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Abstract

This thesis presents a novel framework for mixing-reaction closure build on
the Linear Eddy Model by Kerstein (1991b). The development of the mod-
eling concept has been motivated by the need for better predictive tools for
turbulent combustion. Such tools are essential in the design of combustion
technology with reduced emissions and improved efficiency, and in the devel-
opment of new combustor configurations, e.g. for CO2 capture. The original
standalone Linear Eddy Model (LEM) is based on a phenomenological de-
scription of turbulent mixing on a one-dimensional domain, which can be
considered to be a line of sight through the turbulent flow. LEM treats the
three-dimensional advective turbulent stirring by one-dimensional stochas-
tic re-arrangements, while the diffusive molecular mixing and the chemical
reactions are solved directly.

The new framework, denoted LEM3D, extends the capabilities of the
standalone LEM by creating a Cartesian three-dimensional structure of
LEM domains coupled to a flow solver. Mean flow scalar advection is im-
plemented by discrete Lagrangian displacements of LEM cells. Directional
coupling is provided by random rotations of intersecting sections of LEM
cells, which define a supergrid. Thermal expansions are performed by dis-
crete dilatations. A detailed description of each part of the framework is
presented in this thesis.

The present work has been focused on assessing LEM3D through a num-
ber of relatively simple test cases. It is found that the random rotations
introduce additional dispersion and enhance molecular diffusion. The ran-
dom rotations also cause a relatively broad distribution of travel times for
a scalar through the domain.

Even though the displacements in LEM3D on average represents the
prescribed velocity field, the discrete fluid cell treatment causes instanta-
neous deviations. A method which corrects the displacements in order to
reduce these deviations has been developed.

LEM3D has also been developed to handle reacting flows by introduc-
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ing discrete dilatations of LEM cells and coupling of LEM3D to a solver
for the Reynolds-averaged Navier Stokes (RANS) equations. The mean
density field is supplied from LEM3D to RANS, and RANS provides the
updated velocity field to LEM3D. This approach leads to artifacts, due to
the matching of the non-conservative velocities. Suggestions for future work
are presented based on these results.

LEM3D has been further discussed by comparing results from a reduced
dimensional version of the model (LEM2D) with experimental data from
a line source in homogeneous turbulence by Warhaft (1984). The full-
featured non-reacting LEM3D has been assessed by considering a scalar
point source in a turbulent jet (Tong and Warhaft, 1995). The results from
the non-reacting LEM3D simulations are promising considering the rather
early stage of development.
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Chapter 1

Introduction

1.1 Motivation and scope

In efficient and successful commercial design of combustion equipment, the
use of validated predictive tools that describe the relevant aspects of the
combustion physics is crucial in order to increase efficiency, reduce emissions
and develop new concepts e.g. related to new combustor configurations for
CO2 capture. The car engine, the gas turbine combustion chamber and
the industrial furnace are all operated at high flow rates for optimum en-
ergy output, which induces turbulent, chaotic behavior. Turbulent flows
are characterized by three-dimensional, rotational, irregular, intermittent
structures on a wide range of scales (Bradshaw, 1971; Hinze, 1975; Pope,
2000). Turbulence appears also in nature for instance in atmospheric and
oceanic flows (Sreenivasan, 1999; Warhaft, 2002). More knowledge of such
phenomena is central to a better understanding of the earth’s climate and
the global temperature trends. Turbulence is still regarded as one of the
unsolved problems in physics, even though the equations for these processes
basically are known. The reason is that the broad range of scales in most
practical problems renders the accurate direct numerical simulation (DNS)
unfeasible because of the tremendous computer resources required to per-
form the simulations. Since DNS generally is out of reach, models that
simplify the problem by limiting the resolved range of scales have been the
solution for scientific and engineering purposes. The compromise is that
the turbulent stirring, which by nature is an advective process, is treated by
diffusive models. This blurs the distinction to molecular diffusive mixing
and complicates the determination of the chemical reaction rates. In this
lies the essential challenge of turbulent combustion modeling, which is the
main motivation for the present work.
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2 Introduction

One model that does capture the distinction between the advective
turbulent stirring and the diffusive molecular mixing is the Linear Eddy
Model (LEM) developed by Kerstein (1991b). The LEM is based on a phe-
nomenological description of turbulent mixing. All relevant length scales
are resolved in one dimension which renders the model affordable even for
reacting flows at higher Reynolds-numbers. The trade-off is that the effect
of three-dimensional turbulent eddies is emulated by stochastic rearrange-
ments of fluid elements on the one-dimensional (1D) domain. The model
is run by time stepping the 1D reaction-diffusion equations punctuated by
the rearrangements or mapping events.

Consider a scalar emerging in a turbulent flow depicted in Figure 1.1.
The turbulent eddies act on the scalar field by continuously compressing and
folding the scalar structures. This process enhances the scalar gradients
and increases the mixing by molecular diffusion, which is the necessary
precursor for chemical reactions. The mapping scheme applied in LEM,
which is denoted the triplet map, mimics this process by creating three
(triple) compressed copies of a segment of the scalar field. By inverting
the center copy, the mapping maintains the property of a continuous scalar
field. The triplet map sizes are selected with a given rate from a distribution,
which represents the scaling of the turbulence spectrum in the inertial range.
One of the most comprehensive descriptions of the model is given in Kerstein
(1991b). Further details of the LEM are presented here in Sections 3.2 and
4.3.

“real” eddy triplet map eddy

Figure 1.1: A schematic illustration of spreading of a scalar in a turbulent flow.
The left box is the “real” effect of an eddy on the scalar gradient normal to the
scalar iso-surface. The right box shows the triplet map model of such an eddy
event.
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The LEM in standalone 1D mode is limited to a simplified representa-
tion of the flow geometry which curbs the range of possible applications.
Thus, the aim of the present work has been to extend LEM to general re-
acting flows by creating a three-dimensional structure of LEM domains and
couple the structure to a flow solver.1 The principal guideline for the model
development has been that the distinction between advective and diffusive
processes should be maintained. Hence, the present model treats mean flow
advection and thermal heat release as discrete non-diffusive processes.

The work is limited to free shear flows, thus near-wall effects are not con-
sidered.2 The focus of the present work is on assessing the novel elements
and the potential of the modeling concept. Hence, relatively simple and
transparent steady-state flow configurations are considered. The treatment
of chemical reactions and volumetric expansion is still at an early stage of
development; however, a strategy to arrive at a more mature representa-
tion is outlined. Other combustion related issues such as radiation, soot
formation and treatment of particles are omitted.

1.2 Previous work

The topic of turbulent combustion modeling is vast. A brief introduction is
given in Sec. 2.4, however, we generally refer to the books by Pope (2000),
Warnatz et al. (2001), Veynante and Vervisch (2002), and Fox (2003) for
more complete reviews. Here we consider LEM and the one-dimensional
turbulence (ODT) model only. The ODT extends LEM by also evolving
the velocity field (Kerstein, 1999). Even though this work is limited to
LEM, ODT is also considered in the following brief review since common
issues arise with flow solver coupling.

1.2.1 Standalone non-reacting applications

The standalone 1D LEM has been adapted and utilized to simulate a con-
siderable amount of different applications. In the various cases, the in-
terpretation of the LEM domain changes with the alignment in the flow
(McMurtry et al., 1993). Mixing in homogeneous turbulence with a uni-
form passive scalar gradient is studied in Kerstein (1988, 1991a,b); Kerstein

1The term flow solver is used for a solver that provides the mean flow quantities. This
is generally Reynolds-averaged Navier-Stokes (RANS) or Large Eddy Simulation (LES)
for turbulent flows. See Sec. 2.4.3 for further description.

2A structure of ODT-domains has successfully been utilized to improve modeling of
wall-bounded flows by Schmidt et al. (2003). ODT is briefly explained in Sec. 1.2.
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et al. (1995). For these cases, the 1D LEM domain is aligned with the
mean scalar gradient. Mixing in homogeneous turbulence with scalar point
and line sources or a two-stream shear layer is reported in Kerstein (1989),
where the domain represents a transverse line moving with the flow. In the
latter case, the growth of the shear layer is an empirical input to the model.
This is implemented by confining the rearrangement events to the growing
shear layer.

Mixing in round jets is presented in Kerstein (1990) where the domain
represents a radial line in the jet that moves streamwise with the flow.
The radial variation of streamwise velocity is neglected. The growth of the
vortical zone is implemented by letting the upper bound on stirring events,
and hence the model integral scale, vary with axial position.

Atmospheric science is one of many areas of application of LEM and
ODT. LEM has been utilized to calculate the entrainment of air in a stra-
tus cloud (Krueger (1993); Krueger et al. (1997)). The 1D-domain is ori-
ented horizontally in the cloud and moves vertically with the downdraft.
The entrainment is modeled explicitly. Su et al. (1998) accounts in addi-
tion for droplet growth and the results yield good agreement with droplet
spectra obtained from airplane measurements. The ODT model takes the
buoyancy effect on turbulence into account, and several works study atmo-
spheric flows where density gradients are important (Kerstein, 1999; Wunsch
and Kerstein, 2001; Wunsch, 2003).

1.2.2 LEM and ODT in turbulent combustion modeling

Due to the full resolution of scales in LEM and ODT, the incorporation of
chemical reactions requires no additional modeling. The models have no
presumption of whether the reactants are premixed before reaction, or if
the reactants are introduced separately and react as they mix as in non-
premixed combustion. The 1D standalone reacting LEM/ODT has been
used for several applications and combustion regimes.

When thermal expansion from heat release is negligible, the extension
of LEM to reacting flow is straightforward. Frankel et al. (1995) calculate
binary scalar mixing and isothermal reaction in homogeneous turbulence,
and Kerstein (1992b) successfully simulates the reactive mixing layer of
nitric oxide and ozone.

Turbulent non-premixed flames are simulated with infinite-rate (Ker-
stein, 1992a) and finite-rate (Menon et al., 1992, 1994) chemical kinetics. In
these applications, the LEM domain is oriented in the streamwise direction
on the axis of the jet. Varying LEM cell volumes reflects the downstream
growth of the jet. Fuel is introduced by inserting fuel cells in the upstream
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part of the domain. The entrainment of air is implemented explicitly by
randomly inserting fluid parcels with size characteristic to the local jet di-
ameter. Thermal expansion from heat release is modeled by transferring
portions of the cell content to downstream parcels. Multi-species transport
with differential diffusion effects is included in Calhoon et al. (1995). They
compare reduced and full chemical mechanisms for non-premixed turbulent
H2-air jet flames.

Turbulent premixed flames have also been studied using LEM (Smith
and Menon, 1996, 1997; Sankaran and Menon, 2000). The premixed flame
travels along the LEM domain, which is set up with a moving observation
window to avoid the flame to extend out of the domain. Different chemical
mechanisms have been applied as well as a G-field approach that considers
transport of one or several flame fronts. The latter is primarily applicable
to combustion in the flamelet regime. Sankaran and Menon (2000) employ
a detailed chemistry model and study combustion in several flame regimes.

In Echekki et al. (2001); Hewson and Kerstein (2001), a non-premixed
turbulent diffusion jet flame is simulated by a radial ODT-domain that
moves downstream with the bulk flow. The chemical integration time is
adjusted to account for residence time variation in the radial direction of
the jet.

Computational cells of equal size (i.e., width) are currently a necessity
for the triplet mapping applied in ODT and LEM. This restriction affects
the implementation of thermal expansion from heat release. A frequently
used approach is to increase the cell volume and perform a regridding oper-
ation before every triplet map event (Sankaran and Menon, 2000; Echekki
et al., 2001). The regridding will inevitably introduce artificial diffusion.
Another approach, which has been utilized in the present work, is to ac-
count for thermal expansion by creating new cells in integer steps (Menon
and Calhoon, 1996). A third option is to let the expansion induce a flow
out of the fluid cell in an Eulerian manner (Oevermann et al., 2008). The
latter option will also cause artificial diffusion, since fluid will cross the fluid
cell boundary and mix with the adjacent cells.

In total, LEM and ODT have been used to simulate a considerable range
of practical cases from cloud formation (Su et al., 1998), through HCCI3

combustion (Oevermann et al., 2008), to supernova explosions (Woosley
et al., 2008). Even though the results from the works are promising, the
representation of multi-dimensional flows is still limited by the 1D formula-
tion. Thus, in order to be able to represent e.g. complex atmospheric flows
or gas turbine combustion chambers, a coupling to multi-dimensional flow

3Homogeneous Charge Compression Ignition
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solvers is needed.

1.2.3 LEM and ODT as subgrid models

The methods for coupling between LEM/ODT and a flow solver can be sub-
divided into direct or indirect methods. In the indirect methods, LEM/ODT
provides submodels for the scalar or turbulence stress closure through tabu-
lation given by a number of pre-runs. For the direct methods, the flow solver
evolves concurrently with LEM/ODT, and the two are linked by one-way
or two-way exchange of information.

Indirect methods

In contrast to the assumed probability density function (pdf) methods where
the shape of the pdf is assumed a priori (see e.g. Sec. 2.4.3), the constructed
pdf method by Goldin and Menon (1997) determines the shape of the pdf
from simulations with LEM of scalar distribution in homogeneous turbu-
lence. The constructed pdf is parameterized by the first two statistical
moments. Comparison with assumed β-pdf and experiments is given in
Goldin and Menon (1998); Goldin (2005). A slightly different approach
is provided by Sankaran et al. (2009). They use LEM simulations along
with experimental data to create a tabulated closure for LES. The closure
is parameterized by the LES filtered scalar dissipation rate and the filtered
Reynolds-number, and hence is better customized to LES. LEM has also
been used to assess mixing-reaction models, specifically the flamelet model
and conditional moment closure (CMC) in Desjardin and Frankel (1996,
1997).

Where LEM provides the subgrid closure for the scalar, ODT gives the
subgrid turbulence stresses for closure of the momentum equation. Ran-
ganath and Echekki (2006, 2008) use ODT to generate look-up tables for
the density needed in a RANS solver. The ensemble mean closure (EMC),
which is a closure model (eddy-viscosity type) for the sub-grid LES stresses,
is introduced by McDermott et al. (2005). The model is derived entirely
from ODT.

Direct methods

The direct methods can be categorized as Eulerian or Lagrangian, depending
on how the LEM subdomains relate to the processes on the LES domain
(Kerstein, 2002). For the Eulerian methods, one LEM domain is assigned
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to each LES cell, whereas the Lagrangian methods transport the individual
subgrid elements with the LES/RANS predicted flow.

Pit et al. (2007) pursue a Lagrangian approach where the individual
Lagrangian particles constitute LEM sub-structure.

The approach of (Menon et al., 1993) is Eulerian in the sense that ev-
ery LES cell has one associated LEM domain. The LEM domain, which in
this case has no specific orientation, interacts with its neighboring domains
through a splicing operation.4 The model, often referred to as LEMLES,
has been applied to both premixed (Menon et al., 1993; Chakravarthy and
Menon, 2001; Sankaran and Menon, 2005) and to non-premixed combustion
(Menon et al., 1993; McMurtry et al., 1992a,b; Menon and Calhoon, 1996)
for a variety of combustion regimes. An attractive feature of LEMLES (as
well as the standalone LEM) is the absence of application-specific adjust-
ments, i.e., the model does not need to be adapted to different combustion
regimes. Goldin et al. (1995) pursues an LEM-RANS approach, where, in
essence, the splicing procedure described above handles the mean scalar ad-
vection, while a separate “diamond” mapping is developed for the large scale
turbulence transport. To this author’s knowledge, no further publications
have been released on the LEM-RANS.

The ODT model can provide the subgrid turbulence stresses to a flow
solver. In Kerstein et al. (2001); Schmidt et al. (2003) the ODT has been
used to supply the subgrid turbulence stresses close to a wall, which gen-
erally is a challenge to LES due to the high resolution requirement. The
sub structure constitutes ODT-domains that are oriented perpendicular to
the wall. Coupling of ODT-domains in the direction parallel to the wall
is provided by finite differencing. This approach is further developed by
Schmidt et al. (2005, 2008) to yield a three-dimensional (3D) formulation.
ODT-lines are orthogonally oriented on a 3D Cartesian LES grid. Trans-
port transverse to the ODT-lines is implemented by interpolation from the
nearest transverse ODT-lines. Continuity is enforced on the 3D level by a
pressure projection method. The resolved transport is transferred to the
subgrid structure by a reconstruction method that preserves the small scale
structure. Cao and Echekki (2008) have built a LES substructure of ODT-
domains in 3D similar to Schmidt et al. (2005), but with a different approach
for advective coupling between the ODT-domains.

In the approaches mentioned in the previous paragraph, finite differenc-
ing is used for the fluxes normal to the resolved 1D-domains. The splicing
operation as presented in Sankaran (2003) involves regridding after non-

4The splicing operation has been subject to major revisions from Menon et al. (1993)
to Sankaran (2003)
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integer LEM cell advection. Thus, these approaches introduce artificial
diffusion. Kerstein (2002) has suggested replacing this scheme by a method
transferring fluid packets in between domains. This method involves a cou-
pling of ODT and LES where the main idea is to avoid blurring the distinc-
tion between molecular diffusion and turbulent stirring.

1.3 The LEM3D approach

The work presented here introduces a novel framework for mixing-reaction
closure with LEM as the main building block. In contrast to the LEMLES
approach (Menon et al., 1993), the LEM domains have physical orientation
in space. The model structure is based on the work presented in Schmidt
et al. (2005, 2008). However, in this work, the distinction between turbulent
stirring and molecular diffusion is preserved through an LEM domain cou-
pling by non-diffusive Lagrangian fluid cell displacements rather than Eule-
rian finite differencing. Besides the LEM processes previously presented, the
model constitutes the following elements: Mean flow advection by discrete
Lagrangian displacements of fluid cells, discrete implementation of fluid cell
dilatations from heat release, and a necessary auxiliary coupling by random
rotation of supergrid5 control volumes. The fluid cells are characterized as
wafers due to their shape, and the supergrid control volumes are denoted
3DCVs.

The model, which is given the name LEM3D, has been developed as
a joint effort, where the conceptual ideas of Kerstein (2002, 2004, 2009)
through the collaboration Kerstein et al. (2007, 2005-2006) have been im-
plemented by Sannan et al. (2008, 2009) and further developed and tested
in the present work. The model is also described in Weydahl et al. (2007).
The specific contributions to the different parts are pointed out in the main
text.

The main contributions presented in this thesis are as follows:

• A detailed and complete description of the modeling framework and
the numerical implementation.

• A novel method for reducing the deviations related to the discrete rep-
resentation of mean flow advection has been developed, implemented
and assessed.

• The LEM3D has been extended to non-reacting flows by developing
and implementing an algorithm for discrete dilatation of wafers and

5Defined in Sec. 4.2.
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establishing a coupling to a RANS flow solver. The artifacts related
to this treatment of dilatations are pointed out, and suggestions for
improvements are proposed.

• Essential characteristics of the LEM3D have been investigated through
a number of test cases. Several issues are related to the random rota-
tions of 3DCVs; the degree of directional coupling of LEM domains,
the amount of additional dispersion and mixing, and the residence
time distribution. In addition, the discrete representation of the mean
flow advection has been evaluated.

• The non-reacting LEM3D has been utilized to simulate passive scalar
mixing from a point source placed in grid turbulence and the self-
similar region of a turbulent jet. Sensitivity to resolution, frequency
of random rotations, and the selected LEM integral scale have been
investigated. The results are compared to experimental data from
Warhaft (1984) and Tong and Warhaft (1995) for the grid and jet
turbulence cases, respectively. Numerical solutions to model transport
equations for the scalar mean and variance have also been employed
for comparison.

1.4 Survey of the thesis

The present work has been focused on assessing LEM3D through a number
of relatively simple test cases. Tab. 1.1 gives an overview of the various
cases considered and the model elements of LEM3D that are included for
each case. The LEM processes refer to molecular mixing and triplet map
stirring.

In Chapter 2 the foundation for the physical and statistical description
of reacting flows is presented. A brief review of the models for turbulent
mixing and reaction is given, and the role of LEM in this context is discussed.
The chapter also presents a phenomenological description of scalar mixing
for some basic turbulent flows.

Chapter 3 presents the established models including the standalone 1D
LEM that are utilized in the present work. In addition, a conceptual equa-
tion for scalar transport in the applied framework is given.

The modeling concept, the mathematical formulation, and the numeri-
cal implementation and simulation procedure for the reacting LEM3D are
presented in Chapter 4. A simplified two-dimensional version of LEM3D,
denoted LEM2D, which is utilized to study the isolated effects of random
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3DCV rotations, is also presented. The computational cost is considered
and compared to DNS.

The discrete representation of the mean flow advection and the auxiliary
coupling by random rotations have been thoroughly studied in Chapter 5
and 6. Chapter 5 considers the discrete representation of the mean shear
flow in a turbulent jet. The wafer residence time in a quasi 1D channel is
also studied. Chapter 6 presents results of dispersion of a passive scalar
in grid turbulence (Warhaft, 1984) and investigates the effects of random
rotations.

Chapter 7 presents the model for discrete dilatation. The model is eval-
uated by considering a simple artificial numerical test case.

Chapter 8 compares simulations with LEM3D and experimental data of
Tong and Warhaft (1995) of scalar dispersion from a point source in the self-
similar region of a turbulent jet. The results are also compared to numerical
solutions of model transport equations for the scalar mean and variance.

A summary of the main findings and some concluding remarks are given
in Chapter 9 along with recommendations for further work.

Table 1.1: Overview of the various cases considered and the LEM3Dmodel elements
that are included in each of them. The LEM processes constitute molecular mixing
and triplet map stirring.

A1 A2 B1/B2 C Jet passive mixing

Chapter 5.2 5.3 6 7 8

LEM processes X X

Random rotations X X X X

Mean scalar advection X X X X

Thermal expansion X



Chapter 2

Theoretical background

2.1 Introduction

Turbulent flows are characterized by random velocity fluctuations in time
and space (Hinze, 1975). This does not, however, mean that the velocity
field evolves in an unpredictable way. It is always governed by the Navier-
Stokes equations1, but due to the non-linear terms in these equations that
are inherently sensitive to small perturbations, random behavior arises at
high Reynolds numbers.

The physical background of the continuum description of fluids implies
that the molecular mean free path, i.e., the average distance molecules travel
between collisions with partner molecules, is orders of magnitude smaller
than any macroscopic scale of the flow; for instance the gradient scales of
the velocity - and temperature fields. When we observe the continuum
properties of for instance air at atmospheric conditions in a wind tunnel
at 1m/s, we actually measure the average effect from about 20 quintillions
(1018) of molecules per second that passes over a probe volume of about
1mm3. The continuum hypothesis states that the fluid and its macroscopic
properties are continuously distributed over the space that the fluid occupies
(Pope, 2000; Irgens, 2004). The hypothesis is the underlying assumption for
all fluid equations in this thesis.

This chapter briefly reviews the foundation for the physical and statisti-
cal description of reacting flows. A brief review of the models for turbulent
mixing and reaction is also given. Finally, a phenomenological description
of scalar mixing in basic turbulent flows is presented.

1The statement presupposes that the fluid is a Newtonian fluid, which is described by
a linear stress-strain relationship. This work considers Newtonian fluids only.

11
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2.2 Conservation equation

2.2.1 Mass conservation

Neglecting the mass sources and sinks from nuclear reactions, the mass for
a defined system is conserved. This can be represented by the continuity
equation

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (2.1)

where ρ is the density and uj is the velocity component in the direction xj .
2

2.2.2 Momentum conservation

The momentum equation for a continuum fluid is given by

∂

∂t
(ρui) +

∂

∂xj
(ρujui) =

∂

∂xj
(τij) + ρbi, (2.2)

and follows from Euler’s first axiom (Irgens, 2004), which corresponds to
Newton’s second law of motion. The Cartesian stress tensor τij represents
the effect of pressure and viscous forces on the fluid acceleration and bi is the
effect from body forces as for instance gravitation. Applying Stokes’ postu-
lates and hypothesis (White, 1991), and assuming the fluid to be Newtonian,
we obtain the Navier-Stokes equations

∂

∂t
(ρui)+

∂

∂xj
(ρuiuj) =

− ∂p

∂xj
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

)]
+ ρbi,

(2.3)

where µ is the dynamic viscosity and p is the pressure. The bulk viscosity
is zero in the expression (2.3) above (White, 1991).

2.2.3 Scalar conservation

The general transport equation for a reactive scalar ϕ is written as

∂(ρϕ)

∂t
+

∂

∂xj
(ρujϕ) =

∂

∂xj

[
ρDM

∂ϕ

∂xj

]
+ ρωϕ, (2.4)

where ωϕ is the reaction source or sink term. Note that the equation above
assumes a gradient type model for the diffusive flux, and also assumes that

2Einstein’s summation convention is applied (White, 1991)
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the molecular diffusivity DM is represented by a mixture averaged quantity.
With these assumptions, if ϕ in Eq. (2.4) is replaced by the mass fraction Yk
of species k, the equation is valid if we apply Fick’s law for mass diffusion
with a mixture averaged diffusion coefficient Dk and neglect contributions
from thermal (the Soret effect) and pressure diffusion (see e.g. Bird et al.
(1960)).

When the reaction term ρωϕ in Eq. (2.4) is zero, ϕ is considered a
conserved scalar since it has no sinks or sources. In two-stream mixing
cases, the mixture fraction is a conserved scalar that determines the amount
of elements from stream 1 and 2 through a linear relation (Bilger, 1976). A
passive scalar has no direct effect on the material properties of the flow as
the density, viscosity and transport properties (Pope, 2000). Assuming no
spatial variation of the density and the diffusivity due to other sources, the
transport equation for a passive reacting scalar can be written as

∂ϕ

∂t
+

∂

∂xj
(ujϕ) = DM

∂2ϕ

∂xj∂xj
+ ωϕ. (2.5)

In the present work we assume that the scalar transport can be described
by Eq. (2.4) for flows with varying density and Eq. (2.5) when the density
and diffusivity are constant. The multicomponent energy transport in terms
of temperature will require additional transport terms. Further details are
found in textbooks (Bird et al., 1960; Warnatz et al., 2001).

2.3 Statistical description of scalar mixing in tur-

bulent flows

2.3.1 Statistical description of turbulent flows

Let ui(x, t) be the random velocity field. For a fixed time t = t∗, the velocity
varies randomly with respect to x. For a fixed position x∗, ui is a random
process with respect to t (Pope, 2000). At given time and position, the
velocity component ui is completely determined by the one-point probability
density function (pdf)

fui(vi;x, t)dvi ≡ P {vi ≤ ui(x, t) ≤ vi + dvi} , (2.6)

where vi is the sample space variable for ui, and fui(vi;x, t)dvi is the proba-
bility that ui is in the interval between vi and vi+dvi. With the pdf known,
the mean velocity component is directly given from the mathematical ex-
pectation

ui(x, t) ≡
∫ ∞

+∞

vifui(vi;x, t)dvi, (2.7)
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as well as all higher order statistical moments. It is important to notice
that the pdf does not completely describe the random processes, ui(x, t), in
sufficient detail. The random velocity gradient in the x1 direction defined
by

∂ui(x1, x2, x3, t)

∂x1
≡lim(x1−x∗

1
)→0

ui(x1, x2, x3, t)− ui(x
∗
1, x2, x3, t)

x1 − x∗1
, (2.8)

can for instance not be determined unless we have simultaneous information
from the points (x1, x2, x3) and (x∗1, x2, x3). The general two-point pdf is
defined by

fui,u∗

i
(vi, v

∗
i ;x, t)dvi ≡P {vi ≤ ui(x, t) ≤ vi + dvi}

∩ P {v∗i ≤ u∗i (x, t) ≤ v∗i + dv∗i } .
(2.9)

The fluctuating velocity component in the Cartesian xi-direction is given
from the Reynolds decomposition as

u
′

i ≡ ui − ui. (2.10)

The turbulence energy3 is defined as k ≡ 1
2u

′

iu
′

i (Reynolds, 1895). This
property is exactly given if the one-point velocity pdf (2.6) is known. A
transport equation for the turbulence energy can be derived by applying
the Reynolds decomposition to the momentum equation (2.3) and taking
the average. By this derivation, the dissipation rate of turbulence energy
appears as

ε ≡ τ
′

ij

∂u
′

i

∂xj
. (2.11)

From the discussion above, we realize that an exact representation of this
term requires that the two-point pdf (2.9) is known. Another statistical
property that requires two- or multi-point information is the velocity corre-
lation defined by

Rij(r,x, t) ≡ u
′

i(x, t)u
′

j(x+ r, t). (2.12)

This multi-point correlation function contains information needed to predict
turbulence length scales and the turbulence energy spectrum.

