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Abstract

In this Ph.D. thesis, a model for the study of the efficiency of high-pressure
liquid/gas industrial separators has been developed. The model is a three fluid
model (gas phase, droplet phase and film phase) and is entirely Eulerian. For
the gas phase, a k − ε model extended to multiphase flows has been used. The
turbulent kinetic energy of the dispersed phase, the turbulent dispersion coef-
ficient and the momentum equation of the liquid film were closed algebraicly.
The total deposition velocity was determined by turbulent dispersion and a
near-wall deposition velocity. The latter was the sum of a non-diffusive term
(due to the mean convection of the flow and gravity) and a diffusive term. This
diffusive term accounted for the diffusion-impaction deposition regime and the
inertia-moderated deposition regime. The gas/liquid film interfacial shear stress
was calculated from the local value of the turbulent kinetic energy of the gas.
The film acted on the gas as a steady rough wall. An experimental entrainment
rate correlation was chosen. The model was implemented in a finite-volume
commercial code (Fluent 6.2). The model is based on local closure relations so
that it can be further developed for complex industrial geometries.
The results were first compared with experiments from the literature. Deposi-
tion rates and film heights were in agreement with the data of the literature.
However, the calculated pressure drops were higher and the calculated entrain-
ment rates were lower than the experimental values. The present work pinpoints
the reasons of these inaccuracies and corrections to the original model are pro-
posed. The model was finally applied to calculate the efficiency of a vane-pack
demister. At atmospheric pressure with air and water the efficiency of the demis-
ter was 99.7%. This value agrees with the prediction of a former model from
the literature. At high pressure with natural gas and condensate the efficiency
of the separator was 0%. The deposition rate was lower, the entrainment rate
very high and the liquid layer vanished.
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C m · s−1 Velocity with which droplets are leaving the liquid film
C m · s−1 Wave velocity in equation (3.140)
CD none Drag coefficient
Cf none Interfacial friction coefficient defined by equation (3.59)
Cfg none Interfacial friction coefficient based on an average gas velocity
Cε1, Cε2 none Constants in the model equation for ε
Cε3 none Constant in the model equation for ε for multiphase flows
Cµ none Turbulent viscosity constant in the k − ε model
D m Diameter of a pipe
D m · rad−1 Fourier transform coefficient of the velocity of the continuous phase
D kg ·m−4 · s−1 Deposition coefficient defined by relation (7.11)
Dcrit kg ·m−3 · s−1 Deposition coefficient threshold defined by relation (7.12)
D′ kg ·m−3 · s−1 Deposition coefficient defined by relation (7.20)

Ḋ kg ·m−3 · s−1 Rate of deposition
D m2 · s−1 Dispersion coefficient
E none Eastern neighboring grid point of a control volume
E kg ·m−3 · s−1 Entrainment coefficient defined by relation (7.8)
Ecrit kg ·m−2 · s−1 Entrainment threshold coefficient defined by relation (7.9)
E m2 · s−1 Energy spectrum function

Ė kg ·m−3 · s−1 Rate of re-entrainment
F int N Force exerted by the gas on the film
FD N ·m−3 Drag force density of the fluid on the particles of a control volume
FP N Pressure forces exerted by the continuous phase on the particles
FV N Viscous forces exerted by the continuous phase on the particles

xix
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Symbol Units Description
G none Fluid property group defined by equation (3.162)
G kg ·m−4 · s−1 Gravity group defined by equation (6.23)
H m Complex harmonic amplitude of the perturbation

of the height of the liquid film
I m Equation of the gas/film interface
I kg ·m−3 · s−1 Interfacial shear group defined by equation (6.24)
= none Imaginary part
I none Intermittency
Ik m2 · s−3 Interphase exchange of turbulent kinetic energy
Iε m2 · s−4 Interphase exchange of dissipation
Jd kg ·m−2s−1 Deposition flux of droplets
Je kg ·m−2s−1 Entrainment flux of droplets
J ′

e0 kg ·m−2s−1 Constant entrainment flux of droplets defined
by equation (7.17)

KD m · s−1 Near-wall deposition velocity
Kdisp m · s−1 Dispersion velocity
Knon diff m · s−1 Near-wall non-diffusive deposition velocity
Kset m · s−1 Settling deposition velocity
Ktotal m · s−1 Total deposition velocity
Kturb m · s−1 Turbulent deposition velocity
Kwall m · s−1 Near-wall diffusive deposition velocity
L m Spacial period of the modeled interface

(see Figure 6.5)
N none Number of particles in a control volume
P Pa Pressure
P Pa Complex harmonic amplitude of the perturbation

of the pressure
P none Grid point of a control volume
P m2 · s−3 Rate of production of turbulent kinetic energy

Q̇f m2 · s−1 Film volume flow rate per unit length
R m Radius of curvature
R m Radius of the pipe (in equation 3.121)
R none Normalized auto-correlation function
< none Real part
Re none Reynolds number
S varies General source term
S1 varies Part of the source term which is not a function of

the dependent variable (in equation (4.9))
S2 varies Coefficient of the dependent variable in the linear

form of the source term (in equation (4.9))
Sc none Schmidt number: Ratio of the kinematic viscosity of

the gas to the Brownian diffusion coefficient
T N ·m−3 Total viscous force density
T s Integral quantity in equations (2.80) and (2.81)
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Symbol Units Description
Td kg ·m−3 · s−1 Turbulence coefficient defined by relation (7.13)
Td,crit kg ·m−2 · s−1 Turbulence threshold coefficient defined by

relation (7.14)
T ′

d kg ·m−2 · s−1 Turbulence coefficient defined by relation (7.21)
Ti m3 · s−3 Flux of turbulent kinetic energy
Ui m · s−1 Velocity
V m3 Volume
Vdrift m · s−1 Drift velocity of a particle in a turbulent flow
V i none Viscosity group (defined by equation (3.143))
W none Western neighboring grid point of a control volume
We none Weber number
Xi m Space coordinates
Y none Parameter defined in equation (3.148)

Lower-case Roman

Symbol Units Description
a varies Coefficient of the dependent variable in the transport equations

in their discrete form (equation (4.5))
b varies Additional term in the transport equations in their discrete

form (equation (4.5))
ci m · s−1 Velocity with which droplets are leaving the liquid film in the

reference frame defined by Figure 3.4
d m Diameter of a particle
dlig m Diameter of a ligament generating droplets
f s−1 Frequency of a given turbulent fluctuation
f none Time scheme weighting coefficient
fD N Drag force of the carrier phase on one particle
g m · s−2 Gravitational acceleration
h m Height of the liquid film
h1 m Minimum height of the liquid film for the model for the shape

of the interface (Figure 6.5)
h2 m Maximum height of the liquid film for the model for the shape

of the interface (Figure 6.5)

h
′

m Harmonic perturbation of the height of the liquid film

h
′

m Complex harmonic perturbation of the height of the liquid film
h∗ m Typical film length scale
i none Imaginary unit
k m2 · s−2 Turbulent kinetic energy
k m−1 Wave number
l m Typical size of the large turbulent structures
ṁ kg · s−1 Mass flow rate
n none Normal vector

p
′

Pa Harmonic perturbation of the pressure
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Symbol Units Description

p
′

Pa Complex harmonic perturbation of the pressure
q none Particle
r m Radial position
s m Equivalent sand roughness
s+ none Non-dimensional sand roughness defined by equation (3.67)
t s Time
t+ none Non-dimensional particle relaxation time defined by

equation (3.124)

u m · s−1 Shorter notation for 〈Uic〉
′′

in Tchen’s theory
u m · s−1 Velocity in the x direction
uτ m · s−1 Friction velocity
u+ none Non-dimensional boundary layer velocity
v m · s−1 Velocity in the y direction

v m · s−1 Shorter notation for 〈Uid〉
′′

in Tchen’s theory
w m · s−1 Velocity in the z direction
x m First space coordinate in the reference frame defined by

Figure 3.4
y m Second space coordinate in the reference frame defined by

Figure 3.4
y m In the non-diffusive deposition model: Distance from the

centroid of the near-wall cell along an axis oriented by the
outwardly directed normal to the wall

y+ none Non-dimensional boundary layer distance
z m Third space coordinate in the reference frame defined by

Figure 3.4
z none Complex number defined by equation (8.4)
z m Vertical coordinate in equation (3.136)

Upper-case Greek

Symbol Units Description
Γ none Empirical coefficient defined by equation (3.66)
∆i m · s−1 Velocity defined by equation (3.9)
Λ varies General diffusion coefficient
Π N ·m−3 Total pressure force density
Σ N ·m−1 Surface tension
Ω none Ratio of the gravity forces against capillary forces
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Lower-case Greek

Symbol Units Description
α none Volume fraction of a phase
β kg ·m−3 · s−1 Momentum exchange coefficient defined by equation (2.55)
γ none Correction coefficient of the drag for non-creeping flows
δij none Kronecker symbol
ε m2 · s−3 Rate of dissipation of turbulent kinetic energy
η none Ratio of the Lagrangian integral time scale of the continuous

phase to the characteristic relaxation time of the particle
η′ none Ratio of the Lagrangian integral time scale of the continuous

phase, accounting for the crossing trajectory effect, to the
characteristic relaxation time of the particle

θ rad Circumferential position
θ rad Angle between the droplet velocity vector and the gas

velocity vector
κ none Von Kármán constant
λ kg ·m−1 · s−1 Bulk viscosity coefficient
µ kg ·m−1 · s−1 Dynamic molecular viscosity
µT kg ·m−1 · s−1 Dynamic turbulent viscosity
µTf,d kg ·m−1 · s−1 Dynamic turbulent viscosity of the film due to droplet

deposition
µTf,i kg ·m−1 · s−1 Dynamic turbulent viscosity of the film induced by the film

flow
ν m2 · s−1 Kinematic viscosity
νT m2 · s−1 Kinematic turbulent viscosity
ρ kg ·m−3 Density
σij Pa Stress tensor
σk none Turbulent Prandtl number related to the turbulent kinetic

energy
σαc none Turbulent Schmidt number related to turbulent dispersion
σε none Turbulent Prandtl number related to the dissipation
τ s Characteristic relaxation time of a particle
τc s Lagrangian integral time scale of the continuous phase
τ ′c s Lagrangian integral time scale of the continuous phase

accounting for the crossing trajectory effect
τ∗c s Characteristic time defined by equation (2.69)
τi Pa Interfacial shear stress
τij Pa Viscous stress tensor
υ none Under-relaxation factor
χ none Proportionality coefficient for the entrainment rate

correlation (3.155)
χ′ none Proportionality coefficient for the entrainment rate

correlation (7.17)
ψ varies General field property
ω rad · s−1 Pulsation (of a turbulent fluctuation, a wave or a particle)
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Subscripts

Symbol Description
X Complex quantity
0 Inlet value
0 Reference value
C Related to the cell centroid
E Eulerian
E Value at/related to the eastern neighboring grid point of a

control volume
L Lagrangian
P Value at/related to the grid point of a control volume
W Value at/related to the western neighboring grid point of a

control volume
avg Space averaged value
c Related to the continuous phase
crit Critical
d Related to the dispersed phase
e Value at/related to the eastern boundary of a control volume
f Related to the film
f Related to a given face of a control volume
g Related to the gas phase
i Component i of a vector
ij Component ij of a tensor
j Component j of a vector
k Component k of a vector
m Relative to the fastest growing wave
min Minimum
nb Value at/related to the neighboring points of a control volume
p Related to the particles
p Projection of a vector on the wall
r Related to the radial direction
rw Relative to roll waves
tot Total (sum of the turbulent and molecular components)
w Value at/related to the western boundary of a control volume
wall Related to the wall
x Related to the x direction
y Related to the y direction
z Related to the z direction
κ Related to phase κ



NOMENCLATURE xxv

Superscripts

Symbol Description
+ Non dimensional quantity
∗ Guessed value
X Mean of X over an ensemble of samples

X
′

Fluctuating component X
′ ≡ X −XÒX Extensive average of X

X∧ Fluctuating component X∧ ≡ X − ÒXÜX Favre average of X

X
′′

Fluctuating component X
′′ ≡ X − ÜX

c Correction term
down Value in the downstream cell
i Value at the iteration i
int Related to the interface
n Value at the time step n
up Value in the upstream cell

Symbols

Symbol Description
≡ Defined by
〈X〉 Intrinsic average of X
× Vector product
∆ Difference
‖X‖ Euclidean norm of the vector X

Abbreviations

Symbol Description
1D One Dimensional
2D Two Dimensional
3D Three Dimensional
AMG Algebraic MultiGrid
BBO Basset Boussinesq Oseen
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
GCBA Geometric Conservation Based Algorithm
HPE High Pressure with Entrainment
HPNE High Pressure with No Entrainment
LES Large Eddy Simulation
LP Low Pressure
MCBA Mass Conservation Based Algorithm
NGL Natural Gas Liquids



xxvi NOMENCLATURE

Symbol Description
PDF Probability Density Function
RANS Reynolds Averaged Navier-Stokes
RMS Root Mean Square
SAM Simple Algebraic Model
SIMPLE Simple Implicit Method for Pressure-Linked Equation
TKE Turbulent Kinetic Energy
TETUSDIP Transport Equations for the TUrbulent Stresses of the DIspersed

Phase
UDF User Defined Function
i.d. Inner diameter
l.h.s Left hand side
r.h.s Right hand side



Chapter 1

Introduction

1.1 Natural gas

The use of natural gas. 1Natural gas is an energy source that can be used
both at home (cooking , heating) and in the industry. The production of certain
liquid fuels uses natural gas as a raw material. Natural gas is also used for the
production of electricity, pulp and paper, metals, chemicals, stone, clay, glass,
and to process certain foods or treat waste materials.

What is natural gas? Natural gas is a combustible mixture of hydrocar-
bons. Its composition varies a lot depending on the gas deposit but it is mainly
methane. A typical composition of natural gas is given in Table 1.1. The com-
ponents can be either in a gas phase or in a liquid phase (condensate). Even
methane can be substantially in a liquid form if the pressure is high.

1This paragraph is based on source:[199].

Methane CH4 70-90%
Ethane C2H6

Propane C3H8 0-20%
Butane C4H10

Carbon Dioxide CO2 0-8%
Oxygen O2 0-0.2%
Nitrogen N2 0-5%
Hydrogen sulphide H2S 0-5%
Rare gases Ar, He, Ne, Xe trace

Table 1.1: Typical composition of natural gas [215]

1
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Gas deposit - Production - Processing

?
Transport�Distribution�Final Users

?

6

Storage

Figure 1.1: The natural gas chain

Natural gas chain. 2Figure 1.1 shows a very simple diagram of the natural
gas chain. During the production phase, the gas is extracted from the gas deposit
and the flow ends up in a processing facility. Processing will be detailed further.
Next is the transport that brings the gas to consumption regions, generally
by pipelines. The gas may then be stored. Storage is necessary because the
demand of natural gas varies during the year (higher in winter for heating).
The distribution is similar to the transport step. However, smaller amounts of
gas are carried and the distances are shorter.

1.2 Natural gas processing

3Processing is necessary because raw gas is very different from the gas sold to
the market which is almost pure methane. Raw natural gas is found in two
forms:� Associated gas. It comes from oil wells, and can be either free gas or

dissolved in the oil.� Non-associated gas. It comes from pure gas wells or condensate wells.
The latter produces, in addition to the gas, a semi-liquid hydrocarbon
condensate.

The processing operation can be divided into four main steps:� Oil and Condensate Removal.

2This paragraph is based on source:[199].
3This paragraph is based on source:[133].



1.3. CONTEXT OF THE PRESENT WORK 3� Water Removal.� Separation of Natural Gas Liquids.� Sulfur Removal.

Oil and Condensate Removal. Large amount of gas can be dissolved in
the oil at high pressure. Generally, this gas separates from the liquid phase on
its own when the pressure decreases. The gas and the oil can then be separated
by gravity in a tank.

Water Removal. Liquid water is easy to remove by basic separation tech-
niques. Nevertheless, separating water vapor is more difficult. Usually this type
of dehydratation is achieved by using chemicals with hydrophilic properties,
namely glycols. This process takes place in a contactor. The gas is afterward
separated from the glycol solution.

Separation of Natural Gas Liquids (NGL). In general NGLs (that is
ethane, propane, butane, iso-butane, and natural gasoline) are separated by an
absorption technique which is similar to water removal by glycols. Nonetheless
glycols are here replaced by an absorbing oil.

Sulfur Removal. Gas containing significant amounts of sulfur is lethal to
breathe. Moreover it is very corrosive. Again an absorption technique is used.
One uses an amine solution which has a good affinity for sulfur. After this last
step the gas is clean and ready to use.

1.3 Context of the present work

1.3.1 Need for a technological step in separation processes

4Recently there has been an increased interest in remote and small off-shore gas
fields. For such sources to be cost effective, it requires a major step forward in
processing technologies. A requirement is to perform major parts of the sepa-
ration sub-sea at high pressure. This would avoid building expensive facilities
on the shore, enhance the efficiency of separation processes and decrease the
amount of water to be transported. In addition, working at high pressure will
avoid the expensive recompression at the inlet of transport pipelines.

1.3.2 Today’s situation

5

4This paragraph is based on source:[185].
5This paragraph is based on source:[185].
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Poor efficiency of separation techniques. Separation techniques are, at
present, not efficient enough. It implies numerous problems:� Gas treating equipment does not function properly.� The gas does not fulfill quality standards.� Chemicals are entrained.� Compressors (designed for gas only), break down.

All these points contribute to a substantial increase in costs.

High pressure separation. Today, it is difficult to achieve high pressure
gas/liquid separation because the quantity of entrained liquid is larger than for
lower pressures. A first cause of this entrainment is the decrease of surface
tension with the pressure. This decrease causes the break-up of liquid layers
flowing along the walls, leading to a high droplet content. The decrease of the
surface tension with pressure implies also a small average droplet size. Partic-
ularly striking pictures of this phenomenon are given in Havelka et al. (2004)
who studied the disintegration of jets of n-decane up to 100 bars. While at low
pressure the disintegration follows a regular Rayleigh break-up, at high pressure
the jet becomes a spray. Small droplets lack of inertia and are difficult to sep-
arate from the gas flow. A second cause of entrainment is the decrease of the
liquid/gas density ratio with the pressure. For a natural gas/condensate flow
at 92 bars, the liquid/gas density ratio is less than 5 (Austrheim (2006)). This
leads to a reduced inertia of the droplets relative to the gas and consequently
to separation difficulties.

Designing rules. Design rules for separators have, up to now, been very
empirical. These rules are deduced from tests at pressures of the order of 1
bar with air and water. Therefore, designs can be inefficient in scrubbers in
operation at high pressure with real fluids.

1.3.3 Identified gaps in high pressure separation technol-
ogy

Fluid properties. Physical properties of fluids encountered in gas production
are not predicted correctly over a sufficiently wide range of temperature and
pressures. Most of the time studies have focused on pure components and very
few studies have been performed on densities, surface tensions, and viscosities
of real NGLs mixture. The thermodynamic properties and viscosities of real
NGLs mixtures at high pressures have been studied by Ahrabi et al. (1989),
Ahrabi et al. (1987) and Schmidt et al. (2004).
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Flow measurements at high pressure. The experimental study of the flow
occurring in high pressure separation devices is difficult. Building a high pres-
sure facility is expensive and requires very strict security norms. There are
nonetheless some work-around to simulate real conditions. One can use low
surface tension fluids such as Exxsol D606 (25 mN/m against air instead of
73 mN/m for water). The use of SF6 (70 kg/m3) instead of air provides high
gas densities. This has been done by Verlaan (1991). Austrheim (2005) per-
formed measurements on the flow of real fluids at high pressure in a separation
equipment. Such data are rare.

Models. The efficiency of a separating device in operation can hardly be pre-
dicted quantitatively. Present models are almost entirely based on empirical
correlations and usually fail when extrapolated to high-pressure situations.

1.3.4 The purpose of this study

This work aims to develop a new model for a quantitative predic-

tion of the efficiency of separation devices especially for high-pressure

conditions.

1.3.5 The strategy

Meso-scale phenomena. To obtain a good accuracy of the model, a part
of empiricism must be removed. This can be done by integrating mesoscale
phenomena such as:� The dispersion of liquid droplets in a turbulent flow.� The deposition of these droplets on walls (forming a liquid film).� The flow of this liquid film.� The entrainment of droplets from this film.

These are the key physical phenomena to understand and quantify if one wants
to predict accurately the efficiency of a separator.

A local model. Given the complexity of the geometries of separation compo-
nents, there is no typical macro-scale (such as a diameter). To be able to apply
the present model to the widest possible range of designs, it has to be based
on a purely local description of separation mechanisms. However one will only
consider cases where:

1. Deposition occurs on surfaces (not applicable to wires).

2. The liquid loading is small (dispersed flow).

6A dearomatized aliphatic hydrocarbon.
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Figure 1.2: A typical scrubber configuration

3. Films are thin and wet perfectly the wall (no isolated drop on a wall, no
rivulet or trickle).

Use of Computational Fluid Dynamics (CFD). CFD has been used and
it is demonstrated to be a practical tool for the calculation of a fluid flow in a
separator.

1.4 Scrubbers

General description. Scrubbers are tanks containing one or several demist-
ing equipments. They are used to separate glycols or natural gas condensate
from the gas. A simplified sketch of a scrubber is given in Figure 1.2.

The internals of a scrubber. The first stage of a scrubber (the inlet vane)
has many possible designs. Some of them have been studied by Wehrli et al.
(2003). Figure 1.3 shows a possible design for an inlet vane. The gas flow enters
the internal by the square hole shown on the picture. As it flows forward into
the device, the outer part of the gas stream is deviated by the curved plates
into the scrubber core. The plates are placed closer and closer to the center
plane of the inlet vane until eventually all the gas has been ejected out of the
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Figure 1.3: An example of inlet vane design [32]

Figure 1.4: An industrial wire mesh demister [32]

device. Strictly speaking, this is not a separation equipment. Its function is to
distribute the gas evenly over the whole section of the scrubber.
The most common second and third stages of separation are:� Wire mesh demisters.� Vane pack demister.� Cyclones.

The mesh consists of knitted wires placed across the flow. It is a highly
porous media (90% or more). Figures 1.4 and 1.5 show respectively an industrial
wire mesh and its internal structure. The separation principle is that droplets
are intercepted by wires, while the gas flows through the mesh.

A vane pack demister consists of parallel plates profiled with sharp bends
as shown on Figure 1.6. The gas is diverted almost instantaneously after each
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Figure 1.5: The structure of a wire mesh demister [74]

Figure 1.6: Details of a vane pack demister [158]
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bend. By contrast, because of their inertia, the droplets impinge against the
walls. Then, the liquid is collected through slits.

Finally, in cyclones, a tangential velocity is given to the gas. As a result
of the centrifugal force, the droplets are deposited on the walls and collected.
Figure 1.7 illustrates an example of an axial flow cyclone.

An in depth analysis of the previously cited internals can be found in Bürkholz
(1989). It must be underlined that the above descriptions are how the internals
should work and not how they really do work. That is why there are separation
problems today. For example, recent studies of Austrheim (2005) showed that
a significant amount of liquid can be re-entrained from the cyclone stage.

1.5 Selection of the flow solver

There are several ways to deal with the numerical solution of a given fluid flow.
It is feasible to write a whole code from scratch, or we may use a multipur-
pose software, such as Matlab. Both options may be an interesting path for
people focusing on discretization methods, algorithms for solving the Navier-
Stokes equations or studying convergence acceleration. However, this is not the
objective of this work. An other way is to use a software with an open code.
Reference [105] usually presents an up to date list of links to such softwares.
Nevertheless, the present flow challenges require the following from the software:� ability to handle 3D geometries.� ability to solve multiphase flows.� ability to tackle complex geometries such as an inlet vane (unstructured

grids).

When this study started we did not have an open-source code available that
fulfilled these requirements. The last option is to use a standard commercial
CFD code with a closed source. We chose this option, and the software Fluent
was finally selected. Despite the drawbacks of not getting access to the source
code, this software fulfilled the three previously cited demands. Moreover it was
possible through User Defined Functions (UDF) to add subroutines to the main
program. Recently, the former code FOAM was opened completely in a new
release called Open Foam [138]. However it was then to late to make use of it
for the present work.

1.6 Outline of the thesis

In part I we present a detailed analysis of the crucial physical phenomena occur-
ring in a separation stage. Mathematical models and numerical representations
are given. In part II we present the results of the simulations and discuss them.
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Figure 1.7: Inside view of an axial cyclone. After Verlaan (1991).
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Theory
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Outline of Part I

This part has three chapters. In the first we will describe the modeling of tur-
bulent multiphase flows. The second chapter is more specifically about annular
flows. Although this type of flow is not directly linked to separation equipments,
some basic phenomena that are central to separation are occurring in annular
flows. More precisely we have:� The deposition of droplets on the walls� The formation of a liquid film, due to the deposition of the droplets� The flow of this film along the walls� Re-entrainment of droplets from the film

The annular flow regime is also of general interest to the industry. In addition,
this type of flow is likely to happen at the inlet of a scrubber, and it can
thus be used as an inlet condition. Finally, experimental flow data are scarce
for scrubbers, but there are numerous experiments on annular flows in pipes.
Annular pipeflows are therefore good test cases for checking the validity of the
model that is going to be presented. To close this theoretical part, the last
chapter will present briefly the numerical methods that will be used for the
calculations.
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Chapter 2

Modeling of turbulent
multiphase flows

2.1 Basic equations

We suppose that the fluid consists of continuous matter. It obeys the following
equations:� Conservation of mass� Conservation of momentum

The mass conservation equation is:

∂ρ

∂t
+
∂ (ρUi)

∂Xi
= 0 (2.1)

and the momentum conservation equation is:

∂ (ρUi)

∂t
+
∂ (ρUiUj)

∂Xj
=
∂σij

∂Xj
+ ρgi (2.2)

where ρ, Ui, σij and gi are respectively the density, the velocity vector, the
stress tensor and the gravity vector. Here and hereafter we will use Einstein’s
summation convention.
In addition only Newtonian fluids will be considered. Then the stress tensor is
given by:

σij =

�
−P + λ

∂Uk

∂Xk

�
δij + µ

�
∂Ui

∂Xj
+
∂Uj

∂Xi

�
(2.3)

where P , λ, δij and µ are the pressure, the bulk viscosity coefficient, the Kro-
necker symbol, and the viscosity of the fluid. As usually done we will assume
the Stokes hypothesis to be valid:

λ+
2

3
µ = 0 (2.4)

15
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and therefore:

σij = −Pδij + µ

�
∂Ui

∂Xj
+
∂Uj

∂Xi
− 2

3
δij

∂Uk

∂Xk

�
(2.5)

Finally the phases are considered incompressible. Doing so implies an important
consequence for pressure. Indeed, in this case the pressure is totally decoupled
from the density, and thereby loses its thermodynamical meaning.

2.2 Single phase turbulence

Pope (2000) made an up-to-date description of the different available turbulent
modeling techniques (Direct Numerical Simulations (DNS), Large Eddy Simula-
tions (LES), Reynolds Averaged Navier-Stokes models (RANS) and Probability
Density Function models (PDF)). It is also worth to mention discrete vortex
models. Crowe et al. (1996) described the possibilities of discrete vortex mod-
els for multiphase calculations. Because of their vast computational cost, DNS
simulations are restricted to simple academic cases. LES and discrete vortex
models are unsteady methods that still require too much computing power for a
majority of industrial problems. PDF methods are currently not well developed
in terms of algorithms and in terms of availability of codes. Hence, we will
focus on the RANS models and more specifically on the k-ε model because of
its widespread use in the industry.

2.2.1 k-ε model: the background

Jones and Launder (1972) developed the k-ε model. However, it is useful to
review the essential assumptions and facts coming from earlier works on which
the model is based. Reynolds was the first to derive (1894) the equations that
govern the mean velocity field.

∂Ui

∂t
+
∂
�
Ui Uj

�
∂Xj

= −1

ρ

∂P

∂Xi
+ ν

∂2

∂Xj∂Xj
Ui + gi −

∂

∂Xj
U

′

iU
′

j (2.6)

where the overbar denotes the average of a quantity over an ensemble of sam-
ples, the prime denotes the fluctuation of this quantity and ν is the kinematic
viscosity.

In equation (2.6) one can identify the crucial Reynolds stress term − ∂
∂Xj

U
′

iU
′

j

that has to be modeled in the RANS approach. Boussinesq introduced the
turbulent viscosity hypothesis. It is mathematically analogous to the stress-
rate-of-strain relation for Newtonian fluids. He proposed the following relation:

−U ′

iU
′

j +
2

3
kδij = νT

�
∂Ui

∂Xj
+
∂Uj

∂Xi
− 2

3
δij

∂Uk

∂Xk

�
(2.7)
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where k is the turbulent kinetic energy of the fluid and νT is the turbulent
kinematic viscosity. The turbulent kinetic energy, is defined as:

k ≡ 1

2
U

′

iU
′

i (2.8)

In the k-ε model νT is specified as:

νT = Cµ
k2

ε
(2.9)

where Cµ is one of the constant of the model. Cµ = 0.09 is the usual value
and comes from empirical observations. ε is the dissipation of turbulent kinetic
energy and is defined as:

ε ≡ 2ν

�
1

2

�
∂U

′

i

∂Xj
+
∂U

′

j

∂Xi

�
· 1

2

�
∂U

′

i

∂Xj
+
∂U

′

j

∂Xi

��
(2.10)

To have a complete model we now need relations for k and ε. Prandtl derived
in 1945 the exact equation for the turbulent kinetic energy (see e.g. Tennekes
and Lumley (1972)) :

∂k

∂t
+
∂
�
kUi

�
∂Xi

+
∂

∂Xi

 
1

2
U

′

iU
′

jU
′

j +
U

′

iP
′

ρ
− 2ν

�
U

′

j ·
1

2

�
∂U

′

i

∂Xj
+
∂U

′

j

∂Xi

��!
= P − ε

(2.11)

The third term on the l.h.s is a flux of turbulent kinetic energy. From now on, it
will be noted Ti. P

′

is the pressure fluctuation. P is the production of turbulent
energy and is defined by:

P ≡ −U ′

iU
′

j

�
1

2

�
∂Ui

∂Xj
+
∂Uj

∂Xi

��
(2.12)

In a one equation model, Prandtl further proposed an algebraic relation for ε.
He modeled the flux Ti with the gradient-diffusion hypothesis:

Ti = −νT

σk

∂k

∂Xi
(2.13)

where σk is the turbulent Prandtl number. It is generally equal to 1.

2.2.2 The k-ε model

Prandtl suggested an algebraic relation for the dissipation requiring the speci-
fication of an unknown length-scale. To avoid specifying this length scale, the
k-ε model uses a transport equation for ε.

∂ε

∂t
+
∂
�
εUi

�
∂Xi

=
∂

∂Xi

�
νT

σε

∂ε

∂Xi

�
+ Cε1

Pε
k

− Cε2
ε2

k
(2.14)
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Pope (2000) presents equation (2.14) as purely empirical. The standard values
of the constants are based on simple flows, that is to say: decaying turbulence,
homogeneous shear flow and the behavior of the log-law region in the boundary
layer. Launder and Sharma (1974) proposed the following constants:

σε = 1.3 Cε1 = 1.44 Cε2 = 1.92 (2.15)

Thus the k-ε model is a turbulence model that, in addition to the conserva-
tion equations of mass and momentum, solves two turbulent specific transport
equations (2.11) and (2.14).

2.3 Multiphase modeling

2.3.1 What is a multiphase flow?

A phase is a state of macroscopic matter in which the chemical composition and
physical properties are relatively uniform. A multiphase flow is the concurrent
flow of two or more phases. Steam-water flows, air-water flows, gas-water-oil
flows, or oil-water-hydrate flows are some examples of multiphase flows.

2.3.2 The three main classes of multiphase flow models

The flow regime is of importance when choosing a multiphase flow model. In a
vertical evaporator for example, depending on the gas volume fraction, several
flow patterns occur (Wallis (1969)): pure liquid, bubbly flow, slug flow, annular
flow, droplet flow, and pure vapor (see Figure 2.1). In horizontal configurations,
one can sometimes expect stratified flows.

Surface-tracking techniques. The conceptually simplest multiphase mod-
els are surface-tracking techniques, where the fluids are non-interpenetrating
continua linked by interface conditions. Applications of these models can be
stratified flows, free surface flows or motion of large bubbles. Frohn and Roth
(2000) studied droplet-wall interactions with a surface-tracking technique. It
is an interesting application for high pressure gas separation. They compared
experimental results and simulations. Calculations were based either on the
Navier-Stokes equations (volume of fluid) or on a Lattice-Boltzmann method.

Lagrange/Euler model. In case of a particle flow, one can consider the
carrier fluid as a continuum while the dispersed phase is solved by tracking the
particles, which can exchange mass, momentum and heat with the carrier phase.
This is the so called Lagrange/Euler approach. The basics of this model can be
found in Crowe et al. (1998).

Euler/Euler model. The Euler/Euler approach treats the different phases
as interpenetrating continua. In this case the volume fractions are assumed to
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Figure 2.1: Different flow regimes in an evaporator
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be continuous functions of space and time and their sum is equal to one. Ishii
(1975) used this method to derive the two-fluid model.

Choice of a multiphase model. The interface-tracking techniques are out
of question for our droplet laden flow. We further rejected Lagragian/Euler
models, for two reasons:

1. In Lagrangian simulations, a very large number of trajectories must be
calculated and then averaged to obtain quantities such as the particle ve-
locities or their turbulent dispersion. Running a computation is therefore
time-consuming.

2. It was difficult to handle quantitatively transfers between the dispersed
droplets (Lagrangian) and the continuous film (Eulerian) with the flow
solver that had been chosen (Fluent).

We chose an Euler/Euler model because it did not have these two drawbacks.
However, even if Euler/Euler simulations are computed more rapidly, they re-
quire additional physical modeling efforts for their closure models. A recent
description and comparison of the Lagrange/Euler and Euler/Euler approaches
can be found in Mashayek and Pandya (2003) and in Gouesbet and Berlemont
(1999).

2.3.3 The two-fluid model

To derive the two-fluid model, one can start from the local instantaneous con-
servation equations in each phase. Interface conditions are used as boundary
conditions. These equations are then volume averaged giving averaged field
equations. Here we will follow the method described by Soo (1989).

Volume averaging

Each phase κ is governed by its continuity equation (2.16) and its momentum
equation (2.17)1.

∂ρκ

∂t
+
∂ (ρκUiκ)

∂Xi
= 0 (2.16)

∂ (ρκUiκ)

∂t
+
∂ (ρκUiκUjκ)

∂Xj
= −∂Pκ

∂Xi
+
∂τijκ

∂Xj
+ ρκgi (2.17)

where τij is the viscous stress tensor.
Let us consider a control volume V bounded by a surface area A. Vκ is the
volume of phase κ inside of V and Aκ is the area of the interface between
phases κ and φ inside of V . At a given point belonging to Aκ, niκ is the unit
normal vector, outwardly directed. The displacement speed of the surface at

1The index κ means ”related to the phase κ” and therefore the summation convention does
not apply to it.
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Figure 2.2: Considered control volume

that point is U int
i niκ. The index int relates to the interface. See Figure 2.2.

Let us now define the following operators:� the extensive average operator:b= 1

V

Z
Vκ

dV (2.18)� and the intrinsic average operator:

〈 〉 =
1

Vκ

Z
Vκ

dV (2.19)

The volume fraction ακ of the phase κ, is defined as:

ακ ≡ Vκ

V
(2.20)

As a result: b= ακ 〈 〉 (2.21)

To perform the averaging of the continuity and Navier-Stokes equations we need
the Reynolds transport theorem and the averaging theorems of Whitaker and
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Slattery (Whitaker (1969)). Given ψκ, some property of the phase κ per unit
volume, then: Ô∂ψκ

∂t
=
∂cψκ

∂t
− 1

V

Z
Aκ

ψκU
int
i niκdA (2.22)Ô∂ψκ

∂Xi
=
∂cψκ

∂Xi
+

1

V

Z
Aκ

ψκniκdA (2.23)Õ∂ψiκ

∂Xi
=
∂dψiκ

∂Xi
+

1

V

Z
Aκ

ψiκniκdA (2.24)

If we apply the above theorems to equations (2.16) and (2.17) we obtain for
the continuity:

∂cρκ

∂t
+
∂×(ρκUiκ)

∂Xi
=

1

V

Z
Aκ

ρκ

�
U int

i − Uiκ

�
niκdA (2.25)

and for the Navier-Stokes equations:

∂×(ρκUiκ)

∂t
+
∂Û(ρκUiκUjκ)

∂Xj
= −∂

cPκ

∂Xi
+
∂dτijκ

∂Xj
+cρκgi

+
1

V

Z
Aκ

(−Pκδij + τijκ)njκdA

+
1

V

Z
Aκ

ρκUiκ

�
U int

j − Ujκ

�
njκdA (2.26)

The r.h.s term of equation (2.25) is the mass exchange rate for phase κ. If there
is no mass transfer (i.e. no phase change), this term becomes zero and so does
the last term of the r.h.s of the momentum equation (2.26).
As in the RANS models, a sub-averaging stress comes from the averaging of the
convective term. Indeed:

∂Û(ρκUiκUjκ)

∂Xj
=
∂
�
ρκ
dUiκ
dUjκ

�
∂Xj

+
∂
�
ρκ
×U∧

iκU
∧
jκ

�
∂Xj

(2.27)

where U∧
iκ ≡ Uiκ −dUiκ. Crowe et al. (1996) pinpointed that no constitutive

model is currently available and these extra stresses are neglected most of the
time. Therefore we will assume them to be zero.
In the following, mass transfers between the two phases will not be considered.
Then equation (2.25) can be written:

∂ ακ 〈ρκ〉
∂t

+
∂ ακ 〈ρκ〉 〈Uiκ〉

∂Xi
= 0 (2.28)
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And equation (2.26) becomes:

∂ ακ 〈ρκ〉 〈Uiκ〉
∂t

+
∂ ακ 〈ρκ〉 〈Uiκ〉 〈Ujκ〉

∂Xj
= −∂ ακ 〈Pκ〉

∂Xi
+
∂ ακ 〈τijκ〉

∂Xj

+ακ 〈ρκ〉 gi

+
1

V

Z
Aκ

(−Pκδij + τijκ)njκdA

(2.29)

Here, the velocity is defined by 〈ρκUiκ〉 ≡ 〈ρκ〉 〈Uiκ〉 (see Soo (1989)).

