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ABSTRACT 
The main objectives of this thesis have been to evaluate how, under which premises, and to 

what extent building thermal mass can contribute to reduce the net energy demand in office 

buildings. The thesis also assesses the potential thermal environmental benefits of utilizing 

thermal mass in office buildings, i.e. reduction of temperature peaks, reduction of 

temperature swings, and the reduction in the number of hours with excessive operative 

temperatures. This has been done by literature searches, and experimental and analytical 

assessments. This thesis mainly concerns office buildings in the Norwegian climate. 

However, the methods used and the results obtained from this work are transferable to other 

countries with similar climates and building codes.  

 

The total energy use for the operation of the Norwegian building stock is approximately 

82 TWh in a normal year, or about 38 % of the national onshore energy use. No other 

sector has experienced a larger growth in the energy use in the past 30 years.  

 

As a consequence of the Norwegian decision to join the European Economic Area, Norway 

was obliged to implement the EU Energy Performance of Buildings Directive (EPBD) in its 

national laws and regulations. The Norwegian building codes were at the time also 

undergoing a revision, and the EPBD became to some extent a guiding principle for the 

new regulations and guidelines. While the former regulations only concerned the heating 

energy demand in a building, the new regulations incorporate all the energy needed to 

operate the building.  The new regulations are based on the net energy demand per year, i.e. 

the efficiencies of the energy systems are not taken into account. In addition, the self-

generated renewable energy, e.g. electricity from PV-panels, use of solar collectors is not 

rewarded. However, passive measures that reduce the net energy demand contribute to 

satisfy the requirements. This has led to renewed interest in utilizing passive measures to 

satisfy the regulations and decrease the total energy use in buildings. 

 

In this study, it is assessed how and to which extent building thermal mass can contribute to 

reduce the net energy demand and improve the thermal environment in office buildings.  

The thesis comprises a review of existing literature in the field, a parametric study 

employing an advanced simulation model in ESP-r, and an experimental field study on a 

modern office building in operation.  
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Within the limitations of this thesis and based on the findings from all parts and papers this 

thesis comprises, it is shown that utilization of thermal mass in office buildings reduces the 

daytime peak temperature, reduces the diurnal temperature swing, decreases the number of 

hours with excessive temperatures, and increases the ability of a space to handle daytime 

heat loads. Exposed thermal mass also contributes to decrease the net cooling demand in 

buildings. The quantity of the achievements is dependent on the amount of exposed thermal 

mass, night ventilation strategy, and airflow rates. In addition, parameters such as set-point 

temperatures, control ranges, occupancy patterns, daytime ventilation airflow rates, and 

prevailing convection regimes are influential for the achieved result. The importance of 

these parameters are quantified and discussed. 

 

In contrast to some studies referred to in the literature, this study shows that thermal mass 

only has a minor influence on the total heating demand in office buildings. Although heavy 

buildings may utilize excessive heat during working hours to decrease the heating demand 

outside working hours, buildings with high heating capacity lose some of its energy saving 

potential by night temperature set-back compared to buildings with lower heating capacity. 

 

Consequently, it can be concluded that thermal mass contributes to; 1) fulfil the net energy 

frame for office buildings, 2) eliminate the need for space cooling, and 3) improve the 

thermal climate, thus increase working performance in office buildings without the need for 

energy intensive and expensive technical installations. 
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ACH Air changes per hour 
BEMS Building energy management system  
CAV Constant air volume 
DCV Demand controlled ventilation 
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DEFINITIONS 
Control range  

The interval in which the ventilation airflow rate may vary with the temperature in order to 

cool a space.  

 

Energy demand  

In contrast to energy use, which is actual energy use of a building, the energy demand is the 

calculated or estimated amount of energy to operate a building.  

 

Free cooling 

Cooling of a space by the supply of unconditioned ventilation air. 

 

Internal heat load  

Heat emitted from people, lighting, equipment, and processes inside a building.  

 

Net cooling demand 

The cooling demand of a building without consideration of the efficiencies or losses in the 

cooling system, i.e. the surplus heat that must be removed to achieve the desired thermal 

conditions. 

  

Net energy demand  

The energy demand of a building without consideration of the efficiencies or losses in the 

energy system. 

 

Operative temperature 

Uniform temperature of the imaginary black enclosure in which an occupant would 

exchange the same amount of heat by radiation plus convection as in the actual 

non-uniform environment (ISO 7730). 

 

Ventilative cooling 

Space cooling by the supply of conditioned or unconditioned ventilation air.  
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1. INTRODUCTION 
Before mechanical ventilation, cooling, and artificial lighting were introduced in buildings 

in the beginning of 1900s, various techniques were used to climatize buildings. Examples 

of such techniques are temperature-driven natural ventilation, active use of window 

ventilation, large room volumes or large room heights, utilization of thermal mass, 

thought-through window and frame design for maximum utilization of daylight while 

minimizing solar gains.  

 

During the last few decades, several of these techniques have been reintroduced in order to 

reduce or eliminate the need for mechanical ventilation and cooling. However, the 

requirements for comfort, indoor air quality and energy efficiency show an increasing 

trend. The earlier passive techniques thus need to be adapted to modern buildings. 

 

1.1 Background 

In the last few years, there has been an increased focus on CO2 emissions and the world’s 

increasing energy use. The building sector represents a considerable share of the total 

energy use, and Norwegian authorities have stated that it is a political priority to reduce the 

energy use in the building sector (KRD, 2005). Revision of the building regulations is one 

measure for improving energy efficiency, and aims at reducing the energy demand for new 

buildings by 20-30 % and the energy use in existing buildings by at least 6 TWh (about 

7 %) within 2020 (Dagestad, 2007). However, this may also have consequences for the 

indoor environment.   

 

Experiences from the measures taken during the oil embargos in the 1970s showed that 

there is only a short distance between energy economizing and uncritical energy savings. 

Reduced ventilation and sealing of houses resulted in increased dampness and indoor 

mould growth. The association between dampness in buildings and health is evident 

(Sundell et al., 2003). 

 

The interaction between the building, the technical installations and the building users must 

be understood in such a way that sub-optimal solutions are avoided. At the same time, it is 

important to keep in mind that only a few are interested in saving energy, but many are 

interested in saving money.  
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The definition of energy economizing made by the Norwegian Ministry of Petroleum and 

Energy in the early 1980s is equally relevant today: 

 

“Energy economizing is a concept which means that energy should be 

used in its form, quantity, and to the time that totally is most profitable 

when all advantages and disadvantages are weighed” 

 

1.1.1 State of Norwegian building energy use 

The total energy use for operation of the Norwegian building stock is approximately 

82 TWh in a normal year, or about 38 % of the national onshore energy use. No other 

sector has experienced a larger growth in the energy use in the past 30 years (Enova, 2007). 

Figure 1-1 shows the total energy use distributed between dwellings and industrial 

buildings, and the share of which is for heating purposes and of which is electrical heating 

energy use.  
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Figure 1-1 Energy use in the building sector in Norway (Enova, 2007) 
 

The national building regulations in Norway have been revised several times since the first 

numerical requirements were introduced in 1949. The purpose of the recurrent upgrades has 

basically been to reduce the heating demand, thus reducing the overall energy use in 

buildings (Thyholt, 2006). However, even though the insulation thicknesses in walls, floors 

and roofs have been multiplied by the order of four in accordance with the Norwegian 

building codes in the last 38 years, the specific energy use is not reduced. In fact, according 
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to the yearly energy statistics published by Enova (2007), the energy use in new office 

buildings has increased. Other building categories do not show the same tendency. 

Figure 1-2 presents the climate corrected mean specific total energy use distributed by the 

year of construction and the number of buildings each category includes. The age groups 

reflect the year the building energy regulations were revised. 
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Figure 1-2 Mean total specific energy use for office buildings distributed by the year of 

construction, with the number of buildings each category includes inscribed 
in the columns (Enova, 2007)  

 

The statistics in Figure 1-2 are based on quality ensured reports from a number of 

buildings, but the buildings are not stochastically selected, thus are not representative for 

the total national building stock. However, the tendency is evident towards increased 

energy use despite stricter requirements. There may be several reasons for this, but 

important factors are likely to be: 

 

• Increased use of large glass façades, which generally both leads to increased 

heating and cooling energy demands. 

• Increased demands on quality indoor climate, which implies large air volume 

flow rates and/or high cooling energy use.  

• Due to low energy prices, generally low focus on energy efficiency and building 

operation costs. 
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• Increased energy use for lighting and equipment 

• Increased area efficiency. 

 

1.1.2 New building energy regulations 

As a consequence of the Norwegian decision to join the European Economic Area, Norway 

is obliged to implement the EU Energy Performance of Buildings Directive (EPBD, 2002) 

in its national laws and regulations. The Norwegian building codes were at the time also 

undergoing a revision, and the EPBD became to some extent a guiding principle for the 

new regulations and guidelines. While the former regulations only concerned the heating 

energy demand in a building, the new regulations incorporate all the energy needed to 

operate the building. Figure 1-3 illustrates in principle the energy flow through a building.  

 

 
Figure 1-3  System boundaries for energy calculation (Adapted from Lexow, 2007) 
 

Prior to the revision of the building energy regulations (TEK, 2007), the placement of the 

system boundary for assessment of the energy performance of buildings was broadly 

discussed. One of the main intentions of the EPBD is to reduce the primary energy use of 

buildings (point 7 in Figure 1-3). The disadvantage of putting the system boundary far out 

in the energy chain, is that it opens for a potential loophole for a technological shift inside 

the building, i.e. the requirements could be fulfilled by putting more effort into a highly 
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efficient energy system than enduring solutions for the building envelope. Focus in the 

adopted regulations was to consolidate a high quality building envelope with a low heat 

loss coefficient, ensuring that the choice of solution is a built-in quality. Hence, the net 

energy demand (Point 4 in Figure 1-3) was agreed to be the measure for fulfilling the 

building energy regulations. 

 

There are two ways a building can fulfil the new energy regulations. One method is to 

employ the so-called Energy measure method, which sets requirements to certain building 

elements and installations. Alternatively, if the net energy demand for the building, 

calculated according to the methodology established in the Norwegian Standard NS3031 

(2007), is within the net energy frame for the category of the building, the regulations are 

also satisfied. The new regulations apply to all new buildings and buildings undergoing 

major reconstructions or refurbishments, and became operative from February 2006.  

 

Table 1-1 Energy frame for different building categories (TEK, 2007) 

Building category Net energy frame (kWh/m2) 
Small detached dwellings 125* 
Apartment buildings 120 
Kindergartens 150 
Office buildings 165 
Schools 135 
Universities and colleges 180 
Hospitals 325 
Nursing homes 235 
Hotels 240 
Sporting halls 185 
Cultural buildings 235 
Industrial buildings and workshops 185 
* (+ 1600 /available area) 

 

Since the net energy frame is based on net energy demand per year, the efficiencies of the 

energy systems are not taken into account. In addition, self-generated renewable energy, 

e.g. electricity from PV-panels, use of solar collectors etc (Point 5 in Figure 1-3), is not 

rewarded. However, passive gains (Point 2 in Figure 1-3) that reduce the net energy 

demand will contribute to satisfy the energy frame. This has led to renewed interest in 

utilizing passive measures to decrease the total energy use in buildings. 
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1.1.3 Thermal environment 

The relation between indoor climate and health is documented in a number of reports and 

considerable amounts of money are lost every year due to poor indoor climate. In relation 

to thermal climate, the economic loss is connected to a reduction of working performance 

and productivity. The building regulations state that the thermal climate should give 

satisfactory health conditions and comfort for the intended use of the room (TEK, 2007). 

However, there is a difference in the interval of comfort and the interval of highest 

performance. The interval of comfort can be changed somewhat by adjusting the level of 

clothing. Few, if anyone, adjust their clothing to generate higher productivity.  

 

 
Figure 1-4 Schematically, the temperature intervals for health, comfort, and productivity  
 

According to Guidebook No. 6 published by REHVA (2006), staff costs are about 100 to 

200 times the cost of energy and 20 to 44 times the cost of the HVAC running costs in 

offices. Thus, a relative small increase of productivity will constitute much greater 

economic gain than a decrease in the energy bill. On influence of temperature on 

performance, the REHVA Guidebook refers to Wyon and Wargocki (2006), who state that;  

 

“Room temperature affects the performance by several mechanisms: 

 

• thermal discomfort distracts attention and generates complaints that increase 

maintenance costs 

• warmth lowers arousal, exacerbates SBS  symptoms and has a negative effect on 

mental work 

• rapid temperature swings have the same effects on office works as slightly raised 

room temperatures, while slow temperature swings only cause discomfort” 
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Results from a number of studies on non-industrial buildings show that performance 

increases with temperatures up to 21-22 °C, and decreases with temperatures above 

23-24 °C. Highest productivity is found to be at temperatures around 22 °C (Seppänen et 

al., 2006). Figure 1-5 shows the composite weighted relation between the normalized 

performance and temperature, based on reports from in all 24 studies with different 

weighting dependent on the relevance to normal office work (Seppänen et al., 2006).  
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Figure 1-5  Normalized performance vs. temperature for typical office work (Seppänen et 

al., 2006) 
 

Increasingly use of heat-emitting equipment in office buildings has together with a demand 

for highly insulated building envelopes led to a growing concern that it may lead to 

overheating even during wintertime. In addition, the new building regulations state that 

buildings should be constructed without use of local space cooling, which makes use of 

passive measures such as exposed thermal mass in combination with night ventilation even 

more relevant.  
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1.2 Objectives and limitations  

The main objectives of this thesis are to:  

 

• evaluate how, under which premises, and to what extent thermal mass can contribute 

to reduce the net energy demand in office buildings, and 

• evaluate the possible thermal environmental improvements by utilize thermal mass 

in office buildings, i.e. reduction of temperature peaks, reduction of temperature 

swings, and reduction of the number of hours with excessive operative temperatures.  

 

The underlying objectives are to: 

 

• identify and discuss thermal mass properties, 

• identify and discuss the main parameters influencing on the efficiency of thermal 

mass, and 

• identify and discuss barriers for utilizing thermal mass. 

 

The thesis uses searches in the literature and experimental and analytical assessment. 

 

This thesis is mainly concerned with office buildings in the Norwegian climate. However, 

the methods used and the results obtained from this work are transferable to other countries 

with similar climates and building codes.  
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1.3 Outline of the thesis 

The thesis constitutes four main parts, which can be read independently from each other;   

 

 Part I gives a brief introduction regarding the physical mechanisms involved and 

important parameters affecting the performance of thermal mass. This part also 

summarizes studies done on the subject found in the literature. 

 

 Part II is a parametric study employing a simulation model. In this part, the effects 

of several parameters are studied on the efficiency of thermal mass for a single 

office cell. 

 

 Part III is an extended description of a field study that formed the basis of 

Paper V, ‘The effect of suspended ceilings on energy performance and thermal 

comfort’, which is enclosed in Appendix 4. The chapters in this part will give 

some supplementary description on the instrumentation, reliability of the 

measurements, and the achieved results. 

 

 Part IV aims at synthesizing the different findings from all parts and papers in this 

thesis. It discusses them and points out the main findings and final conclusions 

from the work as a whole.  

 



 

 10



 

 11

 
PART I: 

 
LITERATURE STUDY 

 
 

 

The chapters in this part will give a brief introduction regarding the 

physical mechanisms involved and important parameters affecting the 

performance of the thermal mass. This part also summarizes work on 

the subject found in the literature. 

 

Chapter 2 will briefly go through the most important physical 

mechanisms necessary to have knowledge of when assessing thermal 

mass effectiveness. This chapter also describes how different factors 

influence on the efficiency of thermal mass. 

 

Chapter 3 assesses some of the barriers and practical implications of 

using heavy constructions in buildings. 

 

Chapter 4 summarizes in tabular form experimental and analytical 

studies from the literature that evaluate the effectiveness of thermal 

mass in different climates and building types. 

 

UNDERSTANDING THERMAL MASS 
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2. THERMAL MASS PRINCIPLES 
The air temperature in a room is dependent on the outdoor temperature and the solar 

radiation, together with the internal heat gains from people, lighting and technical 

equipment indoor. During a day this typically results in a temperature variation with a peak 

in the early afternoon, when the outdoor temperature is at its highest, the sun is lower in the 

horizon and the building has been in use for some time.  

 

On a warm summer day, high outdoor temperatures, high noise or pollution levels may 

exclude the use of natural measures to dispose of excessive heat in a building. In order to 

keep the thermal environment at an acceptable level, heat has to be removed from the 

building with mechanical equipment that uses energy, in most cases electrical energy.  

 

To reduce the indoor temperature and reduce the need for cooling, it is possible to store 

some of the excessive heat in the building construction. These thermal storages are the 

building fabric itself and will from this point on be referred to as thermal mass. Thermal 

mass constitute the building fabric in external walls, ceilings, floors, partitions and even 

furnishing with high thermal capacitance. Typical materials that contribute significantly to 

the thermal mass in a building are concrete, brick, metals and to some extent wood.  

 

Thermal mass is often classified into two types: internal and external. The internal mass is 

not exposed to ambient temperature directly, while the external thermal mass such as walls 

and roofs are directly exposed to ambient temperature variation. In this thesis, if not 

explicitly underlined, thermal mass will refer to the internal mass of a building. The 

external mass is of less interest in cold climates. There are two reasons for that. Firstly, the 

building envelopes are very well insulated, thus changes in the external temperature will 

not have a great influence on the indoor temperature. Secondly, the ambient temperature 

rarely exceeds the indoor comfort limits. Although the sun can warm an exterior surface up 

to 10 to 20 degrees above the ambient temperature (Clarke, 2001), other factors, such as 

solar radiation through windows may constitute a greater influence on the indoor thermal 

conditions. 

 

Thermal mass can give a positive contribution to the indoor environment both in summer 

and winter. In the wintertime, energy from the sun and internal heat gains can be absorbed 

in the thermal mass during the day, and released slowly to the indoor air at night, thus 
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partially reducing the need for heating. In the summer time, excessive heat is absorbed and 

reduces the need for cooling during the daytime. The absorbed heat will gradually be 

released when the temperature decreases during the night, thus reducing large temperature 

variations during the day. Buildings that are unoccupied during the evening and night may 

be cooled down in order to empty the thermal storages and heat may be absorbed during the 

following day (Balaras, 1995). 

 

Thermal mass may also have a positive impact on thermal comfort. Firstly, buildings with a 

high degree of thermal mass dampen large temperature swings during the day and sustain a 

steadier thermal environment (Nicol, 2004). Secondly, in winter, the air temperature can be 

lower than the surface temperatures. A lower air temperature will, in addition to reducing 

the heat loss, also improve the perceived indoor air quality (Fang, 2004) 

 

2.1 Heat storage and heat transfer mechanisms 

This section will briefly consider the basic physical principles of heat storage and heat 

transfer related to thermal mass. At the end, different ways to approximate the laws of 

physics and the implementation into building simulation programs are discussed.  

 

2.1.1 Heat storage 

Heat storage takes place in all materials in the building. The specific heat capacity (cp), 

density (ρ) and thickness (d) determine the amount of heat required to elevate the 

temperature by one degree for a material. In a multi-layer building component, the total 

heat capacity is calculated by the sum of heat the capacity of each layer i, i.e.: 

 

,T i i p i
n

C d cρ= ∑  (J/m2 K)      (2.1) 

 

However, the order of the layers as well as their thermal conductivity (λ), make an impact. 

For instance, if a wall with high total heat capacity is insulated on the side facing the room, 

just a limited amount of heat will be absorbed and conducted to the inner layers, and the 

wall will behave similarly to a lightweight construction. Conversely, if the insulation is on 

the outside, heat can be absorbed from the indoor environment, and the wall (considered 

from the inside) is thermally heavy, even though the total heat capacity for the two walls is 

the same.  
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Thermal diffusivity (κ) and thermal effusivity (β), defined in (2.2) and (2.3) respectively, are 

useful dynamic performance indicators (Clarke, 2001). The diffusivity, also called the 

thermometric conductivity, describes how fast a heat wave travels through a material. 

Materials with high effusivity, i.e. materials with a high heat penetration coefficient, will 

more readily absorb a surface heat flux than low-effusivity materials. 

 

  
pc

λκ
ρ

=   (m2/s)       (2.2) 

 pcβ λρ=   (Ws1/2 / (m2·K))     (2.3) 

 

The diffusivity and effusivity can be applied to real constructions by reducing the multiple 

layers to an equivalent homogeneous layer (Clarke, 2001). Table 2-1 shows these thermal 

parameters for some common building materials. 

 

Table 2-1  Properties for common building materials (Clarke, 2001; Davies, 2004) 

Material Conductivity
λ (W/m K) 

Density 
ρ (kg/m3)

Specific heat 
capacity 

cp (J/kg K) 

Thermal 
diffusivity 
κ x 108 (m2/s) 

Thermal 
effusivity β 

(W s1/2/m2 K) 
Glass1 1.05 2500 750 56 1403 
Steel1 45 7800 480 1202 12980 
Aluminum1 203 2700 880 8544 21962 
Heavyweight concrete2 1.30 2000 840 77 1478 
Lightweight concrete2 0.2 620 840 38 323 
Brick, inner leaf2 0.62 1800 840 41 968 
Gypsum plaster2 0.16 800 1090 19 385 
Plywood3 0.15 700 1420 15 386 
Pine, fir3 0.12 510 1380 17 291 
Rock wool4 0.033 100 710 46 48 
Extruded polystyrene4  0.035 25 1470 95 36 
Linoleum1 0.19 1200 1470 11 579 
Synthetic carpet1 0.06 160 2500 15 49 
1 Impermeables, materials unaffected by water content 
2 Inorganic porous materials, highly dependent on the water content 
3 Organic materials highly dependent on the water content  
4 Materials dependent on the water content, but should be protected from wetting under normal 

circumstances 
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By comparing the effusivities for concrete, gypsum and extruded polystyrene from 

Table 2-1, it may be observed that they are in order of 40 : 10 : 1. Idealized, this means that 

an increase in the temperature at the surface, concrete will absorb heat 40 times more 

readily than rock wool, and about 4 times more than gypsum. 

 

2.1.2 Heat transfer 

Heat can be distributed within a space by convection (forced or natural) and by radiation 

(short-wave and long-wave).  

 

Surface convection is heat exchange between a surface and the adjacent air layer. On 

internal surfaces, both natural and forced convection can occur (Clarke, 2001). The natural 

forces can result from heat sources, e.g. radiators, people and equipment, and from surface-

to-air temperature differences. Forced air flow is generated by fans or wind entering from 

outside. The convective heat transfer between the air and a surface area is given by (2.4), 

where hc is the convective heat transfer coefficient and ΔT is the temperature difference 

between the surface and the room air.  

 
''
conv cq h T= Δ  (W/m2)       (2.4) 

 

Surfaces in a room exchange heat by long-wave (infrared) radiation. The long-wave 

radiation exchange depends on the temperatures of the surfaces (Ti), and to which extent 

they are in visual contact, determined by the view-factor (fj-i). The exchange is also 

dependent on the emissivities of the materials (ε), which determines how easily the surface 

emits heat. The net long-wave heat exchange between two grey (normal) surfaces is given 

by (2.5), where σ is the Stefan-Boltzmann constant (5.67·10-8 W/m2 K4). 

 
'' 4 4

1 2 2 1( )radq T T fεσ →= −  (W/m2)     (2.5) 

 

Heat gain from the sun constitutes a significant portion of the total heat gain in most 

buildings. The treatment of shortwave heat flux can therefore greatly influence the accuracy 

of the overall performance.  



Part I: Literature study 

 17

The total solar radiation striking an object is the sum of the following three contributions 

(Balcomb, 1992):  

 

1. Direct normal radiation: radiation coming directly from the sun 

2. Diffuse sky radiation: radiation scattered by the atmosphere (e.g. air molecules and 

water droplets) 

3. Reflected radiation (e.g. ground reflection) 

 

 
Figure 2-1  Total solar radiation striking an object  
 

Solar radiation which strikes a transparent surface, such as a window, is partially reflected, 

some is absorbed in the glass layer and will cause a rise in its temperature, and some is 

transmitted and will strike some internal surface. At the internal surface some portion is 

absorbed in the material and some is reflected. If the internal surface is a transparent 

surface, a part will also be transmitted onward to another zone or outside. An accurate 

prediction of the influence of the sun requires methods for the prediction of the surface 

position relative to the moving pattern of the insolation of the surfaces. Information on the 

short-wave absorptivity for opaque elements and absorptivity, transmissivity and 

reflectivity for transparent elements is needed (Clarke, 2001). 
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2.1.3 Treatment of heat storage and heat transfer in building simulation programs 

In order to predict the dynamic behaviour of a system and to calculate the resultant indoor 

temperature taking into account all the parameters just described, a computer program must 

be used. Figure 2-2 shows a cross section of a floor and the complex situation of heat 

transfer processes that are involved. Note that the figure shows the situation before people, 

lighting, equipment and airflows are brought in, which will complicate matters further. 

 

direct solar
radiation

internal
long-wave
surface
radiation

external long-wave
surface radiationinside wall

convection

reflected
direct solar

transmitted
direct solar

window conduction
and heat storage

wall conduction
and heat storage
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lw radiation

internal
long-wave
surface radiation

internal
window
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external
wall
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shor-wave
absorption and
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Figure 2-2 Cross section of a floor showing the heat transfer processes involved  
 

Most building simulation programs approximate the physics of nature to some extent. 

Figure 2-3 shows an RC (resistance-capacitance) representation of a building zone in its 

simplest form. The thermal mass is lumped in one node, which represents the equivalent 

thermal mass for the zone. As will be discussed later, the placement of the thermal masses 

is not indifferent and all approximations done will affect the calculated result.  
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Figure 2-3 Example of a simple dynamic RC network 
 

θi = internal air temperature 

θc = structure temperature 

θe = external temperature 

Hd = direct heat loss coefficient 

Hce = heat loss coefficient between the structure and the external 

Hic = heat loss coefficient between the structure and the heated space 

Ci = internal heat capacity 

Φh = heat gains and heating power 

 

In simplified energy modelling methods, convective heat transfer coefficients are often 

assumed to be time invariant and valid over an entire surface. Long-wave radiation is often 

simplified by the use of a linearized radiative heat transfer coefficient. Short-wave radiation 

in simplified methods is treated as a long-term average on the basis of design values listed 

in technical handbooks and standards. Since not all solar gains are usable in terms of 

decreasing the heating demand of a building, it is common practice to introduce a 

utilization factor, e.g. according to NS-EN ISO13790 (2000). 

 

There have been several studies on the sensitivity of internal convection. The studies have 

shown that predicted heating and cooling energy demand may vary up to 40 % depending 

on the correlation used (Davies, 2005). Advanced dynamic simulation tools, such as ESP-r 

(ESRU, 2007) and EnergyPlus (DoE, 2007), have correlations which calculate the 

convective heat transfer coefficients by each simulation time-step from the temperature 

difference between the surfaces and the adjacent air, surface roughness, direction of the 

heat flow and characteristic dimensions (Zmeureanu, 1998). However, even these programs 
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must be treated with caution. Beausoleil-Morrison I. (2002) studied the influence of 

convection correlations common in building simulation programs, taking into account 

location of heating devices and HVAC equipment, and when they were operated. The study 

revealed that energy use for heating and cooling in a typical office building in Canada in 

reality was 19 % greater than the predicted demand when using the ESP-r with the default 

correlation for convective heat transfer. Implementing modified heat transfer correlations in 

ESP-r, and taking into account the additional information on location of heating and HVAC 

equipment, reduced the difference from 19 to 9 %. Moreover, Beausoleil-Morrison 

concludes that an improper choice of heat transfer correlation could lead to inappropriate 

design decisions. 

 

There are differences in the treatment of solar radiation in simulation programs. Some tools 

calculate the transmitted solar radiation through glazed areas, and distribute the gain 

diffusely and area-weighted to all interior surfaces, while advanced modelling tools have 

the ability to ray-trace multiple reflections of solar beams for each time step (ESRU, 2007). 

In a study of a glazed space by Wall (1997), four different simulation programs were 

compared. The study revealed that the simpler tools tend to overestimate the heat gain from 

short-wave radiation and therefore are improper to be used in spaces dominated by glazed 

exterior surfaces.  

 

Bellamy and Mackenzie (2003) point out that the capability of a building simulation 

program to accurately predict the effects of thermal mass very much depend on its 

capability to model solar gain. This statement is supported by their comparison of 

monitored and simulated energy use in a heavy-mass test building. The advanced building 

simulation tool BSim2000 (SBI, 2007), which has the solar ray tracing facility, estimated 

the heating energy demand to only 2.3 % higher than the measured value. The simpler tool 

Suncode (Ecotope, 2007) which uses a fixed distribution of the solar gain, underestimated 

the heating energy demand by 18 %. 
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2.2 Parameters affecting the efficiency of thermal mass 

The effectiveness of thermal mass is influenced by several other parameters than the 

properties of the thermal mass itself. To achieve the best result, it is important to have an 

understanding of how the parameters affect and interact with the thermal mass. In the 

following sections, some of the most important factors and their impact on thermal mass 

efficiency are described. 

 

2.2.1 Climate 

In general, the application of thermal mass strategy is more suitable in climates with large 

diurnal temperature differences to take advantage of evening heat release, or nighttime 

cooling of the structure. Szokolay (1984) suggests that the appropriate diurnal variation 

should be at least 10 K in order to get the desired effect. Givoni (1998b) claims that night 

cooling is mainly applicable in regions with a diurnal temperature swing of more than 15 K, 

and where the night minimum temperature in summer is below 20°C. 

 

Shaviv et al. (2001) investigated the influence of thermal mass and night ventilation in 

different Israeli climates. The study shows that the maximum indoor temperature is linearly 

dependent on the temperature difference between day and night. The relation can serve as a 

simple tool to estimate the potential of utilizing thermal mass and night ventilation given 

the diurnal temperature swing at different locations. 

 

Pfafferott et al. (2003) refer to the Swiss handbook published by EMPA on passive cooling, 

which sets the limits on free cooling potential to 150 Wh/m2 per day if the temperature 

difference between day and night is less than 5 K, and 250 Wh/m2 per day if the difference 

is higher than 10 K.   

 

A recent study by Artmann et al. (2007) evaluates the climatic potential for passive cooling 

by night-time ventilation in all climatic zones of Europe by analysing semi-synthetic 

climate data produced by Meteonorm (Meteotest, 2005). The study shows that there is a 

large potential for passive cooling in the whole of Northern-Europe. In Central, Eastern and 

even some regions in Southern Europe the potential is significant. However, a series of 

warmer nights can occur in some regions, making passive ventilation alone insufficient to 

guarantee thermal comfort all year round. 
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The authors point out that the method developed is applicable only during the design phase, 

and is not a substitute for building energy simulations, where thermal mass, solar and 

internal gains, and air-flow patterns is taken into account.  

 

 
Figure 2-4  Mean differences between minimum and maximum temperatures (K) in July 

based on Meteonorm semi-synthetic climate data (Artmann et al., 2007) 
 

It is claimed that there is no benefit from utilizing thermal mass in hot and humid climates, 

since the diurnal temperature swing is usually small and the mean relative humidity is 

around 80 %. This traditional point of view has been questioned, and recent studies have 

shown that thermal mass can also be useful in these climates (Goulart, 2004; Capeluto, 

2005). 

 

Mitchell and Beckman (1989) claim that if heating energy storage in the constructions is to 

have a significant effect on the energy consumption, it is important that the balance 

temperature is close to the average ambient temperature during the heating season. If the 

difference is greater than 9 K, storage will have no significant effect.  
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2.2.2 Location, amount and distribution 

Location of the thermal mass is important. Thermally heavy materials exposed directly to 

the sun absorb heat more efficiently than materials absorbing heat indirectly by long-wave 

radiation and convection (Balaras, 1995). Vertical walls are better locations for thermal 

mass than floors and ceilings, because the heat transfer coefficient for convective 

exchanges to and from the surfaces of the walls are greater (Balcomb, 1992). However, if a 

room is equipped with supply air diffusers near the ceiling, this will have a great impact on 

the convective heat transfer, thus, making the ceiling a radiant cooling surface. Diaz (1994) 

evaluated the effect of thermal mass on the internal temperature of a single-zone space 

where location, amount and distribution of the thermal mass was explored. The parametric 

study concludes that the floor is the location where the thermal mass has least impact on the 

internal temperature. In zones with external boundaries on all four sides, mass in the roof is 

the most effective location. When only one wall is exposed to the external, it is on that wall 

the thermal mass has the greatest impact. Diaz’ study shows that the internal walls are the 

least effective location, but as the zone structure becomes heavier, the location of the 

thermal mass loses its importance.  

 

The total amount of heat a building component can absorb is according to Eq. (2.1) 

dependent on the exposed surface area and the thickness of the material. During a diurnal 

cycle, most of the recoverable heat is contained in the first 5 cm layer and thicknesses 

above 10 cm provide little additional effect, assuming the properties equal to heavyweight 

concrete (Balcomb, 1992). NS-EN ISO13786 (2000) approximates the effective thermal 

thickness as the minimum of a) half the total thickness of a component, b) the thickness of 

the material from the surface of interest and the first insulating layer exclusive coating 

layers, or c) depending on the period of the variations, 2 cm, 10 cm and 20 cm for 1 hour, 1 

day and 1 week respectively. The basis for this recommendation is a material with a 

thermal diffusivity equivalent to 0.7x106 m/s2, which is near the value of heavyweight 

concrete (see Table 2-1).  

 

In addition to the thickness, the thermal mass area is one of the most important parameters. 

The mass should be distributed to increase the efficiency of the mass, provided that all 

surfaces are in direct contact with the internal air (Hestnes, 2003). The mass-to-floor ratio 

(MFR) is convenient to evaluate the exposure of thermal mass to the internal air. According 

to Diaz (1994), higher MFR improves the thermal performance when the internal gains are 



Part I: Literature study 

 24

higher during the day than the night, and that exposure of thermal mass area is more 

effective than thickness to improve thermal conditions.  

 

There have been several approaches to quantify the heat storage capability of a room or a 

building. Among them is the Diurnal Heat Capacity (DHC), developed especially for 

passive solar houses (Balcomb, 1992). The DHC is a measure of the capacity of a building 

to absorb heat from the interior space, and to release the heat back to the space during the 

night hours. The dhc of a material is a function of the density, specific heat, conductivity 

and thickness. The total DHC of a building is calculated by summing the dhc-values of 

each surface exposed to the interior air, thus: 

  

i i
n

DHC dhc A=∑  (Wh/(m2·K))     (2.6) 

 

The expression for the dhc of a surface is rather complex and the equations are given in 

Appendix A1.1. In Figure 2-5 the diurnal heat capacities for various homogeneous building 

materials are plotted against the material thicknesses. 
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Figure 2-5  Diurnal heat capacity (dhc) vs. thickness for various storage media. The 

material properties are collected from Table 2-1 
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In Figure 2-5, it is worth noticing that the dhc for a material increases initially with the 

thickness, and then decreases at around 10-20 cm, depending on the material. This implies 

that there is an optimal thickness when it comes to maximum heat storage and release in a 

24-hour cycle. The DHC-method can also be applied to multi-layer constructions 

(Balcomb, 1992). 

