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 Abstract 

Most of the work performed in this study has concentrated on the thermal decomposition of biomass. This 
was done because to the simple fact that biomass is mainly composed of volatiles that evaporates prior to 
the gasification stage.  
 
The characteristics of the devolatilized products during pyrolysis are reported in Paper I for several fuels 
types that have been considered as sources for energy production due to their fast growing abilities. 
Paper I also reports results for the same biomass types in oxidative atmosphere. An oxidative atmosphere 
is also important from the gasification point of view because partial combustion is normally used in a 
gasification process in order to produce the necessary energy for the endothermic gasification reactions. 
For these studies and the rest of the pyrolysis experiments (papers II and III), the macro-TGA was used 
which allows the use of large biomass samples (80 g. for most of the experiments).  
 
Another goal of this study was to condition the devolatilized products in order to generate an upgraded 
gas product with reduced pollutants. Paper II gives a detailed study on the effect of non-thermal plasma 
on the devolatilized products from pyrolysis of straw pellets, while paper III concentrate on reducing the 
sulfuric compounds from the gas phase. Two different methods for reducing sulfur emission in pyrolysis of 
straw were looked upon. The first is an active method that involves hindering the sulfur release with the 
producer gas through chemical reactions in the char matrix. This was done by introducing calcium based 
additives to the straw prior to pelletization. The second method was gas product treatment with non-
thermal plasma. 
 
Finally the gasification kinetics of two types of wood chars, pine and birch were reported in paper IV. This 
work was aimed at finding the reaction rates for these types of wood chars. 
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Preface 
Let there be no scales to weigh your unknown treasure;  

And seek not the depths of your knowledge with staff or sounding line.  

For self is a sea boundless and measureless.  

Say not, "I have found the truth," but rather, "I have found a truth." 

 Say not, “I have found the path of the soul.” Say rather, “I have met the soul walking upon my path.”  

The prophet (Gibran Khalil Gibran, 1883 – 1931) 

 

This work has been carried out at the Norwegian University of Science and Technology 

(NTNU), the Department of Energy and Process Engineering with Professor Johan E. Hustad 

as main supervisor and Dr. Morten Grønli as second supervisor.  

This work is dedicated to the two women in my life. The first my mother, I thank for bringing 

me to life. The second Isabelle, for stealing my time and delaying my PhD but in return gave 

my life a meaning. 
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Introduction 
 

1 Introduction 

1.1 Biomass as a renewable source of energy 
In a modern society concerned with the impact of the release of greenhouse gases to the 

environment, alternative solutions have to be developed. Immerged technologies, although 

some have not attained a mature status, are able to convert the energy in the biomass not 

only to heat and power but also to liquid fuels that can be used in the transportation sector, 

chemicals with a high market value and hydrogen. The increased emission from the 

transport sector is contributing more and more not only to the greenhouse effect, but also to 

local problems since emissions from car exhaust causes smog and acid rain. Alternative 

solutions such as the establishment of “the hydrogen society” are still far from being an 

economical alternative that can be realized in a short term period. Biomass has the 

potential of playing the role of a transitional alternative because its energy conversion is 

feasible in our present time. Since biomass is a limited resource on our planet and 

cultivation of crops for energy purpose has to compete with food as well as feed 

production, it is important to find solutions where production relative to available land is 

maximized. Biomass has been used as a source of energy since the time humans 

discovered fire. At present time, more and more efforts have been put into extracting a 

“higher” form of energy from biomass. Some of theses technologies are quite new and 

cannot economically compete with more traditional energy sources like coal, oil or natural 

gas. In fact, fossil fuels are cheap to process and biomass might never be able to compete 

against such fuel types. Nevertheless, political decisions might put bio-energy on a better 

competitive ground. Countries tend to support biomass and make it an attractive energy 

source for several reasons. This is accomplished not only by financing research projects to 

accelerate technology development, but by also imposing restrictions on technologies that 

acquire fossil fuels or giving direct subsidies for energy production from biomass. Every 

country in Europe has included bio-energy in its energy and climate policies. The EU has 

set a target for increasing the share of renewable energy sources (RES) from 6 % to 12 % 

from year 1997 to 2010. In the same period the share of green electricity in the EU-region 

should increase from around 14 to 21 % of the gross electric consumption by 2010. In 

addition, EU has established a directive on cogeneration of heat and power, with a target of 

18 % by 2010. A recent EC directive on biofuels for the transport sector sets targets for the 

use of biomass for transport fuels. Another way to make energy production from biomass 

more competitive compared to fossil fuels is to use a low-grade biomass types like waste 
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that are less expensive. However, The use of low-grade fuels impose serious challenges to 

overcome in terms of electrical efficiency loss due to corrosion, loss of reliability due to 

feeding and preparation of the fuel and fouling in boiler, and increased emissions due to 

the presence of more harmful species. 

From an environmental point of view, biomass is attractive for two main reasons: 

1. Bioenergy is a renewable resource that will not be depleted in time as long as the 

consumption equals the natural regeneration.  

2. Bioenergy can be considered as a “none” contributor to the increase of CO2 

emission to the atmosphere. This is because CO2 generated from biomass 

combustion or gasification is circulated back as a carbon source for plantation 

growth. This postulate is valid only when the biomass used for energy production is 

replaced by growing new plants or when utilizing the annual plantation growth of 

forests and such.  

However, due to the heterogeneous nature of solid fuels, the energy conversion becomes a 

challenge in terms of process control. Because of the biomass heterogeneity, the air used 

for combustion will not be perfectly mixed with the fuel which will result in incomplete 

reactions and the release of pollutants. In addition, the ash content in the fuel might be the 

source of many other problems such as corrosion, sintering and fouling that will result in 

reduced boiler efficiency in several parts of the process. Emissions of sulfur, nitrous and 

heavy metal compounds should be reduced to acceptable levels prior to the flue gas 

release. All these challenges will result in a higher form of process complexity and added 

costs to energy conversion. In spite of this, the idea of having a sustainable energy source 

that has the potential of being used for heating purposes, electricity production and the 

production of transportation fuels evens out the mentioned disadvantages.   

Norway has considerable amounts of biomass where the annual growth based on 

estimation of photosynthesis efficiency is 425 TWh (including the 100 TWh from aquatic 

resources). The share that is currently used (2003) as bio-energy is approximately 16 

TWh/year [1].  It is also possible to increase the use of bio-energy by approximately 30 

TWh/year. This increase takes into consideration plantation growth that is economically, 

ecologically and technically unexploited. Capacity reduction in the paper industry may 

further increase the available biomass. 
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1.2 Thermochemical conversion technologies 
Biomass can be converted to energy by the use of biochemical or thermochemical 

processes. Biochemical processes are beyond the scope of this thesis. Briefly explained, 

these technologies include fermentation for the production of alcohol and anaerobic 

digestion processes for the production of gas rich in methane and carbon dioxide [2]. 

Thermochemical processes include pyrolysis, gasification, and combustion. They can be 

distinguished by their respective process parameters and by the types of products they 

produce. An overview of these technologies, their respective primary products and their 

end uses are shown in Figure 1-1 [3]. 

 

Figure 1-1: Products of thermochemical conversion technologies and there potential end 
uses  

1.2.1 Pyrolysis 
Pyrolysis is an endothermic process where the solid fuel in the absence of oxidant, 

degrades to form a mixture of liquid (tarry composition), gases and a highly reactive 

carbonaceous char of which the relative proportions depend very much on the method used. 

Conditions that will influence the distribution and the characteristics of the pyrolysis 

products are; temperature, pressure, heating rate and residence time of both the fuel and the 
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devolatilized products.  In addition, the chemical and physical characteristics of the fuel 

type used can also have an influence on product distribution. For instance, low temperature 

and slow heating rate maximizes char formation, while high temperature promotes tar 

cracking which in return produce lighter hydrocarbons. Performing pyrolysis at high 

pressure will enhance the gas to solid reactions, which in return might result in higher 

yields of gas and liquid products. Pyrolysis conditions not only influences the distribution 

of the main products but also their chemical composition. For the char residue, the 

pyrolysis condition can affect its yield, physical characteristics and reactivity. For example, 

slow heating rate during pyrolysis will produce char which is less reactive compared to 

char produced at fast heating rate. This is mostly due to an increased specific area in the 

char produced at high heating rate and a more spread out distribution of the catalytic 

elements in the char matrix. The structure of the char matrix is therefore a key element in 

the determination of char reactivity. Char gasification reactivity is the topic of paper IV [4] 

in this thesis.  

The gas pyrolysis products are mainly composed of CO, CO2, H2, CH4, C2H2, C2H4, C2H6 

and traces of other higher hydrocarbons. Gaseous compound from pyrolysis of biomass 

was studied in detail in this thesis (paper I [5] and paper II [6]). Paper I gives the detailed 

characteristics of the gaseous products released during the pyrolysis of some fast growing 

crops while Paper II deals with the major product release before and after treatment in a 

non-thermal plasma reactor. In addition to the gas release, saturated compounds such as 

water and alcohols will be present in the gas phase. Due to the nitrogen content in the fuel, 

trace elements of nitrous compounds such as NH3 and HCN are also present [7]. These will 

react to form NOx under the presence of an oxidizing agent for example during 

combustion. Other trace gas elements that are present due to the sulfur content in the raw 

fuel are H2S and COS. These sulfur compounds are likely to be produced in gasification 

processes and are undesirable since they reduce process efficiency. As an example, one can 

mention the reduced efficiency or even the total destruction of solid oxide fuel cells when 

combined with a biomass gasification unit. The release of sulfur compounds during 

pyrolysis and means for their reduction is the focus of paper III of this thesis [8]. Other 

trace elements such as KCl, HCl and many more are quite normal to be found in the 

devolatilized products as well due to the alkali metals found in biomass. 
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The liquid phase is composed of polyaromatic hydrocarbons (PAH) and oxygenated 

aromatic compounds such as phenol and water. The liquid and gas fraction of the pyrolysis 

products can be used for heat and power generation or they can be processed further to 

produce chemicals, methanol and ammonia. The devolatilized products can be upgraded to 

produce hydrogen. The char residue can be upgraded to produce activated carbon where it 

can be used in the metallurgical industry. It can also be used for domestic cocking and 

barbecuing [3].  

1.2.2 Gasification 
Gasification is an endothermic process where solid fuels react with CO2 and H2O and form 

a combustible gas. Since gasification is an endothermic process, the energy needed to drive 

the chemical reactions forward are usually provided by feeding the reactor the necessary 

“under stoichiometric” amount of oxygen. Due to the existence of several reacting agents, 

biomass gasification is quite complex where a number steps occur simultaneously, 

regardless of the technology used. These steps include [9]: 

• Drying of biomass 

• Pyrolysis of biomass to condensable vapors (heavy hydrocarbons), gas and char 

fractions 

• Subsequent thermal cracking of heavy hydrocarbons to gas and char 

• Partial oxidation of combustible gases and char 

• Gasification of char through reactions with CO2 and H2O. 

As an example, we find in a fixed bed reactor several separate zones of combustion, 

volatile release, gasification of the char rest and drying of the raw fuel material. Contrary 

to pyrolysis, where the final products are many, a gasification process is designed to 

maximize gas production. In fact, rest products in form of char residues are avoided by 

process optimization. The liquid fractions (tars) are either cracked further and transformed 

into gaseous products or cleaned out. The gasification products are many and their relative 

distribution depends specifically on process parameters and the type of technology used. 

For instance, if air is chosen as a gasifying agent, the end product would be a low calorific 

gas (4 – 7 MJ/Nm3) containing CO, CO2, H2, H2O, CH4 and a large fraction of nitrogen. It 

is possible to use pure oxygen instead of air in order to avoid dilution caused by the 
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nitrogen content in air. Although this yields a gas product with higher calorific value (10 – 

18 MJ/Nm3), it has not been a preferred method due to the increased energy and 

investments costs in connection to the addition of an oxygen/nitrogen separation unit to the 

gasification process. The process temperature of gasification is usually quite high (800 – 

1100 ºC) compared to pyrolysis (400 – 800 ºC). The high temperature is needed to drive 

the main gasification reactions forward.  

Depending on the gasification process and the processing of the produced gas, several end 

products can be generated: 

• Syngas can be upgraded to produce methanol and other transport fuels 

• By steam reforming of product gas hydrogen can be produced 

Heat and electrical power can be produced by direct utilization of the syngas in boilers (hot 

water and steam production), combustion engines, gas turbines (heat and electricity) as 

well as Solid Oxide fuel cells (electricity and heat) 

Several decades of reactor design has resulted in the existence of several reactor 

technologies. Theses are briefly described in the following section. 

Fixed bed reactors 
The differences between theses types of gasifiers lies in the direction of the gas flow 

relative to the reactor. The most popular fixed bed designs are: 

Updraft gasifiers 
Theses types represent the simplest reactor design where fuel is fed from the top and the air 

intake lies in the bottom. The producer gas is moving upward through the reactor and 

leaves at the top. Biomass moves downward a goes through different thermal stages 

consisting of a drying zone, followed by pyrolysis, reduction and char oxidation zone. 

Figure 1-2 (right) shows a schematic layout of the updraft design. 
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Figure 1-2: Fixed bed reactors downdraft (left) and updraft (right) [9] 

Downdraft gasifiers 
In the downdraft design, both the air and the fuel are fed from the top of the reactor where 

for the air intake can also be positioned on the side (Figure 1-2, left). The producer gas 

moves downward in the same direction as the biomass and leaves the reactor at the bottom. 

The downdraft design yields the same type of zones as the updraft design, although their 

placements relative to the updraft reactors are different (see Figure 1-2). Since air is added 

directly to the oxidation zone, the producer gas stays at high temperature and generates in 

this manner low amounts of tars (< 100 mg/Nm3). Another derives of the downdraft 

reactors is the open-core design. These types are specially designed for fuels consisting of 

fine materials with low bulk density. Because of this low bulk density, the fuel feed can be 

hampered due to bridging and can stop completely in stratified type reactors. Due to its 

straight wall design, open-core gasifiers are more suitable for these fuel types where 

rotating grates can be easily applied to both stir the fuel and remove the high amount of ash 

these fuels usually produce.  

Fluidized bed gasifiers 
Fluidized bed gasifiers for biomass originate from the technology for coal gasification and 

are usually suitable for large scale operation. The reactors are built with a porous grate in 

the bottom where sand or other fluidization medium lies above. Air or other types of 

gasification agent such as steam, oxygen or a combination of theses pass through the 
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porous grate at an enough speed (µmf) so that the bed particles become suspended. The gas 

velocity through the grate is quite a critical parameter for the design and the optimization 

of the gasifier. Increasing µmf causes the bed particles to move more vigorously resembling 

a boiling liquid. Normally the inlet velocity of fluidized bed gasifiers is 5 – 30 times the 

fluidization velocity, but can be as high at 300 times µmf. When biomass is added to the 

bed, it gets also fluidized. The thermal degradation and the gasification reactions of the 

fuel take place at high speed in an environment that is well mixed due to turbulence. The 

bed material needs to attain high temperature, typically 700 – 900 ºC in order to drive the 

endothermic gasification reactions forward. The energy needed to keep the bed material at 

a suitable temperature can be transported to the bed in different methods. The most usual 

way is to burn some of the biomass, usually about 25 % of the incoming fuel [9]. Because 

of the intense mixing, the heat transport to the fuel happens at a high rate so that the 

different zones found in fixed bed reactors are not distinguished in fluidized beds. The 

fluidized bed reactors that are commonly used in gasification are; bubbling fluidized bed 

and circulating fluidized bed. Theses two types are shown in Figure 1-3 below. 

Figure 1-3: Fluidized bed reactors, bubbling (left) and circulating (right) 
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The difference in terms of advantages and drawbacks between fixed bed reactors and 

fluidized bed are highlighted in Table 1-1.  

Table 1-1: Comparison between fixed bed and fluidized bed reactors 
Advantage Disadvantage 

Updraft 
Simple design High amounts of tars 
High charcoal burnout 
High efficiency 
Can use fuel with high moisture (up to 60 
% wet basis) 

Extensive gas cleaning is required in cases 
where the gas is used for power production 

Accepts variation in fuel size  
Downdraft 

Low tar content Limited in terms of up scaling 
Suitable for gas engines Low load produces more tars 
Low load produces low levels of particles High amount of particles and ash in the gas 
 Low efficiency 
 Strict requirement to fuel moisture (<25 %) 
 Requires uniform fuel particle size (4 – 10 

cm) 
Fluidized bed 

Compact design due to high heat exchange 
and intensive mixing 

High tar and dust content in the producer 
gas 

Uniform temperature profile (no hot spots) Incomplete carbon conversion 
Different feedstock can be used  Compression of gas streams generates a 

need for power consumption 
Flexible to changes in fuel characteristics 
such as moisture-, ash content and bulk 
density  

The need to control both the fuel supply 
and the air yields complex operation 

Low and uniform bed temperature gives 
less problems related to ash melting 

High producer gas temperature containing 
alkali metals in vapor state 

 

Gussing plant 
One of the few successful gasification plants so far, is the industrial plant erected in 

Gussing, Austria. This plant is specifically mentioned in this thesis due the successful 

operation of the plant and also due to collaboration of NTNU and the University of Vienna 

on hot gas filtration [10]. The plant at Gussing is able to produce a high calorific value gas 

rich in hydrogen. This has been possible not only due to the use of steam for the 

gasification but also due to reactor design that is able to separate the combustion from the 

gasification zone. It was mentioned earlier that a combustion zone is necessary in order to 

provide energy to the endothermic gasification reactions. The gasification reactor at the 

Gussing plant consists of a twin fluidized sections. The first reactor is a steam gasifier 

where biomass is fed and mixed with the bubbling hot sand. The unreacted char residues 
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that are not converted are transported along with the bed material to the combustion zone. 