Pressure and viscous forces in a dispersed two phase flow

Prosperetti and Jones (1984) gave a derivation of the integral term in equation
(2.29). They defined Πκ and Tκ, the total pressure terms and the total viscous
stress terms:

Πκ ≡ −∂ ακ 〈Pκ〉
∂Xi

− 1

V

Z
Aκ

PκniκdA (2.30)

Tκ ≡ ∂ ακ 〈τijκ〉
∂Xj

+
1

V

Z
Aκ

τijκnjκdA (2.31)

Let c be the index for the continuous phase and d the index for the dispersed
phase. Prosperetti and Jones showed that

Πc ≈ −αc
∂ 〈Pc〉
∂Xi

− 1

V

X
part in V

FP (2.32)

Πd ≈ −αd
∂ 〈Pc〉
∂Xi

+
1

V

X
part in V

FP (2.33)

Tc ≈ αc
∂ 〈τijc〉
∂Xj

− 1

V

X
part in V

FV (2.34)

Td ≈ αd
∂ 〈τijc〉
∂Xj

+
1

V

X
part in V

FV (2.35)

The limitations of these approximations are fully discussed in Prosperetti and
Jones (1984). The first terms on the r.h.s of the above equations are due to
buoyancy forces. The last terms represent the sum of the pressure forces (FP )
or viscous forces (FV ) exerted by the particles on the fluid, for instance drag or
added mass forces. In equations (2.32) and (2.33) the pressure is the averaged
continuous phase pressure. The same remark applies to the viscous stress tensor.
As there is now no ambiguity, we will further drop the phase index for pressure,
viscous stresses and consequently the viscosity.
The present model assumes:

ακ
∂ 〈τij〉
∂Xj

≈ ∂

∂Xj

�
ακµ

�
∂ 〈Uic〉
∂Xj

+
∂ 〈Ujc〉
∂Xi

− 2

3
δij
∂ 〈Ukc〉
∂Xk

��
(2.36)
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The validity of equation (2.36) is studied in Ganesan and Poirier (1990) and
Meland and Johansen (2002). To sum up, mass conservation is given by equation
(2.28) and the momentum conservation is given by:

∂ ακ 〈ρκ〉 〈Uiκ〉
∂t

+
∂ ακ 〈ρκ〉 〈Uiκ〉 〈Ujκ〉

∂Xj
= −ακ

∂ 〈P 〉
∂Xi

∂

∂Xj

�
ακµ

�
∂ 〈Uic〉
∂Xj

+
∂ 〈Ujc〉
∂Xi

− 2

3
δij
∂ 〈Ukc〉
∂Xk

��
+ακ 〈ρκ〉 gi ±

1

V

X
part in V

(FP + FV ) (2.37)

The sign in front of the sum of the forces is positive if κ is the dispersed phase
and negative otherwise. It remains to model the forces exerted by the fluid on
the particles.

Forces on the dispersed phase

Particles are subjected to numerous forces. In the case of a large density of
the particle phase relative to the carrier phase, it is reasonable to consider only
the gravity force and the drag force2. In this case, the last term on the r.h.s
of equation (2.37) is the drag force. The drag force exerted by the gas on one
particle q is:

fD(q) =
1

2
ρcCD(q)A(q)‖ 〈Uci〉 − Ui(q)‖ (〈Uci〉 − Ui(q)) (2.38)

CD is the drag coefficient and A the projection of the frontal area of the particle
in the direction of the incoming flow. For N particles in the averaged volume,
FD, the total force per unit volume applied by the fluid on the particles, is:

FD =
1

V

NX
q=1

fD(q) (2.39)

Stokes showed that for a steady creeping flow past a rigid sphere we have (see
e.g. White (1991)):

CD =
24

Re
(2.40)

with the Reynolds number defined as:

Re ≡ ρcd(q)

µ
‖ 〈Uci〉 − Ui(q)‖ (2.41)

2It may fail to assume a large ratio of the density of the particle phase to the density of
the carrier phase. In a scrubber when the pressure increases, the densities of the gas and of
the droplets converge toward the same value. Then the added mass force and the Basset force
become important. In this case, one can use the Basset-Boussinesq-Oseen (B.B.O) equation
(as described for example in Crowe et al. (1998)).
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d(q) being the diameter of the particle q. In case of a mono-dispersed flow, d(q)
is a constant d. It gives

FD =
18µαd

d2
(〈Uci〉 − 〈Udi〉) (2.42)

where 〈Udi〉 is by definition:

〈Udi〉 ≡
1

N

NX
q=1

Ui(q) (2.43)

Three problems remain:� The flow is not a creeping flow.� The particles are not spheres.� The dispersed phase is not mono-dispersed.

One usually handles non-creeping flows by introducing a factor γ such as:

FD = γ
18µαd

d2
(〈Uci〉 − 〈Udi〉) (2.44)

and

γ =
CD(Re)

24
Re (2.45)

Equation (2.45) ensures the validity of relation (2.44) when Re << 1 (γ → 1)3.
The present model uses:

CD =

§
24(1 + 0.15 Re0.687)/Re Re ≤ 1000
0.44 Re > 1000

(2.46)

This relation is inspired from Von Schiller and Naumann (1933). Another pos-
sible model is that of Morsi and Alexander (1972). Clift et al. (1978) discussed
in details other sphere drag relations, their accuracies and ranges of validity.
If the particles are not spheres, one has to use a geometrical factor for the cal-
culation of CD and Re. Clift et al. (1978) presented a comparison of the drag
of rigid spheres and that of water drops in air. As long as the Reynolds number
was less than 1000, no significant difference in drag was noticed. However for a
higher Re, due to the deformation of the droplets, the drag coefficient of the liq-
uid particles was significantly higher than that of solid particles. In the present
work the velocity differences between the droplet phase and the gas phase was
small and Re << 1000. Consequently no significant deformation of the droplets

3In equations (2.45) and (2.46) the definition of the Reynolds number is:

Re ≡ ρcd

µ
‖ 〈Uci〉 − 〈Udi〉 ‖

This definition is not identical to equation (2.41).
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occurred and the particles were spheres.
Poly-dispersed flows are difficult to handle. Due to the averaging, the two-fluid
model as such, is not able to deal with a particle size distribution. There are
several methods available to solve this, such as:� an additional transport equation for the interfacial area concentration (m2·

m−3) (Kocamustafaogullari and Ishii (1995)).� the use of a general multi-fluid model as proposed by Tomiyama and
Shimada (2001) where droplets are divided into interacting classes, each
class being a pseudo-phase.� the quadrature method of moments that solves transport equations for the
moments of the PDF of the size of the particles. Details on this technique
can be found in Marchisio and Fox (2005).

The above cited methods are not tackled in this work but are a natural extension
of it.
We now completely explained the two-fluid model in its general lines. The next
section will deal with the combination of this multiphase-flow model with the
k-ε model.

2.4 Multiphase turbulence

2.4.1 Preliminaries

To obtain the governing equations of a turbulent two-phase dispersed flow, the
most straightforward approach would be to decompose the volume averaged
velocities into a ensemble averaged part and a fluctuation as in the conventional
Reynolds averaging (see Elghobashi and Abou-Arab (1983)).

〈Uκi〉 = 〈Uκi〉 + 〈Uκi〉
′

(2.47)

If the continuity equation (2.28) and equation (2.47) are combined, it gives:

∂ ακ

∂t
+
∂ ακ〈Uiκ〉
∂Xi

= −∂ α
′

κ 〈Uiκ〉
′

∂Xi
(2.48)

The r.h.s term represents turbulent dispersion and requires modeling. Another
type of averaging has been proposed, inspired by the work of Favre (1969).
It uses a phase weighted average. For any arbitrary physical quantity ψ one
defines: eψ ≡ αψ

α
(2.49)

and

ψ
′′ ≡ ψ − eψ (2.50)
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Then equation (2.28) becomes:

∂ ακ

∂t
+
∂ ακ

ß〈Uiκ〉
∂Xi

= 0 (2.51)

Conventional Reynolds decomposition leads to a large number of unknown fluc-
tuation terms. Favre averaging, in contrast, considerably reduces the modeling
work. However, Favre averaging complicates the comparisons with experimental
data. If we use a momentum probe together with concentration measurements
we can record the phase weighted velocity directly. With Particle Image Ve-
locimetry all the relevant quantities can be extracted. Abou-Arab (1986) un-
derlined that it is not simple to extract the phase weighted velocity when Laser
Doppler Anemometry was used. In practice, it is common to compare directly
the Favre averaged velocity with experimental values.

2.4.2 Momentum equation

If we now introduce the Favre averaging in the momentum equation (2.37), and
take its ensemble average, it gives:

∂ ακ
ß〈Uiκ〉
∂t

+
∂ ακ

ß〈Uiκ〉ß〈Ujκ〉
∂Xj

+
∂ ακ

å〈Uiκ〉
′′ 〈Ujκ〉

′′

∂Xj
= −ακ

ρκ

∂〈P 〉
∂Xi

− α′

κ

ρκ

∂ 〈P 〉′

∂Xi

+
∂

∂Xj

ακ

ρκ
µ

 á∂ 〈Uic〉
∂Xj

+
á∂ 〈Ujc〉
∂Xi

− 2

3
δij
á∂ 〈Ukc〉
∂Xk

!
+ακgi ±

1

ρκ

�gFDi + F
′′

Di

�
(2.52)

Let us study the unknown terms of this equation.

Reynolds stresses. As in equation (2.6), Reynolds stresses appear. Follow-
ing the Boussinesq approximation it is natural to model the stresses of the
continuous phase as:

− å〈Uic〉
′′ 〈Ujc〉

′′

+
2

3
kcδij = νTc

 
∂ß〈Uic〉
∂Xj

+
∂ß〈Ujc〉
∂Xi

− 2

3
δij
∂ß〈Ukc〉
∂Xk

!
(2.53)

kc is the turbulent kinetic energy of continuous phase. The modeling of νTc, kc

and of the Reynolds stresses of the dispersed phase are discussed afterward.
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Pressure-volume fraction correlation. The second term on the r.h.s of
equation (2.52) is the pressure-volume fraction correlation. It is sometimes
modeled, and sometimes neglected. Elghobashi and Abou-Arab (1983) and
Johansen (1990) proposed expressions for it. As shown by Jakobsen (1993),
its modeling remains difficult and relies on somewhat arbitrary assumptions. In
addition there is no experimental data to validate the models currently available.
Qualitatively, this term has a diffusion like effect. As its modeling still remains
uncertain, it will be neglected, although in reality it is not necessarily negligible
with respect to the other diffusion terms.

Viscous stress tensor. The third term on the r.h.s of equation (2.52) is the
viscous stress term. Fluent evaluates it by:

∂

∂Xj

ακ

ρκ
µ

 
∂ß〈Uic〉
∂Xj

+
∂ß〈Ujc〉
∂Xi

− 2

3
δij
∂ß〈Ukc〉
∂Xk

!
(see Fluent (2005)). It is an approximation because the Favre average of the
derivative of the velocity is not the derivative of the Favre averaged velocity.

Interaction terms. The last term on the r.h.s of equation (2.52) represents
interactions between phases. It has two parts:

1. The mean drag force density:gFDi = αdβ
�ß〈Uic〉 −ß〈Uid〉

�
(2.54)

where β is a momentum exchange coefficient defined according to equation
(2.44) as:

β ≡ γ
18µ

d2
(2.55)

2. The turbulent dispersion:

F
′′

Di = β〈Uic〉
′′

(2.56)

F
′′

Di represents the dispersion of the particles by the turbulent eddies of the con-
tinuous phase. Its modeling will be discussed later, together with the modeling
of the Reynolds stresses of the dispersed phase.

The unknowns now remaining to model are:� The turbulent viscosity of the gas phase� The turbulent kinetic energy of the gas phase� The turbulent dispersion� The turbulent stresses of the dispersed phase
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We will first tackle the problem of the turbulent quantities of the continuous
phase. We saw Prandtl derived equation (2.11) for k for a single-phase flow.
The derivation of a similar transport equation in a two-phase flow is particularly
complex and gives rise to numerous extra unknown terms.

2.4.3 The extended k-ε model

The phenomenological point of view

The first attempts to extend the k-ε model to multiphase flows were based
on modifications of the single-phase flow equations. It introduced a dispersed
phase induced turbulence in addition to the continuous phase turbulence (see
Kataoka and Serizawa (1989) and references therein). This type of modeling
became quickly limited. First it had a narrow range of applicability because of
relations relaying on experimental results. Second, two phase flow turbulence is
not a simple sum of dispersed phase induced turbulence and continuous-phase
turbulence. As a general rule, large particles tend to increase the turbulence level
in the continuous phase while small particles tend to reduce the turbulence level
in the continuous phase. This phenomenon is known as turbulence modulation.

Conservation equation of the turbulent energy

Deriving a conservation equation for TKE is a tedious work. Elghobashi and
Abou-Arab (1983) did it from the volume-averaged equations presented by Soo
(1967). As they did not use Favre averaging they ended up with an equation
that had numerous terms requiring modeling. Kataoka and Serizawa (1989)
used phase-weighted averaging and derived a TKE transport equation. It is
worth noticing their starting point, based on a local formulation of a two phase
flow based on the article of Kataoka (1986). Because of this starting point, the
momentum equations slightly differed from equation (2.52) and Kataoka and
Serizawa did not need volume averaging. However, their k transport equation
was remarkably similar to equation (2.11):

∂ακkκ

∂t
+
∂
�
ακkκ

gUjκ

�
∂Xj

+
∂Tκj

∂Xj
= ακ (Pκ − εκ) + Ikκ (2.57)

Equation (2.57) requires some comments:� The definition of the turbulent energy is not the same in the paper of
Elghobashi and Abou-Arab (1983) and in relation (2.57). In the former:

kκ ≡ 1

2
〈Uiκ〉

′ 〈Uiκ〉
′

(2.58)

while in the latter:

kκ ≡ 1

2
àU ′′

iκU
′′

iκ (2.59)



30 CHAPTER 2. MODELING OF TURBULENT MULTIPHASE FLOWS� Tκj is a flux of kκ. Its analytical expression is not tractable and will be
modeled.� Pκ transfers kinetic energy from the mean flow to the fluctuating velocity
field.

Pκ ≡áU ′′

iκU
′′

jκ

∂gUiκ

∂Xj
(2.60)� As for the dissipation εκ its expression is:

εκ ≡ 1

ρκ

ã
τ

′′

ijκ

∂U
′′

iκ

∂Xj
(2.61)

The very difference between (2.57) and (2.11) is the interaction term Ik. It
is mainly due to the interfacial drag force work. Other sources of exchange of
TKE between the phases are detailed in Kataoka and Serizawa (1989). Several
authors have derived an equation for the turbulent kinetic energy similar to
relation (2.57). Hwang and Shen (1993) derived the TKE equation for a fluid-
solid flow. Gillandt and Crowe (1998) proposed an equation for the TKE for
a particle-fluid mixture from the volume averaged mechanical energy equation.
They gave the following expression of Ikκ for a dilute flow:

Ikc = −Ikd =
αdβ

ρd
‖ 〈Uic〉 − 〈Uid〉 ‖2 (2.62)

Since Ikc ≥ 0, according to equation (2.62), the interaction term can only
result in an increase of the turbulent kinetic energy kc. Nevertheless, as earlier
mentioned, there is experimental evidence that the TKE of the continuous phase
increases if large particles are carried and decreases if small particles are carried
(Crowe (2000) and references therein). This was theoretically confirmed by
Pourahmadi (1982). He showed that in a fluid-particle flow there was an extra

dissipation term due to the interphase covariance àU ′′

idU
′′

ic. Crowe (2000) also
suggested that the presence of particles in a turbulent flow modifies the turbulent
dissipation length scale. If particles are small enough, this modification can lead
to an increased dissipation rate of the TKE. The multiphase turbulent model
presented here and used in this work is the model implemented in Fluent. This
model does not account either for an extra dissipation term in the transport
equation for kc or for a modification of the turbulent dissipation length scale.
Like for single-phase flow turbulence, both Kataoka and Serizawa (1989) and
Gillandt and Crowe (1998) proposed:

Tjκ = −νTκ

σk
κ

∂kκ

∂Xj
(2.63)

The turbulent viscosity is given by equation (2.9). The present model uses
equations (2.62) and (2.63).
Note that equation (2.57) does not use volume averaged velocities whereas (2.51)
and (2.52) do. As a result, mathematically speaking, we have a consistency
problem. We chose to present the momentum equation using:
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quantities.

This approach is heuristic. Nevertheless, a consistent k − ε model using this
method has not been derived. Drew and Passman (1998) presented a set of
equations (continuity, momentum, energy and entropy inequality) using ensem-
ble averaging for a multifluid model and gave a comprehensive mathematical
discussion about the different possible averaging procedures. Their work may
be a starting point to get a consistent model. However their closure relations for
the turbulent Reynolds stresses are presented as a good guess. As the equations
of Kataoka (1986) are similar to equations (2.51) and (2.52), using these latter
relations together with (2.57) does not present practical problems.

Turbulent dissipation in a dispersed two-phase flow

The exact equation for εκ can also be derived and is formidable. This equation is
related to processes at the Kolmogorov scale. Nevertheless Pope (2000) argued
that, for a model equation, the dissipation is best viewed as the energy flow-rate
in the energy-cascade and is hence determined by large scale motions. Hence,
the exact equation cannot be a starting point. Usually by analogy with equation
(2.14), and inspired by theory, one writes the dissipation equation as:

∂ακεκ
∂t

+
∂
�
ακεκgUiκ

�
∂Xi

=
∂

∂Xi

�
νTκ

σε
κ

∂εκ
∂Xj

�
+ακ

εκ
kκ

(Cε1Pκ − Cε2εκ)+Iεκ (2.64)

Iε is the interchange of turbulent dissipation between the two phases. El-
ghobashi and Abou-Arab (1983) proposed:

Iεκ = Cε3
εκ
kκ

Ikκ (2.65)

They advised Cε3 = 1.2. The present model uses equations (2.64) and (2.65)
with Cε3 = 1.2. We now have a complete set of equations describing a turbulent
dispersed flow, by means of an extended k-ε model. Even if the turbulent
equations (2.57) and (2.64) are meant to be valid for both the continuous and
the dispersed phase, we will use it only for the continuous phase and perform
a simpler closure for the dispersed phase that does not require the introduction
of a turbulent dissipation and introduces an algebraic closure for the TKE.

2.4.4 Reynolds stresses and turbulent dispersion in the
dispersed phase

In the momentum equation (2.52), two terms still ought to be modeled:

1. The Reynolds stresses in the dispersed phase:
å〈Uid〉

′′ 〈Ujd〉
′′
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2. The turbulent dispersion: β〈Uic〉
′′

The latter is an extremely important term because it controls how the dispersed
phase spreads out by turbulent agitation in the continuous phase. For exam-
ple, in the case of a liquid film from which droplets are created, the turbulent
dispersion will help the particles moving away from the vicinity of the wall and
has thus an important impact on the entrained fraction. In the case of a jet
breaking up at the center line of a pipe, the turbulent dispersion will transport
particles toward the wall where they can possibly deposit. Thus the turbulent
dispersion has a strong impact on the final deposited liquid fraction and is a
key parameter in the simulation of a gas-liquid separator.

a) Modeling of the Reynolds stresses of the dispersed phase

In this section we will first give some experimental results that will lead us to
discuss Tchen’s theory of particle diffusion and the crossing trajectory effect.
We will then discuss the modeling of the Reynolds stresses of the dispersed
phase.

Experimental data. Lee (1987) measured the eddy diffusivity, and the tur-
bulent intensities of droplets in a air/water vertical downward flow in a 2 inches
i.d. pipe. He obtained the relation:Éâ

〈Urd〉
′′ 2

=

Éâ
〈Urc〉

′′ 2
É

η

0.7 + η
(2.66)

with

η =
τc
τ

(2.67)

The index r relates to the radial component. η is the ratio of the Lagrangian
integral time scale of the continuous phase τc to the characteristic relaxation
time of the particles τ . τc is defined by

τc(t) ≡
Z +∞

0
RLc(t, t

′)dt′ (2.68)

RLc is the normalized Lagrangian auto-correlation function of the continuous
phase. RLc is independent of t if statistical stationarity is assumed. Let us
define the turbulent time scale τ∗c :

τ∗c ≡ νTc
2
3kc

=
3

2
Cµ

kc

εc
(2.69)

As a first guess one can model τc as:

τc = τ∗c (2.70)
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As we will see later, τc can be dramatically reduced if there is a significant drift
of the particles.
For the sake of simplicity, τ will be the Stokesian relaxation time:

τ =
ρdd

2

18µ
(2.71)

When necessary, it can be corrected if the drag coefficient is outside the Stokes
regime with:

τ =
ρd

β
(2.72)

β is the momentum exchange coefficient defined by equation (2.55).
Equation (2.66) has been used by Binder and Hanratty (1991) and Guha (1997)
to correlate directly the Reynolds stresses in the dispersed phase to that of
the continuous phase. The so called ”Tchen’s theory” about the diffusion of
particles in homogeneous, isotropic, stationary turbulence, predicts an identical
expression but with a value of 1 instead of 0.7.

Tchen’s Theory. This theory will not be discussed in details here. Further
pieces of information can be found in Hinze (1959). Starting from a particle
undergoing a Stokes drag it is possible to give a relation between the fluctuating

velocities of the dispersed phase v (in our case 〈Uid〉
′′

), and that of the continuous

phase u (〈Uic〉
′′

):
dv

dt
+
v

τ
=
u

τ
(2.73)

One can express u and v by their Fourier integrals:

u =

Z +∞

0
(Acos(ωt) +B sin(ωt)) dω (2.74)

v =

Z +∞

0
(C cos(ωt) +D sin(ωt)) dω (2.75)

where ω = 2πf and f is the frequency of a given turbulent fluctuation. Replac-
ing u and v in (2.73) by their Fourier integrals, leads to the following relations:

C =

�
1 − τ2ω2

1 + τ2ω2

�
A− τω

1 + τ2ω2
B (2.76)

D =

�
τω

1 + τ2ω2

�
A+

�
1 − τ2ω2

1 + τ2ω2

�
B (2.77)

Tchen expressed then u2 and v2 two ways: first with the Lagrangian energy
spectrum function EL:

u2 =

Z ∞

0
ELc(f)df (2.78)

v2 =

Z ∞

0
ELd(f)df (2.79)
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and second as:

u2 = π2

Z ∞

0

A2 +B2

T
df (2.80)

v2 = π2

Z ∞

0

C2 +D2

T
df (2.81)

where T is an integral quantity with dimension time (Hinze (1959)). From
equations (2.76), (2.77), (2.78), (2.79), (2.80), and (2.81) one deduces:

ELd

ELc
=

1

1 + τ2ω2
(2.82)

If we now express the Lagrangian energy spectrum function as a function of its
Fourier transform RLc (the normalized Lagrangian auto-correlation function),
we have the following relation between v2 and u2:

v2 =

Z ∞

0

ELc(ω)

1 + τ2ω2
dω =

2

π
u2

Z ∞

0

Z ∞

0

RLc(t) cos(ωt)

1 + τ2ω2
dtdω (2.83)

It remains now to find a proper representation of the Lagrangian normalized
auto-correlation function. The Lagrangian nature of the function is a difficult
point to handle. Indeed it is the velocity fluctuations encountered along the
particle path that matters here and it can not be identified with the turbulent
fluctuations along a fluid particle trajectory. One of the hypothesis of Tchen’s
theory is that during the motion of the particle the neighborhood of the par-
ticle is formed by the same fluid particles. If it is verified, the Eulerian and
Lagrangian fluctuations are similar. However Hinze (1959) underlined that it
is highly improbable given the great distortions underwent by a fluid particle
in a turbulent flow. Reeks (1977) studied theoretically the motion of particles
in isotropic turbulence under the action of a Stokesian drag force and gravity.
In the absence of gravity, he plotted the particle mean square velocity as a
function of τ . First he used the Lagrangian auto-correlation function. Second
he replaced RLc by the Eulerian autocorrelation function REc. The results of
Reeks show that, as a first approximation one can use:

RLc(t) ≈ REc(t) (2.84)

If this approximation is made, REc(t) needs to be modeled. A classical repre-
sentation would be:

REc(t) = e−
|t|
τc (2.85)

It has the advantage of representing correctly the function EEc(ω) in the inertial
subrange (the Kolmogorov -5/3 spectrum)4. Putting back this relation in (2.83)

4Considerations on the derivative of REc(t) at t = 0 and on the acceleration integral
time scale implies that relation (2.85) must be rejected for theoretical reasons (Gouesbet
and Berlemont (1999)). Gouesbet et al. (1984) studied the dispersion of particles with a
more complex representation of the fluid auto-correlation function (two-parameter Frenkiel
correlation functions). However for our purpose we will consider relation (2.85) as accurate
enough.



2.4. MULTIPHASE TURBULENCE 35

gives:

v2 =
2

π
u2

Z ∞

0

τc
(1 + τ2ω2) (1 + τ2

c ω
2)
dω

= u2
τc

τc + τ
= u2

η

1 + η
(2.86)

We thus obtained by theory a relation that is close to that found experimentally
by Lee (1987) (equation (2.66)). Nevertheless in this theory an important effect
called the ”crossing trajectory effect” has not been included.

The crossing trajectory effect. This effect is important when particles have
a significant drift (under the action of gravity for example). In this case, the
velocity correlation drops more rapidly for the dispersed phase, than for the
continuous one. As the residence time of a particle in an eddy becomes shorter,
one can expect a drop of the dispersion coefficient. Csanady (1963) studied
the diffusion of heavy particles in the atmosphere. These particles had a free
falling speed due to gravitation that was normal to the main flow. They were
also dispersed by the gas turbulence. Csanady proposed a new form of the
normalized auto-correlation function of the particle phase, namely:

Rp(t) = e
− t

lc

q
V 2

drift
+

�
lc
τ∗

c

�2

(2.87)

where Vdrift is the drift velocity of the particles. lc is a typical length scale
of turbulence. As in Picart et al. (1986) and Simonin (1990) we can use the
modeling:

lc = τ∗c

r
2

3
kc (2.88)

Taking into account the crossing trajectory effect implies that the relation (2.86)
between v2 and u2 becomes:

v2 = u2
η′

1 + η′
(2.89)

with

η′ =
τ ′c
τ

(2.90)

and

τ ′c =
τ∗cq

1 +
3V 2

drift

2kc

(2.91)

Picart et al. (1986) showed that the crossing trajectory effect was important
in order to reproduce experimental values of dispersion coefficients. A proof
that the crossing trajectory effect may have an impact on the results of simu-
lations is a comparison between the results of Young and Leeming (1997) and
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Johansen (1991). Both described by similar methods the deposition of particles
on vertical walls. Young and Leeming did not find any change on the deposition
coefficient of the particles when changing from an upward to a downward con-
figuration. In contrast, Johansen found an important impact of the gravity on
the deposition rate. The difference between the two models was that Johansen
took into account the crossing trajectory effect. Therefore it may have a direct
impact on the deposition rate of droplets in a separator.

The turbulent viscosity hypothesis. To make the following clearer we
will now drop the intrinsic average operator. The simplest way of modeling

the Reynolds stresses of the dispersed phase àU ′′

idU
′′

jd is to apply directly the
Boussinesq approximation to the dispersed phase:

−àU ′′

idU
′′

jd = νTd

�
∂ÝUid

∂Xj
+
∂gUjd

∂Xi

�
− 2

3

�
kd + νTd

∂gUkd

∂Xk

�
δij (2.92)

According to Tchen’s theory and integrating in addition the crossing trajectory
effect, the modeling of kd is:

kd =
η′

1 + η′
kc (2.93)

It now remains to model the eddy viscosity of the particle phase νTd. Let us
consider the eddy dispersion coefficient of the particles Dp:

Dp(t) =
ß
U

′′

id

2
Z t

0
Rp(t

′)dt′ (2.94)

One can relate the eddy viscosity νTd to Dp(+∞). Then equations (2.87) and
(2.88) lead to:

νTd ≈ Dp(+∞) =
η′

1 + η′
νTc

1q
1 +

3V 2
drift

2kc

(2.95)

Simonin and Viollet (1990) gave the eddy turbulent viscosity νTd has a function

of the interphase covariance àU ′′

idU
′′

ic. This covariance was itself a function of
the TKE kc. If we neglect the added mass force and the correlation of the
fluid-pressure fluctuation with the dispersed phase volume fraction, this model
reduces to equation (2.95). Rizk and Elghobashi (1989) presented experimental
evidences that the kinematic eddy viscosity of the dispersed phase is not equal
to but proportional to the dispersion coefficient of the particles. They proposed:

νTd ≈ Dp(+∞)

0.67
(2.96)

Pourahmadi and Humphrey (1983), Chung et al. (1986) presented other vari-
ous correlations to express νTd. Crowe et al. (1996) underlined however that
further comparisons with experimental data are necessary to validate present
correlations.
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Advanced models: transport equations of the turbulent stresses of the
dispersed phase. Some authors used second order closure models to model
the Reynolds stresses of the dispersed phase. Derevich and Zaichik (1988) pre-
sented a transport equation for the distribution function p(Xd, Ud, t) of the
particles in the phase space. Reeks (1991) also developed a transport equation
for the particle phase space distribution. The integration of such an equa-
tion on the velocity space leads to the mass balance, the momentum equation
and the Transport Equations of the TUrbulent Stresses of the DIspersed Phase
(TETUSDIP). It is important to note that a full picture of the physical system
is not obtained if one does not have a transport equation for the interphase
covariance. This equation has been derived by Simonin et al. (1993). Presently
all the TETUSDIP have been reported in a non-conservative form.
One can use the TETUSDIP directly or simplify them to get a model of the
Reynolds stresses of the dispersed phase. Derevich and Zaichik (1988) and Slater
et al. (2003) chose the latter option and provided a model for the Reynolds
stresses of the dispersed phase by assuming an homogeneous stationary velocity
field. It is a strong assumption. A weaker assumption would be to assume an
homogeneous stationary fluctuating velocity field. Zaichik et al. (1997), Wang
et al. (1998), Derevich (2000a, 2000b) and Yu et al. (2003) used the TETUS-
DIP directly. This approach is computationally very demanding. In addition,
there is little evidence at present that a high closure level does increase accu-
racy. Slater et al. (2003) highlighted indeed that present particle turbulence
modeling is too coarse and that it is unlikely that a significant improvement will
be obtained by solving the particle stresses transport equations.

b) Modeling of the turbulent dispersion

We will now focus on the modeling of the turbulent dispersion:

βU
′′

ic

It is a matter of algebra to show that:

U
′′

ic = −α
′
cU

′
ic

αc
(2.97)

Using the gradient diffusion hypothesis one can model the velocity-volume frac-
tion correlation as:

α′
cU

′
ic = −Dp(+∞)

∂αc

∂Xi
(2.98)

Using equation (2.95), the turbulent dispersion can then be modeled by:

βU
′′

id =
β

αc

η′

1 + η′
νTcq

1 +
3V 2

drift

2kc

∂αc

∂Xi
(2.99)
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An adjustable parameter σαc of the order of 1 is sometimes added and the model
of the turbulent dispersion becomes:

βU
′′

id =
β

σαcαc

η′

1 + η′
νTcq

1 +
3V 2

drift

2kc

∂αc

∂Xi
(2.100)

Johansen (1991), Young and Leeming (1997) and Slater et al. (2003) did not
use this additional parameter (σαc = 1). Simonin (1990) and Rizk and El-
ghobashi (1989) chose σαc = 0.67. Fluent uses a value of 0.67. This value is not
modifiable.

2.5 Summary

The modeling of turbulence in multi-phase systems is complex. The present
model uses volume-averaged equations that are then ensemble averaged. The
modeling of the turbulent dispersion, and of the turbulent stresses in the dis-
persed phase are two key points.
The transport equations of the model are:� The continuity equations (2.51)� The momentum equations (2.52)� The TKE equation for the continuous phase (2.57)� The dissipation equation of the continuous phase (2.64)

The key closure equations are:� The Boussinesq equations (2.53) and (2.92)� The modeling of the turbulent viscosities (2.9) and (2.95)� The modeling of the TKE of the dispersed phase (2.93)� The modeling of the turbulent dispersion (2.100)

Clearly the overall model should be able to provide an industrially applicable
solution, but it is at the price of tremendous simplifications. In a nutshell, the
presented set of equations is valuable but its limitations must be born in mind.
Mass transfer and additional forces on particles such as added mass or lift forces
require additional sophistications that are not straightforward.



Chapter 3

Annular flows

In this chapter we will first give a description of the physical phenomena occur-
ring in annular flows. Then we will detail the equations of a ”three fluid” model
that can locally describe annular flows. Boundary conditions will be especially
emphasized. Finally we will examine closure relations for:� The interfacial gas/film shear stress� The deposition rate� The entrainment rate

3.1 Description of an annular flow

Definition

An annular flow is a special stable gas/liquid flow configuration. The gas is
located in the center of the duct (”core”). The liquid flows in the form of a
liquid film along the wall. Pure annular flows are rare in practice. The gas core
often contains droplets, and the liquid film may contain bubbles. The liquid
film is wavy as a general rule. Figure 3.1 shows a picture of an annular flow.
One can see, the gas core, the wavy film and bubbles in the liquid film.

Key parameters

In the case of a separation device, there are two fundamental parameters:� The volume fraction of droplets, which should be as small as possible after
the separation.� The pressure loss, which should be as small as possible to minimize re-
compression work downstream.

39
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Figure 3.1: An annular flow [204]

The quantity of dispersed liquid depends on the balance of two processes. On the
one hand, the droplets are impinging against the wall and form a liquid film.
This process is the deposition. It decreases the volume fraction of droplets.
On the other hand, under certain conditions, the film is highly deformed and
can generate droplets. This process is the re-entrainment. Deposition and
re-entrainment also increase the pressure drop. Lopes and Dukler (1986) and
Fore and Dukler (1995a) presented theoretical and experimental evidences of
the significant impact of droplet deposition and re-entrainment on the pressure
drop. As a result sensible modeling of deposition and re-entrainment is a key
to good prediction of liquid hold-up and pressure drop in a separator.

The liquid film

Re-entrainment is a very complex phenomena. It is local and highly non-linear.
Figure 3.2 is a drawing after a real photography (Azzopardi and Gibbons (1983))
that shows the complex nature of re-entrainment. At present, there is no ana-
lytical models that can describe it. Re-entrainment is then calculated by means
of empirical or semi-empirical correlations. All of these correlations are using
the average liquid film thickness as a parameter. Consequently we will need a
model for the film. The model should provide a good estimation of the height
and of the velocity of the liquid layer. The so called ”three-field ” or ”three-
fluid” models are able to describe deposition, re-entrainment and the liquid film.
It is this type of model that has been chosen in the present work.
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Figure 3.2: Re-entrainment in an annular flow

3.2 Local three-fluid model of an annular flow

3.2.1 Literature study

The three-fluid model is a development of the two-fluid model. Instead of having
a dispersed phase d and a continuous phase c, there are two continuous phases:
the gas (indexed g) and the film (indexed f) and a dispersed phase (indexed
d). Saito et al. (1978) are the first to use a three-fluid model to simulate an
annular flow. The model was 1D. It could handle both adiabatic and diabatic
flows. They also applied the concept to different geometries (annuli and rod
arrays). Sugawara (1990) developed a similar model with different closure re-
lations for the deposition, and the re-entrainment. Sugarawa and Miyamato
(1990) presented a non-adiabatic axisymmetric code. Stevanovic and Studovic
(1995) developed a 1D code with a new entrainment correlation. Fossa (1995)
proposed a 1D model for flows with heat transfer outside thermal equilibrium
that was able to handle smooth variation of pipe sections (diffusers and nozzles).
Antal et al. (1998) were the first to adapt a three-fluid model on a local scale in
3D. It relied on experimental correlations originally developed for 1D flows. It is
also interesting to pinpoint the attempt of Schmehl et al. (1999) who solved the
gas and liquid phases in an Eulerian frame of reference and solved the dispersed
phase with a Lagrangian tracking. The same approach was used recently by
Adechy and Issa (2004) to calculate an annular flow through a T-junction. Ho
Kee King and Piar (1999) studied the applicability of a three-field model in a
converging nozzle. They compared their results with measured pressures and
liquid film heights. They computed three cases:� Pure annular flow (film and gas)� Pure mist flow (droplets and gas)� A model including the 3 phases
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The latter gave the best results both for pressure gradients and film thicknesses.
Kumar and Trabold (2000) compared the results of their three-fluid model with
high-pressure (14 and 24 bars) experimental data of a refrigerant fluid. They
had low surface tensions and high gas densities as in a scrubber. They observed
a tendency for the droplets to have a velocity close to the overall mixture ve-
locity. Their model was similar to the model of Antal et al. (1998). Yano et al.
(2001) used a three-field model to calculate the flow around a fuel spacer in a
boiling water reactor. Their geometry was axisymmetric but more complex than
a pipe or an annulus. Alipchenkov et al. (2002a), Alipchenkov et al. (2002b),
Antipin et al.(2003) and Alipchenkov et al. (2004) developed one of the most
advanced three-fluid model. This model takes into account complex boundary
conditions for the droplet phase (reflexion on the film or not) and calculates an
average droplet size by means of break-up and coalescence models. Nevertheless
it is a 1D model. Finally Jayanti and Valette (2004) presented a 1D model for
high-pressure steam-water systems (up to 200 bars). They mainly focused on
dryout, post-dryout and heat transfers.
This literature study showed that three-fluid models are well established for cal-
culating annular flows. Only the models of Antal et al. (1998) and Kumar and
Trabold (2000) dealt with 3D flows. However both works used a hydraulic di-
ameter. As a result, these models are strictly limited to relatively simple geome-
tries. An inlet-vane has no well defined hydraulic diameter. Consequently, there
is a need for a model that can describe relevant processes without presupposing
any type of geometry. This model must be purely local. Such a local model is
presented in the next sections.