 

Another measure the capability of a building to store heat is the Thermal Time Constant 

(TTC), defined as the product of the thermal resistance and heat capacity of a unit area of a 

building envelope element. The TTC is representative of the effective thermal capacity of a 

building (Givoni, 1998), or to be more precise, it characterizes the effective thermal mass of 

the building envelope. The total TTCtot of the building envelope equals the sum of all the 

TTCs of the surfaces divided by the total envelope area Atot, thus 

 

 s
tot

tot

TTC
TTC

A
= ∑       (2.7) 

 

Appendix A1.2 gives the expressions for the calculation of the TTCs. A high TTC indicates 

a high thermal inertia, and results in a strong suppression of the interior temperature swing 

(Givoni, 1998). Examples of the use of the DHC and TTC are shown in the next section. 

 

The above-mentioned study by Shaviv (2001) investigated the influence of thermal mass 

and night ventilation for detached houses with four different levels of thermal mass. The 

study shows that the maximum indoor temperature is reduced with an increase of thermal 

mass. However, the improvement was less significant going from a medium heavy structure 

to a heavy structure, than from a light to a medium heavy structure. The same observation 

is also made by Norèn et al. (1999), who studied the annual energy use for heating for three 

different buildings with equivalent U-values. The study concludes that just a small increase 

in the thermal mass in a building has a lowering effect on the specific heating energy 

requirement, but that the effect diminishes with a further increase in the thermal mass. 
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2.2.3 Insulation and exposure 

The DHC and the TTC, defined in the previous section, can be used to evaluate the dynamic 

thermal performance of a building. The TTC is a measure on the effective heat capacity of a 

building when the heat flow across the opaque part of the building envelope is dominant. 

The DHC, on the other hand, indicates the thermal capacity for buildings where the internal 

and/or solar gains are considerable. Roughly, the TTC and DHC depend on the building 

construction as follows (Givoni, 1998b): 

 

• Externally insulated with internal exposed mass: Both TTC and DHC are high. 

Heat can be absorbed during the day and, if ventilated at night, released during 

the night. 

• Mass insulated internally: Both TTC and DHC are low. The thermal response of 

the building is similar to a light-weight building. 

• Mass insulated externally and internally: TTC is high, while the DHC is 

negligible, since the internal insulation isolates the thermal mass from the 

interior. 

• Core insulation inside two layers of mass: TTC is a function of the internal mass 

and the core insulation thickness, and the DHC is a function of the internal mass 

(DHC approximately similar to the first case). 

 

The optimal order and thicknesses of thermal mass and insulation in building envelopes has 

been studied by several researchers. Kossecka and Kosny (2002) studied the effect of mass 

and insulation location for six different wall configurations by using DOE-2.1E to calculate 

the annual heating and cooling loads in different US climates. The results showed that the 

material configuration of the exterior wall significantly influence the thermal performance 

of the whole building. The best overall energy performance was found to be the external 

insulated configuration with internally exposed mass. The worst performance was the “all 

insulation inside” wall, which had an overall annual energy demand, depending on the 

climate, that was 2-11 % higher than “the all insulation outside” wall. 

 

Asan (1999) had a slightly different approach. He investigated the optimum position of 

mass and insulation from a maximum time lag and minimum decrement factor point of 

view. The time lag is defined as the time it takes for a heat wave to propagate from the 
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outer to the inner surface and decreasing ratio of the amplitude of the heat wave during this 

process as the decrement factor.  

 

 
Figure 2-6 The scheme representation of time lagφ  and decrement factor f, for a room 

without heat loads (Asan, 2006) 
 

The study by Asan was done by solving the one-dimensional transient heat equation for 

different wall configuration with equivalent U-value. Two insulation boards were moved 

inside a massive wall, seeking the optimal values. Based on the results, Asan recommends 

that insulation should never be used as a whole in any location of the wall, except for on the 

outer surface. Further, by placing half of the insulation in the centre of the wall and half of 

the insulation at the outer surface gives high time lags and low decrement factors, and is 

close to the optimum value. Besides, according to Asan, this latter configuration is also 

practical and can easily be accomplished during construction.  

 

However, it is not only insulation that may interfere with the performance of thermal mass. 

Any form of barrier between the internal air and the thermal mass will impede heat transfer 

thus reducing its effect. This is often called decoupling of thermal mass from the space. 

Surface finishes, such as wall paper, suspended ceilings, plasterboard, may decouple the 

thermal mass. Dry lining with an air gap on a block wall, will approximately halve the heat 

transfer (Orme, 2003). Thus, a building designed for being thermally heavy to control 

excessive heat gains may be no heavier than a wood frame construction due to careless 

interior design.  
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2.2.4 Ventilation and HVAC-control strategies 

A thermally heavy building would require a greater output from the HVAC system to bring 

the thermal conditions to the desired level in the morning than a low-mass building. In 

theory, a building without mass would only require the time to heat or cool the air volume 

to the desired set-point in the morning, and would have lower overall cooling or heating 

loads than actual buildings (Braun, 1990). However, the key in utilizing the thermal mass is 

to prepare the building during the unoccupied hours, making, for instance, office buildings 

particularly suitable for such measures (Kolokotroni, 1999).  

 

By combining night ventilation and a sufficient amount of thermal mass, the maximum 

temperature in the occupied hours can be reduced significantly and cooling energy can be 

saved (e.g. Braun, 2003; Kolokotroni, 1999; Shaviv, 2001; Pfafferott et al.,2003; Givoni, 

1998a; Gerosa et al., 1999; Simmonds, 1991).  

 

The efficiency of night ventilation is strongly related to three main parameters; 1) the 

difference between the indoor and outdoor temperature, 2) the air flow rate applied during 

the night period and 3) the thermal capacity of the building. The lower the outdoor 

temperature during night and the higher the outdoor air supply, the higher is the efficiency 

of night ventilation (Gerosa et al., 1999). The efficiency of night ventilation increases also 

with the amount of exposed thermal mass (Shaviv, 2001; Givoni,1998a). The peak 

temperature reduction and energy savings are practically none for low mass buildings, but 

increases as the buildings get heavier. Additionally, the interior planning of the building 

plays a very important role, as it determines the airflow paths through the building (Gerosa 

et al., 1999).  

 

Controlling the night cooling is of great importance. High ventilation rates combined with 

low external temperatures may under-cool the building structure and lead to an early 

morning heating demand to achieve comfort conditions (Orme, 2003; Kolokotroni, 1999).  

 

Natural night ventilation is considered to be an energy efficient way to reduce the cooling 

demand in buildings. On the other hand, there are many obstacles that may prevent natural 

ventilation in buildings. The main barriers are safety, noise, air pollution, shading devices, 

draught, and occupant behaviour. If natural ventilation is not applicable, running the 

mechanical ventilation in free cooling mode at night can be a good alternative. In some 
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countries there are different utility rates at various times of the day and thermal mass can be 

utilized to delay the peak demand to low-rate periods. Reduced plant capacity may also be a 

significant investment benefit (Kolokotroni, 1999). There have been several studies on peak 

load-shifting, especially in the US, e.g. (Braun, 2003). The strategy is to pre-cool the 

building when the utility rates are low, and let the temperature float during high-rate 

periods, and turn on the air-conditioning when the rates become low again.  

 

In the heating season, excessive heat stored during the day can be released during the night 

to lower the heating energy needed when the internal gains are small. Although a heavy 

structure cools more slowly than a light one, a heavy structure requires a larger output from 

the heating system than a light structure with the same level of insulation (Hitchin, 1979). 

The energy savings potential by night setback is also less for heavy buildings than light 

buildings. Burch et al. (1984a) studied the difference in night temperature setback savings 

for buildings with different amount of thermal mass. Their conclusion was that thermal 

mass decreased the setback energy savings, but only by 0.5-3 % on annual basis. If the 

night setback is large, the peak heating required to heat the house to the day set-point in the 

morning may be excessive. In heavy buildings, smaller setbacks and somewhat earlier reset 

of the thermostat should be used (Hestnes, 2003; Simmonds, 1991).  

 

Weather forecast control is a promising technique to reduce the energy use of the building 

and to avoid indoor temperature fluctuations. The weather forecast control utilizes the 

building thermal mass based on knowledge of the forthcoming weather, including 

temperature, wind and solar radiation (Uppström et al., 2004). For instance, if it is known 

that a cold night will be followed by a warm and sunny day, heating can be reduced several 

hours in advance, without a drop in the indoor temperature. Likewise, if cold and windy 

weather is on the way, heating can be increased in advance to meet the demand. 
 

 
Figure 2-7  Example of a self-adaptive integrated building control system with weather 

predictor (Guillemin and Morel, 2002) 
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2.2.5 Occupancy and internal gains 

As mentioned, office buildings are well suited for utilizing thermal mass. These and other 

buildings that are unoccupied during the night, have the possibility to use the night hours to 

cool the building structure in order to prepare the building for the next day. It is also 

advantageous to store excessive heat from the day to lower the heating energy needed 

during the night time. Hence, buildings with 24-hour occupancy, for instance hospitals, or 

buildings occupied during the night, for instance residential buildings, have less potential 

for saving energy by utilizing thermal mass (Braun,1990; Diaz, 1994).  

 

Tenario (2002) used an ESP-r simulation model to assess the effect of combining air 

conditioning with passive means (so called dual-mode operation) for different room types, 

thermal mass amount and occupancy patterns. Dual-mode operation and thermal mass 

showed promising results in reducing cooling energy demand, but not in every case. The 

author points out that proper use of thermal mass was dependent on the user profile and 

room type. 

 

A sensitivity study on the impact of different input parameters in simulations of a cross 

night ventilated office building concludes that internal heat gains have the largest important 

impact on thermal comfort. According to the study, internal gains are over 3 times more 

influential than the second-most influential parameter (Breesch and Janssens, 2005). A 

good estimate of the internal gains is therefore important.  

 

Studies have shown that single office rooms may be unoccupied for long periods during the 

working day (Mathisen, 2007). The more scattered the occupation is, the greater is the 

potential to save energy by using demand control ventilation (DCV). However, a 

responsive control system also requires a responsive system to control. Heavy mass 

buildings have slow thermal response and intended savings might be considerably reduced 

if the system as a whole is not taken into consideration.  

 

Building design strategies are tested during the design stage, often with the aid of computer 

modelling or simpler tools. However, the input parameters used in the calculations of 

assumed occupant use and behaviour for example, are often not correct or the design 

presumptions diverge considerably from reality. Although some strategies are dependent on 
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occupant control, designers employing these strategies assume that the technical 

installations and design strategies will be used as intended by the designers (Foster, 2000).  

 

The design solutions are often not robust enough to cope with human “inventiveness”.  

Simple examples of such things are furnishing placed in front of displacement ventilation 

diffusers that obstructs the supply air or air paths crucial for a passive strategy to work as 

designed. More comprehensive examples are unconditioned atria, designed and modelled as 

unheated spaces, being used by the occupants as fully conditioned spaces.  

 

“It is important that designers keep in mind that users represent the final determining 

factor on the effectiveness of any building system – including thermal mass.” 

(Goulart, 2004) 

 



 

 32



Part I: Literature study 

 33

3. THERMAL MASS IMPLICATIONS 
In the previous chapters it is shown that utilization of thermal mass may have several 

advantages. However, there are some issues that must be considered before thermal mass is 

used as a building design measure. Some of them are discussed in the following sections. 

 

3.1 Acoustics  

Unfortunately, materials with great heat storage abilities are the worst possible surfaces for 

absorption of sound and hence may create some acoustical challenges. The acoustical 

property of a material is determined by its sound absorption coefficient (α), which is the 

fraction of incident sound which is not reflected (Smith et al., 1996). For instance, concrete 

has an absorption coefficient of about 0.02, while in comparison, some porous perforated 

materials commonly used in suspended ceilings may be as large as 0.80 dependent on the 

sound frequency (see Table A1.1). 

 

The reverberation time (tr), defined as the time it takes for a sound to decay by 60 dB, is a 

well known metric to assess the acoustical properties for a room. In Appendix A1.3 it is 

shown how the reverberation time can be calculated approximately. Table A1.1 gives the 

sound absorption coefficients for common building materials. 

 

In Norway, guiding reverberation time limits for different buildings categories and room 

types are set by the Norwegian Standard NS 8175 (2004). The standard categorizes the 

acoustical qualities in classes A to D, where A is the strictest and D is the poorest standard. 

Class C is the minimum level to fulfil the building regulations (TEK, 2007), based on 

making 80 % of the occupants satisfied with the acoustical conditions. Table 3-1 lists 

reverberation time limits for offices. The time limits must be fulfilled for every octave band 

from 125 to 2000 Hz.  

 

Table 3-1  Maximum reverberation times in seconds for office buildings (NS8175, 2004) 

Room type Class A Class B Class C Class D 
Offices, meeting rooms 0.6 0.6 0.8 0.9 
Common areas, hallways 0.8 0.8 1.0 1.3 
Stairways 1.0 1.0 1.3 1.3 
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Obviously, the acoustical challenges are in conflict with the desire to make a room 

thermally heavy, and may restrict the area of exposed thermal mass. However, if surfaces 

are acoustically unfortunate, acoustic tiles can be mounted without impeding the heat 

transfer significantly (Andersson et al., 1987). There are also other ways to improve the 

acoustics without decoupling the thermal mass from the indoor air. Hanging acoustic 

ceiling panels have proved to be very useful in some cases (Voss, 2000). However, some of 

these panels may collect dust, thus demand extra cleaning. Another drawback with this 

solution is that hanging panels may interfere with the ventilation airflow patterns. 

 

In any case, conflicts with the acoustic situation require careful planning and balanced 

solutions. 
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3.2 Building adaptability 

In the Norwegian literature, adaptability is often defined as a function of generality, 

elasticity and flexibility. The use of these terms has been somewhat inconsistent. However, 

Arge (2003) defines the terms as:  

 

• Generality: The ability of a building to fulfil changing demands without 

changing its qualities, i.e. no structural or technical modifications is needed. 

• Elasticity: The ability of a building to meet varying area demand, i.e. its 

possibility to split the floor in separate units or add new units to increase the 

floor area. 

• Flexibility: The ability of a building to make changes within the main structure 

(e.g. change from single room offices to office landscape). 

 

In the scope of this thesis, flexibility is the term which is most central. High flexibility is a 

question of: 1) time to make changes, 2) how much the changes interfere with the core 

activity in the building and 3) the need for specialists to carry out the changes.  

 

During the last hundred years, major changes have taken place in office layouts and 

workplace design, and the changes are expected to accelerate (Blakstad, 2001). Trends and 

office solutions may change quickly, but an office building will last for 50 or even 100 

years, and will contain different types of offices during its lifetime. An office building must 

also be able to meet rapid changes in organization structures which often require changing 

the floor plan (Blakstad, 2001).  

 

A survey among 750 corporate managers in the Nordic countries reveals that every third 

manager plan to reorganize or rebuild the office structure within the next two years 

(Bjerrum, 2004). Clearly, use of heavy materials in partition walls may come in severe 

conflict with desire of having a flexible building.  
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3.3 LCC / LCA 

Life cycle costing (LCC) is a technique which enables comparative cost assessments to be 

made over a specified period of time, taking into account all relevant economic factors, i.e. 

initial capital costs and future operational costs (ISO 15686-1, 2000). 

 

Despite an increasing interest in the LCC approach, the adoption and application of LCC in 

the building sector remains limited. A survey made among clients in the building sector in 

Sweden (Sterner, 2000), shows that more than 2/3 indicated that they use a life-cycle 

perspective when making decisions. However, this does not necessarily mean that they use 

LCC calculations. The study also reveals that if LCC calculations are used, they are 

primarily related to the technical installations, such as the HVAC system, and not the 

building project as a whole.  

 

A holistic objective analysis must be carried out in order to determine the impact a 

particular building has on the environment. Life Cycle Assessment (LCA) is, in terms of 

building construction, an assessment of the total environmental impact associated the use, 

disposal and with all actions in relation to the construction of buildings. LCA, in contrast to 

LCC, does not address economic or societal aspects. Cole (1996) states that LCA has been 

accepted in the environmental community as the only legitimate method to compare 

alternative materials, components, and services. Nevertheless, LCA has not been 

particularly successful in practice in the construction sector, because of problems 

concerning the availability of input data and the complexity of the LCA analysis itself 

(Sterner, 2002). 

 

Life-cycle energy is a commonly used assessment indicator, and includes all energy 

incurred in the production, use and removal of a building. Cole and Kernan (1999) define 

four categories of the energy use of a building during its life-cycle: 

 

• Energy to initially produce the building (initial embodied energy) 

• The recurring embodied energy for refurbishment and maintenance over the 

lifetime of a building 

• Energy to operate the building, i.e. the total energy required for heating, cooling, 

lighting and equipment 

• Energy to demolish the building and dispose of the building materials 
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Some studies have compared light and heavy mass buildings in the life-cycle energy 

perspective. Ståhl (2002) compared heavy and light building constructions for a residential 

building, a school building and an office building. The results from the study showed that 

the light structures demanded least energy during the phases of production and demolition 

in comparison to the equivalent heavy buildings. The heavy buildings used least energy 

during the operational phase, and in sum there was in fact no significant difference between 

the two cases in life-cycle energy use.  

 

A similar study was done for residential houses in New Zealand (Mithraratne, 2004), where 

a light, a heavy and a super insulated house were compared in both an LCA and LCC 

perspective. The conclusion from this study was that the super insulated house had 

substantially less negative impact on the environment than the other two alternatives. The 

light and heavy structure demanded 45 % and 58 % more energy respectively during the 

life-cycle. However, the additional insulation was not found to be cost beneficial, i.e. the 

initial cost of construction connected to the additional insulation increased and remained 

higher throughout the useful life time of the building. 

 

A study in Denmark compared three different layouts of typical lightweight timber-based 

and heavyweight concrete-based low-energy residential buildings. Even though the 

heavyweight houses performed best during the operational phase, they did not show a 

significant environmental advantage over the lightweight houses in terms of total CO2 

emissions, even when solar strategies were used. 

 

The energy used to operate buildings is by far the largest component of life-cycle energy 

use, about 80-90 % (Ståhl, 2002; Cole, 1999; Mithraratne, 2004). However, as buildings 

become more energy efficient, the amount of energy to produce the building (the embodied 

energy) will represent an increasing component of the life-cycle energy. As operating 

energy is reduced and halved compared to current standards, embodied energy will be a 

dominant factor. However, for the present, design strategies to significantly reduce the 

operating energy should be emphasized. When the operating energy has been reduced, 

more should be ascribed to reducing the embodied energy.  

 

Reducing the embodied energy is more a question of comprehensive design, than the 

embodied energy in the materials themselves. Since the recurring embodied energy 

associated with the replacement and repair of building materials is significant (in order of 



Part I: Literature study 

 38

the initial embodied energy over the lifetime (Cole, 1999)), it is important to focus on the 

longevity of the materials and their ability to replace elements within a total building 

assembly. Thus, making buildings adaptable is also a question of making buildings 

sustainable. 
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4. PERFORMANCE OF THERMAL MASS 
This chapter presents an overview of some experimental and analytical work that evaluates 

the effectiveness of thermal mass for different building types in various climates. Table 4-2 

summarizes 24 studies on the subject. The table includes studies on reducing cooling and/or 

heating demand, and studies on thermal comfort. The table presents the scope and results 

together with annotations of climate and building type used in the studies, and also whether 

simulations (sim) or measurements (meas) have been carried out.  

 

The simulation studies include a wide range of simulation programs, and those mentioned 

are listed in Table 4-1. For further information, the capabilities of a number of simulation 

programs are compared in the comprehensive study by Crawly et al. (2005).  

 

Table 4-1 Simulation programs used for thermal mass assessment 

Program Origin Users* Website 

APACHE  UK ? http://www.iesve.com  

BSim2000  DEN ~125 http://www.bsim.dk/  

DEROB-LTH SWE ~150 http://www.derob.se/ 

DOE-2.1E USA >1000 http://simulationresearch.lbl.gov/  

ENERGY10 USA >3200 http://www.sbicouncil.org/  

ESP-r UK ? http://www.esru.strath.ac.uk/ 

HTB2 UK ? http://www.cardiff.ac.uk/archi/school  

Suncode (Sunrel) US >100 http://www.ecotope.com/ 

TAS UK ~250 http://ourworld.compuserve.com/homepages/edsl  

TRNSYS  US >500 http://sel.me.wisc.edu/trnsys  

TSBI3 DEN ~200 http://vbn.aau.dk/research/tsbi3(10050074)/  
* Approximate estimation by the US DoE (2007) 
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4.1 Closing remarks 

The general conclusion that can be derived from the literature review is that thermal mass 

together with night ventilation reduce the indoor maximum temperature and the cooling 

energy demand, and also offset the peak cooling demand. All studies, both experimental 

and analytical, support this. Thermal mass combined with night ventilation may reduce the 

maximum indoor temperature by 2-6 K (e.g. Givoni,1998a; Shaviv et al., 2001), provided 

that the diurnal outdoor temperature swing is adequate (at least 5-10 K). Depending on the 

climate and building type, the cooling energy savings found in the literature span from 5 % 

to 36 % (e.g. Burch et al., 1984b; Ruud et al., 1990). Moreover, some studies (e.g. Gratia 

and De Herde, 2003; Kolokotroni et al., 1998) conclude that if the heat gains are not too 

excessive in office buildings, thermal mass and night ventilation should be sufficient to 

cover the cooling demand alone in moderate climates.  

 

Studies also conclude that thermally heavy buildings have lower space heating energy 

demand than light buildings. Heavy residential buildings demand about 15 % less heating 

energy compared to equivalent light buildings (e.g. Bellamy and Mackenzie, 2003; Norén 

et al., 1999), and about 20 % less for offices (e.g. Ståhl, 2002). Heating energy savings are 

most significant in the intermediate seasons in cold climates and in climates where the 

balance temperature of a building is close to the mean outdoor temperature (e.g. Burch et 

al., 1984c). 
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PART II: 
 

PARAMETRIC STUDY 
 
 

 

As discussed in Part I, various parameters affect the efficiency of 

thermal mass. The aim of this part is to assess the efficiency of thermal 

mass in a Norwegian context. A simulation model is employed to 

evaluate the efficiency of thermal mass by varying several parameters 

such as climate, occupancy profiles, internal heat loads, control ranges 

and convection correlations. All tested parameters are given separate 

sections and each is closed with a brief discussion. The most important 

findings from the parametric study are summarized in a separate 

section at the end. 

 

 

 

 

 

 

 

ASSESSING THERMAL MASS 
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5. THERMAL MASS ASSESSMENT 
The main objective of this part is to assess the efficiency and potential benefit of utilizing 

thermal mass for a single office room which has high standards for insulation and air 

tightness, and fulfil the new requirements in the revised building code in Norway (TEK, 

2007). The goal of this part is to answer following questions: 

 

• Is it possible to avoid mechanical space cooling? 

• Will thermal mass improve the thermal environment? 

• Will thermal mass decrease heating energy demand? 

 

The following sections will investigate the thermal mass influences on the net energy 

demand and the thermal environment, and study whether the influence of thermal mass 

depends on; 

  

• climate, 

• occupancy profiles, 

• internal heat loads,  

• set-point for cooling and control range, and 

• heat transfer correlations 

 

5.1 Choice of simulation program 

As discussed in Part I, several approximations commonly made in simulation programs are 

not appropriate if accurate assessment of the influence of thermal mass is required. 

Capabilities, such as taking into account the placement of thermal mass (geometry), 

advanced treatment of solar gains (ray-trace), options to choose convenient convection 

correlations and possibility to invoke advanced building control can be advantageous when 

analysing different aspects of thermal mass utilization. Today, only a handful of simulation 

programs possess all these capabilities, and ESP-r was the one that finally was chosen for 

the study. 
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5.1.1 ESP-r 

ESP-r attempts to simulate the real world as rigorously as possible and to a level which is 

consistent with current best practice. By addressing all aspects simultaneously, ESP-r 

allows the designer to explore the complex relationships between the form, fabric, air flow, 

plant and control of a building (ESRU, 2007).  

 

ESP-r is based on a finite volume, conservation approach in which a problem (specified in 

terms of geometry, construction, operation, leakage distribution, etc.) is transformed into a 

set of conservation equations (for energy, mass, momentum, etc.) which are then integrated 

at successive time-steps in response to climate, occupant and control system influences 

(ESRU 2007). 

 

 
Figure 5-1  Screenshot from ESP-r System version 11.3 showing the Project Manager 

(back), the Climate Analysis module and the Result Analysis module (front) 
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ESP-r has been under development for more than 25 years, and has been undergoing 

numerous validation tests. A summary of all validation tests can be found in Strachan 

(2000). 

 

Support modules included in ESP-r are among others: 

 

• Climate display and analysis 

• Integrated simulation engine 

• Environmental impacts assessment 

• 2D-3D conduction grid definition 

• Shading/insolation calculation 

• View factor calculations 

• Convection calculations 

• Detailed airflow analysis (CFD) 

 

ESP-r was also chosen for its responsive simulation community through a mailing list, and 

due to its free distribution under the GPL license through the ESRU website. The website 

also includes an extensive publications list, example models, cross-referenced source code, 

tutorials and resources for developers.  

 

However, ESP-r also has its weaknesses. Specialist features require knowledge of the 

particular subject. Although robust and increasingly used for consulting, ESP-r retains 

much of the look and feel of a research tool and lacks the extensive databases associated 

with commercial tools. The current Windows implementation does not conform to the 

standard look and feel of most Windows applications and lacks a few features available on 

other platforms. It is estimated that to obtain the level of expertise, 1-2 years of frequent use 

is required (Haugaard, 2003). 
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5.2 Simulation model 

To study the potential benefits of thermal mass utilization, three single office rooms with 

different amounts of thermal mass are modelled in the building simulation program ESP-r. 

All versions of the office room have the same U-values and fulfil the requirements 

according to the so-called energy measure model defined in the revised building code 

(TEK, 2007) given in Table 5-1. The models should give answers to indoor thermal climate 

and power demand issues, but also, according to Høseggen (2005), a single office room 

model is applicable to estimate the heating energy demand in a building dominated by cell 

offices. However, as pointed out in the paper, such an approach tends to overestimate the 

ventilation heating energy demand. In any case, in the following comparative studies, the 

relative differences are of greater interest than the absolute level of energy demands.  

 

Table 5-1 The new building regulations for commercial buildings compared to the old 
regulations (TEK, 1997; TEK, 2007) 

 TEK ‘97 TEK ‘07 
Glass and door area a 20 % 20 % 
U-value external wall 0.22 W/(m2·K) 0.18 W/(m2·K) 
U-value roof 0.15 W/(m2·K) 0.13 W/(m2 K) 
U-value floor on ground 0.15 W/(m2·K) 0.15 W/(m2·K) 
U-value windows and doors (frame included) 1.60 W/(m2·K) 1.20 W/(m2·K) 
U-value glazed walls and roofs 2.00 W/(m2·K) same as for windows 
Air tightness at 50 Pa 3.0/1.5 b ach 1.5 ach 
Heat recovery c 60 % 70 % 
Specific fan power (SFP) none 2.0/1.0 d kW/(m3/s) 
Local space cooling minimized should be avoided e 
Temperature control none night set-back to 19 °C 
a maximum percentage of the available area of the building 
b buildings up to two floors / buildings with more than two floors 
c annual mean temperature efficiency  
d SFP day/night 
e automatic sun shading devices or other measures should be used to fulfil the thermal 

comfort requirements without using local cooling equipment 
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The three rooms, which are 2.4 m wide and 4.2 m deep, with a room height of 2.75 m, have 

the following construction properties with regard to thermal mass; 

 

• Light: External framework wall, gypsum internal partition walls, suspended ceiling, 

and suspended floor with parquet. 

• Medium: External framework wall, gypsum internal partition walls, exposed 

concrete ceiling, and concrete floor with linoleum finish. 

• Heavy: External concrete wall, concrete partition walls, exposed concrete ceiling, 

and concrete floor with linoleum finish. 

 

For comparison, Table 5-2 shows the thermal heat capacities and the thermal effusivities 

(as defined in Section 2.1.1) per floor area for the office rooms. The calculations of the 

parameters are shown in Appendix A2.1. 

 

Table 5-2 Heat capacities and thermal effusivities per floor area of the office rooms 

Room Heat capacity (kJ/(m2·K)) Thermal effusivity (W·s1/2/(m2·K)) 
Light 1895 1522 
Medium 4880 4001 
Heavy 10884 5688 

 

Examining the numbers from Table 5-2, it can be observed that the heat capacities for the 

rooms are coarsely in order of 2:5:11 for the light, medium and heavy rooms, respectively, 

while the thermal effusivities are in order of 3:8:11. As shown later, the thermal effusivity 

is the parameter that best describes the thermal mass properties.  

 

The façade of the office rooms is facing south-west in order to evaluate the extreme 

summer conditions. Appendix A2.4 shows the evaluation of different façade orientations 

and why south-west is considered to be the most exposed orientation.  

 



Part II: Parametric study 

 52

 
Figure 5-2  The office room model with measures in metres 

 

The offices are equipped with presence detectors, temperature sensors and controller units 

that control heating, ventilation and lighting. 

 

Internal heat gains from lighting, equipment, and people will vary dependent on the room 

occupancy. In the basic model, recorded occupancy data from about thirty office rooms in 

Statens Hus (Mathisen, 2007), a typical modern office building in Trondheim is used. In 

Figure 5-3, the mean recorded occupancy is shown together with the hourly averaged 

occupancy. 
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Figure 5-3  Mean occupancy from Statens 
Hus. The hourly averaged curve represents 
the occupancy of the office rooms  

Figure 5-4  Mean occupancy added 20 min 
delay. This curve controls the ventilation 
and lighting in the office rooms 
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Normally, to avoid the ventilation and lighting to turn on and off frequently, a time delay 

between registered room absence and control action is implemented. In this case, a 20 

minute time delay is set for the lighting and ventilation controls. The curve which controls 

the lighting and ventilation is shown in Figure 5-4. The internal heat gains and air flows 

rates are listed in Table 5-3.  

 

Table 5-3  Heat gains and air flows for the office rooms used in the basic model 
(ASHRAE 2005, REN 2007) 

 Amount Time of operation 
People 75 W sensible + 45 W latent 6-18 working days * 
Lighting 3x35 W 6-18 working days ** 
Equipment 12 W/m2  6-18 working days * 
Ventilation*** 2.0 l/s per m2 (high) or 0.7 l/s per m2 (low) 6-18 working days 
 + 7.0 l/s per person  6-18 working days** 
Infiltration 0.1 h -1 0-24 all days 

*  Occupancy dependent. The value is multiplied by the hourly averaged room occupancy 

(Figure 5-3)  
** Occupancy dependent. The value is multiplied by the hourly averaged room occupancy 

with time delay (Figure 5-4) 
*** 2 l/s is the common design flow rate in Norway. 0.7 l/s is the minimum air flow rate 

provided well known and documented low emitting materials (REN, 2007).  

 

When the room temperature reaches the set-point for cooling (23 °C), the ventilation air 

flow rate increases proportionally with the temperature and reaches full air flow rate at 

25 °C, regardless of whether the room is occupied or not. The office rooms are each 

equipped with a 500 W radiator, which have a set-point for heating at 21 °C all year around 

and a night temperature set-back of 2 K outside working hours and weekends. The radiators 

are placed under the windows, thus affecting the convection regime when they are turned 

on (see Appendix A2.7). 
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Figure 5-5  Heating and comfort ventilation control strategy 

 

The ventilation air flow rate is dependent on time, occupancy and temperature, thus the 

total ventilation rate, qvent, is given by 

 

( ) ( ) ( ) ( ),vent basic pres tempq t q t O t q qθ θ= + ⋅ +  (m3/s) (5.1) 

 

where 

qvent = total ventilation rate 
qbasic = basic ventilation from 6 am to 6 pm 
O = occupancy according to Figure 5-4 
qpres = occupancy dependent ventilation rate 
qtemp = temperature dependent ventilation rate according to Figure 5-5 
t = time 
θ = temperature 

 

The rooms are equipped with external Venetian blinds, which are controlled by the incident 

solar radiation (closed when I > 200 W/m2) during working hours and by the indoor 

temperature (closed when θ > 21 °C) outside working hours to benefit from the solar gains 

when there is a heating demand.  
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5.3 Climate data 

Accurate estimation of building energy performance requires knowledge of the weather to 

which the building is subject to. Modern design methods by computer simulations require 

one year of proper hourly meteorological data. These data files normally contain dry bulb 

temperature, solar radiation, humidity, wind velocity, and wind direction (Forejt et al., 

2005). The most important representations of yearly hourly weather data are Test Reference 

Year (TRY), Typical Meteorological Year (TMY), Design Reference Year (DRY), and 

Weather Year for Energy Calculations (WYEC). 

 

• The “European” TRY is known as the TMY in the US. Unlike the “US” TRY, 

which is a selected historical year closest to the average (typically a 30-year period), 

the “European” TRY may contain months from a number of different years. The 

months selected are the ones that deviate the least from a) the mean b) the frequency 

distribution of the individual parameters, and c) the implied correlation between 

variables within each month of the long-term data set. Where months from different 

years are linked together, the parameters are “smoothed” over 5 hours to avoid 

sudden jumps (Lund, 1985). The TMY has been revised and improved solar models 

and extended solar parameters have been added.  

• DRY is a further attempt to modify the TRY to be even more like the yearly average 

months by adjusting the selected months. The parameters such as dry bulb 

temperature, solar radiation, and humidity (but not wind) are adjusted by replacing 

certain days with days from other years. In addition, some new parameters are added 

to the data sets, and also 5 minute values for direct normal radiation and forecast 

information to be used with advanced building energy management systems 

(Skartveit et al., 1994). 

• WYEC is constructed by determining for each month of the year, the single, real 

month of hourly data whose mean dry bulb temperature is closest to the average dry-

bulb temperature for that month during the 30-year period of record. Then the rest of 

the month is constructed by substituting days from the months in the other years to 

bring the mean for the prevailing month closer to the 30-year average. Like the 

TMY, the WYEC has been revised, called WYEC2 (Stoffel, 1998). 