This combustion zone uses air to combust the char residues which results in an increased 

temperature of the bed material. The hot sand is entrained due to the high velocity and is 

transported back to the gasification reactor where it acts as an energy source for the 

endothermic reactions. With this configuration the combusted products are separated from 

the gasification products resulting in a syngas containing lower amounts of CO2 and almost 

no N2. A sketch of the reactor configuration is shown in Figure 1-4. 

 

Figure 1-4: The principle behind the gasification process at the Gussing plant. 

1.2.3 Combustion 
The combustion process consists of a complete oxidation of the fuel by using excess air. 

For solid fuels, combustion is a complex process that consists of both homogenous and 

heterogeneous reactions (Figure 1-5). Similar to gasification, we find in a combustion 

process several different zones where drying, pyrolysis, oxidation of char and reactions in 

gas phase occur simultaneously. Several parameters in the combustion zone are quite 

crucial to the combustion process; among these are reactor technology, combustion 

temperature, size and moisture content of the fuel. Although combustion is quite 

conventional compared to other thermal processes, research and technological 

improvements are still an ongoing activity. For woodstoves, improvements on chamber 

design are of main concern. This includes combustion optimization by staged combustion. 

The main objectives are to reduce particle emissions. For larger installations, the main 
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concern is the reduction of pollutants such as sulfur, nitrous and heavy metal compounds. 

Such pollutants are not only hazardous to nature and the human life but they also create 

problems during the thermal conversion. For instance, understanding the behavior of fly 

ash in order to avoid slagging and corrosion in the boiler is still a hot topic that has drawn 

the attention of many research activities during the past decades and at present. Fly ash is 

usually caused by the content of alkali metals such as potassium (K) and chlorine (Cl). 

Such compounds react and form potassium chloride (KCl) which condensates at low 

temperature and create process and environmental related problems. The ash content in 

biomass differs depending on the fuel type. Woody biomass has very low ash content and 

nitrogen while straw and other agricultural biomass sources for instance have much higher 

ash content. During the selection of technology for biomass combustion it is very 

important to consider the type of fuel that will be used. Most of particle emissions from 

combustion of biomass are below 10 µm in size. The submicron and supermicron particles 

in a fluidized bed are mainly composed of K, Cl, S, Na and Ca while corrosive are 

composed mainly of Ca, Si, K, S, Na, Al, P and Fe. For combustion in fixed bed the 

particle load increases with increased reactor diameter. Particles usually coagulate and 

condensate in the lower temperature zone of the combustion chamber, usually close to the 

boiler. 

Many primary and secondary measures for combating pollutions and optimizing the 

combustion process exist. One of the successful methods for combating nitrous compounds 

(NOx) is staged combustion (Figure 1-5), which gives a better control over the temperature 

profile in the combustion chamber. The idea is to gain control over temperature gradients 

inside the combustion chamber and by that decreasing the formation of thermal NOx.  NOx 

formation in combustion of biomass can originate from the nitrogen content in the fuel 

(fuel NOx), or the oxidation of the nitrogen found in the air (thermal NOx). NOx reduction 

could also be achieved through secondary measure such as the direct injection of ammonia 

(NH3) in the boiler. Staged combustions helps also to attain good mixture and turbulence 

conditions in all parts of the combustion chamber. When optimized conditions are met the 

level of unburned hydrocarbons are usually at a very low level (ex. CO < 50 mg/m3 and 

CxHy < 5 mg/m3). Optimized conditions are usually attainable by having a good control 

over three parameters, temperature, turbulence and time. While temperature and residence 

time are easily controlled (usually kept at respectively 850 ºC and 0.5 s), attaining 

acceptable level of turbulence remains the most challenging task of the three. Optimized 
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mixing condition (high turbulence) has in the later years been studied in more detail by 

using computers where computational fluid dynamics code (CFD) has been a helpful tool 

in predicting the flow conditions during the design of the combustion chamber.  

 
 

Figure 1-5:  The different reactions in combustion of solid fuels [11] 

The choice of technology for the combustion of solid fuels will depend mainly on the plant 

size and the fuel type. The main combustion technologies are underfeed stokers, grate 

combustion, bobbling fluidized bed (BFB) and circulating fluidized bed (CFB). Underfeed 

stokers are mostly suited for small scale systems with a maximum capacity of 6 MWth and 

for biomass types containing low levels of ash. Low ash levels are important because 

underfeed stokers usually have an inefficient ash removal system. The advantages and the 

drawback of the other three combustion technologies are shown in Table 1-2 below [12].  
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Table 1-2: The advantage and drawback of the different combustion technologies [12] 
Grate combustion 

Advantage Drawback 
Low investment cost for plants < 10 MWth  Problems during combustion of straw or 

straw/biomass co-combustion 
Low operation costs Effective measures for NOx reduction 

require special technology 
Low particle load in the flue gas High air excess ratio reduces efficiency 
Less slagging compared to bubbling and 
circulating fluidized bed 

Combustion conditions are not homogenous 
compared to BFB and CFB 

Good operation during partial load  
Good burn-out of fly ash particles  

Bubbling fluidized bed 
Advantage Drawback 

Low investments costs for plants > 10 MWth High operation costs 
NOx reduction under air staging works 
satisfactorily 

High particle load in the flue gas compared 
to grate combustion 

High fuel flexibility concerning particle 
size, moisture content and mixtures of 
biomass fuels 

Good operation at partial load requires 
adjustment in form of special technology 

No moving parts in the combustion chamber Medium sensitivity due to ash slagging 
Lower air excess ratio gives higher 
efficiency 

Medium erosion in heat exchanger tube 

Circulating fluidized bed 
Advantage Drawback 

No moving parts in the combustion chamber High operation costs 
NOx reduction under air staging works 
satisfactorily 

High investments costs, only interesting for 
plants > 30 MWth. 

High fuel flexibility concerning moisture 
content and mixtures of biomass fuels 

Partial mode operation requires a second 
bed 

Homogenous combustion if several fuel 
injections are used 

Loss of bed material with the ash 

High specific heat transfer due to high 
turbulence 

Problems with ash slagging 

Easy addition of additives High particle load in the flue gas 
Effective sulfur retention in the ash if 
enough calcium is available 

Low flexibility concerning fuel particle size 

 Medium problems with erosion of heat 
exchanger tubes 

 
1.3 Biomass characteristics 
Biomass is a biological material that originates from living organisms that includes both 

plant life and animal. The biomass diversity of origin makes it difficult to classify because 

of its varying properties. Physical and chemical properties of biomass make its conversion 

process to useful energy quite complex. Some characteristics, regarded important to 

thermal conversion are briefly explained below. 
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Heating value 
The heating value can be defined as the higher heating value (HHV) which is based on the 

energy content in dry biomass or the lower heating value (LHV) which is basically the 

higher heating minus the condensation energy of the water vapor produced due to the 

hydrogen content in biomass. Another common term for the energy content in biomass is 

the effective heating value (EHV) which can be calculated from the LHV by subtracting 

the energy share used to evaporate the moisture in biomass. The elemental content in 

biomass has a great effect on the heating value; C and H tend to increase it while oxygen 

decreases it. The lignin content is also strongly correlated to the heating value where fuels 

with high lignin share are reported to have higher energy content than fuels with high 

cellulose and hemicellulose content.  

Moisture content 
Moisture content in biomass influences the volume of the flue gas in case of combustion 

and results in larger equipment for flue gas handling. It varies over a wide range from 10 – 

70 %. Water content also influences the heating value of the fuel as it decreases with 

higher moisture values. Biofuels have normally a high moisture content which can cause 

ignition problems and reduce the combustion temperature. Consequently, the combustion 

of the reaction products is also affected which leads to higher fuel usage.  During 

pyrolysis, the moisture content affects the physical properties and quality of the pyrolysis 

gases.  

Volatile matter 
Volatile matter during thermal degradation is released as gases consisting of light 

hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, moisture, and tars. Biomass 

has a high volatile content which makes it easier to ignite even at low temperature. Since 

volatiles get released relatively fast during thermal degradation, its fraction in biomass 

becomes a decisive parameter in designing reactors. In combustion, one has to ensure 

enough residence time for the devolatilized products in order to ensure complete 

combustion and to ensure low pollutant emissions (CO and PAH). Biomass can lose up to 

90% of its mass in its first stage of combustion. The amount of devolatilized products 

during the pyrolysis stage of combustion increases with increasing hydrogen to carbon 

ratio and, to some extent, with increasing oxygen to carbon ratio. 
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Ash content 
Ash is the inorganic part of the fuel that is left after thermal conversion. It contains the 

bulk of the mineral fraction of the original biomass. The ash content in the biomass varies 

with different types and can vary from 1 % (wood) and up to 30 – 40 % (green house 

residues). The major ash elements found in biomass include Si, Al, Ti, Fe, Ca, Mg, Na, K, 

S, and P. The release of ash particles during thermal treatment can occur due to ash 

volatility or reaction with the organic fraction of biomass. Ash elements that become 

volatile at high temperatures are derivatives of some of the alkali and alkaline earth metals, 

most notably potassium and sodium. Other non volatile elements such as Ca and Mg can 

be released by convective transport during a fast devolatilization stage. The ash 

composition has a great effect on the ash melting point. Potassium and Si for instance yield 

lower ash melting point while Mg and Ca increase it. Certain fuels such as demolition 

wood contain heavy metals such as Cd, Cr, Cu, Pb, and Hg. Such elements are regarded 

hazardous for the environment and are normally found in the fly ash in combustion plants.   

1.4 Biomass species used in this study 
 
In this thesis several types of biomass fuels have been studied, some due to their fast 

growing abilities which will result in an efficient use of the available land. Others have 

been chosen because they are agricultural rest products that can become an important 

addition to the energy production. A brief description of the fuels is given below. 

1.4.1 Short rotational energy crops 
 
Energy grass 
Energy grass (Agropyron) as the name indicates corresponds to the grass family which is 

also being considered for the purpose of producing energy in some European countries. 

These types of herbaceous crops are also valuable for vegetation because of their drought 

resistance and winter hardness. Pelletized form of the energy grass was used in our 

experimental study. 

Poplar 
Poplar Pannonia (Populus×euramericana) has a relatively high growth rate compared to 

other Poplar clones. In general, short rotation coppice cultivation with poplar rotations 

range from 2 – 5 years. The plantation density is also high (between 10 000 – 20 000 

plants/ha) [13].  
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Tree of heaven 
Tree of heaven (Ailanthus Altisssima) is native to China and was introduced to Europe in 

1751. The tree of heaven is a very fast growing tree with hairy twigs and a flat-topped 

crown of stout branches. It is considered as being “invasive” because the female tree 

produces quantities of wind dispersed seeds that are capable of traveling great distances 

[14]. Nevertheless, Ailanthus in countries like Hungary can become an important source 

for the production of alternative energy.  

1.4.2 Straw 
Annual biomass such as straw is the most available agricultural residue both in Europe and 

North America with a yearly production of 800 million tons in 2002 [15]. In countries like 

Denmark, straw is available in surplus quantities and has been used as a fuel for larger heat 

and power plants for over a decade. Straw has been chosen in this study due to its higher 

sulfur content compared to other biomass types. Straw has been extensively studied in the 

literature due to its difficult behavior during thermal conversion. The high ash content 

generates problems such as corrosion because of the deposition of potentially corrosive 

elements such as K, Cl etc on the heat-transfer surface of the boiler. The high content of 

chlorine and sulfur will result in the release of acidic pollutants that will not only harm the 

environment but also create problems within the thermal conversion process.  

Production of straw pellets 
The samples were prepared at the Technical University of Denmark (DTU), Department of 

Mechanical Engineering, in a laboratory pellet mill used for testing and optimizing the 

pellets production of different solid fuels. The mill is equipped with a vertical ring type-die 

where solid fuels are pressed outward through cylindrical holes. The ring-die can be 

exchanged so that the dimension of the cylindrical holes and their number can be varied. 

This is useful because by varying these dimensions, the friction of the pellet pressing is 

changed. An optimal friction should produce enough force to compress the pellet without 

increasing the temperature of the contact surface above 90 ºC. Overheating this surface 

will lower the friction and causes burn marks on the pellet surface and thereby lowering its 

quality [16]. The ring-die that was used had 40 holes and a ratio of compression of 6.5. The 

ratio of compression is defined as the cylinder length (50 mm)/cylinder diameter (7.7 mm). 

Figure 1-6 shows the pellet mill and the blender that were used to produce the straw 

pellets. 

16



Introduction 
 

Figure 1-6: Pellet mill (left), mixer (right). 

The straw with its smooth and shiny surface was proved to be difficult to pelletize without 

the addition of a binding material. Suggestions of mixing 10 % CAP (Calcium phosphorus 

solution) with the straw were considered. However, for this study it was decided not to use 

CAP since further contamination of the elemental composition of the straw was not 

desired. Only 10 % of water was added along with the additives. The water would help 

cool down the die temperature as it evaporates while the pellets are being pressed. The 

straw was mixed with the additives 1 kg at a time in a Björn varimixer for 10 min. The 

correct amount of water was sprayed while the mixer was running in the first minutes of 

operation. CaO and Ca(OH)2 were chosen as additives for the sulfur binding at the 

devolatilization stage. The added quantity was chosen to produce a molar ratio of Ca/S of 2 

and 4. This is the ratio of the calcium added through the additive relative to the Sulfur 

found in the straw. 

1.4.3 Hard and soft wood 
Pine  
Pine (Pinus Silvestris) is one of the most common wood species found in Norway. It is 

grown in a dense manner in order to encourage increasing both its length and the girth of 

the trunk. Grown crowded, pine can attain a length of 20 – 30 m and a diameter of 1 m. 

Pine is used extensively in the building industry and in the manufacturing of paper pulp, 

which makes it quite a demanded product. Tars produced from the root of pine trees has 
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been used for hundred of years to impregnate boats and houses [3]. In this work, char 

produced from pine has been used to study its gasification kinetics. Pine was chosen as a 

representative of a soft type wood. 

Birch  
Birch (Betula Verrucosa) is a robust tree that thrives in cold climate. Its adaptive nature 

makes it easy for it to grow on almost any type of soil; in addition birch can survive in 

extreme weather conditions. In Norway birch is spread across the whole country and is 

commonly used as a fire wood. Birch is easy to process which makes it an attractive 

material to work with for the manufacturing of furniture and other small household articles. 

Birch was chosen as a hard wood compound for the study performed in paper 4 [4].  

1.4.4 Analysis of fuels used in this study 
The proximate and ultimate analyses of all fuels used in this work are presented below. 

Table 1-3: Proximate and ultimate analysis 
Proximate analysis [Weight %] 

 Volatiles Fixed carbon Ash 
Straw 76.47 18.07 5.46 

Straw char 9.96 60.01 30.03 
Pine 86.84 12.95 0.21 
Pine char 20.38 78.57 1.05 
Birch 87.87 11.82 0.31 
Birch char 19.16 79.86 0.98 
Energy grass 75.2 18.1 6.7 
Poplar 83.0 15.6 1.4 
Tree of heaven 82.2 16.0 1.8 

Ultimate Analysis (Oxygen calculated by difference) 
 C H N O S Cl 
Straw 46.0 6.2 0.6 46.1 0.11 0.45 
Straw char 67.4 1.7 0.9 21.6 0.13 0.68 
Energy grass 46.5 6.3 1.0 46.2 0.08 - 
Poplar 49.0 6.4 0.4 44.2 <0.02 - 
Tree of heaven 51.1 6.8 0.7 41.5 0.04 - 
 

1.5 Objective of this study 
Most of the work performed in this study has concentrated on the thermal decomposition 

of biomass. This is because as much as 75 % or even more of the biomass is composed of 

volatile matter (see Table 1-3) that will start decomposing at lower temperatures. The 

characteristics of the devolatilized products during pyrolysis are reported in Paper I for 
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several fuels types that have been considered as sources for energy production due to their 

fast growing abilities. Paper I also reports results for the same biomass types in oxidative 

atmosphere. An oxidative atmosphere is also important from the gasification point of view 

because partial combustion is normally used in a gasification process in order to produce 

the necessary energy for the endothermic gasification reactions. For these studies and the 

rest of the pyrolysis experiments (papers II and III), the macro-TGA was used which 

allows the use of large biomass samples (80 g. for most of the experiments). The use of 

large samples has some advantages among these are the following: 

• Reactions are limited by diffusion rates and the temperature gradients in the 

thermally thick samples which tend to replicate better situations found in fixed bed 

reactors and processes based on grate combustion. 

• The generation of large amounts of gas products allows the use of more 

sophisticated gas analytical equipments such as FTIR and GC.  

