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Abstract

Offshore wells produce some water, and the ratio of water increases during the
lifetime of a well, in particular when water is injected to increase the extraction
rate. Hence, oil companies demand techniques that enhance the separation of
oil and water. A speed-up of the separation process is achieved by applying
electric fields to turbulent-flow water-in-oil emulsions. The electric field gives
rise to attractive forces between close droplets and increases the probability of
coalescence at contact, while the turbulence enhances the frequency of droplet
collisions.

To improve the understanding of the mutual interaction between the tur-
bulence and the electric field, this thesis presents a framework for computer
simulation of turbulent electrocoalescence. The framework is based on the
Eulerian-Lagrangian approach where each droplet is tracked and the electric
and the hydrodynamic interactions between the droplets are handled.

The forces working between two droplets in stagnant oil are modelled and
compared with experimental data. It was found that the electric dipole-dipole
forces and the film-thinning forces dominate at small droplet spacings.

The turbulence felt by the droplets is modelled by a stochastic differential-
equation model. A new model is proposed to correlate the fluid velocities
seen by close droplets, and this is important for the prediction of the collision
velocity, the collision frequency, and the clustering of droplets.

Two algorithmic improvements are made: An adaptive cell structure and the
cluster integration method. The proposed adaptive cell structure adapts to
the number density of droplets and ensures an efficient computation without
any input from the user regarding the cell structure. The cluster integration
method assembles clusters of droplets that interact and integrates each clus-
ter separately using a variable step-size Runge-Kutta method. A significant
speed-up compared to traditional approaches is reported.

Finally, the results obtained by computer simulations of turbulent electroco-
alescence agree qualitatively with experimental observations in the literature.
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Samandrag

Frå oljebrønnar til havs kjem det opp ein del vatn saman med oljen. Mengda
av vatn aukar i løpet av produksjonstida, særleg dersom oljeselskapa pumpar
vatn attende i brønnen for å få ut endå meir olje. Oljeselskapa spør derfor
etter teknologi som skil vatn og olje meir effektivt enn dagens utstyr. Å nytte
elektriske felt på turbulente olje-vatn-blandingar er ein lovande separasjons-
teknologi. Det elektriske feltet skapar tiltrekkjande krefter mellom nære vass-
dråpar og aukar sannsynet for samanslåing ved kontakt, medan turbulensen
gjev hyppige dråpekollisjonar.

Avhandlinga presenterer eit rammeverk for numeriske simuleringar som
kan nyttast til betre å forstå vekselverknaden mellom turbulens og elektrisk
felt. Rammeverket byggjer på ein dråpefølgjingsmetode, der ein modellerer
kreftene som verkar på kvar enkelt dråpe og reknar ut dråpebanene. Arbeidet
legg vekt på modelleringa av kreftene som verkar mellom dråpane, model-
leringa av turbulensen og på utvikling av eigna algortimar.

Dei viktigaste nyvinningane i arbeidet er ein modell finn samanheng mel-
lom rørslene til nære dråpar i turbulensen og ein algoritme som er vesentleg
mindre reknekrevjande enn eksisterande algoritmar.

Numeriske simuleringar av turbulente olje-vatn-blandingar syner dei same
trendane som eksperimentelle forsøk i litteraturen. Det føreslegne rammever-
ket kan derfor nyttast under utforming av framtidig separasjonsutstyr.
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1

Introduction

1.1 Motivation for the thesis

Oil in the forms of fuel and petrochemical products is important in our every-
day life. Transportation requires fossil fuels, and wardrobe, sporting equip-
ment, etc. are to a large extent made of oil-based products.

There is no doubt about the fact that oil is a finite resource, but until now,
the world’s production has been ever increasing. However, this situation will
change. ‘In our life time, we will have to deal with a peak in the supply of
cheap oil’, says Robert A. Kaufmann (Appenzeller, 2004). The point in time
where the global oil production reaches its maximum is often called peak oil.
Peak oil is a watershed moment, then we will really feel that oil is a finite
resource. As long as substitutes are not easily available, the price of oil will
increase and the oil companies can then allow themselves to produce oil at a
higher cost. Increased extraction of oil from already existing wells can extend
the moment of peak oil and make the decline in production less steep. The
Norwegian government wants to increase the extraction rate in the North Sea
from 47% (2004) to beyond 50% (Storting proposition no 38 , 2003-2004).

In the tail production of oil wells in the North Sea, an increasing amount
of water is produced, and it has to be separated from the oil before sale.
The wells contain some water initially, and injection of water is a widely used
technique for increasing the oil extraction rate. To keep the production rate
stable on already existing platforms, one has to separate the emulsion of oil
and water more efficiently than today.

There are several techniques to de-emulsify or separate a stable water-in-oil
emulsion, where the water droplets are so fine and the oil is so viscous that the
droplets hardly sediment (Eow et al., 2001). Heating changes the properties
of the oil, the emulsion turns unstable and the droplets sediment faster. The
drawback is that one has to use a significant amount of produced oil or natu-
ral gas for heating, and that has a considerable cost. Chemical de-emulsifiers
can be added to de-stabilise the emulsion. These chemical de-emulsifiers are

1
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expensive and they have to be separated from the water and oil afterwards.
Another approach, which is cheap and has no environmental impact, is elec-
trostatic destabilisation, electrocoalescence. One benefits from the very dif-
ferent electric properties of oil and water; oil is an insulator and water is a
conductor (Lundgaard et al., 2005). Electrocoalescence has been known since
the beginning of the 20th century when Cottrell patented it (Eow et al., 2001).
An electric field has traditionally been applied on a stagnant or laminar flow
emulsion. Atten (1993) found that it is much more efficient to apply an electric
field to a turbulent-flow emulsion. Turbulence mixes the emulsion very well
and brings the droplets close to each other, while the electric field defeats the
film-drainage forces and increases the probability of successful coalescence at
contact.

There is little work on the effect of turbulence on electrocoalescence in the
literature. Atten (1993) suggested the use of high shears to increase the num-
ber of droplet meeting. Urdahl et al. (2001) reviewed the effect on the collision
rate of different types of shears and turbulence. The mutual effect of turbu-
lence and an electric field has been studied experimentally by Harpur et al.
(1997) and Friedemann et al. (2001). The aim of this thesis is to investigate
numerically, by using computational fluid dynamics (CFD), the interaction be-
tween turbulent flow and electric field.

1.2 Electrocoalescence

Water with a salt content of 3.5 wt% NaCl behaves like an ideal conductor com-
pared to crude oil, which can be considered as an ideal insulator. When an elec-
tric field is applied to water droplets suspended in oil, the water droplets are
polarised. The positive and negative ions travel towards the surface to keep
the potential over the droplet close to zero. The electric field is influenced by
the presence of the droplets. Two droplets in a homogeneous background field
E0 are sketched in Figure 1.1. The resulting field is inhomogeneous and gives
rise to dielectrophoretic forces between the droplets, dipole-dipole forces Fe.
When the droplets are aligned with the field, the dipole-dipole forces are at-
tractive.

Eow et al. (2001) divided the process of electrocoalescence into three stages:

1. The droplets’ approaching each other.

2. The process of film-thinning.

3. Film rupture leading to droplet–droplet coalescence.
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Figure 1.1: Electric forces Fe between two conductive spheres with radii r1 and
r2, separation vector d, and surface to surface distance h. E0 is
the homogenous background field. From Melheim et al. (2004).

The three stages are distinguished by the inter-surface distance h: Stage 1 is
when the distance between two droplets is larger than the radius of the smaller
droplet, h > r2, and the drag force is the most pronounced force describing
the motion of the droplets. Stage 2 is the intermediate range, 0.1µm < h ≤ r2,
where the attractive electric forces suppress the oil film. Stage 3 is at even
smaller separation distances, h < 0.1µm, where film-rupture and coalescence
take place.

Eow et al. (2001) reviewed the literature on electrocoalescence thoroughly
and discussed the effect of different types and strengths of the electric field,
of voltage shape and frequency, and of the volume fraction of droplets. Ur-
dahl et al. (2001) gave a historical review and an overview of different mech-
anisms bringing the droplets closer. The dimensional parameters for droplet
collisions in turbulence discussed by Urdahl et al. (2001) is based on the ex-
pression for collision frequency of Saffman and Turner (1956), which is valid
when the characteristic response time of the droplets, τp, is much less than
the Kolmogorov time scale of the turbulence, τη. In turbulent electrocoa-
lescers, strong electric forces may increase the frequency of collisions and
only large droplets may have response times comparable to the Kolmogorov
time scale. Lundgaard et al. (2005) focused on the instabilities of droplets and
surfaces in addition to give an introduction to basic electrostatics. Hansen
(2005) used a level-set method to calculate Stages 2 and 3 numerically. In the
field of electro-rheology (Klingenberg et al., 1991), conductive metal spheres
suspended in stagnant and laminar-flow oil are investigated. The physics re-
garding the dipole-dipole forces and the film-thinning forces are equal for
metal spheres and small droplets and the expressions for the forces on metal
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spheres can be adapted to water droplets. However, there is an important
difference between rigid spheres and water droplets; the surface of the water
droplets deforms and starts to move when the shear-stresses on the droplet
surface get very high.

In this work, attention is given to describe numerically the behaviour of sus-
pended water droplets in a turbulent-flow oil with an applied electric field. At
contact (Stage 3), instantaneous coalescence is assumed. Different numerical
approaches to calculate turbulent electrocoalescence are discussed in the next
section.

1.3 Numerical approaches

To describe the behaviour of particles suspended in a fluid, there are sev-
eral approaches both for the fluid phase and the particle phase. The term
‘particle’ denotes the dispersed phase that can be solid particles, droplets or
bubbles. The fluid phase is the continuous phase. In the following, various
techniques for the fluid flow will be briefly described. Then approaches for
the particle phase and possible combinations with the fluid-phase methods
will be discussed with respect to turbulent electrocoalescence. A more com-
plete overview of numerical approaches for dispersed multi-phase flows is
given by Loth (2000).

Fluid-phase approaches

The fluid phase is either laminar or turbulent, and usually handled in the
Eulerian way, which means that the Navier-Stokes equations for the fluid are
solved on a grid, contrary to Lagrangian methods. Laminar flows are rarely
found in industrial processes, but they occur in large separation vessels and
in thin films, as for instance the oil film between two close water droplets.
There are mainly three levels in computation of turbulence; direct numerical
simulations (DNS), large-eddy simulations (LES) and Reynolds-averaged Navier-
Stokes equations (RANS) simulations.

In DNS, all time and length scale of the turbulence are solved without mod-
elling. Unfortunately, DNS is computationally expensive and one is limited to
homogeneous turbulence and simple shear flows with low Reynolds numbers
and cyclic boundaries in the flow direction.

LES is, as DNS, unsteady simulations, but the smallest scales are filtered and
modelled. One assumes that the smallest scales are isotropic and that energy
only travels from the larger scales to the smaller, modelled scales. LES is
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more robust than DNS, but one is still limited to small and moderate Reynolds
numbers.

In RANS, the governing equations for the fluid flow are averaged, and the
Reynolds stresses (−uiuj) in the momentum transport equations are mod-
elled. The Reynolds stresses can be found either by solving transport equa-
tions for them, Reynolds-stress models (RSM), or by employing the eddy-
viscosity hypothesis. The most popular way to estimate the eddy viscosity is
by using the k-ε-model, where transport equations are solved for the turbulent
kinetic energy k and its dissipation ε. RANS is best suited for high-Reynolds-
number turbulence.

Particle-phase descriptions

The particle phase can be handled both by an Eulerian and a Lagrangian for-
mulation. The Eulerian approach is suited both for very detailed calculations
of systems with two different fluids and for the coarse multi-fluid approach,
where the particle phase is handled as a fluid. In the Lagrangian approach, the
particles are tracked and the motion is described by the forces working on the
particles.

The DNS methods for Eulerian treatment of droplets and bubbles handle
the fluids as one single fluid with a jump in the fluid properties at the position
of the interface. There are several methods to handle the interface, examples
are the front-tracking method (Tryggvason et al., 2001), the level-set method
(Osher and Fedkiw, 2001; Hansen, 2005) and the volume-of-fluid (VOF) (Scar-
dovelli and Zaleski, 1999). The strengths of these methods are seen in the
study of phenomena like break-up and coalescence. Laminar flow is most of-
ten considered, but these techniques have been combined with low-Reynolds-
number turbulent flows, in particular the VOF method.

For large scales, the dispersed phase is handled as one or more separate
fluid phases and one has the two-fluid or multi-fluid models. The govern-
ing equations for the particle phase are found by volume averaging (Nigmat-
ulin, 1991, Chap. 1.2) or ensemble averaging (Drew and Passman, 1999, Chap.
9). The inter-phase terms and Reynolds-stress-like terms have to be modelled
to close the equations. Empirical relations (Ergun, 1952) and kinetic theory
(Gidaspow, 1994) have been used to make closure models. A more recent
closure approach for dilute flows is the probability-density-function (PDF) ap-
proach (Simonin et al., 1993). The closure models in the PDF approach are
related to a Lagrangian description of the particle motion, where it is easier to
model for instance turbulent dispersion. Because it can handle an innumerable
amount of particles, the multi-fluid approach is implemented in commercial
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CFD-codes. However, the modelling of different particle sizes requires one
particle phase for each particle size and the interactions between the particles
and particle sizes are complex to model. Multi-fluid models are most widely
combined with RANS for the fluid flows, but some combinations with LES are
also seen.

The great advantage of the Lagrangian approach is that the forces working
on each particle can be written down straightforwardly, which makes it easy
to handle complex physics.

The most detailed of the Lagrangian methods with freely moving particles is
the immersed boundary method, where the forces on a solid particle from the
fluid phase and vice versa are calculated on area segments of each particle.

While the particles are larger than the grid size in immersed boundary meth-
ods, the particles are much smaller than the grid in point-particle methods.
The modelled forces are provided with a particular physical meaning and they
are assumed to give separate contributions to the force balance, and they are
added together. In the discrete particle model (DPM), one numerical parti-
cle represents one physical particle, and the inter-particle forces like dipole-
dipole forces, hydrodynamic interactions and collision forces can be modelled
directly. The drawback with DPM is the limited number of particles that can
be handled due to computational resources. The computational barrier can be
passed by letting one numerical particle (parcel) represent many real particles
with equal physical properties; the particle cloud model (PCM). Collisions are
then modelled by a stochastic model (Sommerfeld, 2001). DPM can be com-
bined with DNS calculations of the fluid phase (Patankar and Joseph, 2001),
LES (Laviéville et al., 1995) and RANS (Tsuji et al., 1993). PCM is best suited for
stationary calculations and therefore only combined with RANS.

Conclusion on numerical approach

Table 1.1 summarises possible1 combinations of numerical approaches for the
fluid phase and the particle phase, where the asterisk ∗ indicates the approach
in this work.

Recalling the aim of the present work, that is to investigate numerically
the interaction between turbulence and the electric field in coalescence, poses
limitations to the numerical methods. First, the flow is turbulent and many
droplets are needed, which eliminates the DNS methods for the particle phase.
The inter-droplet physics are complex, one has to deal with both dipole-dipole
forces and hydrodynamic interactions and the droplet size spans from 10µm
to 1 mm. Such complex physics cannot be captured without simplifications

1Other combinations are indeed possible, but they are not rational.



“jamdiss” — 2007-2-23 — 8:06 — page 7 — #15

1.4 Discrete Particle Model 7

Table 1.1: Combinations of numerical approaches.

Particle phase
Eulerian LagrangianFluid phase

DNS Multifluid Big particles Point particles
DPM PCM

Laminar • • • • •
DNS • • •

Turbulent LES • •
RANS • ∗ •

in the multi-fluid framework and the particle cloud model (PCM). Then one is
left with the discrete particle model (DPM). Due to the droplet growth, it is not
possible to use DNS for the fluid flow calculations. LES is a good candidate
because it captures the large-scale mixing that brings the droplets together
and the turbulence is supposed to be moderate. Because of the filtering, the
smallest scales of the turbulence are not ‘seen’ by the particles in LES. LES
is therefore inaccurate when the droplet response time is shorter than the
smallest time scale resolved. Nevertheless, RANS was chosen, mainly because
it already was available. The advantages of RANS are its robustness and low
computational costs, in particular for steady-state calculations. The drawback
is that the instantaneous fluid velocities seen by the particles have to repro-
duced from the mean values provided by the RANS. Challenges in the chosen
numerical approach are pointed out in the following sections.

1.4 Discrete Particle Model

A discrete particle model tracking each particle in a domain is a powerful tool,
in particular when complex physics is considered. Examples are simulations
of molecules (Allen and Tildesley, 1987), granular flows (Cundall and Strack,
1979), fluidised beds (Hoomans et al., 1996; Xu and Yu, 1997), sedimentation
of clays (Anandarajah, 1999), electro-rheology (Lukkarinen and Kaski, 1998),
particle collisions in turbulence (Laviéville et al., 1995; Wang et al., 2000), and
combustion synthesis of nanoparticles (Zuccaro et al., 2004).

Because it is assumed that forces describing different physics can be su-
perpositioned, it is easy to add new forces. DPM in combination with RANS
requires a careful handling of the turbulence. RANS provides only the mean
values of the Reynolds stresses and the dissipation of turbulent kinetic energy.
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The instantaneous velocities must therefore be modelled. This is crucial, be-
cause the dispersion of particles and the particle collision rate depend on the
turbulence.

However, physical models are only half of a discrete particle model; effi-
cient algorithms, suitable data structures and good numerical solvers are also
needed to get reliable results in a reasonable time. For further studies it is con-
venient to break the discrete particle model into four fundamental elements:

1. An appropriate description of the forces working on the particles, suited
to the case one likes to study.

2. A sufficiently physical realisation of the instantaneous velocity at the par-
ticle position due to turbulence.

3. Algorithms that can handle many particles efficiently.

4. Stable and accurate numerical solvers.

These four topics are treated in the following, with respect to numerical sim-
ulations of turbulent electrocoalescence.

Forces working on droplets

The forces working on the particle is analytically expressed by the following
surface integral, appearing from a volume average of the momentum equation
(Nigmatulin, 1991):

Ffluid =
∫
Ad

(
−psnd + τd · nd

)
dA, (1.1)

where Ad is the particle surface area, ps is the relative surface pressure, τd is
the stress tensor on the surface, and nd is the surface normal vector.

A Lagrangian formulation of the equations governing the particle motion
is employed in the discrete particle model and the models for the forces are
related to different physical phenomena such as drag, lift, added mass, buoy-
ancy, etc. The sum of those forces that have to do with particle-fluid interac-
tion should be consistent with the surface integral in equation (1.1). Reviews
of models for forces working on point particles, including droplets and bub-
bles, are given by Crowe et al. (1998), Loth (2000) and Michaelides (2003).

The position x and velocity V of the particles are calculated by

dx
dt

= V , (1.2)

dV
dt

= 1
mp

∑
Fp, (1.3)
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where mp is the particle mass. The sum of the forces working on a particle∑
Fp can be written as:∑

Fp = FD + Fg + FL + FH + FA + FP−P + FW , (1.4)

where FD is the drag force, Fg is the gravity force, FL is the lift forces, FH is
the history force, FA is the added-mass force, FP−P is the inter-particle forces
and FW is the particle-wall forces.

The drag force is generally given by

FD =
1
2
ρCdA |U − V | (U − V) , (1.5)

where ρ is the fluid density, A is the projected particle area, and U is the
fluid velocity. The drag coefficient Cd depends on the particle Reynolds num-
ber Rep = ρ |U − V |dp/µ, the viscosity ratio between the droplet phase and
the continuous phase, λ = ρ/ρp, and the mobility of the droplet surface. In
paper A (Melheim et al., 2004), a small droplet falling on a bigger droplet in
a stagnant oil under the influence of an electric field was considered. It was
found that the expression of LeVan (1981) for the drag coefficient gave rea-
sonable results. The LeVan expression reads:

Cd =
24
Rep

3λ+ 2+ 4κ(µdp)−1 + 2/3γ1(µ|U − V |)−1

3λ+ 3+ 4κ(µdp)−1
, (1.6)

where the surface dilational viscosity was neglected (κ = 0) and a magnitude
in the variation of the surface tension γ1 = 10−5 N/m was used.

The gravity (buoyancy) force is given by

Fg =
(
ρp − ρ

)
gVpeg, (1.7)

where g and eg are the modulus and the direction of the gravity, and Vp is the
particle volume.

The added-mass force is due to the displacement of fluid and is given by

FA =
mp

2

(
DU
Dt

− dV
dt

)
, (1.8)

where 1
2
dV
dt can be put on the left-hand side of the momentum equation (1.3).