3Often denoted the turbulence kinetic energy
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2.3.2 Statistical description of scalar mixing

We consider a scalar field ϕ(x, t) in a turbulent flow. The flow has strong
influence on the scalar, and we need the joint information of velocity and
scalar fields to describe the random turbulent scalar mixing process. The
one-point joint velocity scalar pdf is defined as

fϕ,ui(ψ,v;x, t)dψdv ≡
P {ψ ≤ ϕ(x, t) ≤ ψ + dψ} ∩ P {vi ≤ ui(x, t) ≤ vi + dvi} ,

(2.13)

where ψ is the sample space variable for the scalar ϕ. fϕ,ui(ψ, vi;x, t)dψ is
the probability that ϕ lies in the interval between ψ and ψ+ dψ and, while
at the same time, ui in the interval between vi and vi + dvi. The one-point
scalar pdf can be found by integrating over the velocity sample space

fϕ(ψ;x, t) =

∫∫∫ ∞

−∞

fϕ,ui(ψ, vi;x, t)dvi. (2.14)

With the pdf known, the mathematical expectation (the mean) of the scalar
can be calculated by

ϕ =

∫ ∞

−∞

ψfϕ(ψ;x, t)dψ, (2.15)

as well as all higher order statistical central moments given by

µr =

∫ ∞

−∞

(ψ − ϕ)rfϕ(ψ;x, t)dψ. (2.16)

The scalar pdf is often far from Gaussian, even in cases when the velocity
field resembles Gaussian shape (Warhaft, 2000). One example is binary mix-
ing in homogeneous turbulence, where the pdf evolves from a non-Gaussian
shaped pdf. One of the major challenges in the modeling of turbulent mixing
is developing models that describe the evolution of the scalar pdf.

A scalar subject to turbulent fluctuations can be decomposed in terms
of its mean and instantaneous value such that ϕ

′ ≡ ϕ − ϕ. Similar to
the turbulence energy, a “scalar fluctuation intensity” equation commonly
denoted the scalar variance (ϕ′2) equation can be derived by applying the
decomposition to the scalar transport equation (2.5). The dissipation rate
of scalar variance is usually referred to as the scalar dissipation rate, and is
defined by

εϕ ≡ 2DM
∂ϕ′

∂xi

∂ϕ′

∂xi
. (2.17)

As for the velocity pdf, neither the one-point scalar pdf (2.14) nor the one-
point joint scalar velocity pdf (2.13) include length-scale information and
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hence no exact estimate of the scalar dissipation rate. This is provided only
by two-point statistics. The scalar spatial autocovariance function, given
by

Rϕ(r,x, t) ≡ ϕ′(x, t)ϕ′(x+ r, t) (2.18)

from spacial points at x and x+r, can be constructed from such information.
Scalar length scales and the scalar power spectrum can be derived from the
autocovariance function (2.18).

2.4 Modeling of scalar mixing and reaction — a

brief review

Modeling scalar mixing in turbulent flows has been a challenge for scientists
and engineers for more than a century. The phenomenon appears within
several fields ranging from atmospheric science; how pollution spreads in
water and air, cloud formation, to engineering applications; in gas turbines,
internal combustion engines, and fires, among several.

In a well macromixed field, scalars are distributed homogeneously on
the larger scale and are independent of x. Hence, the scalar pdf (2.14)
becomes fϕ(ψ;x, t) → fϕ(ψ; t), i.e., independent of x. The scalar mixing
at the smallest scales is directly linked to the scalar variance. A scalar
field that is well micromixed on the molecular level is represented by a pdf
with zero scalar variance (Fox, 2003). These processes are referred to as
macromixing and micromixing, respectively.

2.4.1 Ideal reactor models

An ideal reactor model makes a priori assumptions of the macromixing and
micromixing conditions.

A perfectly stirred reactor (PSR) is a reactor that is both well macro-
mixed and well micromixed (Fox, 2003). The PSR is based on a chamber
with continuous inflow and outflow. In a Lagrangian sense, the entering
fluid elements are mixed infinitely fast with the elements occupying the
chamber. The fluid elements exiting the reactor are picked randomly from
the occupying elements. For an Eulerian description (Turns, 2000), the
reactor is described by a set of ordinary differential equations (ODEs). In
any case, to determine the steady state of the reactor, an average residence
or macromixing time must be provided.

A plug flow reactor (PFR) is a one-dimensional reactor with no interac-
tion between elements along the reactor axis. Locally, the model assumes
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that the individual elements are perfectly mixed. Hence, the reactor is not
macromixed, but perfectly micromixed. The Lagrangian approach to the
PFR consists of fluid elements with no interaction and the same residence
time in the reactor. Following an Eulerian description, the one-dimensional
transport equations for mass, momentum and energy can be written as a
system of ODEs, and readily solved (Turns, 2000).

2.4.2 Zone models

A zone model splits the reactor up in N zones, while interaction between the
zones is given empirically by predefined transport rates (Fox, 2003). The
local micromixing, i.e., internal mixing within zones, cannot be captured by
the zone models. Mathematically, the model can be expressed as a system
of balance equations for each of the N zones

dϕ(i)

dt
=

N+1∑

j=0

(
gjiϕ

(j) − gijϕ
(i)
)
+ ω(i)

ϕ i = 1, ...., N, (2.19)

where gij is the transport rate from zone i to j. The inlet and the outlet
zones are indexed by j = 0 and j = N +1, respectively. Zone models apply
an Eulerian description of fluid elements. The similarities with Computa-
tional Fluid Dynamics (CFD) models are apparent, though some obvious
differences exist. The zones, contrary to grid cells in CFD, are for instance
optimized for scalar transport and reaction regardless of the velocity and
turbulence field. Arbitrary combinations of ideal reactors (PSRs and PFRs)
with predefined transport rates are often used as simple models of combus-
tion systems (Turns, 2000).

2.4.3 Moment methods

Moment methods solve the equations for the first statistical moments. When
Reynolds decomposition and averaging is applied to the transport equation
for a passive reacting scalar (2.5), we get

∂ϕ

∂t
+

∂

∂xj
(ujϕ) =

∂

∂xj

(
DM

∂ϕ

∂xj
− u

′

jϕ
′

)
+ ωϕ, (2.20)

where the turbulence transport and the reaction terms appear unclosed.
The former is usually modeled by a gradient diffusion approach. When
Eq. (2.20) is solved along with the Reynolds-averaged mass and momentum
equations, the computations are referred to as RANS (Pope, 2000).
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In large eddy simulations (LES) the small scale fluctuations are filtered
by solving the filtered transport equations. The filtered scalar transport
equation reads

∂ϕ̂

∂t
+

∂

∂xj
(ûjϕ̂) =

∂

∂xj

(
DM

∂ϕ̂

∂xj
− τ rϕj

)
+ ω̂ϕ, (2.21)

where τ rϕj is the sub grid scale (SGS) unresolved scalar flux. This term is
commonly represented by a gradient model. Even though the large scale tur-
bulence is better resolved in LES than in RANS, all SGS scalar fluctuation
information is lost during the filtering operation (Fox, 2003). The reactions
in turbulent combustion usually take place at the SGS level. Thus, the
challenge of closing the microscale mixing and reaction remains a challenge
for LES as well as for RANS.

A closure of the reaction term is generally given by

ωϕ =

∫
...

∫
ω(ψ, ..., ...)f(ψ, ..., ...)d...dψ. (2.22)

With the probability density function f known, the mean source term is
given4. Presumed pdf methods assume the shape of the pdf a priori. The
pdf is usually parameterized by the first and second moments. As pointed
out in Sec. 2.3.2, the scalar dissipation rate is an important parameter in
the closure of the second moment equation. The simplest presumed pdf
methods assume infinitely fast chemistry, hence ω and f are functions of a
single parameter (Warnatz et al., 2001). Flamelet models for non-premixed
combustion also prescribe the pdf in (2.22), but ω and f are functions of
the mean mixture fraction and scalar dissipation rate (2.17), thus, taking
finite-rate chemistry effects into account (Veynante and Vervisch, 2002).

The eddy dissipation concept (EDC) by Magnussen (1976), see also
Ertesv̊ag and Magnussen (2000), or simpler eddy breakup type of mod-
els (Veynante and Vervisch, 2002) are other approaches to the closure of
the mean reaction term. They are based on the assumption that the chem-
ical reactions occur in regions where the turbulence dissipation takes place.
Thus the mean reaction rate is ultimately governed by the scalar dissipation
rate.5 The original versions of these models employ fast chemistry, which
essentially means that the species in the mixed regions react immediately.
A more recent version of EDC (Gran, 1994) avoids this mixed-is-burned

4The term ω(ψ, ..., ...) is generally given by the chemical mechanism applied, and ac-
curate representation of this term is usually more a cost than a modeling issue.

5In EDC, the limiting species in the reactions are also an important parameter.
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assumption by considering the mixed regions to be PSRs and including
detailed chemistry.

Conditional moment closure (CMC) is yet another type of moment clo-
sure (see Klimenko and Bilger (1999) for a review). It has been experimen-
tally observed that the mean scalar (species mass fraction) conditioned on
the mixture fraction has relatively small fluctuations around the mean (Fox,
2003). This is utilized to derive equations for mean scalars conditioned on
mixture fraction. A certain resolution is required in mixture fraction space6

in order to provide sufficient precision (Veynante and Vervisch, 2002). Clo-
sures for the convective and the micromixing terms and the conditional
scalar dissipation rate are necessary as input to the model. The mixture
fraction pdf must generally be presumed.

The scalar dissipation rate, which needs two-point pdfs for accurate
description, is a central part in the closures for the reaction term in most
modeling approaches. Usually, the scalar dissipation rate is modeled to be
proportional to the turbulence dissipation rate. Many of the models for the
mean chemical source term can essentially be considered as mixing models.
In the next section we will see that the scalar dissipation rate is crucial also
to the modeling of the scalar micromixing.

2.4.4 Pdf transport methods

Pdf transport models combine the exact closure of the chemical source term
with a closure for the turbulence field (Pope, 1985). While simpler models
apply Eqs. (2.15) and (2.16) and assume the shape of the pdf a priori, this
approach solves the pdf itself. Statistics that are computed with the moment
methods can be recovered once the pdf and the functional dependences of
ψ are known.

For simplicity we consider the one-point scalar pdf transport equation
which can be deduced from the scalar transport equation. Following Pope
(2000) the equation reads

∂fϕ
∂t

+
∂

∂xj
[fϕuj ] +

∂

∂ψ
[fϕω(ψ)] =

∂

∂xj

[
fϕ (uj |ψ)

]
+

∂

∂ψ

[
fϕ

(
DM

∂ϕ

∂xi

∂ϕ

∂xi

∣∣ψ
)]

.

(2.23)

The terms on the left hand side of the equation appear in closed form. Note
that this also implies the reaction source term. However, the right hand side

6One equation set of conditional means is needed per node in mixture fraction space.
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terms need closure. The first term, which is the evolution of the pdf due to
the conditional velocity fluctuations, is often modeled by a gradient diffusion
model. The gradient diffusion assumption can be avoided by introducing
an equation for the joint velocity-scalar pdf (2.13). The second term is
essentially the scalar dissipation conditioned on the scalar itself. This term
represents the micromixing.

2.4.5 Micromixing models

Several micromixing models have been developed to close the last term in
Eq. (2.23). These comprise both deterministic and stochastic models. An
overview of the most commonly used is given below.

Subramaniam and Pope (1998) list a number of performance criteria for
micromixing models, which essentially are summarized in the following list.

(1) Mean values should be preserved and the modeled mixing should result
in decay of all variances.

(2) Scalar values should not travel out of their bounds in composition
space, i.e., boundedness.

(3) A set of passive scalars should evolve independently.

(4) The scalar pdf should relax to a Gaussian in homogeneous turbulence.

(5) Fluid elements that are separated in composition space should not
mix, i.e., localness.

(6) Differential diffusion effects should be taken into account.

(7) The mixing should be dependent on turbulence length scales.

Consider a reactor with a number of stochastic fluid elements which in-
teract by some mixing process. This is commonly referred to as a partially
stirred reactor (PaSR) (see e.g. Correa (1993)). The Curl’s model, for in-
stance described in Subramaniam and Pope (1998), is a stochastic mixing
model that mixes pairs of fluid elements by first randomly selecting the el-
ements to be mixed and secondly equalizing the content in the elements by
linear combination. The events are sampled by a rate given as the inverse
ratio of the mixing time, τm. The mixing time is defined by the ratio of
the scalar variance to the scalar dissipation rate (Fox, 2003), but is often
modeled to be proportional to the turbulence time scale as follows

τm ≡ ϕ′2

εϕ
∼ k/ε. (2.24)
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The interaction by exchange with the mean model (IEM) by Dopazo
(1975) is another mixing model for the PaSRs, where the fluid elements mix
by relaxing toward the mean. A given set of fluid elements ϕ(n) evolves by

dϕ(n)

dt
∼ − 1

τm
(ϕ(n) − ϕ), (2.25)

where ϕ is the mean over all fluid elements. Even though the IEM model
in the PaSR context has some random components, it is considered deter-
ministic due to the nature of Eq. (2.25).

The IEM and the Curl’s mixing model satisfy the criteria no. (1) (2),
and (3) above. In homogeneous turbulence, the IEM leaves the shape of the
pdf unchanged, and the Curl’s model approaches a non-Gaussian pdf (Fox,
2003). Neither of the models take localness (5) into consideration; however,
the effect with the Curl’s model where fluid elements are mixed instanta-
neously is more severe. Differential diffusion effects for IEM is treated in
Chen and Chang (1998). The dependence of length scales (7) is not met by
the models.

The Euclidean minimum spanning tree (EMST) mixing model by Sub-
ramaniam and Pope (1998) takes localness into account by only allowing
mixing between fluid elements that are local in composition space. How-
ever, the model does not comply with the criterion (7).

In general, the IEM, the Curl’s model and the EMST have shortcom-
ings in their description of scalar mixing. In addition to the criteria listed
above that are not met, none of the models distinguish between the diffusive
molecular mixing and the advective turbulent stirring, which are completely
different physical phenomena. A mixing time scale must be provided to all
models, and the time scale is a function of the scalar dissipation rate.

2.4.6 LEM in relation to the mixing models

The Linear Eddy Model (LEM) is not a mixing model for pdf transport
models per se, but rather an advection model where the modeling of molec-
ular mixing and chemical reactions is rendered unnecessary due to the res-
olution of the small scales in 1D. By its construction, LEM meets all the
criteria stated in the previous section. Concerning localness, LEM is local
in the 1D physical space, which is physically more appealing than relating
localness to composition space. One of the most important additional fea-
tures is that LEM takes into account the effect of turbulence mixing length
scales, and that molecular mixing and turbulent stirring are treated explic-
itly as distinct processes. Single- and multipoint moments of any order,
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probability density functions (joint scalar) and conditional statistics can be
extracted from LEM simulations. However, unless LEM is replaced by ODT
(see Sec. 1.1 for a brief description), the scalar dissipation rate is needed as
input also to the standalone LEM indirectly through the turbulence viscos-
ity. LEM represents the microscale and mesoscale7 mixing. Description of
macroscale structures needs special adaptation or coupling to flow solvers.

2.5 Phenomenology

This section reviews a few of the classical phenomenological analyses of
turbulence and turbulent mixing relevant to the numerical tests given in
later sections and the derivation of LEM.

2.5.1 The spectrum of turbulence scales

The hypotheses of Kolmogorov are based on turbulent flows at high Rey-
nolds numbers. Kolmogorov’s hypotheses state that the smaller (fast) eddies
in turbulence are isotropic and statistically independent of the larger (slow)
eddies or the mean flow (Kolmogorov, 1941). The smaller eddies exists in
equilibrium with the energy supplied from larger scales and the energy dis-
sipated by the fluid viscosity. Hence, these scales are defined to be in the
universal equilibrium range. The inertial subrange contains the eddies that
are much smaller than the large turbulence structures, but still much larger
than the diffusive scales. Thus, the inertial subrange turbulence is only de-
pendent on the energy transfer from larger scales. Kolmogorov also assumes
that the dissipation of turbulence energy occurs mainly at the smallest dis-
sipative scales, denoted the Kolmogorov scales. From the hypotheses and
dimensional analysis it follows that the Kolmogorov length scale is

η ≡
(
ν3

ε

)1/4

. (2.26)

Similar expressions can be written for the time and velocity scales (see
e.g. Tennekes and Lumley (1972)).

The energy is transferred from the largest to the smallest scales through
a spectrum of scales. If we assume that all energy dissipation occurs in the
dissipative range, the energy dissipation at the Kolmogorov scales equals
the energy transfer from the largest scales. The energy transfer can be

7Here meaning the large, but not the largest scales.
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estimated as

ε ∼ u
′2

τt
∼ u

′3

lt
, (2.27)

where the large eddy turnover time is τt = lt/u
′

, and lt is the integral scale.
If we combine the equations (2.27) and (2.26), an expression for the

relation between the Kolmogorov and integral scales appears as

η

lt
∼
(
u

′

lt
ν

)−3/4

= Re
−3/4
t , (2.28)

where Ret is the turbulence Reynolds number. By dimensional analysis
(Tennekes and Lumley, 1972; Ertesv̊ag, 2000) we can show that the energy
spectrum of turbulent eddies scales as

E(κ) ∼ ε2/3κ−5/3, (2.29)

where κ is the wavenumber which is proportional to a turbulence length
scale l−1. Equation (2.29) is commonly referred to as the Kolmogorov’s 5/3
law. Similarly, we can estimate the scaling of the turbulence viscosity to

νt(l) ∼ ε1/3l4/3. (2.30)

The latter is a central assumption in the derivation of the eddy distribution
in LEM (Kerstein, 1991b).

When the Reynolds or Peclet numbers are large, the scalar structures,
like the turbulence eddies, are distributed on a spectrum of scales. The
stretching and folding of the scalar field occur at the large scales, while
the enhanced gradients are smoothed out by the molecular diffusion at the
small Kolmogorov or Batchelor8 length scales (Fox, 2003). In this picture,
the dissipation rate of scalar variance is independent of molecular diffusion
and inversely proportional to the eddy turnover time; εϕ ∼ ϕ′2/τt. Years
of investigations have revealed that the phenomenon of scalar mixing poses
great challenges and that this simplified picture is insufficient. The scalar,
normally introduced on a single length scale, is subject to turbulent stirring
that acts over a wide range of length scales. Further details on this subject
will not be elaborated here. Good reviews are provided by Shraiman and
Siggia (2000); Warhaft (2000, 2002) among several. This work focuses on
the gross characteristics of scalar mixing. The two next sections present
classical scalar mixing situations, which have been studied in this work and
are reported in the Chapters 6 and 8.

8The Batchelor scale ηϕ is related to the Kolmogorov scale by the Schmidt number
(Tennekes and Lumley, 1972).
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2.5.2 Scalar dispersion in isotropic turbulence

Stationary isotropic turbulence is invariant to translation, rotation or reflec-
tion of the coordinate system (Kolmogorov, 1941). The canonical flow has
been thoroughly investigated since the early days of turbulence research.

Dispersion of scalars in isotropic turbulence undergoes basically three
regimes of spreading as a function of distance from the source. The ana-
lytical description of this phenomenon was first presented in Taylor (1922)
and later reviewed in Taylor (1935), Tennekes and Lumley (1972), and Pope
(2000), among several. The first and last regimes are governed by diffusive
growth, while in the second this growth is scaling by the size of characteris-
tic eddies. In the molecular diffusive regime, which is on a time scale of the
order of Kolmogorov time, the turbulence has no time to act on the scalar,
and the spreading is governed by molecular diffusion only. In this regime
the spreading of the mean scalar field is given by

σ ∼
√
2DMt, (2.31)

where σ indicates the width of the scalar plume or the standard deviation
if the scalar follows a Gaussian shaped curve.

In the turbulent convective regime, the fluid elements are correlated and
the spreading of the mean scalar field scales linearly with t by

σ ∼ u
′

t. (2.32)

In the turbulent diffusive regime, the time from the scalar release is much
larger than the eddy turnover time τt and the fluid elements are completely
uncorrelated. This gives that the mean scalar field spreads with the square
root of the time by

σ ∼
√
2u′2τtt ∼

√
2DTt. (2.33)

Details in the derivations are outlined in Pope (2000). This tri-partition of
the growth has been verified in experiments by for instance Warhaft (1984).
The mean square displacement of a fluid element subject to random motion
follows the scaling (2.33), given that the diffusive time is large compared to
the time it takes to travel the distance of one typical displacement (Hinze,
1975).

The simplest solution to the unsteady diffusion equation (Eq. (2.5) with-
out the convective or the source term) is a Gaussian function. Experiments
have verified that the mean scalar distribution of point sources in isotropic
or homogeneous turbulence is nearly Gaussian even in the regimes close to
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the source (Tennekes and Lumley, 1972). It can be shown that the distri-
bution of fluid elements subject to random motion also follows Gaussian
behavior (Hinze, 1975).

2.5.3 Passive scalar mixing in turbulent jets

Experiments show that axisymmetric turbulent jets spread linearly with ax-
ial distance from the origin (Tennekes and Lumley, 1972). In a turbulent
round jet, the velocity fluctuations also decay with x−1 (Pope, 2000), so the
ratio of velocity fluctuations to the mean velocity approaches a constant
value. There are experimental evidences that the mean scalar, sufficiently
far from the scalar source, decays roughly in the same way as the veloc-
ity (see for instance Villermaux and Innocenti (1999); Panchapakesan and
Lumley (1993b)). However, the lateral profiles for the mean scalar is nor-
mally wider than the mean velocity. In an axisymmetric round air jet,
the turbulence viscosity to the turbulence diffusivity, denoted the turbu-
lence Schmidt number, is approximately 0.7. This result is supported by
a number of experiments (see e.g. Panchapakesan and Lumley (1993b) and
references therein).

The profiles of the scalar variance are reported to be comparable to those
of the velocity fluctuations. However, the spreading of the scalar variance
is somewhat wider, and the off-axis peak in the lateral profiles is more clear
(Panchapakesan and Lumley, 1993a). In the previous citation, the eddy
turnover time is measured and estimated to be 1.5 times larger than the
mixing time scale (2.24), which implies that the scalar fluctuations decay
somewhat faster than the turbulence itself.
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Chapter 3

The governing models

The concept of Reynolds-averaged Navier-Stokes (RANS) modeling was in-
troduced in Sec. 2.4.3. Here, we review the model equations that are applied
in the present work, including the model equations related to the linear eddy
model (LEM), and a conceptual scalar transport equation for the three-array
structure of LEM domains.

3.1 RANS equations

Density fluctuations arise in reacting flows with non-isothermal reactions. If
regular Reynolds averaging is applied to the transport equations, correlation
terms between density and other properties cause undesirable modeling and
computational difficulties (Poinsot and Veynante, 2001). By introducing
density-weighting or Favre-averaging (Warnatz et al., 2001) we avoid these
problems. The Favre-decomposition of a scalar ϕ is given by

ϕ = ϕ̃+ ϕ
′′

, (3.1)

where the Favre-average is

ϕ̃ ≡ ρϕ

ρ
, (3.2)

and ϕ
′′

is the fluctuation of ϕ about the Favre-average. The Favre-average
is interpreted as a time average for steady state solutions, or an ensemble
average for time varying RANS computations (Ferziger and Peric, 2002).

27
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3.1.1 Conservation of mass

Introducing the Favre-decomposition in the mass conservation equation (2.1),
we get after averaging

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0. (3.3)

No additional modeling is required for this equation.

3.1.2 Conservation of momentum

Neglecting body forces in Eq. (2.3) and introducing the Favre-decomposition
as above, we get after averaging

∂

∂t
(ρũi)+

∂

∂xj
(ρũiũj) = − ∂p

∂xj
+

∂

∂xj

(
ρν

(
∂ũi
∂xj

+
∂ũj
∂xi

− 2

3

∂ũk
∂xk

δij

)
− ρu

′′

i u
′′

j

)
,

(3.4)

where the last term on the right hand side represents the turbulence stresses.
The eddy viscosity/diffusivity assumption, put forward by Boussinesq in
1877 (see e.g. White (1991)), states that the turbulence flux can be modeled
as an additional eddy viscosity νt. Hence, the unclosed term is expressed in
terms of the known mean quantities, and the model equation becomes

∂

∂t
(ρũi)+

∂

∂xj
(ρũiũj) = − ∂p

∂xj
+

∂

∂xj

(
ρ(ν + νt)

(
∂ũi
∂xj

+
∂ũj
∂xi

− 2

3

∂ũk
∂xk

δij

)
− 2

3
ρkδij

)
,

(3.5)

where k here is the Favre-averaged turbulence energy. The turbulence vis-
cosity is modeled as a product of a characteristic turbulent length and ve-
locity scale. By introducing the Favre-averaged turbulence dissipation ε the
turbulence viscosity by dimensional consideration reads

νt = cµ
k2

ε
. (3.6)

The model constant cµ is empirically estimated to 0.09 by considering tur-
bulence stresses in the near wall region (Ertesv̊ag, 1991). The turbulence
viscosity can be determined by solving an equation for the turbulence en-
ergy and the turbulence dissipation rate, i.e., the k-ε-model. More accurate
approaches that omit the Boussinesq assumption can also by applied1, but
are not considered in the present work.

1Higher moment closures such as e.g. Reynolds Stress Models (RSM), see for instance
Launder (1989)
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3.1.3 Turbulence scalar transport

The Favre-averaged scalar transport equation (2.4) is given by

∂

∂t
(ρϕ̃)+

∂

∂xj
(ρũjϕ̃) =

∂

∂xj

[
ρDM

∂ϕ̃

∂xj
− ρu

′′

jϕ
′′

]
+ ρωϕ +

∂

∂xj

[
DMρ

′
∂ϕ′′

∂xj

]
,

(3.7)

where the latter term usually is neglected in modeling. Since we in this work
only consider transport of conserved scalars, the reaction term is omitted

in the following. The turbulence flux −ρu′′

jϕ
′′ in the above equation is

unclosed. Following Boussinesq, the turbulence flux is modeled as an addi-
tional diffusivity DT which gives

∂

∂t
(ρϕ̃) +

∂

∂xj
(ρũjϕ̃) =

∂

∂xj

(
ρ(DM +DT)

∂ϕ̃

∂xj

)
. (3.8)

By the Boussinesq assumption, the molecular and turbulence diffusivity
contributes to the same gradient transport. Hence, the molecular contribu-
tion, even though crucial in the real scalar mixing process, becomes insignif-
icant since DT ≫ DM. If we assume equal molecular diffusion coefficients
for all scalars, it follows that

DM +DT =
ν + νt
σt

, (3.9)

where σt is the turbulence Schmidt-number. For the moment-method in
this work, we assume that the molecular and turbulence Schmidt-numbers
are equal (Sc = σt).

3.1.4 Model equation for the scalar variance

A scalar variance (ϕ′2) equation can be derived by applying the Favre-
decomposition to the scalar transport equation (2.4), multiplying the equa-
tion with the scalar fluctuation itself and taking the average. Hence, the
transport equation for the Favre-averaged scalar variance is given as (Fox,
2003)

∂

∂t
(ρϕ̃

′′
2)+

∂

∂xj
(ρũjϕ̃

′′
2) =

∂

∂xj


ρ(ν + νt)

σt

∂ϕ̃
′′
2

∂xj


+

2
ρ(ν + νt)

σt

∂ϕ̃

∂xj

∂ϕ̃

∂xj
− 2

ρν

σt

∂ϕ′′

∂xj

∂ϕ′′

∂xj
.

(3.10)
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The last two terms on the right hand side are the rate of production and
dissipation of the scalar variance2, respectively. The former term is closed
by applying a gradient transport assumption, while the latter is modeled
by considering the scalar variance to decay with the mixing time scale. The
mixing time scale is assumed to be proportional to the turbulence time scale.
This gives

2
ρν

Sc

∂ϕ′′

∂xj

∂ϕ′′

∂xj
=
ρϕ̃

′′
2

τm
= Cϕρ

ε

k
ϕ̃

′′
2, (3.11)

where Cϕ is a case dependent constant commonly adopted to be Cϕ = 2,
but generally varies for different flow configurations (Pope, 2000). Applying
the expression for the rate of turbulence energy dissipation

ε = c3/4µ

k3/2

lt
, (3.12)

which is derived in (Ertesv̊ag, 2000), and combining it with the expression
for the turbulence viscosity, it follows that the dissipation rate term in
Eq. (3.10) is proportional to

ε

k
∼ νtl

−2
t . (3.13)

Hence, if the turbulence viscosity is a given constant, the scalar dissipation
rate is in inverse ratio to the square of the integral scale according to the
model above.

3.2 The Linear Eddy Model

The Linear Eddy Model developed by Kerstein (1991b) is, unlike the Navier-
Stokes equations, based on a phenomenological description of turbulent
mixing. The modeled turbulent convective stirring constitutes a cascade
of rearrangement events that continuously compress scalar gradients and
increase the number of iso-scalar interfaces along a line of sight. The turbu-
lent stirring enhances molecular mixing, which is a prerequisite for complete
mixing and chemical reactions in reacting flows.

In contrast to the traditional models for mixing and reaction in turbu-
lent flows, briefly presented in the previous chapter, LEM has the appealing
feature that no modeling is needed for the molecular mixing and chemi-
cal reactions due to the fine resolution. This is rendered affordable due to

2The scalar dissipation rate
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the reduced description of turbulent stirring and molecular mixing in one di-
mension. Another appealing aspect of LEM is that the turbulent convective
stirring and diffusive molecular mixing are treated as distinct processes.