3.2.2 Governing equations

a) Continuity equations

Mass transfers because of phase changes are not considered. The only exchange
of matter is a consequence of deposition and re-entrainment. According to
equation (2.51) we have for the gas:

∂ ρgαg

∂t
+
∂ ρgαg

ÝUig

∂Xi
= 0 (3.1)

For the sake of clarity, the intrinsic averaging symbol is no longer reported. For
the droplet phase and the liquid film:

∂ ρdαd

∂t
+
∂ ρdαd

ÝUid

∂Xi
= −Ü̇D + Ü̇E (3.2)

∂ ρdαf

∂t
+
∂ ρdαf

gUif

∂Xi
= Ü̇D − Ü̇E (3.3)

where Ü̇D and Ü̇E are respectively the average rate of deposition and of entrain-
ment in kg ·m−3 · s−1.
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b) Gas and droplets momentum equations

Equations. For the gas, from equation (2.52) and neglecting the pressure-
volume fraction correlation, we can write:

∂ ρgαg
ÝUig

∂t
+
∂ ρgαg

ÝUig
gUjg

∂Xj

+
∂ ρgαg

àU ′′

igU
′′

jg

∂Xj
= −αg

∂P

∂Xi
+

∂

∂Xj
αgfτij + ρgαggi

−ÝFD − F
′′

D (3.4)

The main differences between single phase and multiphase turbulent flows are
the mean drag and the turbulent dispersion term. The flow of the gas will also
be changed by the presence of the liquid film but this will be integrated into the
boundary conditions and not into the field equations.
For the droplets, the momentum equations are:

∂ ρdαd
ÝUid

∂t
+
∂ ρdαd

ÝUid
gUjd

∂Xj

+
∂ ρdαd

àU ′′

idU
′′

jd

∂Xj
= −αd

∂P

∂Xi
+

∂

∂Xj
αdfτij + ρdαdgi

+ÝFD + F
′′

D

−ßUidḊ + ÞCiĖ (3.5)

The two last terms represent the sink of momentum due to deposition and the
source of momentum due to re-entrainment. Ci is the velocity with which the
droplets are leaving the liquid film.

Consequences of deposition and entrainment on the momentum bal-
ance. For long pipes, an equilibrium takes place between the rate of atomiza-
tion and the rate of deposition. Ü̇D = −Ü̇E (3.6)

The last two terms of equation (3.5) can then be simplified as follows

−ßUidḊ + ÞCiĖ = − å(Uid − Ci) Ḋ (3.7)

Usually Uid − Ci >> 0 which means that, in a developed flow, the net contri-
bution of the entrainment and deposition terms is a strong sink of momentum.
It has two important implications:

1. This loss of momentum increases the pressure gradient.

2. The droplets leaving the film are undergoing an acceleration.
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There are experimental evidences that droplets are, as an average, impinging
on the wall before they reach their terminal velocity. Indeed, Azzopardi and
Teixeira (1994a), and Fore and Dukler (1995b) measured a difference of 20%
between the local droplet velocity and the local gas velocity. In gas/solid flows,
the particles reach their terminal velocity and the particle/gas velocity ratio is
much closer to one (Tsuji et al. (1984)).
A priori, one could think that the momentum loss of the droplet phase is mainly
transfered to the film. The liquid layer should then be accelerated. However,
Fore and Dukler (1995a) showed that this is not the case. A possible explana-
tion, is that, as a drop deposits, the film becomes turbulent (or increases its
turbulent intensity) close to the impact point. Energy is then dissipated in heat
or by wall friction. The overall results is that the momentum transfered by the
droplet phase to the film phase does not accelerate the liquid layer substantially.

c) Equations for the film

The present model does not describe the velocity of the film by the mean of
a transport equation. It uses assumptions that are simplifying the momentum
equation of the film into a simple algebraic relation.

Effect of high pressure and high gas density on the liquid film. The
equations of the liquid film can be simplified by using some experimental facts.
Especially interesting is the question of whether the film is turbulent or laminar.
Note that in this paragraph we will not consider the turbulence generated by
the droplet impaction but only by the convection inside the film.
As a rule, in annular flows, the film should be considered as turbulent. Indeed
Hewitt and Hall Taylor (1970) underlined the inability of a laminar model to
predict the mass throughput of the film from its thickness and from pressure
drop data. In contrast, assuming the universal turbulent velocity profile, leads
to the correct mass throughput. More recently Vassalo (1999) used hot film
anemometry to measure the velocity profile in the film of an annular flow in a
rectangular channel. He found that for clear annular configurations (far from a
churn flow) the velocity profile inside the film was similar to the law-of-the-wall.
Consequently the film can be considered as laminar only if it is thin enough to
be included in the viscous sub-layer. In addition, according to Hewitt and Hall
Taylor (1970), good predictions depend on the non-disturbance by the interfacial
waves of the region where gradients of velocities are strong (in the viscous zone).
As a result for supposing a laminar film we must have:

1. A thin film, being characterized as fully inside the viscous sub-layer.

2. A relatively smooth film so that ripples do not disturb the film velocity
profile.

In an industrial scrubber, the gas has got high densities. Jepson et al. (1989)
studied the effect of gas properties on drops in annular flows. They performed
air/water and helium/water tests. A reduction in gas density caused a lower
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shear on the film and a reduced entrainment. On the contrary, at high pressures,
one expects a higher droplet content and a thinner liquid film. High pressures
also decrease the surface tension. Dallman et al. (1979) reported experiments
made by Whalley and coworkers on 1,1,1-trichloroethane. 1,1,1-trichloroethane
has got a surface tension of 0.029 N/m compare to 0.073 N/m for water (both
against air at 20�). They showed that atomization was easier for the 1,1,1-
trichloroethane than for water. Therefore, if the surface tension is low, the
droplet content is high and the film is thin. Finally Trabold et al. (1999) took
high speed videos of an annular flow at high pressure (24 bars) in a rectangular
channel. They watched the combined effect of low liquid/gas density ratio and
low surface tension. The images showed a very thin film. Summing-up the
above pieces of information, it seems that in a high pressure gas separator the
film is likely to be thin.
Trabold et al. (1999) also noted small-amplitude waves on the liquid layer.
Paras and Karabelas (1991) studied film properties in horizontal annular flows.
They recorded smaller amplitudes of the waves on thin films than on large
ones. Besides, they measured the intensity of the film thickness fluctuations.
The intensity is the root-mean-square (RMS) of the film thickness fluctuations
divided by the time-averaged film thickness and shows how strongly the film
is disturbed by interfacial waves relatively to its height. The intensity was
lowest when the film was thin (at high gas flow rates). Thus thin films seems
to be smoother than thick films, even relative to their heights. Consequently
experimental works show that the film in a scrubber is probably thin and rather
smooth. Therefore, the film is likely to be well calculated with a laminar model.

Continuity equation for the film. If the film is thin, it is computed only

in the first row of cells by the wall. Its height h, the deposition rate Ü̇D and the

entrainment rate Ü̇E are non zero in these near wall cells. Let us consider a cell
which has got a wall-boundary face of area A (see Figure 3.3). For a thin film
the interface area can be approximate by A on the condition that:� The film is thin compare to the size of the computational cell.

� The gradients of the interface equation are not too important in the di-
rections parallel to the wall.
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Figure 3.3: Thin film approximation

If these two conditions are verified1, a mass balance on a film element gives in
a local form :

∂h

∂t
+

∂

∂Xi
hUif =

V

ρfA

�Ü̇D − Ü̇E� (3.8)

The velocity of the film will now be modeled.

Momentum equations for the film. The aim here is to get an approximate
algebraic expression for the velocity of the film. First, one considers a new frame
of reference. Let (x, y, z) be the position of a film particle. x is the coordinate
along a vector ∆i. ∆i is defined by:

∆i ≡ Ug i,p − U int
i,p (3.9)

Ugi,p is the projection on the wall of the gas velocity of the near-wall cell. U int
i,p is

the projection on the wall of the interface velocity. y is the coordinate normal to
the wall. z is the position on a third axis such as (x, y, z) forms a right handed
coordinate system. This coordinate system is pictured on Figure 3.4. To get a
good estimation of the film velocity, the best is to start from the momentum
equation of the film. To obtain a simple analytical solution we will do three
assumptions.

1These conditions are necessary in order to derive the relation

αf ≡ Vf

V
=

h · A
V

If these conditions are not verified, Vf , the volume of the film in the computational cell is
depending on the geometry of the cell and on the geometry of the interface. In this case, there
is no simple relation between the height of the film h, the area of the wall-boundary A and
Vf and

Vf 6= h · A.

It is then necessary to express the continuity equation of the film in terms of the volume
fraction αf and not in terms of h.
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Figure 3.4: Coordinate system for the film

1. The film is steady.

2. Gradients in the x and z directions are zero.

3. The wall normal velocity is zero.

If the film is 2D, gradients in the y direction are infinite compare to gradients
in the other directions. It justifies assumption 2 (Therefore the gradients of the
interface equation are negligible in the directions parallel to the wall and the
area of deposition can be identified with the wall area). Hypothesis 3 comes
from the 2D assumption as well. The velocity of the liquid layer depends only
on y. In the new coordinate system, the velocity vector of the film can then be
written: �

u(y)
v(y) = 0
w(y)

�
(3.10)

In addition we know that:� The liquid layer gains momentum through deposition, the resulting accel-
eration is: Ü̇D V

hA

ud

ρf
(3.11)

ud is the velocity of the droplet in the new coordinate system. Ü̇D is given
per volume of computational cell. However here we consider the volume
of film in a computational cell (hA). This is why the ratio V/(hA) is
necessary. The above formula is for the x direction. In the z direction, ud
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is replaced by wd. It is worth noticing that the transfer of momentum from
the droplet phase to the liquid layer happens first at the interface of the
film. Then, the transfered momentum diffuses inside the liquid layer due
to molecular and turbulent diffusion. The acceleration given by equation
(3.11) assumes that the momentum transfered from the droplet phase to
the film phase diffuses instantaneously through the whole thickness of the
liquid film.� There is a sink of momentum due to entrainment. One can write for the
x direction a sink of the form: Ü̇E V

hA

cx
ρf

(3.12)

where cx is the velocity at which the droplets leave the film in the x direc-
tion. Here as well, equation (3.12) assumes an instantaneous redistribution
of the momentum inside the liquid layer.

Besides, as we previously discussed, there are indications that the film is tur-
bulent although the turbulence is not generated by convective terms but by the
impact of the droplets. With the above assumptions and pieces of information,
the momentum conservation equation in the x direction can be written:

0 = − 1

ρf

∂P

∂x
+ ν

∂2u

∂y2
+ gx +

V

ρfhA

�Ü̇Dud − Ü̇Ecx�− ∂u′v′

∂y
(3.13)

If we consider a purely hydrostatic case, along the axis x, in the gas phase we
have:

∂P

∂x
= ρggx (3.14)

As a result 1
ρf

∂P
∂x scales as

ρg

ρf
gx. If ρg << ρf the pressure term becomes

negligible against the gravity term and the momentum equation along the x
axis becomes:

0 = ν
∂2u

∂y2
+ gx +

V

ρfhA

�Ü̇Dud − Ü̇Ecx�− ∂u′v′

∂y
(3.15)

Similarly along z:

0 = ν
∂2w

∂y2
+ gz +

V

ρfhA

�Ü̇Dwd − Ü̇Ecz�− ∂v′w′

∂y
(3.16)

The equation along y does not give any velocity information (only pressure).

Turbulence modeling. We will use the standard turbulent viscosity hypoth-
esis. It is the simplest choice but it is probably extremely rough. Indeed one
can expect that an impinging droplet does not give raise to a shear flow but
rather to a compression of the film. This is actually the exact case where the
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turbulent viscosity hypothesis fails. Pope (2000) illustrated that in the case
of the axisymmetric contraction of a turbulent flow, the turbulent fluid reacts
more as an elastic solid than a viscous liquid. Nevertheless, for the sake of
simplicity we will use the turbulent viscosity hypothesis, being aware that it is
very crude. The turbulent viscosity due to deposition must be somehow related

to the deposition flux Ü̇DV/A and a penetration length scale. If the film is very
thin, the penetration length is likely to be the height of the film. As a result we
will model the turbulent viscosity as:

µTf = Ü̇DV
A
h (3.17)

One can notice that in this case the turbulent viscosity is a constant throughout
the liquid layer. Therefore we get simply:

0 = νtot
∂2u

∂y2
+ gx +

V

ρfhA

�Ü̇Dud − Ü̇Ecx� (3.18)

and

0 = νtot
∂2w

∂y2
+ gz +

V

ρfhA

�Ü̇Dwd − Ü̇Ecz� (3.19)

with

νtot ≡ ν + νTf (3.20)

It is important to note that νTf is not depending on y in the present model.
The validity of this model will be discussed in chapters 6 and 7.

Boundary conditions at the film/gas interface. Delhaye (1974) derived
all the jump conditions (mass, momentum, energy and entropy) across an in-
terface. For momentum, it is:

nfj σfij |y=h + ngj σgij |y=h +
Σ

R
nfi = 0 (3.21)

There is no summation on the f index (film) and on the g index (gas). Σ is the
surface tension and R the radius of curvature of the interface. Let us notice that
momentum transfers due to entrainment and deposition through the interface
are not taken into account because they are already included in the momentum
equations. Moreover, since the gradients in the x and z direction are neglected,
there is no Marangoni effect. Given h = I(x, z) the equation of the interface,
the expression of the radius of curvature is:

1

R
=

∂2I
∂x2

�
1 +

�
∂I
∂z

�2�
− 2 ∂I

∂x
∂I
∂z

∂2I
∂x∂z + ∂2I

∂z2

�
1 +

�
∂I
∂x

�2��
1 +

�
∂I
∂x

�2
+
�

∂I
∂z

�2� 3
2

(3.22)
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It leads to 1/R = 0 when the x and z gradients are zero. As a result, surface
tension effects are negligible. The normal vectors are given by:

nfj = −ngj =
1�

1 +
�

∂I
∂x

�2
+
�

∂I
∂z

�2� � − ∂I
∂x
1

−∂I
∂z

�
(3.23)

and neglecting the x, and z gradients, it reduces to:

nfj = −ngj =

�
0
1
0

�
(3.24)

That is to say, we have a flat film parallel to the wall. Thus the interface velocity
is parallel to the wall and U int

i,p = U int
i (Figure 3.4). As for the stress tensor, our

film behaves exactly as a laminar fluid of viscosity µtot. Using the Newtonian
fluid hypothesis (2.3), we have on the liquid side:

σfxy|y=h = σfyx|y=h = µtot
∂u

∂y

����
y=h

(3.25)

σfyz|y=h = σfzy|y=h = µtot
∂w

∂y

����
y=h

(3.26)

And on the gas side, because of the way that the reference frame (x, y, z) has
been built:

σgxy|y=h = σgyx|y=h = τi (3.27)

σgyz|y=h = σgzy|y=h = 0 (3.28)

where τi is the interfacial shear stress exerted by the gas on the film. Conse-
quently the jump condition (3.21) leads to the following boundary conditions at
the interface:

µf
∂u

∂y

����
y=h

= τi (3.29)

∂w

∂y

����
y=h

= 0 (3.30)

Algebraic model for the velocity in the film. From (3.18), (3.19), (3.29)
and (3.30), it is straightforward to show that:

u =
ρfgx + V

hA

�Ü̇Dud − Ü̇Ecx�
µtot

�
hy − y2

2

�
+

τi
µtot

y (3.31)

and

w =
ρfgz + V

hA

�Ü̇Dwd − Ü̇Ecz�
µtot

�
hy − y2

2

�
(3.32)
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We can note that we obtain a type of Poiseuille/Couette flow. Without the
shear due to the gas, and the deposition/entrainment processes, we would have
had the well-known solution of Nusselt (1916) for a gravity-driven film. Ruyer-
Quil and Manneville (1998) showed that Nusselt’s solution is a zeroth order
approximation of the velocity. They developed first and second order models,
for a film falling down an inclined plane. Four points remain in order to find the
mean velocity of the film in the global reference frame (Uif in equation (3.8)):� Averaging the velocity over the film thickness� Finding a model for the velocity at which the droplets leave the film� Expressing the film velocity and the velocity at which the droplets leave

the film in the global coordinate system� Expressing the droplet velocity in the local coordinate system

Averaging. Let us denote uavg and wavg the averaged values of the compo-
nents of the film velocity over the film thickness.

uavg ≡ 1

h

Z h

0
udy =

ρfgx + V
hA

�Ü̇Dud − Ü̇Ecx�
µtot

h2

3
+

τi
µtot

h

2
(3.33)

and

wavg ≡ 1

h

Z h

0
wdy =

ρfgz + V
hA

�Ü̇Dwd − Ü̇Ecz�
µtot

h2

3
(3.34)

Velocity at which the droplets leave the film. The velocity at which
the droplets leave the film is denoted ci. ci will only take part in the loss of
momentum by the film due to entrainment. Hence, its modeling does not need
to be very advanced. A first guess is that ci is the velocity of the film at the
interface: �

cx
cz

�
=

�
u(h)
w(h)

�
(3.35)

Together with equations (3.31) and (3.32) we get:

cx = h

�
2τi + ρfgxh+ V

A
Ü̇Dud

2µtot + V
A
Ü̇Eh �

(3.36)

and

cz = h

�
ρfgzh+ V

A
Ü̇Dwd

2µtot + V
A
Ü̇Eh �

(3.37)

Hewitt and Hall Taylor (1970) indicated that the velocity of the interface likely
tends toward 2uavg at high gas flow rate. If all phenomena are neglected but
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Figure 3.5: Celerity of the interface of a film falling in vacuum.

the gas shear stress on the liquid interface, one gets this results. Deposition
and entrainment do not have a simple effect if taken into account. It is also
interesting to consider the case of a film falling in vacuum. Figure 3.5 shows
the ratio of the velocity of the interface to the average film velocity in such a
case. On the graph there are the experimental data of Hewitt and Hall-Taylor
(1970), the theoretical values of a model based on a linear stability analysis (see
Hewitt and Hall Taylor), and the constant value of 3/2 predicted by the present
model. 3/2 is a good estimation except at low liquid flow rates. The model for
ci is expected to be accurate except when the liquid flow rate is small and the
interfacial shear stress is small. However in this case the entrainment rate is
small and the loss of momentum of the film is negligible. Thus the accuracy of
the model for calculating ci is sufficient.

Change of coordinate system. Let us denote (nxi, nyi, nzi) the coordinates
of the orthonormal base of the coordinate system (x, y, z) expressed in the ref-
erence frame (Xi). nyi is the normal to the wall and is known. nxi is given
by:

nxi ≡
∆i

‖∆i‖
=

Ugi − (Ugjnyj)nyi − Ci

‖Ugi − (Ugjnyj)nyi − Ci‖
(3.38)

Lastly nzi is given by:

nzi ≡ nxi × nyi (3.39)
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We can write Uif by means of a transformation matrix:

Uif =

�
nx1 ny1 nz1

nx2 ny2 nz2

nx3 ny3 nz3

��
uavg

0
wavg

�
(3.40)

Or:

Uif = nxiuavg + nziwavg (3.41)

Similarly:

Ci = nxicx + nzicz (3.42)

Let us note that nxi is needed for the calculation of Ci and that Ci is needed
for the calculation of nxi. To solve this, nxi can be calculated with the velocity
of the interface at the previous iteration. For the droplet phase we have:

ud = nxi
ÝUid (3.43)

wd = nzi
ÝUid (3.44)

The model for the film is now complete.

Volume fraction in the cells by the wall. When the film is modeled by a
transport equation for a scalar h, the relation:

αg + αd = 1 (3.45)

is used by Fluent in the whole domain. This is not strictly true for cells having
a wall boundary. In these cells the volume fraction of film is not zero. The
relation between the volume fraction becomes:

αg + αd + αf = 1 (3.46)

Nevertheless, in Fluent, it is the volume fraction of gas that is calculated by
help of relation (3.45). Thus αd is correct. In a scrubber, the liquid loading is
small. In this case assuming αf ≈ 0 does not generate a significant error.
The field equations have now been detailed. The next section discusses the
boundary conditions associated with each phase.

3.2.3 Boundary conditions

a) Film height boundary condition

At the wall we will have to specify a boundary condition for the height of the
film. It is a no flux condition. This is automatically verified because in the
algebraic model for the velocity of the film v = 0.
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b) Volume fraction boundary condition.

At the wall the volume fraction boundary condition for droplet phase and for
the gas phase is a no flux boundary condition:

∂ακ

∂y

����
y=0

= 0 (3.47)

It must be born in mind that this boundary condition is not at the film interface
but at the wall because the film is modeled by a scalar h transported by the flow.
Mass/momentum transfers are modeled in the fields equations with sources and
sinks due to deposition and re-entrainment. In contrast, no transfer occurs
between the gas and the wall or between the droplet field and the wall. This
justifies the boundary condition (3.47).

c) Velocity boundary condition for the gas phase

c1) The log law. Let u+ be the mean velocity normalized by a friction ve-
locity uτ :

u+ ≡
gUgx

uτ
(3.48)

uτ will be modeled later. νg/uτ is a viscous length scale and the distance from
the wall normalized by this length scale is:

y+ ≡ y uτ

νg
(3.49)

Then if y+ > 30 and if y is sufficiently small for the mean velocity profile to be
determined by the viscous scale only, we can write the log law (see e.g. White
(1991)):

u+ =
1

κ
ln
�
y+
�

+B (3.50)

where κ ≈ 0.4 is the Von Kármán constant and B ≈ 5.22.

c2) Wall functions. Pope (2000) showed that a good approximation of uτ

in a single phase flow is:

uτ ≈
È��u′v′�� ≈ C

1
4
µ k

1
2 (3.51)

This relation assumes the equilibrium between the production and the dissipa-
tion rate of the turbulent kinetic energy. By analogy with single phase flows,

2Let us notice that this is not valid if there are strong mean pressure gradients. If the
pressure gradient is very favorable a relaminarization can occur. If the pressure gradient
is adverse a separation can occur. In addition inlet vanes or cyclones have got curved walls.
Convex curvatures have a stabilizing effect. Concave walls destabilize the flow. Mean pressure
gradients and curvature effects are neglected in this work. Curvature is considered in the work
of Schmehl et al. (1999) on spray/liquid film interactions.
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uτ is here modeled as:

uτ ≈
É���áU ′′

gxU
′′

gy

��� ≈ C
1
4
µ k

1
2
g (3.52)

If equations (3.52) and (3.50) are used at the centroid C of the boundary cell
we get:

u+
��
y=yC

=
1

κ
ln

�
yCC

1
4
µ k

1
2
g

���
y=yC

νg

Ǳ
+B (3.53)

Then a boundary condition for the gas which is linear in gUgx is:

τi = ρguτ

gUgx

���
y=yC

u+ (y+)
(3.54)

τi is the stress exerted by the film on the gas phase. If the interface is moving
with a velocity C the log-law is written:

Ug − C

uτ
=

1

κ
ln
�
y+
�

+B (3.55)

where C is the velocity of the interface. In the following it will be assumed that
the velocity of the interface is small compare to the velocity of the gas at the
centroid of the near-wall cell. Therefore equation (3.50) will be used instead
of (3.55). This approximation has an important consequence for the film. The
force F int exerted by the gas on the film, arising from the interfacial shear stress,
is parallel to the vector ∆i (see Figure 3.4). Using equation (3.50) instead of
(3.55) implies that the force F int is also parallel to Ugi,p. Thus, given λ a real
number:

∆i = λUgi,p

⇔ Ugi,p − Ci = λUgi,p

⇔ Ci = (1 − λ)Ugi,p

⇔
�
cx
cz

�
= (1 − λ)

�
Ug,p

0

�
⇒ cz = 0 (3.56)

Combining equation (3.37) and equation (3.56) implies that:

ρfgzh+
V

A
Ü̇Dwd = 0 (3.57)

If the above relation is fulfilled and if cz = 0 then, according to equation (3.32):

w(y) = 0 (3.58)
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The consistency of the model demands that if the velocity of the interface is
neglected compare to the velocity of the gas then the film can only move along
a line which is parallel to the gas velocity.
So far, there is no difference between the gas boundary condition in our case
and in a standard single phase flow simulation. Nevertheless the liquid film has
got a strong influence on the gas phase. To study how the film influences the
gas phase, we will first find a correlation that links the height of the film to the
friction coefficient. Then we will find a relation between the friction coefficient
and a sand roughness. Equating the two expressions of the friction coefficient
will give an expression for the equivalent sand roughness of the film as a function
of the height of the film. This will provide a boundary condition for the gas.

c3) Friction coefficient as a function of the film height. A lot of research
has been going on about this subject over the last 50 years. Most of the papers
related the interfacial friction to macroscopic quantities such as the average gas
velocity, the average liquid velocity or the diameter of the pipe . The friction
coefficient Cf is defined as:

Cf ≡ 2τi
ρU2

(3.59)

Depending on the author, Cf is based on an average gas velocity (Cfg) or a
mixture velocity (and its corresponding mixture density). It can also be based
on superficial velocities.

Wallis’ correlation. Wallis (1969) proposed the following correlation based
on experimental results:

Cfg = 0.005

�
1 + 300

h

D

�
(3.60)

D is the diameter of the pipe. As underlined by Hewitt and Hall-Taylor(1970)
equation (3.60) agreed with older studies. Wallis further suggested that the co-

efficient 0.005 could be replaced by 0.079Re
− 1

4
g . Relation (3.60) was successfully

used by numerous authors either with a 0.005 coefficient (Antal et al. (1998),

Kumar and Trabold (2000)) or with 0.079Re
− 1

4
g (Saito et al. (1978), Sugawara

and Miyamoto (1990), Sugarawa (1990), Stevanovic and Studovic (1995) and
Fossa et al. (1998)). Yano et al. (2001) used this correlation adding an ad-
justment to fit additional experiments performed by Ueda3. Alipchenkov et
al. (2004), Antipin et al. (2003) and Alipchenkov et al. (2002a) also used a
correlation inspired of Wallis’. Moeck and Stachiewicz (1972), Fukano and Fu-
rukawa (1998), Fore et al. (2000) and Wongwises and Kongkiatwanitch (2001)
did a direct testing of Wallis’ correlation and plotted Cfg as a function of h/D.
Their results are summarized in Table 3.1. The category ”large” means roughly
h/D ≥ 0.03. ”Small” corresponds approximately to h/D ≤ 0.005 or 0.01. Ac-
curate pieces of information can be found in the original articles. We included

3Ueda, T. (1981). Two-phase flow-Flow and Heat transfer. Yokendo: Japan (in Japanese)
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h/D Authors Result Remarks
Large Fuk. and Fur. (1998) Cfg,W < Cfg,exp Various visc.

Fore et al. (2000) Cfg,W < Cfg,exp

Fore et al. (2000) Cfg,W ≈ Cfg,exp 17 bars
Wong. and Kong. (2001) Cfg,W > Cfg,exp

Moeck and Stach. (1972) Cfg,W < Cfg,exp

Medium Fuk. and Fur. (1998) Cfg,W ≈ Cfg,exp Various visc.
Fore et al. (2000) Cfg,W ≈ Cfg,exp

Fore et al. (2000) Cfg,W ≈ Cfg,exp 17 bars
Moeck and Stach. (1972) Cfg,W ≈ Cfg,exp

Small Fore et al. (2000) Cfg,W > Cfg,exp

Fore et al. (2000) Cfg,W > Cfg,exp 17 bars
Jay. and Val. (2004) Cfg,W >> Cfg,exp 30-90 bars
Moeck and Stach. (1972) Cfg,W > Cfg,exp

Table 3.1: Validity of the Wallis correlation:
Cfg,W : Friction factor predicted by relation (3.60).
Cfg,exp: Experimental friction factor.

as well in Table 3.1 the results of Jayanti and Valette (2004) that compared the
data of Würtz4 with the results given by relation (3.60). They did not provide
values of the ratio between the height of the film and the diameter. However
they used high pressure data so that it is probable that h/D was small. Wallis’
correlation is able to reproduce data reasonably for at least low pressures. Dis-
crepancies for thick films need further investigation as experimental results are
contradictory. It seems that the relation overpredicts friction factors for thin
films. It is inconvenient as thin films occur in scrubbers. This effect was pre-
dicted by Wallis. He indeed emphasized that when the regime is not fully rough
but more in a ripple or smooth film region, as in the case of thin films, the
correlation (3.60) was not accurate. More fundamentally, for very thin films,
it is not obvious that the diameter of the pipe is an appropriate dimension to
scale the height of the film with.

Other correlations.� Moeck and Stachiewicz (1972) developed an equation similar to Wallis’:

Cfg = 0.005

�
1 + 1458

�
h

D

�1.42�
(3.61)

This correlation has been used by Fukano and Furukawa (1998) and under-
predicted their data. Wongwises and Kongkiatwanitch (2001) also tested
relation (3.61) and obtained good results. It is an interesting correlation
because it predicts a lower friction coefficient for thin films than (3.60).

4Würtz, J. (1978). An experimental and theoretical investigation of annular steam water
in tubes and annuli at 30 and 90 bars. RISO Report No. 372.



58 CHAPTER 3. ANNULAR FLOWS� Henstock and Hanratty (1976) proposed a complicated correlation. It has
been tested by Fore et al. (2000) and gave poor results for thick films and
similar results to Wallis’ relation for thin films.� Asali and Hanratty (1985) also proposed a relation to relate Cfg and h.
It was developed further by Ambrosini et al. (1991) to include surface
tension effects. Fossa et al. (1998) found Wallis’ correlation to be better
(with or without surface tension effect). Hurlburt and Newell (2000) noted
that Asali’s correlation had a limited range of application. Fore et al.
(2000) obtained good predictions for low h/D (range where the correlation
was developed). Finally Jayanti and Valette (2004) obtained very bad
results at high pressure condition with over-predictions of over 100% of
the interfacial friction factor. Therefore it is believed that the correlation
of Asali and Hanratty is not suitable to our case.� Fossa et al. (1998) tested a correlation given by Oliemans et al. (1986)
which gave poorer results than relation (3.60).� Fukano and Ousaka (1989) proposed a correlation that was shown to be
unable to represent the results of Fukano and Furukawa (1998).� Tso and Sugarawa (1990) used an expression proposed by Ueda which has
many adjustable parameters and should probably not be used outside the
range it was designed for.� Nigmatulin (1991) emphasized the importance of splashes or secondary
re-entrainment on the interfacial friction factor. When this phenomena is
not negligible he proposed the following:

Cfg = 0.005 + 1.2
h

D
+ 1.49 · 106

�
h

D

�5.5

(3.62)

It is nevertheless based on a single set of experiments. Provided that
h << 0.044D, equation (3.62) can be written:

Cfg = 0.005

�
1 + 240

h

D

�
(3.63)

Equation (3.63) is remarkably similar to equation (3.60).� Fukano and Furukawa (1998) studied the effect of liquid viscosity with
aqueous glycerol solutions. They proposed a correlation depending on the
ratio of the kinematic viscosities of the fluids that overpredicted strongly
the interfacial friction factor measured by Wongwises and Kongkiatwan-
itch (2001).� Ho Kee King and Piar (1999) used successfully a correlation presented by
Dobran (1987) which integrates the effect of the density ratio. It can be
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approximated by:

Cfg = 0.005

 
1 + 24

h

D

�
ρf

ρg

� 1
3

!
(3.64)

In high pressure scrubbers, ρf/ρg is smaller and the film is thinner than
for low pressure conditions. In the case of thin film, Wallis correlation
overpredicts the interfacial friction coefficient. Correlation (3.64) consid-
erably reduces the friction coefficient Cfg when ρf/ρg becomes small. As
a result this is a valuable correlation for high pressure applications. For
air/water system at 1 bar it gives:

Cfg = 0.005

�
1 + 240

h

D

�
(3.65)

which is very close to relation (3.60) and identical to (3.63). Even at low
pressures, this relation gives smaller coefficients than Wallis’ correlation.
Predictions for small films may then be more accurate.� Fore et al. (2000) modified the correlation of Wallis with an offset, so it
could better predict data for small h/D ratios. The effect of this offset was
almost negligible on the data of Wongwises and Kongkiatwanitch (2001).� Wongwises and Kongkiatwanitch (2001) proposed a pure empirical fit with
three adjustable constants. It has not been yet tested by other authors.

We can conclude from the above study that few of the literature correlations are
of any use outside the range where they have been developed. The most promis-
ing ones are that proposed by Moeck and Stachiewicz (1972) and correlations
that looks like:

Cfg = 0.005

�
1 + Γ

h

D

�
(3.66)

Γ is an empirical coefficient comprised between 240 (equations (3.63) and (3.65))
and 300 (equation (3.60)). A dependence of Γ with the density ratio can be
useful at high pressure (equation (3.64)).

c4) Friction coefficient as a function of the sand roughness. Nigmatulin
(1991) reported the work of Kapitsa5 who showed that a flow of a gas over a
wavy liquid film is similar to a flow past a rough surface. Therefore one could
think of specifying the presence of a liquid film by having a rough boundary
condition for the gas.

Law of the wall for a rough wall. As described for example in Schlicht-
ing (1958), the protrusions of the boundary surface generate a downward shift

5Kapitsa, P. L. (1948). Wave flow of thin layers of liquid. ZhETF 18(1), in Russian.



60 CHAPTER 3. ANNULAR FLOWS

in the u+ (y+) profile. Given a sand roughness of height s, and defining the
non-dimensional quantity

s+ ≡ suτ

νg
(3.67)

the log-low becomes:

u+ =
1

κ
ln
�
y+
�

+B ; s+ < 2.25 (3.68)

u+ =
1

κ
ln
�
y+
�

+B − sin

�
π

2

ln
�

s+

2.25

�
ln
�

90
2.25

��� 1

κ
ln
�
s+
�
− 3

�
; 2.25 < s+ < 90

(3.69)

u+ =
1

κ
ln
�
y+
�

+B −
�

1

κ
ln
�
s+
�
− 3

�
; 90 < s+ (3.70)

The above relations have been given by Ligrani and Moffat (1986) who fitted the
data of Nikuradse6. Equation (3.68) represents the smooth regime. Equation
(3.69) represents the transitional regime. Equation (3.70) represents the fully
rough regime.

Friction coefficient and sand roughness. In the case of a fully rough
regime, Pope (2000) proposed a theoretically justified approximation of Cfg:

Cfg =
1

4

1�
1.99 log

�
D
2s

�
+ 1.71

�2 (3.71)

Schlichting (1958) found 2 instead of 1.99 and 1.74 instead of 1.71, by fitting
Nikuradse’s experimental results.

c5)Relation between film height and sand roughness.

Simple relations. By means of (3.71) and (3.66) one gets an explicit
function s/D dependent on h/D:

s

D
=

1

2
10−3.536(1+Γ h

D )
− 1

2 +0.8593 (3.72)

Unfortunately in a full 3D geometry, D is not properly defined. To avoid this,
we have to approximate relation (3.72) by a proportionality relation:

s

D
∝ h

D
⇒ s ∝ h (3.73)

Wallis (1969) cleverly noticed that the relation (3.71) could be approximated
by :

Cfg ≈ 0.005
�
1 + 75

s

D

�
(3.74)

6Nikuradse, J. (1933). Laws of flow in rough pipes. VDI Forschungsheft 361, in German.
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when 0.001 < s
D < 0.03. Combined with (3.66), it leads to:

s

h
=

Γ

75
(3.75)

That is to say:

3.2 ≤ s

h
≤ 4 (3.76)

depending on the value of Γ.
A diameter independent relation between s and h can not be obtained with the
expression (3.61) developed by Moeck and Stachiewicz (1972). The correction
given by Nigmatulin (1991) for secondary re-entrainment in equation (3.62) has
got the same drawback. Himmelsbach et al. (1994) gave s as a function of the
wall shear stress. Their relation was used by Schmehl et al. (1999). Adechy and
Issa (2004) proposed a relation where the sand roughness was both a function of
the liquid height and ofD. Last, Jayanti and Valette (2004), to compensate high
pressure effects, used a correlation that gave the sand roughness as a function
of the diameter and the height of the film.

Possible improvements. Oliemans et al. (1986) proposed a dependency
of s/h on a Weber number:

s

h
=

30

We
(3.77)

The Weber number was based on the mean height of the liquid film, the relative
velocity of the core and the interface, and the core density. This relation corre-
lated accurately a large number of experimental data. It performed significantly
better than s/h = 4 with high pressure data. The Weber number is based on
the mean velocity of the gas which is not local. The mean gas velocity Uavg and
uτ are linked by the relation:

Uavg = uτ

Ê
2

Cfg
(3.78)

Oliemans et al. (1986) also mentioned the work of Whalley and Hewitt who
advised:

s

h
= 0.3

�
ρf

ρg

�0.33

(3.79)

Given the approximation (3.74) true, it is very close to relation (3.64) as it gives:

Cfg = 0.005

�
1 + 22.5

h

D

�
ρf

ρg

�0.33
�

(3.80)

Oliemans et al. (1986) who worked with high-pressure data, emphasized a better
pressure drop prediction with equation (3.80) than with Wallis’ correlation.
However the scatter was large.
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Figure 3.6: Boundary condition for a solid particle on a wall

Transitional and smooth regimes. To obtain equation (3.75), two ex-
pressions of the interfacial friction coefficient were used, namely (3.66) and
(3.74). However Wallis’ correlation which is a special case of (3.66) is valid
only for the fully rough regime. Similarly (3.74) is an approximation of (3.71)
which is the expression of Cfg in the fully rough regime. Thus it can not be
expected that s/h = Γ/75 works outside a fully rough regime. Thin films are
smoother than thick films. As a result for high pressure separation devices,
we expect relation (3.75) to overestimate the equivalent sand roughness of the
film. Oliemans et al. (1986) already pointed out that the sand roughness must
be zero when the interface irregularities are within the viscous sublayer. They
proposed the following modification of the sand roughness:

s = Max

�
Γ

75

�
h− 5

νg

uτ

�
; 0

�
(3.81)

c6) Summary. The velocity of the gas by the wall will follow the law of the
wall for a rough wall. The sand roughness of the film will be:

s = 4h (3.82)

This may overestimate the sand roughness of thin films.

d) Velocity boundary condition for the droplet phase

Given a solid particle which size is much larger than the roughness of the wall;
when impinging against the wall, if the shock is elastic, the solid particle is
reflected and conserves its tangential momentum. As a result it does not exert
any shear force on the wall. This type of boundary condition is a specular
reflexion. If now, in contrast, the solid particles are noticeably scattered due to
the wall roughness, the lack of tangential reflected momentum is balanced by a
shear force on the wall. This type of boundary condition is a diffuse reflexion.
The two situations are illustrated on Figure 3.6. Specifying a slip velocity for
the droplet phase (be it zero or not), is in fact a consequence of the loss of
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tangential velocity of the droplets. This loss is already taken into account in
the field equation (3.5) by the deposition term. Therefore the only consistent
boundary condition for the droplet field is a no-shear condition.