The inter-particle forces FP−P can be divided into a dipole-dipole force and
a film-thinning force: FP−P = Fd−d + Ff . Different models for the film-thinning
force and the dipole-dipole force were tested against experimental data in
paper A (Melheim et al., 2004). Melheim et al. (2004) concluded that the an-
alytical dipole-dipole force expression of Davis (1964) and the film-thinning
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force expression of Vinogradova (1995) gave best results. However, the ana-
lytical solution of Davis requires too much computational effort to be used in
a multi-droplet system . The dipole-induced-dipole model of Siu et al. (2001)
is numerically efficient and gives good results for an inter-surface spacing h
larger than 0.1r2, where r2 is the radius of the smallest droplet. The dipole-
induced-dipole model is written as

Fr =
12πβ2εoil|E0|2r3

2 r
3
1

|d|4
(
3K1 cos2 θ − 1

)
, (1.9)

Ft = −
12πβ2εoil|E0|2r3

2 r
3
1

|d|4 K2 sin(2θ), (1.10)

where εoil is the permittivity of the oil, d is the particle-centre separation vec-
tor and β is defined as

β = εw − εoil

εw + 2εoil
, (1.11)

where εw is the permittivity of water. The coefficients K1 and K2 are given by

K1 = 1+ βr3
1 |d|5(

|d|2 − r2
2

)4 +
βr3

2 |d|5(
|d|2 − r2

1

)4 +
3β2r3

1 r
3
2

(
3|d|2 − r2

1 − r2
2

)
(
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K2 = 1+ βr3
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(
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2
(
|d|2 − r2

1

)3 +
3β2r3

1 r
3
2(

|d|2 − r2
1 − r2

2

)3 . (1.12)

The coefficients K1 and K2 approach unity as |d| → ∞, and the well-known
point-dipole model is recovered.

The expression for the film-thinning force of Vinogradova (1995) is written
as

Ff = −
6πµa2(Vr · er)

h

{
2h
6b

[(
1+ h

6b

)
ln
(

1+ 6b
h

)
− 1

]}
er , (1.13)

where a = r1r2/(r1 + r2) is the reduced radius, Vr ≡ V2 − V1 is the relative
velocity vector, and er indicates the direction of the relative motion. b can
regarded as a slip factor and b = 10−6 m was shown to give good results for
dp ≈ 220µm droplets, while b = 10−7 m was used for dp ≈ 115µm droplets.

Vojir and Michaelides (1994) concluded that the history force can be ne-
glected in random velocitiy fields, e.g. turbulent flows, when there is no mono-
tonical change in the velocity. Further, in the present work, particle flows close
to walls have not been considered. The lift forces FL and the wall forces FW
are therefore neglected.
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Turbulent dispersion

Turbulent flows are irregular, seemingly random and highly diffusive. The
length scales in the turbulence are limited downwards by viscosity and up-
wards by the geometry of the flow domain. The scales of the turbulence vary
in space and time and are impossible to predict a priori, but it is possible to
extract time-averaged mean values (Ertesvåg, 2000, Chap. 1).

By doing numerical simulations of the Reynolds-averaged Navier-Stokes equa-
tions (RANS), one calculates the mean values of the turbulent flow, e.g. the
mean velocities, the mean turbulence quantities, etc. In the derivation of the
RANS, it is assumed that the fluid velocity U can be split into a mean part U
and a fluctuating part u as follows:

U ≡ U + u, (1.14)

where u ≡ 0. Then the turbulence appears in the RANS equations in terms
of the Reynolds stresses −uiuj , that have to be modelled. The most com-
mon modelling approaches are solving transport equations for the Reynolds
stresses or employing the eddy viscosity hypothesis. The particles, however,
see the instantaneous fluid velocity U , for instance in the model for drag
force, equation (1.5). When the mean flow is simulated by a RANS model, one
therefore has to calculate the instantaneous fluid velocity U from the mean
values provided by the RANS. Pope (1985, 1994, 2000) proposed stochas-
tic differential-equation models for the instantaneous velocity based on the
Langevin equation for Brownian motion. Written in its most simple form,
called the simplified Langevin model (SLM), the Langevin model of Pope is
given by

dUi = −
∂ 〈P〉
∂xi

dt + 1
TL,i

uidt +
√
C0εdWi(t), (1.15)

where 〈P〉 is the mean pressure, TL,i is the Lagrangian time scale of the turbu-
lence, dt is the time step, dWi(t) is the Wiener process, and C0 is known as the
Lagrangian Kolmogorov constant. The value of C0 varies from 2.1 (Pope, 1985)
to 7 (Yeung and Borgas, 2004) in the literature. The Wiener process dWi(t) is
a stochastic term that is sampled from a normal distribution with zero mean
and dt as the root-mean-square; N (0, dt).

Inertial particles do not follow the fluid particles completely, as sketched
in Figure 1.2, which poses challenges to the modelling. The Lagrangian time
scale has to be changed (Thomas and Oesterlé, 2005) and a mean ‘crossing
trajectory term’ is often added to equation (1.15). In paper D (Melheim et al.,
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Figure 1.2: Fluid and particle paths. (From Melheim et al. (2005b)).

2005b), a slightly modified version of the expression of Minier (1999) is com-
pared with experimental data in a horizontal mixing-layer. The mixing-layer
is anisotropic and the gravity works perpendicularly to the stream-wise direc-
tion, and that makes the dispersion difficult to predict. It was shown that
the model of Minier (1999) predicts the dispersion and the particle fluctuating
velocities well, but a drift was seen in the mean particle velocity.

The fluid velocities seen by droplets located within the same turbulent vor-
tex are correlated. Sommerfeld (2001) and Berlemont et al. (2001) included
this effect in stochastic collision models by correlating the velocity of the fic-
titious collision partner with the velocity of the particle in question. Such
an approach is impossible in DPM, where the collision between two particles
is deterministic. The fluid velocities seen by close particles should be cor-
related due to the properties of the turbulence. A physically correct model
should also be able to capture a preferential concentration for Stokes numbers
around unity (Fessler et al., 1994). An attempt was made in paper E (Melheim,
2006), where the velocities were correlated via the stochastic term. To capture
the variation in time and space of the scales of the turbulence, an additional
stochastic differential equation for the turbulence frequency (Pope and Chen,
1990) was solved for each particle.

Algorithms

So far we have been concerned about physical issues. However, a discrete
particle model is useless without appropriate algorithms and numerics. There
are two topics that require special effort, the search for neighbour particles
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and the number of force calculations needed per unit time in order to achieve
the desired numerical accuracy.

The most convenient way to keep track of neighbour particles is the cell
method (Eastwood et al., 1980). By using a uniform grid, it is easy to map the
particles to the cells. Then one only has to search for neighbours in the cell
where a particle is located, and in the neighbouring cells. The complexity of
the search is then reduced from O(N2) to O(N), where N is the number of
particles.

For particles following rectilinear trajectories between collisions with an in-
stantaneous change in velocities at collision (hard-spheres), the algorithm can
be written purely event-driven. In an optimal event-driven simulation, the po-
sition and velocity of a particle are only calculated when a particle takes part
in a collision (Lubachevsky, 1991; Sigurgeirsson et al., 2001). The efficiency
of an event-driven algorithm depends on the number of particles, the number
of collisions and the resolution of the grid. The number of particle cells has
typically to be set before the computation starts. In paper B (Melheim and
Gjelsvik, 2005), an adaptive cell structure is proposed, that adapts to the local
number density of particles and thereby ensures an efficient computation.

In most particle-laden flows, there is a considerable interaction between the
fluid and the particles, and the particles do not move along straight lines.
The drag force requires time-steps in the order of the particle response time
τp and the interactions between particles in a very viscous fluid cannot be
handled as an instantaneous change in velocity. Small time steps are therefore
needed, and a more sophisticated integrator than the forward Euler scheme,
which is used in event-driven simulations, should be employed. Because of the
small time steps needed, for instance for computation of the collision forces
in soft-sphere collision models (Tsuji et al., 1993), the algorithm is time-driven.
Time-driven algorithms are generally slow compared to event-driven billiards
algorithms.

An algorithm that tries to include the advantages of both event-driven and
time-driven algorithms is proposed in paper C (Melheim, 2005) and is called
the cluster integration method (CIM). In CIM, the particles are equipped with
a virtual radius, and close-particle lists are made of particles with overlapping
virtual radii. A ‘test move’ with the forward Euler scheme, following the pat-
terns of an event-driven algorithm, is performed in order to identify potential
collision partners in the direction of motion. Potential collision partners are
added to each other’s close-particle lists. Clusters are then made from the
close-particle lists and the different clusters are integrated separately using a
variable step-size Runge-Kutta scheme (Hairer et al., 1992, Chap. II.4). Hence,
the single-particle clusters and clusters with weak interactions between the
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particles can be integrated with a much longer time step than those clusters
with strong particle-particle interactions. CIM was reported to give a signifi-
cant speed-up compared to a traditional time-driven algorithm.

Numerical methods

The equations describing the motion of the particles are ordinary differential
equations (ODEs), while the equations for the fluctuating fluid velocities and
turbulent frequency are stochastic differential equations (SDEs). There are
two numerical approaches to solve an ODE; multi-step methods and one-step
methods (Hairer et al., 1992), where the simplest version of both approaches
is the forward Euler scheme. Furthermore, a third approach is seen in the
literature, a quasi-analytical solution, e.g. in Coimbra et al. (1998).

The Runge-Kutta schemes belong to the one-step methods, and there are
several reasons that make them attractive for evolving particles in time:

–– The Runge-Kutta schemes are easy to implement, there is no starting
difficulties and at the end of a time step one has one value.

–– The Runge-Kutta schemes are well studied, one can choose a scheme
based on desired properties.

–– It is easy to employ variable step size, so-called embedded Runge-Kutta
methods.

–– By using Runge-Kutta schemes, one has to separate the numerics and the
physics, which is good for code maintenance.

The model for the turbulent dispersion is given by a stochastic differen-
tial equation for the fluctuating velocities, that contains both a dt term and
a stochastic Wiener process dW . The Runge-Kutta schemes for ordinary dif-
ferential equations cannot in general be used directly on SDEs because they
do not approximate an Ito-Taylor expansion of an SDE (Kloeden and Platen,
1992). The forward Euler scheme approximates the first deterministic and
stochastic term of an Ito-Taylor expansion and can therefore be used, but it is
inaccurate. Burrage and Burrage (1996) made an explicit Runge-Kutta scheme
for SDEs, where the classical 4th order Runge-Kutta scheme is recovered when
the stochastic terms are neglected. Hence, the scheme of Burrage and Burrage
(1996) can be used for the fluctuating fluid velocity together with the classical
RK4 scheme for the particle position and velocity.
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A variable step-size Runge-Kutta scheme also exists for SDE (Burrage and
Burrage, 2002), but such schemes are complex. It is assumed that the stiff-
ness of the velocity equation (1.3) decides the time-step and a variable step-
size scheme can therefore be applied to the position and the velocity only.
The fluctuating velocities, found by the SDE, are updated at the end of every
successful local time-step dtl with a fixed step-size SDE scheme. Minier and
Peirano (2001) stated that the time-step for calculation of the fluctuating ve-
locity should be much larger than the Kolmogorov time scale τη and much
less than the integral time scale TL. The upper bound is satisfied by limiting
the global time step.

1.5 Fluid-flow equations

Due to the presence of particles, the Reynolds-averaging strategy cannot be
employed on the Navier-Stokes equations. However, the averaged continu-
ity and momentum equations appearing from volume averaging (Nigmatulin,
1991) or ensemble averaging (Drew and Passman, 1999) are, except for the
particle source terms and the volume fraction, equal to the Reynolds-averaged
equations. Hence, they are frequently called the Reynolds-averaged Navier-
Stokes equations (RANS). The averaged Navier-Stokes equations for the con-
tinuous phase in a dispersed particle flow can be written as

∂
∂t
(αρ)+ ∂

∂xi

(
αρU i

)
= 0, (1.16)

∂
∂t

(
αρU i

)
+ ∂
∂xj

(
αρU iUj

)
= −α ∂P

∂xi
+ ∂
∂xj

(
−αρuiuj

)
+ ∂
∂xj

(
αµ

(
∂U i
∂xj

+
∂Uj
∂xi

))
+Fp, (1.17)

where P is the mean pressure and Fp is the mean force of the particles work-
ing on the fluid. Mass transfer is neglected. The momentum equation (1.17)
is in the present work closed by the turbulent viscosity approach, where the
Reynolds stresses −uiuj are expressed by (Pope, 2000, Chap. 4)

−ρuiuj = µt
(
∂U i
∂xj

+
∂Uj
∂xi

)
− ρ2

3
kδij , (1.18)

where k is the turbulent kinetic energy (k = 1
2uiui) and µt is the turbulent

viscosity, modelled by a slightly modified version of the standard k-ε-model
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(Launder and Spalding, 1974). Launder & Spalding modelled the turbulent
viscosity as follows:

µt = Cµρ
k2

ε
, (1.19)

where Cµ = 0.09 is a model constant and ε is the dissipation rate of turbulent
kinetic energy. Transport equations are solved for the turbulent scalars k and
ε, wherein the volume fraction α is included. The transport equation for the
turbulent kinetic energy k reads:

∂
∂t
(αρk)+ ∂

∂xj

(
αρkUj

)
= ∂
∂xj

(
α(µ + µt)

∂k
∂xj

)
+αρPk −αρε + Sk,

(1.20)

where the production of turbulent kinetic energy Pk is defined by

ρPk = µt
(
∂U i
∂xj

+
∂Uj
∂xi

)
∂U i
∂xj

. (1.21)

Sk accounts for the influence of the particles on the turbulent kinetic energy.
The transport equation for the dissipation rate of turbulent kinetic energy ε is
given by:

∂
∂t
(αρε)+ ∂

∂xj

(
αρεUj

)
= ∂
∂xj

(
α
(
µ + µt

σε

)
∂ε
∂xj

)
+ Cε1α

ε
k
ρPk − Cε2αρ

ε
k
ε + Sε, (1.22)

where σε = 1.3, Cε1 = 1.44, Cε2 = 1.92, and Sε is a source term due to the
particles.

Inter-phase transfers

A criterion for the inter-phase transfers from the particle phase to the fluid
phase based on the macroscopic momentum-coupling parameter is given by
(Loth, 2000):

ΠL =
αpL3

∣∣∣ρp − ρ∣∣∣g
ρV2

LL2
, (1.23)

ΠΛ =
αpΛ3

∣∣∣ρp − ρ∣∣∣g
ρV2

ΛΛ2
, (1.24)
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where L equals the largest length scale in the flow and VL is the largest velocity
scale. Λ and VΛ denote the integral scales. The coupling is, according to Loth
(2000), negligible for the mean flow when ΠL � 1. The source terms in the
k and ε equations can be neglected when ΠΛ � 1. A low volume fraction of
water droplets (αp < 10%) in oil and a moderate turbulence level Reλ ≈ 25
typically gives ΠL < 1 and Πλ � 1, which means that the droplets might have
an influence on the mean flow, but not on the turbulence. Hence, the source
terms Sk and Sε can be neglected in the present work.

Solution methods

The momentum equation (1.17) and the transport equations related to the
turbulence models, equations (1.20) and (1.22), are discretised using the finite-
volume method on a grid. Incompressible flow is assumed and the pressure
field is found by the SIMPLE algorithm (Patankar, 1980, Chap. 6). The gov-
erning equations for the fluid motion can be solved both for transient and
steady-state flows. A transient solution requires a volume-averaging of the
particle source terms over each control volume. To gain stability, the drag
force is split into a term dependent on the mean velocity at the centre of the
control volume and an independent term. Steady simulations are more stable,
but require that time-averaged values can be extracted from a large number
of particle trajectories. An iteration process is performed until convergence:
The single phase fluid flow is calculated, then a large number of particles are
tracked and the mean force on the fluid in each control volume is calculated.
Then the flow is calculated again with updated source terms. The iteration is
performed until the number of iterations the fluid solver needs to converge
reached a ‘steady number’ (Kohnen et al., 1994).

1.6 Present contribution

The main contribution of the present work is given in six articles, published
in or submitted to the scientific community.

Together, the contents of articles A–E fill the gap between a general Eulerian-
Lagrangian particle code and a code that can perform numerical simulation
of turbulent electrocoalescence. Figure 1.3 shows how the gap is filled: the
particle-pair forces, an adaptive cell structure and a model for turbulent dis-
persion were implemented in the basic code. The cluster integration method
uses the cell structure and speeds up the computation of the inter-particle
forces. The model for correlating the motion of close particles requires a
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Figure 1.3: Map of articles.

cell structure and a turbulent dispersion model for each single particle. Pa-
per F (Melheim and Chiesa, 2006) on turbulent electrocoalescence concludes
the work and shows that turbulent electrocoalescence can be computed nu-
merically by using a discrete particle method for the droplets and Reynolds-
averaged Navier-Stokes equations for the fluid phase.

As is apparent from the summaries of the articles that follow, the articles
themselves have a wider audience than those interested in numerical simula-
tions of turbulent electrocoalescence. Everyone interested in Lagrangian parti-
cle simulations, in particular those working with deterministic particle-particle
interactions, will hopefully find something interesting and useful.
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Paper A – Forces between two water droplets in oil under the
influence of an electric field

Co-authors: Matteo Chiesa, Stian Ingebrigtsen, and Gunnar Berg

The paper outlines the forces that influence the kinematics of a droplet falling
towards a stationary droplet exposed to an electric field. Experiments and nu-
merical simulations were performed. The experimental setup consisted of two
vertically placed electrodes. One droplet was at rest at the lower electrode and
a smaller droplet was released some millimetres above. The droplet motion
was recorded with a high-speed CMOS camera. The optical observations were
compared with the results from numerical simulations where the governing
equations for the droplet motion were solved by the RK45 Fehlberg method
with step-size control and low tolerances. It was found that the droplet motion
mainly was due to buoyancy, drag, film-drainage, and dipole-dipole forces. At-
tention was paid to internal circulations, non-ideal dipoles, and the effects
of surface tension gradients. The best results were obtained by using the
drag-force model of LeVan (1981), the analytical dipole-dipole force expres-
sion of Davis (1964) and the film-thinning force model of Vinogradova (1995).
It should be mentioned that a better physical interpretation of the slip-factor
in the film-thinning model was given in Chiesa et al. (2005b). The analyti-
cal expression of Davis contains numerical solution of complex series, which
is computationally heavy, and the expression is valid for two droplets only.
Therefore, the dipole-induced-dipole model of Siu et al. (2001) was recom-
mended for multi-droplet systems.

Paper B – Adaptive cell structure for efficient detection of
neighbouring particles in collisional particle-laden flows

Co-author: Anders Gjelsvik

An adaptive algorithm for particle-particle and particle-wall collision detec-
tion in the two-dimensional case was presented. The algorithm ensures ef-
ficient computations of colliding particle flows without any input from the
user regarding the particle cell structure. The physical domain was hierar-
chically divided and structured as a quadtree. The algorithm was intended
for particle-laden flows, which require small time steps, but within each time
step, the algorithm is event-driven. Tests with uniform particle distribution
and fixed cell structures with uniform cell sizes showed that the number of
particles inside a particle cell should be kept in the range of 0.25 to 3.0 by the
adaptive algorithm. Test cases with non-uniform particle distributions were
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performed and showed that the proposed adaptive cell structure is not more
efficient than an optimal uniform cell structure. The advantages are therefore
the user-friendliness and the time not used to search for the optimal uniform
cell structure, and that is difficult to measure.

Paper C – Cluster integration method in Lagrangian particle
dynamics

An efficient and robust approach for numerical simulations of collisional par-
ticle dynamics in the Lagrangian framework was proposed. The algorithm
handles efficiently the interactions between particles and droplets; clusters of
interacting droplets are assembled and integrated separately, using a variable
step-size Runge-Kutta solver. The inter-particle interactions can be both con-
tact forces, hydrodynamic forces, and important for electro-coalescence, the
electric dipole-dipole forces. The cluster integration method was applied on
sedimentation of 5000 particles in a two-dimensional box. A significant speed-
up was achieved. Compared to a traditional discrete element method with the
forward Euler scheme, a speed-up factor of three orders of magnitude in a
dilute regime and two orders of magnitude in a dense regime were observed.