LEM provides multi-point statistics along the 1D domain, which allows
for extended analyses of the scalar field. The following sections present the
most commonly used standalone version of LEM. An outline of the previous
works is given in Sec. 1.2, and the discrete implementation is outlined in
Sec. 4.3. Since complete descriptions of LEM are given elsewhere (Kerstein,
1991b, 1992b), only a brief introduction is given here. Further details of the
numerical implementation of LEM is given in Sec. 4.3.

3.2.1 Model description

The molecular mixing and chemical reactions are resolved on a one-dimen-
sional domain. This implies that the numerical grid on which the reaction-
diffusion equation is parameterized should have a resolution on the order of
the Kolmogorov or Batchelor scales. The one-dimensional constant density
scalar diffusion equation is written

∂ϕ

∂t
=

∂

∂x

[
DM

∂ϕ

∂x

]
. (3.14)

LEM is not limited to conserved scalars, and the equation above may
also contain reaction source terms. For a detailed chemical representation,
Eq. (3.14) can represent mass fraction and energy transport (Sankaran and
Menon, 2000). However, since only conserved scalars are considered in the
present work, the reaction term is omitted.

The turbulent convective stirring is treated separately by the randomly
implemented rearrangement or mapping events. These events are deter-
mined by three elements; the rate of mapping events, the distribution of
mapping sizes, and the spatial distribution of event locations. In addition,
a mapping scheme for the rearrangement events must be chosen.

Early versions of LEM use the block inversion scheme, which represents
the turbulent stirring of the scalar field by simply mirroring the scalar profile
about the mapping center (Kerstein, 1988, 1989, 1990). One major artifact
of this mapping scheme is that it introduces discontinuities at the ends of
the event. In Kerstein (1989) the block inversion events are sampled from
a distribution.

The triplet map, first introduced by in Kerstein (1991b), creates three
copies of the scalar field over the span of its size, compresses these copies by
a factor of three, and then inverts the center copy. This operation emulates
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qualitatively the compressive strain and the increase in scalar interface cross-
ings caused by the turbulence. Figure 3.1 illustrates the effect of a triplet
map on a linear scalar gradient.

After the event
Before the event

Figure 3.1: The figure illustrates a continuous linear scalar gradient before and
after a triplet map has been applied to it.

Following the steps generally described in Appendix A, an expression
for the turbulence diffusivity is derived as

DT =
2

27
λ

∫ L

η
l′3f(l′)dl′, (3.15)

where λ is the event frequency parameter, which is the frequency of re-
arrangement events per unit domain length, and L is the size of the largest
implemented mapping event, also denoted the model integral scale. The size
of the rearrangement events is determined using the Kolmogorov scaling
for inertial range turbulence. Hence, the turbulence diffusivity induced by
eddies on the order of l scales as DT ∼ l4/3, following Eq. (2.30). It is
important to note that the model is generally not restricted to the Kolmo-
gorov scaling applied here, meaning that other scaling exponents than 4/3
might be applied. From the 4/3 scaling law and Eq. (3.15), the event size
distribution is determined to

f(l) =
5

3L

1

(L/LK)
5/3 − 1

[
l

L

]−8/3

, (3.16)

by normalization to one. Here, LK is the size of the smallest implemented
triplet map, corresponding to the physical Kolmogorov scale. The size of
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the rearrangements is confined to the interval LK < l < L and is generally
sampled from the expression above.

By combining Eq. (3.15) and (3.16), the expression for the event fre-
quency parameter follows as

λ =
54

5

DT

L3

[
(L/LK)

5/3 − 1
]

[
1− (LK/L)

4/3
] . (3.17)

The distribution of spatial event locations is generally uniform, but dif-
ferent distributions can be employed to reflect various flow configurations.
In this work (Sec. 4.3.2), the spatial event distribution mimics the spatial
variation in turbulence diffusivity.

3.2.2 The LEM model constants

Since the model integral scale L, which is used to determine the distribution
(3.16) and rate (3.17) of mapping events, is the largest possible eddy and
not defined to be equal to the physical integral scale lt, it is scaled by a
factor of order unity. For a line source experiment by Warhaft (1984), this
factor was set to L/lt = 5.6 to match second order moments with data
(Kerstein, 1992b). Simulations of a reacting mixing layer, presented in the
same paper, yielded a factor of 2.5.

The second empirical relation is a tuning of the molecular Schmidt num-
ber, which determines the viscous cut-off of the small scale eddies. The
factor ScS = 0.51Sc, where ScS is the model Schmidt number, is based on
numerous comparisons of measured and simulated spectral properties (see
in general Kerstein (1991b)). Note that this only applies to the spectral
properties, i.e., the viscous cut off, and does not affect the relation between
molecular and turbulence transport by Eq. (3.9).

3.2.3 Input to LEM

In addition to the constants mentioned above and the scaling exponent
of the inertial range, there are three necessary input parameters to LEM,
namely the turbulence diffusivity DT, the molecular diffusivity DM, and the
model turbulence integral scale L. The model Kolmogorov length scale is
estimated from the model analog to Eq. (2.28), given as

LK = Re
−3/4
S L, (3.18)

where ReS is the model Reynolds number given by ReS = Pe/ScS, and the
Peclet number is Pe ≡ DT/DM.
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3.3 Scalar evolution in the model framework

This section anticipates the presentation of the LEM3D implementation in
Chapter 4 by presenting the transport equation for the three-array struc-
ture of LEM domains. In addition, the basis for the Lagrangian fluid cell
transport is outlined.

3.3.1 Conceptual transport equation

The scalar transport equation for three-dimensional LEM evolution, which
in principal represents the scalar transport equation (2.4), can conceptually
be written as

∂

∂t
(ϕ)j +ADV + EXP + T Mj =

∂

∂xj

[
DM

∂ϕ

∂xj

]
, (3.19)

where the index j indicates that the terms are implemented on 1D LEM
domains in three directions. Note that conventional summation over the
repeated index j is not implied for the right hand side term. The molecular
diffusion part is solved directly in 1D along the individual LEM domains.
The diffusion process is punctuated by stochastic triplet map events T Mj

implemented on the same domain. The advection process ADV is governed
by a velocity field, which is prescribed from flow solvers, measurements or
analytical expressions. The advection is implemented deterministically by
Lagrangian displacement of fluid cells. This process involves intersecting
domains. The heat release EXP is determined by the condition in each
LEM fluid cell, however, the dilatation involves intersecting domains. The
stochastic stirring and mixing process is the precursor for chemical reactions
and heat release. Hence, the heat release and dilatation exhibit random
behavior.

3.3.2 Scalar advection by the Lagrangian approach

A fluid particle is by definition a point that moves with the fluid (Pope,
2000). Let X0 or X0

i be the position of a particle at a reference time t0. At
the time t the particle has moved to the position X

+(t,X0). The position
X

+ or X+
i is now defined by the reference position

X+
i (t0,X0) = Xi, (3.20)

and the incremental change in position due to the flow velocity

∂X+
i (t,X0)

∂t
= ui(X

+, t), (3.21)
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where ui(X
+, t) is the local velocity.

The Lagrangian field is indexed by the initial position of the particle
and the elapsed time, and is defined in relation to its Eulerian counterpart
as

ϕ+(t,X0) ≡ ϕ(X+(t,X0), t). (3.22)

Hence, ϕ is given if X+(t,X0) is known. For this reason, only Eq. (3.21)
needs to be time integrated in order to determine the scalar field.

It can be shown, by taking the partial time derivative of the rela-
tion (3.22) and applying the chain rule, that the partial time derivative of
ϕ+ is the material derivative of ϕ (Pope, 2000). This implies that the scalar
value for a given particle ϕ+ is unchanged during advection advancement.
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Chapter 4

Implementation of LEM3D

4.1 Introduction

Turbulent stirring, molecular mixing and chemical reactions are treated as
distinct processes in LEM. Molecular mixing and chemical reactions appear
in closed form due to the resolution of Batchelor scales, and are implemented
deterministically by solving the appropriate reaction-diffusion equations.
The LEM3D has been developed guided by the principle of maintaining the
distinctive feature of LEM. As a consequence, scalars are not mixed at the
molecular level by any other process than molecular diffusion, which rules
out Eulerian treatment of advection and dilatation.

This chapter presents the framework for a three-dimensional scalar mix-
ing model with LEM as the building block. The model, which is denoted
LEM3D for further reference, constitutes a three-array structure of LEM
domains. The structure is similar to the ODTLES that is presented in
Schmidt et al. (2008); Kerstein (2009), however with two major differences.
LEM instead of ODT is used as the model building block, and advection
and dilatation are based on Lagrangian fluid cell displacements instead of
Eulerian finite differencing across fluid cell boundaries. The model is solely
a scalar transport, mixing and reaction model. Hence, the velocity and tur-
bulence diffusivity fields must be provided from elsewhere. In general, they
can be provided from measurements or from any simulation tool giving the
average velocity and turbulence field.

The presented framework and methods utilized for treating advection
and dilatation represent one of several options for implementation. Alter-
native approaches are not considered in the present chapter. All LEM3D
elements described were implemented in the Fortran programming language.
Data visualization in Chapters 5 through 8 was set up using Tecplot (2009).

37
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4.2 The three-array structure

The standalone LEM operates only in one dimension along a line of sight
through the domain of interest. Here we assume that the one-dimensional
standalone LEM domain occupies a volume. Thus, it is discretized by wafer-
shaped control volumes with thickness ∆xw and square cross sectional area
∆y ×∆z as shown in the left part of Fig. 4.1.

The domain of interest is assumed to be a cuboid of dimensions X, Y
and Z. A finite number of LEM domains in the x-direction are arranged
in a stack so that they span the domain, as indicated in the right part of
Fig. 4.1. The total number of LEM domains in the stack is Ny ×Nz where
Ny = Y/∆y and Nz = Z/∆z, respectively.

∆z

X

∆xw

Z

Y

Figure 4.1: Left: A single stand-alone LEM domain discretized by wafers in the
x-direction. Right: Ny × Nz such domains are arranged in a stack spanning the
domain of interest.

Stacks that resolve the same domain of interest in the y and z-directions
are constructed in similar manner with ∆z = ∆y = ∆x, Nx = X/∆x,
and Ny and Nz as given above. The supergrid, which is defined by the
boundaries between orthogonally intersecting LEM domains, is a three di-
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mensional regular Cartesian grid (see Fig. 4.2) and the cubical control vol-
umes in this grid are denoted 3DCVs. A similar structure is described in
Kerstein (2009). Further details, which are described here, were developed
by Kerstein et al. (2005-2006).

3DCV

3DCV

LEM z-domain

LEM y-domain

LEM x-domain

Figure 4.2: The domain of interest is resolved by three stacks of LEM domains
that are resolved by wafers in the x, y and z-direction, respectively. The 3DCVs
are the cubical control volumes in the supergrid that is defined by the intersecting
boundaries between LEM domains.

Since the 3DCVs are cubical by construction, the side face lengths are
in the following described by ∆x only. Further, M denotes the number of
wafers resolving the 3DCV in each direction. This is in the following referred
to as the 1D-resolution, which also is the same in the three directions. The
thickness of the wafer is given by ∆xw = ∆x/M . This smallest model
scale is typically on the order of the Kolmogorov or Batchelor scales. The
subdivision of the domain in 3DCVs is denoted the 3D-resolution. The
3DCV side lengths ∆x should be large for computational efficiency, but
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small enough to represent the mean flow scales with sufficient resolution.

The scalar processes of LEM3D generally take place on two levels. First,
the molecular diffusion, chemical reactions and triplet map stirring are im-
plemented on the individual LEM domains independently of the processes
on the other domains. The mean flow advection, the thermal expansion
and the auxiliary coupling on the other hand involve domains in all three
directions. These processes are therefore treated on a 3DCV basis, meaning
that the parts of the three intersecting LEM domains that span a 3DCV
are considered simultaneously.

The three orthogonal stacks of LEM domains are three individual rep-
resentations of the computational volume that are advanced concurrently.
Hence, the superposition of stacks will constitute three times the amount of
all extensive properties within the domain of interest. This implies that the
overall transport rates must be multiplied with a factor 3 in order to accom-
modate the specific given rates. For example, since the 3DCV constitutes 3
times the mass, the maximum mean velocity used to prescribe the advection
advancement in LEM3D is 3 times the physical mean velocity. This gives
the correct specific flow rate (ρu). The molecular mixing is represented on
each domain separately, so the molecular diffusivity is not altered by the
factor 3. The turbulence diffusivity in Eq. (3.17) is also multiplied by the
factor 3, however, we apply the non-altered DT to estimate the Kolmogorov
scale cut-off of the eddy size distribution.1

The three-array structure is particularly suited for parallel computing.
With multi-component species diffusion and reaction, the processes on the
individual LEM domains will by far be the most time consuming part of
the model.

4.3 The LEM processes

This section describes the processes that take place on the individual LEM
domains. Except for some minor differences and adjustments, this is equiv-
alent to the standard LEM as it is presented in e.g. Kerstein (1991b).

4.3.1 The diffusion equation

This section concerns solving the transient non-reacting diffusion equa-
tion (3.14) on the 1D LEM domains. In this work, the molecular diffusion

1That is, we apply the original Peclet/Reynolds-number in the expression LK =

Re
−3/4
S L.
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equation is solely applied to passive non-reacting scalars. A brief presenta-
tion of the reacting approach is given in Sec. 4.3.3.

The properties of the wafers are defined at the wafer center. The tran-
sient term is approximated using the first order forward Euler (explicit)
scheme. Second order numerical accuracy is ensured for the diffusion term
by applying central schemes on the regular grid.2 By integrating the diffu-
sion equation (3.14) with the schemes as mentioned, we get the following
set of algebraic equations

ϕi = CFLϕ0
i−1 + ϕ0

i (1− 2CFL) + CFLϕ0
i+1, (4.1)

where CFL is the Courant-Friedrichs-Lewy number given as

CFL =
DM∆tw
(∆xw)2

, (4.2)

and ∆tw is the molecular diffusive time step. The equation set (4.1) is solved
directly with the requirement that CFL ≤ 0.5 for numerical stability.

Alternatively, if a first order forward Euler (implicit) scheme approxi-
mates the transient term, the equations becomes a tridiagonal linear equa-
tion system

−CFLϕi−1 + ϕi (1 + 2CFL)− CFLϕi+1 = ϕ0
i . (4.3)

This equation system must be solved by direct or iterative methods. In this
work, the Tridiagonal Matrix Algorithm (TDMA) direct method is used.
The implicit scheme is unconditionally stable for any CFL-number, but
the time accuracy is reduced by increasing time step. The explicit scheme
was generally used for the simulations in Chapter 6 and 8. No significant
difference was found between the two schemes for these cases.

4.3.2 Stirring by triplet map events

The turbulent stirring is implemented by randomly selected rearrangement
events or triplet maps. As mentioned previously, there are three parameters
that determine a triplet map on the LEM domain: The time when the event
is occurring, the size of the mapping, and the location of the event on the
domain.

When the turbulence diffusivity is uniform, the location is sampled from
an even distribution. The turbulence diffusivity extracted from RANS or
measurement data generally varies in space. This is represented in LEM3D

2Finite volume and finite difference methods are equivalent on the regular grid.
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by associating a turbulence diffusivity DT with each of the 3DCVs. The
position of the triplet map is now sampled in two steps as follows. First,
the 3DCV, in which the center of the triplet map should be located, is
sampled from a cumulative probability distribution function that represents
the distribution of DT across the LEM domain. Secondly, the exact position
of the triplet map center within the 3DCV is sampled with equal probability.

The triplet map operation first creates three copies of the scalar domain
that it covers. Then it compresses the copies by a factor of 3 and finally
inverts the middle copy. When the discrete triplet map is applied to a seg-
ment, which is a multiple of 3 wafers and labeled [1, 2, , ..., 3k], the resulting
sequence reads [[1, 4, 7, ..., 3k−2], [3k−1, 3k−4, 3k−7, ..., 2], [3, 6, 9, ..., 3k]].3

Since a triplet map of k = 1 wafers involves no rearrangements, the smallest
possible triplet map is k = 2. In this work, the smallest possible triplet map
was set to k = 4 in order to reduce the numerical inaccuracies related to
the smallest triplet map. An example of a triplet map on the interval [1, 18]
applied to a discrete scalar field with a linear gradient is shown in Fig. 4.3.

The expressions for eddy size distribution and event frequency presented
in Sec. 3.2.1 are derived assuming continuous triplet maps. However, the nu-
merical implementation of triplet maps on the LEM domain will inevitably
be discrete. Sannan et al. (2008) present a derivation of the discrete expres-
sions for the event frequency (3.17) and the triplet map size distribution
(3.16). From the derivation, the size distribution follows as

f(k′) =
k′−8/3

∑kmax

k=kmin
k−8/3

, kmin ≤ k′ ≤ kmax, (4.4)

where 3kmin∆xw = L∗
K is the smallest4 and 3kmax∆xw = L is the largest

triplet map size. The distribution of triplet map sizes (3.16) is constructed
applying a common model integral scale for all LEM domains in LEM3D.
The event frequency is further given by

λ =
DT

2(∆xw)3




kmax∑

k=kmin

k−8/3






kmax∑

k=kmin

(k − 1)k−2/3



−1

. (4.5)

If the turbulence diffusivity varies along the domain, Eq. (4.5) is estimated
based on an average turbulence diffusivity for the LEM domain.

3The individual segment copies are separated by brackets.
4The star is introduced to indicate that the smallest triplet map might be chosen larger

than the model Kolmogorov scale.
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Figure 4.3: The figure illustrates a discrete scalar field with a linear gradient before
(white bars) and after (grey bars) a triplet map of 6k has been applied to the
interval [1, 18]

The triplet map events are assumed to be statistically independent,
hence the time t to when the next single event occurs is sampled from
the Poisson distribution

fx(t) = Rxe
−Rxt, (4.6)

where Rx is the mean rate of events on the x-oriented LEM domains given
by Rx = λNx. Similar expressions apply to the y- and z-oriented domains.

To summarize, the triplet map is determined by sampling the time to the
next event from the cumulative Eq. (4.6) and the size from the cumulative
Eq. (4.4), and by determining the location from the two-step procedure
described in the second paragraph of the present section.
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4.3.3 Implementation of thermal expansion

The triplet map operation in its present form requires the wafers to be fixed
and uniform in volume. This imposes a restriction on the implementation
of the dilatation from thermal expansion. As reviewed in Sec. 1.2.2, one
option is expansion of fluid wafers followed by regridding to a uniform grid
before every triplet map event. Another approach is Eulerian treatment
of the expansion, whereas a third alternative is only to allow expansion of
wafers in discrete steps (Menon and Calhoon, 1996).

As mentioned previously, LEM3D endeavors to maintain the distinction
between chemical reactions, molecular diffusion and turbulent mixing, which
means that scalars should not mix at the molecular level by other processes
than molecular diffusion. The option of expansion in discrete steps is chosen
here since it preserves this distinction. A wafer is expanded, when necessary,
by increasing the volume by an integer number of wafers and reducing the
density accordingly, keeping the total mass in the system constant. This
method introduces no spurious diffusion; however, it implies restricting the
expansion to discrete steps.

The discrete dilatation

In the LEM3D framework, the shape and the volume of the wafers are
constant. In addition, the wafer density is kept constant in between the
discrete expansion events. At a given criterion, the volume of a wafer is
extended by Φ multiples of its volume. This is performed by creating Φ+1
new copies of the wafer to be expanded, and replacing the original wafer
by the Φ+ 1 copies as illustrated in Fig. 4.4. The resulting dilatation gives
corresponding displacement of surrounding wafers as further explained in
Sec. 4.5.2. The new wafers adopt the density ρ = ρ0/(Φ + 1), where ρ0 is
the density from when the last expansion occurred. In this way, mass is
conserved during the dilatation.

The expansion criterion

The criterion for when a wafer should be expanded may be based on the
thermodynamic pressure. If we assume that the pressure can be estimated
from the equation of state

p+ = ρ0RmixT, (4.7)

where T is the temperature, Rmix is the gas constant for the mixture, a tem-
perature change causes a corresponding pressure change. The superscript



4.3. The LEM processes 45

1 2 3 4 5 6 7 8 9

1 2 3 4 5’ 5’ 6 7 8
(Before dilatation)

(After dilatation)

Figure 4.4: Example of a discrete expansion of wafer number 5 on an LEM domain.
The dilatation results in a corresponding displacement of surrounding wafers as
shown.

signifies that the pressure solely acts as an indicator for when the expan-
sions should occur. When the pressure of a wafer exceeds the background
pressure by a given factor, the wafer is expanded as explained above. The
assumption of incompressibility holds, in the sense that there is no direct
coupling between the LEM3D density and the pressure field in the flow solver
(e.g. RANS). In other words, we neglect compressible effects, but account
for thermal expansion and varying density, which commonly is denoted the
zero-Mach number limit.

In the present work, the expansion events are not selected by the pres-
sure criterion, but rather by random sampling from a distribution for test
purposes. The chemical state is, however, intended to be determined by
more realistic models in the future.

Representation of chemistry

Due to the resolution of Bathcelor scales, the wafers can be considered as ho-
mogeneous reactors, and the chemistry needs no additional modeling. Pos-
sibly the simplest approach is to assume adiabatic conditions, unity Lewis
number, and infinitely fast chemistry. This is often denoted the Burke-
Schumann approach, after the classical paper on diffusion flames by Burke
and Schumann (1928). By these assumptions the chemical state is deter-
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mined by the mixture fraction alone, which evolves in LEM3D.

This simple chemical implementation may be pursued in order to arrive
at a reacting LEM3D with the least effort. An extension to a detailed de-
scription of chemistry with finite rate kinetics is essentially straightforward.
This is basically achieved by replacing the conserved scalar diffusion equa-
tion (2.4) with a reaction-diffusion equation for mass fraction, and adding
an equation for heat transport (e.g. enthalpy, total energy or temperature).
In Echekki (2008), the reaction-diffusion equations are time integrated by
operator splitting between diffusion and chemistry. Finite-rate chemistry
involves solving a system of non-linear ordinary partial differential equa-
tions (Warnatz et al., 2001). Thus, the cost in terms of computational time
is significantly increased. Tabulated chemistry may be applied to reduce
the computational cost (Sankaran and Menon, 2000). The method is well
suited for massive parallel computing.

4.4 Coupling to a flow solver

Since LEM3D only represents the scalar transport, it relies on velocity and
turbulence data provided from measurements or a separate flow solver. In
this work, two approaches are applied. First, measurements of a turbulent
jet in the self-similar region are used as velocity and turbulence input data.
Further details are given in Sec. 5.2.2 and 8.3.1. Secondly, the turbulence
and velocity data are given from solving the Favre-averaged Navier-Stokes
equations for variable density. The assumption of incompressible flow is
adopted, i.e., the density and pressure fields are decoupled. An in-house
general-purpose CFD code is used (Melaaen, 1990; Gran, 1994). The code
applies a semi-implicit algorithm for computing the velocity and pressure
fields (Versteeg and Malalasekera, 1995) and comprises a wide range of
closures for turbulence and chemistry. However, since the computations are
not limited to this code in particular, the term RANS is used to refer to
these computations and their results.

To reduce the initial development, a one-to-one correspondence between
the LEM3D grid and the RANS grid was assumed. In other words, the
control volumes in RANS are equal to the 3DCVs in LEM3D. Turbulence
diffusivities are needed in the 3DCV centers. Due to the one-to-one grid
correspondence, these values can be transferred to LEM3D without inter-
polation. The RANS code applies a non-staggered grid, which means that
densities and velocities are stored in the control volume center. Thus, the
velocities are interpolated to the control volume faces. The Rhie-Chow in-
terpolation is used to obtain the boundary velocities during iteration to a
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stationary solution (Ferziger and Peric, 2002). The boundary mass flux is
given by multiplying the boundary velocity with the arithmetic mean of the
density from the two adjacent control volume centers.

Mean velocity

Turb. diffusivity

LEM3D:

3DCV level:

Advection of scalars
Dilatation
Rotational coupling

LEM domain level:

Molecular mixing
Chemical reaction
Triplet map stirring

RANS:

Every loop:

Continuity
Momentum transport
Turbulence model

Initially:

Scalar transport
Reaction model

Density

Figure 4.5: Schematic presentation of the two-way coupling between RANS and
LEM3D. The one-way coupling excludes the density feed-back from LEM3D to
RANS.

Figure 4.5 shows the principle coupling between LEM3D and RANS.
One-way coupling is typically relevant for constant-density flows. For a one-
way coupling that starts with a RANS computation, the iteration is finished
after the first LEM3D simulation. The two-way coupling is necessary when
the scalar evolution in LEM3D affects the density field and consequently
the velocity field, e.g. for chemical reactions with heat release. The ini-
tial computation in the iteration loop between the models may be RANS
involving scalar (species and energy) transport and a suitable combustion
model. When RANS is run with density feedback from LEM3D, the trans-
port equations for species and energy are not solved. In this case, RANS
refers to solving the Favre-averaged transport equations for mass (3.3), mo-
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mentum (3.4) and variables for the selected turbulence closure. Further in
the iteration loop, LEM3D provides updated density fields to RANS. An
average density for the 3DCV can be computed e.g. by Eq. (4.45). This
density field, possibly altered by a relaxation factor, is directly supplied to
the control volume center nodes in RANS. The coupled model is labeled
RANS-LEM3D in the following.

4.5 Lagrangian implementation of wafer displace-

ments

To maintain mean flow advection as a pure convective process, the wafer
displacements are implemented in discrete, non-diffusive steps. The adopted
algorithm ensures that continuity always is satisfied locally. The following
sections outline the algorithm that in principle lets the RANS velocities pro-
jected at the 3DCV boundaries dictate the discrete displacement of wafers.

4.5.1 Indexing

The coordinates of the grid defined by the 3DCVs are given by the indices
q, r, s in the x, y and z-direction respectively, where q ∈ [1, Nx], r ∈ [1, Ny],
and s ∈ [1, Nz]. Thus, a scalar property ϕ that is defined for the 3DCVs
is indexed by ϕq,r,s. Let Xj

p,r,s define the position of a wafer on the r, s
LEM domain in the x-direction at time tj , where tj = t0 + j∆t. The index
p = p(l, q) = l+(q− 1)M determines the position of the wafer on this LEM
domain, where l is an index in the range 1 to M . Correspondingly, the
position of wafers on the LEM domains in the y and z-directions at time
tj are uniquely determined by Y j

p,s,q and Zj
p,q,r, where p = l + (r − 1)M

and p = l + (s − 1)M for the two directions, respectively (see Fig. 4.6). A
scalar property of a wafer located at Xj

p,r,s at time tj is further indexed by

ϕ(Xj
p,r,s, tj) or alternatively ϕ

j
p,r,s.

When a wafer is displaced, it is moved from a given position in the
domain to a destination that is originally occupied by another wafer. The
wafer at the destination will have to move to another wafer position, and
so forth. In other words, all wafer displacements are interdependent like
bottles on a conveyor belt. This is due to the incompressibility assumption,
and that each wafer represents a part of the model volume. Hence, the
advection operation can be implemented simply by a shift of indices.
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Figure 4.6: A 3DCV with definitions of face names related to the coordinate direc-
tions. Example of a wafer displacement is indicated from Y j

p,s,q to Y j+1

pnew,s,q.

4.5.2 Continuity equation

The mass conservation equation (2.1) can be rewritten as

−1

ρ

Dρ

Dt
= ∇ · u, (4.8)

where∇·u is the dilatation, which is the rate of increase of a material volume
(Pope, 2000). The equation (4.8) is integrated over the 3DCV volume and
time step ∆t and Gauss divergence theorem is applied to the right-hand
side to give

−
∫ t+∆t

t

∫

V

1

ρ

Dρ

Dt
dtdV =

∫ t+∆t

t

[∫

S
u · n dS

]
dt, (4.9)

where S and V are the surface area and volume of the 3DCV, respectively,
and n is the normal surface vector. The dilatation associated with a 3DCV
is approximated by the sum of all discrete volume expansions during ∆t in
the three intersecting domains of a 3DCV. Similarly, the right hand side of
the above expression is represented by discrete displacements as presented
in Sec. 4.3.3. By these approximations, the mass conservation (4.9) for a
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3DCV is given by the identity

M∑

i=1

Φx,i +
M∑

i=1

Φy,i +
M∑

i=1

Φz,i = δe − δw + δn − δs + δt − δb, (4.10)

where Φx,i is the discrete expansion (see Sec. 4.3.3) of wafer i on the LEM
domain in the x-direction and δe, δw, δn, etc. are the integer number of
wafers that are displaced over the respective 3DCV faces during the time
step ∆t (see Fig. 4.6 for the definition of indices). Note that by definition,
a positive discrete expansion factor implies a density reduction. Due to the
presented coupling between expansion and advection, the dilatation is im-
plemented on the advective timescale. Thus, when the advective timescale
is larger than the reactive timescale, the dilatation will lag the chemical
reactions.

