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Abstract 
 
 
 
 
The environmental impact of a final product can be regarded as the sum of the impacts of 
all processes needed to obtain it. The impacts of these processes in all individual layers of 
production can be quantified using contribution analysis methods. SPA is an advanced 
method used to identify the chain of production processes linking the most highly 
emitting process with the final product. This analysis was performed in Matlab, using a 
specialized algorithm developed by Peters and Hertwich in 1996.  
 
In this thesis we test an interdisciplinary approach combining LCA and operational 
research methods for doing a SPA. A mixed integer program was developed and 
implemented in Gams. The performance of this generalized algorithm was benchmarked 
against the specialized algorithm for three test cases performed on three databases of 
increasing complexity. 
 
The results suggest the advantage of this algorithm in performing analysis on sparse data 
systems compared with the classic method involving Matlab. However, Matlab’s 
specialized algorithm performs better for dense data systems.  
 
Many of the requirements and limitations imposed by the software involved in different 
steps have proved manageable.  
 
This study proves that mathematical programming can be a very useful tool for 
contribution analysis in general and SPA in particular.  
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Chapter 1 
 
Introduction 
 
 
 

1.1 Motivation 

 
In our days there is an increased concern about the way we exhaust the resource 
endowments of the planet and destroy the ecosystem by pollution. Sustainability is still a 
far-fetched ideal in most locales, and climate is changing at an accelerated rate. These 
effects are the results of the way we produce and consume products and services, use 
toxic substances and treat the increasing amount of waste. 
 
The concern about the worldwide environmental problems appeared in the 1960’s and 
grew constantly, along with the joint effort of the scientists for finding a solution to these 
problems. Some of the most representative instances of common effort in mitigating the 
climate change are the four assessment reports (1990, 1992, 1995, 1997) of the 
Intergovernmental Panel on Climate Change (IPPC), where human impact on the 
environment is quantified and presented, along with  recommendations to be used by 
politicians in elaborating mitigation polices. The high level of interest and involvement in 
finding solutions for dealing with global warming was first demonstrated through two 
conferences of unprecedented global participation: the Second World Climate 
Conference in Geneva in 1990 and the United Nations Conference on Environmental 
Development (UNCED) in Rio de Janeiro in 1992. A third conference of similar 
magnitude – the UN Convention on Climate Change – will be held in December 2009 in 
Copenhagen. This event will bring together government delegates, representatives from 
business and industry, environmental organizations and research institutions to negotiate 
solutions for  “... stabilization of greenhouse gas concentrations in the atmosphere at a 
level that would prevent dangerous anthropogenic interference with the climate system." 
(http://unfccc.int/ghg_data/items/3800.php) 
 
Reducing the level of greenhouse gas emissions is recognized as having a higher priority 
than the other problems enumerated in the first paragraph. This is because existing 
models predict the direst consequences if no measures are taken. The extent of these 
effects is global, and efforts to reduce emissions must be also coordinated globally to 
avoid shifting of responsibilities through outsourcing of production. This issue is treated 
by Dunchin (1994), who builds on her previous work to show that if existing trends 
continue for the next decades, total emissions of principal global pollutants will increase 
considerably. This will happen even if the most optimistic assumptions about pollution 
reduction and introduction of new technologies come to pass, and even if only moderate 
economic development objectives are achieved in the developing countries in the next 
few decades. The root of the problem is the continuation of the historic shift of the 
geographic source of most emissions from the developed to the developing economies. 
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The reduction of the environmental impact can only be achieved through a joint effort of 
the producers, consumers and governments. They can influence each other by demand, 
supply and taxes. 
 
Consumers have lots of goods and services to choose from, each one with a different 
environmental impact. In order to help reduce environmental impact, the consumer can 
choose a less polluting product instead of a more polluting one and adopt a lifestyle based 
on saving resources (reusing and recycling).  
 
Producers have an even bigger leverage in using technology to reduce the environmental 
impact. At the most basic level it is technology which determines the environmental 
impact of a certain product. It is the producer’s main responsibility to fulfill the 
consumers’ needs and to reduce the environmental impact of its products. The 
consumers’ needs are usually very well defined (i.e. if a consumer needs a chair, he 
knows well what shape and size the chair must have) and the company that tries to fulfill 
it needs to integrate in the product or service all the features connected with the 
functionality of the product. So, the company does not have much of a choice in terms of 
required features and the type and size of inputs required from the suppliers, especially 
when there is only one product available which can fulfill a requirement. However, in 
other cases, producers have several choices (i.e. the chair can be made of wood, plastic, 
metal or a combination of these). The reason for choosing a material or another, for 
example, must depend on both economical and environmental considerations. Changing 
the inputs, the company changes the technology and the requirements towards its 
suppliers. The suppliers will produce the requested good with the smaller environmental 
impact from now on. If most of them follow the same practice, the entire network will be 
“greener” than before the change.  
 
Because only a relatively small number of processes and inputs can be researched, 
producers need to know which have the largest environmental impact. They also need to 
estimate economic and technological trends related to these processes and inputs in order 
to adapt the production accordingly. For a company trying to fulfill the demand, this is a 
strategic decision.  
 
Governments are the other agents involved in changing the technologies with the 
declared aim of diminishing environmental impacts. While customers need to be 
educated in order to make the right decision for them, governments can use their share of 
final demand in a premeditated fashion. This includes buying more environmentally-
friendly products for their use or even using taxation, subsidies and standards to favor 
introduction of lower-impact technologies in detriment of polluting ones. 
 
Producers, consumers or governments trying to make a change have difficulties 
identifying which actions have a higher leverage in reducing the impacts. This is true 
partially because of the relatively high number of actions and relatively limited resources 
available. In addition, any measure affecting one sector will indirectly affect other sectors 
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through the production-consumption link. The indirect effects should not be ignored by 
the government imposing the measure.  
 
A policy measure or a consumer initiative to reduce impact can have implications beyond 
the first order impact (different inputs to the product). It is important to take into 
consideration the eventual rebound or spillover effect characterizing so deeply the human 
behavior and to adjust the initiative accordingly. 
 
Many of the above issues regarding companies, consumers and governments have been 
identified by Hertwich (2005) in his critical review about modalities in which LCA, IO 
and their hybrid forms can be efficiently used to identify consumption patterns leading to 
environmental impact. 
 

1.2 State of the field  

 
For the companies involved in product development and production it is important to 
have a method for identifying the implications of every alternative strategy. This method 
is input-output analysis because, as Dunchin (1994) mentions, the input-output model can 
be a very powerful tool for identifying both the economical and environmental 
implications of every alternative strategy.  
 
Input output analysis is a methodology developed to describe the production network and 
the connections between production and final consumption. As I mentioned already, it 
has the ability to incorporate environmental externalities. This recommends it as a very 
useful tool to determine the environmental impacts of the various economic activities in 
any production network. But standard input output analysis can only analyze the 
aggregated impacts of consumption and production separately; it does not identify the 
processes with the higher environmental load, as part of the production sectors. This 
statement will be detailed in the methodology chapter.  
 
Early attempts to determine the endogenous interaction process between the production 
and consumption agents as households and institutions used a social accounting model 
(SAM) framework. SAMs are extended input-output tables measured in monetary units, 
obtained through calibration, in order to reproduce the flows from the past (Strømman et 
al. 2009). This process limits their applicability to the years when data was recorded and 
are not very suitable for scenarios analysis in the future. Defourny and Thorbecke (1984) 
introduced structural path analysis (SPA) by using the SAM framework to explain how 
the influence is transmitted through structural paths in an economic system.  They used 
multipliers to measure the influence of the endogenous and exogenous accounts in the 
general equilibrium data system. The multipliers correspond to the amplification of the 
economic activity in a network determined by fulfilling a certain final demand, calculated 
through the general decomposition technique derived from equation 1.12 (see next 
chapter). The paths were identified by making a unitary change in one of the elements of 
the path, all other parameters remaining unchanged. These authors measured only 
activities and did not take into consideration the applicability of their framework to 

model environmental impacts. The transition between ( ) 1−− AI to ( ) 1−− AIF in the 
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calculation of the multiplier was exemplified by Lenzen (2001). He calculated labor and 
energy multipliers for labor and energy for all 109 sectors of the Australian economy, 
taking imports into consideration. Capital investment and imports are internalized in the 
inter-coefficient matrix along with representation in both monetary and physical units for 
a more precise and clear result. 
 
SPA was refined by Peters and Hertwich (2006) by taking trade into consideration. They 
performed their calculations for a multi-regional input-output analysis (MRIO) of the 
Norwegian economy. MRIO models have the advantage of measuring economic flows 
not only in monetary units, as SAM, but also in physical units (Dunchin 2004, Weisz and 
Dunchin 2006). This allows including in the general models factors such as energy use 
(i.e. MJ), labor (i.e. hours of work) and natural resources (i.e. oil, copper). MRIO tables 
have two additional advantages. One advantage is their increased level of detail. The 
second advantage is the fact that they can separate emissions associated with the exports 
from domestic emissions determined by domestic demand. However, including imports 
in the database used for calculation introduces uncertainties associated with the 
assumptions about quantities and technologies used to produce the imported goods. Also, 
the MRIO framework does not allow evaluating simultaneous changes in the economic 
process, and therefore cannot be used to identify an optimal state of the economy.  
 
Peters and Hertwich used three complementary approaches to study the economy: (1) the 
consumption perspective, identifying final demand purchases producing environmental 
impact; (2) the production perspective, identifying the production processes generating 
pollution for a given final demand, and (3) structural path analysis to identify the linkages 
between production and consumption.  
 
The methodology for the first two approaches used the power series expansion. This was 
done in order to scale the environmental impacts of household, government and export 
(as consumption agents) on one hand, and aggregated sectors (as producing agents) on 
the other.  
 
The methodology for structural path analysis proceeds by representing the economy as a 
tree which can be search for all individual linkages between consumption and production. 
This representation is based on both the input-output representation of the economy and 
on the complete set of endogenous supply-demand relations. Peters and Hertwich (2006) 
identified the most important paths by enumerating all possible paths and stopping when 
the value of the emissions associated with the path became lower than a given threshold. 
The specialized algorithm was implemented in Matlab. This implementation is fast taking 
into consideration the fact that it is searching the paths one by one. Chapter 2.3.1 will 
present the algorithm in detail.  
 
From a very different perspective, operational research (OR) is a field of study designed 
specifically to identify the optimal state of a system when parameters are given. The IO 
framework is traditionally used with OR models since 1958, when Dorfman et al. showed 
how to use a linear program to determine international flows based on lowest cost 
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allocation of resources among competing uses. They used this model to exemplify the 
connections between primal and dual versions of the linear programs.  
Another classical application of linear programming using the IO framework was to 
determine the low cost choice among alternative technological options (Dunchin and 
Lange 1995). 
 
Linear programs have been successfully used by Dunchin in 2005 to build a world trade 
model (WTM) which minimizes resource use at given global consumption. The model is 
based on an input-output description of different regions and availability of regional 
resources evaluated at local prices. This WTM was refined one year later by Strømman 
and Dunchin by introducing transportation and developing the world trade model of 
bilateral trade (WTMBT).  In 2009 Strømman et al. refined the model even further by 
introducing a second objective: minimization of CO2 in physical units. He also extended 
the database with sectors comprising different parts of the aluminum chain. 
 
The disadvantages of linear programming models consist in extreme or unique solutions, 
which can prove practically unrealistic. Also, for a high number of parameters, it is hard 
to say how reliable the obtained solution is. These draw-backs can be partially 
compensated by using sensitivity analysis to check the reliability of the results.  
 
An advantage of OR models consists of using only a limited number of measurable 
parameters which can change as subjected to different scenarios (Strømann et al. 2009).  
This feature compensates for the main disadvantages of the MRIO models mentioned 
earlier. 
 
However, the number of parameters used in linear programs increased with the size and 
complexity of the underlying trade models (Dorfman et al. in 1958: 2 regions and 2 
products, Dunchin WTM in 2005: 10 regions, 8 goods, 3 factors of production, 
Strømman et al. 2009: 11 regions, 15 production sectors, 7 factors of production). If 
linear programming is applied to larger systems, for different types of analysis, 
availability of memory and larger computation times may become an issue.  
 
The capabilities of the linear programming in addressing trade models, especial for, are 
very promising, but the potential utility of the mathematical programming to address 
other industrial ecology issues was to a large extent unexplored until now. 
 
 

1.3 Objective of the research 

 

SPA methodology developed up to this point is based on a specialized algorithm 
developed by Peters and Hertwich (2006). This algorithm uses enumeration to check 
every path, then stops when the emissions are below a certain threshold.  
 
This thesis explores the possibility of doing a SPA using a generalized algorithm which 
starts with cutting paths and after that enumerates all possible combinations.  
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The new method takes an interdisciplinary approach: it combines linear programming 
methodology with the input-output methodology used for the specialized algorithm. It 
builds a mathematical model of the problem which is implemented into a high-level 
modeling system (The General Algebraic Modeling System – Gams). Gams software has 
the generalized algorithm necessary to solve the linear programming model. Because the 
SPA is intended to use Gams, from now on it will be called Gams-SPA. The specialized 
algorithm is programmed exclusively for Matlab and will be called Matlab-SPA.  
 
Gams-SPA results are benchmarked against the Matlab-SPA results by comparing 
computation times. Three different data systems will be used for testing: (1) a 10-sector 
economy simplified case, (2) a 481-sector economy derived from the US input-output 
table and (3) an LCA system with approximately 2500 processes. Three final demands 
will be chosen to compare the results, one for each data type. First goal is to find out 
which algorithm is faster for a specific type of data. Second goal is to find out the limits 
of the algorithms, respectively the biggest data system they can be used for. The testing 
results on LCA data are very important because this is the biggest data system available 
now. The third goal is to determine the weaknesses of the linear programming model. 
One of these possible weaknesses is the long computation time, and another is the 
complicated data manipulation required to be performed by an algorithm which was not 
specifically designed for this type of analysis.  
 
The linear programming model is designed for only one stressor. This will make the 
model easier to understand, without affecting the algorithm.   
 
The aim of this research is to explore the utility of using linear programming to address 
industrial ecology issues; it is not intended to come with a final program for SPA, but to 
explore different formulations and approaches. The goal is an intermediate working 
version for SPA using operational research which can be used as a starting point for 
future development.  
 

1.4 Thesis outline 

 
The rest of this thesis is structured as follows:  
 
Chapter 2 discusses methodology to the extent necessary to facilitate understanding, but 
not beyond the uses for our model. It gives an overview of the concepts and equations 
used by IO analysis to represent the relations between economic sectors. The contribution 
analysis section shows how to calculate the environmental impacts associated with a final 
demand. The chapter also includes the particular case of one stressor. It explains the 
limits of the IO methodology for doing a SPA and justifies the necessity of the tree 
representation to go over these limits. An example is then used to exemplify these 
findings. Based on this problem formulation we then explain the specialized algorithm 
developed by Peters and Hertwich (2006). Then we introduce mathematical programming 
as an alternative approach, discussing the general structure of a mixed integer 
programming model, its applicability to our problem and some of its advantages and 
disadvantages in general. 
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Chapter 3 presents three mixed integer formulations of increased optimization of Gams 
SPA problem. Implementations adjustments will be discussed in detail.  
 
The reasons for keeping the actual version of the model will became obvious in chapter 4. 
Three case studies, of increasing data volume, will be used to test the model. The 
technical performance of the model will be assessed by benchmarking the results of 
Gams-SPA against the results of Matlab-SPA for each of the three cases mentioned 
above. We introduce some alternative formulations which have been tried and discarded 
in the process of developing the actual model.  The features included in the actual model 
will be justified by comparing the results of this version with older versions.  
 
Chapter 5 will discuss the achievement obtained with this program and the relevance of 
the results. In the end we will establish the coordinates from which to start future 
improvements in a SPA using a generic algorithm. 
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Chapter 2 

 
Methodology 
 

 
 
2.1 Input-output analysis 

 
 
In trying to understand and attempt to solve the problems at global and local level, we 
need a systematic model. The model is used to study production and consumption 
patterns and the connection between them at any level.   
 
The economy can be visualized as a very large production network. The basis of this 
paradigm is the fact that the process of production of a good or service needs inputs as 
materials and energy from other sectors of the economy, which in turn require inputs 
from other sectors and so on, until the network includes the entire economy. Most of the 
goods or services produced in a sector as output are at the same time sold as an input to 
other sectors. Some of these goods, however, are sold to the households or to the 
government. The amount produced from these goods depends on factors which are 
exogenous to the producers’ requirements as inputs. For example, the request for small 
cars from households depends on the price of the gasoline; the demand for military 
aircrafts depends on the national policy and the budget level and so on.  The demand for 
this type of products, external to the production network requirements, is referred to as 
the final demand. 
 
Starting from this representation of the economy, W. Leontief developed in the 1930’s a 
framework called input-output analysis – IO – (Leontief 1941) for which he received the 
Nobel Prize in economics in 1973. 
 
The input-output model is constructed from observed data from a region, usually a 
country. The data are the flow of products from each sector (as purchasing sector) to each 
sector (as selling sector). The flows of goods from sector i to sector j is usually 
represented by zij and traditionally it is in monetary units. Some goods are required by 
purchasers exogenous to the industrial sectors (households, governments, net export) and 
tend to be used as such and not as inputs to the industrial sectors. They form the final 
demand and are denoted by y. The total output of sector i (as input for other industries 
and for final demand) is represented as xi. Labor, taxes, interest, profit and so on which 
are paid by the purchasing sector in addition to the inputs from other industries make the 
value added, v.  All these elements can be combined in a table, called the input-output 
table and represented by the shadowed part of the Table 2.1, below.  
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Purchasing sectors 

  sector 1 sector2 … sector n 

Final 
demand 

Total 
output 

sector 1 z11 z12 … z1n y1 x1 

sector 2 z21 z22 … z2n y2 x2 

… … … … … … … 

S
el
li
n
g
 s
ec

to
rs
 

sector n zn1 zn2 … znn yn xn 

Value added 
v1 v2 … vn GDP   

Total input  
x1 x2 … xn   X 

Table 2.1: Very simplified representation of the input-output table 
 
The relations between the elements of the table can be represented by a set of linear 
equations, each one describing the distribution of a producer’s output throughout the 
economy. 
 

nnnnnn

n

n

yzzzx

yzzzx

yzzzx

++++=

++++=

++++=

...

...

...

...

21

2222212

1112111

 (1.1)  

   
The main assumption of input-output model is that the inter-industry flows from sector i 
to sector j during a specific period (say 1 year) depend entirely and exclusively on the 
total output of sector j for the same period of year.  So, it is possible to calculate inter- 

industry coefficients ija  by reporting the flows from sector i to sector j (in monetary or 

physical units) to the associated amount of production from sector j. 
 

j

ij

ij
x

z
a =          (1.2) 

 
The inter-industry coefficients aij define the production technology of the sector j and can 
also be interpreted as the amount of input i required to produce 1 unit of output from 
sector j.   
 

jofoutput

requirediofamount
aij =                                        (1.3) 

 
 
The matrix containing the inter-industry coefficients is called the inter-industry 
coefficient matrix and is denoted by A. 
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Each column is associated with a certain sector and describes the technology of the 
sector. Implicit to the technology are the direct requirements from all sectors required to 
obtain 1 unit from its own output. For each sector, the associated line represents the 
distribution of the output to the rest of the sectors in the entire economy. Because of this 
interpretation, matrix A completely describes all the input and output flows among the 
sectors of an economy. 
 
