
Abstract

This thesis describes a new general purpose dynamic process simulator applied
to a natural gas liquefaction plant. More specifically, the Multi Fluid Cascade
Process (MFCP). MFCP is the “Statoil Linde LNG Technology Alliance” - a
proprietary and patented process for LNG production. This utilizes plate fin
and spiral wound heat exchangers, produced by Linde AG, and Nuovo Pignone’s
centrifugal compressors. This LNG technology is now being implemented for
the Hammerfest baseload LNG project, Snøhvit.

The simulator is based on first principle conservation laws for energy and mass,
and a simplified quasi-steady state momentum equation. Unit models for the
process equipment (tanks/pipes, separation tanks, valves, liquid expanders,
pumps, compressors, heat exchangers, and PI controllers) are described using
rigorous thermodynamics. Equilibrium is assumed for all unit models, and equi-
librium and physical properties are predicted with the Swoave-Redlich-Kwong
or the Peng-Robinson equation of state.

Two different model approaches are compared in this work. One approach con-
serves energy in an enthalpy state, and the other conserves internal energy, the
HP formulation and UV formulation respectively. The HP formulation defines
a dynamic state for the pressure, and splits the integration of the fast and slow
dynamics. The pressure states and the algebraic flow relations are solved by
a fully implicit Euler method, while the internal unit model equation is solved
locally with tailormade integration routines. The UV formulation, utilizes an
analytical Jacobian, and is integrated with both a 1-stage Rosenbrock and free-
ware BDF codes.

The UV formulation generates an analytical Jacobian from physical property
partial differentials. These property differentials are calculated from a first or-
der approximation of the equilibrium. The equilibrium equations are linearized
in dynamic state variables to produce partial differentials of the internal flash
variables.

The simulator is tested on a portable PC. The full MFCP LNG plant is simu-
lated with a fixed time step of 1.0 seconds, for both the HP and UV formulations.
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The HP formulation has 611 ODE states. The UV formulation uses the 1-stage
Rosenbrock method integrating a system with 1025 ODE states. The case sim-
ulated is a set point step for the LNG temperature controller. The plant is
simulated over 9000 seconds. The major process dynamics are sampled every
second, and plotted. The average performance of both formulation is better
that 7 times real time. The worst local performance of the UV formulation is
1.7 times faster than the HP formulation, but more than 6 times faster than
real time. The HP and UV formulations gave significantly different dynamic
predictions.

The BDF codes proved too slow for practical use on the MFCP configuration.

The dynamic simulators in industry today are typically using a HP formulation,
with precalculated thermodynamic data stored in look-up tables. The simula-
tions of the full LNG plant show that simulators, utilizing EOS equilibrium
descriptions, soon will be able to compare with modern industry simulators.
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Chapter 1

Introduction

1.1 LNG - the concept

LNG is short for Liquefied Natural Gas, and is the product from fully con-
densing natural gas. LNG is at a state close to atmospheric pressure and at
temperature of about -163oC. The specific volume ratio of natural gas at atmo-
spheric pressure to LNG is approximately 600 to 1.

The process of liquefying natural gas is demanding in terms of energy and ex-
pensive. So why do it?

Natural gas must be transported from the production location to the customer.
If the production site is located far from customers, it may not be possible to
transport the natural gas in pipelines. The natural gas must then be shipped
with some motorized transport. When condensing the natural gas to LNG the
means of transport can carry 600 times more mass in the same volume. The
shipping cost of LNG is therefore much smaller than for natural gas.

Other benefits when shipping LNG by motorized transport compared to a
pipeline, is that the customers can be at different locations, and there is the
possibility to change custumers.

The liquefaction of natural gas is not a new technology. The first land-based
LNG plant was operational in Algeria, in 1964. Since then, the NG liquefaction
process has been developing, and has become increasingly more efficient.

1.2 Background

Over the last two decades what is now the Norwegian University of Science and
Technology (NTNU) has produced several PhD theses on the subject of LNG.
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The main focus of the research has been on pressure drop and heat transfer in
coil-wound heat exchangers, and on thermodynamics. Fredheim (1994), Neer-
aas (1994) and Aunan (2000) did measurements on the shell and tube side of a
coil-wound heat exchanger. Owren (1988), Melaaen (1993), Jørstad (1993) and
Grini (1994) worked with thermodynamic properties and equations of states.
Melaaen (1994) produced a thesis on the dynamic modelling of the liquefaction
in a LNG plant.

The Norwegian University of Science and Technology together with SINTEF
Energy Research, have worked in close cooperation with Statoil R&D on LNG
research since 1985. This cooperation has produced three applications for LNG
simulation. CryoPro, and SCoil, Fredheim et al. (2000), are thermal design
tools for LNG heat exchangers, and static simulation tools. CryoPro simulates
an entire liquefaction process. SCoil simulates the spiral wound heat exchanger.
The DCoil application, Vist et al. (2003) and Hammer et al. (2003) dynami-
cally describe the spiral-wound heat exchanger. All these applications use heat
transfer and pressure drop correlations based on the measurements made at
Department of Energy and Process Engineering, NTNU.

The academic work on dynamic LNG simulation is limited. The only work
found and studied are Zäım (2002) and Melaaen (1993).

The background of this thesis, and the reasons to develop a dynamic simulator
can be summarized in the following six points.

• Help in understanding process dynamics

Processes are getting more and more integrated, and it is therefore hard
to foresee and understand all the dynamics of a process. Working with a
model can therefore give valuable information about the process dynamics.

• Verification of existing design and guide to redesign control system

A simulator will be a platform for the preliminary implementation of the
control system. Given a control structure it is possible to perform oper-
ability studies or safety and risk analysis. These studies will give feedback
on the performance of the current control system, and if redesign is a
necessity, and/or if tuning of control parameters is needed.

• On-line optimization

On-line optimization is needed for model-based control systems.

• Identification of process information

Process variables not directly available from measurements can be esti-
mated using a model.

• Training simulator
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If the simulator is robust and simulates real time or faster, it can be used
for operator training.

• Static simulations

A dynamic simulator can be used as a static simulator, and in static op-
timization.

1.3 Topic of the thesis

This thesis presents results from dynamic modeling and simulation work for
general LNG processes. On the superior level two different solution methods are
implemented and compared using a test case. The test case is the Mixed Fluid
Cascade Process (MFCP), Foerg et al. (1998); a liquefaction strategy utilizing
multicomponent refrigerants, MCR, and spiral-wound heat exchangers.

During the period from January 2001 to December 2003 unit models for the
process equipment have been modelled based on first principle conservation
laws. Equilibrium, enthalpy and density data have been calculated using the
SRK equation of state.

1.3.1 The simulator

A simulator with keyword configuration and a graphical user interface (GUI) is
developed. The keyword configuration defines the unit models and their con-
nections, and the low level controllers. The implemented unit models reflect
the need, when simulating LNG processes. The GUI shows plots of simulated
properties and gives the possibility to start and stop the simulation.

The simulator should be able to estimate the dynamic behavior of the config-
ured process around the predefined steady state. Extreme situations such as
startup/shutdown and damage to equipment are not considered.

The units conserve mass and energy, but the momentum conservation is treated
in a quasi steady state fashion. Therefore the mass flow relations are described
using simple algebraic pressure drop equations.

The controllers have proportional and integral action. That is; PI-controllers,
that can be used in cascade, where one controller gives the set point to another
controller.

The integration of the dynamic states is done in two different ways. With the
first approach the fast flow-pressure dynamic is integrated separately from the
slower energy and compositional dynamics. To do this, the pressure must be a
dynamic state. This requires that the energy is conserved as enthalpy giving rise
to an HP flash. The pressure-flow integration is then done in a linear implicit
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or in a fully implicit way, succeeded by tailormade unit integrations.

The second approach is equation oriented, and all dynamic states are integrated
simultaneously. The Jacobian is written out analytically. The unit models cal-
culate their own differentials, and the solver maps the entire Jacobian matrix.
In order to produce differentials of state variables, normalized equilibrium equa-
tions are linearized.

1.3.2 The LNG plant - MFCP

Figure 1.1 shows a simplified layout of the MFCP, NG liquefaction plant. The
figure drawing is based on Stockmann et al. (1998) and Foerg et al. (1998). The
process units and the fluid flows are described in the following sections.

The simulator could easily be configured to simulate other NG liquefaction
plants. This only requires a new configuration file.

In this process, the natural gas is entering on the top of Figure 1.1. After being
heat exchanged through four heat exchangers, E1A, E1B, E2 and E3, the gas
is fully condensed to LNG after being pressure relieved to about atmospheric
pressure. Three multicomponent refrigerant loops are used to remove the require
energy from the natural gas.
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Figure 1.1: The Mixed Fluid Cascade Process (MFCP)

Pre-cooling

The pre-cooling consists of the heat exchangers E1A and E1B. The natural gas
enters as overheated gas and is cooled to a state approximately at the dew
point. These heat exchangers also pre-cool themselves and the refrigerants for
liquefaction and sub-cooling.

The refrigerant is a mixture of ethylene, ethane, propane and butane. The
refrigerant enters the heat exchanger E1A at the top of E1A, and is used at two
pressure levels. Between E1A and E1B a fraction of the refrigerant is taken to
a Joule-Thompson valve to lower pressure, and used as cooling agent in E1A.
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The fraction, not pressure released between E1A and E1B, is lead through the
E1B heat exchanger before it is depressurized and used as a cooling agent in
E1B.

The refrigerant is compressed in two stages. The cooling agent of E1A first
enters at the second compression stage. The refrigerant is cooled in a seawater
heat exchanger before returning to the inlet of EA1.

Liquefaction

The liquefaction consists of the E2 heat exchanger. The natural gas entering at
dew point is partly condensed after leaving E2.

The refrigerant is a mixture of methane, ethylene, ethane and propane. The
refrigerant enters at the inlet to E1A and is cooled in E1A, E1B and E2 before
being pressure relieved through a Joule-Thompson valve and used as a cooling
agent in E2.

The compression of the refrigerant is in two stages with an intermediate seawa-
ter cooler. The refrigerant is also cooled in a seawater heat exchanger before
entering E1A.

Sub-cooling

The sub-cooling consists of the E3 heat exchanger. The partially condensed
natural gas is fully condensed and the LNG is further sub-cooled.

The refrigerant is a mixture of nitrogen, methane, ethylene and ethane. The
refrigerant is cooled through E1A, E1B and E2 before being pressure relieved
in the X1 turbine and further through the valve.

The refrigerant is compressed in the same manner as the liquefying refrigerant.

1.4 Challenging aspects of the LNG system

The LNG system contains almost only standard process equipment that has well
known models that function acceptably in dynamic process simulation tools.
The non-standard process units are the main heat exchangers, for cooling and
condensing the natural gas. These heat exchangers are either plate-fin or coil-
wound heat exchangers for large LNG plants. The greatest challenge when
modelling and simulating an LNG plant will be modelling these heat exchangers,
with phase transitions, and the high pressure of the natural gas stream.
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1.4.1 The Heat Exchanger

Figure 1.2 shows the layout of a coil/spiral wound heat exchanger with four
process streams. From the picture it is seen that one process stream, the shell

Figure 1.2: Coil-wound heat exchanger

side stream, counterflows the
three other streams, the tube
streams. The orientation of the
heat exchanger when installed,
is the same as in the picture.
The shell side stream is there-
fore down-flowing, and the tube
stream are up-flowing. Heat is
only exchanged directly between
the shell stream and the tube
streams.

The tube side flows are rela-
tively high to high pressure, 10-
65 bar, streams, while the shell
stream is a low pressure, 2-6 bar,
stream. The NG stream will typi-
cally have a pressure of 40-65 bar,
and may be close to its critical
point as it flows through the heat
exchanger system. The critical
point of pure methane is, accord-
ing to Perry, Green, and Maloney
(1999), Tc = 190.56K, Pc = 45.9
bar. The critical point for the
natural gas mixture will be some-

what close to this.

When modelling these units several simplifications must be considered. The
main objective when making simplifications to models, is to get a simple model
as possible that captures the dynamics of the desired time scale. The other,
faster, dynamics are neglected. A simple model is wanted, due to clarity and
model understanding, and the CPU demand when integrating the model. The
detailed model for the heat exchanger is given in Section 5.2. The simplifications
will be discussed in Section 5.2.3.

1.4.2 High pressure - critical point

The generally high pressure of the natural gas will place requirements on the
modelling. High pressure requires an EOS approach to simulate equilibrium,
and to detect the correct phase.
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This creates problems especially when modelling columns, where one of the com-
mon simplifications is to drop hold-up in the gas phase. According to Choe and
Luyben (1987) simplifications are not viable over moderate pressures (10ATM).
Also if one of the streams into the column is in a dense gas state, it can create
difficulties when calculating the various flows in simplified schemes.

1.5 Available software for dynamic process sim-
ulation

Today there are several commercial software packages available for simulating
general chemical process plants. The number of academic modelling and simu-
lation environments are huge, and only a few can be mentioned.

The most common commercial products are the Aspen Dynamics, HYSYS
DynamicTM and gPROMS. Both Aspen Dynamics and HYSYS are products
from AspenTech, and are extendable with the Aspen Custom Modeler for the
incorporation of custom models. Aspen Dynamics is the commercialization
and further development of SPEEDUP, an equation oriented simulator devel-
oped at Imperial College over a period of 25 years (Pantelides (1988)). HYSYS
DynamicTM is a dynamic pressure-flow network solver.

gPROMS, Oh and Pantelides (1996) and Barton (1992), the general PROcess
Modelling System, is a product of Process Systems Enterprise Limited (PSE),
which is a spin-off company from Imperial College. Costas C Pantelides at Impe-
rial College was central both in development of SPEEDUP and gPROMS mod-
elling software. Paul I. Barton contributed to the first version of gPROMS, but
is currently involved with the academic software ABACUSS (Advanced Batch
And Continuous Unsteady State Simulator), (Tolsma, Clabaugh, and Barton
(2004)), at the department of Chemical Engineering Massachusetts Institute of
Technology.

ABACUSS, gPROMS and SPEEDUP share a common intellectual heritage, so
their use should be similar. Another academic software product that is devel-
oped over many years at department of Chemical Engineering, Carnegie Mellon
University, is ASCEND (Piela, McKelvey, and Westerberg (1993) and Piela
et al. (1991)). ASCEND is an acronym for ‘Advanced System for Computations
in ENgineering Design’. Arthur W. Westerberg has been central in its devel-
opment. ASCEND like ABACUSS, gPROMS and SPEEDUP is a equation-
oriented simulator with its own modelling language.

DIVA, ‘Dynamische sImulation Verfahrenstechnischer Prozesse’, has been de-
veloped over the last 15 years mainly at the ‘Institut für Systemdynamik und
Regelungstechnik’ at the University of Stuttgart and since 1998 also at the
‘Max-Planck-Institut für Dynamik komplexer technischer Systeme’ in Magde-
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burg. DIVA, Trankle et al. (2000), Kroner et al. (1990) and Holl, Marquardt,
and Gilles (1988), is an academic software product and the two people who are
central in the developmnet are Ernst D. Gilles and Wolfgang Marquardt. Mar-
quardt is currently at Process Systems Engineering, RWTH Aachen University,
and has been developing the process modeling language VeDa (Verfahrenstech-
nisches Datenmodell).

The capabilities and status of the different software packages are presented in
Section 2.11.

1.6 Motivation for the thesis

The goal of this work is to produce a general simulator for LNG plant simu-
lation, simulating the test case LNG plant faster than real time using rigorous
thermodynamics. The models are based on traditional first principles modelling.

Two methods are investigated, and the different dynamic responses they produce
are demonstrated. The first method is simultaniously solving all the equations.
The second is a network approach using a split integration scheme. The pressure
flow dynamics is solved in an implicit scheme while energy and compositional
dynamics are integrated assuming fixed pressures and flows. This split integra-
tion is a common industrial approach for solving process flowsheet problems.

The unit models that describe the process modules typically present in an LNG
plant are implemented in a modular manner that made it possible to use the
same implementation for both integration schemes.





Chapter 2

Methods for Dynamic
Process Simulation

Process simulation revolves around the flowsheet. A flowsheet is an abstract
graphical representation of a chemical plant. In its nodes it contains the relevant
single process step, a unit operation. The term flowsheeting is used as a synonym
for the simulation of chemical plants.

The process equipment is modelled as unit operations that generally must satisfy
three physical laws.

1. Mass conservation

2. Energy conservation

3. Momentum balance

A unit operation can also be a distinct part of a more complex process step.

The time constants arising from the equations describing the momentum balance
are several orders of magnitude smaller than the time constant associated with
mass and energy conservation. Also the mass and energy dynamics dominate
the system dynamics, therefore mass and energy conservation are formulated
dynamically. The time dependence in the momentum transport is simplified,
and then implemented on a quasi-stationary form, (Eich-Soellner et al. (1997)).

The mass and energy balance therefore gives rise to ordinary differential equa-
tions, ODE, and/or partially differential equations, PDE. The momentum bal-
ance in stationary form is an algebraic equation, AE.

Mathematically, dynamic process simulations are governed by large systems of
differential-algebraic-equations, DAE, with discontinuities. Principally simula-
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tors for dynamic processes follow two different concepts in setting up and solving
the plant model.

• modular approach

– simultaneously modular
– sequential modular
– network modular

• equation-oriented approach

In the modular approach each module is a “black box” for the flowsheet integra-
tion, and produce output given input. In an equation-oriented system the entire
equation set is available for the integration routine, and all equations are solved
simultaneously with the same algorithm. Further information about equation-
oriented and modular simulation will be given in Section 2.10 and Section 2.12,
respectively.

2.1 Differential Algebraic Equations - DAE

The equation set depends on the considerations made during process abstrac-
tion. Assuming well-mixed (quasi-homogeneous) control volumes the set will be
a lumped parameter model, containing explicit ODEs and AEs, see Marquardt
(1995). If spatial effects are considered in the modelling, the resulting equation
set will be a combination of PDEs, ODEs and AEs. That is PDAEs, partial
differential algebraic equations.

In the case of PDEs it is common to transform such equations to an ODE form,
using the method of lines (MOL). Then the spatial differentials are typically
substituted by a first order approximation. Time then becomes the only inde-
pendent variable, and the equation set has a DAE form.

The ODEs will have the general form given in Equation 2.1.

dΨ
dt

=ΦΨ + ΣΨ (2.1)

Here Ψ is an arbitrary extensive quantity stored in a control volume. ΦΨ

represents the fluxes of Ψ in and out of the control volume, and ΣΨ are the
sources/sinks of Ψ in the control volume. The Ψ is, in this thesis, an abstrac-
tion for mole numbers, pressure, integral controller error, enthalpy or internal
energy.

The PDEs can be expressed in the same manner, and the general one-dimensional
PDE is shown in Equation 2.2.

∂Ψ
∂t

+
∂

∂x
(Ψv + ΦΨ) =σΨ (2.2)
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Here, in addition to the definitions given under Equation 2.1, the v represents
the velocity. The σΨ is a source. Transformation of Equation 2.2 by MOL will
give an equation of the form in Equation 2.1.

The mass and energy conservation give explicit ODEs, and the momentum
equation gives AEs when treated as quasi-stationary. The majority of the AEs
are originated from constitutive equations which relate the extensive quantities
as well as fluxes and sources to intensive quantities such as temperature, pressure
and concentration. These relations can be in explicit form, but generally implicit
AEs also occur. One example of implicit AEs is the thermodynamic equation
of state (EOS).

The general abstraction for a implicit DAE equation set is given in Equation
2.3.

h(ẏ,y, z) = 0 (2.3)

The dynamic state variables, only denoted as state variables hereafter, are de-
fined as the vector y. Vector z represent the algebraic variables. The function
vector h, is generally nonlinear. A linear implicit DAE equation set is given in
Equation 2.4.

B(y, z)ẏ = f(y, z)
0 = g(y, z)

(2.4)

The matrix B, and the AE function vector g, can be nonlinear. The modelling
in this thesis results in a constant matrix B, where B = I. The AE function
vector is nonlinear.

The equation set considered in this thesis becomes:

ẏ = f(y, z)
0 = g(y, z)

(2.5)

The state variables will be a set of holdup, energy and controller variables.
Adding controllers with integral action results in dynamic states, and algebraic
equations.

It is possible to substitute the AEs, of an index one DAE system, into the right
hand side of the ODEs in Equation 2.5, and the equation set becomes a pure
ODE system.

2.2 Numerical integration

The modelling of chemical engineering systems will almost always end up as a
stiff system. A problem is stiff if the integration step length is restricted by
stability rather than accuracy. There are several definitions of stiff models and
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stiffness, as shown by Hairer and Wanner (1996). The stiffness is caused by
large eigenvalues of the Jacobian matrix.

If λ1,.....,λn are the eigenvalues of the Jacobian matrix, the stiffness can be
defined as in Equation 2.6.

Stiffness =
max
1≤i≤n

|λi|
min

1≤j≤n
|λj | (2.6)

At the same time discontinuities will occur both in time and state. This will
require special attention when integrating the system. The system needs to
detect discontinuities, and when they occur in time. After locating them the
integration needs to be restarted efficiently.

When integrating stiff differential equations, the integration step size will not
be controlled by accuracy, but rather by stability. In order to solve these types
of problems it is necessary to use an A-stable integration method. A-stable
methods are stable if the system’s eigenvalues lie in the left hand plane of a
real-imaginary Cartesian coordinate system.

Explicit methods are not generally A-stable, and therefore cannot be used on
stiff systems, such as large scale chemical engineering problems. Therefore, an
implicit algorithm must be used. The implicit algorithms will generate implicit
algebraic equations, that need to be solved at every time step. To solve this
equation set, Newton’s method is usually the algorithm of choice. The Newton
approach requires the Jacobian of the system. In general when solving large
and sparse linear systems, iterative methods with sparse handling are preferred.
This is partly because of the reduced number of mathematical operations, and
partly because the truncation error grows large when solving linear systems with
a direct method, see Golub and Van Loan (1996). A direct method will in prac-
tice mean solving the system with LU decomposition. An iterative approach
will converge fast when using a good starting point, as is available in dynamic
simulations.

According to Hairer and Wanner (1996), one of the following methods for inte-
gration must be used to solve a stiff DAE/ODE problem:

• Semi-implicit or fully implicit one-step methods

• Multi-step methods for stiff systems

The most common and most used one-step approach is the Runge-Kutta (RK)
method. The most common multi-step method is the backward differential
formula (BDF) method. The BDF computer codes are the most prominent and
most widely used for all kinds of stiff problems. Both are described below.

Several free software packages are available for download, e.g. www.netlib.net.
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2.2.1 Runge-Kutta (RK)

The methods named after Carl Runge and Wilhelm Kutta are designed to imi-
tate a Taylor integration without requiring analytical differentiation of the orig-
inal differential equation, see Cheney and Kincaid (1999). The RK method can
imitate a Taylor expansion of any order, and be both explicit and implicit. Only
methods with implicitness will suffice in the current case.

Because of the formulation, the RK method will need cheap first derivative in-
formation in order to integrate efficiently.

Considering the function, ẏ = f(z, y), the generalized implicit RK method is
given in Equation 2.7.

gi =y0 + h

s∑
j=1

aijf(z0 + cjh, gj)

y1 =y0 + h

s∑
j=1

bjf(z0 + cjh, gj)

(2.7)

A special type of RK methods is the Rosenbrock type. The Rosenbrock approach
tries to avoid nonlinear systems, found when solving ordinary RK, by replacing
them with a sequence of linear systems. These methods are therefore called
“semi-implicit” or linear implicit RK methods. These methods are equal to
RK, using only one Newton iteration before accepting the new state vector.

Considering the function, ẏ = f(y), the general s-stage Rosenbrock method is
given in Equation 2.8.

ki =hf(y0 +
i−1∑
j=1

αijkj) + hJ

i∑
j=1

γijkj , i = 1, ..., s

y1 =y0 +
s∑

j=1

bjkj

(2.8)

where αij , γij , bj are the determining coefficients, and J = f ′(y0).

2.2.2 Backward differential formulas (BDF)

The generalized multi-step method for integrating ẏ = f(y) is given in Equation
2.9.

αkym+k + αk−1ym+k−1 + · · · + α0ym =h(βkẏm+k + · · · + β0ẏm) (2.9)

BDF methods are a variant of the multi-step approach, using a fully implicit
step, combined with a k-th order polynomial through k+1 points. This polyno-
mial is differentiated and the resulting relation must be satisfied at time k and
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k+1.

The general BDF formula, using a k-th order polynomial, has the following
form:

k∑
j=1

1
j
Γjyn+1 =hfn+1 (2.10)

The Γ operator is defined in Equation B.23.

It can be seen from Equation 2.10 that the integration method is not a self
starter, because it needs the state values at k-1 points prior to the starting
point. This can be solved by using a variable order BDF algorithm. A detailed
description of BDF methods is given by Hairer and Wanner (1996).

2.3 DAE index

According to Hairer and Wanner (1996), the general DAE can be classified by a
differential or a perturbation index. Only the differential index will be reviewed
in this section. The literature mentions several other indexes for DAE equations.

Consider the general DAE:

f(
.
s, s, t) = 0, (2.11)

where
.
s = ds/dt. Then the differentiation/differential index, v, is defined as the

minimal number of times v, the equations has to be differentiated in order to
determine

.
s as a continuous function of s and t. This is the definition given by

Martinson and Barton (2000).

The equations considered in this thesis are the index one type unless otherwise
stated. The index one problem is the simplest case of differential algebraic
equations. The higher the index of a DAE problem, the more challenging the
numerical integration becomes. A system is considered high index if v ≥ 2 .

A fully determined system of ODE is of differential index-0. For a differential
index-1 system the algebraic equations typically appear in explicit form. A
system with differential index-2 or higher will have implicit algebraic equations,
which must be satisfied through the integration. These are ‘hidden constraints’.
The characteristics of differential index-1 and index-2 systems will be briefly
discussed below.

The differential index is often considered using the derivative array equation,
see Campbell and Gear (1995). Before defining the derivative array equation,
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some notation is defined in Equations 2.12 and 2.13.

S[i] =

⎡
⎢⎢⎢⎢⎣

d
dts(
d
dt

)2
s

...(
d
dt

)i
s

⎤
⎥⎥⎥⎥⎦ (2.12)

(
d

dt

)i

f(
.
s, s, t) = f[i](

.
s, s, t) (2.13)

The kth derivative array equation, F[k], can then be defined, Equation 2.14.

F[k](S[k+1], s, t) =

⎡
⎢⎢⎢⎢⎣

f[0](
.

S[1], s, t)
f[1](

.

S[2], s, t)
...

f[k](
.

S[k+1], s, t)

⎤
⎥⎥⎥⎥⎦ (2.14)

The differentiation index is then the smallest k such that F[k] uniquely deter-
mine

.
s as a continuous function of s and t.

2.3.1 Index-1 system

Consider the general differential algebraic equation set given in Equation 2.15.

.
y = f(y, z)
0 = g(y, z)

(2.15)

Time differentiating the algebraic equations in Equation 2.15 we get Equation
2.16.

0 = gz(y, z)
.
z + gy(y, z)

.
y

� (gz − non-singular)
.
z = −g−1

z (y, z)gy(y, z)f(y, z)

(2.16)

From the definition of the differential index it is seen that the system of dif-
ferential algebraic equations given in Equation 2.15 is of index one if gz is
non-singular.

2.3.2 Special index-1 system

Differential index-1 systems with one or more implicit/hidden constraints are
sometimes called ‘special index one’. An example of a linear special index-1
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system is given by Martinson (2000). The system is shown in Equation 2.17.

.
y1 +

.
z2 = f1(t)

y1 + 3y2 = f2(t)
(2.17)

For the initial conditions to be consistent for this equation, they must satisfy
Equation 2.18.

.
y1 + 3

.
y2 =

.

f2(t) (2.18)

2.3.3 Index-2 system

Consider the general differential algebraic equation set given in Equation 2.19.
.
y = f(y, z)
0 = g(y)

(2.19)

Time differentiating the algebraic equations in Equation 2.19 we obtain Equa-
tion 2.20, a ‘hidden constraint’.

0 = gyf (2.20)

Differentiating once more gives Equation 2.21.

0 = gyyf2 + gyfyf + gyfz
.
z

� (gyfz − non-singular)
.
z = −(gyfz)−1(gyyf2 + gyfyf)

(2.21)

That is; the system has differential index-2 if gyfz is non-singular.

The system of differential algebraic equations given in Equation 2.19 represents
the larger class of problems of the type given in Equation 2.15, where gz is
singular. This is shown by Hairer and Wanner (1996).

2.3.4 Index in VLE systems

The index of vapour-liquid equilibrium (VLE) systems is discussed by Ponton
and Gawthrop (1991), and Pantelides et al. (1988). Ponton and Gawthrop
(1991) show that the general formulation, shown in Equation 2.22 is index-1.
Moe, Riksheim, and Hertzberg (1996), Ponton and Gawthrop (1991) and Pan-
telides et al. (1988) stress that specifications to the equation sets often introduce
an index problem. This increased index is usually because the differential vari-
ables emerging from the material and energy balances are dependent. They are
dependent through the VLE relationship.

Dynamic modelling of chemical process units often introduces specifications to
the pressure to reduce the stiffness of the system. This leads to an index-2 DAE
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system. Moe, Riksheim, and Hertzberg (1996) give guideline about how these
problems can be solved by first reducing the index.

A typical VLE system is shown in Figure 2.1. The fixed volume container is as-
sumed to have a homogeneous pressure, P, and temperature, T. Energy, E, and
every component species are conserved. The energy can be enthalpy or internal
energy. The inlet flow, WI , is an algebraic relation in properties upstream the
container that is typically dependent on the variables shown in Figure 2.1. The
outlet flows, WV and WL, are described in a similar manner.

hL, WL, zL

WL(zL, T, P, PDL)

E,NhI , WI , zI

WI(zI , TI , PI , P )

hV , WV , zV

WV (zV , T, P, P, PDV )

PDV

PDL

PI

Figure 2.1: VLE system

If the VLE system is described using the overall energy and component holdups
such as the differential variables defined by Equation 2.22. The system will be
index-1 if algebraic relations give the pressure-driven flow.

dE

dt
= WIhI −WV hV −WLhL

dN
dt

= WIzI −WV zV −WLzL

(2.22)

More specifically, it will be a stiff semi-explicit differential index-1 DAE sys-
tem. Semi-explicit means equations of the form shown in Equation 2.23, where
the differential variables are defined explicitly, and the algebraic equations are
formulated implicitly.

.
y = f(y, z)
0 = g(y, z)

(2.23)
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2.4 Initialisation of DAE’s

Initial conditions are the values of
.
s and s at time t0. The initial conditions are

denoted
.
s0 and s0. To be consistent, the initial conditions must satisfy

f(
.
s0, s0, t0) = 0 (2.24)

The initial conditions must also satisfy any implicit constraints the DAE set
may have.

Variables s0 or their derivatives
.
s0 which can be assigned arbitrary values and

still allow the original system to be solved, are called dynamic degrees of freedom.

For an explicit ordinary differential equation of the form:

.
s = f(s, t) (2.25)

the initial conditions normally refer to a set of values for s at t = 0. That is;
the dynamic degrees of freedom in an ODE system are equal to the number of
dynamic variables.

For a DAE set of equations, the initialisation problem is more complicated.
Having n differential equations and m algebraic equations the number of un-
knowns is 2n+m. In order to provide consistent initial conditions, n additional
specifications are required. In the case where no implicit constraints are present
in the equations, there are (2n+m)!/(n+m)!n! possible sets of n initial values.
Initial values can be given as differential and/or algebraic variable values and/or
the values of the differentials. The equation set of n+m equations can then, in
principle, be solved to produce consistent initial values for all the variables in
the system.

Having a high differential index, or having implicit constraints will reduce the
dynamic degrees of freedom for the DAE system. The number of initial variable
values is reduced by the number of implicit constraints.

One of the difficulties of the initialisation is the identification of the hidden
constraints. Another difficulty is the possible necessity of reducing the index in
order to be able to integrate. Pantelides et al. (1988) provide an algorithm for
finding hidden constraints. Brown, Hindmarsh, and Petzold (1998) outline the
algorithm for calculating consistent initial values in DASPK, formerly DASSL.
Bachmann et al. (1990) give a general algorithm for index reduction, and Moe,
Riksheim, and Hertzberg (1996) show how the index can be reduced for special
types of chemical process models.