Paper D – Modeling of the vortex-structure in a particle-laden
mixing-layer

Co-authors: Stefan Horender and Martin Sommerfeld

Numerical calculations of a particle-laden turbulent horizontal mixing-layer
based on the Eulerian-Lagrangian approach were presented in this paper. This
test case was chosen because Dr Stefan Horender did his doctoral work on
it. It is a challenging test case; the turbulence is anisotropic and the gravity
causes a drift in the span-wise direction. A slightly modified version of the
Langevin model of Minier (1999) was used to determine the fluctuating fluid
velocity seen by the particles. The Reynolds-averaged Navier-Stokes equations
for the fluid phase were closed by the standard k-ε-model. The numerical
results were compared with particle image velocimetry (PIV) measurements.
The concentration profile and the particle velocity fluctuations were predicted
reasonably well, but a drift was seen in the mean particle velocity. Further
studies are therefore needed.
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Paper E – Correlated motion of inertial particles in turbulent flows

The instantaneous fluid velocity is modelled by evolving in time a stochastic
differential equations for the fluctuating fluid velocity, as described in Paper
D (Melheim et al., 2005b). In this paper (Paper E), a model for correlating
the motion of close particles in turbulent flows was proposed. The model
correlated the fluid velocity seen by the particles via the random term in the
stochastic equation for the fluctuating fluid velocity, using the spatial auto-
correlation functions. The intermittency of the turbulence was modelled by
employing an additional stochastic differential equation for the turbulence
frequency. Simulations of fluid-particle pair dispersion showed that the re-
sults followed the classical Richardson t3-law. N inertial particles in isotropic
and homogeneous turbulence were simulated and the results were compared
with empirical correlations based on direct numerical simulations. A deviation
was seen at low Stokes number, but the gap decreased when more particles,
that means particles further away from the particle in question, were included
in the correlation calculations. Both the DNS and the presented calculations
allowed particle overlaps, hence too much weight might be given to viscous
effects, which were neglected in the proposed correlation model. A compari-
son with DNS-data with real particle-particle collisions should be made before
conclusions can be drawn.

Paper F – Simulation of turbulent electrocoalescence

Co-author: Matteo Chiesa

Eulerian-Lagrangian simulations of water droplets in a turbulent oil flow in-
fluenced by electric fields were presented. A two-dimensional channel (3 cm×
6 cm), downstream of a perforated plate was considered, where the electric
fields were directed perpendicularly to the stream-wise direction. In these
simulations, we used the models and algorithms that were presented in the
previous papers. The results show that the mutual interaction of turbulence
and electric fields strongly enhances the droplet growth. A 0.2 s treatment
increases the droplet diameter with a factor three, which corresponds to a
ten-fold higher terminal velocity. The results agree qualitatively well with ex-
perimental observations on a macroscopic scale. Quantitative comparisons,
however, require a three-dimensional code and large computational resources.
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1.7 Conclusions and further work

The papers A–F deal with different topics, and they have their separate con-
clusions. In this section, a main conclusion from each paper is drawn. Sugges-
tions for the direction of further work on computer simulation of turbulent
electrocoalescence are also given.

Conclusions

Paper A. The point-particle approach with appropriate models for the inter-
droplet forces can be used to calculate electrocoalescence.

Paper B. The advantage of the proposed adaptive cell structure is its user-
friendliness rather than computational savings.

Paper C. The proposed algorithm, called cluster integration method, is effi-
cient for a wide range of particle-dynamics applications.

Paper D. The Langevin-equation approach for the fluctuating fluid velocity
‘seen’ by the particles provides a reasonable prediction of the dis-
persion of particles in anisotropic turbulence.

Paper E. The proposed model for correlating the fluid velocities felt by close
particles gave better results than existing N-particle models in the
literature.

Paper F. The results from numerical simulations of turbulent electrocoales-
cence in two dimensions showed the same trends as experimental
results in the literature.

Further work

–– The code should be extended to three dimensions to get more reliable
results. A parallelisation of the code might then be necessary.

–– A criterion for the coalescence probability is needed.

–– Large-eddy simulations of the fluid phase may improve the results.

–– Laboratory experiments on turbulent electrocoalescence should be car-
ried out for validation of the numerical models.
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Abstract The combination of an electric field and a moderate turbulentflow is a promising technique for
separating stabile water-oil emulsions. Charges induced on the water droplets will cause adjacent droplets to
align with the field and attract each other. The present work outlines the forces that influence the kinematics of
a droplet falling towards a stationary droplet. Mathematical models for these forces are presented and discussed
with respect to the implementation in a multi-droplet Lagrangian framework. The droplet motion is mainly due
to buoyancy, drag, film-drainage, and dipole-dipole forces. Attention is paid to internal circulations, non-ideal
dipoles, and the effects of surface tension gradients.

Experiments are performed to observe the behavior of the falling droplet exposed to an electrical field. The
experimental setup consists of two vertically placed electrodes. One droplet is at rest at the lower electrode
and a smaller droplet is released some millimeters above. The droplet motion is recorded with a high-speed
CMOS camera. The optical observations are compared with theresults from numerical simulations where the
governing equations for the droplet motion are solved by theRK45 Fehlberg method with step size control and
low tolerances. Results, using different models, are compared and discussed in details. Furthermore, a strategy
that allows to properly describe both the kinematics of a falling rigid sphere particle and of a fluid droplet under
the influence of an electric field is outlined.

Nomenclature

A,Ad Particle surface
a Reduced radius
b Slip length, see Fig. 1
Cd Drag coefficient
d Separation vector
E,E0, Electric field vector
er Relative motion vector
F e Dielectrophoretic force vector
F b Body force vector
F f Film thinning force vector
F d-d Inter-droplet force vector
F d Drag force vector
F ext External-droplet force vector
F fluid Fluid-droplet force vector
h Least distance between two particles
i Particlei
rd Particle radius
r1 Radius of falling particle

r2 Radius of stationary particle
Red Particle Reynolds number
u Continuous phase velocity vector
v Particle velocity vector
vi Velocity vector of particlei
vr Relative particle velocity vector
Vd Particle volume
xi Particle position vector
γ1 Magnitude of the surface tension gradient
ε0 Vacuum dielectric constant
εd Relative dielectric constant of droplet/particle
εoil Relative dielectric constant of oil
θ Angle betweenE andd

λ Viscosity ratio (λ = µd/µc)
µc Viscosity of oil
µd Viscosity of droplet
ρc Density of oil
ρd Density of droplet/particle
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1 Introduction

The oil extracted from offshore reservoirs will normally contain a large and, during the reservoir
lifetime, increasing percentage of water emulsified in the oil. Electric fields are used to extract the
water from the crude oil [1] . The combination of an electric field and a moderate turbulent flow is a
promising and compact technique for separating stabile water-oil emulsions [2]. Charges induced on
the water droplets will cause adjacent droplets to align with the field, attract each other and eventually
coalesce. The sedimentation velocity increases proportionally to the square of the diameter, and
therefore one wishes to get the smallest water droplets to coalesce together or into larger droplets.
The present work outlines the forces that influence the kinematics of a spheric droplet falling towards
a stationary one. Mathematical models for these forces are presented and discussed with respect to
the implementation in a multi-droplet Lagrangian framework. The spherical droplet motion is mainly
due to buoyancy, drag, film-drainage, and dipole-dipole forces. General and physically meaningful
models for these forces are needed. The trajectory of a spherical dropleti is calculated by integrating
Newton’s second law. The law equates the droplet inertia with the forces acting on it, and reads:

dxi

dt
= vi (1)

mi

dvi

dt
= F fluid + F ext + F d-d, (2)

wheremi, xi, andvi are the mass, position, and velocity of the droplet.F fluid represents the vector
of forces acting from the fluid on the droplet,F ext is the external force vector, andF d-d represents the
inter-droplet force vector.

Droplet tracking with droplet-droplet interaction has a high computational cost. It is therefore
important to keep the computational work necessary to calculate the particle forces as low as possible
since the forces have to be calculated for each particle. Finally, models should be easily imple-
mentable in a numerical code. The computation and implementation costs of each force have to be
evaluated in relation to the accuracy achieved. In such evaluation it is also important to asses the
contribution of each force on the total force account.

Experiments are performed to observe the behaviour of the falling droplet exposed to an electrical
field. The experimental setup consists of two vertically placed electrodes. One droplet is at rest at
the lower electrode and a smaller droplet is released some millimetres above. The droplet motion is
recorded with a high-speed CMOS camera. In the present work afirst series of experiments is carried
out releasing a rigid sphere particle with density and permittivity similar to water. Electric fields
with different magnitudes are applied and the velocity of the particle is recorded as a function of the
distance between the electrode and the particle itself. A second series of experiments is performed
releasing water droplets and observing their motion when electric fields of different magnitudes are
applied. The velocity of the droplet is recorded as a function of its distance from the electrode.

The experimental observations are compared with the results obtained numerically solving the
governing equations for the droplet motion. The comparisonbetween observed and predicted veloc-
ities versus normalized particle surface distance for rigid particle when no electric field is applied
shows a good agreement. The forces dictating the motion of the particles such as buoyancy, drag,
and film-drainage are properly modelled in our numerical framework. The prediction of the motion
of a rigid particle under the influence of an electric field agrees well with the experimental observa-
tions. The electric force between two conductive particlesis modelled with the analytical expression
obtained by Davis [3]. It is possible to conclude that the accuracy of the predictions obtained using
the DID model by Siu et al. [4] also is satisfactory as long as the falling particle is not too close to the
stationary particle.

When comparing the predictions and the observations of the motion of a falling droplet, the effect
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of internal circulation induced in the droplet has to be taken into account. Internal circulation reduces
the viscous part of the drag force and therefore the drag coefficient needs to be corrected in order to
account for this reduction [5]. Furthermore the surface tension varies over the droplet surface by the
effect of surfactants on the interface and by elongation of the droplet, caused by the electric field. This
leads to interfacial stresses that inhibit the creation of internal circulation. LeVan [6] suggested how to
take into account the effect of surface tension gradient. Barnocky and Davis [7] show that the drainage
between fluid spheres with arbitrary viscosity is differentfrom rigid particles. The model proposed by
Vinogradova [8] takes into account the slip between the liquid film and the approaching spheres. The
comparison between observed and predicted velocities versus normalized droplet surface distance
h/r1 for fluid droplet shows a good agreement when all the effects influencing the droplet kinematics
are modelled.

2 Modeling the fluid-droplet and body forces

Fluid droplet forces are transfered from the fluid to the droplets through friction and pressure differ-
ence. These forces are expressed exactly by the following surface integral:

1

Vd
F fluid =

1

Vd

∫

Ad

(−psnd + τ d · nd) dA (3)

whereVd is the volume of the droplet.ps is the pressure at the droplet surface,nd represents the unit
outward normal vector andτ d is the shear stress tensor at the droplet surface.

The pressure and the friction on the interface are unknown and Eq. (3) has to be modelled. In
the Lagrangian framework the models for the surface integral attempt to provide particular physical
meanings.

Drag force
The ‘steady-state’ drag force acts on a droplet in a uniform pressure field when there is no acceleration
of the relative velocity between the droplet and the conveying fluid. The force reads:

F d =
1

2
ρcCdA|u− v|(u− v), (4)

For a droplet Reynolds numberRed below 1, the drag coefficientCd for a rigid sphere is given by:

Cd =
24

Red

(5)

An internal circulation is induced in fluid spheres, that reduces the viscous part of the drag. For
spherical clean bubbles and droplets, the induced internalcirculation is accounted by the Hadamard-
Rybczynski formula [9]:

Cd =
24

Red

λ+ 2/3

λ+ 1
(6)

whereλ = µd/µc is the viscosity ratio. Surfactants on the interface and elongation of the droplet,
caused by the electric field, give a variation in the surface tension. The surface tension gradient leads
to interfacial stresses that inhibit the creation of internal circulation. The surface tension gradient is
included in the formula by LeVan [6]:

Cd =
24

Red

3λ+ 2 + 2κ(µcrd)
−1 + 2/3γ1(µc|u− v|)−1

3λ+ 3 + 2κ(µcrd)−1
, (7)
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where also the surface dilational viscosityκ is taken into account. However, in the present work
surface dilational viscosity is neglected,κ = 0. In Eq. (7) it is assumed that the interfacial tension
varies as follows:

γ = γ0 + γ1cosψ (8)

whereψ is measured from the front stagnation point.

Virtual mass force
The virtual mass forceF vm is an unsteady force that describes the acceleration of fluidwhen a particle
and the fluid have a relative acceleration. It reads:

F vm =
ρcVd

2

(

Du

Dt
−
dv

dt

)

(9)

External body forces
We assume that the droplets have no net charge, hence the electric field as a far field force can be
neglected. On the other hand, the electric field gives rise todipole-dipole interactions between the
droplets, which are modelled as inter-droplet forces. Thenthe gravity is the only external force and
the buoyancy force is given by:

F b = (ρd− ρc) gVdeg (10)

whereg andeg are the modulus and the direction of the gravity.

Observations
In the present work, the effects of the pressure gradient, the Basset history force and the lift forces
have been neglected. The pressure difference over a small droplet is negligible due to the size of
the droplets. The contribution from the gravity is handled separately. Lift forces are due to droplet
rotation and shear forces, and can therefore be neglected when a rigid sphere or droplet is falling in a
stagnant fluid. Due to the small size of the spheres and the high viscosity of the oil, the particle time
scale is very small. Thereby follows that the Stokes number is small and the Basset history force can
therefore be neglected [10].

3 Modeling droplet-droplet forces

The inter-droplet forces are the film thinning forces, due tothe drainage of the fluid between the
droplets, and the electric forces due to polarisation of theconductive water droplets.

Film-thinning force
The film-thinning force is caused by drainage of the liquid film between two approaching droplets.
The derivation of the formulas usually requires that the gapbetween the particles is smallh≪ a and
that the flow is within Stokes regimeRedh≪ a. a = (r1r2)/(r1 + r2) is the reduced radius. For rigid
spheres the film-thinning force is written as [11]:

F f = −
6πµca

2(vr · er)

h
er, (11)

wherevr is their relative velocity vector ander indicates the direction of the relative motion.
When the particles are very close, a slip will occur and avoida zero impact velocity. The formula of
Vinogradova [8] includes a slip distanceb, as shown in Fig. 1, and is written as:

F f = −
6πµca

2(vr · er)

h

{

2h

6b

[(

1 +
h

6b

)

ln

(

1 +
6b

h

)

− 1

]}

er. (12)
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vf

δ

b

z

Figure 1: Illustration of the slip lengthb.

Barnocky and Davis [7] studied the drainage be-
tween fluid spheres with arbitrary viscosity, from
bubbles to rigid particles. The influence of surfac-
tants and the surface tension gradient were not paid
any effort. In our case, the droplet at rest is cov-
ered with surfactants and is therefore handled as a
rigid sphere. The film force formula of Barnocky
and Davis [7] for a fluid sphere approaching a rigid
sphere reads:

F f = −
6πµca

2(vr · er)

h

1 + 0.47ξ + 0.0047ξ2

1 + 1.13ξ + 0.19ξ2
er,

(13)

whereξ = λ−1
√

(a/h).

Electric forces acting on the spherical droplets
Consider an uncharged spherical droplet placed in
an insulating medium. The droplet is furthermore
subjected to an electric fieldE0. The field outside a
dielectric sphere of permittivityεd corresponds ex-
actly to the electric field of a dipole located at the sphere centre. The value of this dipole momentp

depends on the sphere size, permittivity and the strength ofthe electric field. Due to the polarisation of
the droplet, the poles will have charges of same magnitude but opposite polarity, preserving zero net
charge. In a homogeneous field the net force on the droplet is zero. Subjected to an inhomogeneous
field the droplet will experience a stronger field at one pole than at the other, resulting in a net force
acting on the droplet in the direction of the field gradient. Aphenomenon called dielectrophoresis.
The resulting force is given byF = (p ·∇) E. If the permittivity of the dropεd is higher than the
permittivity of the surrounding mediumεoil, the drop will move towards the high field region. An
inhomogeneous electric field may for instance be set up by nearby point charge or another dielec-
tric droplet, see Fig. 2. In the latter case the electrostatic force attracts the two droplets, given that
εd > εoil.

Point dipole model
For large droplet distances|d|/rd ≫ 1 we can approximate the electrostatic interaction between two
droplets as the force between two dipoles located at the sphere centres, see Fig. 2. This is frequently
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Figure 2: Electric forces between two conductive spheres.
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referred to as thepoint-dipoleapproximation. The forces in radial directionFr and tangential direction
Ft read [12]:

Fr =
12πβ2εoil|E0|

2r3

2
r3

1

|d|4
(

3 cos2 θ − 1
)

(14)

Ft = −
12πβ2εoil|E0|

2r3

2
r3

1

|d|4
sin(2θ), (15)

whereθ is the angle between the direction of the electrical fieldE0 and the relative droplet position
vectord. β is defined as:

β =
εd − εoil

εd + 2εoil
, (16)

The Dipole induced dipole model (DID)
The above point-dipole model is not valid when the droplets are approaching each other. In the
literature there are different approaches to find the dipole-dipole forces beyond the point dipole ap-
proximation for multiple particles of arbitrary size and position. Clercx and Bossis [13] presented a
multi-pole expansion method that gives good results, but the calculation is complex. A more promis-
ing method, themultiple image method, was presented by Yu et al. [14]. The two first terms in the
multiple image method gives the dipole induced dipole model(DID) [4], which is simple and numer-
ical efficient. Siu et al. [4] show that the DID model is in goodagreement with the experimental
values obtained by Klingenberg et al. [12] for|d|/r1 > 0.1 for equally sized conductive particles. It
is customary to write the dipole forces on the form:

Fr =
12πβ2εoil|E0|

2r3

2
r3

1

|d|4
(

3K1 cos2 θ − 1
)

(17)

Ft = −
12πβ2εoil|E0|

2r3

2
r3

1

|d|4
K2 sin(2θ). (18)

For the DID model the coefficientsK1 andK2, are written as:

K1 = 1 +
βr3

1
|d|5

(|d|2 − r2

2
)
4

+
βr3

2
|d|5

(|d|2 − r2

1
)
4

+
3β2r3

1
r3

2
(3|d|2 − r2

1
− r2

2
)

(|d|2 − r2

1
− r2

2
)
4

, (19)

K2 = 1 +
βr3

1
|d|3

2 (|d|2 − r2

2
)
3

+
βr3

2
|d|3

2 (|d|2 − r2

1
)
3

+
3β2r3

1
r3

2

(|d|2 − r2

1
− r2

2
)
3
, (20)

In the limit |d| → ∞ the coefficientsK1 andK2 approach unity and we recover the point dipole
model given by Eq. (14) and (15).

The analytical solution
Davis [3] found an analytical solution to Laplace’s equation for two conducting spheres of arbitrary
size, displacement and net charge, using bi-spherical coordinates. The exact solution for uncharged
spheres is given by:

Fr = 4πεoil|E0|
2r2

2

(

F1 cos2 θ + F2 sin2 θ
)

(21)

Ft = 4πεoil|E0|
2r2

2
F3 sin(2θ), (22)

where the parametersF1, F2, andF3 are complicated series depending on the ratios|d|/r2 andr1/r2.
Unfortunately, the computational cost required for calculating F1 − F3 is high in a multi-droplet
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situation. However, the exact solution is excellent for benchmarking other models in cases with two
particles/droplets. For large drop separations|d|/r1 ≫ 1 the force componentsF1 − F3 approach
the values of the point-dipole Eq. (14) and (15). For small separations|d|/r1 < 1, F2 andF3 takes
constant values whileF1 diverges. Atten [2] showed thatF1 takes the asymptotic value:

F1 =
4 (r2/|d|)

0.8

3 (1 + r2/2r1)
4
. (23)

4 Experimental setup

CMOS Camera Long Distance Microscope Test Cell
Background Light

Laptop

Translation stages

Stationar droplet Setup

Test Cell

(a) Experimental set-up (b) Experimental observation

Figure 3: (a) Experimental set-up designed for visual observation of the behaviour of drops in oil
emulsion exposed to the effect of an external electric field.(b) An experimental observation where a
small droplet comes into contact with a bigger one.

Experiments are designed for visual observation of water drops in oil under the influence of elec-
tric field stress. A vertical15 mm electrode-gap arrangement is placed inside a cubic test cell with
side lengths150 mm. The cell is placed in an optical bench to obtain a shadow-graphic representation
of the water drops as shown in Fig. 3(a). One drop of4 mm in diameter is positioned at rest and in
direct contact with the lower high voltage electrode, and sub-millimetre sized droplets are released
within the upper grounded electrode from a glass capillary.Electric fields are vertical thus parallel
to the drop-drop impact vectors and in the range250 − 400 V/mm. Bipolar square voltages with
frequencies10 Hz and100 Hz are used. Drop interactions and coalescence are recorded with a Phan-
tom V4 high speed CMOS camera capable of 1000 frames per second at512× 512 pixels resolution.
The position and the velocity of the droplets are digitally extracted from the sequential frames. Un-
certainty in measured droplet diameter is less than5µm. Water is distilled and a small amounts of
salt is added (3.5 H20wt% NaCl), and the oil used is Nynäs Nytro 10X transformer oil. Asimilar
experiment is performed with un-deformable rigid spheres that are designed to have similar density
and permittivity to salt water, see Table 1. The falling rigid spheres are of Ugelstad type,≈ 150µm
diameter polystyrene base spheres (ρ = 1050 kg/m3) covered with 400nm silver coating. Glass cap-
illaries are made hydrophobic to ease the release of generated droplets, and coated with gold to avoid
static charge transfer from glass to water. At 20◦C the oil viscosity is13.7 Pa · s, however some se-
ries with rigid spheres are performed at a slightly higher temperature (23− 25◦C) and an interpolated
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Table 1: Properties of Nytro 10X, water with a small salt content and rigid sphere particle at 20◦C.