∂ÝUdi

∂y

�����
y=0

= 0 (3.83)

e) Boundary condition for the turbulent kinetic energy of the gas.

The boundary condition for the turbulent kinetic energy (TKE) by a smooth
wall is:

∂kκ

∂y

����
y=0

= 0 (3.84)

Let us notice that, whereas the condition (3.84) is correct strictly speaking,
applying it at a point located in the log-law region leads to an inaccurate flat
profile in the near wall region for 0 < y < yC (C is the centroid of the near wall
cell). This is a known and accepted drawback of wall functions.
The roughness changes dramatically the non-dimensional TKE k+ = k/u2

τ in
the vicinity of the wall. Nevertheless, as shown by Ashrafian et al. (2004), one
can expect little change in the non-dimensioanl Reynolds stresses and in k+ if
y is much larger than s. In the present case it requires yC >> 4h. Equation
(3.84) is used in the present model for the gas phase.
There is no boundary condition for kd because the TKE of the droplet phase is
computed by relation (2.93).

f) Boundary condition for the rate of dissipation.

The balance between production and dissipation (see e.g. Pope (2000)) quickly
leads to:

εCg =
u3

τg

κyC
(3.85)

We will use this boundary condition. However the balance between P and ε (also
used in equation (3.51)) is not obvious at all if roughness is present. Ashrafian
(2004) performed a DNS in a rough channel with square rods. The top of the
rods were at y+ = 13.6. His results showed that P/ε ≈ 1 is not valid for
y+ < 75 and can be over 3 for y+ ≈ 20. To take into account more accurately
the dissipation transfers between the film and the gas phase, another boundary
condition should be found based on the roughness height.

3.3 Closure relations

We now have a complete set of differential equations with boundary conditions
and some algebraic relations to close the system. Some unknowns remain. For
the continuity and momentum equations of the droplet phase and of the film,
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the average deposition rate Ü̇D and entrainment rate Ü̇E are needed. For the film
velocity we need the interfacial shear stress τi. We will first handle the closure
of τi, then we will discuss the closure for the deposition rate and finally the
closure for the entrainment rate.

3.3.1 The interfacial shear stress

As a rule, when one uses a correlation for the interfacial friction factor Cf the
interfacial shear is deduced automatically by the definition of Cf itself (equation
(3.59)). However in our case Wallis’ correlation was used to find a plausible way
to describe locally the roughness of the film and not to find the interfacial shear
directly.
The shear on both sides of the interface must be the same. The shear exerted
on a fluid by a rough wall in a single phase flow is approximated by:

τwall ≡ ρ u2
τ ≈ ρ

È
CµkC (3.86)

This assumes an equilibrium between production and dissipation. From the
previous relation, a consistent way of modeling the interfacial shear in the film
momentum equation is:

τi = ρg

È
CµkgC (3.87)

3.3.2 Deposition rate

To built a correlation for the deposition rate we will go through the following
points:

1. How can the experimentally observed deposition rate be reduced to a
model for the deposition velocity?

2. How can this deposition velocity be split into two components, diffusive
and non diffusive?

3. How to model the non diffusive deposition velocity?

4. How to model the diffusive velocity?

a) Deposition velocity

Mass sink and deposition velocity. The deposition sink Ü̇D from the droplet
phase is given in equation (3.2) per unit volume and per second. If we multiplyÜ̇D by the volume of the cell and divide by the area of a plane in the vicinity of
the interface, we obtain the flux of droplet Jd leaving the dispersed phase. As
the liquid film is supposed 2D and parallel to the wall, the considered plane has
the area of the wall of the computational cell.

Jd =
Ü̇D · V
A

(3.88)
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Figure 3.7: Deposition due to non-stochastic processes

It is now natural to express this flux as a product of a concentration and a
velocity. The concentration of the droplets in the near wall cell is:

αdCρd

As a result we can write:

Jd = αdCρd ·KD (3.89)

where KD is the deposition velocity. Finally the sink of droplets becomes:Ü̇D = αdCρd
A

V
·KD (3.90)

One now needs a correlation for the deposition velocity.

The two types of deposition processes. KD takes into account the depo-
sition due to non stochastic and stochastic movements. Figure 3.7 illustrates
the former. On the left hand, deposition is due to the mean convection to-
ward a bluff body. On the right hand, deposition is due to the settling of the
particles because of gravity. Typical example of stochastic processes leading to
deposition will be Brownian diffusion or dispersion of droplets in a turbulent
gas stream. This type of dispersion leads to a velocity toward the wall that is
different from zero. Figure 3.8 illustrates the case of particle depositing on the
wall of a vertical tube because of their movement induced by the turbulence in
the gas.

Interaction of deposition processes. Handling the two types of deposition
at the same time is not easy. Nevertheless a common and instructive case is that
of horizontal pipe flows where deposition occurs both by turbulent dispersion
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Figure 3.8: Deposition due to turbulent fluctuations

and gravitational settling. McCoy and Hanratty (1977) already noticed that
the total deposition velocity Ktotal was depending on a settling deposition Kset

and a turbulent deposition Kturb. They noted the following:� if Kset << Kturb ⇒ Ktotal ≈ Kturb� if Kset >> Kturb then at the bottom of the tube Ktotal ≈ Kset and
KD ≈ 0 at the top.

Binder and Hanratty (1992), Williams et al. (1996), Mols and Oliemans (1998),
and Mols et al. (2002) proposed then that the total deposition velocity was
the sum of the settling and the turbulent velocity. Given the circumferential
position θ (θ being 0 at the bottom and π at the top of the pipe), all the above
cited papers give relations similar to:

Ktotal = Kturb +Kset · cos(θ) (3.91)

Pan and Hanratty (2002b) derived a deposition velocity by considering that the
velocities of the particles were normally distributed and had a mean Kset cos(θ).
Mito and Hanratty (2004) performed Lagrangian tracking of particles with vari-
ous relaxation times in a turbulent gas stream which was described by the mean
of a Langevin equation. The particles were generated from the top and bottom
wall of a channel. Mito and Hanratty noticed that at the bottom of the channel,
the deposition velocity was not a linear function of the settling velocity. In par-
ticular they pointed out a regime called ”saltation” regime. In this regime, the
particles do not have the time to reach their settling velocity before depositing.
In addition, when the settling velocity was less than the turbulent deposition
velocity, as the settling velocity increased, the deposition velocity on the bottom
wall decreased. The study of Mito and Hanratty (2004) shows that the depo-
sition velocity is not a simple sum of the deposition due to stochastic and non
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stochastic movements. The mechanisms influences each others. Nevertheless,
one can not deny that a formula such as (3.91) provides a good first guess (see
e.g. Binder and Hanratty (1992)).
A striking example that the total deposition velocity is not a straightforward
sum of the deposition velocities of the various mechanisms taken separately, is
described by Slater et al. (2003). They studied the deposition of particles on the
blades of a turbine cascade with an Euler/Euler model. Here the two important
mechanisms contributing to the deposition were the diffusion (Brownian and
turbulent) , and the inertia provided by the mean flow. First they calculated
the deposition due to diffusion. Then they performed a simulation were inertia
was the only deposition mechanism. Finally they calculated the deposition with
the two effects together. The sum of the deposition of the two effects taken sep-
arately was different from the total deposition when both effects were included.
Therefore as a rule one can not assume that the total deposition is the sum of
the deposition due to stochastic processes on the one hand and non-stochastic
processes on the other hand. In fact, these deposition mechanisms are strongly
interacting.
Nevertheless, we are confronted with an important practical problem. The in-
teractions between the different deposition mechanisms is difficult to model by
ad hoc assumptions. Both Slater et al. (2003) and Mito and Hanratty (2004)
made a fine mesh in the boundary layer. It is however computationally too
demanding to resolve the boundary layer in a separation equipment. A single
large cell by the wall, the centroid of which is in the log law zone, bounds us
to model the interaction of the deposition processes instead of computing them
directly. Such a model does not exist presently. Therefore, the deposition ve-
locity is modeled as the sum of two velocities, the first is due to inertia and
gravitation (non diffusive), the second due to turbulent diffusion. Even if this
is not theoretically justifiable it is a pragmatical choice as:

1. A fine grid by the film is not needed.

2. This approach has been tested and gave fair results in the case of horizontal
annular flows.

Therefore we will model KD as:

KD = Knon diff +Kwall (3.92)

It is important to note that KD which is defined by equation (3.89) is a deposi-
tion velocity based on a local flux of droplets near the wall. KD is not identical
to the total deposition rate which includes the effect of turbulent dispersion
in the core. Measured deposition velocities refer usually to the total deposi-
tion velocity Ktotal. Knon diff is the deposition velocity due to non diffusive
phenomena (mean convection of the flow toward the wall, gravity). Kwall is a
deposition velocity due to near-wall diffusive phenomena and does not include
the turbulent dispersion in the core.
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b) The non diffusive velocity

Basic momentum equation. Some assumptions are needed to find the non
diffusive deposition velocity of the particles by the wall:� Assumption 1: At t = 0 the particles are at the cell centroid.� Assumption 2: The particles are submitted to a drag force, buoyancy and

the gravitation force.

The model will require the velocity of the particle phase at t = 0 in the wall
normal direction. As the velocity of the particle is available only at the cell
centroid, assumption 1 is the only possible choice. The drag, the gravity and
buoyancy must be taken into account to be consistent with the momentum
equation (3.5). However other forces could have a significant impact, especially
lift forces. Lift forces will be neglected here. In the direction normal to the wall,
Newton’s second law is:

dUd

dt
=
Ug − Ud

τ
+ g

ρd − ρc

ρd
(3.93)

In this section about the non diffusive deposition velocity, all the vectors are
projected on the wall normal direction. This will not be reported on the nota-
tion. Austrheim (2006) made experiments in a high pressure scrubber (92 bars)
with natural gas and condensate. He reported for ρd−ρc

ρd
a value of 0.8. In the

following we will assume that:

ρd − ρc

ρd
≈ 1 (3.94)

One now needs to assume a velocity profile for the gas. A simple choice is to
suppose a linear profile between the centroid and the wall. Hence:

Ug = UgC − UgC
y

ywall
(3.95)

The index C represents the values at the centroid of the cell. The index wall
represents the value at the wall. Here yC = 0. The velocities are positive when
they point toward the wall. Equation (3.93) together with equation (3.95) gives
the following ordinary differential equation for the position y of the particle:

ÿ +
ẏ

τ
+

UgC

ywallτ
y = g +

UgC

τ
(3.96)

This is a typical equation for a damped oscillator driven by an external force.

Solution of the equation. Deposition takes place when y = ywall for the first
time. The velocity at this instant is the velocity of deposition. The solution of
equation (3.96) is straightforward and the results are given without details.
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τ2 − 4UgC

ywallτ
< 0)

y = e−
t
2τ (Acos(ωt) +B sin(ωt)) + ys (3.97)

ẏ = e−
t
2τ (−Aωsin(ωt) +Bωcos(ωt))

−e
− t

2τ

2τ
(Acos(ωt) +B sin(ωt)) (3.98)

A = −ys (3.99)

B =
UdC − ys

2τ

ω
(3.100)

ω =

Ê
4UgC

ywallτ
− 1

τ2
(3.101)

ys =
ywallτg

UgC
+ ywall (3.102)� Overdamped oscillator ( 1

τ2 − 4UgC

ywallτ
> 0)

y = Aeλ1t +B eλ2t + ys (3.103)

ẏ = Aλ1e
λ1t +Bλ2e

λ2t (3.104)

A =
UdC + λ2ys

λ1 − λ2
(3.105)

B = −ys −
UdC + λ2ys

λ1 − λ2
(3.106)

λ1 =
− 1

τ +
q

1
τ2 − 4UgC

ywallτ

2
(3.107)

λ2 =
− 1

τ −
q

1
τ2 − 4UgC

ywallτ

2
(3.108)

ys =
ywallτg

UgC
+ ywall (3.109)� Critical oscillator ( 1

τ2 − 4UgC

ywallτ
= 0)

y = (A+B t) e−
t
2τ + ys (3.110)

ẏ = e−
t
2τ

�
B − A+B t

2τ

�
(3.111)

A = −ys (3.112)

B = UdC − ys

2τ
(3.113)

ys =
ywallτg

UgC
+ ywall (3.114)
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Figure 3.9: Particle moving away from the wall.

There is also an important case where the velocity of the gas normal to the wall
is zero (annular vertical flow for example). Then equation (3.96) becomes:

ÿ +
ẏ

τ
= g (3.115)� if UgC = 0

y = −Aτe− t
τ + gτt+B (3.116)

ẏ = Ae−
t
τ + gτ (3.117)

A = UdC − gτ (3.118)

B = τ (UdC − gτ) (3.119)

Deposition velocity. To get the deposition velocity, we will find the time
twall such as y(twall) = ywall and assume that the non diffusive deposition
velocity is ẏ(twall). This assumption requires, to compute the correct deposition
flux, that the concentration of the particles is independent of y in the cell by
the wall. Now twall does not necessarily exist. For example in the case of an
horizontal annular flow, at the top of the pipe, the gravity will accelerate the
droplets away from the wall as shown on Figure 3.9. In the cases where there
are several twall as in Figure 3.10 it is the smallest that is the relevant time to
calculate ẏ(twall). It is also important, in order to find the correct twall, to look
closely at the time scales involved. There are three time scales:
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Figure 3.10: Multiple roots of the equation y(twall) = ywall.� One based on the pulsation 1/ω� One based on the initial velocity of the particle ywall/UdC . This is the
time for a rectilinear uniform motion from the centroid to the wall.� One based on gravity

È
2ywall

g . This is the time of a free fall toward the

wall.

If the time scale is not properly taken into account one could eventually have
problem with aliasing, as shown on Figure 3.11. On this figure the typical time
scales are:� 2.78 · 10−4 s for the pulsation.� 10−3 s for the rectilinear uniform movement.� +∞ for the gravity (g = 0).

While the non-aliased curve is sampled with a time scale of 10−4 s, the aliased
one is sampled with a time step of 1.5 · 10−3 s. It is larger than the smallest
time scale. If the time sampling is too large, the calculated deposition velocities
are meaningless.

Conclusion on the non diffusive deposition. The non diffusive deposition
velocity is calculated as follows:
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Figure 3.11: Aliasing of the position.

1. One calculates twall such as y(twall) = ywall taking care of the relevant
time scales to avoid aliasing. y(twall) is calculated by the mean of the
equation (3.97) or (3.103) or (3.110) or (3.116). If twall does not exist
then Knondiff = 0. If twall is not unique, one takes the smallest value of
twall.

2. One calculates Knondiff = ẏ(twall) where ẏ(twall) is given by the equation
(3.98) or (3.104) or (3.111) or (3.117).

c) The diffusive deposition velocity

c1) Core diffusion and wall layer. Alexander and Coldren (1951) measured
the rate of deposition of droplets in a turbulent air stream in a horizontal tube.
They found that in the fully developed region of the flow, the mass transfer
was controlled by a region close to the wall. For a developed flow, the droplet
concentration profiles in the core were flat. In contrast, in the inlet region, the
profiles were bell-shaped, indicating a limitation of deposition in the core of the
duct itself. Friedlander and Johnstone (1957) also found similar results for a
vertical flow of solid particles. They interpreted their results as follows:

1. The particles in the bulk diffuse toward the boundary. Their diffusion
coefficient is equal to the one of the gas.

2. At a certain distance from the wall called by Friedlander and Johnstone
”stopping distance”, the particle stops diffusing and the only force acting
on the particle is a Stokesian drag force.
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3. The velocity of the particle at the stopping distance is provided by the tur-
bulent fluctuations of the gas. It gives the particle the necessary impulse
to travel through the boundary layer and finally deposit.

This is known as the ”free-flight” theory. The very problem of the free-flight
model, was rather rapidly pinpointed by Davis (1966). He noticed that the
velocity specified by Friedlander and Johnstone to start the free-flight was un-
reasonably high. By introducing the real diffusivity of the fluid in the vicinity of
the wall, he predicted deposition rate that were two order of magnitudes lower
than Friedlander and Johnstone. Nevertheless as underlined first by Huntchin-
son et al. (1971), whereas the theory seems correct, the predictions of Davis
are not representing correctly experimental data. However, numerous authors
separate the flow in two zones: a diffusive region (the core) and a free-flight
region (Hutchinson et al. (1971), Reeks and Skyrme (1976), Ganić and Mas-
tanaiah (1981), Trela (1982), Trela et al. (1982) and Papavergos and Hedley
(1984)). A significant improvement of the ”free-flight” theory has been made
by Owen (1969) and Cleaver and Yates (1975). They considered the effect of
near wall structures that are not taken into account into the free-flight models.
In their work, the particles penetrate the boundary layer through the action of
down sweeps. The flow is modeled as a 2D stagnation point flow which was
later justified by Fichman et al. (1988). Then Cleaver and Yates (1975) added
an ad hoc contribution to model the axial convection. The deposition rate was
a function of the position of the particle when entering the sweep and of its
inertia. When a particle entered an ejection region it was carried away from
the wall. Papavergos and Hedley (1984) combined this model of boundary pen-
etration with the random diffusion model in the core presented by Hutchinson
et al. (1971). Lee at al. (1989) measured the deposition of particles in a down-
ward vertical pipe turbulent flow. The authors gave a particularly interesting
interpretation of their results. The deposition was seen as the results of two
processes in series:

1. A dispersion process characterized by a velocity K+
disp.

2. An inner boundary mechanism characterized by a velocity K+
wall.

The dispersion is already modeled with the turbulent dispersion equation (2.100).
Therefore the only deposition velocity we are looking for here, is K+

wall. The +
signs means the deposition velocities have been non-dimensionalized by the fric-
tion velocity uτ . If the concentration profiles are very flat, thenK+

disp >> K+
wall.

In this case, the bottle neck is the inner boundary deposition mechanism and
we have:

K+
total =

1
1

K+

disp

+ 1
K+

wall

≈ K+
wall (3.120)

Relation (3.120) is useful because, virtually all measurements correlate the flux
of droplets toward the wall with the concentration of droplet averaged over
the pipe cross-section. This average concentration comes into the definition of
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Ktotal:

Ktotal ≡
Jd

ρd

πR2R R
0

R 2π
0 αd(r, θ) r dr dθ

(3.121)

The bar on the volume fraction is the turbulent ensemble average. If, in some
experiments, the turbulent dispersion had been a substantial brake to the de-
position, the empirical value proposed for Ktotal would have been smaller than
Kwall. But in the case of flat concentration profile, with Kdisp → +∞, the
experimental value Ktotal is equal to Kwall. Lee et al. (1989) proposed:

Kwall =
uτ√
2π

qÞ
U

′′

rd

2qÞ
U ′′

rg
2

(3.122)

or according to (2.86):

Kwall =
uτ√
2π

É
η

1 + η
(3.123)

As we will see later, it is correct in certain circumstances but the general picture
is somewhat more complex. Binder and Hanratty (1991, 1992), Mols and Olie-
mans (1998) and Mols et al. (2000) calculated the diffusion and deposition of
droplets in annular flows. They used a diffusion equation for the concentration
of particles together with a non zero concentration on the wall. Their modeling
of the deposition velocity was close to (3.123). In the following, a model for
K+

wall will be presented. It is based on experimental data. This experimen-
tal data have been confirmed and explained theoretically in a series of articles
(Derevich and Zaichik (1988), Kallio and Reeks (1989), Johansen (1991)). This
authors brought a new insight in the understanding of the turbulent deposition
velocity by introducing the momentum equation of the droplet phase.

c2) Particle deposition in fully developed turbulent vertical pipe flow

The aim of this section is to find a model for Kwall, the deposition velocity due
to near-wall diffusive phenomena. Here we will find a value for Ktotal, the total
deposition velocity, and then use relation (3.120) to find Kwall.

Dimensional analysis. The non-dimensional deposition velocity K+
total

is a function of several parameters. Liu and Agarwal (1974) presented a graph
were K+

total was plotted as a function of a non-dimensional particle relaxation
time

t+ ≡ τu2
τ

νg
(3.124)

where τ is the particle relaxation time. It has often been seen as the only im-
portant parameter influencing the deposition velocity. However for very small
particles, the Brownian diffusion coefficient is important as well. Other parame-
ters can be taken into account, such as the Reynolds number of the gas, or the
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Figure 3.12: Turbulent deposition velocity vs. particle relaxation time

density ratio between the phases. McCoy and Hanratty (1977) proposed that
the non-dimensional deposition velocity was dependent of 4 non-dimensional
numbers:

K+
total = f(t+, Sc,Reg,

ρd

ρg
) (3.125)

where Sc is the ratio of the kinematic viscosity of the gas to the Brownian
diffusivity. It is interesting to point out that if we use a Reynolds number based
on the friction velocity (that is roughly proportional to the bulk velocity) and
on a typical large eddy size (that scales roughly as the diameter of the tube) we
can write Re as:

Re =
u2

ττc
νg

(3.126)

where τc is the eddy time scale. The ratio of this Reynolds number with t+ is
η = τc/τ so that we can also write:

K+
total = f(t+, Sc, η,

ρd

ρg
) (3.127)

Study of K+
total(t

+). The most important parameter when studying the
turbulent deposition velocity remains the relaxation time of the particles. Fig-
ure 3.12 represents K+

total as a function of t+. The curve of Figure 3.12 was
first deduced from experimental results. The collapse of the experimental data
is generally good except for times over 20. This curve and experimental data
can been found in McCoy and Hanratty (1977) or Young and Leeming (1997)
among others. Figure 3.12 shows three deposition regimes: the diffusional depo-
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sition regime, the diffusion-impaction regime and the inertia-moderated regime7.

The diffusional deposition regime. For very small particles (t+ < 0.3), Brownian
diffusion dominates very close to the wall and determines totally the deposition
flux. The deposition velocity is a function of the Schmidt number only. Young
and Leeming (1997) derived the relation:

K+
total = 0.073Sc−2/3 (3.128)

which is confirmed first experimentally and second analytically (Slater et al.
(2003) and references therein). With Einstein’s relation8 , it is possible to show

that, in this regime, K+
total ∝ t+

−1/3
. Diffusional deposition is most relevant for

particles having a diameter of 1 µm or less.
Havelka et al. (2004) studied the diameter of the droplets generated by a jet of
hydrocarbons. At high pressure (around 100 bars) droplets were considerably
smaller than at atmospheric pressure. Besides, secondary droplets (generated
from droplet splash on the film) can also be very small. As a result, during
high pressure gas/liquid separation there are probably numerous small droplets.
However, the total mass of tiny droplets is probably negligible compare to the
mass of large drops. That is why Brownian diffusion is neglected in the present
model.

The diffusion-impaction regime. In the diffusion-impaction regime, the iner-
tia of the dispersed phase becomes significant. This region is characterized by
a tremendous increase in deposition rates with the diameter of the particles.
Three recent papers (Narayan et al. (2003), Marchioli et al. (2003) and Mito
and Hanratty (2004)) separated the deposition process in the diffusion impaction
regime in two categories:� The turbulent diffusion: particles are transported toward the wall and then

diffuse to the wall under the effect of the residual turbulent fluctuations
of the gas in the boundary layer.� An inner boundary layer phenomenon where particles disengage from tur-
bulent structures at a certain distance from the wall and deposit.

All, noted that the percentage of deposited particles because of the second
mechanism increased with the relaxation time. McCoy and Hanratty (1977)

7To keep the presentation clear and concise the description of the phenomena involved in
each regime has been voluntarily simplified. Effects due to lift forces, the so called ”direct
impaction” mechanism, thermo-, electro- or diffusiophoresis, low speed streaks and droplet
concentration are not discussed.

8Given B the Brownian diffusion coefficient, mp the mass of the particle, τ its relaxation
time, kB Boltzmann’s constant and T the temperature, according to Einstein’s relation:

B =
kBTτ

mp
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proposed for the diffusion-impaction region:

K+
total = 3.25 · 10−4t+

2
(3.129)

Liu and Agarwal (1974) proposed:

K+
total = 6 · 10−4t+

2
(3.130)

Equation (3.130) is based on a smaller range of t+, so equation (3.129) will
be preferred. The increase of several orders of magnitude of the deposition
velocity, is due to a phenomenon called ”turbophoresis”. It has been mentioned
first by Reeks (1983). Qualitatively Slater et al. (2003) described turbophoresis
as follows:”Particles impelled toward the wall by eddies in the buffer layer coast
into the sub-layer from where they are unable to return because the turbulent
fluctuations are on average too small.”
In the diffusion-impaction regime, the particles are sufficiently small to be very
reactive to turbulence in the core. Consequently the turbulent dispersion is very
effective and the related deposition velocity K+

disp is very large. As a result, in
this regime Ktotal ≈ Kwall. Then, in the present model, according to equation
(3.129), Kwall will be computed in the diffusion-impaction regime by:

K+
wall = 3.25 · 10−4t+

2
(3.131)

The Inertia moderated regime. In this regime, the size of the particles is so
large that they respond only partially to the gas turbulence. Consequently, the
deposition becomes smaller as the relaxation time increases. For this regime
McCoy and Hanratty (1977) reported the experimental data of Farmer that
could be correlated by:

K+
total =

20.7√
t+

(3.132)

where t+ was between 1 000 and 100 0009. However, in this regime, there was
a significant scatter of the data, between:

1. The data of Liu and Agarwal (1974), where the non-dimensional deposition
velocity decreases slightly with the relaxation time. This velocity had a
maximum value of about 0.15. 10

9The literature mentions sometimes the work of Sehmel (1970) who correlated data as

K+

total
≈ 1.49√

t+

Nevertheless it was not only for large t+ but also included times as small as 0.2. This is in
contradiction with theory and experimental data.

10They used mono-dispersed particles of olive oil between 1.4 and 21 µm, injected in an
air stream. The particles deposited on the wall of a 1.27 cm i.d tube which was about 80
diameters long. The particles were electrically neutralized. The flow was downward. They
took special care to ensure a perfect adherence of the particles on the wall so that no bouncing
or re-entrainment could occur.
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2. The data of Cousins and Hewitt11, where the non-dimensional deposition
velocity was around 0.095 for a pipe of 0.00953 m i.d and 0.068 for a pipe
of 0.0318m i.d. 12

3. Various other data collected by McCoy and Hanratty (1977) which average
is K+

total = 0.17.

The decrease of the deposition velocity seemed to appear at larger t+ for Farmer
than for Liu and Agarwal. Uijttewaal and Oliemans (1996) brought a new
insight in the understanding of the inertia moderated regime. They were the
first to use LES to compute the deposition of particles in a pipe at high Reynolds
numbers. They also performed a DNS to compute the flow of the gas. They
did a Lagrangian tracking of 10 000 particles per relaxation time, and used
12 different relaxation t+ between 5 and 10 240. Depending on the Reynold
number of the gas, the values of K+

total(t
+) were spread out from 0.03 to 0.08

for a relaxation time of 10 000. On the contrary, the collapse of the data was
quasi perfect when K+

total was plotted as a function of 1/η. In Figure 3.13 the
simulation results of Uijttewaal and Oliemans (1996) have been plotted together
with relation (3.123) and with the best possible fit:

Ktotal = 1.72
uτ√
2π

É
η

1 + η
(3.133)

It is crucial however to consider that, for very large particle diameters, the
dispersion coefficient of the droplets in the core drops dramatically so that
K+

total < K+
wall. As a matter of fact, Uijttewaal and Oliemans (1996) under-

lined that for large particles the deposition velocity was first determined by the
turbulent dispersion. Hence, it is not possible to find the value of K+

wall for
t+ > 20 from Figure 3.12. Here we will tentatively suppose that K+

wall = 0.17
for t+ > 20. The validity of this assumption will be studied in chapter 5.

To sum up:� The diffusional deposition regime is not considered in our case.� For t+ < 22.871, it is the diffusion-impaction regime.

K+
total = K+

wall = 3.25 · 10−4t+
2

(3.134)� For 22.871 < t+, it is the inertia-moderated regime.

K+
wall ≈ 0.17 (3.135)

The value of 22.871 ensures the continuity of the function K+
wall(t

+) at the
transition between the diffusion-impaction regime and the inertia moderated
regime.

11Cousins, L. B. and G. F. Hewitt (1968). Liquid phase transfer mass transfer in annular
two-phase flow: droplet deposition and liquid entrainment. AERE-R 5657.

12The experiments were done in an air/water upward annular flow not far from equilibrium.
The film was totally removed a first time, through a porous media. The droplets then rede-
posited on the wall and were extracted again at various downstream locations. The amount
of liquid extracted lead to the deposition coefficient.
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Figure 3.13: Results of Uijttewaal and Oliemans (1996) compared to the relation
of Lee et al. (1989).
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Additional remarks. Andreussi (1983) pointed out that as far as droplet
flows were concerned, the diameter of the particles were still relaying on corre-
lations that were far from certain so that the experimental points on a graph
such as Figure 3.12 should be taken with caution. Another interesting point
for annular flows was underlined by Lopes and Dukler (1986). They noted that
a non negligible part of the pressure gradient was due to droplet deposition
and re-entrainment. Thus the friction velocity calculated from this gradient
was overestimated. This could explain the low values of deposition obtained by
Cousins and coworkers.

3.3.3 Entrainment rate

a) Qualitative description of entrainment

One of the first studies on entrainment was performed by Hanratty and Engen
(1957). They studied the effect of the velocity of an air stream on the interface
of a film. The experiment was performed in a rectangular channel for a stratified
flow. They observed as the gas flow rate increased:

1. A smooth interface

2. 2D waves

3. 3D waves (squalls)

4. roll waves (or disturbance waves)

5. Atomization

In the last regime, liquid is torn out of the film and dispersed as droplets. Wood-
mansee and Hanratty (1969) pinpointed that the entrainment of droplets from
roll waves was the main source of droplets. They described it rather precisely.
First wavelets on top of the roll wave are accelerated toward the front of the
large wave. The small ripples are then detached from the wave and form a
liquid rim, which can surround a liquid membrane (Dykhno et al. (1996)). The
rim, attached to the wave, disintegrates into droplets. The potential membrane
contributes very little to the mass entrained. These steps are illustrated on
Figures 3.14, 3.15, and 3.16. Azzopardi (1997) reported an interesting experi-
ment that showed that droplets can be generated from roll waves. A single roll
wave was generated in a tube. As the wave approached, a high speed camera
detected more and more droplets. Their number decreased as the wave passed
away. Another result comes from the work of Paras and Karabelas (1991). They
studied the properties of the liquid film in a horizontal air-water annular flow at
atmospheric pressure in a tube of 50.8 mm i.d. They measured the reduction of
the correlation coefficient of the roll waves (film height) with the axial position.
They could then deduce the life time of the wave. The coefficient showed a very
rapid decay (exponential). It indicated that the waves were quickly distorted
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Figure 3.14: Side view of a roll wave with its accelerated wavelets.

after their creation (less than a second). The reason of the quick wave dis-
appearance can be a strong entrainment of droplets. At least at low-pressure,
entrainment from roll waves is seen today as the main source of entrainment (see
among others: Van Rossum (1959), Hewitt and Hall Taylor (1970), Ishii and
Grolmes (1975), Nigmatulin (1991)). We will now give two additional pieces of
information relevant to the case of scrubbers and gas production, namely the
effect of large diameter and the effect of high pressure. Azzopardi and Gib-
bons (1983) studied annular flows in large diameter tube (125 mm i.d.). They
showed that the disturbance waves had different geometrical characteristics, in
particular they were:� localized circumferentially� not perpendicular to the main flow but curved

However, Azzopardi and Gibbons could, to reproduce their entrained fraction
data, use the model of Ishii and Mishima (1989) which is not developed for large
diameter pipes. It may be an indication, that, whereas the waves are geometri-
cally different, the overall impact of this difference is small.
Trabold and Kumar (2000a) presented experiments with a refrigerant fluid (R-
134a) at high pressure (14 and 24 bars). They also observed disturbance waves.
Thus at high pressure, entrainment mechanisms are likely to be similar.
Roll waves are necessary for entrainment, but not sufficient. The onset of en-
trainment does not necessarily coincide with the onset of roll waves (Van Rossum
(1959)). However, Hewitt and Hall Taylor (1970) pointed out that at high gas
flow rate the creation of droplets and the appearance of disturbance waves are
simultaneous. To conclude about the entrainment from roll waves we can say
that:
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Figure 3.15: Forming of an arch from a ripple.
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Figure 3.16: Forming of droplets from an arch.
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Figure 3.17: The wave undercut mechanism.� The shearing of roll waves is, according to experimental observations and
measurements, an important mechanism for droplet generation in an an-
nular flow.� According to the study of Azzopardi and Gibbons (1983), roll waves in
large diameter pipes are geometrically different from roll waves in small
diameter pipes. The entrained liquid fraction may however not change.� Roll waves occur in high pressure systems.� Roll waves do not necessarily generate droplets especially at low gas flow
rate.

There are other entrainment mechanisms than the shearing of droplets from
disturbance waves:

1. The wave undercut mechanism13: This is probably the most important
mechanism after the generation of droplets from disturbance waves. This
entrainment type occurs at moderate gas velocities. According to Hewitt
and Hall-Taylor (1970), this entrainment process comes from the forma-
tion of an open-ended bubble that undercuts the wave. The dynamic
pressure increases in this bubble until the wave bursts. Figure 3.17 il-
lustrates this mechanism. Ishii and Grolmes (1975) showed, based on
experimental evidences, that the wave undercut mechanism enhances sig-
nificantly entrainment at low film fluxes. Azzopardi (1997) and Ishii and
Grolmes (1975) proposed a criterion to draw the line between the wave

13Azzopardi (1997) mentioned a similarity between this type of break up and the bag break-
up of droplets. He also noted a similarity between the shearing of roll waves and the ligament
break up of droplets. These droplet break-up mechanisms were photographed by Hinze (1955).
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undercut mechanism and the shearing of roll wave mechanism. Jepson et
al. (1989) pointed out that the wave undercut mechanism might generate
larger droplets than the shearing of roll waves.

2. Bursting of bubbles: It has been described extensively by Hewitt and Hall
Taylor (1970). Bubbles come from gas trapped in the film. They can
also be generated by a boiling film. This last point has been studied by
Nigamatulin (1991). Meng et al. (2001) performed experiments with air
and oil14. They pinpointed that bubble bursting was an important source
of entrainment.

3. Splashes of droplets: This mode of entrainment has been studied by Nig-
matulin (1991). He proposed an entrainment rate proportional to the
deposition rate. Schmehl et al. (1999) also did a detailed study of the
splashing and rebound condition of droplets on the liquid interface. Ishii
and Grolmes (1975) mentioned a similar mechanism involving the tip of a
disturbance wave splashing on the interface.

4. Liquid bulge disintegration: This mechanism has been mentioned by Ishii
and Grolmes (1975). It can be encountered in annular counter-current
flows near the flooding point where waves located at different circumfer-
ential positions join and form a liquid bridge across the tube section. The
disintegration of this bridge generates droplets.

b) Measuring entrainment rates

Measuring the entrainment rate from a liquid film is difficult. The first reliable
technique consisted in considering the mass balance on the film. Given a ver-
tical annular flow oriented along the z axis, the liquid mass flow rate ṁf , the
deposition rate Jd and the entrainment rate Je, the mass conservation equation
is:

dṁf

dz
= πD (Jd − Je) (3.136)

The first measurements reported were at equilibrium when
dṁf

dz = 0. In this
case, the measurement of Jd leads to the entrainment rate Je. This has been
done by Hutchinson and Whalley (1973). Ueda (1979) measured in addition
the gradient of the film mass flow rate and thereby got rid of the equilibrium
assumption. Quandt (1965), Jagota et al. (1973) and Andreussi (1983) devel-
oped a technique which is based on the injection of a tracer in the liquid film.
The tracer is usually a solution of sodium chloride so that the measurement of
the electrical conductivity of the dispersed phase along the flow provides the
entrainment rate. Leman et al. (1985) and Schadel (1988) used this technique.

14Experiments were performed in a 50.1 mm pipe that could be inclined by ±2°. The liquid
properties of the oil at 24� were a viscosity of 5.66 cP and a surface tension of 30 dyne/cm.
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Figure 3.18: Onset of re-entrainment

c) Critical liquid flow rate and critical gas flow rate

Cousins and coworkers15 measured the entrained fraction16 and entrainment
rates in upward annular air-water flow. Graph 3.18 illustrates their results.

1. There is a region were the gas flow rate is too low to lead to any entrain-
ment irrespective of the liquid flow rate. This zone is bounded by a critical
gas flow rate.

2. There is a region were the liquid flux is too low to lead to any entrainment
irrespective of the gas flow rate. This zone is bounded by a critical liquid
flow rate.

3. In between those two regions there is a zone were the onset of re-entrainment
is dependent both on the gas and on the liquid flow rate.

Wallis (1969) performed a series of experiments in an air-water downward annu-
lar flow that confirmed these results. As the air flow rate increased he classified
the results in 4 zones:

1. No entrainment.

2. A small entrained fraction increasing very slowly with the gas flux.

15Cousins, L. B. and G. F. Hewitt (1968). Liquid phase transfer mass transfer in annular
two-phase flow: droplet deposition and liquid entrainment. AERE-R 5657.

