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Abstract

The present doctoral thesis concerns the wake dynamics from uniform and ta-

pered bluff bodies. Bluff body configurations characterized by both arbitrary

separation points and fixed separation points were considered, i.e. both the

circular cylinder configuration and the normal flat plate configuration were

used. Different flow regimes, from steady laminar wakes to transitional and

turbulent wakes were explored. In all the cases, Direct Numerical Simula-

tions were performed to solve the incompressible Navier-Stokes equations

for an isothermal and Newtonian flow. Some results from the in-house PIV

measurements were also presented. The characteristic features of the flow

were investigated by means of frequency (both Fourier and Wavelet) analy-

sis, three-dimensional flow visualizations and two-point correlations. Vari-

ations of the velocity and the pressure fields were also explored. The im-

pact of the base pressure on the vortex formation process was elaborated.

Reynolds-averaged statistical quantities were presented and the underlying

flow physics were discussed.
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Nomenclature

Upper-case Roman

2D Two-dimensional

3D Three-dimensional

Cp Pressure co-efficient

Cp Mean pressure co-efficient

L1 Creeping flow or non-separation regime

L2 Steady separation or closed near-wake regime

L3 Unsteady separation or periodic laminar wake regime

Lx, Ly, Lz Length of the computational domain in each coordinate direction

Lw Length of the steady recirculation bubble

Nx, Ny, Nz Number of grid points in each coordinate direction

P Instantaneous pressure

Re Reynolds number based on the diameter of the cylinder or the

width of the plate

Relocal Local Reynolds number based on the local diameter of the cylinder

or the local width of the plate

RT Taper ratio

Sij Strain rate tensor

St Strouhal number

Stlocal Local Strouhal number

TrW Transition in wake regime

TrSL Transition in shear layers or Subcritical state

TrBL Transition in boundary layers or Critical state

Ui Cartesian components of velocity vector

U Streamwise velocity component

V Spanwise velocity component

W Cross-streamwise velocity component

Xi Cartesian coordinate vector component

Lower-case Roman

d diameter of the cylinder or width of the plate

ix



dlocal local diameter of the cylinder or local width of the plate

dm mean diameter of the cylinder or mean width of the plate

f shedding frequency

k fluctuating kinetic energy

l length of the cylinder or plate

t time

Upper-case Greek

∆t Time step

∆Xi Grid spacing along each coordinate direction

Ωij Rotation rate tensor

Lower-case Greek

δ Boundary layer thickness

δij Kronecker delta

ε Dissipation rate of fluctuating kinetic energy

η Kolmogorov micro scale

λ2 second largest eigenvalue of the symmetric tensor SijSij + ΩijΩij

µ Dynamic viscosity

ν Kinematic viscosity, ν = µ/ρ

ρ Density

T
(v)
ij Viscous stress tensor

ωi Vorticity vector

|ω| Vorticity magnitude

Subscripts

∞ free stream or ambient conditions

Superscripts

′ Turbulent fluctuation

′′ Unsteady fluctuation

Symbols

(. . . ) Time averaged quantity

Abbreviations
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AR Aspect Ratio

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CWT Continuous Wavelet Transform

DNS Direct Numerical Simulation

FFT Fast Fourier Transform

FVM Finite Volume Method

IBM Immersed Boundary Method

PIV Particle Image Velocimetry

SIP Strongly Implicit Procedure
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Chapter 1

Introduction

Flow past immersed bodies is arguably one of the most studied research topics

in fluid mechanics. The knowledge gained after over a century of research

work by academicians and engineers is impressive but confines mostly to two-

dimensional flows and around simplified objects. In reality, though, complex

three-dimensional flows occur behind 3D bodies in nature. Such complex 3D

flows in nature can only be realized (to some extent) by means of laboratory

experiments or numerical simulations and is still (unfortunately) beyond the

reach of theoretical fluid mechanics.

1.1 Bluff body wakes

If we now proceed to classify the bodies based on the nature of the flow

field they produce, two broad classifications can be observed in the litera-

ture (Roshko (1993); Zdravkovich (1997); Buresti (2000)). If the boundary lay-

ers are completely attached to the body surface and the wakes are thin and

usually steady then the bodies are considered as “aerodynamic bodies”. Con-

versely, “bluff-bodies” are characterized by a premature separation of bound-

ary layers from their surface and the wakes produced by them are wide and

generally unsteady (see figure 1.1). The above definition implies that aero-

dynamic bodies are generally elongated in the direction of the primary flow

and have sharp trailing edges to avoid boundary layer separation. Thus the

shape of a body is a crucial parameter while deciding the degree of bluffness.

However, it should be noted that the nature of the flow field around the body

not only depends on the shape of the body but also on the orientation of the

body with respect to the primary flow (oncoming stream) direction. Thus any

aerodynamic body may become a bluff-body for certain degree of orientation

(e.g. stalled aerofoils at high angle of incidence). Another important char-

acteristic feature of the bluff bodies is that they normally have substantially

higher drag coefficients (an order of magnitude larger) than the aerodynamic

bodies. This is due to the remarkable increase in pressure drag deriving from

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Sample bluff body configurations

the boundary layer separation. It should be noted that pressure drag in the

case of bluff bodies is normally much higher than the viscous or friction drag.

In contrast, the main contribution to the drag of an aerodynamic body stems

from the friction drag.

As already discussed bluff bodies are associated with separated wakes.

Based on the location of the separation points, bluff bodies can be further clas-

sified into two groups. For certain bluff bodies with sharp edges on their cir-

cumferences, such as flat plates, triangular, rectangular, and polygonal cylin-

ders, flow separation is usually fixed by the sharp edges. On the contrary,

the point of separation can take arbitrary positions for bodies with rounded

corners (e.g. circular, elliptical, and arbitrary oval cylinders). Flow separa-

tion point for such rounded bodies depend on all the parameters influencing

boundary layer transition (Reynolds number, surface roughness, free-stream

turbulence, etc). Two special configurations (circular cylinders and normal

flat plates) and the regions of disturbed flow they produce under the influence

of Reynolds number variations will be discussed in the following sub-section.

1.1.1 Uniform circular cylinders

Flow past circular cylinders is perhaps the most studied bluff-body configu-

ration during the past century. The amount of information available in the

existing literature is quite exhaustive (Williamson (1996); Zdravkovich (1997,

2002)). At very low Reynolds numbers, i.e. in the creeping flow regime, bound-

ary layers are completely attached to the cylinder surface. With the increase

in Reynolds number, flow separation initiates at Re = 4 − 5 (Coutanceau &

Defaye (1991); Zdravkovich (1997)). The separated boundary layers continue

to develop downstream as free shear layers and eventually reattach along

the wake centerline, thus forming a steady, symmetric, and closed near-wake

region. The length of this closed near-wake (steady recirculation bubble) is

already known to increase monotonically with Reynolds number (Coutanceau

& Bouard (1977); Fornberg (1980)). (See article 2 for more references)

On further increasing the Reynolds number, Re > 47, the separated near-

wake undergoes a Hopf bifurcation, i.e. transition from a steady state to an

unsteady state. A sinusoidal oscillation of shear layers commences at the

reattachment point and the amplitude of oscillation increases with rising Re

2



1.1. BLUFF BODY WAKES

and eventually shear layers roll up and vortex shedding occurs. The Strouhal

number, St = fd/U
∞

, where f is the vortex shedding frequency, is known

to vary inversely with the
√

Re. Various formulations for the relationship be-

tween St and Re exists in the literature. Of all, the two most popular formula-

tions are deduced by Williamson & Brown (1998) and Fey et al. (1998). Flow in

this laminar vortex shedding regime (47 < Re < 189) is two-dimensional, i.e.

spanwise vortex filaments are shed parallel to the axis of the cylinder. This,

however, may not be the case in experiments, where end effects are known to

cause “oblique vortex shedding”, i.e. spanwise vortex filaments are shed at an

angle to the cylinder axis (see Williamson (1996) for a detailed review).

A second transition, also known as spatial transition, which renders the

flow three-dimensional (and eventually turbulent) occurs at Re > 189 (Barkley

& Henderson (1996)). This flow regime is popularly called transition-in-wake

or simply TrW regime (Zdravkovich (1997)). It should be noted that these

three-dimensionalities are intrinsically induced and are not associated with

end effects. Low-frequency modulations, a typical feature that occurs dur-

ing this laminar-turbulent transition, were first observed by Roshko (1954).

Later Bloor (1964) suggested that these low-frequency irregularities reflect

the presence of three-dimensionalities that would render the flow turbulent

as it travels downstream. However, it was Williamson (1992) who attributed

these low-frequency irregularities in TrW regime to the presence of large-

scale spot-like vortex dislocations. (More references can be found in article 3,

article 4, and article 5).

With the further increase in Re, the transition point moves upstream. The

development of Kelvin-Helmholtz instability at Re > 1200 in the shear layers

trigger another transition (TrSL). The boundary layer, though, still remains

laminar. At Re ≈ 105, a sudden burst to turbulence occurs in the free shear

layers near the side of the cylinder, which causes base suction and drag to

decrease at a spectacular rate. With the occurance of K − H waves in the

boundary layer (Re ≈ 106), base suction and drag reaches a minimum value.

These high Reynolds number flows are beyond the scope of the present doc-

toral thesis and hence won’t be elaborated further. For more details please

refer Roshko (1993) and Zdravkovich (1997).

1.1.2 Normal flat plates

In contrast to the circular cylinders, normal flat plate configurations has re-

ceived less attention from the research community. This is perhaps due to the

fact that flow separation is fixed by the edges of the plate and is independent

of the Reynolds number and free-stream turbulence effects. Another reason

could be that it has less industrial applications when compared to circular

cylinders. Nevertheless, the disturbed flow around all bluff bodies have some

3



CHAPTER 1. INTRODUCTION

similarities, despite differences in shape and the presence or absence of sharp

edges. A detailed literature review of flow past normal flat plates is docu-

mented in article 8. However, some highlights of the wake flow features will

be presented here.

The critical Reynolds number at which separation first occurs was pre-

dicted by Imai (1957). He reported that there exists a standing vortex pair of

vanishing thickness at vanishing Reynolds number. Later Hudson & Dennis

(1985) observed that the flow separation occurs as early as Re = 0.1. Dennis

et al. (1993) found that the separated near-wake was symmetrical and steady

for Re ≤ 20. Recently, Saha (2007) reported that the separated near-wake of

a normal flat plate undergoes a Hopf bifurcation at a Reynolds number that

lies in between 30 and 35. With the further increase in Reynolds number,

transition-in-wake occurs at Re = 105 − 110 (Thompson et al. (2006)). The

critical Reynolds number at which transition occurs in the free shear layers

is still unknown, though, Wu et al. (2005) claim that their Reynolds num-

ber range (1.8 × 103 − 2.7 × 104) was in the TrSL regime. There is no further

information in the literature about the high Reynolds number flows.

1.2 Motivation

It is evident from the preceding section that the flow past uniform circular

cylinders and (to some extent) uniform flat plates have been extensively stud-

ied in detail. In contrast, the three-dimensionalities, extrinsically induced by

the tapered bluff-bodies (e.g. tapered circular cylinders, tapered flat plates)

are least explored.

The credit for studying such a complex flow case for the first time goes

to Gaster (1969). In his famous experimental study on slender cones Gaster

(1969) found that even a small linear variation of the diameter along the span

could induce complex three-dimensionalities in the wake. Such linear varia-

tions of the local diameter imply a linear variation of the local Reynolds num-

ber along the span. Further Gaster (1969) observed that the spanwise vortex

filaments were shedding at an angle to the axis of the cone and were expe-

riencing vortex dislocations. Since then, some experimental and numerical

studies have been carried out in this field (see article 5 for all the references).

However, almost all the previous studies on the flow past linearly tapered

circular cylinders are either in the laminar vortex shedding regime or in the

turbulent flow regime. It is therefore not clear at this stage how the flow

responds in both the steady separation regime and also in the transition-in-

wake regime.

Following the successful findings of “cellular vortex shedding” in the wake

of cones, Gaster & Ponsford (1984) went on to investigate the wake of tapered

flat plates at high Reynolds numbers. Their hot-wire measurements, how-

4



1.2. MOTIVATION

ever, failed to capture any cellular vortex shedding. On the contrary, Castro

& Rogers (2002) and Castro & Watson (2004) performed similar hot-wire mea-

surements in the wake of tapered flat plates and they have observed cellular

vortex shedding. The disagreement between the two experimental findings

therefore adds more confusion and there is no further evidence in the liter-

ature to prove (or disprove) that cellular vortex shedding also occurs in the

wake of tapered flat plates.

An in-depth and comprehensive study of the wake behind tapered circular

cylinders and tapered flat plates is therefore awaited. The above issues will

be addressed for the first time in the present doctoral thesis.

5
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Chapter 2

Numerical Simulation

2.1 Governing equations of fluid motion

All fluid motions of Newtonian fluids (where the continuum approximation is

valid) are governed by a system of dynamical equations, namely the Navier-

Stokes equations,

[

∂ρ

∂t
+ Uj

∂ρ

∂xj

]

+ ρ
∂Uj

∂xj

= 0 (2.1)

ρ

[

∂Ui

∂t
+ Uj

∂Ui

∂xj

]

= −∂P

∂xi

+
∂Tij

(v)

∂xj

(2.2)

where, Ui = Ui(~x, t), is a function of space ~x and time t and ρ denotes the

density of the fluid. T
(v)
ij (~x, t) is the viscous stress tensor and P (~x, t) is the

pressure.

The Newtonian closure for the viscous stress tensor relates it to the fluid

motion using a property of fluid, molecular viscosity (µ).

T
(v)
ij = 2µ

(

Sij −
1

3
Skkδij

)

(2.3)

where, Sij is the instantaneous strain rate tensor given by,

Sij =
1

2

(

∂Ui

∂xj

+
∂Uj

∂xi

)

(2.4)

In the present thesis, it is always assumed that the flow is incompressible and

isothermal. Thus, equation (2.1) and (2.2) reduces to,

∂Uj

∂xj

= 0 (2.5)

[

∂Ui

∂t
+ Uj

∂Ui

∂xj

]

= −1

ρ

∂P

∂xi

+ ν
∂2Ui

∂xj∂xj

(2.6)

7



CHAPTER 2. NUMERICAL SIMULATION

2.2 Numerical solution to the Navier-Stokes equa-

tions

A complete description of a three-dimensional flow of a Newtonian fluid, where

the flow variables are a function of space and time can only be obtained by

solving the Navier-Stokes equations numerically. This numerical approach,

when applied to solve transitional and turbulent flows is popularly called Di-

rect Numerical Simulation (see Moin & Mahesh (1998) and Sandham (2002)

for detailed reviews). For laminar flows, though, it would be appropriate

to call it just Navier-Stokes solution (by convention). Conceptually, DNS is

rather an easy approach to solve flow problems, since it involves no modeling

of transition or turbulence. In practice, however, DNS demands high perfor-

mance computational resources. This is because in DNS the governing equa-

tions are discretized and integrated such that all physically relevant scales

are resolved in time and space. In order to achieve this massive parallel com-

puters are required. And even with such facilities available one is restricted

to low Reynolds number flow cases which are mostly of academic interest.

The code MGLET

In the present thesis, the incompressible Navier-Stokes equations (2.5, 2.6)

were solved in 3D space and time using a Finite Volume code called MGLET

(Manhart et al. (2001); Manhart (2004)). The history of MGLET dates back to

early 1990s when Werner (1991) began the work on an efficient finite volume

code for Large Eddy Simulations and Direct Numerical Simulations of tur-

bulent flows. In those days MGLET was a single processor code with second-

order accuracy in time and space. Since then the code has steadily been devel-

oped into today’s version which, among other things, offers various numerical

schemes for spatial and temporal discretization, parallelization using Mes-

sage Passing Interface, zonal grid refinement and the possibility to implement

arbitrary shaped bodies in the Cartesian grid (Tremblay et al. (2001); Trem-

blay (2001); Peller et al. (2006)). (some recent publications in which MGLET

has been used to solve other complex flow cases: Neumann & Wengle (2004);

Krogstad et al. (2005); Schwertfirm et al. (2007); Breuer et al. (2008)).

Numerical schemes, the solver and the grid

In all the computations, staggered Cartesian grid arrangement was used.

Spatial discretization of the convective and diffusive fluxes was carried out

using a 2nd order central-differencing scheme. The momentum equations

are advanced in time by a fractional time stepping using a 3rd order explicit

Runge-Kutta scheme (Williamson (1980); Ferziger & Peric (1996)). For the

8



2.2. NUMERICAL SOLUTION TO THE NAVIER-STOKES EQUATIONS

Poisson equation, Stone’s incomplete LU decomposition method (Strongly Im-

plicit Procedure) was used (Stone (1968); Ferziger & Peric (1996)).

The time-step chosen in each of the cases was such that it satisfies the CFL

condition. In grid generation care was taken to have a sufficient number of

grid points upstream of the bluff-bodies, in order to capture the Hiemenz-like

boundary layer (Panton (1997)) at the stagnation point. For more information

regarding the computational domain, grid, etc see individual articles.

Boundary conditions

At solid boundaries, Dirichlet boundary condition was used for the velocities

and Neumann boundary condition for the pressure. These boundary condi-

tions were implemented by using a direct forcing Immersed Boundary Method

(see article 1 and article 7). The detailed derivation, validation and imple-

mentation of this method in MGLET were explained in Peller et al. (2006).

For other boundary and initial conditions see individual articles.

9
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Chapter 3

Summary of Articles

In this chapter a brief summary of each of the nine articles attached will be

presented. The first six papers concern the wake dynamics from uniform and

tapered cylinders. The last three papers focus on wake dynamics from uni-

form and tapered plates. The flow regimes investigated in general varied from

steady laminar wakes to turbulent wakes. The results documented in all the

nine articles were obtained from three-dimensional numerical calculations.

In article 4, however, some results from the in-house PIV measurements were

presented.

3.1 Article 1

Simulation of unsteady flow past tapered circular cylinders using an

immersed boundary method

This is the first simulation performed during the present doctoral thesis work

and hence the results are preliminary in nature. The main objective was

to study the numerical aspects of the code and estimate the performance of

the Immersed Boundary Method. Both steady laminar wake and unsteady

laminar wake behind a linearly tapered circular cylinder was investigated.

The results from both the simulations were qualitatively in good agreement

with the previous studies. However, owing to the coarse grid resolutions

adopted, quantitative deviations were observed. The overall computational

performance of the Immersed Boundary Method was found to be very promis-

ing when compared to the boundary fitted or unstructured grid solvers.

Part of this work was initially presented at the Sixth Euromech Fluid Me-

chanics Conference, Stockholm, Sweden, 2006.

11



CHAPTER 3. SUMMARY OF ARTICLES

3.2 Article 2

Steady viscous flow past a tapered cylinder

In the preceding paper, numerical oscillations were observed in the steady

laminar flow case due to the coarse grid resolution adopted close to the cylin-

der body. This issue was resolved in the present article, where a high-definition

grid was used to study the same steady flow case. The geometrical and flow

parameters were the same as in the preceding article. Pressure-driven sec-

ondary flow along the span of the cylinder was observed, both in the front

stagnation zone and also in the wake of the cylinder. In spite of this sec-

ondary motion, the primary flow in planes perpendicular to the cylinder axis

was found to be practically indistinguishable from the two-dimensional flow

past a uniform circular cylinder.

3.3 Article 3

Direct numerical simulation of vortex shedding behind a linearly ta-

pered circular cylinder

After studying the unsteady laminar wake in article 1 and the steady laminar

wake in article 2, the transitional wake behind a tapered circular cylinder

was investigated in the present article. The taper ratio of the cylinder was

intentionally chosen to be same as that in the preceding two articles (article

1 and article 2). The local Reynolds number variation along the span was

such that both the laminar and the transitional flow regimes co-existed along

the span. The results were preliminary in nature, in the sense that the total

sampling time adopted for performing frequency analysis was modest and

some limited results were extracted during the post-processing.

3.4 Article 4

DNS and PIV study of the 3D wake behind tapered circular cylinders

In this article the DNS results from article 3 was compared with the in-house

PIV measurements carried out at higher Reynolds numbers. Due to practical

issues in the laboratory the Reynolds number in the experiments could not

be matched with the DNS case. The taper ratio, though, was same in both

the cases. Therefore, the objective was not to have a one-to-one quantitative

comparison between the numerical and the experimental data but rather to

study the qualitative features in common.
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3.5. ARTICLE 5

3.5 Article 5

Cellular vortex shedding behind a tapered circular cylinder

This paper is an extension of article 3. A very long time sampling was adopted

for the statistics to be fully converged to a stationary state. In addition to

frequency (both Fourier and Wavelet) analysis a more detailed investigation

of the spanwise two-point correlations, instantaneous vortical structures and

the Reynolds-averaged statistics were carried out. The spanwise variations of

the velocity and the pressure fields were also studied. A complex secondary

flow pattern was observed in the wake of the cylinder, whose behaviour was

attributed to the intrinsic secondary instabilities. Upstream the cylinder,

however, the secondary flow was driven by a spanwise pressure gradient.

3.6 Article 6

Asymmetries in the wake behind a circular cylinder in planar shear

flow

In this article planar shear flow past a uniform circular cylinder was inves-

tigated in the transition-in-wake regime and the results were compared with

an uniform inflow case. Except the inflow condition, the geometrical and flow

parameters were the same in both the cases. On comparing the results, it was

observed that the Strouhal number, mean separation angle and the wave-

length of mode B surprisingly match in both the cases. In the planar shear

flow case, the vortices shed from either side of the cylinder seems to merge

further downstream and may eventually lead to complete suppression of the

vortex shedding. This, however, has to be further verified.

3.7 Article 7

Cellular vortex shedding in the wake of a tapered plate

In the present article both steady laminar wake and the turbulent wake be-

hind a tapered plate was investigated. Pressure-driven spanwise secondary

motion was observed in both the flow regimes. The length of the recircula-

tion bubble in the steady laminar case was found to be in good agreement

with non-tapered (i.e. uniform) plate data. Thus the flow field in planes per-

pendicular to the plate axis can be considered as quasi-two-dimensional in

the steady laminar flow regime. In the turbulent flow case, however, it was

observed that a tapered plate creates longer formation length coupled with

13



CHAPTER 3. SUMMARY OF ARTICLES

higher base pressure than compared to non-tapered (i.e. uniform) plates. A

significant base pressure reduction towards the narrow end of the plate, which

results in a corresponding increase in Strouhal number, was also noticed.

Parts of the results presented as a poster at the International Symposium

Fluids Days, Bangalore, India, 2007.

3.8 Article 8

Turbulent wake behind a normal flat plate

In this article the turbulent wake behind a uniform flat plate placed perpen-

dicular to an oncoming stream have been examined. In addition to frequency

analysis and vortical structure information, a detailed analysis of Reynolds

averaged statistical quantities were presented. The coupling between the

base pressure and the vortex formation process was explored in the present

study. It was observed that the reduction in base pressure causes a surge in

the shedding frequency and hence produces a shorter recirculation bubble.

3.9 Article 9

Cellular vortex shedding in the wake of a tapered plate at low Reynolds

numbers

Vortex shedding from uniform and tapered plates in the laminar flow regime

was analysed in the present article. Except the Reynolds number, the flow

configuration remains same as in article 7. Three different flow regimes were

observed along the span of the tapered plate. The wake flow was steady be-

hind the narrow end of the plate. Vortex shedding occured along the mid-

span. Towards the wide end of the plate complex streamwise vortical struc-

tures were noticed. In spite of this, the spanwise secondary motion observed

was driven by a pressure-gradient. The impact of the base pressure on the

shedding frequency and the vortex formation process was also explored.
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FEY, U., KÖNIG, M. & ECKELMANN, H. 1998 A new Strouhal-Reynolds num-

ber relationship for the circular cylinder in the range 47 < Re < 2 × 105.

Phys. Fluids 10, 1547–1549.

15



BIBLIOGRAPHY

FORNBERG, B. 1980 A numerical study of steady viscous flow past a circular

cylinder. J. Fluid Mech. 98, 819–855.

GASTER, M. 1969 Vortex shedding from slender cones at low reynolds num-

bers. J. Fluid Mech. 38, 565–576.

GASTER, M. & PONSFORD, P. J. 1984 The flows over tapered flat plates nor-

mal to the stream. Aeronautical J. 88, 206–212.

HUDSON, J. D. & DENNIS, S. C. R. 1985 The flow of a viscous incompressible

fluid past a normal flat plate at low and intermediate reynolds numbers:

the wake. J. Fluid Mech. 160, 369–383.

IMAI, I. 1957 Univ. Maryland Inst. Fluid Dyn. Appl. Maths. Tech. Rep. 104.
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Abstract. Three-dimensional numerical calculations of laminar vortex shedding behind a
linearly tapered circular cylinder with taper ratio 75:1 have been carried out at a Reynolds
number 131 (based on the large diameter and the uniform inflow velocity) using a Finite
Volume code. Computations were performed on a staggered-Cartesian grid and a direct
forcing Immersed Boundary Method (IBM) was used to transform the boundary condition
at the solid surface into internal boundary conditions at the nodes of the Cartesian grid.
Results showed a pattern of discrete oblique shedding cells, which included both vortex
dislocation and vortex splitting. The local Strouhal number versus local Reynolds number
curve showed excellent qualitative agreement with the experimental results reported by
Piccirillo and Van Atta in 1993. However, quantitative deviations exist between the two
techniques. Numerical noise (oscillations) was observed along the span in the steady flow
calculation with Reynolds number 40, the reason for which has to be further investigated.
The overall computational performance of the IBM proved to be very promising when
compared to the boundary fitted or unstructured grid solvers.

1 INTRODUCTION

Three-dimensional (3-D) vortex shedding may occur in the wake of a circular cylinder
for three fundamentally different reasons: i) the vortex dynamics in the wake may be
intrinsically three-dimensional, ii) the inflow may be non-uniform, and iii) the cylinder
geometry may itself be non-uniform. In the present paper we focus on the latter category,
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i.e. on the three-dimensionalisation induced by a spanwise variation of the cylinder diam-
eter. Tapered cylinders are basically truncated cones and are of great practical relevance
(e.g., oil-platform legs, chimneys and light houses). They offer a geometrically simple
configuration with complex flow physics in the near wake. Depending on the taper ratio
(RT = l/(d2 − d1); where l is the length of the circular cylinder and d2 and d1 denote
the diameter of its wide and narrow ends, respectively) the variation of local Reynolds
number along the span of the cylinder may produce a range of distinct flow-regimes (e.g.,
steady wake, laminar unsteady wake and turbulent wake) exist side by side in the same
geometry.

Until recently, the majority of numerical calculations of the flow over tapered cylinders
were performed using boundary-fitted grids (Jespersen & Levit1 and Vallès et al.2 have
performed calculations in the laminar unsteady wake regime) but solvers for curvilinear
or unstructured grids are less efficient than Cartesian solvers in terms of computational
time and memory requirements11. Recently Parnaudeau et al.3,4 have performed turbulent
flow calculations using a direct forcing Immersed Boundary Method (IBM). However their
Reynolds number Re2 (based on the large diameter d2 and the uniform inflow velocity U)
was in another range compared to the present investigation. Vallès et al.2 have carried out
flow calculations for two different RT (75:1 and 100:1) and in the Re2 range 131-178. They
found that the numerical results compared surprisingly well with the extensive laboratory
experiments reported by Piccirillo & Van Atta5. However, the predicted variation of local
Strouhal number (Stlocal = fsdlocal/U ; where fs is the shedding frequency) versus local
Reynolds number (Relocal = Udlocal/ν) did not match the curve fit St = 0.195 − 5.0/Re
deduced from the laboratory experiments5. In the present study we used a direct forcing
IBM6,7 to clarify some deviations between the simulations and the experiments. A detailed
investigation of numerical noise level and its origin was carried out by studying steady-flow
over the cylinder at Re2 = 40.