Oil Water Rigid sphere
Densityρ 875kg/m3 1022 kg/m3 1206− 1210 kg/m3

Viscosityµ 13.7 · 10−3 Pa · s 0.98 · 10−3 Pa · s ∞
Relative permittivityε 2.2 1000 1000

Table 2: Experimental series.

Electric field Rigid sphere radius Droplet radius
0V/mm 82.5µm

250V/mm 70.5µm 105µm
300V/mm 70.5µm 110µm and 58µm
400V/mm 72µm 110µm

viscosity of 12.5Pa · s is used for these simulations. Fig. 3(b) shows a typical collision between a
200µm diameter falling water droplet and a 4mm diameter stationary drop.

5 Results and Discussions

Numerically, the governing equations (1) and (2) are solvedwith a Runge-Kutta Fehlberg 4-5 solver
with step size control, see for instance Hairer et al. [15]. Accurate simulations are ensured by using a
relative tolerance of10−5 and an absolute tolerance of10−25. The expression for the forces described
in Section 2 are used. An ideal bipolar squared voltage is assumed.

Figure 4 shows a comparison between experimental observations and numerical predictions of
the kinematics of a rigid spherical particle falling towards an electrode. No electric field is applied.
Theb constant in the expression of Vinogradova Eq. (12) used in the numerical calculation is10−7 m.
The velocity of the rigid sphere is plotted versus the normalized distanceh/r1. The good agreement
between observations and predictions shows that drag Eq. (4), buoyancy Eq. (10), and film-drainage
Eq. (12) are well modelled in our numerical framework.

A comparison between observed and predicted velocities versus normalized particle surface dis-
tanceh/r1 for rigid spheres under the influence of an electric field is plotted in Fig. 5. The buoy-
ancy, drag, and film-drainage are modelled as in the previousnumerical exercise presented in Fig.
4. Figure 5(a) shows the effect of different electric field magnitudes on the falling velocity of the
particle. The analytical model by Davis Eq. (21) and (22) is used in the numerical calculations of the
particle velocity. A good agreement between numerical results and experimental observations is ob-
tained. The velocity of the falling droplet observed when the magnitude of the electric field is greatest
|E0| = 400 V/mm, is higher than for weaker field magnitude. This follows expectations. Figure 5(b)
shows a comparison between observed and predicted velocities obtained using different models for
the induced electrical forces. The magnitude of the appliedelectric field is|E0| = 300 V/mm. The
accuracy of the results obtained by using the DID model is high as long as the droplets are not too
close to each other. The point dipole does not provide satisfactory results.

When comparing predictions and the observations of the motion of a falling fluid droplet, the
effect of internal circulation induced in the droplet has tobe taken into account. Internal circulation
reduces the viscous part of the drag force and therefore the drag coefficient needs to be corrected
in order to account for this reduction as outlined in Section2. Furthermore the surface tension of
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Figure 4: Predicted and observed velocity versus normalized particle surface distance for a falling
rigid sphere with radiusrd = 82.5µm. No electric field is applied.

the droplet is varied by the effect of surfactants on the interface and by elongation of the droplet,
caused by the electric field. This leads to interfacial stresses that inhibit the creation of internal circu-
lation. LeVan [6] suggests how to take into account the effect of surface tension gradient. Barnocky
and Davis [7] derived expressions for the drainage between fluid spheres with arbitrary viscosity.
The model proposed by Vinogradova [8] takes interfacial slip effects into account. Although Vino-
gradova [8] proposed a correction for hydrophobic surfaces, the present work shows that the Eq. (12)
can be used with good results under other conditions. A comparison between observed and predicted
velocities versus normalized particle surface distanceh/r1 for fluid droplets under the influence of
an electric field is plotted in Fig. 6. The average radius of the droplets isr1 ≈ 110µm. The slip
distance used in the Vinogradova equation (12) isb = 10−6 m and the magnitude of the interfacial
tension gradient in Eq. (7) isγ1 = 10−5 N/m. Figure 6(a) shows the effect of different electric field
magnitudes on the falling droplet velocity. The analyticalmodel by Davis Eq. (21) and (22) is used
in the numerical calculations of the particle velocity and agood agreement between numerical results
and experimental observations is obtained. Figure 6(b) shows a comparison between observed and
predicted velocities obtained using different models for the induced electrical forces. The magnitude
of the applied electric field is|E0| = 300 V/mm. The same trend as previously observed for the rigid
spheres is observed.

Figure 7 shows a comparison between observed and predicted velocities versus normalized droplet
surface distanceh/r1 for water droplets of averaged radiusr1 ≈ 110µm. Figure 7(a) shows the results
obtained by different drag force models. The electric field is constant|E0| = 300 V/mm. The Davis’
analytical expressions, the Vinogradova’s model withb = 10−6 m and Eq. (7) withγ1 = 10−5 N/m
are used in the calculations. The best agreement is obtainedwhen the equation proposed by LeVan [6]
is used in the numerical calculations. Figure 7(b) shows theresults obtained for different drainage
models. The electric field is kept constant|E0| = 300 V/mm. The Davis’ analytical expressions and
the LeVan drag force model are used in the calculations. In the formula of Vinogradova,b = 10−6 m.
The best agreement is obtained when the model proposed by Vinogradova Eq. (12) is used. The
viscous sphere model Eq. (13), provides a severe overestimation of the velocity, and shows that the
surface cannot be handled as ideal. The results obtained from the hard sphere model seems to well
agree with the experimental observations up until the droplets are very close.

Figure 8 shows a comparison between observed and predicted velocities versus normalized droplet
surface distanceh/r1 for water droplets of different radii. In Fig. 8(a) two different droplet sizes
rbig = 110µm, rsmall = 58µm are considered. The electric field is constant|E0| = 300 V/mm. The
slip distance in the Vinogradova model isb = 10−6 m for the biggest droplet andb = 10−7 m for the
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(b) Constant electric field magnitude is applied
|E0| = 300 V/mm and different models for the
induced electrical forces are used in the numerical
calculations of the particle kinematics

Figure 5: Observed and predicted velocities versus normalized particle surface distanceh/r1 for rigid
spheres. The radius of the sphere isr1 ≈ 70µm and the slip length in Eq. (12) isb = 10−7 m.
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(b) Constant electric field magnitude is applied
|E0| = 300 V/mm and different models for the
induced electrical forces are used in the numerical
calculations of the droplet kinematics

Figure 6: Observed and predicted velocities versus normalized droplet surface distanceh/r1 for water
droplets. The radii of the droplets arer1 ≈ 110µm. The slip distance in Eq. (12) isb = 10−6 m and
the magnitude of the interfacial tension gradient in Eq. (7)is γ1 = 10−5 N/m.
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models are compared to experimental observa-
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Figure 7: Observed and predicted velocities versus normalized droplet surface distanceh/r1 for water
droplets. The radius of the droplet isr1 = 110µm.
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(b) ‘Simple’ versus ‘best’ modeling at|E0| =

300 V/mm. Droplet sizer = 110 µm. The sim-
ple modeling strategy includes: point dipole, rigid
sphere drag and no film force. The best modeling
strategy employs the models of Davis, LeVan, and
Vinogradova

Figure 8: Observed and predicted velocities versus normalized droplet surface distanceh/r1 for water
droplets
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Figure 9: Contribution of the force components, scaled withthe buoyancy force

smallest one. Furthermore the value ofγ1 for the big droplet isγ1 = 10−5 N/m andγ1 = 2·10−5 N/m
for the small one. The numerical predictions agree very wellwith the experimental observations. In
Fig. 8(b) numerical prediction obtained with two differentapproaches are compared to experimental
observations. The ‘simple approach’ adopts point-dipole,rigid sphere drag and no film-thinning
force while the ‘best approach’ employs the models of Davis,LeVan, Vinogradova. The agreement
between observations and predictions obtained by means of the ‘simple approach’ is not satisfactory.
Figure 9 shows the contribution of the different forces normalized by the buoyancy force for the
|E0| = 300 V/mm case. The film-thinning and drag forces almost balance the electric force until the
droplets are very close. One also sees that the film-thinningforce gives a significant contribution to
the force account far outside the range considered in the derivation.

6 Observations

The comparison between observed and predicted velocities versus normalized droplet surface distance
h/r1 for fluid droplet shows a good agreement when all the effects influencing the droplet kinematics
are modelled.

In the case of rigid particle the models used to describe dragEq. (4), buoyancy Eq. (10), and film-
drainage Eq. (12) give good agreement with the experimentalobservations. The effect of the electric
forces on the motion of the rigid particles are well taken into account when the Davis model Eq. (21)
and (22) are used in the numerical calculations. It was also observed that the numerical efficient DID
model Eq. (17) provides good results as long as normalized droplet surface distance is not too small.

When the motion of fluid droplets is to be predicted, the simple model for drag, buoyancy, and
film-drainage used for the rigid particle are not longer valid. The effect of internal circulation induced
in the droplet has to be taken into account together with the variation of the surface tension of the
droplet due to the electric field. In the present work different models are assessed. The use of the
model proposed by LeVan Eq. (7) for the drag force, by Vinogradova Eq. (12) for the film-thinning
force and the Davis’ analytical expression Eq. (21) and (22), provide numerical predictions that well
agree with the experimental observations.
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Abstract

An adaptive algorithm for particle-particle and particle-wall collision detection

in the two-dimensional case is presented. The algorithm ensures an efficient

computation of colliding particle flows without any input from the user regard-

ing the particle cell structure. The physical domain is hierarchically divided and

structured as a quadtree. The quadtree structure allows us to have variable cell

width in space and time. We have implemented the entire tree with pointers.

Lists of particles and boundary elements are linked to the particle cells, which

constitute the leaf nodes of the quadtree. The algorithm is intended for particle-

laden flows, which require small time steps, but within each time step, the al-

gorithm is event-driven. From tests with uniform particle distribution and fixed

cell structures with uniform cell sizes we infer that the number of particles in-

side a particle cell should be in the range of 0.25 to 3.0. The adaptive algorithm

keeps the number of particles per cell within the given range and garantee an

efficient computation. The advantages and performance of the presented ad-

aptive algorithm are shown in two cases: Particles in a gravity field and in a 90◦

bend.
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1 Introduction

Flows with solid particles, droplets or bubbles occur in a wide variety

of industrial applications, engineering problems, and science. Computer

simulations are increasingly used to analyse these flows, for instance

when chemical process equipment is designed.

During the last decade, the ‘Discrete Element Method’ (DEM), where every

single particle is tracked has been used by many investigators and gives

promising results, Refs. [1,2,3].

A crucial point when using the DEM model is the CPU-time consump-

tion of detections of particle collisions. In very dilute flows, where the

volume fraction of particles, αp, is less than 10−6, the inter-particle col-

lisions are negligible. When the particles are more densely packed in the

flow or in regions of the flow, the particle-particle interaction becomes

important, Ref. [4]. Then, the algorithm for collision detection is of vital

importance for the overall CPU-time consumption. An efficient solution

strategy for the multi-particle problem was first addressed by Alder and

Wainwright [5]. An efficient method for finding neighbouring particles

is the particle-cell method. Either a uniform raster is used, Refs. [2,6,7],

or a tree structure, Refs. [8,9]. Lubachevsky [6] made a thorough study

of billiards simulations and pointed out some important properties. Sig-

urgeirsson et al. [7] followed up and presented a suitable data struc-

ture. The algorithm of Sigurgeirsson et al. [7] was almost optimal for

billiards simulations where the particles are uniformly distributed. For

non-uniformly distributed particle systems, Sigurgeirsson et al. presen-

ted a strategy for updating the particle cell mesh under computations

and decreased the computational time compared with a fixed structure.

We have implemented an algorithm for simulating hard sphere particle

dynamics in two dimensions, along the lines of Sigurgeirsson et al. [7], us-

ing a cell system for collision detection. Instead of a uniform cell structure

(a raster), we have developed an automatic adaptive particle cell structure

based on a quadtree representation. An adaptive cell structure attempts

to optimise the particle cell size locally and ensures efficient computa-

tions. By automatic we mean that no information about the cell structure

needs to be specified by the user. Several test runs in order to find the

optimal uniform fixed cell-structure are therfore avoided.

The adaptive cell system is the main contribution of the present paper.

However, to make the paper self-contained, we also describe the overall

algorithm and its aspects. The paper is organised as follows: Section 2

gives an overview of the problem. The quadtree cell system and the col-

2
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lision detection algorithm are described, and estimates of the computa-

tional complexity are given. In Section 3, computer experiments with a

‘billiards’ system are described. We have also simulated the repeated ini-

tialisation of the event list at each time step that is required if a particle-

laden flow is to be simulated. From the billiards simulations we establish

the control parameters for the adaptive cell structure Section 4 describes

the strategy for the adaptive cell-size control, and simulation results from

cases were the particle density is highly non-uniform. Section 5 contains

a brief discussion of the performance of the proposed algorithm, and

Section 6 gives the conclusions.

2 Background

2.1 Particle physics

Consider n spherical particles that follow a trajectory between the colli-

sions that is given by:

mi

dui

dt
= Ffluid +mig (1)

dxi

dt
= ui, (2)

where i = 1, . . . , n.mi is the mass, ui is the velocity and xi is the position

of particle i. Ffluid are forces from the surrounding fluid and g is the

gravitational field.

The collisions are considered to be instantaneous and the particles are

assumed to be rigid spheres. The impulse equation for a collision is then

given by:

m1

(

u1 −u
0
1

)

= −m2

(

u2 −u
0
2

)

(3)

where subscripts 1 and 2 denote particle number and superscript 0 de-

notes the state before collision. For an elastic collision we have:

(

u
0
1 −u

0
2

)

· n = e (u1 − u2) ·n (4)

where e is the restitution coefficient and n is the surface normal vector

at the point of impact for particle 1. The velocities after a collision could

3
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therefore be written as:

u1 = u
0
1 −n

(

n · (u0
1 −u

0
2)

)

(1+ e)
m2

m1 +m2

(5)

u2 = u
0
2 +n

(

n · (u0
1 −u

0
2)

)

(1+ e)
m1

m1 +m2

, (6)

where the tangential collision forces have been neglected. Further, colli-

sions with the wall change the velocity perpendicular to the wall:

u · nw = −ewu
0 · nw (7)

where nw is the wall normal vector and ew is the particle-wall restitution

coefficient.

The governing equations for the particle’s trajectory between collision (1)

and (2) are solved by the forward Euler scheme, given by

yn+1 = yn + dty
′
n, y0 = y(t0), (8)

where dt is the time step and y is a vector with a given initial condition,

y(t0).

When assuming that the spherical particles move along straight traject-

ories, the time until a collision between particle i and particle j is given

by [2]:

tij =
−rij · uij −

√

(rij · uij)2 − |uij|2
(

|rij|2 − (Ri + Rj)2
)

|uij|2
, (9)

where rij = xj − xi, uij = uj −ui and R is the particle radius.

2.2 Cell system for collision detection

If we have n particles, checking for collisions by checking every possible

pair of particles would lead to n(n − 1)/2 checks. To avoid this, we use

the cell method. The spatial domain is partitioned into rectangular cells,

and the idea is that if we keep track of which particles are in each cell,

and if the cells are larger than the largest particle, then for each particle

we need only check for collisions with particles in the neighbouring cells.

There is a considerable literature on a collision detection algorithm based

on a cell system. Lubachevsky [6] and Sigurgeirsson et al. [7] use simple

cell systems of uniform grid size. Kim et al. [9] employed a bounded-

balanced tree where the cells are at the leaves. They also describe how to

4
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Figure 1. An example of a subdivision in cells

Figure 2. The quadtree corresponding to Fig. 1.

use a hierarchy of grids with different cell sizes to improve the perform-

ance for varying particle sizes. Vemuri et al. [8] used an octree (3D) for

holding the cell structure. It seems that they use a storage scheme where

only the nodes for the cells that contain particles are stored.

We have chosen to use a quadtree to represent the cells (working in two

dimensions). A quadtree is the two-dimensional analogue of an octree

[8], and is frequently used for handling geometrical data and in picture

processing. There is a rich literature on quadtrees and octrees, examples

are Refs. [10,11,12,13].

Each node in the quadtree represents a square spatial area. Each node that

5
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Figure 3. Numbering of quadrants

is not a leaf node, has four sons, which represent a subdivision of the cell

in quadrants to give smaller cells, according to fixed rules. Each leaf node

in the quadtree represents a spatial cell that is not further subdivided.

It is these cells that we use for collision detection. Since the cells are

represented by (leaf) nodes, we shall sometimes refer to them as nodes.

An example of a cell partition is shown in Fig. 1, where node 1 represent

the root, that is divided into four quadrants; node 2, 7, 12, and 17. These

quadrants are in turn subdivided. At this level, only the nodes 14 and 19

are subdivided. The corresponding quadtree is shown in Fig. 2.

A quadtree representation is more complicated to implement than a straight-

forward rectangular grid of equal-sized cells (a raster). In trivial cases, the

computing time may also increase. However, using a quadtree, we obtain

increased flexibility of the cell system. The quadtree cell structure can

easily adapt to complicated geometries, and the cell size can vary with

the spatial variations in the number density of particles.

The root of the quadtree corresponds to a square with side length 1 cov-

ering the area of interest. The physical dimensions are scaled to obtain

unit side length. A key feature of the quadtree is that the subdivision of

cells/nodes follows a fixed labelling sequence for the quadrants, for in-

stance as shown in Fig. 3. This defines the sontype of a node. For the cell

in the southeast (SE) quadrant in Fig. 3, the sontype is 2. With the son-

type recorded at each node, it is possible to calculate the position of a

cell by following links up to the root node. Going downwards, a record

of the sontypes encountered defines a unique path from the root to each

node. Geometrically, to obtain a quadtree with N+1 levels, we start with a

square with side one and repeat the subdivision procedure N times. This

gives a subdivision in squares of the initial square. The smallest squares

have side length 1/2N . The root node is said to be at level N, while the

leaves are at level 0. For instance, the tree corresponding to the subdivi-

sion in Fig. 1 has N = 3 levels and is shown in Fig. 2.

There are several ways of representing a quadtree, see Samet [10]. One

way is to represent the quadtree as a tree, with pointers. This is easy to

implement as a linked list of nodes. The disadvantage is that the non-

leaf nodes require much space. Other methods avoid pointers. Typically

6
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in Refs. [10,11], the nodes are sorted according to their paths from the

root node and stored with the paths. A path can be coded in two bits

per sontype number (4 possible values). Finding a given node requires a

search among the stored nodes.

We have chosen to work with the full tree representation, with point-

ers. This makes it easier to dynamically change the cell structure during

computations, for instance to use a finer subdivision in places where the

density of particles becomes high. To avoid restructuring we also store

leaf nodes that contain no particles, since this will change as particles

enter and leave during simulation.

We use a linked list of node records to store the quadtree. If the tree

grows, the necessary nodes can be added at the end. At each node we

record 6 items: A pointer to father node, a pointer to each of the four

sons, and the sontype. At the leaf nodes, the first son pointer is set to

zero to indicate that this is a leaf node. The pointers to the three other

sons are not needed, so we use two of these spaces for pointers into lists,

as will be described later.

2.2.1 Particle lists

Before the simulation starts, lists of particles contained in each cell must

be established. These lists are set up as linked lists. Since a particle’s

centroid can be in only one cell, all the lists can be contained in a single

array of length n, the number of particles. Each cell has a pointer to the

first particle in the list (the space of the second son pointer is used for

this), and for each particle there is a pointer to the next particle in the

list. The lists are established on basis of the initial particle positions, and

they are updated during the simulations.

2.2.2 Finding the neighbour-particles lists

In the collision detection, there are three cases where neighbour particle

lists are required, as described by Sigurgeirsson et al. [7].

(1) When we establish the initial event list, all particles are considered

systematically. The whole quadtree is traversed, beginning with the

leaf node in the South West corner. For a given cell, only particles

in neighbour cells that are in the North, North East, East and South

East directions are checked for collisions. Particles in neighbour cells

in the other directions will have appeared earlier during the tree tra-

versal and are already checked for collisions. This can be termed a

‘forward’ search.