The output of an economy consists of two parts: intermediate demand and external 
demand. Intermediate demand is used to cover the demand between the various sectors in 
the economy. External demand is the requirement of products that the economy has to 
deliver to final consumers (households, government, investments, net exports). Together, 
they make the total output of an economy, represented as a vector x, required for a 
specific final demand.  Elements xi  are the outputs of every sector i, as in equation 1.5: 
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x

x

x

x           (1.5) 

 
The external demand can also be represented as a vector y with elements yi for every 
sector as in equation 1.6: 
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y

y

y

y           (1.6) 

 
The output of an industry is dependent by the output of the other sectors and from the 

external demand; making the substitution jijij xaz = from equation 1.2 in equations 1.1, 

an economy with 3 sectors can be described by the equations: 
 
           intermediate     final 
  output           demand      demand 

 

33332321313

23232221212

13132121111

yxaxaxax

yxaxaxax

yxaxaxax

+++=

+++=

+++=

       (1.7) 

 
Equations 1.7 can be expressed in a generalized form using the output vector x, inter-
process coefficient matrix A and final demand vector y as: 
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yAxx +=           (1.8) 

 
Equation 1.8 is solved by finding the output vector x (A and y being given): 
 
 

  
  
  (where I is the Identity matrix)                   (1.9) 
 

 
 

Introducing the notation ( ) 1−−= AIL equation 1.9 becomes 

 

Lyx =           (1.10) 

 
The term L is called the Leontief Inverse, after Wassily Leontief. 
 
To the economy level, the Leontief inverse gives the relation between the final demand 
and total quantity produced. Breaking down the Leontief inverse to the sector level, for a 
3 sectors industry, we get: 
 
















=
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131211

lll

lll
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L           (1.11) 

 
where 
 

jofdemandfinal

producediofoutput
lij =  (1.12) 

  
The coefficients of the L matrix, lij, represent the amount of output of sector i per unit of 
final demand of sector j. The columns in the Leontief inverse contain the output from all 
sectors required per unit of external demand of each sector. The lines in the Leontief 
inverse contain the output from each sector required to satisfy the final demand from all 
sectors. 
 
The Leontief inverse can be decomposed in a geometric series expansion as in equation 
1.13: 
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In equation 1.13 ( )Aρ  is the spectral radius of the matrix A and ( ) λρ max=A  as matrix 

eigenvalue. 
 
Multiplying both parts of the equation 1.13 with y, we obtain: 
 

( ) xLyyAIyAyAyAAyy n ==−=+++++ −132 ...     (1.14) 

 
The terms of this series are denoted by t, from tiers. The first term is called the zeroth tier 

because yIyyA ==0 . The second term Ay corresponds to tier 1 and represents the output 

of the first round of activities (tier 0) initiated in the economy as a result of final demand. 

The third term )(2 AyAyA =  represents the output of the second round of activities (tier 

1) initiated in the economy as a result of a demand of Ay imposed by the final demand on 
the first round of activities, and so on. The output decreases with every additional tier and 

the series converges ( )( )1<Aρ . This formula gives a way to calculate the outputs of the 

sectors in any tier generated by an external final demand imposed on the economy.  
 
If the outputs are scaled with the associated environmental impact, we can determine the 
impact of every activity at any tier. The procedure for this is explained in detail in the 
next chapter. 
 
 

2.2 Contribution analysis 

 

Contribution analysis is a type of analysis used to calculate total emissions and 
environmental loads in general, for a given final demand. Using a more general term such 
as stressors makes it possible to include not only emissions as CO2, CH4, NOx, but also 
land use, heat waste and others as contributors to the environmental impact.  
 
As I mentioned in the previous chapter, the activity in a sector causes activity in other 
sectors of the economy through the chains of requirements, directly or via other 
processes. The activity in the instigating sector is called the direct activity. The activity in 
all other sectors as a result of the final demand in the instigating sector is called indirect 
activity. The total activity is the direct activity plus the indirect activity.  
 
In the process of identifying the emissions from each sector per unit of final demand 
required from the entire network, we can multiply the emission factors with the activity 
and find the emissions generated in each node as a result of requirements of final 
demand. Similarly with the distinctions made in the previous paragraph, we distinguish 
between direct emissions, generated by the instigating sector, and indirect emissions, 
generated by indirect activity in the other sectors. Total emissions totalize the direct 
emissions and indirect emissions.  
 
The emission factor is analog to the requirements coefficients from A matrix. The 
stressor intensity matrix F contains the amount of environmental stressors associated 
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with the output of each process. For a 3 sector economy, the stressor intensity matrix 
looks as in equation 2.1: 
 

 
















=

333231

232221

131211

fff

fff

fff

F             (2.1) 

 
Every line in the above matrix corresponds to a specific stressor and every column 
corresponds to a specific sector. The number of stressors included varies depending on 
the study. Generalizing, fij represents the amount of stressor i generated per unit output of 
sector j, also known as stressor intensity, see equation 2.2. 
 

jofoutput

producediofamount
f ij =             (2.2)  

 
The vector of stressors associated with a given final demand is obtained by multiplying 
the stressor intensity matrix per unit of output F, the matrix of outputs per unit of external 
final demand L and the final demand vector y. Using a set notation as sec for sectors and 
str for stressors, e, the vector of stressors generated for a given external demand, is 
calculated as: 
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In a more compact form, equation 2.3 becomes 

( ) FxyAIFFLye =−== −1
        (2.4) 

 
Vector e gives the total amount of stressors associated with the external demand given by 
the y vector.  
 
To find out how much the various sectors contributes to the total stressor load, the total 
output vector x has to be diagonalized as follows:  
 

xFE ˆ= , where ( ) 1
x Ly L I A y

−
= = −                                       (2.5) 

 
E is called the matrix of stressors generated from each sector for a given final demand 
and is defined as: 
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The elements eij of matrix E represent the amount of stressor from sector i generated in 
sector j as a result of the given final demand.  
 

jofoutput

ifromstressorofamount
eij =  (2.7)  

 
The lines corresponding to each stressor in E matrix show the distribution of total 
emission generated by a certain final demand between all the sectors taking part to the 
production of that final demand. Summing the rows from E gives the total stressor vector 
e:   

∑ =
sec

sec, eEstr  (2.8) 

 
The E matrix calculated in equation 2.5 relates to the total output and calculates the total 
impact generated from each sector for every stressor taken into consideration; more 

precisely, the elements ije  represent the amount of stressor originated in sector j, in all 

tiers, as a result of the final demand. It is possible to decompose the impact of every 

element ije  in the impacts to every tier, by using the same technique: multiplying F with 

the diagonalized output at every tier calculated with the geometric series expansion in 
equation 1.14.  
 

( ) ...4321 +++++=− −
yFAyFAyFAFAyFyyAIF  (2.9) 

 
Table 2.2 gives an overview on how the total outputs and impacts decompose in outputs 
and impacts at every tier and how they relate to each other: 

 

Tier Output at Tier Impact at Tier 

0 yyAx == 0

0  Fy  

1 AyAxx == 01  1x̂F  

2 yAAxx 2

12 ==  2x̂F  

3 yAAxx 3

23 ==  3x̂F  

⋮  ⋮  ⋮  
n yAAxx n

nn == −1  nxFˆ  

Table 2.2: Impact at tier generated by Geometric Series Expansion 
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Particular case: contribution analysis for only one stressor 

 

In the particular case when only one stressor is considered, the stressor intensity matrix F 
is reduced to one line, with values for every sector of the economy. For an economy with 
m sectors, F becomes:  
 

[ ]
mfffF ...21=  (2.10) 

 
The vector of stressors e is reduced to only one value (for the chosen stressor), see 
equation 2.11  
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The total output at every tier and the associated impact are calculated according to the 
formulas from Tabel 2. A tier n, the output vector xn will have the form from equation 
2.12 (x1, x2, …xm are the outputs from m sectors and are different from x1, x2, …xn from 
table 2.2, where they represent the output per n tiers) 
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The elements of xn represent the output at tier n from every m sector. The associated 
environmental impact is obtained by multiplying the output from every sector with the 
stressor intensity from the same sector, as obvious from the result of equation 2.13. 
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It is very important to mention one thing: if the total output of a sector at a specific tier is 
used by more sectors in previous tier, it is not possible to differentiate the amount to be 
used in one sector by the amount to be used in a different sector. Exemplifying, at tier 3, 
electricity can be used for melting metals in different sectors but also for lighting offices 
and homes, but we do not know how much is used for melting metals and how much for 
lighting; all we know is the total amount produced and total environmental impact. It is 
not possible to calculate, using only the above methodology, how much from the total 
impact of a sector at a specific tier is generated as a result of different sectors 



 19 

requirements. The next chapter will show how to use structural path analysis to solve this 
problem. 

 

 

2.3 Structural path analysis 

 

2.3.1 Problem formulation 

 
In any economy, the demand from a producing sector for a certain product requires direct 
inputs from other sectors of the economy like raw materials, electricity, material parts 
and others; even its own products can be used in the production process as in the case of 
an industry producing light bulbs. The production and supplying sectors form production 
networks. 
 
Final demand instigates a production network which spans through the entire economy, at 
country and at world level. The high numbers of processes which potentially can be 
traced back have specific environmental impacts. For mitigating climate change, it is 
important to know the processes with the highest environmental impact connected with a 
specific final demand and to know where these processes occur in the production 
network. 
 
To acquire this objective, we can start by representing the production network as a graph. 
Figure 1 is an illustration for a three-sector economy. The nodes of the graph constitute 
the three sectors, identified by numbers 1, 2 and 3. The final demand is y1 and applies to 
sector 1. The arcs connecting the nodes represent flows between sectors, of magnitudes 

ija  yi, where a11, a21 and a31 represent the inter-industry coefficients. These magnitudes 

are calculated as in equation 1.2. 
 

 
 
Figure 2.1: Graph representation of direct inputs for a demand y1 of sector 1 in a three 
sector economy  

1 

2 3 

a21 y1 a31 y1 

a11 y1 

y1 
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Figure 2.1 gives a schematic representation of the relations between sectors 1, 2 and 3, 
where an external final demand y1 of sector 1 generates requirements of a21y1 units from 
sector 2, a31y1 units from sector 3 and a11y1 units from it own production. 
 
The graph representation of the economy can be used only for direct inputs. It must be 
noted that inputs can have inputs themselves. Representing all inputs to each of the direct 
inputs and so on by arrows will make the graph very hard to read and use.  
 
The reason above is why it is much more useful to use a tree representation. In such a 
representation, all linkages in an economy can be visualized. These linkages are 
calculated with the geometric series expansion from equation 1.14. 
 
 

 
Figure 2.2: Tree representation of direct inputs for a demand y1 of sector 1 in a three 
sector economy 
 
 
Each layer of production is represented in the same line. The final demand from sector 1 
(y1) can be visualized in the first layer. The direct inputs to sector 1 determined by the 

final demand y1 can be visualized in the second layer: 111ya  from sector 1, 121ya from 

sector 2 and 132 ya  from sector 3.  

 
From this, if we use the amount of environmental impact per unit of output from sector i 
(Fi) to scale the output in every single node according to equation 2.12, we get the 
environmental impact of node i. 
 
We are interested here by the environmental output of the inputs required, according to 
the production perspective. This suggests that we can compare the three nodes and find 
which has the smallest environmental impact.  
 
However, the inputs to the supplying sectors and the inputs to the suppliers’ suppliers 
need also to be taken into account. Because the same sector names can be used in 
different tiers and even many times in the same tier, a way of identifying the sectors in 
every instance is needed. We call the succession of sectors linked by a specific 

2 

1 

3 1 a11y1 a21y1 a31y1 

    y1 
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requirement a path. Path i→ j→k suggests that sector i require an input from sector j 
which in turn, requires an input from sector k. Sectors i, j and k are differentiated by the 
output requested from them in different layers of production, not by name. Path 

1→3→1 describes the fact that a final demand from sector 1 requires an output from 
sector 3 which in turn, requires a different output from sector 1.  
 
Using the inter-industry coefficients we can calculate the output in the next layer for 

every sector. For example, for an output of 121ya units from sector 2, the following are 

needed: inputs of 12112 yaa  units from sector 1 (path 1→2→1); 12122 yaa  units from 

sector 2 (path 1→2→2); and 12132 yaa  units from sector 3 (path 1→2→3). The 

associated environmental impacts with these outputs are 121121 yaaF  for path 1→2→1,  

121222 yaaF  for path 1→2→2 and 121323 yaaF  for path 1→2→3.  

 

Generalizing, the environmental impact of path i→ j→k can be calculated with equation  
 

ijikjkkji yaaFf =→→   (2.9) 

 
In a more explanatory form, equation 2.9 can be understood as: 
 

idemandfinal
iofoutput

jofoutput

jofoutput

kofoutput
kfromoutputofunitperimpactenvf kji ×××=→→ .

From the production perspective studied here, it is the activity from the end of the chain 
which causes the environmental impact. 
 

 
Figure 2.3: Tree representation for the first 3 tiers of a three sector economy (melt metals, 
light offices, electricity) for a final demand of melting one unit of metals 
 
 
Now let us return to the electricity example from the end of subchapter 2.2. The three 
sectors, presented in figure 2.3, are: electricity (identified by “3” in the figure), metals 

3 

2 

3 

2 1 

3 1 

3 2 1 3 2 1 

1st tier 

2nd tier 
tier 

 

3rd tier 
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melting (“1”) and lighting offices (“2”). We use the above formula to differentiate 
between the 3 instances of using electricity in the third tier: as its own requirement, as a 
requirement of the metals melting sector, as a requirement of lighting offices sector.  
 
Let us consider a totally hypothetical case in which melting 1 unit of metal requires 0.02 
units from itself, 0.5 units of office lighting and 0.1 units of electricity; lighting offices 
requires 0.1 units of melting metal, 0.03 units from itself and 0.4 units of electricity; 
electricity production requires 0.1 units from melting metals, 0.1 units of office lighting 
and 0.04 units of itself; the environmental impact is 3 units stressor/1 unit melting metals, 
5 units stressor/1 unit of lighting and electricity require 1 unit stressor/1 unit electricity. 
The inter-industry requirements matrix (A), final demand (y) and stressor matrix (F) are 
presented below: 
 

;

04.04.01.0

1.003.05.0

1.01.002.0
















=A ;

1

0

0
















=y [ ]153=F ;  

 
Doing the calculations according with the methodology presented in this chapter, we get: 
 
(1) environmental impact at first tier: e1 

[ ] [ ]100
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000

000

153ˆ
1 =
















×== yFe  

All impact is concentrated to the electricity sector (1 unit); the other the sectors are not 
engaged in production system yet, so that’s why they show no impact at this tier. 
 
(2) environmental impact at second tier: e2 
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==
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2 Ayx  

 

[ ] [ ]04.05.03.0

04.000

01.00

001.0

153ˆ
22 =
















×== xFe  

The impact at second tier is of 0.3 stressor units for melting metals sector, 0.5 stressor 
units for lightning offices sector and 0.04 stressor units for electricity sector.  
 
(3) environmental impact at third tier: e3 
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[ ] [ ]0516.0285.0048.0

0516.000

0057.00
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153ˆ
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×== xFe  

 
The impact at third tier is of 0.048 stressor units for melting metals sector, 0.285 stressor 
units for lightning offices sector and 0.0516 stressor units for electricity sector.  
 
Resuming, electricity sector has an environmental impact of 1 stressor unit in first tier, 
0.04 stressor units in the second tier and 0.0516 stressor units in the third tier.  
 
The impact at first tier corresponds to path 3: 
 

111333 =×== yff path  

 

The impact at second tier corresponds to path 3→3: 
 

04.0104.01333333 =××==→ yaff  

 

The impact to the third tier however, corresponds to three different paths: 3→1→3, 

3→2→3 and 3→3→3. The calculated value (0.0516 stressor units) is not differentiated 
to each of the above paths.  
 
To differentiate the impacts we use the formula 2.9: 
 

01.011.01.01313313313 =×××==→→ yaaff  

 

04.011.04.01323323323 =×××==→→ yaaff  

 

0016.0104.004.01333333333 =×××==→→ yaaff  

 
From the total 0.0516 stressor units corresponding to electricity use in tier 3, 0.01 stressor 
units occur in metal melting sector, 0.04 stressor units are produced by offices lighting 
and 0.0016 stressor units are produced in electricity sector. 
 
If we want to rank the paths ending with sector electricity, in the descending value of the 

environmental impacts, we have: (1) 3pathf  (1 stressor unit), (2) 323 →→f (0.04 stressor 

units), (3) 33→f (0.04 stressor units), (4) 313 →→f  (0.01 stressor units), (5) 333 →→f (0.0016 
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stressor units). Because the second and the third paths have the same environmental 
impact, the ranking for them is arbitrary. 
 
In this example we used a very simplified three sector economy and calculate the 
emissions only until the third tier. For more complex systems and more tiers, the number 
of combinations grows exponentially. For an industry with 10 sectors, there will be 

1010 combinations possible until the 10th tier. The United States has an input-output table 
with ~500 sectors and if we want to go to the product level, using a LCA database, we 
can have a matrix with a few thousands rows and columns. The trees constructed from 
these matrices are very big, even for a small number of tiers. In conclusion, in practice it 
is not possible to consider all these processes, even if everyone has its specific 
environmental impact. The solution is to ‘prune’ the tree for reducing the number of 
possible solutions. We present here too different ways of pruning the tree: one way is to 
use IO methodology and will be explained in chapter 3; another way is to use a 
specialized algorithm which is explained below.    
 

2.3.2 Specialized algorithm description 

 
Peters and Hertwich (2006) used a dynamic tree data structure to extract the necessary 
paths. Their method has 2 steps: (1) construct the tree structure and (2) read the tree by 
‘de-constructing’ it.  
 
First it is important to explain what tree structure is and how to extract the paths using the 
structure fields of a general tree structure 
 
The tree structure is based on the representation from figure 2.2. The tree spanning from 
a node is a structure, characterized by three fields: (1) the contribution of the node, (2) the 
path leading to the node and (3) an array of pointers to the next sub-trees. Each pointer 
makes the connection between the tree and one of its sub-trees.  
 
Adding a sub-tree to the previous structure determine creating a new structure. The path 
field of the new structure includes the pointers to the previous structures and the pointer 
to itself.  
 
Reading the tree by deconstructing it means to use the array of pointers to identify the 
successions of tree structures. Each pointer is connected with the sector in the main node.  
 
The sectors from the main nodes of these tree structures create the paths. The 
contribution of every path is found in the first field of the last structure: the contribution 
of the node. This value is calculated with formula 2.9.  
 
Next part presents how to construct the particular tree structure determined by the final 
demand starting from the general tree structure. 
 
A recursively algorithm checks all sub-trees deciding if they are kept or deleted. If the 
sub-tree is kept, the pointer to the main node of the sub-tree becomes part of the path 
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characterizing the sub-tree structure. If the sub-tree is not kept, the tree is said to be 
‘pruned’. 
  
Main structure has a finite number of tiers. Sub-trees spanning from nodes at the last tier 
are automatically deleted. For all others sub-trees, the algorithm decide if a sub-tree is 
added or deleted to the previous tree based on the total environmental contribution of the 
entire sub-tree. If the contribution is above a given threshold, the sub-tree is added to the 
previous tree. If the contribution is below a given threshold, the sub-tree is deleted from 
the previous tree. 
 
 The total environmental contribution of the entire sub-tree (originating in a node and 
identified by a path) is calculated with formula 2.4 applied to the main node of the sub-
tree. For every sub-tree spanning from a node, the algorithm follows three steps. The next 
example is for a sub-tree spanning from a node at the 3

rd
 tier which can be find by the 

pointers indicating path kji →→ . 

(1)   calculates the final demand vector at the main node k (i.e. ijikjkji yaay =→→ ) 

(2) calculates the output associated with the final demand at the node (i.e. 

kjikji Lyx →→→→ = ) 

(3) calculates the direct and indirect environmental impacts in the sub-tree below that 

node (i.e. kjikkji xfsubtree →→→→ = ) 

 

As we mentioned before, the value calculated above is compared with the threshold to 
find if the sub-tree is added to the previous tree or deleted. 
 