2 FLOW CONFIGURATION AND PARAMETERS

The computational domain was as shown in figure 1. All dimensions were normalised
by the diameter at the wide end (d2 = 1). The normalised diameter at the narrow end
was d1 = 0.556 and the length of the cylinder was l = 33.461. The taper ratio of the
cylinder was defined as,

RT =
l

(d2 − d1)
= 75 : 1 (1)

and was the same in both cases considered. The Reynolds number based on the uniform
inflow velocity (U = 1) and the diameters at wide, narrow and center-span (dcs = 0.778)
of the cylinder for both laminar unsteady wake and steady wake flow were as shown in
Table 1. The kinematic viscosity was therefore different in the two cases. The Reynolds
numbers were well below 190 at which the intrinsic ‘mode A’ instability is known to occur
in otherwise two-dimensional configurations.
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Figure 1: Computational domain (not to scale)

Case Re2 Re1 Recs

Laminar unsteady wake 131 72.83 101.91
Steady wake 40 22.24 31.12

Table 1: Reynolds number

3 NUMERICAL METHOD

3.1 Instantaneous equations of motion

All fluid motions of Newtonian fluids (where the continuum approximation is valid) are
governed by a system of dynamical equations, namely the Navier Stokes (N-S) equations.
For incompressible flows, the N-S equations reduce to,

∂ũj

∂x̃j

= 0 (2)

[

∂ũi

∂t
+ ũj

∂ũi

∂xj

]

= −1

ρ

∂p̃

∂xi

+ ν
∂2ũi

∂xj∂xj

(3)

where, ũi = ũi(~x, t), is a function of space ~x and time t and ν and ρ denote the kinematic
viscosity and the density of the fluid.

3.2 Numerical schemes, the solver and the grid

The governing equations were solved in 3-D space and time using a Finite Volume
code8,9. The code uses staggered Cartesian grid arrangement. Time marching was carried
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out using a 3rd order explicit Runge-Kutta scheme for the momentum equations and an
iterative SIP (Strongly Implicit Procedure) solver10 for the Poisson equation. Spatial
discretization was carried out using a 2nd order central-differencing scheme. In all the
computations we employed non-equidistant Cartesian grids in X-Z plane. Equidistant
grid points were used in Y-direction. As an example a fine mesh of 3.3x106 grid points is
shown in Figure 2. In grid generation care was taken to have a sufficient number of grid
points upstream of the cylinder, in order to capture the Hiemenz-like boundary layer14 at
the stagnation point. The boundary layer thickness δ was given by,

δ =
1.2d√
Red

(4)

where, d is the local diameter at any span-wise position and Red is the Reynolds number
based on d. The boundary layer thickness δ for both unsteady and steady cases was
estimated as shown in Table 2.

Case δ2 δ1
Laminar unsteady wake 0.10484 0.07808

Steady wake 0.18973 0.14147

Table 2: Hiemenz boundary layer thickness in the stagnation zone

3.3 Boundary conditions

Boundary conditions were as shown in Table 3. A uniform inflow velocity profile U = 1
was fixed at the inlet. Convective and diffusive fluxes were set to zero on both sides and
top and bottom (see figure 1). At the outflow, Neumann boundary condition was used for
velocities and pressure was set to zero. The no-slip boundary condition on the cylinder
body was implemented by using a direct forcing IBM which will be discussed in the
following section.

Face Boundary condition

Inflow U = 1;V = W = 0; ∂P/∂X = 0
Side walls V = 0; ∂U/∂Y = ∂W/∂Y = ∂P/∂Y = 0

Top and Bottom walls W = 0; ∂U/∂Z = ∂V/∂Z = ∂P/∂Z = 0
Outflow ∂U/∂X = ∂V/∂X = ∂W/∂X = 0;P = 0

Table 3: Boundary conditions

4 IMMERSED BOUNDARY METHOD

In the present computation we used a direct forcing IBM6,7 to transform the boundary
condition at the solid cylindrical surface into internal boundary conditions at the nodes of
the Cartesian grid. The forcing is called direct because the boundary condition remains
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Figure 2: Mesh in X-Z plane: 3.3x106 grid points in total ([NX x NY x NZ] = [150 x 200 x 110])

the same at each time step regardless of the characteristic frequencies of the flow (see
Iaccarino & Verzicco12 and Mittal & Iaccarino13 for an extensive review of different IBMs).
Direct forcing is practically the same as enforcing the boundary condition within the
flow. When the boundary does not coincide with Cartesian grid points, an interpolation
is required. Thus the accuracy of IBM depends on the interpolation technique, the order
of interpolation and the direction of interpolation. In this section we discuss the blocking
algorithm and the interpolation technique used.

4.1 Blocking algorithm

The cylinder surface to be immersed in the Cartesian mesh was represented by a mesh
consisting of triangles. The blocking of the Cartesian cells intersected by these triangles
was carried out as follows:
i) The intersection points of triangle surface and the coordinate line passing through the
pressure cell center were identified. The pressure cells containing those intersection points
were blocked, as shown in Figure 3.
ii) In the second sweep all the pressure cells within the blocked surface were blocked.
iii) Finally all the velocity cells corresponding to blocked pressure cells were blocked.
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Figure 3: 1-Dimensional stencil configuration for interpolation in x-direction

All these blocked cells were marked inactive and were excluded from certain steps in the
time-marching algorithm (e.g., convergence check).

4.2 Interpolation technique

In Figure 3, φ0 is the internal boundary condition value to be determined by interpo-
lation. Xr is the intersection point between the triangle and the coordinate line. φr is the
value at Xr which is known (the value on the wall). Thus by considering the neighbouring
variables φi (φ1, φ2, φ3, etc) the stencils are formed. A general stencil formulation for φ0

looks like,

φ0 = (
N

∑

i=1

αi.φi) + αr.φr (5)

where, N is the number of neighbouring cells involved in the interpolation. The inter-
polation coefficients αi and αr depend on the interpolation technique and geometry only
and therefore were computed in a preprocessing step.

In the present simulation we used least squares interpolation of 3rd order. The de-
tailed derivation of this technique was explained in Peller et al.6. Using matrix stability
analysis they studied the numerical stability of higher-order Lagrange and least squares
interpolation and concluded that least squares interpolation of 3rd order is very robust and
numerically stable. Higher-order interpolation may indeed avoid strong grid-clustering in
the wall vicinity but may not increase the accuracy of the solver (the spatial accuracy of
the solver was 2nd order as discussed in previous section). The stencil in each direction
was 1-dimensional but Tremblay et al.7 have employed weighting to account for three
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dimensionality.

5 RESULTS AND DISCUSSION

5.1 Laminar unsteady flow

The unsteady flow calculations were carried out with two different grid resolutions.
Table 4 illustrates the mesh parameters. NX, NY, and NZ correspond to the number of
grid points in X, Y, and Z directions, respectively. Similarly NUS and NDS correspond
to the number of grid points upstream the cylinder and downstream the cylinder. ∆cyl

represents the grid cell size close to the cylinder in both X and Z directions.

Case Nodes NX NY NZ NUS NDS ∆cyl

Coarse mesh 1.2x106 120 100 100 20 80 0.05
Fine mesh 3.3x106 150 200 110 20 90 0.025

Table 4: Grid parameters

The time step ∆t = 0.005 was found to assure stability and appropriate both with
respect to the CFL condition and von Neumann analysis. The coarse-mesh computations
were performed on a single processor Linux-PC (Intel P4-3.2GHz with 1GB RAM) and the
fine-mesh on 15 processors of SGI Origin 3800. A detailed comparison of computational
performance of the present simulations and that of Vallès et al.2 is shown in Table 5. A
noteworthy distinction is that Vallès et al.2 used an implicit time-stepping.

Case Computer Nodes ∆t Iterations/∆t cpu S
∆t

Coarse mesh Linux PC 1.2x106 0.005 d2/U 15 3.9
Fine mesh SGI Origin 3800 3.3x106 0.005 d2/U 15 5

Vallès et al.2 Cray T3E 0.256x106 0.1 d2/U 20 3060

Table 5: Computational performance

Flow visualization of 3-D vortex shedding could be carried out in many ways. In figure
4 and figure 5 the time evolution of the pressure along the span for both coarse mesh and
fine mesh has been plotted. The instantaneous pressure was sampled along a line parallel
to the axis of the cylinder located 2dcs downstream the axis in X-direction and 1dcs offset
in Z-direction. The offset in Z-direction was carried out to detect only one side of the
vortex street. An initial comparison between the two figures itself indicate the complex
flow structure and vortex splitting. Both figures show a nearly periodic occurence of
vortex splitting around the center span of the cylinder. However, this phenomenon of
periodic occurence of vortex cells was more evident in the coarse mesh simulation. This
could be due to the inability of the coarse mesh to capture the instabilities along the span.
It should also be noted that the vortex shedding was more oblique in the fine mesh than on
the coarse mesh. This point was further justified in figure 6, where iso-pressure contours
for the fine mesh clearly indicate the larger shedding angle compared to the coarse mesh.
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Figure 4: Time evolution of the pressure along the entire span: Coarse mesh

However further qualitative investigations were carried out by spectral analysis of pressure
time traces.

Our primary objective was to investigate the significant deviations in the Stlocal versus
Relocal curve between simulations2 and experiments5 and therefore the power spectrum
of pressure time traces were investigated. In figure 7 Piccirillo & Van Atta’s5 curve-fit
St = 0.195−5.0/Re along with Williamson & Brown’s15 universal St-Re curve for straight
uniform circular cylinders given by,

St = A +
B√
Re

+
C

Re
(6)

where, A = 0.2850, B = −1.3897 and C = 1.8061, were plotted together with numerical
results. (Note: In Vallès et al.2 the present case corresponds to their Case B , which
accidentally was mis-labelled as Case C in their St-Re figure) Both our coarse and fine
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Figure 5: Time evolution of the pressure along the entire span: Fine mesh

mesh simulations clearly captured the distinct shedding cells with constant shedding fre-
quency and fine splitting. It should be worth to mention here that our St-Re curve was
very sensitive to the sampling time and we sampled the instantaneous pressure for nearly
300 d2/U to get reliable statistics. Even though our simulations qualitatively reproduced
what have been observed in the laboratory there still exists quantitative deviations both
from the experiments5 and the earlier simulation2. However, the trend of all computer
simulations is similar. It should be noted that the experimental curve-fit was based on the
Strouhal number values at the centre of each shedding cell (cell-center Strouhal number),
whereas all the numerical results were based on a truly local Strouhal number for each
spanwise location. In figure 8 shedding cell mid-point locations were compared with both
experiment and other numerical results. Here also significant quantitative deviations exist
between the different techniques. One possible reason could be the difference in boundary
conditions in the laboratory set-up and computer calculations. However a further step
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Figure 6: 3-dimensional iso-pressure contours. Contour level p̃ = - 0.1. (a)coarse mesh; (b)fine mesh.
The flow direction is from bottom to top.

was taken to investigate the accuracy of our present approach by simulating a steady flow
over the same configuration.

5.2 Steady flow

Steady flow calculations were performed with the same computational configuration
as above by reducing Re2 to 40. The flow was simulated only with the fine mesh. The
objective was to avoid the unsteady effects and focus only on the numerical noise (if
any). The spanwise numerical oscillations (if any) were studied by comparing the non-
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dimensional bubble or wake length (Lw/dlocal) for each spanwise position with Sucker
& Brauer’s16 empirical curve fit for straight uniform circular cylinders. The empirical
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relation was given by,

Lw

dlocal

= 0.12Relocal − 0.748 (7)

From figure 9, it is clear that small oscillations do exist in the span-wise direction even
though the trend is excellent. Our initial guess was that the oscillations were due to
the grid resolution close to the cylinder surface being some what too coarse. It should
be noted that the difference between the two radii, (d2 − d1)/2 = 0.222, was very small
compared to the length l of the cylinder. Given the grid aspect ratio restrictions, this
would mean a high demand on the mesh. This demand on the mesh refinement would in
turn lead to a grid-clustering around the cylinder. However this guess has to be further
investigated.

In figure 10 the computed laminar boundary layer profile is compared to the potential
flow calculations. From potential theory, the stream function ψ for flow past a circular
cylinder without rotation was given by (see White17),

ψ = Usinθ(r − a2

r
) (8)

where a is the radius of the cylinder and r any distance from the axis of the cylinder.
Here θ = 90o corresponds to the Y-Z plane passing through the center of the cylinder.
Thereby the velocity component Uθ becomes,

Uθ = −∂ψ
∂r

= −Usinθ(1 +
a2

r2
) = −(1 +

a2

r2
) (9)

The symmetry and smoothness of the flow in the boundary layer on either side of the
cylinder were well captured in the simulation. However, the numerical results do not
collapse with the irrotational velocity profile far from the cylinder, a reason for which
could be that the potential flow assumption holds good for high Reynolds number flows.
Another reason (less probable) could be that our computational box in Z-direction is
slightly too narrow.

6 CONCLUSIONS

i) The computational performance of the IBM proved to be very promising when com-
pared to the boundary fitted and unstructured grid solvers, especially the computations
on the Linux PC with 1.2x106 grid points was surprisingly fast.

ii) Complex flow structures as observed in experiments5, including vortex splitting and
vortex dislocation, were successfully reproduced using IBM.

iii) Stlocal versus Relocal curve showed excellent qualitative agreement with the experi-
ments. However, quantitative deviations exist between the two techniques. It should be
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noted that end effects were negligible in our case and the boundary conditions in the
numerical simulation and in the laboratory were therefore different.

iv) Numerical oscillations along the span were observed in the steady flow calculation,
the reason for which has to be further investigated.
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The three-dimensional nature of the viscous flow past a linearly tapered circular cylinder is exam-

ined at low Reynolds numbers. The numerical solution of the unsteady Navier-Stokes equations

converges to a steady state. The primary flow in planes perpendicular to the cylinder axis is

practically indistinguishable from the two-dimensional flow past a uniform cylinder. A secondary

spanwise flow is observed in the stagnation zone going from the wide end towards the narrow

end, whereas a secondary motion on the rear side goes in the opposite direction. In spite of this

secondary flow, the length of the separation zone varies linearly with the local Reynolds number.

1 Introduction

The flow past a circular cylinder with a uniform cross-section remains two-dimensional

as long as the Reynolds number Re is below the critical value ≈ 190 beyond

which the intrinsic ‘mode A’ instability is known to occur. If the diameter varies

along the cylinder span, however, the diameter variation introduces inherent three-

dimensionality into the flow. At Reynolds numbers of ©(100), the wake flow be-

comes time-dependent and the local shedding frequency turns out to vary abruptly

along the span either if the diameter changes discontinuously [1],[2],[3] or linearly

[4],[5],[6],[7],[8]. For Reynolds numbers below ≈ 42, however, the wake behind a uni-

form cylinder is steady and the length of the closed wake is known to vary linearly

with the Reynolds number.

The aim of this Note is to examine the three-dimensional wake behind a linearly

tapered circular cylinder at low Reynolds number. Both experiments [5] and sim-

ulations [6],[8] have shown that even very modest tapering (taper ratio 75:1) gives

rise to complex non-linear wake phenomena such as vortex splitting and dislocations

for Reynolds numbers slightly above 100. Nevertheless, one may speculate whether

the wake flow behind a slightly tapered cylinder can be considered as quasi-two-

dimensional provided that the Reynolds number is lower than the critical value at

which vortex shedding occurs. One may furthermore wonder how the secondary flow

field, i.e. the departure from purely 2D behaviour, will appear. These issues will be

addressed for the first time in the present study where we intentionally consider the

same taper ratio for which complex three-dimensional wake phenomena have been

1Corresponding author. Tel.: +47 73593563; fax: +47 73593491; E-mail: vagesh@ntnu.no
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observed at Reynolds numbers below the critical Reynolds number ≈ 190 at which

intrinsic secondary instabilities are known to occur in the wake of uniform cylinders.

2 Problem formulation and numerical method

To this end we considered a circular cylinder with taper ratio RT = l/(d2 − d1) =

75 : 1 (where, l = 33.461d2 is the length of the cylinder, and d2 and d1 = 0.556d2

denote the diameter of its wide and narrow ends, respectively). The size of the

computational domain in each coordinate direction was LX = 15d2, LY = 33.461d2,

and LZ = 11d2, as shown in Fig. 1. The Reynolds numbers based on the uniform

inflow velocity Uo and the diameters d2 and d1 were Re2 = 40 and Re1 = 22.24,

respectively.

The Navier-Stokes equations in incompressible form were solved in 3-D space and

time using the parallel Finite Volume code MGLET [9]. The code uses a staggered

Cartesian grid arrangement and is 3rd order accurate in time (explicit Runge-Kutta

scheme) and 2nd order accurate in space (central scheme). The number of grid

points in the streamwise (X), spanwise (Y ) and cross-stream (Z) directions were

[NX , NY , NZ ] = [224, 200, 170]. A uniform velocity profile Uo = 1 was prescribed at

the inlet and a Neumann boundary condition was used for the pressure. At both

the ends of the cylinder and at the top and bottom of the computational domain

a free-slip boundary condition was used (see Fig. 1). At the outlet, a Neumann

boundary condition was used for velocities and the pressure was set to zero.

A direct forcing Immersed Boundary Method (IBM) [10] was used to transform the

no-slip condition at the cylinder surface into internal boundary conditions at the

nodes of the Cartesian grid. The solid body (tapered cylinder) to be immersed in

the Cartesian mesh was represented by a mesh consisting of triangles. The blocking

of the Cartesian cells intersected by these triangles was accomplished as follows:

i)The intersection points of a triangle surface and the coordinate line passing through
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Figure 2: Spanwise velocity V/Uo (secondary flow) at three different spanwise locations
identified by the local Reynolds number Re = Uod/ν. The position of the axis of the
cylinder is at [X/d2, Z/d2] = [4.5, 5.5].

the pressure cell center were identified. The pressure cells containing those intersec-

tion points were blocked.

ii)In a second sweep all the pressure cells within the blocked surface were blocked.

iii)Finally, all the velocity cells corresponding to blocked pressure cells were blocked.

The internal boundary condition value had to be determined by interpolation. In

the present study we used least-squares interpolation of 3rd-order accuracy. The

detailed derivation, validation and implementation of this technique in the code

MGLET were explained in [10].

3 Results and discussion

The numerical solution of the unsteady Navier-Stokes equations converged to a

steady state. The present 3-D calculation revealed a modest secondary spanwise

velocity V , both in the front stagnation zone and also in the wake of the cylinder (see
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Fig. 2(a),2(b),2(c)). It can be observed from Fig. 2(a) that in the front stagnation

zone the secondary flow is going from the wide end of the cylinder towards the

narrow end. On the side, i.e. 90o from the front stagnation line, the secondary flow

still persist in the same direction although at a lower speed. On the contrary, the

secondary motion on the rear side of the cylinder goes in the opposite direction (see

Fig. 2(b)). The magnitude of this spanwise velocity is quite small, typically of the

order 1 − 3% of the inflow Uo. The secondary motion in the spanwise direction is a

direct consequence of three-dimensionality of the tapered cylinder and this kind of

secondary flows does not arise in the vicinity of uniform circular cylinders.

The secondary flow is driven by a spanwise pressure gradient. The front stagnation

line is slightly inclined with respect to the cylinder axis and this tilt gives rise to

a somewhat higher pressure near the wide end of the cylinder as compared to the

narrow end. The pressure contours (isobars) in Fig. 3 show that the isobars are

more inclined towards the cylinder axis than the stagnation line, thereby giving

rise to a spanwise pressure gradient which drives the flow towards the narrow end.

Similarly, the (negative) isobars in the cylinder wake are also tilted towards the

cylinder axis, i.e. the lowest pressure is found in the wake downstream of the widest

part of the cylinder. This observation indicates that also the spanwise-oriented flow

in the cylinder wake is pressure-driven.

The constant length L of the closed wake behind a uniform circular cylinder is known

to increase monotonically with Reynolds number in the low-Re regime. Sucker and
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Brauer [11] deduced the empirical correlation L/d = 0.12 Re − 0.748 on the basis

of several experimental and numerical data available at that time. Subsequent data

from more refined experiments by Coutanceau and Bouard [12] and computations

by Fornberg [13] and Ye et al. [14] and others suggest that the linear correlation due

to Sucker and Brauer [11] slightly underestimates the wake length. In the present

3D case, the wake length varies substantially along the cylinder span of the tapered

cylinder. In the present context the local wake length L is defined as the streamwise

distance from the cylinder surface to the position where the streamwise velocity U

changes sign from negative to positive. The wake behind the wide end is roughly four

times longer than the wake behind the narrow end of the cylinder. If the local wake

length L is scaled with the local diameter d, the spanwise variation of L/d shown

in Fig. 4 is surprisingly close to the results for uniform (i.e. 2D) cylinders. The

deviation from 2D behaviour is largest near the wide part of the tapered cylinder

where the secondary flow is most pronounced (cf. Fig. 2). The co-ordinate position

of the vortex centers (a, b) were plotted against the local Reynolds number in Fig. 5.

Here a is defined as the streamwise distance from the cylinder surface to the vortex

center and b is defined as the cross-stream distance between the two vortex centers.

The data from the present numerical study scaled with the local diameter d is in

good agreement with the experimental results for uniform (i.e. 2D) cylinders.
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Figure 5: Position of the re-circulation bubble centre (a/d, b/d) plotted against Re.

4 Conclusion

We have seen that the modest tapering gives rise to a pressure-driven secondary flow

along the span of the cylinder. The steady wake exhibits a substantial variation along

the span. This variation is associated partly with the variation of the local diameter

and partly with the local Reynolds number. The flow field in planes perpendicular

to the cylinder axis can thus be considered as quasi-two-dimensional.
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DNS OF 3D WAKE BEHIND A TAPERED CYLINDER

Direct Numerical Simulation of Vortex Shedding Behind a
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Abstract. The three-dimensional transition to turbulence in the wake of a tapered circular cylin-
der with the taper ratio 75:1 has been analyzed by performing direct numerical simulation. The
Reynolds number based on the uniform inflow velocity and the diameters at the wide and narrow
ends were 300 and 102, respectively. The same Reynolds number range was previously studied by
Parnaudeau et al. (J. Turbulence, 2007) but with a different taper ratio 40:1. The effect of taper
ratio on the transition to turbulence was investigated in the present study. It was found that the
Strouhal number versus Reynolds number curves nearly collapse, thereby indicating that a change
in the taper ratio by a factor of two has only a modest effect on the Strouhal number. However,
there still exists a significant contrast in the cellular shedding pattern. Flow-visualization of in-
stantaneous λ2-structures and the enstrophy | ω | revealed that the mode A instability appeared
around Re ≈ 200 and mode B around Re ≈ 250.

Key words: instability, transition, turbulence, DNS, tapered cylinder.

1. Introduction

Three-dimensional flow over circular cylinders is a common phenomenon in many
engineering applications which occurs behind oil-platform legs, chimneys, cooling
towers and even tapered aircraft wings. Such three-dimensionalization of the sep-
arated flow is often induced by a spanwise variation of the cylinder diameter (e.g.
tapered cylinders). A distinct feature of tapered cylinder wakes is that depending
on the local Reynolds number (Relocal) along the span, a range of flow-regimes (e.g.,
laminar unsteady wake (L3), transition in the wake (TrW) or shear layer (TrSL),
etc) may exist side by side in the same geometry. Three-dimensional instabilities
in the wake of tapered circular cylinders (L3 regime) was previously studied by
Papangelou [1], Piccirillo and Van Atta [2], Vallés et al. [3] and more recently by
Narasimhamurthy et al. [4]. In comparison, remarkably few investigations of the
TrW regime for tapered cylinders has appeared. Recently Parnaudeau et al. [5] per-
formed Direct Numerical Simulation (DNS) in the TrW regime with a taper ratio,
RT = l/(d2 − d1) = 40 : 1 (where l is the length of the circular cylinder and d2 and
d1 denote the diameter of its wide and narrow ends, respectively).

In the present study RT = 75 : 1, which implies a more modest tapering than
considered by Parnaudeau et al. [5] and the Reynolds numbers are same in both
the cases. Thereby, the effect of tapering on the transition to turbulent process is
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investigated in the present study. In this DNS study, an in-depth exploration of
the frequency spectra and the instantaneous vortical structures was carried out to
understand both the evolution of large-scale structures (vortex dislocation or vortex
splits) and the small-scale structures (mode A and mode B). Qualitative comparisons
of the present results with the earlier numerical study in L3 regime [4], and in-house
PIV (Particle Image Velocimetry) measurements by Visscher et al. [6] (where they
studied TrSL regime) are also made.

2. Flow configuration and numerical method

The computational domain was as shown in Figure 1. All dimensions were normal-
ized by d2. The mean diameter dm = 0.67. The aspect ratio (a = l/dm), RT , and
the Reynolds numbers Re2, Re1, Rem, based on the uniform inflow velocity (U = 1)
and the diameters d2, d1, dm, respectively were as shown in Table 1.

Table 1. Flow parameters

Case a RT Re2 Re1 Rem

Present simulation 74 75:1 300 102 201

Parnaudeau et al.[5] 40 40:1 300 100 200

The Navier-Stokes (N-S) equations in incompressible form were solved in 3-D space
and time using a parallel Finite Volume code [4, 10]. The code uses staggered Carte-
sian grid arrangement. Time marching was carried out using a 3rd order explicit
Runge-Kutta scheme for the momentum equations and an iterative SIP (Strongly
Implicit Procedure) solver for the Poisson equation. Spatial discretization was car-
ried out using a 2nd order central-differencing scheme. The total number of grid
points used was equal to 15 x 106. The time step ∆t = 0.003d2/U and the number
of Poisson iterations per time step was equal to 50.

A uniform inflow velocity profile U = 1 was fixed at the inlet without any
free-stream perturbations. A free-slip boundary condition was applied on both the
side walls, top wall and the bottom wall (see Figure 1). At the outlet, Neumann

2
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boundary condition was used for velocities and pressure was set to zero. The no-slip
boundary condition on the cylinder body was implemented by using a direct forcing
Immersed Boundary Method (IBM) [4, 9]. The computations were performed on
a SGI Origin 3800 parallel computer. The total consumption of CPU-time was
approximately equal to 12000 hours.

3. Results and discussion

3.1. frequency analysis

The time evolution of the instantaneous velocity components U, V, W and the
instantaneous pressure, P, were sampled along two lines parallel to the axis of the
cylinder and located 2dm and 12dm downstream the axis in X -direction, respectively.
Both lines were offset by 1dm in Z -direction. The time traces of U, V, W and P
were plotted in Figure 2, 3, 4 and 5, respectively. The figures clearly indicate the
oblique and cellular shedding pattern. Quantitative investigations of the frequency
spectra were carried out by spectral analysis of the cross-stream velocity component
(W ) time trace. In Figure 6(a) the Strouhal number (St = fdm/U) versus Relocal

(= Udlocal/ν; dlocal is the local diameter) curve from Parnaudeau et al. [5] was
compared against the present result. It is surprising to see that the curves nearly
collapse, thereby indicating that a change in the RT by a factor of two does not
affect the Strouhal number much. However, there still exists a significant contrast
in the distribution of constant-frequency cells along the span.

The vortex dislocations in the TrW state of flow behind a uniform circular
cylinder typically occur at the location of mode A instability [8]. In contrast, these
large-scale structures occur spontaneously along the whole span for tapered circular
cylinders (see Figure 6(b)). The two discontinuities in the local Strouhal number
(Stlocal = fdlocal/U) versus Relocal curve in Figure 6(b) for the uniform circular
cylinder correspond to change over of eddy-shedding mode from laminar-mode A
and mode A-mode B, respectively [8]. However, for the tapered case it seems that
the vortex dislocations depend primarily on RT .

In Figure 7 the Stlocal curve from the present simulation (TrW regime) was
plotted together with the results from Narasimhamurthy et al. [4] (L3 regime) and
the PIV measurements by Visscher et al. [6] (TrSL regime). In all the three studies
RT = 75 : 1. The Strouhal number initially increases with Reynolds number and
then decreases with the increase in Rem, similar to the uniform circular cylinder
[11]. Piccirillo and Van Atta [2] in their experimental study (L3 regime) observed
that the shedding cell size increases with the local diameter. A similar observation
was also reported by Parnaudeau et al. [5]. In Figure 7 it can be seen that shedding
cell size clearly increases towards the large diameter for low Reynolds numbers (L3
and TrW). It seems that this observation is only valid for low Reynolds numbers as
the curves for TrSL does not follow this trend.

3.2. instantaneous vortical structures

In order to identify the topology and the geometry of the vortex cores correctly
the λ2-definition due to Jeong and Hussain [12] was used. λ2 corresponds to the
second largest eigenvalue of the symmetric tensor SijSij + ΩijΩij , where Sij and
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Ωij are respectively the symmetric and antisymmetric parts of the velocity gradient
tensor. Figure 8 shows the iso-surfaces of negative λ2 at different instances in time,
t. A 3-dimensionality in the form of waviness in the spanwise vortex cores (primary
Karman vortices) is evident even in the L3 regime. The snapshots clearly illustrate
the time-evolution of the vortex dislocations (around Y = 25 − 40) and the small-
scale streamwise structures (mode A and mode B) along the span. However, vortex
dislocations are more clearly visible in Figure 9. Negative λ2, vorticity magnitude or
enstrophy | ω | and the vorticity components evaluated at the same instant in time
were plotted together. The vortex dislocations formed between spanwise cells of
different frequency when the primary vortices move out of phase with each other are
visible at Y ≈ 12, 23, and 40. The development of helical twisting of vortex tubes
is visible in the vicinity of the vortex dislocations. Williamson [7] concluded that
these helical twistings are the fundamental cause for the rapid spanwise spreading
of dislocations, and indeed for the large-scale distortion and break-up to turbulence
in a natural transition wake.