7
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(2) Immediately after a particle has made a transfer to a new cell, it has

new neighbour cells in the direction of transfer. Only particles in the

new neighbour cells need to be checked for collisions.

(3) After a collision or a check event (described in Section 2.3), particles

in neighbour cells in all directions have to be checked for collisions.

In all three cases, a list of neighbour cells is produced, and from the

particle lists of these neighbour cells a list of particles to be checked is

set up. Therefore, one of the most basic operations in the quadtree is that

of finding neighbour cells under various conditions, see Samet [10].

2.2.3 Handling boundary segments

The boundary of the spatial domain is assumed to be approximated by

piecewise linear segments. In order to check for boundary interaction, we

keep for each cell a list of the boundary segments that are within reach

of particles contained in the cell. These lists are kept as linked lists. They

differ from the particle lists in that a given segment can occur in more

than one list. A son pointer of the corresponding node is used to point at

the beginning of the cell’s boundary segment list.

2.2.4 Merging and splitting cells

We use an adaptive cell structure that may change during the simulations,

as will be described in Section 4. We then need the operations of merging

and splitting cells.

Merging cells means that four cells with a common father node are merged

to one. The father node then becomes a leaf node, corresponding to the

area of the four cells that were merged. The particle lists and the bound-

ary segment lists of the merged cells are merged, and the the necessary

pointers are updated.

Splitting a cell means that a leaf node becomes the father of four leaf

nodes. First, the pointers in the quadtree are updated, then the particle

list is split with respect to the position of the particles. Similarly, bound-

ary segment lists for the new leaf nodes are set up from the list of their

father, including only segments that are within reach from each of the

new cells.

8
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2.3 The algorithm

We shall now consider the case of coupled particle-fluid flows where the

particle trajectories and the fluid flow are calculated separately using

some time step dt. The mutual interaction between the particles and

the fluid is taken into account by transferring information between the

particles and fluid between every time step. It is necessary to divide the

calculation period into very small time steps dt to obtain accurate and

reliable solutions. Sigurgeirsson et al. [7] suggested the use of a billiards

algorithm within each time step and thus rebuilding the event queue at

the beginning of each time step. A similar framework was also used by

Hoomans et al. [2].

Sigurgeirsson et al. [7] identified the following three primary data struc-

tures:

1. The particle information. Arrays with information about the particles,

their positions, velocities, size, etc.

2. The event queue which is a collection of events, each with an event

time and information to carry out the event. In this queue, a maximum

of one event is stored per particle. Possible events are:

• A collision with another particle.

• A wall collision.

• A transfer (the particle moves to a neighbour cell).

• A check (the particle is to be checked for new events). This is a trick

introduced by Sigurgeirsson et al. [7] for handling the double entry

of collisions in the event queue and for labelling the third party if

the new collision partner after a collision or a transfer already is

scheduled.

3. The cell structure which contains information to make a neighbour-

particle list in an efficient way.

The algorithm for performing one time step dt reads:

S1. Initial operations. These operations are for instance adding and ini-

tialising new particles, if there are new particles to add. If the cell

structure is chosen to be adaptive, any splitting or merging of cells is

carried out before the event queue is built.

S2. Calculate the forces on the particles.

S3. Calculate the times to the first collision and the first transfer and

build the event queue of the events that are scheduled within the

time step. A detailed description is given in Section 2.3.1.

S4. Until the event queue is empty, we carry out the following loop:

L1 Handle event. Details are given in Section 2.3.2.

9
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L2 Update the event queue if the new events are scheduled within the

time step dt.

L3 Return to step L1.

S5. Update particle positions at t = t0 + dt.

S6. Calculate information for the fluid code.

2.3.1 Build event queue

In the general case of a particle-laden flow, the particle positions and

velocities and the fluid velocity are updated at each time step. New colli-

sion and transfer times are calculated and the event queue is built from

the bottom. The particles-lists are updated during the simulation and are

therefore, except at the first time step, up-to-date.

As outlined in Section 2.2.2, a loop is made over all cells, and neighbour

particle lists are made. From the neighbour-particle lists we are able to

find:

• Time to transfer from the present cell to one of the neighbouring cells

by using the quadtree structure.

• Time to collision with the wall by using the list boundary elements be-

longing to the particle cell.

• Time to collision with the particles in the neighbour particle list, given

by Eq. (9).

Both the time to transfer and the least of the time to wall collision and

the time to particle collision are stored. For administration of the event

queue, the least of the time to transfer and the time to collision is stored

separately.

A binary heap structure is used to find the first event to process and the

following sequence of events. The heap is an efficient data structure for

priority queues and is elegant and easy to maintain, Ref. [14, p.138]. The

heap is also recommended by Lubachevsky [6] and Sigurgeirsson et al. [7].

The length of the queue is limited to the number of particles, but we

restrict this further by only scheduling the events that will happen within

the time step dt.

2.3.2 Handle events

The operation Handle event includes finding the first event to handle,

executing the operations given by the event type, and searching for new

events.

10
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First, the time to transfer and the time to collision are compared. If the

time to transfer is less than the time to collision, a transfer is handled.

Otherwise, the next event type could be either a collision, a wall collision,

a check, or a removal. The actions of the different events are:

Transfer :

• The particle is removed from the old cell’s particle list and added to

the new cell’s particle list.

• A neighbour-particle list is made by using the information from the

new neighbour cells only, see Section 2.2.2

• The particle is checked for potential new collisions and transfers.

Particle-particle collision :

• The positions and velocities of involved particles are recalculated.

• The updated positions and velocities are checked. A ‘touch’, but no

collision is possible.

• In case of a collision, the velocities immediately after the collision,

given by Eq. (5) and Eq. (6), are computed.

• The forces on the particles are recalculated.

• The collision partner event type is changed to check.

• A neighbour particle list is made from the information in all neigh-

bour cells and the cell itself, and the particle is checked for potential

new collisions and transfers.

Wall collision :

• The particle position is recalculated.

• The updated positions and velocities are checked.

• In case of a collision, the boundary properties are checked. The bound-

ary could be:

1) A solid wall.

2) A flow boundary, the particle is then removed.

3) A flow boundary with a ‘particle proof grating’, which behaves

like a solid wall for the particles.

• The particle velocity immediately after the collision, given by Eq. (7),

is calculated.

• The forces on the particle are recalculated.

• The neighbour-particle list is made from the particle lists belonging

to all neighbour cells and the cell itself and the particle is checked for

potential new collisions and transfers

Check :

• The particle in question is checked for collisions and transfers. This

requires that a neighbour particle list be made from the particle lists

belonging to the neighbour cells in all directions, and the cell itself.

11
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2.3.3 Computational complexity

We shall now analyse the complexity of the proposed algorithm. The com-

putational complexity of the time-consuming operations is estimated and

presented in Table I.

To find a neighbour-particle cell in the quadtree, different neighbour-

finding algorithms are used, depending on the direction. Computational

complexity for these basic algorithms are given in Ref. [12], as bounds to

the average number of nodes visited. The bound averages are constant

(the largest is 6
2

27
in the case of a corner-corner-neighbour) and there-

fore of O(1). To check for transfers after a collision event, the position

of the cell containing the colliding particle is needed (it is not stored).

This requires an ascent to the quadtree root, and therefore the work is of

O(logncell). This term is avoided with a raster system. It is of the same

order as other terms, though.

For a particle-laden flow, the calculation period is divided into nt time

steps, as mentioned earlier. The event queue is rebuilt at the beginning

of each time step, which requires a traversal through all ncell cells. For

each cell, there is a cost of finding the forward neighbours O(1) and the

collision times with the neighbouring particles O(n2
nb). Here the cell posi-

tion is kept track of, so an ascent to the root is not necessary. The cost of

building the heap structure is nh lognh, where nh is the number of events

in the heap. Because we only store one event per particle, the maximum

number of elements in the heap is limited to the number of particles, n.

During a simulation, ntot events will happen. ntot is the sum of particle-

particle collisions nc , particle-wall collisions nwc, and transfers ntr. For

each event there are costs related to extracting the event and updating the

heap O(lognh), finding the cell position O(logncell), and checking neigh-

bour particles for new collisions, O(nb). Since the number of particles

per cell typically is of order 1 or less, we assume that

ncell ≈ n. (10)

It follows from Eq. (10) that the number of neighbour particles nnb is

independent of the number of particles n. If the particles are uniformly

spatially distributed, the number of neighbour particles is of the same

order as the number of neighbouring cells, O(1).

Further, we assume that the number of particle-particle collisions is much

larger than the number of particle-wall collisions nc ≫ nwc. When a col-

lision happens, the event type of the collision partner is changed to a

check. If the new collision partner after a collision, transfer, or check has

a third party as its collision partner, the event type of the third party is

12
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Table I

Overview of the computational work.

Operation Cost Calls Complexity

Build event queue

Find forward neighbours < 4 · 6 2
27 nt ·ncell O(nt ·ncell)

Find cell position logncell nt ·ncell O(ntncell · logncell)

Search for collision partners n
2
nb nt ·ncell O(ntncell ·n

2
nb)

Build heap n logn nt O(nt ·n logn)

Handle event

Extract first event and update queue logn ntot O(ntot logn)

Transfer nnb ntr O(ntr ·nnb)

Collision nnb nc O(nc ·nnb)

Wall collision nnb nwc O(nwc ·nnb)

Check nnb nch O(nch ·nnb)

Find cell position logncell ntot O(ntot · logncell)

changed to a check. However, according to Sigurgeirsson [15, p. 22] and

our own results, the number of checks nch is of the order the number of

collisions nc . Therefore, the total number of events can be written as:

ntot ≈ 2nc +ntr (11)

We sum the last column in Table I and insert the assumptions in Eq. (10)

and Eq. (11). The complexity of the algorithm can then be written as:

O
(

ntn logn
)

+O
(

(nc +ntr) logn
)

(12)

3 Billiards

By ‘billiards’ we understand a system ofn chaotically colliding hard spher-

ical particles. Each particle moves along straight lines until it collides with

another particle or a wall. The collision is instantaneous, hence the prob-

ability of more than two particles involved in the same collision is zero.

Simulating billiards is a straightforward case that has been studied by

many investigators, for instance Refs. [6,7]. We are not mainly interested

in billiards, but the simplicity of the billiards case makes it well-suited for

testing the algorithm.

13
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The governing equations (1) and (2) for the particles can be rewritten as:

mi

dui

dt
= 0 (13)

dxi

dt
= ui, (14)

where i = 1, . . . , n. It follows from (13) and (14) that the particles move

along straight lines with constant velocity between the collisions. This

implies that the forward Euler scheme, given in Eq. (8), calculates the

position and the velocity of the particles to machine precision. No energy

is lost in the collisions, hence the restitution coefficients e and ew are

equal to unity.

3.1 Test method

It is of basic interest to know as much as possible about how the code

works. We would like to know how the computational work scales with

the number of particles and the number of particle-particle interactions.

Further, we need to establish criteria for splitting and merging cells auto-

matically in the adaptive cell structure. Within the frame of billiards sim-

ulations it should be possible to investigate:

A. How the CPU cost varies with the number of particles n and the num-

ber of collisions nc .

B. The influence of multiple time steps.

This has been investigated as follows:

1. Billiards simulations with a single time step, where

(i) The volume fraction αp is constant and the number of particles

varies for some volume fractions.

(ii) The number of particles is constant and the volume fraction αp
varies.

This addresses Item A.

2. Billiards simulations with several time steps, where

(i) The volume fraction αp and the number of time steps nt are con-

stant and the number of particles varies for some volume frac-

tions.

(ii) The number of particles n and the number of time steps nt are

constant and the volume fraction αp varies.

(iii) The number of particles ,n, and volume fraction ,αp, are constant

and the number of time steps varies. The physical simulation time

is kept constant.

This addresses Item B.

14
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3.1.1 Test case setup

The billiards simulations were carried out in a two-dimensional box where

the length of the sides was 1 m. The mean velocity in both directions

was 0 m/s, while the root mean square of the velocity components was

1 m/s. Initially, the particle velocity was given a normal distribution. The

particles were initially uniformly distributed within an inner square in the

box, so there were no particles less than 10 cm from the walls at the start

of the simulations.

Since the geometry is fixed, the radius of the particles has to change for

different volume fractions αp and numbers of particles n. A correlation

between area fraction Ap and volume fraction αp is given by αp =
2
3

Ap

A
,

where Ap is the particle area and A is the total area. The particle radius is

then given by R =
√

3

2

αpA

nπ
. An absolute requirement is that there be room

for a particle entirely within a cell in the cell structure. This gives the

minimum cell size and thus the maximum number of cells. In the case of

uniform cell size, the number of cells ncell in the quadtree is ncell = 4N ,

where N + 1 is the number of levels in the quadtree.

The test cases that have been carried out are described in Table II. The cal-

culation period is three seconds and is divided into nt time steps. Meas-

urements of the CPU time were done by profiling the code on a Compaq

Alpha 677MHz 21264a computer. It is not possible to both fully optimise

and profile the code, but we assumed that the results regarding how the

CPU time scales in different variables are unaffected by the optimisation

level.

Table II

Test scheme.

Case # particles n Volume fraction αp ncell # time steps nt

I 5000 – 200000 1%, 5%, and 15% 44 − 410 1

II 5000 – 200000 1%, 5%, and 15% 44 − 410 30000

III 50000 0.1% – 15% 47 − 49 1 and 30000

IV 50000 5% 47 − 49 1 – 30000

3.2 Results

First, we ensured that we got the same results with a fine particle cell

structure resolution as with a naïve n2 search for collision partners in

the entire domain. The velocity distributions at the end of the simulation
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time were compared and we found that the velocity distributions were

equal within sampling variations and that they corresponded to Maxwell

distributions.

To find the best cell size for a given number of particles n and a given

volume fraction αp, we ran each case with different numbers of particle

cells. Because the number of cells is given by ncell = 4N , the cell number

steps are coarse. We did therefore not find the optimal cell size. However,

we belive that the average of the best cell size for several numbers of

particles may give us an idea of what the optimal cell size is.

Particle simulations, where the position of a particle is calculated only

when the particle is involved in a collision, are event-driven. According to

Sigurgeirsson et al. [7] the CPU cost for event-driven billiards simulations

could be written as:

CPU time = a
(

nc · logn
)bc
, (15)

where bc should be close to unity for an efficient algorithm.

On the other hand, if we assume that the first term in Eq. (12), related to

the search for collision partners and building of the event queue, dom-

inates the computational cost, the CPU time will scale linearly in n logn.

Then we could write the CPU time as:

CPU time = a(n logn)bn , (16)

where bn should be close to unity for an efficient algorithm. Because of

the dependency of the number of time steps, the simulations are time-

driven, but within each time step the algorithm is still event-driven.

3.2.1 Case I – Plain billiards

Case I is billiards where the time step dt is equal to the entire calculation

period. The simulations were therefore event-driven and the CPU time

should scale as nc logn. Figure 4 shows the CPU time versus nc logn for

particle volume fraction αp = 1% according to Case I in Table II. The

best fit of the form given by Eq. (15) has bc=1.15. Table III summarises

the simulations for each volume fraction. The exponents bc are close to

one for all cases and the average number of particles per cell is between

0.54 and 0.74 for different volume fractions αp. The average number of

transfers per collision ntr/nc varies from 1.33 for αp = 15% to 6.75 for

αp = 1%.
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Figure 4. Plain billiards. Particle volume fraction αp = 1%. CPU time versus

nc logn. The best fit of the form a(nc logn)bc has bc = 1.15.

Table III

Summary of Case I - Plain billiards.

αp nt bc Average n/ncell Average ntr/nc

1% 1 1.15 0.74 6.75

5% 1 1.14 0.54 3.14

15% 1 1.17 0.57 1.33
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Figure 5. Billiards with time stepping. Particle volume fraction αp = 1%. CPU

time versus n logn. The best fit on the form a(n logn)bn has bn = 1.05.

3.2.2 Case II – Billiards with time stepping

Case II is equal to Case I, except that the calculation period was divided

into 30000 time steps of 10−4 s. Figure 5 shows the CPU time versus

n logn for 1% particle volume fraction αp. The best fit on the from given

by Eq. (16) has bn=1.05. Table IV summarises the results. bn is close to

unity for all cases, although a slight increase is seen for the 15% volume

fraction case. A linear scaling in n logn, indicates that the first term in

Eq. (12) is larger than the second term, hence the simulations were time-

driven. The average number of particles per cell n/ncell for is within the

range n/ncell ∈ (0.79, 1.02), which is slightly higher than with a single

time step. As in Case I, the average number of transfers per collision

ntr/nc varies considerably with the volume fraction.

Table IV

Summary of Case II - Billiards with time stepping.

αp nt bn Average n/ncell Average ntr/nc

1% 30000 1.05 1.02 5.76

5% 30000 1.06 1.02 2.30

15% 30000 1.12 0.79 1.13

3.2.3 Case III and IV

Figure 6 shows the results for 50000 particles where the volume fraction

αp varied from 0.1% to 15%, hence the number of collisions nc also varied.

The linearity between the CPU time and the number of collisions nc is
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Figure 6. CPU time for constant number of particles, n = 50000. CPU time

versus number of collisions. The best fit on the form a0 + a1 · nc have

a1 = 5.60 · 10−5 s for nt = 1 and a1 = 5.96 · 10−5 s for nt = 30000 .

Figure 7. Billiards with time stepping and a constant number of particles,

n = 25000 and constant volume fraction αp = 5%, hence the number of col-

lisions nc is constant. CPU time versus number of time steps nt .

19



“jamdiss” — 2007-2-23 — 8:06 — page 68 — #76

Figure 8. Normalised CPU time τ versus particles per cell ratio n/ncell for αp=1%

and αp= 5%. The dashed line indicates a level 25% above the minimum value of

τ.

clear in the tested range, both without and with time stepping. One also

sees from Fig. 6 that recalculation of the event queue every time step

takes most of the calculation time when many time steps are carried out.

Figure 7 shows the CPU time versus the number of time steps, Case IV,

where the calculation period is fixed and the number of particles and the

number of collisions are constant. The linearity between CPU time and

the number of time steps nt is evident.

3.3 Optimal cell size

Based on the results from the simulations carried out above, we will

now try to find the optimal number of particles per cell. The number

of particles per cell is nearly constant for the best particle cell structures

and the simulations are time-driven for small time steps. We therefore

use the results given in Table IV to ‘normalise’ the CPU time by making

use of the best fit solution the following way:

τ =
CPU time

(n logn)bn
, (17)

where bn is given in Table IV. Figure 8 shows the normalised CPU time

τ versus the particles-per-cell ratio n/ncell, where all simulations with a

particles-per-cell ratio below five are shown. The dashed line indicates

where the computational cost is 25% above the minimum value of τ. Fig-

ure 8 indicates that the optimal number of particles per cell n/ncell is of

order of 0.2 – 4.0.
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4 Adaptive cell structure

In this section, we describe a simple strategy for locally adapting the cell

size to variations in particle density. The cell size may then vary in space

and with time. This applies to cases of particle-laden flows, since it is

not practical to change the cell sizes at times other than those where the

event list is recalculated, at intervals dt. Cell sizes need not be checked

at every dt; for a given class of problems, the adaptation frequency can

be determined from experience to give the best reduction of CPU time.

The adaptation strategy is based on the results regarding the optimal

number of particles per cell in the previous section. Figure 8 shows that

the computational cost is acceptable for a particles-per-cell ratio n/ncell

within the range n/ncell ∈ (0.2,4.0). These numbers are averages. Consid-

ering single cells and observing that a cell can only be split in four cells

and vice versa, we propose the following strategy:

• Split a cell in four if it contains 3 particles or more.

• Merge four cells that have the same father node if they together contain

0 or 1 particle.

For cells that contain particles, this will give an average number per cell

within the range given above. To carry out this strategy, it is necessary to

count the particles in each cell when the update is to be considered.

4.1 Update interval

With the criterion for splitting and merging of cells given above, we have

to find how often the adaption should be done and to check how the

computational work is affected. This is done by running billiards simu-

lations similar to those described in Section 3. We found that updating

the particle cell structure every time has an acceptably low cost, less than

10% above that of a fixed cell structure, for a tested number of particles

between 5000 and 50000.

The simplicity of updating the particle cell structure every time step

makes it attractive: We may use the instantaneous particle distribution

directly and it works for all kind of particle flows with small time steps.
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4.2 Description of the numerical experiments

Simulations of particles in a gravity field and a 90◦ bend were carried out

with the adaptive cell structure and several fixed cell structures for each

number of particles. The number of particles was in the range 5000 −

50000. The density of particles was kept constant and equal to 5% by

varying the particle size.

In Fig. 9 and Fig. 11 we plot three curves:

Adaptive, that refers to the adaptive cell structure as described above.