One of the main challenges of gasification of solid fuels is the increased process 

complexity and costs due to the gas cleaning step. Because the producer gas contains 

pollutants such as tars, nitrous and sulfuric compounds, it is important that such a process 

includes an efficient cleaning step in order to get a trouble free operation during the 

conversion. Since the producer gas usually has a relatively high temperature (800 ºC), gas 

cleaning becomes quite challenging. Of course one has the option of reducing the 

temperature prior to gas cleaning but only at the expense of lowering the process 

efficiency. Another goal of this study was to condition the devolatilized products in order 

to generate an upgraded gas product with reduced pollutants. Non-thermal plasma is a 

method that has a documented effect on the dissociation of tars, sulfuric and nitrous 

compounds and can operate at high temperature. Paper II gives a detailed study on the 

effect of non-thermal plasma on the devolatilized products from pyrolysis of straw pellets, 

while paper III concentrate on reducing the sulfuric compounds from the gas phase. These 

compounds will cause corrosion in turbine blades and lower the efficiency of solid oxide 

fuel cells (SOFC). Regardless on how the producer gas is to be utilized the sulfur fraction 

will most certainly end up as SO2 after energy conversion and should be removed from the 

flue gas prior to release. Two different methods for reducing sulfur emission in pyrolysis 

of straw were looked upon. The first is an active method that involves hindering the sulfur 

release with the producer gas through chemical reactions in the char matrix. This was done 

19



Introduction 
 

by introducing calcium based additives to the straw prior to pelletization. The second 

method was gas product treatment with non-thermal plasma. 

Finally the gasification kinetics of two types of wood chars, pine and birch were reported 

in paper IV. This work was aimed at finding the reaction rates for these types of wood 

chars.  

1.6 Organization of this thesis 
All the work that has been performed for this study was published in four scientific papers 

that can be found in appendix A. The content prior to the scientific papers explains in more 

details the different aspects of topics treated in this study. Chapter 1 gives an introduction 

explaining the importance of biomass as an energy source in our modern society. It also 

gives a short theoretical explanation of the different thermochemical conversion processes. 

Important fuel characteristics of biomass are explained including the ones used in this 

study. Finally this chapter shows the motivation behind the different treaded subjects and 

how they are linked together.  

Chapter 2 gives a comprehensive literature survey over three topics covered throughout the 

work on this thesis. The Sulfur release has been extensively studied in this thesis. Chapter 

2.2  explains how the sulfur is incorporated in the straw, its release during thermal 

degradation and some possible routes for its retention in the ash. The role of calcium based 

additives in sulfur retention under pyrolysis is also explained along with the reactions 

mechanisms that are responsible for its capture.  Non-thermal plasma was used in some of 

the experiments performed in the lab, where its effect on the major pyrolysis products and 

on sulfur reduction was reported. Chapter 2.3 gives a brief theoretical explanation of the 

different non-thermal plasma reactors that has been used in the literature for altering the 

chemical composition of the gases. It also mentions some of the topics that non-thermal 

plasma was proved useful among these are improvement in gas combustion, reduction in 

pollutants such as tars, nitrous- and sulfuric compounds. Reactions involved in the 

destruction of H2S through non-thermal plasma are also explained. Finally chapter 2.4 

gives details around char gasification reactivity where the different models used in the 

literature are explained along with biomass characteristics that can influence on the 

reaction rates.  
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Chapter 3 gives a description of the main reactors used in the experimental work, namely 

the micro-TGA, the macro-TGA and the non-thermal plasma.  

Chapter 4 gives a summary over the published articles while chapter 5 gives an overall 

conclusion and recommendation of this work.  

Appendix A includes all the publications that were produced. 

Appendix B gives a description of the different analytical equipments and their principle of 

operation. Some preliminary work performed on the calibration of the advanced gas 

measuring equipments (FTIR and GC) is also explained. The literature warns of adsorption 

effects of sulfuric compounds due to improper use of materials. Some preliminary 

measures in order to eliminate such effects were performed. This includes cold runs for the 

investigation of the reliability of the gas cleaning equipment on the adsorption of H2S and 

COS.  Finally, some experiments were repeated at equal conditions in order to report the 

reproducibility. 
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2 Theoretical background 

2.1 Introduction 
This chapter gives a theoretical description of three topics covered throughout the work on 

this thesis. It includes details on sulfur incorporation in the straw, its release during thermal 

degradation and some possible routes for its retention in the ash. The role of calcium based 

additives in sulfur retention under pyrolysis is also explained along with the reactions 

mechanisms that are responsible for its capture. Details of the different non-thermal plasma 

(NTP) reactors used to study the alternation of the molecular structure of gases are also 

presented. NTP is used as a mean for the creation of gas radicals that improve combustion 

condition and is also useful at combating several types of harmful compounds. The 

chemical reactions involved in the destruction of H2S through NTP are explained in a 

greater detail in this chapter. A literature survey on sulfur degradation in NTP is also 

presented here. Finally this chapter gives details around char gasification reactivity where 

the different models used in the literature are explained along with biomass characteristics 

that may influence the reaction rates. 

2.2 Sulfur in straw 
2.2.1 Sulfur incorporation in plants 
Sulfur in the straw is usually assimilated by the roots as inorganic sulfate and transported 

to the leaves where a reduction process to sulfide occurs. The reduction reaction proceeds 

through several enzymatic catalyzed reduction steps. Sulfur can also be assimilated 

through sulfur containing gases such as H2S. Sulfide is combined with organic molecules 

to form cysteine which is an amino acid from which proteins are formed [17]. On its way 

to the formation of cysteine, sulfur is transformed with the help of different mechanisms 

first to sulfite and later to sulfide. Figure 2-1 illustrates a proposed reaction route of sulfur 

transformation from its uptake through the plant roots and on to its way of forming 

cysteine [18].  
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Figure 2-1: The sulfur pathways to cysteine, glutathione, and methionine biosyntheses. 

Due to this complex steps of transformations, sulfur will be present in a variety of different 

compounds and may appear in oxidation stages from (-II) to (+VI). The sulfur uptake into 

the plant is necessary for the growth and development of the plant. Several other factors 

will influence the demand of sulfur among these is heavy metal exposure which seems to 

increase the demand of sulfur uptake. Sulfur distribution management in the plant is 

controlled by a gene family consisting of 14 members in Arabidopsis.  There is clear 

evidence that this family gene is involved in the initial uptake at the soil-root interface, cell 

to cell transfer and vascular transportation [18]. The lack of sulfur availability will also 

change the distribution of sulfur and the way it is bound in the plant. For example, in case 

the supply of sulfur is greater than the demand, the excess sulfur can be present in the plant 

fluid as free sulfate esters. The sulfate esters are stored in the cell vacuole and accumulate 

during the growth period [19]. Alternatively, sulfur can also be emitted to the atmosphere 

as H2S after a reduction step. As all these formations are continuously occurring in the 

plant, sulfur can have two forms, organically bound and inorganic sulfate. It is believed 

that the organically bound sulfur has a lower stability which will result in decomposition at 

low temperature (400 ºC) during the devolatilization period. The inorganic sulfates are 

more stable and will not be released during the devolatilization stage. The ratio of organic 

to inorganic sulfate, as well as the overall sulfur content depends on the growth conditions 

and the sulfur supply to the plant during the growth period. Due to the incorporation of the 

sulfur in the building structure of the plant, removing it in a pretreatment step like aqueous 
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leaching is more difficult compared to other compounds such as Chlorine (Cl) and 

Potassium (K) [20]. On the other hand, aqueous leaching will remove sulfates that are still 

not organically bound.  

2.2.2 Sulfur release through thermal degradation 
The reaction mechanism of sulfur release during the thermal decomposition depends on the 

different fractions of the trace elements that are found in the fuel. Potassium and calcium 

are the main elements that will influence the release of sulfur to the gas form, while 

chlorine has an indirect effect on the retention of sulfur during thermal decomposition. In 

addition, silicon (Si) presence in the fuel will greatly affect the pathways of several 

reactions among theses, the fate of sulfur. To better understand the behavior of the 

different elements during thermal degradation, it is important to have an idea on how they 

are incorporated into the straw. Potassium and chlorine remain usually in ionic form K+ 

and Cl- and are not metabolized by the plant. These compounds will therefore precipitate 

when the plant is dried and are easier to remove by aqueous leaching. Their main function 

in the plant is to maintain a neutral charge and pH value, as well as to regulate the osmotic 

pressure and stimulate enzyme activity [17].  Silicon is usually present in high quantities in 

annual biomass species. It is assimilated as monosilicic acid (Si(OH)4) and it forms a 

silicate network structure in the cell walls. Silicon in straw is present as silicate on the 

external surface of the cell plant. It is responsible for giving the plant its structural strength 

and protection against microorganisms. Silicon may also be present in the plant as SiO2 

particles and clay minerals due to soil contamination. To better understand the sulfur 

behavior during both pyrolysis and combustion, the chemical equilibrium calculation 

performed by Knudsen et al. [15] is shown in Figure 2-2.  

 

Figure 2-2: Equilibrium calculation of the distribution of S. Left side, straw pyrolysis case 
where Ca and K silicate are omitted (ξ = 0). Right side, straw combustion case (ξ = 1.4), 
dashed line represents S distribution where Ca and K silicates were omitted. 
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The equilibrium calculation is performed with FactSage version 5.1 and is based on Gibbs 

free energy minimization. It is important to point out that such programs reproduce results 

based on a global chemical equilibrium, a state that is never fulfilled during an 

experimental approach. Another limitation that is not taken into consideration is the 

reactions that occur between the gas-phase sulfur and the functional groups present in the 

char matrix that are capable of binding the sulfur. Nevertheless, such calculations might 

help to understand some chemical routes that are thermodynamically favored. 

Thermodynamic equilibrium helps also to understand the stability of the formed inorganic 

sulfur species. Results presented in Figure 2-2 describe the pyrolysis condition (left side) 

and combustion with an oxygen excess ratio of ξ = 1.4 (right side). During pyrolysis, we 

see that sulfur is present as H2S at temperatures between 500 – 600 ºC. For temperatures 

above 600 ºC, the sulfur starts reacting with Ca and forms CaS. Between 700 ºC and 

900 ºC the route to forming K2S is favored, while for temperatures above 900 ºC Ca 

becomes active again. During combustion, we can see that K is an excellent element for 

sulfur retention as it is able to form potassium sulfate (K2SO4) which is thermally stable at 

temperatures up to 1000 ºC. At higher temperatures the sulfur is released as SO2. In case 

where Ca and K silicate were omitted, the S is retained in the ash as K2SO4, even at higher 

temperatures (the dashed line in Figure 2-2, right side). 

 

Figure 2-3: Equilibrium calculation of the distribution of S and K during pyrolysis. K 
silicate is included in the calculation. 

In Figure 2-3, the equilibrium calculations during pyrolysis are reproduced by the same 

author [15] only this time silicon was included in the equilibrium calculation. As it 

mentioned before, silicon and chlorine play an indirect role on the sulfur reaction pathway. 
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As Figure 2-3 shows, sulfur is released as H2S for all the pyrolysis temperature range. In 

the presence of high concentration of chlorine and silicon in the fuel, the potassium will be 

favorably released as potassium chloride (KCl) and potassium silicates. As it was clarified 

before, the calculations provided in Figure 2-2 and Figure 2-3 can not be reproduced in 

experiments due to reasons mentioned earlier. In case of silicon reactions, it is important 

also to point out the fact that silicon is mainly found at the outer structure of the plant and 

is not perfectly mixed in the fuel as it is assumed during the equilibrium calculations.  

The presence of high concentrations of silicates in the fuel will lower the thermal stability 

of the formed calcium sulfate (CaSO4) and potassium sulfate (K2SO4) under oxidative 

conditions as well. At temperatures above 700 – 800 ºC and for the silicate rich fuels, the 

captured sulfur is re-released to the gas phase as SO3 by following the reaction routes (2-1) 

and (2-2) [21].  

)()()()( 3224 gSOsSiOCaOsSiOsCaSO +⋅↔+  (2-1)

)()()()( 322242 gSOsSiOOKsSiOsSOK +⋅↔+ (2-2)

So far it has been shown by thermodynamic equilibrium that potassium has a high affinity 

for sulfur but because of elements such as chlorine and silicon, potassium might not be 

available for the reaction with sulfur. How does this translate in real experiments? 

Experiments performed by Knudsen et al. [15] have proved that during pyrolysis of straw 

up to a temperature of 700 ºC, no potassium silicates were found in the char rest fraction. 

While for temperatures above 700 ºC, significant amounts of potassium was retained by 

the silicon. This is contradictory to the equilibrium calculations presented in Figure 2-3 and 

can be explained by the fact that at low temperatures the structure of the cell walls was still 

intact while at higher temperatures it collapses. Only when the cell walls collapse, silicon 

and potassium will have a better mixing condition where chemical reaction between the 

two elements may take place. Silicon in coal however, might behave differently as it can 

have a beneficial effect on the sulfur retention at high temperature. In this case, silicon may 

physically enwrap sulfates of lower thermal stability and prevent the dissociation [15]. 

Chlorine is another compound that has a high affinity for potassium and will affect 

indirectly the release of sulfur. Knudsen et al. [17] reached the conclusion that K will be 

preferably released as KCl rather than retained in the ash as potassium silicate. The 
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volatility of chlorine during thermal decomposition of different biomass products has been 

investigated thoroughly by many [17, 21-25]. Studies done on alkali metal emission have 

shown that chlorine starts devolatilization at low temperatures and as much as 60 % of its 

initial amount will be released between 200 - 400 ºC [23]. The chlorine release during 

pyrolysis of straw proved to be dependent on the heating rate and on the sample size [23]. 

For small samples and fast heating rates (50 ºC/s) the chlorine was released in two steps, 

60 % between 200 – 400 ºC and the rest was released between 700 – 900 ºC. For large 

samples (70 g) and slow heating rates (30 ºC/min) only 42 % of the chlorine was released 

at a temperature of 500 ºC. The later observation can prove that the organic char matrix is 

able to retain some of the chlorine and as a consequence, also influences the volatility of 

potassium. Not only chlorine can be retained in the organic matrix as Jensen et al. [23] 

stated; both sulfur and potassium are capable of forming intercalation compounds with 

carbon. Such compounds are stable up to a pyrolysis temperature of 830 ºC. It has also 

been shown the potassium is mainly released as KCl during the pyrolysis stage. During 

combustion, the released KCl can react with the SO2 through the following reaction [15]: 

)(2)()(2)()(
2
1)( 42222 gHClgSOKgKClgOHgOgSO +↔+++ (2-3)

It is obvious that the different mechanisms that are involved in the chemical reactions of 

the inorganic elements are quite complex. The main findings of the behavior of the 

different inorganic elements during the thermal treatment of straw have been summed up 

in Figure 2-4. 

 

Figure 2-4: Illustration of the structural and inorganic transformation during the 
devolatilization and char burnout of annual biomass [17]. 

Figure 2-4 shows the structure and some of the elemental distribution of straw. During 

devolatilization the organic bound sulfur is released mostly as H2S. Depending on the 
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pyrolysis temperature potassium is released mostly as KCl while chlorine is released at 

temperatures lower than 700 ºC. The outer surface which is rich in silicon is not deformed 

during the devolatilization stage.  Due to separation of the silicon found at the outer surface 

from the calcium and potassium rich particles found inside the char matrix, the formation 

of potassium silicate is limited. During the burn off of the char, the outer silicon rich shell 

is disintegrated and reaction between silicon and potassium and calcium salts may occur. 

Depending on the combustion temperature, potassium may be retained in the ash as 

potassium silicate (up to temperature of 900 ºC). For higher combustion temperatures the 

potassium is released to gas phase. In cases of fuels rich in chlorine, potassium might be 

volatilized at lower temperatures. The release of sulfur during the combustion stage will 

depend on the presence of potassium and calcium elements that are not bound to silicon.  

2.2.3 Role of additives in the chemical reaction of sulfur 
For biomass, some investigation has been done on the retention of sulfur in the ash of some 

bio-fuel types such as straw [15, 21, 24 and 26]. It has been reported that the sulfur release 

during the devolatilization of straw comes from the organically bound sulfur at very low 

temperatures (200 – 400 ºC) and is difficult to retain [24]. Such conclusions were drawn 

while investigating calcium based additives on combustion of straw. Under these 

experiments the devolatilization temperature (1200 ºC) was well above the pyrolysis 

temperatures presented in this work (paper III) [8]. While retaining the sulfur in the ash 

under combustion has resulted in many investigations, little has been done on the retention 

of sulfur in biomass under pyrolysis conditions. As mentioned before, the retention of 

sulfur is usually possible in the presence of elements such as calcium and potassium that 

may be able to bind it under proper conditions. Equilibrium calculations have shown that 

potassium has a higher affinity for sulfur compared to calcium. Although this postulate is 

true, we have already seen that potassium might not be available for reactions with sulfur 

due to its affinity towards silicon and chlorine. The stability of the formed K2SO4 in the 

ash is also significantly lowered in the presence of silicate. Under such circumstances the -

released sulfur has the opportunity to react with calcium under proper conditions and 

consequently, becomes retained in the ash. Investigation performed by Knudsen et al. [17] 

has shown that more than 60 % of the remaining sulfur in the ash was found as CaSO4 at 

1150 ºC, which proved that the dissociated sulfur from K2SO4 was retained in the calcium 

instead. The use of calcium based additives in coal combustion has already shown some 

promising results in improving their ash-binding ability [27-30]. So far the same has not 
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been done for biomass due to the relative lower concentration of sulfur compared to coal. 

During the pyrolysis it is expected that sulfur will be released as either H2S or COS which 

even at low concentration can cause major problems. These compounds can be expected to 

bind with the calcium oxide and calcium hydroxide as follows: 

OHCaSSHCaO 22 +↔+  (2-4)

2COCaSCOSCaO +↔+  (2-5)

OHCaSSHOHCa 222 2)( +↔+  (2-6)

OHCOCaSCOSOHCa 222)( ++↔+  (2-7)

Reactions (2-4) and (2-6) are acid-base reactions that are thermodynamically favored at 

low and high temperatures [27]. As shown in the reaction scheme above, the sulfur will be 

retained as CaS in the ash. CaS in its pure form is stable up to 2400 ºC, nevertheless its 

presence in the ash is not so desired because it reacts with water at ambient temperature 

and releases the sulfur back to the atmosphere as H2S [31]. Several publications have 

outlined a solution to this problem by transforming the CaS through reaction (2-8) [31-35]. 