In uniform circular cylinder wakes the Reynolds number will be constant along
the whole span and therefore the individual modes of 3-dimensionality (either mode
A or mode B) exist along the entire span of the cylinder. Barkley and Henderson
[13] from their Floquet stability analysis predicted the critical Reynolds number
for the uniform circular cylinder to be 188.5 ± 1.0 and the wavelength of mode A
equal to 3.96 diameters. However, in the present tapered cylinder study the Relocal

varies along the span and both mode A and mode B co-exist in the same geometry.
Thereby only a small span of the cylinder is available for each of the modes to
develop (especially for mode A) and it is hard to pin-point the exact Reynolds
number at which these modes start to appear. Parnaudeau et al. [5] reported that
the mode A behind their tapered cylinder occurred in the L3 regime. The present
flow-visualizations revealed that mode A appeared around Relocal ≈ 200 and mode
B around Relocal ≈ 250.

4. Conclusions

The effect of taper ratio on the transition to turbulence was investigated in the
present study. It was found that the Strouhal number versus local Reynolds number
curves nearly collapse, thereby indicating that a change in the taper ratio by a
factor of two does not affect the Strouhal number much. However, there still exists
a significant contrast in the cellular shedding pattern.

Spot-like vortex dislocations in the TrW regime of uniform circular cylinders
correspond to change over of eddy-shedding mode from laminar-mode A and mode
A-mode B [8], but for tapered circular cylinders dislocation primarily depends on
RT . In the present investigation, it was observed that the shedding cell size increases
with the local diameter, which is in agreement with the previous studies at low
Reynolds numbers [2, 4, 5]. Both mode A and mode B were found to co-exist in the
same geometry but only in a small span of the cylinder. It was hard to pin-point
the exact Reynolds number at which these modes develop. However, from the flow-
visualization it can be concluded that the mode A appeared around Relocal ≈ 200
and mode B around Relocal ≈ 250.
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Figure 2. Time evolution of the U velocity along the entire span. Y = 0 corresponds to
Re2 and Y = 49.5 corresponds to Re1.

Figure 3. Time evolution of the V velocity along the entire span (see Figure 2 for details).
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Figure 4. Time evolution of the W velocity along the entire span (see Figure 2 for details).

Figure 5. Time evolution of the pressure P along the entire span (see Figure 2 for details).
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Figure 8. 3-dimensional λ2 contours (negative λ2) showing the topology and geometry of
the vortex cores at different instances in time, t. Y-axis corresponds to the axis of the
cylinder. The flow direction is from bottom to top.
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Figure 9. 3-dimensional vortical structures at the same instant in time, t = 47d2/U as
vortex dislocation occurs along the span. The flow direction is from bottom to top. (a)
Negative λ2; (b) Enstrophy | ω |; (c) streamwise vorticity ωx; (d) spanwise vorticity ωy;
(e) cross-stream vorticity ωz. The surfaces colored yellow and red mark a particular value
of positive and negative vorticity, respectively.

9



V. D. NARASIMHAMURTHY ET AL.

References

[1] Papangelou, A., Vortex shedding from slender cones at low Reynolds numbers.
J. Fluid Mech. 242, (1992), 299-321.

[2] Piccirillo, P. S. and Van Atta, C. W., An experimental study of vortex shedding
behind linearly tapered cylinders at low Reynolds number. J. Fluid Mech. 246,
(1993), 163-195.

[3] Vallès, B., Andersson, H. I. and Jenssen, C. B., Oblique vortex shedding behind
tapered cylinders. J. Fluids Struct. 16 , (2002), 453-463.

[4] Narasimhamurthy, V. D., Schwertfirm, F., Andersson, H. I. and Pettersen, B.,
Simulation of unsteady flow past tapered circular cylinders using an immersed
boundary method. In: Proc. ECCOMAS Computational Fluid Dynamics 06,
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ABSTRACT

Three-dimensional wake behind a tapered circular cylin-

der has been studied at low-Reynolds number (transition

in the wake regime) by performing Direct Numerical Simu-

lation (DNS) and at higher Reynolds numbers (transition

in the shear-layer regime) by Particle Image Velocimetry

(PIV). The taper ratio (75) was constant in both the stud-

ies. In the PIV study it was found that increase in aspect

ratio increases the number of shedding cells along the span,

an effect also reported by Piccirillo and Van Atta (J. Fluid

Mech., 1993). Both mode A and mode B were found to co-

exist in the same geometry (DNS) but only in a small span

of the cylinder. Flow-visualization revealed that the mode

A appeared around Re ≈ 200 and mode B around Re ≈ 250.

Cross-sectional views of mode B in the DNS results revealed

the smaller-scale ‘mushroom’ vortex pair structures, which

is remarkably similar to those found by Williamson (J. Fluid

Mech., 1996). The wavelength of mode B was found to

be λZ/D ≈ 1, which is surprisingly close to the experi-

mental value λZ/D = 0.98 found by Williamson (J. Fluid

Mech., 1996) in the uniform circular cylinder wake. In the

present DNS study it was found that streamwise vorticity

ωx becomes large as vortex dislocation occurs, an effect also

observed by Piccirillo and Van Atta (J. Fluid Mech., 1993).

INTRODUCTION

The flow over cylinders involves complex interactions of

three shear layers: a boundary layer, a separating free shear

layer, and a wake, in the same problem. Depending on

the Reynolds number transition-turbulence may occur ei-

ther in the wake (TrW) or separating free shear layer (TrSL)

or in the boundary layer (TrBL) of a cylinder. However,

non-uniformities in the inflow or in the cylinder diameter

(e.g. tapered cylinders) may produce the above mentioned

regimes to exist side by side in the same geometry.

Three-dimensional instabilities in the laminar unsteady

wake (L3 regime) of tapered circular cylinders were pre-

viously studied by Papangelou (1992), Piccirillo and Van

Atta (1993), Vallés et al. (2002) and more recently by

Narasimhamurthy et al. (2006). However, the TrW regime

for tapered cylinders has had remarkably few investigations

in comparison to uniform circular cylinders. Recently Par-

naudeau et al. (2007) performed Direct Numerical Simu-

lation (DNS) in the TrW regime with a taper ratio, RT =

l/(d2−d1) = 40 (where l is the length of the circular cylinder

and d2 and d1 denote the diameter of its wide and narrow

ends, respectively). The same Reynolds number range was

studied by Narasimhamurthy et al. (2007) but with a dif-

ferent RT = 75 and they found that a change in RT by a

factor of two has only a modest effect on the Strouhal num-

ber. After a literature survey it was noted that the only

available results in the TrSL regime is the hot-wire measure-

ments by Hsiao and Chiang (1998), where they studied the

tapered cylinder wake with different taper ratios and in the

Reynolds number range Rem = 4.0×103 to 1.4×104 (based

on the mean diameter dm).

The present DNS computations is aimed at studying

the wake in the low-Reynolds turbulent regime (as DNS at

higher Reynolds number is beyond the reach of any modern

computational facility). However, Particle Image Velocime-

try (PIV) provides an opportunity to study the turbulent

wake at higher Reynolds number (low Reynolds numbers

could not be reached in our test facility due to practical

issues). The aim of the present study is not to validate

the DNS results with PIV results and vice versa but to
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Figure 1: Tapered cylinder configuration

Table 1: Flow parameters (RT = 75).

Case a d1 dm d2 Re1 Rem Re2

DNS 74 0.34 0.67 1 102 201 300

A1 13 42 46 50 2100 2300 2500

A2 13 42 46 50 4200 4600 5000

A3 13 42 46 50 8400 9200 10000

A4 13 42 46 50 16800 18400 20000

B1 26 19 23 27 950 1150 1350

B2 26 19 23 27 1900 2300 2700

B3 26 19 23 27 3800 4600 5400

investigate the flow physics in two different Reynolds num-

ber ranges with two different techniques (DNS and PIV).

It should be noted that the RT is same in both the cases.

Thereby the effect of Reynolds number alone is investigated

in the present study.

NUMERICAL AND EXPERIMENTAL SETUP

The tapered cylinder configuration was as shown in figure

1. The aspect ratio (a = l/dm) and the Reynolds numbers

Re2, Re1, Rem, based on the uniform inflow velocity (U =

1) and the diameters d2, d1, dm, respectively were as shown

in Table 1. RT = 75 was constant in all the cases.

The Navier-Stokes equations in incompressible form were

solved in 3-D space and time using a parallel Finite Vol-

ume code (Narasimhamurthy et al., 2006; Manhart, 2004).

The code uses staggered Cartesian grid arrangement. Time

marching was carried out using a 3rd order explicit Runge-

Kutta scheme for the momentum equations and an iterative

SIP (Strongly Implicit Procedure) solver for the Poisson

equation. Spatial discretization was carried out using a

2nd order central-differencing scheme. The total number

of grid points used was equal to 15×106. The time step

∆t = 0.003d2/U and the number of Poisson iterations per

time step was equal to 50. A uniform inflow velocity profile

U = 1 was fixed at the inlet without any free-stream per-

turbations1. Free-slip boundary condition was applied at

the ends of the cylinder. The no-slip boundary condition on

the cylinder body was implemented by using a direct forc-

ing Immersed Boundary Method (Narasimhamurthy et al.,

2006; Peller et al., 2006). The total consumption of CPU-

time was approximately equal to 12000 CPU-hours on a SGI

Origin 3800 computer.

In the present experimental study stereoscopic PIV was

used to measure a large area of the flow field in the cylinder

wake with image rates up to 100 Hz. Two different models

1
Note that transitional wake is still surrounded by laminar

free-shear layers and thus insensitive to free stream turbulence.

(a) Sampling line 2 dm downstream from axis

(b) Sampling line 12 dm downstream from axis

Figure 2: Time evolution of cross-stream velocity ‘V’ along

the span in the present DNS.

of same length 600 mm and RT = 75 were used. The mean

diameter of the cylinder A is set to 46 mm resulting in an

aspect ratio of 13. The mean diameter of the cylinder B is

23 mm, leading to an aspect ratio of 26 (see Table 1). All

models were equipped with thin circular end-plates with di-

ameters equal to 3d2,A to eliminate disturbances caused by

free ends, an effect which has been reported by several au-

thors. An entirely uniform inflow velocity was achieved by

towing the models and the measurement system through a

still water basin. Each measurement was tailored to observe

the maximum number of shedding cycles by estimating the

shedding frequency and adapting the image rate to match

between 10 and 20 images per cycle. However, the maxi-

mum number of images is defined by the camera memory

to about 1100 while the maximal experiment length is re-

stricted by the tank length at higher towing velocities. The

measurement plane is situated in line with the cylinder axis

and directly at its downstream edge. It covers about 400 mm

in streamwise and about 300 mm in spanwise direction, thus

about half of the cylinder length. To observe the flow along

the whole span, each run was repeated for the top, center

and lower half. The velocity maps obtained from the images

have a resolution of 84 by 72 vectors for all components U ,

V , and W .
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Figure 3: Time evolution of ‘V’ velocity along the span from

PIV data (Sampling line 2 dm downstream from axis).

RESULTS AND DISCUSSION

Figure 2(a),2(b) shows the time evolution of the instan-

taneous V velocity component in the present DNS sampled

along two lines parallel to the axis of the cylinder and lo-

cated 2dm and 12dm downstream the axis in X -direction,

respectively. Similarly, the time evolution from the PIV

measurements is shown in figure 3(a),3(b),3(c). An oblique

and cellular shedding pattern is evident in both TrW (DNS)

and TrSL regime (PIV).

Time traces of the cross-stream velocity (V ) signal ran-

domly picked at different Reynolds numbers from the DNS

results were shown in figure 4(a),4(b). Low-frequency modu-

lation, a typical feature of vortex dislocations or vortex splits

can be seen in figure 4(a). However, random low-frequency

fluctuations, a characteristic feature of TrW state of flow is

only visible in figure 4(b) (for Re > 175). This is because the

transitional eddies are formed laminar but become turbulent

as they are carried downstream.

Time traces of U, V, W velocity components inside a dis-

location region from the PIV data is shown in figure 5. The

U component indicates a frequency modulation and decrease

in amplitude similar to the DNS results (figure 4(a)) each

time a dislocation occurs. Furthermore, the spanwise W

component shows an increased amplitude shortly after. Fig-

ure 6 shows the instantaneous flow field of the same case

under the vortex split. With the cross-stream V component

plotted as background, the vortex centerlines can be found

just at the boundary between dark and bright regions. It is

obvious that the greatest spanwise velocity appears right in

the split zone, while the parallel shedding is dominated by

horizontal flow.

Qualitative investigations of the frequency spectra were

carried out by the spectral analysis of cross-stream veloc-

ity component. The local Strouhal number (St
local

=

fd
local

/U ; d
local

is the local diameter) versus local Reynolds

number (Re
local

= Ud
local

/ν) curve is shown in figure 7.
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Figure 4: Time traces of ‘V’ velocity (DNS)
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Figure 5: Time traces of U,V,W velocity components along

the line marked in figure 3(c). (PIV data)

Piccirillo and Van Atta’s (1993) curve-fit (St = 0.195 −

5.0/Re) and the numerical results by Narasimhamurthy et

al.(2006) for the L3 regime together with the present DNS re-

sults (TrW) and the PIV measurements (TrSL) were plotted

against the Fey et al. (1998) curve-fit for the uniform cir-

cular cylinder. The two discontinuities in the St
local

versus

Re
local

curve in figure 7 for the uniform circular cylinder cor-

respond to change over of eddy-shedding mode from laminar-

mode A and mode A-mode B, respectively (Williamson,

1996). In contrast, these vortex dislocations occur sponta-

neously along the whole span for tapered circular cylinders.

The St
local

versus Re
local

curve for Rem > 2300 from the

model B cylinder(PIV) matches the Fey et al. (1998) curve-

fit for uniform circular cylinder.

The St
local

distribution along the span reveals vortex
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dislocations as changes in the local shedding frequency (fig-

ure 8(a),8(b)). Large jumps in the curve indicate a split

region with a fixed spanwise position. If the shedding cell

boundaries are more evenly distributed over the span, the

St curve shows a greater number of small changes in the

shedding frequency. The St
local

magnitude gets smaller and

smaller with increasing Rem for all the experiments. It is

generally lower for the cylinder A. Due to its low aspect ra-

tio, the vortices were hardly dislocated in the model A case.

Long time series reveal the presence of two cells with con-

stant shedding frequency for Reynolds numbers up to 4600

(see the single dislocation in figure 3(a)). In the A3 and A4

models a third cell appears temporarily at Rem > 9200. Fig-

ure 3(c) shows the two splits between the three cells being

fixed in spanwise position for case A4. Increasing numbers

of cells with rising Rem have been reported by Hsiao et al.

(1998) as well. Piccirillo and Van Atta (1993) found that

increase in aspect ratio increases the number of shedding

cells along the span in L3 regime. It is interesting to see a

similar effect in the TrSL regime of the present PIV study

(see model B results in figure 8(b)). For the B model are

the cell boundaries only in the lower half distinct and consis-

tent over multiple experiments. The upper half shows less

well defined cell boundaries which is also visible in figure

3(b). This might indicate a stronger end effect on the upper

cylinder end.

In order to identify the topology and the geometry of

the vortex cores correctly the λ2-definition by Jeong and

Hussain (1995) was used in the present DNS study. λ2 corre-

sponds to the second largest eigenvalue of the symmetric ten-
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sor SijSij + ΩijΩij , where Sij and Ωij are respectively the

symmetric and antisymmetric parts of the velocity gradient

tensor. Figure 9 shows the iso-surfaces of negative λ2, vor-

ticity magnitude or enstrophy | ω |, streamwise vorticity ωx

and the spanwise vorticity ωz evaluated at the same instant

in time. The vortex dislocations at Z ≈ 12.5, 22, 40 and

the small-scale streamwise structures (mode A and mode B)

along the span are clearly visible. The development of heli-

cal twisting of vortex tubes is visible in the vicinity of the

vortex dislocations. Williamson concluded that these helical

twistings are the fundamental cause for the rapid spanwise

spreading of dislocations, and indeed for the large-scale dis-

tortion and break-up to turbulence in a natural transition

wake. In uniform circular cylinder wakes the Reynolds num-

ber will be constant along the whole span and therefore

the individual modes of 3-dimensionality (either mode A or

mode B) exist along the entire span of the cylinder. However,

in the present tapered cylinder case (DNS) the Re
local

varies

along the span and both mode A and mode B co-exists in the

same geometry. Thereby, only a small span of the cylinder

is available for each of the modes to develop (especially for

mode A) and it is hard to pin-point the exact Reynolds num-

ber at which these modes start to appear. Flow-visualization

revealed that the mode A appeared around Re
local

≈ 200

and mode B around Re
local

≈ 250.

In figure 10(b),10(c) cross-sectional views of mode-B
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Figure 9: 3-dimensional vortical structures from the present

DNS taken at the same instant in time as vortex dislocation

occurs (at Z ≈ 12.5, 22, 40) along the span. The flow direc-

tion is from bottom to top. (a)Negative λ2; (b)Enstrophy

| ω |; (c)streamwise vorticity ωx; (d)cross-stream vorticity

ωz. The surfaces colored white and black mark a particular

value of positive and negative vorticity, respectively.

SECTION PLANE

Z

(a) Y − Z section plane (dotted line)

(b) mode B ’mushroom’ structures at Z ≈ 3 − 6

(c) mode B ’mushroom’ structures at Z ≈ 0 − 3

Figure 10: Cross-sectional views of mode B showing ’mush-

room’ vortex pair structures in the present DNS. (note that

section plane is parallel to the axis and at an angle to the

vortex lines and thereby structures are visible only in some

parts of the plane)

streamwise vortex structure from the DNS results were

shown. We can see clearly the smaller-scale ‘mushroom’

vortex pair structures of mode-B vortex shedding. There is

a remarkable similarity between this vortex array and that

found by Williamson (1996). However, note that the section

plane is parallel to the axis and at an angle to the vortex

lines (see figure 10(a)) and thereby structures are visible only

in some parts of the plane. The wavelength of mode B was

found to be λZ/d2 ≈ 1, which is surprisingly close to the ex-

perimental value λZ/D = 0.98 found by Williamson (1996)

in the uniform circular cylinder wake.

Piccirillo and Van Atta (1993) reported that the vortex

splitting in L3 regime occurs when the streamwise vorticity

ωx becomes too large. It is fascinating to see the sharp con-

trast between the normal vortex shedding pattern and the

vortex split in figure 11(a),11(c) and 11(b),11(d), respec-

tively. Note the increase in ωx in figure 11(b) and 11(d) by

an order of magnitude 10 as vortex splits.
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(a) Z=12.5; Relocal = 250 (before split)

(b) Z=12.5; Relocal = 250 (vortex split)

(c) Z=22; Relocal = 212 (before split)

(d) Z=22; Relocal = 212 (vortex split)

Figure 11: Streamwise vorticity (ωx) as vortex splits (DNS

results). (note that (a),(b) and (c),(d) were taken at the

same spanwise location, respectively)

CONCLUSIONS

Oblique and cellular shedding pattern was observed in

both TrW (DNS) and TrSL regime (PIV). In the present PIV

study it was found that increase in aspect ratio increases the

number of shedding cells along the span, an effect also re-

ported by Piccirillo and Van Atta (1993) in their L3 regime

case. Both mode A and mode B were found to co-exist in the

same geometry (DNS) but only in a small span of the cylin-

der. Flow-visualization revealed that the mode A appeared

around Re
local

≈ 200 and mode B around Re
local

≈ 250.

Cross-sectional views of mode B in the DNS results revealed

the smaller-scale ‘mushroom’ vortex pair structures, which is

remarkably similar to that found by Williamson (1996). The

wavelength of mode B was found to be λZ/d2 ≈ 1, which

is surprisingly close to the experimental value λZ/D = 0.98

found by Williamson (1996) in the uniform circular cylinder

wake. In the present DNS study it was found that stream-

wise vorticity ωx becomes large (increases by an order of

magnitude 10) as vortex dislocation occurs, an effect also

observed by Piccirillo and Van Atta (1993).
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Direct numerical simulation of vortex shedding behind a tapered circular cylinder

with the taper ratio 75 placed normal to the inflow has been studied. The Reynolds

numbers based on the uniform inflow velocity and the diameter of the cylinder at

the wide and narrow ends were 300 and 102, respectively. In the present numerical

study it was observed that even with a very long time sampling discrete cellular

shedding pattern prevails. This is in contrast to what Parnaudeau et al. (2007)

speculated in their tapered cylinder study, where they suggested that with a longer

time sampling diffused cellular pattern might appear. In the present investigation it

was found that streamwise vorticity becomes large as vortex dislocation occurs, an

effect also reported by Piccirillo and Van Atta (1993) in their experimental study.

Flow-visualizations revealed that both mode A and mode B secondary flow struc-

tures co-exist along the span of the present tapered cylinder. The wavelength of

mode B is surprisingly in good agreement with the experimental value found by

Williamson (1996) for uniform circular cylinders. The present numerical calculation

revealed a spanwise secondary motion, both in the front stagnation zone and also

in the wake of the cylinder. In the front stagnation zone, the secondary flow was

driven by a spanwise pressure gradient. The secondary flow pattern in the wake was

found to be rather complex. This complex behaviour of the secondary motion was

attributed to the intrinsic secondary-instabilities induced by the transition process

itself. This is in contrast to what Parnaudeau et al. (2007) speculated in their

tapered cylinder study, where they attributed this to the oblique and cellular vortex

shedding. In spite of this secondary flow in the base region, the local formation

length from the present tapered cylinder study is surprisingly in good agreement

with the results of uniform circular cylinders.

1Corresponding author. Tel.: +47 73593563; fax: +47 73593491; E-mail: vagesh@ntnu.no
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body wake.

1 Introduction

The flow over a circular cylinder remains two-dimensional as long as the Reynolds

number is below the critical value ≈ 190 [1] beyond which intrinsic secondary in-

stabilities are known to occur. Such secondary instabilities render the flow three-

dimensional and eventually to a turbulent state. These three-dimensionalities can

induce significant spanwise variations in the velocity and pressure fields. In con-

trast, such three-dimensionalities are known to occur if the diameter of the cylinder

changes discontinuously [2, 3, 4] or linearly [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] even

at a Reynolds number well below the critical value ≈ 190. Almost all the previous

studies on the flow past linearly tapered circular cylinders are either in the laminar

flow regime [5, 6, 7, 8, 9, 10, 11, 15] or in the turbulent flow regime [12, 13]. It

is therefore not clear at this stage how the flow responds in the transitional flow

regime.

The only exception is the numerical study by Parnaudeau et al. [14] where they

provided some data of the cellular wake pattern behind their tapered circular cylin-

der. Their objective was limited to study and compare the flow topology of the wake

behind a circular cylinder in a linear shear flow with the wake of a tapered circular

cylinder. They however confess that their frequency data were obtained from a short

time-series (around 10 vortex shedding cycles at the wide end of the tapered cylin-

der) and the number of realizations were not sufficient for the results to converge

to a statistically stationary state. The time evolution of their data along the span

of the cylinder revealed a more complex vortex shedding pattern than the cellular

structure obtained from the Fourier analysis. They argued that with a longer time-

series the Fourier analysis might perhaps produce a diffused cellular wake pattern.

This however has not been verified.

In addition to the frequency data Parnaudeau et al. [14] observed wavy distribution

of the spanwise secondary motion in the wake. They speculated that this oscillatory

behaviour of the secondary motion along the span, where the secondary flow changed

its course of direction randomly, may be due to the three-dimensionalities induced by

the oblique vortex shedding and the vortex dislocations along the span. They state

that this point needs further insight. Recently Narasimhamurthy et al. [15] studied

steady laminar flow past a tapered circular cylinder and they observed spanwise

secondary motion both in the front stagnation zone and also in the wake, driven

2



22

13

6 15

6

6

d2 = 1

d1

BOTTOM WALL

TOP WALL

SIDE WALL

SIDE WALL

= 0.34

X

Y

Z

W

V

U

OUTFLOWINFLOW

49.5l  =

o

o

o

U  = 1

V  = 0

W  = 0

Figure 1: Computational domain (not to scale).

by the spanwise pressure-gradient alone. Similar conclusions were also drawn by

Narasimhamurthy et al. [16] where they noticed pressure-driven secondary motion

in the turbulent wake of a tapered flat plate, which coincidentally also exhibited

cellular vortex shedding pattern. It is therefore interesting to see whether such a

conclusion can be drawn even in the present study of flow past a tapered cylinder,

where the wake is in the transitional flow regime.

The above issues will be addressed for the first time in the present Direct numeri-

cal simulation (DNS) study. In addition to frequency (both Fourier and Wavelet)

analysis a more detailed investigation of the spanwise two-point correlations and the

instantaneous vortical structures will be carried out. The spanwise variations of the

velocity and the pressure fields will also be shown. Reynolds averaged statistical

quantities at some sections along the span of the cylinder will be presented and the

underlying physics will be highlighted.

2 Flow configuration and numerical method

Let us consider the flow past a tapered circular cylinder with the view to explore the

vortex shedding at low Reynolds numbers. The taper ratio, RT = l/(d2 − d1) = 75,

where l is the length of the cylinder and d2 and d1 denote the diameter of its wide

and narrow ends, respectively. Due to the substantial tapering, the local Reynolds

number varies from 300 at the wide end to 102 at the narrow end of the cylinder.

Thereby, the Reynolds number chosen in the present DNS study is such that both the
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CASE RT AR Re2 Rem Re1

Present simulation 75 74 300 201 102
Piccirillo & Van Atta [8] 75 - 179 - 99
Piccirillo & Van Atta [8] 75 - 103 - 57

Vallès et al.[9] 75 53 163 - 91
Vallès et al.[9] 75 53 131 - 73

Narasimhamurthy et al.[15] 75 43 40 31 22
Hsiao & Chiang [12] 75 - - 1.4 × 104 -
Parnaudeau et al.[14] 40 40 300 200 100

Table 1: Geometrical and flow parameters for tapered cylinder studies.

laminar and the transitional flow regimes co-exist along the span of the cylinder.

The computational domain was as shown in figure 1. All spatial dimensions are

normalized by d2 and all velocities are scaled with the uniform inflow velocity Uo.

The mean diameter of the cylinder, dm = 0.67d2. The aspect ratio (AR = l/dm),

RT , and the Reynolds numbers Re2, Re1, Rem, based on the uniform inflow velocity

Uo and the diameters d2, d1, dm, respectively, are as shown in Table 1.

The Navier-Stokes equations in incompressible form were solved in 3-D space and

time using a parallel finite-volume code called MGLET ([18, 11]). The code uses

staggered Cartesian grid arrangements. Discretization of the spatial derivatives was

achieved by means of a 2nd-order central-differencing scheme. The time marching

was carried out using a 3rd-order explicit Runge-Kutta scheme for the momentum

equations in combination with an iterative SIP (Strongly Implicit Procedure) solver

for the Poisson equation. The size of the computational domain in each coordinate

direction was Lx = 22d2, Ly = 49.5d2, and Lz = 13d2, as shown in figure 1. The

number of grid points in each coordinate direction (Nx × Ny × Nz) was equal to

360 × 250 × 164, respectively. The time step was chosen as ∆t = 0.003d2/Uo and

the number of Poisson iterations per time step was limited to 50. Parallelization

was implemented using Message Passing Interface (MPI). The computations were

performed on a SGI Origin 3800 parallel computer. The total consumption of

CPU-time was approximately 40000 hours.

A uniform velocity profile Uo = 1 was prescribed at the inlet without any free-stream

perturbations and a Neumann boundary condition was used for the pressure. A free-

slip boundary condition was applied on both the side walls, as well as at the top and

bottom walls (cf. figure 1). At the outlet, a Neumann boundary condition was used

for velocities and the pressure was set to zero. A direct forcing Immersed Boundary

Method (IBM) ([17, 11]) was used to transform the no-slip condition at the cylinder

surface into internal boundary conditions at the nodes of the Cartesian grid. The
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internal boundary condition value had to be determined by interpolation. In the

present DNS we used least-squares interpolation of 3rd-order accuracy. The detailed

derivation, validation and implementation of this technique in the code MGLET

were explained in [17].