Cousins, L. B., W. H. Denton and G. F. Hewitt (1965). Liquid phase transfer mass transfer
in annular two-phase flow. In Proc. of the Symp. on Two Phase Flow. Paper C4. Exeter.
Cousins, L. B., W. H. Denton and G. F. Hewitt (1965). Liquid phase transfer mass transfer
in annular two-phase flow. R6426. Harwell.

16Unless specified otherwise the entrained fraction is defined in the present work as the ratio
of the entrained mass flux to the total liquid mass flux.
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3. A zone where the entrained fraction increased linearly with the air flux.

4. A saturation zone where the entrained fraction becomes constant.

The last zone is characterized by a critical film flow rate under which no en-
trainment occurs. The value of the gas velocity for the onset of entrainment was
a decreasing function of the liquid flow rate. This gas velocity tended toward
a constant at high liquid flow rates. Thus at high liquid flow rate, the onset of
entrainment depends only on the gas flux. It confirms perfectly the experiments
conducted by Cousins and coworkers. The existence of a critical gas velocity
and of a critical liquid flow rate has been confirmed theoretically by the study
of Andreussi et al. (1985) though they did not take surface tension effects into
account and had one adjustable parameter.
In the case of a gas pipe the gas flux is very high, it is likely that the film
flow rate is the critical one. This special flow regime is called fully entrained
atomization region. In this regime:� The entrained fraction (defined in terms of mass flow rate or volume frac-

tions) is maximal and less than 1.� The film mass flow rate is the critical one.� An increase of gas velocity has little impact on the entrained fraction.

One should note that the previously described experimental results were ob-
tained in a developed regime. Leman et al. (1985) pointed out that at the inlet
of a pipe there is no entrainment because a certain length is necessary for the
development of roll waves.
It is important to take into account the effect of the critical film flow rate. An
example to the contrary is the entrainment correlation of Ishii and Mishima
(1989). Assad et al. (1998) tested this correlation against air/water, Freon and
steam/water data. The steam data were taken from 34 to 69 bars and the Freon
data from 2.5 to 56 bars. Both data sets were characterized by low surface ten-
sions (roughly 0.01 N ·m−1). Assad et al. (1998) noticed an extremely good
collapse of the data in spite of the wide spread in fluid properties. Nonetheless
the relation of Ishii and Mishima (1989) overpredicted the entrained fraction
when the entrained fraction was above 40%. The very same result has been
obtained by Meng et al. (2001) for oil/air flows. Pan and Hanratty (2002a) and
Su et al. (2003) emphasized the same drawback. When the entrained fraction
is over 40%, the film flow rate is small and tends toward its critical value. At
the critical value the entrainmed fraction is less than one. The relation of Ishii
and Mishima (1989) that does not take the critical film flow rate into account,
predicts an entrained fraction of 1 at large gas flow rates. Therefore it overpre-
dicts the real entrained fraction. It is thus necesseray to include the critical film
flow rate.
The characterization of the critical gas velocity is less obvious. Wallis (1968)
published data that indicated that it decreases with the pressure of the system.
Pan and Hanratty (2002a) correlated the critical gas velocity based on air-water
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P (bars) Σ (N/m) ρf/ρg µf/µg

5 0.01085 41 24
10 0.00705 19 16
20 0.00355 7 11

Table 3.2: Physical properties for the Freon experiments as reported by Lopez
de Bertodano et al. (2001)

experiments at different pressures and one Helium-water experiment. Neverthe-
less the Freon data of Lopez de Bertodano et al. (2001) did not collapse with
the relation proposed by Pan and Hanratty (2002a). The fluid properties of the
experiment of Lopez de Bertodano et al. (2001) are given in Table 3.2. These
experiments are interesting because they were performed at high pressures with
low surface tension fluids as in an operating scrubber. The data obtained with
freon showed that the critical gas velocity was very small for low surface ten-
sion/high pressure tests. It is therefore not strictly necessary to include a critical
gas flow rate in the case of high pressure gas-liquid separation. More research
is needed to characterize precisely the critical gas flow rate.

d) Elements of theory

The Kelvin Helmholtz instability. There is at present no analytical means
to calculate an entrainment rate. However, theory can give a good understand-
ing of the mechanisms taking place when a drop is torn away from a liquid
film. Woodmansee and Hanratty (1969) explained entrainment as a result of
the Kelvin-Helmholtz instability. This instability is illustrated on Figure 3.19.
A small harmonic perturbation generates an increased pressure above troughs
and a suction over the crests (Bernoulli). If the stabilizing effect of the surface
tension is overcome, the interface becomes unstable. The theory of the Kelvin-
Helmholtz instability considers inviscid fluids and an infinitely thick film. Given
some height and pressure perturbations h

′

and p
′

, such as:

h
′

= <
�
h

′�
= <

�
H ei(k x−ω t)

�
(3.137)

p
′

= <
�
p

′
�

= <
�
P ei(k x−ω t)

�
(3.138)

<(z) is the real part of the complex number z. The stability condition is (sup-
posing ρd >> ρg):

Σk2 − ρdgy +
< (P )

< (H)
≥ 0 (3.139)

The value of < (P ) /< (H) is originally found by supposing two uniform velocity
profiles. However Woodmansee and Hanratty (1969) found this hypothesis to
be inaccurate. Instead they assumed a gas profile depending on the gas eddy
viscosity. They obtained a semi-empirical expression for < (P ) /< (H) that was
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Figure 3.19: Kelvin-Helmholtz instability.

proportional to the solution assuming uniform profiles 17. As Woodmansee and
Hanratty identified the type of instability generating entrainment, they could
provide a sensible dimensional analysis of the problem. Neglecting the gravity,
they proposed the Weber number to be the most important parameter:

We =
ρg (Ug − C)

2
h∗

Σ
(3.140)

where Ug is the gas velocity, C the wave velocity and h∗ some characteristic
length of the film (mean height of the film or height of the wave or height of the
crest from the wall). From experimental results, they suggested We ≥ 5.5 as a
criteria for re-entrainment; h∗ being the height of the roll waves.

Work of Tatterson and Taylor. Tatterson (1975) tried to get a quantitative
expression for the rate of entrainment from theory. He used the theory developed
by Taylor (1963) that studied the growth rate of a harmonic wave perturbation
on a viscous fluid of infinite depth on top of which flowed an inviscid fluid of
small density compared to the first fluid.

ρg << ρf

17This solution being:
< (P )

< (H)
= −ρgU2

g k
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Let us consider a perturbation:

h
′

= H ei(k x−ω t) (3.141)

where h
′

, H and ω are complex numbers. The real part of ω is an angular
frequency. The imaginary part of ω describes the growth rate of the waves. As
long as the amplitude is small Taylor derived:

=(ω) = 2Wek Ug

r
ρg

ρg
f

�
We,

1

WeV i2

�
(3.142)

=(ω) is the imaginary part of the complex number ω. We is a Weber number. Its
definition is flexible, not only concerning the length scale but also concerning the
velocity and the density. One can use the friction velocity, the interfacial shear
stress or the superficial gas velocity to define We. This point will be discussed
later. f is a function. Taylor (1963) tabulated the value of this function for
the fastest growing wave. The number V i is the viscosity group. Hinze (1955)
showed that it was an important factor for the break-up of a drop in a turbulent
stream. For a drop of diameter d, its definition is:

V i ≡ µd√
ρdΣd

(3.143)

The viscosity number V i was presented by Sleicher (1962) as the viscosity forces
arising from the natural vibration of the droplet in its first mode. In relation
(3.142), the Weber and the viscosity number are based on the length scale 1/k.
Taylor argued that the characteristic time for a wave to grow to the stage where
droplet creation is imminent, is proportional to 1/=(ω):

t ∝ 1

=(ω)
(3.144)

Taylor proposed that the area of the wave generating the droplets scales like
1/k2. Tatterson (1975) postulated that the volume entrained from this wave
is equal to the volume of a fluid ligament detaching from the wave. Based on
former works Tatterson proposed an expression for the diameter of the ligament
dlig:

dlig =
1

k
√
We

(3.145)

And if the length of the ligament is 1/k, the entrained volume scales as:

d2
lig

k

As a result, combining equations (3.144) and (3.145) and the different volume
and surface scalings we obtain:

Je ∝ ρf

d2
lig

k =(ω)
1
k2

∝ √
ρfρgUgf

�
We,

1

WeV i2

�
(3.146)
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It is then natural to define:

Ė+ ≡ Je√
ρfρgUg

(3.147)

The second variable of the function f in relation (3.146) corresponds to a vis-
cous damping of the wave. For moderate viscosities, 1/(We ·V i2) tends toward
infinity and f becomes a function of We only. Lopez de Bertonado et al. (2001)
gave the following quantitative criteria:

if
1

WeV i2
> 100 then f

�
We,

1

WeV i2

�
≈ f (We)

Taylor (1963) found it convenient to replace We by the variable:

Y =
We− 1

Wem − 1
(3.148)

where the index m is associated with the wave number km of the fastest growing
wave. f(Y ) becomes the constant f(1) for this wave. Taylor argued that km

was the wave number to be used in equation (3.146). In this case Ė+ is a
constant. Thus the theory developed by Taylor shows that the entrainment flux
is proportional to

√
ρfρgUg. This theory also shows that, for a liquid film of

infinite depth, small viscosity and large density compared to the density of the
gas, the non-dimensional entrainment flux is a constant.

Finite depth of fluid, viscosity of the gas phase and intermittency.
Tatterson pinpointed that in annular flows the liquid film is far from being of
infinite depth as in the study of Taylor. Tatterson proposed that the height of
the film imposed a lower limit on the wave number such as:

kmin =
1

h
(3.149)

This condition changes equation (3.148) into:

Y =
We(h) −Wecrit

Wem −Wecrit
(3.150)

where We is now based on the height of the film. In (3.150) a critical Weber
number appears. Under Wecrit no entrainment occurs.
Tatterson pointed out another important weakness of the analysis of Taylor.
The shear stress of the gas on the liquid is a very important factor for the study
of atomization. However Taylor supposed an inviscid flow of the gas. When
the viscosity is taken into account it leads to the well-known Orr-Sommerfeld
equation. By supposing a universal turbulent profile over the surface Tatterson
concluded that one should use the equation:

Ė+ ∝ f

�
We(h)

r
h

D

�
(3.151)
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instead of f(We(h)). Nevertheless Dallman et al. (1979) underlined that equa-
tion (3.151) could not really be used with confidence without further verification.
In addition Tatterson introduced a quantity he called the intermittency. The
surface of a film in an annular flow is not entirely covered with roll waves. The
intermittency I represents the fraction of the film covered with these waves.
Taking the intermittency into account, equation (3.151) becomes:

Ė+ ∝ I · f
�
We(h)

r
h

D

�
(3.152)

Schadel (1988) and Paras et al. (1994) provided intermittency data for respec-
tively vertical up-flow and horizontal flow. Schadel claimed the intermittency
to be independent of the gas velocity. But her data presented by Azzopardi
(1997) showed a decrease of I with the gas velocity. In contrast, Paras et al.
(1994) presented intermittency data where, at least at low gas velocity (strat-
ified flow), the intermittency increased roughly linearly with the gas velocity.
At high gas velocities (annular flow), the intermittency became independent of
the gas velocity. Hence, at present experimental data are contradictory. It is
then difficult, to say anything general about intermittency today. There is no
correlation that relates it to flow variables. It must be experimentally deter-
mined. It seems however that a value of 0.4 can be a fair estimation (Paras and
Karabellas (1991), Schadel (1988)).

e) Dimensional analysis

There are numerous different correlations for the rate of entrainment in the
literature. These correlations are, as a rule, difficult to compare, because the
entrainment flux is not non-dimensionalized the same way or because the cor-
relations are dimensional. The aim of this paragraph is to collect some key
correlations and to translate them into the same language. Then the physical
meaning of each correlation will appear clearly through the dimensional group
involved.
According to the theory developed by Taylor (1963), a natural scaling for the
rate of entrainment is the one defined by equation (3.147). The correlations of
Dallman et al. (1979) and Lopez de Bertodano et al. (2001) can easily be ex-
pressed with Ė+. Schadel (1988) presented her result with this non-dimensional
entrainment rate. Alipchenkov et al. (2002b) presented a correlation similar but
where

√
ρfρgUg was replaced by

√
ρfτi where τi was the interfacial shear stress.

Pan and Hanratty (2002a) introduced the critical gas velocity Ug,crit and re-
placed (3.147) by:

Ė+ =
Je√

ρfρg (Ug − Ug,crit)
(3.153)

As discussed previously, the introduction of a critical gas velocity for high pres-
sure applications is not necessarily pertinent. Other non-dimensionalization
factors are possible. Hewitt and Govan (1990) chose to scale the entrainment
rate with the mass flux of gas. Nigmatulin (1991) chose the liquid film flow
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Exponents a1 a2 a3 a4 a5 a6 a7

(Corresponding group) (
µf

µg
) (

ρf

ρg
) ( h

D ) (Ref ) (We) (V i) (Ω)

Hewitt and Govan 0 0.132 0.316 0.632 0 0.632 0
(1990)
Nigmatulin (1991) 0 0.5 1 0 0.35 1 -0.718

Lopez de Bertodano -0.26 0.4625 0.075 0.925 0.425 1 0
et al. (1997)
Lopez de Bertodano 0 0.5 0 1 0.5 1 0
et al. (2001) and
Pan and
Hanratty (2002a)
Alipchenkov 0 0 0 0 1 0 0
et al. (2002b)

Table 3.3: Some correlations of the literature expressed as a function of the
basic non-dimensional numbers.

rate. Lopez de Bertodano et al. (1997) and Kataoka et al. (2000) chose the
quantity µf/D. However it is possible to express most of these correlations
with the scaling used in (3.147). All the correlations depend on the 10 following
parameters:

µg;µf ; ρg; ρf ; Σ;h;D;Uf ;Ug; g

It gives 7 non-dimensional parameters:

µf

µg
;
ρf

ρg
;
h

D
;Ref =

ρfUfh

µf
;We =

ρgU
2
gh

Σ
;V i =

µfÈ
Σρfh

; Ω = µf
4

r
g

ρfΣ3

The last group is the ratio of the gravity forces against capillary forces. It is
then possible to express the non-dimensional entrainment flux Ė+ as a function
of the above non-dimensional parameters. For example:

Ė+ =

�
µf

µg

�a1�
ρf

ρg

�a2 �
h

D

�a3

Rea4
f Wea5V ia6Ωa7 (3.154)

Table 3.3 shows the values of the exponents of each group for different corre-
lations of the literature, far from the onset of entrainment. We can see that
there is no general agreement.

f) Choice of a correlation

A pertinent correlation for the rate of entrainment is hard to find. Theory can
give some clues but is not sufficient. The correlation must be tested against

18There is a misprint in Nigmatulin (1991) where Ω is at the power 1 instead of -0.7 (see
Nigmatulin et al. (1996)).
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a large number of experiments. In our case it must also be tested with high
pressure data where surface tensions are significantly low. If possible it should
be confirmed by independent results. The correlation must also have a local
nature. Indeed, in a scrubber or in a complex geometry it is not easy to get or
even to define such a thing as a superficial velocity or a diameter. Finally we
believe that the correlation must represent simple physics. Basically, so little
is known about entrainment that a correlation having a great complexity is a
priori not trustworthy outside the range it has been designed for.
One correlation in the literature does have all these criteria fulfilled. It is a
relation presented by Alipchenkov et al. (2002b) (see also Alipchenkov et al.
(2004)). The correlation is the following:

Je = 0.023
√
ρfτi (We−Wecrit) (3.155)

The Weber number is defined as:

We =
τih

Σ
(3.156)

Relation (3.155), as the theory of Tatterson (1975), includes both a Weber
number and a critical Weber number. It has been tested on air/water and
steam/water data with pressures up to 100 bars. Antipin et al. (2003) tested
the correlations of Alipchenkov et al. (2002b) against their own experimental
data. They performed tests in a pipe of 15 mm i.d. with air-water and air-
glycerin flows. The flows were both upward and downward, the surface tensions
between 0.065 N/m and 0.072 and the viscosity of the liquid between 0.001 and
0.0022 kg ·m−1 · s−1. The predictions in terms of pressure gradients and film
thickness were rather correct. There was no systematic under or over prediction
of the experimental results although a scatter was noticed. The work of Schadel
and Hanratty (1989) brings an independent confirmation of relation (3.155) at
least for the coefficient 0.023. They performed air/water experiments at 1 bar
in a downward annular flow. They plotted the quantity:

Ė+ =
Je

uτ
√
ρgρf

as a function of

I
hrwρgu

2
τ

Σ
where hrw is the height of the roll waves. The collapse of the data was good
even if the data came from two different pipes (42 and 25.4 mm i.d.). To
compare with correlation (3.155), one needs to find an expression for I and
hrw. We mentioned previously that the intermittency in a developed annular
flow has roughly a constant value of 40%. Wallis’ correlation (relation (3.60))
tends to indicate that a liquid film of thickness h is similar to having a wall of
4h equivalent sand roughness. As a first guess, we could think that the actual
height of the roll wave is generating this roughness. Therefore it may be sensible
to suppose that:

hrw ≈ 4h (3.157)
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Figure 3.20: Experimental points reported by Schadel and Hanratty (1989)

We now will plot the data of Schadel as Ė+ as a function of We = τih/Σ with
the above assumptions for the intermittency and the height of the disturbance
waves and supposing that the interfacial shear can be approximated by ρgu

2
τ .

One can see on Figure 3.20 that the derivative of Ė+ with respect to the Weber
number is 0.02101 which is remarkably close to the value of 0.023 determined
by Alipchenkov et al. (2002b).
The correlation (3.155) also expresses a very simple physics. Indeed far above
the onset of entrainment it reduces to:

Ė+ ∝We (3.158)

which means that the entrainment rate is inversely proportional to the surface
tension and proportional to the shear exerted by the gas on the liquid film.
Finally this correlation is quite unique because it is local.
It now remains to find a proper relation for the critical Weber number. There
are not many correlations available because it is more usual to use a critical
Reynolds number (Leman et al. (1985), Lopez de Bertodano et al. (1997,2001))
or dimensionally a critical liquid flow rate (Dallman et al. (1979), Schadel et al.
(1990), Hewitt and Govan (1990), Williams et al. (1996), Dykhno and Hanratty
(1996), Pan and Hanratty (2002a, 2002b), Su et al. (2003)). However using a
Weber number is more in agreement with theory. We tested two correlations.
First the one of Nigmatulin et al. (1996):� if Ref ≤ 300

Wecrit = 0.0025Re0.2
f G (3.159)
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Wecrit = 2.8 10−5RefG (3.160)

where Ref is the Reynolds number of the liquid film19:

Ref ≡ ρfUfh

µf
(3.161)

G is a fluid property group defined as:

G ≡
�
ρg

ρf

�1/2�
µf

µg

�
(3.162)

The second correlation is from of Alipchenkov et al. (2002b):

Wecrit =

�
2.8 · 10−5 +

5.28 · 10−4

(Ref −Ref,crit)
0.8

�
Ref (3.163)

where the critical value of the Reynolds number was 40. The correlations
(3.159),(3.160) and (3.163) have been tested against the experimental data of
Van Rossum (1959) which included a great variety of fluids. The fluids used by
Van Rossum and their properties are given in Table 3.4. The operating temper-
atures were between 14 and 20 �. The data of Van Rossum were not directly
usable. He gave the critical Weber number as a function of a parameter S, and
a critical Reynolds number as a function of S as well. It was then possible to
have the critical Weber number as a function of the critical Reynolds number.
The non-dimensional numbers of Van Rossum are based on the superficial gas
velocity while the correlations of Nigmatulin et al. (1996) and Alipchenkov et al.
(2002b) are based on the interfacial shear stress. To compare the correlations
with the experimental values two assumptions were necessary:

1. τi ≈ ρgu
2
τ

2. The ratio of uτ to the superficial velocity is approximated by 1/20. Pope
(2000) showed that for a large range of Reynolds numbers, the ratio of the
friction velocity to the core velocity is between 15 and 25.

19One should notice that there are different ways of defining the Reynolds number of the
liquid film. Some authors define Ref based on the velocity of the film and its height:

Ref ≡ ρf Uf h

µf

Others prefer to define it with the mass flux of film , and the diameter of the tube:

Ref ≡

ṁf

πD2

4

D

µf

=
4ṁf

πDµf

For a thin film:
ṁf = ρf Uf hπD

There is therefore a factor 4 between the two Reynolds numbers. The first definition is the
one we will choose unless specified otherwise.
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Liquid ρf (kg ·m−3) Σ (N/m) µf (kg ·m−1 · s−1)
Water 1000 0.073 0.0011

Water+1.5% butanol 1000 0.050 0.0013
Water+3.7% butanol 1000 0.040 0.0014
Water+7% butanol 990 0.031 0.0014

Kerosene 800 0.032 0.0015
Gas oil 830 0.031 0.0038

Mineral oil 3 850 0.030 0.016
Mineral oil 1 860 0.030 0.051

Table 3.4: Physical properties of the fluids used by Van Rossum (1959)

The second assumption is rather rough but we will see at least if the trends of
the experimental points are correctly reproduced. The data of Van Rossum and
correlation (3.163) are plotted on Figure 3.21. Except for the water/air data the
correlation is not satisfactory. There is an obvious effect of liquid properties.
That is why we next will investigate the effect of a dependency of the critical
Reynolds number on G.
Azzopardi (1997) presented experimental values of the critical Reynolds number
for the inception of roll waves. It was seen previously that it can be a good
indication for the onset of entrainment. Azzopardi tested 4 correlations. In
addition we tested a modified version of the correlation of Ishii and Grolmes
(1975) advised by Azzopardi (1997). The correlation of Pan and Hanratty
(2002b) was tested as well. Numerous authors also proposed various constant
values for Ref,crit but Figure 3.21 shows that it is not correct. The best results
were obtained with the correlation of Ishii and Grolmes modified by Azzopardi
and the correlation of Pan and Hanratty. We chose to use the former which is:

Ref,crit = 804G−3/2 (3.164)

The effect of this modification is plotted on Figure 3.22. The results are clearly
better than on Figure 3.21. Nevertheless, the order of magnitude is not correct
especially for gas oil, and mineral oils.
Figure 3.23 shows the results of the correlation of Nigmatulin et al. (1996). It
gives an acceptable trend and the right order of magnitude. One should bear in
mind that discrepancies also come from the estimation of the friction velocity
so that one does not expected more than the correct order of magnitude. In
the present model the critical Weber number will thus be given by (3.159) and
(3.160).
We now have a complete model where entrainment rate, deposition rate and
interfacial shear stress can be calculated.
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Figure 3.21: Correlation (3.163) against the data collected by Van Rossum
(1959)



3.3. CLOSURE RELATIONS 99

Figure 3.22: Modified correlation (3.163) against the data collected by Van
Rossum (1959)
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Figure 3.23: Correlations (3.159) and (3.160) against the data collected by Van
Rossum (1959)



Chapter 4

Numerical issues

This chapter is divided in four. First a general description of the computer
and of the different softwares is given. Then we discuss briefly the numerical
methods that were used. Numerical methods were not a key part of the present
work. They were handled automatically by Fluent. Next is a description of the
subroutines necessary to implement the models developed in the previous chap-
ters. Finally we examine issues related to complex geometries and unstructured
grids.

4.1 Hardware and software

Hardware and operative system

The majority of the calculations have been computed on a Hewlett-Packard
workstation xw9300. It was equipped with 2 processors Opteron 246 (2 GHz).
The machine had 4 GB of Random Access Memory. The operative system was
Microsoft Windows XP 64-bit. Unfortunately, the 64-bit version of Fluent for
Windows has not been released yet so a standard 32-bit version has been used.

Gambit

Gambit is a software package designed to build up a geometry, mesh it and spec-
ify boundary conditions. The geometry is generated from points (or vertexes)
which coordinates are specified by the user. Those points are linked and form
edges. A set of closed edges forms a face, and a set of closed surfaces forms a
volume. The whole computational domain is formed of all the volumes.
There are several types of mesh available. One can mesh the edges, the faces,
or the volumes.

Edges. Edges can be meshed regularly but it is also common to use a grading
ratio were the length of an element equals the length of the previous element
multiplied by a constant. More complex edge meshing techniques are possible.

101
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Faces. Surfaces can be meshed by two types of elements: quadrilaterals and
triangles. One can measure the quality of the mesh by checking the equi-angle
skew of its elements. It is a quantity between 0 and 1. 0 corresponds to an
equilateral element (in 2D: equilateral triangle, square or rectangle). 1 corre-
sponds to a degenerated element (for example a triangle made of three aligned
points). More details on the equi-angle skew and on other variables to check
the quality of a mesh can be found in Fluent Inc. (2004a). Each node can be
adjusted manually if the automatically generated mesh is not satisfactory.

Volumes. The possible types of cells are:� Hexahedrons� Wedges� Tetrahedrons� Pyramids

All of these cells were used. Volumes have been usually meshed by a Cooper
method which is fully described in Fluent Inc (2004b). Hexahedrons were sys-
tematically preferred when the geometry allowed it. In the case of a volume
with a particularly complex topology, meshes made of tetrahedrons were used.
It is difficult to control the skewness of tetrahedrons and pyramids but it was
kept as low as possible. It was paid special attention to avoid cell types that
could generate numerical difficulties, in particular:� Tetrahedron and pyramid zones� Deformed cells� Poor resolution (low number of cells in narrow areas)� Large aspect ratios when the cell is not aligned with the stream� Cells oriented obliquely with respect to the stream

Gambit also allows to use non-conformal meshes, that is, faces which sides are
meshed independently from each other.

When the grid is finished, it remains to specify the boundary conditions:� for faces: wall, interior, velocity inlet, pressure outlet, or axis (among
others)� and for volumes: fluid or solid
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Fluent

Fluent is a program for computing fluid flows. It can solve problems using un-
structured meshes and is therefore interesting for industrial applications with
complex geometries. It is written in the C computer language. Some func-
tionalities, especially concerning the graphical user interface and the text user
interface, use the Scheme language. An important aspect of the software is that
the user can integrate its own sub-routines, called UDFs (User Defined Func-
tions). The possibility of writing UDFs provides a certain flexibility. However,
it has to be made in the frame of macros provided by the software and the main
source code still remains unaccessible.

4.2 Numerical methods

4.2.1 Discretization method

An approximation of the solution of the partial differential equations governing
a fluid flow can be obtained by focusing on the field values at specific locations
called grid points. In the finite-volume formulation, used by Fluent, each grid
point is associated with a small region called control volume. The discretization
equations, which are algebraic, are obtained by integration of the governing
differential equations over the control volumes. In this section we will focus on
the discrete equations but not on the algorithm to solve them. We will consider
the case of a general transport equation:

∂ρψ

∂t
+
∂ρUjψ

∂Xj
=

∂

∂Xj

�
Λ
∂ψ

∂Xj

�
+ S (4.1)

where ψ is some field property, Λ a diffusion coefficient and S a source. In the
following, we will focus on the discrete form of this equation, studying briefly
each term. We follow closely the development made by Patankar (1980). The
explanations are brief. More details are provided in Patankar (1980).

Purely diffusive equation

For the sake of simplicity we will first consider a 1D problem. Let us consider
the grid points of Figure 4.1. w and e represent the boundary of the control
volume. ∆Xw (resp. ∆Xe) is the distance between the center of the control
volume P and its neighbor W (resp. E). ∆X is the width of the control volume.
A purely diffusive 1D equation is:

0 =
∂

∂X

�
Λ
∂ψ

∂X

�
(4.2)

An integration from w to e leads to:

0 =

�
Λ
∂ψ

∂X

�
e

−
�

Λ
∂ψ

∂X

�
w

(4.3)



104 CHAPTER 4. NUMERICAL ISSUES

Figure 4.1: Grid points

If one approximates the variation of ψ between to grid points by a linear function
we obtain:

ψP

�
Λe

∆Xe
+

Λw

∆Xw

�
=

Λe

∆Xe
ψE +

Λw

∆Xw
ψW (4.4)

A general form of this discrete equation is:

aPψP =
X
nb

anbψnb + b (4.5)

where the nb index relates to the neighboring points. In the case of a purely
diffusive equation b is zero. It is essential that the a coefficients are positive,
because the variation of the field quantity can not have a different trend in P
and in its vicinity. For example, if ψ is a temperature and aw < 0, a decrease in
the temperature at W would induce an increase of the temperature at P . This
is not physically realistic.

Source term

Adding a source term leads to the equation:

0 =

�
Λ
∂ψ

∂X

�
e

−
�

Λ
∂ψ

∂X

�
w

+

Z e

w
SdX (4.6)

If we define:

Savg ≡ 1

∆X

Z e

w
SdX (4.7)
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We obtain the coefficients:

aE =
Λe

∆Xe

aW =
Λw

∆Xw

aP = aE + aP

b = Savg∆X (4.8)

The discrete equations are solved by linearization techniques, consequently S is
put in the form of:

Savg = S1 + S2ψP (4.9)

Then aP becomes:
aP = aE + aW − S2∆X (4.10)

and b becomes:
b = S1∆X (4.11)

To ensure that aP > 0, it is best to have S2 ≤ 0. If S2 > 0, the grid size ∆X
should be sufficiently small for aP to be positive.

Unsteady term

Let us now consider an unsteady diffusion equation:

∂ρψ

∂t
=

∂

∂Xj

�
Λ
∂ψ

∂Xj

�
(4.12)

This equation is integrated on space and on time from a time t to a time t+∆t.
Quantities at t will be indexed n, and quantities at t+∆t will be indexed n+1.
The unsteady term can be written:Z e

w

Z t+∆t

t
ρ
∂ψ

∂t
dt dX = ρ∆X

�
ψn+1

P − ψn
P

�
(4.13)

Here the value of ψ at P is assumed to prevail over the whole control volume.
Following the usual discretization practice for the diffusive term we obtain:

ρ∆X
�
ψn+1

P − ψn
P

�
=

Z t+∆t

t

�
Λe (ψE − ψP )

∆Xe
− Λw (ψW − ψP )

∆Xw

�
dt (4.14)

We now need an additional assumption concerning the integration of ψ with
respect to time. A simple one is:Z t+∆t

t
ψ dt =

�
fψn+1 + (1 − f)ψn

�
∆t (4.15)

where f is a weighting parameter between 0 and 1. After some algebra one gets:

aPψ
n+1
P = aE

�
f ψn+1

E + (1 − f)ψn
E

�
+ aW

�
f ψn+1

W + (1 − f)ψn
W

��
ρ
∆X

∆t
− (1 − f) aE − (1 − f) aW

�
ψn

P (4.16)
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with:

aE =
Λe

∆Xe

aW =
Λw

∆Xw

aP = f aE + f aW + ρ
∆X

∆t
(4.17)

If f = 0 the time scheme is explicit because ψn+1
P is dependent of quantities at

the time t only. Since the coefficient of ψn
P in equation (4.16) must be positive

it implies:

∆t ≤ ρ
∆X

aE + aW
(4.18)

If equation (4.18) imposes a very small time step, the explicit scheme is unsuit-
able. The other extreme is the fully implicit scheme where f = 1. When f = 1
the stability is always ensured. We chose to work with an implicit scheme.

The convective term

Let us now consider the equation:

∂ρUψ

∂X
=

∂

∂X

�
Λ
∂ψ

∂X

�
(4.19)

where U is a known velocity field. Integrating equation (4.19) in space gives:

(ρUψ)e − (ρUψ)w =

�
Λ
∂ψ

∂X

�
e

−
�

Λ
∂ψ

∂X

�
w

(4.20)

One could choose a linear profile for ψ as we did with ∂ψ/∂X. For a regular
grid, this would lead to:

ψe =
ψE + ψP

2
(4.21)

and

ψw =
ψW + ψP

2
(4.22)

However, this convection scheme, known as the central-difference scheme, does
not necessarily imply the positivity of the discretization coefficients. In general
the present computations were performed with an upwind scheme. For this
scheme the value of ψ at the boundary of the control volume equals that of the
grid point on the upwind side of the boundary. With this scheme the convection
flux depends on the sign of ρU . It gives:

(ρUψ)e = ψP max{(ρU)e , 0} − ψE max{− (ρU)e , 0}
(ρUψ)w = ψW max{(ρU)w , 0} − ψP max{− (ρU)w , 0} (4.23)

The upwind scheme ensures the stability of the calculation but has a tendency
to smear out sharp gradients.
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Calculation of the flow field

The calculation of the velocity field is related to the pressure gradient term
which is not known a priori. Assuming that the control volumes are equal in
size, integrating the pressure gradient term gives:

−
Z e

w

∂P

∂X
dX = Pw − Pe =

PW + PP

2
− PP + PE

2
=
PW − PE

2
(4.24)

Then, we can see that the momentum equation contains a pressure difference
between alternate grid points and not adjacent ones. The very problem is that
any alternate highly non-uniform pressure field (”checker-board” field) will act
as a uniform field in the discretized momentum equation. Furthermore checker-
board pressure field are not suppressed during the iteration process. Finally any
checker-board pressure field can be added to a realistic pressure field without
any consequences for the discretized momentum equation.
There are two main ways to avoid such unrealistic alternate pressure fields. The
oldest is the so called ”staggered grid method” which consist in locating the ve-
locity nodes at the edges of the control volume while the pressure nodes are at
its center. Nevertheless, for 3D problems and with the emergence of new un-
structured meshing techniques, this method became cumbersome. Fluent uses
a ”collocated” method that stores all the variables at the center of the control
volume. To avoid unrealistic alternate pressure fields special interpolation tech-
niques are used to evaluate the velocity at the faces of the control volume. A
robust and widespread method is the one presented by Rhie and Chow (1983).
Mathur and Murthy (1997) extended this method to unstructured grid.
Let us now consider a guessed pressure field P ∗. In the context of a 1D collo-
cated grid, the discrete form of the momentum equation is written:

aPU
∗
P =

X
nb

anbU
∗
nb + b+ (P ∗

w − P ∗
e ) (4.25)

U∗ is a guessed velocity field that satisfies the momentum equation. However
if the pressure field is not correct, U∗ does not satisfy the mass conservation
equation. We now have to find a pressure-velocity coupling method so that
the velocity field fulfills the continuity equation. We used the SIMPLE (Simple
Implicit Method for Pressure-Linked Equation) algorithm which is an iterative
procedure based on a correction of the pressure and velocity fields. Let us now
define the corrections:

P c ≡ P − P ∗ (4.26)

U c ≡ U − U∗ (4.27)

P and U being the correct pressure and velocity fields. These two fields fulfill
the momentum equation so that:

aPUP =
X
nb

anbUnb + b+ (Pw − Pe) (4.28)
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Figure 4.2: A control volume in an unstructured grid

Subtracting equation 4.25 from 4.28 leads to:

aPU
c
P =

X
nb

anbU
c
nb + (P c

w − P c
e ) (4.29)

We will now neglect the term
P

nb anbU
c
nb. It is possible because the way to

build the pressure correction does not influence the correctness of the converged
solution. We then have:

UP = U∗
P +

P c
w − P c

e

aP
(4.30)

If this equation is now introduced into the discrete form of the continuity equa-
tion one gets a pressure correction equation that can be solved. When P c is
known, one gets the values of P and U .
This process is more complex for Euler/Euler multiphase flow models where
there are several continuity equations. There are two types of algorithms to
handle pressure-velocity coupling in this case (Moukalled and Darwish (2002)).
First there are algorithms based on the geometric conservation equation (GCBA).
Second there are Mass Conservation Based Algorithms (MCBA). Moukalled and
Darwish (2002) studied the performance of MCBA algorithms (among which the
SIMPLE algorithm) in collocated structured grids. Vasquez and Ivanov (2000)
presented a similar study for unstructured grids.

Unstructured grids

Let us now consider an unstructured grid made of e.g tetrahedrons. In this case
a cell with centroid 0 will have four neighbors with centroids 1, 2, 3 and 4 as
pictured on Figure 4.2. If we now integrate over the control volume a steady
convection-diffusion transport equation with a source term, we have:ZZZ

∂ρUjψ

∂Xj
dV =

ZZZ
∂

∂Xj

�
Λ
∂ψ

∂Xj

�
dV +

ZZZ
SdV (4.31)
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Applying the divergence theorem one gets in the case of a tetrahedron:

4X
f=1

ρfψfUfjnfjAf =
4X

f=1

Λf
∂ψ

∂Xj

����
f

nfjAf + SavgV (4.32)

f represents the face between the cell of centroid f and the cell of centroid 0.
One can see from equation (4.32) that there is no fundamental difference with
a structured grid. All the terms can be discretized according to the methods
previously detailed for a 1D case.

Under-relaxation factor

Under-relaxation factors helps to have a more stable calculation. The corrected
value of a field quantity ψ should have been:

ψ = ψ∗ + ψc (4.33)

Instead one uses:
ψ = ψ∗ + υψc (4.34)

where υ is an under-relaxation factor between 0 and 1. Under relaxation factors
avoid divergence but slow down convergence.
The next section deals with the resolution of the discrete equations of the flow.
It is a system of linear algebraic equations.

4.2.2 Solver

The following section details first some common algorithms to solve a system of
linear algebraic equations. Second it describes shortly the principles of multi-
grid methods. We used an algebraic multigrid (AMG) method to perform the
calculations. A short paragraph explains the basic idea of this technique.