)()(2)( 42 sCaSOgOsCaS ↔+  (2-8)

The oxidization in reaction (2-8) is controlled by product layer diffusion when a certain 

layer of CaSO4 is formed. Reaction (2-8) might occur along with two other reactions (2-9) 

and (2-10). 

)()()(
2
3)( 22 gSOsCaOgOsCaS +↔+

 
(2-9)

)(4)(4)(3)( 24 gSOsCaOsCaSOsCaS +↔+ (2-10)

Given (2-9) and (2-10), the sulfur will not be 100 % retained in the ash through (2-8). The 

optimum temperature for reaction (2-8) was found by Yrjas et al. [33] to be between 815 – 

900 ºC. The solid to solid reaction (2-10) was studied by mixing CaS(s) and CaSO4(s) and 

heating up the mixture. They showed that at 850 ºC no solid to solid reaction occurred 

while at 1050 ºC a 100 % conversion to CaO was achieved. 
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2.3 Chemical reactions under the influence of non-thermal plasma 
Plasma is one of four matter phase that exists; the three others being solid, liquid and gas 

phase. Up to 99 % of the matter that could be found in the visible universe is plasma. In 

addition to neutral molecules and atoms, plasma is composed of free electrons and ions. 

There are two means of producing plasma from a gas phase; these are usually referred to as 

thermal- and non-thermal plasma (NTP). In thermal plasma, molecules are heated to 

extremely high temperatures which results in increased electron velocity in atoms and 

molecules up to a point where they leave their orbit and become unattached. Electrons and 

atoms are in thermal balance and have a typical temperature range of 5000 – 50000 K. In 

NTP, molecules and atoms are kept at ambient temperature while electron temperature can 

attain 10000 – 100000 K. Due to the strong electrical field in NTP, ions and electrons are 

produced with high average kinetic energy. These electrons target the atoms and produce 

not only free radicals and ions but also electrons through electron impact dissociation. The 

molecular dissociation of the different compounds does not only occur through the 

intermediate radicals but may also happen through direct collision with the migrated 

electrons. 

Figure 2-5 shows different types of NTP reactors that are widely used in the literature. 

They differ in the plasma physical and electrical properties such as mean electron energy, 

mode of discharge, corona onset voltage, voltage-current characteristics and so on. 

Reactors in Figure 2-5 can be divided into 2 groups; the gas phase homogenous group ((a), 

(b) and (c)) and the gas-solid heterogeneous reactors ((d) and (e)).  [36] 

 

Figure 2-5: Schematic diagrams of NTP reactors. (a) Pulsed corona (b) Surface discharge 
(c) Dielectric barrier discharge (d) Packed bed (e) Plasma driven catalyst [36] 
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2.3.1 Plasma assisted combustion 
Gas combustion enhancement can be achieved by applying NTP to the fuel, the oxidant or 

even both. Through the creation of active species and radicals, it becomes possible to 

dissociate the gaseous fuels into smaller and more easily combusted fragments. Whether 

the use of NTP for combustion enhancement will succeed in becoming a viable solution in 

a well established technological platform depends first on the energy cost and second on 

the complexity of such solutions. So far, the energy ratio of plasma power to flame duty 

has been in the range 0.01 – 0.03 which makes it promising from the energy consumption 

point of view [37-41]. NTP assisted combustion will result in an increased flame stability 

and reduced pollution due to the following improvements: 

• The produced free radicals and active species will increase the flame propagation 

rate. 

• The flammability limits are increased and leaner combustion conditions are 

possible. This has an indirect effect on NOx emissions since lean combustion helps 

reduce peak temperatures in the combustion zone.  

• NTP reduces ignition delays. Pancheshnyi et al. [42] was able to reduce the ignition 

delay of a premixed propane-air by an order of magnitude of 2.5.  

• Soot reduction which in return will reduce high temperature peaks in the flame and 

result in NOx reduction. 

2.3.2 Plasma reactions in the destruction of pollutants 
NTP treatment can operate at high temperatures and was proven successful in removing 

harmful compounds such as tars [43-48], sulfuric [49-55] and nitrous compounds [56-57]. 

The electron field which is generated by the NTP targets mainly the background gas, but 

also the rest of the compounds and produce free radicals and ions that in return activate 

chemical reactions. The molecular dissociation of the different compounds does not only 

occur through the intermediate radicals but may also occur through direct collision with the 

migrated electrons.  

2.3.3 Sulfur decomposition 
During gasification or pyrolysis of biomass, most of the sulfur that is found in the gaseous 

products is H2S. The dissociation of H2S through NTP could be a viable solution since the 

ionization potential of H2S (10.4 eV) is considerably lower than many other gas 
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compounds found in the product gas. Other gas types that are known to promote chemical 

reactions in the presence of the plasma have also a higher ionization potential, He (24.6 

eV), Ar (15.8 eV), H2 (15.4 eV), N2 (15.6 eV). However, higher applied voltage is required 

for the electrical breakdown of H2S compared to other gases because H2S is an 

electronegative gas with a high dielectric strength. When the balance gas of a NTP system 

is free from oxidants, the overall reaction of the decomposition of H2S becomes as follows: 

H2S (g)  H2 (g) + S (s) (2-11)

H2S is a very weakly bound molecule where the theoretical energy required for its 

decomposition is 20.3 kJ/mol. Four reactions pathways that lead to the dissociation of H2S 

with a NTP were proposed by Zhao et al. [53]. 

1. Direct ionization of H2S followed by dissociative neutralization 

e + H2S  H2S+ + 2e (2-12)

H2S+ + e  HS + H (2-13)

2. Ionization of the balance gas, leading to charge transfer reaction and subsequent 

dissociative neutralization 

e + M  M+ + 2e (2-14)

M+ + H2S  H2S+ + M (2-15)

H2S+ + e  HS + H (2-16)

3. Dissociation through direct electron collision with H2S 

e + H2S  HS + H + e (2-17)

4. Electron collision with the balance gas, which produce active species that 

contribute to the dissociation of H2S. In this case the active species can be either 

dissociated radicals or molecules in exited state 

e + M  M* + e (2-18)

M* + H2S  H + HS + M (2-19)
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In all of the proposed pathways, the outcome of the H2S dissociation is the radicals H and 

HS that react with each other and with other H2S molecules to form H2 and pure sulfur. 

Experiments performed with different balance gases resulted in the rejection of 1 and 2 

((2-20) to (2-21)) as possible pathways for H2S dissociation. Furthermore for experiments 

performed in paper III [8], the pathway 4 is more likely to occur due to the lower 

concentration of H2S in the produced gas. To obtain an inert atmosphere for the 

experiments performed in this study, N2 was used. N2 can therefore be considered as being 

the balance gas in the NTP reactor and the main compound responsible for the dissociation 

of H2S through reactions (2-18) and (2-19) of pathway (4). In case of N2, dissociative 

reactions can occur through either the first exited state of N2, (N2(A)) or the radical N 

through equation (2-22) and (2-23).  

e + N2  N + N + e (2-22)

e + N2  N2(A) + e (2-23)

It has been shown that the rate of reaction (2-23) is 7 orders of magnitude higher than 

(2-22) and will more likely be the responsible reaction in this study [58]. It is important to 

point out that the processed gas in this study is quite complex and the produced radicals 

might favor reactions with other compounds than H2S. On the other hand, the dissociation 

of H2S might occur through radicals produced from other sources than the balance gas, for 

example H radicals produced from the dissociation of H2. 

When using NTP with other types of background gases than the ones mentioned earlier, 

other radical species will be generated, which in turn will influence the conversion 

pathway of H2S. For instance, air with low concentration of H2S is generated due to 

anaerobic bacterial action in manure storage facilities. Processing this type of gas in a NTP 

reactor will most likely produce Ozone (O3) because of the presence of oxygen. Nitrogen 

radicals produced through (2-22) and (2-23) can also react with oxygen to form nitrous 

oxide through reactions (2-24) to (2-27). 

N + O2  NO + O (2-24)

N + NO  N2 + O (2-25)

N2(A) + O2  N2O + O (2-26)
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N2(A) + O2  N2 + 2O (2-27)

If water is present in the treated gas, OH radicals can be produced through reactions with 

oxygen radicals or through dissociation by electron collision. A possible reaction for the 

dissociation of H2S is by reaction with O3 to produce SO2 and H2O (2-28). 

H2S + O3  H2O + SO2 (2-28)

Finally SO2 can react further to produce acids such as HSO3 and H2SO4 through the 

following reactions ((2-29) to (2-31)). 

OH + SO2  HSO3 (2-29)

OH + HSO3  H2SO4 (2-30)

2NH3 + H2SO4  2(NH4)2SO4 (2-31)

Reaction (2-31) will only occur in case of the presence of ammonia. In anaerobic processes 

such as bacterial degradation of manure, ammonia is produced along with H2S.  

2.3.4 Work on sulfur decomposition in NTP 
Helfritch et al. [51] experimented on the removal efficiency of H2S in a pulsed corona 

discharge reactor. H2S was diluted in H2 at different concentrations (0.125 % – 2 %). In 

their work H2S concentration, reactor energy consumption, reactor diameter and gas 

velocity through the reactor were varied. 75 % removal efficiency was achieved at 10 J/std 

cc. Better efficiencies were reported at increased energy consumption levels. The removal 

efficiency decreased with increasing H2S concentration. Decreasing the reactor diameter 

has also increased the removal efficiency. Zhao et al. [53] also employed a corona 

discharge reactor for their study of H2S dissociation in different background gases (Ar, He, 

H2 and N2). The breakdown voltage was reported for the pure compounds as a function of 

gas pressure. Gases at normal temperatures and pressures contain very low concentrations 

of current carriers (free electrons and ions) and therefore behave as insulators. In an 

electric field, any electrons or ions present are accelerated over a distance corresponding to 

their mean free path between collisions. If they gain enough kinetic energy to ionize gas 

molecules, they create new current carriers which in turn ionize more molecules. This 

avalanche-like process forms channels of conducting plasma called streamers. The 

electrical resistance of the gas between the electrodes becomes nearly zero. This transition 
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of a gas between the insulating and conducting states is known as breakdown. The voltage 

at which it occurs is called the breakdown voltage. For the experiments performed by Zhao 

et al. [53], the breakdown voltage was plotted at increased H2S concentration for all the 

background gases. It is important to point out that the breakdown voltage depends on the 

specific reactor configuration. Their main findings were that it was not possible to ionize 

pure H2S in their particular reactor setup. H2S conversion was more efficient in atomic 

balance gases (Ar and He) than diatomic gases (H2 and N2). Conversion efficiency 

decreased with increased H2S concentration for all balance gases. H2S concentration was 

varied between 5 % and 25 %, and the highest conversion of 30 % was obtained at 5 % 

H2S in the balance gas He. Energy consumption seemed to have a minimum value at a H2S 

concentration of 15 %. The lowest energy consumption was obtained with Ar and He as 

balance gases followed by N2 and then H2. Ma et al. [49] have worked on the removal of 

the odorous NH3 and H2S in silent plasma discharge using air as a balance gas. 

Experiments where performed on low concentrations in the range of 3 – 30 ppm. For their 

reactor configuration the removal efficiency was close to 100 % for H2S and 75 % for NH3 

at the low concentration range. The efficiency decreased for both compounds when the 

concentration was increased. For H2S at a concentration of 14 ppm, the removal efficiency 

dropped down to 40 % while for NH3 at a concentration of 16 ppm, the removal efficiency 

dropped to 20 %. The removal efficiency was enhanced by injecting a small concentration 

of ozone. The effect of increased NH3 concentration on the removal of H2S was also tested. 

It was shown that NH3 level had no effect on the removal efficiency of H2S. Finally, it was 

shown that H2O concentration plays an important role on enhancing the removal efficiency 

due to the generation of OH radicals through the dissociation of water. Dalaine et al. [54, 

55] employed a gliding arc reactor for their study on the destruction of H2S balanced in dry 

air. The H2S concentration was varied between 2 and 60 ppm. The only transformation 

product was found to be SO2. Two power supplies at different frequencies were tested, 50 

and 25000 Hz. Up to 75 % conversion efficiency was possible with the 50 Hz power 

supply while for the other (25 kHz) the removal efficiency was lower. The energy 

consumption for the 25 kHz power supply was close to 500 eV/destroyed molecules while 

for the 50 Hz power supply, energy consumption varied between 500 and 1500 eV.  
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2.4 Gasification reactivity 
Heterogeneous reactions play an important role in many applications and especially in 

chemical-industrial activities such as gasification and combustion of solid fuels, catalytic 

processes, and processes based on chemical vapor deposition as in the semiconductor 

industry [59]. Whether gas-solid interactions are of physical or chemical nature, a kinetic 

analysis helps enhancing such processes through the identification of the reaction rates. In 

case of gasification, suitable models that are able to predict reaction rates can be 

transferred to practical applications such as reactor design and optimizing operational 

parameters. In order to determine the gas-solid reaction rates, the weight loss of the 

reacting solid has to be measured preferably in short time increments. Two methods have 

been extensively used in the literature, thermogravimetric and spectrometric techniques. In 

thermogravimetry, one measures the weight variation of the sample with a balance placed 

inside a temperature controlled furnace. With the spectrometric techniques, one measures 

the concentration of the gasified products from which the sample weight loss can be 

derived. While a thermogravimetric analyzer is quite accurate in terms of measuring the 

weight loss, its limitations lies in problems related to heat and mass transfer issues because 

the sample is enclosed in a crucible inside the furnace. On the other hand, heat-transfer 

limitations are avoided in spectrometric techniques by using drop tube reactor types, while 

the draw back being a less accurate reaction rate calculation. Recently, Di Blasi [60] has 

given an excellent literature review of developed combustion and gasification models for 

lingocellulosic chars.  In the following, a short review of kinetic models will be given. 

2.4.1 Kinetic models 
The main reactions responsible for the gasification of solid carbon are the Boudouard 

reaction and the water gas reaction presented in (2-32) and (2-33). 

COCOsC 2)( 2 →+  (2-32)

22)( HCOOHsC +→+  (2-33)

Both reactions are quite slow and are considered to be insignificant at temperatures below 

800 ºC. In order to be able to predict the reaction rate in the Boudouard reaction (2-32) 

several models have been developed. The common goal for all models is to find a suitable 

function that will predict the gasification rate of a carbon particle through its conversion to 

gaseous products.  
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Global reaction rate 
The simplest model for the prediction of a global reaction rate is the nth order intrinsic rate 

equation expressed in (2-34).  

2

n
COr k p= ⋅  (2-34)

Where  

r is the intrinsic reaction rate. 

2COP is the partial pressure of the gasification agent CO2. 

n is the true reaction order. 

k is the intrinsic rate coefficient which is related to temperature through the Arrhenius 

expression: 

RT
E

Aek
−

=  (2-35)

Here  

A is a pre-exponential factor. 

E is the global activation energy. 

R is the gas constant. 

T is the temperature. 

The Langmuir-Hinshelwood kinetic equation 
More complex expressions have been derived based on the active site theory with the 

postulation that chemical reactions occur at favored active sites on the surface of the solid 

particle. The most widely used model is based on the adsorption of CO2 on the surface, 

followed by CO desorption (equations (2-36) and (2-37)).  

COOCCOC
k

k
f ++ ↔ )(

1

2

2  
(2-36)
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3

( )
k

fC O CO C→ +  
(2-37)

Where  

fC  represents an active carbon site. 

( )C O  is a carbon-oxygen complex. 

By assuming a pseudo-steady-state for the C(O) complex ( )( ) 0dC O dt = , the Langmuir-

Hinshelwood kinetic equation can be derived (2-38). 

( ) ( )
2

2

1

2 3 1 31
t CO

CO CO

k C p
r

k k p k k p
=

+ +
 (2-38)

Here  is the total number of active carbon sites. tC

The Langmuir-Hinshelwood differs from the nth order equation in three important areas 

[61]: 

1. The intrinsic reactivity is a non-linear function of the CO2 partial pressure. The 

equation (2-38) does depend on an uncertain pressure order n but will reduce to the 

nth order equation in the case where COp is close to zero. 

2. It is based on an adsorbtion-desorption 2-step reaction and therefore has a 

mechanistic basis. 

3. The inhibition effect of CO is taken into account which is clearly demonstrated in 

(2-38). Increasing the partial pressure of CO reduce the intrinsic reactivity. 

In order to be able to calculate the pre-exponential factors and the activation energies of all 

the rate coefficients in equation (2-38), many thermogravimetric experiments are needed. 

A step by step explanation of the calculation procedure can be found in [62]. The intrinsic 

reaction rate of equation (2-38) depends on the number of active carbon sites , a variable 

that is likely to change with the conversion rate of the particle. The number of active 

carbon sites is quite difficult to measure and attempts to relate it to other carbon char 

properties have been developed [63]. 

tC
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2.4.2 Reactivity related to changes in the char particle structure  
Relating reactivity to changes in the physical properties of the char particle has resulted in 

the development of many models. Two types of models are quite common to find in the 

literature, structural types and volumetric models [64]. With structural type models, the 

internal solid matrix (grain) or the internal pore structure is mathematically described as a 

function of the conversion rate. The structural model types usually require a larger number 

of experimental data compared to other models. For the volumetric models, the changes in 

porosity are linked to the conversion rate of a carbon particle. Three models that have been 

widely used in the literature are presented next. 