 

An extensive study by Crawley (1998) compares simulation results using different 

reference years (“US” TRY, TMY, TMY2, WYEC, WYEC2) to the results based on actual 
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hourly weather data for the 30-year period from 1961 to 1990. One of the conclusions from 

the study is that users of energy simulation programs should avoid using single years (i.e. 

“US” TRY-type weather data), because no single year can represent the typical weather 

patterns. The TMY2 and the WYEC2 will provide the energy simulation results that most 

closely represent typical weather patterns. Crawley also recommends that future weather 

sets should include a cold/cloudy and a hot/sunny year to capture more than the average 

conditions and provide simulation results that identify the uncertainty variability inherent in 

weather.  

 

At this moment, only DRYs for Oslo (59.9° N), Bergen (60.2° N) and Andøya (69.3° N) 

are available for Norway. Although Norway is a country where many parts are north of the 

Arctic Circle, the Gulf Stream makes the climate in Norway relativity coastal and mild, and 

has a climate more similar to the British Isles and Northern Europe than other countries at 

these latitudes. Table 5-4 shows the monthly maximum, minimum, and mean temperatures 

for the DRY climate files.  

 

 
Figure 5-6  Map of Norway (modified from SSB, 2006) 
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Table 5-4  Minimum, maximum and mean temperatures (°C) for the DRY files 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

 Min -22.0 -24.7 -17.7 -7.6 -1.0 3.5 8.0 5.2 -1.2 -6.8 -14.7 -20.9 -24.7 

Oslo Max 10.7 10.2 14.1 19.0 26.4 30.8 29.8 32.6 24.2 19.6 12.9 11.2 32.6 

 Mean -3.7 -4.8 -0.5 4.8 11.7 16.5 17.5 16.9 11.5 6.4 0.5 -2.5 6.3 

 Min -14.7 -12.0 -8.6 -4.3 -1.7 3.8 5.5 4.0 1.3 -4.3 -9.6 -13.2 -14.7 

Bergen Max 10.1 10.1 13.8 16.7 23.3 26.6 27.1 27.3 23.4 18.3 12.1 9.7 27.3 

 Mean 1.0 0.5 2.6 4.7 9.4 12.1 13.6 13.2 10.5 7.3 3.9 1.1 6.7 

 Min -18.8 -16.7 -18.5 -12.7 -8.5 0.4 2.7 0.8 -2.4 -5.8 -11.5 -14.5 -18.8 

Andøya Max 7.2 7.0 6.9 11.7 19.6 22.7 22.1 22.6 18.1 13.7 8.9 8.1 22.7 

 Mean -2.0 -1.6 -1.2 1.2 5.1 8.1 10.7 10.7 7.6 4.6 0.8 -1.3 3.6 

 

In the DRY files, the humidity is expressed as dew point temperatures. Appendix A2.3 

shows how the relative humidity (RH), which is the humidity input parameter in ESP-r, can 

be found from the dry bulb temperature, pressure and dew point temperature. 
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5.4 Climatic considerations 

In this section, the influence of the climate on thermal mass will be evaluated. At first, a 

degree-hour approach will be used as a coarse evaluation of the cooling potential. Further, 

the cooling potential and potential heating energy savings related to thermal mass will be 

evaluated by dynamic simulations.  

 

5.4.1 Climatic cooling potential 

In Section 2.2.1, the influence of climate on thermal mass efficiency is discussed. In this 

section the degree-hour approach by Artmann et al. (2007) is employed for different 

Norwegian climates.  

 

The climatic cooling potential (CCP) is defined as the summation of products between 

building and external air temperature difference. Thus,  
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0 h if 
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= − ≥ Δ⎧
= − ⎨ = − < Δ⎩

∑∑    (5.2) 

 

where 

 

N = nights in period 

θ =  temperature 

Δθcrit = threshold value of the temperature difference 

 

with subscripts 

 

f = finishing hour of night ventilation, (6 am) 

s = starting hour for night ventilation (6 pm) 

n = night (date) 

h = hour {0, …, 24 h} 

b = building 

e =  external 
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The building temperature is assumed to oscillate harmonically, thus 

 

,
1824 2cos 2

24b h
hθ π −⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 (°C) (5.3) 

 

Applying this definition, the indoor temperature reaches the maximum of 26 °C at 6 pm and 

the minimum of 22 °C at 6 am. During the day, this definition makes the air temperature 

vary within an interval of 4 K and to stay below 26 °C.  

 

A certain temperature difference between the indoor air temperature and the ambient 

temperature is needed for effective night purge between the room air and the room surfaces. 

Hence, it is assumed that night ventilation is only applicable when the difference is greater 

than Δθcrit = 3 K.  

 

Figure 5-7 shows the monthly mean climatic cooling potential per night using the DRY 

files for Oslo, Bergen, and Andøya. The CCP for Trondheim is also included, using data 

produced by Meteonorm (Meteotest, 2003). 
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Figure 5-7  Monthly mean climatic cooling potential per night 
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A rough calculation for an office room is shown in Appendix A2.2. For the assumptions 

done in the example, the heat flux that may be absorbed per degree hour of the cooling 

potential is 0.34 W/m2 per Kh. Assuming that the total mean internal heat load and the solar 

gains are 34 W/m2 during an eight hour working day, a CCP of 100 Kh per night is needed 

to discharge the heat stored in the room.  

 

However, individual climatic cooling potential per night can fall far below the monthly 

mean values. Therefore, in Figure 5-8, the nightly CCPs are presented as cumulative 

frequencies. For example, the CCP for Bergen is below 100 Kh only 5 nights during the 

year, and for 90 % of the nights the CCP is above 130 Kh. 

 

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350

Nights per year

C
C

P
 (K

h)

Oslo (DRY)
Bergen (DRY)
Andøya (DRY)
Trondheim (MET)

 
Figure 5-8  Cumulative frequency distribution of climatic cooling potential 

 

The simple degree-hour approach presented can give valuable information in the design 

phase of a building given the local climate. However, the method is not a substitution for 

building simulations where building specific parameters, time dependent internal and solar 

heat loads, thermal mass and airflow patterns are taken into account.  
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5.4.2 Dynamic performance 

The previous section indicates that climates similar to the Norwegian one have a great 

potential for passive cooling during night time. In this section, hourly climate conditions 

and building parameters will be taken into consideration. The model described in 

Section 5.2 is used employing the DRY climate files. Daytime, the rooms are supplied with 

conditioned air at 17 °C. If necessary, the rooms are also free cooled according to 

Figure 5-5 outside working hours. Simulations are done for the cooling season from May 1st 

to September 30th, for both high (10 m3/h m2) and low (5 m3/h m2) ventilation air flow rates, 

according to Table 5-3.  

 

Figure 5-9 shows the number of hours the operative temperature is in the respective 

intervals during working hours (6 am to 6 pm).  
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Figure 5-9 Number of hours the operative temperature occurs in different intervals 
during the working hours with high airflow rate for the light (l), medium (m) 
and heavy (h) office room, respectively 

 

The simulation of the office rooms ventilated with 10 m3/h m2 indicates that the operative 

temperature will stay well below 26 °C during the entire cooling season for all simulated 

climates. 
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Figure 5-10 shows the results from the simulation with a supply airflow rate of 5 m3/h per 

m2.  
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Figure 5-10 Number of hours the operative temperature occurs in different intervals 
during the working hours with low daytime airflow rate for the light (l), 
medium (m) and heavy (h) office room, respectively 

 

The simulations indicate that utilization of outdoor air to cool the office rooms outside 

working hours keep the operative temperature well within acceptable limits for most cases 

during working hours. The exception is the light office room, which in the case of low 

airflow rate in Oslo experiences about 100 hours of temperatures exceeding 26 °C.  
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5.4.3 Heating energy demand 

In the literature studied in Part I, some authors claim that the utilization of thermal mass 

reduce the heating energy demand. For the same office cells, the space heating and the 

ventilation preheating demands are here investigated for Oslo, Bergen and Andøya. The 

annual heating demands are calculated for both the high (10 m3/h per m2) and low (5 m3/h 

per m2) air flow rate. 

 

In the first part, the night temperature set-back requirement from the building regulations is 

implemented for the heating control, i.e. the set-point for heating is 21 °C during working 

hours and 19 °C outside working hours and weekends. The supply air temperature is 19 °C 

during the winter (Nov to Mar), 18 °C during the transitional months (Apr and May/Sep 

and Oct), and 17 °C during the summer (Jun to Aug). Figure 5-11 and Figure 5-12 show the 

annual space heating and ventilation preheating energy demand for high and low airflow 

rate, respectively.  
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Figure 5-11  Annual space heating and ventilation preheating energy demand for the 

light (l), medium (m), and heavy (h) office room supplied with high airflow 
rate 
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Figure 5-12   Annual space heating and ventilation preheating energy demand for the 

light (l), medium (m), and heavy (h) office room supplied with low air flow 
rate 

 

The simulation results indicate that there are only minor heating energy demand differences 

with respect to thermal mass. The heavy room has the largest heating demand, however just 

at most 0.7 kWh/m2 or 1.5 % more than the light room.  

 

As pointed out in Section 2.4.4., Burch et al. (1984a) claim that the potential energy savings 

by night set-back savings decrease with an increase of thermal mass. To investigate this, 

simulations are run similarly to the simulations above, but without temperature set-back. 

Figure 5-13 and Figure 5-14 show the results from the simulations without night set-back.  
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Figure 5-13 Annual heating energy demand without night and weekend temperature 

set-back and high airflow rate 

 

In contrast to the simulations with night set-back, the simulations without temperature 

set-back indicate that thermal mass is favourable. However, the heating energy differences 

are still relatively small. The greatest difference is for Bergen in the case of low air flow 

rate, where the heavy mass room annually demands 1.1 kWh/m2 or 4.7 % less total heating 

energy compared to the light room.  
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Figure 5-14  Annual heating energy demand without night and weekend temperature 

set-back and low air flow rate 
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A comparison of the simulations with night temperature set-back to those without set-back, 

confirms the observation made by Burch. The potential for saving heating energy with 

night and weekend temperature set-back is less for thermally heavy rooms than for light 

rooms. Figure 5-15 shows that, for example, night set-back for a heavy room at Andøya 

only saves just over 2 % heating energy annually. However, night temperature set-back is 

still beneficial for all cases considered. Tables with absolute differences are given in 

Appendix A2.5. 
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Figure 5-15  Relative annual heating energy savings by night and weekend temperature 

set-back for high and low ventilation air flow rates 
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5.4.4 Closing remarks: Climate 

The simplified degree-hour approach indicates that the Norwegian climate should have a 

substantial potential to cool buildings outside working hours. The dynamic simulations 

support these results. The simulations indicate that the utilization of outdoor air to cool the 

office rooms outside working hours, keep the operative temperature well within acceptable 

limits for most cases during working hours. The Oslo climate is the most extreme of the 

climates evaluated here, thus further analyses on summer conditions will be done 

employing the Oslo DRY file. 

 

The annual simulations done in this section indicate that there are only minor differences in 

heating energy demand with respect to thermal mass, and the claimed savings from the 

literature could not be confirmed. The minor differences reported here also agree with the 

findings in Høseggen et al. (2007), (Paper V in Appendix 4), where the savings were 

estimated to be less than 3-7 %, dependent on the ventilation system and internal heat gains 

for a medium mass room compared to a lighter room. Consequently, no further examination 

of the potential heating energy savings related to thermal mass will be done. 
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5.5 Influence of occupancy patterns 

In the previous two sections, it was assumed that the room occupancy is equivalent to the 

averaged occupancy for several rooms in a specific office building. It may be questioned 

whether hourly averaging of the room occupancy is an adequate approach to approximate 

typical room use. In open plan offices or in rooms where several people work, such an 

approach should be applicable. However, in single offices, people are either present or 

absent. In theory, a mass-less building would only require the time to heat or cool the room 

air mass, and practically no time for heating or cooling to the desired set-point, thus 

demanding lower overall cooling or heating loads than actual buildings. The question is 

whether short time absences from the room can be used to cool or heat the room quickly, 

and make them fully “recovered” when the person is back.  

 

To investigate whether the approach of averaged values is appropriate, the following 

section deals with different occupancy patterns. Figure 5-16 shows four different patterns, 

which all have an averaged occupancy of 50 %, assumed working day duration from 8 am 

to 4 pm.  
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Figure 5-16 Four different fictitious occupancy patterns with an averaged occupancy of 

50 % during the working day 
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5.5.1 Peak operative temperature 

This section evaluates the influence of occupancy patterns on the peak operative 

temperature in the office rooms. The DRY climate file from Oslo is used in the simulations. 

Figure 5-17 shows the most influential climatic parameters for a warm and sunny week in 

August. 
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Figure 5-17 The most influential climatic parameters in the DRY file for Oslo for 

August 14th to August 20th  

 

In the simulations, the offices are mechanically ventilated with conditioned air at supply 

temperature 17 °C during working hours, and outside working hours if needed, according to 

Eq. (5.1) and Figure 5-5. To simplify the approach to the problem somewhat, in this section 

it is assumed that there is no time delay added to the lighting and ventilation controls.  

 

Figure 5-18 to Figure 5-25 show the operative temperatures for the single office rooms on 

Wednesday in the warm week using the four different occupancy profiles. In Figure 5-18 to 

Figure 5-21 the high supply airflow is used, and in Figure 5-22 to Figure 5-25 the low 

supply air flow is used. Appendix A2.6 gives the simulation results from the entire week.  
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Figure 5-18  Operative temperatures 
using the “50 % all day” occupancy
profile and high airflow rate 
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Figure 5-19  Operative temperatures 
using the “8 to 12” occupancy profile 
and high airflow rate 
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Figure 5-20  Operative temperatures 
using the “12 to 16” occupancy profile
and high airflow rate 
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Figure 5-21  Operative temperatures 
using the “every other hour” occupancy 
profile and high airflow rate 
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Figure 5-22  Operative temperatures 
using the “50 % all day” occupancy
profile and low airflow rate 
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Figure 5-23  Operative temperatures 
using the “8 to 12” occupancy profile 
and low airflow rate 
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Figure 5-24 Operative temperatures 
using the “12 to 16” occupancy profile
and low airflow rate 

0 2 4 6 8 10 12 14 16 18 20 22 24
22

23

24

25

26

27

28

29

30

Hour

O
pe

ra
tiv

e 
te

m
pe

ra
tu

re
 (o C

)

 

 
light
medium
heavy
occupied

Figure 5-25   Operative temperatures 
using the “every other hour” occupancy 
profile and low airflow rate 
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5.5.2 Operative temperature distribution 

This section studies the influence of the occupancy patterns on the seasonal temperature 

distribution. Simulations are done for both high and low ventilation airflow rate for the 

cooling season from May 1st to August 31st. 

 

Figure 5-26 shows the percentage distribution of the operative temperature during working 

hours when the high ventilation airflow rate is supplied to the office rooms. 
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Figure 5-26  Share of the working hours which operative temperatures are in the 
respective temperature intervals for high airflow rate 
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Figure 5-27 shows the percentage distribution of the operative temperature during working 

hours when the low ventilation airflow rate is supplied to the office rooms.  
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Figure 5-27  Share of the working hours which operative temperatures are in the 
respective temperature intervals for low airflow rate 

 

In Figure 5-26 and Figure 5-27, it is worth noticing that the influence of the occupancy 

pattern on the temperature distribution decreases as the rooms are thermally heavier. 
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5.5.3 Influence of occupancy patterns on the energy demand 

To estimate the fan power energy demand, the simplified method employed in Høseggen 

(2006, Paper III in Appendix 4) is used. In this method it is assumed that the efficiency of 

the ventilation system ηtot is constant for all air flow rates. Provided the ventilation airflow 

is fully turbulent, the relation P ~ Q3 can be used, where P is the total of all fan power 

measured as power input to the fan engine (kW) and Q is the total mechanical airflow rate 

(m3/s). Thus, the following relation can be obtained:  

 

 
3

3 3
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PP QP P
QQ Q

⎛ ⎞
= => = ⋅⎜ ⎟

⎝ ⎠
,     (5.4) 

 

where the subscript nom indicates nominal air flow rate. By definition, the specific fan 

power (SFP) is (Mysen, 1999): 

  

 nom
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P
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Q
=        (5.5) 

 

Combining (5.4) and (5.5), following approximation for the fan power can be obtained: 
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Figure 5-28 and Figure 5-29 show the fan energy demand for the different profiles together 

with the net cooling demand for the different occupancy profiles for high and low air flow 

rate, respectively. The SFP is assumed to be 2 kW/(m3/s). 
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Figure 5-28  Fan energy demand and net cooling demand for the offices employing 

different occupancy patterns and high air flow rate 

 

The simulations indicate that different occupancy profiles only have minor influence on the 

energy demand. The greatest difference found is between the “12 to 16” profile  and the 

“8 to 12” profile for high air flow rates and light office, where the energy demand of the 

former is about 0.7 kWh/m2 (5.4 %) higher. 
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Figure 5-29  Fan energy demand and net cooling demand for the offices employing 

different occupancy patterns and low air flow rate 
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5.5.4 Closing remarks: Occupancy patterns 

The use of occupancy profiles is not indifferent when it comes to estimation of the thermal 

environment. Not surprisingly, the “12 to 16” profile is the one that causes both the highest 

peak operative temperatures and most hours with excessive temperatures during working 

hours. One of the reasons is that the internal loads and the maximum solar loads occur at 

the same time, since the offices are facing south-west. In addition, the maximum outdoor 

temperature also occurs in the early afternoon. As seen in Figure 5-20 and Figure 5-24, the 

“12 to 16” profile also has the greatest thermal mass effect. The maximum difference 

between the light and the heavy room is 1.4 K and 2.3 K for high and low ventilation rates, 

respectively. In comparison, for the “8 to 12” profile the differences are 0.9 K and 1.4 K.  

 

Also worth noticing, with an increase of thermal mass, the differences between the profiles 

decrease. 

 

The occupancy profiles are of less importance when it comes to fan power and cooling 

energy. The energy demand is typically 3-4 % lower for heavy rooms than light rooms.  

However, the total integrated air volume supplied to the heavy room is actually larger than 

what is supplied to the light room over the period. The reason for this is that the heavy room 

distributes the temperature dependent air demand (caused by temperatures exceeding the 

set-point for cooling) over a broader period of time, while the light room demands a full 

airflow rate more often but in shorter periods of time. Part load air supply is well rewarded 

according to Eq. (5.6), however, it may be questioned whether the exponent of power 

should be less than 3. Investigations of VAV systems by Maripuu (2006) showed that the 

exponent of power can vary from 1.3 to 3.0. The exponent is very dependent on the system 

characteristics and therefore difficult to assess on a general basis.  

 

As for the number of hours with excessive temperatures, the differences decrease as the 

thermal mass increases. All things considered, using the averaged occupancy pattern seems 

to be an adequate approach to approximate the real use of a room. 
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5.6 Internal heat loads 

This section considers the capability of the rooms to handle internal heat loads. As shown 

in the previous sections, most of the cases with the averaged room occupancy with normal 

heat gains result in acceptable thermal conditions. According to REN (2007), the operative 

temperature should basically not exceed 26 °C during the cooling season. However, on 

warm days it is difficult to keep the temperature within the recommended limits without the 

use of local cooling equipment. Therefore, exceeding the maximum limit is accepted in 

periods with high outdoor temperatures. As somewhat cryptically stated in REN; 

“Exceeding the highest temperature limit should be accepted during warm summer periods 

with outdoor temperatures higher than the ones being exceeded with 50 hours in a normal 

year”. For the DRY file from Oslo used in these simulations, this should mean by 50 hours.  

 

5.6.1 Mechanical night ventilation 

In this section it is assumed that the rooms are occupied the entire day from 8 am to 4 pm. 

The ventilation air flow is still set according to Eq. (5.1) and Figure 5-5 during day time. 

Three scenarios are considered during night time for high and low air flow rates; 

 

• no night time ventilation, 

• night time ventilation with conditioned air, and  

• night time free cooling 

 

The supply air temperature rise due to fan power, friction and heat exchange in the ducts 

can be significant. Depending on the length of the ducts, airflow rate, and whether the ducts 

are insulated or not, the temperature rise is in extreme cases for VAV systems measured up 

to 10 K for low airflow rates (Maripuu, 2006). In the case of night time ventilation with 

conditioned air, the diffuser air temperature is 17 °C at all times. In the case of mechanical 

night free cooling, the temperature rise of the outdoor air is taken into consideration 

approximately. A heat source added before the air inlet rises the temperature in the interval 

1 K to 5 K depending on the airflow rate, and is constricted not to exceed the room 

temperature. Figure 5-30 shows the relation between the free cooling airflow rate and 

temperature rise that is implemented in the model in the case of free cooling. 
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Figure 5-30 Temperature rise for different airflow rates in the case of free cooling  

 

To find the maximum internal heat load the rooms can handle with the given restriction, 

simulations are run iteratively until the load is found that makes the number of hours with 

excessive temperatures equal to 50 hours. Figure 5-31 and Figure 5-32 show the maximum 

internal load that the light (l), medium (m) and heavy (h) rooms can handle employing the 

different night cooling strategies for high and low air flow rates, respectively. 
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Figure 5-31 Maximum internal heat load the office rooms can handle daytime employing 
different night ventilation strategies - high airflow rate  

 



Part II: Parametric study 

 79

The simulation results indicate that the rooms can handle a considerably greater internal 

heat load if night ventilation is employed. Moreover, the heavy room can handle 22.4 W/m2 

(61 %) higher internal heat loads than the light room in case of night ventilation with 

conditioned air. In comparison, if no night ventilation is provided, the difference is only 

9 W/m2 (33 %). As shown in Figure 5-32, the tendency is the same for low airflow rates, 

but the absolute differences are smaller. 

 

l m h l m h l m h
0

5

10

15

20

25

30

35

40

45

50

55

60

H
ea

t l
oa

d 
(W

/m
2 )

No night ventilation Conditioned air Free cooling
 

Figure 5-32 Maximum internal heat load the office rooms can handle daytime employing 
different night ventilation strategies - low air flow rate 
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5.6.2 Night free cooling 

The simulations clearly show that the utilization of night ventilation is advantageous, and 

that the ability to handle heat loads increases significantly with thermal mass. However, the 

potential of utilizing night ventilation is limited by the capacity of the ventilation system. 

To investigate the full potential of utilizing night ventilation, it is therefore assumed that the 

rooms are free cooled with outdoor air (for instance supplied through operable windows or 

hatches in the façade) during night time and mechanically ventilated during day time. Both 

the night time and the daytime ventilation are controlled according to Figure 5-5, which 

implies that the night ventilation is active as long as the room temperature is above 23 0C.  

 

Figure 5-33 and Figure 5-34 show the maximum internal heat load the rooms can handle as 

a function of night time air changes for high and low daytime ventilation airflow rates, 

respectively. 
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Figure 5-33  Maximum internal heat load the rooms can handle as function of night time 

air changes. High daytime airflow rate 
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Figure 5-34  Maximum internal heat load the rooms can handle as function of night time 

air changes. Low daytime airflow rate 

 

In addition to define an upper limit for the number of hours the operative temperature can 

exceed 26 °C, REN (2007) also recommends a maximum temperature swing of 4 K during 

the day. In order to assess the full potential within the limits of REN, the set-point 

temperature for ventilative cooling is in the following simulations set to 22 °C.  

 

Figure 5-35 and Figure 5-36 show the simulation results, which indicate that by lowering 

the set-point 1 K the rooms can handle an extra internal heat load of about 10 %.  

 



Part II: Parametric study 

 82

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

Night time air changes (h-1)

In
te

rn
al

 h
ea

t l
oa

d 
(W

/m
2 )

 

 

light
medium
heavy

 
Figure 5-35  Maximum internal heat load the rooms can handle as function of night time 

air changes. High daytime airflow rate and set-point for ventilative cooling 
at 22 °C 
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Figure 5-36  Maximum internal heat load the rooms can handle as function of night time 

air changes. Low daytime airflow rate and set-point for ventilative cooling at 
22 °C 
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5.6.3 Closing remarks: Heat loads 

The simulations carried out in this section, clearly show the benefits of utilizing night 

ventilation in combination with thermal mass. By supplying the offices with air outside 

working hours, the ability of the heavier rooms to handle daytime internal heat loads is 

increased significantly compared to leaving the ventilation system turned off outside 

working hours.  

 

By increasing the airflow rate outside working hours, the potential of handling large 

daytime internal heat gains increase further for the heavier rooms. The light room 

experiences no greater improvement by increasing the night time airflow rate beyond 1-2 

ach. Although the ability to handle heat loads still increase beyond the limits of the figures, 

most of the potential for the medium and heavy rooms is reached at about 7 and 10 ach 

respectively.  
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5.7 Influence of set-points and control ranges for ventilative cooling 

This section investigates the influence of set-point for ventilative cooling and temperature 

control intervals on the energy demand. In Mathisen et al. (2005), (Paper I in Appendix 4), 

it was found for a building with a hybrid ventilation system that the set-point and allowed 

temperature swing had significant influence on the energy demand. 

 

In the previous sections, the heating and cooling have been controlled according to 

Figure 5-5, which has a set-point for cooling at 23 °C and a control range of 2 K. In this 

section other control ranges are evaluated for set-points for cooling at 22 °C and 23 °C. 

Both high and low ventilation airflow rates are studied.  

 

5.7.1 Set-point for ventilative cooling at 22 °C 

The simulation model is similar to the basic model described in Section 5.2, except that 

Figure 5-37 replaces Figure 5-5 for the temperature dependent HVAC control strategy.  
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Figure 5-37  Heating and cooling control strategy with set-point for ventilative cooling at 

22 °C 

 

Figure 5-38 and Figure 5-39 show the fan energy and net cooling demands for different 

control ranges for high and low airflow rates, respectively. The fan and cooling energy 

demand is calculated approximately as shown in Section 5.5. 
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Figure 5-38 Fan power and net cooling energy demand for different control ranges and 
high ventilation airflow rate. Set-point for ventilative cooling is 22 °C 

 

For high ventilation airflow rates, all control ranges are applicable, in the sense that none 

cause the number of hours with excessive temperatures to exceed 50. 
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Figure 5-39 Fan power and net cooling energy demand for different control ranges and 
low ventilation airflow rate. Set-point for ventilative cooling is 22 °C 
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For low ventilation airflow rates, the number of hours with excessive temperatures in the 

light office room is approaching the critical value. Table 5-5 summarizes the number of 

hours the operative temperature exceeds 26 °C during working hours for the office rooms.  

 

Table 5-5 Number of hours the operative temperature exceed 26 °C during working 
hours  for set-point at 22 °C and low ventilation airflow rate 

 Control range (K) 
 0 K 1 K 2 K 3 K 4 K 
Light 41 52 83 101 132 
Medium 0 2 3 8 13 
Heavy 0 0 0 0 2 

 

 

5.7.2 Set-point for ventilative cooling at 23 °C 

The fan and net cooling energy demands are also evaluated for a set-point for cooling at 

23 °C. Figure 5-40 shows the temperature dependent HVAC control strategy. 

 

 
Figure 5-40 Heating and cooling control strategy with set-point at 23 °C 
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Figure 5-41 and Figure 5-42 show the fan energy and net cooling demands for different 

control ranges for high and low airflow rates, respectively. 
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Figure 5-41 Fan power and net cooling energy demand for different control ranges at 
high ventilation airflow rate. Set-point for ventilative cooling is 23 °C  
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Figure 5-42 Fan power and net cooling energy demand for different control ranges at low 
ventilation airflow rate. Set-point for ventilative cooling is 23 °C 
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By increasing the set-point for cooling by 1 K to 23 °C, the net energy demand in the case 

of high airflow rate decrease about 7-15 % for the control ranges, respectively. For low 

airflow rate, the demand decrease about 7-12 %. 

 

As for a set-point at 22 °C, the number of hours with excessive temperatures is acceptable 

for all rooms and control ranges for a high airflow rate. However, as seen in Table 5-6, for a 

low airflow rate applied to the light office room, the limit is exceeded for any control range. 

Even for the medium room excessive temperatures are critical when the control interval is 

4 K. On the other hand, as seen in Figure 5-41 and Figure 5-42, the energy savings gained 

by increasing the control range beyond 3 K are sparse when the set-point for cooling is 

23 °C. 

  

Table 5-6  Number of hours the operative temperature exceed 26 °C during working 
hours  for set-point at 23 °C and low ventilation airflow rate 

 Control range (K) 
 0 K 1 K 2 K 3 K 4 K 
Light 95 110 147 178 218 
Medium 5 10 16 32 59 
Heavy 0 0 2 6 15 

 

 

5.7.3 Closing remarks: Set-points and control ranges 

For small control ranges and low set-point, thermal mass is only sparsely utilized, and only 

minor energy demand differences between the rooms is observed. By increasing the 

set-point for cooling and allowing the temperature to float somewhat before full airflow is 

supplied, the medium and heavy rooms perform significantly better than the light room. 

 

An increase of the control range beyond 3 K to 4 K does not improve the performance 

significantly, and will also for the medium room at low airflow rate, cause the number of 

hours with excessive temperatures to approach the critical value. 

 

It is worth noticing that the heavy room performs only slightly better than the medium 

heavy room concerning fan power and net cooling energy demand.  
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5.8 Influence of convective heat transfer correlations 

By default, ESP-r uses natural convection correlations for building surfaces. However, as 

discussed in Section 2.1.3, the choice of heat transfer coefficients may greatly influence the 

simulation results. In this section, the influence of the air supply diffusers on the convection 

regimes and their impact on the operative temperature is evaluated. For the office rooms, 

two cases are studied; 

 

• Buoyant forces are assumed to dominate the airflow regime and the default 

Alamdari and Hammond (1983) correlations are applied to the room surfaces at all 

times. 

• The Fisher and Pedersen (1997) correlations for ceiling radial jets are applied when 

the ventilation system is running. Outside the time of operation, the Alamdari and 

Hammond correlations are applied. 

 

The heat transfer correlations by Fisher and Pedersen are applicable only for supply 

temperatures between 10 °C and 25 °C and for enclosure air change rates from 3 to 100 

ach. Hence, only the case of high airflow rate (equivalent to 3.6 ach) is considered. The 

convection correlations used in this study can be found in Appendix A2.7.  

 

In this section, it is assumed that the rooms are occupied the entire day from 8 am to 4 pm. 

The internal gains from Table 5-3 are used, i.e. in total 34.5 W/m2, and the ventilation air 

flow is still set according to Eq. (5.1) and Figure 5-5.  
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5.8.1 Influence on the peak operative temperature 

Figure 5-43, Figure 5-44, and Figure 5-45 show the operative temperature on Wednesday 

from the warm week in August presented in Section 5.5, for the light, medium, and heavy 

office rooms, respectively.  
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Figure 5-43 Operative temperature in the light office room assumed when natural forces 

dominate at all times (Alamdari & Hammond) and when forced convection is 
taken into account (Fisher & Pedersen) 

 

0 2 4 6 8 10 12 14 16 18 20 22 24
22

23

24

25

26

27

28

Hour

O
pe

ra
tiv

e 
te

m
pe

ra
tu

re
 (o C

)

 

 
A lamdari & Hammond
Fisher & Pedersen
occupied

 
Figure 5-44  Operative temperature in the medium office room when natural forces 

dominate at all times (Alamdari & Hammond) and when forced convection is 
taken into account (Fisher & Pedersen) 
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Figure 5-45  Operative temperature in the heavy office room when natural forces 

dominate at all times (Alamdari & Hammond) and when forced convection is 
taken into account (Fisher & Pedersen) 

 

The simulation results indicate that the choice of convection correlations significantly 

influence the room operative temperatures. Moreover, the greatest effect is for the medium 

room, which experiences a decrease of 0.6 °C of the peak operative temperature. Table 5-7 

summarizes the peak operative temperatures for the rooms. 

 

Table 5-7 Peak operative temperatures and peak temperature differences  

 Peak temperature (°C) Difference (K) 
 Alamdari & Hammond Fisher & Pedersen A&H - F&P 
Light 27.3 27.0 0.3 
Medium 26.2 25.6 0.6 
Heavy 25.6 25.2 0.4 
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5.8.2 Capability to handle internal heat loads 

Since the choice of convection correlations improves the ability of the room to decrease the 

peak operative temperatures, it should be interesting to see whether the forced convection 

regimes also increases the internal heat load the room can handle, as studied in Section 5.6. 

 

Figure 5-46 shows the maximum internal heat load the light (l), medium (m) and heavy (h) 

rooms can handle, when the Alamdari and Hammond correlations (similar to Figure 5-31 in 

Section 5.6) and the Fisher and Pedersen convection correlations are applied. 
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Figure 5-46 Maximum internal heat load the office rooms can handle daytime with the 
different correlations applied 

 

The medium room experiences the greatest improvement in handling internal heat loads by 

applying the Fisher and Pedersen correlations. When taking into account the forced 

convection regime when the ventilation system operated, the medium room can handle an 

internal heat load of about 10 % higher than if only natural convection forces are assumed. 

In comparison, the light and heavy rooms only experience an improvement of less than 1 % 

and 3 %, respectively. 
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5.8.3 Closing remarks: Heat transfer coefficients 

Improved heat transfer as a consequence of the forced convection regimes will in practice 

make the rooms heavier because the effective thermal mass increases. This is evident in the 

morning, as the temperature drops more rapidly when only natural convection correlations 

are used when the ventilation system switches on at 6 am. The peak operative temperatures 

are also decreased compared to when only buoyancy forces are taken into consideration. 

 

The simulations done in this section indicate that if the supply air is forced along the ceiling 

surface, the performance of the medium room improves relatively more than the heavy and 

light rooms. The explanation is that in case of the heavy room, relative increase of the 

effective thermal mass is smaller than the medium room. For the light room, the forced 

convection does not increase the effective thermal mass considerably, because the ceiling 

construction cannot absorb much heat due to the light construction of the suspended ceiling. 
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5.9 Summary 

A summary now outlines the most important findings and results from the parametric study. 

 

5.9.1 Operative temperature 

Both the simplified analytical method and dynamic simulations indicate that the climates 

evaluated in this study should have a large potential to cool buildings outside working 

hours. The simulations indicate that the utilization of outdoor air to cool the office rooms 

outside working hours, keeps the operative temperature well within the limits of comfort 

for most cases during working hours.  

 

The peak operative temperature during a warm and sunny day is significantly decreased for 

the medium and heavy rooms compared to the light room. This is proven to be the case for 

the occupancy patterns, internal heat loads and climates similar to those evaluated here. 

 

If the air is supplied to the rooms along the ceiling surface, the peak operative temperatures 

are decreased further. The most important decrease is observed for the medium room, which 

experiences 0.6 K reduction of the peak operative temperature compared to cases where the 

forced convection regime is not taken into account. 