2.5. LARGE-SCALE SYSTEMS 21

2.5 Large-Scale systems

Large-scale systems are differential algebraic equation sets with 1000 to 100 000
(or more) dynamic variables. To efficiently integrate stiff DAE systems of this
magnitude requires the following among other thing:

☞ A fast function evaluation

☞ A fast Jacobian evaluation

☞ A fast linear solver

☞ Intelligent integration

If these qualities are not avaliable, an implementation solving large-scale DAE
problems might be too slow to be practical. The computational demand often
depends on the correlation methods used for the AEs. Using rigorous thermo-
dynamics will slow down the function evaluation considerably. If the function
evaluates slowly, and cannot be speeded up by further simplifications, the only
possible outcome is to evaluate this on a parallel computer. Parallel computing
will not be addressed in this thesis.

The computation of the Jacobian, or partial differentials, must be performed
by one of the five methods described in Section 2.6. Other methods for in-
tegrating DAE/ODE systems are shown in Section 2.2. The ability to block
decompose a large system and solve subsystems affects the overall performance
of a simulator. The principle of block decomposition is given in Section 2.7. It
is important to have the ability to efficiently solve the linear equations, emerg-
ing in every iteration of the non-linear Newton-Rapshon algorithm. Different
approaches for solving asymmetric linear equations are shown in Section 2.8.
The ease with which one can configure and initialise a system as large as this is
also of importance. At least this is a concern for commercial interests.

2.6 Computational differentiation

Computational differentiation is the calculation of derivatives on a computer.

Tolsma and Barton (1998) review several methods for obtaining numerical deriva-
tives. Their paper reviews: hand-coding, finite difference approximations, re-
verse Polish notation evaluation, symbolic differentiation, and automatic differ-
entiation (AD). After systematically going through the various methods, giving
pros and cons, they conclude that automatic differentiation has significant ad-
vantages over all the other approaches.

The hand-coding, finite difference approximations, reverse Polish notation eval-
uation and the symbolic differentiation all work with the equations. The auto-
matic differentiation approach is designed to differentiate computer programs.



22
CHAPTER 2. METHODS FOR DYNAMIC PROCESS

SIMULATION

All methods, except the finite difference approach, are exact, and free of trun-
cation error. However, all such methods are affected by roundoff error. These
methods are reviewed in this section.

2.6.1 Hand coding

This involves the analytical differentiation of the equations used. The differen-
tials are then implemented in subroutines, producing exact differentials. This
work can be time consuming and error-prone.

2.6.2 Finite difference

This approach involves variable perturbations and function evaluations. This
method is described in Cheney and Kincaid (1999). In order to produce a Ja-
cobian all the variables must be perturbed, and the function set describing the
DAEs must be evaluated at every perturbation. If an equation set has n vari-
ables, the cost of evaluating the Jacobian is n+1 times the cost of a function
evaluation.

This method is associated with truncation and roundoff error, and will be less
accurate than all the other methods discussed. The optimal perturbation, min-
imising the overall error, varies with the value of the variables, and is therefore
difficult to find/guess. The advantage is that this method is simple to imple-
ment.

2.6.3 Reverse Polish Notation

The Polish mathematician Jan Lukasiewicz invented the Polish Notation in the
1920s. Lukasiewicz showed that by writing operators in front of their operands,
instead of between them, brackets were made unnecessary. Later Charles L.
Hamblin proposed a scheme in which the operators follow the operands (postfix
operators), resulting in the Reverse Polish Notation (RPN). The advantage is
that the operators appear in the order required for computation. Hewlett-
Packard introduced their first ‘calculator’ using RPN in 1968.

Using RPN, the example ‘(1+2) x 3’ becomes ‘3 2 1 + x’. The expressions are
evaluated with the use of a stack. That is; a first in, last out data structure.
Everyone having worked with stacks knows the terms pushing and popping, for
adding and removing elements from the stack. Starting from the left and moving
right in the RPN expression, the constants and variables are pushed onto the
stack. When encountering a binary operation, the two top elements are popped
for evaluation with the operator. The result is then pushed back in the stack.
If a unary operator or function is encountered only one element is popped, and
the result is pushed to the stack. After finishing the RPN expression, only one
element remains in the stack that is the result of the expression.
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By handling a differential stack in parallel with the main evaluation stack, the
differentials are calculated. The procedure for calculating them is the same as
above, but the laws of differentiation must be applied. For details on RPN, see
Ponton (1982) and Koup et al. (1981).

The time required for calculating these differentials is similar for finite difference
and symbolic differentiation.

2.6.4 Symbolic differentiation

In symbolic differentiation the equations will be represented by a rooted directed
binary tree, Cormen et al. (2001). A rooted tree consists of a set of vertices and
a set of edges. Each edge links a parent node to one of the parent’s children. A
special root node has no parent. Every other vertex has exactly one parent. It
is possible to reach any vertices by following a unique path of edges from the
root.

The interior vertices represent an intrinsic function (ln, sin, ...) or an operator
(+,-,/,*). The leaves of the tree hold either numbers or variables. The equations
will be evaluated by recursively traversing this tree structure.

When having the equations stored in this tree structure, they can be differen-
tiated, by applying the rules of differentiation recursively to the tree. For an
introduction to symbolic differentiation, see ‘www.SymbolicNet.org’.

An example of a computer program using symbolic representation as well as
symbolic differentiation is Maple. Depending on the implementation of the sym-
bolic differentiation the evaluation of the differentials may be costly. However,
it will be exact.

2.6.5 Automatic differentiation

Automatic differentiation (AD) is a chain-rule-based technique for evaluating
the differentials with respect to the input variables of functions defined by a
high-level language computer program. AD relies on the fact that all computer
programs use a finite set of intrinsic functions (ln, sin, etc.) and unary/binary
operators (+,-,/,*). The coded functions representing the equations are a com-
position of these elementary functions. Knowing the partial derivatives of these
elementary functions, the overall derivatives can be computed using the chain
rule. That is; the process of automatic differentiation.

AD has two basic modes, the forward mode and the reverse mode. Werma
(2000) gives a brief and simple introduction to AD. To illustrate the two modes,
a vector valued function f : �n → �m is defined in Equation 2.26, as is done by
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Forth et al. (2004).
y = f(x) (2.26)

The computation of y in a computer will then involve the intermediate variables
w ∈ �p, p� m+ n. (Here the ‘�‘ refers to the general case.)

Then variables are grouped as follows:

☞ Independent: x ∈ �n. These variable values must be supplied.

☞ Intermediate: w ∈ �p. These variables are calculated from x, directly
or through other elements of w, using intrinsic functions and operators.
The w is built following the operations from x to y, and wk is therefore a
function of wj , j ≤ k or elements of x.

☞ Dependent: y ∈ �m. Variables to be calculated. The differentials ∂y/∂x
are required.

Considering the calculation of wk through calculated elements of w. The unary
operations are represented by Equation 2.27, and the binary operations are
represented by Equation 2.28.

wk = fk
intrinsic(wi), i < k (2.27)

wk = fk
intrinsic(wi, wj), i < k, j < k (2.28)

Forward mode

The forward mode of AD creates a new code that, for each of the variables
in the code, calculates the numerical values of the variable and its derivatives
with respect to the independent variables. That is; using the chain rule-based
computation of Equation 2.29 for every intermediate variable up to y, it will
add up to ∂y/∂x.

∂wk

∂xl
=
(
∂fk

intrinsic

∂wi

)
∂wi

∂xl
+
(
∂fk

intrinsic

∂wj

)
∂wj

∂xl
, 1 ≤ l ≤ n (2.29)

The forward mode is sometimes referred to as direct or tangent linear mode.

Reverse mode

Reverse mode AD produces a code that passes forward through the original
code storing the partials/sensitivities required for a reverse pass. Here the entire
computation trace must be stored which can be demanding in terms of memory.
For the binary function/operation in Equation 2.28 the two partials shown in
Equation 2.30 will be calculated and stored for the reverse pass.

∂yl

∂wi
=
(
∂fk

intrinsic

∂wi

)
∂yl

∂wk
,

∂yl

∂wj
=
(
∂fk

intrinsic

∂wj

)
∂yl

∂wk
, 1 ≤ l ≤ n (2.30)

A thorough introduction to AD may be found in Griewank (2000). The reverse
mode is also called backward, adjoint or cotangent linear mode.
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AD - applications

There are several AD tools for codes written in Fortran, C/C++ and Matlab.
A useful source for information on AD and AD tools is ‘www.autodiff.org’.

According to Forth et al. (2004), these tools implement AD in one of two
ways, source transformation (precompilation) or operator overloading. Source
transformation involves sophisticated compiler techniques and the generation
of new code. The new code will calculate the necessary intermediate differen-
tials/sensitivities as well as values for the dependent variables. Examples of
precompiling AD software are the Fortran tools ADIFOR, Bischof et al. (1998),
and TAMC, Giering and Kaminski (1998), and the C/C++ tool ADIC, Bischof,
Rho, and Mauer (1997). The overloading approach utilises the overloading func-
tionality of object-oriented programming languages. Defining new types with
storage containers for the auxiliary values needed in the differential calculations
and extending the intrinsic functions and operations to the new variables will
produce the needed differentials. An example of an AD package using operator
overloading is the ADOL-C, Griewank, Juedes, and Utke (1996)

For large-scale non-linear problems a layer of sparsity exploitation above the
AD is required. For efficient computation the problem structure must also be
exploited.

The computational cost of a Jacobian matrix evaluation using AD techniques
is less than any other of the other computational derivative methods discussed
in this section.

Current AD software is capable of handling a wide variety of source code. Ac-
cording to Tolsma, Clabaugh, and Barton (2002), AD can handle implicit equa-
tions solved with iterative schemes. That is; EOS is handled by AD software.

2.7 Block decomposition

Barton (2000) gives a clear presentation of the concept of block decomposition.
In order to illustrate the essence of block decomposition, the definition of the
incidence (or occurrence) matrix must be known. Considering the vector valued
function f(x) = 0, the incidence matrix, If , will show the occurrence of a vari-
able, xj , in equation fi(x) = 0. If xj , is present in fi, If

i,j = ×, otherwise If
i,j is

empty. That is; a nonzero element of the Jacobian, Ji,j , matrix will correspond
to If

i,j = ×.

The objective of the block decomposition is to transform the equation set mak-
ing the incidence matrix a block lower triangular with minimal blocks. This is
managed through a permutation of the variables and the equations. The new
variables, y, and the new function matrix, g(y), are introduced. These are both
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the respective linear combinations of the original variables and functions. These
transformations are shown in Equation 2.31.

If :

x1 x2 x3 x4 x5

f1
f2
f3
f4
f5

⎡
⎢⎢⎢⎢⎣

× ×
× × × ×

× × × ×
× ×
× × ×

⎤
⎥⎥⎥⎥⎦

�

Ig :

x1 x4 x2 x3 x5

f1
f4
f3
f5
f2

⎡
⎢⎢⎢⎢⎣

× ×
× ×
× × ×
× × ×

× × × ×

⎤
⎥⎥⎥⎥⎦

(2.31)

The advantage of the block lower triangular form is the solution process by
sequential solution of sub-problems. Starting with an upper block diagonal
sub-matrix, the overall system of equations can be solved in series taking the
diagonal block by block downwards in the matrix. Block decomposition has the
following advantages:

☞ The solution of a large system of equations is broken down to smaller
systems. The solution becomes computationally faster and requires less
computer memory.

☞ Having solved the first sub-problem, a partial solution can exist when
solving the remaining sub-problems. This partial solution will improve
the robustness of the locally convergent algorithms applied to each sub-
problem.

☞ Linear blocks or blocks containing one unknown variable can be solved
easily.

☞ Differential information for the off-diagonal blocks are not required.

An algorithm for obtaining the minimal block decomposition is given by Duff
and Reid (1978b) and Duff and Reid (1978a). These both use a directed graph
algorithm and the algorithm of Tarjan (1972).

2.8 Linear solvers

The DAE systems in chemical process plants usually have a sparse unstructured
Jacobian matrix. This can be exploited in the solution of the linear system,
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Equation 2.32.
Ax = b (2.32)

Spares matrix techniques begin with the idea that zero elements need not be
stored. The array elements are therefore stored in some compressed form, not
storing zeros. Saad (2003) gives some detail about the storage scheme. Every
compressed form will give an overhead in the tracking of array element positions.
Using sparse matrix techniques also give a much faster solution of a linear system
and demands fewer operations for solving the same system. The solvers for the
sparse system can be divided in two groups:

☞ direct solvers

☞ iterative solvers

Most direct methods for sparse linear systems perform an LU (GAUSS) factori-
sation of the original matrix and try to reduce cost by minimising fill-ins. Fill-
ins are nonzero elements introduced during the elimination process in positions
which were initially zeros. The MA48, Duff and Reid (1996), is an example of
a direct sparse linear solver. The MA48 is frequently used in equation-oriented
modelling environments. The dense matrix LU factorisation is an O(n3) oper-
ation, so much can be gained by exploiting the sparsity.

Most iterative solvers are error, ek = x∗ − xk, or residual, rk = b − Axk, pro-
jection methods. xk is the approximate solution in iteration k, and x∗ is the
solution. All these methods need initial values to start, and the better the initial
value; the faster they produce the solution.

Methods with projection onto Krylov subspaces have become very popular.
Both the Full Orthogonalization Method (FOM) and Generalized Minimum
Residual Method (GMRES) are popular, especially the GMRES method. These
methods rely heavily on preconditioners to converge efficiently. For precondi-
tioners, see Saad (2003).

2.9 Discontinuities

As stated in Section 2.2 discontinuities, also called events in the following, can
occur in both time and state. According to Mao and Petzold (2002) a time event
is defined to be a priori known, and a state event is defined to be implicitly
given when a state satisfies some condition. Since the time events are known
before starting the simulation, the solver is easily stopped and restarted at a
discontinuity.

Examples of time events are predefined steps in boundary conditions, change in
valve position, change in compressor rpm, and change of controller parameters.
Boundary conditions can be flow rate, temperature, pressure, composition etc.
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State events are more complicated. The logical expression related to a state
event is referred to as a state condition. The mode changes whenever a state
condition is satisfied. The state condition will typically be in the following form:

α(t,x) >β(t,x) (2.33)

The code implementation of this would involve an IF statement. The event is
defined as the earliest time at which one of the currently pending state conditions
becomes true. That is; when the state function becomes zero.

g(t,x) = β(t,x) − α(t,x) (2.34)

Examples of state events are phase changes, and liquid flow in a column de-
scribed by the Francis’ weir formula. When the phase changes, the property
functions of the density and the enthalpy will change considerably. The column
downflow of liquid, described using Francis’ weir formula, will have a disconti-
nuity at zero flow. Also the differentials may exhibit non-continuous behaviour.
This will lead to problems for the solver routine. When a state change occurs
the integration should be restarted.

Other examples of state events in dynamic process simulation, are the surge
control of a compressor and saturation of a valve. That is; if a recycle flow valve
for a compressor is switched on or off. Both the input and output signal of a
controller may saturate, resulting in a state event. A safety valve may also be
trigged to open, which will change the system.

If they are not intelligently handled, the events will slow a solver with error con-
trol considerably after passing a discontinuity. When passing, the integration
error becomes large, and the integration slows down making many unsuccessful
function evaluations, before finding an acceptable step size. A short-lived state
switching on and then off can be missed out entirely, if the current step includes
its entire life span.

A possible way to remove the problem is by adding an additional equation
for the discontinuity function, z(t) = g(t,x) = β(t,x) − α(t,x), to the DAE
set. Alternatively the state condition can be added as a differential equation,
.
z(t) =

.

β(t,x) − .
α(t,x), to an ODE or DAE set. This is done by Carver (1978)

and Wagner (1998). If the discontinuities are detected from these functions, in-
cluded in the DAE/ODE system, and the function evaluation is forced to follow
the state condition variable, z(t), the solver sees a smooth vector field during
the integration step. That is; the code uses the state event variable, z(t), for
checking if the function should switch to another mode required by the Equation
2.33.

It is important to detect the state events in the correct order of time. The
instance of an event might change the system completely, affecting the future
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state events. When detecting state events with root-finding in discontinuity
functions, one faces the problem of false mode switching.

Mao and Petzold (2002) give a review of several approaches for handling discon-
tinuities. They also describe the inclusion of discontinuity handling to DASPK3.0,
forming the new package DASPKE. They append a discontinuity function to a
DAE system, locating state events both by looking at the discontinuity function
value and its derivative at the two ends of a step (detecting even numbered zero
crossings).

Approaches not using the discontinuity function are Gear and Østerby (1984)
and Pantelides (1988). Gear and Østerby (1984) examine the behaviour of the
local truncation error and estimate the order of the discontinuity to find a time
step, which keeps the error under control while stepping over the discontinuity.
Pantelides (1988) use the state conditions directly. Locking the equation system
to the current mode during a integration step, and checking if state conditions
are violated after finishing the integration step. The time of the state event is
located using interpolation.

Barton (1992) and Park and Barton (1996) address the reinitialisation to a new
mode. Park and Barton (1996) introduce the terminology discontinuity stick-
ing, meaning a problem associated with changes in values of algebraic variables
and discontinuity variables after reinitialisation in the new mode. Locking the
equation system to the current mode during an integration step and locating
the state events using some interpolation scheme, typically the interpolation
formulas provided by the integrator, will give the dynamic states at the time of
the state event. Reinitialising with these dynamic variables getting a consistent
set of initial values will produce ‘new’ values for the algebraic variables. Eval-
uating the discontinuity functions with these values might not predict the new
mode, but the same mode as before the ‘state event’. This can lead to repeated
detection of the same state event, and therefore the term discontinuity sticking.

2.10 Equation-oriented integration

The equation-oriented integration approach is characterised by the following
facts. The entire equation system is solved simultaneously with one integration
routine. All dynamic, and possibly all algebraic states are handled by the inte-
grating routine. The entire structure of the equations is available for analysis.

The equation-oriented modelling environments have their own declarative mod-
elling languages, defining variables and the equations linking them together.
These high level languages are object-oriented with inheritance mechanisms.
Using this modelling language, the unit models can be built, and later aggre-
gated to describe entire flowsheet processes.
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Having all the equations and variables available for the solver, possibly in a
symbolic environment, the entire equation set can be analysed and solved si-
multaneously. This analysis can detect, and solve, possible differential index
problems, and possibly block decompose the system for more efficient integra-
tion.

These formulations lead to a very large set of equations, that needs to be in-
tegrated simultaneously. This requires an differential index-1 DAE integrator
with sparse handling of the linear equation solver.

Four different equation-oriented modelling environments are reviewed in Section
2.11.

2.11 Modelling and simulation environments

Several modelling software packages were presented in Section 1.5. All of them
are able to solve differential index-1 differential algebraic equations of chemi-
cal process models. A short review of the capabilities of ASCEND, gPROMS,
ABACUSS and DIVA will be given here. The information is based on informa-
tion available on the Internet and articles.

ASCEND

ASCEND currently version IV is both a large-scale object-oriented mathemat-
ical modelling environment and a strongly typed mathematical modelling lan-
guage. Although ASCEND has primarily been developed by chemical engineers,
it is domain independent. ASCEND started out as a steady state solver, and
the name ASCEND can be traced back to 1978. ASCEND has evolved into a
general model language for implementing and integrating large-scale differential
algebraic equations.

The need for a sophisticated model language is recognised in all equation-
oriented simulators. The language uses concepts from semantic data modelling
and object-oriented programming, with structured representation of encapsu-
lated sub-models and a hierarchy allowing for inheritance. The languages facili-
tate reuse and modification of existing models. The modelling language is parsed
and compiled to generate understandable code for the solver. The preprocess-
ing of the modelling language will help the user to write well-posed models and
debug and detect errors in the implementation.

The software is able to analyse the equations for structural and numerical de-
pendencies. Structural dependencies for DAEs will trigger a differentiation to
overcome index problems in the model. The numerical dependencies are used to
detect model singularities. The incidence matrix is available, showing the block
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decomposition of the system.

The integrator used in ASCEND IV is LSODE, Hindmarsh (1980). LSODE is
an initial value solver for ordinary differential equations. To cope with a large
sparse linear system with up to 250 000 non-linear equations ASCEND uses
partitioning and reordering algorithms that exploit the hierarchical structures
inherent in the structured modelling language. The solution of the linear equa-
tion systems is performed by direct methods. The details are found in Abbott
(1996).

ASCEND IV is able to use different solvers for different problems. Solver al-
gorithms for pure non-linear algebraic equations and optimisation solvers are
present, but beyond the scope of this thesis. Application of ASCEND for non-
linear optimisation was reported already in 1983, Locke and Westerberg (1983).

ASCEND IV is available for download at: ‘http://www-2.cs.cmu.edu/ ascend/’.

DIVA

The architecture of the equation-oriented modelling environment DIVA com-
prises four layers.

☞ DIVA Simulation Kernel. It contains a library of generic process unit mod-
els that can be aggregated to plant models by specifying flowsheets. The
flowsheets can then be integrated and/or optimised. The linear-implicit
DAEs are solved by one of the BDF integrators DDASAC, Caracotsios and
Stewart (1985), or DAESOL. The integrators use a direct sparse solver for
large sparse linear systems, (MA48, Duff and Reid (1996)). DDASAC is
an extension and revision of DASSL Petzold (1983).

The Jacobian is generated using an automatic routine for finite difference,
or the FORTRAN automatic differentiation tool ADIFOR, Bischof et al.
(1998). The kernel handles state events, by iteratively locating the event
occurence time, and reinitialisation.

☞ Code Generator. The Code Generator automatically generates FOR-
TRAN subroutines representing the DAE simulation models. The code
can then be added to DIVA, and be a part of a flowsheeting project. The
input files to the code generator have their own language. DIVA has a
compact formulation of chemical process models and generation of efficient
FORTRAN code. The input files for the code generator can be written
directly by the modeller, by SyPProT or by ProMoT.

☞ Symbolic PreProcessing Tool SyPProT. SyPProT, Köhler, Gerstlauer, and
Zeitz (2001), performs several tasks using symbolic representation of the
equations and variables. It performs an index-analysis and possibly index-
reduction, Mattsson and Söderlind (1993), into DAEs with a differential
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index-0 or index-1. The equation set is transformed into linear-implicit
DAEs.

SyPProT contains functionality for transforming one-dimensional PDEs
into DAEs through the method of lines (MOL). The first principles PDE
models for spatial distributed parameter systems or to IPDE for popu-
lation systems are transformed using sophisticated methods to get reli-
able results in an acceptable computation time. That is; finite-difference
schemes or finite-volume schemes possibly with dynamic regridding.

Finally it produces an input-file for the code generator.

☞ Process Modeling Tool - ProMoT. ProMoT, Trankle et al. (2000) and Tran-
kle et al. (1997), is a graphical model editor for DIVA for building flow-
sheet models or new modules. The graphical editor use MDL, the object-
oriented model definition language. Models can also be supplied directly
by the user, written in MDL, to ProMoT.

The modelling and simulation environment DIVA focuses on chemical processes
and plants. The strengths of DIVA lie in the development and implementation
of the new models, through the highly supported building process in ProMoT,
and the automated features of SyPProT. Examples of the use of DIVA are shown
by Mangold et al. (2000).

gPROMS

gPROMS is a type of commercial software that is freely available for academic
use. It can communicate with a wide range of other software packages, and it
is easy to communicate with gPROMS using general communicating protocols.
The modelling tool allows flowsheet simulation with a combination of lumped
and distributed parameter units, Pantelides and Britt (1995).

Like all the software packages described in this section, gPROMS has an object-
oriented modelling language with possible inheritance. A feature of the mod-
elling language is the ability to incorporate sequences (operating procedures),
common in all process plants, handling automated start-up and shut-down.
The models are flowsheet models that are created in a hierarchic fashion with
arbitrary depth. Symmetric and reversible, reversible and asymmetric, and ir-
reversible discontinuities are handled.

An example of a distributed parameter, is the spatial position. The mathemat-
ical description of these distributed systems will produce PDAE or IPDAE, Oh
and Pantelides (1996). These equations are transformed to DAEs through the
MOL approach. Allowing for more advanced, irregular geometries, gPROMS
has a link to Fluent, a commercial CFD simulator. The combined functionality
is described by Bezzo, Macchietto, and Pantelides (2003).
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In contrast to pure deterministic process modelling, some stochastic process
modelling capabilities are included in gPROMS.

The flowsheets are built within the graphical flowsheeting editor (ModelBuilder),
defining the topology of composite unit models.

gPROMS contains several solvers for DAE equations and linear and non-linear
equations. DASOLV is an integrator for large, sparse systems of DAEs. DA-
SOLV uses the BDF method. A direct solver is used for solving sparse linear
equations (MA48 Duff and Reid (1996)).

gPROMS is capable of symbolic analysis of the equations. The analysis contains
among other things, a check for well-posedness, index check and possibly index
reduction.

As gPROMS is a commercial software it supports a vide variety of automated
functionality. Being commercial also means less programming bugs than the
other environments described in this section.

ABACUSS

ABACUSS II has state-of-the-art functionality. On the home page of ABACUSS
II it is stated: ‘ABACUSS II is the next generation open modelling environment
and simulator’. The home page is at ‘http://yoric.mit.edu/abacuss2/abacuss2.html’
where the ABACUSS II binaries can be downloaded. It is also emphasised that
the flexibility of the ABACUSS II implementation makes it easier to embed
within another applications than other equation-oriented simulation tools avail-
able. The current design of ABACUSS II is based on years of experience with
gPROMS and ABACUSS, Feehery and Barton (1996a).

ABACUSS II is integrated with DAEPACK, Tolsma and Barton (2000) and
Tolsma and Barton (2004). DAEPACK is a set of software components for per-
forming symbolic and numeric computations on general FORTRAN-90 models.
Fortran-90 code representing a DAE model can be supplied as input and is
translated to the internal symbolic representation. The entire DAE model can
then be a combination of the supplied FORTRAN code, and the models written
in the ABACUSS II modelling language. ABACUSS II translates the input files
and passes the information to DAEPACK. The model language of ABACUSS
II can be characterised with the same general terms as the ASCEND modelling
language.

The integrator routine in DAEPACK is derived from DASSL, Petzold (1983),
and uses a large-scale direct linear solver, Duff and Reid (1996). The inte-
grator handles DAE index-1 systems. The symbolic components distinguish
DAEPACK from other libraries for numerical calculation. These symbolic com-
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ponents can be used to automatically generate the information required for
carrying out general numerical calculations efficiently, robustly, and correctly.
That means that sparsity patterns are located, analytical derivative matrices are
generated using AD technology and automatic location of discontinuities/state
events, Park and Barton (1996). This allows for a discontinuity-locked model,
that improves the integration.

Further the code checks if the model is structurally well posed, it checks for
the index, and checks if the model has hidden constraints. High index systems
are modified for solution using the method of dummy derivatives, Feehery and
Barton (1996b), Mattsson and Söderlind (1993). The code handles the large
sparse systems by decomposition to block lower triangular form (provided it is
not irreducible), and solve the linear system as a sequence of smaller subsys-
tems, Tolsma and Barton (1999).

The ability to include legacy models, available in FORTRAN-90 source code is
one of the great advantages of the ABACUSS II/DAEPACK system. DAEPACK
is designed to work with a very general FORTRAN-90 source that may contain
sophisticated solution strategies and not simply sequences of assignments. For
example, the model may compute molar volumes internally using the SRK EOS
and a Newton-type iterative scheme, Tolsma, Clabaugh, and Barton (2002).

2.12 Modular integration

In contrast to the equation-oriented approach, the process model is partitioned
in sub-domains or models comprising subsets of equations in the modular ap-
proach. Each subset can be solved with the same or different numerical inte-
gration algorithms (multi-method technique). If the same algorithm is utilised,
different time steps can be used in the various sub-models, so-called multi-
rating techniques. All the equations can also be solved simultaneously using the
simultaneous-modular approach.

A procedural implementation and execution of the unit models is common for
the modular simulation environments. The process equipment naturally gives
the modulation, and every process unit is a module in the simulator. If the pro-
cedures associated with a unit module produce differentials for the state vari-
ables, all equations can be solved simultaneously. If that is not available, the
differentials can be produced with a finite difference approximation. Otherwise
the modules must integrate themselves in a pure sequential-modular approach.

In a pure sequential-modular simulator the modules are integrated with fixed
input (and output), and give output properties. These are used to update the
input to the connected modules. This method requires iteration in the outer
integration, to converge and match the inputs and outputs of the connected
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modules.

According to Brosilow et al. (1985) sequential-modular integration has the fol-
lowing benefits over simultaneous integration of the entire equation set.

• The simulator can be more efficient because1:

– Each sub-system uses an integration algorithm that is best suited to
that sub-system.

– The integration of the sub-systems can be solved in parallel.

– The simulator only has modular error control

• The modular software is easier to maintain, because of the logical parti-
tioning and independence of the modules

Another advantage of this integration method is the possibility that the han-
dling of discontinuities can be done locally, and this can simplify the integration.
It is also easy to front and connect modules created by others, without knowing
the details of the module internal description.

For further details and information on the difference between the simultane-
ous modular and the sequential modular methods, see Hillestad and Hertzberg
(1986), Laganier et al. (1993), Patterson and Tozsa (1980), Hlavacek (1977),
and Brosilow et al. (1985). The sequential modular approach is abandoned in
dynamic simulation, but has a strong position in steady state simulation.

A network solver, as described by Endrestøl et al. (1989), is believed to be
the industrial standard of dynamic real-time simulators. An advantage of net-
work integration method is the splitting of the integration into fast and slow
dynamics. That is; the fast pressure dynamics can be solved using a fully im-
plicit integration algorithm, and the slower compositional and energy dynamics
can be solved using less computationally demanding explicit integration. The
drawback of these approaches is the lack of error control, when splitting the
integration.

The stability of the integrations is also difficult to predict because of the decou-
pling effect.

2.13 Thermodynamics

When describing the phase equilibrium and the physical properties of the hy-
drocarbon mixtures in the LNG plant, several methods have to be considered.
In the list below, there are three main approaches to correlate equilibrium and
properties.

1The term efficient, means the least computationally demanding integration
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• Rigorous, equations of state (EOS)

• Simplified descriptions

• Table based

The thermodynamic method must solve the algebraic equilibrium equation with
several sets of specifications. The most common are the PT, HP, SP, UV and
SV. Because of the close relation between the UV- and SV-flash in constant
volume systems, only one of these flashes is needed.

The enthalpy, entropy, Gibbs free energy and density must be described by ther-
modynamic relations. Usually the physical properties are expressed as functions
of the temperature, pressure and composition. The partial differentials of the
physical properties are often required, and should therefore be available.

Table-based thermodynamics consist of a look-up table (LUT) and a multi-
dimensional interpolation scheme. Mapping LUT prior to simulation, the equi-
librium and property calculations are explicit. The time consumption is pre-
dictable and small relative to the iterative rigorous thermodynamics. Therefore
this is the standard approach for real-time operator training simulators.

The EOS is a large group of methods, which can be divided into three main
groups.

• Cubic EOS:
Soave-Redlich-Kwong, (SRK), and Peng-Robinson (PR)

• Principle of corresponding state

• Virial EOS

The most famous, simplest and most used methods in practice are the SRK,
Soave (1972), and PR, Peng and Robinson (1976), EOS. These equations are
called cubic because the pressure is a cubic function of the specific volume. They
generally give a good description of the equilibrium in non-ionic mixtures.

In general the EOS approach gives the best accuracy and is useful over a large
region in temperature and pressure. The methods are applicable for mixtures of
components, and single components. But they are the most demanding in terms
of computing time for the three main methods for describing the equilibrium.

There are several methods of simplified thermodynamics. The most obvious
is to use simplified models like the ideal gas law, or other simple algebraic re-
lations. One popular approach in dynamic simulation is local thermodynamic
models, see Chimowitz and Lee (1985), Anderko, Coon, and Goldfarb (1994),
and Hillestad et al. (1989). The EOS is simplified in small regions, to speed up
the simulation.
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The table-based thermodynamics can be experimental data, or the tabulation
of a rigorous model. The possibility of including experimental data without
correlating it, is useful in some cases.

There are two main considerations when choosing thermodynamic description.
First the accuracy of the thermodynamic predictions. If the accuracy of the
equilibrium and physical properties is poor, the output of the simulator will not
be realistic. It is, therefore, necessary to define how accurate the thermodynam-
ics needs to perform.

The second consideration is the demand for fast computation. If the simula-
tor is required to perform better than real time, it may not be possible to use
time-consuming rigorous methods.