The resulting tree will have an irregular structure, due to the varying depths that the 
algorithm penetrates in searching for new nodes (see figure 3.3 in chapter 3).  
 
After the tree has been constructed and the paths recovered, the main algorithm sorts the 
paths in descending order and prints them in an Excel file.  
 
This algorithm was programmed in Matlab version 7. Because the Matlab programming 
language was not designed for using dynamic data structures, the authors had to employ 
inefficient code to represent null pointers (Peters and Hertwich, 2006).  
 
The performance of this algorithm will be used for benchmarking the result of the new 
Gams SPA in chapter 4.  

 

2.4 Mathematical programming 

 

In many cases, the applications of mathematical programs ”have been so successful that 
their use has passed out of operational research department to became an accepted routine 
planning tool” (Williams 1999).   
 
Using mathematical programming in solving real life situations requires a model. A 
model is a very concise and comprehensive representation of the reality, in its most 
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essential features needed for study. A mathematical model of the production network will 
translate the relationships between the sectors, as elements of the network, into 
mathematical relationships as equations, inequalities, logical interdependencies, etc. The 
model does not include the data as the quantification of the relationships between its 
elements. This means that a model can run on different data sets and this feature makes it 
very useful for the decision process in general.  
 
There are a lot of advantages in using mathematical models: (1) a greater understanding 
of the problem, arising from the struggle to formulate the problem in a theoretical form, 
(2) a mathematical model may suggest solutions which are not very evident from the 
beginning, (3) it is possible to experiment different solutions, especially when their effect 
might be harmful in reality (example: a new tax system). 
 
Beside their versatility by using different data sets, models are especially useful when a 
solution can be obtained in a very short time, compared with manual computation. The 
models with very complex relationships between their elements or/and containing large 
data sets might require a lot of time and effort for obtaining a solution using hand 
computations. The development of computer programming made it possible to do all the 
computation automatically, speeding up the process a lot.  
 
The user does not even require knowledge of algorithms for solving a linear program. 
Commercial package programs like GAMS have very efficient built-in algorithms for 
solving a linear program. The only requirements are having a good model and using the 
syntax in a correct way.  
 
The aim of any mathematical programming model is to make the system more efficient 
that it was before. In mathematical form, efficiency can be represented by an expression 
which needs to be maximized or minimized. That expression is the objective function. 
Other expressions known as main constraints can be built in order to model the 
restrictions or interactions of the system which limit decision. These expressions must not 

exceed some specified value ( )≤  or must not fall below a specified value ( )≥  or must 

exactly equal a specified value ( )= .  

 
The decisions to be taken are represented by the decision variables. Some limits (called 
variable-type constraints) can be placed on the type of these variables. The variables can 
be non-negative (positive), integer, binary or even non-restricted (free).  By contrast, the 
data characterizing the relationships and requirements between the elements of the 
system which are measured and considered fixed are known as input parameters. 
(Rardin, 1998) 
 
When the variables are continuous and both the objective function and the constraints are 
linear expressions, the model is called a linear program (LP).  
 
When there are conventional variables mixed with integer variables, the model is said to 
be a mixed-integer programming model (MIP).  
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Most practical decision problems restrict the integer to only two values, 0 or 1. They are 
used to represent ‘yes’ or ‘no’ decisions (Williams, 1999). This feature will be used in the 
program developed in the next chapter. 
 
A very important issue about integer programming models is the fact that solving them is 
much more difficult, more time-consuming and requires several times as many 
computations as similar size linear programming models (Williams, 1999).  
 
One of the main advantages of a linear programming model for SPA is the fact that is 
mathematically feasible. The mathematical representation of the input-output model takes 

the form of a linear system, as in equations 1.7: ( ) yxAI =− . This is a set of constraints, 

in which we can identify the decision variables as x and input parameters as (I - A). 
Finding the paths with the greatest environmental impact can be formulated as an 
objective function. It is possible to formulate the problem so as all decision variables to 
be binary variables. (see chapter 3). The result is a MIP model for SPA.  
 
The Gams site about MIP models stresses on the characteristics of MIP compared with 
similarly sized pure linear programs: require dramatically more mathematical 
computation, require significant amounts of physical memory and take enormous 
amounts of time to solve. http://www.gams.com/dd/docs/solvers/cplex.pdf 
 
These types of problems are solved by Gams using CPLEX solver. This solver employs a 
generic algorithm which will be briefly presented in the next chapter. According to the 
description from the Gams original site, CPLEX solver includes “state-of-the-art 
implementations of simplex and barrier algorithms” 
http://www.gams.com/solvers/solvers.htm#CPLEX . This evaluation shows an increased 
likelihood of obtaining better results than a more conservative approach to the same 
problem.  
 
Peters and Hertwich’ algorithm use a conservative approach, because the tree search 
examines all solutions one by one. This approach can be inefficient because it will follow 
many paths with a very small value before ruling them out. But the algorithm is designed 
specifically for this problem, so no additional constraints are needed in order to apply it.  
 
CPLEX solver is very fast, as mentioned above, but the problem needs some adaptations 
to make it suitable for the solver.  
 
In conclusion, Matlab-SPA advantage of being tailor specifically for the problem is 
contra balanced by disadvantage in algorithm efficiency. Gams-SPA has the advantage of 
a very efficient algorithm but the disadvantage of a poorly formulated problem. These 
contradictory features makes impossible to say which method is more suitable for a SPA 
without testing. This is the aim of this thesis and the SPA algorithm developed in the next 
chapter will be benchmarked against the existing algorithm in chapter 4.  
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Chapter 3  
 

Mathematical programs for Structural Path Analysis 
 
 
 
This chapter starts with a review of the SPA problem. Then three mixed integer 
formulations of increased optimization of the problem are presented. Implementation 
details presented in the second subchapter will bring into light the challenges associated 
with coordinating Matlab and Gams applications and how these challenges have been 
tackled for solving this problem. 

 

 

3.1 Mixed integer program for SPA 

 
IO analysis and LCA have the same methodology with the specification that ‘sectors’ in 
IOA are replaced by ‘processes’ in LCA. Because of the common methodology, a SPA 
for an IO system is perfectly applicable to a LCA system. The IO nomenclature used in 
the previous chapter will also be used in this chapter, along with LCA nomenclature, to 
explain the mathematical programs for SPA. This will make references to the previous 
chapter easier to understand. 
 
The SPA model presented here finds all paths describing the process relationships that 
link the final delivered product and the emitting processes. We use the tree representation 
of the economy, as defined in the previous chapter (see figure 2.3). For restricting the 
number of paths, two conditions are imposed: (1) use maximum 10 tiers and (2) ignore all 
paths with the environmental impact below a certain threshold value Tol. 
 
This section presents the theoretical aspects of three mixed integer programs for SPA in 
the order of increased optimization.  The implementation details will be presented in the 
next subchapter.  
 
Given a set of sectors/processes S, with elements sec, the following input parameters are 
defined: 
 
1. asec,sec’ as the amount of sector/process sec required per unit amount of sector/process 
sec’;  these input parameters are the elements of the inter-process requirements 
matrix/inter-industry coefficient matrix: A. 
 

{ }SandSAa ∈∈= sec'sec)sec'(sec,sec'sec,       (3.1) 

 
2. fsec as the amount of stressor per unit amount of sector/process sec; these are the 
elements of the vector of stressors per sectors F.  
 

{ }SFf ∈= sec(sec)sec         (3.2) 
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3. ysec as the amount of final demand placed upon sector sec; these are the elements of the 
vector of final demand/external demand y:  
 

{ }Syy ∈= sec(sec)sec         (3.3) 

 
Every path until a certain tier is constructed as a succession of sectors/processes, with 
one sector/process per each component tier, respecting the tier order. These 
sectors/processes are the elements of the path; the number of sectors/processes gives the 
length of the path. Because a path contains only one sector per tier the length of the path 
corresponds to the maximum tier reached by the path. 
 
Not all sectors/processes can be elements of the path. As a result of presorting in Matlab, 
only a reduced number of sectors/processes are considered at each of the 10 existing tiers. 
These subsets are presented in table 3.1 below:  
 

Subset name containing the sectors/processes at tier subset elements 

I 1
st
 tier { }Ii ∈= secsec  

J 2
nd
 tier { }Jj ∈= secsec  

K 3
rd
 tier { }Kk ∈= secsec  

L 4
th
 tier { }Ll ∈= secsec  

M 5
th
 tier { }Mm ∈= secsec  

N 6
th
 tier { }Nn ∈= secsec  

Q 7
th
 tier { }Qq ∈= secsec  

R 8
th
 tier { }Rr ∈= secsec  

T 9
th
 tier { }Tt ∈= secsec  

U 10
th
 tier { }Uu ∈= secsec  

Table 3.1: Subsets defining 
 
Any combination of subset elements taken in tier order defines a possible path. Paths can 
be grouped based on their length. Table 3.2 shows in the second column all groups of 
paths up to each tier: 
 

Tier Paths groups at tier Path name Path value 

1
st
 tier i  bi ei 

2
nd
 tier ji→  bij eij 

3
rd
 tier kji →→  bijk eijk 

4
th
 tier lkji →→→  bijkl eijkl 

5
th
 tier mlkji →→→→  bijklm eijklm 
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6
th
 tier nmlkji →→→→→  bijklmn eijklmn 

7
th
 tier qnmlkji →→→→→→  bijklmnq eijklmnq 

8
th
 tier rqnmlkji →→→→→→→  bijklmnqr eijklmnqr 

9
th
 tier trqnmlkji →→→→→→→→  bijklmnqrt eijklmnqrt 

10
th
 tier utrqnmlkji →→→→→→→→→  bijklmnqrtu eijklmnqrtu 

Table 3.2: Paths groups, names and values, per tiers 
 
Every path to be found is a decision variable in this model, denoted by b. The elements 
of the path became the elements of associated decision variable. The decision variables 
can be grouped by length in the same way as the underlying path, see the third column of 
table 3.2. 
 
The decision variables are of binary type, because every possible path is either considered 
or ignored in the optimization model. 
 
The impact of every possible path is presented as a parameter in the 4

th
 column of table 

3.2. The impact of each path, denoted by e, can be calculated using formula 2.9 from the 
values of A, F and y.  
 

The problem is to determine the paths , , ,...i ij ijk ijklmnqrtub b b b  as presented in Table 3.2. For 

low thresholds, the number of paths is too large and not all can be return. Only the paths 
with impact above the threshold value will be returned. The reason for choosing this 
criterion for reducing the number of paths will became evident after we discuss memory 
implications for path transfer from Gams to Matlab. 
 

For a path i j k→ → , the condition can be written as: 

 

ijk ijkb Tol e≤           (3.4)  

 
There are two cases to consider here: 

a. The value of the path is above the threshold value Tol and in this case 1ijkb = .  

b. The value of the path is below the threshold value Tol and in this case 0ijkb = . 

 
Similar conditions can be written for all paths.  
 
The mathematical formulation can now be stated as: 
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max i i ij ij ijk ijk ijkl ijkl ijklm ijklm

i i j i j k i j k l i j k l m

ijklmn ijklmn ijklmnq ijklmnq

i j k l m n i j k l m n q

ijklmnqr ijklmnqr ijklmnqr ijklmnqr

i j k l m n q r k l m n q r

e b e b e b e b e b

e b e b

e b e b

+ + + +

+ +

+ +

∑ ∑∑ ∑∑∑ ∑∑∑∑ ∑∑∑∑∑

∑∑∑∑∑∑ ∑∑∑∑∑∑∑

∑∑∑∑∑∑∑∑ ∑∑∑∑∑
i j

ijklmnqrt ijklmnqrt ijklmnqrtu ijklmnqrtu

i j k l m n q r t

e b e b+ +

∑∑∑

∑∑∑∑∑∑∑∑∑ ∑∑∑∑∑∑∑∑∑∑

 

           (3.5) 
 

s.t.                                                                                                     (3.6)

                     ,                                       

i i

ij ij

bTol e i I

b Tol e i I j J

≤ ∀ ∈

≤ ∀ ∈ ∀ ∈                                  (3.7)

                   , ,                                                          (3.8)

                  , , ,     

ijk ijk

ijkl ijkl

b Tol e i I j J k K

b Tol e i I j J k K l L

≤ ∀ ∈ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈                                          (3.9)

               , , , ,                             (3.10)

             , , , , ,      

ijklm ijklm

ijklmn ijklmn

b Tol e i I j J k K l L m M

b Tol e i I j J k K l L m M n N

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈          (3.11)

           , , , , , ,

                                                                                                                      (3

ijklmnq ijklmnqb Tol e i I j J k K l L m M n N

q Q

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

∀ ∈ .12)

         , , , , , ,

                                       ,                                                                   (3.13)

      

ijklmnqr ijklmnqr

ijklmnqr

b Tol e i I j J k K l L m M n N

q Q r R

b

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

∀ ∈ ∀ ∈

  , , , , , ,

                                       , ,                                                       (3.14)

      ,

t ijklmnqrt

ijklmnqrtu ijklmnqrtu

Tol e i I j J k K l L m M n N

q Q r R t T

b Tol e i I j

≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

∀ ∈ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈ , , , , ,

                                       , , ,                                         (3.15)

     , , , , , , , , ,i ij ijk ijkl ijklm ijklmn ijklmnq ijklmnqr ijklmnqrt ijklm

J k K l L m M n N

q Q r R t T u U

b b b b b b b b b b

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

 binary                            (3.16)nqrtu

 

 
The total impact of all paths is just a summation of individual impacts of every single 
path, as part of a group of paths (equation 3.6). Each of the equations 3.6-3.15 is designed 
for a group of paths and ensures that for each returned path in each group, the 
environmental impact is above the threshold value. The type of the decision variables is 
defined in equation 3.16. This is the most basic form of the SPA model.  
 
Every new tier adds a new group of decision variables. The number of decision variables 
in the new group can be calculated by multiplying the number of decision variables from 
the previous group by the number of elements (sectors/processes) from the tier reached. If 
NI, NJ, NK…NU are the number of elements from subsets I, J, K…U, the total number of 
decision variables for a 10-tier tree are:  
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( ) ( ) ( )... ...I I J I J K I J K UN N N N N N N N N N+ × + × × + + × × ×  (3.17)  

no. of paths        no. of paths            no. of paths                           no. of paths 

until 1
st
 tier        until 2

nd
 tier           until 3

rd
 tier                           until 10

th
 tier 

 
The number of constraints in a group corresponds with the number of new decision 
variables generated by every new tier considered. Equation 3.17 shows how to calculate 
the number of constraints.  
 
Example: for a tree with one element in the first tier, five elements in the second tier and 
seven elements in the third tier, there are: one path until first tier, one corresponding 
decision variable and one underlying constraint. The second tier adds 1x5=5 paths, 
equivalent with five decision variables and five constraints in equation 3.8; the third tier 
adds 1x5x7=35 paths, equivalent with 35 decision variables and 35 constraints in the 
third group of constraints. The same rule applies for the rest of tiers. 
 
Every new tier adds a new group of decision variables and a new group of constraints. If 
we group the decision variables and the constraints according to the tier where they are 
generated, we obtain a block angular structure (Williams, 2006). In this structure, the 
coefficients of each decision variable form blocks of coefficients, grouped by tiers. For 
the objective function, these coefficients are represented by the impacts associated with 
each decision variable describing a path. They are grouped as line vectors at each tier. 
The columns of the same coefficients form in this structure the right hand side blocks of 
coefficients. The diagonally placed blocks of coefficients are known as submodels.  The 
submodels are square matrices in which all elements are equal to Tol. The dimensions are 
given by the number of decision variables and the number of constraints, which are equal.  

 
Figure 3.1 Block angular structure of the model 
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This model does not have constraints containing decision variables from different tiers. 
Because of this, a number of subproblems can be formed by selecting submodels at each 
tier and the corresponding portion of the objective. For every tier optimizing this 
structure simply amounts to optimizing each subproblem. This property of the model is 
exploited in two ways: (1) for solving the model and (2) for adapting the size of the 
model to the individual inputs, the necessity of which is explained below.  
 
The number of decision variables and constraints increases very fast with each new tier 
as shown above. Also, the model is designed to be appropriate for very large input data 
systems. These two features generate very large models. Executing and solving linear 
programs which describe such models usually require a lot of memory and high 
computation times. If possible, it is recommended to keep the size of the model as small 
as possible. Luckily, we can adapt the size of the model to the individual inputs and 
tackle in this way the memory and time issues.  
 
As a preprocessing result, sometimes all sectors below a certain tier are removed from the 
tree representation of the economic network. The resulting tree will have only T tiers, 
with T ≤10. In this tree the longest possible path will be of T tiers long. Paths longer than 
T do not exist. Consequently, the decision variables underlying these paths are zero and 
the constraints for tiers higher than T do not apply.   
 
We exploit the angular structure of the model by removing the variables and constraints 
which do not apply and consequently reducing the size of the model. Unfortunately, T is 
an endogenous variable calculated in the presorting phase. A less functional alternative is 
to solve separately 10 models, each model containing first T subproblems, to be used as 
needed. This alternative can be avoided by introducing a binary switch st for each tier. 
 

1

0
t

if t T
s

otherwise

≤
= 


         (3.18)  

 
The switches st are defined as above and are used to control the groups of decision 
variables and constraints from each subproblem. The variables and constraints from the 
first T subproblems are switched on while the variables and constraints from the rest of 
tiers will be switched off. The resulting problem will always have only the minimum 
number of decision variables and constraints. 
Exemplifying: if T=7 then all values s1, s2, …s7 are equal to 1 and s8, s9 and s10 are equal 
to 0. Only the first 7 subproblems are kept for optimization, making sure that we solve 
only a reduced version of the model every time we change the input parameters. 
 
The second version of the SPA problem includes two changes: 
 

(1) On/off switches has been added for each group of decision variables and 
constraints. The constraints have been reversed in order to make the switches 
more visible.  
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(2)  The impact of each path, e, has been replaced by the expression used to calculate 
it. This was necessary because the impact e is not a given parameter, being 
calculated from the parameters A, F and y. 

 
The second version of the SPA problem is defined as in equations 3.19-3.30. 
 
Gams generates the model before solving it. This includes generating decision variables 
and constraints and calculating the coefficients in objective function and in constraints. 
The number of decision variables, the number of constraints and the complexity in 
calculating all coefficients mentioned above have a direct effect on the size of the model.  
 
The solution is not affected if Gams generates the model by listing decision variables and 
constraints for all paths, even at the tiers which are not used. However, the bigger the 
model, the more memory is used to generate it and subsequently to solve it. The size of 
the model also affects the time to generate and solve it. The aim of the model is to solve 
as many individual cases as possible, with a given memory and in reasonable time.  
 
The version presented in appendix C includes changes designed to increase functionality, 
reduce memory usage and increase computational speed. This version was developed 
specifically developed for implementation in Gams. These changes regard the way 
equations are generated by Gams. They make sure that only the minimum version of the 
model is generated before solving. The direct effect consists of reduced memory for 
listing the equations and consequently, for solving the model. This version also accounts 
for the highest speed in solving the model. Less efficient alternative formulations will be 
discussed in the next chapter. 
 
The Gams version of the model presented below has an objective function (equation 
3.31) formed from ten expressions, each expression corresponding to the total impact of 
all paths having the same length. The environmental impacts of all paths form the 
coefficients of the decision variables. These coefficients are grouped according to the 
lengths of the paths.  
 
Gams accepts logical conditions in the implementation. This feature allows introducing 
the main constraints in the objective function as logical expressions.  
 
The expressions in the objective function are evaluated twice at each tier t.  
 
The first condition regards the entire expression. The expression is considered or ignored 
based on the value of st parameters: if st = 1, the expression is considered; if st = 0, the 
expression is ignored.  
 