3 Results and discussion

3.1 Frequency analysis

The time evolution of the instantaneous velocity components U, V, W and the

instantaneous pressure, P, were sampled along two lines parallel to the axis of the

cylinder and located 2dm and 12dm downstream the axis in X -direction, respectively.

Both lines were offset by 1dm in Z -direction. It would be inappropriate to present all

the data here due to space constraints. Therefore, only the time trace of the cross-

stream velocity W sampled at 12dm is shown in figure 2. The total sampling time

was equal to 180 d2/Uo or 530 d1/Uo, which covers about 38 vortex shedding cycles

at the wide end and about 80 shedding cycles at the narrow end of the cylinder. In

contrast, the sampling length in Parnaudeau et al. [14] was about 10 vortex shedding

cycles at the wide end of their tapered cylinder. Thereby, the sampling length in

the present DNS is around 4 times longer than that of Parnaudeau et al. [14]. The

pattern clearly indicates oblique and cellular vortex shedding with random occurance

of vortex dislocations or vortex splits along the span. It is easy to see that the vortex

dislocations are not occurring periodically in time at the same spanwise position.

This justifies the need for such a long and expensive time sampling. Some time

trace signals of the cross-stream velocity (W ) at some different Reynolds numbers

are shown in figure 3(a),3(b). Low-frequency modulation, a typical feature of vortex

dislocations or vortex splits can be seen in figure 3(a). The signals are more distorted

in figure 3(b) (for Re > 190) due to the appearance of random fluctuations which is

a characteristic feature of transition state of flow. This is because the transitional

eddies are formed laminar but become turbulent as they are carried downstream.

In other words transitional eddies have laminar cores with turbulent circumference.

3.1.1 Fourier analysis

Quantitative investigations of the frequency spectra were carried out by Fourier

analysis of cross-stream velocity component (W ) time traces. Shedding frequencies

(f) obtained from the Fast Fourier Transform (FFT) of the velocity signals are

plotted against the Relocal (= Uodlocal/ν; dlocal is the local diameter) in figure 4(a).
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Figure 2: Time evolution of the cross-stream velocity (W ) showing vortex-dislocations along the entire
span. The sampling line is at X/dm = 12 and Z/dm = −1 (measured from the axis of the cylinder).
Y/d2 = 0 corresponds to Re2 = 300 and Y/d2 = 49.5 corresponds to Re1 = 102.
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Figure 3: Time traces of ‘W’ velocity at different local Reynolds numbers.

Note that the shedding frequency is varying along the span in discrete steps between

cells of constant shedding frequency. In order to confirm that the total sampling

time in the present DNS is long enough for the results to converge to a statistically

stationary state, the local Strouhal number (Stlocal = fdlocal/Uo) obtained from

varying lengths of time sample was plotted in figure 4(b). Even though the curves

nearly collapse towards the narrow end of the cylinder distinct differences arise

towards the wider end, where the length of the shedding period is longer, thereby

demanding a longer sampling time for the curves to collapse. This is clearly achieved

in the present case where the curves with the respective sampling times 174.0d2/Uo

and 130.5d2/Uo nearly coincide. The present DNS data clearly demonstrates that

even with a longer time series (nearly 4 times longer than Parnaudeau et al. [14])

discrete cellular shedding pattern prevails. This is in contrast to what Parnaudeau

et al. [14] speculated in their tapered cylinder study, where they suggested that

with a longer time sampling diffused cellular pattern might appear.

In figure 5(a), Strouhal number (St = fdm/Uo) obtained from both the time series

of the present DNS (sampled 2dm and 12dm downstream the axis, respectively) is

compared against the data of Parnaudeau et al. [14]. Even though the data from

both the time series nearly collapse, small differences between them exist in identi-

fying the position of the cells along the span. The reason for which was observed in

the flow visualizations, where the dislocated vortex filaments experience a modest

spanwise motion as they are carried downstream. The significant contrast in the cel-

lular shedding pattern between the present tapered cylinder and that of Parnaudeau

et al. [14] should be noticed in figure 5(a). Recall that the Reynolds numbers were

same in both the studies. However, it is difficult to draw any firm conclusions about

this observation as their data were obtained from a very short time series. The
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Figure 4: Shedding frequencies (fd2/Uo) from Fourier analysis of the W velocity
time trace sampled 12dm downstream from the axis; and the corresponding local
Strouhal number (Stlocal) obtained with varying lengths of time sample.
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Figure 5: Strouhal number versus Reynolds number.

vortex dislocations in the transition state of flow of a uniform circular cylinder typ-

ically occur at the location of mode A instability [20]. In contrast, these large-scale

structures occur spontaneously along the whole span of tapered circular cylinders

(see figure 5(b)). The two discontinuities in the local Strouhal number versus Relocal

curve in figure 5(b) for the uniform circular cylinder correspond to change-over of

eddy-shedding mode from laminar-mode A and mode A-mode B, respectively [20].

However, for tapered circular cylinders vortex dislocations depend primarily on the

taper ratio RT [8].
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Figure 6: Wavelet results corresponding to the pseudo-shedding frequencies (fa). In
each plot, the phase diagram is plotted below the signal which was transformed.

3.1.2 Wavelet analysis

It is essential to quantify the variations of frequency as a function of time but

Fourier analysis fails to provide any time-variance distribution of the fluctuating

signals. Therefore, in order to explore the time-scale or time-frequency variations of

the velocity signal as vortex splits, a one-dimensional continuous wavelet transform

(CWT) was applied to selected data sets. The CWT is defined as,

C(a, b) =
∫

∞

−∞

s(t)
1√
a
Ψ

(

t − b

a

)

dt (1)

where C(a,b) is the wavelet coefficient of the data s(t) at any given temporal scaling

factor a and the position b (see Farge [22] for an extensive review of different wavelet

transforms). In the present analysis, the mother wavelet Ψ is the Morlet wavelet
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defined as Ψ(t) = e−t2/2 cos(5t). Since s(t) is a discrete signal, a piecewise constant

interpolation of the s(k) values, k=1 to length was used. The CWT was performed

using algorithms implemented in the MATLAB software package. In wavelet analy-

sis, the temporal scaling factor a is used rather than the frequency (f ) employed in

conventional Fourier analysis. In order to interpret the results of wavelet analysis

in the conventional way, the scaling factor was converted into an equivalent Fourier

frequency or pseudo-shedding frequency fa = fc/(a ∆t), where, fc is the center fre-

quency of the Morlet wavelet and ∆t is the sampling period. In figure 6, the phase

diagrams are shown below the corresponding transformed signals. From the phase

diagrams it is clear that the primary shedding frequency undergoes a considerable

and abrupt reduction during the time interval 40 − 55 in figure 6(a) and 30 − 45

in figure 6(b), respectively. The contours of high energy density (white) in figure 6

correspond to the parts of the signal before and after the occurance of vortex dislo-

cations, where the primary shedding frequency is the most energetic and associated

with the highest amplitude values. These harmonics, which are initially arranged

in a consistent pattern correspond to the organized coherent motion. With the oc-

curance of a vortex dislocation, the harmonics break from this pattern. In order

to compensate the delay in the vortex shedding mechanism caused by the vortex

dislocations, the harmonics then reorganize themselves as the flow further evolves in

time. Thus wavelet analysis clearly illustrates the flow mechanism associated with

the frequency and amplitude modulations, which appear during the formation and

advection of a vortex dislocation.

3.2 Spanwise two-point correlation

To further explore the cellular vortex shedding phenomenon, the spanwise coupling

of the vortex motion is studied by means of spanwise two-point correlations, where

the correlation coefficient is defined as φ(Y ) φ(Y + ∆Y ) / φ(Y )2. In statistically

homogeneous flows, this correlation is a function only of the separation ∆Y between

the two points and does not depend on the position Y . In addition, the correlation

is symmetric in the direction of homogeneity, i.e. independent of the sign of ∆Y .

However, this should not be true in the present case as the flow is inhomogeneous

in all the three directions. This is indeed what we see in figure 7. The correlation

coefficient of the secondary flow (V ) and the cross-stream velocity (W ) are plotted

against the spanwise separation ∆Y at the middle of the span (corresponding to

Relocal = 200) in figure 7(a) and figure 7(b), respectively. The correlation is clearly

asymmetric and goes to zero within about ∆Y/d2 = 4−8, since the spanwise vortex

filaments experience vortex dislocations along the span. The negative correlation
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Figure 7: Spanwise correlation of (a) the secondary motion V ; (b) cross-stream ve-
locity W ; at the middle of the span corresponding to Relocal = 200. ∆Y corresponds
to spanwise separation length.

implies that the secondary motion is oppositely directed at that position.

3.3 Instantaneous vortical structures

In order to identify the topology of the vortex cores correctly the λ2-definition by

Jeong and Hussain [23] was used. λ2 corresponds to the second largest eigenvalue

of the symmetric tensor SijSij + ΩijΩij , where Sij and Ωij are respectively the

symmetric and antisymmetric parts of the velocity gradient tensor. In figure 8,

the iso-surfaces of negative λ2, spanwise vorticity ωy and streamwise vorticity ωx

evaluated at the same instant in time, t = 47d2/Uo were plotted together. Three-

dimensionality in the form of waviness in the spanwise vortex cores (primary Karman

vortices) is evident even in the laminar part of the wake. The vortex dislocations

formed between spanwise cells of different frequency when the primary vortices move

out of phase with each other are visible at Y ≈ 12.5, 22, and 37. The snap shots show

the appearance of small-scale streamwise structures (mode A and mode B) along

the span in the lower parts of figure 8(a),8(c). The development of helical twisting

of vortex tubes is visible in the vicinity of the vortex dislocations. Williamson

[19] concluded that these helical twistings are the fundamental cause for the rapid

spanwise spreading of dislocations, and indeed for the large-scale distortion and

break-up to turbulence in a natural transitional wake behind a uniform cylinder.

Increase in streamwise vorticity ωx in the vicinity of vortex dislocations should be

observed in figure 8(c). It is fascinating to see the distinct contrast between the

normal vortex shedding pattern (before the dislocation) and as the vortex dislocation

occurs in figure 9(a),9(c) and 9(b),9(d), respectively. The ten-fold increase in ωx in
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(a) negative λ2 (b) spanwise vorticity ωy (c) streamwise vorticity ωx

Figure 8: 3-dimensional vortical structures at the same instant in time, t = 47d2/Uo

as vortex dislocation occurs along the span. The surfaces colored white and black
in (b),(c) mark +0.003 ων/U2

o and −0.003 ων/U2
o , respectively.

figure 9(b) and 9(d) as the vortex dislocation occurs is note-worthy. Piccirillo and

Van Atta [8] reported that the vortex dislocations in the laminar regime occurred

when the streamwise vorticity ωx became too large or in other words when the angle

of shedding became too large.

In uniform circular cylinder wakes the Reynolds number is constant along the whole

span and therefore the individual modes of three-dimensionality (either mode A or

mode B) exist along the entire span of the cylinder. Barkley and Henderson [1]

from their Floquet stability analysis predicted the critical Reynolds number for the

uniform circular cylinder to be 188.5 ± 1.0 and the wavelength of mode A equal to

3.96 diameters. However, in the present tapered cylinder study Relocal varies along

the span and both mode A and mode B co-exist in the same flow. Thereby, only a

short span of the cylinder is available for each of the modes to develop (especially for

mode A) and it is difficult to pin-point the exact Reynolds number at which these

modes start to appear. Flow-visualizations revealed that the mode A appeared

around Relocal ≈ 200 and mode B around Relocal ≈ 250 in the present study. In
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(a) Y=12.5; Relocal = 250 (before split) (b) Y=12.5; Relocal = 250 (vortex split)

(c) Y=22; Relocal = 212 (before split) (d) Y=22; Relocal = 212 (vortex split)

Figure 9: Non-dimensionalized streamwise vorticity component (ωx ν/U2
o ) as vortex

splits. (note that (a),(b) and (c),(d) were taken at the same spanwise location,
respectively)

(a) mode B ’mushroom’ structures at Y ≈ 3 − 6

Section plane

Y

(b) Y − Z section plane (dotted line)

Figure 10: Cross-sectional view of mode B showing ’mushroom’ vortex pair struc-
tures.
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Figure 11: Time-mean spanwise velocity V /Uo (secondary flow) along the span: (a)
at some different spanwise locations identified by the local Reynolds number; (b)
velocity contours in the X − Y section plane through the axis of the cylider.

figure 10(a) a cross-sectional view of mode-B streamwise vortex structures is shown.

We can see clearly the smaller-scale ‘mushroom’ vortex pair structures of mode-B

vortex shedding. There is a remarkable similarity between this vortex array and

that found by Williamson [21] in the uniform circular cylinder wake. However, note

that the section plane is parallel to the axis and at an angle to the vortex lines

(see figure 10(b)) and thereby structures are visible only in some parts of the plane.

The wavelength of mode B was found to be λY /d2 ≈ 1, which is very close to the

experimental value λY /D = 0.98 found by Williamson [21] for uniform cylinders.

3.4 Secondary motion

Time-averaged statistical quantities were evaluated by sampling for 123 d2/Uo or

360 d1/Uo time units. This sampling period corresponds to about 40 mean shedding

cycles. The present simulation revealed a mean spanwise velocity V , both in the

front stagnation zone and also in the wake of the cylinder (see figure 11). It can be

observed from figure 11(a) that in the front stagnation zone the secondary flow is

going from the wide end of the cylinder towards the narrow end. The magnitude of

this spanwise velocity is quite small, around 2% of the inflow Uo. The direction and

magnitude of this secondary motion is surprisingly similar to what was observed in

the steady laminar regime [15]. This flow is driven by a spanwise pressure gradient.

The front stagnation line is slightly inclined with respect to the cylinder axis and

this tilt gives rise to a somewhat higher pressure near the wide end of the cylinder as

compared to the narrow end. The pressure contours (isobars) in figure 12(a) show
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Figure 12: (a) Pressure (P/ρU2
o ) contours in the X − Y section plane through the

axis of the cylinder. The cylinder is drawn as a bold line. (b) Mean pressure (P/ρU2
o )

in the wake at different spanwise locations identified by the local Reynolds number.

that the isobars are more inclined to the cylinder axis than the stagnation line,

thereby giving rise to a spanwise pressure gradient which drives the flow towards

the narrow end.

On the contrary, the secondary motion on the rear side of the cylinder in figure

11(b) is complex. The flow, both in the near vicinity of the cylinder and in the

wake has no preference for a specific direction of motion, i.e. it changes its course of

direction randomly along the span. This is in contrast to what was observed in the

steady laminar regime [15], where the secondary motion was found to go from the

narrow end of the cylinder towards the wide end. The magnitude of this spanwise

velocity is typically of the order 15 − 20% of the inflow Uo, i.e., about ten times

larger than what was observed in the steady laminar regime [15], but similar to the

results of Parnaudeau et al. [14]. It is worth mentioning here that the secondary

flow in the steady laminar regime [15] was driven by the spanwise pressure gradient

alone. Even though a significant spanwise pressure gradient exists in the wake of

the present tapered cylinder (see figure 12(a), 12(b)), it is clear that pressure is not

the only driving mechanism here. Parnaudeau et al. [14] speculated that this ‘wavy

secondary motion along the span’ was due to the three-dimensionalities induced by

the oblique vortex shedding and the vortex dislocations. Recently Narasimhamurthy

et al. [16] studied the turbulent wake behind a tapered flat plate and they observed

oblique and cellular vortex shedding. In spite of this the secondary motion they

noticed was driven by the spanwise pressure gradient alone. Therefore attributing

the waviness in the secondary motion to the oblique and cellular vortex shedding

might not be appropriate. On the other hand, this ‘wavy secondary motion along
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Figure 13: Non-dimensional length of the re-circulation zone versus Relocal: −,
tapered cylinder (present simulation) ; −.−, tapered cylinder (Parnaudeau et al.
[14]) ; •, uniform cylinder (Williamson [21]).

the span’ was observed only in the transitional wake of a tapered cylinder, i.e. both

in the present study and in Parnaudeau et al. [14]. Therefore effect of transition

process itself on the direction of secondary motion cannot be ruled out. Recall that

spanwise velocity V is directly linked to the streamwise vorticity ωx; and streamwise

vortical structures occur along the span (cf. figure 8(c)). Therefore at this stage

we suggest that the ‘wavy secondary motion’ in the wake of the present tapered

cylinder is a direct consequence of the intrinsic secondary-instabilities induced by

the transition process itself. In spite of the secondary flow in the base region, the

local length of the re-circulation zone from the present computations is nearly in

good agreement with the results of uniform circular cylinder (see figure 13). In the

present context the local formation length Lw is defined as the streamwise distance

from the axis of the cylinder to the position where the mean streamwise velocity U

changes sign from negative to positive.

3.5 Reynolds averaged statistics

It is important to quantify the growth and decay of different properties of the fluc-

tuating motion, especially in the near wake region where the similarity laws cannot

be applied. Therefore in the present section Reynolds averaged statistical quantities

at some sections along the span of the cylinder will be presented and the underlying

physics will be discussed. The variation of the mean streamwise velocity U in the

very near wake at two different Reynolds numbers corresponding to the laminar

regime (Relocal = 150) and the transitional regime (Relocal = 250) are shown in fig-

ure 14(a) and 14(b), respectively. Note that U profiles in figure 14(a) and 14(b) are

qualitatively similar. However, owing to the production of turbulence, magnitude of

U drastically reduces as the flow evolves downstream in figure 14(b). Similar conclu-

sions can also be drawn from figure 15(a) and 15(b), where the mean cross-stream

velocity W profiles are plotted. The anti-symmetric configuration of W represents

the effects of the mean re-circulation zone.
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Figure 14: Mean streamwise velocity (U/Uo) profiles at fixed X/dlocal positions
(measured from the axis of the cylinder).
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Figure 15: Mean cross-stream velocity (W/Uo) profiles at fixed X/dlocal positions
(measured from the axis of the cylinder).
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Figure 16: Reynolds stress (u2/U2
o ) profiles at fixed X/dlocal positions (measured

from the axis of the cylinder).

Reynolds stresses u2, w2 and uw are shown in figures 16, 17 and 18, respectively.

Note that due to the Reynolds-averaging stress components have contributions from

both the unsteady fluctuations and the turbulent fluctuations. Increase in the mag-

nitude of Reynolds stresses at the higher Reynolds number (Relocal = 250) is ap-

parent in all the three figures. A bi-modal u2 profile similar to the uniform circular

cylinder data by Persillon & Braza [24] can be observed in all the present cases in

figure 16. The highest level of streamwise velocity fluctuations occur in the shear

layers shed from the cylinder surface and hence the two peaks in figure 16 are offset

from the wake centerline. In contrast the maximum values of w2 stress component

appear along the wake centerline (see figure 17). This is because at the wake cen-

terline the flow is subjected to an equally weighted influence of both the alternating

vortices shed from either side of the cylinder. Except at the most upstream loca-

tion X/dlocal = 1 (which lies inside the recirculation zone), the transverse velocity

fluctuations are more energetic than the streamwise velocity fluctuations, hence the

magnitude of w2 stress component is much larger than the u2 stress component. The

peak amplitudes of the shear stress in figure 18 indicates the position where the two

fluctuating components are in phase; and the regions where this correlation goes to

zero indicates that they are out of phase by 180o in those positions. At X/dlocal = 1,

two more peaks appear near the wake centerline. This pattern, however, disappears

downstream, i.e. beyond the recirculation zone.

The mean fluctuating kinetic energy, k = (u2 + v2 + w2)/2, profiles are shown in

figure 19. From X/dlocal = 2 and further downstream, the highest energy level is

observed along the wake centerline and the actual peak level decays monotonically

with X. This is because the transverse velocity fluctuations are more energetic than
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Figure 17: Reynolds stress (w2/U2
o ) profiles at fixed X/dlocal positions (measured

from the axis of the cylinder).
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Figure 18: Reynolds shear stress (uw/U2
o ) profiles at fixed X/dlocal positions (mea-

sured from the axis of the cylinder).
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Figure 19: Fluctuating kinetic energy (k/U2
o ) profiles at fixed X/dlocal positions

(measured from the axis of the cylinder).

the streamwise velocity fluctuations in those regions and therefore w2 represent the

major contribution to k. Close to the cylinder, however, the highest energy levels are

offset from the wake centerline since w2 is relatively modest and roughly comparable

to u2 in those regions. It can thus be concluded that the bi-modal k−profile at this

location stems from the streamwise velocity fluctuations. Mean fluctuating kinetic

energy profiles from the present tapered cylinder was compared against the uniform

circular cylinder data by Persillon & Braza [24] at Re = 200 in figure 20. In spite

of the different wake patterns behind the two bluff-bodies, qualitative agreement

between the two results is surprising. There is also a remarkable similarity (quali-

tatively) between the present tapered cylinder wake statistics and that of uniform

circular cylinder wake statistics by Persillon & Braza [24], even though the under-

lying flow physics in the wake of tapered cylinders and the uniform cylinders are

completely different from each other.

4 Conclusions

Frequency analysis, two-point correlations and the three-dimensional flow visual-

izations collectively confirm that multiple cells of constant shedding frequency ex-

ist along the span of the present tapered cylinder. The present DNS data clearly

demonstrated that even with a longer sampling time (nearly 4 times longer than Par-

naudeau et al. [14]) discrete cellular shedding pattern prevails. This is in contrast to

what Parnaudeau et al. [14] speculated in their tapered cylinder study, where they

suggested that with a longer time sampling diffused cellular pattern might appear.

In the present study it was found that streamwise vorticity becomes large as vortex
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Figure 20: Fluctuating kinetic energy (k/U2
o ) from the present tapered cylinder at

Relocal = 200 compared against the uniform circular cylinder data by Persillon &
Braza [24] at Re = 200. X/d positions are measured from the axis of the cylinder.

dislocation occurs, an effect also observed experimentally by Piccirillo & Van Atta

[8] in the laminar flow regime. Flow-visualizations revealed that the mode A ap-

peared around Relocal ≈ 200 and mode B around Relocal ≈ 250 in the present study.

The wavelength of mode B was found to be λY /d2 ≈ 1, which is surprisingly very

close to the experimental value λY /D = 0.98 found by Williamson [21] for uniform

circular cylinders.

The present three-dimensional calculation revealed a spanwise secondary motion,

both in the front stagnation zone and also in the wake of the cylinder. It was ob-

served that in the front stagnation zone the secondary flow was driven by a spanwise

pressure gradient, driving the flow from the wide end of the cylinder towards the

narrow end. This is surprisingly similar to what was observed in the steady laminar

regime [15]. On the contrary, the secondary flow pattern on the rear side of the cylin-

der is rather complex. The flow, both in the near wake and further downstream has

no preference for a specific direction of motion, i.e. it changes its course of direction

randomly along the span. This is in contrast to what was observed in the steady

laminar regime [15], where the secondary motion was found to go from the narrow

end of the cylinder towards the wide end. The spanwise secondary motion in the

wake was found to be more pronounced in the present transitional flow case than in

the steady laminar case [15]. Even though significant spanwise pressure gradient was

noticed in the wake of the present tapered cylinder, it was observed that pressure
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is not the only driving mechanism here. It was suggested that the ‘waviness in the

secondary motion’ in the wake of the present tapered cylinder is due to the intrinsic

secondary-instabilities induced by the transition process itself. This is in contrast

to what Parnaudeau et al. [14] speculated in their tapered cylinder study, where

they attributed this ‘waviness in the secondary motion’ to the oblique and cellular

vortex shedding.

In spite of the secondary flow in the base region, the local formation length from

the present tapered cylinder study is nearly in good agreement with the results of

uniform circular cylinder [21]. On comparing the Reynolds averaged statistical quan-

tities it was observed that there is a remarkable similarity (qualitatively) between

the present tapered cylinder wake statistics and the uniform circular cylinder wake

statistics by Persillon & Braza [24]. This, in spite of the underlying flow physics in

the wake of tapered cylinders and the uniform cylinders being completely different

from each other, is surprising.
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Abstract 
Non-linear flow phenomena in the wake of a circular cylinder in planar shear flow are studied at 

Reynolds number 300 and a uniform shear rate 0.1Uc/D where Uc is the inflow velocity at the 

level of the cylinder axis. Direct numerical simulations are performed and the results compared 

with data obtained for the same configuration but with uniform inflow. Mean velocity components 

and Reynolds stresses are compared and reveal modest asymmetries in the boundary layer 

development and the pressure coefficient along the cylinder surface and in the wake. This is in 

contrast with the observation that the Strouhal number as well as the location at which the laminar 

boundary layer separates from the cylinder is unaffected by the presence of inflow shear. The 

mode B instability in the cylinder wake is not suppressed by the sheared inflow. The primary 

Karman vortices shed from the low-velocity side of the cylinder are distorted and substantially 

weakened as compared with the vortices shed from the high-velocity side. Moreover, vortical cells 

of opposite vorticity cluster in the near wake, in contrast with the regularly spaced cells in the 

presence of uniform inflow conditions. 

 

Key words:  Planar shear inflow; Circular cylinder; Direct numerical simulation; Vortex 

shedding; Wake phenomena. 

 

 

1. Introduction 

Three-dimensional vortex shedding occurs naturally in several engineering fields, such as behind 

bridges, chimneys and marine risers. Due to its geometrical simplicity, the uniform circular 

cylinder has become the prototype structure for investigations aimed to enhance our understanding 
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of the complex flow physics that may occur in the wake of two-dimensional bluff bodies. 

Substantial progress has been made during the last two decades in the understanding of the wake 

instabilities, transition and vortex shedding behind a circular cylinder placed in a uniform 

incoming flow. The articles by Williamson [1] and Persillon and Braza [2] provide an excellent 

account of the present understanding of this particular flow. In practice, however, the oncoming 

flow is rarely uniform. In nature, the atmospheric boundary layer and the sea-bed boundary layer 

exhibit a substantial mean shear. The local topography may also give rise to other asymmetries of 

the approaching flow. Similarly, asymmetries of the bluff body itself also give rise to intricate 

wake-flow phenomena, notably the cell structure analysed by Noack et al. [3]. Ozono [4] recently 

studied the vortex shedding behind a circular cylinder by arranging a short splitter plate 

asymmetrically downstream. It was found that the asymmetry severely affected the wake flow and 

tended to suppress the vortex shedding. The oblique vortex shedding and vortex splitting which 

occurs behind a tapered cylinder were studied by Vallès et al. [5], Parnaudeau et al. [6] and 

Narasimhamurthy et al. [7]. Parnaudeau et al. [6] considered both uniform flow past a tapered 

cylinder and spanwise shear flow past a uniform cylinder. Their computer simulations 

demonstrated the close relationships between these two different flow configurations.  

The orientation of the oncoming shear with respect to the cylinder gives rise to rather 

different flow phenomena; see e.g. Zdravkovich [8]. When the incoming velocity varies in the 

spanwise direction, i.e. the shear vector is perpendicular to the axis of the cylinder, the resulting 

wake flow exhibits striking similarities with the uniform flow past a tapered cylinder. If, on the 

other hand, the incoming velocity varies in the transverse direction, i.e. the shear vector is aligned 

with the cylinder axis, an asymmetric vortex shedding results. The latter situation, so-called planar 

shear inflow, has received rather modest attention in spite of its obvious practical relevance.  

Kwon et al. [9] considered the flow past a circular cylinder in the presence of uniform planar 

shear in the Reynolds number range ]1600,600[Re ∈ where the Reynolds number is defined as 

./Re νDU c≡ Here, Uc is the incoming velocity at the level of the cylinder axis, D denotes the 

cylinder diameter and ν is the kinematic viscosity of the fluid. Kwon et al. [9] performed their 

experiments over the relatively wide range of sheared inflows ]25.005.0[ −∈K  where the 

shear parameter K is the velocity gradient of the uniform incoming shear normalized by D/Uc. In 

this parameter range they interestingly observed that the Strouhal number increased with 

increasing shear parameter K. This observation conflicts with more recent experimental studies by 

Sumner et al. [10] and Cao et al. [11]. They both arrived at the conclusion that the Strouhal 

number remained unchanged with increasing shear parameter as long as the flow was at 

sub-critical Reynolds numbers 1·104 - 9·104. On the other hand, both Sumner et al. [10] and Cao et 



al. [11] observed a reduction in the drag force on the circular cylinder with increasing shear rates. 

Lei et al. [12] performed two-dimensional flow simulations of planar shear flow over a circular 

cylinder in the Reynolds number range from 80 to 1000 and with dimensionless shear parameter 

up to K = 0.25. It is found that Strouhal number slightly decreases as the shear parameter increases 

from zero to 0.25.  