Direct and iterative methods

Conceptually speaking the simplest linear equation solver is certainly the stan-
dard Gaussian elimination method. This method, as any other direct method, is
not very adapted for our purpose. Indeed, the system is represented by a sparse
matrix, that is, a matrix containing many zeros. This particular configuration
is not kept during the elimination process and zero elements can be replaced
by non-zero elements (Dahlquist and Björk (1974)). Consequently direct meth-
ods require as a rule a large amount of computer storage (except in the 1D
case where one can use the tridiagonal matrix algorithm (Patankar (1980)). An
other family of methods are the iterative methods. They start from an initial
guess which is improved gradually until an acceptable solution is obtained. Let
us now consider the following linear system of n equations:

nX
β=1

aαβψβ = bα (4.35)
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There are two usual types of iterative methods. With Jacobi’s method, the
values are kept to the present iteration until the whole iteration is completed.
In this case we have:

ψi+1
α =

1

aαα

�
−

nX
β=1;β 6=α

aαβψ
i
β + bα

�
(4.36)

i being the number of the iteration. In the Gauss-Seidel method, the values of
the field are updated as soon as they are computed:

ψi+1
α =

1

aαα

�
−

α−1X
β=1

aαβψ
i+1
β −

nX
β=α+1

aαβψ
i
β + bα

�
(4.37)

In general the Gauss-Seidel method (used by Fluent) converges faster than Ja-
cobi’s. Scarborough (1962) derived a sufficient criteria for the convergence of
an iteration method. This condition is that for all α:

1

|aαα|

�
nX

β=1;β 6=α

|aαβ |

�
< 1 (4.38)

Multi-grid methods

Multi-grid methods are used to accelerate convergence. These methods have
been described formally by Brandt (1977). Briggs (1987) wrote an introduction
to multi-grid techniques which is easier to access for the non-mathematicians.
Conventional iterative methods (Jacobi, Gauss-Seidel) remove efficiently high
frequency errors but poorly eliminate low frequency errors. On coarser grids
low frequency errors are better damped. The idea of the multigrid method is:

1. Apply as usual the iterative technique on the original grid. This eliminates
the high frequencies.

2. Solve the problem on a coarser grid, obtain a correction and transfer it to
the fine grid level. This removes low frequencies.

The speed of convergence is then much higher.

Algebraic multigrid (AMG)

Conventional multigrid methods are based on the geometrical information of
the grid. However, building a coarser grid can be difficult especially if a fully
unstructured grid is used. The AMG methods are independent of the mesh be-
cause they work directly on the coefficients of the matrix of the system (Stüben
(1999)). An AMG method provided by Fluent was used in the present work.
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4.3 Subroutines related to the model

4.3.1 Film flow

The convective term of the film transport equation presents an non-linearity.
Indeed, the velocity of the film is a function of the film height itself. If one wants
to calculate the height of the film at the iteration i+ 1, it is necessary that the
coefficients of the matrix are independent of hi+1. Therefore the convective flux
has been programmed as:

∂

∂Xj
hi+1U i

jf

After a number of iterations which is large enough, U i
jf ≈ U i+1

jf and the true
convective term is practically recovered. In practice, the values of h and Ujf for
a given time step converged after 10 iterations at the most.
The flux of film between two cells was calculated with an upwind scheme.

4.3.2 Memory management

In the present model, a significant amount of calculations must be done in the
near wall cells: deposition, flux of film, entrainment. This requires the storage
of values in the memory. These stored values can be:� Geometrical: volume of the cell, area of deposition, wall normal vector,

the distance between the centroid and the wall.� Related to the flow: height of the film, deposition flux, entrainment flux,
velocity of the droplet phase, velocity and turbulent kinetic energy of the
gas phase .

Finally the gravity vector, the iteration number and some flow data at the pre-
vious iteration must be stored. In total the programs stores permanently 28
scalar values per wall-cell.
In Fluent it is possible to allocate memory for 500 scalars. However, this mem-
ory is allocated for each cell in the calculation domain. Most of the above cited
quantities are irrelevant for cells that are not in contact with the wall. Con-
sequently, if the Fluent’s standard procedure of memory allocation for scalars
was used, most of the memory would store zeros. To avoid this waste another
allocation technique has been developed.
At the initialization phase a pointer is allocated for each cell of the domain. If
the cell is not located at the wall its pointer points to the NULL pointer. If the
cell is located at the wall, the pointer points to a structure that contains all the
relevant quantities. Thus there is no waste of memory.
Allocating a pointer in each cell is also flexible for further developments of the
code. It allows any number of parameters to be stored for wall cells. For ex-
ample, it can be useful for corner-cells where one can have to store two or three
areas of deposition, normal vectors and distances between the centroid and the
wall. With this technique, data may also be stored for cells inside the domain.
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The present NULL pointer would just have to be pointing to an other type of
structure than the wall-cell structure.
There are at present two drawbacks with this technique of memory allocation.
First, data only stored in the structure can not be plotted. For example, if one
wants to plot the entrainment flux one needs to allocate a scalar for each cell
of the domain. Second, if Fluent is used only for checking the data of a previ-
ous simulation, one needs to initialize the solution. This can take a significant
amount of time for large grids. The most consuming task in the initialization
process is the localization of cells at the wall that share just one point (or one
line in 3D) with it. This process is at present far from being optimized.

4.4 Issues related to complex geometries

4.4.1 Unstructured grids

a) Mass transfers between the droplet phase and the film

The continuity equation for the droplet phase (3.2) together with the modeling
of Jd (equation (3.89)) and Je (equation (3.155)), gives:

∂ ρdαd

∂t
+
∂ ρdαd

ÝUid

∂Xi
=
Awall

V
(−αdρd ·KD + 0.023

√
ρdτi (We−Wecrit))

(4.39)
This equation depends on Awall the area that the cell shares with the wall and
V the volume of the cell. The continuity equation for the film (3.8) is:

∂h

∂t
+

∂

∂Xi
hUif = αd ·KD − 0.023

É
τi
ρd

(We−Wecrit) (4.40)

Equation (4.40) shows that the height of the film is not depending on the geom-
etry of the cell. To have a perfect mass conservation the area of deposition
should be well defined. However, even if the interface of the film is perfectly
parallel to the wall, the area of deposition is dependent of the geometry of the
cell. Figure 4.3 illustrates the case of a cell which is an equilateral triangle. Its
height is normal to the wall. On the left side of Figure 4.3, the base of the
triangle is the wall. The exact area of deposition is:

A(h) = Awall −
2h

√
3

3
(4.41)

In this case the model considers that the area of deposition is Awall. On the
right of Figure 4.3, the cell has only a point on the wall. The exact area of
deposition is:

A(h) =
2h

√
3

3
(4.42)

In this case the model considers that the area of deposition is 0. If the mesh is
3D, the calculation of A(h) is extremely complicated (Son (2003)). Calculating



4.4. ISSUES RELATED TO COMPLEX GEOMETRIES 113

Figure 4.3: Area of deposition for an example of unstructured grid.
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Figure 4.4: Flux of droplet by the wall.

the exact interface area becomes computationally too demanding. That is why,
in the present model, there is no correction of the mass imbalance generated by
the grid.

b) Droplet flux in the near wall cells

Figure 4.4 illustrates the flux of droplet near the wall for an unstructured grid.
Because of the film thickness, the actual area with which the flux must be
calculated is reduced1. If one takes again the example of equilateral triangles,
the surface available for the flux of droplets between the two cells has been
reduced from Awall to Awall − 2h

√
3/3. The model does not take this reduction

into account. If the film is thin, this reduction is negligible.

c) Flux of film in unstructured grids

In the present model, the film is parallel to the wall. This assumes that the
normal to the wall is defined. It can happen in unstructured grids that the film
is located in a cell with no defined normal. In 2D grids, these are cells that have
only one point on the wall. In 3D, these cells have either one point or one line
on the wall. To compute the orientation of the film in such cells, a normal must
be specified.

1This effect occurs in structured grid as well.
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Figure 4.5: A concave corner cell.

Specification for cells having one point on the wall (2D or 3D). Let
us call P the only contact point of the cell with the wall. C is the centroid of
the cell. Then the normal to the wall (inwardly oriented) is defined by:

~n ≡
~PC ~PC
 (4.43)

Specification for cells having one line on the wall (3D). Let us call P1

and P2 the ends of the segment that the cell shares with the wall. C is the
centroid of the cell. Then the normal to the wall (inwardly oriented) is defined
by:

~n ≡
~P1C −

�
~P1C · ~P1P2

‖ ~P1P2‖
�

~P1P2

‖ ~P1P2‖ ~P1C −
�
~P1C · ~P1P2

‖ ~P1P2‖
�

~P1P2

‖ ~P1P2|

 (4.44)

This is a vector normal to ~P1P2 in the plane (P1P2C).

4.4.2 Corners

The present model does not have a special treatment for the cells located in
corners. It was not considered as a crucial issue scientifically speaking. However
the code may be used by professionals of separation equipment. These users
should be aware of the inaccuracies arising in corner cells. This subsection
pinpoints the consequences of the incorrect treatment of corner cells.

Deposition in concave corners

Cells located in concave corners have 2 or 3 deposition wall areas. Figure 4.5
shows a corner cell in a 2D structured grid. The arrows represent the deposition
velocity of the droplets. In the model only one deposition-wall is considered.
Walls are detected by the software at the initialization of the solution. The
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Figure 4.6: Deposition in a concave corner cell.

program loops over all the faces of each cell to see if it has a wall-face. If it has
a wall-face, the geometric characteristics of this face are stored in the memory.
In case of a cell with several walls, the memory stores the geometry of the
first wall-face detected by the program. The selection of the one wall on which
deposition occurs in corner cells is thus arbitrary.
In reality the deposition flux depends on the scalar product of the deposition
velocity with the normal vector to the gas/liquid interface. In the model, the
deposition flux depends on the projection of the deposition velocity with the
normal to the deposition-wall. Two extreme cases can happen:

1. The velocity of deposition is normal to the deposition-wall. Then there is
no error on the deposition flux. This situation is illustrated on Figure 4.6
(a).

2. The velocity of deposition is parallel to the deposition-wall. This situa-
tion is illustrated on Figure 4.6 (b). In this case the model predicts no
deposition. This generates a large error because in reality, the deposition
occurs on the wall that was not selected as the deposition-wall.

Liquid film flux in concave corners

Figure 4.7 shows a liquid film flowing along a concave corner. In the corner cell,
the film flows along two walls. In the model, the film is not simulated as a real
film. Instead its height h is a scalar which is transported with a velocity Uf and
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Figure 4.7: Liquid film flowing in a concave corner.

the velocity of the film is parallel to the deposition-wall. In the case illustrated
by Figure 4.7 two situations can occur.

1. The deposition-wall of the corner cell is on the left. Figure 4.8 illustrates
this case. The film flows from the upstream cell to the corner cell. Then
the film flows from the corner cell to the downstream cell.

2. The deposition wall of the corner cell is on the right. Figure 4.9 illustrates
this situation. The film flows from the upstream cell to the corner cell.
However, the velocity of the liquid layer is oriented in such a way that the
flux in the downstream cell is zero. The boundary condition for the scalar
h at the wall is a zero flux. As a result the film is trapped in the corner
cell. The liquid layer will then grow until entrainment occurs.

Entrainment in convex corners

Figure 4.10 illustrates a situation of entrainment at a convex corner. No spe-
cial treatment is given for this type of disintegration. However the mechanism
leading to entrainment in this case is very different from the mechanism stud-
ied previously. The correlation used in the model is based on a force balance
between the shear exerted by the gas on the interface and the surface tension
forces. In a convex corner, the centrifugal acceleration of the film plays an im-
portant role. Maroteaux et al. (2002) showed that the balance between the
centrifugal force (destabilizing) and the surface tension forces (stabilizing) is
responsible for the disintegration of a film on wall edges. Consequently, the cal-
culation of the entrainment flux at sharp edges is based on an irrelevant physical
phenomenon. Therefore, one cannot expect a correct quantitative prediction of
the entrainment flux in this situation.
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Figure 4.8: Modeled film flowing in a concave corner with the deposition-wall
on the left.

Figure 4.9: Modeled film flowing in a concave corner with the deposition-wall
on the right.
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Figure 4.10: Entrainment at convex corners
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Part II

Results
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Outline of Part II

This part has four chapters. In chapter 5, the deposition model is analyzed. In
chapter 6, the film model is studied. Chapter 7 deals with a full annular flow with
re-entrainment. Finally chapter 8 studies high pressure liquid/gas separation
in a vane-pack demister. In the chapters 5, 6 and 7 the model is compared to
experimental results. In chapter 8 the model is compared to another type of
model for an air/water flow at atmospheric pressure.
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Chapter 5

Pure deposition

In this chapter we will compare the results obtained by Liu and Agarwal (1974)
and the predictions of the present model. It is a case of pure deposition.

5.1 Experimental set-up

Liu and Agarwal (1974) studied the deposition of uniform spherical droplets
of olive oil in a tube. The droplets contained a tracer (uranine) to determine
quantitatively the fractional deposition along the pipe. The deposition pipe was
1.27 cm i.d. and 102 cm long. The flow was downward. We chose to simulate
the run where the particle diameter was 16.8 µm and the gas flow rate was 1510
cm3/s.

5.2 Set-up of the numerical case

5.2.1 Grid

The present case is axisymmetric. All the cells were rectangles. They were
0.635 mm wide and 1.27 mm long.

5.2.2 Simplification for the study of pure deposition

The concentration of droplets was not specified by Liu and Agarwal. It was
probably very small. As a result, it was assumed that the quantity of liquid
deposited on the wall was too small to form a continuous moving film. Thus we
did not consider the formation of a liquid film. When droplets impacted on the
wall they were removed from the simulation domain.
At first, the crossing trajectory effect was not included in the calculation to keep
the analysis of the results simple. Results showed that the deposited fraction
of the droplets was underpredicted by 20-25% without including the crossing
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trajectory effect. In this chapter we try to explain and correct this underpredic-
tion. It seemed to us that these corrections had to be made before including the
crossing trajectory effect which adds a greater complexity to the model. That
is why the crossing trajectory effect has not been accounted for in the results
presented in the following.
For the calculation of the relaxation time of the particle (equation (2.72)), the
correction of the drag coefficient for flows beyond the Stokes regime has been
neglected. This was justified because the results showed that the Reynolds num-
ber of the flow around the particles was less than 1 in the whole computational
domain (maximum 0.88).

5.2.3 Inlet condition

At the inlet, the velocity profile of the gas phase was assumed to be flat
(11.92 m/s). The droplet phase had the same inlet velocity as the gas. The
turbulent kinetic energy (TKE) of the gas was set to 1 m2/s2 and the rate of
dissipation of the TKE of the gas was 1 m2/s3. Since Liu and Agarwal did
not specify the volume fraction of olive oil, four values have been tested in the
simulation: 1%, 0.1%, 0.01% and 0.001%.

5.3 Results

5.3.1 Expected results

We will first look at the prediction of a simple 1D model. Let αd0 be the
concentration of the droplets at the inlet of the test section. Ud is the average
velocity of the droplets that is supposed to be the average velocity of the gas
Ug. Then, the continuity equation for the droplet phase leads to:

dαd

dX
D

= −4K+
total

uτ

Ug
αd (5.1)

Here the velocity of the gas was assumed to be independent of X. Averaging
symbols have been dropped for the sake of clarity. K+

total is the total deposition
velocity defined by equation (3.121). We have then:

ln

�
αd

αd0

�
= −4K+

total

uτ

Ug

X

D
(5.2)

Supposing that the particles are in the inertia moderated deposition regime,
according to McCoy and Hanratty (1977) K+

total ≈ 0.17. According to equation
(3.78), uτ/Ug can be calculated from the friction coefficient Cfg. Cfg is here
calculated with the Blasius formula for a turbulent flow in a smooth pipe:

Cfg =
0.3164

4

�
UgD

ν

�1/4

(5.3)
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Figure 5.1: Evolution of the volume fraction of the droplet phase along the test
section.

The calculation gives uτ/Ug ≈ 1/17 and equation (5.2) becomes:

ln

�
αd

αd0

�
= −0.04

X

D
(5.4)

5.3.2 Raw data

Figure 5.1 shows ln (αd/αd0) as a function of X/D. The three curves represent:� The data of the simulation for a volume fraction of 0.01% (diamond sym-
bols)� The results of Liu and Agarwal (square symbols)� Equation (5.4) (triangle symbols)

The experimental curve presents a different shape than the two other curves.
It is flat at the beginning of the test section and then decreases linearly. The
other two curves decrease linearly from the beginning of the pipe.
The experimental data show that a very small fraction of the droplets deposited
before 10 diameters (only 1.5%). The deposition flux is depending on the tur-
bulent dispersion of the droplets. This dispersion is depending on the turbulent
kinetic energy of the gas. Thus one may assume that, at the inlet of the pipe,
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the turbulent kinetic energy is much smaller in the experiment than in the
simulation. First, it is important to check if the inlet values of the turbulent
kinetic energy of the gas and of the dissipation are correct. In the simulation
kg = 1 m2/s2 and ε = 1 m2/s3 at the inlet of the pipe. For kg we can expect in
the experiment a value such as:

kg ≈ 3

2
u2

τ = 0.76 ≈ 1 (5.5)

Therefore, the inlet value of the TKE of the gas is correct. If now we consider
l a typical length scale for large eddies we can write;

νT,g = Cµ

k2
g

ε
≈ l

r
2kg

3
(5.6)

If ε has a value of 1 m2/s3, it leads to l = 0.07 m. This is impossible since the di-
ameter of the pipe is 1.27 cm. If one approximates l by D/5, then ε = 29 >> 1.
This underestimation of the inlet value of ε may explain the gap on Figure 5.1
between the measured droplet concentrations and the droplet concentrations
calculated by the simulation.
However, according to Figure 5.1, the comparison of the measured droplet con-
centrations with the droplet concentrations calculated with the simple 1D model
shows that there is a strong inlet effect in the experiment. The reduced value
of the deposition rate at the inlet of the pipe may indicate a relaminarization
of the flow at the inlet of the test section.

5.3.3 Possible relaminarization of the flow

In the experiment of Liu and Agarwal, there was a pipe of 3.2 cm i.d upstream
of the 1.27 cm i.d. test section . This upstream pipe was connected to the
test section by a reducer which exact geometry has not been detailed by the
authors. The average gas speed in the test section was 11.92 m/s while in the
upstream pipe it was only 1.88 m/s. Thus if the reducer was relatively short,
the flow was undergoing a significant acceleration at the beginning of the test
section. This acceleration can be responsible for a relaminarization of the flow
(Narasimha and Sreenivasan (1979)). Despite the lack of information about the
reducer we supposed that the flow became fully turbulent only after a certain
distance. To calculate this distance we tentatively correlated the experimental
points except the one closest to the inlet. According to equation (5.4), a good
choice is a function of the type:

ln

�
αd

αd0

�
= −m

�
X

D
− X0

D

�
(5.7)

where m is a coefficient related to the total deposition velocity and X0 the
distance after which the flow becomes turbulent. The best fit was given by:

ln

�
αd

αd0

�
= −0.0385

�
X

D
− 16.92

�
(5.8)
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Figure 5.2: Estimation of a possible relaminarization effect.

series exp-delay simulation 1D model
slope 0.0385 0.0223 0.04

Table 5.1: Comparison of the slopes of the different series.

This means that we can estimate the laminar region to be roughly 17 diameters
long. We can then translate the experimental points 16.92 diameters upstream.
This is done on Figure 5.2, where the ”exp-delay” curve is the translated exper-
imental curve. The curve labeled ”best fit” is equation (5.8).

5.3.4 Critical analysis of the model assuming a relaminar-
ization of the flow

On Figure 5.1, the simulation did not show a clear tendency of under or over-
estimation of the droplet concentration. In contrast, if a relaminarization is as-
sumed, Figure 5.2 shows that the simulation overestimates systematically this
concentration. Table 5.1 shows the slopes of the different series pictured on
Figure 5.2. These slopes are proportional to the deposition velocity (equation
(5.2)). Therefore Table 5.1 shows that the simulation calculates a total depo-
sition velocity which is significantly below the experimental value. In contrast,
the agreement between the 1D model and the measurements is excellent.
The value of the deposited fraction (1 − αd

αd0
) predicted by the simulation is in
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Figure 5.3: Error on the deposited fraction (assuming a relaminarization of the
flow).

rather good agreement with the experiment. Figure 5.3, shows the error on the
deposited fraction assuming a relaminarization at the inlet of the test section.
In average, the simulation underpredicts the deposited fraction by 23%.
The good results of the 1D model show that K+

total ≈ 0.17 is a very good estima-
tion of the total deposition velocity. The value of the total deposition K+

total is
controlled by two resistances in series: the resistance due to turbulent dispersion
K+

disp and a boundary layer resistance due to what we will call the ”near-wall”

deposition K+
wall. This is readily expressed in equation (3.120). Let us come

back to Figure 3.12. The curve of Figure 3.12 was considered to represent the
variation of the near wall deposition velocity K+

wall with the non-dimensional
time t+ in the diffusion-impaction regime. In this regime, it was assumed that:

K+
wall ≈ K+

total (5.9)

That is to say:

K+
disp >> K+

wall (5.10)

It has been emphasized that the decrease of the total deposition velocity in the
inertia-moderated regime was due to a decrease of the turbulent dispersion but
not to a decrease of the near wall deposition velocity. That is why, in the model,
the near-wall deposition velocity was kept constant (0.17) for relaxation times
larger than 20. For relaxation times much larger than 20, the actual value of the
near-wall deposition velocity is not important because the turbulent dispersion
controls entirely the deposition rate. For particles with relaxation times much
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smaller than 20, the turbulent dispersion is large and equations (5.9) and (5.10)
are verified. For relaxation times that are at the limit of the inertia moderated
regime and of the diffusion impaction regime the situation is more complex.
Let us assume that the dispersion resistance and the near wall resistance are
identical at the edge of these two regimes. Then

1

K+
total

=
1

K+
wall

+
1

K+
disp

=
2

K+
wall

(5.11)

It implies that:
K+

wall = 2K+
total ≈ 0.34 (5.12)

It means that, at the edge of the inertia-moderated regime and of the diffusion-
impaction regime, the model uses a near-wall deposition velocity which is half
of its likely value. In the experiment of Liu and Agarwal (1974) that has been
simulated, the relaxation time of the particles was t+ = 29.6. The deposition
regime is therefore very close to the hybrid regime where both the turbulent
dispersion and the near wall deposition velocity have an influence. It is then
possible that the underprediction of the total deposition velocity comes from an
underestimation of the near-wall deposition velocity.
Equation (3.123) developed by Lee et al. (1989) is supposed, according to the
authors, to give the value of K+

wall and not K+
total. However this relation follows

remarkably the values of K+
total at high relaxation times (see Figure 3.13) where

the decrease of the deposition rate is controlled by the turbulent dispersion.
Relation (3.123) is actually an empirical fit of Lee (1987) over an entire pipe
cross section and has not been sufficiently tested to be used with confidence. At
present the variation with t+ of the near-wall deposition velocity for t+ > 20
is not known. It seems that K+

wall = 0.17 is too small. There are indications
that K+

wall = 0.34 is a better guess but further studies have too be conducted
to confirm this value.

5.3.5 Influence of the volume fraction

Figure 5.4 shows the results of the simulation for volume fractions of 1%, 0.1%,
0.01% and 0.001%. The deposited fraction is much lower in the case of large
concentrations. The curve for the two lowest concentrations are identical except
at the end of the test section. In the following, we will first study the cause
of the low deposited fraction at high concentrations. Then we will discuss the
reason of the slight difference between the simulation with a volume fraction of
0.01% and that with a volume fraction of 0.001%.

Deposition at large droplet concentration

The droplet concentration has an influence on the deposition flux. It is a well
established experimental fact. Namie and Udea (1972) were the first to show
that the deposition velocity was a decreasing function of the concentration. This
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Figure 5.4: Effect of the droplet concentration on the deposited fraction.

has been confirmed by Andreussi (1983) and Leman et al. (1985). Schadel et
al. (1990) proposed two possible explanations:� High concentrations lead to more frequent droplet-droplet collisions. It

promotes coalescence. As the droplets increase in size they become less
reactive to turbulence. Then, the deposition rate decreases.� Droplets damp turbulence in the gas phase.

Hay et al. (1996) proposed a third mechanism:� Droplets are experiencing inelastic collisions that are not leading to coa-
lescence. These collisions damp the turbulent movements of the droplets
and lead to a reduction of the deposition flux.

Soldati and Andreussi (1996) showed that the decrease of the deposition rate be-
cause of coalescence in annular dispersed flows can be significant. According to
their model, in a vertical annular flow, if each droplet/droplet collision leads to
coalescence, the total deposition velocity can drop by roughly 80%. Zaichik and
Alipchenkov (2001) integrated both coalescence and inelastic collisions. They
showed that the latter is unlikely to have a large impact on the deposition rate.
In our model there is no modeling of droplet-droplet interactions. Thus the de-
crease of the deposited fraction with droplet concentration is due to the damping
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Figure 5.5: Effect of droplet concentration on the turbulent kinetic energy of
the gas. X/D=80.

of the turbulence intensity of the gas phase by the droplet phase. Figure 5.5
shows the turbulent kinetic energy profiles at X/D = 80. Each curve is la-
beled with the inlet volume fraction of the droplet phase. One can see that
the TKE decreases with the droplet concentration. The modification of the
turbulence intensity by the presence of a dispersed phase is called ”turbulence
modulation”. When particles are large, there is an increase of the TKE be-
cause of the wake of the droplets. In contrast, when particles are small, the
droplets generate a greater dissipation1. Pourahmadi (1982) showed that this
was the consequence of an additional dissipation term due to the interphase

covariance àU ′′

idU
′′

ic. Crowe (2000) also suggested that small particles generate a
larger dissipation because they modify the turbulent dissipation length scale of
the continuous phase. Crowe (2000) discussed the criteria to find whether the
dispersed phase increases or decreases the turbulent intensity of the gas. He
presented a synthesis of different measurements of the change in turbulent in-

1The picture is however different in an annular flow. In this type of flow, there are exper-
imental evidences that the turbulent intensity is enhanced whatever the size of the particles
(Azzopardi (1999) and Trabold and Kumar (2000b)). Azzopardi (1999) suggested that it came
from:

1. The rough film/gas interface

2. The newly created droplets moving slowly close to the interface

Both effects will be accounted for in our complete model: the first with a rough wall boundary
condition for the gas phase and the second effect by the loss of momentum of the droplet phase
during deposition.
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tensity versus the ratio of the diameter of the droplet d to l the size of the largest
eddies in the flow. The graph showed that the turbulent intensity decreases if:

d

l
< 0.1 (5.13)

This is only a rough estimation based on purely experimental results. In our
case, if one considers that the typical turbulent length scale is a tenth of the
diameter of the pipe, we have:

d

l
=

16.8 10−6

1.27 10−3
≈ 1.3 10−2 < 0.1 (5.14)

Thus, one indeed expects a decrease of the turbulent kinetic energy with the
droplet concentration.
However, there is nothing in the equations of the present model that may de-
crease the turbulent kinetic energy of the gas with the concentration. This is
shown by equation (2.62) where the interaction term is positive. There is how-
ever an explanation to this peculiarity. In the present work, it was decided to
switch off certain phase-interaction terms of Fluent’s default transport equation
for the turbulent kinetic energy. The reason for doing so, was that Fluent user’s
guide (Fluent Inc. (2005)) did not provide references for these additional terms
which expressions were somewhat postulated. It appeared that some of these
additional terms that according to the user’s guide could be switched off, were
always switched on (Laux (2006)). These terms can explain the decrease of the
kinetic turbulent energy with the concentration of the droplets. However the
values of the turbulent kinetic energy of the gas phase on Figure 5.5 should be
taken with care.

Deposition for the case of a volume fraction of 0.001%

At a downstream distance of 80 D, Figure 5.4 showed that the value of ln (α/α0)
was slightly higher for α0 = 0.001% than for α0 = 0.01%. Figure 5.6 shows a
close up of this curve with a sampling of the values every diameter for 70 ≤
X/D ≤ 80. It shows oscillating values for α0 = 0.001%. These values were also
changing with the number of iterations. At this stage of the iteration process,
the residuals were not decreasing anymore and indicated that the convergence
was reached. It is believed that, at very small concentrations, the value of
α/α0 was influenced by the residual numerical oscillations occurring after the
convergence of the solution. The use of a double precision solver may help
working out this defect.

5.4 Summary: Performance of the model for
pure deposition

Compared to the results obtained by Liu and Agarwal (1974), the model pre-
dicts the right order of magnitude of the deposited fraction but underestimates
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Figure 5.6: Comparison of ln (α/α0) for α0 = 10−4 and α0 = 10−5.

this deposited fraction by 20 − 25%. This underestimation is probably mainly
due to an inaccurate value of the near-wall deposition velocity when the parti-
cle relaxation time t+ is greater than 20. In the present model, when t+ ≥ 20,
K+

wall ≈ 0.17. K+
wall ≈ 0.34 is believed to be a better estimate. When t+ is

significatly larger than 20, the modelling of K+
wall is not important since the

turbulent dispersion in the core controls the deposition flux.
The model predicts a correct qualitative behavior at large droplet concentra-
tion. This is due to Fluent’s additional terms in the turbulent kinetic energy
transport equation. However the justification of the mathematical expressions
of these terms is not provided by Fluent and as a result the simulation data at
high droplet concentration should be considered with care. At very low concen-
trations, one may need a double precision solver.
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Chapter 6

Annular flow without
dispersed phase

In this chapter we will compare the prediction of the model with an experimental
study of an annular flow without droplets. The experimental work was carried
by Asali (1984). The purpose of this chapter is to validate the film model.

6.1 Description of the experiments

Asali (1984) did measurements of liquid film heights and pressure drops in ver-
tical annular flows. The inner diameters of the pipes were 4.2 and 2.29 cm. The
fluids were either air and water or air and glycerin. Here the case chosen is
that of an air/water flow with no entrainment in a 4.2 cm i.d. pipe. The water
had a density of 990 kg/m3 and a viscosity of 0.0011 kg/(ms). Liquid and gas
mass flow rates were varied. In the experiment, the liquid was introduced along
the wall by an annular slot. Asali measured the pressure gradients with two
water-filled manometers. They were located 4.57 m, 4.65 m and 4.77 m from
the annular slot. The total length of the pipe was 9 m. The film thickness was
determined by the measurement of the conductance between two electrodes.
These electrodes were mounted flush in the wall.

6.2 Set-up of the numerical case

6.2.1 Grid

The grid was axisymmetric. Four grids were tested for a single phase flow. The
radial spacing of the cells was always a twentieth of a diameter. The length of
the cells were varied between 1/5 and 2 diameters. The single phase solution
was grid-independent. Multiphase simulations were performed with the coarser
grid (D/20 X 2D).

137
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6.2.2 Inlet condition

In this experiment the flux of film must be specified at the inlet. This type of
boundary condition is slightly more delicate to handle than the inlet of a liquid
phase which is dispersed. As presently programmed, our model requires an inlet
film height h0 and an inlet turbulent kinetic energy of the gas kg0. However,
as will be detailed below, the film mass flow rate at the inlet is entirely defined
from h0 and kg0. As a result for a given inlet film mass flow rate, h0 and kg0

can not be chosen independently. The inlet liquid flow rate is:

ṁf0 = ρf πDuavg h0 (6.1)

If one introduces relation (3.33) for uavg and the modeling of τi (3.87), it gives:

ṁf0 = ρf πD

�
ρfgxh

3
0

3µf
+
ρg

p
Cµkg0h

2
0

2µf

�
(6.2)

Equation (6.2) is the relation that links ṁf0, h0 and kg0. Note that in equation
(6.2) gx is negative. To fulfill equation (6.2), the easiest way is to impose a film
height at the inlet of the pipe. This will give the turbulent kinetic energy at the
inlet. If one wants to impose a TKE at the inlet, this requires the resolution of
a third order algebraic equation to find h0. The turbulent kinetic energy at the
inlet is given by:

kg0 =
2µf

ρg

p
Cµh2

0

�
ṁf0

ρf πD
− ρfgxh

3
0

3µf

�
(6.3)

The inlet value of the turbulent kinetic energy should be in agreement with
the average gas velocity. The function kg0(h0) given by equation (6.3) has a
minimum. Often the values of the heights that give a TKE in agreement with
the average gas velocity, are not far from the height that gives a minimum
turbulent kinetic energy. In one series of experiments of Asali (1984), the liquid
mass flow rate was 3.18 g/s. In this case, according to equation (6.3), the
minimum turbulent kinetic energy is about 7.1 m2/s2 for a height of 250 µm.
This roughly corresponds to a turbulent intensity of:r

2

3
kg0 = 2.2 m/s

Asali made the gas flow rates vary between 32.61 g/s and 104.9 g/s. This cor-
responded to average gas velocities between 20.3 and 57.4 m/s. It means that,
at the inlet of the computational domain, the ratio of the turbulent intensity to
the mean gas velocity is between 4 and 11%. It seems correct. On the contrary,
if one chooses a height of 1 cm, it gives ratios between 19 and 55 %. If one
chooses a height of 10 µm, it gives ratios between 56 and 158 %. Both estima-
tions are clearly incorrect. It is interesting to see that equation (6.3) gives an
estimation of the equilibrium thickness of the film. In all the simulations, we
chose an inlet height of h0 = 400µm. This value was chosen significantly higher
than the experimental equilibrium value, to see if the model could predict the
experimental values with a rather incorrect inlet height.
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Figure 6.1: Simulated vs. measured film height. (Measurements made by Asali
(1984))

6.2.3 Test cases

The simulations were performed for 5 liquid flow rates: 0, 3.18, 5.17, 7.45 and
9.94 g/s. Each of this flow rates have been tested with five possible gas flow
rates: 32.61, 49.10, 71.81, 87.93, and 104.9 g/s.

6.3 Results

6.3.1 Film heights

The results for the film height obtained in the simulation are plotted versus the
experimental values on Figure 6.1. Circle symbols represents the data obtained
without entrainment. In the present model, the only use of the surface tension
is to calculate the entrainment flux. It was then possible to impede entrainment
by specifying a surface tension of 109 N/m. Under each circle of Figure 6.1
is a cross that represents the value of the height of the film when entrainment
was allowed. The measured values and the simulated values are in very good
agreement within ±20%. As a rule the entrainment was either zero or very small.
It agrees with the observations made by Asali (no entrainment at all). One
simulation gave a height of the film which was lower without entrainment than
with entrainment. These data have been circled on Figure 6.1. It corresponds to
the lowest gas flow rate (32.61 g/s) and the highest liquid flow rate (9.94 g/s).
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Figure 6.2: Simulated vs. measured pressure drop. (Measurements made by
Asali (1984))

The calculation indicated that, in this case, the gas barely sustained the film
flow in the upward direction. As a result, the computed film height was very
unstable with time and had doubtful values when the velocity of the film was
close to zero. The predictions represented by these points are untrustworthy.

6.3.2 Pressure drops

The results for the pressure drops obtained in the simulation are plotted ver-
sus the experimental values on Figure 6.2. The predicted pressure gradient is
significantly above the measured value. Pressure gradients are systematically
overpredicted with an overprediction of +44% in average and +75% at the most.
A tentative explanation of this overprediction will be given in the next section.
Looking into the literature, it seems that good predictions of the pressure drop
remain difficult to perform. The recent three fluid model of Alipchenkov et al.
(2004) could predict pressure gradients with an average precision ±30%. Ho
Kee King and Piar (1999) needed to adjust their modelling of the wall-friction
of the film to get a correct prediction of pressure gradients. Experimental cor-
relations are not particularly reliable. Owen et al. (1985) tested 9 different
relations. When they compared them to their experimental results, they noted
50% of overprediction at best and sometimes up to 150%.
Figure 6.2 shows that the pressure gradient with entrainment is lower than with-
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out entrainment. A possible explanation is that the height of the film is lower
when entrainment occurs. As a result the equivalent sand roughness s = 4h
(equation (3.82)) is lower. Then the pressure drop decreases. The entrained
fraction of droplets is very small1. Therefore the pressure loss due to deposi-
tion and re-entrainment is not big enough to compensate the gain due to the
deacrease of the roughness height.
Two data points are circled on the graph. The circle that contains both the en-
trainment and the no-entrainment points corresponds to the simulation where
the force exerted by the gas on the film and the gravity force were practically
equal. The film was very unstable and barely flowing upward. The circle con-
taining only the entrainment data was exactly at the onset of entrainment. The
volume fraction of the droplet phase at the outlet was 7 · 10−7. Although the
height of the film was perfectly stable, the pressure gradient was oscillating
significantly in time because of the continuous shift between the entrainment
regime and the no-entrainment regime. Hence, the prediction represented by
this point is not particularly reliable.