For the expressions which are considered, the second condition regards the coefficients of 
each decision variable, corresponding to the environmental impact of each path from 
those groups of paths.  If the calculated coefficients are above the threshold value, they 
are considered as part of the objective function; if the calculated coefficients are below 
the threshold value, the path is ignored and the coefficient are not considered as parts of  
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s.t.
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 the objective function. 
 
The model version presented below shows the expressions to evaluate at each tier. The 
criteria for evaluating the expressions are explicitly presented. However, the order of the 
evaluation is not as obvious as in Gams implementation. 
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This algorithm for generating the objective function can be also explained by using 
pseudo-code: 
 
Algorithm: GENERATE_MODEL  

for t=1 to 10 

                evaluate expression at tier t 

    if st = 1 
  for all paths until tier t 

   evaluate impact of the path  

        if  impact > Tol 

            consider coefficient 

           else 

                       do not consider coefficient 

     else 
  go to next expression 

end 

return reduced model 
 
The second step in solving the problem consists of using the Cplex algorithm to solve the 
reduced version obtained in the first phase. 
 
Algorithm: EXECUTE_MODEL(reduced model) 

Cplex 

return(solution) 
 
The Gams site (http://www.gams.com/dd/docs/solvers/cplex.pdf ) offers information 
about the Cplex algorithm. For problems with integer variables as this one, Cplex uses a 
branch and cut algorithm which solves a series of linear problems derived from relaxing 
the integrality constraints. If the solution is integer the problem is solved. Otherwise, 
further constraints derived from the non-integer solution found are added to the problem, 
further constraining it. The resulting subproblems are solved with the same procedure, 
until an integer solution is found or the problem becomes infeasible.  
 
We showed how this problem can be decomposed into subproblems for each tier used. 
Because the number of paths up to a tier depends on the number of paths up to the 
previous tier, the output of a problems become the input for the next one. This feature can 
be exploited by the algorithm to speed up model execution. 
 
The total impact needs to be calculated only for the paths found through the optimization 
process described above. The impact of each path is calculated with formula 2.9. 
However, changes need to be made in calculating these parameters. In order to respect 
the logical structure of the thesis, these changes will be justified and presented in the next 
subchapter. 
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3.2 Implementation details 

 
The previous chapter illustrated the necessity of representing the production 
system/economy as a tree, with individual production layers situated at the same level 
(figure 2.3). The methodology for calculating the contribution of different 
processes/sectors at the same level was presented in table 2.2. Formula 2.9 shows how to 
calculate the environmental impact of a given path.   
 
The number of paths generated for an LCA production system is too large to take them 
all into consideration. Based on this consideration, we discussed the necessity of 
‘pruning’ the tree generated by the final demand, in order to eliminate some of the paths. 
The most logical way to do this is to eliminate the paths with very low environmental 
impact. A threshold is chosen, so that all paths with environmental impact below the 
threshold are ignored. The tree is reduced if the maximum number of layers is limited. 
 
There are multiple ways of ‘pruning’ the tree. Subchapter 2.3.1 presented the Matlab-
SPA developed by Peters and Hertwich (2006). They incorporate this procedure into their 
specialized algorithm as a step at each iteration. This thesis comes with a different 
approach: ‘pruning’ the tree before applying the generalized algorithm searching for the 
paths.  
 
Function presorting.m is implemented in Matlab and performs a presorting of the 
elements of the paths (as defined in the previous subchapter) by removing the ones with 
environmental contribution smaller than a given threshold. It returns the presorted 
elements to be taken into consideration at each individual tier in the form of a matrix with 
10 columns, each column describing the corresponding tier. The lines correspond to each 
of the elements of the network. 
 
The procedure has 5 steps:  
(1) calculate total emissions associated with the final demand using formula 2.4 
(2) calculate output matrix per tiers using formula 2.5 
(3) scale output per tiers with pollution intensity to get environmental impact per sectors 
and tiers. Every element represents environmental impact of the sector (direct and 
indirect) and is calculated using formula 2.9   
(4) divide environmental impacts per sectors and tiers by the total emissions to get 
relative environmental impacts per sectors and tiers  
 (5) for every sector and tier, if the relative impact per sector and tier is smaller than the 
threshold (as percentage) the sector is ignored at that tier.  
 
In order to compare the results for different inputs, the threshold is expressed as 
percentage of total emissions. For comparison reasons, the environmental impacts of the 
elements at each tier must also be expressed as a percentage of total emission. 
 
To exemplify presorting, we consider the same model of a three sector economy from the 
previous chapter, this time for a final demand of one unit from sector 1 and with four 
maximum tiers, instead of 10 tiers. 
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The tree generated by the final demand up to the 4th tier is presented in figure 3.2. This is 
the tree before presorting.  
 
The matrix below presents the environmental impact of each sector at each tier, relative 
to the total impact of the final demand. 
 

     1
st
 tier    2

nd
 tier  3

rd
 tier  4

th
 tier 

1st sector 100% 2% 6% 2.5%

2nd sector 0 50.4% 3.5% 5.2%

3rd sector 0 3.62% 7.5% 1%

                     

 
 
 
  

 

 
Figure3.2: Tree representation of a three sector economy for a final demand from sector 1 
 
Any value can be chosen as the tolerance, but it needs to be low enough in order to not 

exclude paths with significant values. In this case %6.3=Tol was chosen. 
 
The last step consists of comparing all the elements of the matrix above with the 
tolerance chosen.  
At 1

st
 tier, for the final demand, 100%>3.6%, so this sector at this tier will not be deleted.  

At 2nd tier, sector 1 is removed because 2 %< 3.6%. Sectors 2 and 3 are kept, because 
50.4%>3.6% and respectively 3.62%>3.6%. 
At 3

rd
 tier, sectors 1 and 3 are kept, because 6%>3.6% and respectively 7.5%>3.6%. 

Sector 2 is deleted because 3.5 %< 3.6%.  
At 4th tier, sectors 1 and 3 are deleted, because 2.5 %< 3.6% and respectively 1 %< 3.6%. 
Sector 2 is kept because 5.2%>3.6%.  

3 

2 

1 

2 1 

3 1 

3 2 1 3 2 1 

1st tier 

2nd tier 
tier 

4
th
 tier 

 

 3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2  3  1  2 

3rd tier 
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The tree after presorting looks like in figure 3.3. Sector 1 was removed from the 2nd tier 
along with all paths deriving from it. Sector 2 removed at the 3rd tier cancelled all paths 
using it in the third tier. Because sector 2 is the only sector remaining at the 1

st
 tier, the 

paths existing at the 3rd tier are extended until the 4th tier.  
 

 
Figure 3.3: Tree representation of a three sector economy for a final demand from sector 
1, after presorting 
 
The sectors remaining at each tier after preprocessing are transferred to Gams as sets I, 
J,K,L,M,N,Q,R,T,U. These sets are used in the optimization model presented in 
subchapter 3.1. This procedure, along with other pre-processing requirements, is 
explained below.  
 
The main program is spa.m and is implemented in Matlab R2008b. It prepares the input 
data for the optimization procedure in Gams, processes the optimization result and sorts 
the obtained paths. Each step requires adjustments to be made in order to assure 
compatibility between Gams and Matlab. Both the Gams file and the Matlab file calling 
for it need to be in the same directory for the call to be effective. 
 
The link between Matlab and Gams is assured by the Matgams package. This software 
gives Matlab users the ability to use all the optimization capabilities of Gams, and allows 
visualization of Gams models directly within Matlab. There are two alternative ways of 
interfacing Matlab and Gams: (1) passing data to and from a Gams program via 
parameters to a ‘gams mex interface’ and (2) using two mex procedures to read and write 
a gdx file which can be interpreted by built-in procedures in Gams. 
(http://www.cs.wisc.edu/math-prog/matlab.html) 
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The interface dictates the adjustments to be made to assure compatibility between Gams 
and Matlab. Here, we used the first alternative of interfacing Matlab and Gams, the ‘gams 
mex interface’. The second alternative was not tested.  
 
The adjustments mentioned above differentiate according to the direction of data transfer 
between Matlab and Gams.  We will consider first adjustments triggered by data transfer 
from Matlab to Gams, then those triggered by transfers from Gams to Matlab.   
 

1. Adjustments triggered by data transfer from Matlab to Gams 

 
Four types of data are transferred from Matlab to Gams: one set, identified as sect; ten 
subsets, identified as i, j, k, l, m, n, q, r, t, u; parameters defined using set and subsets: A, 
F and y; independent parameters: Tol and st coefficients. 
 

Sect is the set containing the names of all sector/processes from the economic network. 
This data is loaded from the input file as a cell array, each cell containing the name of a 
sector, formatted as string.  
 
Adjustment 1: indexing set elements 

The names loaded in this form contained comma, dots, etc which are not allowed by 
Gams syntax. This is why the names constituting the set elements have been replaced by 
indices. Suitable default indices in this situation are 1, 2, 3…m, where m in the total 
number of elements. This conversion will have to be reversed after solution is sent back 
to Matlab.  
 
The set sect has 10 subsets:  i, j, k, l, m, n, q, r, t, u. Elements of these subsets are the 
sectors/processes identified in the presorting phase. The order of subsets corresponds to 
the tier order. Each subset contains the sectors/processes at the corresponding tier. 
Example: subset k(sect) contains the sector/processes from the 4th tier.  The specific 
syntax shows that k is a subset of set sect.  
 
Adjustment 2: treating unused subsets  

We showed in the previous chapter that sometimes all sectors/processes are removed 
from ending tier(s) as a result of presorting. The subsets corresponding to this tier(s) are 
supposed to be empty. But Gams does not accept empty sets/subsets in the chosen data 
transfer type. Even if these subsets will not be used to create paths, they are not allowed 
to remain empty. First element of set sect is arbitrarily chosen as the unique element of 
these sets.  
 
The sets and subsets will be saved in a file set.gms during compilation time and read as 
input by Gams.  
 

Adjustment 3: assembling sets in a table 

One of the main requirements of this program is to transfer input data and to recover the 
solution in Matlab in one system call. The Matgams software used to transfer the set and 
the subsets from Matlab to Gams offers alternatives, but they can not fulfill the above 
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cell 

cell 

cell 

cell 

cell 

Set name 

/ 

/ 

1st  element 

/ 

/ 

2nd element 

Last element 

cell 
⋮  

requirement. The solution found is to assemble all sets and subsets in a table which is 
written in Gams during the system call. This table has the same structure as the set.gms 
file generated by typing the sets directly in the Gams file.  
 
 

 
 
Every set has two components: name and content,  
separated by a cell containing the “/” sign. 
 
Both name and content need to be of cell 
type.  
 
The content is a cell array with elements of                     
type cell, placed on rows and separated by 
cells containing the “/”sign. 
 
 
 

    Figure 3.4: Set structure in Matlab used to create set.gms 
 
In the set.gms file, all sets are placed on rows and are separated by “/”. The assembled 
table has only one column. The number of rows is given by cells containing set names, 
plus cells containing set elements, plus all cells containing the separation character “/”.  
 
In transferring values between Gams and Matlab, the basic object is a structure. A 
structure has three fields: (1) name, holding the Gams name of the object; (2) val, used 
for values; (3) labels, fields of the declared parameters. 
 
Adjustment 4: defining parameters as structures 

 
Parameter A has two dimensions, each defined as sectors/processes. Parameters F and y 
have only one dimension, the same sectors/processes used for parameter A. Structures are 
defined for each of these parameters for transferring from Matlab to Gams. The name 
fields in each structure need to correspond with the name used in Gams for the parameter 
transferred by the structure.  
 
The label field in a structure is a cell array. The size of this cell array is 1 x p, where p is 
the number of dimensions of the val field. Each entry in the cell array is another cell array 
of size 1 x d,  where d is the dimension of the corresponding dimension of the val field. 
This second cell array holds the strings that will be used as labels for the val parameter. 
 
According to the above presentation, each value of the A parameter is identified by two 
labels, each from “sect” set; each value of the F and y parameters is identified by one 
label, from “sect” set. In this particular case, when the set elements are indexed and all 
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elements of the set are used as labels, the indices in the original representation from 
Matlab correspond with the labels in Gams.  
 
Parameters Tol and st are read as scalars in Gams. They are not transferred as structures 
from Matlab. The name of this type of parameters needs to be the same in Matlab and in 
Gams. The value from Matlab is read in Gams directly in val field. 
 
All parameters are written in the matdata.gdx file. Another file, matdata.gms, updates the 
Gams file by reading the new values of the parameter from matdata.gdx file.  Thus, if the 
file matdata.gms does not exist, the original data from matdata.gdx file is used. 
Otherwise, the values of the parameters are killed at Gams compilation time and replaced 
by their new values. 
  

2. Adjustments triggered by data transfer from Gams to Matlab  

 
The paths are transferred from Gams to Matlab using the batch utility “matout”. This 
utility changes the output format; adjustments need to be done in order to retrieve paths 
in Matlab in a useful format.  
 
In Gams, the paths are interpreted as tuples. Theoretically, a tuple in Gams is a subset of 
some sets which encapsulates some conditionals regarding the elements of the sets it is 
based on. In this case, the elements of the path correspond to elements from subsets I, J, 
K … and are connected together by the value of the path (see subchapter 3.1). 
 
The format of the output changes in the transfer process to a file that can be read back 
into Matlab. That file is called “matsol”. Previously, we mentioned that the basic format 
for transferring data is the structure. According to this, in the “matsol” file, a path is 
converted to a structure with three fields: a name, a value and a label. For each group of 
paths, defined as in subchapter 3.1, the name is common for all paths in the group, but the 
value and labels are different. 
 
For each group of paths, the “matsol” file lists the name of the group, the number of 
dimensions for the paths, and the size of each subset used to define the paths. Then, for 
each path found as a result of the optimization process, “matsol” lists first a cell array of 
the indices, then the value of the path. The indices return the order of the tuple elements 
in the subsets mentioned above. 
 
Example: e3(i,j,k) is a tuple, defined on sets I, J and K so that one element from set I, one 
element from set J and one element of set K exist simultaneously. The path created by the 
elements of the tuple is denoted by i-j-k. The output in “matsol” is presented below for a 
list of three paths from this group, paths obtained in the optimization process. 
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::e3 variable name 
 dimensions 
 number of dimensions/sets 
d 3 1 20 11 
  size of set I 

size of set J  
size of set K 

 
 
 
   value of emissions for 1

st
  path 

 
1.2.2    1.3227984540000E+02 
  1

st
 element of set I 

  2nd element of set J 
  2nd element of set K 
 
   value of emissions for 2

nd
 path 

 
1.2.4    9.7427060910000E+01 
  1

st
 element of set I 

  2nd element of set J 
  4th element of set K 
 
   value of emissions for 3

rd
 path 

 
1.3.4    1.0129500163800E+02 

1
st
 element of set I 

  3rd element of set J 
  4th element of set K 
 
The output from “matsol” for each group of paths with n dimensions is read in Matlab as 
a n-dimensional matrix. The values of the paths are elements in the n-dimensional matrix. 
The array of indices from the “matsol” file becomes the subscripts of these elements. 
 
Example: the output in Matlab for the previous example is a 3-dimensional 1x20x11 
matrix of type double in which every element can be accessed by using subscripts. Each 
subscript indexes a dimension. The value of emissions for a path corresponds to an 
element of the matrix. The subscripts of this element are derived from the array of indices 
corresponding to the path in the “matsol” file.  
 
 val(1,2,2)= 1.3227984540000E+02 
 
val(1,2,4)= 9.7427060910000E+01 
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        value of emissions for the 3rd path 
 
val(1,3,4)= 1.0129500163800E+02 
       subscript for 1st dimension 
                  subscript for 2nd dimension 
                  subscript for 3

rd
 dimension 

 

Adjustment 5: recovering paths from the output representation in Matlab 

 
Function getpath.m recovers the paths (value and elements) from the multidimensional 
representation. For each group of paths, it first identifies the subscripts for each path, and 
then uses the subscripts to recover the indexed element names. 
  
If the nth dimension of a n-dimensional path has only one element, that path is not read 
correct in Matlab from the “matsol” file. The last index from the list of indices 
characterizing the path is lost in the conversion to Matlab’s multidimensional 
representation. If the last dimension in a n-dimensional representation has only one 
element, Matlab ignores this dimension by default. The function script is adapted to take 
this situation into account by adding the missing subscript to the list of subscripts 
obtained from the dimensions recovered directly.  
 
Adjustment 6: reconvert the indexed element names to the real names  

 
Function sorting.m reconverts the numerical name indices to the real sector/process 
name for every found path. Foe example, names like “1”,”2”,”3” are converted to 
“agriculture”, “manufacturing”, “transport”. The function also sorts the paths in 
descending order of impact value. 
 
The path structure has three fields: (1) name, of type string, (2) impact value, of type 
double and (3) labels – the elements of the path –, of type cell. The label cell contains a 
cell array, each entry in the cell array being another cell containing the name of the 

sector/process. Figure 3.5 presents 3 paths from group i j k→ →  (identified as 1, 2, and 

3) stressing on the type of component elements.  
 
Only one command is used to execute the Gams file with a system call. The command 
feeds the inputs and collects the outputs from Gams. The number of output variables in 
this command needs to correspond with the number of output parameters from Gams.   
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Figure 3.5 Paths and the type of component elements 
 
 
The number of paths fulfilling the optimization criteria is unknown. Even if no path from 
a certain group is found, we still need to have an output for Matlab, for the reason 
explained above. Obviously, the impact of all paths from this group will be zero. The 
“matsol” file will record these paths as follows: 
 
::e3  
 number of dimensions/sets 
d 3 1 29 18 
  size of set i 

size of set j  
size of set k 

 
Matlab reads this data as a matrix of three dimensions with one element on the 1st 
dimension, 29 elements on the 2nd dimension and 18 elements on the 3rd dimension. All 
elements of this matrix are zero. In fact, Matlab allocates memory for a matrix which will 
not be used at all, because none of the possible paths fulfills the optimization criteria. 
 
For 10-dimensional matrices the amount of memory allocated to read unused paths is 
very high. We already mentioned in this chapter that memory is an issue for this model 
and adjustments have been made in the optimization program to reduce it (see st 
parameters).  
 

Name sector i1 Name sector j1 Name sector k1 

Name sector i2 Name sector j2 Name sector k2 

Name sector i3 Name sector j3 Name sector k3 

Emissions 

path 1 

Emissions 

path 2 

Emissions 

path 3 

Path 1 

Path 2 

Path 3 

cell cell cell cell cell cell cell 
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Introducing st parameters we reduced the necessary memory for the execution of the 
optimization program. This time adjustments need to be made in order to reduce the 
amount of memory used by Matlab to interpret the zero-value paths found by the Gams 
program.  
 
There are two things we need to take into account for identifying the file in which the 
changes need to be made: 
 

1. The “matout” file controls the Gams output in the “matsol” file. Since we don’t 
want to edit the “matout” file, there is nothing we can do to change this output, at 
least not for this optimization version of the model. 

 
2. We cannot change the way data is transferred between the “matsol” file and 

Matlab 
 
The most obvious choice is to make some post-optimization changes in Gams file. These 
changes need to adjust the way Gams calculates the zero-value paths before transferring 
them to the “matsol” file.   
 
These zero-value paths have three fields: name, value and dimension. Among these 
fields, the dimension field alone creates the memory problem. In Gams, multidimensional 
parameters can be returned by appending the appropriate indexing sets after the name of 
the parameter. If the indexing sets are not appended after the name of the parameter, just 
one dimensional value is transferred to the “matsol” file and from there it is read by 
Matlab as a one-dimensional parameter. Logically, we want the parameters with zero in 
the value field to be transferred to the “matsol“ file without the indexing sets.  
 
Example: e5 is transferred as a one-dimension parameter in the first expression below 
and as a five-dimension parameter in the second expression. 
 