The random pore model 
The structural evolution of a particle undergoes two competing effects during the course of 

conversion. In the initial stage the char particle undergoes growth of the internal pores 

followed by a gradual collapse of the pore structure due to the coalescence of neighboring 

pores [65]. Consequently, the internal surface area will exhibit an increase at an early 

gasification stage followed by a decrease at a later stage. One of the widely used models 

that relates the free carbon site to the internal distribution of the particle pores is the 

random pore model (RPM). This model which was developed by Bhatia and Perlmutter 

[66] represents the variation of pore structure within the solid as conversion progresses 

using only one dimensionless parameterψ . The RPM takes into consideration the effects 

of pore growth and coalescence [67], but it is assumed that no new pores are formed during 

the gasification reaction [68]. The pore surface area within a solid is described in the 

following equation. 

0 1 ln(1S S Xψ= − − )  (2-39)

Where  

0S  is the initial pore surface area of the randomly overlapping pores with a size 

distribution V0(r) 

X is the carbon conversion which can be written as: 

0

0 a

w wX
w w

−
=

−
 (2-40)
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0w  is the initial sample weight 

aw  is the weight of the ash 

w is the weight of the char at a certain time during the conversion 

( )0 0
2
0

4 1L
S

π ε
ψ

−
=  (2-41)

0ε  is the porosity which can be calculated from the initial total volume of the randomly 

overlapping pores with a size distribution V0(r) 

0L  is the initial length volume of the randomly overlapping pores with a size distribution 

 The reaction rate based on the random pore model can be written as follows: 

( )0

0

1 1 ln(1
1

n
sk C SdX )X X

dt
ψ

ε
= − − −

−
 (2-42)

Where 

sk is the intrinsic rate constant 

C  is the concentration of the gasifying agent.  

The RPM is able to predict the conversion rate of char up to 70 % conversion (X = 0.7) 

after which it becomes inaccurate and predicts a systematic drop of reaction rate to zero 

[67,69].  

Homogenous model or volume reaction model (VRM) 
This model assumes the solid-gas reaction occur on active sites that are uniformly 

distributed through the whole particles. Gas diffuses also uniformly through the entire 

particle. The volume of the particle remains constant as reactions progress while the 

density decreases. The reaction kinetic is derived applying a mass balance for the first-

order reaction in a single particle which results in the following kinetic expression [70-71]: 

(1 )dX k X
dt

= −  (2-43)
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Another more complex version of the VRM, the modified VRM assumes that the apparent 

rate constant (k) changes with conversion. k is then integrated to obtain an average rate 

constant. 

Shrinking core or changing grain size model (CGSM) 
The gaseous reactants in the CGSM diffuse through a gas film and then through an ash 

layer after which they react on the core surface. The core, which is usually assumed to be 

spherical, shrinks as a function of the conversion. As conversion progresses, the reaction 

rate varies with relation to the core particle.  

The reaction rate expression is as follows: 

( )
2
33 (1 )dX X

dt τ= −  (2-44)

Where τ  is a model related parameter which is compromised of some solid characteristics, 

the constant rate and the concentration of the gasification agent. 

2.4.3 Parameters that influence reaction rates 
In reality, the reactivity of heterogeneous reactions is quite complex and difficult to predict 

accurately in one model. This is because reaction rates are easily influenced by the 

physical and chemical properties of both the gas and the solid phase. Parameters that will 

have an effect on the reaction rates are described below. 

Inhibition effect of different gas species 
It is quite obvious that the gasification agent in commercial size reactor will not consist of 

pure CO2 but a mixture of other compounds such as CO, H2O and H2 that will certainly 

influence reaction rates in one direction or the other. It has already been shown how the 

Langmuir-Hinshelwood kinetic equation takes into account the inhibition effect of CO. 

Similar equations can be derived to take into account the inhibition effect of other 

compounds such as H2. The inhibition effect of H2 on CO2 gasification reactivity has been 

addressed in [72] while Barrio et al.  [73] studied H2 inhibition in steam gasification. 

Barrio et al. studied also the inhibition of CO on CO2 gasification [74].  

Effect of the internal particle structure  
The effect of the internal surface area on reaction rates has been discussed in section 2.4.2. 

In these models the evolution of the internal surface area during the course of conversion is 

related to the reaction rate. The size of the internal particle area might be also linked 
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indirectly to the reaction rate because of the effect of chemisorption. It was mentioned 

earlier that through the gasification process oxygen atoms are adsorbed on active carbon 

sites. In some other models it is postulated that CO2 can also be adsorbed entirely on a 

carbon site (C(CO2)). Measuring the weight loss rate with a TGA might be disturbed by 

chemisorbed complexes on the reactive carbon surface. This is because the observed rate 

of weight of change is actually the difference between the rates of chemisorption and 

desorption. In the work of Feng et al. [75], a surface area of 312 m2/g was found to be 

critical for the steady state assumption. It was concluded the internal surface area that were 

above this limit should be corrected for the chemisorption effect.    

Diffusion limited reactions 
The dependency of the intrinsic rate constant on temperature is clearly seen in the 

Arrhenius expression. It can also be seen from all the derived reaction rates that the partial 

pressure of the gasification agent influences the conversion velocity. In fact, common 

sense alone should dictate that by increasing gasification temperature and pressure, one 

should expect an increase in reaction rate.  At a certain level, the chemical reactions are so 

fast that the limiting factor becomes the transport of the gasification agent to the solid 

surface. This diffusion limitation is illustrated in Figure 2-6 where reactant concentration 

profile is drawn for increasing intrinsic reactivity [76]. Curve I represents no diffusion 

limitations due to slow reactivity, hence the uniform reactant concentration. As reactivity 

increases, it becomes more difficult to transport the reactant inside the particle (curves a 

and II). For higher reaction rates, the concentration starts to decrease at the boundary layer. 

Curve IV shows the case where reactants are not able to penetrate inside the particle and 

for curve III reactants are consumed at the boundary layer. 

 

Figure 2-6: Concentration profile of reactant inside a particle (<R) and outside (>R) [76] 
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The mass transfer limitations are often related to intrinsic reaction rates with a factor of 

effectiveness as shown in Figure 2-7. The zones in Figure 2-7 correspond to the same 

numbered curves in Figure 2-6. In zone I, the logarithmic value reaction rate increases 

linearly with increasing temperature, a fact that is often demonstrated in the kinetic 

literature. This linear dependency fails when the transport of reactant becomes the limiting 

factor.    

 

Figure 2-7: Change of reaction rate as a function of temperature. [76] 

The effectiveness factor (η) has been calculated from the CO2 partial pressure gradients 

along the particle radius and the molecular diffusivities of CO2 and CO in the internal 

pores of the solid particle [61, 64, and 77]. Usually it is normal to use an effective 

diffusivity which is the sum of the contribution of the diffusivity for macro-, meso-, and 

micro-pores. The apparent reaction rate can than be written as follows: 

app inR R Sη=  (2-45)

Mineral content in char 
Inorganic impurities in the surface area of the carbon matrix can have a catalytic effect on 

the gas solid reactions which will result in an increase of the reactivity. This catalytic effect 

has been studied for both coal char and other derived chars. Sun et al. found that reactivity 

of Shenmu maceral chars decreased after demineralization [78]. They also demonstrated 

increased reactivity after catalyst loading, where better result was obtained by ultrasonic 
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loading of the catalyst. In another study, cottonwood was sorbed with ferrous and ferric 

sulfates FeSO4 and Fe2(SO4)3 and pyrolysed [79]. The rest char was used later in thermo 

gravimetric experiments to examine the catalytic effect of the treated wood on gasification 

reactivity. Ferric sulfate was found to have good catalytic properties for CO2 gasification. 

The impregnation of char coal with metal species and its influence on char reactivity was 

also studied by Struis et al. [80]. It was found that heavy metals decrease reactivity by 15 

% throughout all the conversion range. The authors got better results when earth-alkali 

metals where added which resulted in high reactivity at an early conversion stage, but 

flawed rapidly thereafter.  

2.4.4 Model used in this work 
The motivation behind our study is to try and identify differences in reaction rates between 

two types of woods, a hard wood type (birch) and a soft wood (pine). Prepared char from 

those two types might differ due to their internal structure which might influence the 

reactivity. The differences in the wood types are not only reduced to the internal surface 

area and pore-size distribution but also to the ash content and the way the different metals 

are dispersed in the char matrix [78]. Metal oxides are known to enhance char reactivity 

because of their catalytic activities.  

The chemical reactions were modeled using three parallel reactions where 2 describe the 

devolatilization stage using first-order kinetics that are independent of gas concentration. 

Theses reactions are described in equations (2-46).    

dXj/dt = Aj exp(-Ej/RT) (1-Xj) (j = 1, 2) (2-46)

The gasification reaction kinetics is described in a third equation according to: 

dX/dt = A exp(-E/RT) f(X) CCO2
ν (2-47)

Where f(X) = normfactor * (X+Z)a (1-X)n 

a, Z and n are adjustable parameters and normfactor is a normalizing factor ensuring that 

max f(X) = 1.   

f(X) is basically an empirical function that can mimic a wide variety of shapes in order to 

take into account the changing pore structure of the char matrix during gasification. 
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The unknown parameters of the model are determined from a series of experiments by the 

method of least-squares. The following sum is minimized: 
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Where 

Subscript k indicates the experiments differing in CO2 partial pressure and/or heating 

program.  

Nexp is the number of experiments evaluated simultaneously.  

ti denotes the time values in which the digitized (dm/dt)obs values were taken. 

Nk is the number of the ti points in a given experiment.  

hk denotes the heights of the evaluated  curves that strongly depend upon the experimental 

conditions.  

The division by (hk)2
 serves for normalization. 
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3 Experimental approach 

3.1 Introduction 
Most of the work performed in this thesis relies on the use of experimental and analytical 

equipments that needs a great deal of care in order to generate reliable results. For the 

gasification kinetic studies, a micro-TGA was used to record the weight loss. Work on 

large samples required the use of a more complicated system consisting of a macro-TGA, 

gas cleaning equipment, a gas conditioning reactor (non-thermal plasma) and several 

analyzers for the measurement of gas concentration. Chapter 3 gives a description of the 

different equipments and their principle of operation. Prior to the experimental work some 

preliminary work was done on the calibration of the gas analytical equipments (FTIR and 

GC) which is also explained in this chapter. Cold runs where performed in order to study 

the reliability of the gas cleaning equipment on the adsorption of some critical minor gas 

species (H2S and COS), which are also reported in this chapter.  Finally, some control 

experiments are presented in order to report the reproducibility of experiments. 

3.2 Micro-TGA 
The micro-TGA used in this work is a SDT 2960 Simultaneous Thermogravimetric 

Analyzer –Differential Thermal Analyzer (TGA-DTA) from TA Instruments (Figure 3-1). 

It consists of a dual beam horizontal balance where each arm holds one cup placed above a 

thermocouple. The thermocouples are of platinum/platinum-rhodium type contained inside 

the ceramic arms. During an experimental run, one cup holds the sample while the other is 

left empty and used as a reference to generate the DTA (∆T) and for temperature 

correction. The weight change is measured by a taut-band meter movement located at the 

rear of each of the ceramic arms. An optical activated servo loop maintains the balance arm 

in the horizontal reference position by regulating the amount of current flowing through 

the transducer coil. An infrared LED light source and a pair of photosensitive diodes detect 

movement of the arm. A flag at the end of the balance arm controls the amount of light 

reaching the respective photo sensor. During a mass change, the beam becomes unbalanced 

causing unequal light to strike the photodiodes. This imbalance is compensated to retain 

the null position by a restoring current which is translated directly to weight change. The 

balance has a sensitivity of 0.1 µg and a maximum weight capacity of 200 mg. The balance 

is placed inside of an electrical furnace which provides a uniform temperature distribution 

up to 1500 ºC. The heating rate can be varied from 0.1 – 100 ºC/min and up to a 
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temperature of 1000 ºC using ambient temperature purge gas. To attain the maximum 

temperature of 1500 ºC the heating rate is limited to 25 ºC/min. 

 

Figure 3-1: The STD 2960 micro TGA 

3.3 Macro-TGA 
The reactor is made off 4 different parts, the purge gas inlet at the bottom, the heater, the 

reactor core and the top section for the diversion of the gas to a ventilation system. The 

heater which is placed vertically under the main reactor is composed of a ceramic core 

with an inner diameter of 100 mm. A heating element with a maximum duty of 6 kW and a 

maximum temperature of 1200 ºC is placed in the middle of the heater. Two 

thermocouples are placed within the heater; one in the middle close to the heating element 

and is used as a safety measure to prevent over heating. The other is placed close to the 

outlet and is used for the control of the gas temperature. The main reactor is composed of a 

ceramic oven with an inner diameter of 125 mm and a corresponding outer diameter of 

225 mm. The oven is placed in water cooled, double mantled stainless steel cylinder. The 

oven is composed of five heating elements which can be regulated separately. The two 

bottom elements are identical with a length of 35 mm each and with an electrical duty of 

500 W. The other three have each a 2 kW electrical duty and are 300 mm in length.  The 

main reactor wall is a cylinder composed mainly of aluminum oxide (Al2O3) and can 
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withstand temperatures up to 1500 ºC. This cylinder has a total length of 1000 mm, an 

inner diameter of 100 mm and is placed inside the ceramic oven. Several thermocouples 

are installed along the inner wall. These are divided into 6 levels where on each level there 

are two thermocouples facing each other. Theses elements are glued to the wall so that 

only the wall temperature is measured. Five levels of thermocouples are placed, each in the 

middle of a heating zone. The average temperature of each section is used to control the 

duty level of the heating elements. The 6th thermocouple level is placed in the middle of 

the reactor and is used as an external safety measure to prevent overheating. The reactor is 

shown in Figure 3-2. 

 

Figure 3-2: A schematic drawing of the macro-TGA along with the condensation train and 
the gas measuring instruments. 
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During the experiment the sample is weighted continuously with a “Sartorius CP 153” 

scale type. The scale has a maximum weighting range of 150 g and a precision of 1 mg. 

The scale lies inside a pressure tight chamber attached to a pneumatic lift. The chamber has 

a hole in the bottom part through which the scale can be accessed. A Chrome-Alumina 

wire is used to attach the sample basket to the scale. When the top-lock along with the 

scale closes, the bottom of the sample basket lies approximately at the start of the first 

heating zone of the reactor. The scale chamber is set on a slight overpressure by letting a 

small flow of nitrogen purge through it. This helps protecting the scale by preventing hot 

gases from entering the chamber. The sample basket has the shape of a cylinder with an 

outer diameter of 65 mm and a length 120 mm. It is made of two stainless steel rings that 

are kept together by netted wires of metal, which makes up the wall of the cylinder. A 

perforated plate is welded to the bottom ring and makes up the base of the basket were the 

solid sample can be placed. The plate is perforated to allow the interaction of the hot gases 

with the sample. The weight of the sample basket is approximately 80 g.  

Input and output signals are handled by a PC through a signal processing system “field-

point”. Software was developed locally with Microsoft’s Visual Basic to control and 

register the different parameters. This includes a programmed PI-regulator for the 

temperature control of the different heating zones and of the pre-heater. The software 

controls also several flow-controllers that are used for purging the reactor with a 

combination of gas mixture. All signals are written to a text file at a predefined interval. 

Signals that are logged are; the sample weight, all the installed thermocouples, the power 

of the different heating elements and the mass-flow through the flow controllers. As a 

safety measure the software is able to cut all the electrical power to the heating elements in 

case of a temperature overheat or in case of a thermocouple malfunction. This is done by 

placing thermocouples close to all the heating elements inside the reactor and the pre-

heater. One external signal processor is also installed and is programmed to cut power to 

the reactor in the following cases: 

• The module is linked to one thermocouple close to a heating element in the middle 

of the reactor and will stop the power in case of a temperature over-heat.  

• The module also receives a voltage signal from the software at a one second 

interval. In case of a program crash this module will cut all electrical power to the 

reactor.  
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3.4 Nonthermal plasma reactor 
The nonthermal plasma reactor is a coaxial dielectric barrier discharge (DBD) type reactor. 