4.5.3 Approximation of the prescribed velocity field

Let unn denote the stationary mean velocity component that prescribes the
wafer displacements over an arbitrary 3DCV face. The subscript nn is t
or b for i = x, e or w for i = y, and n or s for i = z (see Fig. 4.6). As
mentioned, the velocity field is given from measurements or a flow solver.
We define the prescribed displacement as

γnn ≡ 3unn∆t

∆xw
, (4.11)

which is the displacement in terms of the real number of wafers per time step.
Note also that the transport rates in LEM3D are multiplied with a factor 3
as discussed in Sec. 4.2. The discrete approximation of γnn, denoted δnn, will
vary from time step to time step unless γnn equals an exact integer number
of wafers. For example if γe = 2.4 on average, δe varies between 2 and 3 in a
manner that gives a displacement of 2.4 on average. The method which has
been developed to ensure that the prescribed displacements are represented
on average is denoted banking due to the bookkeeping of deviations from
the prescribed value (Kerstein et al., 2005-2006). Expressing the banking
in general terms, the integer number of displacements of wafers over the
3DCV face nn for a given time step is

δnn = δf,nn + δr,nn, (4.12)

where δf,nn is the floor (see Appendix C) of the real number of displacements

δf,nn = ⌊γnn⌋, (4.13)
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and the residual from current and previous time steps is

δr,nn = ⌊r0nn + rnn⌋. (4.14)

In the expression above, r0nn is the accumulated residual from the previous
advection advancements, whereas the residual from the current time step
rnn is given by

rnn = γnn − δnn. (4.15)

The residual from the current time step is also referred to as the deviation
between actual integer and prescribed displacements. When γe = 2.4, δf,e =
2 by Eq. (4.13). From Eqs. (4.11), (4.14) and (4.15) it follows that the
sequence of wafer displacements and residuals for consecutive time steps at
this particular face will be: [δe = 2, re = 0.4], [δe = 2, re = 0.8], [δe = 3, re =
0.2], [δe = 2, re = 0.6], [δe = 3, re = 0.], etc.

The local instantaneous wafer velocity is further defined as

wnn ≡ δnn∆xw
3∆t

. (4.16)

By the banking the wafer velocity is on average equal to the prescribed
velocity component, i.e., w = u.

If δnn was given by the banking for all boundaries enclosing a given
3DCV, there would be no degrees of freedom left for the variations in dis-
placements and random volume expansion without a violation of continuity.
Consequently, we let one of the displacement components be determined
from the five respective displacements plus the dilatation during ∆t. We
assume that this is the top face component. Applying the discrete continuity
equation given from Eq. (4.10), the displacement at this face is determined
from

δt = δb + δw − δe + δs − δn +
M∑

i=1

Φx,i +
M∑

i=1

Φy,i +
M∑

i=1

Φz,i. (4.17)

To summarize, the displacements are in general estimated by two dis-
tinct methods. The banking method, which is given by Eq. (4.12), applies
to inlet flow boundaries and generally all east, west, north and south 3DCV
boundaries. The discrete continuity equation (4.17) estimates the top com-
ponent.

For all cases considered in the present work, the bottom to top direction
is considered the streamwise direction and the perpendicular directions ac-
cordingly the lateral. The displacements are calculated by starting at the
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bottom upstream inlet layer of 3DCVs. First, the bottom inlet and the lat-
eral displacements are calculated by the banking (4.12) for the first layer.
Secondly, the top displacement components are given from the continuity
equation (4.17). The top displacement component consequently becomes
the bottom component in the following downstream layers of 3DCVs. The
procedure is repeated layer by layer from the upstream to the downstream
layer. In this way, all the 3DCV displacements are specified. However,
the residuals from the discrete approximation of the prescribed displace-
ments are ultimately accumulated in the streamwise components through
Eq. (4.17). Hence, δt might deviate significantly from the prescribed value,
γt. A method that reduces these deviations is proposed in the following
section.

4.5.4 Minimizing deviations by the method of least squares

Since the displacement components are calculated successively as explained
above, the deviation between the actual and prescribed displacement is
prone to increase as we progress downstream. Thus, a method has been
developed to minimize the deviation. This is done by applying discrete
corrections ∆nn ∈ (−∞, ...,−3,−2,−1, 0, 1, 2, 3, ...∞) to the displacement
components such that the square sum of deviations,

d2 =

Nface∑

nn

(rnn +∆nn)
2 , (4.18)

is minimized subject to the constraint ∆e−∆w+∆n−∆s+∆t = 0.5 Since
the bottom component is given from the upstream layer of 3DCVs, or the
first inlet layer, this component is not subject to corrections. The deviation
for the displacement component at face nn is given by the expression (4.15).
The lateral components (e, w, s, n) are shared between 3DCVs, and hence
the minimization procedure is only feasible for the 3DCVs belonging to a
checkerboard subset of the domain. The subset is alternated between layers
and from time step to time step.

Equation (4.18) is implemented stepwise as follows for a given 3DCV. If
|δt − γt| > δth, where δth is a predefined integer threshold, the combination
of ∆t± 1 and ∆nn± 1|nn 6=b,t that minimizes d2 is chosen. This is performed
until |δt − γt| < δth or as long as d2 is reduced.

5The constraint stems from the requirement that the corrections should not violate
continuity principally given by

∫
S
∆ ·n dS = 0, where ∆ is the discrete correction vector.
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4.5.5 Donors and receivers

If, for a given 3DCV, the situation is such that e.g. δt 6= δb +
∑M

i=1Φx,i, a
given number of wafers must be donated to or received from one or two of
the orthogonal domains intersecting the 3DCV. Let Θx,q,r,s be the number
of wafers that are donated or received from the domain in the x-direction
that intersect the 3DCV at q, r, s. A positive Θx,q,r,s means that the domain
is donating wafers, while a negative Θx,q,r,s means that it is receiving wafers.
The following description refers also here to a given 3DCV, so the subscripts
q, r, s are skipped for clarity. We define Θx, Θy and Θz for the three domain
sections that intersect in a given 3DCV as

Θx = δb − δt +
M∑

i=1

Φx,i, (4.19)

Θy = δw − δe +

M∑

i=1

Φy,i, (4.20)

Θz = δs − δn +
M∑

i=1

Φz,i. (4.21)

Adding Eqs. (4.19)–(4.21) and using the discrete continuity equation (4.17),
it follows that

Θx +Θy +Θz = 0. (4.22)

Each of the 3 intersecting domain sections in a 3DCV can either be a donor,
a receiver or a neutral domain. In other words, Θx, Θy and Θz can either
be positive, negative or zero. From this we get four classes of combinations
categorized by the number of donors, receivers and neutrals we have for
a particular 3DCV: There are 3 possible combinations when Θ is positive
for one of the domain sections and negative for the two respective. This is
categorized as the first class of combinations. For the second class, we have
3 combinations when Θ is positive for two domains and negative for the
third. When Θ is zero for one domain, there are two combination for the
two respective (positive or negative), and this gives in total 6 combinations
for the three directions being zero. This is the third class. Finally, the
fourth class is that Θ is zero for all domains. In sum, there are 13 possible
sign-combinations of Θx, Θy and Θz that satisfy Eq. (4.22). The 4 classes
of combinations are treated separately in the numerical implementation.

Wafers that are donated from a domain are first extracted from the
3DCV center prior to advection advancement (see Fig. 4.7). Second, an
open slot is created in the center of the receiver domain corresponding to
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donated wafers

pu

pd

δt

δb
(a) donor domain

open slot for received wafers

pd pu

δw δe

(b) receiver domain

Figure 4.7: An example of flipping in a 3DCV where the part of the domain in (a)
is a donor, and the part of the domain in (b) is a receiver. The domains overlap in
the same 3DCV, but are shown separately for clarity. The parcel of wafers which
is flipped (shaded), is extracted from the donor domain and inserted in the center
of the receiver domain where indicated.

the number of donated wafers plus the number of wafer volumes needed
for the possible expansion events among the donated wafers. Third, the
parcel of wafers are flipped, expanded if necessary, and inserted in the open
slot on the receiver domain. This operation is in the following referred
to as flipping. Finally, the flipped wafers are displaced according to the
prescribed displacement along with the wafers on the receiver domain. The
motivation for orienting the flipping around the 3DCV center is that the
distance the wafers are moved by the flipping, which in effect is a kind of
artificial dispersion, is minimized. When more than one wafer is flipped,
the wafers are either rotated clockwise or counterclockwise. The latter is
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selected randomly.

The flipping is related to the representation of mean flow advection.
However, the operation increases the number of scalar interfaces. Hence,
there is a certain degree of spurious diffusion associated with the flipping.
Similar versions of the flipping procedure are also presented in Kerstein
(2002) and Sannan et al. (2008).

4.5.6 Implementation of wafer displacements

By the prescribed velocities and the discrete continuity equation, the dis-
placements are given at every 3DCV face at every time step. The previous
section illustrated the flipping of wafers for stagnating or accelerating flow.
This section presents the expression for the displacement of non-flipped
wafers for a given 3DCV, and outlines the principle procedure for numerical
implementation.

The Lagrangian displacement of a fluid particle is given by Eq. (3.21).
This equation is time integrated using the forward Euler scheme which gives

X+
i (tj +∆t,X0) = X+

i (tj ,X
0) + ui

[
X

+(tj ,X
0), tj

]
∆t, (4.23)

where ui is the fluid particle velocity. Now, let the fluid particle be repre-
sented by a wafer on an x-oriented LEM domain at the position Xj

p,r,s at
time tj (see Sec. 4.5.1). The current description is only referring to a given
LEM-domain, so we omit the indices r, s for convenience. For this particular
wafer, Eq. (4.23) is written as

Xj+1
p = Xj

p + wj
p∆t, (4.24)

where wj
p is the velocity of the wafer Xj

p at time tj . The wafer velocity is
determined from the 3DCV prescribed boundary velocities as described in
the following.

We assume that the 1D-resolution, M , is an even number. Thus, the
exact center of the 3DCV is on the boundary between two wafers. Let pd
and pu denote the wafer position immediately below and above the 3DCV
center on a receiver domain, respectively. On a donor domain, pd and pu
are the wafer positions immediately below and above the parcel of flipped
wafers.6 This is illustrated in Fig. 4.7. We define the reference for the first
wafer in the 3DCV q as p1 = (q− 1)M +1. In the following, we refer to the
wafer positions Xj

p ≤ Xj
pd as being below the 3DCV center and Xj

p ≥ Xj
pu

6Remember that the donated wafers are expanded, if applicable, before they are in-
serted on the receiver domain.
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as being above. This is independent of whether the domain intersecting the
3DCV is a donor, a receiver or a neutral domain.

For wafers below the 3DCV center, the displacement is given by

wj
p∆t =


δb +

p∑

i=p1

Φx,i


∆xw, (4.25)

where
∑p

i=p1
Φx,i is the dilatation below and including the wafer of con-

sideration and the displacement across the lower 3DCV boundary δb is a
compressed notation for δb|jq,r,s. For all wafers above their respective 3DCV
centers, we have that

wj
p∆t =


δb +

pd∑

i=p1

Φx,i −Θx +

p∑

i=pu

Φx,i


∆xw, (4.26)

where Θx is the number of wafers donated to or received from the domain.
By inserting Eq. (4.25) and (4.26) into equation (4.24) we get the new
position Xj+1

p for all wafers in reference to the original wafer position

Xj+1
p = Xj

p +


δb +

p∑

i=p1

Φx,i


∆xw, p1 ≤ p ≤ pd

Xj+1
p = Xj

p +


δb +

pd∑

i=p1

Φx,i −Θx +

p∑

i=pu

Φx,i


∆xw, pu ≤ p ≤ qM

(4.27)

In practice, the wafer positions are not calculated as given above. There
is no need to store the positions since they are uniquely defined by the
indices. Thus, the advection advancement is implemented by a shift of
indices. Let ϕj

p,r,s be the scalar value at the position Xj
p,r,s on a x-oriented

LEM domain. The displacement according to Eq. (4.27) is performed by
assigning a new position to the wafer property, i.e., ϕj

p,r,s → ϕj+1
pnew,r,s, where

pnew = p+ δb +

p∑

i=p1

Φx,i, p1 ≤ p ≤ pd, (4.28)

pnew = p+ δb +

pd∑

i=p1

Φx,i −Θx +

p∑

i=pu

Φx,i, pd ≤ p ≤ qM. (4.29)
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The Eqs. (4.28) and (4.29) and corresponding expressions for the LEM do-
mains in the y- and z-directions, along with the flipping procedure described
in Sec. 4.5.5, determines the implementation of the advection advancement
for every wafer in LEM3D.

In general, there is only one necessary requirement to the wafer advec-
tion; the number of flipped wafers cannot exceed the number of available
wafers in the donor domain. It is nevertheless desirable that the distance
the wafers are displaced is less than ∆x on average, where ∆x is the length
of the 3DCV. A CFL number is introduced based on the latter requirement,
and is given by

CFLadv =
3umax∆t

∆x
, (4.30)

where umax is the maximum prescribed velocity component. The factor 3 is
introduced due to the 3 representations of the domain volume as explained
in Sec. 4.2. The condition (4.30) limits the global time step that is used to
calculate the prescribed displacements in Eq. (4.11).

4.6 Time scales

The nature of turbulent combustion consists of a magnitude of time scales
related to advection, molecular diffusion and chemical reactions. In the
present model, these time scales are represented by a number of correspond-
ing modeling time scales. The advective time scale is related to the mean
velocity component by

τadv =
∆x

u
, (4.31)

and the turbulence diffusive time scale is related to the turbulence diffusivity
by

τdiff =
∆x2

2DT
. (4.32)

The molecular diffusive time scale τM is similarly defined by substituting
the turbulence diffusivity by the molecular diffusivity DM in the expression
above. Turbulent stirring is in LEM3D represented by triplet map events,
which will occur on a characteristic time scale of τtriplet = 1/R, where R is
the mean rate of stirring events.

The chemical processes occur on a wide range of time scales (Warnatz
et al., 2001). Generally, the smallest chemical time scales τchem will be
resolved by time stepping on the individual LEM domains. However, the
dilatation resulting from thermal expansion is currently implemented on the
advective time scale. This is anyhow not exact, so as a general rule, the
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CFLadv-number should be kept low to reduce the lag between reactions and
dilatations.

4.7 Auxiliary coupling by random rotations

Exchange of scalars between domains occurs to some extent through the
coupling introduced by the advection operations.7 This is denoted the ad-
vective coupling. However, for a scalar to be spread in all directions accord-
ing to the prescribed turbulence and mean velocity field, there is a need
for an auxiliary coupling mechanism. We can easily realize the need for an
auxiliary coupling in order to have a scalar spread in all possible directions
in homogeneous turbulence, where the mean flow is uniform in one of the
coordinate directions and zero in the two respective.

4.7.1 Implementation of 3DCV rotations

Motivated by the rotational character of turbulent eddies, the auxiliary
coupling is introduced by random rotations of the 3DCVs (Kerstein, 2004;
Sannan et al., 2008). The 3DCVs are rotated clockwise or counterclockwise
about one of the three coordinate axes, switching the wafers on the two
intersecting domains being involved in the rotation (see Fig. 4.8). The
wafers on the domain parallel to the axis of rotation remain unaffected by
the rotation. This gives in total 6 different options for a rotation, which is
summarized by the following relations. The clockwise rotation about the
x-axis switches wafers on the y- and z-domains according to

Zl → Yl l = 1,M,

Yl → ZM+1−l l = 1,M.
(4.33)

Similarly the counterclockwise rotation is given by

Zl → YM+1−l l = 1,M,

Yl → Zl l = 1,M.
(4.34)

Corresponding expressions hold true for the rotations about the y- and z-
axis. Thus, for the clockwise and counterclockwise rotation about the y-axis,
Z is replaced by X and Y is replaced by Z in the expressions (4.33) and
(4.34). Finally, for the rotation about the z-axis, Z is replaced by Y and
Y by X in the above expressions. As in Sec. 4.5.6, the rotations are also
implemented by a shift of indices.

7Some wafers are flipped in between domains if the flow is stagnating or accelerating
locally.
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Figure 4.8: The 6 different options for rotation of a 3DCV about the x, y and
z-axis. The three counterclockwise rotation directions are indicated by the arrows.

The relative rotation frequency νr is the number of rotations that on
average should influence a wafer when it passes through a given 3DCV.
When the advective time scales are dominant, the frequency of rotation in
units of rotations per second is given by

R =
3νr
τadv

. (4.35)

The factor 3 is due to the factor that multiplies the prescribed velocities.
The relative rotation frequency is generally a LEM3D model parameter
that may be tuned. It can be shown that the probability of a rotation per
time step is given by CFLadvνr, where CFLadvνr ≤ 1 gives an additional
restriction to CFLadv.

8

If the advective time scales are varying over the domain, it is appropriate
to define a local rotation frequency calculated by

Rq,r,s = Rmax

max [ux, uy, uz]q,r,s
umax

. (4.36)

8Note that only 2/3 of the rotations influence the wafers in a given direction. If this
is taken into account, CFLadvνr ≤ 2/3 to have at least one rotation per time step on
average.
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Due to the random rotations, a scalar will reside on domains in a given
direction only 1/3 of the time. The correct average transport rates are
accommodated by multiplying the large-scale transport properties with a
factor 3, as also mentioned in Sec. 4.2.

4.7.2 An estimate for additional dispersion from rotations

Kerstein et al. (2007) consider a rotation cycle where a wafer is transferred
from a given domain by a 3DCV rotation, subjected to a number of inter-
mediate deterministic and random processes, before it is transferred back
to its original domain direction by a second rotation event. The interme-
diate processes might constitute mean flow advection, random triplet map
stirring, and random rotations in between the two other respective domain
directions. Figure 4.9 illustrates a rotation cycle, where the z-direction is
omitted for simplicity.

y

x

(1) (2) (3)

X2 −X1

Intermediate processes

Figure 4.9: The rotation cycle consists of the following elements: (1) A random
rotation influencing the wafer at X1, (2) an arbitrary number of intermediate ran-
dom and deterministic processes, and (3) a rotation back to the original domain
direction to the position X2.

To derive an expression for the diffusivity induced by such a rotation
cycle we apply the following assumptions:

• We apply a continuous approach, corresponding to the limit M → ∞.

• We neglect molecular diffusion during the rotation cycle.

• There is an equal probability of the wafer starting at any position, X1,
where the probability density function reads f(X1) = 1/∆x, where ∆x
is the 3DCV size.

• There is also an equal probability of ending up anywhere in the origi-
nal domain direction, X2, and the probability density function reads
f(X2) = 1/∆x.
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• The rotation cycle consists of random displacement processes in be-
tween two rotation events that influences the domain in the x-direc-
tion. Hence, the start position X1 and end position X2 are within
the range of the same 3DCV, but they can be on different x-oriented
LEM domains.

Let (∆X)2 = (X1 −X2)2 be the mean square displacement of wafers in the
x-direction. The analogy to random walk is evident, so the diffusivity in the
x-direction induced by random rotations can be estimated following Hinze
(1975) to

Dr =
1

2
Rx(∆X)2, (4.37)

where Rx is the number of rotations per unit time that influences the x-
domain. The mean square displacement is now given by the following inte-
gral

(∆X)2 =

∫ ∆x

0
f(X1)X1dX1

∫ ∆x

0
f(X2)(X1 −X2)dX2

=
1

(∆x)2

∫ ∆x

0

∫ ∆x

0
X1(X1 −X2)dX1dX2 =

(∆x)2

12
.

(4.38)

There are only 2/3 of the rotations that influence the x-direction, and since
the rotation cycle consist of two such rotations, we have that Rx = R/3.
This gives

Dr =
(∆x)2

36
R. (4.39)

Equation (4.39) is a simplified, however, useful estimate. The estimate
was employed in the analysis of dispersion from a point source as presented
in Chapter 6.

4.8 Implementation of boundary conditions

The boundary conditions in LEM3D are needed at two levels. First, we
need to determine the conditions for LEM processes that occur on each
1D domain. Secondly, the wafer displacements, which are prescribed by
the velocity components on a 3DCV level, also need boundary conditions
specified. In this work, the boundaries of LEM3D are placed sufficiently far
from the part of the domain that is of interest.
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4.8.1 LEM processes

Every LEM domain in the three-array structure has two boundaries that
must be specified. If we assume that the boundaries are closed, molecular
diffusion is treated with a zero-gradient von Neumann condition, and the
triplet maps that extend out of the domain are truncated. This will influence
the solution inside the domain, and therefore the domain should be large
enough to maintain the solution of interest unaffected by the boundaries. As
an alternative the LEM domain may have cyclic boundaries. This applies
both to molecular diffusion and triplet map stirring.

4.8.2 Wafer displacements

Each LEM domain is extended with a guard zone outside the LEM3D do-
main boundaries. This zone, which is more of a technical requirement, is
primarily constructed to have wafers available at inlets. The wafers in the
guard zone are only relevant to the advection advancement, and do not take
part in molecular diffusion or triplet map stirring.

The streamwise inlet and all lateral velocity components are matched to
the prescribed components by the banking, as described in Sec. 4.5.3. These
components alternate between the two nearest integers to the prescribed
displacements from time step to time step. The properties of the wafers in
the guard zone for such inlet boundary components are fixed.

The streamwise components are estimated from continuity (4.17). Since
this is performed layer by layer, the top components at the downstream
domain boundary will contain residuals accumulated from all layers. Thus,
the top 3DCV boundaries may sporadically behave as an inlet even though
it is an outlet on average. This applies also to the lateral boundaries if
the deviations are minimized by the least squares method as described in
Sec. 4.5.4. Boundaries that may act both as inlets and outlets are either
specified by assuming fixed properties, or by setting the values equal to the
neighboring mean 3DCV filtered value. The latter method was applied to
the cases in Chapter 7 and 8.

4.9 Data gathering

In LEM3D, the sampling time interval must be set so that individual sam-
ples are independent. Data are sampled after initial transients have been
relaxed, so initial conditions will not influence the gathered statistics. Let
ϕ(tj , Xp) be the scalar value of the wafer Xp on a x-domain in a given 3DCV
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at time tj . The mathematical expectation (the mean) of ϕ(Xp) is estimated
by taking the average of all the available Ns samples

ϕ(Xp) =
1

Ns

Ns∑

j=1

ϕ(Xp, tj). (4.40)

The second- and higher-order central moments of order r are estimated by
sampling the raw moments given by

µ′r(Xp) =
1

Ns

Ns∑

j=1

[ϕ(Xp, tj)]
r, (4.41)

where the first raw moment is the mean value. These raw moments are
sampled in every wafer on every LEM domain of interest. By rearranging
the expression (2.16), the central moments can be expressed in terms of the
raw moments by

µ2 = −µ′1
2
+ µ′2,

µ3 = µ′1
3 − 3µ′1µ

′
2 + µ′3,

µ4 = etc.

(4.42)

The second, third and fourth central moments are denoted the variance, the
skewness, and the kurtosis, respectively. In the model, the central moments
are post-processed from the sampled raw moments by the expressions (4.42).
The highest moment considered in this work is the second.

The spatial autocovariance (2.18) between scalar values at X0 and Xp

can be rewritten and scaled, to get the autocorrelation function

̺(Xp) ≡
R(Xp)

R(X0)
=
ϕ(X0)ϕ(Xp)− ϕ(X0) ϕ(Xp)

ϕ′(X0)ϕ
′(X0)

. (4.43)

The autocorrelation for scalars along a LEM domain is estimated by sam-
pling the first right-hand-side term in the autocovariation expression (4.43)
by

ϕ(X0)ϕ(Xp) =
1

Ns

Ns∑

j=1

ϕ(tj , X0)ϕ(tj , Xp), (4.44)

and using the estimated mean for ϕ(X0) and ϕ(Xp) and the second moment
for ϕ(X0) to post-process the autocorrelation.
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The filtered mean value of a 3DCV which is sampled by

ϕ̂q,r,s =
1

Ns

Ns∑

j=1

[
ϕ̂j
q,r,s

]
, (4.45)

is found by applying a filter to the intersecting LEM domains at the given
3DCV. The instantaneous 3DCV filtered value, ϕ̂j

q,r,s, is determined by a
box filter that is 1 inside the 3DCV and 0 elsewhere, giving

ϕ̂j
q,r,s =

1

3M

(
qM∑

p=p1

ϕ(Xp,r,s, tj) +
rM∑

p=p1

ϕ(Yp,s,q, tj) +
sM∑

p=p1

ϕ(Zp,q,r, tj)

)
.

(4.46)
For simplicity, the filtered mean value is denoted ϕ̂ throughout the thesis. If
we perform the sums over wafers first (Eq. 4.46), and the sum over samples
secondly (4.45), the data storage for the filtered mean is reduced to one
value per 3DCV.

4.10 Simulation procedure

The following section describes the general simulation procedure for LEM3D
including the one-way and the two-way coupling to RANS. A schematic
setup of the procedure is given in Fig. 4.5. For constant density and one-
way coupling, the velocity and turbulence diffusivity fields are generally
supplied from measurements, analytical expressions9 or a flow solver. In
that case, the procedure starts at step (2) below.

For the two-way coupling, the initial velocity and turbulence fields can
either be supplied by RANS with appropriate physical and chemical models
or by an initial guessed field. In the former case the procedure starts at
step (1), whereas in the latter case it starts at step (2).

(1) The Favre-averaged RANS-equations (mass, species, momentum, en-
ergy and turbulence equations) are solved by iteration to a stationary
solution. This provides the initial velocity and turbulence diffusivity
fields needed as input to LEM3D.

(2) For every LEM domain, initially at every LEM3D simulation, the eddy
size distribution is calculated from Eq. (4.4), and the eddy frequency
parameter is calculated from Eq. (4.5). The turbulence diffusivity DT

in Eq. (4.5) is taken as the spatially average turbulence diffusivity for

9See e.g. chapter 5 and 8 for similarity solutions in a turbulent jet.
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the LEM domain. The lateral prescribed displacements are further
calculated from Eq. (4.11).

(3) The following substeps are implemented for every advective time step
∆t.

(a) The auxiliary coupling is ensured by randomly sampling whether
a rotation should occur, and if so, which of the 6 options that
should be implemented. The latter is sampled from an even
distribution, and the probability of rotation is given by νrCFLadv.

(b) The dilatation is determined by a criterion, e.g. by calculating
the pressure indicator, p+, from the equation of state (4.7). This
is the general approach, however, in the present work the discrete
dilatation is sampled from a distribution (see e.g. Chapter 7) and
implemented as described in Sec. (4.3.3). Note that the density
ρ0 is transported with the wafer.

(c) Inlet streamwise, and lateral discrete displacement components
are given from the banking (4.12), while the top component is
given from the continuity equation (4.17).

(d) Necessary corrections are performed according to Eq. (4.18).

(e) The advection and possible expansions are implemented by first
performing the inlet wafer displacements, and then successively
for every 3DCV:

i. Displace the wafers upstream of the 3DCV center by a shift
of indices according to Eq. (4.28).

ii. Carry out the necessary flipping as described in Sec. 4.5.5.

iii. Implement the displacements downstream of the center by a
shift of indices given by Eq. (4.29).

(f) The following is performed simultaneously on every LEM domain
in three stacks on sub time steps from t to t+∆t:

i. The time for the next triplet map event tTM is sampled from
the Poisson distribution (4.6).

ii. Following an explicit method, the one-dimensional diffusion
difference equation (4.1) is time marched with time step ∆tw
until t = t+tTM. The diffusive time step is given by Eq. (4.2).
For an implicit method, the equation set (4.3) is solved by
the TDMA method.



66 Implementation of LEM3D

iii. At t = t + tTM, a triplet map is implemented on the LEM
domain with the size sampled from the cumulative distri-
butions constructed from Eq. (4.4) and the position from a
distribution representing the turbulence diffusivity variation
over the domain.

iv. The steps (f)i. through (f)iii. are repeated until t = t+∆t.

(g) Data for the means (4.40), the 3DCV filtered means (4.45), the
raw moments (4.41), and the covariation (4.44) are sampled at
the last step in the LEM3D time step cycle. In general, the
sampling is not performed at every time step, but at an interval
sufficiently large to provide statistically independent samples.

(4) The steps (3)(a) through (3)(g) are repeated until statistical conver-
gence of the data sampled in (3)(g) is reached. Finally, the statistical
data are post-processed as described in Sec. 4.9.

(5) For one-way coupling the simulation is now completed. For two-way
coupling, e.g. for variable density flows, the steps (1) through (4) are
repeated until convergence between LEM3D and RANS. The density
field in RANS is given from the updated 3DCV filtered density field in
LEM3D. The solution might be relaxed for better overall convergence.