Chapter 3

Modelling Framework

SEPTIC and TPLib were chosen to be the modelling framework. SEPTIC is
described in Section 3.1 while TPLib is described in Section 3.2. The decision
to use SEPTIC and TPLib resulted in implementing most of the code necessary
to describe the process equipment and to solve their equations. An alternative
approach would have been to use one of the tools described in Section 1.5. This
approach had resulted in less code implementation and possibly produced a fast
simulator with a qualitatively good dynamic description of the plant. SEPTIC
and TPLib were believed to give a better foundation for future academic or
industrial work within the field of dynamic simulation, getting hands-on expe-
rience with the implementation of solution methods for integration, non-linear
and linear equation solutions. This choice also opens the possibility to com-
pare the industrial approach using a network solver vs. the more fundamentally
correct approach, conserving internal energy in constant volume process equip-
ment.

The network solver is introduced in Section 3.3.

The modelling programming environment has been C++ and FORTRAN. The
implementation has progressed in parallel on both the Win32 and the Linux
platform. Visual C++ v6.0 (Microsoft) and Compaq Digital Visual FORTRAN
v6.6 (Hewlett-Packard) have been the compilers of choice on the Win32 plat-
form. The GNU compiler collection (gcc) v. 3.2.2 and the NAGWare FOR-
TRAN 95 compiler Release 4.2(511) from The Numerical Algorithms Group
Ltd. (NAG Ltd.) has been used on the Linux platform.

The reason for the mixed coding is simple. The preferred code for implementa-
tion is C++, and the modelling is performed within the main program SEPTIC.
Mathematical function libraries available for free download on the Internet are
usually written according to FORTRAN 77 standard. These codes need to be
compiled and sometimes modified to suit the needs of the programmer. Also
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the thermodynamics library, TPLib, is implemented in FORTRAN.

When using mixed code there are some compiler conventions that must be
handled. The most important is the mapping of memory. C/C++ maps ma-
trix memory row-wise, while FORTRAN maps the memory column-wise. This
difference was solved implementing a matrix template in C++ that emulated
FORTRAN mapping by mapping the memory column-wise.

The integration of DAEs describing process equipment generally requires Ja-
cobian information. The finite difference and analytical differential were con-
sidered to produce the Jacobian matrix. Automatic differentiation was not
considered at the time, but could have been used after considerable preprocess-
ing of the source code. The finite difference was used for a small plant section,
but was found too slow when using rigorous thermodynamics. The Jacobian
was therefore implemented by hand coding.

An analytical relation for thermodynamics differentials was derived to produce
an analytical Jacobian matrix. The thermodynamics in general and the differ-
entials are shown in Section 3.2.1.

3.1 Statoil Estimation and Prediction Tool for

Identification and Control - SEPTIC

SEPTIC is Statoil owned software primarily used for simulation and MPC con-
trol. In this work SEPTIC is used for configuration through keyword-based
ASCII-files and plotting state variables during the simulation.

The keyword configuration defines the units/models of the process to be simu-
lated. The units are given an initial state, and sources and static dummy units
are included to give boundary conditions for the simulation. The boundary con-
dition is either fixed flow or fixed pressure. All boundary flows are also given
constant composition and constant physical properties.

In SEPTIC the units/models, sub-models, are placed in the following three
categories:

• Pressure models

• Flow models

• Controller models

The Pressure models are fixed volume units that conserve mass and energy. The
Pressure models will therefore produce a pressure through the thermodynamic
correlations, hence the name “Pressure models”. The Flow units/models have
an algebraic equation describing the flow through the unit as a function of the
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pressure difference, and other physical properties. The Flow models will there-
fore produce a flow value, hence the name.

The function of the Controller units/models are obvious. The controllers (PID)
are implemented as continuous controllers. See Appendix 6 for further details.

The layout of the configuration file is as follows. First the Pressure models are
defined, and given labels. Next the Flow models are defined and given labels.
The Flow units are connected to the Pressure models, by referring to the labels
of the Pressure models. The directions of the flow are determined by the Flow
models themselves, by looking at pressures in the connected Pressure models.

It is only possible to make connections between Pressure models and Flow mod-
els. One Pressure model can have an arbitrary number of Flow models con-
nected. The data flow is managed by the main program, and the sub-models
are given input data. The sub-models solve their own algebraic equations, and
update properties and differentials.

The Controller models are given input/output/reference by referring to the Pres-
sure, Flow and other Controller model labels. The variable name of the mea-
sured/output/reference is also given. The controller unit then has a reference
variable for all its communication with the other units.

From the above description it is understood that the layout of the plant and
the connection between the models are arbitrary, and do not need any form of
hard coding.

The configuration file also set flags determining what integration method to
use. The integration routine input and sampling time of the integration are
also given. The process states are plotted only when the integration is sampled.
Time events can only take place at a sample time.

The Graphical User Interface (GUI) has the appearance of a typical window
application. An example screen shot is given in Figure 3.1.
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Figure 3.1: Example of the SEPTIC interface

The GUI does 2D-plotting of states vs. time and vs. spatial position. The
plots are defined on the configuration file or they can be defined interactively
while running the application. All defined plots are available from the pull-down
menus. The simulation can be started/stopped and stepped from the pull-down
menus. It is also possible to introduce step changes in boundary conditions and
states, both through the configuration file and the GUI.

Spatial plots, rather than time plots are preferred to describe the internal of
the heat exchanger. Temperature, vapor fraction, density, etc. are then plotted
from inlet to outlet for the heat exchanger. A example of this is shown in Figure
3.2.
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Figure 3.2: Example of the heat exchanger plots in SEPTIC

3.2 Thermodynamics

TPLib is a NTNU developed thermodynamic and physical property function li-
brary for single and two-phase mixtures. Both the SRK and the PR methods are
implemented. (The package contains implementations of more thermodynamic
methods, but they will not be considered in this thesis). The function interface
for both methods are identical and switching between the two methods can be
done on initiation. The default method and the method used in this work is the
SRK EOS.

TPLib contains functions for some general flashes and the physical properties,
enthalpy and density. Flash routines available in TPLib:

• TP - flash at constant temperature and pressure

• HP - flash at constant enthalpy and pressure

• SP - flash at constant entropy and pressure
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The only flash missing, and needed by this work, is a flash where internal energy
and volume, UV, is specified. The UV-flash is therefore implemented, using the
TPLib Gibbs functions and physical property functions for enthalpy and den-
sity. It can be argued that an UP-flash (specified internal energy and pressure)
should have been implemented. The UP-flash is not implemented.

The TPLib single phase physical property function calls provide analytical par-
tial differentials of temperature, pressure and composition.

The TPLib is compiled as a dynamically linkable library, and is interfaced from
SEPTIC.

3.2.1 Thermodynamic implementation

This work needed an UV-flash, and therefore an algorithm to solve the UV-flash
problem is implemented. The implementation details are shown in Appendix
A. Considering the fact that the flash is going to be used in a dynamic simu-
lator, where good initial values always are available, a Newton-Raphson (NR)
approach is chosen. Dimensionless Gibbs energy and dimensionless state func-
tions for specific internal energy and specific volume describe the equilibrium.

The NR algorithm has local q-quadratic convergence, see definition in Equation
B.19, but does not guarantee convergence from an arbitrary starting point. To
ensure fast and global convergence the NR search must be combined with a line
search along the descent NR search direction. The line search can only accept a
step if the norm of the function value decreases. The line search of choice uses
cubic backtracking, as described by Dennis Jr. and Schnabel (1996).

Another complicating fact is the constraints on the compositional variables, and
the possibility of the phase changing. The constraints on the compositional vari-
ables can be handled simply resetting the initial NR search length. The step is
reset in a manner that allows the composition to approach the constraint from
the feasible region.

Possible phase change is handled by dropping or adding a phase. The dropping
or adding of a phase is done when the algorithm experiences difficulties in con-
verging, typically when searching for a solution near a phase boundary.

If it is not able to produce a solution, the solution strategy is changed to a
nested loop iteration. This iteration is formulated in a manner that guarantees
convergence, see Appendix A and Michelsen and Mollerup (1998).

When writing out the full Jacobian for the ODEs, the need for partial differen-
tials of states and physical properties along equilibrium arises. The equilibrium
system is a set of NC, NC+1 or NC+2 nonlinear implicit AEs, depending on



3.2. THERMODYNAMICS 45

the flash algorithm considered. NC is short for “Number of Components”.

The partial differentials are needed with respect to the dynamic states, that
is internal energy, U, and compositional holdup. To produce these differen-
tials, the function describing the equilibrium is linearized in the dynamic state
variables. The linearized equilibrium is then solved to give partial differentials
for the internal equilibrium variables. The partial differentials of the various
physical properties can then be found as linear combinations of these internal
equilibrium partial differentials.

The principal equations for the linearization are given below, but for the detailed
description, see Appendix A.3. The equilibrium is described in the following
form:

F(S) =F(X(S), Ŝ(S)) =

⎡
⎢⎢⎢⎢⎢⎣

g1(X(S), Ŝ(S))
...

gNC(X(S), Ŝ(S))
c1(X(S), Ŝ(S))
c2(X(S), Ŝ(S))

⎤
⎥⎥⎥⎥⎥⎦ ,

X =

⎡
⎢⎢⎢⎢⎢⎣

NV,1

...
NV,NC

lnT
lnP

⎤
⎥⎥⎥⎥⎥⎦ , Ŝ =

⎡
⎢⎢⎢⎢⎢⎣

z1
...

zNC

s1
s2

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

N∗
z1
...

N∗
zNC

s1
s2

⎤
⎥⎥⎥⎥⎥⎦ ,

z =

⎡
⎢⎣

z1
...

zNC

⎤
⎥⎦ , N∗

z =

⎡
⎢⎣

N∗
z1
...

N∗
zNC

⎤
⎥⎦ , s =

[
s1
s2

]

(3.1)

ci, are functions making sure the general flash specifications, s1 and s2, are
satisfied. NV,i is the vapor mole number for component i and zi is the overall
composition. Nzi are the overall mole numbers. The asterisk notation means
normalized mole numbers. The definition is given in Equation 3.2. gi are the
dimensionless Gibbs free energy functions. The S vector is parameter specifica-
tions to the flash system.

NC∑
j=1

N∗
zj

= 1, that is; N∗
zj

=
Nzj

NC∑
j=1

Nzj

(3.2)

The asterisk superscript indicates that the molar content is a scaled value, and
the vector elements sum to one. It is important to notice, that the scaling factor
is treated as a constant. Otherwise, this would be the definition of composition,
zi.
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The direct linearization of F around X0, Ŝ0 = X(S0), Ŝ(S0) would yield Equa-
tion 3.3, using the chain rule of differentiation.

F(S) ≈G(S) = F(S0) + ∇SFT
S0

∆S

∇SFT
S0

=∇XFT
S0
∇SXT + ∇ŜF

T
S0
∇SŜT

(3.3)

Where ∇XFT is recognized as the Jacobian matrix used in the internal solution
of the flash problem. ∇SXT is the required differential solution matrix. The
entries of both ∇XFT and ∇ŜF

T is shown in Section A.3.1. The ∇SŜT are
given below in Equation 3.4.

∇SŜT =
[ ∇N∗

z
zT 0

∇N∗
z
sT I2

]
(3.4)

It is seen from Equation 3.3, that if the first order Taylor expansion is performed
in an equilibrium point, that ∇SFT

S0
should be a zero matrix. This is shown in

Equation 3.5 and Equation 3.6

G(S) = F(S0) + ∇SFT
S0

∆S = ∇SFT
S0

∆S (3.5)

Requiring the linear function to be zero, for all changes in S.

G(S) = ∇SFT
S0

∆S = 0 ⇒ ∇SFT
S0

= 0 (3.6)

This gives the following relation for ∇SXT :

∇SXT = −(∇XFT
S0

)−1∇ŜFT
S0
∇SŜT (3.7)

The computation of ∇SXT is possibly cheap, because the LU decomposition of
∇XFT

S0
is available from the last NR iteration in the flash solver. Building the

∇SŜT requires no physical property data, and is therefore cheap. Building the
∇ŜF

T
S0

might require the evaluation of one or two physical property functions in
the equilibrium point. Most of the matrix input is known from the evaluation of
the Gibbs functions in the flash algorithm. The physical property function calls
are usually required anyway, and therefore they give no additional computation
cost.

Knowing ∇SXT , the two-phase, tp, differentials can be written out. The two-
phase physical property will have the general form of Equation 3.8.

ψtp(S) =ψtp(W (S), ψV (X(S)), ψL(X(S), Ŝ(S)) (3.8)

The differentials therefore take the form of Equation 3.9.

∇Sψtp =
(
∂ψtp

∂w

)
∇T

Xw∇SXT +
(
∂ψtp

∂ψV

)
∇T

XψV ∇SXT

+
(
∂ψtp

∂ψL

)
∇T

XψL∇SXT +
(
∂ψtp

∂ψL

)
∇T

Ŝ
ψL∇SŜT

(3.9)
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Summary - Thermodynamics

A rigorous approach was chosen to describe the equilibrium and physical prop-
erties. The SRK equation of state was used. The integration routines required
Jacobian information. This information can be obtained either by numerical
perturbation or by analytically writing out the differentials. To get an accept-
able simulation time an analytical approach was chosen.

The equilibrium system is implicitly defined, and in order to produce partial
differentials with respect to the dynamic states, the equilibrium was linearized.
The linearized equilibrium is equated to zero, and the resulting equation system
is solved for partial differentials of the internal flash variable vector, with respect
to the dynamic state vector. It is shown that with an optimal implementation
the evaluation of these partial differentials only required the back substitution
of the flash system Jacobian matrix. In the present version of the simulator,
the Jacobian matrix for the flash system is recalculated and LU decomposed be-
fore executing the back substitution. Finally, to produce the physical property
differentials, the single phase functions are evaluated. Some of these property
functions are also evaluated during the evaluation of the flash Jacobian matrix.
Therefore there is some potential to reduce the simulation time.

The function library TPLib supplied routines for calculating fugacities, enthalpy,
entropy and density. These functions could be flagged to return analytical par-
tial differentials. They were used to implement the UV flash and the lineariza-
tion for the UV and the PH flash system. The PH, PS and PT flash were not
implemented, instead the flash functions originally in TPLib was used. To lower
the simulation time further, these functions should be reimplemented with an
algorithm similar to the algorithm used for the UV flash. Linearization for the
PS and PT system should also be implemented.

The UV flash implementation was tailormade for dynamic simulation. The al-
gorithm exploited the good starting values in an NR iteration. The solver of the
nonlinear UV system was set up to enter a nested loop solver, see Section A.2.2,
if not converging after doing 200 iterations. During the simulations shown in
Section 7, the solver never entered the nested loop solver.

The equilibrium equation set in some areas is highly nonlinear, and the nonlin-
earity will restrict the step length of the simulator. Nevertheless, the lineariza-
tion produces building blocks for the dynamic state variable Jacobian matrix.
After making the physical property differentials available, the differentials of
the unit models could be written out. The simulation results, see Section 7.2.6,
show that the linearization of the thermodynamic equations produce a system
Jacobian matrix of a quality good enough to be used with the freeware solvers
DVODPK, DASPK and LSODES.
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3.3 The network solver

The motivation for the network solver is the need to control the fast pressure
dynamics. This can be done if the pressure, which is an algebraic state, is
treated as a dynamic state and integrated implicitly. The means of obtaining
the equations that are needed are shown below.

The general set of dynamic variables for a control volume is given in Equation
3.10. The dynamic equations for this system are one energy and NC component
conservation equation.

Sgen =
[
U
N

]
(3.10)

The new set of dynamic variables is given in Equation 3.11. Here the common
simplification to use enthalpy, H, instead of internal energy, U, is introduced.
This simplification will result in a simpler equation set, but will give a poorer
description at high pressures.

S∗
gen =

[
H
N

]
(3.11)

The differential equations for the control volumes of the system can be written
out as follows:

dH

dt
=
∑

Wh (3.12)

dN
dt

=
∑

Wz (3.13)

The summation is over all flows in and out of the control volume. Outlet flows
are negative.

The constant volume of the system gives the following algebraic constraint:

N − V ρ(T, P, z) = 0 (3.14)

where N, the overall holdup, is given by:

N −
NC∑
i=1

Ni = 0 (3.15)

Combining Equations 3.14 and 3.15 and differentiating:

V
dρ

dt
−

NC∑
i=1

dNi

dt
= 0 (3.16)

Combining Equations 3.16 and 3.13, remembering that the composition vector
z sum to unity:

dρ

dt
=

1
V

∑
W (3.17)
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If the total differential for the density is written out, Equation 3.17 becomes
3.18.(

∂ρ

∂P

)
h,z

(
dP

dt

)
+
(
∂ρ

∂h

)
P,z

(
dh

dt

)
+ (∇zρ)T

(
dz
dt

)
=

1
V

∑
W (3.18)

Splitting the integration, first integrating the pressure implicitly, then integrat-
ing enthalpy and composition gives the network solver. The pressure integration
is executed assuming (∂ρ/∂P )h,z constant, and the flow to be pressure depen-
dent functions. The integration is therefore only partly implicit in pressure, and
is executed at constant enthalpy and composition. The control volume pressure
is described using Equation 3.19.(

∂ρ

∂P

)
h,z

(
dP

dt

)
=

1
V

∑
W (3.19)

The second integration must then be performed at constant pressure and con-
stant flow. Since, in general these dynamics are slow compared to the pressure
flow dynamics, the integration is explicit. It is obvious that the integration of
Equation 3.13 will not produce an overall hold-up satisfying Equation 3.14.

The network solver approach is often used in training simulators in the petroleum
industry, where large models are required to run faster than real time. Endrestøl
et al. (1989) describe the development and use of a network solver model.

3.3.1 Implementation of the network solver

The pressure states in the nodes and the flash tanks need to be solved with some
implicitness to have stability for large time steps. To avoid perturbations, and
slow simulation, the differentials for the system are generated analytically. The
differentials are generated by the unit models (node and flash), and a pointer
interface from the ODE solver collects the data, and maps the information into
the needed matrices. The needed differentials are derived from a simple example,
and then generalized.

�� �� �� ��
P0

h0

P1

h1

P2

h2

W0 W1

Figure 3.3: Reference system

The flow descriptions are as follows (refer to Figure 3.3 for simplicity):

W0 = W0(P0, P1) (3.20)
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The total differentials for the flow then become:

dW0 =
(
∂W0

∂P0

)
P1

dP0 +
(
∂W0

∂P1

)
P0

dP1 (3.21)

Linearized flow becomes:

W0 = W0,0 +
(
∂W0

∂P0

)
P1

dP0 +
(
∂W0

∂P1

)
P0

dP1 (3.22)

The extra 0 subscript indicates initial conditions.

The mass balance for the node with the subscript 1, is as follows. (Use subscript
only on the flow and later the pressure since the rest is obvious):

V

(
dρ

dt

)
= W0 +W1 (3.23)

Make some definitions for readability, (NB! These are strictly not simple time
constants):

Def : τP = V

(
∂ρ

∂P

)
h

(3.24)

Using Equation 3.24 in combination with Equation 3.23 the following equation
emerges:

τP1

(
dP1

dt

)
= W0 +W1 (3.25)

Inserting the linearisation of W0 and W1 then gives:

τP1

(
dP1

dt

)
=W0,0 +

(
∂W0

∂P0

)
P1

(
dP0

dt

)
∆t+

(
∂W0

∂P1

)
P0

(
dP1

dt

)
∆t

+W1,0 +
(
∂W1

∂P1

)
P0

(
dP1

dt

)
∆t+

(
∂W1

∂P2

)
P1

(
dP2

dt

)
∆t

(3.26)

Collecting terms:

RHS : W0,0 +W1,0

LHS :
(
τP1 −

(
∂W0

∂P1

)
P0

∆t−
(
∂W1

∂P1

)
P0

∆t
)(

dP1

dt

)

−
(
∂W0

∂P0

)
P1

∆t
(
dP0

dt

)
−
(
∂W1

∂P2

)
P1

∆t
(
dP2

dt

) (3.27)

Generalising: (
τPj − ∆t

∑
k

(
∂Wk

∂Pj

)
Pi,i�=j

)(
dPj

dt

)

−∆t
∑

k

(
∂Wk

∂Pik

)
...

(
dPik

dt

)
=
∑

Wk,0

(3.28)
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Dividing with τPj(
1 − ∆t

τPj

∑
k

(
∂Wk

∂Pj

)
Pi,i�=j

)(
dPj

dt

)

− ∆t
τPj

∑
k

(
∂Wk

∂Pik

)
...

(
dPik

dt

)
=

1
τPj

∑
Wk,0

(3.29)

The Jacobian for the pressure differentials is given in Equation 3.30.

JP = ∇
(
dP
dt

)T

(3.30)

Introducing the pressure Jacobian in Equation 3.29 the equation takes the form
of Equation 3.31. (

I − ∆tJP

)(
dP
dt

)
=
(
dP
dt

)
0

(3.31)

Using Equation 3.31 directly to predict the pressure states at t0 + ∆t, is equiv-
alent to the 1-stage Rosenbrock method or a first iteration in a fully implicit
Euler formulation.

The fully implicit Euler scheme has the following form:

Pk+1 = Pk + ∆t
(
dPk+1

dt

)
(3.32)

This implicit equation is solved as shown in Section B.2. The network solver can
progress using both a 1-stage Rosenbrock approach, and a fully implicit Euler
approach.

The entries of this (partly) analytical Jacobian, JP, are given together with the
detailed unit modelling in Chapters 4 and 5.

If flow or pressure is controlled by manipulating a flow, these controllers are
included and solved as part of the pressure-flow system. The reason for doing
this is the relatively small integral times and high proportional terms used in
these controllers. Including them will give better performance of the solver.

The integral terms of these controllers are therefore included in the pressure-flow
system and integrated implicitly. In this thesis, the Jacobian entries depending
on these integral terms are calculated using perturbations.
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3.4 Integration

This section will describe the two methods of integration used for solving the
entire equation set simultaneously. The integration progresses by substitution
of the algebraic equations into the ODEs. The AEs, mainly thermodynamic
relations, are solved directly or using an iterative approach. Generally the iter-
ative solvers are using a Newton approach with a line search. But some of the
thermodynamics equations have tailor-made solution scheme.

Solving by substitution of the AEs into the ODEs result in a nested iteration
on every time step. To avoid this, the implicit AEs could have been solved
simultaneously with the ODEs. This would give a faster integration. Having
almost all the required differentials available this approach where also possible
to implement. The reason for choosing the approach involving the substitution
of the AEs is its simplicity.

The full system Jacobian is analytically calculated. The different unit models
calculate the Jacobian entries locally. The equations describing the partial dif-
ferentials in the Jacobian are given in the unit modelling section of Section 4
and 5.

Simplified integration

The 1-stage Rosenbrock can be used for both the overall equation system, the
network solver and for solving the heat exchanger as a sub-model in the network
solver. Using the network solver the sub-models, other than the heat exchanger,
are integrated using a simple forward Euler.

The general s-stage Rosenbrock method was given in Equation 2.8. Setting s=1
gives Equation 3.33.

k1 =hf(y0) + hJγ11k1

y1 =y0 + b1k1

(3.33)

Writing out the equation gives Equation 3.34

y1 =y0 + b1(I − hJγ11)−1hf(y0) (3.34)

According to Hairer and Wanner (1996) the determining coefficients γij and bj
both should have the value 1 for the 1-stage Rosenbrock method.

y1 =y0 + (I − hJ)−1hf(y0) (3.35)

As can be seen in Appendix B the 1-stage Rosenbrock method is equivalent to
using a first order Taylor expansion for the derivative, that is; f(y1) ≈ f(y0) +
J(y1 − y0).



3.4. INTEGRATION 53

It is further shown in Appendix B that the integration formula Equation 3.35
is A-stable.

Integration of the full equation set

To solve the overall equation system, an integrator must be chosen. The inte-
grator must fulfill the following criteria:

• A-stability

• Sparse handling of the algebraic equation set solved in the Newton-Raphson
iterations

• Need to utilize the cheap Jacobian information

Since the algebraic equations are substituted into the ODEs, the solver is not
required to handle algebraic equations.

For simple and fast integration without error control the same method as above
is used, a 1-stage Rosenbrock method.

From the review in Section 2 it is concluded that a BDF method should be
used. Searching the web for free integrators, the following three solvers were
encountered: LSODES, DVODPK and DASPK.

LSODES, Hindmarsh and Sherman (1987) and Hindmarsh (1983), and DVODPK,
Hindmarsh, Brown, and Byrne (2002), can solve first order ODE systems with
either an implicit Adams method, or a BDF method. LSODES uses a sparse
LU linear solver while DVODPK uses a Krylov linear solver.

The DASPK, Petzold et al. (2000), Petzold (1983), Brown, Hindmarsh, and Pet-
zold (1994) and Brown, Hindmarsh, and Petzold (1998), solver uses the BDF
method of orders one through five to solve a system of DAEs. The linear system
solver is either a dense, banded or a preconditioned Krylov iterative method.
The Krylov method is the Generalized Minimum Residual (GMRES) method,
in either complete or incomplete form, and with scaling and preconditioning.
The method is implemented in an algorithm called SPIGMR (Scaled Precondi-
tioned Incomplete GMRES).

DVODPK also uses the SPIGMR algorithm.





Chapter 4

Modelling of Pressure Units

This section will give an introduction to the pressure unit modelling, before
stating the equations used in the implementation. Section 4.1 includes some
definitions which are added to ease the indexing in the equations.

the following Pressure unit category models are required to describe a general
LNG system.

• Tank

– Node (Volume representation)

– Flash (Separation)

• Column

In general the tank units and the stages of the column are modelled as control
volumes (CVs) with multiple inlets and outlets. The outlets can be homogeneous
flow (Node) or one phase flow (Flash, Column). The general conservation laws
for the CVs are given in Equations 4.1 and 4.2. The details are given later in
this chapter.

The mass conservation of the different components is given in Equation 4.1.(
dNzi

dt

)
=
∑

pi∈INs

Wpizpi,i −
∑

po∈OUTs

Wpozi (4.1)

The energy conservation is given in Equation 4.2.(
dU

dt

)
=
∑

pi∈INs

Wpihpi −
∑

po∈OUTs

Wpoh (4.2)

Here, W is the flow rate into/out of the CV. The index pi refers to inlet ports,
and the index set INs is the set of all inlet ports. In the same way, po is
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the outlet ports, and OUTs is the set of all outlet ports. zpi,i is the overall
composition in inlet port stream pi of component i. zi is the overall internal
node composition. The same rules apply to the specific enthalpy h. That is;
the nodes are described as mixing tanks.

Two parallel implementations exist, one where enthalpy, H, is conserved, and
one where internal energy, U, is conserved. When enthalpy is conserved, the left
hand side entry in Equation 4.2, simply is replaced by dH/dt. The volume, V,
of the CV is always treated as constant.

Using the relation U = H − PV in combination with Equation 4.2, and at the
same time applying the constant volume constraint produces Equation 4.3.(

dH

dt

)
=
∑

pi∈INs

Wpihpi −
∑

po∈OUTs

Wpoh+ V

(
dP

dt

)
(4.3)

The implementation conserving enthalpy will neglect the contribution from the
last term in Equation 4.3. This simplification is acceptable for liquids where
the molar volume, volume/mole, is small. For gases this simplification can be
crude. Both approaches will produce the same steady state.

This implies that the internal energy approach is fundamentally correct, while
the conservation of enthalpy only is an approximation of the internal energy
approach. That is; the internal energy conservation is qualitatively better than
the enthalpy conservation.

When using the network approach, the compositional conservation in the nodes,
can be switched off (default). Then the node copies the inlet composition, and
this composition is copied downstream at the next integration step. The com-
position is therefore delayed by one time step. The network solver also uses the
pressure as a dynamic variable, and a special integration routine for the flow
pressure network. This was explained in more detail in Section 3.3.1.

It was the intention of this work to include a column model. Several simpli-
fied approaches were implemented, but none performed on the high-pressure
columns in the LNG plant. With this knowledge the columns should have been
implemented as a set of separations units, determining the liquid flow with a
weir equation. The lack of the column model is not a simplification, but a con-
sequence of the time limit on this work.

The Pressure units all have a mode flag, with the possible values STATIC or
DYNAMIC. If the mode flag is STATIC, the Pressure unit will do nothing, but
supply a constant pressure, temperature, composition and enthalpy for the con-
necting flow units. If the mode is DYNAMIC, the conserved properties of the
unit will be added to the set of ODE states, and described dynamically. The
STATIC option is used only for boundary conditions.
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The nodes represent pipes and volumes in the process, and are treated as mixing
volumes. Fronts traveling through the pipes are therefore approximated with
first order dynamics. The outflow is assumed to be a homogeneous. The flash
tanks, are mixing tanks and phase splitters. Equilibrium thermodynamics are
used in this model and in all other units.

4.1 Definitions

The units are distinguished in flow and pressure models, that are respectively;
WM and PM. The pressure models can only be connected to the flow models,
and the flow models are only connected to the pressure models.

All configured flow model units, WM, all configured pressure model units, PM,
all configured controller model units and their connections define the process
flowsheet.

This section introduce some definitions, that will make the equation writing,
and the comprehension of the equations easier.

4.1.1 Ports to pressure models

In the general case a pressure model has more than one connection point, this
connection point is called a port. An example is given in Figure 4.1. The
notation will refer to this port, and some sets will be defined to simplify the
summation indexes in the equations.

The situation where there is only one port will be distinguished from a situation
with multiple ports.
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WM1

WM3

WM4

P0

P1

P2

PM1

WM2

P = Port

nWM = 4

nPM = 1

Figure 4.1: Example of a pressure model, PM1, with three ports

Start by defining the sets of flow and pressure models for a given configuration,
and their index sets. The number of all flow models are nWM , and the flow
models are numbered from 1 to nWM . For the pressure models the number
of units are nPM , and they are numbered from 1 to nPM . This defines the
following index sets:

ISWM = {s : s ∈ N | s �= 0, s ≤ nWM} (4.4)

ISPM = {s : s ∈ N | s �= 0, s ≤ nPM} (4.5)

Where, N is the set of natural numbers, defined in Equation 4.6.

N = {0, 1, 2, .......} (4.6)

All flow models, WM, are then given by Equation 4.7. All pressure models,
PM, are then given by Equation 4.8.

WM = {All flow models} =
⋃

j∈ISW M

WMj (4.7)

PM = {All pressure models} =
⋃

s∈ISPM

PMs (4.8)

The set of all flow models, WMj , connected to port i of pressure model, PMs is
defined through Equation 4.9.

SWM,PMs,i = {WMj : WMj ∈ WM | WMj connected to PMs,i} (4.9)

The set of flow models, INs,i, flowing into pressure model PMs through port i,
is then given by Equation 4.10.

INs,i ={WMj : WMj ∈ SWM,PMs,i |
WWMj flowing into PMs,i}

(4.10)
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Here the flow through flow model WMj is WWMj . When only one port is
associated with the pressure model, the port index, i, is dropped. The set of
flow models, OUTs,i, with flow out of the pressure model port i, is then given
by Equation 4.11.

OUTs,i = SWM,PMs,i − INs,i (4.11)

The zero-flowing flow models are part of the OUT set. They will not be impor-
tant in this thesis.

For the example above, given in Figure 4.1, the different sets for the port sub-
scripted with zero are as follows (positive flow is in the direction of the arrow):

SWM,PMs=1,i=0 = {WM1,WM2}
IN1,0 = SWM,PM1,0

OUT1,0 = ∅

4.1.2 Composition

The naming rules for the composition and the holdup variables are given in
Table 4.1.

Table 4.1: Naming of composition and holdup variables

Variable Description Unit

zi Overall composition of component i kmol/kmol

z Vector of overall composition kmol/kmol

yi Composition of component i in vapor phase kmol/kmol

y Vector of vapor composition kmol/kmol

xi Composition of component i in liquid phase kmol/kmol

x Vector of liquid composition kmol/kmol

Ni = Nzi Overall holdup of component i kmol

N = Nz Overall holdup vector kmol

NV,i Holdup of component i in the vapor phase kmol

NV Holdup vector in vapor phase kmol

NL,i Holdup of component i in vapor phase kmol

NL Holdup vector in liquid phase kmol
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To make the partial differentials easier to write, some set notation for the com-
position index is defined. We have by definition, NC components. The set of
all components, SNC , are then given Equation 4.12.

SNC = {1, 2, ..., NC} (4.12)

The following situation is quite common:(
∂zi

∂Nzj

)
Nzk

, k ∈ SNC , k �= j

To cope with this some new notation is introduced:

SNC,j = SNC − j (4.13)

Making the above example:(
∂zi

∂Nzj

)
Nzk

, k ∈ SNC,j

When the index is used explicitly, like in the following example another definition
is needed.

g = g(Ni), i ∈ SNC ,

[ (
∂g

∂N1

)
Nj

(
∂g

∂N2

)
Nj

. . .
(

∂g
∂NNC

)
Nj

]
, j ∈?