A Powertron 1000S was used to supply an alternating current (AC) to a transformer where 

both the main voltage and the frequency could be varied. The main voltage can be set at a 

range of 20 – 80 volts, while the frequency could be modified depending on the chosen set 

point of the main voltage. A transformer was used to increase the voltage by 100 times on 

its secondary output. The inner electrode of the DBD is made of a brass tube with an outer 

diameter of 9 mm and a length of 400 mm and was attached to the secondary output 

voltage of the transformer. The high voltage electrode was mounted inside a quartz tube 

with an inner diameter of 14.6 mm and a thickness of 1.5 mm. The sample gas flows 

through the annular gap between the inner electrode and the quartz tube. The residence 

time of the producer gas in the plasma region was calculated to 0.12 s at standard 

conditions. The discharges take place in this gap and only over the length of the outer 

electrode. The outer electrode was coated on the outer wall of the quartz reactor with a 

fluid containing silver. The length of the outer electrode was 100 mm. The primary 

voltage/input (RMS) voltage was determined through the high-voltage source while for the 

secondary/output voltage a Tektronix P6015A probe (1:1000) was used. From the outer 

electrode, a BNC cable was used for the measurement of electric discharges. Both signals 

were connected to a Tektronix TDS 684A oscilloscope and were used for the calculation of 

the electrical power. The frequency for all the experiments was set to 1500 Hz. The 

electrical power deposited through the plasma varied between 100 and 150 Watts. Figure 

3-3 shows the NTP reactor placed upstream to the liquid condensation train shown in the 

right side of the picture. The outer electrode shown in Figure 3-3 was from initial tests that 

are not included in this work.  
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Figure 3-3: The nonthermal plasma reactor, the outlet from the macro-TGA (left) and the 
inlet to the condensation bottles (right). 
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4  Summary of papers 

4.1 Conclusions Paper I – Thermal analysis of energy crops Part I: 
The applicability of a macro-thermobalance for biomass studies 

In this work, the thermal characteristics of three biomass species have been studied. The 

experimental work was performed on thermally thick samples in both oxidative and inert 

atmosphere. A slow heating rate was chosen and both the weight loss and the evolved 

gaseous products were monitored as a function of time and temperature. The results 

confirm that the macro-TGA is suitable for the study of the pyrolysis and combustion of 

large samples. Due to differences in the density of the samples and in the elemental 

composition of the fuels, the weight loss under the pyrolysis experiments starts first with 

the poplar sample followed by tree of heaven and then the energy grass sample. The 

reported gas concentration profile under pyrolysis was similar for all the samples. The 

decomposition of all species starts with the evolution of CO and CO2 first, followed by 

methane and the C2 compounds and later hydrogen is released. The methane profile for the 

energy grass pellet differs in having a less pronounced first peak. This is probably due to 

charring reaction that might be more favored for the grass sample because of its larger 

amount of inorganic ions, which catalyze charring reactions. Experiments performed in 

oxidative atmosphere also confirm that the woody and herbaceous species exhibit 

significant differences under combustion. The second peak that is clearly visible in the 

pyrolysis experiments has disappeared due to oxidation. The CO profile for the grass 

sample is higher and flatter than that of the poplar sample. This could be due to the fact 

that for the grass pellet, the solid residues after the devolatilization stage contain a higher 

amount of carbon. This char is slowly attacked by oxygen and produces CO under 

combustion.  

The performance of the macro-thermobalance instrument coupled with gas analysis should 

be compared with the results of traditional thermogravimetric studies, and the factors 

influencing the thermal decomposition processes should be determined. Further 

experiments are needed to answer the above questions. 

4.2 Conclusions Paper II – Straw Pellets Pyrolysis: Effect of 
Nonthermal Plasma on the Devolatilized Products 

Experiments on pyrolysis of straw pellets have been performed in a macro-TGA. The 

experiments were performed at isothermal conditions in the temperature range from 400 to 

800 ºC. A detailed analysis of the main gas products has been presented along with the 
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effect of a NTP reactor on the gaseous product distribution. The NTP reactor was used for 

treating a flow of 5 nL/min taken from the macro-TGA for the quantification of the 

gaseous products. The NTP treatment was performed in three different modes while 

keeping all the geometric and electric properties of the dielectric barrier discharge (DBD) 

constant. The main findings are: 

• The use of NTP in general influences the total gas production as well as the product 

distribution and higher heating value of the pyrolysis gases. 

• The total gas production at a pyrolysis temperature of 400 ºC was increased by 14 

% when the NTP reactor was placed upstream relative to liquid condensation. For 

temperatures above 400 ºC the total gas amount decreased due to carbon deposits in 

the NTP reactor and an increase of the liquid fraction. 

• For a pyrolysis temperature of 400 ºC, placing the NTP upstream to the 

condensation unit has shown to have a positive effect on increasing the production 

of all the measured gaseous compounds. This also holds true at 500 ºC for CO and 

H2. 

• The difference in changing the background gas in the NTP by purging the macro-

TGA with CO2/N2 instead of pure N2 has shown to produce significant differences 

in the distribution of the gaseous products. The addition of CO2 increased 

significantly the total amount of CO and decreased the hydrogen content. Ethane 

was also slightly increased compared to NTP treatment with pure nitrogen. 

• The higher heating value of the produced gas increased with the use of NTP. This 

can be explained by the dissociation of some of the CO2 present in the devolatilized 

products. At a pyrolysis temperature of 400 ºC the increase is also due to the 

conversion of some of the heavier hydrocarbons to combustible gaseous products. 

4.3 Conclusions Paper III – Sulfur Abatement in Pyrolysis of Straw 
Pellets 

Danish straw has been mixed with the calcium based additives CaO and Ca(OH)2 at 

different Ca/S ratios. The mixed straw was pelletized and pyrolized at different 

temperatures in a macro-TGA reactor in order to study the sulfur retention in the ash. A 

detailed analysis of the sulfur species in the gas products has been presented along with the 
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effect of a NTP on the abatement of sulfur release. The NTP reactor was used for treating a 

flow of 5 nL/min taken from the macro-TGA for the quantification of the sulfur products. 

The NTP treatment was performed in three different modes while keeping all of the 

geometric and electric properties of the DBD constant. The main findings are:  

• The sulfur release with the devolatilized products increased with increasing 

temperatures. The effect of the additives could not be determined accurately by 

solely studying the composition of the evolved gases. By performing an elemental 

analysis of the straw pellets and the solid residues after pyrolysis at 600 ºC, some 

tendencies towards increased sulfur retention could be observed, although this 

effect appeared to be marginal. Data from literature reporting the influence of the 

same type of additives on the pyrolysis of coal was more noticeable. This is most 

probably due to the higher content of sulfur in coal compared to straw. Another 

major difference between coal and straw is the higher ash content of the later fuel 

combined with an already high calcium content.  

• Increasing the pyrolysis temperature has resulted in an increased release of H2S 

with the devolatilized products. COS formation decreased with increasing pyrolysis 

temperature. 

• The NTP reactor was proved to have a high H2S removal efficiency. In pure N2 and 

at a concentration of 42 ppm, the maximum removal efficiency was close to 95%. 

Increasing the H2S concentration to 165 ppm has resulted in improved removal 

efficiency. 

• The removal efficiency of H2S in the pyrolysis experiments was highest when the 

NTP reactor was placed downstream liquid removal and at a pyrolysis temperature 

of 400 ºC. At this configuration 86 % of H2S was removed from the devolatilized 

products. Best plasma reactor placement was proved to be downstream liquid 

removal for both H2S and COS. Increasing the CO2 amount in the carrier gas has 

improved the removal efficiency of H2S at the cost of increased COS formation. 

4.4 Conclusions Paper IV – CO2 Gasification of Biomass Chars.  A 
Kinetic Study 

The gasification kinetics of two charcoals were determined using TGA experiments with 

linear and stepwise T(t) programs.  The method of least squares was used.  Contrary to the 
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isothermal studies when one has to wait for the stabilization of the experimental 

conditions, we studied the whole gasification process.  A particular care was given to 

ensure a true kinetic control by employing much lower sample masses than it is usual in 

the TGA studies on the gasification of biomass chars.  The results were justified by the fit 

between the experimental and calculated data in series of 7 and 14 experiments.   

The devolatilization of the charcoal was described by the way proposed earlier by Branca 

and Di Blasi18 [81] for charcoal combustion.  The dependence of the gasification on the 

conversion was examined by a versatile, 3-parameter empirical f(α) formula. The results 

were identical or close to the power law (nth order) kinetics. 

Despite the differences between the feedstock, ash composition and pore structure of the 

two chars, their decomposition kinetics revealed considerable similarities.  This made 

possible to describe all the 14 experiments on the two samples together assuming common 

activation energies and common reaction order of the CO2 concentration on both charcoals.  

In this model the dependence of the reaction rate on the conversion was approximated by 

power law kinetics.  Altogether 18 adjustable parameters were determined from 14 TGA 

experiments.  The reactivity differences between the two charcoals were expressed by 

different preexponential factors while the structural differences were described by different 

reaction orders with respect to the conversion.  

The activation energy of the gasification step, E3, proved to be a well defined quantity:  all 

evaluations and test calculations in the present study resulted in values 262 – 263 kJ/mol. 
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5 Recommendation for future work 

Experiments with the macro-TGA have shown to give valuable information concerning the 

study of product release during the thermal treatment of solid fuels. The thermally thick 

samples provided in this manner additional information in the form of a detailed gas 

mapping of the fuels that were tested. In comparison to similar tested performed at the 

micro-scale levels, such experiments include the gas diffusion limitation, a condition that is 

more realistic in real processes. At the same time one is able to have more controlled 

operating condition compared to real processes. The use of calcium based additives for the 

retention of sulfur has shown to give limited effectiveness during the pyrolysis of straw 

pellets. The work on additive incorporation to the pellets for future work should 

concentrate on combustion experiments where such additives are believed to be more 

effective. Adding calcium to biomass would also change the characteristics of the 

produced ash which could be an important aspect to investigate.  

Work on the non-thermal plasma was proven successful on the removal of sulfuric 

compounds in the pyrolysis products. Future experiments should focus on enhancing the 

plasma efficiency and the possibility to run the plasma reactor at higher gas temperatures. 

Gas cleaning at high temperatures is a major challenge where plasma discharge could 

prove to be successful at the removal of harmful compounds and the upgrade of the 

producer gas. This is thought off in relation to gasification products where non-thermal 

plasma treatment could render the gaseous products more suitable for further utilization in 

gas turbines, engines and solid oxide fuel cells. The possibility of using such a technology 

should be investigated in terms of both the economical costs and the removal efficiency. 

Later experiments with non-thermal plasma should therefore concentrate on the direct 

treatment of gasification products. These products differ from the devolatilized products 

tested in paper II and III in two quite important areas; the different chemical composition 

of the tar products and the water content in the producer gas. 

The work on gasification kinetics gave important reaction rate data of two types of chars 

generated from soft and hard wood. A mathematical gasification model suitable for 

different heating rates was developed. Such models can be used directly in modeling the 

gasification stage of these fuels. Further work should concentrate on defining char 

characteristics that have a significant influence on the gasification reaction rates. 
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Incorporating such characteristics in a mathematical model would render the model more 

useful for different type of wood chars.    
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Abstract
In this work young shoots of poplar (Populus euramericana), tree of heaven (Ailanthus altissima) and pellets of a type of energy grass

(Agropyron) were studied in order to get information about the applicability of these biomass materials for energy production by direct combustion.

During the combustion of plant materials three main processes take place: (i) formation of volatiles, (ii) burning of volatiles and (iii) burn-off of the

produced char. The thermal behavior of the samples was studied with the help of a macro-thermobalance built at the Norwegian University of

Science and Technology. Pyrolysis experiments have been performed in inert atmosphere to get a deeper insight into the formation of volatile

products, whereas measurements in oxidative atmosphere have provided information about the burn-off of the samples, as well. In addition to

monitoring the weight loss of the samples, the analysis of the evolved gases was carried out with gas chromatography (GC).

The TG and DTG curves and the profiles of the evolved gases obtained in the pyrolysis experiments are similar in the case of the poplar and the

tree of heaven samples implying that the thermal behavior of these crops is alike, whereas those of the energy grass sample show significant

differences. The decomposition of poplar occurs at a lower temperature in the presence of oxygen than that of energy grass. The evolution curves of

the monitored products also exhibit differences. The results will be interpreted in terms of the chemical composition of the samples determined by

proximate and ultimate analysis.

# 2007 Elsevier B.V. All rights reserved.

Keywords: Agropyron pellet; Ailanthus altissima; Biomass; Combustion; Populus euramericana; Pyrolysis; Thermogravimetry
1. Introduction

The public awareness to environmental problems that we are

facing as well as the political motivation towards a cleaner

environment has led the research community to focus more on

alternative fuels. It is believed that such energy sources will

leave less impact on the environment in the future. Due to the

depletion of fossil fuel reserves and a future energy economy

that is affected by a political factor, it is believed that alternative

energy sources will become major contributors to the global
* Corresponding author.

E-mail address: roger.a.khalil@sintef.no (R.A. Khalil).

0165-2370/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.jaap.2007.08.004
energy needs. Biomass as a fuel source already makes a big

contribution to the energy balance in some countries and the

potential for an increased production to attain the goals that are

set is quite high. Countries in the EU have already set a target to

increase energy production from alternative energy sources. For

the whole EU this target is set at 21% of electricity and 12% of

total energy by the year 2010 [1]. The electrical production

from renewable energy sources in the EU in 1997 was at a level

of 12.9%.

While the fossil energy sources have a well-defined

composition and uniformity, the same cannot be said about

biomass. This means that in order to reach a commercial status

that can compete with other more traditional energy sources,

detailed studies should be made on new promising bio-fuels.

mailto:roger.a.khalil@sintef.no
http://dx.doi.org/10.1016/j.jaap.2007.08.004


R.A. Khalil et al. / J. Anal. Appl. Pyrolysis 81 (2008) 52–59 53
Previously, several types of biomass species have been

studied using different techniques on both the micro- and the

macro-scale. Experiments on the micro-scale level are usually

conducted with samples in the ‘‘mg’’ range. Samples are also

sieved to a low and uniform particle size [2–10]. As a result of

the small sample size the reaction mechanisms are not limited

by the mass and heat diffusion, which in return allow a good

prediction of the chemical reaction kinetics.

Single particle experiments [11,12] are usually carried out

with the purpose of finding the limiting effect of heat and mass

transfer in a solid particle. Such data can be used to implement

improvements to mathematical models aiming at simulating the

thermal treatment of solid fuels.

Another method of conducting experiments is by varying the

density of ‘‘a bed of particles’’. This is normally done by

changing the particle size of the bed. In this way, one can study

different types of transport mechanisms that can influence the

global reaction rate [11]. The sample weight used under such

conditions varies a lot, usually between 0.1 and 20 g, and

depends on the particle size under investigation [13–17].

Finally macro-scale experiments [18–20] (also referred to as

‘‘thermally thick’’) tend to be more complex and time

consuming, especially, if the evolved gases are being measured.

This is due to the relatively large sample size (20–500 g) that is

usually used. These types of experiments are not suitable for

kinetic studies, but they give some information about how solid

fuels might behave differently in commercial plants due to

limitations in heat and mass transfer.

The thermal decomposition and the composition of a great

number of species have been studied with the help of the above

methods. Lately, special fast growing species grown on energy

plantations [3,21–24] have been in the focus of interest in

addition to wastes of plant origin [24–26]. Among the energy

plantation products, one can find wood species and herbaceous

crops, as well. Hybrid poplars are the most widespread woody

crops in Hungary since the climate is rather favorable for this

species [27]. However, a number of other plant species also

seem to be suitable for production in energy plantations.
Table 1

Proximate and ultimate analysis, higher heating value and calorific value of the te

Energy

Proximate analysis

Volatiles (%) 75.2

Fixed carbon (%) 18.1

Ash (%) 6.7

Ultimate analysis

C (%) 46.5

H (%) 6.3

N (%) 1.0

O (%)a 46.1

S (%) 0.08

HHVcalculated (MJ/kg) (based on proximate analysis) [31] 18.1

HHVcalculated (MJ/kg) (based on ultimate analysis) [32] 18.5

HHVmeasured (MJ/kg) 18.3

Calorific value (db) (MJ/kg) 16.8

a Determined by difference.
The aim of our work was to get information about the thermal

behavior of novel energy plants in a macro-scale thermobalance.

Two wood samples and a herbaceous crop have been selected for

the study. The thermal behavior of these species has already been

investigated using small sample sizes [3,28,29]. Nevertheless,

the results obtained from such experiments only give some

implications about the chemical composition and thermal

decomposition with no limitations in heat and mass transfer.

As these processes cannot be avoided in reactors using large

sample sizes, the macro-scale thermobalance may provide a good

means for investigating the performance of the selected species

in commercial plant installments [30]. In addition to the

characterization of the thermal behavior of the samples,

proximate and ultimate analyses were also performed. The

heating value and the ash composition were also determined.

2. Experimental

2.1. Samples

Poplar Pannonia (Populus � euramericana cv. Pannonia), a

poplar hybrid developed in Hungary and tree of heaven

(Ailanthus altissima) were cut to small pieces of 2–4 cm during

harvesting, while energy grass (Agropyron) was pelletized.

These samples are grown on Hungarian experimental energy

plantation fields. All samples were studied with the macro-

thermobalance (macro-TG) as received without any pretreat-

ment, while for proximate and ultimate analysis and calori-

metric experiments the samples were milled and dried. The

moisture content of the milled biomass was determined

according to the ASTM E871 standard method.

The proximate analysis of the samples was performed

according to ASTM E872 (volatile matter) and ASTM D1102

(ash content) standards. The ultimate analysis of the samples

was performed on a Carlo Erba Instruments, type EA1108. The

higher heating value of the samples was measured using an IKA

Labortechnik C5000 control type bomb calorimeter. All the

above characteristics of the samples are listed in Table 1.
sted fuels

grass pellets Poplar Pannonia Tree of heaven

83.0 82.2

15.6 16.0

1.4 1.8

49.0 51.1

6.4 6.8

0.4 0.7

44.2 41.4

<0.02 0.04

18.4 18.5

19.4 20.2

19.5 20.6

18.0 19.0



Table 2

Ash composition determined by ICP-OES experiments

Energy grass Poplar Tree of heaven

Amount of elements (w/w%)

Ca 3.1 19.5 22.1

K 13.5 9.0 14.8

Mg 1.5 4.9 6.1

P 1.1 3.0 2.0

Na 5.1 2.4 3.8

Amount of elements (ppm)

Al 3195 <0.1 1659

Zn 125 1175 613

Fe 3315 2890 3586

Mn 473 982 524

Cu 202 93 413

The data given in this table are the average of two parallel experiments.