4.11 The two-dimensional Linear Eddy Model

The two-dimensional Linear Eddy Model, denoted LEM2D, has been devel-
oped to investigate the effects of random rotations in a simpler configuration.
In addition, the computer memory requirement is significantly less than for
a corresponding LEM3D calculation, which allows for relatively larger com-
putational domains with finer resolution. Figure 4.10 shows the setup of the
model. LEM domains resolved in the y- and z-directions are organized in
a two-dimensional structure. 2DCVs are defined where the LEM domains
cross. Contrary to the LEM3D, rotations of 2DCVs are only performed in
between two domain directions, leaving us with in total 2 different possi-
bilities of rotations; clockwise and counterclockwise around an axis in the
inactive x-direction. This also means that both directions are influenced
at every rotation event. Hence, the model corresponding to Eq. (4.39) for
additional dispersion in LEM2D is given as

Dr =
(∆x)2

24
R. (4.47)
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y

z

Figure 4.10: The figure displays the setup for the LEM2D. The 2DCVs are resolved
by wafers in the y- and z-directions as indicated.

Due to the random rotations, a scalar will only reside 1/2 of the time
on LEM domains in a given direction. This implies that the main transport
property, which in this case is the turbulence diffusivity, is multiplied with
a factor 2 to provide the correct scalar transport on average. The rotation
frequency is accordingly given as

R =
2νr
τdiff

, (4.48)

where τdiff is given by Eq. (4.32).

The simulation principally follows the steps (2) to (4) in the procedure
in Sec. 4.10, where the items related to advection and expansion, i.e., (3)(b)
through (3)(e) are omitted. For item (3)(a), the probability of a random
rotation is given as νrCFLT, where the relative rotation frequency is related
to the turbulence diffusive timescale by Eq. (4.48) and (4.32). The role of
the CFLT-number is to ensure that the probability of rotation is less than
one.

Simulations are typically run from the same initial condition with differ-
ent random-number seeds for a given time. This is one realization. Data are
gathered as described in (3)(g) after every realization and post-processed as
given Sec. 4.9 at the simulation end.
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4.12 Computational cost

The total simulation time for a numerical algorithm can be estimated by

Ttot = NpNtTpt, (4.49)

where Np is the total number of grid nodes, Nt the total number of time
steps needed (in order to gather enough statistics), and Tpt is the time spend
for one time step at each node. Tpt is a function of the number of equations
solved and the cpu time spent for each operation (Ertesv̊ag, 2000).

For a fair comparison of DNS and LEM3D, we consider a “reduced”
DNS, where only the transport equations for the reacting scalars are solved.
Hence, the same number of equations are solved in LEM3D and DNS.
The assumption is made that the time for solving three copies of the 1D-
equations, corresponds to solving one copy of the 3D-equations.10 This
gives

(NtTpt)DNS ∼ (NtTpt)LEM3D . (4.50)

LEM3D consists of stacks of one-dimensional domains in three direc-
tions, so the number of nodes resolving the domain is

Np,LEM3D = NxMNyNz +NyMNxNz +NzMNyNx = NxNyNz3M. (4.51)

We further assume that the space resolution is the same for DNS and
LEM3D, i.e., ∆xDNS = ∆xw. Thus, the number of nodes needed in DNS
expressed in terms of Nx, Ny, Nz, and M is

Np,DNS = NxM ×NyM ×NzM = NxNyNzM
3. (4.52)

This gives the relation between the resolution requirement in DNS and
LEM3D as

Np,LEM3D =
3Np,DNS

M2
. (4.53)

Applying the Eqs. (4.53) and (4.50) in the expression (4.49), it follows that
the simulation time in LEM3D corresponds to DNS on the order of

Ttot,LEM3D ∼ Ttot,DNS

M2
. (4.54)

Thus, the cost saving achieved with LEM3D in comparison to DNS is first
and foremost influenced by the 1D-resolution M .

10The type of numerical schemes applied, and the time step differences may influence
the accuracy in this assumption.
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To illustrate what this means, we consider a turbulent reacting flow with
an integral scale of 10−2m. A typical fast chemical time scale may be on
the order of τchem ∼ 10−8 s (Warnatz et al., 2001). The flame thickness can
further be estimated to δr ∼ (DMτchem)

1/2 ∼ 10−6m (Borghi, 1988) if DM is
taken as 10−4 m2/s. If ∆x in LEM3D is set to 1/10 of the integral scale, the
1D-resolution becomesM = ∆x/∆xw = 10−3/10−6 = 103. From Eq. (4.54),
the LEM3D simulation time is estimated to Ttot,LEM3D ∼ 10−6Ttot,DNS. This
gives that, for this particular case, a DNS taking one month is completed
in a few seconds with a corresponding LEM3D.
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Chapter 5

Test cases A: Advection and

random rotations

5.1 Introduction

This chapter investigates the representation of mean flow advection by dis-
crete displacement of wafers and the auxiliary coupling by random rotations
of 3DCVs. The chapter consists of two parts. The prescribed mean veloc-
ity field can generally not be represented by an integer number of wafer
displacements at every instant. Hence, the representation of mean flow ad-
vection by discrete displacements will necessarily result in instantaneous
deviations from the mean velocity. The magnitude of these deviations, and
the sensitivity to some selected parameters, was examined, and is presented
in the first part. The second part presents simulations in a simplified quasi
one-dimensional setup investigating the effect of random rotations on mean
and root mean square (rms) travel time of a trace wafer.

Even though the investigations revealed some artifacts related to the
random rotations and discrete representation of mean flow advection, it
is important to note that LEM3D, as expected, was able to represent the
prescribed mean velocity on average. The mean travel time of a wafer was
also well captured when the time was measured in between corresponding
locations in the domain.

5.2 Case A1: Representation of the velocity field

The concept of representing the mean flow advection by discrete displace-
ments of wafers was tested in a relatively simple flow configuration, namely

71
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the self-similar region of a turbulent jet. The wafer velocity is the local
instantaneous velocity of the wafer defined by the expression (4.16). Anal-
ogous to Reynolds decomposition (White, 1991), the wafer velocity is here
decomposed into the mean prescribed velocity and a fluctuation

wnn = unn + w
′

nn. (5.1)

To distinguish these fluctuations from turbulent velocity fluctuations, the
deviation from the prescribed mean velocity w

′

is in the following denoted
jitter.

5.2.1 Jitter

Every prescribed face velocity in the domain can be expressed as a fraction
of the maximum velocity component

unn = fnnumax, (5.2)

where the fraction fnn is a real number between 0 and 1. Applying Eq. (4.30)
for the advective CFL-number, the prescribed face velocity is expressed as

unn = fnnCFLadvM
∆xw
3∆t

, (5.3)

where M is the 1D-resolution.
As presented in Sec. 4.5.3, the displacements are estimated by two dis-

tinct methods:

(1) The banking, which is applied to all 3DCV components but one, is to
keep track of the residuals such that the prescribed displacement on
average is matched.

(2) Continuity is enforced by calculating the remaining components from
Eq. (4.17).

For the banking method, the Eqs. (4.11), (4.15) and (4.16) apply, and the
jitter can be written as

w
′

nn = unn − wnn = (γnn − δnn)
∆xw
3∆t

= rnn
∆xw
3∆t

, (5.4)

where γnn is the prescribed displacement. The jitter relative to the pre-
scribed velocity for a particular face is by combining Eq. (5.3) and Eq. (5.4)
given as

w
′

nn

unn
=

rnn
∆xw

3∆t

fnnCFLadvM
∆xw

3∆t

=
rnn

fnnMCFLadv
. (5.5)
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This implies that the magnitude of the relative jitter is in inverse ratio to
the 1D-resolution as well as the CFLadv-number. Further, the face velocities
that are small relative to the maximum velocity will have correspondingly
high relative jitter.

If we consider the wafer velocity components that are calculated by
the banking and assume no correction of the displacements, the jitter is
always less than ∆xw/∆t because rnn by construction is less than one. For
these components, the jitter occurs on a time scale ∆t/(γnn − δf,nn).

1 The
picture is, however, more complex for the components that are calculated
by continuity. The deviation for these components is generally greater than
∆xw/∆t, not only because it contains the sum of the respective deviations
for that particular 3DCV, but also since deviations accumulate downstream
due to the successive layer by layer calculation of displacements. As a result
of the interconnection between deviations, the jitter of these components is
in practice on a time scale similar to the advective time step.

When the displacements are corrected by the method suggested in chap-
ter 4.5.4, the jitter for all components occurs on the order of the advective
time scale, due to that the corrections generally are adjusting the compo-
nents at every time step.

5.2.2 Characterization of the prescribed flow field

The velocity field applied to prescribe the displacements in LEM3D was
based on the measurement of Tong and Warhaft (1995) in the self-similar
region of a turbulent jet with nozzle diameter Dj = 30mm and jet exit
velocity Uj = 9m/s. According to Tong and Warhaft (1995) the mean cen-
terline velocity decays as

Uc(x) =
CUj

(x− xvirt) /Dj
(5.6)

in the self-similar region of the jet, where Uc is the streamwise mean velocity
on the centerline, C = 6.13 is a constant, and xvirt = 0 is taken as the virtual
origin of the jet. The virtual origin is defined as the x-position where the
straight line Uj/Uc(x) intercepts the x-axis. The lateral self-similar profiles
of the streamwise velocity are to a good approximation Gaussian with a
form

ux(x, r) = Uc(x) exp

[
−Ku

( r
x

)2]
, (5.7)

1If for instance γnn=1.1, which means that δf,nn=1, δnn will alternate between 1 and
2 with a frequency of (γnn − δf,nn)/∆t=0.1/∆t which corresponds to a time scale 10∆t.
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where r is the radial distance from the jet centerline, and the constant
Ku = 75.2, reported by Panchapakesan and Lumley (1993a) for several jet
experiments in the range Rej ∼ 11000−95000, was assumed to fit the Tong
and Warhaft data (Rej = 18000). The lateral velocity components were
determined from the continuity equation2

1

r

∂

∂r
(rur(x, r)) +

∂ux(x, r)

∂x
= 0, (5.8)

which was integrated over r to yield

ur(x, r) = −1

r

∫ r

0
r′
∂ux(x, r

′)

∂x
∂r′. (5.9)

Applying the boundary conditions ur[x, 0] = 0 determined ur(x, r).

The velocity components normal to the surface of a 3DCV were repre-
sented by the surface averaged velocities

ux =
1

∆z∆y

∫

z

∫

y
ux(x, y, z)dydz,

uy =
1

∆x∆z

∫

z

∫

y
uy(x, y, z)dxdz,

uz =
1

∆x∆y

∫

y

∫

x
uz(x, y, x)dydx,

(5.10)

where the Cartesian components were calculated from the coordinate trans-
formation from cylindrical coordinates

ux(x, y, z) = ux(x, r),

uy(x, y, z) =
r

y
ur(x, r),

uz(x, y, z) =
r

z
ur(x, r),

(5.11)

where r =
√
y2 + z2. The analytical and numerical tool Mathematica by

Wolfram (1999) was used to evaluate the integral (5.9) analytically, and per-
form the integration of the expressions (5.10) numerically. The continuity
error related to the numerical integration was negligible.

2Here given in cylindrical coordinates. Components and derivatives in θ-direction were
not considered due to axis symmetry.
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5.2.3 Numerical setup and data collection

LEM3D was run omitting the scalar transport by molecular diffusion, triplet
map stirring and rotational coupling. For constant density, these processes
are completely decoupled from the wafer displacements, and hence do not
influence the present results. Referring to the simulation procedure in
Sec. 4.10, the following steps were performed: The initial setup relevant
to the advection, (2), and at each time step; the determination (3)(c) and
possible correction (3)(d) of displacements, followed by the advection ad-
vancement (3)(e). Wafer velocity data were sampled as given below.

The upwind domain boundary was placed at x/Dj = 6.3. The various
cases in Table 5.1 were motivated by investigating the importance of 1D-
and 3D-resolution as well as CFLadv-number on the wafer velocity.

Table 5.1: Input data to the LEM3D simulations

Case M CFLadv ∆x [mm] 3D-resolution δth

A1a 20 0.1 4 50× 45× 45 1

A1b 40 0.1 4 50× 45× 45 1

A1c 80 0.1 4 50× 45× 45 1

A1d 160 0.1 4 50× 45× 45 1

A1e 80 0.2 4 50× 45× 45 1

A1f 80 0.4 4 50× 45× 45 2

A1g 80 0.1 8 26× 23× 23 2

A1h 20 0.1 2 100× 91× 91 1

The mean wafer velocity was estimated by sampling the displacements
at the 3DCV face by the expression

wnn =


 1

Ns

Ns∑

j=1

δjnn


 ∆xw

3∆t
, (5.12)

where δjnn is the total number of wafers displaced over the 3DCV face nn
at time t = tj , and Ns is the number of samples. The jitter was estimated
by taking the rms of the deviation between the wafer velocity and the pre-
scribed velocity

w
′

nn =

√√√√ 1

Ns − 1

Ns−1∑

j=1

(
δjnn − γjnn

)2∆xw
3∆t

. (5.13)

The displacements were sampled at every time step.



76 Test cases A: Advection and random rotations

5.2.4 Results and discussion

The following section investigates the effect of applying corrections and ex-
amines the validity of the proposed scaling of the jitter as given by Eq. (5.5).

Representation of mean wafer velocity

The banking was developed to ensure that the lateral wafer velocity com-
ponents conform to the prescribed velocity on average. The streamwise
components are determined from continuity. Hence, if the prescribed veloc-
ity field satisfies continuity, the mean wafer velocity field should conform to
the prescribed field at all 3DCV faces. This was verified for all cases listed
in Tab. 5.1. The correction algorithm was found to have no effect on the
mean wafer velocity profiles.

Reducing deviations by discrete corrections

A method for correcting the discrete displacements was suggested in Chap-
ter 4.5.4. The method involves a threshold δth which determines how
“tightly” the system is controlled. Initial tests revealed that a somewhat
higher threshold was needed in some of the cases to avoid accumulation of
the residual, rnn. The lowest possible threshold is reported in Tab. 5.1 for
each case.

The square sum of deviations for a 3DCV was defined in Eq. (4.18). The
maximum (of all 3DCVs in the domain) rms of deviations is further given
by

dmax = max

Nface∑

nn

√
(rnn +∆nn)

2, (5.14)

where ∆nn is the integer correction for face nn.
In Fig. 5.1, dmax normalized byM is plotted as a function of time for two

different simulations of A1d. Corrections were applied in subfigure (b), but
omitted in subfigure (a). For subfigure (b), the maximum rms of deviations
was sampled right before and immediately after the correction at every time
step. The figure is further read as follows: After every new determination of
displacements (step (3)(c) in the simulation procedure), dmax/M was at a
level in between 0.2 and 0.4. Then after every correction (step (3)(d)), dmax

dropped down to about 0.04. The maximum rms was generally reduced by
a factor 5-10 by the corrections for this case. The amplitude of the variation
in dmax was also reduced compared to subfigure (a) where corrections were
omitted. The reason for the variation of dmax (before correction) with time
seen in Fig. 5.1(b) was not further investigated.



5.2. Case A1: Representation of the velocity field 77

1000 2000
0

0.2

0.4

0.6
dmax/M

∆t

(a) No correction of displacements

1000 2000
0

0.2

0.4

0.6
dmax/M

∆t

after

before

(b) Correction of displacements

Figure 5.1: The maximum rms of deviations normalized by the 3DCV resolution
as a function of the first 2000 time steps. In (b) the deviation is plotted before and
after corrections have been applied. M is 160 in both cases.

In Fig. 5.2, the jitter of the axial and radial displacement components are
plotted for case A1d. The mean wafer velocity is also shown for reference.
When the displacements were implemented without corrections, the jitter
of the axial centerline velocity increased asymptotically downstream. With
corrections, the jitter was significantly reduced to a level that apparently
was independent of distance from the jet origin. The radial jitter compo-
nent, however, was less affected by the corrections. This is due to that the
axial displacement components, which were calculated by continuity (4.17),
contained the deviations from the respective 3DCV face components. The
potential for reduction was therefore larger for the axial components. Rel-
ative to the mean velocity component, the lateral jitter was on the order of
200%, whereas the streamwise component was approximately 5 to 10% after
correction. This was due to the dependence of fnn in Eq. (5.5). With a low
fnn there are fewer wafers available for adjustment to the prescribed veloc-
ity, which leads to a higher jitter relative to the local prescribed velocity.

Jitter sensitivity

From the expression (5.5) it follows that the jitter decreases with increas-
ing 1D-resolution, CFLadv-number and velocity factor fnn. To assess the
validity of this relationship, the present results were scaled by the factor
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Figure 5.2: (a): Jitter of the axial velocity component along the centerline, and
(b): of the radial velocity component through the center of the jet at x/Dj ∼ 13.
Comparison of the jitter when displacement corrections are included or omitted for
case A1d. The mean velocity is shown with a dashed line for reference.

MCFLadvfnn. Thus, the normalized jitter is defined as

w∗
nn ≡ w

′

MCFLadvfnn. (5.15)

The scaled axial jitter profile along the centerline and the radial (y-
directed) profile through the domain center at x/Dj ∼ 13 are shown in
Fig. 5.3. For all 1D-resolutions considered, the profiles overlapped to a good
approximation.3 This means that the jitter was reduced with increasing 1D-
resolution as expected.

The presented scaling also seemed to agree well when the CFLadv-num-
ber was varied as shown in Fig. 5.4(a). The somewhat higher level for
CFLadv = 0.4 was probably due to that the correction threshold was in-
creased to δth = 2 in this case to avoid unbounded accumulated residuals.

In Fig. 5.4(b), the axial profile is plotted for various 3D-resolutions.
The wafer thickness, ∆xw, was kept constant meaning that M = 20 for
the domain with the finest 3D-resolution and M = 80 for the domain with
the coarsest resolution. The profile shapes were approximately on the same
level. This implies, since the jitter was scaled by M , that a refinement in
3D-resolution increased the jitter if not accompanied by a corresponding
reduction in ∆xw.

3The deviations between the profiles in Fig. 5.3 and Fig. 5.4 were not further investi-
gated.
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(a) Axial component along the jet centerline
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Figure 5.3: Normalized jitter of (a) the axial velocity component along the center-
line and (b) the radial component in the lateral direction through the centerline at
x/Dj ∼ 13. Sensitivity to 1D-resolution.
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Figure 5.4: Normalized jitter of the axial velocity component along the centerline.
The sensitivity to CFL-number (a) and 3D-resolution (b). In (a), M = 80 for all
cases, whereas in (b), M = 20, 40 or 80 depending on the 3D-resolution such that
∆xw was equal.
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5.2.5 Summary

The results in this section are summarized as follows:

• In all cases considered, the wafer velocity equaled the prescribed mean
velocity field on average.

• The jitter decreased with increasing 1D-resolution. This is due to
that higher resolution provides more flexibility in representing the
mean velocity by discrete displacements. For the current test cases,
the decrease scaled close to linearly with M .

• Increasing the CFL-number also decreased the jitter. The reason is
that the number of wafers (relative to the number of prescribed dis-
placement) needed to adjust to the prescribed displacement is higher
for larger CFLadv-numbers.

• The jitter relative to the prescribed mean displacement was larger
when the prescribed displacement was a small fraction of the maxi-
mum velocity, i.e., when fnn was small.

• A coarse 3D-resolution with fine 1D-resolution has less jitter than a
fine 3D-resolution with correspondingly coarser 1D-resolution.
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5.3 Case A2: Displacement and travel time

5.3.1 Motivation and numerical setup

The isolated effect of random rotations on mean and rms travel time of a
trace wafer through the domain was investigated by considering a single
quasi 1D LEM domain. Contrary to a standalone 1D LEM domain, this
one was also resolved by wafers on domains perpendicular to the main flow
direction as shown in Fig 5.5, however, no transport processes occurred
on these short domains. Triplet map stirring and molecular diffusion were
omitted on all domains. The 3D-resolution was M = 20 and the CFLadv-
number 0.1 for all cases. The prescribed velocity field was uniform; hence
the displacements were constant without any jitter.

boundary

center

U

x
z

y

τ2 τ3 τ4 τ5

Figure 5.5: The setup for the quasi 1D LEM domain. The first, second last and
last 3DCVs indicate that every 3DCV is resolved by wafers in the x-, y- and z-
directions.

The present cases were primarily intended to serve as numerical tests.
LEM3D is constructed as a turbulent mixing model, so one could argue
that the present numerical test cases, omitting the triplet map stirring and
molecular mixing, are somewhat out of scope. However, in situations where
the triplet maps are infrequent relative to the random rotations, e.g. for
relatively large integral scales, we may approach the ideal cases considered
here. Besides this, the cases isolated the joint effect of random rotation and
mean flow advection, enabling more transparent analyses.

5.3.2 Wafer paths through the domain

A random rotation sequence of a 3DCV will in this case first transfer a wafer
located at Xl to one of the two transverse and inactive domains. Finally,
when the wafer is rotated back to the active domain, it is either rotated
in the same direction resulting in a net displacement of |Xl − X(M+1−l)|,
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or rotated in the opposite direction, putting it back at the position at Xl

where it originally was located.
For infinite time, there are an infinite number of possible paths for a

wafer through the computational domain. Let τ denote the travel time
for a wafer through a 3DCV for a given realization. The wafer spends on
average 1/3 of the time in each of the domain direction. Due to the random
rotations, the travel time experienced by a trace wafer is sometimes greater
and sometimes less than the prescribed travel time τadv defined in Eq. (4.31).
The minimum travel time is defined as

τmin ≡ ∆x

3U
, (5.16)

which corresponds to streamwise travel without rotations to the lateral di-
rections.

The various paths for a wafer through the 3DCV can in general be
classified by three scenarios sorted by travel time:

(1) τ < τmin: The wafer is rotated through a random rotation sequence
to the opposite side of the 3DCV to where it entered. This scenario,
which is illustrated in Fig. 5.6(a), facilitates a shortcut through the
domain. A location close to the boundary is necessary for taking such
a shortcut.

(2) τ = τmin: If the wafer is displaced through the 3DCV without being
subject to any rotations, the travel time will be 1/3 of the prescribed
travel time.

(3) τ > τmin: Travel times above τmin is, for the present cases, mainly
caused by the waiting time on the inactive domains. The travel time
is, however, also increased when the wafer through numerous rotations
and displacements is tossed back and forth in the 3DCV as shown in
Fig. 5.6(b). The wafer will eventually escape this trap. It is intuitively
evident that the probability of being trapped in this manner is higher
when the wafer is located close to the center, than when it is located
close to the boundaries. These two effects may cause travel times
larger than the average prescribed travel time τadv.

The following sections investigate if the combined effects listed above
gives τ = τadv on average for the selected cases. The rms and probability
distribution function (pdf) of travel times is also reported.
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(a) Example of a shortcut, where τ <
τmin
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(b) Example of a trap, which may re-
sult in τ > τadv

Figure 5.6: Illustration of two different paths where (a) the travel time of a trace
wafer is less than the minimum travel time, and (b) greater than the prescribed
travel time.
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5.3.3 Results of distribution in computational space

In this case the trace wafer was inserted in the center of the first 3DCV by
randomly selecting one of the three domain directions with equal probability.
Further, the simulations were evolved for a total time of 3τadv corresponding
to a displacement of 3∆x. The average distance traveled was measured by
letting a wafer that ended up in the second 3DCV be associated with a
distance ∆x, the third with a distance 2∆x, the fourth with 3∆x, and so
forth.

The average distance traveled normalized the expected distance is given
as a function of rotation frequency in Fig. 5.7(a). The average distance was
correctly represented for relative rotation frequencies4 up to about νr ∼ 1.
For more frequent rotations, the average distance traveled was reduced.
Since the wafer initially was located in the center of the 3DCV, it needed
more time to escape as explained in Fig. 5.6(b). This resulted in reduced
distance traveled.
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(b) Rms position

Figure 5.7: Mean and rms of tracer wafer position as a function of the relative
rotation frequency after t = 3τadv.

The rms of the distance traveled normalized by its average is denotedX
′

.
As shown in Fig. 5.7(b) the rms decreased for increasing rotation frequency,
but increased again when the rotation frequency exceeded a frequency of
about ∼3. This behavior is best explained by considering the pdf of travel
distance given in Fig. 5.8. For low rotation frequencies, the wafer had a
high probability of ending up on the domain where it initially was inserted,

4See Eq. (4.35) for the definition of relative rotation frequency.
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Figure 5.8: Distribution in computational space of the trace wafer after a simula-
tion time of 3τadv. The pdf is given for a number of relative rotation frequencies
from νr = 0.1 to νr = 10. The mean distance corresponding to the prescribed
displacement is given by the thick line.

i.e., either at X/∆x = 0 in one of the two inactive domains, or at X/∆x =
9, which is three times the expected distance. With increasing rotation
frequency, the double peak pdf approached a single peak. For even higher
rotation frequencies, a left shift of the peak was observed, which was related
to the reduction in mean travel distance as previously explained.

A relative rotation frequency on the order of one seemed to be the
compromise that provided the correct average displacement without too
much scattering. However, even though the wafer displacements were im-
plemented deterministically, the pdf of the distance a wafer traveled was
still rather wide. This is a direct consequence of the random rotations.

5.3.4 Travel time distribution results

The numerical experiment described in the present section is slightly differ-
ent from the previous. The travel times were taken when the wafers crossed
a 3DCV boundary in the streamwise direction. The travel time from when
the wafer was inserted to when it crossed the upstream boundary of the
second 3DCV is denoted τ2, the third τ3, and so forth (see Fig. 5.5). In
the first set of experiments, the wafer was inserted at the upstream inlet of
the first 3DCV, whereas the second set put the wafers in the 3DCV center
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on the streamwise domain. Hence, the travel time from 3DCV boundary
to boundary and from center to boundary was measured. The normalized
mean travel time difference was given by

τ∗k =
τk − kτadv

τ2
, (5.17)

where τk is the computed mean travel time at the upstream boundary of
3DCV number k. By the expression above, the travel time equals the ex-
pected when τ∗k = 0. The rms of the travel time normalized by the mean
was estimated by

τ
′

k =

√
(τk − kτadv)

2

τk
. (5.18)

Travel time between 3DCV boundaries

In Fig. 5.9(a), τ∗k is plotted for various travel times as a function of the
rotation frequency. The figure shows that the expected travel time was
achieved independent of rotation frequency. The normalized rms of the
travel time as a function of rotation frequency is given in Fig. 5.9(b). For
all travel times considered, the rms reached a minimum around νr ∼ 3.
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(b) Normalized rms travel time

Figure 5.9: Travel times for wafers that initially were inserted on the upstream
boundary of the first 3DCV. The travel time was measured at the upstream 3DCV
boundary for the second to the fifth 3DCV.

The pdf of travel times for various rotation frequencies is displayed in
Fig. 5.10, where the vertical solid line indicates the travel time τadv corre-
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sponding to the expected displacement and the vertical dashed line repre-
sents the minimum travel time, τmin. Subfigure (a) shows the pdf of travel
time to the upstream boundary of the second 3DCV, and subfigure (b)
to the fifth 3DCV. For rotation frequencies on the order of one and less,
there was a peak in the distribution at τmin. The peak was due to that
many wafers traveled through the domain without being subject to any ro-
tations.5 The peak in the pdf decreased for higher rotation frequencies and
for increasing distances traveled as shown in Fig. 5.10. The probability of
shortcuts, τ < τmin, increased with increasing rotation frequency.
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(a) Travel time to the fifth 3DCV
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(b) Travel time to the fifth 3DCV

Figure 5.10: Distribution of travel times for wafers that initially were inserted
on the upstream boundary of first 3DCV. The vertical solid lines indicate the
prescribed travel time τadv and the vertical dashed lines the minimum travel time
τmin.

5Note that all wafers were inserted in the first 3DCV in the streamwise oriented LEM
domain.
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Travel time between 3DCV center and boundary

In the set of numerical experiments described here, the wafers were inserted
in the center of the first 3DCV in the streamwise direction (see Fig. 5.5).
The deviation from the expected travel time increased exponentially with
increasing rotation frequency as shown in Fig. 5.11(a). When the trace
wafer was inserted in the center of the first 3DCV, it lacked the possibility of
taking the shortcut through the 3DCV, and the possibility of being trapped
was higher. Thus, the computed average travel time was significantly longer
than the expected, and the travel time increased with increasing rotation
frequency. Note that τ∗k was almost the same for all k. This was because
the deviation predominantly was due to the additional travel time in the
first 3DCV.
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Figure 5.11: Travel times for wafers that initially were inserted in the center of the
first 3DCV. The travel time was measured at the upstream 3DCV boundary for
the second to the fifth 3DCV. The difference between expected, τ∗k = 0, and the
simulated travel time increased with increasing rotation frequency.

The rms of the travel time scaled by the average travel time was reduced
with increasing rotation frequency as shown in Fig. 5.11(b). This trend was
opposite of the normalized mean travel time, which points out that the
choice of rotation frequency in this case was a trade-off between matching
the prescribed travel time or reducing the scattering in predicted travel
time. The pdfs in Fig. 5.12 show similar behavior as Fig. 5.10 except for
the fact that the probability of shortcuts through the first 3DCV (left of
the dashed line) was zero, and hence also significantly less at the upstream
boundary of the fifth 3DCV.
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(a) Travel time to the second 3DCV
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Figure 5.12: Distribution of travel times for wafers that initially were inserted in
the center of the first 3DCV. The vertical solid lines indicate the prescribed travel
time τadv and the vertical dashed lines the minimum travel time τmin.