 

5.9.2 Capability to handle internal heat loads 

Thermal mass combined with night time ventilation make the rooms capable of handling 

considerable higher daytime internal heat loads than light rooms. Provided thermal capacity 

is equivalent to the medium room or more, high daytime ventilation rates, and sufficient 

night ventilation, a single office room with normal use will stay well within the limits of 

comfort without space cooling. Even though the medium room supplied with a low airflow 

rate can handle only the internal heat load of about half of the load with a high airflow rate, 

one must keep in mind that the simulations on internal heat loads are done with the 

assumption that the room is occupied constantly. 

 

Night cooling with outdoor air can substitute air-conditioned ventilation without a 

significant decline in performance. If outdoor air is supplied at rates beyond the capacity of 

the ventilation system, the ability of the rooms to handle daytime internal heat loads 
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increases. While the capacity if the light room is reached already at 2 ach, the medium and 

heavy rooms increase their respective performance up to 7 ach and 10 ach and beyond. 

 

Concerning peak operative temperature, the medium room makes best use of the forced 

convection regime that a radial ceiling diffuser provides. While the light and heavy rooms 

barely increase the ability to handle internal heat loads, the medium room increases its 

ability by about 10 % compared to the case with only natural convection forces involved.  

 

Based on the simulations, the ambition of TEK, that local cooling should be avoided, is 

applicable in any office building, provided that there is sufficient night ventilation and 

thermal mass. However, and this cannot be emphasized enough – this is valid only when 

the external heat loads are controlled. This means that effective external sun shading is 

crucial for the results from this study to be valid.  

 

5.9.3 Energy savings 

The energy assessments done in this study have been related to the cooling of ventilation 

air, fan power, space heating, and preheating of ventilation air. The simulations suggest that 

thermal mass improves the energy efficiency. In this study it is found that the heavy room 

demands about 10-20 % less total fan power and net cooling energy than the light room. 

Moreover, the medium room has about the same potential for saving fan power and cooling 

energy as the heavy room.  

 

The simulations with focus on the set-point for cooling and control ranges showed that the 

temperature should be allowed to float somewhat before full air supply to utilize the 

thermal mass. A control range of 2-3 K should be allowed, however, with an increase of the 

control band beyond 3 K only minor savings are gained and the risk of excessive 

temperatures is increased. 

 

However, the simulations done could not confirm the claimed benefits from the literature of 

utilizing thermal mass to reduce the annual heating demand. Only minor differences in 

heating energy demand with respect to thermal mass were found. The minor differences 

reported here (about 1 % - 5 %) are in accordance with the findings in Høseggen (2007, 

Paper V in Appendix 4), where the savings were estimated to be less than 3-7 %, depending 

on the ventilation system and room occupancy for a medium mass room compared to a light 

mass room. 
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5.9.4 Energy savings vs. thermal environment 

The simulations done in this parametric study show that thermal mass improves the energy 

efficiency in buildings, thus decreases the building operation costs. However, the fact that 

the number of hours with high operative temperature is decreased and that the temperature 

is more stable during the working hours may constitute a greater economic savings 

potential due to increased productivity.  

 

For example, if the working performance loss curve introduced in Figure 1-5 is employed 

on the simulation results with Oslo climate from Figure 5-9, where all rooms are within 

comfort limits, the light room has a loss of productivity of 6 hours, the medium room 3.5 

hours, and the heavy room 3 hours. Although the loss of productivities seem modest, 

applied to a building where several hundred people work, productivity loss due to high 

temperatures may be significant. And again, note the small difference between the medium 

room and the heavy room. 
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PART III: 

 
EXPERIMENTAL STUDY 

 
 

 

Part III is an extended description of the field study that formed the 

basis of the paper ‘The effect of suspended ceilings on energy 

performance and thermal comfort’, which is found in Appendix 4.  

 

The sections in this part will give some supplementary description on 

the instrumentation, reliability of the measurements, and the achieved 

results.  

 

 

 

FIELD STUDY 
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6. FIELD STUDY 
In the literature reviewed in Part I, only a few studies were found that both assessed the 

potential heating and cooling load benefits of exposed thermal mass in office buildings. 

Moreover, the experimental studies were solely on test cells, and they were not taking user 

behaviour and advanced building control systems into account. The objective of the field 

study presented here was to use measurements to determine the potential energy savings 

and thermal environmental benefits of exposing the concrete ceiling to the indoor air as an 

alternative to the original suspended ceiling in a real building in operation.  

 

The field study was carried out during the period from October 1st 2005 to October 15th 

2006. The case used in this study is an office building on the Nord-Trøndelag University 

College (HiNT) campus in Levanger (63.75°N), located 80 km north of Trondheim, 

Norway (see map in Section 5.3). The building, which will be referred to as Røstad, is 

located in rural surroundings close to the fjord. The climate can be considered coastal.  

 

 
Figure 6-1 The case building viewed from the south 
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6.1 Building description 

The building, which was ready for occupation in August 2002, has one wing with common 

and educational areas, and two office wings. Here, only one of the office wings (the TKS 

wing) was studied. The TKS wing has a separate ventilation system and can be controlled 

individually from the rest of the building.  

 

 

 
Figure 6-2 Plan view of the second floor showing the common area and the two office 

wings. The point labelled “Photo” is from where the photo in Figure 6-1 is 
taken. (Modified from Statsbygg, 2002) 

 

The TKS office wing has mostly single office rooms and a few meeting rooms. In all, the 

wing has 38 rooms and a total available area of about 670 m2. 

 

 



Part III: Experimental study 

 101

6.1.1 Ventilation system 

The hybrid ventilation is of so-called culvert type. Air is brought into a concrete duct 

embedded in the ground via an air intake tower and flows into to the distribution culvert, 

which is located on the central axes of the building.  In principle, the system at Røstad is 

constructed as shown in Figure 6-3 and Figure 6-4. 

 

 
Figure 6-3 The principle of the culvert (Mathisen, 2004) 
 

 

 
Figure 6-4 Cross section of the building with culverts. 1: Air intake tower. 2: Air intake 

culvert. 3: Air distribution culvert. 4: Offices. 5: Corridors. 6: Stairway. 7: 
Exhaust air tower. (Modified from Statsbygg, 2002 ) 

 

The use of concrete air supply ducts has some advantages. During winter time, when the 

outdoor temperatures are low, the culvert contributes to preheat the ventilation air due to 

the relatively warmer wall and ground temperature. Conversely, on hot summer days, the 
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walls provide a cooling effect since the temperature in the ground is relatively cooler than 

the outdoor air (Wachenfeldt, 2003). 

 

The ducts from the culvert to the rooms are buried in the ground beneath the floor. At the 

façade the ducts turn 90° upwards. The ducts end in dampers placed inside the supply air 

terminal device. The air diffusers are placed at the floor beneath the windows.  From the 

offices the air flows through grilles placed close to the ceiling and into the corridor. 

Exhaust of air takes place through corridors and stairway up to the tower on the roof. The 

exhaust air tower contains a heat recovery coil and a fan.  

 

 
Figure 6-5 Inside of the air distribution culvert, showing the air supply duct stubs. Each 

duct supplies an office room (Mathisen, 2004) 
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6.1.2 Heating and ventilation control 

Figure 6-6 shows the principle of the ventilation system. The supply and exhaust fans are 

controlled by the pressure difference between the culvert and corridor on the second floor, 

i.e. the fans keep the pressure difference constant. When there is no heating demand for the 

ventilation air and the outdoor temperature exceeds 15 °C, the bypass dampers open to 

reduce the pressure drop. 
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Figure 6-6 Principle of the ventilation system 
 

The dampers in the supply air terminal devices control the airflow rate to each room. They 

operate as follows: Normally they close at 4 pm. At 6 am the dampers open to give 

approximately 25 m3/h (3.3 m3/h per m2) ~ 1.2 ach) of air. When a person enters the room 

they open to supply 43 m3/h (5.7 m3/h per m2) ~ 2 ach). If the room air temperature exceeds 

the set-point for ventilative cooling they open further. The dampers will continue to open 

proportionally with the temperature until they reach full opening at 25°C, supplying the 

rooms with about 200 m3/h (26.7 m3/h per m2 ~ 9 ach). If the room air temperature is above 

the set-point for ventilative cooling, the dampers also open at night, provided that the 

outdoor temperature is above 15 °C. Figure 6-7 shows the temperature dependent heating 

and ventilation control.  
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Figure 6-7 Heating and ventilation control strategy  
 

Originally the set-point for ventilative cooling was 21.3 °C and had a control range of 1 K 

before full air supply rate. After the findings in the study by Mathisen and Høseggen (2005, 

Paper I in Appendix 4), which evaluated the influence of the set-point and control range on 

the heating energy demand, the set-point for ventilative cooling and control range were 

increased to the present. 

 

6.1.3 Office rooms 

Each office has a presence detector, a temperature sensor and a digital controller unit that 

controls heating, ventilation and lighting. A room is registered as empty if the detector has 

not detected any movement for five minutes. To avoid the ventilation and lighting to turn 

on and off for short room absences, a 20 minute time delay is implemented for these 

controls. This means that a person must be absent more than 20 minutes before the lights 

switch off, the set-point changes and the ventilation is turned down.  

 

The six rooms of special interest in this study (Room EC1 to EC3 and SC1 to SC3, see 

Figure 6-2) are located on the second floor at the east-north-east side of the building. From 

this point on, the rooms with exposed concrete in the ceiling will be referred to as EC, and 

the rooms with the original suspended ceiling as SC.  
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Figure 6-8     Room with the suspended 

ceiling removed (EC) 

 
Figure 6-9     Room with suspended ceiling 

(SC) 
 

The rooms are about 7.5 m2 and are equally equipped with a laptop, an external LCD-

screen, are similarly furnished and have the same heating and lighting equipment. The 

office rooms have painted plaster internal walls and glazed wall to the hallway. The floors 

are concrete with a linoleum covering. All rooms originally had suspended ceilings of 

painted plasterboard with 50 mm insulation above, which are removed in Room EC1 to 

EC3. 

 

The reason why six offices were involved in the study was to make the rooms adjacent to 

EC2 and SC2 similar, thus minimizing boundary differences. 
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6.2 Instrumentation 

6.2.1 Climate parameters 

Outdoor dry bulb temperature and wind data were monitored by the building energy 

management system (BEMS). The solar data were collected using the BF3 Sunshine Sensor 

(Delta-T, 2006), which measures both global and diffuse radiation. Appendix A3.1 shows 

how the direct normal radiation is found from the global and diffuse radiation. The relative 

humidity was recorded using the Tinytag Plus 2 logger (Intab, 2006) 

 

The climatic parameters were used for calibrating a simulation model, as shown in Paper V. 

 

6.2.2 Room and building parameters 

Room air temperature, air supply damper positions, radiator valve positions and room 

set-points were registered every 15 minutes by the building energy management system 

(BEMS). The occupancy of every room in the building was also registered. In addition, 

Room EC2 and Room SC2 were equipped with six thermocouples connected to a logger to 

get a more detailed picture of the air temperature stratification, air supply temperature and 

surface temperatures.  

 

6.2.3 Measurement uncertainties  

The thermocouples measuring the room temperatures were calibrated using an ice/water 

mix as reference before they were assembled. Although the thermocouples of the type used 

in this experiment (T-type) has an uncertainty of less than 0.1 K in the temperature interval 

in question, the loggers used raised the uncertainty to 0.3 K. The error ranges of the BEMS 

room temperature sensors are reported by the manufacturer to be 0.5 K.  

 

Since both heating and ventilation control outputs are dependent on the room temperature, 

it was crucial that the room temperature sensors were accurate. In Figure 6-10 and 

Figure 6-11 the temperatures measured by the thermocouples are compared to the 

temperature recorded by the BEMS for Room EC2 and Room SC2, respectively. The 

periods from each season chosen for further analysis are also marked in the figures. 
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Figure 6-10 Room EC2: At the top, the air temperature measured by the thermocouples 

(Y-axis) plotted against the temperature registered by the BEMS (X-axis). 
Below, the temperature difference between the two values (Y-X). The periods 
chosen for further analysis are also marked 
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Figure 6-11 Room SC2: At the top, the air temperature measured by the thermocouples 

(Y-axis) plotted against the temperature registered by the BEMS (X-axis). 
Below, the temperature difference between the two values (Y-X). The periods 
chosen for further analysis are also marked 

 
Ideally, all points in the scatter plots in Figure 6-10 and Figure 6-11 should be at the 

diagonal dashed line since the same parameter is measured. However, both figures show 

that the temperature recorded by the BEMS is slightly higher for low temperatures than the 

thermocouples, and conversely, lower for high temperatures. This may be due to the 

placement of the sensors. The thermocouples are placed just a metre from the window and 

may be exposed to warm and cold radiation from the window surface. The sensors may also 

have been exposed to direct solar radiation, which may explain the positive peaks in the 
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temperature difference plots. Negative peaks may have occurred when the windows were 

opened. In addition, the thermocouples are close to the workplace and may be influenced 

by heat emitted from equipment and the person at the desk. The BEMS temperature sensor 

is placed at the back wall in the room and is less exposed to these factors. The 

thermocouples are also more responsive than the BEMS temperature sensor, thus 

temperature changes are recorded earlier by the thermocouples. And lastly, the recorded 

temperatures from the thermocouples are averages within the interval, as opposed to the 

BEMS recordings, which are instantaneous values every quarter of the hour. This means 

that occasional swift temperature variations may have been registered by the BEMS sensor, 

and smoothed out for the averaged thermocouple registrations. 

 

The occupancy data also have some degree of uncertainty. As mentioned, room absence 

was registered when no movement was detected for five minutes. In the post-processing of 

the data, this delay was subtracted from each time the room was registered as empty. This 

implies that absences shorter than five minutes were not registered, and affects the results in 

the direction of a higher registered occupancy than the actual occupancy. There may also 

have been false detections caused by non-human activity. On the other hand, false 

registrations may have occurred when a person was present but not detected because the 

movements were too small. This will result in a lower registered occupancy than the actual 

occupancy. In Appendix A3.2 the mean recorded occupancy with and without delay for the 

two rooms are shown. 

 

The ventilation airflow rate is perhaps the element of highest uncertainty. The airflow rate 

is very sensitive to pressure variations caused by varying wind conditions. However, the 

pressure loss in the culvert between the supply ducts to two rooms is neglectable, thus the 

same damper opening will approximately supply the same rate of air to the rooms. 

Therefore, the damper positions rather than the absolute airflow is considered, since it is the 

difference between the rooms that is of interest.  
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6.3 Measurements 

6.3.1 Criteria for data evaluation 

To be able to compare the performance of Room EC2 and Room SC2 it was crucial that 

both rooms were approximately similarly used for periods of at least three days in a row in 

order to take the effect of heat storage into account. This is of great importance since the 

set-point for heating and ventilation is dependent on whether people are present or not. In 

addition, heat gains from lighting and people will also influence the room temperature 

considerably. During the entire year there were only 10 periods that more or less fulfilled 

these criteria.  

 

6.3.2 Measurement results 

For every period, the EC2 and SC2 temperatures are plotted for comparison. However, 

since the HVAC-system always will try to even out any deviation from the set-point, the 

damper positions, which directly affect the air flows, are also plotted. In addition, the set-

points and the ventilation rates are (or may be) dependent on the presence of people. 

Therefore, the rather complex picture needs four plots for comparison – air temperature, 

damper position, actual occupancy and the recorded occupancy added a 20 minute delay. 

 

Figure 6-12 to Figure 6-15 show the measurement results from the periods in each season 

that met the criteria for evaluation.   
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Figure 6-12  Autumn: Saturday October 29th to Monday October 31st 2005 
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Figure 6-13  Winter: Saturday December 31st 2005 to Monday January 2nd 2006 
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Figure 6-14  Spring: Sunday May 7th to Tuesday May 9th 2006. 
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Figure 6-15  Summer: Tuesday August 22nd to Thursday August 24th 2006 
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Table 6-1 Summary of the key parameters from the 3-day periods given in Figure 6-12 
to Figure 6-15 

Season Mean temp 
(°C) 

Max temp 
(°C) 

Total air flow 
(m3) 

Occupancy 
0/20 (h) 

 EC2 SC2 EC2 SC2 EC2 SC2 EC2 SC2 

Autumn 20.8 21.2 22.5 23.2 442 530 4.2/5.3 2.9/5.6 

Winter 19.4 20.0 21.5 22.1 376 383 6.6/10.2 4.7/11.2 

Spring 24.0 24.3 25.3 25.4 3208 5630 9.1/12.3 4.9/12.0 

Summer 23.9 24.1 25.1 25.5 4158 5868 4.1/7.0 4.0/9.2 

 

The radiators were operating only during the 3-day winter period, and required 3.5 kWh 

and 2.6 kWh for EC2 and SC2, respectively.  

 

The following observations can be made from the measurement results: 

 

• Neither the mean temperatures nor the maximum temperatures are 

significantly different for the two rooms.  

• To obtain the thermal conditions, Room SC2 requires considerably higher air 

volume flow rate, especially during the summer and spring periods.  

• Room EC2 is according to the occupancy data used more intensively than 

Room SC2. The ratio between occupancy without delay and with a 20 minute 

delay is higher for Room EC2, which indicates that the room is used more 

continuously than Room SC2. 
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6.4 Discussion of the results 

At first sight, the measurement results indicate that Room EC2 performs best with respect to 

cooling demand. However, there are some factors that must be taken into consideration 

before crediting the exposed concrete ceiling. Although emphasis had been on making the 

conditions in the studied office rooms as similar as practically possible, by removing the 

suspended ceiling, the room volume increased about 4 m3 and an the external wall area 

increased about 1.2 m2. In addition, the suspended ceiling is made of a 22 mm plaster board 

and a 50 mm mineral wool board, which provided extra insulation. This may have had an 

influence on the results, and is also supported by the measurements of the radiator use 

during the 3-day winter period. The radiator uses about 35 % more heating energy during 

this period.  

 

The presence of people does not only affect the indoor temperature by virtue of internal 

heat load, but also ventilation, lighting and room temperature set-points. In addition, the 

HVAC system will always try to equalize any deviation from the room temperature set-

point, thus a quantitative evaluation of the performance of the office rooms under normal 

operation directly from the measurements has been difficult.  

 

6.5 Closing remarks 

The many parameters affecting the indoor temperature have made it difficult to use the 

measurements directly to address and quantify the apparent achievements of exposing the 

concrete in the ceiling to the indoor air. Hence, to be able to compare the performance of 

the rooms on an equal basis, a simulation model had to be used. The modelling, verification 

and calibration of the whole-building simulation model, and the simulation results can be 

found in the paper ‘The effect of suspended ceilings on energy performance and thermal 

comfort’, which is enclosed in Appendix A4. 
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PART IV: 
 

SUMMARY AND 
CONCLUSIONS 

 
 

 

Part IV summarizes and synthesizes the findings from all parts and 

papers in this thesis. It discusses them based on principles and makes 

some final conclusions and suggestions for further study. 
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7. SUMMARY AND CONCLUSIONS 

7.1 Summary of Part I 

From the literature, strong evidence points towards thermal mass together with night 

ventilation can reduce the indoor maximum operative temperature, reduce the cooling 

energy demand, and offset the peak cooling demand. All studies reviewed, both the 

experimental and the analytical, support this. Thermal mass combined with night 

ventilation may reduce the maximum indoor temperature by 2-6 K, provided there is 

adequate diurnal outdoor temperature swing, preferably more than 10 K. To get the desired 

effect, the night temperature should also fall below 20 °C.  

 

Dependent on the climate and building type, the cooling energy savings found in the 

literature span from 5 % to 36 %. Moreover, some studies conclude that if the heat gains are 

not too excessive in office buildings, thermal mass and night ventilation should be 

sufficient to cover the cooling demand alone in moderate climates. This latter point is an 

especially interesting finding from a Norwegian point of view, since the new building code 

regulations state that local space cooling should be avoided.  

 

Studies found in the literature reviewed also conclude that thermally heavy buildings have 

lower space heating energy demand than light buildings. It is claimed that heavy residential 

and office buildings demand about 15 % and 20 % less heating energy respectively, 

compared to equivalent light buildings.  

 

7.2 Summary of Part II 

In the parametric study, the objective was to assess the efficiency of building thermal mass 

in a Norwegian context, i.e. Norwegian building code and climate, and to test some of the 

findings from the literature study. A simulation model of a single office room was 

implemented in ESP-r with properties according to the new building regulations. A 

thermally light, medium and heavy version of a single office cell was tested for different 

climates, occupancy patterns, internal heat loads, set-points for cooling and control ranges, 

and heat transfer correlations. 
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The results from the parametric study indicate that the climates similar to those evaluated 

here have a large potential to cool buildings outside working hours, and that night-time free 

cooling combined with thermal mass keep the operative temperature well within the limits 

of thermal comfort during working hours. The peak operative temperatures are also 

significantly decreased for the medium and heavy rooms compared to the light room. This is 

proven to be the case for the occupancy patterns, internal heat loads and climates similar to 

those evaluated here.  

 

The parametric study indicates that thermal mass combined with night-time ventilation 

make the rooms capable of handling considerable higher daytime internal heat loads than 

light rooms. Provided that there is sufficient night ventilation and thermal capacity 

equivalent to the medium room or more, the temperatures in a single office room with 

normal use will stay well within the limits of comfort most of the year without the use of 

space cooling.  

 

The energy assessments done in this study have been related to the cooling of ventilation 

air, fan power, space heating, and preheating of ventilation air. The simulations show that 

thermal mass improves the energy efficiency. In this study it is found that the heavy room 

demands about 10-20 % less total fan power and net cooling energy than the light room. 

Moreover, the medium room has almost the same potential for saving fan power and 

cooling energy as the heavy room. However, only minor differences in heating energy 

demand with respect to thermal mass were found.  

 

7.3 Summary of Part III and Paper V 

The experimental field study aimed at using measurements to determine potential energy 

savings and thermal environmental benefits of exposing the concrete ceiling to the indoor 

air as an alternative to the original suspended ceiling in a real building in operation. 

Although emphasis was on making the conditions in the studied office rooms as similar as 

practically possible, removal of the suspended ceiling enlarged both the room volume and 

the area exposed to the exterior. This may have had influence on the measurement results 

obtained in the study.  

 

The number of different parameters affecting the indoor temperature made it difficult to use 

the measurements directly to address and quantify the apparent achievements of exposing 
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the concrete in the ceiling to the indoor air. To ensure full control of all parameters 

affecting the indoor air temperature and to quantify the benefits the measurements 

indicated, a whole-building simulation model was implemented in ESP-r. The 

measurements were used to calibrate and validate the simulation model.  

 

The results from the measurements and simulations showed that exposed concrete in the 

ceiling reduces the number of hours with excessive temperatures considerably and also 

created a better and more stable thermal environment during the working day. Also, 

exposed concrete increased the achievements of utilizing night free cooling significantly. 

However, by exposing concrete in the ceiling, only minor annual heating energy savings 

were achieved.  

 

7.4 Discussion of principles and transferability  

Focus in the thesis has been on the Norwegian climate. However, the coastal climate in 

Norway with relative mild winters and cool summers has more in common with the 

moderate climates of Northern Europe and especially the British Isles than other inland 

countries at same latitude as Norway. Still, Norway is a country situated far north, and 

during winter time when the days are short and the sun is low in the horizon, the heat 

contribution from the sun is limited. Countries farther south may to a greater extent utilize 

solar gains to reduce the heating demand, thus thermal mass may be more important in 

relation to heating demand reduction. 

 

The trend in office buildings today is towards extended use of open plan offices, or a mix of 

office rooms and open solutions. The question is whether the results obtained in this thesis 

are transferable to other room types. Obviously, the thermal capacity equivalent to the 

heavy office room is not practically possible to achieve without heavy mass partition walls. 

On the other hand, due to acoustics and increased demand for flexibility in office buildings, 

the heavy version of the office room presented in the parametric study is unrealistic in 

practice. However, as shown in Part II and Paper V, exposed concrete in the ceiling 

produces a significant thermal mass effect. This is also in accordance with findings in the 

literature, which state that the greatest effect is achieved when going from a light 

construction to a semi-heavy construction and that the effect is diminished by a further 

increase of thermal mass.  
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Since local space cooling should be avoided according to the new Norwegian building 

energy regulations, the focus in this thesis has been mainly concerned with means to avoid 

cooling and finding the limits for which cooling could be avoided. However, modern 

buildings have highly insulated envelopes, and persons, lighting and equipment emit 

considerable amounts of heat, which in some way or other must be removed from the space 

to avoid excessive temperatures. Consequently, the excessive heat must be removed from 

the building with the ventilation air. This is also the reason why this thesis mainly focuses 

on demand control ventilation (DCV), i.e. ventilation which meets the required supply 

airflow rate based on occupancy, contaminants, and/or temperature. Although most 

buildings in Norway have constant air volume (CAV) systems, more and more new 

buildings are being equipped with variable air volume (VAV) or DCV systems. For CAV 

systems, the results obtained here should be transferable regarding the thermal conditions. 

However, the fan energy and net cooling demands will be independent of the thermal mass 

amount, since the ventilation is solely time controlled. On the other hand, if the temperature 

is size dimensioning for the ventilation system, thermal mass may contribute to reducing 

investment cost, and oversized installations may be avoided.  

 

Studies found in the literature, the simulations done in the parametric study, measurements 

carried out in the field study and the simulations with the whole-building simulation model 

show that thermal mass improves the energy efficiency in buildings, thus decreasing the 

operation costs. In addition, the thesis shows that the number of hours with high operative 

temperature is decreased and that the temperature is steadier during the working hours. In 

office buildings, this constitutes a great economic savings potential due to improved 

performance and working efficiency. This fact should provide an extra motivation for 

building owners, thus making utilization of thermal mass contributory to an improved 

environment – both indoors and outdoors. 

 



Part IV: Summary and Conclusions 

 121

7.5 Main conclusions 

Within the limitations of this thesis and based on the findings from all parts and papers in 

this thesis, the following conclusions can be drawn: 

 

• Thermally heavy rooms may reduce the daytime peak temperature, reduce the 

diurnal temperature swing, decrease the number of hours with excessive 

temperatures, and increase the ability of a space to handle daytime heat loads. 

Depending on the ventilation airflow rate, occupancy pattern, and prevailing 

convection regime, compared to a light room, a heavy room may; 

- reduce the daytime peak temperature by 1-2 K, 

- decrease the diurnal temperature variation by 2-3 K, and 

- increase the ability to handle daytime internal heat loads by 50-120 %.  

 

• Thermal mass may contribute to decrease the net cooling demand in buildings. 

Dependent on set-point for ventilative cooling, control range, occupancy pattern, and 

airflow rate, compared to a light room, a heavy room may; 

- reduce the ventilation net pre-cooling and fan power demand by 10-20 %, or  

- eliminate the need for space cooling also for low ventilation airflow rates 

during working hours. 

 

• Thermal mass is found to have only a minor influence on the total heating demand in 

office buildings. Dependent on the daytime internal heat load, occupancy pattern, 

and climate, a thermally heavy room compared to a light room may; 

- decrease the total space heating and ventilation pre-heating demand by less 

than 3-7 % on annual basis, but  

- reduce the energy savings potential of night temperature set-back with 3-4 %. 

 

• As a consequence of the findings listed above, thermal mass contributes to;  

- fulfil the net energy frame for the building category in question, 

- eliminate the need for space cooling in new office buildings, and 

- improve the thermal climate and thereby increase working performance in 

office buildings without the need for energy intensive and expensive 

technical installations. 
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7.6 Suggestions for further work 

 

• The main focus in this thesis has been on office buildings. Further studies could be 

done to investigate whether thermal mass is beneficial also for other building 

categories. The new Norwegian building regulations include most building 

categories, and a thermal mass assessment should be performed for the most relevant 

non-industrial building types with emphasis on the typical user characteristics for the 

building type in question. 

 

• As discussed, barriers for utilization of thermal mass are loss of flexibility and 

acoustical challenges. Phase changing materials (PCM) is a promising technique, 

and can be included in included in building fabrics or even in mobile partitioning 

walls to increase the thermal capacity and still maintain the flexibility of the 

building. The efficiency of using PCM as “assisting” thermal mass should be an 

interesting continuance of this study.  

 

• Another area is to investigate the potential for including weather forecast control in 

relation to the thermal response of buildings for optimal operation. 

 

• In the parametric study, the influence of different convection correlations was 

assessed. Further studies could be done in order to find solutions for supply air 

diffusers for optimal utilization of heavy mass constructions – in particularly 

exposed concrete ceilings. 

 

• A final suggestion is to investigate the combination of DCV systems and heavy 

building structures to develop recommendations for modern buildings. This could 

combine sub-hourly building and short time-step HVAC plant simulations. 

 



References 

 123

REFERENCES 
 
Alamdari F., Hammond (1983), Improved Data Correlation for Buoyancy-Driven 
Convections in Rooms, Building Services Engineering Research and Technology, 4 (3), 
106-112. 
 
Andersson B., Kantrowitz M., Albrand P., Webster T., Adegran M., Kammerud R. (1987), 
Effects of Occupant Issues on the Energy Performance of Two Existing Passive 
Commercial Buildings, Building and Environment 22, pp. 13-48. 
 
Arge K. (2003), Generalitet, fleksibilitet og elastisitet i kontorbygninger – Hvilke typer 
tilpasningsdyktighet bør norske byggherrer velge, og hva velger de? (Eng: Generality, 
flexibility and elasticity in office buildings), Prosjektrapport 340, NBI, Oslo, Norway. 
 
Artmann N., Manz H., Heiselberg P. (2007), Climatic potential for passive cooling of 
buildings by night-time ventilation in Europe Applied Energy, 84 (2), pp.187-201.   
 
Asan H. (1999), Investigation of wall’s optimum insulation position from maximum time 
lag and minimum decrement factor point of view, Energy and Buildings 32, pp. 197-203. 
 
ASHRAE (2005), ASHRAE Handbook Fundamentals Chapter 6, SI-edition.  
 
Bakke J.V. (2004), Effekter av inneklima på helse, funksjon og komfort (in Norwegian), 
Study report for Enova, Trondheim, Norway.    
 
Balaras C.A. (1995), The role of thermal mass on the cooling load of buildings. An 
overview of computational methods, Energy and Buildings 24, pp. 1-10. 
 
Balcomb J.D (ed.) (1992), Passive Solar Buildings, MIT, US. 
 
Beausoleil-Morrison I. (2000), The Adaptive Coupling of Heat and Air Flow Modeling 
Within Dynamic Whole-Building Simulation, PhD Thesis, University of Strathclyde, 
Glasgow, UK. 
 
Beausoleil-Morrison I. (2002), The Adaptive Simulation of Convective Heat Transfer at 
Internal Building Surfaces, Building and Environment 37, pp. 791-806.  
 
Bellamy L.A., Mackenzie D.W. (2003), Energy Efficiency of Buildings with Heavy Walls, 
BRANZ Ltd, Study Report 116, New Zealand. 
 
Birtles A.B., Kolokotroni M., Perera M.D. (1996), Night Cooling Design for Office-Type 
Buildings, Renewable Energy 8, pp. 259-263. 
 
Bjerrum E., A.B. Fangel (2004), Ny kontorindretning - et videndelingsværktøj eller bare 
smart? (Danish), Center for New Ways of Working, Alexandra Instituttet A/S, Århus, 
Denmark.  
 
Blakstad S. H. (2001), A Strategic Approach to Adaptability in Office buildings, Doctoral 
Thesis, Norwegian University of Science and Technology, Trondheim, Norway. 
 



References 

 124

Blondeau P., Spérandio M., Allard F. (1997), Night Ventilation for Building Cooling in 
Summer, Solar Energy 61, No. 5, pp. 327-335. 
 
Bojić M., Yik F. (2005), Cooling energy evaluation for high-rise residential buildings in 
Hong Kong, Energy and Buildings 37, pp. 345-351. 
 
Braun J.E. (1990), Reducing Energy Costs and Peak Electricity Demand Through Optimal 
Control of Building Thermal Storage, ASHRAE Transactions 96 (2), pp. 876-888. 
 
Braun J.E. (2003), Load Control Using Building Thermal Mass, ASME Transactions Vol. 
125. 
 
Breesch H., Janssens A. (2005), Building simulation to predict the performances of natural 
night ventilation, Proceedings of the 9th International IBPSA Conference, Montreal, 
Canada. 
 
Burch D.M, Johns W.L., Jacobsen T., Walton G.N., Reeve C.P., (1984a), The effect of 
Thermal Mass on Night Temperature Setback Savings, ASHRAE Transactions, Vol. 90 (2), 
pp. 184-206. 
 
Burch D.M., Malcolm S.A., Davis K.L. (1984b), The Effect of Wall Mass on the Summer 
Space Cooling of Six Test Buildings, ASHRAE Transactions, Vol. 90(2). 
 
Burch D.M., Krintz D.F., Spain R.S. (1984c), The Effect of Wall Mass on Winter Heating 
Loads and Indoor Comfort – An Experimental study, ASHRAE Transactions, Vol. 90(2). 
 
Capeluto I.G., Yezioro A., Shaviv E. (2004), What are the required conditions for heavy 
structure buildings to be thermally effective in a hot humid climate?, Journal of Solar 
Energy Engineering, Vol. 126, pp. 886–92. 
 
Clarke J.A. (2001), Energy Simulation in Building Design, 2nd Ed., Butterworth-
Heinemann, Oxford, UK.  
 
Cole R.J., Kernan P.C. (1996), Life-Cycle Energy Use in Office Buildings, Building and 
Environment 31, pp. 307-317. 
 
Cole R.J. (1999), Energy and greenhouse gas emissions associated with the construction of 
alternative structural systems, Building and Environment 34, pp. 335-348. 
 
Crawley D.B (1998), Which Weather Data Should You Use for Energy Simulation of 
Commersial Buildings, ASHRAE Transactions, Vol. 104(2).  
 
Crawley D.B., Hand J., Kummert M., Griffith B.T. (2005), Contrasting the Capabilities of 
Building Energy Performance Simulation Programs, version 1.0, joint report by DOE, 
ESRU and SCL. 
 
Dagestad B. (2005), Hvordan vil energibruken i bygg reduseres som følge av nye 
byggeforskrifter? (in Norwegian), presentation at Norges energidager. 
 
Davies M.G. (2004), Building Heat Transfer, Wiley & Sons, UK. 
 



References 

 125

Davies M., Martin B., Watson M., Ni Riain C. (2005), The Development of an Accurate 
Tool to Determine Convective Heat Transfer Coefficients in Real Buildings, Energy and 
Buildings 37, pp. 141-145. 
 