The primary characteristics of the earlier studies of planar shear flow over circular cylinders 

are summarized in Table 1. Unfortunately, no three-dimensional simulation studies have been 

devoted to vortex shedding behind cylinders in planar shear flows. This is rather surprising since 

fully three-dimensional simulations are required in order to explore the three-dimensional flow 

physics which may give rise to secondary instabilities and complex three-dimensional vorticity 

fields. 
 

Table 1 Experimental and numerical studies of planar shear flow over a circular cylinder 

Authors Approach Shear ratio K  Reynolds number Aspect ratio Blockage (%) 
Cao et al. [11]  Exp. 0 - 0.27 104 - 5.5×104 2.22 - 8.0 5.0 - 9.0 
Sumner et al. [10] Exp. 0.02 - 0.27 4×104 - 9×104 12.3 - 18.4 1.8 - 2.7 
Kiya et al. [13]  Exp. 0 - 0.25 35 - 1500 2 - 12.5 2.7 - 17 
Kwon et al. [9] Exp. 0.05 - 0.25 600 - 1600 5.2 - 13 6.7 - 17 
Lei et al. [12] 2D Num. 0 - 0.25 80 - 1000  3.3 -  20 
Present  DNS 0 - 0.1 300 6.0 6.25 

 

 

The aim of the investigation reported in the present paper is to perform three-dimensional 

simulations of flow past a circular cylinder in the presence of an upstream planar shear at 

Reynolds number Re = 300. The full Navier-Stokes equations will be solved in time and 

three-dimensional space. The simulations to be reported are thus the first direct numerical 

simulations (DNS) addressing this important flow problem. The asymmetric vortex shedding 

which results from the shear effect will be explored in some detail, together with the viscous 

boundary layer development along the cylinder surface. The peripheral variation of the pressure 

coefficient will also be reported. 

 

2. Flow configuration and computational approach 

We consider the flow past a circular cylinder with constant diameter D. The uniform cylinder 

is immersed in a planar shear flow, as shown in Figure 1. The incoming velocity U(z) varies 

linearly with the z-coordinate which is measured in the direction perpendicular both to the inflow 

direction (x) and the cylinder axis which is aligned with the y-direction. The dimensionless shear 



parameter K is defined as cUADK /= , where dzdUA /= is the velocity gradient of the 

incoming flow and cU denotes the incoming velocity in the (x, y) – plane through the center of 

the cylinder.  Results from a simulation with K = 0.1 and Re = 300 will be compared with data 

from a simulation with uniform inflow conditions (i.e. K = 0) at the same Reynolds number. 

The simulations are performed with the well-documented finite-volume solver MGLET (see 

e.g. Manhart [14]). The three-dimensional Navier-Stokes equations for an incompressible fluid are 

approximated on a staggered Cartesian grid by means of second-order central-differences and 

integrated in time by an explicit 3rd-order Runge-Kutta scheme. In order to accommodate a 

cylindrical body in the structured Cartesian mesh, an immersed boundary method (IBM) is 

employed. A review of different IBM schemes was recently provided by Mittal and Iaccarino [15]. 

The direct-forcing IBM implemented in MGLET is described by Peller et al. [16].    

 

Figure 1. Circular cylinder immersed in a planar shear flow. The Cartesian coordinate system is 

right-handed and the y-axis is therefore pointing into the figure plane. 
 

 
Figure 2. The computational domain and grid distribution in the (x-z)-plane. The circular cylinder 

center is located at (5.0, 8.0). The coordinates are scaled with the cylinder diameter D. 



We used a rectangular 20D x 6D x 16D computational domain with the cylinder axis located at x = 

xc = 5D and z = zc = 8D (x and z being measured from the lower-left corner of the domain). The 

total number of grid points was 292×60×200 in the x, y, and z-directions, respectively. A constant 

grid spacing Δy = 0.1D was used in the spanwise direction, whereas non-uniform mesh cells were 

used in the (x, z)-plane. Figure 2 gives an impression of the grid clustering (dark areas) in the 

vicinity of the cylinder surface. The time step Δt was 0.003D/Uc.  

A unidirectional inflow U(z) = Uc + A(z – zc) and V = W = 0 is prescribed at the inlet 

boundary plane at x = 0. At the outlet plane at x = 20D, Neumann boundary conditions are used 

for all three velocity components and the pressure is set to zero. Free-slip boundary conditions are 

applied at the top and bottom planes at z = 0 and z = 16D, respectively. Periodic boundary 

conditions are imposed in the spanwise direction, i.e. at the (x, z)-planes at y = 0 and y = 6D. 

Although the present cylinder aspect ratio 6.0, i.e. length-to-diameter ratio, is smaller than in some 

of the experimental studies (cf Table 1), the use of periodic boundary conditions tends to mimic an 

infinitely long cylinder. 

 

3. Results and discussions 

The focus of the present study is on the wake asymmetries which might arise due to planar shear 

inflow. In order to investigate these flow phenomena, comparisons between DNS data for K = 0.1 

will be made with data from a simulation with uniform inflow (K = 0) in an otherwise identical 

configuration. In order to assess the reliability of the latter, some primary mean flow 

characteristics will be compared with DNS data reported by Persillon and Braza [2] also at Re = 

300. The two-componential mean flow is homogeneous in the spanwise direction and in time. The 

streamwise and transverse velocity components Umean and Wmean and the mean pressure P, as well 

as the Reynolds stresses, are obtained by averaging the instantaneous 3D field in the spanwise 

direction and in time. The time averaging is achieved by sampling every 0.03D/Uc during a time 

interval 75D/Uc. This sampling period corresponds to roughly 15 shedding cycles. 

 

3.1 Wake statistics and Strouhal number 

The variation of the streamwise and transverse velocity components Umean and Wmean in the 

wake are shown in Figure 3 and Figure 4. Figure 3 shows the variation from the rear of the 

cylinder at z = 8D, whereas Figure 4 shows velocity profiles across the wake at three different 

streamwise locations x/D. The results of the present simulation with uniform inflow (K = 0) show 

the same overall features as the DNS results reported by Persillon and Braza [2], except that 

length of the wake bubble is substantially longer in the present simulation. Here, the wake length 



is identified as the streamwise extent of the region in Figure 3a where Umean < 0 and thus signifies 

backflow. This somewhat surprising observation is believed to be due to the different 

computational domains used rather than to differences in numerical resolution. While the cylinder 

axis was located 5D downstream of the inlet in the present case, the cylinder was positioned 

almost 20D downstream of the uniform inflow in the study by Persillon and Braza [2]. On the 

other hand, the grid was finer in the present study.  

In spite of the difference in the predicted bubble length, the oscillatory nature of the 

transverse velocity component Wmean in Figure 3b show the same behaviour in the two simulations. 

Persillon & Braza [2] ascribed the oscillatory variation of Wmean in Figure 3b (their Fig. 30a, b) to 

the traveling of the alternating eddies. However, the (x, y)-plane through the cylinder axis is a 

symmetry plane and Wmean should tend to zero provided the sampling time is sufficiently long. In 

case of sheared inflow, on the other hand, the symmetry is broken and Wmean will remain finite in 

the (x, y)-plane. The transverse velocity profiles in Figure 4 show the same near-wake behaviour 

as already reported by Persillon & Braza [2] with a symmetric variation of the streamwise velocity 

component Umean and an anti-symmetric distribution of the transverse component Wmean. 

The Strouhal number St = fD/Uc was found to be 0.214 in the present case with uniform 

inflow. The shedding frequency f was obtained from a Fourier spectrum of the instantaneous 

velocity over a time interval 75D/Uc. This value of the Strouhal number is consistent with 

earlier experimental and computational studies at the same Reynolds number; see the data in Table 

2. The angle θ = 110° at which the mean flow separates from the cylinder surface is slightly larger 

than the corresponding angle θ = 106.5° reported by Persillon and Braza [2].  The present 

time-averaged recirculation bubble is therefore longer and slightly narrower than that observed by 

Persillon and Braza [2]. 
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(b) 
Figure 3 Streamwise variation of the mean velocity components scaled with Uc in the cylinder 

wake for K = 0 compared with DNS data of Persillon and Braza [2]; (a) Umean ; (b) Wmean . 
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Figure 4. Near-wake profiles of the mean velocity components at three different streamwise 
locations x/D. x is measured from the cylinder axis. Present uniform inflow case K = 0 compared 
with data from Persillon and Braza [2].  (a) Umean ; (b) Wmean . 
 

The Strouhal number St = fD/Uc was found to be 0.214 in the present case with uniform 

inflow. The shedding frequency f was obtained from a power spectrum of the instantaneous 

velocity sampled over a time interval 75D/Uc. This value of the Strouhal number is consistent with 

earlier experimental and computational studies at the same Reynolds number; see the data in Table 

2. The angle θ = 110° at which the mean flow separates from the cylinder surface is slightly larger 

than the corresponding angle θ = 106.5° reported by Persillon and Braza [2].  The present 

time-averaged recirculation bubble is therefore longer and slightly narrower than that observed by 

Persillon and Braza [2] while the base pressure coefficient is higher. 

 
Table 2. Flow characteristics compared with data from other sources for uniform inflow (K = 0) at 
Re = 300. θ is the angle measured from the front stagnation point (see Figure 1) and λ denotes the 

spanwise wavelength of the streamwise vorticity (Mode B).  
Author(s) St  θseparation Cp (θ =180º) λ/D 
Norberg [17]  0.202    
Persillon and Braza [2] 0.206 106.5° -1.378 0.7 
Zhang et al. [18] 0.212   ≈ 1.0 
Barkley and Henderson [19]    0.82 
Kwon et al. [9]  K = 0 0.216    
Present; uniform inflow  K = 0 0.214 110°  -1.20 0.75 
Present; shear inflow K = 0.1 0.214 110°  -1.15 0.75 
 

Let us now focus our attention on the case with planar shear inflow (K = 0.1). First of all, it is 

noteworthy that the Strouhal number and the separation angle remain the same as in the case with 

uniform inflow conditions (K = 0); see Table 2. As far as the Strouhal number is concerned, the 

same observation was made in the high-Reynolds number experiments by Sumner et al. [10] and 



Cao et al. [11]. Cao et al. [11] concluded that the shear parameter K had no significant influence 

on the Strouhal number at sub-critical Reynolds numbers as long as K < 0.27. Kwon et al. [9], on 

the other hand, found that the Strouhal number increased as the shear parameter increased, 

especially for 0.19 < K < 0.25 in the Reynolds number range from 600 to 1600. On the basis of the 

present results and earlier findings we are inclined to conclude that a modestly sheared inflow, i.e. 

K ≤ 0.1, has only negligible influence on the Strouhal number. 

Transverse profiles of the mean velocity components are shown in Figure 5a and 5b. Besides 

the imposed mean shear, the wake profiles resemble at first sight the velocity profiles in Fig. 4a 

for K = 0. However, the excess velocity just outside the wake on the lower side is higher than on 

the upper side. This observation is consistent with the hot-wire measurements by Cao et al. [11], 

which showed that the flow on the low-velocity side accelerated more than that on the 

high-velocity side. The largest velocity deficit is still at z/D ≈ 8.0 and the maximum velocity 

deficit remains about the same as for uniform inflow.  The profiles of the transverse velocity 

component Wmean in Figure 5b resemble the profiles in Fig 4b for K = 0. However, the strict 

anti-symmetry is broken and the positive values of Wmean in the lower part of the flow are more 

pronounced than the negative values in the upper part.  

Profiles of the kinetic energy of the mean flow (Emean) and the turbulence (k) 
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are shown in Figure 5c and 5d, respectively. The mean flow energy variations resemble the 

profiles of the streamwise mean velocity component in Figure 5a. This is rather obvious since the 

major contribution to Emean comes from Umean.. The kinetic energy associated with the transverse 

velocity Wmean tends to broaden the energy deficit in the near-wake. Vmean = 0 due to the spanwise 

homogenerity! The distribution of the turbulent kinetic energy across wake is surprisingly 

symmetric at the five different streamwise locations shown in Figure 5d, in spite of the 

asymmetric inflow conditions. From x/D = 1.96 and further downstream, the highest energy level 

is observed along the midplane and the actual peak level decays monotonically with x. Close to 

the cylinder, however, the highest energy levels are offset from the midplane. The two peaks seen 

at x/D = 0.99 occur in the shear layers shed from the cylinder surface.   

 Finally, profiles of the streamwise and transverse Reynolds stress components 

uu and ww and the shear stress component uw  are shown in Figures 5e – 5g. Except at the most 

upstream location x/D = 0.99, the transverse velocity fluctuations are more energetic than the  
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Figure 5. Near-wake profiles of the mean flow 
and turbulent statistics at five different 
streamwise locations x/D. x is measured from 
the axis of the cylinder. Planar shear inflow 
case K = 0.1.  
(a) Umean; (b) Wmean; (c) Mean flow kinetic 
energy Emean; (d) Turbulent kinetic energy k; (e) 

Reynolds stress uu ; (f) Reynolds stress ww ; 

(g) Reynolds shear stress uw . 



streamwise fluctuations and therefore represent the major contribution to k. Next to the cylinder 

surface, on the other hand, ww is relatively modest and roughly comparable to uu . It can thus 

be concluded that the bi-modal k-profile at this particular location stems from the streamwise 

velocity fluctuations. It is noteworthy that the profiles of uu  in Figure 5e reveal a significant 

asymmetry with the highest peak located at the low-velocity side where the mean-flow 

acceleration is largest. The shear stress distributions would be anti-symmetric in the 

uniform-inflow case. The presence of mean shear tends to break the anti-symmetry of the profiles 

from x/D = 2.99 and further downstream. The highest shear stress levels are observed at x/D = 

1.96, with uw  > 0 at the low-velocity side where the mean strain-rate 0/ <∂∂ zU and uw  < 

0 above the mid-plane where zU ∂∂ / is positive. This is consistent with the production of the 

shear stress: 
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For simplicity purely two-dimensional mean flow in (x, z)-plane has been assumed. The various 

production terms are organized in order of receding influence. In particular, the last two terms sum 

up to zero due to the continuity of the mean flow. The secondary production term xWu ∂∂− /2 is 

responsible for the additional peaks in the shear stress profile at x/D = 0.99. The extra contribution 

xW ∂∂ / to the mean strain rate is positive in the upstream part of the recirculation bubble at the 

high-velocity side and correspondingly negative at the low-speed side. 

 

3.2 Boundary layers and pressure distribution 
 

In order to examine any differences between the two different cases in the vicinity of the cylinder 

surface, we consider the boundary layer development in the front part of the cylinder as well as the 

pressure coefficient along the entire periphery. The component of the mean velocity vector in the 

direction tangential to the surface is related to the Cartesian velocity components as:  

sin cosmean meanV U Wθ θ θ= +             (3) 

See also the sketch in Figure 6 where the polar coordinate θ is defined as positive in the clockwise 
direction.  



 
Figure 6. Relationship between mean velocity components in Cartesian and polar coordinates.  θ 

is defined as positive in the clockwise direction.  The shaded area is a schematic of the local 
velocity profile Vθ (r). 

Velocity profiles Vθ (r) at different locations along the cylinder surface are shown in Figure 7 

with the view to compare the case with planar shear inflow to that with uniform inflow conditions. 

The mean flow field is symmetric about the (x, z) – plane in the case of uniform inflow (K = 0). 

The laminar boundary layer along the front side becomes gradually thicker with increasing 

θ−values. At the apex θ = ± 90º the mean velocity just outside the boundary layer exceeds the 

inflow by about 20% due to the displacement effect of the cylindrical body. The mean velocity 

profiles at the rear show a substantial region of backflow (i.e. Vθ < 0) since the boundary layer  

 

 

Figure 7. Profiles of Vθ at different surface locations at the high-velocity side (upper row) and the 

low-velocity side (lower row). The filled symbols are for K = 0 and the open symbols for K = 0.1. 

(a) 45θ = o ; (b) 90θ = o ; (c) 135θ = o ; (d) 45θ = − o ;(e) 90θ = − o ; (f) 135θ = − o . 



separated from the surface at θ = 110º, i.e. closely in accordance with the separation angle 

reported by Persillon and Braza [2]; cf Table 2. It is noteworthy that the same separation angle is 

obtained also in the sheared inflow case K = 0.1 and that the separation angle is the same at 

low-velocity and the high-velocity sides. 

The symmetry of the mean velocity field is broken in the sheared inflow case. It is somewhat 

surprising to observe that Vθ with sheared inflow is lower than with uniform inflow at θ = + 45º 

and correspondingly exceeds Vθ for K = 0 at θ = − 45º. Further along the high-velocity surface the 

shear inflow case and the uniform inflow case are nearly indistinguishable, both at the apex and in 

the separated flow region. At the apex on the low-speed side, on the other hand, the tangential 

velocity Vθ is lower for K = 0.1 than for K = 0, as one should expect. The deviation between the 

two solutions is particularly pronounced in the backflow region. 

The pressure coefficient pC is defined as )()( 2
2

1
cp UPPC ρ∞−= , where P is the local 

mean pressure on the surface of the cylinder, ∞P is the pressure at infinity upstream of the 

cylinder, and ρ is the density of the fluid. The mean pressure coefficient pC averaged along the 

spanwise is plotted in Figure 8.  

 

 

 

 
θ 
 

Figure 8. The mean pressure coefficient Cp along the upper and lower cylinder surface. Uniform 

(K = 0) and planar shear (K = 0.1) inflow compared with 2D simulations by Thom [19].  

 

 



The current results for the uniform inflow case agree well with results by Thom [20] along 

the front side ( o60≤θ ) of the cylinder, but the predictions deviate all the way further 

downstream. These deviations are most likely due to insufficient accuracy of the two-dimensional 

calculations by Thom [20].  The base pressure coefficient at the rearmost location (θ = 180º) is 

substantially lower than that of Thom [20], but on the other hand higher than that found by 

Persillon and Braza [2] in their 3D simulations (see Table 2). They argued, however, that 3D 

simulations with too short span give rise to even more negative base-pressure coefficients. The 

present base-pressure coefficient Cp = -1.2 is in excellent agreement with the curve-fit provided by 

Henderson [21]. This observation suggests that the present cylinder span 6.0D is adequate, 

whereas the spanwise length 2.2 used in the study by Persillon and Braza [2] is somewhat 

insufficient and gives rise to overprediction of the magnitude of Cp.  

As far as the present results are concerned, the pressure coefficient pC  in the planar inflow 

case straddles that of the uniform inflow case in the front of the cylinder. pC is higher than for K 

= 0 along the high-speed side and lower along the low-speed side up to θ about 60º. This is 

probably associated with the shifting of the front stagnation point towards the high-velocity side; 

as discussed by Lei et al. [12] and Cao et al. [11]. Sumner et al. [10], however, found that pC in the 

planar shear flow case is slightly greater than pC in the uniform flow case along both sides of the 

cylinder. It should be recalled, however, that the Reynolds number were substantially higher than 

in the present study (see Table 1) and the shear parameter slightly lower (K = 0.07). It is likely that 

the effect of the planar shear inflow differs between high and low Reynolds number flows. 

Nevertheless, the present findings compare qualitatively with those of Cao et al. [11]. For a flow 

with Re = 3 640 and K = 0.124 their pressure measurements on the two sides collapsed along the 

after-body, i.e. downstream of the separation point, and the base-pressure coefficient was 

significantly smaller in magnitude than in the corresponding case with uniform inflow. 
 

3.3 Vortex structures 

The transition from a strictly two-dimensional flow to a three-dimensional state in the wake 

behind uniform cylinders has been extensively studied during the past two decades. Two different 

modes of three-dimensional vortex shedding, involving vortex loops and streamwise vortex pairs, 

were demonstrated by Williamson [22] and subsequently studied by many others; see e.g. Zhang 

et al. [18], Barkley and Henderson [19] and Thompson et al. [23] for additional references. The 

mode A instability occurs at Reynolds number about 190, below which the vortex flow remains 

two-dimensional as long as sidewall effects are excluded. The spanwise wavelength of this 

‘long-wavelength’ instability is from 3 to 4.5 cylinder diameters. The next instability, named mode 

B, appears for Re above about 240 and is characterized by ‘short-wavelength’ instabilities with a 



spanwise wavelength ≤ 1D. It is likely that the two modes co-exist over a certain Reynolds 

number interval and mode B will gradually become the most dominant one whereas mode A 

vanishes when the Reynolds number exceeds 260.  

The flows considered in the present study is for a Reynolds number Re = 300, irrespective of 

the inflow conditions, i.e. beyond the Re-range in which mode A instabilities prevail. 

Instantaneous top views of the spanwise and streamwise vorticity components are displayed in 

Figure 9, both for the case with uniform inflow (top row) and for the case with sheared inflow 

(bottow row). In addition to the primary von Karman cells, which consist of regions of 

concentrated spanwise vorticity shed from the cylinder surface, characteristic streamwise vortex 

pairs are observed. The spanwise wave length λ of these mode B structures is about 0.75D, i.e. 

consistent with earlier observations. Although the overall appearance of the vortex patterns in 

Figure 9 is the same for K = 0 and K = 0.1, the regularity of the vortex structures is reduced in the 

presence of planar shear inflow (bottom row).  

 

  

(a) (b) 

  

(c) (d) 

Figure 9. Intantaneous vorticity in the near wake. (a) Enstrophy pattern for uniform inflow K = 0; 

(b) Streamwise vorticity xω for uniform inflow K = 0; (c) Enstrophy pattern for planar-shear 

inflow K = 0.1; (d) Streamwise vorticity xω for planar-shear inflow K = 0.1.  

 

 

 Figure 10 shows plots of the instantaneous spanwise vorticity as seen from the side and 

from above. The side-views (Figure 10a and 10c) reveal a distinct tilting of the wake in the 

presence of shear. While the wake is symmetric about the x-axis in the case with uniform inflow 

(Fig. 10a), the vortex street is shifted towards the low-velocity side in the planar-shear inflow case 



in Fig. 11c. This tilting of the vortex street is partly a direct consequence of the gradually 

increasing inflow velocity with z. The planar shear inflow is equivalent with a uniform spanwise 

vorticity Ωy = zU ∂∂ / > 0, which corresponds to a clockwise rotation of the fluid elements in 

Figure 1. The imposed vorticity interacts differently with the spanwise vorticity generated along 

the upper and lower cylinder surfaces.  

 

  
(a) (b) 

  

(c) (d) 

Figure 10. Instantaneous spanwise vorticity yω in the near wake. Uniform inflow case K = 0: (a) 

side view; (b) top view; Planar shear inflow case K = 0.1: (c) side view; (d) top view. 
 

 

In contrast with a case with spanwise shear inflow, in which the vortex lines are bent and 

stretched around the cylinder, the vortex filaments in the presence of planar shear inflow remain 

parallel to the cylinder axis. The planar sheared inflow does thus not provide any explicit 

mechanism for generation of streamwise vorticity and the streamwise vortex pairs are therefore a 

result of the same mode B instability as for uniform inflow. It is evident, however, that the 

anti-clockwise Karman vortices shed from the low-speed side of the cylinder is weak and more 

irregular than the clockwise vortices shed from the high-speed side. Since the vorticity generated 

in the boundary layer along the low-speed side of the cylinder is of opposite sign of the uniform 

vorticity Ωy associated with the inflow, the planar shear inflow tends to weaken the Karman cells 

shed from the lower side. The Karman vortices shed from the high-velocity side are shed into a 

mean vorticity field of the same sign and the shed cells are not adversely affected. A final 

observation which readily can be made from Figures 9 and 10 is that the distance between Karman 

vortices of opposite sense of rotation is different in the planer shear inflow case from the uniform 

inflow case. In the latter case, the vortical cells are equally spaced along the streamwise direction, 



whereas a distinct pairing of two cells of opposite signs occurs for K = 0.1. This pairing 

phenomenon is particularly evident from the plots of the spanwise vorticity in Figure 10. One may 

speculate that the Karman cells shed from the low-velocity side will vanish further downstream 

(i.e. outside of the computational domain), possibly as these cells merge with a cell shed from the 

high-velocity side. If so, this could be the first stage of the complete suppression of the vortex 

shedding observed by Kiya et al. [13] at somewhat higher K-values. 

4 Concluding remarks 

Direct numerical simulations of planar shear flow past a circular have been performed and 

compared with results obtained with uniform inflow. Neither the Strouhal number nor the position 

where the flow separates from the surface are affected by the inflow shear. Other time-averaged 

statistics turn out be asymmetric, apparently because of the excess flow acceleration observed 

adjacent to the laminar boundary layer at the low-velocity side of the cylinder. These asymmetries 

are also reflected in the asymmetry of the surface pressure coefficient along the front on the 

cylinder. 

The data reported herein are deduced from the first three-dimensional computer simulation of 

vortex shedding from a cylinder embedded in planar shear flow. The present DNS reveals that the 

mode B or ‘short-wavelength’ instability exists also in the presence of mean shear. This issue 

could not be addressed in the 2D simulations reported by Lei et al. [12]. The DNS furthermore 

enabled detailed visualizations of the complex vortex topology in the near-wake. We observed for 

the first time the tendency of the Karman cells shed from the low-velocity side to be severely 

deteriorated by the opposing inflow vorticity. Moreover, Karman cells having opposite vorticity 

tended to cluster, in contrast with the regularly spaced cells in the presence of uniform inflow 

conditions. 
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Direct numerical simulation of vortex shedding behind a tapered plate with the taper

ratio 20 placed normal to the inflow has been studied. The Reynolds numbers based on the

uniform inflow velocity and the width of the plate at the wide and narrow ends were 1000

and 250, respectively. For the first time ever cellular vortex shedding was observed behind

a tapered plate in a numerical experiment (DNS). Multiple cells of constant shedding

frequency were found along the span of the plate. This is in contrast to apparent lack

of cellular vortex shedding found in the high Reynolds number experiments by Gaster

& Ponsford (1984). However, the present DNS data is in good qualitative agreement

with similar high Reynolds number experimental data produced by Castro & Watson

(2004). It was observed that a tapered plate creates longer formation length coupled

with higher base pressure than compared to non-tapered (i.e. uniform) plates. The three-

dimensional re-circulation bubble was nearly conical in shape. A significant base pressure

reduction towards the narrow end of the plate, which results in a corresponding increase in

Strouhal number, was noticed. This observation is consistent with Castro & Rogers (2002)

experimental data. Pressure-driven spanwise secondary motion was observed, both in the

front stagnation zone and also in the wake, thereby reflecting the three-dimensionality

induced by the tapering.

Key words: turbulence, laminar, DNS, vortex dislocation, vortex split.

1. Introduction

It is a well known fact that intrinsic three-dimensionalities arise in an ini-

tially two-dimensional flow when secondary instabilities are generated. This
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is the case for wakes of two-dimensional bluff-bodies above a certain crit-

ical Reynolds number (Williamson (1996); Najjar & Vanka (1995); Najjar

& Balachandar (1998)). These three-dimensionalities can induce significant

spanwise variations in the velocity and pressure fields. In contrast, such

three-dimensionalities may also occur due to extrinsic factors, such as the

variation of the body shape (Gaster (1969); Piccirillo & Van Atta (1993);

Vallès et al. (2002a); Vallès et al. (2002b); Narasimhamurthy et al. (2007)) or

the boundary conditions (Maull & Young (1973); Parnaudeau et al. (2007)).

In his famous experimental study on slender cones Gaster (1969) found that

even a small linear variation of the diameter along the span could induce

complex three-dimensionalities in the wake. Such linear variations of the

local diameter imply a linear variation of the local Reynolds number along

the span. Wakes of two-dimensional bluff bodies are inclined to maintain a

surprisingly constant Strouhal number. On this basis one may envisage two

different scenarios for how the local shedding frequency f will vary with the

local diameter. Either f can vary continously along the span so that the

vortex filament is continuous and inclined with respect to the axis of the

cylinder (the so called “oblique” vortex shedding), or f can be constant only

over a finite span so that the vortex filament is discontinuous (the so called

“cellular” vortex shedding). In fact, cellular vortex shedding was reported

in both the experiments (Gaster (1969); Piccirillo & Van Atta (1993)) and

the computations (Vallès et al. (2002b); Narasimhamurthy et al. (2007);

Parnaudeau et al. (2007)).