The index set SNC,p is therefore introduced in Equation 4.14.

SNC,p = SNC − p, for p = 1, p = 2, ..., p = NC (4.14)

The example above then look like the following:

g = g(Ni), i ∈ SNC ,

[ (
∂g

∂N1

)
Nj

(
∂g

∂N2

)
Nj

. . .
(

∂g
∂NNC

)
Nj

]
, j ∈ SNC,p

Another shortcut notation will be used for the divergence of vector N. Notice
the subscripting in Equation 4.15.

∇N =
[ (

∂
∂N1

)
Nj,others

(
∂

∂N2

)
Nj ,others

. . .
(

∂
∂NNC

)
Nj ,others

]T
,

j ∈ SNC,p

(4.15)

In the general case, the functions will depend on other variables as well as the
composition. In that case the operator will not have a subscript, and will mean
partial differentials in the entire variable vector. The typical situation, “others”
will mean temperature and pressure.

The overall holdup is defined in Equation 4.16.

Ntot = N = Nz =
NC∑
j=1

Nzj (4.16)

The overall holdup in the liquid and vapor phases is written in the same manner,
but they use subscripts L and V, respectively.
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4.2 Tank and pipes - Internal energy

4.2.1 Pipe - Node

The nodes represent the volume in the piping, and should therefore be described
as a delay function. This is not practical due to the infinite gradients it gener-
ates. The nodes are therefore described as mixing tanks. They will dampen the
compositional dynamics. The Node only has one port, and the port indexing
for the pressure model will be dropped.

hOut, WOut, zOutU,V

PMs

hIn, WIn, zIn

Figure 4.2: Node

Mass conservation

The mass conservation of the different components, is in the form of Equation
4.17. (

dNzi

dt

)
=
∑

pi∈INs

Wpizpi,i −
∑

po∈OUTs

Wpozi (4.17)

Energy conservation

When the node variables are integrated without the analytical Jacobian, the
conservation equation has the form of Equation 4.18.

(
dU

dt

)
=
∑

pi∈INs

Wpihpi −
∑

po∈OUTs

Wpoh (4.18)

Using the specific internal energy as a dynamic variable simplifies the differen-
tiation for the Jacobian elements, and is therefore chosen. Equations 4.18 and
4.19 combine to Equation 4.20.

u =
U

Ntot
(4.19)

(
du

dt

)
=

1
Ntot

( ∑
pi∈INs

Wpi(hpi − u) −
∑

po∈OUTs

Wpo(h− u)
)

(4.20)



62 CHAPTER 4. MODELLING OF PRESSURE UNITS

Analytical derivatives

First we need to write out the equations for the needed differentials. The ther-
modynamic relations are given first. The specific internal energy is given by
Equation 4.21. The density is given by Equation 4.22.

u = h− Pv, du = dh− vdP − Pdv (4.21)

ρ(T, P,Nz) =
1
V

NC∑
j=1

Nzj , v =
1
ρ

=
V

Ntot
(4.22)

The differential for the internal energy, with respect to state holdup variables,
is given in Equation 4.23.(

∂u

∂Nzi

)
u,Nzj

=
(

∂h

∂Nzi

)
u,Nzj

− v

(
∂P

∂Nzi

)
u,Nzj

+
vP

Ntot
, j ∈ SNC,i

= 0

(4.23)

The first RHS term is written out in Equation 4.24. The subscript is simplified.(
∂h

∂Nzi

)
u

=
(
∂h

∂T

)(
∂T

∂Nzi

)
+
(
∂h

∂P

)(
∂P

∂Nzi

)
+
(

∂h

∂Nzi

)
(4.24)

The differential for the density, with respect to state holdup variables, is given
in Equation 4.23.(

∂ρ

∂Nzi

)
u

=
1
V

=
(
∂ρ

∂T

)(
∂T

∂Nzi

)
+
(
∂ρ

∂P

)(
∂P

∂Nzi

)
+
(

∂ρ

∂Nzi

)
(4.25)

Solving Equations 4.23 and 4.25 the change in T and P is given at constant u.

For the specific internal energy Equation 4.26 is valid.(
∂u

∂u

)
=
(
∂h

∂u

)
− v

(
∂P

∂u

)
= 1 (4.26)

Where: (
∂h

∂u

)
=
(
∂h

∂T

)(
∂T

∂u

)
+
(
∂h

∂P

) (
∂P

∂u

)
(4.27)

Differentiate the density with respect to internal energy in Equation 4.28.(
∂ρ

∂u

)
=
(
∂ρ

∂T

)(
∂T

∂u

)
+
(
∂ρ

∂P

)(
∂P

∂u

)
= 0 (4.28)

Solving Equations 4.26 and 4.28 the change in T and P is given at constant
composition.
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Using Equations 4.23 through 4.28, all the enthalpy differentials can be written
out. That is; [ (

∂h
∂u

) (
∂h

∂Nz1

)
. . .

(
∂h

∂NzNC

) ]
The density differentials are given by Equation 4.29.

[ (
∂ρ
∂u

) (
∂ρ

∂Nz1

)
. . .

(
∂ρ

∂NzNC

) ]
=
[

0 1
V . . . 1

V

]
(4.29)

A 2x2 matrix system with NC+2 right hand sides need to be solved. The system
abstraction is given in Equation 4.30.

MX = B (4.30)

The M matrix is given by Equation 4.31.

M =

⎡
⎣
(

∂h
∂T

)
P,Nzi

(
∂h
∂P

)
T,Nzi

− v(
∂ρ
∂T

)
P,Nzi

(
∂ρ
∂P

)
T,Nzi

⎤
⎦ (4.31)

The B matrix is given by Equation 4.32.

B =

⎡
⎢⎣ 1 − vP

Ntot
−
(

∂h
∂Nz1

)
P,T,Nzj

. . . − vP
Ntot

−
(

∂h
∂NzNC

)
P,T,Nzj

0 1
V −
(

∂ρ
∂Nz1

)
P,T,Nzj

. . . 1
V −
(

∂ρ
∂NzNC

)
P,T,Nzj

⎤
⎥⎦ (4.32)

The unknown X matrix is given by Equation 4.33.

X =

⎡
⎢⎣
(

∂T
∂u

)
Nzj

(
∂T

∂Nz1

)
u,Nzj

. . .
(

∂T
∂NzNC

)
u,Nzj(

∂P
∂u

)
Nzj

(
∂P

∂Nz1

)
u,Nzj

. . .
(

∂P
∂NzNC

)
u,Nzj

⎤
⎥⎦ (4.33)

The conservation equation will be written out for the example in Figure 4.3,
but the relations will in the general case be a sum over the respective IN and
OUT sets.

k+1
U,VW k−1−>k

k
k-1

W k−>k+1

Figure 4.3: Node index reference for Node derivatives
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• The composition

The relations between the mole numbers and the composition vector.

zi =
Nzi

NC∑
j=1

Nzj

(4.34)

(
∂zi

∂Nzj

)
Nzl

=
Ntot −

(
∂Nzi

∂Nzj

)
Nzl

N2
tot

, l ∈ SNC,j (4.35)

Restate the equation:(
dNzi,k

dt

)
= W k−1−>kzi,k−1 −W k−>k+1zi,k (4.36)

⎛
⎝∂
(

dNzi,k

dt

)
∂Nzi,k

⎞
⎠ = zi,k−1

(
∂W k−1−>k

∂Nzi,k

)
−W k−>k+1 1 − zi,k

Ntot,k

− zi,k

(
∂W k−>k+1

∂Nzi,k

) (4.37)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk

zj

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂Nk
zj

)
− W k−>k+1zk

i

Nk
z

− zk
i

(
∂W k−>k+1

∂Nk
zj

) (4.38)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂uk

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂uk

)
− zk

i

(
∂W k−>k+1

∂uk

)
(4.39)

The k-1 node:⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk−1

zi

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂Nk−1
zi

)
+W k−1−>k

(
∂zk−1

i

∂Nk−1
zi

)
(4.40)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk−1

zj

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂Nk−1
zj

)
+W k−1−>k

(
∂zk−1

i

∂Nk−1
zj

)
(4.41)
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⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂uk−1

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂uk−1

)
+W k−1−>k

(
∂zk−1

i

∂uk−1

)
(4.42)

The k+1 node: ⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk+1

zi

⎞
⎟⎟⎠ = −zk

i

(
∂W k−>k+1

∂Nk+1
zi

)
(4.43)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂uk+1

⎞
⎟⎟⎠ = −zk

i

(
∂W k−>k+1

∂uk+1

)
(4.44)

• The internal energy

⎛
⎝∂
(

duk

dt

)
∂uk

⎞
⎠ =

1
Nk

z

(
(hk−1 − uk)

(
∂W k−1−>k

∂uk

)

− (hk − uk)
(
∂W k−>k+1

∂uk

)

−W k−>k+1

(
∂hk

∂uk

)
−W k−1−>k +W k−>k+1

)
(4.45)

⎛
⎝∂
(

duk

dt

)
∂Nk

z,j

⎞
⎠ =

1
Nk

z

(
−
(
duk

dt

)
+ (hk−1 − uk)

(
∂W k−1−>k

∂Nk
z,j

)

− (hk − uk)

(
∂W k−>k+1

∂Nk
z,j

)
−W k−>k+1

(
∂hk

∂Nk
z,j

)) (4.46)

The k-1 node:⎛
⎝∂
(

duk

dt

)
∂uk−1

⎞
⎠ =

1
Nk

z

(
(hk−1 − uk)

(
∂W k−1−>k

∂uk−1

)

+W k−1−>k

(
∂hk−1

∂uk−1

)) (4.47)

⎛
⎝∂
(

duk

dt

)
∂Nk−1

z,j

⎞
⎠ =

1
Nk

z

(
(hk−1 − uk)

(
∂W k−1−>k

∂Nk−1
z,j

)

+W k−1−>k

(
∂hk−1

∂Nk
z,j

)) (4.48)
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The k+1 node:
⎛
⎝∂
(

duk

dt

)
∂uk+1

⎞
⎠ = −h

k − uk

Nk
z

(
∂W k−>k+1

∂uk+1

)
(4.49)

⎛
⎝∂
(

duk

dt

)
∂Nk+1

z,j

⎞
⎠ = −h

k − uk

Nk
z

(
∂W k−>k+1

∂Nk+1
z,j

)
(4.50)

4.2.2 Separation tank - Flash

Extending the node with one outlet.

hL, WL, zL

Port 2

U,VhIn, WIn, zIn

Port 0

hV , WV , zV

Port 1

Figure 4.4: Separation tank

For simplification the pressure node index is dropped on the flow model sets.

Mass conservation

(
dNzi

dt

)
=
∑

pi∈IN0

Wpizpi,i −
∑

po∈OUT1

WpozV,i −
∑

po∈OUT2

WpozL,i (4.51)

Energy conservation

The energy conservation equation in its simplest form.(
dU

dt

)
=
∑

pi∈IN0

Wpihpi −
∑

po∈OUT1

WpohV −
∑

po∈OUT2

WpohL (4.52)
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Using the specific internal energy, gives the following differentials.

(
du

dt

)
=

1∑
j

Nzj

( ∑
pi∈IN0

Wpi(hpi − u) −
∑

po∈OUT1

Wpo(hV − u)

−
∑

po∈OUT2

Wpo(hL − u)
) (4.53)

Analytical derivatives

The single phase density differentials in internal energy is given in Equations
4.54 and 4.55.(

∂ρV

∂u

)
Nz,i

=
(
∂ρV

∂T

)
P,Nz,i

(
∂T

∂u

)
Nz,i

+
(
∂ρV

∂P

)
T,Nz,i

(
∂P

∂u

)
Nz,i

+
∑

j

(
∂ρV

∂NV,j

)
T,P,NV,k

(
∂NV,j

∂u

)
Nz,i

(4.54)

(
∂ρL

∂u

)
Nz,i

=
(
∂ρL

∂T

)
P,Nz,i

(
∂T

∂u

)
Nz,i

+
(
∂ρL

∂P

)
T,Nz,i

(
∂P

∂u

)
Nz,i

+
∑

j

(
∂ρL

∂NL,j

)
T,P,NL,k

(
∂NL,j

∂u

)
Nz,i

(4.55)

The differentials of the single phase mole numbers must also be supplied. For
the homogeneous flow (node), these were known based on the fact that the
total composition sums to one. Here the transfer between the phases must be
considered.

The differentials can be generated in the following way:

(
∂NV,i

∂u

)
Nz,k

=
(
∂NV,i

∂T

)
P,Nz,k

(
∂T

∂u

)
Nz,j

+
(
∂NV,i

∂P

)
T,Nz,k

(
∂P

∂u

)
Nz,j

(4.56)

(
∂NV,i

∂Nz,j

)
u,Nz,k

=
(
∂NV,i

∂T

)
P,Nz,l

(
∂T

∂Nz,j

)
u,Nz,k

+
(
∂NV,i

∂P

)
T,Nz,l

(
∂P

∂Nz,j

)
u,Nz,k

+
(
∂NV,i

∂Nz,j

)
T,P,Nz,l

(4.57)
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k+1

U,VW k−1−>k

k

k+2

W k−>k+1

W k−>k+2

k-1

Figure 4.5: Separation tank reference system

Restate the conservation equations with the new indexing. The use of the flow
model sets are dropped, because they will obscure the information communi-
cated.

(
dNk

zi

dt

)
= W k−1−>kzk−1

i −Wk−>k+1z
k
V,i −Wk−>k+1z

k
L,i (4.58)

(
duk

dt

)
=

1∑
j

Nk
zj

(
W k−1−>khk−1 −W k−>k+1hk

V −W k−>k+2hk
L

−W k−1−>kuk +W k−>k+1uk +W k−>k+2uk

) (4.59)

Generally the vapor phase pressure is the dynamic state, and the liquid phase
pressure is an algebraic relation to the vapor pressure. The algebraic relation
used for the bottom liquid pressure is given in Equation 4.60.

P k
L = P k

V + C
ρk

LN
k
L

Nk
z

(4.60)

Here NL is the liquid holdup. C is a constant.

P k
V = P k (4.61)
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• The composition

The k node:⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂uk

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂uk

)
− zk

V,i

(
∂Wk−>k+1

∂uk

)

−Wk−>k+1

(
∂zk

V,i

∂uk

)
− zk

L,i

(
∂Wk−>k+2

∂uk

)

−Wk−>k+2

(
∂zk

L,i

∂uk

)
(4.62)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk

zi

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂Nk
zi

)
− zk

V,i

(
∂Wk−>k+1

∂Nk
zi

)

−Wk−>k+1

(
∂zk

V,i

∂Nk
zi

)
− zk

L,i

(
∂Wk−>k+2

∂Nk
zi

)

−Wk−>k+2

(
∂zk

L,i

∂Nk
zi

)
(4.63)

The k-1 node:⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂uk−1

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂uk−1

)
+W k−1−>k

(
∂zk−1

i

∂uk−1

)
(4.64)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk−1

zi

⎞
⎟⎟⎠ = zk−1

i

(
∂W k−1−>k

∂Nk−1
zi

)
+W k−1−>k

(
∂zk−1

i

∂Nk−1
zi

)
(4.65)

The k+1 node: ⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂uk+1

⎞
⎟⎟⎠ = −zk

V,i

(
∂W k−>k+1

∂uk+1

)
(4.66)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk+1

zi

⎞
⎟⎟⎠ = −zk

V,i

(
∂W k−>k+1

∂Nk+1
zi

)
(4.67)
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The k+2 node: ⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂uk+2

⎞
⎟⎟⎠ = −zk

L,i

(
∂W k−>k+2

∂uk+2

)
(4.68)

⎛
⎜⎜⎝
∂

(
dNk

zi

dt

)
∂Nk+1

zi

⎞
⎟⎟⎠ = −zk

L,i

(
∂W k−>k+1

∂Nk+2
zi

)
(4.69)

It is seen that the composition differentials can depend on u also. This is through
phase splitting.

• The composition

The k node:⎛
⎝∂
(

duk

dt

)
∂uk

⎞
⎠ =

1
Nk

z

[
(hk−1 − uk)

(
∂W k−1−>k

∂uk

)

−W k−>k+1

(
∂hk

V

∂uk

)
− (hk

V − uk)
(
∂W k−>k+1

∂uk

)

−W k−>k+2

(
∂hk

L

∂uk

)
− (hk

L − uk)
(
∂W k−>k+2

∂uk

)

−W k−1−>k +W k−>k+1 +W k−>k+2

]
(4.70)

⎛
⎝∂
(

duk

dt

)
∂Nk

z,i

⎞
⎠ =

1
Nk

z

[
−
(
duk

dt

)
+ (hk−1 − uk)

(
∂W k−1−>k

∂Nk
z,i

)

−W k−>k+1

(
∂hk

V

∂Nk
z,i

)
− (hk

V − uk)

(
∂W k−>k+1

∂Nk
z,i

)

−W k−>k+2

(
∂hk

L

∂Nk
z,i

)
− (hk

L − uk)

(
∂W k−>k+2

∂Nk
z,i

)]
(4.71)

The k-1 node:⎛
⎝∂
(

duk

dt

)
∂uk−1

⎞
⎠ =

1
Nk

z

[
(hk−1 − uk)

(
∂W k−1−>k

∂uk−1

)

+W k−1−>k

(
∂hk−1

∂uk−1

)
− (hk

V − uk)
(
∂W k−>k+1

∂uk−1

)

− (hk
L − uk)

(
∂W k−>k+2

∂uk−1

)]
(4.72)
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⎛
⎝∂
(

duk

dt

)
∂Nk−1

z,i

⎞
⎠ =

1
Nk

z

[
(hk−1 − uk)

(
∂W k−1−>k

∂Nk−1
z,i

)

+W k−1−>k

(
∂hk−1

∂uk−1

)
− (hk

V − uk)

(
∂W k−>k+1

∂Nk−1
z,i

)

− (hk
L − uk)

(
∂W k−>k+2

∂Nk−1
z,i

)]
(4.73)

The k+1 node: ⎛
⎝∂
(

duk

dt

)
∂uk+1

⎞
⎠ =

uk − hk
V

Nk
z

(
∂W k−>k+1

∂uk+1

)
(4.74)

⎛
⎝∂
(

duk

dt

)
∂Nk+1

z,i

⎞
⎠ =

uk − hk
V

Nk
z

(
∂W k−>k+1

∂Nk+1
z,i

)
(4.75)

The k+2 node: ⎛
⎝∂
(

duk

dt

)
∂uk+2

⎞
⎠ =

uk − hk
L

Nk
z

(
∂W k−>k+2

∂uk+2

)
(4.76)

⎛
⎝∂
(

duk

dt

)
∂Nk+2

z,i

⎞
⎠ =

uk − hk
L

Nk
z

(
∂W k−>k+2

∂Nk+2
z,i

)
(4.77)

New requirements:(
∂Nk

V,i

∂Nk
z,i

)
Nz,j,u,v

= ?

(
∂Nk

L,i

∂Nk
z,i

)
Nz,j,u,v

= ?

(
∂Nk

V,i

∂uk

)
Nz,j,u,v

= ?

(
∂Nk

L,i

∂uk

)
Nz,j,u,v

= ?

(4.78)

(
∂Nk

V,i

∂Nk
z,i

)
Nz,j,u,v

=

(
∂Nk

V,i

∂T

)
P,Nk

z,j

(
∂T

∂Nk
z,i

)
u,v,Nk

z,j

+

(
∂Nk

V,i

∂P

)
T,Nk

z,j

(
∂P

∂Nk
z,i

)
u,v,Nk

z,j

+

(
∂Nk

V,i

∂Nk
z,i

)
T,P,Nk

z,j

(4.79)
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(
∂Nk

L,i

∂Nk
z,i

)
Nz,j,u,v

= 1 −
(
∂Nk

V,i

∂Nk
z,i

)
Nz,j,u,v

(4.80)

(
∂Nk

V,i

∂Nk
z,l

)
Nz,j,u,v

=

(
∂Nk

V,i

∂T

)
P,Nk

z,j

(
∂T

∂Nk
z,i

)
u,v,Nk

z,j

+

(
∂Nk

V,i

∂P

)
T,Nk

z,j

(
∂P

∂Nk
z,l

)
u,v,Nk

z,j

+

(
∂Nk

V,i

∂Nk
z,l

)
T,P,Nk

z,j

(4.81)

(
∂Nk

L,i

∂Nk
z,l

)
Nz,j,u,v

= −
(
∂Nk

V,i

∂Nk
z,l

)
Nz,j,u,v

(4.82)

(
∂Nk

V,i

∂uk

)
v,Nz,j

=

(
∂Nk

V,i

∂T

)
P,Nk

z,j

(
∂T

∂uk

)
v,Nk

z,j

+

(
∂Nk

V,i

∂P

)
T,Nk

z,j

(
∂P

∂uk

)
v,Nk

z,j

(4.83)

(
∂Nk

L,i

∂uk

)
v,Nz,j

= −
(
∂Nk

V,i

∂uk

)
v,Nz,j

(4.84)

The enthalpy and density relations needed can be written out from this.

The liquid pressure need special consideration. See Equation 4.60.

(
∂P k

L

∂uk

)
=
(
∂P k

∂uk

)
+
CρL

Nk
z

∑
j

(
∂Nk

L,j

∂uk

)
+
CNk

L

Nk
z

(
∂ρL

∂uk

)
(4.85)

(
∂P k

L

∂Nk
z,i

)
=

(
∂P k

∂Nk
z,i

)
+
CρL

Nk
z

∑
j

(
∂Nk

L,j

∂Nk
z,i

)
+
CNk

L

Nk
z

(
∂ρL

∂Nk
z,i

)

− CρLN
k
L

(Nk
z )2

(4.86)

The density and enthalpy leaving the node are evaluated at the vapor pres-
sure. The pressure generated by the liquid is only used as a flow driver in the
connecting flow module.
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4.3 Tank and pipes - Enthalpy

4.3.1 Pipe - Node

There are two types of nodes using enthalpy as the conserved energy form. One
conserves components, and the other one only copies the inlet composition to
the outlet. As for the internal energy nodes, the node only have one port, and
the port indexing for the pressure model will be dropped.

hOut, WOut, zOutH,P

PMs

hIn, WIn, zIn

Figure 4.6: Node conserving enthalpy

Mass conservation

The mass conservation of the different components, is in the form of Equation
4.87. (

dNzi

dt

)
=
∑

pi∈INs

Wpizpi,i −
∑

po∈OUTs

Wpozi (4.87)

Overall mass conservation

The overall mass conservation, is given in Equation 4.88.(
dρV

dt

)
= V

(
dρ

dt

)
=
∑

pi∈INs

Wpi −
∑

po∈OUTs

Wpo (4.88)

The density differential in Equation 4.88 is approximated to give an explicit
pressure differential.

V

(
dρ

dt

)
≈ V

(
∂ρ

∂P

)
h,Nz

(
dP

dt

)
= τP

(
dP

dt

)
(4.89)

Equations 4.89 and 4.88 are combined, to give a relation for the pressure differ-
ential.

τP

(
dP

dt

)
=
∑

pi∈INs

Wpi −
∑

po∈OUTs

Wpo (4.90)

The partial differential for the single phase density, at constant enthalpy and
constant composition is derived below. Given constant composition, the density
and enthalpy functions are given by Equation 4.91.

ρ = ρ(T, P ), h = h(T, P ) (4.91)
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The total differentials then become:

dρ =
(
∂ρ

∂T

)
P

dT +
(
∂ρ

∂P

)
T

dP (4.92)

dh =
(
∂h

∂T

)
P

dT +
(
∂h

∂P

)
T

dP (4.93)

Setting the enthalpy change to zero:

dh =
(
∂h

∂T

)
P

dT +
(
∂h

∂P

)
T

dP = 0 ⇒
(
∂T

∂P

)
h

= −
(

∂h
∂P

)
T(

∂h
∂T

)
P

(4.94)

Combining Equations 4.92 and 4.94:

(
∂ρ

∂P

)
h

=
(
∂ρ

∂P

)
T

−
(
∂ρ

∂T

)
P

(
∂h
∂P

)
T(

∂h
∂T

)
P

(4.95)

Energy conservation

When the node variables are integrated without the analytical Jacobian, the
conservation equation has the following form.(

dH

dt

)
=
∑

pi∈INs

Wpihpi −
∑

po∈OUTs

Wpoh (4.96)

4.3.2 Separation tank - Flash

Extending the node with one outlet.

hL, WL, zL

Port 2

H,PhIn, WIn, zIn

Port 0

hV , WV , zV

Port 1

Figure 4.7: Separation tank conserving enthalpy

For simplification the pressure node index is dropped on the flow model sets.
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Mass conservation

(
dNzi

dt

)
=
∑

pi∈IN0

Wpizpi,i −
∑

po∈OUT1

WpozV,i −
∑

po∈OUT2

WpozL,i (4.97)

The overall mass balance is then given by Equation 4.98(
dρV

dt

)
= V

(
dρ

dt

)
=
∑

pi∈IN0

Wpi −
∑

po∈OUT1

Wpo −
∑

po∈OUT2

Wpo (4.98)

The pressure differential can be obtained in same manner as in Section 4.3.1.

τP

(
dP

dt

)
=
∑

pi∈IN0

Wpi −
∑

po∈OUT1

Wpo −
∑

po∈OUT2

Wpo (4.99)

Energy conservation

The energy conservation equation in its simplest form.(
dH

dt

)
=
∑

pi∈IN0

Wpihpi −
∑

po∈OUT1

WpohV −
∑

po∈OUT2

WpohL (4.100)





Chapter 5

Modelling of Flow Units

The following flow units are implemented to describe the LNG system:

• Valve

• Heat Exchanger

• Compressor

• Pump

• Liquid Expander

This introduction gives a short descriptions of the flow units. The model details
are described later in this chapter.

The valve is treated isenthalpic and copies the inlet composition to the outlet.
The valve is therefore a single AE, describing flow as a function of inlet density
and pressure difference. The flow equation is given in Equation 5.1.

W = Cvhv
√
ρIn∆In,OutP (5.1)

Here, Cv is the valve constant, hv is the percentual valve opening. Currently
only linear valves are supported. The valve equations are given Section 5.1.

The heat exchanger is the most important unit in the LNG system. The general
multistream heat exchanger model is described below in Section 5.2. Simplified
heat exchangers are used to describe the water coolers. In the water coolers, the
control of the outlet temperature is assumed to be fast, and the temperature at
the outlet is therefore set to be constant.

The compressor flow is modelled by curve data. The model requires input points
for the curve, which are interpolated by splines. The curve is interpolated using
the fan laws. A constant polytropical efficiency is assigned to the compressor.
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No motor/driver effects are modelled for the compressor. The compressor equa-
tions are given in Section 5.3.

The pump flow is modelled by Equation 5.2. If no parameter data is present,
the program make a guess of appropriate parameters. The curve is scaled by the
fan laws. The inlet composition is copied to the outlet, and the inlet enthalpy is
corrected (increased), applying a constant efficiency parameter, e, for the pump.
The algebraic enthalpy relation is given in Equation 5.3. No motor is attached
to the pump, and the pump is therefore simulated with constant speed. The
detailed pump equations are given in Section 5.4.

q = qMax

√
1 − H

HMax
(5.2)

Here, q is the volume flow through the pump, and H is the head. The pump
parameters are qMax and HMax, which are the maximal possible volume flow
through the pump and the maximal possible head for the pump, respectively.

hOut = hIn +
∆Out,InP

eρIn
, 0 < e < 1 (5.3)

The liquid expander, Section 5.5, has valve flow dynamics, see Equation 5.1,
and the outlet enthalpy is determined applying constant isentropic efficiency, γ.
The outlet enthalpy is therefore described in the following way:

hOut = γĥOut|SIn,POut + (1 − γ)hIn (5.4)

ĥOut|SIn,POut is the the enthalpy evaluated in (T̂Out, POut, zIn), where T̂ =
T̂ (SIn, POut, zIn). SIn is the entropy in the inlet node.

Common for all unit models is that they are simple, only conserving mass and
energy, and utilising some fixed parameter values. The flow description is also
simple, only using a valve equation (Bernoulli). The compressor and pump mod-
els are more sophisticated using curve data in the flow description. Equilibrium
is always assumed for all unit models.

The simple unit models can easily be changed/improved within the existing
framework. For example, adding curves or algebraic relations for the efficiency
parameters or adding correlations for the heat transfer, for both the HP and
UV formulation, will only imply changes to the one unit model class, and will
be a moderate implementation task. All properties needed are interfaced and
the Jacobian matrix structure is not changed.

Adding new dynamic states within the unit models will change the Jacobian
matrix structure, and might therefore be a larger implementation task.

A summary of the model simplifications is now given, together with a brief dis-
cussion to indicate if the simplifications/assumptions are justified. The discus-
sion is focused on the the heat exchanger model, and will give some information
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regarding model improvement/extension.

5.1 Valve

The valve is treated isenthalpically. The composition at the inlet is copied to
the outlet. The flow through the valve is calculated from an algebraic relation,
which is a quasi-stationary momentum equation.

k+1k
W k−>k+1

Figure 5.1: Valve - Flow from node k to node k+1

5.1.1 Algebraic flow relation

The flow equation in mass units is as follows:

WMass = Cvhv
√
ρMass,k∆k,k+1P (5.5)

The indexes have references in Figure 5.1. Described in mole units:

W =
Cvhv

√
ρkMwk∆k,k+1P

Mwk
(5.6)

5.1.2 Pressure - Flow - Linearization

The linearization in the valve flow function is simple when only the explicit
relations to the pressure is considered. No restrictions are placed upon the flow
directions. (

∂WMass

∂Pk

)
Pk+1

=
Cvhv

√
ρMass,k

2
√

abs [∆k,k+1P ]
sign [∆k,k+1P ] (5.7)

In the case where the flow through a valve is controlled by a PID controller the
flow equation can take an implicit form. (That is; the closed loop flow must be
written out using the controller parameters). The implicit form appears when
the flow itself is measured. This could be avoided by introducing actuator dy-
namics.
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For a controller with proportional and integral action, the flow equation is de-
rived in Equations 5.8 to 5.10. The relation describing the PI controller is given
in Equation 6.5.

WMass =Cvhv(WMass)
√
ρMass,k∆k,k+1P

=hv(WMass)f(ρMass,k, Pk, Pk+1)
(5.8)

hv(WMass) = Kp(r −WMass) + eI (5.9)

Inserting Equation 5.9 into Equation 5.8, and performing some algebraic ma-
nipulations, Equation 5.10 describes the closed loop mass flow.

WMass =
(Kphvr + eI)f

1 +Kphvf
(5.10)

5.1.3 Analytical derivatives

The derivatives for the flow is written out with respect to the differential vari-
ables in the connecting nodes.

k+1
U,VW k−1−>k

k
k-1

W k−>k+1

Figure 5.2: Node index reference for flow derivatives

This gives, in reference to Figure 5.2 and Equation 5.6:

W k−>k+1(Nzj ,k, Nzj ,k+1, uk, uk+1) =
Cvhv

√
ρkMwk(Pk − Pk+1)

Mwk
(5.11)

The flow need to generate the following differentials for both nodes connected.

[ (
∂W
∂u

)
Nzi,i∈SNC

(
∂W

∂Nz1

)
u,Nzj,j∈SNC,1

....
(

∂W
∂NzNC

)
u,Nzj,j∈SNC,NC

]
(5.12)

The needed differentials are written out below, in Equations 5.13 through 5.21.