6.3.3 Critical analysis

In this section we will try to explain the discrepancies between the computed
and the experimental results. First we will study the consequences of assuming
that the velocity of the gas/film interface is zero for the wall boundary condition
of the gas. Second we will study closely the relation between the equivalent sand
roughness of the film and its height. The assumption that the film is laminar
will also be studied.

a) Overestimation of the pressure drop

a1) Velocity of the gas/film interface. The overprediction of the pressure
drop may be due to a non-negligible velocity of the interface compared to the
velocity of the gas. Indeed, if the velocity of the interface is non-negligible, the
wall boundary condition for the gas phase in the present model is inaccurate.
This inaccuracy leads to an overprediction of the interfacial shear stress and
consequently to an overprediction of the pressure drop. According to equation
(3.36), without deposition and entrainment and assuming a laminar film, the
velocity of the interface can be estimated by:

cx = h

�
2τi + ρfgxh

2µf

�
(6.4)

A force balance on an infinitesimal length of pipe leads to:

τi = −D
4

∂P

∂X
(6.5)

1For the largest liquid and gas mass flow rate, when the entrainment is largest, the volume
fraction was 0.0042 % at the tube outlet.
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According to Figure 6.2, we can evaluate the interfacial shear stress by:

τi ≈
0.04

4
· 800 = 8 Pa (6.6)

If we now estimate the height of the film to be 200µm (Figure 6.1), according
to equation (6.4), the velocity of the interface is 1.3 m/s. In the experiments
conducted by Asali (1984), the average value of the gas velocity was comprised
between 20.3 and 57.4 m/s. The ratio of the interface velocity to the average
gas velocity is then approximately 4 or 5 %. The ratio of the interface velocity
to the gas velocity at the centroid of the near wall cell is larger. The velocity of
the interface cx is thus much lower than the velocity of the gas, but assuming
cx = 0 leads to a significantly inacurate wall boundary condition for the gas
phase. This inaccuracy contributes to an overestimation of the pressure drop.

a2) Equivalent sand roughness and turbulent viscosity of the film.
The equivalent sand roughness of the liquid layer is also a key parameter for a
correct computation of the pressure drop. This roughness is given by s/h = 4.
In the following we will study closely the ratio s/h and its influence on the
pressure drop.
In the present simulation the turbulent viscosity of the film is very small or zero
because the only turbulence possible in the liquid layer comes from deposition.
As previously emphasized in chapter 3, neglecting the turbulence induced by
the flow of the film requires two conditions:

1. The film is very thin.

2. The interface of the film is rather smooth.

These conditions are fulfilled in a high pressure scrubber. In contrast, we sim-
ulate here an annular flow with air and water at atmospheric pressure. Hewitt
and Hall Taylor (1970) showed that a laminar model of the liquid layer was not
satisfactory in this case. Moreover specifying s/h = 4 is likely to be in contra-
diction with the assumption of a smooth interface. Therefore the effect of the
turbulent viscosity of the film must be studied.
In the following we will study the influence of a lower value of s/h and of a
higher value of the turbulent viscosity of the film. To study s/h another series
of simulation has been performed with s/h = 3.2 which is the lowest possible
value according to equation (3.76). These calculations gave encouraging results
but showed that s/h = 3.2 may still be to high a value. Next we will give some
pieces of information that confirms s/h to be much lower than first expected.
Finally, a simplified analysis of the flow is given to see what is the influence
of s/h on the pressure drop. This last analysis also quantifies the effect of an
increased turbulent viscosity of the film.

b) Influence of s/h: additional simulations

The ratio s/h = 3.2 was compared to the ratio s/h = 4. Three gas mass flow
rates have been tested (32.61, 71.81 and 104.9 g/s) against three liquid mass
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Figure 6.3: Comparison of the pressure drop predictions with s/h = 4 and
s/h = 3.2.

flow rates (3.18, 7.45 and 9.94 g/s). The pressure gradients results are plotted
on Figure 6.3. If one excludes the circled points (difficulty of convergence), the
average difference with experimental data for s/h = 4 was 52%. With a ratio
of s/h = 3.2 this error drops to 40%. Even if the predicted pressure drop has
improved, it seems that the ratio of the sand roughness height to the height of
the film is still overestimated.
The heights of the film are reported on Figure 6.4. The height of the film in-
creases when s/h is smaller. It is expected because the decrease of the roughness
height implies a decrease of the turbulent kinetic energy of the gas by the wall.
Consequently the interfacial shear which is modeled by:

τi = ρg

È
Cµkg (6.7)

becomes lower. Then the velocity of the film decreases and the height of the
film increases. With s/h = 4 the mean overestimation of the film height is 3%.
With s/h = 3.2, it is 7% (excluding the circled data). Since the uncertainty
measurements was not given by Asali (1984), it is not possible to tell if these
errors are significant. One can notice however that, for s/h = 3.2, one point is
outside the range of the ±20%. The ratio of the sand roughness to the height of
the film has less effect on the film height than on the pressure drop. This will
be explain later in this chapter.
The additional simulations showed that the ratio s/h is lower than 3.2. It
seems that it can be decreased further without increasing the height of the film
significantly. If this is verified, the simulation results will be in better agreement
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Figure 6.4: Comparison of the heights of the film with s/h = 4 and s/h = 3.2.

with the pressure drop measurements of Asali (1984) and still be in agreement
with his film heights measurements.

c) Additional indications that s/h < 3.2

The effect of entrainment and deposition on experimental correla-
tions. Before lowering further the value of s/h one should check if this is not
in contradiction with experimental results. The value of s/h came from two
equations that are re-written below:

Cfg ≈ 0.005

�
1 + Γ

h

D

�
(6.8)

and
Cfg ≈ 0.005

�
1 + 75

s

D

�
(6.9)

Equation (6.8) is empirical. Wallis(1969) proposed Γ = 300 and Dobran (1987)
and Nigmatulin (1991) proposed Γ ≈ 240. Equation (6.9) is an approximation
of the friction factor for a fully rough regime. Equating (6.8) and (6.9) leads to

s/h = Γ/75 (6.10)

However one should be aware that the measurements made to obtain relation
(6.8) are pressure drops measurements. We underlined previously that a sig-
nificant part of this pressure drop is generated by the deposition/entrainment
process and not only from the roughness of the liquid film. Fore and Duk-
ler (1995a) showed that up to 20% of the pressure drop could be due to the
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deposition/entrainment process in an annular flow (air-water vertical flow at
atmospheric pressure). If then only 80% of the measured friction coefficient
is taken into account, the relation between the film height and its equivalent
roughness becomes

0.8 · 0.005

�
1 + Γ

h

D

�
= 0.005

�
1 + 75

s

D

�
(6.11)

Then the ratio s/h is:
s

h
=

0.8Γ

75
− 0.2

75

D

h
(6.12)

Experimental results from the literature show that 240 ≤ Γ ≤ 300 (see chapter
3). According to the experiments performed by Asali (1984), in the present
case, 172 ≤ D/h ≤ 840. Then it gives for s/h the following range:

0.3 ≤ s

h
≤ 2.7 (6.13)

The maximum of this range is below 3.2. One can then conclude that a lower
value of s/h is likely and that this value is not in contradiction with the exper-
imental results of the literature if one takes into account the pressure drop due
to the entrainment and the deposition.

The shape of the interface. Another model, based on different principles
confirms a low value of s/h. Let us first consider a model for the shape of the
interface. The interface is assumed to be a periodic function. On a space period
L this interface has two heights values. A high value h2 corresponding to a
wave and a low value h1 on the rest of the period. The portion of the period
occupied by the wave is IL where I is the intermittency. We suppose that
the roughness of the interface is s = h2 − h1. This model of the interface is
illustrated on Figure 6.5. The mean height h is:

h =
ILh2 + (L− IL)h1

L
= I h2 − (1 − I )h1 (6.14)

Introducing s/h = (h2 − h1)/h one obtains:

h

h1
=

1

1 − I
s
h

(6.15)

Schadel (1988) and Paras et al. (1994) showed that for annular air water flow
at atmospheric pressure the intermittency could be approximated by 0.4. This
implies that s/h < 2.5 because otherwise h/h1 would be less than 0. Figure 6.6
illustrates the shape of the interface for different values of s/h. This figure shows
that the film is highly deformed for s/h > 1. If the interface is highly deformed,
the liquid layer may be disrupted, leading to entrainment. Since entrainment
was not experimentally observe it is likely that s/h is 1 or less.
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Figure 6.5: Simplified model of the film/gas interface.

Figure 6.6: Shape of the interface for different values of s/h.
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Figure 6.7: Approximated and non-approximated value of s/h.

The approximation of the friction coefficient in the fully rough regime.
It must be underlined that relation (6.9) is an approximation. The expression
of the friction factor in a fully rough regime (3.71) and equation (3.66) lead
to relation (3.72). Equation (6.10), which is an approximation of equation
(3.72), was only used to avoid a diameter dependence of the relation between
the equivalent sand roughness of the film and the height of the film. Figure 6.7
shows how the ratio s/h is changed by the approximation s/h = Γ/75 compare
to the non-approximated value given by (3.72). Except if Γ < 20, s/h = Γ/75
overestimates the value of s/h. This overestimation in % is reported on Figure
6.7. It is shown that this overestimation is important especially for 0.5 ≤ s/h ≤
2.5. Thus in the present case, the rough approximation of the friction coefficient
by equation (6.10) overestimates the ratio s/h and consequently the pressure
drop. This overestimation is diameter dependant.

The assumption of the fully rough regime. As underlined by Oliemans
et al. (1986), if the protrusions of the liquid layer are within the gas viscous
sublayer, the equivalent roughness of the film must be 0. According to these
authors:

s

h
= Max

�
Γ

75

�
1 − 5νg

uτh

�
; 0

�
= Max

�
Γ

75

�
1 − 5

h+

�
; 0

�
(6.16)

Figure 6.8 shows for Γ = 300 the value of s/h according to equation (6.16). If
a fully rough regime is not assumed and if equation (6.16) is valid, one can see
that, for h+ < 100, there is a significant difference between the value of s/h and
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Figure 6.8: Value of s/h according to Oliemans et al. (1986).

the asymptotic value Γ/75 = 4. In the simulations the value of h+ was between
20 and 100. Thus the roughness height was systematically overestimated.

Sum-up. The discussions above indicated that s/h is overestimated and that
this overestimation has several sources. We can say that s/h is probably less
than 2.5 and may be close to 1. However such an important change in the ratio of
the equivalent roughness height to the mean height of the film implies important
changes in the film height and the pressure drop. In the next subsection, we
will present a simplified model of the film and study quantitatively the effect of
the ratio s/h and of the turbulent viscosity of the film on the interfacial shear
stress and on the height of the film.

d) Effects of s/h and of the turbulent viscosity of the film on the
height of the film and on the interfacial shear stress

Equations of the model. The interfacial shear stress is by definition:

τi ≡
1

2
Cfg(h)ρgU

2
g (6.17)

This latter equation assumes that the velocity of the interface is negligible with
respect to the bulk gas velocity Ug. Since there is no entrainment in the experi-

ments of Asali, the film volume flow rate Q̇f0 is a constant and the conservation
of mass can be written:

Q̇f0 = Uf · h (6.18)
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The conservation of momentum is given by equation (3.33). In can be written
as follows:

Uf =

�
ρfgh+

3

2
τi

�
h

3 (µf + µTf )
(6.19)

We will also suppose that:

Cfg(h) = 0.005

�
1 + Γ

h

D

�
(6.20)

where Γ is free to vary between 0 and 300. Finally it is admitted that:

s

h
=

Γ

75
(6.21)

Solution. The set of equations (6.17), (6.18), (6.19), (6.20) and (6.21) leads
to a third order algebraic equation in h:

3 (µf + µTf ) = (−Gh+ I Cfg(h))h
2 (6.22)

G is a coefficient related to the gravity:

G ≡ − ρfg

Q̇f0

(6.23)

I is a coefficient related to the interfacial shear:

I ≡ 3

4
ρg

U2
g

Q̇f0

(6.24)

Equation (6.22) can be solved exactly but the expression for h is quite cumber-
some so it was solved numerically2. Two cases were studied:

1. If the film is laminar (µTf=0), what is the impact of s/h on the film height
and on the interfacial shear stress τi ?

2. If Wallis’ correlation is valid (Γ = 300), what is the impact of µTf/µf on
the film height and on the interfacial shear stress τi ?

Effect of s/h. We define the index 0 which indicates the value of a quantity
when s/h = 4 and µTf = 0. For the Simple Algebraic Model (SAM):

h0 = h (s/h = 4;µTf = 0) = 103 µm

Similarly
τi0 = τi (s/h = 4;µTf = 0) = 18.8 Pa

Assuming a laminar film, the effect of s/h on the height of the film and on the
interfacial shear is shown on Figure 6.9. Table 6.1 compares the values given by
the curves of Figure 6.9 at s/h = 3.2 and the values given by the simulations
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Figure 6.9: Effect of s/h on the height of the film and the interfacial shear stress.

SAM Simulation
h0 (µm) 103 55
h (s/h = 3.2;µTf = 0) /h0 1.039 1.036
τi (s/h = 3.2;µTf = 0) /τi0 (SAM) 0.931 0.929
∆P (s/h = 3.2;µTf = 0) /∆P0 (Simulation)

Table 6.1: Comparison s/h = 3.2 and s/h = 4 in the simulation and in the
Simple Algebraic Model (SAM).
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Figure 6.10: Influence of µTf/µf on the height of the film and the interfacial
shear stress.

when s/h = 3.2. Despite a difference between the reference heights, in terms
of non-dimensional quantities, the algebraic model is in agreement with the
simulation data. The algebraic model then seems to give reliable predictions of
the influence of the ratio s/h on h and on τi. As indicated earlier, the value
s/h = 1 might be the most appropriate. If s/h = 1, the interfacial shear
stress decreases by 30% so that the pressure drop would be in a much better
agreement with the measured value of Asali. However the height of the film
would increase significantly (20%) because the slope of h/h0 is steeper as s/h
tends toward 0. Thus one expect for s/h = 1 a certain desagreement with the
height measurements of Asali (1984).

Effect of an additional turbulent viscosity. The aim is here to see what
is the overall effect of an additional averaged turbulent viscosity of the liquid
film which value µTf varies between 0 and 10000µf . Figure 6.10 indicates the
influence of the ratio µTf/µf on the height of the film and on the interfacial
shear. The figure shows that both quantities increase with the turbulent vis-
cosity of the liquid layer. However this increase is very slow. The interfacial
shear is only multiplied by ten when the turbulent viscosity is multiplied by a
factor 10000. As a result, one can consider that the turbulent viscosity of the
film is not a crucial factor in the present case, the present case having a low
water mass flow rate, a high air mass flow rate and no entrainment. Increasing

2The input data from Asali (1984) were taken with the highest air flow rate (104.9 g/s)
and the lowest water flow rate (3.18 g/s).



152 CHAPTER 6. ANNULAR FLOW WITHOUT DISPERSED PHASE

the turbulent viscosity of the film would slightly increase the difference between
the simulation data and the experimental measurements.

e) Sum-up of the critical analysis of the model.

The overestimation of the pressure drop comes from:� an inaccurate wall boundary condition for the gas phase that does not
account for the velocity of the interface.� an overestimation of the equivalent sand roughness of the film which is
here modeled by s/h = 4.

Considerations on the shape of the interface showed that s/h is probably around
1. A simple algebraic model confirmed that if s/h = 1, there is a significant
decrease of the pressure drop (-30%). The conterpart is an increase of the film
height (+20%). The turbulent viscosity of the film in contrast had no significant
influence on the height of the film and on the interfacial shear unless µTf was
very high (10000 times the molecular viscosity).

6.4 Performance of the model for pure annular
flows

In this chapter, the predictions of the model were compared to the experimental
results of Asali (1984). He measured the thickness of the liquid film and the
pressure drop in vertical annular flows without droplets. The film heights are
predicted correctly by the model. However the pressure drops are significantly
overpredicted. It seems that, for obtaining the correct pressure drop; first the
velocity of the interface should be incorporated in the wall boundary condition
of the gas and second the ratio of the sand roughness of the film s to the height
of the film h must be decreased significantly, possibly divided by a factor 4.



Chapter 7

Simulation of an annular
flow

In this chapter the predictions of the model have been compared with the exper-
imental data obtained by Azzopardi and Teixeira (1994a, 1994b) in an annular
flow. They made measurements of droplet fluxes, gas and droplet velocity pro-
files as well as turbulent intensities.

7.1 Experiments

7.1.1 Experimental arrangement

Azzopardi and Teixeira made measurements in a vertical air/water annular flow.
They used a pipe of 32 mm inner diameter. The liquid film was introduced by
a porous sinter at the bottom of the test section. Measurements were made 120
diameters above the liquid entry point. The pressure was 1.5 bar (see Azzopardi
(1999)).

7.1.2 Measurements

Measurement of the droplet flux

Unfortunately, the authors did not specify how they measured the droplet flux
at the outlet of the test section. It is however probable that they used the same
technique as Azzopardi et al. (1991). The latter determined the film flow rate
by withdrawing the liquid layer through a porous wall.

Other measurements

Azzopardi and Teixeira used Laser Doppler Anemometry to measure the gas
velocity and the turbulent fluctuations. The light was scattered from 1 µm

153
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polystyrene particles. The droplet velocities and diameters were measured by
Phase Doppler Velocimetry.

7.2 Set-up of the numerical case

7.2.1 Grid and inlet condition

The grid was axisymmetric. Each cell had a radial length of a twentieth of a
diameter and an axial length of 2.5 diameters (D/20 x 2.5D). This mesh and
two finer meshes have been tested on a single phase flow. For the finner meshes
we used first cells of (D/40 x D/20) and second cells of (D/20 x D/20). The
single phase solution was grid-independent.
The inlet condition for the film was similar to that discussed in the previous
chapter. The height of the film at the inlet was 400 µm.

7.2.2 Droplet diameter

The model cannot handle several droplet diameters. It needs a mean value as an
input parameter. Azzopardi and Teixeira (1994a) made measurements at three
radial locations: the centerline, the eighth and the forth of the diameter from the
centerline. According to the experiments, for given gas and liquid flow rates, the
diameter of the droplets had its highest value at the center line and it decreased
with the radial position. It is not obvious that this decrease continued when
droplets were close to the film. Thus, it is doubtful to extrapolate the values
of the droplet diameters on the whole pipe radius from the experimental data.
Since the diameter of the droplets is unknown over half of the radius, an accurate
value of the mean diameter cannot be calculated from the data of Azzopardi
and Teixeira. In the simulation the droplet diameter has been determined by
calculating an arithmetic mean of the measured values. The extremes of the
measured values differed by no more than ±8% from the arithmetic mean.

7.2.3 Tested cases

Two series of cases have been simulated. The first series had a constant liquid
mass flux of 15.9 kg/(m2s) and four gas fluxes were tested: 24.5, 31.8, 43.7, and
55.6 kg/(m2s). The second series had a constant gas mass flux of 31.8 kg/(m2s)
and three liquid fluxes were tested: 15.9, 31.7, and 47.6 kg/(m2s).

7.3 Results

7.3.1 Entrained liquid mass flux

a) Simulation data

The predicted entrained liquid fluxes, which are the droplet mass fluxes, are
presented in Table 7.1 and Table 7.2. As a rule the predictions are bad. In half
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Gas mass flux (kg/(m2s)) 24.5 31.8 43.7 55.6
Experimental value 0.86 0.96 1.43 2.19

Predicted value downward flow 0.37 0.51 1.03

Table 7.1: Entrained liquid mass fluxes. Liquid mass flux: 15.9 kg/(m2s).

Liquid mass flux (kg/(m2s)) 15.9 31.7 47.6
Experimental value 0.96 2.92 5.20

Predicted value 0.37 downward flow downward flow

Table 7.2: Entrained liquid mass fluxes. Gas mass flux: 31.8 kg/(m2s).

of the cases, the model predicts a downward flow of the liquid. More precisely,
the film comes in because of the imposed inlet condition but reaches a point
where its velocity is 0. After, the liquid layer is caught between the inlet and
this point and becomes very unstable. Entrainment occurs but the values of the
entrained fraction cannot be compared with experiments because the calculated
flow is not a clear upward annular flow as observed by Azzopardi and Teixeira.
The difference between the predicted and the experimental entrained flux are
-64% and -53% for gas fluxes of respectively 43.7 and 55.6 kg/(m2s). The value
in italic is the same case for the two tables (gass mass flux 31.8 kg/(m2s) and
liquid mass flux 15.9 kg/(m2s)). This value is doubtful because the flow was
barely upward. In this case, 44 mm after the inlet the liquid film velocity was
practicaly 0 (0.7 mm/s).

b) Critical analysis

Two difficulties appeared during the simulation of the experiment performed by
Azzopardi and Teixeira (1994a), (1994b). First a downward flow often occurred
in the simulation while an upward flow was observed experimentally. Given that
at the inlet there is a positive film mass flow rate, it means that the velocity of
the film decreases along the tube before becoming 0 and then negative when the
downflow starts. There is then an underestimation of the film velocity by the
model. The velocity of the film is the result of a balance between forces driving
the film upward (interfacial shear, momentum transfers due to deposition) and
phenomena driving the film downward or slowing it down (gravity, viscosity,
momentum transfers due to entrainment, turbulence of the film).
The second difficulty is that, even when the film flow is upward, the droplet
mass flux is too small. It means that the entrainment rate in the simulation
is lower than in the experiments. We will attempt with a simplified analytical
model to find why the velocity of the film and the entrainment rate are too low.
It is worth noticing that the velocity of the film and the entrainment rate are
closely related phenomena.
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c) Analytical model

In this section we will use the same type of algebraic model as that used in
chapter 6 but adapted to take into account entrainment and deposition. We
will first give the equations of the model, then study the influence of:

1. s/h, the ratio of the equivalent sand roughness of the film to the mean
height of the film

2. µTf,i/µf , the ratio of the turbulent viscosity induced by the film flow to
the molecular viscosity

3. Wecrit the critical Weber number

4. the proportionality coefficient 0.023 in equation (3.155) (entrainment rate
correlation of Alipchenkov et al. (2002b))

Finally a test has been conducted with another type of entrainment rate corre-
lation based on the Reynolds number of the film instead of its Weber number.

Equations of the model. If the velocity of the interface is very small compare
to the bulk velocity Ug, the definition of the interfacial shear stress is:

τi ≡
1

2
Cf (h)ρgU

2
g (7.1)

We will suppose that an equilibrium takes place between entrainment and de-
position that is to say:

Je = Jd (7.2)

Equation (7.2) implies that the mass conservation equation can be written:

Uf h = Q̇f0 (7.3)

Assuming that the velocity of the interface is negligible compared to the velocity
of the droplet phase, the momentum equation (3.33) for the film leads to:

Uf =

�
ρf g h+

3

2
τi + Jd Ud

�
h

3 (µf + µTf,i + µTf,d)
(7.4)

where Ud is the droplet velocity, µTf,i the turbulent viscosity induced by the
film flow and µTf,d the turbulent viscosity due to droplet deposition. The latter
is modeled by:

µTf,d = Jd h (7.5)

Finally, according to Alipchenkov et al. (2002b), the entrainment rate can be
modeled by an equation which has the following form:

Je = χ
√
ρf τi

�
τi h

Σ
−Wecrit

�
(7.6)
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where χ is a proportionality constant. The previous equations (from (7.1) to
(7.6)) lead to:

Je = ECf (h)3/2h− Ecrit

È
Cf (h) (7.7)

where E is a coefficient representing entrainment. E is defined by:

E ≡ χ

É
ρf

2
ρ3/2

g

U3
g

Σ
(7.8)

Ecrit is a coefficient representing the influence of the entrainment threshold. It
is defined by:

Ecrit ≡ χ

É
ρfρg

2
Ug Wecrit (7.9)

The above equations lead to an equation for h which is:�
−G+DCf (h)3/2

�
h3

+
�
I Cf (h) −Dcrit

È
Cf (h) − Td Cf (h)3/2

�
h2

+Td,crit

È
Cf (h)h− 3µf

�
1 +

µTf,i

µf

�
= 0 (7.10)

G is a gravity coefficient defined by equation (6.23). I is a coefficient related to
the interfacial shear and is defined by equation (6.24). D is a coefficient related
to the transfer of momentum due to droplet deposition. It is defined by:

D ≡ E Ud

Q̇f0

(7.11)

Similarly Dcrit is defined by:

Dcrit ≡
Ecrit Ud

Q̇f0

(7.12)

Finally Td is a coefficient related to the increase of the turbulent viscosity of the
film due to deposition. It is defined by:

Td ≡ 3E (7.13)

Similarly Td,crit is defined by:

Td,crit ≡ 3Ecrit (7.14)

To solve equation (7.10), we will assume that the friction coefficient takes the
form:

Cf (h) = 0.005

�
1 + Γ

h

D

�
(7.15)

and that:
s

h
=

Γ

75
(7.16)
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Figure 7.1: Effect of s/h in an annular flow with entrainment.

The height of the film was calculated in the case of the experiment of Azzopardi
and Teixeira (1994a),(1994b) for the highest air mass flux 55.6 kg/(m2s) and
the lowest liquid mass flux 15.9 kg/(m2s). It was also assumed that the droplet
velocity was 80% of the gas velocity. This has been verified by Azzopardi and
Teixeira and in the present simulation. Finally, unless specified otherwise, the
critical Weber number was 0.

Influence of s/h. Figure 7.1 shows the effect of the ratio s/h on the height of
the film, the interfacial shear stress and the entrainment rate. The normalization
values correspond to the values for s/h = 4 and µTf,i = 0.

h0 = 125 µm ; τi0 = 9.33 Pa ;Je0 = 3.55 · 10−2 kg/(m2s−1)

Figure 7.1 shows a similar feature for the height of the film and for the interfacial
shear as Figure 6.9 where entrainment was zero. The entrainment rate decreases
when s/h is reduced. Thus reducing the ratio s/h will not provide a better match
with experimental results. In addition when s/h is reduced, h increases, that is
to say that the velocity of the film decreases. A comparison of the simulation
data and of the experimental data showed that the velocity of the film was too
low (leading sometimes to a downward flow), and that the entrainment rate was
also underestimated. Lowering s/h can only worsen these two effects. So, the
source of the underestimation of the film velocity and of the entrainment rate
is not an overestimation of s/h.

Influence of µTf,i/µf . Figure 7.2 shows the effect of the ratio µTf,i/µf on the
height of the film, the interfacial shear stress and the entrainment rate. Figure
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Figure 7.2: Effect of µTf,i/µf in an annular flow with entrainment.

7.2 shows a similar feature for the height of the film and for the interfacial shear
as Figure 6.10 where entrainment was zero. The influence of the turbulent
viscosity induced by the film flow is small on h and on τi. In contrast, if
µTf,i = 5µf the entrainment rate is already 3.7 times higher. Then, taking into
account the turbulence induced by the film flow and not only the turbulence due
to droplet deposition, is likely to improve entrainment predictions. However it
is not going to improve the bad estimation of the film velocity.

Influence of Wecrit. Figure 7.3 shows the influence of the critical Weber num-
ber on the height of the film, the interfacial shear stress and the entrainment
flux. The striking feature of this graph is that quite unexpectedly an increase
of the threshold for the beginning of entrainment leads to an increase of the en-
trainment flux. Indeed, according to Figure 7.3 as Wecrit increases, the height
of the film increases and so does the interfacial shear stress. This increases both
the Weber number of the film We = τi h/Σ and

√
τi. Since Je ∝ √

τiWe, the
entrainment flux is significantly increased when the critical Weber number is
higher.
The effect of a decrease of the critical Weber number on the flow is thus two
fold. On the one hand it will reduce the entrainment rate. This reduction is not
desirable since the entrainment rate given by the simulation is already too low.
However this unwanted effect can be compensated with an increase of the tur-
bulent viscosity of the film. On the other hand a decrease of the critical Weber
number leads to a decrease of the liquid film height and thus to an increase of



160 CHAPTER 7. SIMULATION OF AN ANNULAR FLOW

Figure 7.3: Effect of the critical Weber number in an annular flow with entrain-
ment.

the film velocity1. It is then possible that the simulation indicated a downward
film flow because the critical Weber number was too high, leading to a thicker
film and thus to an underprediction of the film velocity.
Figure 3.23 indicated that the equations (3.159) and (3.160) proposed by Nig-
matulin et al. (1996) for the calculation of the critical Weber number, need to
be further validated. It seems that these relations overestimate the value of the
critical Weber number. Nevertheless this overestimation should be taken with
caution because the accuracy of the experimental points reported on Figure 3.23
is not known.

Influence of χ. Figure 7.4 shows the changes in the height of the film, the
interfacial shear stress and the entrainment rate with the proportionality coef-
ficient χ of the entrainment correlation (3.155). In this correlation χ = 0.023.
The interfacial shear stress and the height of the film are practically indepen-
dent of χ. Thus the velocity of the film is unaffected by the proportionality
coefficient of the entrainment rate correlation. The entrainment rate increases
proportionally with χ and consequently an increase of the value of χ will lead
to a better collapse of the droplet flux data collected by Azzopardi and Teixiera
(1994b) and of the simulated values. However as detailed in chapter 3, the value
χ = 0.023 agrees with the data of Schadel and Hanratty (1989) (Figure 3.20).
As a result it seems unlikely that the lack of accuracy of the present model is

1Assuming that the there is an equilibrium between the droplet deposition and entrainment
fluxes.
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Figure 7.4: Influence of the proportionality coefficient of the entrainment rate
correlation for an annular flow.

due to an erroneous value of χ.

Test of a correlation based on the Reynolds number of the film. In
this paragraph we will compare the correlation of Pan and Hanratty (2002a),
based on the Reynolds number of the film, and the correlation of Alipchenkov
et al. (2002b). Neglecting the critical Reynolds number, the correlation of Pan
and Hanratty is:

Je =
χ′U2

g
√
ρgρfµf

Σ

�
ρf Uf h

µf

�
(7.17)

Where χ′ = 3 · 10−6 is a non-dimensional constant. If this equation is inserted
instead equation (7.6) in our algebraic model one obtains a constant entrainment
rate of droplets from the liquid layer:

Je = J ′
e0 =

χ′ U2
g ρ

1/2
g ρ

3/2
f Q̇f0

Σ
(7.18)

The equation for the height of the film is then

Gh3 + (I Cf (h) +D′)h2 − T ′
d h− 3µf

�
1 +

µTf,i

µf

�
= 0 (7.19)

Where D′ is a coefficient linked to the momentum transfer from the droplet
phase to the liquid layer.

D′ ≡ J ′
e0Ud

Q̇f0

(7.20)
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Figure 7.5: Comparison of a Reynolds number based and a Weber number based
entrainment rate correlation.

T ′
d is a coefficient related to the turbulent viscosity generated in the liquid film

by depositing droplets.

T ′
d ≡ 3J ′

e0 (7.21)

If the critical Weber number is neglected, the correlation of Alipchenkov et al.
(2002b) gives:�

−G+DCf (h)3/2
�
h3 +

�
I Cf (h) − Td Cf (h)3/2

�
h2

−3µf

�
1 +

µTf,i

µf

�
= 0 (7.22)

Figure 7.5 compares the behavior of the entrainment correlations with respect
to an increase of the turbulent viscosity induced by the film flow. On Figure
7.5, the index 0 corresponds to values given by the correlation of Alipchenkov
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et al. (2002b) when s/h = 4 and µTf,i = 0.

h0 = 125 µm ; τi0 = 9.33 Pa ;Je0 = 3.55 · 10−2 kg/(m2s)

First one can notice that, when µTf,i/µf is small, the two types of correlation
give identical results both for the height of the film and for the interfacial shear
stress. The value of the entrainment rate with µTf,i = 0 is 3.35 times larger with
the correlation of Pan and Hanratty (2002a) than with that of Alipchenkov et al.
(2002b). Thus, when µTf,i is small, using equation (7.18) instead of (3.155) will
not have an influence on the velocity of the film (h is the same) but will increase
substantially the entrainment rate. However, the fact that the entrainment rate
is totally independent of the turbulent viscosity of the film seems surprising.
Moreover, when the simulation manage to predict an upward flow, the value of
the entrained liquid flux is roughly half of the experimental value. Correcting the
entrainment rate by a factor greater than 3, as the relation of Pan and Hanratty
indicates, may lead to an overprediction of the entrainment flux. To summarize,
it is not believed that an entrainment correlation based on the Reynolds number
of the film will lead to a significant improvement of the present model because:

1. It will probably not solve the underprediction of the velocity of the film
(h is the same).

2. It implies that the entrainment flux is independent of the turbulent vis-
cosity of the film.

3. It might overpredict the flux of entrained droplets when the film is close
to being laminar.

Conclusions of the analytical model. It as been shown that the under-
prediction of the flux of droplets may be due to the fact that the turbulent
viscosity of the film induced by the film flow has been neglected. The inability
of the model to predict correctly the direction of the film flow for high liquid
flow rates and low gas flow rates, may be explained by a value of the critical
Weber number which is too high. The decrease of the parameter s/h worsen the
predictions of the model. There is no reason to believe that the proportionality
coefficient of relation (3.155) giving the entrainment rate should be modified.
Finally, it is not expected that an entrainment rate correlation based on the
Reynolds number of the film will give substantially better results.

d) Conclusion for the entrained liquid mass flux

The entrained liquid mass flux is not predicted correctly for high liquid flow
rates and low gas flow rates. This may come from an overestimation of the
critical Weber number for the onset of entrainment. It is not recommended to
use the present model for low gas flow rates and high liquid flow rates which
is the exact opposite situation of that encountered in high-pressure gas-liquid
separators.
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Figure 7.6: Mass flux of droplets along the pipe.

The entrained liquid mass flux is quantitatively inaccurate for high gas flow
rates and low liquid flow rates. It seems that taking into account the turbulent
viscosity induced by the film flow can correct this inaccuracy. One must however
underline, that the liquid layer present in a high pressure scrubber can still be
laminar. Nevertheless, because of the lack of high pressure experimental data
with real fluids, it seems necessary to introduce the possibility for the film to
be in a turbulent regime.

7.3.2 Equilibrium between entrainment and deposition

From now on, the results will be presented only for the case with the highest
gas flow rate (55.6 kg/(m2s)) and the lowest liquid flow rate (15.9 kg/(m2s)).
Figure 7.6 shows the droplet mass flux as a function of the axial position. The
flux increases strongly close to the inlet of the pipe. Then it gradually stabilizes
as the entrainment and deposition starts balancing. This balance is studied
more closely in the following.
Another simulation was performed to study the equilibrium between entrain-
ment and deposition rates. For this new case the liquid at the inlet was totally
dispersed. A comparison of the two simulations can be seen on Figure 7.7. It
shows the entrainment flux Ė and the deposition flux Ḋ as a function of the
axial distance. The filled symbols represent the results obtained with the orig-
inal simulation where the film generates droplets (indicated f->d). The open
symbols are the results of the simulation where droplets generate the film (in-
dicated (d->f)). For the (f->d) simulation, the entrainment is slightly larger
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Figure 7.7: Equilibrium of the entrainment rate and of the deposition rate.
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Figure 7.8: Concentration profile for the (d->f) simulation.

than the deposition. The two processes come to equilibrium quite quickly. For
the (d->f)) simulation, at the inlet, the deposition is much larger than the en-
trainment and the deposited droplets form a liquid layer. At the beginning
of the pipe, this liquid layer is too thin to atomize because its Weber number
is under the critical Weber number. At 0.75 m downstream, this threshold is
overcome and entrainment starts. The entrainment rate then tends toward the
same value as the deposition rate. It is clear that both simulations indicate a
similar equilibrium value of the interchange rate (12.6 kg/(m3s)). However the
equilibrium is reached later in the (d->f) simulation compared to the (f->d)
simulation.
The concentration profiles of the simulation (d->f) for several axial distances
are given on Figure 7.8. The mean concentration decreases as the axial distance
increases. Close to the center line, the concentration profiles are flat. The ex-
tent of this flat zone increases with the axial coordinate x. For x = 3.5m, the
droplet concentration profile is flat over most of the pipe cross-section except
close to the wall. There is a large concentration difference between the cell at
the wall (centroid at r = 15.2 mm) and the last cell of the core (centroid at
r = 13.6 mm). The concentration at the wall is low immediately after the inlet
because of a high deposition rate. Figure 7.8 shows that for x > 2 m, the value
of the volume fraction of droplets at the wall is practically constant. However
the large drop in concentration between the cell at the wall and its neighbor
shows that there is no equilibrium between the wall layer and the core. The
flow is vertical, hence the only force driving the dispersed phase toward the wall
is the turbulent dispersion. A low volume fraction of droplets at the wall and
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Figure 7.9: Turbulent kinetic viscosity of the dispersed phase.

a high concentration in the core shows that it is the turbulent dispersion that
controls the deposition. In the present case, the flux of droplets from the wall
boundary cell to the film, governed by the deposition velocity K+

D, is greater
than the flux of droplets from the core to the wall boundary cell (governed by
the turbulent dispersion). The turbulent dispersion acts as a bottle neck and
slows down the movement of the particles toward the vicinity of the wall. This
explanation is confirmed by Figure 7.9. It shows the turbulent kinetic viscosity
profile of the dispersed phase 3.5 m after the inlet. One can see that it decreases
with the radial position. Consequently, the closer the droplets are from the wall,
the less they diffuse radially. That is why the particles do not reach the wall
layer easily. Identically, for the (f->d) simulation, the concentrations by the wall
rises rapidly toward the equilibrium concentration as seen on Figure 7.10, but
droplets do not reach the core easily. Consequently the profiles present a peak
by the wall and are rather flat in the core. From the previous analysis, one can
see that, in the present simulation, the rate with which the global equilibrium
is reached in the flow is governed by the turbulent dispersion.
Figure 7.11 shows the concentration profiles at x = 3.5 m for the (f->d) and the
(d->f) simulations. First, one notices that the concentration by the wall is the
same. It is the concentration reached when the deposition and the entrainment
rates are in equilibrium. This concentration verifies:

αd ρdK
+
D uτ = 0.023

√
ρdτi (We−Wecrit) (7.23)

It gives:

αd =
0.023

K+
D

É
ρg

ρd
(We−Wecrit) (7.24)



168 CHAPTER 7. SIMULATION OF AN ANNULAR FLOW

Figure 7.10: Concentration profiles in the (f->d) simulation.

Figure 7.11: Comparison of the concentration profiles of the (d->f) and of the
(f->d) simulations at x = 3.5 m.
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Figure 7.12: Gas velocity profile.

The two simulations tends toward the same equilibrium state. Nevertheless it is
clear that the (f->d) simulation is much closer to equilibrium because the value
in the core and by the wall are practically equal. The experimental equilibrium
state has a much larger part of the liquid flowing as a film (85%) rather than as
a dispersed phase. The inlet condition of the (d->f) simulation is then further
from the equilibrium and the necessary distance to achieve this equilibrium is
larger.

7.3.3 Velocity profiles

Gas velocity profile

Figure 7.12 shows the measured and the predicted gas velocity profiles at x = 3.5
m. The curves are in agreement but there is a gap between the two profiles. The
mass balance of the gas phase is perfect in the simulation. A polynomial has
been fitted through the three experimental points. This polynomial has been
extrapolated to the wall by a straight line which slope was the derivative of the
polynomial on the left of the experimental point closest to the wall. This func-
tion is an overevaluation of the possible velocity profiles, given the experimental
points are correct. The integration of this function gave a gas flux which was
lower than the measured inlet flux. Therefore either the measurements of the
gas velocity were incorrect, or the gas flow rate (measured by an orifice plate)
was overestimated.
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Figure 7.13: Droplet velocity profile.