Following the successful findings of vortex dislocations or vortex splits in

the wake of cones, Gaster & Ponsford (1984) went on to investigate the

wakes of tapered and triangular plates at high Reynolds numbers (Re =

©(104)) and over a range of taper ratios (RT = l/(d2 − d1); where l is the

length of the plate and d2 and d1 denote the width at the wide and narrow

ends, respectively). They noticed that the pressure coefficient over the plate

sections was not strictly two-dimensional and they therefore anticipated a

weak secondary flow along the front stagnation line to be the most likely

cause of this. In addition, they found a significant base pressure gradient

along the span, driving the secondary flow from the wide end of the plate

towards the narrow end. In spite of the strong three-dimensionalities ob-

served, their hot-wire measurements failed to show any cellular vortex shed-

ding. They concluded that the base Strouhal number was constant along
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the span in all their tapered models. The constancy of the Strouhal number

implies that the shedding frequency varies inversely with the distance from

the narrow end of the plate. In contrast, Maull & Young (1973) observed

cellular shedding in the wake of a uniform (i.e. parallel-sided) plate with

uniform shear as inflow. This motivated Castro & Rogers (2002) and Cas-

tro & Watson (2004) to carry out extensive hot-wire measurements in the

wake of tapered and triangular plates of different taper and aspect ratios

and with different end boundary conditions. The Reynolds numbers were

still high (Re = ©(104)). Surprisingly, they found end cells in those cases

where the tip of the triangular plate was lying within the flow domain (free

ends), and multiple cells of constant shedding frequency when the free ends

were sealed with an end plate.

The laboratory experiments on tapered plates by Gaster & Ponsford

(1984) and Castro & Watson (2004) were both at high Reynolds numbers

and there is no evidence that cellular vortex shedding also occurs at low

Reynolds numbers. It should be noted that turbulence at high Reynolds

numbers has direct consequences on the vortex dynamics in the wake. Even

though Castro & Rogers (2002) and Castro & Watson (2004) provided ex-

tensive spectral data, the detailed dynamics of the wake has not been ex-

plored so far. An in-depth and comprehensive study of the wake behind

a tapered plate in general and at low Reynolds numbers in particular is

therefore awaited. Direct numerical simulation (DNS) as a tool is the nat-

ural choice to explore such a complex wake structure, as it gives complete

access to the instantaneous three-dimensional data. The above issues will be

addressed for the first time in the present DNS study, where in addition to

frequency analysis a more detailed investigation of the spanwise two-point

correlations and the instantaneous vortical structures will be carried out.

The spanwise variations of the velocity and the pressure fields will also be

shown. First, however, results from a three-dimensional simulation of the

steady flow past a tapered plate at very low Reynolds numbers are pre-

sented.

2. Formulation of the problem

Let us consider the flow past a tapered flat plate with the view to explore

for the first time ever the vortex shedding at moderately high Reynolds
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Figure 1. Computational domain (not to scale)

numbers, i.e. lower than in the otherwise equivalent laboratory experiments

but yet sufficiently high to make even the near-wake turbulent. The taper

ratio is intentionally chosen to match one of the configurations studied by

Castro & Watson (2004), whereas the Reynolds number is about two or-

ders of magnitude lower than in their experiment. Due to the substantial

tapering, the local Reynolds number varies from 1000 at the wide end to

250 at the narrow end of the plate. It is evident from the existing litera-

ture that the first and second instability modes of three-dimensionality in

the wake of uniform flat plates occur already at Re = 105-110 and Re =

125, respectively (Thompson et al. (2001, 2006); Julien et al. (2003, 2004)).

Thereby, the Reynolds number chosen in the present study is well above the

transitional regime and the wake flow is expected to be turbulent over the

entire span.
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CASE RT AR Re2 Rem Re1

Steady laminar flow 20 24 20 12.5 5

Turbulent flow 20 24 1000 625 250

Castro & Watson (2004) 20 20 - > 104 -

Castro & Watson (2004) 20 15.4 - > 104 -

Castro & Watson (2004) 20 10 - > 104 -

Castro & Watson (2004) 20 5.8 - > 104 -

Gaster & Ponsford (1984) 18 - - > 104 -

Table 1. Geometrical and flow parameters

2.1. Flow configuration and numerical method

The computational domain was as shown in figure 1. All spatial dimensions

are normalized by d2 and all velocities are scaled with the uniform inflow

velocity Uo. The mean width of the plate, dm = 0.625 d2. The thickness of

the plate was very small and equal to 0.02d2. The aspect ratio (AR = l/dm),

RT , and the Reynolds numbers Re2, Re1, Rem, based on the uniform inflow

velocity Uo and the widths d2, d1, dm, respectively, are given in Table 1.

The Navier-Stokes (N-S) equations in incompressible form were solved

in 3-D space and time using a parallel finite-volume code called MGLET

(Manhart (2004); Narasimhamurthy et al. (2006)). The code uses staggered

Cartesian grid arrangements. Discretization of the spatial derivatives was

achieved by means of a 2nd-order central-differencing scheme. The time

marching was carried out using a 3rd-order explicit Runge-Kutta scheme for

the momentum equations in combination with an iterative SIP (Strongly

Implicit Procedure) solver (Ferziger & Peric (1996)) for the Poisson equa-

tion. The time step was chosen as ∆t = 0.001d2/Uo and the number of

Poisson iterations per time step was limited to 30. Parallelization was im-

plemented using Message Passing Interface (MPI). The computations were

performed on an IBM P575+ parallel computer.

The size of the computational domain in each coordinate direction was

Lx = 20d2, Ly = 15d2, and Lz = 13d2, as shown in figure 1. All three-

dimensional simulations reported in this paper are for the same flow con-

figuration and computational domain. The number of grid points in each
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X/dlocal = 1 3 5 8 12

Present DNS: Relocal = 1000 3.84 4.03 4.96 3.44 2.94

Present DNS: Relocal = 750 2.18 2.86 4.51 3.82 3.05

Present DNS: Relocal = 500 1.31 3.80 4.90 3.68 2.99

Yao et al. (2001) 6.88 5.07 3.42 2.76 2.44

Moser et al. (1998) ≈ 15

Table 2. Grid resolution ∆X = ∆X/η values at various X/dlocal positions measured from the

axis of the plate.

coordinate direction (Nx×Ny×Nz) for the steady laminar flow case and the

turbulent flow case was equal to 160×150×180 and 320×200×200, respec-

tively. Non-equidistant grid spacings were used in the X −Z plane while an

equidistant grid was used along the span (Y -direction). The ratio of grid size

∆Z near the plate’s wide end to the local width of the plate ∆Z/d2 = 0.01.

This implies that the ratio of grid size near the plate’s narrow end to the

local width of the plate ∆Z/d1 = 0.04. In order to justify that the present

simulation is a fully resolved DNS, i.e. that all essential turbulent scales

are captured, the grid size can be compared with Kolmogorov’s microscale

η = (ν3/ε)1/4. Here, ε is the time-mean dissipation rate of fluctuating kinetic

energy defined as

ε = ν

(

∂ui

∂Xj

∂ui

∂Xj

+
∂ui

∂Xj

∂uj

∂Xi

)

≈ ν

(

∂ui

∂Xj

∂ui

∂Xj

)

(2.1)

where ui is the fluctuating part of the instantaneous velocity component

which comprises both the unsteady fluctuations and the turbulent fluctua-

tions. The contribution from the second term in the above definition of the

total dissipation rate ε is negligible (Bradshaw & Perot (1993)) and hence

neglected in the present analysis. The grid size relative to the Kolmogorov

microscale at some different spanwise locations at five different downstream

positions are given in Table 2 and compared with corresponding data for

the plane wake DNS by Moser et al. (1998) and the trailing-edge wake DNS

of Yao et al. (2001). The data in Table 2 shows that the grid size in the

present study is of the same order of magnitude as the local Kolmogorov
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Face Boundary condition

Inflow Uo = 1; Vo = Wo = 0; ∂P/∂X = 0

Side walls V = 0; ∂U/∂Y = ∂W/∂Y = ∂P/∂Y = 0

Top and Bottom walls W = 0; ∂U/∂Z = ∂V/∂Z = ∂P/∂Z = 0

Outflow ∂U/∂X = ∂V/∂X = ∂W/∂X = 0; P = 0

Table 3. Boundary conditions

length scale. The present grid resolution compares favorably with that used

in other wake flow simulations.

The boundary conditions used are as shown in Table 3. A uniform ve-

locity profile Uo = 1 was prescribed at the inlet without any free-stream

perturbations and a Neumann boundary condition was used for the pres-

sure. A free-slip boundary condition was applied on both the side walls, as

well as at the top and bottom walls (cf. figure 1). At the outlet, a Neumann

boundary condition was used for velocities and the pressure was set to zero.

A direct forcing Immersed Boundary Method (IBM) (Peller et al. (2006);

Narasimhamurthy et al. (2006)) was used to transform the no-slip condi-

tion at the plate surface into internal boundary conditions at the nodes of

the Cartesian grid (see Iaccarino & Verzicco (2003) and Mittal & Iaccarino

(2005) for extensive reviews of different IBMs). The solid body (tapered

plate) to be immersed in the Cartesian mesh was represented by a mesh

consisting of triangles. The blocking of the Cartesian cells intersected by

these triangles was accomplished as follows:

i) The intersection points of a triangle surface and the coordinate line pass-

ing through the pressure cell center were identified. The pressure cells con-

taining those intersection points were blocked, as shown in figure 2.

ii) In a second sweep all the pressure cells within the blocked surface were

blocked.

iii) Finally, all the velocity cells corresponding to blocked pressure cells were

blocked.

In figure 2, φo is the internal boundary condition value to be determined

by interpolation. Xr is the intersection point between the triangle and the

coordinate line. φr is the value at Xr which is known (the value on the wall).
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Figure 2. 1-Dimensional stencil configuration for interpolation in X-direction

By considering the neighboring variables φi (φ1, φ2, φ3, etc) the stencils are

formed. A general stencil formulation for φo looks like

φo = (

N
∑

i=1

αi.φi) + αr.φr (2.2)

where N is the number of neighboring cells involved in the interpolation.

The interpolation coefficients αi and αr depend on the interpolation tech-

nique and geometry only and were therefore computed in a pre-processing

step. In the present DNS we used least-squares interpolation of 3rd-order

accuracy. The detailed derivation, validation and implementation of this

technique in the code MGLET were explained in Peller et al. (2006). Using

matrix stability analysis they studied the numerical stability of higher-order

Lagrange and least-squares interpolations and concluded that the least-

squares interpolation of 3rd-order is very robust and numerically stable.

The stencil in each direction is one-dimensional. Weighting to account for

three-dimensionality was employed by Tremblay et al. (2001).

2.2. A 2D case: the uniform plate

Before undertaking the three-dimensional numerical simulations, bench-

mark two-dimensional calculations of the steady flow past a non-tapered

plate placed normal to the free-stream were carried out. Two different sim-

ulations were performed with Reynolds number Re = Uod/ν based on the

uniform width d equal to 20 and 10. In both the simulations the domain

size in X and Z directions was the same as that in the 3-D simulations

(see figure 1). The number of grid points in each direction Nx × Nz were
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CASE BLOCKAGE RATIO Re = 10 Re = 20

Present 2D case 0.077 1.12 2.12

Smith (1985) 1.00 2.00

Hudson & Dennis (1985) 1.20 2.32

Ingham et al. (1991) 1.15 2.30

Dennis et al. (1993) 0.00 1.16 2.43

Dennis et al. (1993) 0.05 1.07 -

Dennis et al. (1993) 0.10 1.02 1.98

Dennis et al. (1993) 0.15 0.92 1.76

In et al. (1995) 1.24 2.60

Koumoutsakos & Shiels (1996) - 2.10

Table 4. Non-dimensional length of the steady re-circulation zone (Lw/d)

140 × 100. The non-dimensional length of the steady re-circulation zone

(Lw/d) from the present simulations is in good agreement with the avail-

able experimental and numerical data (see Table 4). Note the scatter among

the earlier results, with differences of up to 30% in estimating the length of

the recirculating bubble. Koumoutsakos & Shiels (1996) attributed the dif-

ferences between the existing simulations to the treatment of the boundary

and far-field conditions. From their experiments Dennis et al. (1993) re-

ported a strong dependence of the recirculation zone on the blockage ratio

(see Table 4). They performed experiments for different blockage ratios and

obtained the bubble length for zero blockage by extrapolation. The substan-

tial increase of Lw/d with decreasing blockage ratio is indeed noteworthy.

It should be noted that small differences in the thickness of the plate might

also have some influence on the steady separation bubble.

3. Results and discussion

3.1. Steady laminar flow

There is no doubt that random turbulence and quasi-organized vortex shed-

ding will add complexities to the wake of a three-dimensional body. This

motivates a need to first study the wake of a tapered plate in the absence

of these two factors. One may speculate at this stage whether the wake flow
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Figure 3. Spanwise velocity V/Uo (secondary flow) at three different spanwise locations

identified by the local Reynolds number Relocal = Uo d/ν.
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Figure 4. Base pressure coefficient variations along the span from the present steady laminar
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behind a tapered plate can be considered as quasi-two-dimensional provided

that the Reynolds number is lower than the critical value at which vortex

shedding occurs. One may furthermore wonder how the secondary flow field,

i.e. the departure from purely 2D behavior, will appear. In order to address

these issues a steady laminar flow past a tapered plate was investigated; see

Table 1 for details. The numerical solution of the unsteady Navier-Stokes

equations converged to a steady state. The present 3-D calculation revealed

a secondary spanwise velocity V , both in the front stagnation zone and

also in the wake of the plate (see figure 3). It can be observed from figure
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o
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plate in the steady laminar flow case. The plate is drawn as a bold line.

3(a) that in the front stagnation zone the secondary flow is going from the

wide end of the plate towards the narrow end, surprisingly as speculated by

Gaster & Ponsford (1984) in their high Reynolds number study. On the con-

trary, the secondary motion on the rear side of the plate is rather complex.

The flow in the immediate vicinity of the plate is going from the wide end

towards the narrow end (see figure 3(b)). The variation of the base pressure

coefficient (Cp = 2(P−P
∞

)/(ρU2
o ), where the reference pressure P

∞
is taken

from the pressure at the inflow) along the span in figure 4 confirms the above

observation. This is also in perfect agreement with the findings of Gaster

& Ponsford (1984) at higher Reynolds number. The magnitude of this sec-

ondary flow is negligibly small, i.e. less than 0.5% of the inflow velocity Uo.

However, the direction of the secondary motion is reversed somewhat away

from the plate where the flow goes from the narrow end of the plate towards

the wide end. The magnitude of this spanwise velocity is typically of the

order 5% of the inflow Uo. The secondary motion in the spanwise direction

is a direct consequence of three-dimensionality of the tapered plate and this

kind of secondary flows does not arise in the vicinity of a uniform plate.

The secondary flow is driven by a spanwise pressure gradient. The tapered

plate introduces a variable blockage to the inflow along the span and this

gives rise to a somewhat higher pressure near the wide end of the plate as

compared to the narrow end. The pressure contours (isobars) in figure 5

show that the isobars are inclined to the stagnation line, thereby giving rise
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Figure 6. Streamlines in the X − Y section plane through the axis of the plate illustrating the

secondary flow direction and the re-circulation zone in the steady laminar flow case. Y/d2 = 0

corresponds to Re2 = 20 and Y/d2 = 15 corresponds to Re1 = 5.

to a spanwise pressure gradient which drives the flow towards the narrow

end. Similarly, the (negative) isobars in the wake are also tilted from the

rear stagnation line, i.e. the lowest pressure is found in the wake downstream

of the widest part of the plate. This observation indicates that also the

spanwise-oriented flow in the wake is pressure-driven. The streamlines in a

X − Y plane cutting through the axis of the plate in figure 6 confirms the

above observations.

The constant length Lw of the closed wake behind a uniform plate is known

to increase monotonically with the Reynolds number as long as the flow is

in the steady laminar regime. Both the data from experiments by Dennis

et al. (1993), Ingham et al. (1991) and computations by Hudson & Dennis

(1985), In et al. (1995) and others suggest this linear variation of Lw with

the Re. In the present 3D case, the wake length varies substantially along

the span of the tapered plate. The wake behind the wide end is roughly 16

times longer than the wake behind the narrow end of the plate (see figure
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uniform width d.

6). If the local wake length Lw is scaled with the local plate width dlocal,

the spanwise variation of Lw/dlocal shown in figure 7 is surprisingly close

to the results for uniform or non-tapered (i.e. 2D) plates. The deviation

from 2D behavior is largest near the wide part of the tapered plate where

the secondary flow is most pronounced (cf. figure 3). The results from the

present simulation compares excellently with the data for uniform plates in

the low-Re regime, i.e. along the narrow half of the plate.

3.2. Turbulent flow

3.2.1. Wake pattern and frequency analysis

The time evolution of the instantaneous velocity components U, V, W and

the instantaneous pressure, P, were sampled along four lines parallel to the

axis of the plate and located 4dm, 8dm, 11dm and 14dm downstream the axis

in X -direction, respectively. All lines were offset by 1dm in Z -direction. It

would be inappropriate to present all the data here due to space constraints.

Therefore, only the time trace of the cross-stream velocity W sampled at

11dm is shown in figure 8. The total sampling time was equal to 260 d2/Uo

or 1040 d1/Uo, which covers about 35 shedding cycles at the wide end and

about 150 cycles at the narrow end of the plate. Note that only half of the

sampled data (130 d2/Uo) is shown in figure 8 for the purpose of clarity.



14 V. D. Narasimhamurthy, H. I. Andersson and B. Pettersen

F
ig

u
re

8
:
T

im
e

ev
o
lu

ti
o
n

o
f

th
e

cr
o
ss

-s
tr

ea
m

v
el

o
ci

ty
(W

)
sh

ow
in

g
v
o
rt

ex
-d

is
lo

ca
ti
o
n
s

a
lo

n
g

th
e

en
ti
re

sp
a
n

(s
o
m

e
m

a
rk

ed
b
y

ci
rc

le
s)

.
T

h
e

sa
m

p
li
n
g

li
n
e

is
a
t

X
/
d

m
=

1
1

a
n
d

Z
/
d

m
=

−
1

(m
ea

su
re

d
fr

o
m

th
e

a
x
is

o
f
th

e

p
la

te
).

Y
/
d
2

=
0

co
rr

es
p
o
n
d
s

to
R

e
2

=
1
0
0
0

a
n
d

Y
/
d
2

=
1
5

co
rr

es
p
o
n
d
s

to
R

e
1

=
2
5
0
.

The pattern clearly indicates oblique and cellular vortex shedding with ran-

dom occurance of vortex dislocations or vortex splits along the span. It is

easy to see that the vortex dislocations are not occurring periodically in

time at the same spanwise position. This justifies the need for such a long

and expensive time sampling. Some time trace signals of the cross-stream
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velocity (W ) at some different spanwise locations are shown in figure 9.

Even though the turbulence signatures are chaotic, a low-frequency modu-

lation, a typical feature of vortex dislocations, is visible in certain signals.

The signal at Y/d2 = 4 in figure 9, for instance, shows a low-frequency sig-

nature at time tUo/d2 ≈ 17, which corresponds to the vortex dislocation at

Y/d2 ≈ 4 in figure 8. Such low-frequency fluctuations were also observed in

the wake of uniform circular cylinders, first by Roshko (1954) in the tran-

sition regime, and later Bloor (1964) suggested that these low-frequency ir-

regularities reflect the presence of three-dimensionalities that would render

the flow turbulent as it travels downstream. Williamson (1992) attributed

these low-frequency irregularities in the transition regime to the presence

of large-scale spot-like vortex dislocations. The dislocations were found to

be generated during the change-over of eddy shedding mode from laminar-

mode A (Williamson (1996)). Thereby there exists some firm evidence that

low-frequency signatures can be associated with vortex-dislocations even

for parallel-sided bluff bodies. However, this is not always true. The low-

frequency signatures observed in the wake of uniform flat plates by Najjar

& Vanka (1995), Najjar & Balachandar (1998), and Wu et al. (2005) were

rather differently interpreted. While Najjar & Vanka (1995) speculated the

low-frequency behavior to be due to a low-frequency flapping of the shear

layer, Najjar & Balachandar (1998) attributed the phenomenon to the grad-

ual variation of the flow between two regimes: a regime of short formation

region and a regime of long formation region. They observed that in the

short formation regime the shear layer rolls up closer to the plate to form

coherent spanwise vortices, while in the long formation regime the shear

layer extends farther downstream and the rolled-up Karman vortices are

less coherent. Similar regimes leading to low-frequency modulations were

also noticed at higher Reynolds numbers by Wu et al. (2005).

To enable quantitative comparisons the frequency spectra were obtained

by Fourier analysis of cross-stream velocity (W ) time traces. A sample

spectrum is shown in figure 10, which is taken at the mid-span of the plate

(Relocal = 625) and is provided in a double-logarithmic plot. The primary

shedding frequency corresponds to the most energetic frequency which is

found at fd2/Uo = 0.2257. This gives the local Strouhal number, defined as

Stlocal = fdlocal/Uo = 0.1411. Shedding frequencies (f) obtained from the

Fast Fourier Transform (FFT) of the velocity signals are plotted against



Cellular vortex shedding in the wake of a tapered plate 17

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1.00

0.85

0.70

0.55

0.40

0.25
d lo

ca
l/d

2

fd2/Uo

Figure 11. Shedding frequencies (fd2/Uo) from Fourier analysis versus dlocal

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

d
local

/d
2

S
t lo

ca
l
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the local widths of the plate in figure 11. Note that the shedding frequency

is not varying continously along the span but in discrete steps between

cells of constant shedding frequency. This is in contrast to what Gaster &

Ponsford (1984) found at high Reynolds numbers, where they reported an

almost constant value of base Strouhal number fd2/Uo along the span. The

local Strouhal number Stlocal is plotted against dlocal in figure 12. It seems
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Figure 13. Local Strouhal number Stlocal from the present DNS calculation plotted against

the hot-wire measurements data by Castro & Watson (2004) along the entire span. Taper ratio

RT = 20 is same in both the cases. Y/l = 0 corresponds to Re2 = 1000 and Y/l = 1 corresponds

to Re1 = 250.

like the width of the constant shedding frequency cells increases with the

dlocal, an effect also observed in the wake of tapered cylinders (Piccirillo &

Van Atta (1993); Narasimhamurthy et al. (2007); Parnaudeau et al. (2007);

Narasimhamurthy et al. (2006)). The same observation can also be made

from the results of Castro & Watson (2004) in figure 13. Here, the variation

of the Stlocal from the present DNS is compared against their experimental

data. Note that the taper ratio is same in both the cases (see Table 1). In

spite of the different Reynolds numbers the qualitative agreement is striking.

The structure of the vortex shedding is strongly dependent on the aspect

ratio for low aspect ratios. The local Strouhal number behaviour deduced

from the hot-wire measurements of Castro & Watson (2004) shows only

minor difference between their AR = 15.4 and AR = 20. We are therefore

inclined to infer that the impact of the aspect ratio difference between the
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present DNS (AR = 24) and the Castro & Watson (2004) data for AR = 20

is negligibly small.

3.2.2. Spanwise two-point correlation

It is clear from the preceding section that cellular vortex shedding exists

in the wake of a tapered plate even at low Reynolds numbers. To further

explore this cellular vortex shedding phenomenon, the spanwise coupling of

the vortex motion is studied by means of spanwise two-point correlation,

where the correlation coefficient is defined as φ(Y ) φ(Y + ∆Y ) / φ(Y )2. In

statistically homogeneous flows, this correlation is a function only of the

separation ∆Y between the two points and does not depend on the position

Y . In addition, the correlation is symmetric in the direction of homogeneity,

i.e., independent of the sign of ∆Y . However, this should not be true in the

present case as the flow is inhomogeneous in all the three directions. This

is indeed what we see in figure 14 and 15. The correlation coefficient of the

secondary flow (V ) is plotted against the spanwise separation ∆Y at three

different positions, Y/d2 = 5, 7.5 and 10 in figure 14(a),14(b), and 14(c),

respectively. The correlation is clearly asymmetric and the secondary motion

remains surprisingly correlated almost for the entire span. However, it is

interesting to see that the correlation reduces to ≈ 20% within about ∆Y =

1d2. The negative correlation towards the narrow end of the plate implies

that the secondary motion is oppositely directed at that position. This is

clearly an end effect as it appears only over 1d2 at the narrow end. The

correlation coefficient is also computed for the cross-stream velocity (W )

component (see figure 15). This coefficient is again asymmetric. However, it

is not surprising that the correlation goes to zero within about ∆Y = 3d2,

since the cross-stream velocity is directly linked to the spanwise vorticity

and the spanwise vortex filaments experience random vortex dislocations

along the span.

3.2.3. Instantaneous vortical structures

In order to identify the topology of the vortex cores correctly the λ2-

definition by Jeong & Hussain (1995) was used. λ2 corresponds to the sec-

ond largest eigenvalue of the symmetric tensor SijSij + ΩijΩij , where Sij

and Ωij are respectively the symmetric and antisymmetric parts of the ve-

locity gradient tensor. Iso-surfaces of negative λ2 and pressure (P/ρ U2
o ) at
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Figure 14. Spanwise correlation of the secondary flow (V ) at three different positions along

the span corresponding to the Relocal: (a)750; (b)625; (c)500. ∆Y corresponds to spanwise

separation length.
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Figure 15. Spanwise correlation of the cross-stream (W ) velocity at three different positions

along the span corresponding to the Relocal: (a)750; (b)625; (c)500. ∆Y corresponds to spanwise

separation length.
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Figure 16. −λ2 vortical structures at time, t = 130 d2/Uo showing vortex-dislocations along

the span at Y/d2 ≈ 5, 9, 12.5 (marked by circles). The flow direction is from left to right and

the Y-axis corresponds to the axis of the plate.

the same instant in time are shown in figures 16 and 17, respectively. The

snapshots clearly demonstrate the discontinuity in the spanwise vortex fil-

ament at Y/d2 ≈ 5, 9, and 12.5. As seen in figure 17, the three-dimensional

re-circulation bubble is nearly conical in shape. This observation is con-

sistent with the finding of Gaster & Ponsford (1984) reported from their

high-Reynolds-number experiments. Figure 18(a) and 18(b) shows the iso-

surfaces of instantaneous streamwise and cross-stream vorticity components

at the same instant in time. Vortices rotating in opposite directions are dis-

tinguished by colour (white and black). The vortices towards the narrow

part of the plate (Y → 15) appear to be organized but highly irregular

in the very near wake and rapidly break up into incoherent motion down-

stream. Towards the wider part of the plate (Y → 0) there is chaos even in
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Figure 17. 3-dimensional iso-pressure (P/ρ U
2

o
= −0.07) contours at time, t = 130 d2/Uo

showing vortex-dislocations along the span at Y/d2 ≈ 5, 9, 12.5. The flow direction is from left

to right and the Y-axis corresponds to the axis of the plate.

the near wake. This is obviously a Reynolds number effect. The above obser-

vation is clearly illustrated in figure 19, where −λ2 at two different spanwise

positions were plotted in the X −Z plane perpendicular to the plate. Note

that the shear layer extends farther downstream of the plate before rolling-

up than in the case of parallel-sided plates; e.g. Najjar & Vanka (1995) and

Najjar & Balachandar (1998). This is consistent with a conclusion drawn

by Gaster & Ponsford (1984), where they noticed that tapered plates have

longer formation length than their corresponding uniform plates.
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(a) Streamwise vorticity, ωx

(b) Cross-stream vorticity, ωz

Figure 18. 3-dimensional iso-surfaces at the same instant in time, t = 130 d2/Uo. The flow

direction is from left to right and the Y-axis corresponds to the axis of the plate. The surfaces

colored white and black mark ων/U
2

o
= −0.002 and ων/U

2

o
= +0.002, respectively.
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Figure 19. Contour plots of −λ2 at two different spanwise positions: (a) Y/d2 = 12; (b)

Y/d2 = 2.

3.2.4. Mean pressure and base suction coefficients

Time-averaged statistical quantities were evaluated by sampling for 170 d2/Uo

or 680 d1/Uo time units. This sampling period corresponds to about 60 mean

shedding cycles. One sample is taken every tenth time step for averaging.