Optimal, that refers to the fixed cell structure that gives the shortest CPU

time. At least three simulations were run to find the best fixed cell struc-

ture.

Billiards, that refers to the cell structure that was the best fixed cell struc-

ture in the billiards case, Section 3.2.2, with equal number of particles

and the same density of particles αp. Billiards can therefore be regarded

as a ‘qualified guess’ for cases where the cell structure not is known.

A fixed cell structure means that the cell size is given initially and that

the cell size is uniform in the entire domain.

4.3 Particles in a gravity field

We ran a test case with particles falling in a gravity field, with the influ-

ence of the fluid neglected. This has many physical aspects in common

with industrial applications, for instance the filling of a silo or a hopper.

Initially, the particles were uniformly distributed in the domain and the

initial velocities were zero. Due to the gravity, the particles accelerated

towards the bottom of the box. Because energy was lost in the collisions,

the particles gathered in the bottom of the box. The particle-particle resti-

tution coefficient e and the particle-wall restitution coefficient ew were

chosen to be 0.9 and 0.99, respectively. The simulations were carried in

a square box with side lengths 1 m. Initially, the particles were uniformly

distributed, as in the billiards case, and the velocity of the particles was

zero. 20000 time steps of 10−4 s each were computed.

Figure 9 shows the CPU time versus number of particles n for two fixed

cell structures and the adaptive cell structure. A small difference between

the optimal fixed cell structure and the adaptive cell structure is ob-

served, only slightly in favour of the adaptive cell structure. A signific-

antly higher computational cost was obtained with the cell structures that

were optimal for the billiards simulations, which had a coarser resolution
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Figure 9. CPU time versus number of particles n for particles in a gravity field.

The CPU-time consumption of the adaptive cell structure (O), the case-optimal

fixed cell structure (△), and the fixed cell structure that was best in billiards

case (�) are compared.

than the optimal cell structure in the sedimentation case.

4.4 Bend

90◦ bends appear in many processing applications, for instance in pneu-

matic transport systems. This case will show how the algorithm works in

complex geometries where the particles are bound to be in a small part

of the area spanned out by the extreme values of the geometry.

The bend with outer radius 1 m and inner radius 0.95 m is shown in

Fig. 10. The particles entered the bend at the left boundary with a mean

velocity of 4 m/s in the x direction and 0 m/s in the y direction. The

velocities were Gaussian distributed with a standard deviation of 0.1 m/s

in both x and y direction. During the particles’ travel through the bend,

only gravity and collision forces were acting on the particles. The restitu-

tion coefficients e and ew were 1.0.

The physical simulation time was 2.0 s, with 20000 time steps of 10−4 s

each. Initially, no particles were inside the bend. The particles started en-

tering the bend when the simulations started and the number of particles

reached a steady state after 0.4 s.

Figure 10 shows how the cell structure adapted to the regions with a high

density of particles. The quadrant at bottom left is not divided while the

densely packed regions have a cell width of the same order as the particle

diameter.
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1 m

 Cell width (m) 

 0.0313
 0.0625
 0.1250
 0.2500
 0.5000

 0.0078
 0.0156

Figure 10. Cell structure adapted to bend.

Figure 11. CPU time versus number of particles n for a 90◦ bend. The CPU-time

consumption of the adaptive cell structure (O), the case-optimal fixed cell struc-

ture (△), and the fixed cell structure that was best in billiards (�) are compared.
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Figure 11 shows the CPU time versus number of particles n for two fixed

cell structures and the adaptive cell structure. The best fixed cell struc-

ture and the adaptive cell structure are equally fast. The adaptive cell

structure was more efficient than the best fixed cell structure for 10000

to 40000 particles, but when 50000 particles are computed, the fixed cell

structure is fastest. The reason is probably a shift in the maximum resol-

ution for the adaptive cell structure, which increases the number of levels

in the quadtree by one. As for the simulations of sedimenting particles,

the best fixed cell structure resolutions for the bend are not those that

were best for billiards.

5 Discussion

An adaptive algorithm for efficient detection of neighbouring particles in

the frame of the Eulerian-Lagrangian approach is presented and tested.

The algorithm uses a quadtree structure in two dimensions and the cell

size may vary in space and time. Attention is also paid to link piecewise

linear segments in the arbitrary shaped flow boundary to the particle cell

structure.

Billiards simulations were done to ensure that the proposed algorithm

is close to optimal for simple cases. From the simulations with uniform

particle distribution in space (billiards), criteria for splitting and mer-

ging cells was established. We found that the number of particles per cell

should be in the range of 0.25 to 3.0 for efficient computations, independ-

ent of the number of particles and the density of particles. In the adaptive

cell structure, cells are split and merged between each time step to keep

the number of particles within the proposed range. Two cases: particles

in a gravity field and in a 90◦ bend, have been simulated with the new ad-

aptive algorithm and the computational time has been compared with the

simulations with a fixed cell structure. The best fixed cell structure and

the adaptive cell structure seemed to be equally fast. In cell structures

with uniform cells, many cells may be in regions with few or no particles,

but the cost of visiting an empty cell is small. The computational costs are

mainly due to calculations of potential collisions with neighbour particles,

that is minimised by finding the cell size that minimise the product of the

number of transfer and the number of neighbouring particles squared. It

is not straightforward to find the best fixed uniform cell size. In order to

find the ‘optimal’ fixed cell structure in Fig. 9 and Fig. 11 there was run at

least three simulations for each number of particles. This means that the

total consumed CPU-time for the best fixed cell-structure is much larger

than the total CPU-time needed by the adaptive cell structure. For cases

where the optimal fixed cell structure not is known a priori, a cell size
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based on the knowledge about billiards simulations or from the literature

might be a proper choice. In the presented test cases we observe that the

fixed cell structure that was best for billiards is up to three times slower

than the adaptive cell structure.

6 Conclusion

In this paper we have presented and tested an algorithm that uses an

adaptive quadtree structure for neighbour particle detections. We have

found that:

• A quadtree structure provides a flexible particle cell structure for effi-

cient neighbour-particle detection that also handles complex flow bound-

ary geometries.

• The criterion for splitting and merging cells should be based on the

number of particles per cell.

• A number of particles per cell between 0.25 and 3 is reasonable and

establishes suitable lower and upper limits for the presented automatic

adaptive cell structure.

• The advantages of an adaptive algorithm appear in flows where the

particles are not uniformly distributed, in complex geometries, and oth-

erwise where information about the best cell size is not known a priori.

Several simulations to find the optimal cell size resolution is avoided

by using an adaptive algorithm.
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Abstract

An efficient and robust approach is proposed in order to conduct numerical simulations of collisional particle dynamics
in the Lagrangian framework. Clusters of particles are made of particles that interact or may interact during the next global
time-step. Potential collision partners are found by performing a test move, that follows the patterns of a hard-sphere model.
The clusters are integrated separately and the collisional forces between particles are given by a soft-sphere collision model.
However, the present approach also allows longer range inter-particle forces. The integration of the clusters can be done by any
one-step ordinary differential equation solver, but for dilute particle systems, the variable step-size Runge–Kutta solvers as the
Dormand and Prince scheme [J. Comput. Appl. Math. 6 (1980) 19] are superior. The cluster integration method is applied on
sedimentation of 5000 particles in a two-dimensional box. A significant speed-up is achieved. Compared to a traditional discrete
element method with the forward Euler scheme, a speed-up factor of three orders of magnitude in the dilute regime and two
orders of magnitude in the dense regime were observed. As long as the particles are dilute, the Dormand and Prince scheme is
ten times faster than the classical fourth-order Runge–Kutta solver with fixed step size.
 2005 Elsevier B.V. All rights reserved.

PACS: 02.70.Ns; 45.50.-j; 47.11.+j

Keywords: Discrete element method; Lagrange simulations; Soft-sphere dynamics; Particle-cell structure; Runge–Kutta; Variable time-step

1. Introduction

Computer simulations of particle-laden flows,
where the Newtonian equations of motion ofn spheri-
cal particles are solved numerically, constitute a useful
framework for computation of many industrial appli-

* Tel.: +47 41215517; fax: +47 73592889.
E-mail address: jens.a.melheim@ntnu.no(J.A. Melheim).

cations. A time-consuming part of ‘discrete element
method’ (DEM) simulations where every particle is
tracked, is the calculations of the collisional forces.
The collisional forces may result in a change in the
velocity of the particles involved in the collision and a
collision can last for a very short period of time. There
are two main approaches for handling collisions, the
hard-sphere approach[2], where the collisions are
handled as an instantaneous change of velocities, and

0010-4655/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.05.003
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the soft-sphere approach[3], where the actual forces
acting during the collision are modeled. The advantage
of the hard-sphere approach is the numerical efficiency
in dilute systems. In cases were the interaction with
the fluid is neglected, the position and the velocity
of a particle are updated only when the particle is
involved in a collision, so-calledevent-driven simu-
lations. Unfortunately, the hard-sphere approach fails
in semi-dense and dense systems, when the assump-
tion of instantaneous binary collisions is invalid and
theinelastic collapse occur[4]. The soft-sphere model
does always work, but one has to use very small time-
steps[5].

In present work, the numerical efficiency of the
hard-sphere approach is combined with the robust-
ness of the soft-sphere approach. The particles within
a cluster of close neighboring particles are integrated
simultaneously, while each cluster is integrated sepa-
rately, using different time-steps. The time-step size is
decided by the estimated error, by using an embedded
Runge–Kutta (RK) method[1]. However, one is free
to choose another one-step ordinary differential equa-
tion (ODE) solver. The presented algorithm is quite
similar to that of Reed and Flurchick[6] designed for
molecular dynamics. Reed and Flurchick grouped the
molecules in monomers and polymers and achieved
a speedup up to a factor 7 compared to a Verlet al-
gorithm[7]. The monomers (molecules with no close
neighbors) are moved along straight trajectories until
the collision radiusrcoll hits the collision radius of an-
other molecule or a group of molecules. The polymers
are calculated with a Verlet algorithm. A main differ-
ence between the algorithm of Reed and Flurchick and
the algorithm presented here is the way single particles
are handled. In the presented algorithm, particles that
travel far from other particles are integrated with the
same ODE solver as the particles within clusters, in-
stead of being moved along straight trajectories. It is
therefore possible to handle particle-fluid forces and
far-field forces acting on single particles in a proper
way.

The proposed algorithm is tested on 5000 particles
settling in a box. As long as most of the particles are
flying around in the box, the variable step size ODE
solver is faster than the classical fourth-order Runge–
Kutta method (RK4) with fixed time-steps[8]. During
the first time-steps a speed-up factor 10 is observed.
When most particles are at rest at the bottom of the

box, the variable step and fixed step solver are about
equally fast. Compared to a soft-sphere algorithm, that
uses a cell method for finding neighbors and the for-
ward Euler scheme, the present approach is superior.

2. Cluster integration method

The basic idea is to control the error of the parti-
cle simulation by varying the time-step, for instance
by employing an embedded Runge–Kutta method with
self-adjusting step-size[8]. For a given maximum
error, the greatest allowed time-step for integration
of the particles varies over several orders of magni-
tude, depending on the actual forces working on the
particles. To save computational time, the particles
should be integrated with the largest possible time-
step. Therefore, only particles that interact or may
interact during the next global time-step�t are inte-
grated simultaneously. Particles that are far from other
particles can be integrated alone.

Clusters of particles that are very close are formed,
and the particles in a cluster are integrated simultane-
ously one global time-step�t . A particle-cell struc-
ture [2] is used to detect neighbor particles and wall
segments. It is an absolute requirement that there be
room for a particle and its close neighborhood, the vir-
tual radius, in each cell in the cell structure, as it is in
Fig. 1. Sigurgeirsson et al.[9] found that the number
of cell should be of the same order as the number of
particles for efficient computations. A list of particles
(cpl) and a list of wall segments (cwl) are connected
to each cell, as sketched inFig. 2.

As shown inFig. 1, only particles that at the be-
ginning of a global time-step have overlapping virtual
radii rv , the dashed circles, are considered as close
neighbors. Close particles are added to each others
close neighbor particle list (pnpb). In Fig. 1, the black
particle A has initially the close neighbors B, C, and D.
The shaded particles are also within the checked cells
when particle A is evaluated, but the virtual radii of
these particles do not overlap the virtual radius of par-
ticle A. However, the non-close neighbors are checked
for a potential collision during the time-step by atest
move. By doing a test move, one time-step is exe-
cuted with the forward Euler scheme, as illustrated
in Fig. 3(left). During the test move potential colli-
sions with other particles are detected and transfers to
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Fig. 1. Particles in a particle-cell structure at the beginning of a global time-step, where particle A, B, C, and D form a cluster.

Fig. 2. The relationships between the list of cells (cells), the
cell-particle list (cpl), the cell-wall list (cwl), the close particle
(pnbp), and close wall (pnbw) lists.

a neighboring particle-cells are handled. A potential
particle–particle collision is detected when the virtual
radii of two particles collide during a test move, as il-
lustrated inFig. 3(right). The particles are then added
to each others close particle lists (pnbp). If the cen-
troid of a particle crosses a particle-cell boundary dur-
ing the test motion, the particle is transferred to the
particle list of the new cell and the particles in the
new neighboring cells are checked for potential col-
lisions, similarly to what is done in hard-sphere codes
[9,10]. The queue of collisions/transfers is sorted by
the time to collision/transfer estimated by the forward
Eulers scheme. The entire particle has to move inside

the checked area when the actual particle path is calcu-
lated in order to avoid instabilities. The virtual radius
rv is estimated similarly as the cut-off radius of Ver-
let [11]:

(1)rv − r � �tvc,

wherer is the particle radius andvc is a critical ve-
locity related to the expected deviation from a straight
lined trajectory, due to collisions and the ballistic be-
havior. The critical velocityvc is typically of same
order as the fluctuating particle velocityv′.

After the transfers and collisions are handled and
the close-particles lists (pnbp) are complete, the clus-
ters are assembled. First, duplicate entries are deleted
from the close particles lists. Then the lists are tra-
versed recursively, as illustrated by the solid arrows in
Fig. 4. The first place in the close-particle lists (pnbp)
is used to label already visited lists in order to avoid
infinite loops.

Note that a particle can only be part of one cluster.
Thereby it follows that the maximum number of par-
ticles in a cluster equals the number of particlesn and
that the maximum number of clustersKmax equalsn.
A list of length n contains the particles, where parti-
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Fig. 3. (Left) Test motion, the dotted circles, to check the area the particle will move within. The solid line shows the accurately computed
particle trajectory. (Right) A situation where the test motion predicts a collision during the time-step.

Fig. 4. The recursive algorithm working on the close particle lists that corresponds to the situation inFig. 1.

Fig. 5. The list of particles, sorted by cluster, where another listlc keeps the last particle in each cluster.

cles belonging to the same cluster are placed after each
other. Another list (lc) keeps the position of the last
particle in each cluster, as shown inFig. 5.

The clusters, including the single-particle clusters,
are now integrated over the global time-step�t sepa-
rately by using any one-step ODE solver. A significant
reduction in the CPU time and an accurate solution
is possible by employing an embedded Runge–Kutta
scheme[8], that automatically adjusts the local time-
step in order to keep the local error less than the given
tolerances. When a fixed time-step ODE solver is em-
ployed, the time-step is calculateda priori, for in-

stance by

(2)δt = min

(
�t,

1

a
tc,min

)
,

wheretc,min is the shortest collision period within the
cluster anda is a chosen constant. The properties of
the chosen ODE solver and the desired accuracy de-
cide the value ofa.

During the integration, the close particle lists are
used for calculation of the inter-particle forces. The
wall segments belonging to the particle cells that were
visited by the particle during the test move are added
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(a) (b) (c) (d)

Fig. 6. Particles settling in a box. (a)t = 0.0 s; (b)t = 0.2 s; (c)t = 0.4 s; (d)t = 0.6 s.

to the neighboring wall segment list (pnbw). The wall
segments inpnbw are handled as the close-neighbor
particles. After the integration, the position of the par-
ticles are checked against the particle-cell structure
and the mesh for the calculation of the fluid equations.
Due to the possible different results from the test move
and the final computation, particles might be mapped
to wrong particle cell. Incorrectly mapped particles are
transferred to the correct particle cell.

A summary of the cluster integration algorithm
reads:

(1) Add particles with overlapping virtual radii to
their respective close-particles list.

(2) Perform a test motion with the forward Euler
scheme and handle transfers. Add particles that
will become close during the time-step to their re-
spective close-particle lists.

(3) Trim the close-particle lists.
(4) Build the particle clusters.
(5) Integrate each cluster separately.
(6) Check new particle position versus the particle-

cell structure.

The idea of particle clusters is to some extent sim-
ilar to the polymers of Reed and Flurchick[6]. In
the present work, contrary to Reed and Flurchick, a
particle-cell structure is used, the clusters/polymers
are rebuilt every global time-step, and one ODE solver
is employed for all particles.

3. Description of the test cases

The performance of the algorithm was tested by the
settling of 5000 spherical particles in a square two-
dimensional box with edge lengths 1 m. The parti-
cle diameter wasd = 3.568 mm and the density was

ρ = 2400 kg/m3. This gave an area fraction of par-
ticles Ap/A = 5%. Initially, the particles were ran-
domly placed within an inner square of 0.9×0.9 m, as
shown inFig. 6(a). The initial particle velocities were
sampled from a normal distribution function with zero
meanv = 0 m/s and variancev′2 = 1 m2/s2. The gov-
erning equations for the particles are written as:

(3)
dxi

dt
= vi ,

(4)
dvi

dt
= g + 1

mi

FC,

where the contact forcesFCn andFCt were modeled
as[5]:

(5)FCn = (−kδ − ηvr · n)n,

(6)FCt =
{

(−ηvr · t)t, |ηvr · t | � µf |FCn|,
−µf |FCn|t, |ηvr · t | > µf |FCn|,

where the tangential spring has been neglected. The
contact forces only take place when there is an over-
lap δ > 0. vr is the relative velocity,n and t are the
normal and tangential unit vectors,η is the damping
coefficient, andµf is the coefficient of friction. In
the test case, the restitution coefficiente and colli-
sion timetc were chosen to take the values 0.95 and
5 · 10−6 s, respectively. The corresponding stiffness
is k = 1.12 · 107 N/m and damping coefficient isη =
0.60 N/ms. The particle-wall restitution coefficientew

and stiffnesskw were chosen equal to the particle–
particle parameters. A global time-step of�t = 10−4 s
and a rather conservative virtual radiusrv = 1.2r were
used, which corresponds, according to Eq.(1), to a
critical velocityvc < 3.57 m/s.

An initial test with two particles approaching each
other with a relative velocityvr = 2 m/s was done to
check the accuracy of the different ODE solvers, the
forward Euler scheme, the classical RK4 scheme[8],
and the Dormand and Prince 5(4) scheme[1]. The
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error is defined by the reproduction of the specified
restitution coefficient:

(7)error= |(|v|/|v0| − e)|
e

,

wherev0 is the velocity before the collision. To com-
pute a collision within a relative tolerance of 1%, the
forward Euler scheme needs 500 sub-steps (500 evalu-
ations ofFC ), RK4 needs 4 sub-steps (16 evaluations
of FC ) and the Dormand and Prince scheme needs 3
sub-steps (21 evaluations ofFC ). The parametera in
Eq. (2) equals the number of needed sub-steps for the
respective ODE solver. In the case of a variating time-
step, the shortest time-step wastmin = tc/a.

4. Results

Fig. 6shows the situation aftert = 0.0 s,t = 0.2 s,
t = 0.4 s, andt = 0.6 s. Initially, the particles were
spread over the entire area of the box and most of
the particles could be integrated separately. Att =
0.4 s most particles were settled and they belonged to
the same cluster. The measured CPU time shown in
Fig. 7 reflects this behavior. The Dormand and Prince
scheme with a relative tolerance of 10−4 and an ab-
solute tolerance of 10−25 gave a speed-up factor of
10 the first 0.2 s compared with the fixed-step RK4
solver. The relative and absolute tolerance is defined
by the relative and absolute difference between the
4th and the 5th order Rung–Kutta scheme embedded

Fig. 7. CPU time versus elapsed time. CPU time consumed by
the traditional soft-sphere approach (•) and the cluster integration
method with the classical RK4 (�), and the variable time-step Dor-
mand and Prince scheme (�).

in the Dormand and Prince scheme. Att = 0.4 s, no
speed-up was achieved by employing a variable step
size ODE solver. The traditional soft-sphere method
refers to a method that searches for neighbor particles
in a fixed particle-cell structure and the motion of the
particles is calculated with the forward Euler scheme.
The cluster integration method with variable step size
was up to three orders of magnitude faster than the tra-
ditional method, while RK4 with fixed time-step was
about 100 times faster. The CPU time was measured
by usingtime on a Compaq Alpha 677 MHz 21264a
computer. Each case was run three times and the max-
imum relative standard deviation of the measured CPU
time was 1.63 · 10−2. Due to the very long computa-
tional time only the first 0.3 s were calculated with the
traditional soft-sphere method. A potential platform
dependency was also checked. The simulations were
run once on a 32 bit Linux computer with the Portland
Group F77 compiler and the trends were confirmed.