DoE (2007), US Department of Energy, Efficiency and Renewable Energy, EnergyPlus 
Simulation Software, Website: http://www.eere.energy.gov/buildings/energyplus/  
 
Ecotope (2007), SUNCODE-PC, Website: http://www.ecotope.com/ 
 
Enova (2007), Bygningsnettverkets energistatistikk 2006 (in Norwegian), Enova report 
2007:2.  
 
Delta-T (2006), BF3 Sunshine Sensor, Delta-T Devices Ltd, http://www.delta t.co.uk/ 
  
Diaz C. (1994), Climate-responsive design for non-domestic buildings in warm 
climates - Optimisation of thermal mass for indoor cooling, PhD Thesis, Architectural 
Association Graduate School, UK.  
 
Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 
on the energy performance of buildings, 2002. 
 
ESRU (2007), Energy Systems Research Unit, Strathclyde University, Glasgow, UK, ESP-r 
website: http://www.esru.strath.ac.uk/  
 
Fang L., Wyon DP, Clausen G., Fanger P.O. (2004), Impact of indoor air temperature and 
humidity in an office on perceived air quality, SBS symptoms and performance. Indoor 
Air 14 
 
Fisher D.E., Pedersen C.O. (1997), Convective Heat Transfer in Building Energy and 
Thermal Load Calculations, ASHRAE Transactions Vol. 103 (2).  
 
Florides G.A., Tassoub S.A., Kalogirou S.A., Wrobel L.C. (2002), Measures used to lower 
building energy consumption and their cost effectiveness, Applied Energy 73, pp. 299-328. 
 
Forejt, L., Hensen, J., Drkal, F., Barankova P. (2006), Weather data around the world for 
design of field hospital HVAC, Proceedings of the 17th Int. Air-conditioning and 
Ventilation Conference, Prague, Czech Republic.  
 
Foster M., Oreszczyn T. (2000), Occupant control of passive systems: the use of Venetian 
blinds, Building and Environment (36), 149-155. 
 
Gerosa V., Santamourisa M., Tsangrasoulisa A. and Guarracinob G. (1999), Experimental 
evaluation of night ventilation phenomena, Energy and Buildings 29, 141-154. 
 
Givoni B. (1994), Passive and low energy cooling of buildings, Van Nostrand Reinhold, 
US. 
 
Givoni B. (1998a), Effectiveness of mass and night time ventilation in lowering the indoor 
daytime temperatures. Part I: 1993 experimental periods, Energy and Buildings 28, pp. 
25-32. 
 



References 

 126

Givoni B. (1998b), Climate Consideration in Building and Urban Design, Van Nostrand 
Reinhold, US. 
 
Goulart S.V.G. (2004), Thermal Inertia and Natural Ventilation – Optimisation of thermal 
storage as a cooling technique for residential buildings in Southern Brazil, PhD Thesis, 
Architectural Association Graduate School, UK. 
 
Gratia E., De Herde A. (2003), Design of low energy office buildings, Energy and 
Buildings 35, pp. 471-491. 
 
Guillemin A., Morel N. (2002), Experimental results of a self-adaptive integrated control 
system in buildings: A pilot study, Solar Energy Vol. 72. 
 
Hall D.E. (1991), Musical Acoustics, 2nd Ed, Brooks/Cole Publishing. 
 
Haugaard P. (2003), Investigation and implementation of building simulation programmes 
– especially ESP-r, MSc thesis, BYG DTU, Lyngby, Denmark. 
 
Herkel S., Pfafferott J., Wambsganss M. (2002), Design, monitoring, and evaluation of a 
low energy office building with passive cooling by night ventilation, AIVC 23rd 
conference, Proceedings Vol. 2, pp. 487-492, France. 
 
Hestnes A.G. (ed.) (2003), Solar Energy Houses - Strategies, Technologies, Examples, 2nd 
ed., IEA.  
 
Hitchin E.R. (1979), The Sizing of Heating Systems in Well-Insulated Houses, Applied 
Energy Volume 5, pp. 277-295.  
 
Høseggen R., Mathisen H.M., Hanssen S.O., (2005), Comparison of multi- and single zone 
modeling for estimation of energy use in an office building, Proceedings for the 10th 
International Conference on Indoor Air Quality and Climate, Beijing, China.  
 

Høseggen R., Wachenfeldt B.J., Hanssen S.O. (2006), Reduced energy demand by 
combining natural and mechanical ventilation in a new office building with an atrium, 
Proceedings of The 5th International Conference on Cold Climate Heating, Ventilation and 
Air-Conditioning, Moscow, Russia. 
 
Høseggen R., Mathisen H.M., Hanssen S.O. (20xx), The effect of suspended ceilings on 
energy performance and thermal comfort, to be published. 
 
Intab (2007), Interface-Teknik AB, Sweden, Website: http://www.intab.se/zip/manuals/... 
tiny/man_plus2_s.pdf.  
 
ISO 15686-1 (2000), Buildings and constructed assets – Service life planning – Part 1: 
General principles, ISO. 
 
ISO 15927-4:2005(E), Hygrothermal performance of buildings – Calculation and 
presentation of climatic data. Part 4: Hourly data for assessing the annual energy use for 
heating and cooling 
 



References 

 127

ISO 15927-5:2004(E), Hygrothermal performance of buildings – Calculation and 
presentation of climatic data. Part 5: Data for design heat load for space heating. 
 
KRD (2005), Kommunal og regionaldepertementet (Ministry of Local Government and 
Regional Development, http://www.regjeringen.no/nb/dep/krd/dok/NOUer/2005/NOU-
2005-12/27/5.html?id=154679. 
 
La Roche P., Milne M., Effects of window size and thermal mass on building comfort using 
an intelligent ventilation controller, Solar Energy 77, pp. 421-434, 2004. 
 
Lerum V., Lathey V. (2002), Cool classrooms in hot places: Application of high-mass 
night-vent cooling in school buildings in Arizona, Proceedings of 31st ASES Annual 
Conference, US. 
 
Kolokotroni M., Webb B.C., Hayes S.D. (1998), Summer cooling with night ventilation for 
office buildings in moderate climates, Energy and Buildings 27, pp. 231-237. 
 
Kolokotroni M. and Aronis A. (1999), Cooling-energy reduction in air-conditioned offices 
by using night ventilation, Applied Energy 63, pp. 241-253.  
 
Kosny J., Petrie T., Gawin D., Childs P., Desjarlais A., Christian J. (2001), Thermal Mass – 
Energy Savings Potential in Residential Buildings, Buildings Technology Center, Oak 
Ridge National Laboratory, US. 
 
Kossecka E., Kosny J. (2002), Influence of insulation configuration in heating and cooling 
loads in a continuously used building, Energy and Buildings 34, 321-331. 
 
Lexow T.E (2006), Forprosjekt – Kartlegging av metodikk og data for energiberegninger 
etter Norsk Standard (in Norwegian), Rapport 1/2006, Standards Norway, Oslo Norway. 
 
Li Y. and Xu P. (2006), Thermal Mass Design in Buildings – Heavy or Light?, 
International Journal of Ventilation, Vol. 5 No 1.  
 
Lund H. (1985), Short Reference Years and Test Reference Years for EEC Countries, Final 
report, Thermal Insulation Laboratory Technical University of Denmark.  
 
Maripuu M-L (2006), Adapting Variable Air Volume (VAV) Systems for Office Buildings 
without Active Control Dampers – Functions and Demands for Air Distributions 
Components, Lic. Eng Thesis, Chalmers University of Technology, Sweden. 
 
Mathisen H.M. (2004), Evaluering av hybrid ventilasjon – Casestudie Nordlåna Røstad – 
Hovedrapport, Sintef Energy Research, Trondheim, Norway. 
 
Mathisen H.M., Høseggen R., Hanssen S.O. (2005), Measurements and Simulation of 
Energy Use in an Office Building with Hybrid Ventilation, Proceedings of the 7th  
Symposium on Building Physics in the Nordic Countries, Reykjavik, Iceland. 
 
Mathisen H.M., Halvarsson J. (2007), Samtidighet som del av grunnlag for dimensjonering 
av ventilasjon (Norwegian), Technical Report TRA6531, Sintef Energy Research, 
Trondheim, Norway. 
 



References 

 128

Mitchell J.W. (1989), Beckman W.A., Theoretical Limits for Storage of Energy in 
Buildings, Solar Energy Vol. 42, pp. 113-120. 
 
Mithraratne N. (2004), Vale B., Life cycle analysis for New Zealand houses, Building and 
Environment 39, pp. 483-492. 
 
Mysen M. (1999), Energieffektiv ventilasjon – innføring av SFP (Energy Efficient 
Ventilation – Introduction of SFP), Norwegian Building Research Institute, Project Report 
249, Oslo, Norway. 
 
Nicol J.F. (2004), Fitting buildings to people: comfort and health, Lecture notes at the 
Interdisiplinary Meeting on Heat Waves, Housing and Health, London School of Hygiene 
and Tropical Medicine, UK. 
 
Norén A., Akander J., Isfält E., Söderström O. (1999), The Effect of Thermal Inertia on 
Energy Requirement in a Swedish Building – Results Obtained with Three Calculation 
Models, International Journal of Low Energy and Sustainable Buildings, Vol. 1. 
 
Meteotest (2005), Meteonorm - Global Meteorological Database for Solar Energy and 
Applied Meteorology, Website: http://www.meteotest.ch/en/produkte/. 
 
NS 3031 (2007), Beregning av bygningers energiytelse – Metode og data (Calculation of 
energy performance of buildings – Method and data), Standards Norway, Oslo, Norway.  
 
NS 8175 (2005), Acoustic conditions in buildings – Classification of various types of 
buildings, Standards Norway, Oslo, Norway. 
 
NS-EN 12354-6 (2004), Building acoustics – Estimation of acoustic performance of 
buildings from the performance of elements, Part 6: Sound absorption in enclosed spaces, 
Standards Norway, Oslo, Norway. 
 
NS-EN ISO 13786 (2000), Thermal performance of building components – Dynamic 
thermal characteristics. Calculation methods, Standards Norway, Oslo, Norway. 
 
NS-EN ISO 13790 (2004), Thermal performance of buildings - Calculation of energy use 
for space heating, Standards Norway, Oslo, Norway. 
 
NS-EN ISO 7730 (2005), Ergonomics of the thermal environment – Analytical 
determination and interpretation of thermal comfort using calculation of the PMV and PPD 
indices and local thermal comfort criteria, Standards Norway, Oslo, Norway. 
 
Ogoli D.M. (2003), Predicting indoor temperatures in closed buildings with high thermal 
mass, Energy and Buildings 35, pp. 851-862. 
 
Orme M. and Palmer J. (2003), Control of overheating in future housing – Design guidance 
for low energy strategies, FaberMaunsell Ltd, UK.  
 
Pfafferott J., Herkel S., Jäschke M. (2003), Design of passive cooling by night ventilation: 
evaluation of a parametric model and building simulation with measurements, Energy and 
Buildings 35, pp. 1129-1143. 
 



References 

 129

REHVA (2006),  Wargocki P., Seppänen O. (eds.), Indoor Climate and Productivity in 
Offices – How to integrate productivity in life-cycle cost analysis of building services, 
REHVA Guidebook No 6, Brussels, Belgium.   
 
REN (2007), Veiledning til teknisk forskrift til plan- og bygningsloven 4. utg (Norwegian), 
National Office of Building Technology and Administration, Oslo, Norway. 
 
Ruud M.D., Mitchell J.W., Klein S.A. (1990), Use of Building Thermal Mass to Offset 
Cooling Loads, ASHRAE Transactions 96(2), pp. 820-829. 
 
SBI (2007), Danish Building Research Institute, BSIM website: http://www.sbi.dk/...  
indeklima/simulering  
 
Seppänen O., Fisk W.J., Lei Q.H (2006), Effect of temperature on task performance in 
office environment, Proceedings of The 5th International Conference on Cold Climate 
Heating, Ventilation and Air-Conditioning, Moscow, Russia 
 
Shaviv E., Yezioro A., Capeluto I.G. (2001), Thermal mass and night ventilation as passive 
cooling design strategy, Renewable Energy 24, pp. 445-452. 
 
Simmonds P. (1991), The Utilization and Optimization of a Building´s Thermal Inertia in 
Minimizing the Overall Energy Use, ASHRAE Transactions 92 (2). 
 
Skartveit A., Lund H., Olseth J.A (1994),. The Design Reference Year, Report No. 11/94, 
The Norwegian Meteorological Institute, Oslo, Norway.  
 
Smith B. J., Peters R. J., Owen S. (1996), Acoustics and noise control, 2nd ed., Addison 
Wesley Longman Ltd., UK.  
 
SSB (2006), Statistics Norway, website:  http://www.ssb.no/aarbok/kart/iii.html  
 
Statsbygg (2002), The Directorate of Public Construction and Property, Oslo, Norway, 
Website: http://www.statsbygg.no/prosjekter/prosjektkatalog/... 622_hint_nordlana/  
 
Sterner E. (2000), Life-cycle costing and its use in the Swedish building sector, Building 
Research & Information, Vol. 28, pp. 387-393. 
 
Sterner E. (2002), ‘Green procurement’ of buildings: a study of Swedish clients’ 
considerations, Construction Management and Economics, Vol. 20, pp. 21–30. 
 
Stoffel T.L., Rymes M.D. (1998), Production of the Weather Year for Energy Calculation 
Version 2 (WYEC2) Data Files, ASHRAE Transactions, 104(2).  
 
Strachan P. (2000), ESP-r: Summary of Validation Studies, ESRU Technical Report, 
Glasgow, UK. 
 
Ståhl F. (2002), The effect of thermal mass on the energy use during the life cycle of a 
building, 6th Nordic Symposium on Building Physics in the Nordic Countries, Norway. 
 
Sundell J. (2004), On the history of indoor air quality and health, Indoor Air 14, pp. 51-58. 
 



References 

 130

Szokolay S. (1984), Passive and low energy design for thermal and visual comfort, Passive 
and Low Energy Ecotechniques. Proceedings of the 3rd Int. PLEA Conf. Mexico City, 
Mexico, pp. 11–28 
 
TEK (1997), FOR-1997-01-22 nr 33: Forskrift om krav til byggverk og produkter til 
byggverk (TEK). 
 
TEK (2007), FOR-2007-01-26 nr 96: Forskrift om endring i forskrift om krav til byggverk 
og produkter til byggverk (TEK)   
 
Tenorio R. (2002), Dual mode cooling house in the warm humid tropics, Solar Energy 73, 
pp. 43-57. 
 
Thyholt M. (2006), Varmeforsyning til lavenergiboliger i områder med 
fjernvarmekonsesjon – Analyser av CO2-utslipp og forsyningssikkerhet for elektrisitet, 
PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway.  
 
Uppström R., Pihl I., Fridén L., Gillqvist T. (2004), Control Strategies, Report from the 
project Intelligently Designed Energy Efficient Buildings  (IDEEB), Swedish National 
Testing and Research Institute, Sweden. 
 
Voss K. (2000), Toward Lean Buildings – Examples and Experiences from a German 
Demonstration Program for Energy Efficiency and Solar Energy Use in Commercial 
Buildings, Proceedings of Eurosun, Denmark. 
 
Wall M. (1997), Distribution of solar radiation in glazed spaces and adjacent buildings. 
A comparison of simulation programs, Energy and Buildings 26, pp. 129-135. 
 
Wyon D.P., Wargocki P. (2006), Room temperature effects on office work, In: Croome D. 
(ed), Creating the Productive Environment, pp. 181-192. 
 
Zmeureanu, R. (1998), Defining the Methodology for Next-Generation HOT2000 
Simulator – Task 3, report prepared for Natural Resources Canada 
 



 

 131

APPENDICES 
 

 

APPENDIX 1 .....................................................................................................................A1 
A1.1 DIURNAL HEAT CAPACITY (DHC) ..........................................................................A1 
A1.2 THERMAL TIME CONSTANT (TTC) .........................................................................A2 
A1.3 REVERBERATION TIME ...........................................................................................A3 

APPENDIX 2 .....................................................................................................................A5 
A2.1 HEAT CAPACITY AND EFFUSIVITY FOR MULTI-LAYERED CONSTRUCTIONS..............A5 
A2.2 CALCULATION EXAMPLE USING THE CCP ..............................................................A7 
A2.3 FINDING THE RELATIVE HUMIDITY FROM THE DEW POINT TEMPERATURE...............A8 
A2.4 FINDING THE MOST CRITICAL FAÇADE ORIENTATION............................................A10 
A2.5 TOTAL HEATING ENERGY SAVINGS BY TEMPERATURE SET-BACK .........................A13 
A2.6 OPERATIVE TEMPERATURE EMPLOYING DIFFERENT OCCUPANCY PROFILES..........A14 
A2.7 CONVECTION CORRELATIONS...............................................................................A16 

APPENDIX 3 ...................................................................................................................A19 
A3.1 CALCULATION OF THE DIRECT NORMAL RADIATION.............................................A19 
A3.2 MEASUREMENT RESULTS......................................................................................A21 

APPENDIX 4 – PAPERS................................................................................................A25 
PAPER I: MEASUREMENT AND SIMULATION OF ENERGY USE IN AN OFFICE BUILDING WITH 
HYBRID VENTILATION....................................................................................................A27 
PAPER II: COMPARISON OF MULTI- AND SINGLE ZONE MODELING FOR ESTIMATION OF 
ENERGY USE IN AN OFFICE BUILDING ..............................................................................A37 
PAPER III: REDUCED ENERGY DEMAND BY COMBINING NATURAL AND MECHANICAL 
VENTILATION IN A NEW OFFICE BUILDING WITH AN ATRIUM...........................................A45 
PAPER IV: BUILDING SIMULATION AS AN ASSISTING TOOL IN DECISION MAKING CASE 
STUDY: WITH OR WITHOUT A DOUBLE-SKIN FAÇADE? ....................................................A57 
PAPER V: THE EFFECT OF SUSPENDED CEILINGS ON ENERGY PERFORMANCE AND THERMAL 
COMFORT........................................................................................................................A67 

 



 

 7-132 



Appendix 

A1 

1APPENDIX 1 

A1.1 Diurnal heat capacity (DHC)  

The Diurnal Heat Capacity (DHC) is a measure of the capacity of a building to absorb heat 

from the interior space, and to release the heat back to the space during a diurnal cycle. The 

dhc of a surface is given by (Balcomb, 1984): 

 

1dhc F s=   (Wh/(m2·K)),       (A1.1) 

where 

/ 2s P cλρ π=  (Wh/(m2·K))     (A1.2) 

1 (cosh 2 cos 2 ) /(cosh 2 cos 2 )F x x x x= − +  (-)   (A1.3) 

/x d c Pπρ λ=   (m2),      (A1.4) 

and  

P = period (24h) 

ρ = density (kg/m3) 

c = heat capacity (J/(kg·K)) 

d = material thickness (m)  

λ = conductivity (W/(m·K)) 

 

The total DHC of a building is calculated by summing the dhc-values of each surface n 

exposed to the interior air, thus: 

  

i i
n

DHC dhc A=∑ (Wh/m2)      (A1.5) 

 

In Figure 2-3 in Section 2.2.2, the DHC for some selected building materials is plotted as a 

function of thickness. 
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A1.2 Thermal Time Constant (TTC) 

The Thermal Time Constant (TTC) is defined as the product of the thermal resistance (R) 

and heat capacity (C) of a unit area of a building envelope element (Givoni, 1998). To 

calculate the TTCA of an area, the heat capacity per unit area (CA) is multiplied by the 

thermal resistance (Ri = di/λi) to the center of the layer in question, thus 

 

( )0 1
1...  
2Ai i i i

C R R R R d cρ⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 (s)    (A1.6) 

 

where R0 is the external convective resistance. For a multi-layer construction comprising n 

layers: 

 

1 1 2 2 ...  A A A An nTTC C R C R C R= + + +   (s)    (A1.7) 

 

The TTCs for each surface is the product of the TTCA multiplied by its area: 

 

s s ATTC A TTC= ⋅     (s)      (A1.8) 

 

Glazed areas are assumed to have a TTC of 0. The total TTCtot of the building envelope 

equals the sum of all TTCs divided by the total envelope area, thus 

 

 s
tot

tot

TTC
TTC

A
= ∑       (A1.9) 
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A1.3 Reverberation time 

The reverberation time (tr) is defined as the time it takes for a sound to decay by 60 dB. The 

choice of the relative intensity to use is of course arbitrary, but there is a good rationale for 

using 60 dB since the loudest crescendo for most orchestral music is about 100 dB and a 

typical room background level for a good music-making area is about 40 dB. Thus the 

standard reverberation time is seen to be about the time for the loudest crescendo of the 

orchestra to die away to the level of the room background.  

 

The reverberation time can be calculated approximately from the Sabine formula (Smith et 

al., 1996): 

 

0.16r
Vt
A

=   (s),       (A1.10)  

where 

i i
n

A Sα= ∑  (m2 sabin)      (A1.11) 

room volume V = (m3) 

absorption coeffecient of surface  i iα = (-)  

area of surface iS i=  (m2) 

 

Typical values for the sound absorption coefficients for common building surfaces are 

given in Table A1-1 (adapted from Hall, 1991). 
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Table A1-1  Typical values for the absorption coefficient (Hall, 1991) 

Sound absorption coefficient αi  
at frequency (Hz) Material 

125 250 500 1000 2000 4000 

Acoustic tile, rigid mount 0.20 0.40 0.70 0.80 0.60 0.40 

Acoustic tile, suspended 0.50 0.70 0.60 0.70 0.70 0.50 

Acoustical plaster 0.10 0.20 0.50 0.60 0.70 0.70 

Ordinary plaster on lath 0.20 0.15 0.10 0.05 0.04 0.05 

Gypsum wallboard  (22 mm) on studs 0.30 0.10 0.05 0.04 0.07 0.10 

Plywood sheet (12 mm) on studs 0.60 0.30 0.10 0.10 0.10 0.10 

Concrete block, unpainted 0.40 0.40 0.30 0.40 0.30 0.30 

Concrete block, painted 0.10 0.05 0.06 0.09 0.10 0.10 

Concrete, poured 0.01 0.01 0.02 0.02 0.02 0.03 

Brick 0.03 0.03 0.03 0.03 0.03 0.02 

Vinyl tile on concrete 0.02 0.03 0.03 0.03 0.03 0.02 

Heavy carpet on concrete 0.02 0.06 0.04 0.40 0.60 0.60 

Heavy carpet on felt backing 0.10 0.30 0.40 0.50 0.60 0.70 

Platform floor, wooden 0.40 0.30 0.20 0.20 0.15 0.10 

Ordinary window glass 0.30 0.20 0.20 0.10 0.07 0.04 

Heavy plate glass 0.20 0.06 0.04 0.03 0.02 0.02 

Draperies, medium velour 0.07 0.30 0.50 0.70 0.70 0.60 

Upholstered seating, unoccupied 0.20 0.40 0.60 0.70 0.60 0.60 

Upholstered seating, occupied 0.40 0.60 0.80 0.90 0.90 0.90 

Wood seating, unoccupied 0.02 0.02 0.06 0.06 0.06 0.05 

Wooden pews, occupied 0.40 0.40 0.70 0.70 0.80 0.70 
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2APPENDIX 2 

A2.1 Heat capacity and effusivity for multi-layered constructions 

In order to compare the degree of thermal mass of the three office rooms in the parametric 

study, the heat capacities and the mean thermal effusisivities for the three office rooms 

were considered. The methods employed to calculate the values listed in Table 5-2 are 

listed below.  

 

Since the values only are used for comparison, the simplified method described in Annex A 

of the NS-EN ISO 13786 (2000) is used to find the heat capacities. The method defines the 

effective thickness of a component, d, as the minimum of 

 

1. half the thickness of the component; 

2. the thickness of materials between the surface of interest and the first thermal 

insulating layer; 

3. or, a maximum effective thickness, depending on the period of variations; 1 hour 

1 day and 1 week, applies to a thickness of 2 cm, 10 cm, and 25 cm, respectively 

 

The heat capacity by surface area, CT, is calculated by summing each layer with the 

construction thicknesses restricted by the list above considering 1 day variation. Thus,  

 

 T i i i
n

C d cρ= ∑  (A2.1) 

 

Using the values from Table 2-1 in Section 2.1.1, Table A2-1 shows the calculated total 

heat capacities for surfaces in the office rooms. 

 

Table A2-1 Total heat capacities per surface area for the office rooms distributed on 
building parts 

Total heat capacity (kJ/(m2·K)) 
Office room 

Internal walls External wall Floor Ceiling 

Light 517 64 155 174 

Medium 517 64 1635 1680 

Heavy 2495 346 1635 1680 
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Table 5.2 in Section 5.2 gives the total heat capacities per floor area, found by multiplying 

the values in the table above with the respective surface areas, summarized and divided by 

the floor area of the rooms.  

 

To find the equivalent thermal effusivity, following relation is used to reduce the multiple 

layer construction to one equivalent homogeneous layer (Clarke, 2001): 

 

( )
( ) ( ) ( )1.1 1.1

0.1 0.1
i mi m

m o
o i me

me e

R C R C C
C R R R

R R

λρ λρ λρ
λρ

+
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

∑
∑  (A2.2) 

 

Where R is thermal resistance, and subscripts e, i, m and o refer to the equivalent, inner, 

intermediate, and outer layers of the constructions, respectively. The equivalent thermal 

resistance is given by 

 

o m i
e

mo m i

d d d
R

λ λ λ
= + +∑  (A2.3) 

 

Using values from Table 2-1 in Section 2.1.1, Table A2-2 shows the calculated thermal 

effusivities for the surfaces in the office rooms. 

 

Table A2-2 Equivalent thermal effusivities per surface area for the office rooms 
distributed on building parts 

Equivalent thermal effusivity β (W·s1/2/(m2·K)) 
Office room 

Internal walls External wall Floor Ceiling 

Light 306 302 190 308 

Medium 306 302 1481 1495 

Heavy 815 756 1481 1495 
 

Table 5.2 in Section 5.2 lists the thermal effusivities per floor area, found by multiplying 

the values in the table above with the respective surface areas, summarized and divided by 

the floor area of the rooms. 
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A2.2 Calculation example using the CCP 

Assuming a diurnal cycle in an office room where the heat storage equals the heat release, 

the mean heat flux during the storage process per room area can be calculated by (Artmann 

et al., 2007): 

 

2(W/m )charge prelease

o o o

Q VcQ
q CCP  

At At At
= = =   (A2.4) 

where 

q  = mean heat flux (W/m2) 

Qcharge =  heat absorbed in zone (Wh) 

Qrelease = heat released during the night (Wh) 

A = floor area (m2) 

to = hours of occupation (h) 

V  = effective volume flow rate (m3/s) 

cp = specific heat of the air (Wh/(m3·K)) 

CCP = climatic cooling potential (Kh) 

 

The effective mass flow rate can be written as V AHRη= , where H is the room height and 

R the air change rate. η is the temperature efficiency, defined as 

 

 ext e

b e

T T
T T

η
−

=
−

 , (A2.5) 

 

which takes into account that the temperature of the air extracted from the building, Text, is 

lower than the building temperature, Tb. Te is the ambient temperature. Assuming the room 

height H = 2.75 m, the occupancy duration to = 8 h, and a constant effective air change rate 

of Rη = 3 h-1, the heat flux per degree hour of the CCP can be calculated as: 

 

 
1 3 22.75m 3h 0.33Wh / m K W/m0.34
8h Kh

p

o

HR cq
CCP t

η −⋅
= = =  (A2.6) 
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A2.3 Finding the relative humidity from the dew point temperature 

The DRY files used in the parametric study in Part II gives the dew point temperature 

instead of the relative humidity (RH) needed as input in ESP-r. Given the dry bulb 

temperature (T), dew point temperature (Td), and pressure (p), the relative humidity (RH) 

can be found. The RH is given by (adapted from ASHRAE, 2005b)  

 

 
( )( )( )1 1 /w

RH
p p

μ
μ

=
− −

 (A2.7) 

 

where pw is the partial pressure of water vapour and μ the degree of saturation given by 

  

,s t p

W
W

μ =  (A2.8) 

 

where W is the humidity ratio 

  

0.62198 w

w

p
W

p p
=

−
 (A2.9) 

and  

 0.62198 ws
s

ws

p
W

p p
=

−
 (A2.10) 

 

pw and pws can be found for saturation pressure over ice by employing (temperatures in 

Kelvin), respectively 

 
1 2 3 4

1 2 3 4 5 6 7ln lnw d d d d d dp C T C C T C T C T C T C T−= + + + + + +  (A2.11) 

and 

 1 2 3 4
1 2 3 4 5 6 7ln lnwsp C T C C T C T C T C T C T−= + + + + + +  (A2.12) 
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For saturation pressure over water 

 
1 2 3

8 9 10 11 12 13ln lnw d d d d dp C T C C T C T C T C T−= + + + + +  (A2.13) 

and 
1 2 3

8 9 10 11 12 13ln lnwsp C T C C T C T C T C T−= + + + + +  (A2.14) 

where 

 

C1 = -5.6745359E+03 C6 = -9.4840240E-13 C11 = 4.1764768E-05 

C2 = 6.3925247E+00 C7 = 4.1635019E+00 C12 = -1.4452093E-08 

C3 = -9.6778430E-03 C8 = -5.8002206E+03 C13 = 6.5459673E+00 

C4 = 6.2215701E-07 C9 = 1.3914993E+00    

C5 = 2.0747825E-09 C10 = -4.8640239E-02    
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A2.4 Finding the most critical façade orientation 

Finding the most unfortunate façade orientation concerning cooling demand is not a trivial 

task. A lot of parameters are influential, such as glass area, climate, glass type and coating, 

time of operation, occupancy pattern, thermal mass. For instance, a very heavy building 

may experience the highest indoor temperatures long after the peak outdoor temperatures 

occurred. A thermally light building with large glass areas may experience the peak indoor 

temperature when the sun is low in the horizon and the solar beam strikes the glass surfaces 

perpendicularly.  

 

To evaluate the orientation for the single offices in this study, at first, only the solar heat 

load is considered. Figure A2-1 shows the integrated solar flux entering through the 

window from June 1st to August 31st. The Oslo DRY climate file is used.  
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Figure A2-1  Total solar energy entered through the window during for different façade 

orientations. 

 

Figure A2-1 shows that the east (E) and west (W) oriented façades have the largest 

integrated solar heat load throughout the period. However, the simultaneity of the solar 

load, room use and the outdoor temperature must also be taken into account. Therefore, the 

worst façade orientation is considered from largest peak cooling load and total cooling 

energy demand point of view.  
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Following simulations are based on the light version of the office room, and to further 

minimize thermal mass effects, the set-point for cooling is 21 °C. I.e., there is no dead band 

between heating and cooling, thus temperature fluctuation and excessive heat storage in the 

building structures is minimized. The space cooling device is given unlimited cooling 

capacity and is ideally controlled. Beyond that, the input parameters are similar to the basic 

model presented in Section 5.2. 

 

Figure A2-2 shows the peak space cooling demand for the office room for different façade 

orientations, and Table A2-3 at which time the peak occurred. 
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Figure A2-2 Peak cooling demand for the office room for different façade orientations 

 

 

Table A2-3  Occurrence of the peak cooling demands for the different façade orientations 

 Orientation 
Occurrence E S-E S S-W W 
Date Aug. 3rd   Aug. 18th  Aug. 16th  Aug. 16th  Aug. 16th  
Time 09:30 10:55 13:55 15:05 17:35 
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Figure A2-3 shows the cooling energy demand for the office room. Maybe surprisingly, the 

orientation that has the least cooling energy demand is the one that faces south (S). The 

reason for this is that the angle of the incident solar radiation is large, thus a lot of the 

radiation is reflected. East (E) and west (W) facing facades have the largest demand. The 

reason for this is partly that the largest cooling loads, due to solar radiation, for these 

orientations occur early in the morning and afternoon, respectively, thus lose some of the 

“help” from the ventilation system that operates from 6 am to 6 pm. Since the temperature 

is kept below 21 °C by the cooling device, the temperature compensation of the supply air 

in according to Eq. (5.1) will not be invoked. The external sun shading control and set-

points also influence the results.  
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Figure A2-3  Cooling energy demand for the office for different façade orientations 

 

All in all, the most exposed façade is considered to be the south-west (S-W) oriented 

facade, since the south-west façade has the greatest peak demand and only a slightly lower 

total cooling energy demand than east and west.   
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A2.5 Total heating energy savings by temperature set-back 

Table A2-4 to Table A2-6 give the absolute and relative heating energy savings by night 

and weekend temperature set-back for high (10 m3/h per m2) and low (5 m3/h per m2) 

ventilation air flow rates.   

 

Table A2-4   Temperature set-back energy savings for the light office room for high and 
low air flow rates 

 Space 
(kWh/m2) 

Ventilation 
(kWh/m2) 

Tot. relative 
savings (%) 

 High Low High Low High Low 

Oslo 2.4 2.4 0.0 -0.1 6.3 8.9 

Bergen 2.8 2.7 -0.1 -0.1 7.9 11.2 

Andøya 2.8 3.0 0.2 -0.9 6.2 7.0 
 

Table A2-5   Temperature set-back energy savings for the medium office room for high 
and low air flow rates 

 Space 
(kWh/m2) 

Ventilation 
(kWh/m2) 

Tot. relative 
savings (%) 

 High Low High Low High Low 

Oslo 1.1 1.6 0.4 0.1 4.2 6.8 

Bergen 1.4 1.9 0.4 0.0 5.4 8.5 

Andøya 1.2 2.0 0.7 -0.6 4.1 4.6 
 

Table A2-6   Temperature set-back energy savings for the heavy office room for high and 
low air flow rates 

 Space 
(kWh/m2) 

Ventilation 
(kWh/m2) 

Tot. relative 
savings (%) 

 High Low High Low High Low 
Oslo 0.1 0.9 1.3 0.1 3.6 4.1 

Bergen 0.2 1.0 0.8 0.3 3.2 5.9 

Andøya 0.0 1.1 1.2 -0.4 2.4 2.7 
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A2.6 Operative temperature employing different occupancy profiles 

In Section 5.5, the influence of occupancy patterns were examined. In Figure A2-4 and 

Figure A2-5, the resultant operative temperatures in the office rooms during the entire 

warm week are shown for high and low ventilation airflow rates respectively. 
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Figure A2-4 Operative temperature for the offices employing the different occupancy 

profiles with high airflow rate (10 m3/h per m2) 
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Figure A2-5  Operative temperature for the offices employing the different occupancy 

profiles with low airflow rate (5 m3/h per m2) 
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A2.7 Convection correlations 

ESP-r classifies convection regimes into 5 principle classes as listed in Table A2-7 (adapted 

from Beausoleil-Morrison, 2000). 