The mean pressure coefficient is defined as, Cp = 2(P −P
∞

)/(ρU2
o ), where

the reference pressure P
∞

is taken from the pressure at the inflow. The dis-

tribution of Cp on the surface of the tapered plate at different spanwise

positions is compared against uniform plate results in figure 20. The pres-

sure on the upstream surface of the tapered plate compares well with the

uniform plate experimental data by Fage & Johansen (1927) and the nu-
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Figure 21. Non-dimensional length of the mean re-circulation zone versus Relocal. Lw is the

streamwise distance from the axis of the plate to the position where the mean streamwise velocity

U changes sign from negative to positive.

merical data by Najjar & Vanka (1995), Najjar & Balachandar (1998). It

should be noticed that the front face pressures collapse if plotted versus

Z/dlocal rather than versus Z/d2. The constancy of the pressure in the base

region is well captured in the present DNS. However, the pressure in the

base region is significantly higher compared to the uniform plate data. The
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from the present turbulent flow case and experiments.

reason for this lies in the wake formation length, which is closely coupled to

the local base pressure. As discussed already in the previous section, Gaster

& Ponsford (1984) reported very strong and periodic vortex shedding be-

hind the uniform plates, which gives rise to significantly shorter formation

lengths compared to tapered plates. Najjar & Vanka (1995) noted that the

wake formation length in their uniform plate case at Re = 1000 was about

two plate widths. The mean wake formation length in the present case in

figure 21 clearly shows that at Relocal = 1000 the bubble is 6 times the

local plate width, i.e., 3 times larger than in the corresponding uniform

plate case. This suggests a coupling between the local base pressure and the

vortex formation process (Bearman (1965, 1967)).

The mean base pressure coefficient along the span of the plate is shown

in figure 22. Even though Gaster & Ponsford (1984) observed base pressure

variations for all their tapered models with a significant reduction towards

the narrow end of the plate, they did not give any explanation to this

phenomenon. They noticed however, that this base pressure gradient was

driving the secondary flow from the wide end of the plate towards the narrow

end. Castro & Rogers (2002) made a similar observation in their experiments

and they attributed this reduction in base pressure towards the narrow end

to the corresponding increase in Strouhal number. By comparing the Cp
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Figure 23. Time-mean spanwise velocity (secondary flow) at different spanwise locations.
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variations in figure 22 to the Stlocal variation in figure 13, the present DNS

data confirms Castro & Rogers (2002) conclusion.

3.2.5. Secondary motion

The pressure-driven secondary motion in the steady laminar flow regime

has been discussed in section 3.1. There is also some evidence in the ex-

periments (Gaster & Ponsford (1984); Castro & Rogers (2002)) that such

pressure-driven secondary flow may exist even at high Reynolds numbers,

i.e., in the turbulent flow regime. This issue has not yet been thoroughly

addressed. The present turbulent flow simulation revealed a mean spanwise

velocity V , both in the front stagnation zone and also in the wake of the

plate (see figure 23). It can be observed from figure 23(a) that in the front
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Figure 25. Streamlines in the X − Y section plane through the axis of the plate illustrating

the mean secondary flow (V ) direction and the mean re-circulation zone.

stagnation zone the secondary flow is still going from the wide end of the

plate towards the narrow end, similar to what we saw in the steady laminar

regime (cf. figure 3(a)) and also as speculated by Gaster & Ponsford (1984).

The magnitude of this spanwise velocity is around 10% of the inflow Uo, i.e.,

twice larger than what we observed in the steady laminar regime. On the

contrary, the secondary motion on the rear side of the plate in figure 23(b) is

more complex and similar to what we observed in the steady laminar wake

(see figure 3(b)). The flow in the near vicinity of the plate is going from

the wide end towards the narrow end. This is in perfect agreement to what

Gaster & Ponsford (1984) claimed in their experimental study. However,

the direction of this secondary motion is surprisingly reversed somewhat

away from the plate, so that the flow goes from the narrow end of the plate

towards the wide end. The magnitude of this spanwise velocity is around

20% of the inflow Uo, i.e., about four times larger than what was observed in

the steady laminar regime (cf. figure 3(b)). The secondary motion discussed

above is driven by local pressure gradients. Mean pressure profiles at differ-
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ent spanwise locations in figure 24(a) and the isobars in figure 24(b) justify

the above claim. The streamlines in a X − Y plane through the axis of the

plate in figure 25 confirm the above observations. The streamlines within

the separation bubble are distinctly different from those in the steady lam-

inar case (figure 6). The shape of the −0.4 mean-pressure contour in figure

24(b) resembles the topology of the instantaneous iso-pressure surface in

figure 17.

4. Conclusions

For the first time ever cellular vortex shedding has been observed behind

a tapered plate in a numerical experiment (DNS). Frequency analysis, two-

point correlations and the three-dimensional visualizations collectively con-

firm that multiple cells of constant shedding frequency exist along the span

of the plate. This is in contrast to apparent lack of cellular vortex shed-

ding found in the high-Reynolds-number experiments by Gaster & Pons-

ford (1984). However, the present DNS data is in good qualitative agree-

ment with similar high-Reynolds-number experimental data produced by

Castro & Rogers (2002) and Castro & Watson (2004). A possible reason for

the failure of Gaster & Ponsford (1984) experiments to show cellular vor-

tex shedding was suggested by Castro & Rogers (2002). They argued that

tracking of the variation in shedding frequency across the span certainly

requires closely spaced measurements, whereas only a modest number of

spectral measurements were made by Gaster & Ponsford (1984).

In the present DNS, it has been observed that tapering tends to decorre-

late the vortex shedding both in time and also along the span. The decorre-

lated vortex shedding results in a longer formation length of the separation

bubble and higher base pressure than compared to the non-tapered (i.e.

uniform) plates. This is consistent with a conclusion drawn by Gaster &

Ponsford (1984). Base pressure variations were noted in the present tapered

configuration with a significant reduction towards the narrow end of the

plate. This reduction in base pressure towards the narrow end results in a

corresponding increase in Strouhal number. This observation is consistent

with Castro & Watson (2004) findings.

The three-dimensional re-circulation bubble was found to be nearly con-

ical in shape in both the steady laminar case and the turbulent flow case.
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This observation is similar to what Gaster & Ponsford (1984) reported in

their high-Reynolds-number experiment. In addition it was observed that

the length of the closed wake in the steady laminar case is in good agreement

with non-tapered (i.e. uniform) plate data. Thus the flow field in planes per-

pendicular to the plate axis can be considered as quasi-two-dimensional in

the steady laminar flow regime.

The present three-dimensional calculations revealed a pressure-driven span-

wise secondary motion, both in the steady laminar flow regime and also in

the turbulent flow regime. It was observed that in the front stagnation zone

the secondary flow is going from the wide end of the plate towards the nar-

row end. This is in accordance with the speculations by Gaster & Ponsford

(1984) in their high Reynolds number study. On the contrary, the secondary

flow pattern on the rear side of the plate is rather complex. The flow in the

immediate vicinity of the plate is going from the wide end towards the nar-

row end. This is in perfect agreement to what Gaster & Ponsford (1984)

claimed. However, the direction of this secondary motion is surprisingly re-

versed somewhat away from the plate, so that the flow goes from the narrow

end of the plate towards the wide end. The spanwise secondary motion was

found to be more pronounced in the turbulent flow case than in the steady

laminar case.

The present computer simulations of flow past a linearly tapered plate

facilitated detailed study of three-dimensional wake flow phenomena in the

laminar and low-Reynolds-number turbulent flow regime, which thereby

supplement earlier experimental investigations at substantially higher Reynolds

numbers. Similarities and differences between the two distinctly different

cases herein and the earlier high-Re studies are pointed out. The cellu-

lar shedding observed at relatively low Re in the present study supports

and complements the findings of Castro & Watson (2004) at a significantly

higher Reynolds number.
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The vortex shedding in the wake behind a flat plate perpendicular to an oncoming

stream have been examined. The Reynolds number Re based on the uniform inflow

velocity and the width of the plate was 750. The wake flow was turbulent and direct

numerical simulations have been performed to achieve a complete representation

of the unsteady wake. The Strouhal number 0.1678 turned out to match that in

the laminar flow regime reported by others. The impact of the base pressure on

the shedding frequency and the vortex formation process was elaborated. A steady

2D mean flow and the accompanying Reynolds stress components were obtained by

averaging in time and along the span. It was concluded that the kinetic energy of

the wake unsteadiness was not only dissipated locally.

Key words: Uniform plate, Parallel-sided plate, DNS, Turbulence, Wake flow.

1 Introduction

Vortex shedding from bluff bodies, and particularly from two-dimensional bluff bod-

ies, is one of the most studied research topics in fluid mechanics. Among such

two-dimensional bluff bodies, the normal flat plate, i.e. a uniform flat plate placed

normal to the free-stream, is the simplest configuration that can yield complex wake

flow phenomena. Unlike the case of circular or elliptic cylinders, the flow past a

normal flat plate is characterized by fixed separation points and the separated near-

wake is known to remain symmetrical and steady in the Reynolds number range

Re = 5 − 20 [1]. Recently, Saha [2] reported that the separated near-wake of a

normal flat plate undergoes a Hopf bifurcation, i.e. transition from a steady state

to an unsteady state, at a Reynolds number that lies in between 30 and 35. It is

also known from the existing literature that a second transition, which renders the

flow three-dimensional (and eventually turbulent) occurs already at Re = 105−110

[3].

If we now focus our attention on turbulent wakes, it is surprising to see that

almost all the turbulent flow cases are either studied by experiments or by means

1Corresponding author. Tel.: +47 73593563; fax: +47 73593491; E-mail: vagesh@ntnu.no
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CASE Re Flow regime Method

Present study 750 Turbulence 3D-Numerical
Fage & Johansen [4] 1.5 × 105 Turbulence Experiments

Mazharoǧlu & Hac1şevki [5] 3.3 × 104 Turbulence Experiments
Kiya & Matsumura [6] 2.3 × 104 Turbulence Experiments

Wu et al. [7] 1.8 × 103 − 2.7 × 104 Turbulence Experiments
Najjar & Vanka [8] 100 − 1000 Turbulence 2D-Numerical

Tamaddon-Jahromi et al. [9] 126 − 500 Turbulence 2D-Numerical
Najjar & Vanka [10] 1000 Turbulence 3D-Numerical

Najjar & Balachandar [11] 250 Transition 3D-Numerical
Julien et al. [12] 200 − 220 Transition Experiments
Julien et al. [13] 220 Transition 2D-Numerical

Saha [2] 30 − 175 Laminar 2D-Numerical
Dennis et al. [1] 5 − 20 Laminar Experiments

Table 1: Various studies on flow past normal flat plates.

of two-dimensional (2D) simulations (see Table 1). The only exception is the Di-

rect Numerical Simulation (DNS) carried out by Najjar & Vanka [10] where they

provided some data of the mean integral parameters such as the drag coefficient

and the base pressure coefficient. Their objective, however, was limited to study

and compare the drag characteristics obtained from a three-dimensional simulation

with those obtained from an equally resolved 2D simulation. Even though some

of the previous experimental studies [5, 6] documented the turbulence statistical

quantities, they were nevertheless carried out at high Reynolds numbers. Moreover,

experimental methods cannot capture the complete three-dimensional data. In con-

trast, the 2D numerical simulations are known to overpredict the drag and base

pressure coefficients and underpredict the formation length [10, 14]. An in-depth

and comprehensive study of the turbulent wake behind a normal flat plate is there-

fore awaited. DNS as a tool is the natural choice in the present investigation, as

it gives complete access to the instantaneous three-dimensional flow field. In addi-

tion to frequency analysis and vortical structure information, a detailed analysis of

Reynolds averaged statistical quantities will be presented.

2 Flow configuration and numerical method

We considered the flow past a normal flat plate with the view to explore the vortex

shedding at moderately high Reynolds numbers, i.e. sufficiently high to make even

the near-wake turbulent. The Reynolds number Re based on the uniform inflow

velocity Uo and the width of the plate d was equal to 750. The size of the compu-
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Figure 1: Computational domain (not to scale).

CASE Nx Ny Nz Lx Ly Lz Re

Present DNS 512 60 384 25 6 16 750
Najjar & Vanka [10] 256 32 256 28 2π 16 1000

Najjar & Balachandar [11] 192 48 128 25 2π 16 250

Table 2: Geometrical and grid parameters.

tational domain in each coordinate direction was Lx = 25d, Ly = 6d, and Lz = 16d,

as shown in figure 1. All spatial dimensions are normalized by d and all velocities

are scaled with the uniform inflow velocity Uo. The thickness of the plate was very

small and equal to 0.02d.

The Navier-Stokes equations in incompressible form were solved in 3-D space and

time using a parallel finite-volume code called MGLET [15, 16]. The code uses

staggered Cartesian grid arrangements. Discretization of the spatial derivatives was

achieved by means of a 2nd-order central-differencing scheme. The time marching

was carried out using a 3rd-order explicit Runge-Kutta scheme for the momentum

equations in combination with an iterative SIP (Strongly Implicit Procedure) solver

for the Poisson equation. The number of grid points in each coordinate direction

(Nx × Ny × Nz) is shown in Table 2 and compared with the previous DNS studies

on normal flat plates [10, 11]. The time step was chosen as ∆t = 0.001d/Uo and the

number of Poisson iterations per time step was limited to 60. The computations

were performed on an IBM P575+ parallel computer.

In order to justify that the present simulation is a fully resolved DNS, i.e. that

all essential turbulent scales are captured, the grid size can be compared with Kol-

mogorov’s microscale η = (ν3/ε)1/4. Here, ε is the time-mean dissipation rate of

fluctuating kinetic energy defined as

3



X/d = 1 3 5 8 12

Present DNS 3.48 2.69 2.19 1.87 1.65
Yao et al. [19] 6.88 5.07 3.42 2.76 2.44

Moser et al. [18] ≈ 15

Table 3: Grid resolution ∆X = ∆X/η values at various X/d positions measured
from the axis of the plate.

ε = ν

(

∂ui

∂Xj

∂ui

∂Xj

+
∂ui

∂Xj

∂uj

∂Xi

)

≈ ν

(

∂ui

∂Xj

∂ui

∂Xj

)

(1)

where ui is the fluctuating part of the instantaneous velocity component which

comprises both the unsteady fluctuations and the turbulent fluctuations. The con-

tribution from the second term in the above definition of the total dissipation rate ε

is negligible [17] and hence neglected in the present analysis. The grid size relative

to the Kolmogorov microscale at five different downstream positions are given in

Table 3 and compared with corresponding data for the plane wake DNS by Moser

et al. [18] and the trailing-edge wake DNS of Yao et al. [19]. The data in Table 3

shows that the grid size in the present study is of the same order of magnitude as

the Kolmogorov length scale. The present grid resolution compares favorably with

that used in other wake flow simulations.

A uniform velocity profile Uo = 1 was prescribed at the inlet without any free-

stream perturbations and a Neumann boundary condition was used for the pressure.

A free-slip boundary condition was applied on both the top and the bottom wall

and a periodic boundary condition was used for the side walls (cf. figure 1). At

the outlet, a Neumann boundary condition was used for velocities and the pressure

was set to zero. A direct forcing Immersed Boundary Method [20, 16] was used to

transform the no-slip condition at the plate surface into internal boundary conditions

at the nodes of the Cartesian grid. The internal boundary condition value had to be

determined by interpolation. In the present DNS we used least-squares interpolation

of 3rd-order accuracy. The detailed derivation, validation and implementation of this

technique in the code MGLET were explained in [20].
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3 Results and discussion

3.1 Wake pattern and frequency analysis

In order to identify the topology of the vortex cores correctly the λ2-definition by

Jeong & Hussain [21] was used. λ2 corresponds to the second largest eigenvalue

of the symmetric tensor SijSij + ΩijΩij , where Sij and Ωij are respectively the

symmetric and antisymmetric parts of the velocity gradient tensor. Iso-surfaces of

negative λ2 at time t = 120d/Uo is shown in figure 2(a). Note that the shear layer

extends downstream of the plate by about two plate widths before rolling-up. The

top view or the spanwise view of the same flow field is shown in figure 2(b) and

the corresponding iso-pressure (P/ρU2
o ) contours are plotted in figure 2(c). The

spanwise vortex filaments are shed parallel to the axis of the plate but experience

vortex stretching and twisting. The vortices appear to be highly irregular in the

near wake and rapidly break up into incoherent motion further downstream.

The time evolution of the instantaneous velocity components U, V, W and the

instantaneous pressure, P, were sampled along two lines parallel to the axis of the

plate and located 3d and 6d downstream the axis in X -direction, respectively. Both

lines were offset by 0.5d in Z -direction. It would be inappropriate to present all the

data here due to space constraints. Therefore, only the time trace of the cross-stream

velocity W sampled at 3d is shown in figure 3(a). The total sampling time was equal

to 120 d/Uo, which covers about 20 vortex shedding cycles. The present sampling

length was found to be long enough for the results to converge to a statistically

stationary state. The spatio-temporal variations of W in figure 3(a) clearly demon-

strate the parallel-shedding feature of the wake. To enable quantitative comparisons

the frequency spectra were obtained from the Fast Fourier Transform (FFT) of the

cross-stream velocity (W ) time traces. A sample spectrum is shown in figure 3(b),

which is taken at the mid-span of the plate and is provided in a double-logarithmic

plot. The primary shedding frequency corresponds to the most energetic frequency

which is found at fd/Uo = 0.1678. In Table 4 the Strouhal number (fd/Uo) from

the present DNS is compared with earlier studies on normal flat plates. It can be

observed that the present value is in close agreement with the previous low-Re stud-

ies carried out at Re ≤ 250 [2, 11]. In contrast, the Strouhal number from Najjar

& Vanka [10] at Re = 1000 is in close agreement with the higher Reynolds number

case [6]. The exceptionally low Strouhal number reported by Najjar & Vanka [10]

is perhaps due to the shear-layer instabilities, which are known to occur at higher

Reynolds numbers. Another possible reason could be the lower grid resolution used

in their DNS study (cf. Table 2).
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(a) −λ2 contours (streamwise view)

(b) −λ2 contours (spanwise view)

(c) Iso-pressure (P/ρU2
o = −0.1) contours (spanwise view)

Figure 2: 3-dimensional vortical structures at the same instant in time, t = 120 d/Uo.
The plate is located on the left side and the flow direction is from left to right.

CASE St = fd/Uo Lw/d Re

Present study 0.1678 1.96 750
Saha [2] 0.1665 150
Saha [2] 0.1640 175

Najjar & Balachandar [11] 0.1613 2.35 250
Najjar & Vanka [10] ≈ 0.1428 2.55 1000

Kiya & Matsumura [6] 0.1460 2.3 × 104

Table 4: Strouhal number (St) and formation length (Lw) data from various studies.
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Figure 3: (a) Time traces of the cross-stream velocity (W ) component along the
entire span. The sampling line is at X/d = 3 and Z/d = −0.5 (measured from
the axis of the plate). (b) Power spectrum indicating the dominant frequency at
fd/Uo = 0.1678.

3.2 Mean pressure coefficient and formation length

Time-averaged statistical quantities were evaluated by sampling for 120 d/Uo time

units. One sample is taken every tenth time step for averaging. The three-dimensional

data is then averaged in the spanwise Y −direction, i.e. in the direction of homo-

geneity. The mean pressure coefficient is defined as, Cp = 2(P − P
∞

)/(ρU2
o ), where

the reference pressure P
∞

is taken from the pressure at the inflow and the overbar

signifies averaging in time and spanwise direction. The distribution of Cp on the sur-

face of the plate from the present DNS is compared against the earlier experimental

[4] and numerical [10, 11] data in figure 4. The pressure on the upstream surface of

the plate compares well with the previous data. The constancy of the pressure in

the base region is well captured in the present DNS. However, the pressure in the

base region is relatively lower compared to the prediction of Najjar & Vanka [10] but

is in good agreement with the low-Reynolds number case of Najjar & Balachandar

[11]. This could again be a pure Reynolds number effect as discussed in the previous

section or perhaps due to the modest grid resolution used in Najjar & Vanka [10].

The coupling suggested by Bearman [22, 23] and others between the base pressure

and the vortex formation process can be explored in the present study. If we compare

the base pressure values in figure 4 with the corresponding Strouhal numbers in

Table 4, it is apparent that the reduction in base pressure causes an increase in

St, i.e. gives rise to a stronger vortex shedding. A very strong and periodic vortex

shedding eventually produces shorter formation lengths. It can be observed from

Table 4 that the formation length Lw decreases with an increase in St and vice versa.
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Figure 5: (a) Streamlines showing the mean recirculation bubble. (b) Time-mean
velocity profiles along the wake centerline.
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Figure 6: Mean velocity profiles at fixed X/d positions (measured from the axis of
the plate).

Thereby, the coupling between the wake formation length Lw and the base pressure

is explained. In the present context the formation length Lw, i.e. the length of the

mean recirculation bubble (see figure 5(a)), is defined as the streamwise distance

from the axis of the plate to the position where the mean streamwise velocity U

changes sign from negative to positive (see figure 5(b)).

3.3 Reynolds-averaged statistics

It is important to quantify the growth and decay of different properties of the fluc-

tuating motion, especially in the near wake region where the similarity laws are not

valid. Therefore in the present section Reynolds-averaged statistical quantities at

some sections downstream the plate will be presented and the underlying physics

will be discussed. It can be observed from figure 5(b) that the mean cross-stream

velocity W is zero along the wake centerline. Note that the wake centerline is sub-

jected to an equally weighted influence of both the alternating vortices shed from

either side of the plate. The observation that W ≈ 0 along the wake centerline

reconfirms that the present statistics are fully converged to a stationary state. The

variation of the mean streamwise velocity U in the near wake at five different po-

sitions downstream the plate is shown in figure 6(a). The negative velocity at the

location X/d = 1 stems from the recirculation zone. Along the wake centerline at

X/d = 2, U is nearly zero since this position is very close to the re-attachment

point. The mean cross-stream velocity (W ) profiles are shown in figure 6(b). The

anti-symmetric variation of W is consistent with the symmetry of U .

Reynolds stresses u2, v2, w2 and uw are plotted in figures 7(a), 7(b), 7(c) and 7(d),
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respectively. Note that due to the Reynolds-averaging, the stress components have

contributions from both the unsteady fluctuations and the turbulent fluctuations.

A bi-modal u2 profile can be observed in all the curves in figure 7(a). The highest

level of streamwise velocity fluctuations occurs in the shear layers shed from the

plate and hence the two peaks in figure 7(a) are offset from the wake centerline. A

similar bi-modal trend can also be seen in the spanwise normal stress (v2) profiles

(see figure 7(b)). The origin of this bi-modal trend can again be traced to the shear

layer, which constitutes regions of concentrated secondary flow structures, popularly

termed as “braid regions”. The magnitude of v2, however, is substantially smaller

than u2. In contrast, the maximum values of the w2 stress component appear along

the wake centerline (see figure 7(c)). This is because the flow at the wake centerline

is subjected to an equally weighted influence of both the alternating vortices shed

from either side of the plate. The transverse velocity fluctuations are more energetic

than the streamwise velocity fluctuations, hence the magnitude of the w2 stress

component is much larger than the u2 stress component. The peak amplitudes of

the shear stress uw in figure 7(d) indicate the position where the two fluctuating

components are in phase.

The variation of the mean fluctuating kinetic energy, k = (u2+v2+w2)/2, is shown

in figure 8(a). From X/d = 2 and further downstream, the highest energy level is

observed along the wake centerline and the actual peak level decays monotonically

with X. This is because the transverse velocity fluctuations are more energetic than

the streamwise velocity fluctuations in those regions and therefore w2 represents the

major contribution to k. Close to the plate, however, the highest energy levels are

offset from the wake centerline since w2 is roughly comparable to u2 in those regions.

It can thus be concluded that the bi-modal k−profile at this location (X/d = 1)

stems from the streamwise velocity fluctuations. The contribution of each normal

stress component to the fluctuating kinetic energy along the wake centerline can

be explored in figure 8(b). The magnitude of u2 and v2 are comparable along the

wake centerline, while the magnitude of w2 is several times larger than u2 and v2

and hence represents the major contribution to k. The normalized dissipation rate

of the fluctuating kinetic energy (ε ν/U4
o ) is plotted in figure 9. The bi-modal

pattern clearly indicates that the maximum dissipation levels are offset from the

wake centerline and are occurring in the shear layers. It is interesting to observe

that the spatial variation of ε does not match the distribution of k. This implies

that the kinetic energy is only partially dissipated locally.
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Figure 7: Reynolds stress profiles at fixed X/d positions (measured from the axis of
the plate).
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Figure 8: (a) Mean fluctuating kinetic energy (k/U2
o ) profiles at fixed X/d positions

(measured from the axis of the plate). (b) Mean fluctuating kinetic energy and
Reynolds stress distribution along the wake centerline.
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Figure 9: Dissipation rate of fluctuating kinetic energy (ε ν/U4
o ) at fixed X/d posi-

tions (measured from the axis of the plate).

4 Conclusions

The parallel-shedding characteristics of the wake behind a normal flat plate was well

captured in the present DNS study. Both flow visualizations and spectral analysis

together confirm this feature. The Strouhal number in the present turbulent flow

case was found to be in excellent agreement with the previous studies on normal

flat plates carried out at low Reynolds numbers [2, 11]. In contrast the Strouhal

number predicted by Najjar & Vanka [10] was found to be significantly lower. In

addition, the predicted base pressure in Najjar & Vanka [10] was relatively higher

than in the present case. The reason for this discrepancy was suggested to be due

to the different Reynolds numbers used in the present study and in Najjar & Vanka

[10]. Another possible reason could be the coarse grid resolution adopted by Najjar

& Vanka [10]. The coupling between the base pressure and the vortex formation

process was explored in the present study. It was observed that the reduction

in base pressure causes a surge in the shedding frequency and hence produces a

shorter recirculation bubble. A detailed analysis of the Reynolds-averaged statistical

quantities were presented. It was noticed that the transverse velocity fluctuations

were more energetic than the streamwise and spanwise velocity fluctuations and

hence represented the major contribution to the fluctuating kinetic energy.
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[5] Mazharoǧlu, Ç. and Hac1şevki, H., 1999. Coherent and incoherent flow structures

behind a normal flat plate. Exp. Thermal Fluid Sci. 19, 160-167.

[6] Kiya, M. and Matsumura, M., 1988. Incoherent turbulence structure in the near

wake of a normal plate. J. Fluid Mech. 190, 343-356.

[7] Wu, S.J., Miau, J.J., Hu, C.C. and Chou, J.H., 2005. On low-frequency mod-

ulations and three-dimensionality in vortex shedding behind a normal plate. J.

Fluid Mech. 526, 117-146.

[8] Najjar, F.M. and Vanka, S.P., 1995. Simulations of the unsteady separated flow

past a normal flat plate. Int. J. Numer. Meth. Fluids 21, 525-547.

[9] Tamaddon-Jahromi, H.R., Townsend, P. and Webster, M.F., 1994. Unsteady

viscous flow past a flat plate orthogonal to the flow. Computers & Fluids 23,

433-446.

[10] Najjar, F.M. and Vanka, S.P., 1995. Effects of intrinsic three-dimensionality on

the drag characteristics of a normal flat plate. Phys. Fluids 7, 2516-2518.

[11] Najjar, F.M. and Balachandar, S., 1998. Low-frequency unsteadiness in the

wake of a normal flat plate. J. Fluid Mech. 370, 101-147.

[12] Julien, S., Lasheras, J. and Chomaz, J.-M., 2003. Three-dimensional instability

and vorticity patterns in the wake of a flat plate. J. Fluid Mech. 479, 155-189.

13



[13] Julien, S., Ortiz, S. and Chomaz, J.-M., 2004. Secondary instability mechanisms

in the wake of a flat plate. European J. Mech. B/Fluids 23, 157-165.

[14] Mittal, R. and Balachandar, S., 1995. Effect of three-dimensionality on the lift

and drag of nominally two-dimensional cylinders. Phys. Fluids 7, 1841-1865.

[15] Manhart M., 2004. A zonal grid algorithm for DNS of turbulent boundary

layers. Computers & Fluids. 33, 435-461.

[16] Narasimhamurthy, V. D., Schwertfirm, F., Andersson, H. I. and Pettersen, B.,

2006. Simulation of unsteady flow past tapered circular cylinders using an im-

mersed boundary method. In: Proc. ECCOMAS Computational Fluid Dynamics,
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  Abstract: 

The unsteady near-wake behind a linearly tapered plate has been investigated numerically. 

The tapering made the Reynolds number based on the inflow velocity and the local width of 

the plate vary from 25 to 100. The wake flow comprised three different flow regimes co-

existing side-by-side. The wake flow was steady behind the narrow end of the plate. Periodic 

vortex shedding occurred downstream from where the local Reynolds number exceeded 32. 

Vortex dislocations enabled a cellular shedding pattern with shedding frequency decreasing 

towards the wide end of the plate. The regular oblique vortex shedding near mid-span was 

subjected to three-dimensional scrambling towards the wide end of the plate which gave rise 

to streamwise-oriented vortex structures. The Strouhal number was distinctly lower than in 

the wake of a uniform plate whereas the base pressure coefficient was substantially higher.  