5.3.5 Summary

In the first set of numerical experiments the displacements were measured at
a 3DCV level. This means that we for instance did not distinguish between
wafers that were located in the center and the wafers closer to the boundary.
On this level of accuracy, the average travel distance was in accordance with
the expected, as long as the rotation frequency was on the order of one or
less. Higher rotation frequencies resulted in an increasing amount of wafers
being trapped in the first 3DCV, whereas the rms of the travel distance
increased for lower rotation frequencies.

The travel time predictions were performed by measuring the time ex-
actly when the wafers were crossing the 3DCV boundaries. Hence, the local
position of the wafer in the 3DCV was taken into account. The results
revealed that the initial local position affects the travel time. Wafers lo-
cated in the center of the 3DCV have a higher probability of being trapped,
which gives a higher average travel time when we measure from center to the
boundary. This effect increases with increasing rotation frequency. When
we measured the travel time from boundary to boundary, we matched the
average travel time for all rotation frequencies considered. However, the
rms was relatively high, and the pdf had a clear peak around τ = τmin for
rotation frequencies νr ∼ 1.

We realize that the mean flow advection of wafers, as it is implemented
in LEM3D, has random character due to the random rotations.
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5.4 Brief discussion of implications for LEM3D

The overall conclusion is that the average travel time matches the prescribed
time if we measure from boundary to boundary of the 3DCV or on a 3DCV
basis. In Chapter 8 the wafer containing the passive scalar source, is located
close to the 3DCV boundary, which should give the best representation of
the mean scalar advection in the proximity of the source. However, as
the results in this chapter show, the travel time distribution may still be
rather broad. To what extent this affects the scalar statistics in LEM3D
is uncertain and has not been further investigated. The “trapping” of the
wafers in the 3DCV may affect the time for molecular mixing and chemical
reaction to occur.

The implication of jitter of the wafer velocity components on the LEM3D
results has not been thoroughly investigated. However, the results in Chap-
ter 8 indicate that the effect of applying corrections, which affects the jitter
as observed in Sec. 5.2.4, is negligible for the scalar mean and rms.



Chapter 6

Test cases B: Scalar mixing

in isotropic turbulence

6.1 Introduction

In isotropic turbulence with uniform streamwise mean flow, no advective
coupling by flipping of wafers is present in LEM3D. Hence, the only mech-
anism that exchanges scalars in between parallel and orthogonally oriented
LEM domains is the auxiliary coupling by random rotation of 3DCVs. This
chapter presents simulations that examined what the magnitude of the rota-
tion frequency should be in order to provide sufficient directional coupling.
The additional effects and artifacts introduced by the random rotations were
also investigated. A rotation frequency on the order of one rotation per res-
idence time seemed to provide sufficient coupling in most cases. However,
this was dependent on the distance from the source. The results also in-
dicate that the random rotations generally induce an additional dispersion
and affect the variance and multi-point statistics.

The test cases were motivated by the need for examining the auxiliary
coupling mechanism in a simplified setup. Hence, LEM2D, which only con-
stitutes molecular mixing, triplet map stirring and random rotations, was
utilized for the simulations.1 Two cases were considered; the dispersion of
a point source in non-decaying isotropic turbulence and the dispersion from
a line source in grid turbulence. Except for the source configuration, the
two cases differed mainly by the turbulence Reynolds number, which was
about 6 times larger in the point source case. Results from simulations with
LEM2D were compared to the standalone 1D LEM (denoted LEM1D), the

1The model is presented in Sec. 4.11.

91
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analytical solution to the diffusion equation, and the model transport equa-
tions for scalar mean (3.8) and variance (3.10) solved by a finite volume
method. The performance of the estimate for additional dispersion from
random rotations, presented in Sec. 4.7.2, was also tested. For the line
source case, the simulations with LEM1D and LEM2D were compared to
measurements by Warhaft (1984).

6.2 Test case B1: Point source in isotropic turbu-

lence

The present numerical experiment B1 was set up without a direct coupling
to experiments per se. We considered an idealization of the grid turbulence
case (Pope, 2000), where the velocity fluctuations downstream of the turbu-
lence generating grid were maintained at a constant level by artificial forcing.
The turbulence diffusivity field was uniform in time and space and given by
DT = 5.0 × 10−3 m2/s. The molecular diffusivity was DM = 2.0 × 10−5 m2/s
giving a Peclet number of Pe ≡ DT/DM = 250.

6.2.1 Analytical solution to the scalar mean transport

The results from the numerical simulations were compared to the analytical
solution to the linear one-dimensional partial differential diffusion equation
principally given in Eq. (3.14). Given an initial point source of magnitude ϕ0

at y = 0 on an infinite domain, it can be shown by basic calculus (Kreyszig,
1993) that the evolution of the scalar field is given by

ϕ(y, t) = C
′

exp

(−y2
2σ2

)
, (6.1)

where the prefactor C
′

reads

C
′

=

∫
ϕ0dy√
2σπ

, (6.2)

and σ = σ(t) is the expected spreading. By applying the scaling in the
turbulent diffusive regime given by Eq. (2.33), the equivalent analytical
solution to spreading from a point source at r = 0 in two dimensions is

ϕ(r, t) = C exp

(
− r2

4DTt

)
, (6.3)
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where the prefactor reads

C =

∫
ϕ0dA

2π
√
2DTt

. (6.4)

Due to the relatively high Peclet number, the molecular diffusivity was
neglected in the expressions above. The mean scalar profiles from simula-
tions with LEM1D and LEM2D were normalized by the factors C

′

and C,
respectively, and in this manner compared to the correspondingly normal-
ized analytical solutions denoted A′

for 1D and A for 2D.

6.2.2 Additional dispersion from random rotations

The estimate for additional dispersion from random rotations, presented
in Sec. 4.7.2, was evaluated by comparing results from LEM2D with the
analytical expression (6.3) and applying the adjusted prefactor given by

Cr =

∫
ϕ0dA

2π
√

2(DT +Dr)t
, (6.5)

where Dr is the additional diffusivity from rotations given in Eq. (4.39).
The estimate is referred to in the figures by the symbol Ar.

6.2.3 The finite volume method

The scalar variance results using LEM2D were also compared to the nu-
merical solution to the transport equations of scalar mean (3.8) and vari-
ance (3.10). These equations were solved applying a finite volume method,
in the following referred to as FV.

The convection-diffusion part of the equations were discretized by the
power law scheme (Versteeg and Malalasekera, 1995). The two latter terms
in the scalar variance equation (3.10), which respectively constitute the pro-
duction and the dissipation of scalar variance, were implemented by adding
them to the source term. The discretized equation system was solved se-
quentially by forward Gauss elimination and backward substitution, com-
monly denoted the Tridiagonal Matrix Algorithm (Ferziger and Peric, 2002).

The two transport equations were solved in three dimensions on a do-
main resolved by a uniform Cartesian mesh of 100×25×25 control volumes
(CVs) in the streamwise and lateral directions, respectively. For compu-
tational cost saving, the symmetry in the setup was utilized by resolving
only one quadrant of the domain. Control volumes with side faces of 4mm
resolved the domain of 0.4m×0.1m×0.1m, which was sufficiently large to
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provide negligible gradients on the boundaries. The point source was placed
on the upstream corner of the grid boundary and was resolved by one con-
trol volume. Symmetry boundary conditions were applied on all lateral
domains. The upstream boundary was a regular inflow boundary, where
constant values for scalar mean and variance were specified, while the out-
flow boundary was treated as purely convective flux with zero streamwise
gradients.

The numerical accuracy both in terms of approximating the point source
and reducing numerical diffusion was assessed by doubling the number of
control volumes on a domain of similar size. The discrepancies between the
default and the finest grid were negligible.

The input values relevant to the FV computation are reported in Tab. 6.1.
The turbulence energy k and its dissipation rate ε needed as input to the
scalar dissipation term in Eq. (3.11) were given by the Eqs. (3.6) and (3.12)
assuming a constant turbulence integral scale of 5.36mm. The uniform
distribution of k and ε corresponded to the LEM2D, which currently is lim-
ited to a single model integral scale. Assuming a uniform velocity field of
u = 5m/s, the turbulence intensity was estimated to I ≡ u

′

/u ∼ 19.5% by
applying the definition of k.

Table 6.1: Input data to the FV computations.

Case Resolution ∆x [mm] lt [mm] k [m2/s2] ε [m2/s2] I

F1 100×25×25 4 5.36 1.42 51.9 19.5%

6.2.4 Numerical setup in LEM2D

The LEM2D domain, shown in Fig. 6.1, was oriented perpendicular to the
streamwise direction and moved downstream with the mean flow from where
the scalar was released. The elapsed time in the model corresponded to
downstream position from the scalar release translated by t = x/u. Input
data and turbulence characteristics for the LEM2D simulations are given in
Tab. 6.2. The domain was 0.18m×0.18m and 0.36m×0.36m for simulation
times of 7 and 31 eddy turnover times, respectively. The 1D- and 2D-
resolutions2 are given in the table for the various cases.

In the standalone 1D LEM simulations of the line source experiment in
Kerstein (1992b), the ratio L/lt was set to match second order moments
with data. It is neither expected that the same constant can be applied
to the present point source case, nor that LEM2D should inherit the same

2The expression 2D-resolution in LEM2D corresponds to 3D-resolution in LEM3D.
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Table 6.2: Input data to the LEM2D simulations. Lengths are given in [mm] and
time scales in [s].

Case Res. ∆x M L LK
L∗

K

LK
TL τt tend

B1a 45×45 4 20 30 0.23 10 0.18 0.0057 7τt

B1b 91×91 4 20 30 0.23 10 0.18 0.0057 31τt

B1c 45×45 4 20 10 0.077 31 0.02 0.00064 63τt

B1d 45×45 4 20 60 0.46 5.2 0.72 0.023 1.7τt

B1e 45×45 4 100 30 0.23 2.1 0.18 0.0057 7τt

constant as LEM1D in comparison between the two models. Nevertheless,
the constant was in the present case not adjusted, bearing in mind that a
better match could have been achieved by calibration. Applying the ratio
L/lt = 5.6 and the integral scale lt = 5.36mm, the model integral scale was
set to L ≈ 30mm. Simulations with larger (B1d) and smaller (B1e) factors
were also performed with LEM2D.
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Figure 6.1: A schematic setup of the LEM2D domain, here exemplified by a 2D-
resolution of 7×7 domain. The 1D-resolution in the y- and z-direction is indicated
in some of the 2DCVs. In the point source case the two black y-oriented wafers in
the center were initialized to ϕ0 at t = 0. The shaded row of y-oriented wafers in
the z-direction indicate the line source.

The eddy turnover time was estimated from τt = l2t /DT, and the model
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eddy turnover time by TL = L2/DT. The 2DCV size was set to 4mm.
The smallest possible triplet map was limited to 12 wafers (kmin = 4). The
model Reynolds number was ReS = 654 by the relations and parameters
given in Sec. 3.2.

The cases B1a and B1b under resolved the turbulence spectrum by a
factor 10 (see Tab. 6.2). For the B1e case, the 1D-resolution was set to
M = 100, which implied that the smallest implemented triplet map L∗

K was
on the order of the model Kolmogorov scale. Some initial calculations were
run in LEM1D to ensure that the 1D-resolution was adequate to represent
mean scalar profiles for B1a-B1d. It was found that M = 20 was sufficient
to capture the mean scalar values. In Figure 6.2, the mean scalar profile
is compared to the expected spreading in the turbulent diffusive range for
simulations from t = 0 to t = 7τt with LEM1D. The mean scalar profile
from simulations with LEM1D was slightly less spread, which indicate that
the mean profile was somewhat affected by the initial scaling (turbulent
convective range) at this point.3 For longer simulation times, corresponding
to a position farther downstream, the mean scalar profile converged toward
the Gaussian shape.
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Figure 6.2: The mean scalar profiles from simulation with LEM1D from t = 0 to
t = 7τt . The simulation is compared with a Gaussian profile following the scaling
in the turbulent diffusive range.

The LEM2D source configuration is given in Fig. 6.1. At time t = 0 a
source of magnitude ϕ0 was inserted in the two center wafers in the center
2DCV, as indicated by the black filled wafers in the figure. The source
was inserted only in one of the two directions to fully assess if directional
coupling was achieved.

3See Sec. 6.3 for more details on the scaling with LEM1D.
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Data was taken after tend = 0.04 s and tend = 0.18 s, which correspond
to approximately 7τt and 31τt, or 0.22TL and TL, respectively. Statistics
were gathered as described in Sec. 4.9 by running 1000 realizations with
different random number seeds. The number of realizations was adequate
for achieving statistical convergence for the mean value and stabilizing the
rms at a level with sufficient accuracy.

For the cases B1a, B1b and B1e the relative rotation frequency of the
2DCVs, νr, was varied to investigate the effect on the scalar mean and
its variance and multipoint statistics. The relative rotation frequency was
related to the turbulent diffusive time scale as defined by Eq. (4.48). The
influence of integral scale on the mean scalar profiles was also investigated
by comparison with LEM1D for the cases B1c and B1d.

6.2.5 Effect of random rotations on mean dispersion

The figures 6.3 and 6.4 show the 2DCV filtered4 mean scalar profile through
the center of the domain in the y-direction ϕ̂y and the radial profile ϕ̂r

along a line 45◦ to the y- and z-direction. The data were sampled from
the cases B1a and B1b. In the subfigures (a) to (d), the relative rotation
frequency was varied from 0.1 to 2.0. The point source dispersion case
is a symmetric case, hence coinciding ϕ̂y- and ϕ̂r-profiles signify sufficient
directional coupling. It was shown that νr ≥ 0.5 provided adequate auxiliary
coupling between the domains for this particular case, however, a higher
rotation frequency was apparently needed closer to the source (Fig. 6.3)
than further downstream (Fig. 6.4).

The additional dispersion from rotations increased with increasing ro-
tation frequency. This trend is built into the estimate for additional dis-
persion from rotations, which is denoted Ar in the figures. The estimated
additional dispersion was, however, somewhat larger at higher rotation fre-
quencies than predicted by LEM2D. The results with LEM2D also indicated
that the additional dispersion from rotations increased with increasing time
from when the source was released. This time dependence is currently not
embedded in the estimate.

In Fig. 6.5 the 1D-resolved mean scalar values along the LEM domains in
the y- and z-direction, denoted by ϕy and ϕz respectively, are presented for
case B1a. Increasingly wavy behavior was observed with increasing rotation
frequency. This is explained by the following reasoning. In a non-uniform
scalar field, the rotations introduce a sharp gradient on the boundary be-

42DCV filtered mean was sampled by Eqs. (4.45) and (4.46), where the x-direction
was omitted in the latter expression.
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tween 2DCVs. This sharp gradient is smoothed out by triplet map stirring
and molecular diffusion. If the frequency of the triplet map stirring and
molecular diffusivity is low relative to the rotation frequency, the mean
scalar profiles will be imprinted by the sharp gradients.



6.2. Test case B1: Point source in isotropic turbulence 99

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2
ϕ̂/C

r [m]

A
Ar

ϕ̂y

ϕ̂r

(a) νr = 0.1

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2
ϕ̂/C

r [m]

A
Ar

ϕ̂y

ϕ̂r

(b) νr = 0.5

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2
ϕ̂/C

r [m]

A
Ar

ϕ̂y

ϕ̂r

(c) νr = 1.0

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2
ϕ̂/C

r [m]

A
Ar

ϕ̂y

ϕ̂r

(d) νr = 2.0

Figure 6.3: Comparison of mean 2DCV filtered scalar profiles along radial lines
through the center for relative rotation frequencies ranging from 0.1 to 2. The
results from simulations with LEM2D for the case B1a (tend = 7τt) are compared
to the analytical solution, A, and the analytical solution where the estimate for
diffusivity from rotations is subtracted, Ar.
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Figure 6.4: Comparison of mean 2DCV filtered scalar profiles along radial lines
through the center for relative rotation frequencies ranging from 0.1 to 2. The
results from simulations with LEM2D for the case B1b (tend = 31τt) are compared
to the analytical solution, A, and the analytical solution where the estimate for
diffusivity from rotations is subtracted, Ar.
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Figure 6.5: Comparison of mean 1D-resolved scalar profiles along center domains
in the y- and z-direction for relative rotation frequencies of 0.1 and 2. The results
from simulations with LEM2D for the case B1a are compared to the analytical
solution, A.
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6.2.6 Effect of model integral scale on mean dispersion

Uniform spreading of a scalar is jointly dependent on the characteristics of
the processes on the individual LEM domains and the auxiliary coupling by
random rotations. For instance, the random rotations are unable to spread
the scalar diagonally unless they operate in conjunction with the LEM pro-
cesses, where the random triplet map events dominate in this respect. The
relative rotation frequency was set to νr = 0.5 for the simulations presented
in this section.

It can be shown from the expression (4.5), that the event frequency in-
creases by a factor ∼5 when the integral scale is reduced from L = 30mm to
L = 10mm. Correspondingly, increasing the integral scale from L = 30mm
to L = 60mm decreases the event frequency by a factor ∼2.6. The ef-
fect of the model integral scale variations on the LEM2D-simulations is in
Figure 6.6 compared to corresponding simulations with LEM1D. All simu-
lations consisted of 1000 realizations to t = 0.04 s . The scalar in LEM1D
was less spread for L = 60mm than the “expected” turbulent diffusive scal-
ing. This can be explained by insufficient coupling and the initial scaling
of LEM (see Sec. 6.3 for more details on LEM1D scaling). Increasing the
integral scale in LEM2D resulted in larger discrepancies between the ϕ̂x-
and ϕ̂r-profiles which indicated poorer coupling between the domains. This
confirmed that the LEM processes play an important role in the coupling
of the domains.

As the model integral scale was reduced, the LEM1D approached the
Gaussian profile and the scaling in the turbulent diffusive regime. For
LEM2D the profiles were more spread due to the additional dispersion from
the random 2DCV rotations. Comparing Figs. 6.3(b) and 6.6, the results
with L = 10mm gave the closest agreement with the estimated additional
dispersion.

By scaling the time by the eddy turnover time, as given in Tab. 6.2,
we may combine the effect of the integral scale variation and the time from
when the source was released. I.e., the degree of coupling and the additional
dispersion from rotations are dependent on the time, normalized by the eddy
turnover time, from when the source is released. This aspect is, at present,
not represented in the estimate for additional dispersion from the rotations
presented in Sec. 4.7.2.
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Figure 6.6: Mean 2DCV filtered scalar profiles along radial lines through the center
for simulations with different model integral scales (B1a, B1c and B1d). The results
are also compared to simulations with LEM1D. For all LEM2D cases the relative
rotation frequency was νr = 0.5.
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6.2.7 Effect of rotations on variance and autocorrelation

The 2DCV rotations will bring wafers on the interfaces between 2DCVs that
originally were separated in proximity to each other. This may enhance the
mixing and influence the scalar statistics. The effect of random rotations
on the variance and the autocorrelation was investigated by running case
B1e with different rotation frequencies. All simulations consisted of 1000
realizations to t = 7τt. The simulations in Sec 6.2.5 showed that a relative
frequency of rotations of νr = 0.5 was necessary to ensure coupling between
the domains. Hence, the present variation in rotation frequency excluded
frequencies below 0.5.

In Figure 6.7, the scalar rms scaled by the centerline mean and a common
reference is plotted as a function of radial distance in units of 2DCVs. The
levels of the rms profiles were reduced, compared to LEM1D, by factors
of approximately 1.4 to 1.8 for relative rotation frequencies of νr = 0.5
to νr = 2. If the rms results were scaled by a common reference value
instead of the centerline mean, the reduction was somewhat larger as shown
in Fig. 6.7(b). These results indicate that the random rotations of 2DCVs
reduce the scalar variance.
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Figure 6.7: Results from simulations with LEM2D and LEM1D at a downstream
position corresponding to t = 7τt. Radial profiles through the center for (a) rms
scaled by the corresponding mean centerline value and (b) rms scaled by a common
reference. In (a) the simulations are also compared to computations of scalar
variance with FV.

The off-axis peak in the scalar rms profile from the FV computation was
somewhat higher than the LEM simulations. The scalar rms computed by
the FV is directly proportional to the integral scale in the model. Hence,
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better match could have been achieved by tuning the factor between the
integral scale applied in FV and the model integral scale in LEM2D and
LEM1D. However, the shape of the profile differed and the FV rms declined
more rapidly toward the centerline compared to the LEM simulations.

The autocorrelation given by Eq. (4.43) is the correlation between the
scalar process at two different locations. Positive correlation represents re-
alizations where the scalar deviation from the mean value is positive at
the two positions, whereas negative autocorrelation represents realizations
when the deviations have opposite signs. In Fig. 6.8 the autocorrelations
between the scalar value for the center wafer at y = 0 and the respective
wafers along the same LEM-domain are given at t = 7τt. A triplet map can
completely displace a scalar a distance from the center where it originally
was located. This instance results in negative autocorrelation. The stan-
dalone LEM1D gave a negative autocorrelation in the range r ≈ 0.015m to
0.06m, which is about 0.5 to 2L. For LEM2D the negative autocorrelation
was reduced in value as well as in range. A plausible explanation is that the
initially negative autocorrelation provided by the triplet map was reduced
by the additional dispersion caused by the random rotation. Contrary to
the rms results, the autocorrelation appeared to be close to independent of
the rotation frequencies considered.
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Figure 6.8: Autocorrelation between scalar value at r = 0 and r computed with
LEM2D for various rotation frequencies compared with LEM1D for reference. Data
was sampled after t = 7τt.
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6.3 Test case B2: The line source experiment

One of the simplest experiments for studying turbulent dispersion is the
thermal wake behind a heated wire in isotropic grid turbulence (Pope, 2000).
The three plume growth regimes briefly presented in Sec. 2.5.2 are observed
for instance in the experimental work of Warhaft (1984). A short review
of the analytical, modeling and experimental work is given in Viswanathan
and Pope (2008). They use a PDF method with the IECM5 mixing model to
calculate the line source experiment. Kerstein (1992b) shows that the stan-
dalone 1D LEM is able to capture the trend of the three regimes. However,
the transition points differ from the experiment, and the scaling exponent
in the turbulent convective range is 1.5 times larger. The latter is due to
the instantaneous nature of the triplet maps.

line source

x0

H

u

x

x′

y

Figure 6.9: The schematic experimental setup of Warhaft (1984). The line source
is located a distance x0 from the turbulence generating grid. The figure is not to
scale.

6.3.1 Experimental configuration

The schematic setup of Warhaft (1984) is illustrated in Fig. 6.9. The tur-
bulence generating grid with width H = 25mm is placed in a wind tunnel,
which is 170H long and 16H×16H in cross section. The line sources are
heated wires of diameter 0.127mm and 0.207mm for the near field and
the far field experiments, respectively. The line source is placed a distance

5Interaction by Exchange with the Conditional Mean. The scalar mean is conditioned
on velocity.
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x0 = 52H from the turbulence generating grid.6 The temperature of the
wire is slightly higher than the ambient air, so the effect of buoyancy can
be neglected and temperature can be considered a passive scalar. The tur-
bulence diffusivity is DT = 8.89 × 10−4 m2/s and the molecular diffusivity
DM = 2.0 × 10−5 m2/s giving a Peclet number of Pe = 44.5. The integral
scale is reported to be lt = 1.35H. To a good approximation, these proper-
ties are constant within the distance to the source considered here (Kerstein,
1992b).

6.3.2 Numerical setup in LEM2D

The LEM2D domain displayed in Fig. 6.1 was oriented perpendicular to the
x-axis in Figure 6.9 and moved downstream with the mean flow velocity
of u = 7m/s. Time in the model was translated to distance from the line
source by x′ = ut, where x′ = x− x0. The domain of size 0.425m×0.425m
was resolved as given in Tab. 6.3, where also input data and the derived
turbulence characteristics are listed. The size of the 2DCVs was set equal
to the spacing H between the turbulence generating grid in the experiment.
The 1D-resolution provided a viscous cutoff on the order of the model Kol-
mogorov scale.

Table 6.3: Input data to the LEM2D simulations. Length scales are given in [mm]
and time scales in [s]. See the text for further explanation.

Case Res. ∆x M L ReS LK L∗
K/LK TL τt

B2a 17×17 25 80 75.6 116 2.1 1.8 6.4 0.21

The line source was set by initializing the center y-oriented wafers in
adjacent 2DCVs along the center z-direction to ϕ0 at t = 0, as shown in
Fig. 6.1. In this way, the extent of the line source in the y-direction was
initially ∆xw = 0.31mm. However, a rotation of a 2DCV occurring early in
the time evolution transfered the continuous line source to an intermittent
pattern with an extent in the y-direction of ∆x.

Cyclic boundary conditions were applied for the z-oriented domains.
The simulations where run to t = 0.52τt and t = 1.74τt, which corresponded
to downstream positions at x′/H = 30 and x′/H = 100, respectively. 40000
realizations were needed to reduce statistical inaccuracies. Data were col-
lected closer to the source in terms of eddy turnover time compared to the
point source case in the previous section, and a somewhat higher relative

6A number of different distances are considered in the experiments.
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rotation frequency, νr = 2, was needed for sufficient directional coupling in
this case.

6.3.3 Results

The results for mean scalar spreading are summarized in Table 6.4. The
half-width is the distance y from the centerline at which the mean scalar
value is half its centerline value. The LEM1D results were somewhat less
spread than the experimental data, especially at x′/H = 30.7 The agree-
ment between LEM2D and the experimental data was better, which most
likely was due to the additional spreading introduced by the random rota-
tions. Hence, the good agreement between LEM2D and experimental data
at x′/H = 30 and 100 must be considered fairly fortuitous. The lateral
mean profiles from LEM2D simulations are shown in Fig. 6.10. The wavy
behavior observed in the mean profiles at x′/H = 100 is believed to be a
result of the random rotations and the rather coarse 2D-resolution (see the
discussion in Sec. 6.2.5).

Table 6.4: Data for half-widths of the transverse mean scalar profile. The values
are given in units of grid length, H.

Data at Warhaft (1984) LEM1D LEM2D

x′/H=30 0.54 0.15 0.49

x′/H=100 1.1 0.91 1.1-1.2

The scalar rms results normalized by the centerline mean value is com-
pared to experimental data at x′/H = 30 and x′/H = 100 in Fig. 6.11.
The LEM2D simulations exhibited better match with experimental data at
x′/H = 30, but this was mainly due to the better match with the mean
value, by which the rms was scaled. The differences between the simu-
lations with LEM1D and LEM2D were less apparent further downstream.
When considering the rms scaled by a common reference, the level of fluctu-
ations was slightly reduced from LEM1D to LEM2D. As shown, especially
in Fig. 6.11(d), the rms was reduced with increasing rotation frequency. The
same trend was also observed for the point source case in Sec. 6.2.7.

Fig. 6.12 displays the autocorrelation along the center y-oriented LEM
domain at x′/H = 30 and x′/H = 100. The negative autocorrelation was
significantly reduced from LEM1D to LEM2D. This is most likely due to the
random rotations that smear out the negative correlation instances caused

7The results from simulations with LEM1D were in accordance with results presented
in Kerstein (1992b).
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Figure 6.10: Comparison of center radial mean scalar profiles scaled by the prefac-
tor, C, defined in Eq. (6.4) from simulations with the standard LEM and LEM2D
with two different rotation frequencies. The values plotted are the ensemble aver-
aged 3DCV filtered scalar values.

by the triplet map stirring. Similar behavior was observed in Sec. 6.2.7.
The autocorrelation sensitivity to rotation frequency was insignificant in
the cases considered.
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Figure 6.11: Rms results from simulations with LEM1D and LEM2D with two
different rotation frequencies. Radial profiles along the center y-oriented LEM
domain for (a,b) rms scaled by the corresponding mean centerline value and (c,d)
rms scaled by a common reference.
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Figure 6.12: Autocorrelation results from simulations with LEM1D and LEM2D
with two different rotation frequencies. Radial profiles along the center y-oriented
LEM domain.
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6.4 Discussion and summary

The auxiliary coupling by random rotations of 2DCVs with a relative fre-
quency on the order of νr ∼ 1 seemed to provide sufficient directional cou-
pling between LEM domains. A higher frequency was needed closer to
the source than farther downstream. The preliminary conclusion from the
present results is that it appears to be a window of operation for the rela-
tive rotation frequency which yields reasonable results. Infrequent rotations
result in poor coupling of LEM domains, whereas too frequent rotations re-
sults in significant additional dispersion and mixing.

The results show that the auxiliary coupling by random rotations in-
crease the mean dispersion of scalars. The proposed estimate for the addi-
tional dispersion provides an adequate representation. A strategy suggested
by Kerstein et al. (2007) is to subtract the estimated diffusivity from ro-
tations from the physical turbulence diffusivity. Further work is, however,
needed in order to establish a function that better matches the additional
dispersion from rotations and include the dependencies of time, normalized
by the eddy turnover time, from the scalar source.