5. Discussion

An algorithm that gives efficient and accurate in-
tegration of the governing equations in Lagrangian
particle dynamics is presented. The main ideas are
that only particles that interacts are integrated simul-
taneously and that the integration of should be done
with the largest possible time-step. By forming clus-
ters of close particles and by integrating the clusters
separately by a variable step-size embedded Runge–
Kutta scheme, a significant speed-up can be achieved.
A settling process is simulated and the CPU-time con-
sumption is measured at different stages in the settling
process. Initially, when the particles are flying around,
a speed-up of factor of 10 is seen compared to a fixed
time-step Runge–Kutta solver, that also uses the clus-
ter integration method. When the particles are settled,
most of the particles are in the same cluster, and the
fixed and variable time-step approach is about equally
efficient. In the selected case, where the collision time
was quite short, the traditional soft-sphere method,
that uses the particle-cell structure directly to form
close-neighbor-lists and the forward Euler scheme,
is very slow compared with the presented approach.
There are three reasons for this: First, a drawback with
the forward Euler scheme is the number of time-steps
needed to compute a collision within a given toler-
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ances. Second, the used soft-sphere code updates the
neighbor-particles lists every time-step by traversing
the particle-cell structure, that has a significant costs.
Third, the number of particles to check for potential
collisions is reduced by applying a close-particle-list
in addition to the particle-cell structure.

Besides a significant speed-up of Lagrangian par-
ticle dynamic calculations, the cluster integration
method is robust and flexible. The inelastic collapse
is handled and collision parameters that represent the
material properties can be directly. The algorithm is
suitable for a wide range of applications; fluid forces
can easily be added and by increasing the virtual ra-
dius, it is possible to calculate semi-long and long-
range inter-particle forces.
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ABSTRACT
Numerical calculations of a particle-laden turbulent hori-

zontal mixing-layer based on the Eulerian-Lagrangian approach
are presented. Emphasis is given to the determination of the
stochastic fluctuating fluid velocity seen by the particles in
anisotropic turbulence. The stochastic process for the fluctuat-
ing velocity is a “Particle Langevin equation Model”, basedon
the Simplified Langevin Model. The Reynolds averaged Navier-
Stokes equations are closed by the standard k-epsilon turbulence
model. The calculated concentration profile and the mean, the
root-mean-square (rms) and the cross-correlation terms ofthe
particle velocities are compared with particle image velocime-
try (PIV) measurements. The numerical results agree reasonably
well with the PIV data for all of the mentioned quantities. The
importance of the modeled vortex structure “seen” by the parti-
cles is discussed.

INTRODUCTION
Prediction of the particle concentration and mean and fluctu-

ating particle velocities are important in the modeling of the par-
ticle collision frequency and for the interaction between the parti-
cle and the fluid phase in turbulent particle-laden flows. Stochas-
tic models for particle collisions depend directly on the particle
velocity fluctuations and the number density of particles [1–3].
The trajectories of the particles are especially importantwhen
evaporation takes place, where the temperature and the chem-
ical composition of the particles depend on their history. In
the Lagrangian particle tracking approach the instantaneous fluid

velocity is unknown. However, the Eulerian approach for the
turbulent fluid phase gives mean velocities and some average
turbulence parameters that can be used to model the instanta-
neous fluid velocity. Minier [4] suggested a Langevin equation
model for the instantaneous fluid velocity working on the parti-
cles. Minier extended the “Simplified Langevin Model” (SLM)
for fluid particles, see Pope [5] and references therein, to inertial
particles. Hereafter we will call the model of Minier the “Parti-
cle Langevin Model” (PLM). Previous models for the turbulent
structure, such as the “eddy-life time” approach [6] and the“ran-
dom walk” models [7] have shown good results for particles in
grid turbulence. Coimbraet al. [8] calculated the mean and the
rms of the fluid velocities in the two-dimensional mixing layer
of Hishidaet al. [9] with an eddy life-time model. However, the
prediction of the rms of the particles velocity fluctuationsfailed
and showed that the eddy-life time approach is insufficient in
anisotropic turbulent flows. The combination of the Eulerian ap-
proach for the fluid flow and the stochastic differential equation
of Minier [4] for the fluctuating velocity seen by the particles was
recently presented by Naudet al. [10]. Naudet al. closed the
Reynolds averaged Navier-Stokes equations by the Simplified
Langevin Model. Liuet al. [11] combined a Langevin equation
model for the instantaneous fluid velocity with a Reynolds stress
model for the continuous phase and got reasonable results for the
average velocities and the velocity fluctuations in a particle-laden
swirl flow.

In this work we have written the PLM for the fluctuating
fluid velocities and a standardk-ε model has been used for the
continuous phase. The numerical simulations were compared

1 Copyright c© 2005 by ASME
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with the horizontal mixing-layer experiments of Horender [12].
The particles with mass mean diameter 90µm where injected
slightly above the splitter plate on the low-speed side. Themix-
ing layer has a clear vortex structure and due to gravity the dis-
persion of the particles depends on the modeled life-time, fre-
quency and strength of the vortex structure. We observe thatthe
PLM was able to reproduce the measured concentration profile,
the rms of the particle velocity and the particle velocity cross-
correlations terms in anisotropic and non-homogeneous turbu-
lence. For comparison, we showed that a random walk model [7]
could not predict the concentration profile and the rms of thepar-
ticle velocities correctly. The reason is the insufficient modeling
of the cross-correlations terms, while the rms of the fluid velocity
fluctuations were predicted well.

In the following, attention is first given to the modeling of
the continuous phase, then the modeling of the fluid velocityseen
by the particles. The models determining the motion of heavy
particles in gas are outlined and the experimental setup is briefly
presented. Then the results for the turbulent horizontal mixing-
layer, laden with glass particles are presented and discussed.

MODELS FOR THE FLUID FLOW
The fluid flow was assumed to be incompressible and the

particle volume fractionαp was very small (αp ≪ 1). Then the
Reynolds averaged continuity and momentum equations are:

∂U i

∂xi
= 0 (1)

∂
∂t

(

U i
)

+
∂

∂x j

(

U iU j
)

=−
1

ρ f

∂P
∂xi

+
∂

∂x j
(−uiu j)

+
∂

∂x j

[

ν
(

∂U i

∂x j
+

∂U j

∂xi

)]

+
1

ρ f
F p, (2)

whereρ f is the fluid density andU i is the mean fluid velocity de-
fined byUi = U i +ui. P is the mean pressure,ν is the kinematic
viscosity andF p is the mean force of the particles working on
the fluid. The momentum equation (2) was closed by the turbu-
lent viscosity approach, where the Reynolds stresses−uiu j were
expressed by [13]:

−uiu j = νt

(

∂U i

∂x j
+

∂U j

∂xi

)

−
2
3

kδi j , (3)

wherek is the turbulent kinetic energy (k =
1
2uiui) andνt is the

turbulent kinematic viscosity, modeled by the standardk-ε-model
of Launder & Spalding [14]. Launder & Spalding modeled the

turbulent kinematic viscosity as follows:

νt = Cµ
k2

ε
, (4)

whereCµ = 0.09 is a model constant andε is the dissipation rate
of turbulent kinetic energy. Transport equations are solved for the
turbulent scalarsk andε. The transport equation for the turbulent
kinetic energyk reads:

∂k
∂t

+U j
∂k
∂x j

=
∂

∂x j

(

(ν+ νt)
∂k
∂x j

)

+Pk− ε, (5)

where the production of turbulent kinetic energyPk is defined by:

Pk = νt

(

∂U i

∂x j
+

∂U j

∂xi

)

∂U i

∂x j
. (6)

The transport equation for the dissipation rate of turbulent kinetic
energyε is given by:

∂ε
∂t

+U j
∂ε
∂x j

=
∂

∂x j

((

ν+
νt

σε

)

∂ε
∂x j

)

+Cε1
ε
k

Pk−Cε2
ε
k

ε, (7)

whereσε = 1.3,Cε1 = 1.44, andCε2 = 1.92. The direct influence
of the particles on the turbulent kinetic energy was neglected.

The momentum equation (2) and the transport equations re-
lated to the turbulence models, Eqn. (5) and (7), were discretized
using the finite-volume method on a staggered grid. The con-
vective terms were discretized by a central differencing scheme
and the pressure field was found by the SIMPLE algorithm. The
calculations were performed on a grid with 100×48×49 cells.
Tests were carried out on a finer grid (200×98×99) to ensure a
grid independent solution of the flow field. The relative deviation
of the shear-layer growth between the coarse and the fine grid
was 6%, which is less than the deviation between the numerical
and experimental results. After the fluid flow had converged,the
particles were tracked and the mean force on the fluid in each
control volume was calculated. Then the flow was calculated
with updated source terms. The iteration was performed until the
number of iterations the fluid solver needed to converge reached
a “steady number” [15].

FLUID VELOCITY SEEN BY THE PARTICLES
In the Eulerian-Lagrangian methodology, the mean values of

the fluid velocity components and the turbulent scalars are given
by the Eulerian approach for the fluid flow. However, the par-
ticles see the instantaneous fluid velocity

−→
U . The instantaneous
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Figure 1. FLUID AND PARTICLE PATHS.

velocity is stochastic, and should not only obey the correctturbu-
lence statistics, but it should also represent the large scale vortex
structures. Pope [5,13] presented the Simplified Langevin Model
(SLM) for the instantaneous fluid velocities in the Lagrangian
approach following a fluid particle. By using this modeling ap-
proach, the velocity of the fluid particles are given by a stochastic
differential equation for each velocity component. These mod-
els have a clear correspondence to the well established Reynolds
Stress Models. Inertial particles do not follow the fluid particle,
as illustrated in Fig. 1. Minier [4] suggested a model based on
the Simplified Langevin Model that takes into account the drift
between the inertial particles and the fluid particles, the Particle
Langevin Model (PLM). An elaborated presentation of PLM is
given by Minier and Peirano [16] and recently Minieret al. [17]
introduced a two-way coupling term. In the present formulation,
the two-way coupling is handled in the momentum equation (2)
and is therefore not considered in the Particle Langevin Model
for the fluctuating velocity. Written for the fluctuating velocity
ui , the Particle Langevin Model is given by:

dui =−u j
∂U i

∂x j
dt+

∂uiu j

∂x j
dt

︸ ︷︷ ︸

I

+(Vj −U j)
∂Ui

∂x j
dt

︸ ︷︷ ︸

II

−
1

TL,i
uidt

︸ ︷︷ ︸

III

+

√

ε
((

C0 +
2
3

)

bi k̃/k−
2
3

)

dWi(t)

︸ ︷︷ ︸

IV

. (8)

The first term (I) on the right hand side is a fluid drift term, the
change of the fluctuation due to the changes of the fluid flow.
In the present work, the Reynolds stresses are calculated from
Eqn. (3). The second term (II) handles the drift between the par-
ticle and the fluid velocity field. Minier [4] proposed this term as
amean-drift-termand used the ensemble averaged particle veloc-
ity, that is known when solving a pdf for the particle phase inan
Eulerian framework. As mentioned by MacInnes & Bracco [6],
the average particle velocity

〈

Vj
〉

at the particle position is not
knowna priori. Therefore, the instantaneous particle velocityVj

and fluid velocityU j are used in the current work, as proposed

by Simoninet al.[18]. A consequence of using the instantaneous
velocities also in the calculations of the Csanady’s factors is a
possible over-prediction of those factors in low-speed regions.
The third term (III) is the memory term, relating the new fluctu-
ating fluid velocity to the previous by the Lagrangian time scale
TL,i . The Lagrangian time scale in an arbritrary direction is given
by:

TL,i =
1

(

1
2 +

3
4C0

) ε
kbi

, (9)

where the constantC0 takes the valueC0 = 2.1 [19]. The differ-
ence between the stream-wise and the transversal time scales are
handled by the Csanady’s factorsbi , given by:

bi = b⊥+
(

b‖−b⊥
) (Vi −Ui)

2
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∣
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2 , (10)
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1+4β2
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U

∣
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∣

2

2k/3







0.5

, (12)

whereβ is the ratio between the LagrangianTL and EulerianTE

time scalesβ = TL/TE = 1/CL. In the current workCL = 1.1 is
used. Term III has a clear correspondence to thelinear-return-
to-equilibriummodel for the redistribution term in a Reynolds
Stress Model. Thelinear-return-to-equilibriummodel is indeed
a simple model for the redistribution term, but it seems not to be
crucial in the modeling of the motion of inertial particles.The
fourth term (IV) is the diffusion term, that includes randomness
through the Wiener processdWi(t). The diffusion in the different
directions is independent, but anisotropic.k̃ is a dimensionless
turbulent kinetic energy weighted by the Csanady’s factorsthat
was introduced by Minier [4] and is defined by:

k̃ =
3
2

∑3
i=1biu2

i

∑3
i=1bi

. (13)

For comparison, the instantaneous fluid velocity was also
calculated by the random walk model (RWM) of Sommerfeld
et al. [7], that also can been seen as a Langevin model for an
Ornstein-Uhlenbeckprocess written in finite difference form [5].
The model should therefore work well in isotropic and homoge-
neous turbulence. The fluctuating velocity at the next time step
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un+1,i is given by:

un+1,i = RP,i(dt)un,i + σ f

√

1−R2
P,iξi , (14)

whereξi denotes a normal distribution with zero mean and a vari-
ance equal unity.σ f is given by the turbulent kinetic energy as
follows σ f =

√

2/3k. RP,i is the velocity correlation function
RP,i = RLRE,i . RL is the Lagrangian velocity correlation given
by:

RL = exp(−
dt
̂TL

), (15)

where the Lagrangian time scalêTL is determined from:

̂TL = cT
σ2

f

ε
, (16)

wherecT = 0.24 is consistent withC0 = 2.1 in the PLM given
in Eqn. (8). The drift between the inertial particles and thefluid,
the so-called “crossing-trajectory-effect”, is handled by an addi-
tional Eulerian velocity correlation functionRE,i , by using the
longitudinal and transverse correlation coefficients,f andg

RE,i = ( f −g)
r i r i

|−→r |2
+g, (17)

where−→r is the displacement between the inertial particle and
fluid particle that were at the same position at the previous time
step. The longitudinal and transverse correlation coefficients for
homogeneous and isotropic turbulence are given by:

f = exp

(

−
|−→r |
LE

)

, (18)

g =

(

1−
|−→r |
2LE

)

exp

(

−
|−→r |
LE

)

, (19)

where the integral length scaleLE is determined from:

LE = CL ̂TLσ f . (20)

PARTICLE MOTION
The particles were tracked individually in the Lagrangian

framework and were assumed to be spherical and adiabatic.
Due to the large density ratio between the particles (ρp =

2950kg/m3) and the carrier phase (ρ f = 1.2kg/m3) only the
drag and the gravity forces were considered. Collisions between
the particles were neglected. Then the Lagrangian equations that
determine the motion ofN particles could be written as:

d
−→
X n

dt
=
−→
V n (21)

d
−→
V n

dt
=−

1
τn

(−→
V n−

−→
U

)

+
−→g (22)

wheren = 1, . . . ,N. The particle response timeτn is defined by:

τn =
4
3

ρp

ρ f

dp

CD

1

|
−→
V n−

−→
U |

(23)

where the drag coefficientCD is given by the standard correla-
tion:

CD =

{

24
Rep

(

1+0.15(Rep)
0.687

)

, Rep < 1000

0.44 , Rep ≥ 1000
(24)

with the particle Reynolds numberRep = (dp|
−→
V −

−→
U |)/ν. The

fluid properties in the position of the particles were found by lin-
ear interpolation between the fluid cell centers. The motionof
the parcels was calculated sequentially. Each parcel represented
a number of real particles with equal properties. Data were sam-
pled in each fluid cell for the back-coupling of the drag forces.
For comparison with experimental results, data were sampled in
the same way as by the PIV, described below. That is in boxes of
3.2×3.2×2mm. In order to obtain statistically reliable data also
in the outskirts of the mixing layer, a huge number of parcels(106

) was needed. The time step was limited upwards by the particle
response timeτ , the Lagrangian time scaleTL and the size of the
control volumes for the fluid flow calculationslcv as follows:

dt = min



0.2τ,0.1TL,0.5
lcv
∣

∣

∣

−→
V

∣

∣

∣



 . (25)

EXPERIMENTAL SETUP
The wind tunnel was thoroughly explained by Hardalupas

& Horender [20] and only the key features will be mentioned
here. Figure 2 shows the horizontal setup, where the cross sec-
tion of the tunnel is 0.3×0.3m and the distance from the edge
of the splitter plate to the end of the channel is 1m . The splitter
plate is 300mm long and 0.5 mm tick at the edge. A pipe with
inner diameter 5mm and outer diameter 7mm, with the outlet
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Figure 2. DRAWING OF THE EXPERIMENTAL SETUP.

placed on the upper edge of the splitter plate, was used to inject
the particles. The air velocities were 5.5m/s and 0.8m/s on the
the high-speed and low-speed side respectively. The turbulence
intensities were around 3% on the undisturbed high-speed side.
The properties of the air were densityρ f = 1.2kg/m3 and kine-
matic viscosityν = 1.5 ·10−5m2/s. The injection rate of parti-
cles was 7.0 ·10−4kg/s that corresponds to a local mass loading
of 12%. The density of the particles was 2950kg/m3 and the
particles were in the range 70-110µm with a mass mean dia-
meter 90µm. The inlet particle velocity was 3.0m/s with rms
of stream-wise and cross-stream velocity fluctuations of 0.3m/s
and 0.2m/s respectively. A particle image velocimeter (PIV)
measured the particles over a cross section 300mm downstream
of the edge of the splitter plate. The size of the interrogation
windows was 3.2×3.2mm and 400 images were recorded with
a sampling frequency of 3Hz. The laser sheet was approximately
1mm thick. The uncertainties were 2% and 7% for the mean par-
ticle velocity and the rms of the velocity fluctuations, 6% for the
mean particle concentration and 15% for the cross-correlation
between the stream-wise and cross-stream velocities. The uncer-
tainties were expected to be somewhat larger in regions withfew
particles.

RESULTS
The development of the momentum thicknessδ for the

single-phase flow is shown in Fig. 3. The experiments shows a
non-linearity in the mixing-layer growth close to the splitter plate
that was not obtained by the numerical simulations. A reason
might be the low turbulent Reynolds number and the intermit-
tency of the flow. Further down-stream, the growth of the mixing
layer was well predicted by the standardk-ε-model, and we may
conclude that thek-ε-model is suited for mixing-layer calcula-
tions, which agrees with the findings of Coimbraet al. [8].

The results for the particle-laden flow are presented 300mm
downstream of the edge of the splitter plate. At this location the
mixing-layer should be undisturbed by the presence of the parti-
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Figure 3. MOMENTUM THICKNESS δ IN STREAM-WISE DIRECTION
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Figure 4. MEAN CONCENTRATION OF PARTICLES C. THE SYM-

BOLS (◦) DENOTE THE EXPERIMENTAL RESULTS, THE SOLID LINE

DENOTES THE PLM MODEL, EQN. (8), AND THE DASHED LINE DE-

NOTES THE RWM MODEL, EQN. (14)

cle injection pipe and the results should therefore be representa-
tive for the entire mixing-layer. Figure 4 shows the mean number
concentration profile and we observe a good agreement between
the measured number density and the PLM model. The differ-
ence between the PLM and the random walk model (RWM) is
significant. Probably reasons for the difference in the dispersion
of particles will be addressed in the discussion. One also sees
that few particles are present forx2 > 20mm, which increases
the uncertainties in this region.

The mean particle velocities, shown in Fig. 5, are generally
well predicted by the RWM while the PLM over-predicts the par-
ticle velocity, in particular on the low-speed side. Figure6 shows

5 Copyright c© 2005 by ASME
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Figure 5. THE STREAM-WISE (UPPER) AND CROSS-STREAM

(LOWER) MEAN PARTICLE VELOCITY AT x1 = 300mm. THE SYM-

BOLS (◦) DENOTE THE EXPERIMENTAL RESULTS, THE SOLID LINE

DENOTES THE PLM MODEL, EQN. (8), AND THE DASHED LINE DE-

NOTES THE RWM MODEL, EQN. (14)

that the rms of the fluctuating particle velocities are far better pre-
dicted by the PLM than by RWM. We also observe that the PLM
slightly over-predicts the rsm of the fluctuating particle velocity
in the stream-wise direction. However, Horender [12] pointed
out that the rms velocities might have been measured too low
by the PIV. The results of the modeled large scale vortex struc-
ture are shown by the particle velocity cross-correlation〈v1v2〉 in
Fig. 7. The isotropic model does not correlate the particle fluctu-
ation velocity in different directions, hence no vortex structure is
predicted.