Droplet velocity profile

Figure 7.13 shows the measured and the predicted droplet velocity profiles at
x = 3.5 m. Here as well, the profiles are in agreement but the same type of gap
as for the gas velocity profile can be seen. It is interesting to plot the ratio of
the droplet velocity to the gas velocity as a function of the radial position. It is
shown on Figure 7.14. One can see that there is a very good agreement between
the experimental and the calculated values. Both predict that the local droplet
velocity is roughly 80% of the local gas velocity. This is also in agreement with
the measurements performed by Fore and Dukler (1995b). In annular flows, in
contrast with solid particles dispersed flows, the equilibrium state is dynamic.
Droplets are continuously created and absorbed by the film phase. The new
droplets are accelerated but deposit before they reach their terminal velocity.
That is why the droplets lag significantly behind the gas. The agreement of
the simulated and experimental values on Figure 7.14 indicates that the model
provides accurate predictions for the velocity of the dispersed phase.

7.3.4 Height of the film

Azzopardi and Teixeira (1994 a) did not measure the height of the liquid film.
However they estimated that the mean height of the film was between 100 and
400 µm. The simulation indicates a value of 150 µm at the end of the pipe. It
is in the correct range.
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Figure 7.14: Droplet to gas velocity ratio.

7.3.5 Turbulent kinetic energy

Figure 7.15 shows the turbulent kinetic energy of the gas as a function of the
radial position. There is just one experimental point in the center of the channel
because the authors could not measure the circumferential turbulent intensity
at other positions for such a high gas flow rate. The data roughly agrees. One
can see that there is again a gap between the simulation and the experimental
points. This is probably due to the previously mentioned measurement error.
When the TKE is normalized by the square of the axial velocity at the center
of the channel one gets a better agreement.

7.4 Conclusion on the performances of the model
for an annular flow

The model underestimates the entrained fraction in an annular flow. It has
been shown that taking into account the turbulent viscosity induced by the
film flow and not only the turbulent viscosity due to droplet deposition, may
increase significantly the entrained droplet fraction. The present model also
underestimates the velocity of the liquid layer, especially at low gas mass flow
rates and high liquid mass flow rates. Lowering the critical Weber number for
the onset of entrainment may lead to better results. Whatever the film/droplet
proportions at the inlet, the equilibrium state that is reached is the same. Gas
and droplet velocity profiles are predicted correctly. The model is able to repro-
duce the 20% difference between gas and droplet local velocities. The calculated



172 CHAPTER 7. SIMULATION OF AN ANNULAR FLOW

Figure 7.15: Profile of the turbulent kinetic energy of the gas.

turbulent kinetic energy agrees with the measurments made by Azzopardi and
Teixeira (1994b).



Chapter 8

High pressure gas/liquid
separation

In this chapter, the model is used to study the behavior of a vane-pack demister
at high pressure. An identical device has been studied in a simulation performed
by James et al. (2005). First we will compare the prediction of the model with
the predictions of the model of James et al. at low pressure with water and
air. Then we will study the effect of high pressure. Finally we will analyze an
unsuccessful attempt to simulate an axial cyclone.

8.1 Low pressure simulation of a vane-pack demis-
ter

In this section we will compare the results of the present model with the calcu-
lation performed by James et al. (2005) on a vane-pack demister.

8.1.1 Geometry

The geometry of the vane-pack used by James et al. (2005) is pictured on Figure
8.1. For the purpose of the analysis, the computational domain has been divided
in 6 sections numbered with roman numerals.

8.1.2 The model of James et al. (2005)

James et al. used a Lagrangian tracking of the droplet phase to calculate the
efficiency of the vane-pack demister. They took into account the influence of
the gas phase on the motion of the dispersed phase with an eddy interaction
model. A film model was also integrated. The film was formed by a postulated
deposition rate and flowed under the action of the interfacial shear stress and
gravity. The gravity was oriented normal to the plane of Figure 8.1. The authors
neglected the influence of gravity on both the gas and the droplet flow. James

173
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Figure 8.1: Geometry of the vane-pack demister used by James et al. (2005).

Zones I II III IV V VI Out Efficiency
James et al. 50.0 37.3 7.6 1.4 1.5 0.5 1.7 98.3%

Present model 52.9 35.8 6.9 2.8 1.1 0.0 0.4 99.4%

Table 8.1: Percentage of liquid trapped in each zone.

et al. also studied whether or not entrainment occurred from the liquid film.
Their criteria was based on the flow of the film around sharp bends. However
their model did not incorporate the calculation of the entrainment rate in itself.

8.1.3 Set-up of the numerical case

The grid we used is shown on Figure 8.2, which is a close up of section III. The
cells had a constant equiangle skew of 0.33. Their large and short sides were
respectively 1 mm and 0.96 mm long.
At the inlet, the gas and the droplets had a velocity of 8 m/s normal to the
inlet opening. The volume fraction of droplets was 10−4. The turbulent kinetic
energy of the gas phase was 1 m2/s2 and its dissipation rate 1 m2/s3. The
diameter of the droplets was 25 µm. In the simulation, only a 2D flow has been
considered because James et al. neglected the effect of gravity on the motion of
the droplet and gas phases.

8.1.4 Results

Efficiency

James et al. (2005) reported the percentage of liquid trapped in each section.
They used velocities between 3 and 8 m/s and droplet diameters between 15
and 25 µm. Table 8.1 reports their results for a diameter of 25 µm and 8
m/s and compare them to the prediction of our model. Results are very close
to each other despite a completely different modeling of the dispersed phase
(Lagrangian for James et al. and Eulerian in the present model). The percentage
of liquid trapped in each section is dependent on the deposition velocity. K+

D,
the deposition velocity in our model, is based on the local deposition flux at
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Figure 8.2: Grid for the simulation of the vane-pack demister.

the wall (equation (3.89)). K+
D is the sum of a non-diffusive velocity K+

non diff

and a diffusional velocity K+
wall (equation (3.92)). K+

non diff results from the

mean convection and the gravity while K+
wall results from near-wall phenomena.

The vane-pack is based primarily on ”impact deposition” which means that
the deposition velocity mainly depends on its non-diffusive part. The good
agreement of the two models indicates that our non-diffusive deposition model
is promising (although an experimental validation is necessary).

Entrainment and liquid film height

The present model and the model of James et al. (2005) did not predict en-
trainment from the liquid film. However the two models are hardly comparable
because their entrainment criteria were based on totally different physical mech-
anisms.
The top of Figure 8.3 represents the stream lines at the bottom wall between
the sections II and III. One can see a recirculation zone. The enlargement
shows the velocity vectors of the gas phase. The size of the triangles represents
the magnitude of the gas velocity. The projections of the gas velocity on the
wall inside and outside the recirculation zone do not have the same sign. This
counterflow by the wall induces an accumulation of film just upstream of the
recirculation zone. This phenomenon is illustrated on Figure 8.4. The figure
shows heights of the liquid film on the bottom wall of zone II as a function of the
position. No deposition occurs on this wall. There are 500 µs in time between
each curve. The first 2 ms there is practically no film on the wall except at
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Figure 8.3: Recirculation zone: stream function and gas phase velocity vectors
by the wall.

Figure 8.4: Height of the liquid film at the bottom wall of zone II.
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the very edge of zone I. From 2 to 6.5 ms the film starts flowing toward the
recirculation zone. After 6.5 ms the film cannot pass through the counter flow
of gas and starts accumulating at the edge of the recirculation zone. This is
not necessarily unphysical. In reality the film becomes quickly unstable and
entrainment occurs. The physics of re-entrainment at the edge of a recircula-
tion zone is different from the one considered in the present model. Close to
the recirculation zone, the velocity by the wall has a non negligible wall-normal
component. This may lead to a shear on the film front (see Figure 8.5 (a)). It
is then sensible to suppose that the front of the film forms a ligament normal to
the wall (Figure 8.5 (b)). The ligament will then atomize, and this type of at-
omization might have common points with the break-up of a jet (Figure 8.5 (c)).
Equation (3.155) that governs the entrainment rate has not been developed for
this type of entrainment situation. This equation did not predict entrainment
and consequently lead to very high values of the height of the film. A close look
at the different terms involved in correlation (3.155) showed that, at the edge of
the recirculation zone, the critical Weber number became extremely large. This
was due to the Reynolds number of the film which was very large (see equations
(3.159), (3.160) and (3.161)). It is believed that a different entrainment corre-
lation, possibly based on the physics of jet break-up, must be used to get rid of
this problem.
Handling recirculation zones is an important issue. Indeed, recirculation zones
are very common in industrial geometries. The inability of the model to predict
entrainment for this type of situation leads to extremely large values of film
heights. In the worst case it can result in a divergence of the calculation1.

8.2 High pressure gas liquid separation in a vane-
pack demister

In this section we will compare three cases:� An air/water flow at 1 bar. It will be referred as the LP case (Low Pres-
sure).� A natural gas/condensate flow2 at 92 bars without entrainment. It will
be referred as the HPNE case (High Pressure No Entrainment).� A natural gas/condensate flow at 92 bars with entrainment. It will be
referred as the HPE case (High Pressure Entrainment).

1Unfortunately divergence occurred in the present simulation. The calculation was stopped
after 9 ms. At this time the maximum height of the film (by the recirculation region between
zone II and zone III) was over 1 mm. The results presented in Table 8.1 are given for a time
of 5 ms. At this time the droplet concentration was stationary. Between 5 and 9 ms, despite
high values of film heights at specific locations, no significant change concerning the droplet
phase concentration were noticed. Therefore, it is believed that the results presented in Table
8.1 are trustworthy.

2The gas and the liquid were mixtures of methane, ethane and pentane.
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Figure 8.5: Possible mechanism of entrainment at the edge of a recirculation
zone.
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Liquid Gas Surface tension
Density Viscosity Density Viscosity (N/m)
(kg/m3) (kg/(ms)) (kg/m3) (kg/(ms))

LP 998 0.001 1.225 1.789 10−5 0.073
HPNE 470 9.6 10−5 97.1 1.5 10−5 109

HPE 470 9.6 10−5 97.1 1.5 10−5 0.0022

Table 8.2: Liquid and gas properties for air, water, natural gas and condensate.

Case LP HPNE HPE
Efficiency 99.7% 70.5 % 0%

Table 8.3: Separation efficiency of the vane-pack demister for three different
cases.

8.2.1 Set-up of the numerical case

The grid was identical to that of Figure 8.2. Inlet velocities were 16m/s (normal
to the inlet opening) both for the gas and the droplet phase. The volume fraction
of droplets was 10−4. The turbulent kinetic energy of the gas phase was 1 m2/s2

and its dissipation rate 1 m2/s3. The diameter of the droplets was 25 µm. The
flow was 2D. Table 8.2 lists the physical properties of the used fluids3. The
surface tension of the HPNE case was set to an arbitrarily large value to avoid
entrainment.

8.2.2 Results

a) Efficiency and volume fraction

Table 8.3 shows the predicted efficiency of the separator for the LP, HPNE and
HPE simulations. In the case of the LP simulation, no entrainment is predicted,
the efficiency is excellent. Practically all the droplets are separated after zone II
as shown on Figure 8.6 (a). Note that air/water flows at atmospheric pressure
are experiments that are usually performed in the industry to test the efficiency
of separation devices.
Table 8.3 shows that the HPNE case presents a much lower efficiency. As the
liquid gas density ratio is much lower, droplets follow the gas more closely and
are not separated as fast. This can be seen on Figure 8.6 (b). However when
entrainment is not accounted for, all the droplets that impinge the wall are sep-
arated. This is a usual hypothesis for conventional separation simulations.
Including the possibility of re-entrainment has a tremendous effect. Table 8.3
shows that the efficiency is reduced to zero. Figure 8.6 (c) shows that droplet
concentration varies a lot in a cross section but that the mean droplet concen-
tration does not decreases along the stream. The pattern of the concentration

3The properties of natural gas and condensate at 92 bars were given by personal commu-
nications (Austrheim (2006)).
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Figure 8.6: Droplet concentration in the vane-pack demister.
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LP HPNE HPE
Impact walls 99.6% 95.1% 92.7%
No impact walls 0.4% 4.9% 7.3%

Table 8.4: Proportion of the droplets depositing on impact and no impact walls.

field looks periodic. One must underline that in the present calculation there is
no possible drainage of the film. This point will be discussed later.

b) Deposition and entrainment

Deposition. One can divide the deposition walls in two groups:

1. Head on droplet collision walls: There are the bottom walls of sections I,
III, and V and the top walls of sections II, IV, and VI.

2. Remaining walls: There are the top walls of sections I, III, and V and the
bottom walls of sections II, IV, and VI.

Head on droplet collision walls will be referred in the following as ”impact
walls”. The remaining walls will be referred as ”no impact walls” although
strictly speaking, droplets are impacting on them as well. James et al. (2005)
calculated that droplet deposition occurred at 99.9 % on the impact walls for an
inlet velocity of 8 m/s. For the same inlet velocity, the present model calculated
99.4 %. Both calculations agrees roughly. At a higher velocty, 16 m/s, the
inertia of the droplets is stronger so that it is expected that a larger number of
droplets deposit on the impact walls. And indeed when the velocity is doubled
from 8 to 16 m/s, the model predicts that the proportion of droplets depositing
on impact walls rises from 99.4 to 99.6 %.
Table 8.4 shows the percentage of the overall deposition flux for each group of
walls for the LP, HPNE and HPE cases. At higher pressure the proportion of
droplets impinging on no impact walls rises. It is expected because the ratio
of the droplet density to the gas density is much lower (5 instead of 1000).
Consequently the droplets follow more closely the gas stream lines and the
diffusive turbulent deposition has a bigger impact compared to the non diffusive
inertial deposition. Because the diffusive turbulent deposition rate is the same
for impact and no impact walls, the fraction of droplets impinging on no impact
wall rises. In the HPE case this fraction is greater than in the HPNE case. This
is due to droplets created from the film that redeposit immediately without
leaving the vicinity of the liquid layer.
Figure 8.7 shows the deposition rate on the top wall of zone II (first impact wall)
as a function of the position on the wall. The deposition is significantly lower in
the case of the high pressure simulations. The simulation HPE presents a higher
deposition rate because of the droplets created from the film that redeposit
immediately. The shape of the curves is the result of complex interactions.
Figure 8.8 shows the deposition rate on the top wall of the vane-pack as a
function of the position for the HPNE and for the HPE simulations. As indicated
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Figure 8.7: Deposition rate as a function of the position on the first impact wall.

by Table 8.4 virtually all the deposition occurs on impact walls. The trends of
the two cases are similar. However the HPE simulation exhibits a periodic
behavior (except for the inlet zone I and the outlet zone VI) while the HPNE
simulation shows a damped periodic behavior. This periodic or periodic-damped
behavior is also shown by the concentration fields of Figures 8.6 (b) and (c).
The damping in the HPNE simulation is due to the transfer of the liquid from
the droplet to the film phase. The lack of damping for the HPE case is a sign
of the very poor separation efficiency when entrainment is accounted for.

Entrainment. No entrainment was predicted for the LP case. This paragraph
focuses only on the HPE calculation. Figure 8.9 shows the entrainment and
deposition rates in the zones I and II. One can notice that a local equilibrium
between entrainment and deposition takes place very quickly approximately
after the middle of zone I. Figure 8.6 (c) shows that concentrations are high by
the wall where a liquid film is present but the droplets are not dispersed in the
core and remain close to the wall. The rapid equilibrium between entrainment
and deposition shows that the droplet distribution is not controlled by boundary
layer transfers between the film and the dispersed phase. Droplet concentration
profiles are therefore controlled by other phenomena (such as the turbulent
dispersion or the centrifugal force).
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Figure 8.8: Deposition rate on the top wall of the vane-pack. Comparison
between the calculations with and without entrainment.

Figure 8.9: Entrainment and deposition rate in the two first sections of the
vane-pack for the HPE calculation.
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Figure 8.10: Height of the liquid film.

LP HPNE HPE
Mean height (nm) 22 700 855 69
Minimum height (nm) 2 780 162 52
Maximum height (nm) 35 500 1230 120

Table 8.5: Height of the liquid film.

c) Liquid film

Height. Figure 8.10 shows the height of the film as a function of the position
on the top wall of zone II at t=5ms. Table 8.5 shows the mean height, minimum
height and maximum height of the film for the curves of Figure 8.10. The order
of magnitude of the thickness of the film for the low pressure simulation is typical
of air/water annular flow at atmospheric pressure, i.e. between 1 and 1000 µm.
A striking feature of Table 8.5 is that the height of the liquid film is 2 orders
of magnitude smaller when the pressure is increased to 92 bars and natural gas
and condensate are used. The major difference between the low and the high
pressure calculations is the magnitude of the interfacial shear. This shear is
directly proportional to the gas density and thus an increase of the density of
the gas from 1 to 100 kg/m3 induces an increase of two orders of magnitude of
the interfacial shear stress. The velocity of the film is then increased and the
height of the liquid layer drops to a much lower value. One can also see that
allowing entrainment has an important impact on the film and that its height is
reduced even further. There is more than a factor 300 between the mean height
of the film for the LP case and for the HPE case.
A question arising when one predicts a film height of a few nanometers, is
whether or not the film is actually wetting the surface. Dewetting depends on
parameters that have not been tackled in this work. During dewetting, randomly
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initiated dry patches grow and the liquid accumulates in rims around these dry
spots. The rims may gather into liquid trickles. Finally these trickles may break
into droplets by a Rayleigh break-up process. Hartley and Murgatroyd (1964)
studied the stability of a dry patch. They proposed a simplified criteria for
dry zones stability surrounded by laminar film under the influence of a shear.
Given hcrit, the critical height of the film under which the dry patch is stable,
according to Hartley and Murgatroyd we have:

hcrit = 1.59

�
Σ

ρf

� 1
3
�
µf

τi

� 2
3

(8.1)

This relation is based on a minimization of the total energy of the film (kinetic
and surface energy). As an average on the top wall of zone II, hcrit ≈ 1µm for
the HPE and HPNE cases. hcrit ≈ 65µm for the LP case. It is not expected
that these values of hcrit are very accurate because equation (8.1) does not take
into account the effects of surface chemistry. However relation (8.1) can give an
order of magnitude of the critical wetting height. As shown in Table 8.5, the
mean heights for the LP and HPNE cases are of the same order of magnitude
as the critical height. No conclusion can be drawn except that the films are
probably close to the dewetting/wetting boundary. In contrast, there is a strong
probability of dewetting for the HPE case. This may change the entrainment
process. Although it is expected that the Kelvin-Helmholtz instability remains
the key mechanism initiating entrainment, it is doubtful to apply the correlation
(3.155) of Alipchenkov et al. (2004) and the expressions of the critical Weber
number (3.159) and (3.160) (Nigamtulin et al. (1996)) when dewetting occurs.
Though these equations have been tested against high pressure steam-water
data, Alipchenkov et al. (2004) and Nigamtulin et al. (1996) did not mention
dewetting. In the following, the possible disruption of the film due to dewetting
has been disregarded.
For a film height of about 60 nm the roughness of the wall has a large impact
on the film flow. A negligible roughness of the wall with respect to such a thin
film requires a wall which roughness is less than a nanometer. A vane-pack
demister is typically made of steel (for example carbon steel [102]). At best,
the arithmetic average roughness of these type of material is 6 nm [169]. In
addition, the arithmetic average roughness is the absolute deviation from the
mean surface level, therefore the peak-to-valley roughness is bigger than the
arithmetic average roughness. As a result it is probable that at the scale of a a
60 nm thick film, the flow occurs on top of or in between randomly placed large
buffer bodies that create very large disturbances of the film flow. The flow of
the gas in between randomly spaced roughness elements is also very complex
and has an impact on the interfacial shear. The impact of the protrusions of
the wall on a submicrometer liquid layer is a complex topic that can not be
examined in detail within the frame of this work. In the following, the analysis
will be done as if the wall was smooth even at a nanoscale.
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Figure 8.11: Non-dimensional equivalent roughness height of the film.

Equivalent roughness height. The analysis contained in this paragraph is
not relevant if the roughness height of the wall is comparable to or larger than
the equivalent roughness height of the film.
Figure 8.11 shows the values of the non-dimensional roughness s+ = s uτ/νg on
the top wall of zone II as a function of the position. The frictional velocity was
calculated by:

uτ =

qÈ
Cµkg

One can see on Figure 8.11 that whatever the case, the roughness regime is
transitional. The little change of the non-dimensional roughness height, despite
the large decrease in the roughness height can be explained by a large decrease
of the kinematic viscosity of the gas νg = µg/ρg. Indeed, the gas density is
increased by a factor hundred in the high pressure cases with respect to the LP
case, while the dynamic viscosity does not change (see Table 8.2).
We will admit that s/h = 4 is approximately valid for a fully rough regime.
In the smooth regime s/h = 0. Therefore in the transitional regime we expect
0 < s/h < 4. Since according to Figure 8.11 the regime is transitional, s/h = 4
is too high and there is an overestimation of the turbulent kinetic energy by the
wall. Consequently the interfacial shear stress and of the mean film velocity are
overestimated. As a result, the height of the film is probably slightly under-
predicted in this simulation. However the order of magnitude of the height of
the film (due to the influence of the density of the gas on the interfacial shear
stress) is most likely to be correct.
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Figure 8.12: Velocity of the film.

Velocity of the liquid layer. The analysis of this paragraph should be sig-
nificantly changed if the film is disrupted or if the roughness of the wall is large
with respect to the thickness of the film.
Figure 8.12 shows the mean velocity of the liquid film on the top wall of section
II at t=5 ms. The averaged values are 0.09, 1.72, and 0.14 m/s respectively for
the LP, HPNE and HPE simulations. There is a 20 fold increase in the mean
velocity of the film in the HPNE case with respect to the LP case. This is due
to the increase of the interfacial shear stress caused by an increased gas density.
When entrainment is allowed the velocity of the liquid film drops down because
of the strong reduction of the film height.
The model assumes that the gas flows over a rough motionless surface. It re-
quires that in the wall-boundary cells the velocity of the interface c is small with
respect to the velocity of the gas Ug. For the values on the top wall of zone
II, for the LP case c/Ug is always between 0.5 and 2% so that the assumption
c << Ug is indeed valid. For the HPNE simulation, because of the increase of
the interfacial shear, this assumption breaks down. c/Ug ≈ 20% as a rule and
reaches up to 98.6 % by the recirculation zone at the edge of zone I. The non
negligible velocity of the gas/film interface modifies the boundary condition for
the gas phase. This condition becomes:

u+ =
1

κ
ln
�
y+
�

+B + f
�
s+
�

+
c

uτ
(8.2)

where the function f (s+) is given by the equations (3.68), (3.69) an (3.70) and
c/uτ is an additional term to take into account the movement of the liquid layer.
Then the boundary condition becomes:

τi = ρguτ
Ug

1
κ ln (y+) +B + f (s+) + c

uτ

(8.3)
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Figure 8.13: Flux of film along the top wall of zone II.

Therefore, the additional term c/uτ reduces the interfacial shear and the pres-
sure drop.
One can also notice that if the velocity of the film is significant, the loss of
momentum of the droplet phase is smaller during the deposition/entrainment
process. Indeed this loss of momentum is proportional to the velocity difference
between the interface and the droplet phase (equation (3.7)). As a result the
pressure drop due to deposition and entrainment is smaller when the velocity
of the interface is significant.
If the entrainment is taken into account, the ratio of the interface velocity to the
wall cell gas velocity is much smaller and the assumption c << Ug is generally
valid. However, locally, this assumption may break down. For the present case,
c/Ug reaches up to 32.2% in the vicinity of the recirculation zone at the edge
of zone I. In the zones were c << Ug is not verified, simulation results must be
taken with caution.

Film flow rate. The film flow rate is a key parameter for the drainage of
the film. Figure 8.13 shows the value of the film flow rate as a function of the
position along the top wall of zone II. The low pressure case combines a high
liquid film height and a low film velocity. The liquid film flow rate increases
along the wall as droplets deposit. A drainage opening at the end of the wall
will result in an effective way of removing the film. For the high pressure case
without entrainment, the height of the film is low but its velocity is high. The
liquid flux has the same order of magnitude as in the low pressure case. Since
the deposition rate is lower for the HPNE than for the LP case, the film flow
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rate is slightly lower at high pressure. As emphasized earlier, the results of the
HPNE case are to be taken with caution because in this case the interfacial
velocity is not negligible with respect to the gas velocity in the wall-boundary
cells. The negative value of the film flow rate is due to a recirculation zone
at the beginning of the wall. The striking feature of Figure 8.13 is that the
film flow rate is practically zero for the high pressure case when entrainment is
considered. It is actually 250 time lower than if entrainment is not considered.
The HPE case combines indeed a very small height with a low velocity of the
liquid layer. Consequently the film flow rate is almost zero. There is practically
no film at all. It means that a drainage hole, whatever its position on the wall, is
inefficient because there is no film to collect. As a result, even if the simulation
had integrated a drainage system, the efficiency of the vane-pack demister would
not have improved significantly.

Concluding remarks on the liquid film. According to the simulation, at
high pressure with entrainment, the liquid layer practically vanishes. The film
may be disrupted, and is likely to be affected by the roughness of the wall. If
the wall is perfectly smooth, it is shown that the equivalent sand roughness
of the film is overestimated. The equivalent sand roughness height of the film
may however not be such a critical issue if the physical roughness of the wall
is larger than the height of the film. For the velocity of the liquid layer, both
a disruption of the film and the roughness of the wall may have a significant
impact. Supposing that the wall is perfectly smooth and that dewetting does
not occur, the results showed that at high pressure the velocity of the film is not
necessarily very small with respect to the gas velocity. The boundary condition
of the gas phase must then be modified to take into account the velocity of the
gas/film interface. It is very likely that the film flux is practically zero at high
pressure if entrainment is accounted for. Then, collecting the film through slits
is inefficient.

d) Droplet diameter

The droplet diameter is considered to be a constant (25 µm) in the present
work. However, there are indications that the actual mean droplet diameter is
smaller than the value used in the computation:� First, the maximum stable diameter of a droplet in a turbulent flow in-

creases with the surface tension (Hinze (1955)). In high pressure turbulent
gas/liquid flows, the surface tension is lower than for low pressure flows.
As a result, the maximum stable droplet diameter is smaller in high pres-
sure flows than in low pressure flows.� Second, the diameter of the droplets used in the model is much larger
than the height of the liquid film. It is unlikely that a 70 nm thick film
generates droplets with a diameter of 25 µm. With an extremely thin
film, a large 25 µm droplet impinging against the wall will probably be
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atomized in a fine mist of particles. These small droplets will then be
entrained.

This second diameter-reducing effect may be compensated by coalescence in
areas where the droplet concentration is high. This is relevant near the walls
where entrainment occurs (see Figure 8.6 (c)). It is then important to integrate
a population balance to calculate the probability of coalescence of the droplets
near the walls. The initiation of the re-entrained droplets should also be studied
closely. If the film is only 70 nanometers thick, it seems important to have a
further understanding of what happens in details when a large 25 µm droplet
deposits.
It is important to note that small droplets have a small relaxation time. The
25 µm droplets were far in the inertia-moderated regime of deposition with
t+ ≈ 22000 by the wall. In contrast if droplets have the size of the liquid film
(50 nm), they deposit because of Brownian diffusion (t+ ≈ 0.09 by the wall).
Consequently the basic idea of the vane-pack demister, the ”inertial separation”,
may be totally inefficient.

e) Velocities

The velocities of the gas and of the dispersed phase are similar. There are
recirculation zones in concave corners. Convex corners tend to compress the
stream lines and generate an acceleration. The recirculating and high velocity
zones are shown on Figure 8.14.
The separation efficiency of the vane-pack is related to the possibility for the
dispersed phase to deviate from the gas trajectory. To quantify this deviation
one can for example associate to each couple (Uig;Uid) in a computational cell,
a complex number z such as:

z =
||Uid||
||Uig||

eiθ (8.4)

where θ is the angle between the droplet velocity vector and the gas velocity
vector. If Uid = Uig then z = 1, the droplet phase follows perfectly the gas
and the separation efficiency is 0. Figure 8.15 shows the distribution of z for
the LP and the HPE cases in the complex plane. In the case of the high
pressure simulation the points are much closer to 1 and therefore follow closely
the gas resulting in a poor separation. In contrast for the LPE simulation, the
points show a clear deviation of the droplet velocity vectors with respect to
the gas velocity vectors. Quantitatively the median of the absolute value of
the argument of the z points is 19.5o for the LPE case and 3.6o for the HPE
case. This shows that the particle phase is not significantly deviated from the
gas trajectory in the high pressure case. The median of the modulus of the z
points is 0.98 for the HPE case and 0.76 for the LP case. For an annular flow
calculations by Fore and Dukler (1995b), Azzopardi and Teixeira (1994a), and
the simulation of chapter 7, showed that the value of local droplet velocity is
roughly 80% of the local gas velocity for air/water flow at atmospehric pressure.
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Figure 8.14: Horizontal gas velocity in m/s for the HPE simulation. Zones II,
III, IV and V.

It is then interesting that for the same fluids and same pressure condition the
flow in a vane-pack indicates also a ratio of the local velocity magnitudes of
roughly 80%. Neglecting gravity, this ratio is the direct consequence of the
momentum loss during the entrainment/deposition process. At high pressure
the median modulus is much closer to 1. It indicates, as previously detailed, that
the loss of momentum by the dispersed phase during deposition and entrainment
is not important.

8.2.3 Conclusion on the simulation of a vane-pack mist
eliminator at high pressure

The simulation of a vane-pack demister with real fluids at high pressure with
entrainment shows a radically different behavior compared to an air/water flow
at atmospheric pressure. The separation efficiency is dramatically reduced be-
cause:

1. Comparable densities of the two phases leads to a smaller inertia of the
dispersed phase and thereby to a smaller deposition rate.

2. The entrainment is so large that no film remains on the walls.

3. The reduction of the droplet diameter, that have not been quantified here,
leads to a smaller deposition rate.
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Figure 8.15: Distribution of z in the complex plane showing the separation
efficiency of the vane-pack demister.
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The key result of this simulation is that at high pressure the liquid film van-
ishes. The common design of simple slits in the wall to collect a liquid film is
then inefficient. Moreover droplets cannot be efficiently separated because their
inertia is too small.

8.3 Attempt of a high pressure simulation of an
axial cyclone

An attempt has been made to calculate the separation efficiency of an axial
cyclone. This cyclone has been described in Verlaan (1991). The calculation
revealed a deficiency of the model not only in unstructured grids but also in
any grid having a convex corner cell (as pictured on Figure 4.10). The model
is not able to conserve the liquid mass if such a configuration occurs. The
mass balance of both phases was always fulfilled in the the test cases described
previously (annular or vane-pack simulations).
The problem came from equation (3.8), the mass conservation equation of the
film, which is re-written below:

∂h

∂t
+

∂

∂Xi
hUif =

V

ρfA

�Ü̇D − Ü̇E� (8.5)

If the liquid phase is assumed incompressible, the ”true” mass-conservation
equation for the film is:

∂αf

∂t
+

∂

∂Xi
αf Uif =

�Ü̇D − Ü̇E�
ρf

(8.6)

Equation (8.5) is based on the implicit definition:

h ≡ αfV

A
(8.7)

and assumes that V/A is a constant. As currently implemented, our model
is able to tackle cells which area is zero by techniques explained previously in
chapter 4. However, if these techniques were satisfactory computationally they
appeared to be unsatisfactory physically. The finite volume method is based on
an integration of the mass conservation equation on the cell volume and in time.
The integration of equation (8.6) is leading to the conservation of the volume
of film which is the same as the mass conservation for an incompressible fluid.
In contrast, the integration of equation (8.5) leads to the conservation of the
quantity hV which has the unit of m4. This quantity is however not conserved
except if V/A is a constant. In certain area of the computational domain,
conserving hV instead of the mass leads to a break-down of the mass balance.
The present model, used in a grid with convex corners or unstructured grids,
might however give a qualitative idea of the critical spots for liquid accumulation
and entrainment.
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It is suggested, to solve this issue, to come back to a mass conservation equation
for the liquid layer which is based on the film volume fraction (equation (8.6)).
The closure relations (such as the equivalent sand roughness of the film or the
entrainment rate equation) must then be expressed in terms of αf .

8.4 Conclusion on high pressure gas/liquid sep-
aration

The model was used to predict the separation efficiency of a vane-pack demister.
The present model and the model developed by James et al. (2005) based on a
Lagrangian tracking of the dispersed phase gave similar results. Then a simula-
tion of the same vane-pack has been performed for typical industrial conditions
with high-pressure liquid and gas properties, together with entrainment. The
change of the density ratio decreased the efficiency of the demister. Including
re-entrainment led to dramatic changes since the liquid film vanishes. It was
also underlined that the droplet diameter is smaller for high pressure flows than
for low presure flows. This diameter change reduces as well the efficiency of the
demister but this was not accounted for in the computation.
These specifically high pressure phenomena result in an ineffective drainage and
makes it very difficult for the droplets to separate from the gas phase because of
their very small inertia. The predicted efficiency of the vane-pack demister at
high pressure with entrainment is 0% while at low-pressure with air and water
the model predicts an efficiency of 99.7%.
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Conclusion

9.1 Summary

The present work developed a new model for predicting the efficiency of gas-
liquid separators especially at high pressure conditions. The model is based
on a fully Eulerian description of the flow. 11 transport equations are solved:
3 mass conservation equations (gas, dispersed liquid phase and liquid film),
6 momentum equations (gas and droplet phase), 1 equation for the turbulent
kinetic energy of the gas and 1 for the dissipation rate of the turbulent kinetic
energy of the gas. The turbulent kinetic energy of the droplet phase and the
turbulent dispersion are calculated by algebraic relations. The velocity of the
film is calculated by an algebraic relation as well. The influence of the film on
the gas is modeled by a steady rough wall boundary condition. The interfacial
shear stress is estimated from the turbulent kinetic energy of the gas phase.
The total deposition rate is determined by the turbulent dispersion and by a
near-wall deposition rate. The near-wall deposition rate is the sum of two terms.
The first term represents non diffusive phenomena (gravity, mean convection of
the flow) and is calculated by means of an ordinary differential equation. The
second term models near-wall diffusive phenomena. This second term takes into
account two deposition regimes: the diffusion-impaction regime and the inertia
moderated regime. The entrainment correlation is experimental and has been
chosen because:

1. It has been tested on a large number of data including high-pressure steam-
water flows.

2. It is entirely based on local parameters.

3. It is consistent with the theory developed by Taylor (1963) since it is based
on a Weber number criteria.

The model has been implemented in Fluent 6.2 which is a finite volume code.

195
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The model was tested against the experimental data of Liu and Agarwal
(1974) for a case of pure deposition. A correct order of magnitude of the deposi-
tion rate was predicted. However the deposited fraction seemed underestimated
by 20-25%. This underestimation probably comes from an innacurate modelling
of the near-wall diffusive deposition velocity when the nondimensional relaxation
time of the droplets is larger than 20. This inaccurate modelling is not impor-
tant for relaxation times much larger than 20, since the the deposition rate is
then controlled by the turbulent dispersion. Simulations have been performed
and compared with experimental data of a pure annular flow without dispersed
phase. The height of the film was correctly predicted but the pressure drop was
overestimated. This overestimation comes, first, from an innacurate modeling
of the equivalent sand roughness of the film and second, from the gas phase wall
boundary condition that does not take into account the velocity of the interface.
The model was then tested against the data gathered by Azzopardi and Teixeira
(1994a, 1994b) in an annular dispersed flow. For low gas flow rates and high
liquid flow rates, the computed flow was not qualitatively correct. It came from
an underestimation of the velocity of the liquid film. The source of this error
may be an innaccurate evaluation of the critical Weber number. In the case
of high gas flow rates and low liquid flow rates, which is relevant for natural
gas processing, the entrainment rate was significantly underestimated (about
-50%). A better estimation of the entrainment flux will probably be obtained if
one accounts for the turbulence in the film induced by the film flow and not only
for the turbulence in the film due to the deposition of droplets. In agreement
with former experimental observations, the model predicted a 20% lag of the
droplet velocity with respect to the gas velocity. Finally, the model was tested
on a vane-pack demister. At low pressure for air and water, the results were
similar to these of the model of James et al. (2005). At high pressure, dramatic
changes were observed. The liquid film disappeared and the deposition rate
was much smaller than in the low pressure case. The predicted efficiency of
the vane-pack demister drops from 99.7 % for an air/water flow at atmospheric
pressure to 0% for a natural gas/condensate flow at 92 bars.

9.2 Further works

9.2.1 Deposition

The model underpredicts the deposition rate when the particle relaxation time
is at the edge of the diffusion-impaction regime and of the the inertia moderated
regime. To correct this, it would be interesting to conduct a study to determine
precisely what is the value of the near-wall diffusive deposition velocity, espe-
cially for non-dimensional relaxation times between 10 and 50. Such a study
will allow to distinguish clearly what fraction of the deposition rate is controlled
by turbulent dispersion and what fraction is controlled by the near wall diffusive
deposition velocity.
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9.2.2 Film model

To be able to use the model in complex geometries, it is important to adapt the
film model so it fulfills the conservation equations whatever the type of grid.
The inability of the model to tackle correctly convex corners and unstructured
grids is probably its strongest limitation for a real industrial use. It was also
shown that a better modeling of the equivalent sand-roughness of the liquid
layer must be found to correctly predict pressure drops. It is also necessary to
modify the boundary condition of the gas so that the non-zero velocity of the
interface is accounted for. To get better predictions of the entrainment rate for
annular air-water flow at atmospheric pressure, a turbulent model for the film
flow should be developed.

9.2.3 Entrainment

The correlation for the entrainment seemed to model satisfactorily entrainment
phenomena but further experimental studies are needed to obtain a greater ac-
curacy of the correlation providing the critical Weber number. The model had
difficulties to calculate the entrainment rate at the edge of recirculation zones.
This issue has never been studied before. A deeper understanding of entrain-
ment in this particular case should be achieved to improve the quantitative
predictions of the model in complex geometries.

9.2.4 Droplet size

The present work assumed a flow with monodispersed droplets. However, it was
underlined that the diameter of the droplets is influenced by several phenomena:
coalescence, break-up and splashes that can generate numerous small secondary
droplets. It was also emphasized that the droplet size have a direct influence
on the efficiency of gas-liquid separators, especially at high pressures. Hence,
further works should include a model to correctly estimate droplet size.
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