 

Table A2-7 The principle convection regimes as classified in ESP-r (Beausoleil-Morrison, 
2000) 

convection  

regime 
driving force cause of driving force 

A buoyant Surface-to-air temperature difference caused by: 

• heat transfer through the building envelope; 

• solar insolation to walls or floor 

• in-floor heating 

• chilled ceiling panels 

• heated walls 

B buoyant Heating device (e.g. radiator) located within the zone 

C mechanical Air handling system delivering supply air to room 

through ceiling, floor, or wall-mounted diffusers 

D mechanical Heating or cooling device with circulation fan. No 

intentional supply or extract of air from room 

E mixed flow 

(mechanical 

and buoyant) 

Mechanical forces caused by air handling units 

supplying heated or cooled air to the zone through 

ceiling, floor, or wall-mounted diffusers. Buoyant forces 

caused by surface-to-air temperature differences. 

 

For convection regime A, the Alamdari and Hammond (1983) correlations are applied. 

These correlations are default in ESP-r, and are applied if nothing else is specified; 

 

 Vertical surfaces: 

1
6 61 614

31.5 1.23c
Th T

H

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ⎛ ⎞⎢ ⎥⎜ ⎟= + Δ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (A2.15) 
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Horizontal surfaces (buoyant): 

6
6

1
1 6

14
31.4 1.63 1.23

h

c
T

T
D

h Δ
+ Δ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (A2.16) 

 

Horizontal surfaces (stably stratified): 

1
5

20.6c
h

Th
D

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
 (A2.17) 

 

where 

ΔT = absolute value of the surface to air temperature difference (K) 

H = height of the vertical surfaces (m) 

Dh = hydraulic diameter of horizontal surfaces (4A/P) 

A = surface area (m2) 

P = perimeter length (m) 

 

 

For convection regime B, and radiator placed under window, the Khalifa (1989) 

correlations are applied to the building surfaces when the radiators are on: 

 

Table A2-8 The Khalifa (1989) correlations for radiator under window 

Surface type Correlation  

walls 0.252.30ch T= ⋅Δ  (A2.18) 

windows 0.118.07ch T= ⋅Δ  (A2.19) 

ceilings 0.132.72ch T= ⋅Δ  (A2.20) 

ΔT is the absolute value of the surface to air temperature difference (K) 
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The Fisher and Pedersen (1997) correlations for radial ceiling jets (convection regime C) 

for different surface types: 

 

Table A2-9 The Fisher and Pedersen correlations for radial ceiling jets  

Surface type Correlation  

Walls 0.80.19ch ACH= ⋅  (A2.21) 

Floor 0.80.13ch ACH= ⋅  (A2.22) 

Ceiling 0.80.49ch ACH= ⋅  (A2.23) 

ACH is the enclosure air change rate within (3<ACH<100) 
 

Further information on convection correlations and how they are implemented in ESP-r can 

be found in Beausoleil-Morrison (2000). 
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3APPENDIX 3 

A3.1 Calculation of the direct normal radiation 

BF3 Sunshine Sensor measures the global radiation, and through a special pattern of 

shadowing of the glass bulb and built-in algorithms, calculates the diffuse radiation. The 

input solar parameters in ESP-r are diffuse and direct normal radiation. To find the direct 

normal radiation from the global and diffuse radiation, following relation is used (Lund, 

1985): 

 

sin( )
h h

dn
G D

I
α
−

=  (A3.1) 

where 

  

Idn = direct normal radiation (W/m2) 

Gh = global radiation (W/m2) 

Dh = diffuse radiation (W/m2) 

α = solar altitude, average for the hour over horizon 

 

To avoid excessive values of the direct normal radiation (which may occur for low α), a test 

is carried out for all hourly averaged values. The test is based upon the air mass m, an 

“apparent solar constant” Ca,sol, at ground surface, and an extinction coefficient related to 

Ca,sol. The morning minimum temperature Tmin is used as an indicator for the absolute 

humidity (Lund, 1985). 

 

The extinction coefficient EXT for the day is given by:  

 

0.007 0.12minEXT T= ⋅ + , for Tmin > -10 °C: 

0.05EXT = , for Tmin < -10 °C 
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Lund (1985) defines the maximum reasonable direct normal radiation integrated over an 

hour as: 

 
( )

,
EXT m

max a solI C DA e − ⋅= ⋅ ⋅  (A3.2) 

where  

 

Ca,sol = “apparent solar constant”, 1163.89 (Wh/m2) 

DA = sun-to-earth distance factor, 21 0.0334cos
365

DNπ⎛ ⎞+ ⎜ ⎟
⎝ ⎠

         (A3.3) 

DN = day number (1-365) 

m = relative air mass, 1.02
sin( ) 0.02α +

 

 

The computed direct normal radiation from Eq. (A3.1) is compared to Imax.  

 

For Idn > Imax + 55.55 Wh/m2, Idn = Imax, and diffuse radiation is recalculated: 

 

sin( )h h dnD G I α= − ⋅  (A3.4) 
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A3.2 Measurement results 

Below follow some of the measurement results carried out at Røstad during the period from 

October 1st 2005 to Septmeber 30th 2006; 

 

• Figure A3-1: Temperature measured by the thermocouples and BEMS in room EC2 

• Figure A3-2: Temperature measured by the thermocouples and BEMS in room SC2 

• Figure A3-3: Averaged occupancy for EC2, holidays included. 

• Figure A3-4: Averaged occupancy for EC2, holidays excluded  

• Figure A3-5: Averaged occupancy for SC2, holidays included. 

• Figure A3-6: Averaged occupancy for SC2, holidays excluded 

 

A3.2.1 Temperature measurements Room EC2 
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Figure A3-1 The air temperature measured by the additional thermocouples and the air 

temperature registered by the BEMS for room EC2 
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A3.2.2 Temperature measurements Room SC2 
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Figure A3-2 The air temperature measured by the additional thermo couples and the air 
temperature registered by the BEMS for room SC2 
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A3.2.3 Occupancy recordings room EC2 
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Figure A3-3 Averaged weekday occupancy for Room EC2 – vacations and holidays 

included 
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Figure A3-4 Averaged weekday occupancy for Room EC2 – vacations and holidays 

excluded 
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A3.2.4 Occupancy recordings room SC2 
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Figure A3-5 Averaged weekday occupancy for Room SC2 – vacations and holidays 

included. 
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Figure A3-6 Averaged weekday occupancy for Room SC2 – vacations and holidays 

excluded 
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Paper I: Measurement and Simulation of Energy Use in an Office Building with 

Hybrid Ventilation  

 

Hans M. Mathisen, Rasmus Z. Høseggen and Sten O. Hanssen 

 

Abstract 

The objective of this work is to demonstrate the consequences on energy use by adjusting 

control parameters in a building with hybrid ventilation and displacement air supply. The 

interest for hybrid ventilation has increased during the last few years. Hybrid ventilation 

has mostly been used in schools, but near Trondheim in Norway an office building with 

displacement ventilation was erected during 2002. The building has a culvert embedded in 

the ground and under the building, and displacement ventilation in the office rooms. For 

more than a year the building’s energy use for heating, ventilation and electric equipment 

has been monitored. In addition, measurements of room temperatures and the presence of 

people were carried out. These latter parameters are important in order to calibrate a 

simulation model. The energy use seemed to differ from what was expected in the design 

phase. To study why the calculated energy use differed from the measured values, 

simulations were carried out with an integrated simulation model using ESP-r. The results 

show that the allowed temperature swing in the room has significant influence on the 

energy use. The simulations indicate that it is possible to save up to 25 % of the total energy 

use for heating by adjusting the allowance in temperature swing. In comparison, improving 

the heat exchanger efficiency by 10 %, the energy savings were 7 to11 %. The improved 

energy performance did not significantly affect the thermal comfort. 
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SUMMARY:  
The objective of this work is to demonstrate the consequences on energy use by adjusting control parameters in 
a building with hybrid ventilation and displacement air supply. The interest for hybrid ventilation has increased 
during the last years. Hybrid ventilation has mostly been used in schools, but near Trondheim in Norway an 
office building with displacement ventilation was erected during 2002. The building has a culvert embedded in 
the ground and under the building, and displacement ventilation in the office rooms. For more than a year the 
building’s energy use for heating, ventilation and electric equipment has been monitored. In addition, 
measurements of room temperatures and the presence of people were carried out. These latter parameters are 
important in order to calibrate a simulation model. The energy use seemed to differ from what was expected in 
the design phase. To study why the calculated energy use differed from the measured values, simulations were 
carried out with an integrated simulation model using ESP-r. The results show that the allowed temperature 
swing in the room has significant influence on the energy use. The simulations indicate that it is possible to save 
up to 25 % of the total energy use for heating by adjusting the allowance in temperature swing. In comparison, 
improving the heat exchanger efficiency by 10 %, the energy savings were 7-11 %. The improved energy 
performance did not significantly affect the thermal comfort. 

1. Background and objectives 
The interest in hybrid ventilation has increased during the last years (Schild, 2003), but has so far mostly been 
used in schools. However, near Trondheim in Norway an office building with hybrid ventilation was erected 
during 2002. This provided an opportunity to measure energy use in a building with this type of ventilation and 
to compare simulations with real data. The simulation model can further be used to study how adjusting of 
control parameters and changing the system design, can influence on energy use and thermal indoor environment 
in a hybrid ventilated building. 

The objective of the work presented in this paper is to demonstrate the consequences on energy use by adjusting 
control parameters in a building with hybrid ventilation and displacement air supply. 

2. Method 
Hourly measurements were carried out during one year from summer 2003 to summer 2004 and included water 
based energy for space heating and ventilation together with electricity for lighting and equipment. Simulation of 
measured values was done by modelling the complete building. Validation of the simulations was done by 
comparing with measurements. The last step was to use the simulation model to evaluate the effect of different 
changes related to room temperature control, heat recovery and type of ventilation.  



3. Description of the building and technical installations 
The case building presented in this paper belongs to Nord-Trøndelag College (HiNT) in Levanger, located 80 km 
north of Trondheim, Norway. The building was ready for occupation in  August 2002. It has a common wing 
with meeting rooms and educational areas. Two other wings are office areas, see Figure 1. To simplify the 
project, only one of the office wings (the HiNT wing) was used in the study. The building has two storeys, see 
Figure 2. It has no basement, but a culvert for supply of ventilation air is embedded in the ground along the 
central axis of the wing. A more detailed description of the building, measurements and LCC calculations can be 
found in (Mathisen, 2004). 

 
Figure 1. Plan view of the building showing the 
common area and the two office wings. “31” is 
the air intake tower 

Figure 2. The east façade with the air intake towers 
in the foreground. The right tower supplies the office 
wing. The glazed area is the stairwell. The tower 
above the stairwell is the exhaust air tower. 

The HiNT-wing has a net area of 478 m2, of which 269.5 m2 are used as office cells. Each cell is about 9 m2. The 
gross area of the wing is 835 m2, of which 112 m2 is used for culvert, air intake tower and exhaust tower.   

The hybrid ventilation is of so called culvert type. In principle it is constructed as shown in Figure 3. The ducts 
from the culvert to the rooms are buried in the ground beneath the floor. At the façade the ducts turn 90o 
upwards. The ducts end in a damper placed inside the supply air terminal device. The air terminals are placed at 
the floor beneath the windows. Air to the first floor is supplied through enclosed ducts at the inside of the façade.  

Embedded  
culvert

Filter, fan, heat recovery and heating coil
Damper for bypassing coils

Air intake tower

Supply air terminal device for displacement 
ventilation. Damper for controlling airflow 
rate One terminal for each office/module

First floor

Ground 
floor

 

 

 
Figure 3. Culvert in principle and a section through the building. 1: Air intake tower. 2: Air intake culvert. 
3: Air distribution culvert. 4: Stairway. 5: Corridors. 6: Exhaust air tower. 

From the offices the air flows through grilles placed close to the ceiling and into the corridor. Exhaust of air 
takes place through corridors and stairway up to the tower on the roof. The exhaust air tower contains a heat 
recovery coil and a fan.  

Radiators are placed beneath each window. None of the offices have mechanical cooling. Each office cell has a 
presence detector and a temperature sensor and a digital controller unit that controls heating, ventilation and 
lighting. Venetian blinds are automatically and simultaneously controlled for each façade, with a possibility for 
individual control. Bus is used for communication. 

HiNT wing 
HiNT wing 

N 



Figure 4 shows the ventilation and controller system in principle. The supply and exhaust fans are controlled by 
the pressure difference between the culvert and the corridor at the ground floor, i.e. the fans should keep the 
pressure difference constant. When there is no heating demand for the ventilation air and the outdoor 
temperature exceeds 15 °C, the bypass dampers opens to reduce the pressure drop. 
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 Figure 4. Ventilation system in principle and the control strategy for the room controller.   

The dampers in the supply air terminal devices control the air flow rate to each room. They operate as follows: 
Normally they close at 4 pm. At 6 am open to give approximately 25 m3/h (2.8 m3/hm2) of air . When a person 
enters the room they open to give 43 m3/h (4.8 m3/hm2). If the room air temperature exceeds the set-point they 
open further. When the temperature is one degree above the set-point they are fully opened and give about 200 
m3/h (22 m3/hm2). 

If the room air temperature is above the set-point, the dampers also open at night. Total airflow rate supplied to 
the HiNT-wing is 8 600 m3/h. 800 m3/h is drawn from toilets without any heat recovery. 

4. Description of the simulation model 
The simulation model is implemented in the building/plant simulation program ESP-r (ESRU, 2000). The model 
is a whole-building model. Figure 5 shows how the model appears in the cad-window in the ESP-r Project 
Manager. 

 
Figure 5. The whole-building simulation model 



Construction elements 

The modelling of the building elements are done by investigating the construction drawings. In principle, the 
building envelope is very well insulated, far better than required by the national building code. However, the 
extensive occurrences of thermal bridges make the U-value increase significantly. Table 1 shows the basic 
U-values and the thermal bridge corrected U-values calculated by methods described by the Norwegian 
guidelines and EN-ISO-6946 (EN-ISO 6946, 1996). 

Table 1. U-values for selected building constructions 
Building  
construction 

Basic U-value 
[W/m2K] 

Thermal bridge corrected 
U-value [W/m2K] 

External walls 0.18 0.33 
Roof 0.12 0.17 
Floor on ground 0.15 0.17 
Windows 1.31 1.40 

The air intake culvert and the air distribution culvert are embedded ground coupled concrete ducts. The floors 
and the walls are modelled as a concrete layer and an insulation layer. One meter of earth is also included in 
these constructions. The construction is coupled to a constant temperature in the ground; 10 °C underneath the 
building and 5 °C outside the building. This is a fairly rough simplification, but gives a good approximation to 
the complex physics in the ducts (Wachenfeldt, 2003). This approximation is also done for the floor 
constructions with ground coupling. 

Air flow network model 

Supply air is taken through the culvert before it is mixed with extract air from the zone in the heat recovery unit. 
The mixing of the two air flows is a simple approach to model the heat exchanger, and is not meant to be a 
recirculation of air. If necessary, the air is preheated to the given set-point. The air flows further into the air 
distribution culvert, which can also be seen in Figure 5 under the office building. From the distribution culvert 
the zones are supplied with air by fans. The model has a total of eight fans supplying the eight air-conditioned 
zones. From the offices the air flows through an opening to the corridor and from the corridor into the stairway, 
where the air is extracted by two fans. One fan feeds the heat recovery zone, and the other leads the rest to the 
outside. By replacing stack and wind effects with fans, the model supposes that the hybrid ventilation system 
works ideally at all times with regard to airflow rates and temperature control. 

The model has a free cooling system. When the outside dry bulb temperature exceeds 15 °C, the air is by-passed 
the heat recovery unit. In Figure 6 that means that damper 4 opens, while dampers 2 and 3 are shut. Damper 1 
opens to fulfil the mass balance. 
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Figure 6. Principal scheme of the simulation model with an air flow network 



Air supply control 

The air flow is controlled both by the presence of people and temperature in the specific zones. The minimum air 
flow for an occupied zone is approximately 4.8 m3/ hm2 and 2.8 m3/hm2 in an empty zone during the working 
hours. If the temperature raises above the set-point the air volume increases proportionally with the temperature 
until full opening at 22 m3/hm2. The presence of people is fixed in the control strategy, and is given by the 
occupational load in the internal gains. Table 2 outlines the air control strategy.  

Table 2. Air flow rates at different times of a working day. Set-points (SP) change over the year and room-type. 
See Figure 7  for the SP-values. The office rooms are occupied 8-10 and 13-16.  

Time Min airflow 
[m3/hm2] 

Max airflow [m3/hm2] 
(Temp. controlled) Control range [oC ] 

0-6 0.0 22.0 SP + 1.5 °C � SP + 2.0 °C 
6-8 2.8 22.0 SP + 0.3 °C � SP + 1.3 °C 
8-10 4.8 22.0 SP + 0.3 °C � SP + 1.3 °C 

10-13 2.8 22.0 SP + 0.3 °C � SP + 1.3 °C 
13-16 4.8 22.0 SP + 0.3 °C � SP + 1.3 °C 
16-24 0.0 22.0 SP + 1.5 °C � SP + 2.0 °C 

Other days 0.0 22.0 SP + 1.5 °C � SP + 2.0 °C 

Set-points for heating and ventilation 

The set-points for heating and ventilation vary over the year. The office cells have individual set-points for 
heating, while the set-points for the common area and the supply air are set by the operator. All rooms have 2 K 
night set-back relative to the set-point during working hours. Figure 7 shows the actual monitored set-points that 
were used in the simulations. The reason for the increased set-point for the supply air during winter period is due 
to complaints about draught against ankles.  

Internal gains 

The internal gains are persons (occupational load), equipment and lighting. In every zone type, except for one 
server room, all internal loads are shut down during night hours and weekends. Figure 8 shows the internal gains 
during a working day. 
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Figure 7. Set-points for the office cells, the 
hallways/common areas and the supply air. 

Figure 8. The internal gains in the office cells 
and the hallway/common area 

Climate 

Ideally, the climate data should have been recorded at the location in the same period the energy consumption 
measurements were done. As this data were insufficient, it was decided to use the hourly Test Reference Year 
(TRY) data produced by the program Meteonorm (Meteonorm, 2004) for Trondheim Airport Vaernes, located 
30 km south of Levanger. The official air temperature measurements from the meteorological station at Vaernes 
(MET.no, 2005) show that the annual average temperature during the time of this study was 1,5 °C above the 
standard year. The TRY values however, are somewhere between the standard year and the actual 
measurements. Table 3 shows the monthly average air temperatures from Vaernes (met.no), the TRY and the 
standard year, respectively. 



Table 3. Monthly average air temperatures [°C] for the time of study, TRY and the standard year 
 jan feb mar apr may jun jul aug sep oct nov dec avg
met.no -3.4 -0.4 2.7 7.9 9.2 13.1 17.6 14.2 10.7 3.8 2.5 0.5 6.5
TRY -4.4 -4.3 -0.1 4.4 10.8 15.1 16.5 15.3 10.6 6.4 0.7 -3.0 5.7
Standard -3.4 -2.5 -0.1 3.6 9.1 12.5 13.7 13.3 9.5 5.2 0.5 -1.7 5.0

Simulation strategy 

The simulations were run month by month to compare directly to measured values. The heat recovery unit had a 
failure during December and January. This has been taken into account in the calibrated simulation model by 
reducing the efficiency to 20 %.  

5. Simulations 
Basic model 

The results for monthly heating of the rooms and the ventilation air from the calibrated basic simulation model 
are given in Figure 9. Table 4 shows the total energy use and the relative agreement to measured values. 
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Figure 9. Energy use distributed on room heating and ventilation air preheating for each month. First bar is 
measured values and the second is the results from the simulation model. 

Effect of adjusting the control range 

The objective of this section is to study the impact of allowing the room temperature to glide somewhat more 
than in the basic model before full damper opening occurs in the air supply terminals. The same set-points for 
room and ventilation air temperature as in the basic model are used. The only modification from the basic model 
is that the heat exchanger efficiency is constant throughout the year. Two cases are simulated with 45 % and 
55 % heat exchanger efficiencies, respectively. 
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Figure 10. Energy use as a function of the control range 
and efficiency of the heat recovery unit. The meaning of 
the control ranges are explained in Figure 11. 

Figure 11. The different control ranges. The set-
point (SP) is 21 °C. The dead band (DB) is 1 °C. 



Comparing measured energy use with results from Figure 10 indicates that increasing the dead band up to 1 K 
and allowing 3 K temperature glide before full damper opening, makes it possible to save about 25% of the total 
energy use for heating. 

Excessive temperature 

Hours with room air temperature above 26 °C increase about 6 hours during a year when changing the upper set-
value from 23 °C to 24 °C, and additional 10 hours for 25 °C. However, temperatures above 26 °C occur less 
than 50 hours during a year within working hours, but will exceed 50 hours with higher upper set-values. 

Other simulations 

Table 4 summarizes some of the simulations carried out in this study. The first two rows in Table 4 are the 
measured values and the simulated values, respectively, as presented in Figure 9. The third row (Basic_CR3) is a 
slight modification of the basic model. The only difference from the basic model is that the control range is set to 
22-25 °C instead of 21.3-22.3 °C. The fourth row presents the results from a model where the set-points and 
technical solutions are in accordance with the designed values, i.e. the supply air is held at 20 °C the entire year 
and the heat exchanger efficiency is constantly 45 %. The “Improved design” configuration has a control range 
of 22-25 °C and a heat exchanger efficiency at 55 %. The latter two configurations presuppose that the draught 
problems are solved. 

Table 4. Comparison of different cases 

Case 
Supply air 
temperature, 
summer/winter 

Room heating 
[kWh] 

Ventilation 
air preheating 
[kWh] 

Total 
energy  
use [kWh] 

Rel. difference 
from measured, 
total [kWh] 

Measured values As Figure 7 26 317 61 874 88 192 - 
Basic model  As Figure 7 23 071 70 289 93 360 +  6 % 
Basic_CR3 As Figure 7 23 673 49 108 72 782 - 17 % 
Designed  20/20 27 922 43 455 71 377 - 19 % 
Improved design 19/20 25 775 32 867 58 642 - 34 % 

6. Discussion 
The simulated basic model and the measured values agree well. It must be remembered that measured values has 
uncertainty due to measurement accuracy and missing data in some periods. The simulations are based on a 
climatic year different from the real climate. Further, the real case’s set-points differ from room to room and 
frequently during the year, while the values used in the simulation model are monthly averages of monitored 
values. The calculated U-values due to taking the thermal bridges into account are another uncertainty in the 
simulation model. 

May and October are the only months the simulation model determines less energy use than the measurements. 
This can be explained by the fact that these months have a higher average outdoor air temperature (see Table 3). 

In comparing measurements and simulations, the total energy use for heating agrees better than the separate 
energy use for heating the rooms and the ventilation air. This can be explained by the narrow dead band between 
radiator heating and cooling by increasing the ventilation air. For instance, if the simulation model over-predicts 
room temperature by as little as 0.3 °C (21.3 °C instead of 21.0 °C see Figure 4) this leads to ventilation air 
heating demand instead of room heating demand.  

The embedded ducts have a heat loss that is difficult to estimate because the temperature in the ground varies 
during the year. On the contrary, the lost heat leads to higher temperature in the ground that might reduce the 
heat loss through the floor. 

The “Designed” and “Improved design” cases require that the ventilation works without draught problems. 
Today the supply air temperature is increased by the operator in order to reduce the draught sensation. High 
supply air temperature gives increased heat loss from the culvert, the embedded ducts, and reduced ventilation 
efficiency (Mundt, 2004). If the room temperature is allowed to glide more before full opening of the dampers, 
the airflow rate is reduced. Reduced airflow rate implies lower air velocity in the vicinity to the air terminal. On 
the other hand, higher temperature difference between room air and inlet air increases the density differences and 



hence the acceleration of the air. However, higher room air temperature implies that higher air velocities are 
accepted before the users sense draught. (Skistad, 2002), (Mathisen, 1989).  

 

7. Conclusions 

 Annual total specific energy use is measured to be 161 kWh/m2 heated gross area, of which 

 111 kWh/m2 are hydronic space heating and heating of ventilation air.  


 The simulations carried out in ESP-r agree well with the measurements.  


 The thermal environment is satisfactory during summertime with less than 50 hours with temperature 
above 26 °C. Even if the temperature glide is allowed up to 25 °C before full damper opening, the 
number of hours with over temperature increases with only a few hours. 


 The total airflow rates during working hours are relatively large; this is due to the fact that the control 
range for the room temperature was only 1 K. On cold days this means that preheating in addition to 
recovered heat is necessary. If the dead band between radiator heating and cooling by increased 
ventilation is expanded to 1 K, and the temperature is allowed to glide 3 K before full opening, it is 
possible to save about 25 % of the total energy use for heating compared to the measurements. 


 Increasing the heat exchanger efficiency from 45 to 55% will save about 7-11% of the total energy use, 
depending on the control range. That is, the energy use is more dependent on the control range for the 
room temperature than the heat exchanger efficiency.  


 The simulations show that if the type of hybrid ventilation system presented in this paper is well 
designed and operated, moderate energy use can be obtained. 
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Abstract 

Building simulation programs are powerful tools to predict the thermal climate and the 

energy use in buildings. However, simulations for estimating the energy use are rarely used 

by consultants.  

 

This paper describes two ways of modeling an office building. A case building has been 

monitored for energy use over a year, and the measurements are used to calibrate two 

simulation models. The first model simulates a single-zone and takes into account only the 

adjacent rooms. The cell is further modified to cover all room types in the building. The 

other model is a full-building model. 

 

The objective of this study is to find whether the single-zone modeling approach is 

appropriate for energy use estimations. Results from the simulations show that it is possible 

to come very close to measured values with the full-building model. The single-zone tends 

to over-estimate the need for heating of ventilation air. This must be taken into 

consideration if such an approach is chosen. 
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ABSTRACT
Building simulation programs are powerful tools to predict the thermal climate and the energy 
use in buildings. However, simulations for estimating the energy use are rarely used by 
consultants.  

This paper describes two ways of modelling an office building. A case building has been 
monitored for energy use over a year, and the measurements are used to calibrate two 
simulation models. The first model simulates a single-zone and takes into account only the 
adjacent rooms. The cell is further modified to cover all room types in the building. The other 
model is a full-building model. 

The objective of this study is to find whether the single-zone modelling approach is 
appropriate for energy use estimations. Results from the simulations show that it is possible to 
come very close to measured values with the full-building model. The single-zone tends to 
over-estimate the need for heating of ventilation air. This must be taken into consideration if 
such an approach is chosen. 

INDEX TERMS 
Simulation, measurements, annual energy use, ESP-r, modelling approach 

INTRODUCTION 
Building simulation is considered one of the most important efforts in increasing buildings’ 
energy efficiency. Still, simulations for estimating the energy use are rarely used by 
consultants. Constructing building simulation models is considered too time-consuming and, 
consequently, too expensive to be a part of the design process. Full-building modeling is only 
applied in large scale projects (TIP-vent 2000). In recent years, however, it has become more 
common to use simulation tools to predict the thermal environment in extreme rooms e.g. to 
identify the need for cooling. A skilled engineer will not use more than one hour to establish 
such a single-zone model. 

The objective of this paper is to analyze whether or not the single-zone model, basically 
meant for thermal environmental analysis, is applicable to estimate annual energy use for an 
office building.  

* Corresponding author email: rasmus.hoseggen@ntnu.no  



RESEARCH METHODS 

The case building 
The case presented in this paper is connected to the Nord-Trøndelag College (HiNT) building 
in Levanger, located 80 km north of Trondheim, Norway. The building has a joint wing with 
meeting rooms and auditoriums. Two separate wings are office areas, see Figure 1. To 
simplify the project only one of the office wings (the HiNT-wing) were used in the study. The 
building has two storeys. There is no basement, but a culvert for supply of ventilation air is 
embedded in the ground along the middle of the wing.  

Figure 1. Plan view of the building, showing the common area and the two office wings. 

The HiNT-wing has a net area of 478 m2, of which 269.5 m2 are for office cells of about 9 m2

each. The gross area of the wing is 835 m2, of which 112 m2 is used for culvert, air intake 
tower and exhaust tower.   

The hybrid ventilation is of the so-called culvert type. Figure 2 shows the principle of the 
construction. From the culvert ducts, transporting air to the rooms, are placed in the ground 
beneath the floor. At the façade the ducts turn 90o upwards. The ducts end in a damper placed 
inside the supply air terminal device. From the offices the air flows through grilles to the 
corridor. There is a heat recovery unit and a fan in the exhaust air tower. Radiators are placed 
beneath each window. None of the offices have mechanical cooling. Lighting, heating, and 
ventilation are demand-controlled, and venetian blinds are simultaneously controlled for each 
façade with a possibility for individual control. 

Embedded  
culvert

Filter, fan, heat recovery and heating coil
Damper for bypassing coils

Air intake tower

Supply air terminal device for displacement 
ventilation. Damper for controlling airflow 
rate One terminal for each office/module

First floor

Ground 
floor

     
Filter, heat recovery and 

heating coils

Exhaust fan
Heat recovery coil

Supply fan

Figure 2. Culvert in principle and as a section through the building 

Simulation models 
The simulation models are implemented in the building/plant simulation program ESP-r 
(ESRU, 2000) in two ways. The simplest model consists of a single-zone that covers an office 
cell and a narrow part of the hallway. The other is a full-building model. Both models are 

HiNT
wing 



given the same properties in terms of building materials, set-points for temperature, 
ventilation and operation. Figure 3 and Figure 4 show how the models appear in the 
cad-window in the ESP-r’s Project Manager, respectively. 

Figure 3. Single-zone model in the Project manager Figure 4. Full-building model 

Construction elements 
The modelling of the building elements are done by investigating the construction drawings. 
In principle the building envelope is very well insulated, far more than required by the 
national building code. However, the extensive occurrences of thermal bridges make the 
U-value increase significantly. Table 1 shows the basic U-values and the thermal bridge-
corrected U-values calculated by methods described by the Norwegian guidelines and 
EN-ISO-6946 (EN-ISO 6946:1996) 

Table 1. U-values for selected building constructions 
Building  
construction

Basic U-value 
[W/m2K]

Thermal bridge-corrected 
U-value [W/m2K] 

External walls 0.18 0.33 
Roof 0.12 0.17 
Floor on ground 0.15 0.17 
Windows 1.31 1.40 

Air flow network model 
Supply air is taken through the culvert before it is mixed with extract air from the zone in the 
heat recovery unit. The mixing of the two air flows is a simple approach to model the heat 
exchanger, and is not meant to be a recirculation of air. If necessary, the air is preheated to the 
given set-point. The air flows further into the air distribution culvert, which can also be seen 
in Figure 4 under the office building. From the distribution culvert the zones are supplied with 
air by a fan. For the full-building model there are a total of eight fans supplying the eight air-
conditioned zones. The air is extracted from the zones by two fans, one feeds the heat 
recovery zone, and the rest is led to the outside air.  

Both models have a free cooling system. When the outside dry bulb temperature exceeds 
15oC, the air is by-passed the heat recovery unit. In Figure 5 that means that damper 4 opens, 
while dampers 2 and 3 are shut. Damper 1 opens to fulfil the mass balance. 

The air intake culvert and the air distribution culvert are embedded ground coupled concrete 
ducts. The floors and the walls are modelled as a concrete layer and an insulation layer. One 
meter of earth is also included in these constructions. The construction is coupled to a 
constant temperature in the ground; 10oC underneath the building and 5oC outside the 
building. This is a fairly rough simplification, but gives a good approximation to the complex 



physics in the ducts (Wachenfeldt 2003). This approximation is also done for the floor 
constructions with ground coupling. 
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Figure 5. Principal scheme of the model with an air flow network 

The air intake culvert and the air distribution culvert are not modelled in the single-zone 
model, but are replaced by adiabatic dummy zones. However, the additional heat loss from 
the air distribution culvert is taken into account. 

Air supply control 
The air flow is controlled both by the presence of people and temperature in the specific 
zones. The minimum air flow for an occupied zone is approximately 5 m3/m2h and 
2.5 m3/m2h in an empty zone during the working days. If the temperature raises above the set-
point the air volume increases proportionally with the temperature until full opening at 
20 m3/m2h. The presence of people is hard coded in the control strategy, and is given by 
occupational load in the internal gains. Table 2 outlines the air control strategy.  

Table 2. Air flow rates at different times of a working day. Set-points (SP) change  
over the year and room-type. See Figure 6  for the SP-values. 

Time Min airflow  
[m3/m2h]

Max airflow [m3/m2h]
(Temp. controlled) 

Regulation  
band [oC]

0-7 0.0 20.0 SP + 1.5oC  SP + 2.0oC
7-8 2.5 20.0 SP + 0.3oC  SP + 1.3oC

8-10 9.0 20.0 SP + 0.3oC  SP + 1.3oC
10-13 2.5 20.0 SP + 0.3oC  SP + 1.3oC
13-16 9.0 20.0 SP + 0.3oC  SP + 1.3oC
16-24 0.0 20.0 SP + 1.5oC  SP + 2.0oC

Other days 0.0 20.0 SP + 1.5oC  SP + 2.0oC

Set-points for heating and ventilation 
The set-points for heating and ventilation vary over the year. The office cells have individual 
set-points for heating, while the set-points for the common area and the supply air are set by 
the operator. Figure 6 shows the actual monitored set-points that were used in the simulations. 



Internal gains 
The internal gains are persons (occupational load), equipment and lighting. In every zone 
type, except for the server room, all internal loads are shut down during night hours and 
weekends. Figure 7 shows the internal gains during a working day. 
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Climate 
Ideally, the climate data in this study should be measured at a place close to the building in 
the same year the energy consumption measurements were done. As this data were not 
available or insufficient, it was decided to use the hourly Test Reference Year data produced 
by the program Meteonorm (Meteonorm 2004) for Trondheim Airport Vaernes, located 30 
km south of Levanger. 

Simulation strategy 
The single-zone’s constructions and boundary conditions were modified in order to cover all 
rooms in the building. All these single simulation were finally synthesized for the whole 
building. Both for the single-zone model and the full-building model, the simulations were 
run month by month to compare directly to measured values. 

RESULTS
Measured energy use for room heating is 26 317 kWh. Single-zone simulations show 
17 389 kWh and the full-building model 22 820 kWh. For ventilation the numbers are 61 874, 
67 507 and 83 382 kWh, respectively. The results for monthly heating of the rooms and the 
ventilation air are given in Figure 8. Table 3 shows the total energy use and the relative 
agreement to measured values. 
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Figure 8. Energy use distributed on room heating and ventilation air for each month. First bar is measured 
values, second the whole building model and third bar is the single-zone model. 