The scalar rms and negative autocorrelation were generally less in results
from LEM2D compared to LEM1D with corresponding input. The main
difference between LEM1D and LEM2D was the random rotations, and
we believe that they were the main cause of the discrepancies between the
models. This may be due to enhanced mixing of wafers that are brought
in proximity to each other by the rotations. The reduction in rms can be
moderated by increasing the factor between the physical and model integral
scale. This kind of tuning has previously been applied to LEM1D.



Chapter 7

Test case C: Thermal

expansion

7.1 Introduction

This chapter presents a numerical test case of the reacting LEM3D. The
reacting LEM3D includes discrete dilatations from heat release and coupling
to a flow solver as presented in Sections 4.3.3 and 4.5. Results from a test
case with an imposed expansion rate are given. The suggested expansion
algorithm is the first attempt to include dilatations from heat release in
LEM3D. It is revealed that this early version has some artifacts that must
be altered for consistent representation of the mass fluxes. A few alternative
strategies are briefly presented and discussed.

7.2 Numerical setup

7.2.1 The coupled RANS-LEM3D model

A reduced version of LEM3D, omitting turbulent stirring and molecular
mixing, was applied in the present study. Density was the only property
transported with the wafers. Expansion events were determined by ran-
domly sampling the wafers to be expanded from a distribution. The sta-
tistically stationary density field from the LEM3D simulation was further
fed to RANS. Furthermore, the mass, momentum and turbulence model
transport equations in RANS were solved with density input from LEM3D.
The RANS computation provided the updated velocity field for the LEM3D
simulations, as principally explained in Fig. 4.5.

A one-to-one correspondence between the control volumes in RANS and

113
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the 3DCVs in LEM3D was assumed. Hence, we refer to 3DCVs and 3D-
resolution also for RANS in the following. The RANS-LEM3D model was
run with two-way coupling between the models (see Sec. 4.4).

The test case was run with two different 3D-resolutions as given in
Tab. 7.1. For LEM3D, the 1D-resolution was correspondingly reduced with
refinement in 3D-resolution to maintain a constant wafer thickness for both
cases.

The expansion events were randomly implemented by sampling from a
distribution. We applied a distribution, such that the probability of expan-
sion was given as a uniform prescribed expansion rate in the expansion zone,
while it was zero elsewhere. The expansion zone was defined by a cube as
indicated in Fig. 7.1 on page 117. During grid refinement, the domain size
and the expansion zone size were kept constant, so they were resolved by a
triple amount of 3DCVs to maintain the symmetry in the setup.

Table 7.1: Input data to the simulations. “Exp. res.” is the number of 3DCVs that
resolved the cube which defined the expansion zone.

Case 3D-resolution Exp. res. ∆x [mm] M

C1 10× 7× 7 1 0.03 30

C2 30× 21× 21 33 = 27 0.01 10

The expansion algorithm followed principally the steps described in
Sec. 4.3.3. If the wafer after sampling was determined to expand, two copies
of the wafer were created (i.e., Φ = 1). The original wafer was replaced by
the two new copies, which in sum had the same mass but half the density
of the original.

The coupled model was run until convergence between LEM3D and
RANS by the following procedure:

(1) A plug flow velocity profile was assumed for the initial LEM3D simula-
tion. For the first global iteration the lateral prescribed displacements
were zero. For the succeeding global iteration steps, the lateral pre-
scribed displacement components were given by the updated RANS
velocities given by Eq. (4.11).

(2) The following four steps were implemented on the advective time scale
∆t:

(a) The auxiliary coupling by random rotations were implemented
as given in Sec. 4.7.1.
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(b) The volume expansion part was determined by randomly sam-
pling the wafers to be expanded from the given distribution. The
lateral displacement components were estimated by the banking
(Eq. (4.12)), while the streamwise components were given from
the continuity equation (4.17).

(c) The advection including the possible dilatation were implemented
as given by step (3)(e) in the procedure in Sec. 4.10.

(d) Data for the mean density (4.40) and the 3DCV filtered mean
density (4.45) were sampled at the last step in the LEM3D cycle.
After an initial time lag, the velocity, mass flux and density data
were sampled every time step.

(3) Item (2)(a) through (2)(d) were repeated until statistical convergence
of the data sampled in (2)(d).

(4) The 3DCV filtered density solution from LEM3D was provided to
the RANS solver. The Favre-averaged RANS-equations were further
solved by iteration to a stationary solution.

(5) For the two-way coupling, step (1) through (4) were repeated until
convergence between LEM3D and RANS was achieved.

The inlet plug flow velocity was set to 1m/s, and the density of the
wafers entering the domain was 1 kg/m3. The CFLadv-number was kept at
0.1, and the rotation frequency was set to νr = 1.5. RANS applied a slip
condition on the side-wall (lateral) boundaries. The k-ε model equations
were solved to provide the turbulence viscosity to the momentum equation,
but since triplet maps stirring was omitted, the turbulence field had no
direct influence on the LEM3D evolution. A turbulence intensity of 10%
and a turbulence length scale of 0.1m was applied on the inlet boundary.

7.2.2 Data collection and definitions

For LEM3D, the mean mass flow rate was determined by sampling the
displaced mass across the 3DCV boundary nn by

ρwnn =


 1

Ns

Ns∑

j=1




δjnn∑

i=1

ρj,i




 ∆xw

3∆t
, (7.1)

where δjnn is the number of displacements for the sampling j over the 3DCV
face nn and ρj,i is the density of the ith displaced wafer. The mean wafer
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velocity across a 3DCV face was sampled by Eq. (5.12), while the mean
3DCV filtered density ρ̂ was sampled as described in Eq. (4.45).

Control volume center densities in RANS were given from LEM3D by
the mean 3DCV filtered densities ρ̂. The RANS boundary velocity was
the Rhie-Chow interpolated value. The RANS boundary mass flow, F̃nn,
was further given by multiplying the boundary velocity with the arithmetic
mean density of the two adjacent center nodes. The solution algorithm used
in RANS conserved mass on a control volume and domain basis.

7.2.3 Deviations in mass flows and the streamwise bias

The lateral velocities in LEM3D were matched to the prescribed compo-
nents from RANS by the banking method (see Sec. 4.5.3). The prescribed
displacements were given by

γnn =
3F̃nn∆t

ρ̃nn∆xw
. (7.2)

Prior to wafer advancement, we do not know the average density ρnn of
the wafers crossing the 3DCV boundaries in LEM3D. The best guess that is
applied in Eq. 7.2 is the RANS arithmetic mean density ρ̃nn. Thus, we can
not exactly prescribe the number of wafers needed to represent the mean
mass flow. Hence, differences between average lateral mass flow components
in LEM3D and RANS are expected to occur.

Mass conservation was in LEM3D ensured through Eq. (4.17), hence
determining the streamwise component. This method has inevitably an in-
herent bias to the streamwise direction. The correction algorithm presented
in Sec. 4.5.4 was developed for solenoidal velocity fields, i.e., ∇ · u = 0,
and thus was not feasible for the present simulations. This means that any
deviation from the expected volume expansion was embodied in the stream-
wise component. For instance, if the average expansion rate corresponded
to one wafer per 3DCV per time step, and at an instant two wafers were
expanded, the streamwise displacement component was increased by one
wafer independent of whether the expansion occurred on the streamwise or
on the lateral oriented LEM-domains. The lateral dilation was first taken
into account by the updated velocity field from RANS at the next global
iteration step. The effect of the streamwise biased dilatation method on
the final solution was not further investigated, but is briefly discussed in
Sec. 7.4.3.
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7.3 Test case results

The expansion zone was defined by the cube 0.12 ≤ x ≤ 0.15, 0.09 ≤ y
≤ 0.012, and 0.09 ≤ z ≤ 0.12 as indicated by the grey square in Fig. 7.1. For
case C1, the cube consisted of one single 3DCV at q = 5, r = 4, s = 4, while
for C2 it was resolved by 27 3DCVs in the range 13 ≤ q ≤ 15, 10 ≤ r ≤ 12,
10 ≤ s ≤ 12.1 The expansions created lateral density gradients which
necessitated velocity feedback from RANS in order to represent the lateral
dilatation.
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Figure 7.1: The axial center plane of the expansion test case. The inlet boundary is
to the left, while the outlet is the right boundary. The expansion zone is indicated
by the grey 3DCV. The grid for case C2 is not shown, but is a refinement of the
grid by a factor 3.

7.3.1 Iteration procedure and overall convergence

The coupled model was run as described in Sec. 7.2. Figure 7.2 shows
the time evolution of the mean 3DCV filtered density in LEM3D for the
3DCV at q = 8 (0.21 ≤ x ≤ 0.24) in the center of the domain for case C1.
The global iteration steps mark the instants where interaction with RANS

1See Sec. 4.5.1 for indexing of LEM3D
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occurred. The small disturbance in the density at these points stemmed
from that the LEM3D statistics were gathered from scratch at every LEM3D
run. After the second iteration with RANS, the density was stabilized on
a level that was more or less constant. For higher accuracy, each LEM3D
simulation should have been run longer to gather more statistics in between
the interactions with RANS.

The LEM3D simulations were run with updated velocities from RANS
which provided a new density field to RANS, and so forth. We let the
discrepancies in the lateral velocity profiles from the two last RANS runs
indicate the level of convergence. By this criteria an approximate converged
state was established already after the second global iteration for the present
case. The simulation was run for 10 global iterations.

0 2 4 6 8 10
0.28

0.32

0.36

0.4
ρ̂ [kg/m3]

Global iterations

Figure 7.2: The evolution of the mean 3DCV filtered density in the center 3DCV
at q = 8 for case C1. The global iteration steps are the instants where interaction
with RANS occurred. The final LEM3D run was from 8-10.

7.3.2 Comparison of velocity and mass flux profiles

The velocity and mass flux component profiles for test case C1 are shown
in Fig. 7.3. In Fig. 7.3(a), the lateral variations of the average lateral wafer
velocity component for LEM3D (solid line) and the mean velocity compo-
nent for RANS (dashed line) through the center of the layer of 3DCVs at
q = 6 are shown. As expected, the banking method using the prescribed
displacements in Eq. (7.2) provided an average wafer velocity overlapping
the RANS velocity input. However, considering the mass flux profiles at
the same location in Fig. 7.3(b), there is clear deviation. The deviation is
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due to that the average density of the wafers crossing the 3DCV bound-
ary was different from the interpolated density that set the RANS mass
flux. LEM3D conserved mass at every 3DCV and time step by calculating
the streamwise displacement component from Eq. (4.17). This resulted in
a deviation between the streamwise average wafer velocity in LEM3D and
the mean RANS velocity, Fig. 7.3(c), and mass flux, Fig. 7.3(d), which was
accumulated downstream as seen.
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Figure 7.3: Converged results with the coupled model of LEM3D (solid line) and
RANS (dashed line) for test case C1. Comparison of velocity and mass flux com-
ponent profiles in the different models. The components on the “wall” nodes are
not shown for the lateral profiles.

For test case C2 the grid was refined with a factor 3 as described in
Sec. 7.2.1. The results are shown in Fig. 7.4. Even though the deviation
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between the lateral mass flux profiles in Fig. 7.4(b) was reduced compared
to case C1 in Fig. 7.3(b), the deviations for the streamwise components
were still significant. In the Figs. 7.4(c) and 7.4(d) the streamwise velocity
component is shown for the center x-profiles (r = 11 and s = 11) and
the x-profiles at r = 10 and s = 10. The deviation was somewhat, but
not significantly reduced with the grid refinement. One explanation is that
increasing the number of 3DCVs increased the number of 3DCV faces where
lateral mass flow deviations were accumulated.
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Figure 7.4: Converged results with the coupled model of LEM3D (solid line) and
RANS (dashed line) for test case C2. Comparison of velocity and mass flux profiles
in the different models.
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7.4 Suggestions for alternative strategies

The previous section showed that the combination of the banking method,
which is non-conservative in density varying flows, and the continuity equa-
tion (4.11) led to deviations that accumulated in the streamwise direction.
Based on this a few development strategies for displacement handling are
proposed. The basic iteration procedure between RANS and LEM3D that
has been established also needs further development and refinement in terms
of relaxation and adaptivity.

7.4.1 Matching the lateral mass flows

Contrary to the velocity, the mass flow is a conservative property in density
varying flows. Hence, it is appealing to match the lateral mass flows in-
stead of the lateral velocities in LEM3D and RANS. However, the banking
described in Sec. 4.5.3 can not be directly applied to the mass flow, since
the density of the wafers crossing the boundary is varying randomly. Thus,
a non-trivial control mechanism is needed. The control mechanism can be
developed to match the mass flow on the large time scale, or by including an
internal loop, where we try to reduce the mass flow deviations as much as
possible at every time step. If this control mechanism is proven successful,
the lateral mass flow in RANS and LEM3D will match on average. Mass
conservation is ensured by Eq. (4.17), and since the respective lateral mass
flow components match, the streamwise mass flow will also do. Local devi-
ations in velocity will only occur due to the interpolation of the densities to
the boundaries.

7.4.2 Extending from one-to-one grid correspondence

The current implementation assumes a one-to-one correspondence between
the RANS and LEM3D grid. If instead a general RANS grid can be adopted,
the possible RANS discretization errors may be reduced. An algorithm for
interpolating the velocity and diffusivity field from RANS to LEM3D and
the density field from LEM3D to RANS is thus required.

7.4.3 Avoiding the streamwise bias

The present algorithm applies the banking in the lateral direction and en-
sures local continuity in the streamwise direction by Eq. (4.17). The ad-
vection advancement is performed by processing the 3DCVs layer by layer,
starting from the upstream layer. The inherent streamwise bias in this
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method can be reduced by alternating the direction in which the displace-
ments are calculated. That is, the layer by layer calculation can be per-
formed starting for instance at the west end, which implies solving Eq. (4.10)
with respect to δe. Similarly we can start at the east, south, north and
possibly bottom directions.2 The alternation between directions can be
implemented by random selection from a uniform distribution.

Another alternative may be to let the expansions influence the displace-
ments in the direction in which they occur. However, this necessitates that
the expansions are performed only for the 3DCVs belonging to a checker-
board subset of the domain. The checkerboard subset is alternated from
time step to time step similar to the error minimization procedure proposed
in Sec. 4.5.4.

7.5 Concluding remarks

The one-way and two-way coupled RANS-LEM3D model was tested in a
simplified setup. Successful runs to a statistically steady state solution were
performed on two different grids. The lateral mass flow deviations between
RANS and LEM3D were accumulated in the streamwise direction. The
deviations were not significantly reduced by increasing the 3D-resolution.

The streamwise displacements are calculated from the lateral compo-
nents plus the possible excess expansion. Hence, the method is inherently
directionally biased. In further development of the reacting RANS-LEM3D,
the following should be employed: First, a method that match corresponding
conservative properties, e.g. the mass flow, should be developed. Secondly,
the streamwise bias should be avoided, possibly by the method proposed in
Sec. 7.4.3.

The present test cases were simplified compared to the full featured
LEM3D model. Introducing triplet map stirring further complicates the
mass conservation. If the turbulence diffusivity is uniform and the density
profile is non-uniform, there will on average be a net mass transfer in or
out of the 3DCV due to triplet map wafer rearrangements. Certainly, the
turbulence diffusivity profile will be based on RANS computations, which
are influenced by the LEM3D density field. However, it is not given that
the turbulence diffusivity profile will govern the triplet maps such that it
provides on average zero net mass transfer in the case of a non-uniform
density field.

2Note that the direction in which the layer by layer calculation is performed, must
currently terminate in a free outlet boundary.



Chapter 8

Passive scalar mixing in a

turbulent jet

8.1 Introduction

The turbulent jet is a well-documented flow which is relevant to a number
of practical and industrial applications. Hence, it has been subject to nu-
merous experimental and analytical studies (Tennekes and Lumley, 1972;
Wygnanski and Fiedler, 1969; Hussein et al., 1994; Pope, 2000). Scalar
mixing in turbulent jets is a challenge in experimental as well as modeling
and computational work (Dimotakis, 2005). The most commonly performed
turbulent scalar mixing jet case is the one where a jet of fluid 1 emerges
into fluid 2. Fluid 1 and fluid 2 can contain different species or they can
have different temperatures. Such setups are for instance reported in Dowl-
ing and Dimotakis (1990) and Panchapakesan and Lumley (1993b). The
approach in Tong and Warhaft (1995) differs from these studies, since the
scalar is introduced on a length scale much smaller than the flow scales and
localized in the self-similar region of the turbulent jet.

In this chapter, the full-featured non-reacting LEM3D is assessed by
comparison with the measurements by Tong and Warhaft (1995) of scalar
dispersion in a turbulent jet. The numerical solutions (FV) to the model
transport equation for the scalar mean and variance are also employed for
comparison.

123
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8.2 Experimental setup

In the experiments by Tong and Warhaft (1995), the dispersion and mixing
of scalar fluctuations were studied by measuring temperature fluctuations
from one and two heated rings placed concentrically in the self-similar region
of a turbulent jet. Previously, Warhaft (1984) measured the scalar mixing
from line sources in grid turbulence. Contrary to the homogeneous grid
turbulence, the turbulent jet has shear, which enhances mixing and allows
measurements of clear asymptotic values. A 2mm diameter ring source,
made of a 0.254mm diameter wire, is used to approximate a point source.
A source this small is only applicable for measurements in the proximity of
the source due to the limited power through the wire. Larger rings, which
enable more power, will have somewhat faster dispersion because they are
placed in the shear layer of the jet. Sufficiently far from the source, the
normalized scalar fluctuations from the rings approach the same asymp-
totic value. Several different ring diameters are investigated in Tong and
Warhaft (1995), and their results indicate that the centerline normalized
rms decreases with increasing ring diameter in the region before the scaled
rms approach a common self-similar solution. Hence, there are reasons to
assume that the rms for the 10mm ring source which is used as comparison
with LEM3D rms data is somewhat lower than for a 2mm ring source. Ex-
perimental rms results for the 2mm source was not reported by Tong and
Warhaft (1995). For the present work, the measured mean results from a
single 2mm and a 10mm ring source and the scalar rms from a 10mm and a
40mm ring source were utilized for comparison to point source simulations
with LEM3D.

A sketch of the setup is given in Fig. 8.1. The ring sources are placed
at a distance x0 = 9Dj downstream the nozzle, where Dj = 30mm is the
jet nozzle diameter. Details about the velocity measurements are found
in Panchapakesan and Lumley (1993a), who used the same jet facility to
measure velocity statistics. Negligible measurable effects were observed on
the flow field from the heated rings placed in the self-similar region.

A few different jet configurations are reported in Tong and Warhaft
(1995). The experimental characteristics relevant to the present model sim-
ulations are given in Tab. 8.1. The jet Reynolds number Rej is based on
the cold jet outlet conditions. The integral scale lt is taken as the measured
jet half-width r01/2 at the position where the sources are placed and the
turbulence Reynolds number is calculated from the integral scale and the
measured velocity fluctuation. The Kolmogorov scale is estimated from the
relation (2.28). The distance relative to the source is defined as x′ ≡ x−x0,
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xvirt xinit x0 xend

x′

Figure 8.1: Schematic setup of the scalar mixing experiment. The virtual origin of
the jet is at xvirt = 0. The upstream boundary of the computational domains were
placed at xinit = 7.4Dj and x0 = 9Dj for the LEM3D domain and the FV domain,
respectively. The figure is not to scale.

and the approximate streamwise distance from the source corresponding to
one eddy turnover time x′TL

/Dj is given as reported by Tong and Warhaft
(1995).

Table 8.1: Characterization of the turbulent jet as reported by Tong and Warhaft
(1995).

Jet nozzle, Dj 30mm

Jet nozzle velocity, Uj 9m/s

Jet Reynolds number, Rej 18000

Integral scale at x0 (taken as r01/2) 28mm

Turbulence Reynolds number, Ret 2300

Kolmogorov scale, η = ltRe
−3/4
t 0.08mm

Distance for one eddy turnover, x′TL
/Dj ∼ 5
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8.3 Numerical setup

8.3.1 Characterization of the turbulent jet

The self-similar mean jet velocity field needed as input to LEM3D was given
as described in chapter 5.2.2.

The work of Panchapakesan and Lumley (1993a) is based on measure-
ments of a turbulent round jet (Rej ∼ 11000) emerging into quiescent cold
air. Comparisons are made with work in similar configurations with jet
Reynolds number in the range from 80000 to 95000. Even though there are
some distinctions between the works, general trends such as the Gaussian
shaped axial mean velocity profile and the normalized Reynolds stress vari-
ation across the jet are reported to be in reasonable agreement between all
experiments.

The normalized Reynolds stress variation across the jet was here ap-
proximated by a curve fit to the function

u′

xu
′

r

U2
c

=
1

2

r

x
exp

[
−Kνt

( r
x

)2]
, (8.1)

where Kνt = 120 provided the best fit to the data reported by Pancha-
pakesan and Lumley (1993a). For the current calculation we assumed the
boundary layer approximation, i.e., the radial variation of the mean axial
velocity component is much larger than the axial variation of the radial
component.1 This reduces the model for the following Reynolds stress com-
ponent to

−u′

xu
′

r = νt

(
∂ux
∂r

)
. (8.2)

The left hand side is given from Eq. (8.1) multiplied with the square of
the mean centerline velocity which is given in Eq. (5.6). The right hand
side of Eq. (8.2) is calculated by partial derivation of Eq. (5.7). Assuming a
constant turbulence Schmidt number of σt = 0.7 the turbulence diffusivity
field can be estimated from

DT =
νt
σt

=
u′

xu
′

r
∂ux
∂r σt

. (8.3)

We used the analytical and numerical tool Mathematica by Wolfram
(1999) to evaluate the expressions above and to obtain the turbulence dif-
fusivity field needed as input to the LEM3D simulations.

1This implies that the second term in the model for the Reynolds stress components,
as it is written in Eq. (B.4) in the Appendix, was neglected.
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8.3.2 The finite volume method

The numerical solution to the transport equations of the scalar mean (3.8)
and variance (3.10) by the finite volume method is also here referred to as
FV. The numerical method is outlined in Sec. 6.2.3. Note that the velocity
and turbulence diffusivity fields were provided from the Eqs. (5.10) and
(8.3), respectively. Thus, the discretized partial differential momentum and
turbulence model equations were not solved. This procedure was motivated
by achieving the closest comparison to the LEM3D simulations by removing
uncertainties related to turbulence modeling.

The 0.4m × 0.328m × 0.328m domain was resolved by a uniform Carte-
sian mesh of 50 × 41 × 41 control volumes. The upstream boundary was
located at x0 and the downstream boundary at xend as shown in Fig. 8.1.
The point source was placed on the upstream boundary of the grid and
was resolved by 3 × 3 control volumes. The source diameter was hence
significantly larger in this setup (corresponding to ∼27mm) than in the ex-
periment (2mm). Numerical accuracy was assessed by doubling the number
of control volumes to 100×81×81 on a domain of similar size. For the mesh
with double resolution, the source diameter was correspondingly reduced by
a factor 2. In addition, we computed a case where the source was repre-
sented by a single control volume, providing a source diameter of ∼4.5mm.
Figure 8.2 compares the lateral scalar mean and the root mean square (rms)
from computations with the fine and coarser mesh. Both calculations used
a one control volume source. Results with a 3×3-control volume source are
not shown, but exhibited negligible discrepancies to the reported results. At
the downstream locations of interest, the scaled mean and the scalar rms
were close to independent of the domain and the source resolution for the
meshes considered.

The upstream boundary was a regular inflow boundary with constant
values for the mean and the variance, and the outflow boundary was treated
as purely convective flux with zero streamwise gradients. The side face
boundaries were taken as symmetry boundaries, where normal gradients
were set to zero. Generally, the domain was large enough so that gradients
toward the boundaries were small.

The turbulence energy k and its dissipation rate ε needed as input to the
scalar dissipation term in Eq. (3.11) were determined by using the expression
for turbulence viscosity (3.6) and the dissipation rate (3.12). In the latter
expression, an integral scale must be chosen to close the equation set. The
integral scale was set so that the turbulence intensity, defined by I ≡ u

′

/u,
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Figure 8.2: Grid sensitivity results from the finite volume method with grid resolu-
tion of 50×41×41 (dashed) and 100×81×81 (solid) control volumes. Center lateral
profiles at two selected downstream positions for normalized (a) mean scalar and
(b) scalar rms.

was close to ∼20% in the center at x0.
2 A turbulence intensity of 20%

was justified by considering the velocity fluctuation to the mean velocity
across the jet in the self-similar region for various experiments compiled in
Panchapakesan and Lumley (1993a) (See Fig. 9-11 in that paper). This gave
a turbulence integral scale of lt = 5mm. The k- and ε-fields were estimated
from the expressions as mentioned, where the turbulence diffusivity field
was given from the self-similar solutions given in Sec. 8.3.1. The turbulence
length scale was constant and spatially uniform, corresponding to the setup
of LEM3D.

8.3.3 The LEM3D setup

The full-featured non-reacting LEM3D, as given by steps (2) through (4) in
the simulation procedure in Sec. 4.10, was used for the present simulations.
The input data to the LEM3D is given in Tab. 8.2. The cases R1-R4 were
chosen in order to investigate the effect of variation in model integral scale,
whereas R5 and R6 examined the sensitivity to the 1D-resolution. The 3D-
resolution was varied between R6 and R7. R8 extended the domain in the
R1 case to follow the results farther downstream. In addition, the effect of
variation in rotation frequency was considered for case R1.

2u
′

was estimated by the definition of k.
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Table 8.2: Input data to the LEM3D simulations. Length scales are given in [mm]
and time scales in [s]. The four right columns are estimated from the input. See
the text for further explanation.

Case Resolution ∆x M L LK L∗
K/LK TL x′TL

/Dj

R1 50×41×41 8 40 56 0.31 7.9 0.070 9.3

R2 50×41×41 8 160 14 0.076 7.9 0.014 2.3

R3 50×41×41 8 80 28 0.15 7.9 0.030 4.7

R4 50×41×41 8 40 112 0.61 3.9 0.18 19.

R5 50×41×41 8 20 56 0.31 16. 0.070 9.3

R6 50×41×41 8 80 56 0.31 3.9 0.070 9.3

R7 100×81×81 4 40 56 0.31 3.9 0.070 9.3

R8 80×51×51 8 40 56 0.31 7.9 0.070 9.3

A grid of 50 × 41 × 41 3DCVs resolved the domain in the base case.
The 1D-resolution was generally kept at M = 40, but was also varied to
investigate the sensitivity. The source was fed before every triplet map
event to the wafer located in the streamwise center domain immediately
upstream of x = x0, i.e., the wafer at Xq,rc,sc , where q = 6M , rc = 21, and
sc = 21 for all cases except R7.3 The upstream end of the LEM3D domain
was placed at xinit = 7.4Dj (see Fig. 8.1). By placing the inlet boundary
upstream of the source, we avoided that the scalar statistics were affected
by the boundary truncation of triplet maps on streamwise LEM domains.

The lateral extension of the source, which was limited downwards by the
3DCV size, was wider (8mm) than the 2mm ring source in the experiment.
The effect of refining the grid was investigated, and is presented in the
Sec. 8.4.3. The thickness of the source, which was limited by the wafer
thickness, varied between 0.05mm in case R2, to 0.4mm in case R5.

Data was sampled as described in Sec. 4.9 after an initial simulation
time of 5000 time steps. This lag was introduced to have a statistically sta-
tionary condition before sampling the data. The data sampling rate was one
sampling every 100 time step. We assumed that the individual samplings
were statistically independent. To assess the validity of this presumption, a
case with one sampling every 200 time step was run. It was verified that the
effect of sampling rate on the presented statistics was minimal. A total of
450 samples yielded sufficient accuracy to the present results, however, 2000
samples were collected in order to have somewhat smoother scalar variance
profiles.

3For R7, q = 12M , rc = 41, and sc = 41.
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The relative rotation frequency was set to νr = 1 for all cases, except
when the rotation frequency was varied. The rotation frequency field fol-
lowed the velocity field as given by Eq. (4.36). For all cases, the CFLadv-
number was kept at 0.2.

By the derivation described in Sec. 8.3.1, the center turbulence diffusiv-
ity along the axial centerline was ∼ 0.008m2/s. The molecular diffusivity was
set to the constant value of 2×10−5 m2/s. Hence, on the centerline, the Peclet
number was estimated to Pe ∼ 400 and the turbulence Reynolds number
was ReS ∼ 1100 applying the relations given in Sec. 3.2.3. The model Kol-
mogorov scale, estimated from the relation (3.18), is given in Tab. 8.2. Due
to limitations primarily in computer memory and secondly in requirements
of cpu-hours, the turbulence spectrum was only partially resolved. The
ratio of the model Kolmogorov scale to the smallest implemented eddy is
also given in Tab. 8.2, indicating that the turbulence spectrum was under-
resolved by a factor in the range ∼4–16 on the centerline. Note that this
factor was somewhat smaller off the centerline, where the turbulence diffu-
sivity was lower. A triplet map consists of a multiple of 3 wafers where the
smallest possible triplet map is L∗

K = 3×2. In the present work, L∗
K = 3×4

wafers were used to represent the smallest possible triplet map (see the
discussion in Sec. 4.3.2).