$libinclude matout e5  
$libinclude matout e5 i j k l m    
 
The first expression is coded for the eventuality that no path is found in the optimization 
process. The second expression is coded for the eventuality that at least one path is found 
in the optimization process. These two cases are exclusive, but we can find the case 
triggered by a specific input through a simple check: if no path fulfills the optimization 
criteria in a group of paths, they all have value zero and their total impact is zero; if at 
least one path fulfills the optimization criteria, the total impact for all paths in the group 
is larger than zero. This endogenous test can be introduced in the Gams file, after the 
optimization procedure, in order to identify which one of the above two coding cases to 
use.  
  
We want to introduce an “if” condition to employ one coding case or the other according 
to the value of the total impact. Unfortunately, Gams does not accept both expressions at 
compilation.  
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Adjustment 7: calculating alternative values for groups of paths with 0 value each 
 
The solution resides in manipulating the name of the group of paths of zero-value each. 
In transferring data from Gams to Matlab, the name of the structures defined for the 
groups of paths can be discarded. Matlab receives only a matrix with values, which can 
be identified by any name in the output elements from the expression calling Gams. The 
structure name can be removed by a Matlab command which sets the Gams output to 
‘std’. 
 
The algorithm preparing data for transfer from Gams to Matlab is presented below: 
 
Algorithm: CALCULATE_EMISSIONS (path group t) 
calculate total paths impact of all paths in the group 

if  impact = 0 

 f = impact 

 include f without indexing sets 

else 

 e = impact 

 include e with indexing sets   

end 

return(one-dimensional f or multi-dimensional e) 
 
So, a group of paths in which all paths have zero value are transferred to the “matsol” file 
as a one-dimensional parameter named f of zero value:  
 
::f4 
d 1 1 
1    0.0000000000000E+00 
 
With these alternative parameters, only the minimum amount of physical memory is used 
to record them in Matlab.  
 
All these adjustments are specifically done to assure compatibility between Gams and 
Matlab, to increase the functionality of the model and to deal with the memory and time 
issues raised by running these two programs. Next chapter will use real data to show how 
the main program works.  
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Chapter 4 

 
Analysis 
 

 

 

This chapter presents three case studies used to test the functionality of the Gams-SPA 
program. The technical performance of the model will be assessed by benchmarking the 
results of Gams-SPA against the results of Matlab-SPA for the three cases mentioned 
above. The features included in the model will be justified by comparing the results of 
this program version with older versions.  
 

4.1 Case studies 

 
SPA can be conducted referring to a stand-alone product or to an output of an industry. 
 
For a product, SPA identifies the most polluting products and processes used at some 
stage in its production. A unit of service can also be a product. All products and processes 
used as inputs at any production stage are the elements of the product network, called 
LCA type network. 
 
For each production process we need to know the amount of all direct inputs (products 
and processes) required. This data has to be assembled in a square matrix formed by the 
elements of the production network. This is the inter-process requirements matrix. Each 
element aij is measured as the amount of input i required per unit of input j. Matrix data 
can be obtained directly from the production process or can be taken from already-
compiled databases. The number of elements included depends on data availability.  
 
This SPA is designed to evaluate only one type of environmental impact at a time. We 
need to know the direct environmental impact of one unit of each element. This stressor 
data is presented as a line vector, indexed by elements of the network. Data is measured 
as stressor units per products and process. It can be obtained from direct measurements, 
but usually is taken from databases.  
 
This SPA studies one product at a time. We need to construct a column vector indexed by 
the elements of the network. All its values will be 0, with one exception: for the studied 
element (product or service) it takes value 1. This is called the vector of external demand 
of processes.   

 
SPA is intended to find the paths describing the process relationships that link the final 
delivered product with the emitting processes. A path is returned as a link of network 
elements starting from the product or service chosen (left) and ending with the polluting 
sector (right). The ending polluting sector requires inputs from the previous element 
which on its turn requires inputs from the element placed in front of it and so on, until the 
final delivered product is reached.  
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Similarly to the product network, we define the economic network, also named the IO 
network, in which all elements are sectors. SPA is conducted for a specific output of a 
sector. Sector output can be evaluated in physical units or in monetary units. The matrix 
of all sectors is called the inter-industry coefficient matrix. Each element aij is measured 
as the amount of sector i required per unit of stressor j. Stressor data is represented as in 
the description of the product network, using sectors instead of products. The vector used 
to point the sector for which the SPA is conducted is now called the final demand vector. 
 
Usually, statistic bureaus from any country gather and calculate the data needed, in 
monetary units. Because of the inconsistency in reporting, data require manipulation to 
make the complete data set consistent. For data sets including more than an economy, 
even more manipulation of data is necessary. This procedure introduces a lot of errors in 
the data set. The errors can result from aggregation, allocation of trade data, mapping a 
new classification system, exchange rates, inflation measures, etc.(Peters and Hertwich, 
2006). This is the biggest source of uncertainty in the model and the results have to be 
treated accordingly. 
 
Three data sets of increased complexity have been used to test the program. In all cases 
data has been provided as .mat files, containing the matrix of products or sectors, the 
stressor vector, the external demand/final demand vector, the identity matrix and a vector 
containing the name of the processes/sectors used to define the above elements. Using 
this format is not compulsory, but it was employed here so that the same input file could 
be used for testing both Gams-SPA and Matlab-SPA. Another five variables have been 
added to accommodate Matlab-SPA, but our program deletes them immediately after 
loading. As an alternative, the variables needed only for this program can be loaded 
individually.  
 
Test cases have been developed based on three data sets of increasing complexity. They 
are presented below. Data was recorded at the second iteration when all parameters, 
except threshold value, were already saved in matdata.gms. 
 
Case 1 is based on a 10-sector model of the Norwegian economy. The stressor chosen for 
calculating impacts is CO2. Data for the inter-industry coefficient matrix and vector of 
stressors is provided by the Industrial Ecology program. The input file is NorIO.mat. The 
final demand was chosen as one unit from the manufacturing sector. SPA identifies the 
paths connecting the manufacturing sectors with the most polluting sectors at different 
stages in the economic network. If we ignore all paths with the impact below 0.5% of 
total emissions, 17 paths remain. These paths cover 86.1% of total emissions. They are 
listed in Table 4.1. 
 
Because all sectors have been aggregated in 10 big groups, the resolution of the 
information in the results is rather low. However, we see that 43.6% of the total CO2 
emissions (0.0627 kg CO2) generated by one unit of manufacturing occur in the first tier. 
Manufacturing and transportation are by far the most polluting sectors, creating 16 paths 
from 22 paths found. Agriculture and mining have relatively small contributions to the 
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total CO2 impact in the second, third and fourth tier, approximately 2.5% both. Rest of 
the sectors have a contribution below 0.5% and are ignored. 

 
Table 4.1      All paths above a threshold value of 0.5% for CO2 emissions starting from  
 one unit of manufacturing (left) and ending with the polluting sector (right); 

  The 17 paths represent 86.1% of total emissions 
 

Rank Contribution (%) Path 

1 43.60 Manufc 

2 14.85 Manufc� Manufc 

3 7.09 Manufc� Transp 

4 5.06 Manufc� Manufc� Manufc 

5 2.41 Manufc� Manufc�Transp 
6 2.29 Manufc� Transp� Transp 
7 1.75 Manufc� Agric 
8 1.73 Manufc� Mining 
9 1.72 Manufc� Manufc� Manufc� Manufc 
10 0.92 Manufc� Agric� Manufc 
11 0.82 Manufc� Manufc� Manufc�Transp 
12 0.78 Manufc� Manufc� Transp� Transp 
13 0.74 Manufc�Transp� Transp� Transp 
14 0.60 Manufc� Manufc� Agric 
15 0.59 Manufc� Manufc� Mining 
16 0.59 Manufc� Manufc� Manufc� Manufc� Manufc 
17 0.56 Manufc� Constr 

Note: The sector abbreviations are given in Appendix F.  

 

 

Case 2 is based on a 481-sector of the US economy for 1997/1998. The stressor chosen 
for calculating impacts is CO2. Data is provided by the Industrial Ecology program. The 
input file is oil_drill.mat. A “petroleum and natural gas well drilling” service was chosen 
as final demand here. The service unit was arbitrarily established at $25000 worth of 
drilling. SPA identifies the paths connecting the above-mentioned unit of drilling service 
with the most polluting sectors at different stages in the economic network.  
 
Total impact is 19848 Kg of CO2 for a threshold of 0.1%. The first 44 paths with impact 
above 0.1% from the total emission value are listed in Table 4.2. More than half of the 
emissions (54.89%) are direct emissions from the drilling in the first tier. Sectors: “blast 
furnaces and steel mills”, “cement, hydraulic” and “electric services” dominate first tiers. 
Chemicals and minerals used in drilling have a considerable influence in the total 
emissions, along with equipments and transportation. 
 
This specific example was chosen because it employs a particularity of some of the paths: 
the contribution of a sector is smaller than the contribution of its input sectors: The 30

th
 

path: Drilling�Motors�Stamping�Steel mills has a contribution of 0.17% of total 
impact, but Drilling�Motors�Stamping has been ignored, because its contribution is 
below 0.1%. 
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Table 4.2      All paths above a threshold value of 0.1% for CO2 emissions starting from a 
     drilling service (left) and ending with the polluting sector (right); 

The 44 paths represent 78.25% of total emissions 
 

Rank Contribution (%) Path 

1 54.89 Drilling 

2 4.32 Drilling� Steel mills 

3 3.36 Drilling� Cement 

4 2.73 Drilling� Electricity 

5 1.10 Drilling� Chemicals 

6 1.05 Drilling� Refining 

7 0.67 Drilling� Steel mills�Steel mills 

8 0.67 Drilling� Metal parts�Steel mills 

9 0.54 Drilling� Chemicals�Electricity 

10 0.54 Drilling� Minerals 

11 0.52 Drilling� Land T. 

12 0.51 Drilling� Cement�Electricity 

13 0.50 Drilling� Equipm. manuf 

14 0.49 Drilling�Steel mills�Electricity 

15 0.46 Drilling� Air T. 

16 0.44 Drilling� Drilling 

17 0.44 Drilling�Equipm. manuf�Steel mills 

18 0.39 Drilling�Motors 

19 0.36 Drilling�Rail T. 

20 0.33 Drilling�Lime 

21 0.28 Drilling�Trade�Electricity 

22 0.27 Drilling�Oil_reused 

23 0.25 Drilling�Metal parts 

24 0.24 Drilling�Chemicals�Chemicals 

25 0.22 Drilling�Oil_reused�Refining 

26 0.19 Drilling�Equipment�Steel Mills 

27 0.19 Drilling�Trade 

28 0.19 Drilling�Equipm. manuf�Electricity 

29 0.18 Drilling�Chem. Prep 

30 0.17 Drilling�Motors�Stamping�Steel mills 

31 0.16 Drilling�Equipment 

32 0.16 Drilling�Steel Mills�Raw mat. 

33 0.15 Drilling�Motors�Motors parts 

34 0.14 Drilling�Water T. 

35 0.13 Drilling�Steel parts 

36 0.13 Drilling�Equipm. manuf�Metals 

37 0.13 Drilling�Refining�Raw oil 

38 0.12 Drilling�Cement�Cement 

39 0.12 Drilling�Chemicals�Chemicals�Electricity 

40 0.11 Drilling�Equipm. parts 

41 0.11 Drilling�Motors�Motors parts�Steel mills 

42 0.11 Drilling�Minerals�Electricity 

43 0.10 Drilling�Steel mills�Steel Mills�Steel mills 

44 0.10 Drilling�Metal parts�Steel Mills�Steel mills 

Note: The sector abbreviations are given in Appendix F.  
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Case 3 is build upon LCA data set. Data, provided by Industrial Ecology program, is 
compiled from Ecoinvent database, for both the inter-process requirement matrix and the 
stressor matrix.  The original data contained 2549 processes and 4345 stressors. The 
external demand chosen here is one transoceanic tanker (the 2333

rd
 process in 

enumeration). This product has only two direct stressors: heat waste and NMVOC (non-
methane volatile organic compounds, unspecified origin). The second was chosen for 
testing. From the 4345x2549 stressors matrix, only the line corresponding to the 
NMVOC stressor was chosen (1234

th
 line).  

 
Gams requires scaling of coefficients, so that their magnitude is centered on one and the 
ratio between the highest value and the lowest one ranges between 0.01 and 100.  This 
requirement is detailed in the document mccarlgamsuserguide.pdf, available from the site 
www.gams.com.  
 
No stressor was found to comply with this requirement. From the 2549 processes 
recorded in the database, 530 processes have positive impacts regarding this stressor. The 
values range between 1.39E-10 kg NMVOC per one unit from process: “Treatment, pig 
iron production effluent, to wastewater treatment, class 3/CH U” and 237000 kg 
NMVOC per one unit of process “operation, maintenance airport/RER U”. Only nineteen 
processes have impact between 1 kg and 237000 kg NMVOC per process unit. 
 
These values are far beyond the range required by Gams. Adjustments needed to be done 
in order to be able to test the model on LCA database. All 511 values below 1 have been 
zeroed in the stressor vector. The remaining values, between 1kg/unit and 237000 kg/unit 
have been reduced 1000 times. This scaling assures that Gams can handle the data input. 
The input file obtained by making these changes is tanker1.mat.  
 
The aim of this thesis is not to perform a SPA for the transoceanic tanker, but to develop 
a functional model. That is why we traded the solution for the overall model.  
 
Table 4.3 lists the paths for a threshold value of 0.01%. 
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Table 4.3      All paths above a threshold value of 0.01% for NMVOC emissions starting 
from a transoceanic tanker (left) and ending with the polluting sector (right); 

The 44 paths represent 99.84% of total emissions 
 

Rank Contribution (%) Path 

1 99.5 Tanker 
 

2 0.09% Tanker� Reinforcing steel� Steel,converter�Pig 
iron�Sinter,iron�Transport tanker�Maintenance tanker 
 

3 0.07% Tanker� Reinforcing steel� Steel,electric�Transp. lorry 32 t 
�Lorry 40t 
 

4 0.043% Tanker� Reinforcing steel� Steel,converter� Pig 
iron�Sinter,iron�Transport barge�Maintenance barge 
 

5 0.042% Tanker� Reinforcing steel� Steel,converter� Pig iron 
�Transport freight ship�Maintenance freight ship 
 

6 0.024% Tanker� Reinforcing steel� Steel,converter� Pig 
iron�Sinter,iron� Transport freight ship� freight ship 
 

7 0.022% Tanker� Reinforcing steel� Steel,converter� Pig iron 
�Transport barge�Maintenance barge 
 

8 0.021% Tanker� Reinforcing steel� Lorry 40t 

9 0.019% Tanker� Reinforcing steel� Steel,converter� Pig iron�Coal� 
Transport freight ship�Maintenance freight ship 
 

10 0.012% Tanker� Reinforcing steel� Steel,converter� Pig iron � 
Transport freight ship�Maintenance freight ship 

 

The total impact is 13.267 kg NMVOC and in this particular case, almost all of it is 
concentrated in the first tier. Very reduced impacts of NMVOC, compared with the direct 
impact of tanker, are associated with maintenance of different types of ships used to 
transport the iron used for constructing the tanker. Lorry transportation has the same 
importance as sea transportation, as obvious from the third and eighth path.  

 

 

4.2 Technical performance  

 

This chapter presents the technical performance of the Gams SPA program in terms of 
time used for compilation and execution, versus the threshold used in the presorting 
phase. Times obtained in Gams-SPA are benchmarked against times obtained by running 
Matlab-SPA developed by Peters and Hertwich (2006) on the same data files, for each 
individual threshold value.  
 
Gams SPA require only two inputs: the file to test and the threshold to cut the paths.  
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Case 1 results are listed in Table 4.4 and plotted in figure 4.1 below.  
 

Tiers 

needed 

Threshold 

(%) 

Gams SPA Matlab SPA Number 

of paths 

Emissions  

covered  
43 0.4 0.05 1 43.60% 

1 tier 
35 0.4 0.05 1 43.60% 

34 0.4 0.05 1 43.60% 
2 tiers 

15.25 0.4 0.05 1 43.60% 

15.26 0.4 0.05 1 43.60% 
3 tiers 

7.11 0.4 0.05 2 58.46% 

7.1 0.4 0.05 2 58.46% 
4 tiers 

3.4 0.4 0.05 4 70.60% 

3.39 0.4 0.05 4 70.60% 
5 tiers 

1.65 0.4 0.05 9 80.52% 

1.64 0.5 0.05 9 80.52% 
6 tiers 

0.84 0.5 0.05 10 81.43% 

0.83 0.5 0.05 10 81.43% 

0.6 0.5 0.05 13 83.78% 7 tiers 

0.43 0.5 0.05 17 86.11% 

0.42 0.5 0.05 17 86.11% 

0.3 0.5 0.05 21 87.35% 8 tiers 

0.21 0.5 0.05 25 88.39% 

0.2 0.5 0.05 28 88.99% 

0.15 0.7 0.05 35 90.19% 9 tiers 

0.11 1 0.05 37 90.50% 

0.1 1.1 0.05 43 91.09% 

0.09 2.2 0.05 47 91.47% 

0.08 2.2 0.05 49 91.63% 

0.07 3.1 0.06 50 91.71% 

0.06 3.5 0.07 57 92.18% 

10 tiers 

0.053 4.8 0.08 67 92.75% 

0.052 4.8 0.08 69 92.85% 

0.04 8.7 0.09 78 93.30% 

0.01 141.2 0.2 202 95.73% 

0.005 376.2 0.4 333 96.64% 

Over 10 
tiers 

0.001 X 1.8 974 97.98% 

Table 4.4 Time versus threshold comparison between Matlab SPA and Gams SPA in case 1, number of 
paths and covered emissions for each threshold value. 

 
The size of the problem increases when the threshold is reduced, affecting the time 
necessary to obtain the results. We see how a lower threshold determines higher 
execution time for both Gams-SPA and Matlab-SPA versions. The times obtained by 
running Matlab-SPA are consistently lower for all threshold values tested. Matlab-SPA 
times increase slow at the beginning but at high tiers we see a very strong increase: from 
8.7 seconds for a tolerance of 0.04% to 141.2 seconds for a tolerance of 0.01% and 376.2 
seconds for a tolerance of 0.005%. This increase corresponds to the increase in the 
number of paths found. The value of the paths is smaller and smaller.  The total emissions 
covered by the paths found increases fast at small tiers and much slower at higher tiers. 
The 124 new paths found by reducing the threshold from 0.04% to 0.01% cover only 
2.43% of total emissions. 
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Gams SPA versus Matlab SPA comparison

Time versus Threshold  

Final demand: one unit from manufacturing sector

Stressor: CO2

-  10 sectors economy -
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Figure 4.1 Time versus Threshold comparison for Matlab SPA and Gams SPA in case 1 
 

In order to test the system at such reduced tolerance, more than 10 tiers are necessary. 
This requirement was explicitly presented here, but the program cut off the paths after 10 
tiers. For all threshold value tested, no path has been found to extend until the 10

th
 tier. 

The longest path found for a tolerance of 0.005% extends until the 9th tier.  
 
No values have been obtained by running Gams SPA at threshold 0.001 %. If we look at 
the time trend we observe an exponential increase for very low threshold values. The size 
of the problem increases so much that the memory required to generate the equations and 
to solve them runs out.  
 
Case 2 was tested on a 481-sector data set, which is bigger than the previous one. The 
running times obtained for both Matlab-SPA and Gams-SPA are presented in Table 4.5. 
The trend is visible in figure 4.2: until the end of the 8th tier, the running times for Gams-
SPA are close but still higher than Matlab-SPA’s running times. The increase is very 
strong at the 9th and 10th tiers: from 35.9 seconds for a threshold of 0.1% to 2105 seconds 
for a threshold of 0.06%. As in case 1, the total emissions covered by the paths found 
increase fast at small tiers and much slower at higher tiers. The 16 new paths found by 
reducing the threshold from 0.1% to 0.074% cover only 1.33% of total emissions. 

