The Reynolds number is Re = 1
� .

The inlet and outlet boundary are connected by a periodic streaming
whereas. The initial condition is a constant density � = 1 and a zero velocity
over the whole bulk-fluid domain. At ! = 10

11 , and for a wall oscillation
frequency of value �∗ = 2Π

0.2 = 31.416, the error �(N) obtained with the
present boundary condition is plotted against the resolution N (N = 60 to
N = 190) in figure 5. The results obtained with the boundary condition
of Zou and He are plotted as reference. The present boundary condition
conserves the second order accuracy of the method similarly to the boundary
condition of Zou and He. We notice that the constant C obtained with
the present boundary condition has a slightly smaller value than the one
obtained with the boundary condition of Zou and He.
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Figure 5: Error scaling of the velocity field for different boundary
conditions for the flow solution of the 2nd problem of Stokes at ! =
10
11 .

6 Flow in a lid-driven square cavity

With the previous benchmark cases we verified that the present boundary
condition is able to transmit the effect of a wall with tangential velocity,
either constant or periodic. Nevertheless a more complex test case is nec-
essary. Thus, we consider here the laminar flow in a lid-driven cavity. In
addition it allows to test the formulation for the internal corners derived in
the last section of part IV.

We consider a square cavity which top-wall (x axis) is moving tangen-
tially while the three others are at rest (see figure 6. The length of the cavity
edge is L∗ = 1 and the top-wall velocity is U∗ = 1. As initial conditions, we
impose a zero velocity and a constant density � = 1 over the whole lattice
in every simulation. The results of the simulations performed are compared
with the accurate results presented by Ghia e.a. in their article [3]. The
results from Ghia e.a. we use here were obtained at a Reynolds number of
100 on a uniform grid of resolution N = 128. The profile of the velocity
x-component U , along the vertical line through the center of the cavity, and
the velocity y-component V , along the horizontal line through the center
of the cavity, are provided in their article [3] p.398-399. We performed a
simulation at a Reynolds number of 100 (! ≈ 1.89) with a resolution of
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Uw = Vw = 0

Uw = Vw = 0 Uw = Vw = 0

Uw = 1,Vw = 0

x

y

Figure 6: lid-driven square cavity of section V.7 with a step in the density
field at t = 0

N = 128 and applying the present boundary condition on the four walls,
including the four internal corners.

Using formula (V.1), an error with respect to the set of values for the
x and y components of the velocity from Ghia e.a. is computed. For the
present boundary condition, the error obtained is �U = 2.531 ⋅10−3 for the U
component, and �V = 2.415 ⋅ 10−3 for the V component. On figure 7 p. 30,
we plotted the sets of values of the two components of the velocity from
the article of Ghia e.a. and the velocity profiles obtained in our simulation.
Based on the values of the two errors �U , �V , it can be concluded that the
problem is solved with satisfying accuracy.
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(a) x component (U) along vertical line through geometric cen-
ter of cavity

(b) y component (V) along horizontal line through geometric
center of cavity

Figure 7: Profiles of the velocity components. For each component, the
solid line is a linear interpolation of the values we obtained with the present
boundary condition.

As a second graphical verification, figure 12 and 13 in appendix A shows
the streamline pattern of the present numerical solution. The pattern we ob-
tained agrees well with the one presented by Ghia e.a. in their article(ref. [3]
p.400). To investigate the order of accuracy, we take as reference solution
a simulation with a resolution of N = 256 and the present boundary con-

30



dition. We then plot the errors between the velocity field of this reference
solution and the velocity field obtained at N = 16, 32, 64 and 128 with
again the present boundary condition (see figure 8). The graph exhibits a
behaviour different from the previous cases since the order of convergence
is rather 1 than 2. The flow in the lid-driven cavity poses the problem of

Figure 8: Error scaling of the velocity field for the present boundary
condition for the flow in a lid driven cavity at ! = 1.89.

velocity discontinuity in the upper corners, which was described in part IV.
This difficulty is not solved properly here and yields spurious oscillations of
the pressure value in the two upper corners (see figure 9). The problem of
discontinuity at the upper corners leads to similar spurious oscillations with
the regularized local formulation of J. Lätt (see figure 10). To verify if the
spurious oscillations were responsible for the deterioration of the order of
accuracy of the method stated in figure 8, we performed a second check of
the order of convergence but only on the half southern part of the cavity (do-
main [0, 1]× [0, 0.5]). This second check of the order of convergence showed
results similar to the first one, namely an order close to 1, only the constant
C was slightly inferior to the one obtained in first place. Nevertheless the
entire flow in the cavity could be influenced by the velocity discontinuity of
the corners, thus the spurious oscillations in the upper corners may still be
the cause of the deterioration of the order of accuracy the method.

The pressure field obtained with the present boundary condition, on a
domain excluding the upper corners, is plotted on figure 14 in appendix B
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(a) pressure field at upper left corner (b) pressure field at upper right corner

Figure 9: Spurious oscillations at the upper corners of the flow in a lid
driven cavity. Simulation with N = 128 at Re = 100 using present corner
formulation.