Table 3. Total energy use for heating of rooms and ventilation air 

Model Energy use 
[kWh]

Relative 
difference from 

measured 
Measured value 88 192 - 
Full-building model 90 327 +   2.4 % 
Single-zone model 101 346 + 14.9 % 

DISCUSSION
The results from the simulations show that the single-zone model tends to over estimate the 
heating needed for ventilation air compared both to the measurements and the full-building 
model, especially for months with need for ventilation preheating. There are mainly two 
reasons for this. (1) The air intake culvert is not included in the single-zone model. The 
culvert transfers heat by convection to the intake air on cold days. This will reduce the need 
for heating of the ventilation air. The estimated gain from the culvert is approximately 
500 kWh per month from November to April. (2) The single-zone model has no opportunity 
to utilize the fact that zones may have different needs for heating at different times of the day. 
For instance, in the morning the sun will heat the east façade and may create an over-
temperature in these zones. This over-temperature is utilized in the heat exchanger for the 
full-building model, but for the single-zone this excessive heat is dumped. This must be taken 
into consideration when the single-zone model approach is being used. 

CONCLUSION AND IMPLICATIONS 
Both models agree reasonably compared to measurements, but the single-zone model tends to 
over-estimate the energy use for ventilation air. This must be taken into consideration if a 
single-zone model is being used to estimate annual energy use in buildings. For buildings 
with traditional mechanical ventilation systems this approach will be more feasible, since the 
losses/gains in the culverts are not influencing the results. However, the issue on simultaneity 
will be equally important. The single-zone modelling is a relatively quick way to estimate the 
energy use compared with the full-building model, but as discussed above, it will somewhat 
over-estimate the ventilation heating need. Further studies on other types of buildings must be 
done in order to conclude on a general level. 
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Abstract 

A new office building is will raised in the city centre of Trondheim, Norway. The new 

building consists of an atrium and an office wing. The east façade of the office wing is 

planned with a double façade. The building is planned with mechanical ventilation with 

cooling. The only possibility for utilising natural ventilation is through some fire hatches in 

the atrium.  A computer model of the building is implemented in the building/plant 

simulation program ESP-r. Simulations showed that in warm periods, satisfactory thermal 

conditions will be achieved with the originally proposed design. However, the ventilation 

system must run day and night in warm periods in order to cool the thermal mass of the 

building. The simulations also revealed that the possibility to ventilate naturally will not 

work as intended. The objective of this study is to investigate a potential improvement of 

the proposed design via use of building simulation technology. An alternative design that 

aims to utilise natural ventilation more actively to reduce the demand for mechanical 

cooling was implemented in the computer model. Simulations indicate that natural 

ventilation can reduce the demand for mechanical cooling with more than 50% while 

reducing the number of hours with unacceptable high temperatures in the occupied zones 

and avoiding night time fan operation. 
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ABSTRACT 

A new office building is will raised in the city centre of Trondheim, Norway. The new 
building consists of an atrium and an office wing. The east façade of the office wing is 
planned with a double façade. The building is planned with mechanical ventilation with 
cooling. The only possibility for utilising natural ventilation is through some fire 
hatches in the atrium.  A computer model of the building is implemented in the 
building/plant simulation program ESP-r. Simulations showed that in warm periods, 
satisfactory thermal conditions will be achieved with the originally proposed design. 
However, the ventilation system must run day and night in warm periods in order to 
cool the thermal mass of the building. The simulations also revealed that the possibility 
to ventilate naturally will not work as intended. The objective of this study is to 
investigate a potential improvement of the proposed design via use of building 
simulation technology. An alternative design that aims to utilise natural ventilation 
more actively to reduce the demand for mechanical cooling was implemented in the 
computer model. Simulations indicate that natural ventilation can reduce the demand for 
mechanical cooling with more than 50% while reducing the number of hours with 
unacceptable high temperatures in the occupied zones and avoiding night time fan 
operation.  

BACKGROUND AND OBJECTIVES 

The background for this study is a request from BARK Architects who wanted to investigate the 
thermal conditions in the building, particularly in the upper parts of the atrium. In addition, the project 
team wanted to look at the possibility for utilizing natural ventilation via a double-skin façade and an 
atrium in order to reduce or eliminate the need for mechanical cooling of a new office building.   



METHODOLOGY AND MODELLING 

A simulation model of the planned building is implemented in the building/plant simulation program 
ESP-r (ESRU, 1999), which is a transient simulation program based on the finite volume technique.  
ESP-r is capable of modeling the energy and fluid flows within combined building and plant systems 
when constrained by control actions and subject to dynamically varying boundary conditions. 

The method used in this paper is to model the building as planned, and compare it against a modified 
version that utilizes natural ventilation. From here on the models will be referenced to as Case 1 and 
Case 2, respectively. 

The building 

The new office building is to be raised in the city centre of Trondheim, Norway. The building will be 
integrated with existing brick buildings. The new building consists of an atrium and an office wing, both 
five storeys tall. The east facing façade has a double-skin façade. The ground floor in the atrium is 
planned as a reception and the first floor is a common area. Both floors are planned to have open-plan 
offices. Further up the atrium there are balconies with working places and space for group activities. The 
office wing has both cell offices and open-plan offices distributed on all five floors. There are no walls 
obstructing the air flow between the office wing and the atrium. In total there are about 150 and 100 
working places in the office wing and the atrium respectively. Figure 1 shows the cross-section of the 
building with the atrium in the middle, and the office wing to the right. Light gray lines represent existing 
buildings at the site. 

In this study, only the atrium and the 2nd, 3rd, and 4th floor of the office wing are modeled (about  
2000 m2 of floor surface area in total). The reason is that the remaining part of the building is designed 
with a separate mechanical ventilation system. Figure 2 shows how the simulation model appears in the 
cad-window in ESP-r.  

Figure 1. Cross section of the case building. Light gray 
lines represent existing buildings.  

Figure 2. The simulation model, how it appears in the 
cad-tool in ESP-r. 

Construction elements 

Properties of some selected building materials are presented in Table 1. The optical data are 
calculated by WIS (WIS, 2005) which is software that determines the thermal and solar characteristics of 



window systems. The U-values for the windows are given by the manufacturer, and the wall’s U-value is 
from the standard building code (REN, 2003). 

Table 1 Properties of selected construction elements 

Construction U-value 
[W/m2K]

Visible transmittance 
(g-value) [-] 

Windows facing the cavity in the double-
skin façade and in the south façade  1.40 0.253 

External glazing in the double-skin 
façade without blinds 5.10 0.416 

External glazing in the double-skin 
façade with blinds angled 45o 3.00 0.235 

Glass roof in the atrium with semi-
transparent canvas 1.40 0.212 

External walls 0.22 - 

The floors in the office wing are suspended concrete floors with a wooden finish. The concrete is 
exposed in the ceiling. The external walls of the existing buildings that face the interior space of the new 
building are made of brick. The use of concrete and brick results in relatively high thermal capacity of the 
interior construction, making it an interesting case for investigating night cooling strategies.   

Mechanical ventilation 

The mechanical ventilation rates are set to meet the Norwegian codes and guidelines (REN, 2003), 
which is 7 l/s per person and an additional 2 l/s/m2 for emissions from building materials. The resulting 
specific ventilation rates for every room type are given in Table 2. The temperature for the supply air is 
15oC. The operating time for the mechanical ventilation is set to 6 am – 8 pm.  

Two cases are analyzed. Case 1 considers the proposed design, while Case 2 considers an alternative 
design utilizing natural ventilation to reduce or avoid mechanical cooling. For Case 1, the ventilation rate 
outside working hours is controlled by the operative temperature individually for each zone. That is, if the 
temperature indoors is above the 20oC, the ventilation rate increases proportionally with the temperature 
until full flow rate at 23oC. For Case 2, the ventilation system is always shut down outside operating time.  

Table 2. Ventilation rates in different zones, during working hours 

Zone Ventilation rate  
[m3/h/m2]

Office wing 10.2 
Common area   8.9 
Reception   8.9 

Internal heat gains 

Values for the internal heat gains are taken from the Norwegian Standard (NS3031, 1987). Maximum 
load is assumed in the office wing, and 50% of maximum is used as mean load in the reception and the 
common area. The heat gains apply during the working hours, Monday to Friday 8 am to 5 pm, while 
they are switched off outside working hours. Equivalent heat gains are listed in Table 3.



Table 3 Equivalent internal heat gains according to the NS3031 

Heat source Office wing 
[W/m2]

Reception and 
common area [W/m2]

Persons 12 8 
Lighting 8 4 
Equipment 4 2 

Climate data 

In this study, hourly Test Reference Year (TRY) data produced by the program Meteonorm 
(Meteonorm, 2005) for Trondheim was used as climate data. Figure 3 shows the most influential 
parameters during a warm and sunny week in August. 
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Figure 3 Selected climate parameters for August 13.-19. 

Simulation model 

The following assumptions and simplifications have been done to the simulation model: 

The base area is modeled as rectangular for both the atrium and the office wing, although the 
geometric shape in reality is trapezoidal. However, the floor and external wall surface areas are in 
accordance with the drawings. 
The atrium is divided horizontally in three zones. Although this is a rough approximation, it 
makes it possible to take thermal stratification into account, and improves the accuracy of the air 
flows through the atrium. 
The double-skin façade has venetian blinds within the cavity which shut when the global radiation 
on the façade exceeds 200 W/m2. The blinds are individually controlled for each floor. 



The solar obstruction caused by the high rise buildings situated to the east is taken into account, 
while the potential effect from the low rise buildings situated to the south is ignored. 

Modeling the double-skin façade and the airflow network 

Guidelines for modeling double-skin façades are practically non-existent and even examples are rare. 
However, some studies on this issue are done by Dickson (Dickson 2004) and Hensen (Hensen et. al 
2002). Both studies underline that the modeling of double-skin façades is particularly complex because of 
the high degree of interactions between the many heat transfer processes. To obtain a tolerably accurate 
prediction of the façade performance, it is important to ensure appropriate treatment of the solar 
insolation, the cavity convection regimes, the surface view-factors, blind spatial position, airflow 
resistances, vertical temperature gradient and cavity divisions with fictitious divisions (Dickson 2004).  

For this particular case, the double-skin façade is divided into a stack of three zones adjacent to each 
of the office levels. The zones are divided by fictitious transparent surfaces with high conductivity, 
negligible thermal mass and high emissivity, and coupled by an airflow network which also includes the 
inlet opening at the bottom and the top outlet opening at the top of the façade. Since the double-skin 
façade will be ventilated, the Bar-Cohen & Rohsenow correlation is used to predict the convective heat 
transfer for the surfaces facing the cavity. 

In Case 2 with natural ventilation, some of the office windows facing the cavity of the double-skin 
façade are operated automatically. The operation depends on both the temperature in the office and in the 
cavity of the double-skin façade. That is, if the temperature indoor reaches the low set-point, the window 
opening area increases proportionally with the temperature until the window is fully open at the high set 
point. If the temperature in the double-skin façade exceeds 25oC, the windows close in order to avoid 
increased cooling demand. Figure 4 shows that this is especially relevant for the windows in the upper 
part of the double-skin façade, where the temperature can exceed 30oC on warm and sunny days.  
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Figure 4. Simulated air temperatures in the double-skin façade for the three floors August 13-19  

In ESP-r there are currently no control functions that are able to sense two parameters at the same 
time. Since the operation of the windows depends on the temperature in the office as well as in the cavity 
of the double-skin façade, it is necessary to introduce a dummy air node in the simulation model. This 
makes it possible to have two openings between the indoor air node and the node in the double-skin 
façade. One opening represents the actual window, and the other is an opening with negligible fluid 
resistance when open. When the temperature in the double-skin façade exceeds 25oC, the latter opening 
shuts in order to prevent this hot air from entering the offices. Figure 5 illustrates how it is implemented 



for the window openings in the 3rd floor. Damper A represents the window, and damper B is the fictitious 
opening.

The control strategy is in principle also implemented for the windows and hatches facing the ambient, 
in which case damper B in Figure 5 is controlled by the ambient temperature. Figure 6 shows the control 
strategy for damper A, i.e. the operation of the windows and hatches as a function of room air 
temperature.  

Figure 5. Principal sketch of the window control. 
Damper A represents the window and is controlled 
by the indoor temperature. B is controlled by the 
temperature in the double-skin façade. 

Figure 6.  Control strategy for the windows and the 
hatches. The dashed line yields outside working hours, 
while the solid line yields from 6 am – 8 pm.   

SIMULATION RESULTS 

 As mentioned previously, two cases are compared:  

1. The planned solution, where the only possibility to ventilate naturally is via a fire hatch over the 
entrance to the reception and in the ceiling on warm and sunny days. The hatches are closed 
outside working hours. The mechanical ventilation system operates outside working hours if 
needed.

2. Natural ventilation is more actively used. The windows in the office wing and the fire hatches are 
controlled, also during the night. In addition to the planned fire hatches, some new hatches are 
placed higher up on the south façade. 

For the worst case scenarios, considering the warm week August 13-19, the effect of wind is ignored 
for both Case 1 and Case 2, resulting in natural ventilation being driven by thermal buoyancy only.  
Additional simulations have been carried out for the period outside the heating season, May 1 to 
October 1. For these simulations the effect of wind is taken into account. The weekly simulation uses a 
time step of 3 minutes, while the seasonal simulations were performed with 15 minutes time steps. 
Beneath, thermal conditions during the warm week in August are compared for Case 1 and Case 2, 
followed by the comparison of energy use from May 1 to October 1.  

Thermal conditions 

One concern for the projecting team was that high temperatures could occur in the upper parts of the 
atrium. Figure 7 shows the operative temperatures at the highest point of occupation in the atrium. Case 2 
achieves a slightly better thermal comfort in the atrium, even though both cases will have some hours 
with unsatisfactory thermal conditions on the warmest days.   
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Figure 7.  Operative temperature in the upper part of the atrium for the two cases. The temperature is at it’s highest 
between 2 pm and 4 pm.  

The most critical zone in the office wing is the 4th floor, since it is the one that is most exposed to the 
sun, and the effect of thermal buoyancy is less than the floors below. In addition, the temperature in the 
cavity of the double skin facade is highest outside the 4th floor, which will also affect the efficiency of 
the natural ventilation. Figure 8 shows that both cases will achieve satisfactory thermal conditions within 
the working hours. However, the temperature raises almost 2 degrees as the mechanical ventilation and 
cooling shuts down at 8 pm in Case 2.  
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Figure 8. Operative temperature in the 4th floor of the office wing 

Figure 9 shows the ventilation rate for the two cases during the case week. While the ventilation 
system in Case 2 rarely runs outside working hours, the mechanical ventilation must be in operation 
practically day and night in order to cool the building mass and achieve the thermal condition shown in 
previous figures.  
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Figure 9. Total ventilation rates for the two cases.  

Case 1 has the possibility to open fire hatches on warm days in order to ventilate naturally. However, 
as Figure 10 shows, the hatch in the reception only opens for short periods, and never fully open as this 
occurs at 25oC. Natural ventilation will thus be very limited even though the hatches in the ceiling are 
fully open. This is the reason for proposing some additional hatches higher on the south façade in the 
design aiming to utilize natural ventilation more actively. 
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Figure 10. Temperature in the reception and the flow rate through the fire hatch for case 1. 

Energy use 

The seasonal energy use is estimated for the two cases. The energy use associated with the mechanical 
ventilation system is electric power to fans and to cooling machinery, which includes power to the 
compressor, pumps and dry coolers. Assuming that the efficiency of the ventilation system tot is constant 
for all air flow rates, the relation P ~ Q3 can be used, where P is the total of all fan power measured as 
power input to the fan engine (kW) and Q is the total mechanical air flow (m3/s). Thus, the following 
relation can be obtained:  

3

3 3
nom

nom
nom nom

PP QP P
Q Q Q

 (1) 

where the subscript nom indicates nominal air flow rate.  



By definition, the specific fan power (SFP) is (Mysen 1999): 

nom

nom

PSFP
Q

 (2) 

Combining (1) and (2), and assuming that the SFP does not vary significantly with the air flow rate, 
the following approximation for the fan power can be obtained: 

3

nom
nom

QP Q SFP
Q

 (3) 

In Table 4, the energy calculations are summarized. To calculate the electric fan power need, 
equation (3) is used with the simulated flow rates for each time step and integrated over the entire time 
period.  

Table 4. Summary of the seasonal energy use for the two cases. 

Cooling energy 
need1

[kWh]

Res. Electric 
energy use for 
cooling2 [kWh] 

Electric fan 
energy need to3

[kWh]

Total electric 
energy need 
[kWh]

Relative
energy need 
to Case 1  

Case 1 21 300 7100 30 400 37 500 0 
Case 2 12 600 4200 13 800 18 000 -52 % 
1Energy needed to cool the ambient air to the supply temperature 
2Assumed COP = 3.0 (pumps, compressors and cooling fans included) 
3Utilizing eq.(3) and assumed SFP = 2.5

DISCUSSION AND CONCLUSIONS 

This paper has shown how an office building with an atrium and a double-skin façade can be modeled 
in a building simulation program. The paper also gives an example on how advanced controlling of 
windows and hatches can be implemented to utilize natural ventilation, even though such a controller 
functions in principle do not exist in the simulation program.  

Although there are several uncertainties attached to such a model, it can be very helpful in finding 
alternative solutions in the design process. Moreover, simulations can reveal design mistakes. An 
example of this is demonstrated in Figure 10, which clearly shows that the planned solution will not work 
as intended. 

The simulations also show that when dealing with a building with high thermal mass, it is crucial to 
empty the thermal storages during nighttime. If not, heat will accumulate over warm periods and create a 
considerable thermal comfort problem.   

The energy calculations are approximate. Both the mechanical ventilation efficiency and the SFP are 
dependent on the volume flow rate. For Case 2 the SFP is constant, since the mechanical ventilation is 
either on or off. This is also correct for Case 1 during working hours, but when the fans are running on 
part load, the SFP will change. However, the purpose of the energy calculations is to provide a rough 



estimate of the potential energy savings from utilizing natural ventilation. Despite of the uncertainties, the 
study clearly indicates that important savings can be realized through relatively simple measures.  

Conclusions 

The simulations show that both cases will achieve satisfactory thermal conditions during working 
hours of a warm and sunny week, except for some hours in the most exposed areas in the upper 
part of the atrium. 
The thermal conditions are not depreciated by switching from mechanical ventilation to natural 
ventilation at night. In fact, in this particular case, the thermal conditions are somewhat improved 
in some parts of the building when using natural ventilation.  
The simulation indicates that there is a major potential in saving energy by combining mechanical 
ventilation with utilization of natural ventilation. 
The electrical energy saving potential for the case building, located in Trondheim, Norway, is 
estimated at approximately 50% during the period from May 1 to October 1.  
The study reveals an important potential for improving building and HVAC system design, which 
underlines the importance of using simulation tools in the design process. 
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switching to windows with an improved U-value in the single-skin alternative, the difference in energy demand is almost evened out. The number

of hours with excessive temperatures is, in contrast to other studies on the subject, not significantly higher for the double-skin alternative. However,

the predicted energy savings are not sufficient to make the application of a double-skin façade profitable.
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1. Introduction

Implementation of double-skin façades in both new and

existing buildings has seen broad application in recent years.

There are both technical and architectural arguments for

investing in a double-skin façade. The architectural arguments

are that double-skin façades provide open and transparent

façades as well as a homogenous façade expression (mono

material) [1]. The technical arguments relate to the practical

functions of a double façade, both concerning thermal

performance and as shelter against outdoor climate. The

double façade may reduce the heating demand by functioning

as a thermal buffer and as a pre-heater of ventilation air. It may

also improve the thermal comfort during cold winter days since

the inner window surfaces will be warmer, thus increasing the

operative temperature. In addition, the double-skin façade

protects sun-shading devices from dirt and adverse weather

conditions, and it may allow natural ventilation in places, this

generally would not be possible due to high outdoor noise levels

[2].

Unfortunately, there are several disadvantages related to

double-skin façades. The investment costs are considerably

higher than for a traditional single-façade (60–80%), even

though the inner façade may have a simpler construction and

finish [3]. The additional glass layer reduces the daylight

illumination levels indoor, and gives a larger glass area to keep

clean. Thermally, the risk of overheating on warm sunny days is

evident and may lead to a higher cooling demand. However,

with well-dimensioned openings, an optimized space between

the façades, and well-positioned shading devices, it is possible

to reduce the overheating risk to a minimum [2].

In literature, several papers describe how double-skin

facades should work to improve a building’s energy efficiency.

However, Gertis [4] underlines that only few simulations have

been made and few measurements are available to support

the claimed benefits of double-skin façades. An example of

measurements performed on buildings with double-skin

facades is Pasquay’s study [5] on three buildings with
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double-façades in Germany (Nordrhein-Westfalen). He con-

cludes that energy may be saved in specific locations compared

to conventional solutions with full air-conditioning. However,

the author points out that double-skin façades are not the best

choice for every building in every location, and that every

building must be considered independently. Stec and van

Paassen [8] have compared the performance of nine different

façade systems for dutch climate and conclude that the double-

skin systems are competitive in energy performance, and

underline the importance of treating the double-skin as an

integrated part of the HVAC system. Saelens et al. [9] claim that

most double-skin facades are incapable of lowering both

the annual heating and cooling demand, and that ‘‘only

by combining typologies or changing the system settings

according to the particular situation, a substantial overall

improvement over the traditional insulated glazing unit with

exterior shading is possible’’.

Guidelines or recommendations for modeling double-skin

façades are practically non-existent and, as mentioned, even

examples are rare. However, somework on this issue is done by

Dickson [6] and Hensen et al. [7]. Both studies point out that the

modeling of double-skin façades is particularly complex

because of the high degree of interactions between the many

heat transfer processes. The study of Saelens et al. [9]

concludes with the necessity to perform whole building energy

simulations in order to evaluate the performance of double-skin

facades.

This paper focus on an office building that is being planned

in Trondheim, a city in the middle of Norway. The objective is

to compare the building’s energy performance with and without

a double-skin on the east façade.

2. Methods

A model of the building design is implemented in the

simulation program ESP-r, which is a transient simulation

program based on the finite volume technique. ESP-r is capable

of modeling the energy and fluid flows within combined

building and plant systems when constrained by control actions

and subject to dynamically varying boundary conditions [10].

The method used in this paper is to model the building with

and without a double-skin on the east façade, and then compare

the energy demand and thermal environment for the two

alternatives.

2.1. The case building

The new office building will be raised in the city centre

of Trondheim, Norway (638N, 108E). The building will be

integrated with existing brick buildings. The new building

consists of an atrium and an office wing, both five storeys tall.

The east façade is considered built with a double-skin. This

façade is 30 m long and 10 m high, and has a window-to-wall

ratio of 80%. The ground floor in the atrium is planned as a

reception hall and the first floor is a common area. Further up

the atrium there are balconies with working places and space

for group activities. The office wing has both cell offices and

open-plan offices distributed on all five floors. There are no

walls significantly obstructing the airflow between the office

wing and the atrium. In total there are about 150 and 100

working places in the office wing and the atrium, respectively.

Fig. 1 shows the cross-section of the building viewed from the

south with the atrium in the middle, and the office wing to the

right.

In this study, only the atrium and the second, third, and

fourth floor of the office wing are modeled (about 2000 m2 of

floor surface area in total). The reason is that the remaining

part of the building is designed with a separate mechanical

ventilation system. Fig. 2 shows how the simulation model

appears in the ESP-r cad-window.

2.1.1. Construction properties

Properties of some selected building materials are presented

in Table 1. The optical data are calculated by WIS, which is

software that determines the thermal and solar characteristics of

window systems [11]. The U-values for the windows are given

by the manufacturer, and the wall’s U-value is according to the

standard building code for Norway [12]. The floors in the office

wing are suspended concrete floors with a wooden finish. The

Fig. 1. Cross-section of the case building viewed from the south with the double

façade drawn in. Light gray lines represent existing buildings.

Fig. 2. Wireframe of the simulation model in the ESP-r cad window.
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concrete in the ceiling is exposed. The external walls of the

existing buildings facing the interior space of the new building

are made of brick.

2.1.2. Ventilation

The mechanical ventilation rates are set to meet the

Norwegian codes and guidelines [12], which is 7 l/s per person

and an additional 2 l/(s m2) for emissions from unknown or

high-emitting building materials, and corresponds to IDA 1

(Indoor Air Class 1) in the EN-13779 [13]. The supply air

temperature is 19 8C during winter months (November–

February), 17 8C during spring/fall (March–April/Septem-

ber–October) and 15 8C in the summer (May–August). The

operating time for the mechanical ventilation is from 6 a.m. to 6

p.m.

The building is planned without local cooling equipment. It

is assumed that the cooled supply air and the exposed concrete

in the ceiling in the office wing and the heavy mass walls in the

atrium will absorb the excessive heat during the working day

and keep the temperature within acceptable limits. During the

night, heat is removed from the building by means of natural

ventilation through windows and hatches [14]. In addition, the

mechanical ventilation supports the natural pre-cooling of the

building in the morning hours. The operation strategy is given

in Table 2. Initial simulations indicate that the office air

temperatures increase averagely about 4 K in case of a double-

skin façade, and about 5 K in case of single façade on warm

summer days. This means that in order to avoid temperatures

above 26 8C, the operative temperature should not exceed

22 8C in case of a double-skin, and 21 8C in case of a single

façade at the start of the working day.

2.1.3. Heat gains

Internal heat gains due to occupancy, lighting and office

equipment have been set according to ASHRAE guidelines

[15], and the occupancy pattern is based on the user profile for

typical office buildings predefined in ESP-r. Fig. 3 shows the

internal heat gains. The internal gains are valid weekdays, and

turned off during weekends.

2.2. Climate data

In this study, semi-synthetic meteorological data provided

by Meteonorm [16] for Trondheim in 2003 was used. The

annual average temperature of this climate year is 5.7 8C.

2.3. Simulation model

The following assumptions and simplifications have been

done in the simulation model:

� The base area is modeled as rectangular for both the atrium

and the office wing, although the geometric shape in reality is

trapezoidal. However, the floor and external wall surface

areas are in accordance with the drawings.

Table 1

Properties for selected building constructions

Construction U-value (W/(m2 K)) Transmittance (g-value)

Double façade Windows facing the cavity in the double façade 1.40 0.578

External glazing in the double façade without blinds 5.10 0.541

External glazing in the double façade with blinds angled 458 3.00 0.320

Single façade Windows on east façade without blinds 1.40 0.578

Windows on east façade with blinds angled 458 1.40 0.177

Common for both Glass roof in the atrium with semi-transparent canvas 1.40 0.212

Glass façade in the south façade 1.40 0.304

External walls 0.22 –

Table 2

Operation set-points for the mechanical and natural ventilation

Time Mechanical ventilation Window operationa Hatchesb

Double

façade

Single

façade

Double

façade

Single

façade

Both

alternatives

0–3 Off Off 20–22 20–22 20–22

3–6 22–23 21–22 20–22 20–22 20–22

6–18 100% 100% 21–24 Shut 21–24

18–24 Off Off 20–22 20–22 20–22

The intervals are operative temperature in the respective air-conditioned zone,

and the openings open 0–100% within the intervals.
a The operable windows in the office wing.
b Hatches on the atrium’s south façade. Equal strategy for both alternatives. Fig. 3. Internal heat gains used in the simulations.
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� The atrium is divided horizontally in three zones. Although

this is a rough approximation, it makes it possible to take

thermal stratification into account, and improves the accuracy

of the airflows through the atrium.

� For the alternative with double-skin façade, venetian blinds

are placed within the cavity. When the global radiation on the

façade exceeds 200 W/m2, the blinds will shut. For the single-

skin alternative, there are external blinds with the same

control strategy. The blinds are individually controlled for

each floor.

� The solar obstruction caused by the high-rise buildings

situated to the east is taken into account, while the potential

effect from the low-rise buildings situated to the south is

ignored.

� Zone set-points for heating are 21 8C the year around, with a

set-back of 2 K outside working hours.

� The heat recovery efficiency is set to 75%.

2.4. Modeling the double-skin façade

A multi-storey double-skin façade is chosen for this

building, i.e. there exist no horizontal or vertical partitioning

between outer and inner facade. The cavity is ventilated via

openings in the bottom and the top of the façade.

To obtain a tolerably accurate prediction of the façade

performance, it is important to ensure appropriate treatment of

the solar insolation, the cavity convection regimes, the surface

view-factors, airflow resistances, vertical temperature gradient

and cavity divisions with fictitious divisions [6]. Fig. 4 shows

the heat transfer mechanisms and airflow paths involved.

For this particular case, the double-skin façade is divided

into a stack of three zones adjacent to each of the office levels.

The zones are divided by fictitious transparent surfaces with

high conductivity, negligible thermal mass and high emissivity,

and coupled by an airflow network which also includes the inlet

opening at the bottom and the top outlet opening at the top of

the façade. Since the double-skin façade will be ventilated, the

Bar Cohen & Rohsenow correlation, proposed by Dickson [6],

is used to predict the convective heat transfer for the surfaces

facing the cavity when it is open. When the cavity is closed, the

default Alamdari & Hammond correlation is used.

2.4.1. Operating the natural ventilation and the double-

skin façade

The operation of the windows depends on both the

temperature in the office and in the cavity of the double-skin

façade. That is, if the indoor temperature reaches the low set-

point, the window opening area increases proportionally with

the indoor temperature until the window is fully open at the

high set-point, according to the set-points given in Table 2. If

the temperature in the double-skin façade exceeds 25 8C, the
windows close in order to avoid increased cooling demand.

This is not the optimal strategy, since the temperature in the

cavity may be less than 25 8C but higher than the office

temperature, thus increasing the cooling load. However, in

ESP-r there are currently no control functions that are able to

sense two parameters at the same time. Since the operation of

the windows depends on the temperature in the office as well as

in the cavity of the double-skin façade, it is necessary to

introduce a dummy air node in the simulation model. This

makes it possible to have two openings between the indoor air

node and the node in the double-skin façade. One opening

represents the actual window, and the other is an opening with

negligible fluid resistance when open. When the temperature in

the double-skin façade exceeds 25 8C, the latter opening shuts

in order to prevent the hot air from entering the offices. Fig. 5

illustrates how this is implemented for the window openings on

the third floor. Damper A represents the window, and damper B

is the fictitious opening. The control strategy is in principle also

implemented for the windows in the single-skin alternative and

hatches facing the ambient, in which case damper B in Fig. 5 is

controlled by the ambient temperature.

The study of Gratia and Herde [2] gives recommendations

for how a south-facing double façade should be operated in

order to achieve the best energy performance for various

weather conditions. In the present case however, the double

Fig. 4. Cross-section of the double-skin façade and the adjacent office floor

with the heat transfers mechanisms and the airflow network.

Fig. 5. Principal sketch of the window control. Damper A represents the

window and is controlled by the indoor temperature and damper B is controlled

by the temperature in the double-skin façade.
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facade is facing east, and the sun is often obstructed by

neighboring high-rise buildings. Whether the cavity should be

ventilated or not, is determined by the air temperature in the

double-façade cavity and whether there is a space heating

demand. Therefore, the chosen control strategy for the façade

openings is rather simple; in the summer time, the openings are

always open. Else, the hatches open when the air temperature in

the cavity exceeds 20 8C to avoid overheating.

3. Simulations

Four different alternatives for the east façade are considered:

1. Double-skin façade and the double façade’s cavity used as a

supply air duct for passive pre-heating of the supply air.

2. Double-skin façade without pre-heating of the supply air.

3. Conventional single-skin façade, mechanical ventilation

only during working hours.

4. Conventional single-skin but with windows with improved

U-value, mechanical ventilation only during working hours.

See Table 3 for comparison of theU-value of the east façade.

4. Results

4.1. Energy performance

Fig. 6 shows the simulated monthly energy use for space

heating and pre-heating and pre-cooling of the ventilation air

for the four considered alternatives.

An interesting observation is that Alternative 4 has the

lowest heating energy demand during the winter months

(November–February), but significantly higher during the

transitional months. This shows the advantage the double-skin

façade has; benefiting of the sun to reduce the heating

demand. During the winter months, however, the solar gains

on the east-facing facade will be very low since the sun then

will be severely obstructed by the high-rise building to the

east.

Table 4 shows the annual energy use for space heating, and

ventilation air heating and cooling. The table shows that there is

practically no difference in the alternatives when it comes to

cooling, but as expected, Alternative 1 has the lowest overall

heating energy demand. Although the cooling energy demand is

about the same for the four alternatives, the number of hours

with over-heating in the office wing is less for the alternatives

with the double-skin façade. Thus, the natural ventilation

during working hours will improve the thermal environment

slightly, but in practice, the four alternatives are equal in this

matter.

4.2. Economy

In the end, it will be the investment and operational costs that

will decide which alternative the developers choose for the east

façade. The construction and maintenance cost of a double-skin

façade system is not very often described in the existing

literature, and when it is, the opinions are contradictory in

reports from different authors [18]. Undoubtedly, the con-

struction cost of a double-skin façade is higher than for a single-

skin one. In Central Europe the constructional costs per square

meter façade are in the order of [18]:

Table 3

For comparison, the overallU-values for the east façade for the four alternatives

calculated from the method described in ISO 6946 [17]

Alternatives U-value (W/(m2 K))

Double façade 1a 0.94

2a 0.94

Single façade 3 1.16

4 0.84

a Air cavity closed.

Fig. 6. Room and ventilation heating demand distributed monthly. First bar for

each column is Alternative 1 and second is Alternative 2 and so on.

Table 4

Simulated annual heating demand and number of hours with excessive temperatures

Alternatives Space heating

energy (kWh/m2)

Supply air heating

energy (kWh/m2)

Total

(kWh/m2)

Relative difference

from alternative 1

Hours Top > 26 8C

Office fourth floor Atrium level 4

1 28.4 11.8 40.2 – 0 67

2 27.8 13.3 41.1 2.4 0 67

3 34.2 13.7 47.9 19.1 5 47

4 29.1 13.5 42.7 6.2 11 53
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� Single-skin façade 300–500 s/m2;

� Standard double-skin 600–800 s/m2;

� Double-skin with adjustable air in and outlet 700–1000 s/m2;

� Double-skin with open able exterior hatches 800–1300 s/m2.

Table 5 shows the annual cost estimates for the four

alternatives for the case building. The investment costs are

conservatively chosen from the list above. For the maintenance

cost it is assumed that outer facades are cleaned twice a year

and the surfaces facing the cavity once a year. The sun shading

is cleaned every second year for the single-skin and every

fourth year for the blinds in double-skin façade. Even if it would

be necessary to clean an external shading every year, this is

rarely realized in practice [19]. The period of calculation is 35

years, the energy price is set to 0.0875 s/kWh, and the interest

rate is assumed to be 7%.