1st 
tier 

2nd 
tier 

3rd 
tier 

4th 
tier 

5th 
tier 

6th 
tier 

7th 
tier 

8th 
tier 

9th 
tier 

10th 
tier 

Over  
10  tiers 
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Tiers 

needed 

Threshold 

(%) 

Gams SPA Matlab SPA Number of 

paths 

Emissions  

covered 
54.8 1 0.1 1 54.89% 

1 tier 
7.37 1 0.1 1 54.89% 

7.36 1 0.1 1 54.89% 
2 tiers 

4.47 1 0.1 1 54.89% 

4.46 1 0.1 1 54.89% 

3 1 0.1 3 62.56% 3 tiers 

2.46 1 0.1 4 65.30% 

2.45 1 0.1 4 65.30% 

1.7 1 0.1 4 65.30% 4 tiers 

1.32 1 0.1 4 65.30% 

1.31 1 0.12 4 65.30% 

1 1 0.15 6 67.45% 5 tiers 

0.74 1 0.2 6 67.45% 

0.73 1.1 0.2 6 67.45% 

0.67 1.1 0.3 6 67.45% 

0.6 1.1 0.4 8 68.77% 

0.5 1.1 0.5 13 71.38% 

0.43 1.1 0.6 17 73.22% 

6 tiers 

0.412 1.1 0.6 17 73.22% 

0.411 1.1 0.6 17 73.22% 

0.38 1.1 0.6 18 73.61% 

0.34 1.1 0.6 19 73.97% 

0.3 1.2 0.6 20 74.30% 

0.28 1.2 0.65 21 74.58% 

0.27 1.2 0.7 22 74.86% 

0.26 1.3 0.7 22 74.86% 

7 tiers 

0.232 1.4 0.7 24 75.34% 

0.231 1.4 0.7 24 75.34% 

0.23 1.5 0.7 24 75.34% 

0.22 1.5 0.7 24 75.34% 

0.21 1.6 0.8 25 75.56% 

0.2 1.6 0.9 25 75.56% 

0.19 1.8 1 26 75.75% 

0.18 2 1.1 28 76.13% 

0.17 2.2 1.1 29 76.30% 

0.16 2.7 1.5 30 76.47% 

0.15 3.6 1.5 33 76.94% 

0.14 7.4 1.7 34 77.09% 

8 tiers 

0.1304 10.9 1.8 36 77.35% 

0.1303 13.5 1.8 36 77.35% 

0.1 35.9 2 44 78.26% 9 tiers 

0.074 551 2.6 60 79.59% 

0.073 701 2.8 60 79.59% 

0.06 2105 4 68 80.13% 

0.01 X 16 307 84.82% 

0.005 X 30 492 86.08% 

10 tiers 

0.001 X 120 1940 89.11% 

Table 4.5 Time versus threshold comparison between Matlab SPA and Gams SPA in case 2, number of 
paths and covered emissions for each threshold value. 



 58 

 
The memory required to run Gams-SPA for thresholds above 0.01% exceeded the 
capacity of the system. At those tiers, Matlab-SPA also records a rapid increase in the 
time used to found the paths. The rapid increase in the number of paths found by Matlab-
SPA (until 1940 paths at threshold 0.001%) is a sign of how fast the model grows at those 
tiers.  
    

Gams SPA versus Matlab SPA comparison

Time versus Threshold  

Final demand: $25000 worth of drilling service

Stressor: CO2
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Figure 4.2 Time versus Threshold comparison for Matlab SPA and Gams SPA in case 2 
 
Case 3 brings a change in situation. The Gams-SPA and Matlab-SPA running results 
obtained are presented in table 4.6 and plotted in figure 4.3.  
 

Tiers 

needed 

Threshold Gams SPA Matlab SPA Number 

of paths 

Emissions  

covered 
99.4 0.6 0.4 1 99.49% 

1 tier 
0.478 0.6 0.5 1 99.49% 

0.477 0.6 0.5 1 99.49% 

0.4 0.6 0.5 1 99.49% 2 tiers 

0.315 0.6 0.5 1 99.49% 

0.314 0.6 0.5 1 99.49% 

0.3 0.6 0.5 1 99.49% 3 tiers 

0.296 0.6 0.5 1 99.49% 

0.295 0.6 0.5 1 99.49% 

0.24 0.6 0.5 1 99.49% 4 tiers 
0.177 0.6 0.5 1 99.49% 

0.176 0.6 0.5 1 99.49% 

0.16 0.6 0.5 1 99.49% 5 tiers 
0.142 0.6 0.5 1 99.49% 

0.141 0.6 0.5 1 99.49% 6 tiers 
0.12 0.6 0.5 1 99.49% 

2nd 
tier 

1st 
tier 

3rd 
tier 

4th 
tier 

5th 
tier 

6th 
tier 

7th 
tier 

8th 
tier 

9th 
tier 

10th 
tier 
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0.11 0.6 0.5 1 99.49% 

0.1 0.6 0.5 1 99.49% 

0.09 0.6 0.8 1 99.49% 

0.08 0.6 1.7 2 99.58% 

0.07 0.6 2.2 3 99.65% 

0.06 0.6 2.1 3 99.65% 

0.05 0.6 2.4 3 99.65% 

0.04 0.6 3.0 5 99.74% 

0.03 0.6 3.5 5 99.74% 

0.02 0.6 6.0 8 99.58% 

7 tiers 

0.015 0.6 6.5 9 99.83% 

0.014 0.6 6.5 9 99.83% 
8 tiers 

0.012 0.6 7.2 9 99.83% 

0.011 0.6 7.2 10 99.84% 
9 tiers 

0.01 0.6 7.2 10 99.84% 

0.009 0.6 7.2 10 99.84% 

0.0093 0.7 7.4 10 99.84% 

0.005 0.7 12.2 15 99.88% 

0.004 0.7 12.9 15 99.88% 

0.003 0.7 18.1 19 99.89% 

0.002 0.8 23.1 25 99.90% 

0.0015 1 29.3 30 99.91% 

0.0014 1.2 29.3 31 99.914% 

10 tiers 

0.001  52.2 33 99.92% 

Table 4.6 Time versus threshold comparison between Matlab SPA and Gams SPA in case 3, number of 
paths and covered emissions for each threshold value. 

 
 
 
For all threshold values until 0.0014%, the running times obtained through Gams-SPA 
are consistently lower than the running times obtained through Matlab-SPA. The trend is 
almost stable until the 6th tier for both SPA versions. After the 6th tier the Gams-SPA 
keeps the same trend as before, while Matlab-SPA records an increased trend. We can 
conclude that for this specific case, Gams-SPA is superior to Matlab-SPA. This 
superiority is kept only as it has memory for running the model. At threshold 0.001% the 
memory required by Gams-SPA for listing equations and solving the system exceeds the 
amount available (1.86Mb).  
 
In this particular case, almost all impact occurs in the first tier. The paths found are long 
(see table 4.3) and have a very small impact. First path have a contribution of 99.49% 
while all other paths found for a threshold of 0.014% have a contribution of 0.43%.  
 



 60 

Gams SPA versus Matlab SPA comparison

Time versus Threshold  

Final demand: one transoceanic tanker

Stressor: NMVOC

-  LCA database (2549 processes)-
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Figure 4.3 Time versus Threshold comparison for Matlab SPA and Gams SPA in case 3 
 
Matlab sparse matrices are written out to the matdata.gms file ordered by rows. This is 
carried out in the interface by transposing the sparse matrix internally, and then writing 
out the appropriate values in row oriented format. This greatly increases the speed of 
reading in large sparse matrices into Gams. Dense matrices are not treated in this manner, 
so such matrices may read into Gams more slowly. This feature can contribute to the 
reduced times obtained with the sparse matrix in test case 3, compared with the dense 
matrices in test cases 1 and 2. 
 
If we compare the results for the previous three cases, it seems that Gams-SPA is superior 
to Matlab-SPA for big data systems, as long as memory is available for computations. 
However, before taking conclusions it is worth to revise the older versions of Gams-SPA 
in order to give more insights on how the memory is allocating in computations and how 
computation time is influenced by syntax. 
 
Computation times are presented in table 4.7 for two old versions, named version A and 
version B. Input data from case 2 was used for obtaining the results.  
 
The Gams models previously developed are biased in the same way:  (1) unused subsets 
were preprocessed in Gams so as to contain all sectors, instead of only one sector used in 
actual version and (2) a different way of separating  used tiers by unused tiers: “card” 
operators instead of st parameters in actual version. 
 
The “card” operator counts first the total number of sectors used. Then it is used to count 
the number of elements from the last subset of a group of paths extending until a tier t. 
This number corresponds to the total number of paths extending until tier t (see formula 
3.17 and attached clarification). If the number of elements in the last subset is equal to the 
total number of sectors used, tier t does not create any paths and the corresponding 

1st 
tier 

2nd 
tier 

3rd 
tier 

4th 
tier 

5th 
tier 

6th 
tier 

10th 
tier 

7th 
tier 

8th 
tier 

9th 
tier 
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expressions in the objective function are zeroed. This formulation was dropped because it 
is less intuitive than using st parameters. However, running times are the same for both 
versions. 

 
 

Common: 
 

-  “card” operator 
instead of st switches 

- unused tiers   
contained all sectors 
 

Version 1: 

objective function lists all 
terms associated with 
paths 
 

Version 2: 

objective function does 
not list the terms 
associated with unused 
paths 
 
 
From one tier to 7 tiers 
needed for optimization, 
the time values are equal 
or slightly bigger for the 
second version compared 
with the first version. 
 
 
 
If 8 tiers are needed for 
optimization, the time 
required by the second 
version is smaller than the 
time required by the first 
version. 
 
 
 
 

 
 

Tiers 

needed 

Threshold 

% 

Version A 

time (sec) 

Version B 

time (sec) 
54.8 1.1 1.1 

1 tier 
7.37 1.1 1.1 

7.36 1.1 1.1 
2 tiers 

4.47 1.1 1.1 

4.46 1.2 1.2 

3 1.2 1.3 3 tiers 

2.46 1.6 1.7 

2.45 1 1.1 

1.7 2 2.2 4 tiers 

1.32 2.2 2.4 

1.31 1.2 1.2 

1 5.3 5.4 5 tiers 

0.74 13 13.9 

0.73 2 2 

0.6 6.1 6.6 

0.5 14.8 16 

0.43 18 19.5 

0.42 42.1 45.1 

6 tiers 

0.412 43.6 45.2 

0.411 3.5 3.5 

0.38 5.1 5.3 

0.34 8.5 8.9 

0.3 11.6 12.1 

0.28 15 16 

0.27 19.4 21.3 

0.26 64.2 69 

7 tiers 

0.232 83.9 88.7 

0.231 7.7 5.2 

0.23 8 5.3 

0.22 8.4 5.8 

0.21 12.5 9.9 

0.2 15.6 12.1 

0.19 18.9 14.7 

0.18 22.2 16.5 

0.17 36.5 27.6 

0.16 49.8 37.4 

0.15 86.5 67.4 

0.14 215.8 188.4 

8 tiers 

0.1304 369.3 333 

Table 4.7 Computation times for two old versions 
 

≤  

≤  

≤  

≤  

≤  

≤  

≤  

≥  
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Making a parallel with the actual Gams version of the model, the sorting of the used tiers 
from the unused tiers discussed above for versions A and B corresponds with the first 
sorting criterion from actual version.  
 
Version A and version B differentiate by the fact that version B included the second 
criterion, exactly in the same way it is designed for the actual Gams implementation, but 
version A didn’t. The time obtained for both two Gams versions can be seen in table 4.7. 
 
The variation determined by tiers is common for both versions and will be discussed 
later. Now only the relative time values are compared. If less than 7 tiers are needed for 
generating the model, the version without the second condition performs better in terms 
of time. For the threshold values requiring 8 tiers to search for paths, second condition 
reduces the time in which the results are obtained. The memory required for lower 
threshold values exceeded the available memory. 
 
The time results are in a small range for all cases, but it seems that for an increased 
number of computations, the second condition can reduce the total computation time. 
This was the reason for which the second sorting criterion was kept in the final version. 
 
The next table (4.8) is used to show how the first criterion influences the memory and 
running times. Version B presented lists all elements in unused subsets. For version C 
and actual version (MIP_spa) the number of elements in the unused subsets are calculated 
differently: actual version has only one element, the same as first subset; Version C 
transfers from Matlab to Gams the first p elements, where p is chosen as the variable 
which does not correspond to the number of elements in other sets. Example: if subset I 
has one element, subset J has two elements and subset K has five elements, p takes value 
3, because values 1 and 2 are already used to count the number of elements in subsets I 
and J. If subset K would have three elements, p would take value 4. If all numbers from 1 
to 10 happens to correspond to the number of elements from each subset, then p takes 
value 11 and 11 elements will be transferred in each unused set.  
 
Tabel 4.8 presents the times for all three versions mentioned above. Version B time 
results are plotted against the times obtained with the actual version in figure 4.4. If we 
look first at the times obtained for version B, we observe a “saw” shape. For every new 
tier the running times first drop compared with the times obtained at the previous tier, 
than increase fast. For computations of more than 8 tiers available memory was not 
enough. We conclude that the number of elements in unused sets is very important for the 
total time.  We can assume that counting the sets elements inside the Gams program is an 
expensive procedure. It is possible that Gams memorizes the number of elements in each 
subset from previous iterations, but for each new element added by a lower threshold at 
actual tier applies the operator for each new path created. Because of these feature it is so 
important not to have the entire list of set elements in the unused sets. 
 
Reducing the number of element in the unused sets canceled the results’ dependence on 
the number of tiers needed for optimization. It also made available a lot of memory since 
the results can also be obtained for thresholds requiring nine tiers. 
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Tiers 

needed 

Threshold 

% 

Version B 

time (sec) 

Version C 

time (sec) 

MIP–spa 

time (sec) 
54.8 1.1 1.4 1 

1 tier 
7.37 1.1 1.4 1 

7.36 1.1 1.4 1 
2 tiers 

4.47 1.1 1.4 1 

4.46 1.2 1.4 1 

3 1.3 1.4 1 3 tiers 

2.46 1.7 1.4 1 

2.45 1.1 1.4 1 

1.7 2.2 1.4 1 4 tiers 

1.32 2.4 1.4 1 

1.31 1.2 1.4 1 

1 5.4 1.4 1.1 5 tiers 

0.74 13.9 1.5 1.1 

0.73 2 1.5 1.1 

0.6 6.6 1.5 1.1 

0.5 16 1.5 1.1 

0.43 19.5 1.5 1.1 

0.42 45.1 1.5 1.1 

6 tiers 

0.412 45.2 1.5 1.1 

0.411 3.5 1.5 1.1 

0.38 5.3 1.5 1.1 

0.34 8.9 1.4 1.1 

0.3 12.1 1.9 1.2 

0.28 16 1.7 1.2 

0.27 21.3 1.6 1.2 

0.26 69 1.9 1.3 

7 tiers 

0.232 88.7 2 1.4 

0.231 5.2 2 1.4 

0.22 5.8 2 1.5 

0.21 9.9 2.5 1.6 

0.2 12.1 2.3 1.6 

0.19 14.7 2.6 1.8 

0.18 16.5 2.8 2 

0.17 27.6 3.6 2.2 

0.16 37.4 4 2.7 

0.15 67.4 5.6 3.6 

0.14 188.4 11.5 7.4 

8 tiers 

0.1304 333 17.2 10.9 

0.1303 X 19.4 13.5 

0.1 X 54.1 35.9 9 tiers 

0.074 X 817 550.7 

0.073 X X 701 

0.06 X X 2105 

0.01 X X X 
10 tiers 

0.005 X X X 

Table 4.8 Running times for three different versions of Gams programs 
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B version and actual Gams SPA comparison 

Time versus Threshold  

Final demand: $25000 worth of drilling service

Stressor: CO2
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 Figure 4.4 Time versus Threshold comparison for old and new “first criterion”  
 
 
Table 4.8 presents the alternative times results for version C, with four elements in the 
unused sets and actual MIP_spa version with only one element in unused sets. 
Compilation times are smaller for the actual version and less memory was used for 
similar optimizations. If the last result of version C was of 817 seconds for a threshold of 
0.074%, in the actual version the same available memory was used to optimize the model 
at a threshold of 0.06% and to find eight new paths (see table 4.6). 
 
An even older version tried to implement the basic form of SPA, as presented in chapter 
3. Calculating path values upfront and including the constraints in the model, as 
presented, was a very expensive way of optimizing the model, both in term of time and 
memory. This experience showed that it is better not to calculate the emission values up-
front, but to introduce them in objective function in detailed form instead. 
 
We conclude that the total number of sectors from a network counts less than the number 
of computations Gams needs to do in order to create the model and solve it. For sparse 
data systems, as presented in case 3, Gams performs better than Matlab, which searches 
all network nodes one at a time. For dense data systems Matlab performs better than this 
program version. It is number of computations which count and not the size of input files.  
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 Chapter 5 
 

Discussions 
 
 
  
SPA is a very useful tool for reducing environmental impact at global and local level. It 
can be used by individual producers directly in their effort to reduce the impact of their 
products and activities.  Governments and consumers have an indirect effect through the 
requirements they put upon producers. These requirements take the form of orders they 
transfer to the producers or even restrictive actions placed upon the producers as 
restrictions from buying products with high environmental impact. Governments can also 
use taxes, subsidies and standards for shaping the form of the final demand, with the 
declared aim of reducing the overall environmental impact. 
 
Producers, governments and consumers need to know where they have the highest 
leverage in reducing emissions associated with the products they target. SPA is necessary 
to identify the chain of processes and sectors offering this leverage because if provides a 
comprehensive insight in the products network.   
 
The existing methods for this type of analysis are formulated as specialized algorithms. 
An alternative is to explore the potential utility of mathematical programming for 
contribution analysis in general and SPA in particular, which is still unknown. The 
underlying idea is that a good program should be able to perform various types of 
contribution analysis, including SPA, with minor adaptations and the same generic 
solver. However, for a model developed to solve multiple problems we can expect to 
have disadvantages compared with specialized algorithms.  
 
The aim of this thesis is not to provide a final program, but to explore different 
formulations and approaches, their requirements and limitations. The insights gained 
from this research need to be used to develop a working version for SPA using 
mathematical programming. This program is intended to be used as a starting point for 
future development in SPA.  
 

5.1 Achievements 

 
A mixed integer program was developed for SPA and implemented in Gams. The SPA 
model presented here finds the paths describing the process relationships that link the 
final delivered product and the emitting processes.   
 
 A “gams mex interface” was used to pass data between Gams and Matlab. This approach 
required extensive assistance from Matlab. We point out here requirements and 
limitations of this approach and solutions found to them.  
 
Because the size of the problem was too big in its original phase, pre-processing was 
required to reduce it. This was done in Matlab. First, the data range was limited to ten 
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production layers. Classical contribution analysis and Taylor series expansion were used 
to evaluate the impact inside the individual layers of production system. The results were 
used in the next round of pre-processing. This refers to cutting off some processes if their 
impact is below a threshold value, before initiating the optimization process. The 
remaining processes were assembled in sets and formatted for Gams.  
 
The model implemented in Gams was functional for all types of inputs. It included ten 
sets and ten equations and returned ten groups of paths. Several formulations have been 
tried for the optimization model and the current version has been found to be the most 
effective in terms of memory and time required for optimization. This performance was 
obtained by exploiting the block angular structure of the model to reduce the size of the 
problem to the minimum. Smaller models need less memory and time to run.  
 
From a technical point of view, binary parameters have been used to switch on and off 
parts of the model. This change came with a very big reduction in memory and time. The 
second change was introduced to control the coefficients of the objective function in 
order to return only paths with impact above a certain threshold. This change reduced 
compilation time. Other formulations needed more time and memory to solve the same 
problem.  
 