Fig. 1. Schematic diagram of the reactor and the gas sampling line.
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2.2. Determination of ash composition

The composition of the ash was determined using a Thermo-

Jarell Ash Atomscan 25 ICP-OES apparatus. Prior to analysis

the ash samples were digested using an Anton Parr MW 3000

microwave digestion system. Forty to sixty milligrams ash was

treated with 3 ml 30% H2O2, 8 ml HNO3 and 1 ml 40% HF, and

heated to 190 8C in 15 min. This temperature was kept for

20 min. Following the decomposition with the acid mixture, the

samples were additionally treated with 10 ml 4% H3BO3

solution and heated again to 150 8C for 15 min to allow

complexation of the rest fluoride. Subsequently, the samples

were diluted to 50 ml and analyzed. The results of the ICP

analysis are listed in Table 2.

2.3. Macro-TG apparatus

All three samples were tested in a multi-fuel reactor

designed with the purpose of testing large samples simulating

combustion or pyrolysis by changing the type of purge gas that

runs through the reactor. The description of the reactor has

already been described in an earlier publication [30]. A

schematic diagram of the reactor and the gas sampling line is

shown in Fig. 1. The experiments were performed using 39–

60 g samples. The samples were heated in the pyrolysis

experiments at a rate of 10 8C min�1 to 900 8C in nitrogen

atmosphere. Combustion experiments were performed in air

with a heating rate of 10 8C min�1, the final temperature was

650 8C. The reactor was purged with the desired gas for at least

1 h prior to the start of the experiment. During pyrolysis

experiments, an online oxygen analyzer was used to make sure

that the reactor was free from oxygen. During the experiment

the sample is heated according to a given temperature program

and is weighted continuously with a ‘‘Sartorius CP 153’’

balance. The experiment is stopped after approximately one

and a half hours (the time needed for the reactor to reach 250 8C
(25 min) is not included.

2.3.1. Gas analysis by gas chromatography

All the gas compounds from the experiments are identified

and quantified using a Varian CP-4900 micro-GC equipped
with two injectors each connected to a separate column. The

first column is a 10 m Pora-plot type with an internal diameter

of 0.25 mm and uses Helium with 6.0 quality as a carrier. This

column is used for the separation of CO2, CH4, C2H2 + C2H4,

and C2H6. The second column is a 20 m long Molsieve with an

inner diameter of 0.25 mm and uses Argon of 5.5 quality as a

carrier gas. Argon was used instead of Helium in order to be

able to detect Hydrogen. This column is able to separate O2, N2,

CH4 and CO. The properties of both columns along with the

retention time of all compounds are presented in Table 3.

3. Results and discussion

The analytical data listed in Table 1 suggest that the

composition of poplar and tree of heaven are similar and quite

comparable to other wood species [33]. Energy grass however,

has higher ash and fixed carbon content compared to the other

two bio-fuels. The results of ultimate analysis show that energy

grass has the highest nitrogen and sulfur content. This is in

agreement with the fact that herbaceous species usually contain

a significant amount of proteins [34–35]. The calculated and the

measured higher heating values are in good agreement. As it

was expected, energy grass possesses a slightly lower heating

value than the wood species. The calculated calorific values

show the same tendency as the higher heating values.



Table 3

Method used for the micro-GC and the retention times for the gas compounds

Pora-plot Molsieve

Column temperature (8C) 60 155

Injector temperature (8C) 50 100

Injection time (ms) 100 100

Initial pressure (KPa) 150 310

Run time (s) 100 100

Retention times for the different compounds (s)

Pora-plot Molsieve

CH4 25 H2 55

CO2 28 O2 65

C2H2 + C2H4 35 N2 71

C2H6 40 CH4 92

CO 95
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In addition to the characteristics of the samples listed in

Table 1, the composition of the ash also plays a significant role

in determining whether a certain bio-fuel is suitable for energy

production. The quantification of the ash composition is,

therefore, important in order to be able to predict the behavior

of the fuel in a combustion furnace. Ash sintering and fouling

problems may occur in cases where the melting point of the ash

is low. The melting point of the ash can be directly related to the

ash’s elemental composition. Among the inorganic elements of

biomass, potassium causes the largest problems since their high

concentration in the bio-fuel causes the ash melting tempera-

ture to decrease significantly [36]. The composition of the ash

has been determined with ICP-OES technique. Note that the ash

was obtained after heating the sample to 600 8C as described in

the Section 2 (ASTM E872 and ASTM D1102 standard

method). At this temperature, it is possible that the elements are
Fig. 2. The solid fuel conversion to gas and tar products as a funct
present not only in the form of oxides, but also carbonates and

sulphates, etc. might be formed as well. Thus, the oxygen

content was not included in the table. The silica content of the

samples was not measured. As a result, only the amounts of

some of the most important inorganic elements have been

determined. As it is shown in Table 2, the main element in the

ash of poplar is calcium, whereas in the case of the other two

samples a considerable amount of potassium is also present.

The amounts of potassium and calcium are comparable in the

ash of the tree of heaven sample. From the ICP results it can be

concluded that poplar is the best fuel among the studied

samples. Ash sintering problems may arise mostly in the case of

the other two samples. However, if one takes into account that

the ash content of the tree of heaven sample is significantly

lower than that of the energy grass, the former sample can be

considered as having favorable properties.

Fig. 2 shows the normalized weight loss, in addition to the

total amount of released gases in the pyrolysis experiments. The

third set of series, indicated as liquid, is calculated by taking the

difference between the weight loss and the amount of produced

gases. Note that the start time in all the figures presented in this

paper is related to the temperature of the reactor as it attains

250 8C. This starting point is also used for the start of the

integration in the calculation of the total gas release. The tars are

not measured online because it is not possible to trap these

compounds and at the same time measure their weight

continuously. From Fig. 2 we can also see that the devolatization

of poplar occurs first followed by that of the tree of heaven and

then the energy grass pellets. One can also notice that the amount

of residues formed from the energy grass is higher than from the

wood samples. This is most likely due to the higher amount

of ash in the grass. This higher inorganic content adds to the

carbonaceous residue, and it also influences the decomposition

pathways by favoring charring reactions.
ion of time and temperature. (Data above 65 min are omitted.)



Fig. 3. DTG curves; weight loss per minute normalized to the initial dry sample

mass. (Pyrolysis experiments.)
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Fig. 3 shows the DTG curves of the bio-fuels in inert

atmosphere. The decomposition of the two wood species shows

some similarities as suggested by the similar DTG curves. The

energy grass, on the other hand, has a different peak shape
Fig. 4. Gas concentration from the py
implying that the thermal decomposition is considerably

different from that of the wood samples.

The evolution profiles of the most important gaseous

products for the pyrolysis experiments are presented in Fig. 4.

This figure shows the formation of carbon dioxide (CO2),

carbon monoxide (CO), hydrogen (H2), methane (CH4) and the

sum of the light hydrocarbons acetylene (C2H2), ethylene

(C2H4) and ethane (C2H6), indicated in the figures as C2. The

concentration is presented as a weight fraction of the original

dry sample per minute. The evolution profiles of the different

products are similar for all the studied fuel types, and show that

the relatively simple DTG peak occurs as a result of different

overlapping processes. The decomposition of all species starts

with the evolution of CO and CO2. At a somewhat higher

temperature (at approximately 350 8C for poplar and tree of

heaven; at 450 8C for the energy grass pellet) methane and C2

compounds are also released. The evolution curves of these

compounds show multiple peaks implying that these gases are

formed in different decomposition processes. In the last stages

of decomposition hydrogen (at about 550 8C for all the test

fuels) is formed accompanied by minor amounts of carbon

dioxide.
rolysis of the different solid fuels.



Fig. 5. DTG curves; weight loss per minute normalized to the initial dry sample

mass. (Combustion experiments.)
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The evolution curves of the various gaseous compounds of

the studied wood species are similar, whereas those of energy

grass show some differences. These differences are the most

conspicuous in the formation of methane and hydrogen. In the

case of the energy grass the second peak of methane formation
Table 4

Weight distribution of the different products from the pyrolysis and combustion e

Fuel CH4 (wt.%) CO2 (wt.%) C2 (wt.%) H2 (w

Pyrolysis experiments

Energy grass 1.5 16.3 0.5 0.4

Poplar 1.6 21.1 0.4 0.6

Tree of heaven 1.7 20.0 0.7 0.7

Combustion experiments

Energy grass 1.2 95.0 0.6 0.2

Poplar 1.1 101.6 0.5 0.1

Liquid calculated by difference.

Fig. 6. Gas concentration from the com
occurring at about 36 min (610 8C) is more pronounced, while

the first peak is lower. The peak at 610 8C can be attributed to

methane released during the charring processes [24]. Hence, the

charring reactions play a more significant role in the pyrolysis

of grass than in the pyrolysis of the wood species. This is in

accordance with the fact that a larger amount of inorganic ions,

which catalyze charring reactions [37], can be found in the

herbaceous sample (Table 1).

As the thermal behavior of the two wood samples was

similar in inert atmosphere, only one of them has been studied

in oxidative atmosphere (Figs. 5 and 6). The DTG curves for the

combustion experiments are shown in Fig. 5. Similarly to the

inert experiments, the DTG curve of the energy grass is lower

than that of poplar. The shapes of the DTG curves are rather

similar as opposed to the results of pyrolysis experiments. For

poplar the peak occurs at 8.5 min (335 8C), while for the grass

pellets the peak is at 14 min (390 8C). The formation of gaseous

compounds has been monitored, and the curves corresponding

to the various products are shown in Fig. 6. The evolution of

gaseous products ends after about 20 min for the poplar and

about 40 min for the grass pellets. In the case of poplar all

compounds evolve in the same temperature range giving one

sharp peak. The formation of carbon dioxide, however,

proceeds at higher temperatures. In the combustion of energy

grass CO2 evolves at the beginning of decomposition. The
xperiments

t.%) CO (wt.%) Liquid Solid residue HHV (MJ/NM3)

5.2 47.4 28.6 15.8

8.3 46.5 21.5 14.6

7.9 46.4 22.6 16.2

10.5 N.A. 12.5 N.A.

20.1 N.A. 0.6 N.A.

bustion of the different solid fuels.
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formation of other gaseous products starts at a somewhat higher

temperature (approximately 350 8C). The curves of these

compounds have shoulders suggesting that these gases evolve

in different decomposition processes. The second zone of

decomposition (approximately 500 8C), observed in the

pyrolysis experiments, is absent probably due to the fact that

by that time the temperature becomes too high for such gases to

stay un-oxidized. The second zone has, therefore, been replaced

by the burning of the char, which happens at a much slower rate.

In Table 4 the total amounts of the different products are

presented. The gas products are split into the major compounds

measured by the GC. These values are integrated from the

gaseous profiles showed earlier. Data are presented in terms of

weight percent relative to the initial weight of the raw sample.

The higher heating value for these gas products is also

calculated and presented in the last column. The liquid yield in

the pyrolysis experiment is calculated by difference. Also in the

case of the total devolatilized products under pyrolysis the

yields are comparable with the exception of the grass sample

which exhibits some differences in the total yields of CO and

CO2.

4. Conclusions

In this work, the thermal characteristics of three biomass

species have been studied. The experimental work was

performed on thermally thick samples in both oxidative and

inert atmosphere. A slow heating rate was chosen and both the

weight loss and the evolved gaseous products were monitored

as a function of time and temperature. The results confirm that

the macro-TGA is suitable for the study of the pyrolysis and

combustion of large samples. Due to differences in the density

of the samples and in the elemental composition of the fuels, the

weight loss under the pyrolysis experiments starts first with the

poplar sample followed by tree of heaven and then the energy

grass sample. The reported gas concentration profile under

pyrolysis was similar for all the samples. The decomposition of

all species starts with the evolution of CO and CO2 first,

followed by methane and the C2 compounds and later hydrogen

is released. The methane profile for the energy grass pellet

differs in having a less pronounced first peak. This is probably

due to charring reaction that might be more favored for the

grass sample because of its larger amount of inorganic ions,

which catalyze charring reactions. Experiments performed in

oxidative atmosphere also confirm that the woody and

herbaceous species exhibit significant differences under

combustion. The second peak that is clearly visible in the

pyrolysis experiments has disappeared due to oxidation. The

CO profile for the grass sample is higher and flatter than that of

the poplar sample. This could be due to the fact that for the grass

pellet, the solid residues after the devolatization stage contain a

higher amount of carbon. This char is slowly attacked by

oxygen and produces CO under combustion.

The performance of the macro-thermobalance instrument

coupled with gas analysis should be compared with the results

of traditional thermogravimetric studies, and the factors

influencing the thermal decomposition processes should be
determined. Further experiments are needed to answer the

above questions.
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[13] J.M. Encinar, J.F. González, J. Gonzalez, Fuel Proc. Technol. 68 (2000)

209.
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Gas analysis 

Sampling train 

The sample for gas analysis is taken through a hole on the side of the top-lock that is 

drilled with an angle of 30º from a horizontal line. A quartz tube with an outside diameter 

of 6 mm and an inside diameter of 1 mm is used for the gas sampling. The tube is placed 

approximately 10 mm inside the reactor wall and at the top of it. The sample gas passes 

first through an ice cooled trap made of three glass bottles. The first bottle is filled with 

glass balls so that heat transfer is increased; the second bottle is left empty while the third 

one is filled with glass wool so that the produced tar is trapped. The sample gas is then led 

to another ice trap made of one steel condenser and another container filled with glass 

wool with a paper filter on the top. The stream is then split where the first one is directed to 

2 micro-GCs and the second one passes to a heated filter prior to its entry to the FTIR. A 

schematic drawing of the gas cleaning module is shown in Figure 3-2. 

FTIR 

Measuring principle 
Fourier transform infrared (FTIR) measurement principal is based on the interaction of 

light and matter. The light source emits photons within a defined spectral range (IR wave 

length in a range 2.5 to 15 μm). Since most molecules vibrate at a characteristic frequency, 

they are able to absorb the energy from the IR light that corresponds to this particular 

frequency. The absorbed intensity is correlated to the change of the dipole moment due to 

the vibration and the concentration of molecules. By measuring the absorbed intensity for 

the different frequencies, it is possible to both identify and quantify most gas compounds. 

Almost all molecules can be identified with the exception of symmetrical molecules (O2, 

N2, H2, etc) and inert gases (Ar, He, etc) the dipole moment in such molecules can not be 

changed. 
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Figure B-1: The Michelson interferometer [82] 

In the heart of all FTIR instruments we find a Michelson interferometer (Figure B-1) where 

its main purpose is to reduce the IR frequency so that it could be picked up by a detector. 

The Michelson interferometer produces a new signal at a much lower frequency which 

contains the same information as the original IR signal. The interferometer splits the IR 

light in two half, where the first half is reflected to a stationary mirror and then back to the 

splitter. The other half passes through the splitter and is reflected back by a movable 

mirror. The two reflected beams recombine at the splitter with a slight interference due to 

the difference in the traveled path of the two sources.  Finally when the source light is read 

by the detector, the intensity which is now plotted as a function of time is transformed back 

to a single spectrum where it is plotted as function of wave number. The transformation is 

implemented through a mathematical process known as the Fourier transformation.  

FTIR used in this work 
The Bomem 9100 analyzer was used to quantify CO2, CO, CH4, C2H2, C2H4, CH3OH and 

SO2. This analyzer was kept at a constant temperature of 176 ºC with a help of several 

parts composed of heated pipes, a preheated oven and the FTIR cell, all controlled through 

a controller that is integrated in the instrument. The cell that was used has an inner volume 

of 5 liters and an optical path length of 6.4 meter. The instrument is equipped with two 

detectors where the choice between the two could be made by flipping a side port that 

reflects the laser light from one detector to the other. Only the deuterated triglycine sulfate 

(DTGS) detector with the maximum instrument resolution of 1 cm-1 was used in this work. 

For accuracy purposes, the average of 12 scans was chosen for the generation of the 
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spectra which gave a sampling interval of 1 min/sample. Due to the complex gas 

composition and the wide range of concentration variation, it was decided to manually treat 

the generated spectra. This is a tedious work that requires a lot of time and careful 

operation. Usually it is common to use special software for the calibration of FTIR where 

the concentration is predicted through advanced mathematical techniques that take into 

account the effect of interfering compounds. In this work it was decided not to use such a 

step because of the complexity of the gas composition and its variation over a wide 

concentration range. Unfortunately, the software that was bundled with the FTIR was not 

up to a good standard when the gas complexity increased. Instead, it was decided to fetch a 

single peak in the IR spectral range for each compound of interest that was not disturbed 

by any other compounds present in the sample gas. Figure B-2 shows an example of a 

calibration curve generated for CO both a high and low concentration. The figure shows 

the gas concentration as a function of the absorbed laser intensity at a specific wave 

number. The calibration parameters for both the micro-GC and the FTIR are summarized 

in Table B-2. 

 

Figure B-2: Concentration of CO as a function of absorbed intensity. 

Most of the spectra that were used for the instrument calibration were performed in our 

laboratory. In addition, we had access to a library of spectra generated by the same type of 
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instrument at Chalmers University of Technology in Sweden. The calibration of the 

different compounds was performed by mixing two gas streams delivered through gas 

cylinders, pure N2 for diluting purposes and a cylinder containing a mixture of N2 and the 

calibration gas. This was done in order to obtain several concentrations of the same 

compound. The flow of gas from the two cylinders was controlled with two identical flow 

controllers with digital signal processing for increase of accuracy. The gases were mixed in 

a special container prior to feeding the FTIR. The volume flow of the mixture to the FTIR 

was kept constant at 5 nL/min. In order to maintain good mixture accuracy, the lowest used 

range of the flow controller was never under the 10 % of maximum range. With this 

mixing method, it was possible to dilute the gas by a factor of 10 and obtain 10 different 

concentrations where the highest one belonged to the concentration in the calibration 

cylinder. In most cases 2 different gas cylinders were used for each gas compound, one for 

a low concentration range and another for the high concentration range.  