(
∂W

∂u

)
Nz,i

=
(
∂W

∂T

)
P,Nzi

(
∂T

∂u

)
Nzi

+
(
∂W

∂P

)
T,Nzi

(
∂P

∂u

)
Nzi

,

i ∈ SNC

(5.13)
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(
∂W

∂Nzl

)
u

=
(
∂W

∂T

)
P,Nzi

(
∂T

∂Nzl

)
u,Nzj

+
(
∂W

∂P

)
T,Nzi

(
∂P

∂Nzl

)
u,Nzj

+
(
∂W

∂Nzl

)
P,T,Nzj

, i ∈ SNC j ∈ SNC,l

(5.14)

For the valve equation this gives.(
∂W k−>k+1

∂T

)
Pk,Nzi

=
Cvhv

√
(Pk − Pk+1)

2
√
ρkMwk

(
∂ρk

∂T

)
P,Nzi

, i ∈ SNC (5.15)

(
∂W k−>k+1

∂Pk

)
T,Nzi

=
Cvhv

√
(Pk − Pk+1)

2
√
ρkMwk

(
∂ρk

∂Pk

)
T,Nzi

+
Cvhv

√
ρkMwk

2
√

(Pk − Pk+1)
, i ∈ SNC

(5.16)

(
∂W k−>k+1

∂Nzl

)
P,T,Nzi

=
Cvhv

√
(Pk − Pk+1)

2Mwk

√
ρkMwk

(
Mwk

(
∂ρk

∂Nzl

)
P,T,Nzi

+ ρk

(
∂Mwk

∂Nzl

)
P,T,Nzi

)

+
W k−>k+1

Mw2
k

(
∂Mwk

∂Nzl

)
P,T,Nzi

, i ∈ SNC,l

(5.17)

(
∂W k−>k+1

∂Pk+1

)
Pk,T,Nzi

= − Cvhv
√
ρkMwk

2Mwk

√
(Pk − Pk+1)

, i ∈ SNC (5.18)

The differentials written out with respect to the state variables:(
∂W k−>k+1

∂uk

)
Nzi,k

=
Cvhv

√
(Pk − Pk+1)

2
√
ρkMwk

(
∂ρk

∂uk

)
Nzi,k

+
Cvhv

√
ρk

2
√

(Pk − Pk+1)Mwk

(
∂Pk

∂uk

)
Nzi,k

− W k−>k+1

2Mwk

(
∂Mwk

∂uk

)
Nzi,k

, i ∈ SNC

(5.19)

(
∂W k−>k+1

∂uk+1

)
Nzi,k+1

=
Cvhv

√
ρk

2
√

(Pk − Pk+1)Mwk

(
∂Pk+1

∂uk+1

)
Nzi,k+1

,

i ∈ SNC

(5.20)

The compositional differentials are identical in form, and are therefore not writ-
ten out.
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When the mass flow is in a closed loop form, as given in Equation 5.10, the
additional differential shown in Equation 5.21 must be used.(

∂WMass

∂f

)
=

(Kphvr + eI)
(1 +Kphvf)2

(5.21)

The overall flow differentials will therefore be a combination of Equation 5.21
and the above differentials.

5.2 Heat exchanger

The heat exchanger is the most important and most difficult unit model for in
the LNG plant. This section summarizes the equations used to describe the
heat exchanger.

Figure 5.3 shows how the system is discretized. The streams are staggered in
pressure and mass flow. The wall temperature is displaced from the stream
temperature by half a CV. The number of wall states is then N+1. The number
of stream CVs are N+2, but only N+1 have dynamic energy states. The inlet
CV is only a dummy. Equation 5.22 defines the set for the CV index, with and
without the inlet CV index.

SN+1 = 1, .., N + 1 (5.22)

SN+1,1 = 2, .., N + 1 (5.23)

The energy equation is upstream or central difference, CD. This is set through
an α parameter. (1.0 − α) scales the CD scheme, and α scales the upstream
scheme.

The different properties are interpolated to the staggered points. This is either
upstream or linear “interpolation”. This interpolation is weighted by different
α parameters.

•h0

•P0

•T0

•h1

•P1

•T1

•m1STREAM •hi

•Pi

•Ti

•hi+1

•Pi+1

•Ti+1

•mi+1 •hN

•PN

•TN

•hN+1

•PN+1

•TN+1

•mN+1

•hw1

WALL
•Tw1

•hwi+1

•Twi+1

•hwN+1

•TwN+1

Figure 5.3: Stream and wall discretisation
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Define the interpolation parameters used:

• α Enthalpy interpolation

• αAP1 Flow interpolation to CV boundarys

• αAP2 Property interpolation to CV midpoint

• αAT Temperature interpolation in the streams

Setting the alpha parameters to one will give the simplest interpolation, pure
upstream. That is; only the closest upstream value is used. This gives the
general interpolation formula for the arbitrary parameter γ.

γI = (1.0 − α)
γi−1 + γi

2
+ αγi−1 (5.24)

5.2.1 Assumptions and simplifications

The major simplification is on the flow and pressure. The mass flow is assumed
constant through the heat exchanger, and the pressure is assumed to be linear
between inlet and outlet.

The composition dynamics, are considered to be infinitely fast, and the inlet
composition, of an specific stream, is used through the entire heat exchanger.
That is; the stream in the heat exchanger has the same compositional dynamics
as the node at the inlet.

Dispersion or diffusion in the flow direction are therefore not needed. The con-
duction in the flow direction is also neglected. Heat transfer through radiation
is neglected.

The only heat transfer considered is the heat transfer between a stream and its
wall(s).

Conduction in the wall material is neglected.

The enthalpy is used as the conserved property. Not the internal energy.

After making these assumptions, the equations describing the heat exchanger
can be written out. The conservation equations will be written out with refer-
ence to Figures 5.4 and 5.5.
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∆x

uk Wk uk+1 Wk+1A

Pk+1Pk

q(x, t)

x

Figure 5.4: Reference system for the stream conservation equations

∆x

Aw

x

qi(x, t)

Figure 5.5: Reference system for the wall conservation equations

5.2.2 Algebraic flow relation

The flow description is simple. The paper submitted to a related work Hammer
et al. (2003) shows that this simple relation is sufficient to predict the major
dynamics.

Stating the simple flow pressure system under the assumption Pin > Pout:

W = k
√
Pin − Pout (5.25)

The fact that this is a streamwise relation is implicitly implied, and will not be
indexed in any way. The linear pressure profile is described with the following
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abstraction:

Pi = Pin + i
(Pout − Pin)

(N + 1)
, i ∈ SN+1 (5.26)

The differentials, of the pressures, are needed in the following sections, and are
stated here. (

∂Pi

∂Pin

)
Pout

= 1 − i
(N+1)(

∂Pi

∂Pout

)
Pin

= i
(N+1)

}
i ∈ SN+1 (5.27)

5.2.3 Energy conservation

The stream energy conservation equation

As seen from Figure 1.2, every tube stream is a compilation of several small di-
ameter tubes. The volume of all the tubes are lumped together. The tubes have
constant diameter, and have approximately the same length. The volume can
therefore be assumed linear between the top and bottom of the heat exchanger.
The same applies to the shell stream, the volume is described as linear, and the
flow cross section is assumed constant. The shell stream has contact surface to
all the tube stream walls, and therefore it exchanges heat with all these walls.
The outer wall is assumed well insulated, and no heat is exchanged with the
outer wall.

After lumping the volumes of the streams, one common spatial variable is in-
troduced for the streams. All the physical property functions are therefore
a function of this spatial variable and time. The only spatial variable is the
height of the heat exchanger. The stream properties considered can therefore
be thought of as cross section averages.

The equations will be derived using Figure 5.4 as reference. First the mass bal-
ance is written out. It is needed in the derivation of the energy equation. Using
the principle of micro balances, the mass balance is written out in Equations
5.28 and 5.29.

∆ (ρA∆x)
∆t

= Wk −Wk+1

A
∆ρ
∆t

= − (Wk+1 −Wk)
∆x

(5.28)

Dividing through with ∆x, and using the fact that the area normal to the flow
direction is constant. When the ∆x and ∆t are made infinitely small the mass
balance is established.

lim
∆x→0, ∆t→0

[
A

∆ρ
∆t

= − (Wk+1 −Wk)
∆x

]
⇓

A

(
∂ρ

∂t

)
x

= −
(
∂W

∂x

)
t

(5.29)
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The same approach is applied with the energy. Recognizing that h = u + Pv,
the energy conservation equation is written out in Equations 5.30 through 5.33.

∆ (uρA∆x)
∆t

= Wkuk −Wk+1uk+1 +WkPkvk −Wk+1Pk+1vk+1 +

x+∆x∫
x

q dx

A
∆ (uρ)

∆t
= − (Wk+1hk+1 −Wkhk)

∆x
+

1
∆x

x+∆x∫
x

q dx

(5.30)

lim
∆x→0, ∆t→0

⎡
⎣A∆ (uρ)

∆t
= − (Wk+1hk+1 −Wkhk)

∆x
+

1
∆x

x+∆x∫
x

q dx

⎤
⎦

⇓

A

(
∂ (uρ)
∂t

)
x

= −
(
∂hW

∂x

)
t

+ q(x, t)

(5.31)

Combining Equation 5.29 and Equation 5.31 we get the following, without forc-
ing any new restrictions on the equations.

Aρ

(
∂u

∂t

)
x

= −W
(
∂h

∂x

)
t

+ q(x, t) (5.32)

Introducing the approximation u ≈ h then give

Aρ

(
∂h

∂t

)
x

= −W
(
∂h

∂x

)
t

+ q(x, t) (5.33)

Using the MOL, the PDE is transformed to an ODE, were time is the only
continuous variable. This is shown in Equation 5.34, which is the final energy
equation. The approximation to the spatial differential will be applied in an
upstream way. That is; in the purely explicit case, it can described by the
stencil shown in Figure 5.6.

• •

•

(x, t+ ∆t) (x + ∆x, t)

(x + ∆x, t+ ∆t)

Figure 5.6: Explicit upstream stencil
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V ρ

(
dhk+1

dt

)
= −W∆k+1,kh+Q, Q =

x+∆x∫
x

q(x, t) dx (5.34)

When we combine the mass equation with the original energy equation, the
result is Equation 5.34. This equation requires mass conservation. When the
mass flow is treated as constant, and the density is in the form ρ(T (h), P, z),
the mass conservation equation is violated.

The wall energy conservation equation

The wall volume and mass is lumped together and both are treated as linear from
the top to bottom of the heat exchanger. The heat transfer is only considered
to and from the tube side and shell stream. Conduction in the wall is neglected.

The equations will be derived using Figure 5.5 as reference. Equations 5.35 and
5.36 show the derivation of the wall energy conservation equation.

∆ (hwρwAw∆x)
∆t

=
∑

i

x+∆x∫
x

qi dx

Awρw
∆hw
∆t

=
∑

i

1
∆x

x+∆x∫
x

qi dx

(5.35)

lim
∆x→0, ∆t→0

⎡
⎣Awρw

∆hw
∆t

=
∑

i

1
∆x

x+∆x∫
x

q dx

⎤
⎦

⇓

Awρw

(
∂hw

∂t

)
x

=
∑

i

qi

(5.36)

The wall energy equation, Equation 5.37, exhibits no spatial effects, and is
therefore in ODE form.

Mw

(
∂hw

∂t

)
x

=
∑

i

qi (5.37)

The enthalpy of the wall will be treated in the simplified way, linear in temper-
ature, shown in Equation 5.38.

hw = CV,wTw (5.38)
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Heat transfer

Nothing is said so far about the actual heat transfer function, q(x, t). To simplify
the notation, the integrated heat transfer function is defined in Equation 5.39.

Q(x,∆x, t) =

x+∆x∫
x

q(x, t)dx =

x+∆x∫
x

u(x, t)l(x, t)(T (x, t) − Tw(x, t))dx (5.39)

The perimeter l(x, t) is constant, l. The heat transfer area is then described as
Al(∆x) = l∆x. Introducing the defining Equation 5.40 for U(x,∆x, t) the heat
transfer function then get the form of Equation 5.41.

U(x,∆x, t)

x+∆x∫
x

(T (x, t) − Tw(x, t))dx

=

x+∆x∫
x

u(x, t)(T (x, t) − Tw(x, t))dx

(5.40)

Q(x,∆x, t) = U(x,∆x, t)Al(∆x)
1

∆x

x+∆x∫
x

(T (x, t) − Tw(x, t))dx (5.41)

The mean temperature difference over the interval x and x+ ∆x is usually ap-
proximated with a constant value for both temperatures. The selection of the
value is typically done with an interpolation operator, Lx,∆x. The approximat-
ing equation for the heat transfer then becomes 5.42.

Q(x,∆x, t) ≈ U(x,∆x, t)Al(∆x)Lx,∆x(T (x, t) − Tw(x, t)) (5.42)

Experimental work, at SINTEF Energy Research and NTNU, Department of
Energy and Process Engineering (formerly Department of Refrigeration and
Air Conditioning), with coil heat exchanger test sections has produced corre-
lations for U(x,∆x, t). These correlations, made for steady flow, do not have
the smoothness properties in function values, and differentials to be used in this
work. The heat transfer coefficient, U, is therefore set constant, which is a crude
assumption. (Every stream gets its own heat transfer coefficient.)

A important discontinuity is found in the heat exchanger model. More specifi-
cally in the heat transfer model. The heat transfer model uses the temperature
of the stream to describe the driving potential for heat transfer. From a ther-
modynamic perspective the temperature must be described by Equation 5.43.

T =T (h, P,Nz) (5.43)

As pointed out from Wagner (1998), this function has a discontinuous differen-
tial function. The discontinuities are located on the phase boundaries. These
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discontinuities will complicate the integration.

Several articles, Wagner (1998), Verwer, Blom, and Sanz-Serna (1989) and Ver-
wer and Trompert (1993), describe how it is possible to avoid the problem. No
action is taken in this work to remove the discontinuities.

The heat transfer will be given by Equation 5.44.

Q = q∆x = UA(Tw − Ts) (5.44)

Summary of the heat exchanger simplifications

Table 5.1 shows a summary of the simplifications/assumptions made when mod-
eling the heat exchanger.

The effect of the neglected physics is difficult to evaluate, and some simplifi-
cations are made to make the model solvable. The discussion might therefore
seem qualitative.

The use of constant heat transfer coefficients are not valid. The ratio of the heat
transfer coefficient in liquid phase and in gas phase is in the order of 10 for a
typical LNG heat exchanger stream. At the same time the heat transfer from a
stream depends greatly on the flow rate. The constant heat transfer coefficients
are used for simplicity.
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Table 5.1: Heat exchanger assumptions

Ass. no. Assumption Valid

[Y/N/U]a

1 Constant heat transfer coefficient NO

2 No axial conduction in the wall material UNKNOWN

3 No heat transfer in wall supporting material UNKNOWN

4 No heat transfer through radiation UNKNOWN

5 No diffusion/dispersion in axial direction UNKNOWN

6 Reducing to one spatial dimension UNKNOWN

7 MOL PDE to ODE transformation, fixed grid UNKNOWN

8 Enthalpy conservation instead of internal energy NO

9 Infinite composition dynamics UNKNOWN

10 Equilibrium, same T and P in both phases UNKNOWN

11 Const mass flow and linear pressure drop UNKNOWN

12 Flow described using valve equation NO

13 Influence of the gravity is neglected NO

aShort for [YES/NO/UNKNOWN]

The neglected axial conduction in the wall material might seem crude. Taking
into account a winding angle of about 10 degrees, the assumption seems less
crude, but might still give a noticeable contribution to the model dynamics,
and even the stationary states. Therefore this assumption should be verified.

Using the enthalpy as conserved state, instead of internal energy, will introduce
an error. At least for the system generally conserving internal energy the energy
state should be changed to internal energy. The reason for not having the fea-
ture to use internal energy in the heat exchanger is simple. The heat exchanger
model was first implemented with enthalpy as conserved state, and there has
not been time available to extend the model.

The infinite composition dynamics and the constant flow assumption is partly
justified through the low space time, τ (see Equation B.24), in the heat ex-
changers. For the tube streams, τ ≈ 8 − 10 seconds, but for the shell streams
the space time can be several times larger, and the simplification becomes more
questionable.
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The assumption of equilibrium is common for both static and dynamic process
simulation. The assumption of equilibrium is often wrong in dynamic simu-
lation, but lacking measurement data and correlations, the only choice is to
assume equilibrium. The effect of this assumption is difficult to foresee for the
various heat exchangers.

The neglected gravity, and the description of the flow using a valve equation
is not good. Especially at low pressures and low flow rates these assumptions
will fail. At least the two-phase shell flow is poorly described using these model
simplifications. This is shown by Hammer et al. (2003).

Some simplifications are enforced simply to get a model. All the below heat
exchanger simplifications fall into this category. The heat transfer through elec-
tromagnetic radiation is difficult to describe in the geometry of the coil heat
exchanger. Considering the low temperatures and the relative small tempera-
ture differences through the heat exchanger, the simplification of removing the
contribution from radiation is justified.

The reduction to a single spatial dimension is necessary, in order to get a simple
and relatively fast model. This means that an average over the two remaining
dimension is used. The first order approximation of the spatial partial differ-
ential in the energy conservation Equation 5.33, requires small discretization.
A fixed grid with 11 dynamic states is used in all heat exchangers. The error
is proportional to the discretization size and the curvature of the enthalpy, see
Cheney and Kincaid (1999). That is; the error can be large if a stream changes
phase between two discretization points, and if the heat transfer coefficient is
changing. The axial averaging of the heat transfer coefficient may also introduce
a large error.

Heat transfer in wall supporting material would imply direct heat transfer be-
tween the wall materials. This will only give a contribution to the overall heat
transfer if the walls have different temperatures. To model these effects, very
detailed information about the heat exchanger is needed, and it is therefore
preferred not to include this effect.

A comparison between model and measurement data is performed by Hammer
et al. (2003). They show reasonable agreement between measurement data from
a test facility and a model similar to the model used in these simulator. The
main difference is the use of a correlation for the heat transfer coefficients. Their
model is presented by Vist et al. (2003). A simplified flow description, using a
Bernoulli relation, fits measured data for all but the low pressure shell streams.
That is; despite all the simplifications, the model gives reasonable predictions.
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5.2.4 Pressure - Flow - Linearization

The algebraic flow relations are differentiated in pressure to yield the necessary
flow differentials. (

∂W
∂Pin

)
Pout

= k
2
√

Pin−Pout(
∂W

∂Pout

)
Pin

= −k
2
√

Pin−Pout

(5.45)

5.2.5 Analytical derivatives

All alpha interpolation parameters are restricted to one, except αAT that may
vary freely.

When the property interpolation parameter, αAP1 , is restricted to one, the
density of a CV is then described entirely by its inflowing density. The index of
the density is therefore i-1 in Equation 5.34.

The linear interpolation of the stream temperature, is given by Equations 5.46
and 5.47, after using the general interpolation formula given in Equation 5.24

TI,s = (1.0 − αAT )Ti−1+Ti

2 + αATTi−1 (5.46)(
∂TI,s

∂Ti

)
= 1.0−αAT

2(
∂TI,s

∂Ti−1

)
= 1.0+αAT

2

(5.47)

The energy conservation Equation 5.34 is restated in Equation 5.48, with the
proper indexing.(

dhi

dt

)
=

1
V ρi−1

(
W (hi−1 − hi) + UiAi(Twi − TI,s)

)
(5.48)

Defining HR, to simplify the equation writing.

HR = W (hi−1 − hi) + UiAi(Twi − TI,s) (5.49)

The heat transfer will be treated as in Equation 5.50.

Ui = Ui(W,Ti, Pi, Nx,i,j, Ny,i,j) (5.50)

The dynamic description of the wall is restated, with the proper subscripts.
Subscript s1 is used for the shell side, and s2 is used for the tube side.

(
dhwi

dt

)
= − 1

VW ρW

[
(UiAi)1(TW,i − Ts1) + (UiAi)2(TW,i − Ts2)

]

= 1
VW ρW

[
(UiAi)1

(
hwi

CV,Wall
− Ts1

)

+(UiAi)2

(
hwi

CV,Wall
− Ts2

)] (5.51)
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The internal derivatives

First the energy conservation equations are differentiated in the internal heat
exchanger states. The result is shown in Equations 5.52 through 5.57.

(
∂
(

dhi

dt

)
∂hi

)
W,Pi,Nz,i,j

= − 1
V ρi−1

[
W + UiAi

(
∂TI,s

∂hi

)
W,Pi,Nz,i,j

]

= − 1
V ρi−1

[
W +AiUi

(
∂TI,s

∂Ti

)
(

∂hi

∂Ti

)
W,Pi,Nz,i,j

]

= − 1
V ρi−1

[
W +

AiUi(1.0 − αAT )

2
(

∂hi

∂Ti

)
W,Pi,Nz,i,j

]
,

i ∈ SN+1

(5.52)

(
∂
(

dhi
dt

)
∂hi−1

)
hi,Pi,Nz,i,j

= 1
V ρi−1

[
W −AiUi

(
∂TI,s

∂hi−1

)
+Ai(TW,i − TI,s)

(
∂Ui

∂hi−1

)
W,Pi,Nz,i,j

− HR
ρi−1

(
∂ρi−1
∂hi−1

)
W,Pi−1,Nz,i−1,j

]

= 1
V ρi−1

{
W +

[
−AiUi

1.0+αAT

2

+Ai(TW,i − TI,s)
(

∂Ui

∂Ti−1

)
W,Pi,Nz,i,j

− HR
ρi−1

(
∂ρi−1
∂Ti−1

)
W,Pi−1,Nz,i−1,j

]
1(

∂hi−1
∂Ti−1

)
W,Pi−1,Nz,i−1,j

}
,

i ∈ SN+1

(5.53)
The water stream has constant properties, and the differentials become simpler.
Equations 5.52 and 5.53 are restated, inserting the constant values, to give
Equations 5.54 and 5.55.

(
∂
(

dhi
dt

)
∂hi

)
W,Pi,Nz,i,j

= − 1
V ρi−1

[
W + AiUi(1.0−αAT )

2Cp,W

]
,

i ∈ SN+1

(5.54)

(
∂
(

dhi
dt

)
∂hi−1

)
hi,Pi,Nz,i,j

= 1
V ρi−1

{
W +

[
−AiUi

1.0+αAT

2

+Ai(TW,i − TI,s)
(

∂Ui

∂Ti−1

)
W,Pi,Nz,i,j

]
1

Cp,W

}
,

i ∈ SN+1

(5.55)
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The wall enthalpy energy equation differential is written out in Equation 5.56.

(
∂
(

dhwi
dt

)
∂hW,i

)
= − 1

VW ρW CV,Wall
[(UiAi)1 + (UiAi)2],

i ∈ SN+1

(5.56)

The wall differential is only written out with respect to one of the streams. The
result is given in Equation 5.57.

(
∂
(

dhwi
dt

)
∂hs1

)
= − 1

VW ρW

[
−(UiAi)1

(
∂Ts1
∂hs1

)
Ps1,Nz,s1,j

+
(

hW,i

CV,Wall
− Ts1

)(
∂(UiAi)1

∂hs1

)
Ps1,Nz,s1,j

]

= − 1
VW ρW

[
−(UiAi)1

+
(

hW,i

CV,Wall
− Ts1

)(
∂(UiAi)1

∂Ts1

)
Ps1,Nz,s1,j

]
1(

∂hs1
∂Ts1

)
Ps1,Nz,s1,j

,

i ∈ SN+1

(5.57)
The differential of TI,s must be written out using the interpolation relation
described in equation 5.46. The differential will therefore give two terms per
stream.

The derivatives with respect to the connecting node states

The composition through the coil is instantaneously updated, and all enthalpy
equations depend on it. The first CV also depends on the inflowing enthalpy.
The pressure is assumed linear through the coil, and all wall elements and CVs
therefore depend on the pressure. The dependence is through the temperature
function. A simple sketch in figure 5.7, should illustrate the various differentials.

k+1k •h0

CV1 CV2 . . . CVN+1

•h1 •hN+1

k+2 k+3

Figure 5.7: Reference system: Heat exchanger and four connecting nodes

Only the differentials for the stream between the k node and the k+1 node
are written out. The second stream produces equal differentials, with different
indexing. First the inlet CV, with the first dynamic state, h1, is considered.
The energy conservation equation is restated in Equation 5.58 with the correct
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indexes. The heat transfer coefficient is set constant. The relation h0 = hk is
substituted into the equation.(

dh1

dt

)
=

1
V ρk

(
W (hk − h1) + U1A1(Tw1 − Ts,1)

)
(5.58)

The k node:(
∂
(

dh1
dt

)
∂uk

)
Nz,k

=
1

V ρk

[
−V
(
dh1

dt

)(
∂ρk

∂uk

)
Nz,k

+W

(
∂hk

∂uk

)
Nz,k

+ (hk − h1)
(
∂W

∂uk

)
Nz,k

− U1A1

(
∂Ts,1

∂Tk

)(
∂Tk

∂uk

)
Nz,k

− U1A1

(
∂Ts,1

∂Pk

)(
∂Pk

∂uk

)
Nz,k

]
(5.59)

(
∂
(

dh1
dt

)
∂Nzi,k

)
uk,Nzj,k

=
1
V ρk

[
−V
(
dh1

dt

)(
∂ρk

∂Nzi,k

)
uk,Nzj,k

+W

(
∂hk

∂Nzi,k

)
uk,Nzj,k

+ (hk − h0)
(

∂W

∂Nzi,k

)
uk,Nzj,k

− U1A1

(
∂Ts,1

∂Tk

)(
∂Tk

∂Nzi,k

)
uk,Nzj,k

− U1A1

(
∂Ts,1

∂Pk

)(
∂Pk

∂Nzi,k

)
uk,Nzj,k

]

i ∈ SNC j ∈ SNC,i

(5.60)

The k+1 node depends on both the dynamic states in the k node and the last
CV state of the stream in the heat exchanger. The dependence in the flow is
identical to the general case (as for simple valve flow in Section 5.1), and are
not written out. The differential with respect to the last CV enthalpy must be
written out. The only relation we need is the following:⎛

⎝∂
(

duk+1
dt

)
∂hOut

⎞
⎠

...

=
W

Nz,k+1

(5.61)

The differentials for internal states (j), that is; not the inlet enthalpy, is written
out below. Differentiate with respect to the inlet node. The heat exchanging
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temperature is interpolated in some linear manner.

First the composition is held constant:
⎛
⎝∂
(

dhj

dt

)
∂uk

⎞
⎠

Nz,k

=
1

V ρj−1

[
−V
(
dhj

dt

)(
∂ρj−1

∂uk

)
Nz,k

+ (hj−1 − hj)
(
∂W

∂uk

)
Nz,k

− UA

(
∂Ts

∂P

)(
∂Pj

∂uk

)
Nz,k

]

j ∈ SN+1,1

(5.62)

Here the density changes as a result of the change in pressure and temperature.
The temperature change is also through the change in pressure. Written out:

(
∂ρj−1

∂uk

)
Nz,k

=

[(
∂ρj−1

∂T

)(
∂Tj−1

∂P

)
+
(
∂ρj−1

∂P

)](
∂Pj−1

∂uk

)
Nz,k

,

j ∈ SN+1,1

(5.63)

The temperature differential:

(
∂Ts

∂P

)
=

(
1 + αAT

2

)(
∂Tj−1

∂P

)
+

(
1 − αAT

2

)(
∂Tj

∂P

)

j ∈ SN+1,1

(5.64)

The temperature change is described as follows:

(
∂T

∂P

)
h,Nz

= −
(

∂h
∂P

)
T,Nz(

∂h
∂T

)
P,Nz

(5.65)

That is; the enthalpy change is required to be zero.

The compositional differentials take the same form. But the partial differentials
of the properties must be written out.

(
∂T

∂Nzi

)
h,Nzj

= − 1(
∂h
∂T

)
P,Nz

((
∂h

∂P

)
T,Nz

(
∂P

∂Nzi,k

)
Nz,j

+
(

∂h

∂Nzi

)
P,T,Nzj

)
,

i ∈ SNC , j ∈ SNC,j

(5.66)
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The density function is then a linear combination of its partial differentials and
the P,T and direct change in composition.

The wall CV differentials are all in the form given in Equation 5.67.(
∂
(

dhwk

dt

)
∂γ

)
= − UAs

VCV ρW

(
∂Ts

∂γ

)
(5.67)

Here γ is in the variable set {u,Nz
T }.

5.3 Compressor

The compressor equations are given by Geankoplis (1993).

5.3.1 Algebraic flow relations

This section will present the equations used to describe the compressor.

Figure 5.8 shows a sketch of the compressor and shows how the subscripting is
used. The subscript “s” will be used for the suction side, and the subscript “d”
will be used for the discharge side.

Ps Ts Zs Pd Td Zd

Figure 5.8: Compressor sketch

Some parameters used in the compressor model are defined in Equations 5.68
through 5.70.

κ =
CP

CV
(5.68)

r =
κ− 1
κηP

(5.69)

Zav =
Zd + Zs

2
(5.70)

The κ and r parameter are treated as constants, and are calculated only at the
initial steady state. The ηP is the isentropic efficiency.

A compressor performance curve defined by the user, will be interpolated using
cubic splines. The curve displays head, H [J/kg], as a function of flow, Q [m3/h],
for a given speed, Ndes (design speed). An example of a compressor curve is
given in Figure 5.9.
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Figure 5.9: Compressor performance curve, CPC

The head is given by the following equation:

H =
RZavTs

Mwr

[(
Pd

Ps

)r

− 1
]

(5.71)

The compressor performance curve, CPC , is abstracted into equation 5.72.

Q̃ = CPC(H̃) (5.72)

The flow, Q, is determined by interpolation of the performance curve. The fan
laws, Equations 5.73 and 5.74, are used to extrapolate the curve to different
compressor speeds.

H̃ = H
N2

des

N2
(5.73)

Q = Q̃
N

Ndes
(5.74)

The mass flow, W [kg/s], is given by equation 5.75.

W =
Qρs

3600
(5.75)

The power consumption, B [kW], is calculated as follows:

B =
WH

ηP 1000
(5.76)
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The discharge temperature, Td [K], is given by equation 5.77.

Td = Ts

(
Pd

Ps

)r

(5.77)

The compressor description assume adiabatic compression, and a constant poly-
topic efficiency is used. The flow is calculated from the curve data. The effi-
ciency is typically described with curve data, and this should be allowed. Some
of the compressor parameters are held constant. Both the average compression
factor, Z, and the inlet heat capacity ratio, CP /CV , are held constant because it
is difficult to describe their partial differentials. This was a necessity during the
implementation and numerical testing of the compressor state variable differen-
tials, to see that the analytical system Jacobian entries matched the numerically
produced entries. It is believed that after finishing these tests, the parameters
could be allowed to change, without affecting the simulation results.

5.3.2 Pressure - Flow - Linearization

Combining Equations 5.71, 5.72, 5.73, 5.74 and 5.75 the flow relation becomes:

W =
ρsN

3600Ndes
CPC

(
H
N2

des

N2

)
(5.78)

The connecting nodes need mass flow differentials with respect to inlet and
outlet pressure. Pressure dependence in Zav are neglected.

(
∂W

∂Pd

)
Ps,Ts

=
ρs

3600

(
∂CPC(H̃)

∂H

)
N

Ndes

N

(
∂H

∂Pd

)
Ps,Ts

(5.79)

(
∂H

∂Pd

)
Ps,Ts

=
RZavTs

MwPd

(
Pd

Ps

)r

(5.80)

(
∂W

∂Ps

)
Pd,Ts

=
1

3600

[(
∂CPC(H̃)

∂H

)
N

Ndes

N

(
∂H

∂Ps

)
Pd,Ts

ρs

+Q

(
∂ρs

∂Ps

)
Ts

] (5.81)

(
∂H

∂Ps

)
Pd,Ts

= −RZavTs

MwPs

(
Pd

Ps

)r

(5.82)

The compressor performance curve differentials, CPC , are to be given analyti-
cally from the spline parameters.
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5.3.3 Analytical derivatives

Figure 5.10 gives a compressor connected to two nodes. This will be used for
reference in the derivation of the compressor differentials.

W k−>k+1

k k+1

Figure 5.10: Compressor reference figure

Restate Equations 5.78, 5.71 and 5.77 with the new indexing. The superscript
“− > k + 1” means sent to “k+1”.

W k−>k+1 =
ρkN

3600Ndes
CPC

(
H
N2

des

N2

)
(5.83)

H =
RZavTk

Mwkr

[(
Pk+1

Pk

)r

− 1
]

(5.84)

T−>k+1 = Tk

(
Pk+1

Pk

)r

(5.85)

The enthalpy leaving the compressor is given by the relation in Equation 5.86.

h−>k+1 = h(T−>k+1, Pk+1,Nz,k) (5.86)

The parameters r, η and κ are still treated as constants. These parameters vary
little and are difficult to differentiate without numerical perturbations.