Three processes have been recognized to consume time and/or memory: (1) transferring 
data from Matlab to Gams; (2) transferring paths from Gams to Matlab and (3) compiling 
and executing the Gams program.  
 
Time could not be recorded separately in these three processes. However, running the 
same optimization twice on the same data gave reduced times at the second iteration, 
compared with the first. This is because data was already saved by the interface in the 
first iteration. No connection could be established between the size of the input 
parameters and the time needed for data transfer from Matlab to Gams. Comparing time 
records from Matlab with time records from Gams, we conclude that most of the time 
was used for executing the program. 
 
Time grows exponentially with the number of elements in the unused sets. When unused 
sets contained all products, time increased fast when more paths from the same length 
were found and dropped a lot when the search extended to the next tier.  This problem 
was solved by employing only one element in each unused set, but the cause of this 
behavior remains unclear. Transferring empty sets to Gams was not a viable option 
because trying to define equations on empty sets was reported as an error in Gams. 
 
The amount of memory required for compiling and executing the optimization program 
has been reduced by employing the binary parameters used as switches. Using only one 
element in the unused tier also reduced memory since optimization ran successfully for 
lower threshold values. The amount of memory necessary for transferring data from 
Matlab to Gams could not be quantified.  
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Transferring the obtained paths from Gams to Matlab was very memory intensive. 
Matlab read the paths as multi-dimensional variables and the amount of memory used for 
this type of inputs grows very fast with each new dimension employed.  This is the only 
way in which the transfer software knows to handle tuples. As long as decision variables 
were defined as tuples in the program, there were no adjustments that could be done to 
reduce the time for the found paths.  
 
The number of output parameters required by Matlab for the system call to Gams needs 
to correspond with the number of parameters calculated in Gams. The calculated 
parameters were transferred to Gams as multidimensional variables, even the one with 
zero value. The memory required by Matlab to read all these multi-dimensional 
parameters was very large. If this transfer had been allowed for paths with zero value 
without further pre-processing in Gams, available memory would have been exhausted 
even for small data systems. This memory problem was solved by employing one-
dimensional alternative parameters with different names to be used for transferring zero-
value paths taking advantage that name recognition in Matlab could be switched off. 
 
Matlab was necessary for pre-processing and formatting sets and parameters for transfer 
to Gams. It was also used to recover the elements of the paths from multidimensional 
representation. However, when the last element of a path was defined based on a one-
element set, that element was lost in transformation because Matlab ignores the 
corresponding dimension by default. This case had to be handled separately in the Matlab 
code.  
 
In transferring data between Matlab and Gams the sets had to be assembled in a big table 
and printed in Gams from Matlab. No other solution was found in documentation for 
sending input data and recovering results in the same system call. The formatting 
procedure had to take into account the need to avoid including in the labels used as set 
names non-alphanumeric symbols such as dots, commas, slashes, etc. The solution found 
was to convert the real names into number-indexed names before sending them to Gams. 
Of course, the conversion needed to be reversed after paths have been recovered in 
Matlab.  
 
 Scaling is required in Gams for parameters so that their magnitude is centered on one 
and the ratio between the highest value and the lowest one ranges between 0.01 and 100.   
No stressor in the LCA database was situated in this category, so Gams was not able to 
read the parameter in the original version. In order to allow testing on this database, the 
stressor values for some products have been zeroed. This is a very important limitation in 
applying this program on the LCA database.  
 
A condition could have been introduced in the program to limit the number of paths. This 
condition was not introduced for the reasons explained below.  
 
Running SPA with the specialized algorithm made obvious the fact that a very large 
number of paths is obtained for low threshold values. We cannot hope to obtain all these 
paths in Gams using the current formulation of the problem because of the high memory 
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costs associated with running and transferring paths in Matlab. The logical conclusion 
was to limit the number of paths so that both execution and transferring procedures could 
be accommodated with the amount of memory available.   
 
Limiting the number of paths can be done in two ways: (1) choosing a maximum number 
of paths and (2) choosing only the paths above a certain threshold value.  
 
The threshold determines the size of the model and the execution times. However, the 
number of paths determines the amount of memory necessitated by transferring the paths 
to Gams. Only a limited amount of memory is available. If too many paths are requested, 
the system will run out of memory. The number of requested paths needs to be reduced 
gradually until optimization is successful or until not even one path can be transferred.  
This methodology requires excessive testing and can be used for future research.  
 
Instead of the procedure described in the paragraph above, we chose to use the same 
parameter to deal both with execution times and with transfer times.  Using a threshold 
limits the size of the model, execution times, memory required for execution and memory 
required for data transfer. This system is easier to employ and guarantees that execution 
time and transfer times are connected.  
 
After developing, the program was tasted on all databases available and used for selected 
case studies, as required.  
 
From the case studies, we found that the running time for the model increases when the 
threshold is reduced, as long as memory is available. A relatively small number of paths 
covers most of the emissions and each new path found has a lower impact than the 
previous one.  
 
For the Norwegian economy, information resolution is too low for decision-making, but 
it is obvious that manufacturing and transport sectors dominate the economy and 
influence each other.  
 
Performing the SPA for a “drilling service” as part of the US economy we found that the 
service itself produces more than half of the CO2 involved in its production. Sectors: 
“blast furnaces and steel mills” and “electric services” create many paths. Taking 
measures to reduce their impact will consequently reduce the impact of the drilling 
service. However, the total impact of the above mentioned sectors needs to be estimated 
using contribution analysis in order to include the contribution of all paths which are not 
listed here.  
 
Performing SPA on the LCA data system for a transoceanic tanker required changing 
stressor data. The result points that almost all impact comes from the product itself. 
However, no politics can be recommended in this particular case because reality was 
changed. We traded an exact solution for the overall model and demonstrated both the 
general applicability of the program on sparse data systems and its superior results.  
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After testing the model on different databases, we were supposed to fulfill the following 
goals: 
 
The first goal was to find out which algorithm is faster for a specific type of data. We can 
conclude that the specialized algorithm performs better than our generalized algorithm on 
dense data systems. However, for sparse data systems the generalized algorithm performs 
better.  
 
The second goal was to find out the limits of the algorithms, respectively the biggest data 
system they can be used for. We found out that the size of the data system it is not 
important. The data structure matters more.  
 
The third goal was to determine the weaknesses of the linear programming model. 
Increased memory usage, reduced computational speed and high dependence on Matlab 
can be pointed as the most important weaknesses of the program. This program is 
functional, but it still needs to be improved in order to overcome these problems.  
 

5.2 Assessment of results 

 
This program was only tested on three cases. The same paths have been found for both 
types of SPA. However, the utility of paths in the decision-making process depends on 
the type of database used for calculating them.  
 
If database resolution is too low, as for the Norwegian economy, paths found cannot be 
used for decision making. US database resolution makes the paths much more useful, but 
the entire contribution of the sector needs to be considered at each chosen tier in order to 
estimate the total impact. Exemplifying, there are five paths based upon the contribution 
of sector “electricity” in the list of paths presented and there may be more paths which 
are not listed. Placing a requirement on this sector will affect all paths, not only the listed 
ones. In addition, the inevitable errors in compiling large databases as this one suggest 
that care should be taken when interpreting the results of the decision-making process.  
 
LCA database high resolution should be very useful for producers, because it affects their 
technology directly. Unfortunately, this database could not be used in its original format 
because of Gams requirements for data range. Changing this data showed the 
applicability of this program on LCA-size databases with coefficients in the ranges 
required by Gams program.  
 
We identified a case when a four-element path has an impact higher than that of the path 
constructed with its first three elements. However, other particular cases need to be tested 
as well: (1) finding more paths as the one presented above, but with more than one 
element difference in length; (2) performing a SPA on a sector without direct emissions; 
(3) seeing how Gams SPA handles a sector without direct emissions but with polluting 
inputs. The existence of more of these sectors in the database might increase the time and 
memory necessary for obtaining the results. This increase can be determined by the 
requirement that all these inputs are considered as possible paths.  



 70 

 
The particular cases identified above and maybe other of this type, which have not been 
identified yet, demonstrate the necessity of performing additional tests for validating this 
program.  
 
We already mentioned that this program is just a functional intermediary version for 
doing a SPA using operational research methods. Time result dependence on the number 
of unused sectors was minimized, but we could not explain why this dependence exists. 
Also, coefficient testing was employed based on one test case. These problems suggest 
that more testing is necessary in order to improve the current program version.  
 

5.3 Future research 

 
Future research needs to be conducted for improving this version of SPA with the aim of 
reducing the memory usage and increasing computational speed.  Introducing a condition 
to limit the number of paths, as explained in subchapter 5.1, can be useful in 
understanding more about memory usage and allocation. 
 
A non-linear program generally uses less memory than a MIP. If solvers are available, 
this is a very promising direction of research. 
 
Alternative solutions might be found by using the other interface available for data 
transfer from Gams to Matlab: using two mex procedures to read and write a gdx file 
which can be interpreted by built-in procedures in Gams. Alternatively, writing the paths 
found directly in Excel is another option to consider and evaluate in terms of times and 
memory resources used. To avoid external problems created by inefficient software, it 
might be a good thing to try to reduce its dependency on external programs.  
 
The final version of the program must be able to perform different types of contribution 
analysis. It must also run for any size of data input, equally dense and sparse and 
accommodate thresholds as low as 0.001%. The performance in terms of running times 
and memory usage must be good enough for using it in decision-making process by 
producers and governments. 
 
This mixed integer program shows that mathematical programming is a very useful tool 
for contribution analysis in general and SPA in particular. Preliminary testing shows its 
advantage for performing analysis on sparse data systems compared with the classic 
method involving Matlab. However, Matlab’s specialized algorithm performs better for 
dense data systems. Many of the requirements and limitations created by the software 
involved in different steps have proved manageable. Future testing and research it is 
needed for obtaining a final version with performance comparable or even superior to the 
existing specialized algorithm.  
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APPENDIX A: General Algorithm for Master Problem 
 
 

 

File name: Spa.m 
 
% spa.m performs structural path analysis on a Leontief type system 
% with 1 stressor 
 
clc 
clear all 
 
% 1.Matlab and Gams programs default variable (do not change): 
  
%    Tmax    - maximum tiers programmed now in Gams and Matlab; 
% can be increased/decreased, but require changing Gams and Matlab code in a 
% consistent way (add sets/output variables name and content in Matlab->Gams,  
% update parameters and equations in Gams) 
 
Tmax=10; 
  
% 2.Input variables to change: 
  
% a)input file (.mat). Files from: 
% K:\indecol\PROJECTS\MatlabLCAMarch2008\InputData   
% require preprocessing for benchmark reason. This includes choosing the final 
% demand vector y and the vector of selected stressor Fstr. 
 
inputfile = 'C:\Documents and Settings\vlad\Desktop\MatlabLCAMarch2008 
\InputData\tanker1.mat';       
 
load(inputfile); 
  
% b)Tol_rel(threshold) is the percentage at which the emissions are  
% ignored  
 
Tol_rel=0.07; 
 
% 3.Loaded input variables 
 
%   3.1 Used for function spa (‘sec’ is used for sector) 
%       a)A(sec,sec)    - Inter-industry coefficient matrix 
%       b)I (sec,sec)   - Identity Matrix 
%       c)F(sec;sec)    - Stressor intensity matrix 
%       d)y(sec,1)      - final demand vector 
%       e)PRO(sec;sec)  - matrix with names for sectors 
       
%   3.2 Required by function lca for benchmarking purposes 
%       f)cat=ones(sec,2)      - modified impact categories 
%       g)C=[1,0;0,1]          - modified characterization matrix 
%       h)CAT=[GWP GWP]        - modified vector of impact category 
%       i)STR(2,5)=CO2         - modified stressor (CO2) matrix 
%       j)IMP=[GWP GWP;GWP GWP]- modified matrix of impact category  
 
% clear unnecessary variables  
clear cat C CAT STR IMP; 
  
% 4. Endogenous variables – nomenclature 
%       Fstr          - vector of emissions intensities for selected 
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                        stressor 
%       nr_sec        - total number of sectors in A matrix 
%       Tol           - threshold absolute value 
%       R             - matrix of presorted sectors 
%       T             - maximum number of tiers required  
%       t             - current tier 
%       last_tier     - last tier of the longest path found 
%       e_total       - total emissions associated with final demand 
%       e_covered     - emissions covered by all paths found 
%       Sectors_names - vector of names for sectors          
%       Sectors_index - vector of indexed names for sectors 
%       sect          - set containing all sectors(indexed names) 
%       sd_sect       - set sect declaration for Gams 
%       sd_k          - set k declaration for Gams 
%       k(sect)       - name of set k in Gams 
%       s3_set        - content of set k (i,j,k...correspond to 1,2,3..) 
%       s3            - switch for turning on/off calculations for set k  
%       e3            - array of emissions value for paths covering 3 tiers 
                       (paths i-j-k) 
%       Pmax          - number of paths found 
%       PATH_sorted   - structure recording for every path found the  
%                       emissions and the succession of sectors with their  
%                       original names  
 

% Presorting  

  
[R,Tol,T,nr_sec,e_total,Fstr] = presorting(Tmax,Tol_rel,A,I,F,y); 
  
% Preparing sets for Gams 

 
% Get sectors'names 
 
Sectors_names=PRO(:,1); 
 
% Indexing sectors'names 
 
Sectors_index=cell(nr_sec,1); 
for i=1:nr_sec 
    Sectors_index{i}=num2str(i); 
end 
  
% Set 'sect' content declaration 
 
sect = Sectors_index; 
  
% Active sets content declaration, switch turned on 
 
for t=1:T            
    eval(['s' num2str(t) '_set = Sectors_index(logical(R(:,' num2str(t) 
')));']) 
    eval(['s' num2str(t) '=1;']) 
end 
  
% Inactive sets content declaration: one sector (Gams does not accept empty 
sets), switch turned off 
 
for t=(T+1):Tmax 
    eval(['s' num2str(t) '_set = Sectors_index(logical(R(:,1)));'  ]) 
    eval(['s' num2str(t) '=0;']) 
end 
  
% clear unnecessary variables 
clear t Sectors_index R 
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% Assembling sets for transfer to Gams 

  
% Post declaration 
 
pd = cell(1,1); 
pd{1,1} = 'SETS'; 
  
% Set type and name declaration 
 
sd_sect = cell(1,1); 
sd_i = cell(1,1); 
sd_j = cell(1,1); 
sd_k = cell(1,1); 
sd_l = cell(1,1); 
sd_m = cell(1,1); 
sd_n = cell(1,1); 
sd_q = cell(1,1); 
sd_r = cell(1,1); 
sd_t = cell(1,1); 
sd_u = cell(1,1); 
  
sd_sect{1,1} = 'sect'; 
sd_i{1,1} = 'i(sect)'; 
sd_j{1,1} = 'j(sect)';  
sd_k{1,1} = 'k(sect)';  
sd_l{1,1} = 'l(sect)';  
sd_m{1,1} = 'm(sect)'; 
sd_n{1,1} = 'n(sect)'; 
sd_q{1,1} = 'q(sect)'; 
sd_r{1,1} = 'r(sect)'; 
sd_t{1,1} = 't(sect)'; 
sd_u{1,1} = 'u(sect)'; 
  
% Total lines 
 
slsh = cell(1,1); 
slsh{1,1} = '/'; 
  
% Table assembly  
 
cellset =[pd;sd_sect;slsh;sect;slsh; 
                sd_i;slsh;s1_set;slsh; 
                sd_j;slsh;s2_set;slsh; 
                sd_k;slsh;s3_set;slsh; 
                sd_l;slsh;s4_set;slsh; 
                sd_m;slsh;s5_set;slsh; 
                sd_n;slsh;s6_set;slsh; 
                sd_q;slsh;s7_set;slsh; 
                sd_r;slsh;s8_set;slsh; 
                sd_t;slsh;s9_set;slsh; 
                sd_u;slsh;s10_set;slsh; 
                ]; 
 
tabsize = size(cellset,1); 
  
% Delete old file 
 
delete set.gms 
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% Gams Optimization 

  
% Optimization started 
 
fprintf('\r GAMS optimization \n') 
  
tic 
 
% Write File 
 
fid = fopen('set.gms','w'); 
for line = 1:tabsize 
    fprintf(fid,'%s\n',char(cellset(line,:))); 
end 
status = fclose(fid); 
  
% Setting GAMS output mode 
 
gams_output = 'std'; 
  
% Formatting Data for Gams Export  
 
Matrix.name='A'; 
Matrix.val=A; 
Matrix.labels={sect,sect}; 
  
Stressors.name='F'; 
Stressors.val=Fstr; 
Stressors.labels={sect}; 
  
demand.name='y'; 
demand.val=y'; 
demand.labels={sect}; 
  
% clear unnecessary variables  
clear A I F Fstr PRO tabsize line sd_sect sd_i sd_j sd_k sd_l sd_m... 
    sd_n sd_q sd_r sd_t sd_u fid pd slsh cellset; 
  
% optimization 
 
[e_covered,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10] = gams('MIP_gams',Matrix,... 
Stressors,demand,'Tol','s1','s2','s3','s4','s5','s6','s7','s8','s9','s10'); 
  
% clear unnecessary variables  
clear  Matrix Stressors demand s1 s2 s3 s4 s5 s6 s7 s8 s9 s10; 
  
toc 
  
% Prepare data for sorting 

  
% List emissions for 10 tiers in the order received from Gams 
 
e_list={e1,e2,e3,e4,e5,e6,e7,e8,e9,e10};  
 
 
 
 
 
  
% Find last nonzero emission value/longest path length 
 
for index_list=length(e_list):-1:1 
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   if length(find(e_list{index_list}))~= 0 
       last_tier=index_list;    
       break 
   end 
end 
  
% Calculate total number of paths 
 
Pmax=0; 
for index_list=1:last_tier 
    Pmax=Pmax+length(find(e_list{index_list})); 
end; 
  
% List all sets 
 
sets_list=... 
{s1_set,s2_set,s3_set,s4_set,s5_set,s6_set,s7_set,s8_set,s9_set,s10_set}; 
  
clear index_list 
 
  
% Sorting  

  
fprintf('\r sorting \n') 
  
tic 
  
PATH_sorted=sorting(y,e_list,sets_list,Sectors_names,Pmax,last_tier); 
  
toc 
  
 

% Printing results 

  
fprintf('\r Emissions covered: %d',e_covered) 
 
fprintf('\r Total emissions: %d',e_total) 
  
percent=e_covered/e_total*100; 
 
fprintf('\r The %d paths determined (listed below) cover %d percent of total 
emissions\r',Pmax,percent) 
  
 for i=1:length(PATH_sorted) 
     fprintf('\r %g \n', PATH_sorted{i}); 
     for j=1:size(PATH_sorted{i,2},2) 
         disp(char(PATH_sorted{i,2}{1,j})); 
     end 
 end 
  
 clear i j ans e_list sets_list 
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APPENDIX B: Matlab function for presorting 
 
 
 

File name: Presorting.m 

 
function [R,Tol,T,nr_sec,e_total,Fstr] = presorting(Tmax,Tol_rel,A,I,F,y) 
 
% presorting.m performs a presorting of the sectors at every tier by 
% removing the ones with the environmental contribution less than a given 
% threshold. It returns a matrix of presorted sectors (sectors by tiers) 
% with values of 1 for sectors and tiers with environmental contribution  
% more than the threshold and 0 for sectors and tiers with environmental 
% contribution less than the threshold. 
  
% Steps: 
% 1) calculate total emissions 
% 2) calculate output matrix per tiers 
% 3) scale output per tiers with pollution intensity to get environmental 
%    impact per sectors and tiers (remaining _emissions). Every element  
%    represents environmental impact of the sector (direct and indirect)   
%    at respective tier 
% 4) divide environmental impacts per sectors and tiers with the total  
%    emissions to get relative environmental impacts per sectors and tiers  
%    (remaining_emissions_rel)  
% 5) for every sector and tier, if the relative impact per sector and tier  
%    is smaller than the threshold (as percentage) the sector is ignored   
%    at that tier.  
  