The approximate distance corresponding to one eddy turnover time from
the source position was estimated by x′TL

= UcTL, where Uc was the average
mean center velocity in the range [x0, x

′
TL

], the model eddy turnover time

was TL = L/u
′

, and the velocity fluctuation was calculated by assuming a
turbulence intensity of I ≡ u

′

/Uc = 20%. The data is reported in Tab. 8.2.

8.4 Results

In the following sections, we compare the LEM3D simulations with ex-
perimental data and FV computations. The sensitivity to 1D- and 3D-
resolution, the frequency of random rotations, and the model integral scale
were investigated. Mean values were sampled either as the 3DCV filtered
mean (4.40) with 3D-resolution, or along selected LEM-domains with 1D-
resolution as given by Eq. (4.45). Scalar variance was also sampled along
selected domains with 1D-resolution. See Chapter 4.9 for further details on
the data gathering.
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8.4.1 Influence of displacement corrections, wafer flipping

and jitter

The displacement correction procedure described in Sec 4.5.4 was applied
to all LEM3D simulations with a threshold δth = 1. One simulation for the
R1 case was run without corrections and compared to the corresponding
simulation with corrections. The difference between the scalar mean and
rms results for these two cases were found to be negligible. The effect related
to the corrections was also discussed in Sec. 5.2.1.

The flipping due to shear flow (see Sec. 4.5.5) will bring dissimilar wafers
in contact, which further will enhance molecular diffusion and reduce the
rms. This effect was investigated by monitoring the number of flipping
events for one simulation with corrections and one without corrections. It
was found that the corrections increased the number of flipping events by
approximately a factor 3. This was caused by the corrections, which adjust
the lateral components more often resulting in more flipping events. Since
the rms results were not significantly affected by the corrections for this
case, we can conclude that the rms reduction from flipping was negligible.

The same conclusion applies to the jitter of the wafer velocity compo-
nents. The jitter was investigated in Sec. 5.2 and it was shown that the
corrections decreased the magnitude of the jitter. Hence, the present result
also indicate that the jitter had negligible effect on the mean and rms val-
ues. However, a broader investigation is needed in order to fully verify this
preliminary conclusion.

8.4.2 Effect of random rotations

The purpose of the random 3DCV rotations, presented in Sec. 4.7, is to en-
sure sufficient coupling between all LEM-domains in LEM3D. This property
and the effect on the scalar rms was investigated for case R1 by comparing
results from simulations with the default rotation frequency (i.e., νr = 1)
with two simulations where the frequency was increased to νr = 4 and
reduced to νr = 1/4, respectively.

The mean spreading of a point source in a turbulent jet is an axisym-
metric case. Thus, profiles in the lateral Cartesian coordinate directions
should coincide with profiles diagonally to those coordinate directions. Here,
we considered the 3DCV filtered scalar mean profiles normal to the lateral
coordinate direction, ϕ̂y, and along the diagonal ϕ̂r.

The half-width is the radial distance from the centerline at which the
mean scalar value is half its centerline value. The results for the half-with
of the ϕ̂y and ϕ̂r-profiles are shown in Fig. 8.3. The half-width was scaled
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by the reported experimental value at x = x0. The figure shows that none
of these cases exhibited perfect symmetry. Disregarding the zone closest
to the source, the deviation between the ϕ̂y- and ϕ̂r-profiles decreased as
expected with increasing rotation frequency, i.e., higher frequency provided
better directional coupling. The non-symmetric behavior was also slightly
decreasing with downstream distance from the scalar source.
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Figure 8.3: Half-width of the mean scalar profile normalized by the half-width r0
1/2

measured at x = x0 as a function of downstream position from the point source.
Comparison of results from LEM3D simulations with different rotation frequencies,
where the half-width was estimated for scalar mean filtered profiles normal to the
lateral coordinate direction ϕ̂y and along a diagonal to the two lateral coordinate
directions ϕ̂r.

For νr = 1/4, the scalar was considerably less spread in the diagonal
than the normal direction. Thus, a relative random rotation frequency of
νr = 1/4 provided insufficient coupling. The half-width increased with
increasing rotation frequency, due to the additional dispersion caused by
the random rotations. Similar behavior was observed for the point source
case in Sec. 6.2.5.

In Fig. 8.4 the effect of rotation frequency on the scalar rms normal-
ized by the centerline mean is shown along the centerline and for center
lateral profiles at x′/Dj = 8. The axial normalized scalar rms profiles are
also compared to experimental data of the dispersion from a 10mm source.
Increasing the rotation frequency from νr = 1 to νr = 4 decreased the
rms, especially in the range x′/Dj = 2–10. Note that the discrepancy be-



8.4. Results 133

tween the LEM3D simulations with νr = 1 and νr = 4 actually was larger
than shown on the centerline due to normalization by the centerline mean
value. According to the results in Fig. 8.4(a), the LEM3D rms declined more
steeply than the measured rms, resulting in underestimated values down-
stream x′/Dj = 2. The reduction in rms is believed to mainly stem from the
random rotations. This effect was elaborated in Sec. 6.4 and is also further
discussed in Sec. 8.4.5. For r/Dj > 3 at x′/Dj = 8, the scalar rms for
the νr = 4 case was larger than for νr = 1. This was due to the additional
dispersion by rotations that distributed more scalar to those positions, and
hence, gave higher rms values.
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Figure 8.4: (a) Axial and (b) lateral profiles of scalar rms normalized by the center-
line mean. Comparison of LEM3D simulations with two different rotation frequen-
cies. The axial profiles are in addition compared to measurements of dispersion
from a 10mm ring.
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8.4.3 Effect of 3D-resolution

The effect of increasing the number of 3DCVs in LEM3D is generally not
analogous to increasing the numerical accuracy. The velocity and diffusivity
field, which are provided as inputs will be somewhat better represented by
a finer than a coarser grid. But these fields are not solved in LEM3D.

The coarse and fine resolutions were 50×41×41 and 100×81×81 for case
R6 and R7, respectively. The wafer thickness ∆xw was kept constant to
achieve the same resolution of molecular diffusion and the turbulence spec-
trum as given in Tab. 8.2. The advective residence time is proportional to
the size of the 3DCV by Eq. (4.31). Hence, since the rotation frequency is
related to the residence time according to Eq. (4.35), the number of rota-
tions per second is doubled when the 3DCV size is halved. Here, the same
relative rotation frequency νr was applied for R6 and R7, which means that
the absolute rotation frequency R was twice as high for R7 compared to
R6.

Figure 8.5 shows the normalized mean 3DCV filtered scalar profiles along
center lateral lines at two selected axial positions. The lateral coordinate is
normalized by the half-width of the corresponding mean profile. Simulations
with LEM3D applying a fine and a coarse 3D-resolution were compared to
FV computations. A Gaussian curve fit to experimental mean scalar data for
a 2mm point source in the axial range x′/Dj = 1–5 is also given. The effect
of varying 3D-resolution on the mean lateral profiles was rather modest at
both axial locations, and the simulations exhibited mean profiles close to
the experimental data at x′/Dj = 8. The discrepancies to the experiments
at x′/Dj = 4 will be further discussed in Sec. 8.4.5.

In Fig. 8.6(a) the normalized scalar rms along the axial centerline for
the fine and coarse grid is compared to experimental data for a ring source
of 10mm. Except for discrepancies upstream x′/Dj ∼ 2, the rms was less
for the finer R7-grid than the coarser R6-grid. One possible explanation to
this is that the number of 3DCV interfaces, where wafers are brought in
proximity to each other by the rotations, is increased on a finer grid. This
enhanced the mixing and reduced the rms. Second, the rotation frequency
was higher for R7 than R6 which most likely further increased this effect.
Some of the difference was also due to scaling by the centerline mean, which
was slightly higher for case R7.
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Figure 8.5: Comparison of results obtained with the FV and LEM3D with two
different 3D-resolutions, 50 × 41 × 41 (R6) and 100 × 81 × 81 (R7). The lateral
profiles of mean 3DCV filtered scalar normalized by the centerline value are given
at two selected downstream positions.
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Figure 8.6: (a) Axial and (b) lateral profiles of the scalar rms normalized by the cen-
terline mean. Comparison of LEM3D simulations with two different 3D-resolutions.
The axial profiles are in addition compared to measurements of dispersion from a
10mm ring.
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8.4.4 Effect of 1D-resolution

The mean 3DCV filtered scalar profiles were found to be insensitive to the
range of 1D-resolution considered here. The sensitivity of normalized scalar
rms to the 1D-resolution is shown in Fig. 8.7. Increasing the 1D-resolution
resulted in reduced rms along the centerline of the jet as well as along the
lateral profile at x′/Dj = 8. According to previous work of Kerstein (1992b),
the adequacy of resolution should be ensured by running simulations with
increasingly finer resolution until the statistics converge. Hence, the 1D-
resolution is generally not a parameter subject to tuning.

For the present predictions, it was shown that a resolution of M = 40,
which gave a smallest eddy on the order of ∼ 10LK, provided sufficient
accuracy downstream x′/Dj ∼ 3 for L = 56mm. Reducing the model
integral scale causes a reduction in the model Kolmogorov scale according
to Eq. (3.18). Hence, to achieve the same resolution of the turbulence
spectrum for L = 28 and 14mm, the resolutions in these cases were set to
M = 80 and 160, respectively. This gave a ratio of the smallest resolved
eddy to the model Kolmogorov scale of about L∗

K/LK ∼ 8 as reported in
Tab. 8.2.
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Figure 8.7: Axial profiles of scalar rms normalized by the centerline mean. Com-
parison of LEM3D simulations with various 1D-resolutions. The data are also
compared to measurements of dispersion from a 10mm ring.
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8.4.5 Effect of the model integral scale

The model integral scale was varied between L = 14mm and L = 112mm
in the LEM3D simulations R1–R4. In Fig. 8.8, the normalized mean 3DCV
filtered scalar profiles along a lateral coordinate scaled by their respective
half-widths are shown. As in Fig. 8.5 the results were also compared to a
Gaussian curve fit to experimental data in the range x′/Dj = 1–5 and to
FV computations. At x′/Dj = 4, the agreement with the FV method and
the experimental results was evidently better for L = 14mm and 28mm
than for larger model integral scales. Farther downstream at x′/Dj = 8,
the simulations, except for L = 112mm, followed the self-similar behavior
exhibited by the experiments. In isotropic turbulence, the turbulent con-
vective regime is extended with increasing integral scale. As discussed in
Sec. 6.3, the 1D standalone LEM partly represents this scaling.4 Reduced
model integral scale in LEM causes a shift in the eddy size distribution to-
ward smaller triplet maps with higher frequency which induces faster mixing
and in effect gives a faster alignment with Gaussian shape. This is assumed
to be the first main reason for the discrepancies between the R1–R4 cases.
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Figure 8.8: Comparison of results from LEM3D simulations with various integral
scales (case R1-R4), calculation with the finite volume method (FV) and measure-
ments of dispersion from a 2mm ring. Lateral profiles of scalar mean normalized
by the centerline value at two selected downstream positions.

But the alignment with self-similar profiles is also related to the random
rotations and the degree of directional coupling. The scalar was initially

4Note that the instantaneous triplet mapping introduces artifacts close to the source
(Kerstein, 1992b).
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introduced only in the streamwise oriented domain. In Chapter 6.2.6, it was
found that the degree of directional coupling was a function of the rotation
frequency and the normalized time (by the eddy turnover time) from when
the source was released. The distance corresponding to one eddy turnover
time was estimated to x′/Dj ∼ 19 for L = 112mm and x′/Dj ∼ 2.3 for
L = 14mm as given in Tab. 8.2. Thus, a given downstream position can
be interpreted as being “closer” to the source for L = 112mm than for
L = 14mm, —in terms of distance scaled by the distance it takes for one
eddy turnover. The degree of coupling was found to decrease with increasing
model integral scale also for the present simulations. This is believed to be
the second main reason for the discrepancies between mean scalar results
for different model integral scales shown in Fig. 8.8.

In Fig. 8.9 the downstream evolution of the half-widths of the mean
scalar profiles are compared to measurements of a 2 and a 10mm source.
Tong and Warhaft (1995) report a transition in the scaling of the half-width
at about x′/Dj ∼ 5. The thick line gives the linear scaling. The data from
Tong and Warhaft (1995) suggest power-law scaling of x′ with exponent
∼ 0.5 beyond the transition point. However, if we consider the 4 most
downstream data points, linear regression gives a 0.65-power scaling of x′.

Beyond the transition point the gradient for L = 14 and 28mm ap-
proached a ∼0.8-power scaling with x′. Roughly the same gradient was
achieved for L = 56mm downstream x′/Dj ∼ 9, while L = 112mm did
not reach the point of transition within the domain considered. The results
from the FV computations also approached a ∼0.8-power scaling.

A few general comments are made about the scaling of the scalar in
the turbulent jet: First, the scalar reaches its self-similar solution at a
downstream location of x′/Dj ∼ 11 at the earliest, hence it is difficult to
draw any general conclusions on the scaling from the experiments. Second,
strict similarity requires that the virtual origins of the scalar and the velocity
are the same (Gouldin et al., 1986). Third, all results with FV and LEM3D
seemed to approach a 1-power scaling of x (x = x′+x0). The scaling of the
mean scalar evolution in a jet is also briefly discussed in Sec. 2.5.3.

The results with LEM3D for L = 28mm agreed quite well with the near
field experimental data, and the transition reported for the experiments.
The point of transition between the near field and far field scaling was
also in good agreement with the estimated point reported in Tab. 8.2. For
larger model integral scales, the transition point was shifted downstream.
The agreement with the experimental data in the near field was closest
for the simulations with L = 14 and L = 28mm. For the L = 112mm and
L = 56mm cases, the initial scaling appeared to follow a less steep gradient.
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Figure 8.9: Half-width of the mean scalar profile normalized by the measured
half-width at x0 as a function of downstream position from the point source. Com-
parison of results from LEM3D simulations with various integral scales, FV compu-
tations and measurements of dispersion from a 2mm (squares) and a 10mm (open
circles) ring source. See Fig. 8.8 for figure legend. The thick solid line gives the
linear scaling.

As discussed in the preceding paragraphs, the discrepancies are expected to
be related to the initial scaling of LEM and the degree of domain coupling
by the random rotations.

Fig. 8.10 shows the effect of varying integral scale on the normalized
scalar rms. The level of rms from simulations with LEM3D decreased with
decreasing model integral scales. This was mainly because a reduction in
integral scale increases stirring frequency, which in turn enhances small scale
mixing and reduces scalar variance. The centerline normalized scalar rms
plotted in Fig. 8.10 was lower than the experimental data for the LEM3D
simulations for x′/Dj >∼ 2. In Kerstein (1992b), the model integral scale
was tuned to match the scalar rms results. Tuning to match the scalar rms
would in this case result in larger discrepancies with the scalar mean.

Tong and Warhaft (1995) report that an asymptotic value of about 0.2
for the normalized centerline scalar rms is approached at approximately
x′/Dj ∼ 11. This value is also observed in several heated jet experiments,
which are referred in their paper. For case R8 (see Tab. 8.2) the R1-domain
was extended by 60% in the streamwise direction and 25% in the lateral
direction. The FV-domain was also extended to investigate the asymp-
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Figure 8.10: (a) Axial and (b) lateral profiles of normalized scalar rms. Comparison
of LEM3D simulations with different choices of model integral scale. The axial
profiles are in addition compared to measurements of dispersion from a 10mm ring
source and FV computations.

totic trend. The normalized centerline rms was about ∼0.02 and ∼0.01 at
x′/Dj ∼ 19 for LEM3D and FV, respectively. Neither FV, nor LEM3D
did reach a constant asymptotic centerline rms value on the domains con-
sidered. The continuous decrease in asymptotic value might partly be due
to that the LEM3D simulations and the FV computations were run with a
single constant integral scale, wheras the integral scale in reality grows with
streamwise distance from the nozzle. For LEM3D the auxiliary coupling by
random rotations did most likely also play an important role in reducing
the scalar rms as discussed in Sec. 6.2.7 and 8.4.2.

Figure 8.11 illustrates the rms sensitivity to the integral scale at a few
more downstream positions. In these figures, the lateral coordinate was
scaled by the axial position. Lateral measurement data for a 40mm ring
source and centerline values for a 10mm ring source are compared to the
computations. According to the experiments, the rms tends to decrease with
ring size as discussed in Sec. 8.4.2. As shown in Fig. 8.11, the normalized
rms was generally under predicted by LEM3D at all downstream locations
considered.

The scalar dissipation rate model applied for FV is in inverse ratio to
the integral scale (see Eq. (3.13)), hence the level of scalar rms is directly
proportional5 to lt. On the contrary, the normalized scalar rms results

5That is, doubling the integral scale exactly doubles the level of rms.
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from LEM3D were reduced by roughly 25% from L = 56 to 28mm. The
normalized scalar rms level was somewhat better captured with the FV
method than with LEM3D, however, the rms close to the centerline was
better predicted with LEM3D case R1.
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Figure 8.11: Lateral profiles of normalized scalar variance at selected axial posi-
tions. The radial coordinate is scaled by the axial position. Comparison of LEM3D
simulations and FV computations with two sets of integral scales. In addition the
results from measurements of dispersion from a 10mm and a 40mm ring are in-
cluded.
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8.5 Summary

The results in this chapter are summarized as follows.

• A model integral scale of L = 28mm provided the best fit to the
scalar mean evolution. A better match may possibly be achieved by
implementing a spatial variation of the integral scale. For L = 28mm,
the transition between the near and the far field scaling was in good
agreement with the experiments. A relative rotation frequency of
νr = 1 provided adequate directional coupling, even though a larger
frequency could have been applied close to the source and for the
larger model integral scales.

• The scalar rms values predicted by LEM3D were significantly lower
than the experimental data, and the rms was found to decline with
increasing rotation frequency. These results indicate that the random
rotations are an important factor in reducing the rms. One possible
explanation to this behavior is that wafers with dissimilar content
are brought in proximity of each other by the rotation events. This
enhances the mixing of scalars and reduces the rms.

• The scalar rms was reduced with increasing 1D-resolution, because
more of the small scale turbulence was resolved. Generally, the 1D-
resolution that provides a grid independent solution should be chosen
when possible.

• The model integral scale that gave the best match with the experi-
mental mean scalar, gave poorer match with the scalar rms. Hence,
the present jet case did not have the same flexibility as the line source
case (Kerstein, 1992b) for tuning of the model integral scale.

• The 3D-resolution should generally be coarse for computational ef-
ficiency. Reducing the 3D-resolution reduced the size of the point
source as well as the advective time scale. The latter further affects
the rotation frequency by Eq. (4.35) if we do not compensate by in-
creasing the relative rotation frequency correspondingly. Hence, the
rotation frequency may also be subject to case dependent tuning.
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Chapter 9

Summary and conclusions

9.1 Concluding remarks

This work presents a novel approach to high-fidelity simulations of non-
reacting and reacting flows. The modeling concept is based on the linear
eddy model (LEM) of Kerstein (1991b), which provides a fully resolved
description of the turbulent mixing in one dimension. The model is de-
noted LEM3D and is constructed by organizing one-dimensional LEM do-
mains in a three-array structure in the three Cartesian coordinate directions.
The coupling to momentum and turbulence transport is generally provided
through a separate flow solver.

LEM3D represents one among a handful of other strategies which ex-
tend the range of application for LEM to more general flows. The current
work describes a coupling to RANS. However, the model is essentially also
customized to coupling to unsteady large eddy simulations (LES). LEM3D
is based on a strict distinction between advective and diffusive processes.
This means that, instead of advecting fractional cells followed by regrid-
ding, the scalar transport by the mean flow advection and the dilatation
from thermal heat release is implemented by a discrete method.

An auxiliary coupling by random rotations of 3DCVs is necessary in
order to appropriately represent the physical processes in all directions in a
consistent manner.

The standalone LEM3D and the coupled RANS-LEM3D require exten-
sive computer resources. Nevertheless, the steadily growing computer capa-
bilities in recent years have rendered the model within computational reach.
The three-array structure is particularly suited for parallelization, which will
become a necessity when a detailed description of chemical reactions and
molecular mixing is incorporated.

145
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9.2 Main findings

The main findings from the present work can be summarized as follows:

• The results from simulations with LEM2D and LEM3D were in rea-
sonable overall agreement with experimental data for the line-source
in homogenous turbulence and the point source in a turbulent jet. The
level of agreement is regarded as promising considering the rather early
stage of development of the concept.

• The joint action of processes on the individual LEM domains and
the random rotations is necessary to achieve scalar spreading in all
directions, including the diagonal direction. This implies that it takes
some time or distance downstream from a source in order for the
domains to be sufficiently coupled. It was found that the degree of
directional coupling was, to a certain limit, increasing with increasing
frequency of 3DCV rotations and with the time from the source scaled
by the eddy turnover time.

• The random rotations of 3DCVs cause additional mean dispersion.
The effect increases, to a certain limit, with increasing rotation fre-
quency and time or distance from the source scaled by the eddy
turnover time. The model suggested by Kerstein et al. (2007) gives an
adequate estimate of the additional dispersion from rotations; how-
ever, it must be further developed for a better quantitative represen-
tation.

• The scalar rms was less with LEM2D than in a corresponding LEM1D
for a point source in isotropic turbulence. The LEM3D simulations
of the turbulent jet case also gave lower rms values than what is ob-
served experimentally. The reduction is assumed to mainly stem from
enhanced mixing between wafers close to 3DCV/2DCV boundaries
that are brought in proximity of each other by the rotation events.
Multi-point statistics such as autocorrelations were also presumably
influenced by the rotations.

• Due to the random rotations, the distribution of the travel times of
wafers through the computational domain is fairly broad. In other
words, the random rotations add randomness to the mean translation.
To some extent, the travel time is dependent of the initial position
within the 3DCV. Wafers that at initially were located in the center of
a 3DCV had a greater probability of travel times above the average for
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the simple test case studied in Chapter 5. Vice versa, the probability
of travel times less than the average was larger for wafers initially close
to the 3DCV boundary.

• The discrete treatment of scalar mean flow advection represents the
prescribed mean transport on average. Nonetheless, the implemented
method leads to instantaneous deviations from the prescribed flow.
The root mean square (rms) of these deviations, which is denoted the
jitter, is significant for velocity components that are poorly resolved
in terms of number of wafers. It is found that increasing the 1D-
resolution M reduces the jitter. The proposed correction method is
generally able to ensure a tighter control of the discrete advection and
also reduces the jitter accordingly.

• The first version of the reacting LEM3D constitutes a method for ther-
mal expansion performed as discrete dilatations. Flow solver coupling
is established through the feeding of densities from LEM3D to RANS,
and by supporting LEM3D with the velocity components and the tur-
bulence diffusivity from RANS. The matching of the non-conservative
velocities combined with the continuity equation solved in a preferen-
tial direction in LEM3D appear to introduce streamwise biased arti-
facts in terms of mass flow and velocity deviations between LEM3D
and the flow solver.

9.3 Suggestions for further work

Although relevant comparisons to experimental results have been presented,
direct numerical simulations (DNS) will accommodate the ultimate stan-
dard of verification for LEM3D. Comparison on the same basis is rendered
possible by applying corresponding boundary conditions, assigning equal
properties to both DNS and LEM3D, and supplying LEM3D with the mean
flow advection and the turbulence diffusivities estimated from DNS. This
enables comparison of higher statistical moments, multipoint statistics and
scalar spectra, which will provide a valuable validation of LEM3D.

Further investigations of the effects of the random rotations should be
performed. This may be pursued by considering different test cases and by
analyzing the effect of the rotations on higher order moments and the scalar
power spectrum. In the opinion of this author, it is too early to conclude
whether if the auxiliary coupling strategy provides a sufficiently adequate
representation of the physical processes. Thus, it may be worth considering
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completely different strategies for coupling in the future, as for example
finite difference based methods.

On the reacting LEM3D, matching the mass flux components in LEM3D
and RANS may turn out to be a better option than the banking method,
which matches the volume flow. The details of this approach need to be
worked out in sufficient detail in future work. The streamwise bias may
partly be mitigated by alternating the direction in which the continuity
equation (4.17) is calculated or by performing the expansions in the direction
in which they occur and adopting a checkerboard implementation.

A wide range of interesting and promising enhancement options are
available for LEM3D. One is to introduce unsteadiness in the interactions
between LEM3D and an unsteady RANS (URANS). Another is coupling to
LES. It is also possible to embed sub-models in the wafers (Kerstein, 2004;
Schmidt et al., 2008) in order to reduce the number of wafers needed to
resolve the domain. Another option for improvement is the adaptation of
LEM3D to general RANS or LES grids.
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Appendix A

Block inversion with fixed

sized mapping

The first version of the LEM used block inversion with fixed size as the
turbulent mapping event. The model reproduces the main features of the
experiment by Warhaft (1984) with line sources in decaying grid turbulence
and the uniform transverse scalar gradient in non-decaying turbulence quan-
titatively developed by Corrsin (1952). The step by step derivation of the
fixed size eddy model with block inversion is here presented in order to give
an easy to follow guide to the derivation of the more general LEM with
triplet maps of multiple sizes, which is the model version applied in the
present work.

A fluid cell subject to rearrangement events, generally undergoes a ran-
dom walk governed by the diffusivity DT (Hinze, 1975)

DT =
(∆X)2

2t
. (A.1)

where (∆X)2 is the mean square displacement of a given rearrangement
event. By assuming that the mapping events are statistically independent,
the mean square displacement for a single event becomes δ2 = N(∆X)2,
where N is the average number of events. The mean square displacement of
a single size-l mapping is expressed as δ2(l). For the block inversion scheme
the square displacement of a single size-l event given that the fluid cell, after
displacement, is a distance z from the center of the mapping event, is

δ2(l|z) = (2z)2. (A.2)
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The mean square displacement for a single size-l event is now

δ2(l) =
1

l

∫ l/2

−l/2
δ2(l|z)dz = l2

3
. (A.3)

The size distribution for a fixed size l∗-mapping can be written:

f(l) =

{
1 if l = l∗

0 otherwise
(A.4)

The total frequency of displacements is given by

R = N/t = λ∗
∫
lf(l)dl = λ∗l∗, (A.5)

where λ∗ is the fixed event frequency parameter with unit (length−1time−1).
With fixed block inversion size, the frequency weighted average of Eq. (A.3)
is simply

δ2 = R−1λ∗
∫
lf(l)δ2(l)dl =

l∗2

3
, (A.6)

and the turbulent diffusivity becomes

DT =
Nδ2

2t
=
Rδ2

2
=
λ∗l3∗

6
. (A.7)

The locus for the next mapping event is sampled from a uniform dis-
tribution and the point in time from a Poisson distribution with rate λ∗X,
where X is the domain size. This completes the description of the LEM
with fixed size block inversion scheme.

The procedure for the derivation of the expressions for triplet maps
is similar, however some differences exists. The eddy size l is not fixed,
and the f(l) distribution scales as l4/3. By normalization we arrive at the
distribution given in Eq. (3.16). The block mapping (A.2) is replaced by
the triplet mapping, which yields the conditional mean square displacement

δ2(l|z) = (4z)2 0 ≤ |z| ≤ l

6

δ2(l|z) = (l − 2|z|)2 l

6
≤ |z| ≤ l

2
.

(A.8)

See Kerstein (1991b) for a complete description of the derivation.



Appendix B

Momentum equation and

Reynolds stresses in

cylindrical coordinates

In the following section the momentum equations with turbulent transport
are given in axis symmetrical cylindrical coordinates. Incompressible flow
and constant properties are assumed. If we split velocities and pressure in
a mean and fluctuating part, we get for the momentum equation in the x-
and r-direction after averaging:

∂

∂t
(ux)+

1

r

∂

∂r
(ruxur) +

∂

∂x
(uxux) = −1

ρ

∂p

∂x
+

1

r

∂

∂r

(
rτ rx − ru′

xu
′

r

)
+

∂

∂x

(
τxx − u′

xu
′

x

) (B.1)

and

∂

∂t
(ur)+

1

r

∂

∂r
(rurur) +

∂

∂x
(urux) = −1

ρ

∂p

∂r
+

1

r

∂

∂r

(
rτ rr − ru′

ru
′

r

)
+

∂

∂x

(
τxr − u′

ru
′

x

) (B.2)

Thus, we have the following Reynolds stress tensor

(
−u′

xu
′

r −u′

xu
′

x

−u′

ru
′

r −u′

ru
′

x.

)
(B.3)
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Momentum equation and Reynolds stresses in cylindrical

coordinates

Following Boussinesq, the Reynolds stresses in the x-direction are modeled
as

−u′

xu
′

r = νt

(
∂ux
∂r

+
∂ur
∂x

)
,

−u′

xu
′

x = 2νt

(
∂ux
∂x

)
− 2

3
k,

(B.4)

where k is the turbulence kinetic energy.



Appendix C

Mathematical floor

The mathematical floor of a value a is defined as the nearest integer number
that is smaller than a

⌊a⌋ ≡ max[n ∈ Z|n ≤ a]. (C.1)
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