Introduce an auxiliary partial differential:

(
∂CPC

∂H

)
=

⎛
⎜⎜⎝
∂CPC

(
H

N2
des

N2

)
∂H

⎞
⎟⎟⎠

N

(5.87)

The flow differentials:

Node k: (
∂W k−>k+1

∂γk

)
N,Pk+1

=
N

3600Ndes
CPC

(
∂ρk

∂γk

)

+
ρkN

3600Ndes

(
∂CPC

∂H

)(
∂H

∂γk

)
,

γ ∈ {T, P,Nz
T }

(5.88)
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(
∂H

∂Tk

)
N,Pk,Pk+1,Nz,k

=
RZav

Mwkr

[(
Pk+1

Pk

)r

− 1
]

+
RTk

2Mwkr

[(
Pk+1

Pk

)r

− 1

](
∂Zk

∂Tk

)
Pk,Nz,k

(5.89)

(
∂H

∂Pk

)
Tk,Pk+1,Nz,k

= − RZavTk

MwkPk

(
Pk+1

Pk

)r

+
RTk

2Mwkr

[(
Pk+1

Pk

)r

− 1

](
∂Zk

∂Pk

)
Tk,Nz,k

(5.90)

(
∂H

∂Nzi,k

)
N,Tk,Pk,Pk+1,Nzj,k

= − RZavTk

(Mwk)2r

[(
Pk+1

Pk

)r

− 1
](

∂Mwk

∂Nzi,k

)
Nzj,k

+
RTk

2Mwkr

[(
Pk+1

Pk

)r

− 1

](
∂Zk

∂Nzi,k

)
Tk,Pk,Nzj,k

,

i ∈ SNC , j ∈ SNC,i

(5.91)

We have:

Mwk =

NC∑
j=1

Nzj ,kMwj

Nz,k
(5.92)

(
∂Mwk

∂Nzi,k

)
Nzj,k

=
MwiNz,k −

NC∑
l=1

Nzl,kMwl

(Nz,k)2
,

i ∈ SNC , j ∈ SNC,i

(5.93)

The k+1 node:

(
∂W k−>k+1

∂Pk+1

)
N,Tk,Pk,Nz,k

=
ρkN

3600Ndes

(
∂CPC

∂H

)(
∂H

∂Pk+1

)
N,Tk,Pk,Nz,k

(5.94)(
∂H

∂Pk+1

)
Tk,Pk,Nz,k

=
RZavTk

MwkPk+1

(
Pk+1

Pk

)r

+
RTk

2Mwkr

[(
Pk+1

Pk

)r

− 1

](
∂Zk+1

∂Pk+1

)
Tk+1,Nz,k

(5.95)

The enthalpy differential:
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The k node: (
∂h−>k+1

∂uk

)
=
(
∂h−>k+1

∂T−>k+1

) [(
∂T−>k+1

∂T k

)(
∂T k

∂uk

)

+
(
∂T−>k+1

∂P k

)(
∂P k

∂uk

)] (5.96)

(
∂h−>k+1

∂Nk
z,i

)
=
(
∂h−>k+1

∂T−>k+1

) [(
∂T−>k+1

∂T k

)(
∂T k

∂Nk
z,i

)

+
(
∂T−>k+1

∂P k

)(
∂P k

∂Nk
z,i

)]
+

(
∂h−>k+1

∂Nk
z,i

) (5.97)

The k+1 node:(
∂h−>k+1

∂uk+1

)
=
[(

∂h−>k+1

∂T−>k+1

)(
∂T−>k+1

∂P k+1

)
+
(
∂h−>k+1

∂P k+1

)](
∂P k+1

∂uk+1

)
(5.98)

(
∂h−>k+1

∂Nk+1
z,i

)
=
[(

∂h−>k+1

∂T−>k+1

)(
∂T−>k+1

∂P k+1

)
+
(
∂h−>k+1

∂P k+1

)](
∂P k+1

∂Nk+1
z,i

)

(5.99)

The speed differential of the mass flow:

(
∂W k−>k+1

∂N

)
=

ρk

3600

(
CPC

Ndes
− 2
(
∂CPC

∂H

)
HNdes

N2

)
(5.100)

5.4 Pump

The pump model is not included in the LNG plant as it is described in the
full LNG system. If/when the column models are included, the model will be
needed. The model uses a fixed efficiency and a simple curve to predict the flow.
The efficiency should have an option, allowing it to interpolate curve data.

5.4.1 Algebraic flow relations

A centrifugal description is used for the pump. Only simplified rules as described
by Geankoplis (1993) is used.

The pump head, H, is defined in Equation 5.101.

H =
∆P
ρg

[=] m (5.101)
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The fan laws is given in Equations 5.102 and 5.103.

q1
q2

=
N1

N2
(5.102)

H1

H2
=
q21
q22

(5.103)

The relation between mass flow and volume flow is given in Equation 5.104.

q =
W

ρ
(5.104)

Here W is the mass flow.

The simple volume flow function used in the model is given in Equation 5.105.

q = qMax,Ref

√
1 − H

HMax,Ref
(5.105)

Restating Equations 5.102 and 5.103 in Equation 5.106 with new subscripts.

qMax = qMax,Ref
N

NRef
, HMax = HMax,Ref

N2

N2
Ref

(5.106)

Equation 5.101, 5.104, 5.105 and 5.106 are combined to Equation 5.107.

W =
qMax,RefNρ

NRef

√
1 − ∆PN2

Ref

ρgHMax,RefN2
(5.107)

Assuming the density does not vary too much we can transform the equation
to Equation 5.108.

WSimp =
WMax,RefN

NRef

√
1 − ∆PN2

Ref

∆PMax,RefN2
(5.108)

The mass flow is now only a function in pressure difference and rpm. Using
the simplified description is a configuration choice. The default is using the
equation without the simplification.

When no performance data is present, the parameters of Equation 5.107 can be
estimated from the initial flow and difference pressure, making an assumption on
the maximum delta pressure. If the rpm scaling is to make sense, the reference
rpm must be given. The maximum delta P is guessed to 3x the initial delta P.
The pump head-flow relation is illustrated in Figure 5.11.
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Figure 5.11: Pump characteristics, showing two curves

The energy consumed by the pump is added to the flowing fluid. The pump
operates at a constant efficiency, e.

∆h =
∆P
ρe

, 0 < e ≤ 1 (5.109)

The ∆h given by Equation 5.109 is added to the inlet enthalpy to give the outlet
enthalpy from the pump.

The energy consumption by the pump is then given by Equation 5.110.

E = W∆h [J/s] (5.110)

5.4.2 Pressure - Flow - Linearization

Equation 5.108 is linearized in pressure. The result is given in Equation 5.111.(
∂WSimp

∂∆P

)
= − WMax,Ref

2

√
1 − ∆PN2

Ref

∆PMax,Ref N2

NRef

∆PMax,RefN
(5.111)

Linearizing the original flow Equation 5.107, assuming incompressible flow, gives
Equation 5.112.(

∂W

∂∆P

)
= − qMax,Ref

2

√
1 − HN2

Ref

HMax,Ref N2

NRef

gHMax,RefN
(5.112)
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5.4.3 Analytical derivatives

The differentials for the pump will be written out using the reference system
given in Figure 5.12.

k+1

W k−>k+1

k

Figure 5.12: Pump reference system for the derivatives

Restating Equations 5.107 and 5.109 using indexes reflects the reference system
in Figure 5.12. The result is shown in Equations 5.113 and 5.114.

W k−>k+1 =
qMax,RefNρ

k

NRef

√
1 − (P k+1 − P k)N2

Ref

ρkgHMax,RefN2
(5.113)

h−>k+1 = hk +
P k+1 − P k

ρke
(5.114)

The flow equation

Start by defining three auxiliary partial differential.

(
∂W k−>k+1

∂ρk

)
[a1]

= qMax,Ref N
NRef

√
1 − (P k+1−P k)N2

Ref

ρkgHMax,Ref N2

+ qMax,Ref

2

√
1− (P k+1−P k)N2

Ref

ρkgHMax,Ref N

(P k+1−P k)NRef

ρkgHMax,Ref N2
(5.115)

(
∂W k−>k+1

∂P k

)
[a2]

= qMax,Ref

2

√
1− (P k+1−Pk)N2

Ref

ρkgHMax,Ref N2

NRef

gHMax,Ref N (5.116)

(
∂W k−>k+1

∂P k+1

)
[a3]

= − qMax,Ref

2

√
1− (P k+1−P k)N2

Ref

ρkgHMax,Ref N2

NRef

gHMax,Ref N (5.117)

Using these auxiliary differentials, the flow equation differentials are written out.
First the differentials with respect to the state variables in node k are written
out producing Equations 5.118 and 5.119.(

∂W k−>k+1

∂uk

)
P k+1,Nk

z

=
(
∂W k−>k+1

∂ρk

)
[a1]

(
∂ρk

∂uk

)
Nk

z

+
(
∂W k−>k+1

∂P k

)
[a2]

(
∂P k

∂uk

)
Nk

z

(5.118)
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(
∂W k−>k+1

∂Nk
z,i

)
T k,P k,P k+1,Nk

z,i

=
(
∂W k−>k+1

∂ρk

)(
∂ρk

∂Nz,i

)
T,P,Nk

z,i

(5.119)

Differentials in node k+1 state variables are written out in Equations 5.120 and
5.121. (

∂W k−>k+1

∂uk+1

)
Nk

z

=
(
∂W k−>k+1

∂P k+1

)
[a3]

(
∂P k+1

∂uk+1

)
Nk

z

(5.120)

(
∂W k−>k+1

∂Nk+1
z,i

)
uk+1,Nk

z,j

=
(
∂W k−>k+1

∂P k+1

)
[a3]

(
∂P k+1

∂Nk+1
z,i

)
uk+1,Nk

z,j

(5.121)

The energy equation

The partial differentials of the energy equations are written out in Equation
5.122 and 5.123.

Node k:(
∂h−>k+1

∂uk

)
Nk

z,i

=
(
∂hk

∂uk

)
Nk

z,i

− 1
ρke

(
∂P k

∂uk

)
Nk

z,i

− P k+1 − P k

(ρk)2e

(
∂ρk

∂uk

)
Nk

z,i

(5.122)(
∂h−>k+1

∂Nk
z,i

)
uk,Nk

z,j

=
(

∂hk

∂Nk
z,i

)
uk,Nk

z,j

− 1
ρke

(
∂P k

∂Nk
z,i

)
uk,Nk

z,j

−P k+1−P k

(ρk)2e

(
∂ρk

∂Nk
z,i
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Node k+1: (
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=
1
ρke

(
∂P k+1

∂uk+1

)
Nk+1

z,i

(5.124)

(
∂h−>k+1

∂Nk+1
z,i

)
uk+1,Nk+1

z,j

= 1
ρke

(
∂P k+1

∂Nk+1
z,i

)
uk+1,Nk+1

z,j

(5.125)

5.5 Liquid expander

The hydraulic turbine is treated in a simple manner. The flow dynamics are the
same as for a valve. The expander is given an constant isentropic efficiency, γ.
To improve the description of the hydraulic turbine, the possibility to describe
both the efficiency and the flow using curve data, should be supported.

hOut = γhOut|SIn,POut + (1 − γ)hIn (5.126)

∆h = hIn − hOut (5.127)

The energy produced are given by the Equation 5.128.

E = ∆hW [J/s] (5.128)
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This means that the unit model needs to evaluate the entropy at the inlet and
do an SP-Flash, using the outlet pressure. The outlet enthalpy is thereafter
evaluated.

5.5.1 Pressure - Flow - Linearization

The flow dynamics are identical to the valve flow dynamics. See Section 5.1.2.

5.5.2 Analytical derivatives

The derivatives are related to the reference Figure 5.13.

k k+1

W k−>k+1

Figure 5.13: Index reference for the derivatives of the turbine

The flow equation is identical to the valve equation, and is not written out (see
Section 5.1.3). The algebraic enthalpy relation is written out in Equation 5.129
using indexing as in figure 5.13.

h−>k+1 = γh|Sk,P k+1 + (1 − γ)hk (5.129)

Equation 5.129 is first differentiated with respect to the internal energy of node
k. This gives Equation 5.130.(

∂h−>k+1

∂uk

)
= γ

(
∂h|Sk,P k+1

∂uk

)
+ (1 − γ)

(
∂hk

∂uk

)
(5.130)

The first partial differential on the Right Hand Side, RHS, of Equation 5.130
needs some consideration. It is written out in Equation 5.131.(

∂h|Sk,P k+1

∂uk

)
=
(
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∂T k

)(
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(
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(5.131)

The partial of s with respect to u is given in Equation 5.132.(
∂S
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)
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=
(
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(5.132)

Differentiate Equation 5.130 with respect to node k composition in Equation
5.133.(
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(5.133)
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The first RHS partial differential of Equation 5.133 is written out in Equation
5.134.(

∂h|Sk,P k+1
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(5.134)

The partial of s with respect to Nz,j , at the inlet is given in Equation 5.135.(
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The partial of s with respect to Nz,j , at the outlet is given by Equation 5.136.(
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Equating Equations 5.135 and 5.136, the temperature differential at the outlet
is determined. The differential in equation 5.134 can then be calculated.

Differentiate Equation 5.130 with respect to node k+1 state variables in Equa-
tion 5.137.
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(5.138)



Chapter 6

Modelling of Controller
Units

The low level controllers are PI controllers, and the input/output of the general
controller is given in Figure 6.1. The controller equations are given in Section
6.1.

u

r

y y1

C

Figure 6.1: The general controller

The controller can take two measurement signals as input. In the case when two
signals are defined, a simple algebraic relation between the two signals must be
defined. The usual case, is a difference between the two signals.

The reference signal is given explicitly, or it can come from another controller.
That is; controllers in cascade are supported.
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6.1 Basic controller equations

The traditional PID controller has the following form, in the time domain.

u(t) = KP

{
eP (t) +

1
TI
e0I(t) + TDeD(t)

}
(6.1)

Were:
eP (t) = r − y (6.2)

e0I(t) =
∫
eP (t)dt (6.3)

eD(t) = −
(
dy

dt

)
(6.4)

Here the reference value is denoted r, and the measured value is denoted y.

The controller used in this application is restricted to TD = 0.

After redefining the integral term, the control law is described by Equation 6.5.

u(t) = KP eP (t) + eI(t), eI(t) =
KP

TI
e0I(t) (6.5)

The dynamic variable, eI , with the differential given by Equation 6.6, is intro-
duced. (

deI

dt

)
=
KP

TI
(r − y) (6.6)

6.1.1 Analytical derivatives

The derivatives for the integral part have the form of Equation 6.7, for all
dynamic variables, x. (

∂
(

deI

dt

)
∂x

)
= −KP

TI

(
∂yi

∂x

)
(6.7)

Differentials for the controller output are also needed, since that affect some
state variables. (

∂u

∂x

)
= KP

(
∂eP

∂x

)
+
(
∂eI

∂x

)
(6.8)

Here again x denotes arbitrary dynamic variables. The differentials of the pro-
portional part is the same as for Equation 6.6, only scaled by a constant. The
differential of the integral part is given in Equation 6.9.

(
∂eI

∂x

)
=

{
0, x �= eI

1, x = eI
(6.9)
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The derivative part of the controller, is given even though it is not used.

(
∂eD

∂x

)
= −

⎛
⎝∂
(

dy
dt

)
∂x

⎞
⎠ (6.10)

These terms are generally not available, and must be determined numerically if
they are to be used. This is one reason for neglecting them in this work.

6.2 Control of the LNG plant

The main objective of the LNG plant is to produce LNG at a minimal cost, and
at the same time maintain stable operation. This should also be the objective
for the control system. To achieve this an optimization layer must be added to
the control system. This is not the focus of this thesis, and only low level PI
controllers are available for the control layer. The objective for the control layer
must therefore be to maintain stable operation, and to produce LNG.

During the production of LNG, the inflow of the NG must balance the MCR
loops, in order for the MCR loops to remove the necessary energy. The energy
removal from the NG stream must also be balanced on all three MCR loops.
The following controllers are therefore added:

• Level controllers

Level control of separation tanks in the system must be added, preventing
single phase and an invalid simulation state.

• Pressure control

The compressor speed is manipulated to control the compressor suction
pressure. Control of other pressures (valve manipulation) is added to avoid
drifting pressure. This control is not vital and is therefore not shown in
the overview of the control structure in Figure 6.2

• Flow control to maintain the flows in all loops, and simplify the temper-
ature controllers

Flow controllers for all streams must be added, otherwise the flows will
start to drift, when the node pressures change. The controllers are shown
in Figure 6.2. All the temperature controllers send their output to a flow
controller. These flow controllers are not drawn in order to avoid an over-
crowded figure.

Adding flow controllers, as slaves of the temperature controllers, also ease
the tuning of temperature controllers.

• Temperature control to maintain the outlet temperature of the LNG, and
to distribute the energy removal onto the three MCR streams
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The close relationship between the flow of the cooling refrigerants and the
outlet temperatures of the tube streams is used to control the NG and MCR
temperatures. If the NG gets too warm, the shell stream is increased and
vice versa.

The outlet NG temperature of the 25-HX-102 heat exchanger is controlled
by manipulating the flow of the NG. The boundary conditions for the NG
stream therefore has to be pressure. This temperature is held constant by
manipulating a valve after 25-HX-102, V25-155. This dynamic are
quite slow, and exhibit approximately first order dynamics with a time
constant of ten to eleven minutes.

The flow in the MCR2 loop is used to control the inlet temperature to 25-
HX-102 of MCR3.

The pre-cooling consists of four different heat-exchangers. Two are used
to cool the NG, and two are used to cool MCR2 and MCR3 before they
enter the spiral wound heat exchangers, 25-HX-101 and 25-HX-102.
The shell flow of 25-HG-101-I and 25-HG-101-II is used to control
the intermediate temperatures of the NG in N25-139 and 25-VD-107.
The shell flow of 25-HG-102-I is held constant while the shell flow of
25-HG-102-II is used to control the temperature of MCR3 in N25-134.

The procedure applied for finding usable controller parameters is as follows.

• The system is configured and simulated to a steady state using only level
control on the separator tanks.

• Step in compressor speed is used to get settings for the suction pressure
controllers.

• Step in flow is used to get gain and integral time for the flow controllers.

• Step in flow produce controller parameters for the pressure controllers.

• Finally the temperature controller parameters are determined based on
the step response in the manipulated flows. This process is iterative, since
the system changes when a controller is introduced. Some parameters
must therefore be retuned.

The initial steady state is used as the set point for the controllers.

It must be emphasized that the set of controller parameters, used in the MFCP
simulation, is not optimal, but rather conservative parameters stabilizing the
simulations. To produce the controller gains and integral times, simple shortcut
rules are used.

Figure 6.2 shows the main control loops implemented on the system. It must
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be emphasized that no consideration with respect to the best control structure
is performed. The selected control structure is applied to keep the simulator
running. For further details see Appendix C.

NG

LNG

FIC
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TIC

PIC

PIC

PIC
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TIC
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25−KA−102
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103A/B

25−VD−107

25−KA−
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Figure 6.2: The Mixed Fluid Cascade Process (MFCP)





Chapter 7

Simulation Results

For simplicity, the system simulated with conservation of internal energy (U)
and mass (in fixed volume (V)), will be referred as the UV system or the UV
formulation. UV integration then implies Rosenbrock integration of the UV
system. The other system, defined by conservation of enthalpy (H) and mass,
requiring a HP flash is referred to as the HP system or the HP formulation. HP
integration therefore implies split integration, where the pressure is integrated
fully implicitly with an Euler scheme, and the composition and enthalpy states
are integrated with fixed pressures and flows.

This chapter will present three simulation cases, where the first is a sub-system
of the larger second system. The second system is an entire liquefaction process
for natural gas. The entire system is not integrated with an acceptable real-time
ratio, using the freeware integration codes, DVODPK, DASPK and LSODES.
It is therefore of interest to see them perform in a simpler case. The smaller
case also makes the comparison simpler.

The third case is a closer look at how the UV integration performs when there
is change in phase from pure liquid to two-phase within a node.

A code profiling is executed to see which part of the code is the most demanding
on the CPU. The result of the profiling indicates where the code is spending
time, and therefore where it is possible to improve the overall performance. The
result will therefore help in the further development of the simulator.

The last section of this chapter discusses possibilities for further developing the
simulator.

All simulations are executed on the same hardware architecture. The PC used
is a Zepto Z-note 4100 with a 1.7Ghz Intel Pentium M (Centrino) processor and
1GB of DDR ram. The Microsoft Windows XP platform is used.
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The detailed process design for the LNG plant is given by the Norwegian oil
company, Statoil. The general plant concept is shown in Foerg et al. (1998).
The initial steady state is based on data provided by Statoil, and the simulated
values are therefore to some extent normalized to hide the actual values.

All models are first built as a set of sub-models that are simulated to a steady
state before aggregated into the entire flowsheet models. The flowsheet model
is simulated to a steady state, and then saved. The simulations presented here
are initialised from these steady state models. The steady state values for the
dynamic state variables are used to produce a consistent set of initial values.

The HP steady state was used to be able to simulate from the same steady
state, for both the UV and HP models. The UV models where then initialised
from enthalpy, pressure and composition.

7.1 Test case - Sub LNG Plant

A simple case will be used to test the two solution strategies, before applying
them on the entire LNG plant. A subsection of the LNG plant is chosen for
convenience. The naming of the process units will therefore coincide with the
naming given in Appendix C. The flow sheet of the test case is given in Figure
7.1.

S25−104SF

N25−104 V25−248

N25−252V25−252 N25−266

N25−247

V25−265

N25−264

N25−251 V25−251

V25−264

+ PIC

LIC

TIDC

−

25
−

H
G

−
10

4 25−VD−115

Figure 7.1: Test Case

Figure 7.1 shows a two stream heat exchanger, 25-HG-104, a flash tank,
25-VD-115, four dynamic nodes, N25-104, N25-247 ,N25-251, N25-264,
two static pressure nodes, N25-252, N25-266, and a static flow source, S25-
104SF. It also shows five valves, and three PI controllers. The level controller,
LC, of 25-VD-115 acts on the inlet valve V25-248. The pressure controller,
PIC, controls the pressure of 25-VD-115, manipulating V25-265. The ref-
erence signal is supplied by the temperature difference controller, TIDC. The
TIDC will maintain a constant temperature difference over 25-HG-104, for



7.1. TEST CASE - SUB LNG PLANT 117

the stream between N25-104 and N25-247.

It can be seen that the liquid flow from 25-VD-115 is driven by the static
pressure of the liquid column in and under the flash tank.

To test the models, a temperature step change of 0.25 oC will be applied to the
inlet stream, S25-104SF.

7.1.1 Simulation results - Sub LNG system

A sub-system of the LNG plant is chosen and simulated with a step on the
inlet temperature. The flowsheet of this sub-system is given in Figure 7.1. This
system is partly chosen because phase transition in/discontinuities in any of the
state or state differentials not will cause integration difficulties. The simulation
will only have time defined discontinuities.

The system is simulated using the HP formulation, and using the UV formu-
lation. The UV formulation is simulated using four different integration rou-
tines/methods. The DVODPK, DASPK and LSODES codes, referenced in Sec-
tion 3.4, are used. The codes produce the same results, given the same tolerance
criteria, and therefore only the result of the DVODPK is presented. In addition
to these three codes, the self implemented 1-stage Rosenbrock method is used
to simulate the UV system.

The HP and UV Rosenbrock simulation is done using a fixed time step of 1 sec-
ond. All simulations are sampled every second, and the equation set is allowed
to change after being sampled. The integration must therefore be restarted ev-
ery second.

The error tolerance for DVODPK, DASPK and LSODES are set loose, to 10−5

(absolute) and 10−4 (relative). The split HP integration and the Rosenbrock
integration have no error control.

The system is simulated using SRK thermodynamics, and the initial steady
state is defined by Tables 7.1, 7.2, 7.3 and 7.4.



118 CHAPTER 7. SIMULATION RESULTS

Table 7.1: Initial node/flash proprieties

Name Volume Pressure Temperature Mode

[m3] [Bar] [◦C]

N25-104 4.00 20.34 10.00 DYNAMIC

N25-247 2.00 19.84 4.20 DYNAMIC

N25-251 2.00 8.47 7.08 DYNAMIC

N25-264 2.00 8.72 -6.79 DYNAMIC

25-VD-115 4.00 8.22 -6.79 DYNAMIC

N25-252 x 19.60 x STATIC

N25-266 x 7.00 x STATIC

S25-104SF x 20.34 10.00 STATIC

Tables 7.1 and 7.2 respectively show the initial state of the pressure models
and the flow models in this test case. A column is added to both tables to
indicate if the mode of the unit models is STATIC or DYNAMIC. Static nodes
are only a pressure boundary condition if, as in this case, flow is only entering.
The S25-104SF is a source flow, defined by composition, pressure, temperature
and flow.

Table 7.2: Initial flow properties

Name Flow Mode

[kg/s]

S25-104SF 141.82 STATIC

V25-252 133.30 DYNAMIC

V25-248 8.52 DYNAMIC

V25-264 10.46 DYNAMIC

V25-265 8.52 DYNAMIC

Table 7.3 gives the composition of the source flow, S25-104SF.
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Table 7.3: Composition for S25-104SF

Name Mass fraction

[kg/kg]

Methane 3.88e-4

Ethane 5.46e-1

Propane 4.50e-1

i-Butane 2.52e-3

n-Butane 1.09e-3

A sub-optimal, but stable, set of parameters is supplied to the controllers. The
parameters are given in Table 7.4.

Table 7.4: Controller parameters

Name Proportional action Integral time Set point

[sec]

TIDC -1.00 100.00 5.8

PIC -15.00 2.00 –

LIC 250.00 10.00 0.4

The HP system will have 46 ODE states and 5 pressure states. The heat ex-
changer, 25-HG-104, will have 33 ODE states, 11 for each stream, and 11 for
the wall. The four nodes will each have an enthalpy state and a pressure state.
The flash tank, 25-VD-115, will have an enthalpy, a pressure and five holdup
states. The controllers have one ODE state for the integral time each. For each
function call, 28 HP-Flash calls are executed.

The UV formulation will have 66 ODE states. 33 states are in the heat ex-
changer, and 3 states in the controller. Every node and flash tank has 6 ODE
states. For each function call, 5 UV- and 23 HP-flash calls are executed.

Figure 7.2 shows the initial state of the heat exchanger.
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Figure 7.2: Initial heat exchanger, 25-HG-104, profiles

The simulation is over 1000 seconds. All simulations start at the same steady
state. After 100 seconds the inlet temperature is stepped from 10 ◦C to 10.25
◦C.

A performance summary for all the integration routines, is given in Table 7.5.

Table 7.5: Integration routine summary

Method Simulation time Function calls RTSTR

[sec] [sec/sec]

HP 4.818 1001 207.8

Rosenbrock 12.87 1001 77.70

DASPK 22.69 2449 44.13

DVODPK 44.6 5602 22.46

LSODES 41.18 3574 24.31
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Results from the UV simulations

The level dynamics of the separation tank, 25-VD-115, are plotted in Figure
7.3. All the flow dynamics are shown in Figure 7.4 and 7.5. The pressure
dynamics of the nodes/flash are given in Figure 7.6 and 7.7. The temperature
dynamics of the nodes/flash are given in Figure 7.8 and 7.9.

The dynamics of the internal states of the heat exchanger are not plotted.
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Figure 7.3: Level in 25-VD-115
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Figure 7.4: Flows in sub LNG plant (1/2)
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Figure 7.5: Flows in sub LNG plant (2/2)
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Figure 7.6: Pressures in sub LNG plant (1/2)
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Figure 7.7: Pressures in sub LNG plant (2/2)



126 CHAPTER 7. SIMULATION RESULTS

0 100 200 300 400 500 600
9.9

10

10.1

10.2

10.3

10.4

10.5
[o C

]

[sec]

Temperature in S25−104SF

Temperature step

0 100 200 300 400 500 600
9.9

10

10.1

10.2

10.3

10.4

10.5

[o C
]

[sec]

Temperature in N25−104

DVODPK
Rosenbrock

0 100 200 300 400 500 600
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

[o C
]

[sec]

Temperature in N25−247

DVODPK
Rosenbrock

Figure 7.8: Temperatures in sub LNG plant (1/2)
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Figure 7.9: Temperatures in sub LNG plant (2/2)
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Figure 7.10: Manipulated variables
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Results from the HP simulations

The level dynamics of the flash, 25-VD-115, are plotted in Figure 7.11. All
the flow dynamics are shown in Figure 7.12 and 7.13. The pressure of the
nodes/flash are given in Figure 7.14 and 7.15. Temperature dynamics of the
nodes/flash are given in Figure 7.16 and Figure 7.17.

The dynamics of the internal states of the heat exchanger are not plotted.

The UV simulation results, using DVODPK, are plotted in the same figures as
the HP simulation results.
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Figure 7.11: Level in 25-VD-115
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Figure 7.12: Flows in sub LNG plant (1/2)
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Figure 7.13: Flows in sub LNG plant (2/2)
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Figure 7.14: Pressures in sub LNG plant (1/2)
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Figure 7.15: Pressures in sub LNG plant (2/2)
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Figure 7.16: Temperatures in sub LNG plant (1/2)
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Figure 7.17: Temperatures in sub LNG plant (2/2)
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Figure 7.18: Manipulated variables
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7.1.2 Comparison of the simulation results - Sub LNG
Plant

This sub system is not particularly difficult to integrate, but it contains a two
stream heat exchanger, a flash unit, four dynamic nodes, two static nodes, five
valves, a constant flow source and three PI controllers. That is; it contains the
most used unit models. The heat exchanger has slow dynamics, and is therefore
integrable at a reasonable speed for the defined step case.

A step in temperature is chosen because it illustrates an effect of the pressure
decoupling when using the enthalpy as a conserved property, instead of the in-
ternal energy. To show the difference between the error controlled integration,
fixed step UV and HP integration, a selection of variables is plotted in Section
7.1.1. The error controlled integration, the plot of the DVODPK integration,
is assumed to display the correct dynamic behavior of the system. Both the
1-stage Rosenbrock integration of the UV formulation and the split HP integra-
tion is therefore compared with the error controlled integration.

The error tolerance in the DVODPK/DASPK/LSODES integration is set loosely
to 10−5 absolute and 10−4 relative. Most available dynamic simulators using
split integration, are only concerned with stability and simulation time, and not
integration error. A loose error tolerance will therefore be sufficient, and show
the wanted difference in the various integration schemes.

The integrators are restarted at every sampling time. If the simulators would
be able to integrate beyond the sampling time and interpolate to the output
time, the simulation time would decrease. For the current case with only one
time event and no state events the integrators could be restarted only once. The
restart time is predefined by the time of the step change. This is not the general
case for a dynamic simulator. Typically the model equation would change at
every sample time, because of new set point to the stabilizing controllers.

The fixed step of 1.0 seconds, is chosen because it lies well within the stability
limiting time step for the HP integration. The HP integration of the full LNG
plant was stable for time steps up to about 1.5 seconds. The UV integration
was stable beyond this. A longer time step would be possible, setting larger
integral times, Ti, for the fast integrating flow controllers. The present configu-
ration uses Ti ≈ 2 seconds. Since one second is a reasonable sampling time, the
integral times for the flow controllers is kept, and the system integrated with a
fixed time step of 1.0 second.

The plots of the DVODPK and UV integration in Section 7.1.1, show a reason-
ably good fit between the two different integration schemes. Even the fast flow
dynamics is well predicted with the simple 1-stage Rosenbrock scheme. Some
dynamics are over/under predicted, and shifted slightly in time. This is due to
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a too large time step.

The plots for the DVODPK and HP integration in Section 7.1.1, show large tran-
sient differences. The final steady state is the same for both schemes/formulations.
The difference is due to the decoupling in the pressure-flow dynamics and the
other slower dynamics. This is particularly illustrated by flow 1 through 25-
HG-104, (from N25-104 to N25-247). The change in inlet temperature to
N25-104 does not affect the pressure in N25-104 in the same way as with the
UV scheme. Therefore the flow through the heat exchanger remains constant.
The other differences are mainly a consequence of this discrepancy.

7.2 The LNG plant

Several assumption and simplifications had to be made, before being able to
simulate the LNG plant with the flowsheet given in Appendix C. These choices
are summarized below.

Some of the material will define the basis for the simulation. This section will
therefore be a combined description and discussion of the LNG plant.

7.2.1 Assumptions

The volume of the process equipment is of vital importance, when describing
the dynamic behavior of a process plant. The volume sizes determine the time
constants of the dynamics. Volumes of nodes and volumes and the base area of
flash tanks are guessed.

In order to describe the heat exchangers in the process, heat transfer coeffi-
cients, heat transferring areas, wall mass, wall properties, flow cross sections
and height of the heat exchanger are selected to fit a predefined steady state
at the boundarys. Setting the flow rate, the composition of the flows, the inlet
pressure and temperatures, a set of heat exchanger parameters could be deter-
mined. The choice of these parameters determines the process dynamics.