Finding the proper wave number at which no interference occurs was a challenging task. 

This was done for all gas compounds except for SO2, where more advanced techniques 

were employed in order to be able to predict the concentration. However, since SO2 has 

proven to be under the detection limit for all the experiments, no detailed information on 

the quantification procedure will be given.  

An example on choosing a proper wave number for the prediction of low concentration 

CH4 is given in Figure B-3. To the upper left side of the figure, clean CH4 spectra at 

different concentrations are overlaid. At the right side, the spectra from straw pyrolysis at 

400 ºC are presented for the exact wave number range as in the left side figure. Only 

spectra with the relevant concentration range are chosen for graphical presentation. It can 

be clearly seen that almost the entire range is disturbed by other compounds present in the 

pyrolysis products with the exception of a small part at the left hand side. The chosen peak 

for the concentration prediction is shown in the bottom part of the figure both for the clean 

CH4 compounds (left side) and the spectra from the same experiment (right side). The left 

side peak is base corrected and the height of the peak is measured relative to this baseline 

correction. We can see that the shape of this peak is preserved for the pyrolysis experiment 

which proves that no disturbances are present at this particular wave length range.  
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Figure B-3: FTIR overlaid spectra of CH4. Clean CH4 spectra used for low concentration 
calibration (left side). Spectra of the same region taken from a straw pyrolysis experiment 
at 400 ºC (right side). 

Gas chromatography 

Measuring principal 
The major parts of most gas chromatographic system are the injector, the column and the 

detector. The system is based on separating all the gas compounds that are present in the 

sample and then measuring their concentration, one component at a time. The system relies 

on the differences in the affinity of a moving phase (the sampling gas) towards a stationary 

phase. The stationary phase is usually a tube (column) where its inner wall has been coated 

or bonded. An inert high purity gas (carrier gas) goes through the column continuously 

usually in two separate but identical column systems; one is used as a reference and the 

other for measuring the gas compounds. The sample is introduced into the injector usually 
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with a syringe or an exterior sampling device. The compounds in the sample travel through 

the column at different rates, as a result of different forces between each molecular type 

and the stationary phase. The fastest moving compound exits the column first followed by 

the remaining compounds in a corresponding order. As the different compounds leave the 

column, they enter the detector where the concentration is determined. The GC system can 

be equipped with many types of detectors which will use a specific gas property for the 

prediction process. For example a thermal conductivity detector (TCD) uses the thermal 

property of the gas in order to quantify its concentration. This detector is basically 

composed of a filament where its temperature is closely monitored by a thermo couple. It 

is kept at a constant temperature by letting an electrical current run through it. When the 

separated gas compounds flow through, the filament is cooled and the voltage is increased 

to keep the temperature at a constant level. This voltage signal is recorded by a data system 

and is plotted against elapsed time to produce a chromatogram. The different gas 

concentration will show up in the chromatogram as separated peaks where the time for the 

peak to appear in the chromatogram is called the retention time. The type of gas is 

identified by its retention time while its concentration is related to the area of the peak. The 

identity of a compound cannot be determined solely by its retention time. A known amount 

of an authentic, pure sample of the compound has to be analyzed and its retention time and 

peak size determined. When compounds are not perfectly separated, they appear in the 

chromatogram as overlapping peaks. Several parameters are possible to change in order to 

optimize the separation of the different compounds. The main influencing parameters are 

the column temperature, injection time and column pressure. More complicated GC system 

are composed of several columns that are linked together with a system automated valves 

in order to obtain perfect separation and are usually used for identification of complex gas 

samples.   

Micro GC used for main compounds 
The Varian CP-4900 micro-GC was used for the quantification of most of the major 

compounds released during pyrolysis. This micro-GC was a necessity since it is capable of 

quantifying O2, H2 and N2 all of which are not detectable with the FTIR. This micro-GC 

composed of two systems each equipped with its own column, injector, detector and pump.  

The first column is a 10 m PoraPlot Q type with an internal diameter of 0.25 mm, 10 μm 

film thickness and uses Helium as a carrier. This column is used for the separation of CO2, 

CH4, C2H2 + C2H4 (not separated), and C2H6. The second column is a 20 m MolSieve 5 Å 
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PLOT with an inner diameter of 0.25 mm, 30 μm film thickness and uses argon as a carrier 

gas. Argon was used in order to be able to detect hydrogen. This column is able to quantify 

H2, O2, N2, CH4 and CO. Both columns use a thermal conductivity detector (TCD) for the 

quantification of the gas compounds. 

Micro GC used for sulfur compounds 
This GC is also a Varian CP-4900 model that is equipped with a special detector which 

allows it to quantify trace elements of sulfur compounds. The micro-GC has only one 

column of type PoraBond, length 10 m and internal diameter 0.25 mm. The column is 

linked to two detectors placed in series upstream to the column. The first detector is a TCD 

detector similar to the ones installed in the other GC while the second is a differential 

mobility detector (DMD). The DMD is a tunable ion filter that selectively allows specific 

ion species to pass through the filter. This is done by ionizing the molecules while the 

carrier gas leads the sample through the detector. Molecules are than subject to a high-

frequency electric field with oscillating field strength that induces oscillatory lateral 

motion, as shown in Figure B-4. The amplitude of the motion as well as its lateral 

symmetry is dependent on the differential mobility characteristics of each ion. In case the 

imposed lateral motion is asymmetric with respect to the alternating field strength, the 

affected ions will drift toward the wall of the transport tube, collide, and become 

neutralized. Only charged ions with differential mobility in a range to which the detector 

has been tuned will maintain a non collision path through the transport tube. These ions 

will be detected during the transfer of their charge to the electrometers. 

 

Figure B-4: A schematic drawing of the principal behind the DMD detector [83] 

The DMD is extremely selective and to detect specific ions while eliminating the rest of 

the sample. The electrometers at the end of the drift tube are sensitive, both positive and 

negative ions can be detected simultaneously. Because of the selectivity property of the 
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DMD, it is not dependent on a complete sample separation. Its selectivity allows it to make 

trace analysis possible when co-eluting with bulk components. Its detection limit for the 

sulfur compounds is 10 ppb. 

1.1 Comments on measuring the minor species H2S and COS 
Polar inorganic compounds like H2S are difficult to quantify. Such compounds are 

particularly sensitive to reactions with the surface of the sampling line or with other 

impurities that are caught in the filter such as water and tar compounds. Reactive SH group 

in H2S are adsorbed on glass and metal surfaces and can cause problems when quantifying 

low H2S concentrations. With the use of inert materials like ceramics and different PTFE 

tubes, this problem can be avoided. However, since inert materials can not be used in hot 

parts (close to the reactor), some sort of a compromise had to be made. The biggest 

challenge comes in avoiding the problems of condensable matters such as tars and water. 

Carbonaceous dust has also shown a tendency to adsorb H2S [84, 85]. A heated sampling 

line to avoid condensable matter was not a viable solution in our setup, mainly for two 

reasons. First, by using a heated line the complexity of detecting the different compounds 

with the FTIR would increase significantly. Already high concentrations of CO2 and 

hydrocarbons such as CH4 and C2H4 cause a serious challenge in identifying the different 

components in the gas stream. Adding water and higher hydrocarbon compounds would 

result in interference over a large frequency band in the final spectra. Second, one should 

avoid taking any risk in letting tars condense on the mirror walls inside the FTIR cell since 

doing so would render the system less accurate and at worth unusable. The tars and water 

are also harmful for the GC and especially to the molecular sieve column which has a very 

low tolerance to such compounds. As it was mentioned earlier, the sampling line is 

composed of two sets of ice traps for the condensation of water and heavy tar compounds. 

The gas stream passes then through a heated particle filter and a heated Teflon tube prior to 

its entry to the different measuring instruments. The 15 meter Teflon tube has an inner 

diameter of 4 mm which compared to the volume flow that passes through (5 nL/min) is 

enough to minimize H2S adsorption [86]. The effect of adsorption of H2S by the clean 

sampling line was studied prior to the experiments. Calibration gas of different 

concentrations of H2S was passed through the sampling line and the area of the H2S peak 

was compared the chromatogram with the initial calibration. The initial calibration was 

done with special tubes recommended by the GC producer as being resistive to H2S 

adsorption. The inner surface of these tubes was carefully treated so that a smooth surface 
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was produced. The different pieces of the sampling line were added one at a time in an 

attempt to single out the parts to cause adsorption problems. Surprisingly, no particular 

part in the sampling line was more conspicuous than the other. However, this experiment 

proved that each new element introduced to the sampling line caused an augmentation of 

the adsorption problem. During that testing period, it was also discovered that the GC used 

for the quantification of the sulfur compounds was unstable and needed calibration on a 

daily basis. Once calibrated, it would stay reliable through the entire day. Since it was not 

also sure how much a dirty line would affect our concentration prediction, it was decided 

to calibrate the instrument by passing the calibration gas through the sampling line before 

and after each experiment. For H2S the calibration was performed with the concentrations 

between 3 – 100 ppm, while COS was only calibrated for a single concentration (3 ppm). 

The results for all the calibration points that were performed are shown in Figure B-5.  

 

Figure B-5: Peak area ratio of H2S and COS. Clean line/dirty line. 

The x-axis represents the pyrolysis temperature used during the experiments, which in 

return affects the chemical composition and the amount of tar products trapped in the 

sampling line. It is well known that low pyrolysis temperature will result in a larger liquid 

fraction. The y-axis is the peak area ratio of the gas concentration run with a clean line to 

the one run with a dirty line. From Figure B-5 we can see that for the lower temperature 
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(400 – 600 ºC) the area ratio fluctuates between 1 and 1.7 with most of the data points 

falling close to a ratio of 1.2. The high amounts of liquid products formed at such low 

temperature certainly play a role in absorbing the sulfur compounds, which in return result 

in a lower sulfur concentration in the devolatilized products. At low pyrolysis temperature 

the sulfur compounds are released in moderate quantities compared to high temperature 

pyrolysis which in return renders the retention of sulfur in the filter more effective. At 

lower temperatures the COS area ratios are more scattered than H2S ratios. This could be 

due to the extreme low level of concentration for the COS calibration. At higher 

temperatures (700 and 800 ºC), the ratio is close to unity, resulting in a less sulfur 

adsorption. At high temperatures the sulfur compounds are saturating the sampling line due 

to two reasons, a relatively higher sulfur concentration in the product gas and a lower 

liquid fraction in the sampling line. The information available in the literature concerning 

the effect of condensable matters on the concentration of sulfuric compounds is quite 

contradictory [87]. Results presented in Figure B-5 might shed a light on why this is so 

since it shows a varying tendency of the effect of adsorption that is dependent on the 

pyrolysis temperature. The sulfur concentration in all the experiments where compensated 

for this effect. 

1.2  Reproducibility during the integration of a dynamic profile 
For all the macro-TGA experiments, the data were used to calculate the mass balance of 

the different elements in the biomass sample. Since the concentration profiles vary with 

time, some uncertainties are introduced due to the limited amount of data points describing 

the profile. During the integration of the concentration profile a linear interpolation 

between the measured points was assumed. This is because the instruments are unable to 

report the concentration in a continuous mode. For the FTIR the sampling time is one 

minute while for the GC two minutes are needed. The problem is illustrated in Figure B-6 

where a normal second degree curve is redrawn twice with fewer points and with linear 

interpolation. 
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Figure B-6: Schematic drawing explaining the loss of integration accuracy due to low 
resolution. 

 

This type of uncertainty is quite hard to estimate since the actual concentration profile is 

not known. Uncertainties could increase due to two reasons: 

1. Increase in the pyrolysis temperature which in return makes the profile quite 

dynamic with respect to the time. The concentration profile becomes more difficult 

to describe with a limited set of data points 

2. Increase of the sampling time which would basically result in the same problem as 

in 1. 

Assuming that the concentrations of the different gaseous compounds have a similar 

profile as the weight loss curve, the later profile can be used to estimate the uncertainty 

caused by the lower resolution. The logging interval for the weight loss signal is set to five 

seconds which should be enough to generate an integrated value that is very close to the 

true weight loss of the sample. This value is then compared to the value obtained from the 

integration with the same profile but with limited sampling points. In order to quantify a 

standard deviation of the “true” total weight loss, the same procedure is executed with data 

points that are shifted in time five seconds compared to the previous set. This step is 
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repeated until the new data set coincides with the first chosen set. This is similar to what 

happens during the experiment since it is quite difficult to control the time from the 

moment the sample is lowered inside the reactor and the time the instruments are started. 

The integration is performed for all the generated data sets by assuming a linear fit 

between the data points. Finally a standard deviation is calculated for all the experiments 

that have been performed and for the sampling resolution of 1, 1.5, 2 and 2.5 minutes. The 

results for the relative standard deviation are plotted as a function of temperature and 

sampling resolution in Figure B-7.  

 

FTIR 

GC 

Figure B-7: The relative standard deviation for the weight integration as a function of 
pyrolysis temperature and sampling time resolution. 

For a sampling time of one minute (FTIR) the deviation is kept under 2 % while for the GC 

(2 min) the deviation more scattered and close to three times the error of the FTIR for 

temperatures higher than 600 ºC.  

The reproducibility was also tested for a pyrolysis temperature of 500 ºC and for the 

experiments with straw pellets. As such experiments are time consuming; only three 

repetitions were made where the purpose was to have an idea on the variation range. The 

relative standard deviation (RSD) is presented in Table B-1 for the integrated values of the 

different gas products. It can be seen that the relative standard deviation for the gas 

products measured with the FTIR (CH4, CO2, and CO) have a lower deviation than the 
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products measured with the micro GC. This is due to the better sampling resolution of the 

FTIR which was explained earlier. The deviation values are caused by the sum of several 

sources of uncertainties but it is believed that the biggest contribution comes from the 

effect of the sampling time has on the integration. The reproducibility for the minor 

compounds, H2S and COS is much larger because lower concentrations at ppm range are 

measured. Another reason might be the adsorption that such compounds exhibit while 

passing through the filter line. 

 
Table B-1: The relative standard deviation of the gas products, performed at 500 ºC 
 

CH4 CO2 C2H2+C2H4 C2H6 H2 CO H2S COS 
Repetition 1 

11.9 177.6 2.9 4.5 1.3 69.3 73.0 5.0 
Repetition 2 

11.0 173.6 2.8 4.2 1.1 67.3 74.9 3.2 
Repetition 3 

11.2 176.5 3.1 3.9 1.2 67.8 52.4 3.0 
RSD 

4.2 % 1.2 % 5.9 % 7.7 % 7.2 % 1.5 % 18.7 % 28.8 %
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Table B-2: Calibration data for the FTIR and the micro-GC 
Calibration data used for the detection of species with the FTIR 

Specie Cal. Range  I. range  Wave nr. [cm-1]  Calibration Formula R2 value  
CO(low) 125 – 8900 ppm 0.121 – 0.955 2113.34 – 2109.49 1.12x2 – 0.1545x + 0.0185 0.9999  
CO(high) 0.89 – 9.71 Vol % 0.305 – 1.468 2039.57 – 2035.23 4.397x2 + 1.886x – 0.1317 0.9998  
CO2(low) 0.26 – 0.85 Vol %  0.035 – 1.207 2278.26 – 2276.32 0.0353x2 + 0.468x + 0.239 0.9999  
CO2(high) 0.9 – 9 Vol % 0.032 – 0.219 5020.00 – 4977.43 65.79x2 + 26.70x – 0.0196 1  
CH4(low) 194 – 5900 ppm 0.024 – 0.624 3159.17 – 3156.28 1.221x2 + 0.158x + 0.0163 1  
CH4(high) 0.49 – 5.94 Vol % 0.104 – 0.710 2744.50 – 2740.15 5.8671x2 + 4.291x – 0.017 0.9994  
C2H2(low) 19 – 142 ppm 0.005 – 0.024 3229.57 – 3227.15 –8456x2 + 8647.1x – 20.24 0.9993  
C2H2(high) 152 – 6406 ppm 0.025 – 0.681 3229.57 – 3227.15 10264x2 + 2097.6x + 114.5 0.9994  
C2H4(low) 5 – 680 ppm 0.023 – 1.357 953.729 – 946.979 0.0111x2 + 0.03x – 0.0002 0.9999  
C2H4(high) 0.068 – 1.1 Vol % 0.111 – 0.854 1890.10 – 1886.24 1.205x2 + 0.2395x + 0.023 0.9998  

Calibration data used for the detection of species with the GC 
Specie Cal. Range Column & detector  Curve fit type   R2 value  
CO2 0.86 – 97.98 Vol % PPQ/TCD Linear forced through zero   0.9992  
CH4 0.086 – 3 Vol % PPQ/TCD Linear forced through zero   0.9998  
C2H2+C2H4 0.071 – 2.47 Vol % PPQ/TCD Linear forced through zero   0.9994  
C2H6 0.043 – 1.51 Vol % PPQ/TCD Linear forced through zero   0.9993  
H2 0.171 – 5.95 Vol % MolSeive/TCD Linear forced through zero   0.9983  
O2 0.162 – 5.66 Vol % MolSeive/TCD Linear forced through zero   0.9552  
N2 1.93 – 98.44 Vol % MolSeive/TCD Linear forced through zero   0.9972  
H2S 0 – 90 ppm PPB/DMD Point to point   n. a.  
COS 0 – 3 ppm PPB/DMD Point to point   n. a.  
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