(a) pressure field at upper left corner (b) pressure field at upper right corner

Figure 10: Spurious oscillations at the upper corners of the flow in a lid
driven cavity. Simulation with N = 128 at Re = 100 using local regularized
formulation for corners of J.Lätt.

p. 38. The velocity field obtained with the present boundary condition is
plotted in figure 15 in the same appendix section.
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7 Variations of the total mass for the flow in a lid
driven square cavity

It was seen, in part IV, that the present boundary condition ensures mass
conservation on the boundary nodes from the perspective of Chopard and
Dupuis [2]. Thus, this final test case is a numerical investigation of the mass
conservation of the present boundary condition.

We consider again the lid-driven cavity of figure 6. The initial conditions
are set similarly to the previous section, namely zero velocity and a density
of 1 all over the lattice. The resolution is defined to the value N = 128, but
the value of the relaxation frequency is now ! = 10

11 (Re = 5).
For the local boundary condition of J. Lätt and the boundary condition

of Zou and He, the same treatment is actually applied on the inner corners,
e.g. the local regularized formulation for inner corners of Lätt. Thus, these
two boundary conditions differ from each other on the straight walls as
seen in III. On the other hand the present boundary condition uses the
formulation derived in part IV for the inner corners.

In order to take in account the different treatment at the boundaries,
the mass on the boundary nodes are counted differently for the different
boundary condition. For the local boundary condition of Lätt and the one
of Zou and He, the tangential populations and the populations coming from
bulk fluid nodes are added out. On a southern wall, it means,

m = f0 + f2 + f6 + f3 + f4 + f5, (V.14)

while on an internal south/west corner,

m = f3 + f0 + f2 + f4. (V.15)

For the present boundary condition, the perspective of Chopard and Dupuis
is adopted and therefore the tangential populations are non longer counted.
On a southern wall, it means,

m = f3 + f4 + f5, (V.16)

while on an internal south/west corner,

m = f3. (V.17)

The variations with respect to the initial total mass are plotted in figure 7.
The variations are unscaled by the initial total mass. The series are plotted
from their second term because the scale on both axis is logarithmic and the
first couple of each series is (t = 0,Δm = 0).

Once at steady state, the variation of the total mass from its initial
value is of the order 10−14 for the present boundary condition, whereas for
the two others the mass variation is of the order 10−5. The graph is plotted
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Figure 11: Variations of total mass for different boundary conditions in the
case of a square cavity with a step in the density field as initial condition

in logarithmic scale, therefore we can only see the absolute value of the mass
variation. However we can precise the sign of the variations. For the present
boundary condition the variation oscillates around zero at the beginning but
finally takes a negative value at steady state which indicates a loss of mass.
For the two other boundary conditions, the signed variation is under zero
from the beginning. Thus, we state a loss of mass for the three boundary
conditions. However, as expected, the loss of mass is of several orders lower
for the present boundary condition than for the two others.
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Part VI

Conclusion

We derived a boundary condition for tangentially moving walls for the lattice
Boltzmann Bathnagar-Gross-Krook method withD2Q9 lattice, based on the
no-slip boundary condition for walls at rest derived by J.C.G. Verschaeve
in his article [10]. We performed simulations of several steady flow and
one time-periodic flow and showed that the present boundary condition did
not deteriorate the second-order accuracy of the lattice Boltzmann method.
We illustrated, with the test presented in section V.7, the fact used in the
derivation IV that the present boundary condition conserves mass from the
perspective of Chopard and Dupuis [2]. Further work has to focus on the
derivation of a similar boundary condition for three-dimensional problems.
The present boundary condition was derived assuming that the velocity
component normal to the boundary is zero. Thus, future research has to
study the more general case of a moving boundary with a non-zero value for
both velocity components.
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Part VII

Appendix

A Streamline pattern for the flow in a lid driven
cavity

(a) Streamline pattern on the upper left
corner

(b) Streamline pattern on the upper right
corner

(c) Streamline pattern on the whole domain

Figure 12: Streamlines in the case of the flow in a lid-driven cavity at
Re = 100, N = 128 - present boundary condition
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(a) Streamline pattern on the lower left
corner

(b) Streamline pattern on the lower right
corner

Figure 13: Streamlines in the case of the lid-driven cavity at Re = 100,
N = 128 - present boundary condition
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B Pressure field and velocity field for the flow in
a lid driven cavity

Figure 14: Partial pressure field of the flow in a lid driven cavity obtained
with N = 128 at Re = 100 with the present boundary condition. The plot
is restricted to 0 < y < 0.8 and is thus excluding the upper corners because
of the large differences of amplitude between the natural variations of the
pressure field and the spurious oscillations at the upper corners.

Figure 15: Velocity field of the flow in a lid driven cavity obtained with
N = 128 at Re = 100 with the present boundary condition.
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