The dynamics of the water coolers, 25-HA-104, 25-HA-111, 25-HA-112,
25-HA-113 and 25-HA-114, is assumed to be fast. The outlet temperature
of the hydrocarbon streams are therefore fixed. This implies no limits on the
seawater supply.

The equations for the compressors have some parameters. The head/flow curve
is defined through 12 points, and a design value for the compressor speed. The
polytropic efficiency is set to a default values, that is; 100% efficiency.

The polytropic efficiency of the liquid expander is set to a default value, 75%.
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The efficiencies are set to close the equation set.

To describe the flows, a composition vector with 9 components was defined.
Table 7.6 shows which components were used in the simulation of the LNG
plant.

Table 7.6: Component vector used in LNG plant simulation

Component no. Component name

1 Nitrogen

2 Methane

3 Ethane

4 Propane

5 i-Butane

6 n-Butane

7 i-Pentane

8 n-Pentane

9 n-Hexane

7.2.2 Simplification

The nodes of the HP system do not include state variables for the component
holdup. The nodes copy the composition from the inlet streams, and the outlet
streams copy the composition vector from the source node/flash tank. This ne-
glected dynamics will not be important in the simulation of the full LNG plant,
since the compositions remain constant for the MCR2 and MCR3 loop. The
composition of the NG stream and the MCR1 stream change slightly.

The MFCP process removes heavy hydrocarbons, HHC, after the first stage
pre-cooling heat exchanger, 25-HG-101-I. Figure 7.19 shows the location of
the HHC removal column. A small nitrogen removal column for the LNG is also
required. Since no column model is available, some of the effect of a column
is introduced, using the static source streams S25-142SF (positive) and S25-
148SF (negative). The stream of S25-142SF is contains light components,
while S25-148SF has the composition of the node 25-VD-107. The temper-
ature from the column top stage is assumed constant, and the heat exchanger
25-HA-X is added to ensure a fixed temperature.
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Figure 7.19: MFCP with the HHC column

The effect of the integration
with other processes is intro-
duced. Process 26 and 27 are
dummy processes, and only de-
fined through the fixed temper-
ature heat exchangers 26-HA-
001, 26-HA-002 and 27-HA-
001.

The valve flow is defined without
the density, ρ, dependency. This
simplification can be undone re-
specifying a flag for the flow units.
This will require some retuning of
the controllers, and a lot of ex-
tra simulation time. This will de-
finately change the physical de-
scription, but is not implemented,
because the simulator still can be demonstrated.

7.2.3 Process control

The control loops in the LNG plant are given in Chapter 6.

To produce the control parameters, open loop step responses were generated.
The response exhibited dynamics that are similar to first or second order dy-
namics with, time delay, overshoot, and inverse response. Using least square
fitting to parametric equations describing these dynamics, easily analyzable dy-
namic model approximations were generated. Using the fitted equations and
parameters, control parameters was guessed/calculated. The control parame-
ters were then roughly tuned until sufficiently good behavior was observed on
the closed loop system.

A common inverse response was observed when perturbing the flows used in the
temperature controllers. Increasing the cooling agent will lower the outlet tube
temperatures. But the initial response is determined by the pressure dynamics
at the shell inlet. This dynamics will dampen fast, and the major time constants
of the response will depend strongly on the choice of heat transfer coefficients
within the heat exchangers.

The HP formulation and the UV formulation use the same set of control pa-
rameters. The parameters were generated using the UV-model. This will affect
the simulation results. The plots of the UV integration will be smoother.
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7.2.4 Solver

The need for a fast simulator means fast integration. For fast integration the
evaluation time of every function call, or the number of function calls must be
at a minimum. After selecting to use the SRK EOS to describe equilibrium and
physical properties, it is given that the function calls will be time consuming.
This implies an integrator able to take large time steps. In order for the integra-
tion routine to take long steps, several approaches can be taken. Two different
methods were selected and implemented. One of the goals of this work was to
generate a simulator integrating faster than real-time, locally at all times.

First the splitting of the slow and the fast dynamics, solving the pressure flow
system separately from all other dynamics. Initially a 1-stage Rosenbrock in-
tegrator was used to solve the pressure flow system, the other dynamics where
integrated using an explicit Euler. This implementation managed a fixed time
step of approximately 0.1 seconds. Increasing the time step beyond this, the
integration became unstable, starting with wrong predictions of the compressor
flows. A time step of 0.1 seconds did not enable the simulator to run faster than
real-time, and some action had to be taken, further stabilizing the integration. A
fully implicit integration of the pressure flow dynamics was implemented. The
equations were slightly reformulated and a line search algorithm was added.
This increased the simulation time per step slightly, but it had a dramatic effect
on the stability. The integrator became stable for time steps more than ten
times larger than with only a 1-stage Rosenbrock integrator.

In the present version of the simulator the pressure flow network Jacobian is
only partly analytical if flow controllers are added to the flowsheet. The simu-
lation time of the HP formulation would improve if this Jacobian is made fully
analytical. The improvement is difficult to quantify, but the required work to
implement these Jacobian elements analytical are modest, and should therefore
be made analytical. Adding actuator dynamics would probably remove the need
to include the controller information in the Jacobian.

The second approach involved the conservation of internal energy and mass
in constant volumes. A splitting of the fast and the slow dynamics is not as
straight-forward as in the HP case. Even when neglecting the compositional
dynamics, the pressure will be a function of internal energy, and holdup. To
solve these dynamics implicitly would therefore require several flowsheet func-
tion evaluations, and the whole system of dynamic states had to be considered.
In order to make the simulator fast when integrating stiff systems, a cheap Ja-
cobian had to be produced. An analytical approach was chosen.

A 1-stage Rosenbrock was found to be the least time consuming integration,
using Jacobian information. This method was therefore implemented without
any error/step control. The method is A-stable, but can generate a step into
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a nonfeasible region (also for Jacobian with negative eigenvalues), where the
thermodynamic or unit model equations/functions do not produce results, and
the simulator can therefore crash. The method was found to be robust. The
step size was restricted by the low integral times in the flow controllers, and the
same time step as for the HP approach was chosen for the simulations. This
produced smooth data for the sub LNG plant simulation and the LNG plant
simulation.

The interest in 1-stage Rosenbrock integrator for the UV setting and the split
integration for the PH setting is simple. In many applications the dynamic sim-
ulator must guarantee a local simulation time faster than real-time. In these
cases the integration error is less important. Dealing with implicit nonlinear
equations, thermodynamics, it is impossible to guarantee real-time simulation.
The lowest RTSTR was 3.69 and 6.25, for the HP formulation and the UV for-
mulation, respectively, simulating the full LNG plant.

The three different freeware integrators, DVODPK/DASPK/LSODES, were
tested on the LNG sub-plant, Section 7.1.1, and on the full LNG plant, Section
7.2.5. The integrators worked well on the small LNG sub-plant example, but
integrated too slowly, to be useful, on the full LNG plant. The inhibiting part
of the flowsheet was some of the heat exchangers. Two possible reasons that
can cause this slow simulation were established. One was the discontinuity as-
sociated with phase transitions, and the accuracy of the Jacobian information.
The problem is not resolved for the current version of the simulator.

Used in control or as a training simulator, the flowsheet function must be evalu-
ated once more every time step. The simulation time therefore increases, relative
to the data given in Section 7.2.5. In the present version of the simulator the
flow sheet function is evaluated only at the start of a integration step, generat-
ing new ODE differentials and Jacobian entries for the integrator. The need for
updated temperatures and property values at the sampling point, will require
the simulator to evaluate the flow sheet function also before returning from a
integration step. Because the starting values for the thermodynamic functions
at the entry to a integration step, generally will be very good (no change), the
real-time ratios will be reduced approximately in the following way.

Combining the information given in Tables 7.10 and 7.11, an approximate lower
bound on RTSTR is calculated for an integrator doing two function evaluations
per time step.
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Table 7.7: Reduction in real-time simulation time ratio, (RTSTR)

Method Rel. time in func. eval. RTSTR scaling Approx. new RTSTR

[%] [-] [-]

HP < 72.2 > 0.58 (1/1.772) > 4.22

UV 63.4 > 0.61 (1/1.634) > 4.73

Calculated, using the same procedure, the local RTSTR will have a lower bound
of 2.08 and 3.82, for the HP formulation and UV formulation, respectively.

7.2.5 Simulation results - The LNG plant

The flowsheet for the entire plant is given in Appendix C. Some information
about the simulation and the plant description is given in Section 7.2.

The case simulated is a set point change for the temperature controller manip-
ulating V25-155, to maintain the set point for the node N25-155. The step
is implemented after 550 seconds, and the total time span for the simulation is
9000 seconds, Tend = 9000. If the dynamics come to a steady state before Tend,
the plotted time span is shortened.

Plots for the important and manipulated streams are shown. The dynamic re-
sponse of the controlled temperatures are also shown.

The flashes needed to be solved in every function call are tabulated in Table 7.8.
The entire LNG plant is described with ODE, network ODE and sub-model ODE

Table 7.8: Flashes per evaluation of the flowsheet function

Method Flash specification Overall

HP UV TP SP

HP 330 0 10 2 342

UV 276 54 10 2 342

variables, see Table 7.9. The network ODE variables are the dynamic pressures
of the nodes and separation tanks, and the integral part of the flow controllers.
For the HP formulation, both ODE and sub-model ODE variables are really
sub-model variables. The difference is that the sub-model ODEs are within the
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heat exchangers, and are integrated with a 1-stage Rosenbock algorithm, while
the variables referred to as ODE variable are solved using an explicit Euler for-
mulation. The network ODEs are solved using a fully implicit scheme. The

Table 7.9: Dynamic states

Method Network Sub-model ODEs solved using Total

ODEs 1-stage Rosenbrock Explicit Euler

HP 61 462 88 611

UV 0 1025 0 1025

overall PC simulation time for the 9000 second long simulation is given in Table
7.10. The real-time simulation time ratio, RTSTR, is the simulated time span
divided by the PC simulation time. If RTSTR ¿ 1, the simulation is faster than
real-time. Figures 7.20 and 7.21 shows the flow of the NG, MCR2 and the ma-

Table 7.10: Simulation time, simulating 9000 seconds

Method PC simulation time RTSTR Min local RTSTR

[sec] [sec/sec] [sec/sec]

HP 1237.6 7.27 3.69

UV 1164.1 7.73 6.25

nipulated streams of MCR1. The fixed MCR1 streams, and the MCR3 stream
are not shown.

Each plot contains a describing text, defining the plotted variable.
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Figure 7.20: HP and UV flows (1/2)
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Figure 7.21: HP and UV flows (2/2)
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Figure 7.22: HP and UV temperature plots (1/3)
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Figure 7.23: HP and UV temperature plots (2/3)
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Figure 7.24: HP and UV temperature plots (3/3)
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Figure 7.25: The manipulated and normalized compressor speed for all com-
pressors
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7.2.6 Comparison of the simulation results - The LNG
plant

The simulation results from the full LNG plant are given in the previous section,
7.2.5. The results will be discussed here.

The impact of not including the two separation columns in the LNG plant is
qualitatively huge. The large volume of columns will affect the pressure/flow
dynamics. The slow compositional dynamics will also influence the heat transfer
in the heat exchangers. The changing composition will influence the tempera-
ture profile through the heat exchanger.

The influence of not adding the two columns is so big it could be argued that
simpler models, and/or simpler thermodynamics should have been used. But
this work had the ambition to include a column model and the modelling should
be viewed in light of that.

It is seen from Table 7.9 that the UV simulation is executed with 414 dynamic
states more than the HP simulation. This is due to the neglected composition
dynamics in the HP nodes. The states of all nine components are neglected in
52 nodes. Since the HP formulation has a dynamic state for the pressure in the
54 nodes and flash tanks, the difference in ODE states is 52x9-54=414.

Table 7.10 shows that the UV formulation for the overall simulation is 6.3%
faster than the HP formulation. But the minimum local simulation speed of
the UV formulation is 1.7 times faster than the HP formulation. This minimum
RTSTR values for the HP formulation occurs under some fast dynamics in the
seconds following the setpoint change for the outlet temperature. The cause
of this low value is the increased time spent solving the implicit flow-pressure
network equations. The HP formulation is expected to simulate faster if the
Jacobian is made fully analytical.

The fact that the minimum RTSTR is larger than one for both formulations
makes them usable in real-time systems.

Looking at the plots in Figure 7.20 through 7.25, the following general trends
are seen. The HP simulated variables show an inverse peak initially after the
set point change. The dynamics described with the PH and UV formulation
show noticeable differences, before approaching approximately the same steady
state.

The initial peak in the PH formulation can be caused by several factors. The
first is the fixed time step. Reducing the time step by a factor of 10 does not
alter this initial peak, and it is therefore not believed to be an integration error.
Second, it can be related to an error in the implementation or the configuration
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of the controllers. This is thoroughly checked, and incorrect implementation is
not causing this effect. Last, it can be associated with the controller tunings.
The controllers were tuned with the UV model, and some of the dynamics have
different behavior on the HP and the UV formulations.

The differences in the simulated dynamics are caused by the decoupling of the
pressure from the energy conserved property. When integrating the pressure
with a network solver the mass conserved in the node will not always fit within
the given volume. That is; mass will not equal volume*density at all times.
This will give incorrect dynamics. The effect of changing the time step is min-
imal on the initial inverse top of the HP integration, and the integration error
is therefore not believed to be the causing effect.

7.3 Discontinuous differentials for phase change

in a node

When increasing the MCR2 flow from its initial steady state flow, the outlet
temperature MCR2 in 25-HG-102-I will increase, because the shell flow of
25-HG-102-I is constant. The node N25-122B, initially a pure liquid state,
will enter the two-phase region. The pressure in this node is 17.7-20.2 bar.
The compressibility for the liquid phase, close to the bubble point, is 0.018
(kmol/m3/bar) and the compressibility of the two-phase, at low vapor fractions
(< 10−3) , is ≈ 7.81 (kmol/m3/bar). That is; a ratio of ≈ 438.

When this change occurs, the node will allow for more flow to enter, resulting
in increased pressure. These dynamics are fast, and must be described using a
small time step. The flow in and out of N25-122B, tube streams in 25-HG-
102-I and 25-HG-102-II, is plotted vs. time in Figure 7.26. The temperature
and pressure of the node are plotted in Figure 7.27.
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Figure 7.26: MCR2 flow in 25-HG-102-I and 25-HG-102-II
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Figures 7.28 and 7.29, are a “magnification” of a shorter time span, where the
state event occurs. To simulate the phase transition with different time steps,
the process has to be saved and restarted and simulated with every time step.
The only save possibility, is a save to an ASCII file with moderate precision,
and the plots below might therefore be slightly time shifted, relative Figures
7.26 and 7.27.

The new “magnified” flow plots in Figure 7.28 are renormalized to zero at t=452,
and one at t=512. All the predicted flows are scaled using the final value, t=512,
of the simulation using the ∆t = 1.0.
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Figure 7.28: MCR2 flow in 25-HG-102-I and 25-HG-102-II
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Figure 7.29: Temperature and pressure in node between 25-HG-102-I and
25-HG-102-II, N25-122B

7.3.1 Comparison of the simulation results - Discontinu-
ities

One example of a state discontinuity is shown in Section 7.3. The effect is seen
using the UV formulation.

The effect of the discontinuity and the change in properties is best seen in Figure
7.28. The plot shows how the flow of the two heat exchangers, connecting
to the node changing phase, behaves at the phase transition. The simulation
with the 0.01 time step gives the most accurate prediction of the flow, and is
therefore used as reference for the other simulations. One unit on the y-axis is
approximately 1.0 kg/s.

The phase change at different times depending on the fixed time step time. This
variance is due to the integration error prior to the change.

The long time steps, 0.5 and 1.0, overpredict the flow dynamics. The size of the
overprediction depends on both the step time size and the node state when first
entering two phase. The volume of the node become more compressible when
the phase change from liquid to two phase. As a result of this, the inflow and
the pressure increase.

The discontinuity is best seen on the pressure plot, Figure 7.29. The time
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pressure differential is clearly discontinuous.

This effect was not observed when simulating the full LNG plant, Section 7.2.5,
but will also occur for the LNG plant under the right circumstances. The
integrator should therefore detect phase changes, and adjust the time step if an
accurate prediction is required.

7.4 Code profiling

The profiling is conducted using Microsoft PROFILE v 6.00. This is an instru-
menting profiler. The profiler generates and maps the average time spent in
every function call.

A profiling run, simulating 1000 seconds with the LNG plant configuration, with
the same temperature set point step as implemented for the simulation results
in Section 7.2.5 is done using both the UV and HP integration. The set point
is changed after 200 seconds.

The result of a profiling should give clear indications about where the model is
spending most time. These insights should indicate the overall improvement if
part of the code reduces its simulation time. It can also give an idea about the
potential of an optimal code. Table 7.11 shows the result of the profiling run.

Table 7.11: Simulation time

Method TD Plotting ODE solver Unit models

[%] [%] [%] [%]

HP 69.7 18.0 9.8 2.5

UV 60.9 26.7 9.9 2.5

The results are not accurate, but can be used in a qualitative discussion.

The time spent in four different parts of the code is considered.

• TD - Thermodynamics - mainly flash calls, but also property calls.

• Plotting - Plotting to screen, writing to file and general administration in
the main program. (Mainly plotting to screen.)

• ODE solver - Time spent in the ODE solver, but not in “TD”, “Plotting”
or “Unit models”

– HP - time spent in the Gauss LU solver and implicit integration.
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– UV - The ILU reconditioner and the GMRES solver. (Equal percent-
age spent on both functions)

• Unit models - Time spent in the unit modules, excluding the time spent
in TD and plotting.

The profiling shows that the thermodynamics dominate over the other two cat-
egories. That is; speeding up the thermodynamic calculations have the greatest
potential to reduce the overall calculation time. Several actions could improve
the time spent calculating equilibrium and properties. A first action would be
to remove unnecessary calls and multiple calls to property functions. Reim-
plementing all the flash calls using a Newton-Raphson solver instead of the
current nested loop approach would also have improved the performance. The
UV-formulation could be improved if all the implicit equations where solved
simultaneous together with the ODEs.

7.5 Further work - simulator development

This section will highlight some of the simulator deficiencies, and propose devel-
opment actions to overcome them. Some subjects have been discussed earlier,
but are restated here, to collect all comments for further work in this chapter.

The simulator only has a simple column model for the HP formulation. The
LNG plant simulated in Section 7.2.5, MFCP, has two columns. These two
columns should therefore be added to the model. A column model for both the
HP and UV formulations, with rigorous thermodynamics should therefore be
implemented.

One measure to improve the heat transfer descriptions in the heat exchanger.
This is believed to be the one of the weakest simplifications made in all the
unit models. A more realistic heat transfer coefficient is needed to give better
predictions. It is also difficult to set reasonable fixed heat transfer coefficients in
the current model. The reason for this is that the set of heat transfer coefficients
yielding the correct initial conditions is not unique. The initial conditions for a
heat exchanger will typically be; fixed flow, fixed composition, fixed inlet and
outlet temperatures and pressures. This means that the heat transfer coeffi-
cients, one for each stream, are the free variables. The outlet energy states, one
for each stream, are the desired steady state/specifications. The energy balance
must also be maintained, reducing the number of specifications by one. That
is; one heat transfer coefficient must be set and the remaining must be tuned.

Using correlations for the heat transfer still will require some tuning/scaling to
produce the initial steady state. But more realistic heat transfer coefficients,
valid over a wider range of working conditions, will be easier available.

One of the most important type of applications for a dynamic model is for control
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purposes. To make simple studies using the simulator, the state data produced
must be easily accessible. This requires an interface from an analyzing tool.
The control community at Norwegian University of Science and Technology has
a strong history using Simulink and Matlab from “The MathWorks, Inc.” To
make the model more useful such an interface should be made for the unit mod-
els as well as the entire plant configured in SEPTIC. Testing more advanced
controllers (not PI) should also be supported from the configuration file. These
controllers would not be implemented as continuous controllers as is the case
for the PI controllers already included. The output of these controllers would
therefore remain constant between the predefined sample times, and therefore
not be included in the Jacobian matrix. The inclusion of an arbitrary controller
into the Jacobian matrix is possible but not a priority task.

The PI controllers implemented in the current version of the simulator have
restrictions on the number of inputs/outputs, and the number of cascade levels.
Two inputs and one output is supported. The sign of the two input signals can
be manipulated. Only one cascade level is supported. This is restrictive and
troublesome when configuring a process, and the simulator should be extended
to handle multiple inlets and outlets. The need to include support for addi-
tional cascade levels is questionable, since the outer loops of cascade need to be
slower than the inner loops. The outer loops therefore could be added without
interfering with the Jacobian entries.

Today some fixed model parameters are recalculated at startup. The restarting
point of a simulation, ended at steady state, will drift slightly away from the
steady state before returning. This is time consuming and unnecessary, and
should be improved. An example of a recalculated property is the compression
factor for the compressor equations.

For the UV formulation a large integration error was observed when the phase
changed from liquid to two-phase in a node. Similar effects might appear other-
wise at phase change state events. To prevent a large error in the integration, an
integrator able to track the phases, and reduce the time step when such phase
changes should be implemented.

The HP formulation only utilize a partly analytical pressure-flow Jacobian in the
present version . The Jacobian elements in the pressure flow network depending
on the integral parts in the flow controllers are generated through perturbation.
At the same time the pressure controllers, manipulating flow, are neglected from
the implicit pressure integration, and integrated with a forward Euler scheme.
To speed up the HP simulations, controllers with measured flow or pressure,
manipulating flow should be included in the Jacobian for the pressure flow sys-
tem, and generate analytical entries.

The thermodynamic implementation is far from optimal. The major opportu-
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nity for improvement is to remove unnecessary property/function calls. In the
present version of the code, the Jacobian for the flash system is not reused when
calculating the linearization along equilibrium. The result is excess calls to the
fugacity and property functions (enthalpy and density). A conversion of the
Fortran code thermodynamics library, TPLIB, to C/C++ would simplify the
further optimization of the code, easing the memory handling.

The implementation of the simulator permits parallelization of the code. The
unit operations can be calculated independently of each other, and the GMRES
algorithm also can be solved in parallel, see Sosonkina, Allison, and Watson
(1998), for example. Therefore, if desired, the simulator could utilize multiple
CPU’s.





Chapter 8

Conclusions

A general purpose dynamic process simulator is implemented and tested. The
principles of mass and energy conservation, are used in combination with a
simplified quasi-steady state momentum equation to govern the process ODE
equations. The simulator is configured and tested on the MFCP NG liquefac-
tion plant.

Two model approaches is used. One approach conserves energy in an enthalpy
state, and the other conserves internal energy. The two methods are referred
to as the HP formulation and UV formulation. The HP formulation defines
a dynamic state for the pressure, and splitting the integration of the fast and
slow dynamics. The pressure state and the algebraic flow relations are solved
with a fully implicit Euler scheme, while the internal unit model equation is
solved with tailormade integration routines. The UV formulation, utilizing an
analytical Jacobian, is integrated using both a 1-stage Rosenbrock and freeware
BDF codes.

Unit models for tanks/pipes, separation tanks, valves, liquid expanders, pumps,
compressors, heat exchangers, and PI controllers are described using rigorous
thermodynamics. Equilibrium is assumed, and equilibrium and physical proper-
ties are predicted with the SRK or the PR EOS. In order for the UV formulation
to generate an analytical Jacobian the equilibrium is linearized in dynamic state
variables, to produce differentials in the internal flash equations.

The simulator is tested on a portable Zepto Z-Note 4100 with a 1.7Ghz Intel
Pentium M (Centrino) processor and 1GB of DDR ram. The integration speed
is defined through the Real Time Simulation Time Ratio, RTSTR.

The freeware BDF integrators DVODPK, DASPK and LSODES are tested on
the entire MFCP plant, but do not integrate the plant with a usable RTSTR. A
modified sub-plant of the MFCP is therefore used to test the BDF integrators.
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The 1-stage Rosenbrock UV formulation and the HP formulation are compared
with the results from the BDF test. All three BDF integrators generate the same
output, and the 1-stage Rosenbrock show similar dynamics. The HP formula-
tion produces different dynamics. The dynamic results of the UV formulation
are believed to be most correct, since the formulation is physically more correct
than the HP formulation.

The full MFCP LNG plant is simulated with a fixed time step of 1.0 seconds, for
both the HP and UV formulations. The UV formulation use the 1-stage Rosen-
brock method. The case is a set point step for the LNG temperature controller.
The plant is simulated from t=0 to t=9000 seconds. The major dynamics for
the process are sampled every second, and plotted. The average performance,
RTSTR, of the HP and UV formulation is 7.27 and 7.73 respectively. The lo-
cal performance of the UV formulation proved better than the HP formulation.
The minimum local RTSTR of the HP formulation was 3.69 while the UV for-
mulation integrated at 6.25. The HP and UV formulations gave significantly
different dynamic predictions.

The major deficiencies in the current version of the simulator, is the lack of the
column model. In order to describe general process plants, the simulator needs
a unit model describing column dynamics.

Profiling of the code shows an approximately percentage time spent in the ther-
modynamics of 70 and 61 for the HP and UV simulation.

The dynamic simulators in the industry today are typically using a HP for-
mulation, as described here, with precalculated thermodynamic data stored in
look-up tables. The simulations of the full LNG plant show that simulators, uti-
lizing EOS equilibrium descriptions, SRK and PR, soon will be able to compare
with modern industrial simulators. A simulator conserving internal energy in-
stead of enthalpy and calculating thermodynamic properties during integration
will give a better dynamic process description than HP network simulators.
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Appendix A

Thermodynamics

The set definitions in Section 4.1, will be used in this appendix.

A.1 The variables and equations describing the
equilibrium

The variables:

Nzi i ∈ SNC (NC) (A.1)
zi i ∈ SNC (NC) (A.2)
NV,i i ∈ SNC (NC) (A.3)
NL,i i ∈ SNC (NC) (A.4)
T (1) (A.5)
P (1) (A.6)
s1 (1) (A.7)
s2 (1) (A.8)

(4NC + 4)

The equations:

zi = NV,i +NL,i, i ∈ SNC (NC) (A.9)
gi = gi(NV,j, NL,j, T, P ), i and j ∈ SNC (NC) (A.10)
ci = ci(NV,j, NL,j, T, P ), i ∈ {1, 2} j ∈ SNC (2) (A.11)

zi =
Nz,i

NC∑
j=1

Nz,j

, i ∈ SNC (NC) (A.12)

(3NC + 2)
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The functions, ci, are general flash specifications equations, and si are general
specifications.

Specifying the overall composition, s1 and s2, gives an solvable set of equations.
The general problem is formulated in the following way.

F(X) =

⎡
⎢⎢⎢⎢⎢⎣

g1
...

gNC

c1
c2

⎤
⎥⎥⎥⎥⎥⎦ = 0, X =

⎡
⎢⎢⎢⎢⎢⎣

NV,1

...
NV,NC

lnT
lnP

⎤
⎥⎥⎥⎥⎥⎦ (A.13)

The specifications are given by Michelsen and Mollerup (1998). The specifi-
cations are given in dimensionless form, and two sets are shown in Table A.1.

Table A.1: Flash specifications and state functions

Specifications State functions

rT rP

(U,V) 1
RT (Uspec + PV spec −H) P

RT (V − V spec)

(H,P) 1
RT (Hspec −H) -

A.2 UV-flash

A.2.1 Newton - Raphson approach

The UV-Flash using a Newton based approach. The formulation is a first order
linearization of Equation A.13.⎛

⎝ M1,g gT gP

gT
T ETT ETP

gT
P ETP EPP

⎞
⎠
⎛
⎝ ∆NV

∆lnT
∆lnP

⎞
⎠+

⎛
⎝ g

c1 = rT
c2 = rP

⎞
⎠ = 0 (A.14)

The deviation vector is:

gi = lnyi + lnfV,i(NV, T, P ) − lnxi − lnfL,i(NL, T, P ) (A.15)

For the UV-Flash we use the following functions:

rT =
1
RT

(
Uspec + PV spec −H

)
(A.16)
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rP =
P

RT

(
V − V spec

)
(A.17)

The differentials are given as follows:

Mi,g,ij =
(

∂gi

∂NV,j

)
T,P,NV,k

, i ∈ SNC , j ∈ SNC , k ∈ SNC,j

gT,i =T
((

∂lnfV,i

∂T

)
P,NV

−
(
∂lnfL,i

∂T

)
P,NL

)
, i ∈ SNC

gP,i =P
((

∂lnfV,i

∂P

)
T,NV

−
(
∂lnfL,i

∂P

)
T,NL

)
, i ∈ SNC

ETT = − CP

R
, ETP =

P

R

(
∂V

∂T

)
P,NV

, EPP =
P 2

RT

(
∂V

∂P

)
T,NV

(A.18)

Here:

CP =
(
∂H

∂T

)
P,NV

(A.19)

V =
NV

ρV
+
NZ −NV

ρL
(A.20)

(
∂V

∂T

)
P,NV

= −NV

ρ2
V

(
∂ρV

∂T

)
P,NV

− NZ −NV

ρ2
L

(
∂ρL

∂T

)
P,NL

(A.21)

(
∂V

∂P

)
T,NV

= −NV

ρ2
V

(
∂ρV

∂P

)
T,NV

− NZ −NV

ρ2
L

(
∂ρL

∂P

)
T,NL

(A.22)

Note that since the overall composition is specified, the following holds:

NV constant ⇔ NL constant (A.23)

Writing out the terms:

dlnT = 1
T dT dlnP = 1

P dP (A.24)(
∂rT
∂lnT

)
P,NV

=
∂

∂lnT

(
Uspec + PV spec −H

RT

)
P,NV

=
T

R

∂

∂T

(
Uspec + PV spec −H

T

)
P,NV

=
T

R

(
− 1
T

(
∂H

∂T

)
P,NV

+
H − Uspec − PV spec

T 2

)

=
1
R

(
−
(
∂H

∂T

)
P,NV

+
H − Uspec − PV spec

T

)

≈ − 1
R

(
∂H

∂T

)
P,NV

(A.25)
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(
∂rT
∂lnP

)
T,NV

=
∂

∂lnP

(
PV spec

RT
− H

RT

)
T,NV

=
P

TR

∂

∂P

(
PV spec −H

)
T,NV

=
P

RT

(
V spec −

(
∂H

∂P

)
T,NV

)

=
P

RT

(
V spec − V + T

(
∂V

∂T

)
P,NV

)

≈ P

R

(
∂V

∂T

)
P,NV

(A.26)

(
∂rT
∂NV,i

)
P,T,NV,j

=
∂

∂NV,i

(
− H

RT

)
P,T,NV,j

= − 1
RT

(
∂H

∂NV,i

)
P,T,NV,j

,

i ∈ SNC , j ∈ SNC,i

(A.27)

(
∂rP
∂lnT

)
P,NV

=
∂

∂lnT

(
P (V − V spec)

RT

)
P,NV

=
PT

R

∂

∂T

(
V − V spec

T

)
P,NV

=
PT

R

(
1
T

(
∂V

∂T

)
P,NV

− V − V spec

T 2

)

=
P

R

((
∂V

∂T

)
P,NV

− V − V spec

T

)

≈ P

R

(
∂V

∂T

)
P,NV

(A.28)

(
∂rP
∂lnP

)
T,NV

=
∂

∂lnP

(
P (V − V spec)

RT

)
T,NV

=
P

TR

∂

∂P

(
P (V − V spec)

)
T,NV

=
P

RT

(
V − V spec + P

(
∂V

∂P

)
T,NV

)

≈ P 2

RT

(
∂V

∂P

)
T,NV

(A.29)
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(
∂rP
∂NV,i

)
P,T,NV,j

=
∂

∂NV,i

(
PV

RT

)
P,T,NV,j

=
P

RT

(
∂V

∂NV,i

)
P,T,NV,j

,

i ∈ SNC , j ∈ SNC,i

(A.30)

(
∂gi

∂lnT

)
P,NV

=
∂

∂lnT

(
lnfV,i − lnfL,i

)
P,NV

= T

((
∂lnfV,i

∂T

)
P,NV

−
(
∂lnfL,i

∂T

)
P,NL

) (A.31)

(
∂gi

∂lnP

)
T,NV

=
∂

∂lnP

(
lnfV,i − lnfL,i

)
T,NV

= P

((
∂lnfV,i

∂P

)
T,NV

−
(
∂lnfL,i

∂P

)
T,NV

) (A.32)

(
∂gi

∂NV,j

)
P,T,NV,k

=
∂

∂NV,j

(
lnyi + lnfV,i − lnxi − lnfL,i

)
P,T,NV,k

=
1
yi

(
∂yi

∂NV,j

)
P,T,NV,k

+
(
∂lnfV,i

∂NV,j

)
P,T,NV,k

+
1
xi

(
∂xi

∂NL,j

)
P,T,NV,k

+
(
∂lnfL,i

∂NL,j

)
P,T,NV,k

,

i ∈ SNC , j ∈ SNC , k ∈ SNC,j

(A.33)

It is shown by Michelsen and Mollerup (1998) that the following two relations
hold, and the matrix generation is simplified.