  
% Get the stressor vector 
Fstr=F(1,:); 
  
% Calculate Leontief inverse 
L=inv(I-A); 
  
% Get the number of sectors 
nr_sec = length(A(:,1)); 
  
% Calculate total emissions associated with the final demand 
e_total=Fstr*L*y; 
  
% Calculate output_matrix, remaining emissions matrix and remaining  
% emissions matrix in relative values for every tier 
  
output_matrix(:,1)=y;                        
remaining_emissions=zeros(nr_sec,Tmax); 
remaining_emissions_rel=zeros(nr_sec,Tmax); 
  
remaining_emissions(:,1)=Fstr*L*diag(y);   
remaining_emissions_rel(:,1)=remaining_emissions(:,1)/e_total*100; 
  
for t = 1:Tmax      
    output_matrix(:,t+1)= A*output_matrix(:,t); 
    remaining_emissions(:,t+1)=Fstr*L*diag(output_matrix(:,t+1)); 
    remaining_emissions_rel(:,t+1)=remaining_emissions(:,t+1)/e_total*100; 
end 
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% define and calculate the matrix of presorted sectors 
  
R = ones(nr_sec,Tmax);       
R(:,1) = y;                
  
for index_sec = 1:nr_sec 
     for t = 2:Tmax   
         if (remaining_emissions_rel(index_sec,t) < Tol_rel) 
             R(index_sec,t)=0; 
         end 
     end     
end 
  
% find last tier with nonzero values (necessary number of tiers) 
  
for i=Tmax:-1:1 
    if sum(R(:,i))~= 0 
        T=i; 
        break 
    end 
end 
  
% calculate threshold in absolute value 
Tol=Tol_rel/100*e_total;  
  
end 
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APPENDIX C: Gams program for optimization 
 
 
 

File name: MIP_gams.gms 

 
$include set.gms 
 
ALIAS(sect,cest); 
 
PARAMETERS       A(sect,cest) 
                 F(sect) 
                 y(sect)     ; 
 
SCALAR    Tol, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10  ; 
 
$if exist matdata.gms $include matdata.gms 
 
 
FREE VARIABLES 
 
e_covered                Emissions covered by selected paths ; 
 
BINARY VARIABLES 
 
b1(i)                    path: i 
b2(i,j)                  path: i-j 
b3(i,j,k)                path: i-j-k 
b4(i,j,k,l)              path: i-j-k-l 
b5(i,j,k,l,m)            path: i-j-k-l-m 
b6(i,j,k,l,m,n)          path: i-j-k-l-m-n 
b7(i,j,k,l,m,n,q)        path: i-j-k-l-m-n-q 
b8(i,j,k,l,m,n,q,r)      path: i-j-k-l-m-n-q-r 
b9(i,j,k,l,m,n,q,r,t)    path: i-j-k-l-m-n-q-r-t 
b10(i,j,k,l,m,n,q,r,t,u) path: i-j-k-l-m-n-q-r-t-u   ; 
 
 
EQUATIONS 
emissions_covered        objective function 
 
emissions_covered..      e_covered =e= 
 
  sum( (i)$(s1=1), (F(i)*y(i)*b1(i))$(F(i)*y(i)>Tol) ) 
 
+ sum( (i,j)$(s2=1), (F(j)*A(j,i)*y(i)*b2(i,j))$(F(j)*A(j,i)*y(i)>Tol)  ) 
 
+ sum( (i,j,k)$(s3=1), 
(F(k)*A(k,j)*A(j,i)*y(i)*b3(i,j,k))$(F(k)*A(k,j)*A(j,i)*y(i)>Tol)  ) 
 
+ sum( (i,j,k,l)$(s4=1), 
(F(l)*A(l,k)*A(k,j)*A(j,i)*y(i)*b4(i,j,k,l))$(F(l)*A(l,k)*A(k,j)*A(j,i)*y(i)>To
l)  ) 
 
+ sum( (i,j,k,l,m)$(s5=1), 
(F(m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)*b5(i,j,k,l,m))$(F(m)*A(m,l)*A(l,k)*A(k,j
)*A(j,i)*y(i)>Tol)  ) 
+ sum( (i,j,k,l,m,n)$(s6=1), 
(F(n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)*b6(i,j,k,l,m,n))$(F(n)*A(n,m)*A(m
,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol)  ) 
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+ sum( (i,j,k,l,m,n,q)$(s7=1), 
(F(q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)*b7(i,j,k,l,m,n,q))$(F(q)*A
(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol)  ) 
 
+ sum( (i,j,k,l,m,n,q,r)$(s8=1), 
(F(r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)*b8(i,j,k,l,m,n,q,r)
)$(F(r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol)  ) 
 
+ sum( (i,j,k,l,m,n,q,r,t)$(s9=1), 
(F(t)*A(t,r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)*b9(i,j,k,l,m
,n,q,r,t))$(F(t)*A(t,r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>T
ol)  ) 
 
+ sum( (i,j,k,l,m,n,q,r,t,u)$(s10=1), 
(F(u)*A(u,t)*A(t,r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)*b10(i
,j,k,l,m,n,q,r,t,u))$(F(u)*A(u,t)*A(t,r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k
,j)*A(j,i)*y(i)>Tol)  ) 
; 
 
MODEL MIP_gams/emissions_covered/; 
 
SOLVE MIP_gams using MIP maximizing e_covered; 
 
 
$libinclude matout e_covered.l 
 
 
PARAMETERS 
 
*calculating emissions if the paths exists 
 
e1(i)                    emissions for path: i 
e2(i,j)                  emissions for path: i-j 
e3(i,j,k)                emissions for path: i-j-k 
e4(i,j,k,l)              emissions for path: i-j-k-l 
e5(i,j,k,l,m)            emissions for path: i-j-k-l-m 
e6(i,j,k,l,m,n)          emissions for path: i-j-k-l-m-n 
e7(i,j,k,l,m,n,q)        emissions for path: i-j-k-l-m-n-q 
e8(i,j,k,l,m,n,q,r)      emissions for path: i-j-k-l-m-n-q-r 
e9(i,j,k,l,m,n,q,r,t)    emissions for path: i-j-k-l-m-n-q-r-t 
e10(i,j,k,l,m,n,q,r,t,u) emissions for path: i-j-k-l-m-n-q-r-t-u 
 
*0 is the alternate emissions value if the paths do not exist 
 
f2          alternative emission value for path: i-j 
f3          alternative emission value for path: i-j-k 
f4          alternative emission value for path: i-j-k-l 
f5          alternative emission value for path: i-j-k-l-m 
f6          alternative emission value for path: i-j-k-l-m-n 
f7          alternative emission value for path: i-j-k-l-m-n-q 
f8          alternative emission value for path: i-j-k-l-m-n-q-r 
f9          alternative emission value for path: i-j-k-l-m-n-q-r-t 
f10         alternative emission value for path: i-j-k-l-m-n-q-r-t-u 
; 
 
 
e1(i)$b1.l(i) = (F(i)*y(i))$(F(i)*y(i)>Tol); 
$libinclude matout e1 i 
 
f2=sum((i,j),b2.l(i,j)) ; 
if(f2 = 0, 
$libinclude matout f2 
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); 
if(f2 ne 0, 
e2(i,j)$b2.l(i,j) = (F(j)*A(j,i)*y(i))$(F(j)*A(j,i)*y(i)>Tol) ; 
$libinclude matout e2 i j 
); 
 
f3=sum((i,j,k),b3.l(i,j,k)) ; 
if(f3 = 0, 
$libinclude matout f3 
); 
if(f3 ne 0, 
e3(i,j,k)$b3.l(i,j,k)= (F(k)*A(k,j)*A(j,i)*y(i))$(F(k)*A(k,j)*A(j,i)*y(i)>Tol); 
$libinclude matout e3 i j k 
); 
 
f4=sum((i,j,k,l),b4.l(i,j,k,l)) ; 
if(f4 = 0, 
$libinclude matout f4 
); 
if(f4 ne 0, 
e4(i,j,k,l)$b4.l(i,j,k,l) = 
(F(l)*A(l,k)*A(k,j)*A(j,i)*y(i))$(F(l)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol); 
$libinclude matout e4 i j k l 
); 
 
f5=sum((i,j,k,l,m),b5.l(i,j,k,l,m)) ; 
if(f5 = 0, 
$libinclude matout f5 
); 
if(f5 ne 0, 
e5(i,j,k,l,m)$b5.l(i,j,k,l,m) = 
(F(m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i))$(F(m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>
Tol); 
$libinclude matout e5 i j k l m 
); 
 
f6=sum((i,j,k,l,m,n),b6.l(i,j,k,l,m,n)) ; 
if(f6 = 0, 
$libinclude matout f6 
); 
if(f6 ne 0, 
e6(i,j,k,l,m,n)$b6.l(i,j,k,l,m,n) = 
(F(n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i))$(F(n)*A(n,m)*A(m,l)*A(l,k)*A(k,j
)*A(j,i)*y(i)>Tol); 
$libinclude matout e6 i j k l m n 
); 
 
f7=sum((i,j,k,l,m,n,q),b7.l(i,j,k,l,m,n,q)) ; 
if(f7 = 0, 
$libinclude matout f7 
); 
if(f7 ne 0, 
e7(i,j,k,l,m,n,q)$b7.l(i,j,k,l,m,n,q) = 
(F(q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i))$(F(q)*A(q,n)*A(n,m)*A(m,l
)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol) ; 
$libinclude matout e7 i j k l m n q 
); 
 
f8=sum((i,j,k,l,m,n,q,r),b8.l(i,j,k,l,m,n,q,r)) ; 
if(f8 = 0, 
$libinclude matout f8 
); 
if(f8 ne 0, 
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e8(i,j,k,l,m,n,q,r)$b8.l(i,j,k,l,m,n,q,r) = 
(F(r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i))$(F(r)*A(r,q)*A(q,n
)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol); 
$libinclude matout e8 i j k l m n q r 
); 
 
f9=sum((i,j,k,l,m,n,q,r,t),b9.l(i,j,k,l,m,n,q,r,t)) ; 
if(f9 = 0, 
$libinclude matout f9 
); 
if(f9 ne 0, 
e9(i,j,k,l,m,n,q,r,t)$b9.l(i,j,k,l,m,n,q,r,t) = 
(F(t)*A(t,r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i))$(F(t)*A(t,r
)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol); 
$libinclude matout e9 i j k l m n q r t 
); 
 
f10=sum((i,j,k,l,m,n,q,r,t,u),b10.l(i,j,k,l,m,n,q,r,t,u)) ; 
if(f10 = 0, 
$libinclude matout f10 
); 
if(f10 ne 0, 
e10(i,j,k,l,m,n,q,r,t,u)$b10.l(i,j,k,l,m,n,q,r,t,u) = 
(F(u)*A(u,t)*A(t,r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i))$(F(u
)*A(u,t)*A(t,r)*A(r,q)*A(q,n)*A(n,m)*A(m,l)*A(l,k)*A(k,j)*A(j,i)*y(i)>Tol) ; 
$libinclude matout e10 i j k l m n q r t u 
); 
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APPENDIX D: Matlab function for recovering paths from 

Gams 
 
 
 

File name: getpath.m 

 
function [path_em,path_lab]=getpath(en,varargin) 
% getpath.m recovers the paths from the multidimensional representation;  
% not to be used for e1  
  
% Matlab interprets the values received from Gams as elements of class  
% double in an n-dimensional matrix. For every individual path, we need to  
% recover the subscripts corresponding to each dimension in order to use  
% them later in identifying the sectors contributing to the path. 
  
% Every path has 2 parts: emission value (double) and labels (1 cell); 
% labels cell contains a cell array, each cell with the indexed sector name, 
% respecting path order 
% Example: for e3 elements containing 3 sectors each: 
% for path1 from sectors a-b-c 
% em1 and lab1(cell)=1st sect.a(cell)+ 2nd sect.b(cell)+ 3rd sect.c(cell) 
% for path2 from sectors a-b-d 
% em2 and lab2(cell)=1st sect.a(cell)+ 2nd sect.b(cell)+ 3rd sect.d(cell) 
% for path3 from sectors a-g-h 
% em3 and lab3(cell)=1st sect.a(cell)+ 2nd sect.g(cell)+ 3rd sect.h(cell) 
% for path4 from sectors a-v-d 
% em4 and lab4(cell)=1st sect.a(cell)+ 2nd sect.v(cell)+ 3rd sect.d(cell) 
  
% path_em is the vector of emissions values [em1 em2 em3 em4] 
% path_lab is a cell array with path'labels [lab1 lab2 lab3 lab4] 
  
% Get the vector of indices corresponding to the paths en in the 
% n-dimensional array 
elem_vector=find(en);  
% Example: find(e3)=[4 9 11 20] => 4th,9th,11th and 20th elements of e3  
% are different from 0, so there are 4 paths 
  
% Get the number of paths  
nelems = length(elem_vector);             
  
% Get the vector of dimensions for the n-dimensional array (the size of  
% the array) 
dim_vector=size(en);                      
%Example: size(e3)=[1,20,11] => e3 values have 3 dimensions, with 1 element 
%on the first dimension, 20 elements on the second dimension and 11 elements  
%on the third dimension 
  
% Get the total number of dimensions   
ndims = length(dim_vector);             
  
  
path_em = zeros(nelems,1);  % vector of emission values  
path_lab = cell(nelems,1);  % cell array of labels       
  
for j = 1:nelems 
    % get the vector of subscripts 
        command = '[i1'; 
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        for i=2:ndims 
            command = [command ',i' num2str(i)]; 
        end 
        command = [command '] = ind2sub(dim_vector,elem_vector(j));']; 
        eval(command); 
    % Example: [i1,i2,i3]=ind2sub([1,20,11],e3(9)) returns i1=1,i2=3,i3=4 
    % [1,3,4] is the vector of subscripts of the 9th element of array e3 
    % (nonzero) in a 1x20x11 dimensions matrix. 
     
    % making sure that last dimensions with 1 element are not lost (this 
    % dimensions are ignored by Matlab) 
        if length(varargin)>ndims 
            for k=(ndims+1):length(varargin) 
                eval(['i' num2str(k) '=1;']); 
            end 
        end 
     
    % record path emission value  
        path_em(j) = en(elem_vector(j)); 
         
    % Apply each subscript to the corresponding set (corresponding to the 
    % variable elements) to get indexed sector name     
    % Example: s1_set(1)=1; s2_set(3)=85; s3_set(4)=104   
         
        % recover first indexed sector name 
        path_lab{j,1}{1,1} = char(varargin{1}(i1)); 
     
        % recover the rest of the indexed sectors names 
        for i=2:length(varargin) 
            command = ['nextel = char(varargin{' num2str(i) '}(i' num2str(i) 
'));']; 
            eval(command); 
            path_lab{j,1}{1,i} = nextel; 
        end        
end 
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APPENDIX E: Matlab function for sorting paths 
 
 
 

File name: sorting.m 

 
function [PATH_sorted] = sorting( 
y,e_list,sets_list,Sectors_names,Pmax,last_tier ) 
% sorting.m reconverts the numerical name index into the real 
% sector names and sorts the paths in ascending order. 
  
% PATH_sorted is a 2 dimensional complex structure, lines corresponding to  
% the paths. First column records emission values for each path. Second 
% column records name of the sectors contributing to each path. 
  
% PATH_em is a numeric array of emission values for all paths 
% Path_lab is a cell array with contributing sectors to all paths   
  
% Initialize the structure columns for all Pmax paths 
PATH_em=zeros(Pmax,1);                  
PATH_lab=cell(Pmax,1);                          
  
% Start list of paths 
sort_index=1; 
  
% First path is unique and corresponds to the final demand placed on 1 
% chosen sector; the emission value is e1.  
PATH_em(1)=e_list{1};              
PATH_lab{1,1}=Sectors_names(find(y)); 
  
% Get the paths in the order of the increasing number of component sectors 
% Example: e2,e3,e4... 
  
command_in = ' [path_em,path_lab] = getpath(e_list{' ; 
command_int = '},sets_list{1'; 
command_fin = '});'; 
for t=2:last_tier 
        % tiers corresponds to the paths of certain number of sectors 
        % Example: t=4 refers to the paths with 4 contributing sectors: e4 
         
        command_int = [command_int '},sets_list{' num2str(t)]; 
         
        % make sure it only search paths which exist 
        % Example: if e2=0 there are no paths with 2 contributing sectors 
        if   ~isempty(find(e_list{t})) 
             
            command=[ command_in num2str(t) command_int  command_fin ]; 
            eval(command); 
            % Example: [path_em,path_lab] = getpath(e3,s1_set,s2_set,s3_set)  
            % returns: path_em=[em1,em2,em3,em4] and path_lab=[1 85 104; 
            % 1 42 67; 1 30 79; 1 10 15 ] (see getpath.m) where path_lab   
            % lines contain only indexed sectors names for the 4th path 
            % existent with 3 contributing sectors each 
              
            % add new paths of the same length in PATH_sorted structure 
            % Example: if there is 1 path with one contributing sector and  
            % 5 paths with two contributing sectors, the 4 paths with three  
            % contributing sectors will be added from line 7 to line 11  
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            % first add emissions 
            for pos_index=1:length(path_em) 
                PATH_em(sort_index+pos_index)=path_em(pos_index); 
                 
                % second add original sector names (deducted from indexed 
                % sectors names obtained with getpath function above) 
                for k=1:length(path_lab{pos_index,:}) 
                    PATH_lab{sort_index+pos_index}{k}= ... 
                        Sectors_names(str2double(path_lab{pos_index}{1,k})); 
                end 
            end 
             
            % increment index for the next paths  
            sort_index=sort_index+length(path_em); 
        end       
end 
  
% Get the array of indices for sorting paths in descending order 
[PATH_em_sorted,Im]=sort(PATH_em,'descend'); 
  
% Use the indices to sort the second column recording the names of the 
% sectors contributing to each path. 
  
PATH_lab_sorted=cell(Pmax,1); 
for j=1:Pmax 
    PATH_lab_sorted(j)=PATH_lab(Im(j)); 
end 
  
% Transfer the numeric array of emissions in a corresponding cell array 
% containing emissions 
PATH_em_sorted=num2cell(PATH_em_sorted); 
  
% Assemble structure 
PATH_sorted=[PATH_em_sorted  PATH_lab_sorted]; 
  
end 
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APPENDIX F: Sectors abbreviation table 
 

 

Abbreviated name Original name 
Agric Agriculture 
Manufc Manufacturing 
Transp Transportation 
Constr Constructions 

Air T. Air transportation 
Stamping Automotive stampings 
Steel mills Blast furnaces and steel mills 
Cement Cement, hydraulic 
Chem prep.  Chemicals and chemical preparations, n.e.c. 
Equip. manuf. Construction machinery and equipment 
Raw oil Crude petroleum and natural gas 
Electricity Electric services (utilities) 
Metal parts Fabricated structural metal 
Equipm. parts Industrial and commercial machinery and equipment, n.e.c. 
Chemicals Industrial inorganic and organic chemicals 
Metals Iron and steel foundries 
Raw mat. Lime 
Oil_reused Lubricating oils and greases 
Minerals Minerals, ground or treated 
Motor parts Motor vehicle parts and accessories 
Motors Motor vehicles and passenger car bodies 
Equipment Oil and gas field machinery and equipment 
Drilling Petroleum and natural gas well drilling 
Refining Petroleum refining 
Rail T. Railroads and related services 
Steel parts Steel wiredrawing and steel nails and spikes 
Land T. Trucking and courier services, except air 
Water T. Water transportation 
Trade Wholesale trade 

Table 4.9 Sectors abbreviation table 
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