 

Key words: taper plate, oblique vortex shedding, unsteady laminar flow, wake phenomenon  

1. Introduction 

Wakes of bluff bodies and their vortex structure have been broadly investigated because of 

their practical importance with respect to integral quantities such as drag and lift forces.  The 

flow structure around bluff bodies like plates, circular cylinders, toruses and so on have been 

pondered more frequently due to their geometrical simplicity.  Among all, the flat plate has 
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been the center of attention, either numerically or experimentally, to explore the physics of 

the flow and its fundamental aspect of wake instabilities and transition. 

The secondary instability has been dubbed the main argument for occurrence of three 

dimensionalities. This phenomenon happens intrinsically for wakes of two dimensional bluff 

body structures at a critical Reynolds number which effectuates momentous spanwise 

variations in the flow field [Williamson (1996), Najjar & Vanka (1995a)]. Furthermore, these 

three dimensionalities can arise extrinsically by introducing an asymmetry or tapering in bluff 

body geometry [Gaster (1969) Piccirillo & Van Atta (1993), Narasimhamurthy et al. (2008)] 

or by manipulation of the boundary conditions [Maull & Young (1973), Parnaudeau et al. 

(2007)]. The inherent three-dimensionality extrinsically was considered firstly by Gaster 

(1969) in study of vortex shedding behind a very slender cone. He conceived that the 

fluctuating velocity in the wake is not singly periodic in time but rather exhibits two different 

frequencies with one an order of magnitude lower than the other. It was revealed that this 

modulation frequency was a constant all along the span. However, he in another heuristic 

study [Gaster (1971)] divulged a “cellular structure” of vortex shedding behind a mild tapered 

cylinder in a low Reynolds number flow. Cellular vortex shedding structure corresponds to 

cells of different frequency coexisting along the span. In case of a tapered geometry where the 

diameter changes linearly, the observation of cellular vortex structures eventuates to 

“oblique” vortex shedding. Nonetheless several investigations have reported that cellular 

vortex structure is not the only stimulation of onset of oblique shedding and the particular 

boundary conditions at the spanwise end may lead to angulation of vortex structure 

[Williamson (1989), Gerich & Eckelmann (1982)]. It is very conceivable in the case of 

different coexisting cells that vortices move out of phase with each other in the boundary of 

each cell and spanwise vortex filaments split apart. Although vortex dislocations were first 
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introduced as a main feature of three dimensional transition of wake, this phenomenon has 

been reportedly observed, even more coherently, in the laminar regime. 

 Ensuing the observation of vortex dislocation and cellular pattern in the wake of cones, 

Gaster & Ponsford (1984) settled up a new experiment for flow over a tapered plate at 

Reynolds numbers of order of 104. They provided limited data for the taper ratio of 

8<TR<240 ( ( )12/ ddlTR −=   where l  is the length of plate and 2d  and 1d  are widths at wide 

and narrow end, respectively). In spite of the fact that they found an evidential base pressure 

gradient along the span which induced a spanwise secondary flow, they failed to detect any 

cellular vortex structure for any range of taper ratio. This in fact was in contrast with the 

preceding investigation of Maull & Young (1973) who beheld the cellular vortex structure of 

incoming shear flow behind a parallel-sided plate. This contradiction stimulated Castro & 

Rogers (2002) and Castro & Watson (2004) to canvass in extensive experimental data of the 

wake of tapered and triangular plates with different taper ratios and different boundary 

conditions. However they kept the Reynolds number at an order of 104 and they observed 

cells of constant shedding frequency throughout the taper ratio range of 20<TR<60. Very 

recently Narasimhamurthy et al (2008) performed a direct numerical simulation of turbulent 

flow around a tapered plate with 250<Re<1000. The wake exhibited a cellular vortex 

structure once again. 

The parallel-sided plate, placed perpendicular to the flow, has been the eye-catcher case for 

several experimentalists during decades. Almost all the experiments have been carried out in 

the turbulent regime. Fage & Johansen (1927) measured the pressure downstream and 

upstream of the flat plate at various angles of attack for a Reynolds number 5105.1 × . Hotwire 

anemometry was recruited by Perry & Steiner (1987) to study the flow past a flat and inclined 

plate at Reynolds number 4102× . Castro and Jones (1987) performed a 2-D simulation of 

steady state flow at 100<Re<800, the steady state assumption overpredicted the wake length 
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though. Joshi (1993) performed 2D and 3D numerical simulations using second-order 

accurate finite-volume time-splitting scheme at Reynolds number varying from 40 to 1000. 

Najjar and Vanka (1995b) carried through a 2D unsteady simulation with high-order accurate 

scheme in the Reynolds number range of 80-1000 and apperceived parallel shedding below 

Re=250. Nonetheless at higher Reynolds numbers complex interactions such as vortex paring 

and tearing were observed in the far-wake region. More recently Najjar (1994) conducted 3D 

simulations to resolve the overprediction of the drag coefficient due to inherent three- 

dimensionality of flows above Re = 200.  

Compared to the number of experimental surveys, relatively few numerical studies have been 

performed for flows past a tapered or flat plate. Though capturing the whole range of small 

scales down to the Kolmogorov microscale seems computationally unattainable at very high 

Reynolds number turbulent flows, direct numerical simulation is an effectual tool to study the 

complex nature of the phenomenon in comparably lower Reynolds number turbulent or 

unsteady laminar regimes. The present study has been devoted to investigate the presumably 

complex structure of the vortex shedding behind the tapered plate in Reynolds number range 

of 25 to 100. Besides pondering on the intricate structure of cellular vortex shedding behind 

the tapered plate, simulation of the flow around a parallel-sided plate at Reynolds number 

62.5 (based on md = (d1+d2)/2) was performed for comparative purposes. 

This paper is organized as follows. In section 2 the flow configuration and computational 

approach is outlined. The results of simulation are discussed in section 3 and concluding 

remarks are summarized at the end. 

2. Flow field and computational approach 

The flow past a tapered plate is considered. The computational domain is shown in Figure 1. 

Unless otherwise explicitly mentioned, all spatial dimensions are non-dimensionalized by 2d  

and velocities are normalized with the uniform inflow velocity U0. The mean width of the 
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plate is 625.0=md  and the thickness of the plate is only 202.0 d . The aspect ratio 

( )mdlAR = is 24 and taper ratio (TR) equals 20. The Reynolds numbers at the wide and 

narrow end of the plate are 100 and 25, respectively. Table 1 gives an overview of the 

boundary conditions. A uniform velocity profile 10 =U  has been prescribed as inlet boundary 

condition. A Neumann boundary condition is recruited for pressure at the inflow. A free-slip 

boundary condition was applied at side walls, top wall and bottom wall. The choice of slip 

condition averts end effects. At the outlet, the Neumann and Dirichlet boundary conditions 

were set for velocities and pressure, respectively. 

For comparative purpose the flow over a parallel-sided plate with width equal to the mean 

width  md  of the tapered plate has also been simulated. Periodic boundary conditions were 

recruited at each spanwise end of the plate. Moreover, the spanwise length of the plate was 

reduced to 6 and the cross-stream height of the domain increased to 16; see also Table 2. 
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Figure 1 Flow domain and coordinate system. All length are scaled with d2 

The simulation has been carried out with the well-documented finite-volume solver MGLET 

[Manhart (2004)]. The three-dimensional Navier-Stokes equations for an incompressible fluid 

are approximated on a staggered Cartesian grid system. A 3rd-order explicit Runge-Kutta 

scheme in time and a 2nd-order accurate central-differencing scheme in combination with an 

iterative SIP (Strongly Implicit Procedure) for solving the Poisson equation are employed.  

The time step 02003.0 Udt =Δ and number of Poisson iterations per time step was limited to 

30. To accommodate the tapered plate in the Cartesian mesh, a direct forcing immersed 

boundary method (IBM) is used. A review of different IBM schemes is provided by Mittal 

and Iaccarino (2005). A full description of direct forcing method which is implemented in 

MGLET can be found in the article by Peller et al. (2006).  
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Face Boundary Condition 

Inflow 10 =U ; 000 ==WV ; 0=∂∂ xP  

Side walls 0=V ; 0=∂∂=∂∂=∂∂ YPYWYU  

Top & Bottom wall 0=W ; 0=∂∂=∂∂=∂∂ ZPZVZU  

Outflow 0=P ; 0=∂∂=∂∂=∂∂ XWXVXU  

Table 1 Boundary conditions 
 
In order to be assured of obtaining a grid independent solution, two different grid resolutions 

were utilized. The number of grid points in each grid for the tapered plate case and also the 

parallel-sided plate is shown in Table 2. Note has to be taken that the grid refinement is in 

spanwise direction and in the near body wake. All discussed results in section 3 are taken 

from grid B which is fine enough to present a grid independent solution for such a laminar 

case. The grid independency analysis is brought in section 3.1. 

 

 

 Dimension 

Lx×Ly×Lz 

Grid Points 

Nx×Ny×Nz 
AR TR Re1 Re2 

 A 20×15×13 224×125×150 24 20 25 100 Tapered 

Plate  B 20×15×13 254×154×184 24 20 25 100 

Parallel sided 

plate 
20×6×16 192×60×192 9.6 ∞ 62.5 62.5 

Table 2: Geometrical and computational parameters 

3. Results and discussions 

3.1. Frequency analysis and wake pattern 

The instantaneous velocity components U, V, W, and also the instantaneous pressure, p, were 

sampled along two lines parallel to the axis of the plate which were located 4 dm and 7 dm 
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downstream of the plate axis in the x-direction. In addition the lines were offset 1dm in the z- 

direction from the (x-y) - plane through the axis of the plate. The total sampling time was 

360 02 Ud . It attributes to 120,000 samples which encompass nearly 55 shedding cycles at 

wide end of the plate. 

 The time trace of the instantaneous cross-stream velocity (W) along the first sampling line is 

shown in Figure 2.  The aslant pattern of time traces is clearly demonstrating the oblique-like 

vortex shedding along the span. Moreover the vortex splitting or vortex dislocation is 

intelligibly notable along the span.  Some of these dislocations are marked in the figure by 

circles. The picture also envisions the periodic occurrence of vortex dislocation at certain 

spanwise locations. This regularity is probably an intrinsic feature of laminar vortex shedding. 

This in fact is in contrast to the observation of Narasimhamurthy et al. (2008) who discovered 

the random and chaotic occurrence of dislocations and vortex splitting in the turbulent flow 

regime with respect to time and spanwise direction. 

 

Figure 2 : Time evolution of cross-stream velocity (W) along the span. The sampling line is located at x=4dm 
and z=-1 dm  from the axis of the plate. Some vortex dislocations are encircled. 
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 Time traces of some signals at different local Reynolds numbers are shown in Figure 3. The 

low frequency, low amplitude signals that are apparent in between the high frequency 

flapping signals can be attributed to the presence of large-scale spot-like vortex dislocations 

that was first observed by Williamson (1992) in the wake of the uniform circular cylinder. For 

instance in Figure 3 the time record for Reynolds number 90 reveals a very apparent low-

frequency signature. The period of the low-frequency modulation for Re=90 is about 

0235 Ud which is fully consistent with the separation between the circles (at about 22 ≈dy ) 

in Figure 2. This is in fact a strong endorsement to the claim that these low-frequency 

irregularities attribute to the vortex splitting phenomenon. However this is not always the 

case. Najjar & Vanka (1995a) conjectured that these low frequency signals are due to 

oscillations of the shear layer itself. Several other interpretations of this low frequency 

modulation can be found in Najjar & Balachandar (1998) and Wu et al. (2005).  

 

Figure 3 :  Time trace of cross-stream velocity (W) at three different local Reynolds numbers, i.e. at different 
spanwise locations 
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Figure 4 shows one-dimensional energy spectrums for the parallel-sided plate and the tapered 

plate. By taking advantage of the Fourier transform of the cross-stream velocity (W), the 

spectral estimator for a finite length of time record is: 

T
WWfE

^
*

^

)( ×
=                                                                                                                         (1) 

In equation (1) the superscript * denotes the conjugate of Fourier transformed velocity of W. 

In the parallel-sided plate the most dominant frequency which is associated with the primary 

vortex shedding is found at 1704.00 =≡ UfdSt . The two-dimensional calculation of Joshi 

(1993) gave the Strouhal number 0.175 for Re=100. Tamaddon-Jahromi et al (1994) obtained 

the Strouhal number 0.173 at Re=126 and Najjar & Vanka (1995b) reached the value of 0.166 

at Re=100 in their computation. On the right side of Figure 4 where the spectrum for the 

tapered plate at Relocal=62.5 ( υlocallocal Ud=Re ) is depicted, the most dominant frequency 

is 2263.002 =Ufd . This corresponds to a local Strouhal number ( 0UfdSt locallocal = ) of 

0.1414, which is distinctly lower than the Strouhal number obtained fro the parallel-sided 

plate; see Table 3.                                                                                                                                                  

 

(a) (b) 
Figure 4 : One dimensional energy spectrum, (a): parallel-sided plate (Re=62.5), (b): tapered plate at local 
Re=62.5; i.e. at mid-section. 
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 Reynolds Number Strouhal Number 

Tapered Plate, Current simulation 62.5 0.1414 

Parallel sided Plate, Current simulation 62.5 0.1704 

Parallel sided Plate, Joshi (1993) 100 0.175 

Parallel sided Plate, Tamaddon –Jahromi et al. 
(1994)  

126 0.173 

Parallel sided Plate, Najjar & Vanka (1995b) 100 0.166 

Table 3 : Comparison of Strouhal numbers cited in different literatures 
 
The spanwise variation of the frequency spectra of cross-stream velocity (W) is shown in 

Figure 5(a). Different dominant shedding frequencies are observed along the span and reflect 

the cellular pattern of vortex structure. This has been shown more distinctly in Figure 5(b) 

where the local Strouhal number along the span of the tapered plate is pictured. It should be 

noted that the Strouhal number does not vary continuously but rather in discrete linear parts 

which mimic constant shedding frequency cells. This fact can be more easily seen in Figure 

5(c).  The spectral analysis shows that no regular vortex shedding occurs at the narrow end of 

the tapered plate where 32Re ≤local , whereas distinct cellular shedding takes place along the 

remainder of the plate.  

Besides the discrete pattern of Strouhal number revealed in Figure 5(b), the grid 

independency has also been investigated. For this purpose two different grids are compared. 

The overall matching of Strouhal number as shown in Figure 5(b) along the span is 

convincing. Nonetheless all presented results in this paper are extracted from the simulation 

on the finest grid B. In the same figure it is proved that the sampling time is sufficient. The 

agreement between the result of 80000 and 120000 samples is clear. 
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(a) (b) 
 

(c) 
 

Figure 5 : (a) Spanwise variation of frequency spectra of cross-stream velocity, (b) The spanwise distribution of 
local Strouhal number corresponding to the maxima of spectra in three different cases, (c) Shedding frequency 
versus local Reynolds number. Results from different grids (see Table 2) and different sampling times are 
compared in (b). 
 

The onset of vortex shedding as it can be seen in Figure 5(b) occurs somewhere around 

Relocal=32 where very a shedding frequency below 0.05 is detectable in Figure 5(c). This fact 

can also be verified by observing the occurrence of asymmetry in the wake of the tapered 

plate at Relocal=32 at Figure 6(b). The more periodic and frequent shedding of vortices at 

Relocal=35 shown in Figure 5(c) is endorsed by depicting the wake in Figure 6(c). The bigger 

periodicity and higher frequency of shedding is absolutely detectable. This can be compared 

with the claim of Saha (2007) that the near wake of a parallel-sided plate becomes unsteady at 

Reynolds numbers which lies between 30 and 35.  
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(a) (b) 
 

(c) 
Figure 6 :  Wake of the tapered plate at (a) Relocal=30 (b)Relocal=32 (c) Relocal=35 
 

3.2. Secondary motion and formation length 

The secondary motion in the unsteady laminar wake and in the front stagnation zone of 

tapered plate is of great interest since it can be accountable for many complexities in fluid 

flow. In the front stagnation zone of the plate, it is obvious in Figure 7(a) that the flow is 

going from wide end of the plate towards the narrow end since the time-averaged spanwise 

velocity has positive sign. By looking at the isobar Figure 8(a) it can be easily understood that 

the pressure is the driving force of the secondary motion towards the narrow end upstream the 

plate. The magnitude of this secondary flow in stagnation region is of the order 0.01. Gaster & 

Ponsford (1984) and Narasimhamurthy et al. (2008) observed a more complex pattern in the 

near-wake vicinity of the plate. Gaster & Ponsford in their high Reynolds number turbulent 
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flow noticed a stream from the wide end of the plate towards the narrow end in the 

downstream vicinity of plate. This stream was also detected by Narasimhamurthy et al. (2008) 

near the plate. However, they discovered a reversed direction of the flow from the narrow end 

toward the wide end, away from the plate. They affirmed that the pressure is accountable for 

such a driven secondary motion in their turbulent flow downstream the plate. 

In the current simulation of unsteady laminar flow over a tapered plate, the secondary motion 

downstream of the plate divulged somehow a different feature from what was detected by 

previous observers. As it can be seen in Figure 7(b) and Figure 7(c), in the immediate vicinity 

of the plate the flow goes from the wide end towards the middle of span. The positive 

spanwise velocity at the higher local Reynolds numbers, i.e. near the wide end of the plate, 

supports this claim. At the other side of the plate where negative spanwise velocity is 

detectable, the flow moves from the narrow part toward somewhere at the midspan. However 

it should be noted that very near to the plate, i.e. x=5.025 or x=5.10, at the narrow end of the 

plate where there is no vortex shedding, a small positive value of spanwise velocity is 

observable. This suggests the secondary flow toward the narrowest end in the non-shedding 

part of the plate. Figure 7(c) gives a different view of the secondary flow along the span at 

different distances from the plate. In order to grasp a better impression of secondary flow, the 

streamline of the time-averaged velocity is visualized in Figure 7(d). 
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(a) (b) 

(c) (d) 
Figure 7 : Time-averaged spanwise velocity (secondary flow) at different spanwise location identified by local 
Reynolds number, (a) upstream the plate, (b) downstream the plate, (c) downstream the plate versus local 
Reynolds number for different x-positions, (d) Stream-trace of time averaged velocity 
 
As noted earlier it has been shown by Narasimhamurthy et al. (2008) in the turbulent flow 

regime that the pressure is the main driving force of the secondary motion after the plate. In 

the present case, a closer observation of the pressure field in the downstream vicinity of the 

plate conceals somehow a similar conclusion. Figure 8(b) demonstrates the normalized time 

averaged pressure after the plate for different local Reynolds number. Figure 8(c), however, 

gives a more accurate impression of the mean pressure along the span at downstream of the 

plate. As it can be observed easily there are two extreme points, one maximum, and one 

minimum, along the span which clearly describes the secondary flow in the very near wake of 

the plate. The local pressure maximum at about Relocal = 35 tends to drive the flow towards 

both ends in the immediate vicinity of the plate. Nonetheless the potential effect of secondary 
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instabilities shall not be dismissed. The three-dimensional finite-amplitude quasi-steady state 

instability that results from the two-dimensional primary instability of the wake, namely 

secondary instability can also be conjectured as a driving mechanism of the complex spanwise 

flow. Either high strain-rate in regions between so-called braid regions, separating two 

consecutive primary vortices, or the instability of primary vortices due to destabilization of 

waves in the vortex core can lead to a three-dimensional secondary instability.   

(a) (b) 
 

(c)  
 

Figure 8 : (a) Iso-contours of mean pressure ( 2
0Up ρ

−
) in X-Y section through the axis of the plate, (b) 

Normalized mean pressure after the plate versus x-position for different local Reynolds numbers, (c) Normalized 
mean pressure after the plate (base pressure) versus local Reynolds number  
 

The non-dimensional length of the mean recirculation zone versus local Reynolds number is 

shown in Figure 9. The length is normalized by either local width (dlocal) or widest width (d2) 
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of the plate.  The formation length wL  is the streamwise extent of the closed wake which 

results after time averaging of the velocity field. Figure 10 shows the iso-contour plot of time 

averaged streamwise velocity which clearly depicts the recirculation zone at downstream the 

plate. The length of formation length in this figure can be compared with the one which is 

normalized by d2 in Figure 9. 

 There is in fact a coupling between the formation length and vortex shedding strength. In the 

case of turbulent flow in the wake of a tapered plate studied by Narasimhamurthy et al. 

(2008), the formation length was significantly bigger than the formation length in parallel-

sided case of Najjar & Vanka (1995a). In the latter at the Reynolds number 1000 the 

formation length equals only two plate widths whereas in the former at the same local 

Reynolds number the formation length was 6 times the local plate width. This suggests a 

coupling between the formation length and vortex shedding strength. The more coherent and 

stronger vortex shedding in the parallel-sided plate turbulent flow, leads to a smaller 

formation length. This is in concord with the observation of Gaster & Ponsford (1984) who 

also reported stronger vortex shedding and shorter formation length compared to tapered 

plate. This trend does also exist in current simulation. The formation length in the case of the 

present parallel sided plate equals to 1.527d where at local Reynolds number of 62.5 in 

tapered plate case the formation length when normalized by local width of the plate is around 

2.6 (see Figure 9). Recalling the local Strouhal number 0.1414 for the case of tapered plate 

and comparing this value with the Strouhal number 0.1704 in parallel-sided plate case, the 

same conclusion is arrived at to the present laminar wake. The stronger and more coherent 

vortex shedding behind the parallel-sided plate eventuates to smaller formation length as 

compared with the tapered plate at the same local Reynolds number. 
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Figure 9 : Formation lengths of the wake of the tapered plate normalized by d2 and dlocal, respectively. 
 

 

Figure 10 : Iso-contour plot of time averaged normalized streamwise velocity depicting the region of 
recirculation in spanwise direction, data are from midsection. 
 

3.3. Mean pressure coefficient  

In Figure 11 the mean pressure coefficient taken from time averaged pressure is depicted. The 

mean pressure coefficient is defined as )()(2 2
00 UppC p ρ−= where the reference 

pressure 0p  is taken as the inflow pressure. The mean pressure coefficient for the case of the 

tapered plate at different local Reynolds numbers is shown. When the local coordinate on the 

surface of plate is being normalized by local width of the plate, the pressure coefficients for 
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different local Reynolds numbers in the tapered plate case are quite close together.  In the 

same figure the pressure coefficient for the present parallel-sided plate at Re=62.5 is 

compared with the result of Najjar & Vanka (1995b) at Re=100.  The pressure coefficient of 

Najjar & Vanka (1995b) at upstream of the plate compares well with the simulated uniform 

plate at Re=62.5. The downstream pressure is comparably lower though. However, one 

should not expect a complete matching of the pressure coefficients at the downstream of the 

plate in these two cases since the Reynolds numbers are different.   

It is noteworthy that irrespective of the local Reynolds number, the base pressure coefficient 

is consistently higher for the tapered plate case than behind a parallel-sided plate.  

 

Figure 11 : Mean pressure coefficient for different cases at different Reynolds number. Here z denotes the 
position on the plate measured from centerline (z=z-zmiddle) 

 

3.4. Instantaneous vortical structure 

In an attempt to better understand the evolution of the vortex structures in the complex wake 

of a tapered plate, it is important to determine and identify the relation between the various 

vortical structures. It is also of great interest from the perspective of macroscopic quantities 

such as drag and heat transfer coefficient to quantify the relative strength and orientation of 
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the vorticity vector in each class of vortices. Presenting 3 dimensional iso-surfaces of vorticity 

components in Figure 12, the complex and intricate three-dimensional features of the field is 

being revealed. In Figure 12(a) and 12(b) 3-D perspectives of the surface of instantaneous 

streamwise vorticity ( zvywx ∂∂−∂∂=ω ) and spanwise vorticity ( xwzuy ∂∂−∂∂=ω ) at 

t=360d2/U0 is depicted. The plate is laid at the bottom of the figure and flow is from bottom to 

top. The Reynolds number is 25 to the right and 100 to the left of the figure. In Figure 12(c) 

the instantaneous vorticity magnitude ( )(21 222
zyx ωωωω ++= ) oblivious to any coordinate 

direction is shown. It is quite newsworthy that three different flow regimes simultaneously 

exist in the flow.  At the narrow end of the plate where a big conical separation bubble is 

especially clear in iso-surface plot of the vorticity magnitude, the vortex has not started 

shedding. Further to the left of the plate another distinct regime is distinctive. Periodic and 

regular patterns of angulated vortices which diminish in streamwise direction are a feature 

which is being observed in a particular range of Reynolds number in the wake of tapered 

plate. Proceeding further to the left, bewildering structures of vortices emerge. Wriggling 

patterns of streamwise vorticity with twisted and squirmed longitudinal filaments and 

“slingshot”-like structures are observed downstream of the wide end of the plate. The 

complexity of the vortex pattern does not suggest any pre-distinguished modes (mode A or B) 

of transition. The irregularity of the vortex shedding, and the early breakdown of Karman 

vortices to distorted longitudinal structures at the wide end of the plate is due to secondary 

instabilities which first produce region of highly concentrated streamwise vorticity. When the 

spanwise Karman roller is shed from the plate, the vorticity becomes distorted and takes the 

shape of elongated longitudinal structures which fork into two branches resembling the 

slingshot shape. 

A side-view of the spanwise vorticity can be seen in Figure 13. Note that the observer is 

looking towards the wide end of the plate in this view. 
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x
y

(a) (b) 
 

(c)  
Figure 12 : (a) 3-dimensional iso-surface plot of streamwise vorticity at time, t=360d2/U0. Flow direction is 
from bottom to top and plate is laid at the bottom, white: 2

0Uxνω = -0.004, Black: 2
0Uxνω = +0.004, (b) 3-

dimensional iso-surface plot of spanwise vorticity at same time instant, white: 2
0Uyνω = -0.004, Black: 

2
0Uyνω = +0.004. (c) Iso-surface plot of vorticity magnitude at the same time instant, 4

0
2 Uνω =5e-5 
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Figure 13 : Side-view of 3-dimensional Iso-surface of spanwise vorticity. The flow is from left to right. Details 
are the same as caption of Figure 11(b) 
 

In order to visualize the topology of vortex cores the 2λ definition proposed by Jeong & 

Hussain (1995) is used. 2λ  corresponds to the second largest eigenvalue of the symmetric 

tensor SijSij+ΩijΩij where Sij and Ωij represent the symmetric and anti-symmetric part of 

velocity gradient tensor. It should be noted that this definition is equivalent to the requirement 

that 02 <λ  within the vortex core. In other words, only the negative value of 2λ  can be 

interpreted as a vortex core. Figure 14 presents an iso-contour plot of 2λ in the midsection of 

domain. Only negative values which represent vortex cores have been depicted. Oblique 

vortex shedding which dies out downstream of the plate at mid-span, and also strong vortical 

structures which break down to smaller longitudinal vortex elements at the wide end of the 

plate are characteristics of this flow. The three-dimensional iso-surface of 2λ  in Figure 15 

reveals a very similar pattern to what is observed in the iso-surface of vorticity magnitude in 

Figure 12(c). Again three distinct regimes are observed. A steady state at the narrow end, 

regular oblique vortex shedding in the middle of span and very irregular and chaotic 

breakdown of Karman shedding into longitudinal filaments at the wide end can be seen 

clearly. 
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Figure 14 : Iso-contour plot of 2λ in the midsection of domain, the thick line identifies the tapered plate. 

 
Figure 15 : Iso-surface plot of - 2λ , the tapered plate is laid at the bottom of figure, the flow is from bottom to 
top, and local Reynolds number increases toward the right of figure. 
 

4. Concluding remarks 

The present study has been concerned with the unsteady laminar wake behind a tapered plate. 

This flow configuration has been studied rather extensively before, but only for other 

Reynolds number ranges. The wake topology in the present low-Reynolds-number range 
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exhibited a surprising complexity downstream of the wide end of the plate where streamwise-

oriented vortex structures occurred as the result of an unexpected three-dimensionalization of 

the regular oblique shedding pattern at mid-span. A particularly fascinating feature of this 

special wake flow is the co-existence of three different flow regimes literally side by side in 

the same configuration. In addition, the cellular vortex shedding and oblique vortex structures 

were observed behind a tapered plate in this numerical experiment. Frequency analysis and 

three-dimensional visualization collectively confirmed that multiple cells of constant shedding 

frequency exist along the span of the plate.  

The present three-dimensional calculation revealed a pressure-driven spanwise secondary 

motion. It was shown that in front stagnation zone the secondary flow is going from the wide 

end of the plate towards the narrow end. The secondary flow in downstream of the plate is 

more complex though. 

 Comparisons with results for wake flow behind a uniform plate at the same Reynolds number 

showed that the tapering gave rise to a lower Strouhal number and a significantly higher base 

pressure. The latter finding implies that the pressure drag is reduced due to the tapering.  
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