5. Discussion

An interesting observation from the results is that even

though the total demand for heating energy is lower for

Alternative 1 with respect to Alternative 2, the energy use for

space heating is higher for Alternative 1. When using air from

the double-skin cavity the climate buffer is somewhat impaired

and the conduction through the inner façade increases.

Consequently, the additional heat loss from the room must

be taken into account when calculating the achievement by

using the double-skin cavity as an air intake duct, especially in

months with limited solar radiation.

The difference in energy use for heating the supply air

between Alternative 1 and Alternative 2 is somewhat less than

one could expect. One reason for this may be the relatively

high-efficient heat recovery unit used. With a less efficient heat

recovery unit, the difference would be larger. Another reason is

that the sun is very low in the horizon during the winter months

and the sun is also obstructed by the high-rise buildings in the

early mornings. Another interesting observation is that for

some months, such as April, the total heating energy demand

is actually higher for Alternative 1 compared to Alternative 2.

The reason is the fact that heat gain in the cavity is not utilized,

since most of the pre-heating energy demand is covered

by the heat exchanger. In this case, the intake air should

have been bypassed the cavity, since maintaining the thermal

buffer is most energy efficient in this case. This implies that

an optimal operation strategy must be considered for this

configuration.

This study is conducted on a building with relatively high

standard of thermal insulation. Clearly, a building of poorer

standard would achieve higher energy savings by adding a

double-skin façade.

The study shows, in contrast to other studies on this subject,

that by applying a double-skin façade the heating energy

demand is decreased significantly (by 16%) compared to a

conventional solution, without an increased cooling demand. In

fact, the thermal condition in the office wing is slightly

improved. However, by replacing the windows in the single-

skin alternative with windows with a better U-value (Alter-

native 4), the achieved energy saving is nearly evened out.

The reflective glazing used in the south façade of the atrium

has a g-value close to 0.3. This glass type could also be used in

both the single- and double-skin alternatives and may eliminate

the need for external sun shading. The reflective glass type

would not remove glare completely as venetian blinds do, but

combined with internal blinds or drapes this problem should be

minimized. Although glass with reflective coating is slightly

more expensive, exterior sun shading may be omitted, thus

reducing investment costs, and also reducing cleaning and

maintenance cost. However, in this case, using reflective glass

also has some disadvantages. Firstly, reflective glazing reduces

the solar insolation permanently, thus the possibility to utilize

passive solar heat is reduced. This may be significant for

buildings located in heating dominated climates. In particular, it

is important when the cavity in the double-skin façade is used

as a pre-heater of ventilation air (Alternative 1). Secondly,

reflective glass coatings may cause increased lighting require-

ments and consequently an indirect cooling load attributable to

the lighting. Based on these latter arguments, reflective glazing

was not found to be suitable for this type of building in this

climate.

From an economic point of view, it is difficult to recommend

the double-skin façade, even with the documented energy

savings because of the considerable higher investment cost. The

annual cost estimates done in this study are also relatively

conservative. That is, the investment costs of the double-skin

façade are rather higher than lower in practice. If a double-skin

façade is chosen despite these facts, it must be out of

architectural and aesthetical reasons.

6. Conclusions

� This study shows, in contrast to some other studies on this

subject, that application of a double-skin façade decreases the

heating energy demand, without significantly increasing the

number of hours with excessive temperatures.

� The simulation results indicate that the heating energy

demand is about 20% higher for the single-skin façade with

the basic window solution compared to the double-skin

alternative.

� By using the cavity of the double-skin as a pre-heater for the

supply air, further savings may be achieved. However, the

simulations show that optimal strategies must be found in

Table 5

Annual costs per floor area

Cost Cost for each alternative (s/m2)

1 2 3 4

Façadea 8.03 7.81 4.46 4.91

Maintenanceb 4.00 4.00 4.10 4.10

Energyc 3.52 3.60 4.19 3.73

Total 15.55 15.41 12.75 12.74

a From Ref. [18] and assumed interest rate at 7% and life time is set to 35

years.
b From Ref. [19].
c Assumed energy price 0.0875 s/kWh.
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order to avoid increased heat loss (from the offices), which

cannot be utilized in the pre-heating of the supply air.

� By replacing the basic windows with windows with an

improved U-value, the difference in heating demand between

the double-skin and single-skin alternatives are almost

evened out on an annual basis. This alternative is about as

cost-efficient as the basic alternative in a 35-year perspective.

� If a double-skin façade is chosen, this must be done for other

reasons than economy. From an economic point of view,

the energy savings will not defend the additional costs the

double-skin façade constitute.
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1. Introduction 

In the literature, several studies have evaluated the effects of thermal mass on energy use and thermal 

comfort, both parametrically and experimentally. However, there are only few studies that both assess the 

potential heating and cooling load benefits of exposed thermal mass in office buildings. Moreover, the 

experimental studies found are solely on test cells, and they are not taking user behavior and advanced 

building control systems into account. The objective of this study is to determine the potential energy 

savings and thermal comfort benefits of exposing the concrete ceiling to the indoor air as an alternative to 

the original suspended ceiling. This is assessed through monitoring of room air and surface temperatures 

in an office building in operation and simulation of different scenarios with a calibrated building 

simulation model. 

As a consequence of the Norwegian partnership in the EEC, Norway is obliged to implement the EU 

Energy Performance of Buildings Directive (EPBD) [1] in the national laws and regulations. Thus, the 

new building codes and guidelines are also revised. The former regulations only set requirements for 

U-values and air tightness. The new regulations introduce an energy frame for different building 

categories. If the net energy demand calculated according to the methodology established in the new 

Norwegian Standard prNS3031 [2] is within the frame, regulations are satisfied. Since the frame is based 

on net specific energy demand per year, the efficiencies of the energy systems are not taken into account. 

This means that for example the coefficient of performance of a highly efficient mechanical cooling 

system is not rewarded. However, passive measures that reduce the net cooling demand will contribute to 

satisfy the energy frame. This has led to a renewed interest in utilizing passive measures to decrease the 

total energy use in buildings.  

Thermal mass can give a positive contribution to the indoor environment and buildings’ energy 

performance, both summer and winter. In the summer time, excessive heat is absorbed and reduces the 

need for cooling during the day-time. The absorbed heat will gradually be released when the temperature 

decreases during the night. Buildings that are unoccupied during the evening and night may be cooled 

down, in order to empty the thermal storages and heat may be absorbed the following day. In the winter 



time, energy from the sun and internal heat gains can be absorbed in the thermal mass during the day, and 

gradually released to the indoor air at night, thus completely or partially reduce the need for heating. 

Several studies have shown that thermal mass together with night ventilation may reduce the indoor 

maximum temperature and the cooling energy demand. Thermal mass combined with night ventilation 

may reduce the maximum indoor temperature by 2-6 K (e.g. Givoni [3] and Shaviv [4]), provided that the 

diurnal outdoor temperature swing is adequate. Dependent on the climate and building type, the cooling 

energy savings found in the literature span from 5 % to 36 % (e.g. Burch [5] and Ruud [6]). Moreover, 

some studies (e.g. Kolokotroni [7] and Gratia [8]) conclude that if the heat gains are not too excessive in 

office buildings, thermal mass and night ventilation should be sufficient in order to cover the cooling 

demand alone in moderate climates.  A recent study by Artmann et al [9] assesses the climatic potential 

for passive cooling of buildings by night-time ventilation. The study concludes that the whole Northern 

Europe, and in particular the British Isles and Scandinavia, has a very high potential for night-time 

ventilative cooling. 

Some studies also conclude that thermally heavy buildings have lower space heating energy demand than 

light buildings. According to Norèn et al [10] and Bellamy et al [11], heavy residential buildings demand 

about 15 % less space heating energy compared to equivalent light buildings. Ståhl [12] has estimated the 

energy savings to be about 20 % for offices. Heating energy savings are most significant in the 

intermediate seasons in cold climates and in climates where the building’s balance temperature is close to 

the mean outdoor temperature [13] [14]. 

However, there are several obstacles preventing use of thermal mass in office buildings. A survey among 

750 corporate managers in the Nordic countries reveals that every third leader plan to reorganize or 

rebuild the office plan within the next two years [15]. Hence, modern office buildings should have a high 

degree of adaptability to meet varying requirements. Clearly, use of heavy materials in partition walls 

may come in severe conflict with the desire of having a flexible building. This, together with building 

materials’ heat capacity, makes external walls, floors, and ceilings the most common alternatives for use 

and possible exposure of thermal mass. 



As Shaviv [4] and Norén [10] conclude on thermal mass’ ability to reduce energy demand for cooling and 

heating respectively – the greatest effect of thermal mass is going from a light structure to a medium 

heavy structure. The effect is less significant by a further increase of thermal mass. Thus, the focus in this 

paper is to assess the potential benefits of increasing the thermal mass in an office cell by exposing 

concrete in the ceiling compared to having a suspended false ceiling. 

2. Method 

To investigate the effect of exposing concrete in the ceiling, six identical office cells were studied from 

which three of the suspended ceilings were removed. The purpose was to monitor the room parameters 

and compare the overall energy and thermal comfort performance. Further, the measurements were used 

to calibrate a detailed simulation model in ESP-r [16] to compare the energy use for the whole building.  

3. Building description 

The case used in this study is an office building at the Nord-Trøndelag College (HiNT) campus in 

Levanger (63.75°N), located 80 km north of Trondheim, Norway. The building, which from this point 

will be referred to as Røstad, is located in rural surroundings in a coastal climate. The building was ready 

for occupation in August 2002, and has a common wing with meeting rooms and educational areas. Two 

other wings are office areas, see Figure 1 and Figure 2. In this paper only one of the office wings (the 

TKS wing) is studied. The two storey building has no basement, but a culvert for supply of ventilation air 

is embedded in the ground along the central axis of the wing.  
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SC2
SC1
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EC2

EC1

Photo

TKS wing

Figure 1 Plan view of the second floor showing 

the common area and the two office wings. The 

point labeled “Photo” is from where the photo in 

Figure 2 is taken. 

Figure 2 The TKS wing viewed from south-east, 

showing the air exhaust tower and the glazed 

staircase. 

3.1 HVAC system and control 

The hybrid ventilation is of so called culvert type. In principle it is constructed as shown in Figure 3. The 

ducts from the culvert to the rooms are buried in the ground beneath the floor. At the façade the ducts turn 

90  upwards. The ducts end in a damper placed inside the supply air terminal device. The air diffusers are 

placed at the floor beneath the windows.  

Figure 3 Principle of the culvert and a section through the building. 1: Air intake tower. 2: Air intake 

culvert. 3: Air distribution culvert. 4: Offices. 5: Corridors. 6: Stairway. 7: Exhaust air tower. 



From the offices the air flows through grilles placed close to the ceiling and into the corridor. Exhaust of 

air takes place through corridors and stairway up to the tower on the roof. The exhaust air tower contains 

a heat recovery coil and a fan.  

Figure 4 shows the principle of the ventilation and controller system. The supply and exhaust fans are 

controlled by the pressure difference between the culvert and corridor at the second floor, i.e. the fans 

keep the pressure difference constant. When there is no heating demand for the ventilation air and the 

outdoor temperature exceeds 15 °C, the bypass dampers opens to reduce the pressure drop. 
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Figure 4 Principle of the ventilation system and the control strategy for the room controller. The set-point 

in each office cell is individually controlled, and is in this case 21 C.

The dampers in the supply air terminal devices control the air flow rate to each room. They operate as 

follows: Normally they close at 4pm. At 6am the dampers open to give approximately 25 m3/h 

(3.3 m3/h m2 ~ 1.2 ach) of air. When a person enters the room they open to supply 43 m3/h (5.7 m3/h m2 ~

2 ach). If the room air temperature exceeds the set-point for cooling (SP+1.5K) they open further. The 

dampers will continue to open proportionally with the temperature until they reach full opening at 25 C,



supplying the rooms with about 200 m3/h (26.7 m3/h m2 ~ 9 ach). If the room air temperature is above the 

cooling set-point, the dampers also open at night, provided that the outdoor temperature is above 15 C.

Further discussion of this control strategy can be found in [17]. 

3.2 Office rooms 

Each office has a presence detector, a temperature sensor and a digital controller unit that controls 

heating, ventilation and lighting. A room is registered as empty if the detector has not detected any 

movement for five minutes. To avoid the ventilation and lighting to turn on and off for short absences, a 

20 minute time delay is implemented for these controls. This means that a person must be absent more 

than 20 minutes before the lights switch off, the set-point change and the ventilation tunes down.  

The six rooms of special interest in this study (Room EC1 to EC3 and SC1 to SC3, see Figure 1) are 

located on the second floor at the east-north-east side if the building. From this point on, the rooms with 

the original suspended ceiling will be referred to as SC and the rooms with exposed concrete in the 

ceiling as EC. The rooms are 7.5 m2 and equally equipped with a laptop, an external LCD-screen, are 

similarly furnished and have the same heating and lighting equipment. The office rooms have painted 

plaster internal walls and glazed wall to the hallway. The floors are concrete with a linoleum covering. 

All rooms originally have suspended ceilings of painted plaster boards with 50 mm insulation above, 

which for Room EC1 to EC3 are removed.  

4. Measurements 

The six cell offices involved in the experimental study were monitored during the period from October 1st

2005 to October 15th 2006. Room air temperature, air supply damper positions, radiator valve positions 

and room set-points were registered every 15 minutes by the building energy management system 

(BEMS). The occupancy of every room in the building was also logged. In addition, Room EC2 and 

Room SC2 were equipped with six calibrated thermocouples connected to a logger, to get a more detailed 

picture of the air temperature stratification, air supply temperature and surface temperatures. The reason 

why six offices were involved in the study was to make the rooms adjacent to EC2 and SC2 similar, thus 

minimizing boundary differences. 



4.1 Criteria for data evaluation 

To be able to compare the performance of Room EC2 and Room SC2 it was crucial that both rooms were 

approximately similarly used for periods of at least three days in a row in order to take the effect of heat 

storage into account. This is of great importance since the set-point for heating and ventilation is 

dependent on whether people are present or not. In addition, heat gains from lighting and people will also 

influence the room temperature considerably. During the entire year there were only 10 periods that more 

or less fulfilled these criteria. 

4.2 Measurement results 

Presented below are the results of the measurements from selected periods for each season where the 

criteria presented in the previous chapter are fulfilled as close as possible. For every period the room 

temperatures are plotted for comparison. However, since the HVAC-system always will try to even out 

any deviation from the set-point, the damper positions, which directly affect the air flows, are also 

plotted. In addition, the set-point and the ventilation rate are (or may be) dependent on the presence of 

people. Therefore, the rather complex picture needs four plots for comparison – air temperature, damper 

position, actual occupancy and the recorded occupancy added 20 minute delay. 
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In Table 1 some parameters are summarized for the three day periods presented in Figure 5 to Figure 8.  

Table 1 Summary of the key parameters from the periods given in Figure 5 to Figure 8. 

Season Mean temp 
[ C]

Max temp 
[ C]

Total air flow   
[m3]

Occupancy 
0/20 [h] 

 EC2 SC2 EC2 SC2 EC2 SC2 EC2 SC2 
Fall 20.8 21.2 22.5 23.2 442 530 4.2/5.3 2.9/5.6 
Winter 19.4 20.0 21.5 22.1 376 383 6.6/10.2 4.7/11.2 
Spring 24.0 24.3 25.3 25.4 3208 5630 9.1/12.3 4.9/12.0 
Summer 23.9 24.1 25.1 25.5 4158 5868 4.1/7.0 4.0/9.2 

The radiators were operating only during the 3-day winter period, and required 3.5 kWh and 2.6 kWh for 

EC2 and SC2, respectively.  

The following observations can be made from the measurement results: 

Neither the mean temperatures nor the maximum temperatures are significantly different for 

the two rooms.  

To obtain the thermal conditions, Room SC2 requires considerably higher air volume flow 

rate, especially during the summer and spring periods.  

Room EC2 is according to the occupancy data used more intensively than Room SC2. The 

ratio between occupancy without delay and with 20 minute delay is higher for Room EC2, 

which indicates that the room is used more continuously than Room SC2. 

Seen in connection with the occupancy data, the exposed concrete in Room EC2 does not 

seem to delay the temperature peak significantly compared to Room SC2. 

At first sight, the measurement results indicate that Room EC2 performs best with respect to cooling 

demand. However, there are some factors that must be taken into consideration before crediting the 

exposed concrete ceiling. Firstly, the removal of the false ceiling resulted in an increased room volume of 

about 4 m3 and an increased external wall area of about 1.2 m2. Secondly, the false ceiling consists of a 22 

mm plaster board insulated with 50 mm mineral wool, which provided additional insulation.  This may 

have had influence on the results, and is also supported by the measurements of the radiator use during 

the 3-day winter period. The radiator uses about 35 % more heating energy during this period.  



The occupancy data have also some degree of uncertainty. As mentioned, room absence was registered 

when no movement was detected for five minutes. In the post-processing of the data, this delay was 

subtracted from each time the room was registered as empty. This implies that absences shorter than 

five minutes were not registered, and affects the results in the direction of a higher registered occupancy 

than the actual occupancy. There may also have been false detections caused by non-human activity. On 

the other hand, false registrations may have occurred when a person was present but not detected because 

the movements were too small, which results in a lower registered occupancy than the actual occupancy. 

To be able to compare the performance of the rooms on an equal basis and to quantify the achievements, 

a simulation model must be used. 

5. Simulation model 

A model of the building is implemented in the simulation program ESP-r, which is a transient building 

simulation program based on the finite volume technique. ESP-r is capable of modeling the energy and 

fluid flows within combined building and plant systems when constrained by control actions and subject 

to dynamically varying boundary conditions [16]. 

The model comprises in total 25 thermal zones. Most of the office cells are merged to larger units, while 

the offices with special interest in this study are modeled in detail. Figure 9 shows how the implemented 

geometry appears in the ESP-r cad window, with rooms involved in the experimental study enlarged for 

convenience. Surrounding buildings which influence on the solar irradiation are not shown, but are 

implemented in the model. 



SC3 SC2 SC1 EC3 EC2 EC1

Figure 9 Simulation model as it appears in the ESP-r cad window. 

5.1 Building constructions 

The modeling of the building elements are done by investigating the construction drawings. In principle, 

the building envelope is very well insulated, far better than required by the national building code at the 

time of planning. However, the extensive occurrences of thermal bridges make the U-value increase 

significantly. Table 2 shows the basic U-values and the thermal bridge corrected U-values calculated in 

accordance with standards [18]. 

Table 2 U-values for selected building constructions 

Building  
construction 

Basic U-value 
[W/m2K] 

Thermal bridge corrected U-value 
[W/m2K]

External walls 0.18 0.33 
Roof 0.12 0.17 
Floor on ground 0.15 0.17 
Windows 1.31 1.40 

The air intake culvert and the air distribution culvert are embedded ground coupled concrete ducts. The 

floors and the walls are modeled as a concrete layer and an insulation layer. One meter of earth is also 

included in these constructions. The construction is coupled to a constant temperature in the ground; 

10 °C underneath the building and 5 °C outside the building. This is a fairly rough simplification, but 

gives a good approximation to the complex physics in the culverts [19]. This approximation is also done 

for the floor constructions with ground coupling. 



5.2 Modeling the ventilation system 

Figure 10 shows the principal modeling scheme of the ventilation system. To ease the understanding, all 

zones are not drawn. In the model, each air conditioned zone has its own air supply fan which is 

controlled by occupancy and temperature in the zone. Supply air is taken through the air intake culvert 

before it is mixed with extract air from the zones in the heat recovery unit (HX). The mixing of the two 

air flows is a simple approach to model the heat exchanger, and is not meant to be a real recirculation of 

air. If necessary, the air is preheated to the air supply set-point in this zone. The air flows further into the 

central air distribution culvert and divides to the north and south distribution culverts. From the 

distribution culvert the zones are supplied with air by fans. The model has a total of fourteen fans 

supplying the air-conditioned zones. From the offices the air flows through an opening to the corridor and 

from the corridor into the stairway, where the amount of air that corresponding to the heat recovery 

efficiency, Qa, is available for heat recovery. If there is an air preheating demand, Damper 1 opens. 

Damper 2 works inversely of damper one.  The surplus air, (1- )Qa, is dumped to the ambient. In case of 

free cooling, Damper 3 closes and Damper 4 opens. By replacing stack and wind effects with fans, the 

model supposes that the hybrid ventilation system works ideally at all times with regard to airflow rates 

and temperature control. 

Figure 10 Principal scheme of the airflow model 



5.3 Heat gains and ventilation schedule 

The measurements show considerable differences in the occupancy with and without the 20 minute delay. 

This is taken into account in the simulation model. The maximum heat gains from people and equipment 

is multiplied with the average hourly occupancy without delay, while the lighting and ventilation is set 

according to the occupancy data with a 20 minute delay.  

Table 3 Internal heat gains in the office rooms 
Gain Sensible [W/m2] Latent [W/m2] Rad comp. * [%] 
Person 9 5 58 
Equipment 14 0 50 
Lighting 13 0 80 
Total 36 5 63 
* Radiative component of the sensible heat gain 

The supply air rate, dependent on both time and temperature to the respective zones is then: 

,a basic pres tempQ t Q t O t Q Q [m3/s] (1) 

where  

Qa = total ventilation rate supplied to zone 

Qbasic = basic ventilation supplied weekdays 

from 6am to 4pm  

O = occupancy (0-1) 

Qpres = occupancy dependent air supply 

Qtemp = temperature dependent air supply 

t = time 

= temperature 

5.4 Calibration 

Climate data for use in the calibration of the simulation model was collected at the building site during 

September 2006. Temperature and wind data was monitored by the building energy management system, 

and the solar data was collected with the use of a solar radiation sensor which measures both global and 



diffuse radiation [20]. Figure 11 shows the most influential parameters from September 4th to September 

6th, which were the days chosen for the validation of the simulation model. 
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Figure 11 Chosen climate parameters collected at the building site, Septemer 4th to September 6th, 2006. 

All zones in the building have their respective measured occupancy profiles implemented for the 

calibration period. The room geometries are similar to the measurements, i.e. the room height is 50 cm 

higher for the rooms without suspended ceiling. The greatest uncertainties in the calibration are connected 

to the infiltration and the ventilation air changes. These two parameters are only known approximately 

and by trial and error fitted to the measurements. The best fits were found to be 0.12 h-1 infiltration rate 

and 90 % of the design ventilation air flow rate, respectively. Figure 12 shows the air temperature for 

Room EC2 and Room SC2 after calibration. 
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Figure 12 Simulation results for the room with exposed concrete (EC2, left) and the room with 

suspended ceiling (SC2, right) after calibration.  

6. Simulations 

Annual and seasonal simulations were carried out to estimate potential energy savings and comfort 

achievements of exposing the concrete in the ceiling. In the energy simulations, all offices are either with 

or without the suspended ceiling, respectively. The comfort simulations focus on the same office cells as 

the measurements (EC2 and SC2). The room heights are similar for all rooms in the simulations. 

The occupancy factor, defined as the number of occupied rooms divided by the total number of rooms, is 

for Røstad relatively low. Therefore, to make the simulations more general, two additional occupancy 

profiles are added. The second profile is measured occupancy data from Statens Hus, a typical office 

building in Trondheim [21]. The third one, labeled Fictitious, is an extreme profile where the room is 

assumed in use continuously the entire working day. The profiles for the working days are showed in 

Figure 13. The internal heat gains are the same as in Table 3. 
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Figure 13 Occupancy profiles used in the simulations 

6.1 Heating energy simulations 

Annual simulations were run to evaluate the differences in heating energy demand for the whole building 

with and without suspended ceiling and for different occupancy profiles. The results summarized in Table 

4 show that there are only minor differences in total heating energy demand whether the concrete is 

exposed or not. Even though the space heating energy demand is about 10 % lower at fall and spring, the 

annual differences are insignificant. 



Table 4 Simulated heating demand for the three different occupancy profiles  

 Heating demand [kWh/m2]Case Occupancy 
profile  Fall Winter Spring Summer Annual

Suspended  Røstad Space 4.9 39.9 8.9 0.2 53.9 
ceiling  Vent. 1.9 9.2 2.9 2.5 16.5 
  Total 6.7 49.1 11.8 2.7 70.4 

 Statens  Space 4.0 37.9 7.7 0.2 49.8 
 Hus Vent. 2.2 10.4 3.4 3.0 19.0 
  Total 6.2 48.3 11.2 3.2 68.8 

 Fictitious Space 3.1 33.7 6.4 0.1 43.4 
  Vent. 2.7 11.0 4.2 4.2 22.1 
  Total 5.8 44.7 10.7 4.4 65.5 

        Rel. [%]*

Exposed Røstad Space 4.6 40.7 8.4 0.1 53.9 -0.1
concrete  Vent. 1.9 9.2 3.0 2.7 16.7 1.5
  Total 6.5 49.9 11.4 2.9 70.6 0.3

 Statens  Space 3.7 37.7 7.2 0.1 48.7 -2.1
 Hus Vent. 2.1 10.4 3.4 3.2 19.1 0.8
  Total 5.9 48.1 10.6 3.3 67.9 -1.3

 Fictitious Space 2.7 33.5 5.8 0.1 42.1 -3.0
  Vent. 2.6 11.0 3.9 4.7 22.2 0.5
  Total 5.3 44.4 9.8 4.8 64.3 -1.8
*Heating energy demand relative to the case with suspended ceiling 

6.2 Thermal comfort 

Simulations were done to assess the thermal comfort in the office rooms during the period from May 1st

to September 30th. Table 5 summarizes the number of hours the operative temperature exceeds 25 °C and 

26 °C for the office with exposed concrete (EC2) and room with suspended ceiling (SC2), respectively. 

The simulations indicate that the exposed concrete reduces the hours of excessive temperatures 

significantly, and that the differences increase with the internal heat load.  



Table 5 Number of hours (n) the operative temperature ( op) exceeds 25 °C and 26°C during working 

hours. 

Occupancy  n op >25°C n op>26°C 
profile EC2 SC2 EC2 SC2 
Røstad 33 43 2 5 
Statens Hus 90 123 18 31 
Fictitious 194 256 35 68 

Figure 14 shows the simulation of a warm week in August with the fictitious user profile. Although the 

exposed concrete only dampens the maximum temperature about half a degree, it makes the room keep 

below the limit of 50 hours exceeding 26 °C in the cooling season. 
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Figure 14 Thermal conditions for the office cells with the fictitious occupancy profile 

6.3 Mechanical ventilation 

In this section it is assumed that the office building is equipped with a balanced mechanical ventilation 

system, with 80 % heat recovery efficiency. The ventilation system operates from 6 am to 4 pm. Outside 

working hours, the ventilation system is supplying the office rooms with conditioned air as long as the 

operative temperature in the rooms is above 21 °C. In the cooling season, the supply air temperature is 

fixed at 17°C. It is also assumed that the offices have wall diffusers, thus the forced convection regime 

must be taken into consideration. Beausoleil-Morrison [22] studied the influence of convection 



correlations common in building simulation programs, taking into account location of heating devices and 

HVAC equipment, and when they were operated. The study showed large differences with the use of 

correlations taking into account the supplementary information, relative to the default correlation in 

ESP-r. When the ventilation system is running, the Fischer convection correlation proposed by 

Beausoleil-Morrison [23] is used. Two cases are considered; 

A. Common design flow rate; 7 l/s per person and 2 l/s per m2 floor area (~3.5 ach in the offices) 

B. Minimum required ventilation rate for offices in Norway; 7 l/s per person and 0.7 l/s per m2 floor 

area (~1.9 ach in the offices), provided documented low-emitting building materials  

Table 6 summarizes the annual space heating demand for the three different user profiles in Case A and 

Case B, respectively. Although the space heating energy savings are more evidently compared to the case 

of hybrid system with displacement ventilation, they are still minor. 

Table 6 Space heating demand for the whole building with suspended ceiling and exposed concrete 

Case Occupancy  Space heating demand [kWh/m2]
profile Exp concrete Susp ceiling Rel [%]*

Røstad 57.8 59.0 -2.0 (-1.7) 
A Statens Hus 51.5 53.1 -3.0 (-2.6) 

Fictitious 42.9 45.1 -4.9 (-4.1) 

Røstad 52.5 54.7 -4.0 (-3.6) 
B Statens Hus 46.9 49.0 -4.3 (-3.8) 

Fictitious 38.9 41.7 -6.7 (-5.8) 
* Relative space heating demand for exposed concrete. Relative total heating energy saving in 
parenthesis 

Table 7 summarizes the number of hours the operative temperature in the office rooms exceeds 25 °C and 

26 °C for the three different user profiles in Case A and Case B, respectively. 



Table 7 Number of hours (n) the operative temperature ( op) exceeds 25 °C and 26°C during working 

hours. 

Figure 15 and Figure 16 show the resulting operative temperature for Case A and Case B, respectively. 

Both figures show that the increased convection reduces the maximum temperature. Also, the room with 

exposed concrete creates a better and more stable environment during the day. While the operative 

temperature in the room with suspended ceiling (SC2) rises about 5 K during the warmest days, the 

temperature in the room with exposed concrete (EC2) rises only 3 K. However, EC2 requires an air flow 

rate 10-17 % higher outside working hours to achieve this. In comparison, the guidelines to the national 

building code in Norway [24] recommend a maximum temperature variation of 4 K during a working 

day.
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Figure 15 Simulations of a warm week in August with the fictitious user profile for Case A 

Case Occupancy n op>25°C n op>26°C 
profile EC2 SC2 EC2 SC2 
Røstad 0 2 0 0 

A Statens Hus 1 15 0 0 
Fictitious 49 226 1 67 

Røstad 86 155 2 26 
B Statens Hus 310 413 55 208 

Fictitious 525 555 373 443 
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Figure 16 Simulations of a warm week in August with the fictitious user profile for Case B 

6.4 Mechanical day ventilation and natural night ventilation 

As mentioned in the introduction, Scandinavia has a large potential in utilizing natural ventilation to cool 

the building during the night hours. This section evaluates the potential to cool the building structure 

during the night with outdoor air as an alternative to supply the rooms with conditioned air outside 

working hours. Between 6 am and 4 pm the mechanical ventilation system supplies the rooms with 

conditioned air. Based on the requirement of maximum 50 hours with operative temperature above 26 °C, 

Figure 17 shows the maximum day-time internal heat load the rooms can handle as a function of room 

night-time air changes for Case A and Case B, respectively. In these simulations the fictitious occupancy 

profile is used.  
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Figure 17 Maximum internal heat load the rooms can handle as function of night time air changes 

Figure 17 shows that the rooms can handle a considerably higher internal heat load if they are sufficiently 

ventilated outside working hours. When the hourly room air change is above two ach, the room with 

exposed thermal mass can handle a considerably larger internal load compared to the room with 

suspended ceiling. An air change rate exceeding 10 ach does not improve the performance significantly.  

7. Discussion 

In the experimental part of this study, emphasis has been on making the conditions in the studied office 

rooms as similar as practically possible. Still, removal of the suspended ceiling enlarges both the room 

volume and the area exposed to the exterior. This may have had influence on the measurement results. 

Also, the many parameters affecting the indoor temperature have made it difficult to use the 

measurements directly to address and quantify the apparent achievements of exposing the concrete in the 

ceiling to the indoor air. 

Presence of people does not only affect the indoor temperature by virtue of internal heat load, but also 

ventilation, lighting and room temperature set-points. In addition, the HVAC system will always try to 

equalize any deviation from the room temperature set-point, thus a quantitative evaluation of the 



performance of the office rooms under normal operation directly from the measurements has been 

difficult. Hence, the most important use of the measurements has been to calibrate the simulation model.  

It may be questionable whether hourly averaging of the room occupancy is an adequate approach to 

approximate the actual use of the rooms. In open plan offices or in rooms where several people work, this 

approach should be applicable. However, in single offices, persons are either present or absent. In theory, 

a mass-less building would practically require no time for heating or cooling to the desired set-point, and 

would have lower overall cooling or heating loads than actual buildings. The question is whether short 

time absences from the room can be used to cool or heat the room quickly, and be fully “recovered” when 

the person is back. Sub-hourly studies with different HVAC control strategies should be done to 

investigate this.  

Figure 15 and Figure 16 clearly show the thermal mass effect. The temperature peaks are reduced with 

more than 1 K the warmest days and the temperature variation during the day is significantly less for the 

room with exposed concrete. However, to achieve this, the exposed concrete room demands up to 17 % 

higher air volume flow rate outside working hours compared to the room with suspended ceiling. Thus, if 

utilization of thermal mass also is to be a significant energy saving measure, heat must be removed from 

the space by other means than mechanical ventilation. Use of natural night ventilation shows promising 

results. As shown in Figure 17, the room with exposed concrete can handle an internal heat load about 10-

15 W/m2 higher than the room with suspended ceiling if sufficient night-time ventilation is provided. 

Moreover, the room with exposed concrete can handle the internal heat load with just half the mechanical 

ventilation day-time airflow rate (EC2 Case B compared to SC2 Case A), provided that the night-time air 

change is about 7 ach or larger. 



8. Conclusions 

In this paper, it has been shown that ESP-r is capable of simulating an advanced controlled office building 

in operation with very good agreement with measurements. The results obtained in this study are 

summarized below. 

The simulations supported by measurements indicate that compared to office rooms with suspended 

ceiling, rooms with exposed concrete; 

do not decrease the annual space heating demand significantly (< 3%), 

decrease the number of hours with excessive temperatures, and 

can handle a larger internal heat load and a more intensive use during the working day. 

For mechanical ventilation system with wall mounted diffusers close to the ceiling, compared to office 

rooms with suspended ceiling, rooms with exposed concrete; 

increase the space heating savings somewhat more than in the case of hybrid system (< 7%), 

decrease the maximum temperature with more than 1 K the warmest days of the year, and 

sustain a steadier thermal environment throughout the working day. While the operative 

temperature in rooms with suspended ceiling varies about 5 K, the rooms with exposed concrete 

varies only 3 K on warm days.  

Night-time ventilation with outdoor air shows promising results. Compared to rooms with suspended 

ceiling, rooms with exposed concrete can;  

handle a considerably higher day-time internal heat load, provided that the night-time air change 

is greater than 2 ach, 

handle the same internal heat load with half the day-time ventilation rate, provided that the 

night-time ventilation is greater than 7 ach, and 

handle an extra internal heat load of 10-15 W/m2 in the offices, provided that the night-time 

ventilation is 7 ach or greater. Hourly air change beyond 10 ach does not improve the 

performance particularly for either of the room types. 
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