(
∂rT
∂NV,i

)
P,T,NV,j

=
(
∂gi

∂lnT

)
P,NV

, i ∈ SNC , j ∈ SNC,i (A.34)

(
∂rP
∂NV,i

)
P,T,NV,j

=
(
∂gi

∂lnP

)
T,NV

, i ∈ SNC , j ∈ SNC,i (A.35)

A.2.2 The nested loop approach.

To guarantee convergence of the UV-Flash, it must be combined with a nested
loop iteration. An objective function is formulated:

Q =
1
T

(
G− Uspec − PV spec

)
(A.36)

The outer loop variables are given in equation A.37.

x =
[
T
P

]
(A.37)
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(
∂Q
∂T

)
P,z

= − 1
T S − 1

T 2

(
G− Uspec − PV spec

)

= − 1
T 2 TS − 1

T 2

(
H − TS − Uspec − PV spec

)

= − 1
T 2

(
H − Uspec − PV spec

) (A.38)

(
∂Q
∂P

)
T,z

= 1
T

((
∂G
∂P

)
T,z

− V spec

)

= 1
T

(
V − V spec

) (A.39)

(
∂2Q
∂T 2

)
P,z

= 2
T 3

(
H − Uspec − PV spec

)
− 1

T 2

(
∂H
∂T

)
P,z

(A.40)(
∂2Q
∂P 2

)
T,z

= 1
T

(
∂V
∂P

)
T,z (A.41)

(
∂2Q

∂P∂T

)
= − 1

T 2

(
V − V spec

)
+ 1

T

(
∂V
∂T

)
P,z

(A.42)

We need to evaluate the following differentials along the equilibrium.(
∂H
∂T

)
P,z

=
(

∂hV

∂T

)
P,y

+
(

∂hL

∂T

)
P,x

+
∑
j

((
∂hV

∂NV,j

)
T,P,y

−
(

∂hL

∂NL,j

)
T,P,x

)(
∂NV,j

∂T

)
P,z

(A.43)

(
∂V
∂T

)
P,z

=
(

∂V V

∂T

)
P,y

+
(

∂V L

∂T

)
P,x

+
∑
j

((
∂V V

∂NV,j

)
T,P,y

−
(

∂V L

∂NL,j

)
T,P,x

)(
∂NV,j

∂T

)
P,z

(A.44)

(
∂V
∂P

)
T,z

=
(

∂V V

∂P

)
T,y

+
(

∂V L

∂P

)
T,x

+
∑
j

((
∂V V

∂NV,j

)
T,P,y

−
(

∂V L

∂NL,j

)
T,P,x

)(
∂NV,j

∂P

)
T,z

(A.45)

The gradient: ⎡
⎣
(

∂Q
∂T

)
(

∂Q
∂P

)
⎤
⎦ = 1

T

⎡
⎣ − 1

T

(
H − Uspec − PV spec

)
V − V spec

⎤
⎦ (A.46)

The Hessian:⎡
⎣
(

∂2Q
∂T 2

) (
∂2Q

∂T∂P

)
(

∂2Q
∂P∂T

) (
∂2Q
∂P 2

)
⎤
⎦ =

1
T 2

⎡
⎣ 2

T

(
H − Uspec − PV spec

)
− (∂H

∂T

)
P,z

V spec − V + T
(

∂V
∂T

)
P,z

V spec − V + T
(

∂V
∂T

)
P,z

T
(

∂V
∂P

)
T,z

⎤
⎦
(A.47)
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Michelsen and Mollerup (1998) states that the overall problem is indefinite.
Splitting the problem into two subproblems as described above, will give an
iteration in two convex problems, that always will converge.

That means that the eigenvalues of the Hessian are both negative. To have two
negative eigenvalues, the Hessian elements must satisfy the following relations.(

∂2Q
∂T 2

)
+
(

∂2Q
∂P 2

)
< 0(

∂2Q
∂T 2

) (
∂2Q
∂P 2

)
−
(

∂2Q
∂T∂P

)2

> 0
(A.48)

Neglecting the deviation terms in the Hessian we get the following:⎡
⎣
(

∂2Q
∂T 2

) (
∂2Q

∂T∂P

)
(

∂2Q
∂P∂T

) (
∂2Q
∂P 2

)
⎤
⎦ =

[
− 1

T 2

(
∂H
∂T

)
P,z

1
T

(
∂V
∂T

)
P,z

1
T

(
∂V
∂T

)
P,z

1
T

(
∂V
∂P

)
T,z

]
(A.49)

For this Hessian the first condition is clearly satisfied:(
∂2Q
∂T 2

)
< 0,

(
∂2Q
∂P 2

)
< 0 ⇒

(
∂2Q
∂T 2

)
+
(

∂2Q
∂P 2

)
< 0 (A.50)

The second condition would hold if the following two conditions hold:

abs
[(

∂2Q

∂T 2

)]
> abs

[(
∂2Q

∂T∂P

)]

abs
[(

∂2Q

∂P 2

)]
> abs

[(
∂2Q

∂T∂P

)] (A.51)

This cannot be shown generally, and therefore the eigenvalues of the Hessian
must be checked and corrected, to provide a descent Newton search direction.

First we solve the outer loop problem. The problem can be solved by repeatedly
solving the convex problem defined above. That is; an unconstrained (∗) convex
optimization of a nonlinear system in two variables. A SQP approach with line-
search is chosen. The inner loop is a PT-Flash. The formal problem description
is:

Min
T,P

Q∗ = −Q(T, P )

St. T > 0
P > 0

(A.52)

The equation set can be treated as non-constrained, since the solution in prac-
tice never will lie on the boundary of T and P. Formulate the Newton search
direction.

Q∗(xk + p) ≈ Q∗
k + pT∇Q∗

k + 1
2p

T∇2Q∗
kp = mk(p) (A.53)

Min
p

mk(p), ∇mk(p) = ∇
(
Q∗

k + pT∇Q∗
k + 1

2p
T∇2Q∗

kp

)
= 0

∇Q∗
k + 1

2p
T∇2Q∗

k + 1
2∇2Q∗

kp = 0
(A.54)
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Using the symmetry: (
pT∇2Q∗

k

)T

= ∇2Q∗T
k p = ∇2Q∗

kp (A.55)

pN
k = −∇2Q∗−1

k ∇Q∗
k = −∇2Q−1

k ∇Qk (A.56)
Writing out pk:

pN
k = − 1(

∂2Q

∂T2

)(
∂2Q

∂P2

)
−
(

∂2Q
∂T ∂P

)2

⎡
⎣
(

∂2Q
∂P 2

)
−
(

∂2Q
∂P∂T

)
−
(

∂2Q
∂T∂P

) (
∂2Q
∂T 2

)
⎤
⎦
⎡
⎣
(

∂Q
∂T

)
(

∂Q
∂P

)
⎤
⎦

= − 1(
∂2Q

∂T2

)(
∂2Q

∂P2

)
−
(

∂2Q
∂T ∂P

)2

⎡
⎣
(

∂2Q
∂P 2

) (
∂Q
∂T

)
−
(

∂2Q
∂P∂T

) (
∂Q
∂P

)
−
(

∂2Q
∂T∂P

) (
∂Q
∂T

)
+
(

∂2Q
∂T 2

) (
∂Q
∂P

)
⎤
⎦
(A.57)

We demand that the step satisfies the Wolfe condition, see Nocedal and Wright
(1999), that is;

Q∗(xk + αkpk) ≤ Q∗(xk) + c1αk∇Q∗T
k pk (a)

∇Q∗(xk + αkpk)T pk ≥ c2∇Q∗T
k pk (b) (A.58)

Due to the evaluation cost relation between the function evaluation, and the
differential evaluation, only a simple line search is used. A backtracking algo-
rithm that must satisfy only the first Wolfe criterion is used. The parameters
chosen are α0 = 1, c1 = 0.001 the backtracking parameter is set to 0.75.

A.3 Linearizations

The equations describing the equilibrium are given in Section A.1. The intention
here is to use these equations to get the implicitly defined partial differentials of
the internal flash variables with respect to specification variables. The equations
used are restated for readability.

The internal flash variables are defined in Equation A.59.

X =

⎡
⎢⎢⎢⎢⎢⎣

NV,1

...
NV,NC

lnT
lnP

⎤
⎥⎥⎥⎥⎥⎦ (A.59)

The specification variables are given in Equation A.60.

S =

⎡
⎢⎢⎢⎢⎢⎣

N∗
z1
...

N∗
zNC

s1
s2

⎤
⎥⎥⎥⎥⎥⎦ (A.60)
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Some auxiliary vectors are defined in Equation A.61.

Ŝ =

⎡
⎢⎢⎢⎢⎢⎣

z1
...

zNC

s1
s2

⎤
⎥⎥⎥⎥⎥⎦ , z =

⎡
⎢⎣

z1
...

zNC

⎤
⎥⎦ , N∗

z =

⎡
⎢⎣

N∗
z1
...

N∗
zNC

⎤
⎥⎦ , s =

[
s1
s2

]

(A.61)
The asterisk notation means normalized mole numbers. The definition is given
in Equation A.62.

NC∑
j=1

N∗
zj

= 1, that is; N∗
zj

=
Nzj

NC∑
j=1

Nzj

(A.62)

The asterisk superscript indicates that the molar content is a scaled value, and
the vector elements sum to one.

The function vector describing the flash was defined in Equation A.13, given a
set of specifications. The function is restated in Equation A.63.

F(X) =

⎡
⎢⎢⎢⎢⎢⎣

g1
...

gNC

c1
c2

⎤
⎥⎥⎥⎥⎥⎦ (A.63)

The internal flash variables depend on the flash specifications, and therefore X =
X(S). The relation between the phase normalized holdup and the composition
is:

z = NV + NL (A.64)

Equation A.64 is used to substitute NL out of the flash system, Equation A.63.
The flash equations is therefore also a function of Ŝ = Ŝ(S).

The equilibrium is then described in the following form:

F(S) =F(X(S), Ŝ(S)) =

⎡
⎢⎢⎢⎢⎢⎣

g1(X(S), Ŝ(S))
...

gNC(X(S), Ŝ(S))
c1(X(S), Ŝ(S))
c2(X(S), Ŝ(S))

⎤
⎥⎥⎥⎥⎥⎦ , (A.65)
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The direct linearization of F around X0, Ŝ0 = X(S0), Ŝ(S0) yield Equation
A.66, using the chain rule of differentiation.

F(S) ≈G(S) = F(S0) + ∇SFT
S0

∆S

∇SFT
S0

=∇XFT
S0
∇SXT + ∇ŜF

T
S0
∇SŜT

(A.66)

Where ∇XFT is recognized as the Jacobian matrix used in the internal solution
of the flash problem. ∇SXT is the wanted differential solution matrix. The
entries of both ∇XFT and ∇ŜF

T are shown below. The ∇SŜT is given below
in Equation A.67.

∇SŜT =
[ ∇N∗

z
zT 0

∇N∗
z
sT I2

]
(A.67)

It is seen from Equation A.66, that if the first order Taylor expansion is per-
formed in an equilibrium point, that ∇SFT

S0
should be a zero matrix. This is

shown in Equation A.68 and Equation A.69.

G(S) = F(S0) + ∇SFT
S0

∆S = ∇SFT
S0

∆S (A.68)

Requiring the linear function to be zero, for all changes in S.

G(S) = ∇SFT
S0

∆S = 0 ⇒ ∇SFT
S0

= 0 (A.69)

This gives the following relation for ∇SXT :

∇SXT = −(∇XFT
S0

)−1∇ŜFT
S0
∇SŜT (A.70)

The linearization matrices are given new names in Equation A.71.

G(S) =(M1N1 + M2N2)∆S

M1 =∇XFT
S0
, N1 = ∇SXT , M2 = ∇ŜF

T
S0
, N2 = ∇SŜT

(A.71)

The form of the four matrices in Equation A.71 matrices are stated below.
All matrices are square with dimension NC+2. The derivation of the matrices
entries will be shown afterwards.

M1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂g1

∂NV,1

)
T,P,NV,j

. . .
(

∂g1
∂NV,NC

)
T,P,NV,j

(
∂g1

∂lnT

)
P,NV

(
∂g1

∂lnP

)
T,NV

...
...

...
...

...(
∂gNC

∂NV,1

)
T,P,NV,j

. . .
(

∂gNC

∂NV,NC

)
T,P,NV,j

(
∂gNC

∂lnT

)
P,NV

(
∂gNC

∂lnP

)
T,NV(

∂c1
∂NV,1

)
T,P,NV,j

. . .
(

∂c1
∂NV,NC

)
T,P,NV,j

(
∂c1

∂lnT

)
P,NV

(
∂c1

∂lnP

)
T,NV(

∂c2
∂NV,1

)
T,P,NV,j

. . .
(

∂c2
∂NV,NC

)
T,P,NV,j

(
∂c2

∂lnT

)
P,NV

(
∂c2

∂lnP

)
T,NV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

j ∈ SNC,p

(A.72)
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N1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂NV,1
∂Nz1

)
s,Nzj

. . .
(

∂NV,1
∂NzNC

)
s,Nzj

(
∂NV,1
∂s1

)
s2,Nz

(
∂NV,1

∂s2

)
s1,Nz

...
...

...
...

...(
∂NV,NC

∂Nz1

)
s,Nzj

. . .
(

∂NV,NC

∂NzNC

)
s,Nzj

(
∂NV,NC

∂s1

)
s1,Nz

(
∂NV,NC

∂s2

)
s1,Nz(

∂lnT
∂Nz1

)
s,Nzj

. . .
(

∂lnT
∂NzNC

)
s,Nzj

(
∂lnT
∂s1

)
s2,Nz

(
∂lnT
∂s2

)
s1,Nz(

∂lnP
∂Nz1

)
s,Nzj

. . .
(

∂lnP
∂NzNC

)
s,Nzj

(
∂lnP
∂s1

)
s2,Nz

(
∂lnP
∂s2

)
s1,Nz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, j ∈ SNC,p

(A.73)

M2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂g1
∂z1

)
s1,s2,zj

. . .
(

∂g1
∂zNC

)
s1,s2,zj

0 0

...
...

...
...

...(
∂gNC

∂z1

)
s1,s2,zj

. . .
(

∂gNC

∂NL,NC

)
s1,s2,zj

0 0(
∂c1
∂z1

)
s1,s2,zj

. . .
(

∂c1
∂zNC

)
s1,s2,zj

(
∂c1
∂s1

)
s2,z

(
∂c1
∂s2

)
s1,z(

∂c2
∂z1

)
s1,s2,Nj

. . .
(

∂c2
∂zNC

)
s1,s2,Nj

(
∂c2
∂s1

)
s2,z

(
∂c2
∂s2

)
s1,z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

j ∈ SNC,p

(A.74)

N2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂z1

∂Nz1

)
Nzj

. . .
(

∂z1
∂NzNC

)
Nzj

0 0

...
...

...
...

...(
∂zNC

∂Nz1

)
Nzj

. . .
(

∂zNC

∂NzNC

)
Nzj

0 0(
∂s1

∂Nz1

)
Nzj

. . .
(

∂s1
∂NzNC

)
Nzj

1 0(
∂s2

∂Nz1

)
Nzj

. . .
(

∂s2
∂NzNC

)
Nzj

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

j ∈ SNC,p

(A.75)

Sub-matrices in the linearization

For reference the matrices M1, M2, and N2 are defined to have the following
sub-matrices.

M1 =

⎡
⎣ M1,g gT gP

cT
1,Nz

c1,T c1,P

cT
2,Nz

c2,T c2,P

⎤
⎦ (A.76)

M2 =

⎡
⎣ M2,g 0 0

cT
1,l,Nz

c11 c12
cT
2,l,Nz

c21 c22

⎤
⎦ (A.77)
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N2 =

⎡
⎣ N2,g 0 0

sT1 1 0
sT2 0 1

⎤
⎦ (A.78)

A.3.1 The matrix entries

The M1 and M2 matrice entries are derived below. First the differentials for
Gibbs functions are derived. Thereafter the flash specifications are differenti-
ated. Both specification sets given in Table A.1 are differentiated. If one of the
flash specifications is P or T, the entire system must be reduced accordingly,

Temperature partial differentials of the Gibbs functions

The relation dNV = −dNL is used.(
∂gi

∂lnT

)
P,Nz

=

(
1

NV,i
+

1
NL,i

)(
∂NV,i

∂lnT

)
P,Nz,j

−
(

1
NV

+
1
NL

)∑
l

(
∂NV,l

∂lnT

)
P,Nz,j

+
∑

l

((
∂ln fV,i

∂NV,l

)
T,P,NV,k

+
(
∂ln fL,i

∂NL,l

)
T,P,NV,k

)(
∂NV,l

∂lnT

)
P,Nz

+
(
∂ln fV,i

∂lnT

)
P,NV,l

−
(
∂ln fL,i

∂lnT

)
P,NL,l

,

i ∈ SNC , l ∈ SNC , k ∈ SNC,l, j ∈ SNC

(A.79)

This can then be assigned the sub-matrices in Equation A.76.

gT,i = −
(
∂ln fV,i

∂lnT

)
P,NV,l

+
(
∂ln fL,i

∂lnT

)
P,NL,l

, i ∈ SNC , l ∈ SNC (A.80)

Off-diagonal entries:

M1,g,i,j = −
(

1
NV

+
1
NL

)
+
(
∂ln fV,i

∂NV,j

)
T,P,NV,k

+
(
∂ln fL,i

∂NL,j

)
T,P,NV,k

, i, j ∈ SNC , j �= i, k ∈ SNC,j

(A.81)

Diagonal entries:

M1,g,i,i =

(
1

NV,i
+

1
NL,i

)
−
(

1
NV

+
1
NL

)

+
(
∂ln fV,i

∂NV,i

)
T,P,NV,k

+
(
∂ln fL,i

∂NL,i

)
T,P,NV,k

,

i ∈ SNC , k ∈ SNC,i

(A.82)
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Pressure partial differentials of the Gibbs functions

The relation dNV = −dNL is used.

(
∂gi

∂lnP

)
T,Nz

=

(
1

NV,i
+

1
NL,i

)(
∂NV,i

∂lnP

)
T,Nz,j

−
(

1
NV

+
1
NL

)∑
l

(
∂NV,l

∂lnP

)
T,Nz,j

+
∑

l

((
∂ln fV,i

∂NV,l

)
T,P,NV,k

+
(
∂ln fL,i

∂NL,l

)
T,P,NV,k

)(
∂NV,l

∂lnP

)
T,Nz

+
(
∂ln fV,i

∂lnP

)
T,NV,l

−
(
∂ln fL,i

∂lnP

)
T,NL,l

,

i ∈ SNC , l ∈ SNC , k ∈ SNC,l, j ∈ SNC

(A.83)

The other terms restate the elements of M1,g.

gP,i = −
(
∂ln fV,i

∂lnP

)
T,NV,l

−
(
∂ln fL,i

∂lnP

)
T,NL,l

, i ∈ SNC , l ∈ SNC (A.84)

Compositional partial differentials of the Gibbs functions

The relation dNV + dNL = dz is used.

(
∂gi

∂Nz,j

)
T,P,Nz,m

=

(
1

NV,i
+

1
NL,i

)(
∂NV,i

∂Nz,j

)
T,P,Nz,m

−
(

1
NV

+
1
NL

)∑
l

(
∂NV,l

∂Nz,j

)
T,P,Nz,m

+
∑

l

((
∂ln fV,i

∂NV,l

)
T,P,NV,k

+
(
∂ln fL,i

∂NL,l

)
T,P,NV,k

)(
∂NV,i

∂Nz,l

)
T,P,Nz,m

− 1
NL,i

(
∂zi

∂Nz,j

)
Nz,m

−
∑

l

(
∂ln fL,i

∂NL,l

)
T,P,NV,k

(
∂zl

∂Nz,j

)
Nz,m

,

i ∈ SNC , j ∈ SNC,i, l ∈ SNC ,

k ∈ SNC,l, m ∈ SNC,j

(A.85)

Off-diagonal entries:

M2,g,i,j = −
(
∂ln fL,i

∂NL,j

)
T,P,NV,k

i ∈ SNC , k ∈ SNC,j (A.86)



182 APPENDIX A. THERMODYNAMICS

Diagonal entries:

M2,g,i,i = − 1
NL,i

−
(
∂ln fL,i

∂NL,i

)
T,P,NV,l

, i ∈ SNC , l ∈ SNC,i (A.87)

Temperature differentials of the flash specifications functions

(
∂rT,(U,V )

∂lnT

)
P,Nz

= − 1
R

(
∂H

∂T

)
P,Nz

=
(
∂rT,(H,P )

∂lnT

)
P,Nz

(A.88)

Writing out the differential, and using the relations developed in Section A.2.1.

− 1
R

(
∂H

∂T

)
P,Nz

= − 1
RT

∇NV ·H
(
∂NV

∂lnT

)
P,Nz

− 1
R

(
∂H

∂T

)
P,NV

=gT
T

(
∂NV

∂lnT

)
P,Nz

+ ETT

(A.89)

(
∂rP,(U,V )

∂lnT

)
P,Nz

=
P

R

(
∂V

∂T

)
P,Nz

=
P

RT
∇NV · V

(
∂NV

∂lnT

)
P,Nz

+
P

R

(
∂V

∂T

)
P,NV

=gP
T

(
∂NV

∂lnT

)
P,Nz

+ ETP

(A.90)

Pressure differentials of the flash specifications functions

The pressure differential of the HP-system is not needed, since the pressure is
known.(

∂rT,(U,V )

∂lnP

)
T,Nz

=
1
RT

(
∂ (PV spec −H)

∂lnP

)
T,Nz

= − 1
RT

∇NV ·H
(
∂NV

∂lnP

)
T,Nz

+
P

R

(
∂V

∂T

)
P,NV

=gT
T

(
∂NV

∂lnP

)
T,Nz

+ ETP

(A.91)

(
∂rP,(U,V )

∂lnP

)
T,Nz

=
P 2

RT

(
∂V

∂P

)
T,Nz

=
P

RT
∇NV · V

(
∂NV

∂lnP

)
T,Nz

+
P 2

RT

(
∂V

∂P

)
T,NV

=gP
T

(
∂NV

∂lnP

)
T,Nz

+ EPP

(A.92)
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Compositional differentials of the flash specifications functions

(
∂rT,(U,V )

∂Nz,i

)
T,P,Nz,j

= − 1
RT

(
∂H

∂Nz,i

)
T,P,Nz,j

=
(
∂rT,(H,P )

∂Nz,i

)
T,P,Nz,j

,

i ∈ SNC , j ∈ SNC,i

(A.93)

− 1
RT

(
∂H

∂Nz,i

)
T,P,Nz,j

= − 1
RT

∇NV ·H
(
∂NV

∂Nz,i

)
T,P,Nz,j

=gT
T

(
∂NV

∂Nz,i

)
T,P,Nz,j

− (1 − w)
RT

∇NL · hL

(
∂z
∂Nz,i

)
Nz,j

,

i ∈ SNC , j ∈ SNC,i

(A.94)

From this it is seen:

cT
1,l,Nz

= − (1 − w)
RT

∇NL · hL (A.95)

where cT
1,l,Nz

is a row vector of the M2 matrix, as defined in Equation A.77.

(
∂rP,(U,V )

∂Nz,i

)
T,P,Nz,j

=
P

RT

(
∂V

∂Nz,i

)
T,P,Nz,j

=
P

RT
∇NV · V

(
∂NV

∂Nz,i

)
T,P,Nz,j

=gP
T

(
∂NV

∂Nz,i

)
T,P,Nz,j

− (1 − w)P
RTρ2

L

∇NL · ρL

(
∂z
∂Nz,i

)
T,P,Nz,j

(A.96)

From this it is seen:

cT
2,l,Nz

= − (1 − w)P
RTρ2

L

∇NL · ρL (A.97)

where cT
2,l,Nz

is a row vector of the M2 matrix, as defined in Equation A.77.

The differentiation of the flash specifications functions with respect
to the specifications

c11 =
(
∂rT,(U,V )

∂Uspec

)
s2=V spec,Nz

=
1
RT

=
(
∂rT,(H,P )

∂Hspec

)
s2=P,Nz

(A.98)
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c12 =
(
∂rT,(U,V )

∂V spec

)
s1=Uspec,Nz

=
P

RT
(A.99)

c21 =
(
∂rP,(U,V )

∂Uspec

)
s2=V spec,Nz

= 0 (A.100)

c22 =
(
∂rP,(U,V )

∂V spec

)
s2=Uspec,Nz

= − P

RT
(A.101)

The differentiation of the flash specifications with respect to the over-
all holdup

These entries are found in N2.

s1,i =
(
∂Uspec

∂Nzi

)
s2=V spec,Nzj

=
(
∂Hspec

∂Nzi

)
s2=P,Nzj

= 0 (A.102)

s2,i =
(
∂V spec

∂Nzi

)
s1=Uspec,Nzj

= V spec (A.103)



Appendix B

Mathematics

This chapter defines some mathematical relations used in the thesis.

B.1 Linear implicit integration

The 1-stage Rosenbrock method will here be derived, and it will be shown that
the method is A-stable.

xk+1 = xk + ∆t
.
xk+1 (B.1)

First order approximation of the differential at time k+1.
.
xk+1 ≈ .

xk + ∇x
.
xk∆x (B.2)

Defining:
J = ∇x

.
xk

T (B.3)

Combining:
xk+1 ≈ xk + ∆t

.
xk + ∆t J∆x

(I− ∆t J)∆x ≈ ∆t
.
xk

∆x ≈ (I − ∆t J)−1∆t
.
xk

(B.4)

Stability requirements

Formulate a general test case:

.
x =

⎡
⎢⎢⎢⎢⎣
λ11 . . . . . . . . . λ1n

. . . . . . . . . . . . . . .

. . . . . . λjj . . . . . .

. . . . . . . . . . . . . . .
λn1 . . . . . . . . . λnn

⎤
⎥⎥⎥⎥⎦x = Jx (B.5)

The eigenvalue matrix of the Jacobian:

J = M−1ΛM (B.6)
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The integration formula:

xk+1 = xk + ∆t (I − ∆t J)−1 .
xk (B.7)

xk+1 = (I + ∆t (I − ∆t J)−1J)xk (B.8)

xk+1 = (I + ∆t M−1(I − ∆t Λ)−1ΛM)xk (B.9)

We have generally:
Eig[I + A] = I + Eig[A] (B.10)

The eigenvalues of J are negative.

Eigi[∆t M−1(I − ∆t Λ)−1ΛM)] = Eigi[∆t (I − ∆t Λ)−1Λ)]
= ∆t Λi,i

1−∆t Λi,i
, for iε{1..n} (B.11)

Under the assumptions presented, we have:

lim
∆t →∞

(
∆t Λii

1−∆t Λii

)
= −1 (B.12)

The real part of the eigenvalue lies within the following bounds:

−1 < Re

(
∆t Λi,i

1−∆t Λi,i

)
≤ 0, for iε{1..n}, ∆t ≥ 0 (B.13)

Stability condition:

| Re(Eigi[(I + ∆t M−1(I − ∆t Λ)−1ΛM)]) |< 1 (B.14)

The left-hand side of Equation B.14 will lie between zero and one. The linear
implicit integration is A-stable.

B.2 Fully implicit Euler integration

The implicit Euler scheme is given in Equation B.15.

xk+1 = xk + ∆t
.
xk+1, tk+1 = tk + ∆t (B.15)

To solve this system an iterative scheme has to be used. An NR algorithm with
line search is chosen. The function to be solved has the following form:

F(xi
k+1) = xi

k+1 − xk − ∆t
.
xi

k+1,
.
xi
k+1 =

.
xk+1(xi

k+1) (B.16)

Need to solve F(xi
k+1) = 0. The iterative scheme then becomes.

pi = −∇F−1F = −(I − ∆tJ)−1F (B.17)

xi+1
k+1 = xi

k+1 + αpi, α ∈ 〈0, 1] (B.18)

A line search is executed to determine a suitable value for the α parameter,
giving a sufficient decrease in some function norm.
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B.3 Matrix algebra

To solve the linear equation sets that emerge during integration, and otherwise,
a matrix template was written and fronted to Lapack. The Fortran 77 version
3.0 of Lapack, Anderson et al. (2000), is used.

In the same manner a sparse matrix template, fronting the sparse BLAS func-
tion library shipped with SparseLib++ v1.5d, (Dongarra, Lumsdaine, and Pozo
(1996)). To solve sparse systems the function templates of IML++ v1.2a, Don-
garra et al. (1995), are used. The preferred sparse solver method was GMRES,
Saad (2003), with an ILU(0) reconditioner. The IML++ template was modified
to work with the sparse matrix template.

B.4 General relations

Definition of a q-quadratic convergence given by Nocedal and Wright (1999).∥∥xk+1 − x∗
∥∥∥∥xk − x∗
∥∥2 ≤M, for all k sufficiently large (B.19)

Here, M is a bounded positive constant, x∗ is the solution vector of x, xk is the
k-th NR iteration result for x. The

∥∥. . .∥∥ is an arbitrary vector norm.

The partial differential operator nabla is defined as follows:

∇x =
[

∂
∂x1

. . . ∂
∂xn

]T
(B.20)

The Jacobian, J, of a general function vector, F = F(x) is defined by Equation
B.21.

J = F′(x) = ∇xF(x)T (B.21)

The difference operator, ∆, is defined in Equation B.22.

∆a,bf = fa − fb (B.22)

The backward difference polynomial interpolation operator, Γ, is defined through
Equation B.23. The operator is applied on a function f = f(x). The subscript
index, n, is refers to xn, that is; fn = f(xn). For the variable x, the following
holds: · · · < xn−2 < xn−1 < xn < xn+1 < . . . .

Γ0fn = fn, Γj+1fn = Γjfn − Γjfn−1 (B.23)
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Definition of the space time, given by Fogler (1999).

τ =
V ρinlet

Winlet
(B.24)

Definition of the compression factor, given by Atkins (1994).

Z =
P

ρRT
(B.25)



Appendix C

Flowsheet for the LNG
Plant

Figure C.1 shows the MFCP process split up into six sub-processes interacting
with each other. The six sub-processes are given in Figures C.3 through C.8.
The sub-processes are identified through the figure text, and the numbering on
Figure C.1, (SP 1 = Sub Process 1, etc.).

MCR1 Cooling MCR1 Compression

MCR2 and MCR3

Cooling

NG Liquefaction

and Sub−Cooling

MCR2 and MCR3

Compression

NG Pre−Cooling
LNGNG

Figure C.1: Overview of the sub systems

Table C.2 show a structure map of the unit names. The positions 1 through 5
are explained in Table C.1.
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1 2 3 4 5

Figure C.2: N

Table C.1 show how the flowsheet units are named.

Table C.1: Name

Position Description

1 Name prefix

2 System number

3 Unit specific code

4 Unit number

5 Name suffix

The naming is further defined in Tables C.2 through C.4.

Table C.2: Name prefix

Name Description

N Node

S Source

V Valve
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Table C.3: Unit specific codes

Name Description

CT Liquid expander

HA Simplified heat exchanger, constant temperature output.

HG Heat exchanger

HX Heat exchanger

KA Compressor

VD Tank - flash or node

Table C.4: Name suffix

Name Description

SF Static Flow

SP Static Pressure

A or B Two units with the same name

-I or -II Two units with the same name

Example: S25-138SP : Source in system 25, unit number 138 and the node
supplies a static pressure to the equation set. 25-HG-104 : System 25 heat
exchanger, unit number 104.

The only exception from the naming rules is node N25-LNG-SP, using a
“LNG-SP” instead of a number and a followed by “SP”.

Table C.5: Controller names

Name Description

FIC Flow Identification and Control

LIC Level Identification and Control

PIC Pressure Identification and Control

TIC Temperature Identification and Control

Table C.5 shows the meaning of the controller names.
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Figure C.4: MCR1 Cooling - SP 2
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Figure C.5: MCR1 Compression - SP 3
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