DISCUSSION
The turbulent dispersion, shown by the number density pro-

file in Fig. 4, depends on several parameters. For instance was
the particle size distribution used in the experiments measured
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Figure 6. THE STREAM-WISE (UPPER) AND CROSS-STREAM

(LOWER) PARTICLE FLUCTUATING VELOCITY AT x1 = 300mm. THE

SYMBOLS (◦) DENOTE THE EXPERIMENTAL RESULTS, THE SOLID

LINES DENOTE THE PLM MODEL, EQN. (8), AND THE DASHED LINE

DENOTES THE RWM MODEL, EQN. (14).

rather roughly. In the numerical simulations a particle diameter
of 90µm was considered, hence only one particle relaxation time
was present, whereas in the experiments the particle relaxation
time varied with a factor two. It should also be mentioned the
calculations of the presented statistics were based on the number
of particles in the irrogations windows, which gives the small
particles present in the experiments too much weight. Despite
the uncertainties in the particle size distribution was theparticle
number density profile well predicted by the PLM. The calcu-
lated dispersion of particles into the low-speed side showsthat
vortex structure has been modeled well.

Compared to the measurements, the PLM gives too high val-
ues for the stream-wise mean particle velocity. Two reasonsare
the modeling of the “crossing trajectory effect” and the particle
size distribution. Firstly, due to the gravity and the mean ve-
locity gradient, term II in Eqn. (8) is in average positive, hence

6 Copyright c© 2005 by ASME
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Figure 7. THE PARTICLE CROSS-CORRELATIONS 〈v1v2〉 AND THE

NORMALIZED ONES 〈v1v2〉n.

the mean fluid velocity seen by the particles is larger than the
mean fluid velocity. A larger “seen” than real fluid velocity is
physical in this case, but the difference might be over-predicted.
Secondly, the particle size distribution might be important for
the mean particle velocity on the low-speed side. Small particles
travel more easily towards the gravity into the low-speed region
and they furthermore retard faster to the low-speed side velocity,
due to a shorter particle relaxation time.

Figure 6 shows that the rms of the fluctuating particle veloc-
ities are close to zero for the RWM. However, Fig. 8 shows that
the RWM reproduce the diagonal terms in the Reynolds stress
matrix well. This indicates that the integral time scalêTL was
modeled too short. Figure. 8 also shows that the cross corre-
lation 〈u1u2〉 was not reproduced by the RWM, hence a vortex
structure was not predicted.

The large scale vortex structure transports particles with
high velocity from the high-speed side to the low-speed sideand
vice versa. The over-prediction of the rms of the particle ve-
locity fluctuationsv1 and v2 by the PLM can therefore be ad-

dressed to the modeling of the vortex-structure. Possible reasons
for the over-prediction ofv1, v2 and 〈v1v2〉 are over-prediction
of Csanady’s factors and the “crossing trajectory effect” due to
the use of the instantaneous particle velocity instead of the aver-
age particle velocity, but there might also be a shortcomingof the
model on this point. Another reason might be the effect of prefer-
ential concentration. The particles were tracked sequentially and
the fluctuating fluid velocities related to each particles were in-
dependent, therefore a preferential concentration, that was mea-
sured by Hardalupas & Horender [20], cannot be predicted. In
turbulent flows with a particle Stokes number around unity the
particles spin out of the eddies into regions where straining dom-
inates vortices [22,23]. It is not necessarily anything wrong with
the reproduction of the Reynolds stresses (Fig. 8), but the the
Reynolds stresses seen by the fluid are not those seen by the par-
ticles, because the particles are accumulated in strainingdomi-
nating regions. This may lead to an over-prediction of the par-
ticle fluctuating cross-correlation terms, which is seen inFig. 7.
If we normalize the cross-correlation,〈v1v2〉n = 〈v1v2〉/(v1v2),
the numerical results agrees well with the experimental results.
Hishida [9] also reported values of〈v1v2〉n around 0.7.

CONCLUSION

In this paper numerical calculations of a particle-laden, tur-
bulent mixing-layer based on the Eulerian-Lagrangian approach
have been presented. The mixing-layer was horizontal and the
particles were injected from a jet placed just above the splitter-
plate, on the low-speed side. The stochastic process for thefluc-
tuating velocity was modeled by the Particle Langevin equation
Model (PLM). The Particle Langevin Model is based on the cor-
responding Simplified Langevin Model for single-phase flows,
that again has a clear correspondence to the Reynolds Stress
Models. The Reynolds averaged Navier-Stokes equations for
the fluid flow were closed by the standard k-epsilon turbulence
model without additional source terms. It was found that the
PLM is able to reproduce the anisotropic turbulence and the vor-
tex structure in the mixing-layer quite well. The PLM was com-
pared with a random walk model that does not model the vortex
structure. It was found that the modeling of the vortex structure
is important for the prediction of the particle number density and
the rsm of the particle velocity fluctuations.
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Correlated motion of inertial parti
les inturbulent �owsJens A. Melheim ∗Norwegian University of S
ien
e and Te
hnology (NTNU), Department of Energyand Pro
ess Engineering, Kolbjørn Hejes veg 1A, NO-7491 Trondheim, NorwayAbstra
tA model for 
orrelating the motion of N inertial parti
les in turbulent �ows in theEulerian-Lagrangian framework is proposed. The Reynolds-averaged Navier-Stokesequations provide only a mean �uid velo
ity �eld and a mean turbulen
e �eld. Onetherefore has to reprodu
e the instantaneous �uid velo
ity seen by the parti
les to ob-tain realisti
 parti
le traje
tories. This is often done by evolving in time a sto
hasti
di�erential equations for �uid parti
les, where one �uid parti
les follows ea
h iner-tial parti
le. The velo
ity of 
lose �uid parti
les is 
orrelated, and in the proposedmodel, the velo
ity is 
orrelated via the random term in the sto
hasti
 di�erentialequations. Turbulen
e is 
hara
terized by time and length s
ales varying in timeand spa
e, and this intermitten
y is modeled by employing a sto
hasti
 di�erentialequation for the turbulen
e frequen
y. The present results of �uid-parti
le pairs sim-ulations yield the 
lassi
al Ri
hardson t3-law. N inertial parti
les in isotropi
 andhomogeneous turbulen
e are simulated and the results are 
ompared with empiri
al
orrelations based on dire
t numeri
al simulations.Key words: Parti
les, Turbulen
e, Lagrangian, Collisions,PACS: , 47.11.+j, 47.27.Eq, 47.55.Kf
1 Introdu
tionParti
le 
onta
ts, resulting in 
ollision, agglomeration or 
oales
en
e, takepla
e in many parti
le-laden turbulent �ows. The number of parti
le 
onta
tsand the out
ome of su
h 
onta
ts are in�uen
ed by the 
on
entration of parti-
les and the relative parti
le velo
ity at the time of 
onta
t. For parti
les witha response time τp 
omparable to some time s
ales of the �uid, the velo
ity of
∗ Tel.: +47 41215517, Fax: +47 55 57 43 31, E-mail: jensm�pvv.ntnu.noPreprint submitted to European Journal of Me
hani
s/B-Fluids
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the parti
les lo
ated in the same turbulent eddy will be 
orrelated. Further-more, if the parti
le response time τp is of same order as the Kolmogorov times
ale τη, the parti
les 
on
entrate in regions with high strain [1℄.In Eulerian-Lagrangian simulations of turbulent parti
le-laden �ows, wherethe mean velo
ity and turbulen
e parameters 
al
ulated, the instantaneous�uid velo
ity has to be modeled. The Langevin-equation model [2℄ is a sto
has-ti
 model for the �uid velo
ity working on inertial parti
les, and it gives sat-isfa
tory results in �ows like wall-jet [3℄ and mixing-layer [4℄, that in
ludeanisotropi
 turbulen
e. However, the Langevin equation determines indepen-dent parti
le traje
tories. It is reasonable to assume that parti
les that are
lose to ea
h other will see almost the same velo
ity �eld.The aim of this work is to �nd a 
orrelation for the �uid velo
ity at the positionof inertial parti
les that are spatially 
lose to ea
h other. By 
orrelating thevelo
ity 
orre
tly, it should be possible to 
al
ulate the 
ollision frequen
y,the 
ollision impa
t velo
ity and the preferential 
on
entration of parti
les inturbulent �ows.There is a 
onsiderable literature on the 
ollision frequen
y in various tur-bulent �ows [5,6,7,8℄. Sundaram and Collins [9℄ made dire
t numeri
al simu-lations (DNS) of a homogeneous turbulent �ow and found a 
orrelation be-tween the 
ollision frequen
y and the parti
le Stokes number based on theKolmogorov time s
ale τη. The Kolmogorov Stokes number is de�ned by
Stη ≡

τp

τη

. (1)Reade and Collins [10℄ 
onne
ted the 
ollision frequen
y to the e�e
t of prefer-ential 
on
entration, or 
lustering, of parti
les. Clustering of parti
les has beenobserved both in numeri
al 
al
ulations [1℄ and experimentally [11℄. The 
en-trifugal for
es in a vortex try to move the parti
les out of the vortex. Thesefor
es are most e�e
tive at Kolmogorov Stokes numbers Stη around unity.Large-eddy simulations of homogeneous and isotropi
 turbulen
e laden withheavy parti
les showed a smaller impa
t velo
ity than estimated by kineti
theory [12℄.Sommerfeld [13℄ and Berlemont et al. [14℄ suggested models that 
orrelate thevelo
ity of the �
tive 
ollision parti
le to the velo
ity of the real 
olliding par-ti
le in a sto
hasti
 
ollision model. Berlemont et al. ran also simulations withmultiple parti
les and dete
tion of every 
ollision. Then the �uid velo
itiesof the 
olliding parti
les were 
orrelated after the 
ollision. As mentioned bythe authors, the models of Sommerfeld and Berlemont et al. 
annot predi
t
lustering of parti
les.Another family of models handles the dispersion of �uid parti
le pairs by a2
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sto
hasti
 di�erential equation (SDE). Models have been made for the inter-parti
le distan
e [15℄ and the inter-parti
le velo
ity [16℄. These models handlethe relative motion of two parti
les well and are for instan
e used to 
loseprobability density fun
tion (pdf) transport equations.Kaplan and Dinar [17℄ 
orrelated the motion of N parti
les via the randomterm in the Langevin-equation model by using the spatial auto
orrelation fun
-tion and a �xed integral length s
ale LE . An advantage of using the randomterm for 
orrelating the motion is that the equations are valid for any numberof parti
les. The model of Kaplan and Dinar fails to reprodu
e Ri
hardson's
t3-law. In the 
urrent work, the motion of N inertial parti
les also are 
or-related via the random term by using the spatial auto
orrelation fun
tion.Contrary to what was done by Kaplan and Dinar, the spatial 
orrelation isbased on the instantaneous integral length s
ale L∗

E , 
al
ulated by evolving intime a sto
hasti
 di�erential equation for the turbulen
e frequen
y [18℄. Hen
ethe intermitten
y of the turbulen
e is modeled, and, as we will show in Se
. 4,the 
lassi
al Ri
hardson t3-law is su

essfully reprodu
ed by the new model.The paper is organized as follows. In Se
tion 2, models for the instantaneous�uid velo
ity and the turbulen
e frequen
y are presented. A simple 
orrela-tion fun
tion based on the instantaneous integral length s
ale is proposed.Se
tion 3 brie�y presents the governing equations for the motion of heavyparti
les in a gas without gravity. The results for dispersion of �uid-parti
lepairs in homogeneous turbulen
e are shown in Se
tion 4. Se
tion 5 shows theresults of the 
ollision rate, the relative velo
ity at 
onta
t and the radial dis-tribution fun
tion for heavy parti
les suspended in isotropi
 and homogeneousturbulen
e. The results are 
ompared with the 
orrelations obtained from DNS
al
ulations [19℄. A dis
ussion of the results follows in Se
tion 6 and Se
tion 7
on
ludes the paper.
2 Models for the �uid velo
ityTo determine realisti
 parti
le paths in 
ases where only mean �uid �ow valuesare provided, one has to reprodu
e the instantaneous velo
ity seen by the par-ti
les. A Reynolds-averaged Navier-Stokes simulation usually gives ba
k themean velo
ity U and mean turbulen
e parameters like the turbulent kineti
energy k, its dissipation ε and the Reynolds stresses −uiuj. In non-adiabati

ases, one also has the mean temperature and the 
hemi
al 
omposition of the�uid. 3
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2.1 Single �uid parti
lePope [20,21,22℄ proposed a model framework for �uid parti
les. In the modelsof Pope, sto
hasti
 di�erential equations for the instantaneous �uid velo
ity Uiare solved in time. From many �uid-parti
le traje
tories one 
an make statis-ti
s, whi
h 
an be used to 
lose pdf-equations. In homogeneous and isotropi
turbulen
e, the Simpli�ed Langevin Model (SLM) of Pope reads:
dUi = −

1

ρ

∂ 〈p〉

∂xi

dt−
1

TL

ui dt +
√

C0ε dWi, (2)where Ui is the instantaneous �uid velo
ity, ui is the �u
tuating �uid velo
ity,
dWi is the Wiener pro
ess, and C0 is the Kolmogorov 
onstant. TL is theLagrangian time s
ale determined by

TL =
1

1

2
+ 3

4
C0

k

ε
. (3)A short
oming of the SLM is the la
k of information about the instantaneouslength and time s
ales; the intermitten
y of the turbulen
e 
annot be deter-mined. Pope and Chen [18℄ proposed an additional model equation for theturbulen
e frequen
y ω. The average turbulen
e frequen
y is de�ned by

〈ω〉 ≡
e

k
, (4)and the sto
hasti
 di�erential equation model for the turbulent frequen
y ωis written as:

dω = −Cχω 〈ω〉
(

ln(ω/ 〈ω〉 −
1

2
σ2

)

dt

+ω
√

2Cχ 〈ω〉σ2 dW, (5)where the 
onstant Cχ = 1.6. σ2 is the varian
e of ln(ω/ 〈ω〉) and is assumedto take the value 1 in the 
urrent work. In the original model [18℄, thereis an extra 
onstant Sω, but this 
onstant is negle
ted in later works [22℄.Eq. (5) obeys a log-normal distribution of the turbulen
e length and times
ales. The modeled intermitten
y in�uen
es the model instantaneous velo
ityin the following way [18℄:
dUi = −

1

ρ

∂ 〈p〉

∂xi

dt−
1

T ∗
L

ui dt +
√

C0kω dWi, (6)where the instantaneous integral time s
ale T ∗
L is given by

T ∗

L =
1

1

2
〈ω〉+ 3

4
C0ω

. (7)4
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Eqs. (5-7) 
onstitute the Re�ned Langevin Model [18℄.2.2 Correlated motionThe linear 
ombination theorem and 
entral limit theorem applied on M in-dependent normal distributions with zero mean and equal varian
e gives [23℄:
N c =

∑M
m=1

αmNm
√

∑M
m=1

α2
m

. (8)Then N c has zero mean and equal varian
e to that of Nm. N c approa
hesa normal distribution as M → ∞. In the following, this property is used to
orrelate the random terms in Eq. (5) and Eq. (6). The Wiener pro
essesare 
orrelated by using the spatial auto
orrelation fun
tion for isotropi
 andhomogeneous turbulen
e:
fmn =

1

lmn

√

(

l
‖
mn exp

(

−lmn/L∗
E,n

))2

+
(

l⊥mn exp
(

−2lmn/L∗
E,n

))2 (9)where lmn = ‖xm − xn‖. l‖mn and l⊥mn is the separation distan
e between parti-
le n and parti
le m in the stream-wise and span-wise dire
tion, respe
tively.The longitudinal and transverse auto
orrelation fun
tions are assumed to beequal. The instantaneous integral length s
ale asso
iated with parti
le n, L∗
E,n,is determined by

L∗

E,n = Cl

1
1

2
+ 3

4
C0

1

ωn

√

2

3
k
1

e
, (10)where Cl is the ratio between the Eulerian and Lagrangian time s
ales Cl =

TE/TL. e is de�ned by e ≡ exp(1) su
h that
LE =

〈

L∗

E,n

〉

=

〈

Cl

1
1

2
+ 3

4
C0

1

ωn

√

2

3
k
1

e

〉

= Cl

1
1

2
+ 3

4
C0

1

〈ω〉

√

2

3
k, (11)given σ2 = 1 in Eq. (5). The 
orrelated motion model, written for the �u
tu-ating velo
ity by using the 
ontinuity, be
omes:

dun,i =−
1

T ∗
L,n

un,i dt +
√

C0kωn dW c
n,i, (12)

dωn =−Cχωn 〈ω〉
(

ln(ωn/ 〈ω〉 −
1

2

)

dt

+ωn

√

2Cχ 〈ω〉dW c
n,ω, (13)5
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where
dW c

n =

∑N
m=1

fmn dW ∗
m

√

∑N
m=1

f 2
mn

, (14)where N is the number of parti
les and dW ∗
m are independent Wiener pro-
esses. Four Wiener pro
esses are related to ea
h parti
le, one for ea
h velo
ity
omponent un,i and one for the turbulen
e frequen
y ω. fmn is given by Eq. (9).To ensure stable simulations, ω is kept within the range ω ∈ (0.1 〈ω〉 , 40 〈ω〉)in the present work. Cal
ulation of dW c

n is 
omputationally expensive for sys-tems with many parti
les; the 
omplexity is of order O(N2). A speed-up 
anbe a
hieved by looping over the 
losest neighbors in Eq. (14); those whi
hgive a signi�
ant 
ontribution to dW c
n. The 
losest neighbors 
an be foundfor instan
e by employing a parti
le mesh [24℄. The 
omplexity of 
al
ulating

dW c
n is then redu
ed to O(N).3 Lagrangian parti
le modelThe parti
les were tra
ked individually in the Lagrangian framework and theywere assumed to be spheri
al and adiabati
. Due to the large density ratiobetween the parti
les (ρp = 9 − 550 kg/m3) and the surrounding �uid (ρf =

1.0 kg/m3) only the drag for
e was 
onsidered. The drag for
e is modeled bythe S
hiller and Naumann 
orrelation, whi
h is reasonably good for parti
leReynolds numbers, Rep = (dp|V − U |)/ν, lower than 800 [25℄. In order to
ompare with DNS data, the gravity was negle
ted. The Lagrangian equationsthat determine the motion of N parti
les 
an then be written as:
dXn

dt
=Vn,

dVn

dt
=−

1 + 0.15Re0.687
p

τp,n

(Vn −U) , (15)where n = 1, . . . , N . The parti
le response time τp,n is de�ned by
τp,n =

ρpd
2

p

18µ
. (16)4 Dispersion of �uid parti
le pairsTo validate the proposed model for the 
orrelated motion, dispersion of two�uid parti
les in homogeneous isotropi
 turbulen
e is performed. From a smallinitial separation l0, the average dispersion, measured by the average of the6
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separation distan
e squared 〈l2〉, undergoes three regimes. This �rst is thevis
ous range (l ≪ η), where the turbulen
e has little or no in�uen
e on theseparation. The proposed model is made for real parti
les with diameter oforder O(η), hen
e very small separation distan
es are avoided. In the inertialrange (η ≪ l ≪ LE), the relative dispersion is una�e
ted by both the vis
os-ity and the large s
ales of the turbulen
e. Re
ently, Yeung and Borgas [26℄did DNS and reported that the separation distan
e in this region is highlyintermittent. The average dispersion in the inertial range follows Ri
hardson's
t3-law:

〈

l2
〉

= aRεt3, (17)where aR is a non-dimensional 
onstant. By in
lusion of an equation for theturbulen
e frequen
y in our model, the �rst moment of the intermitten
y, thatwas observed by Yeung and Borgas, should be 
aptured. At large separationdistan
es (l ≫ LE), the motion is un
orrelated and the average separationdistan
e goes as 〈l2〉 ∼ kTLt.A ba
kground turbulen
e �eld with turbulent kineti
 energy k = 0.345 m2/s2and dissipation ε = 1.0 m2/s3 was 
onsidered. The �uid properties were density
ρ = 1.2 kg/m3 and vis
osity µ = 1.8 · 10−5 Pa · s. The values above 
orrespondto the Reynolds number Reλ = 230 and the Kolmogorov s
ales η = 2.42 ·
10−4 m and τη = 3.873 · 10−3 s. The model 
onstants were C0 = 5.33 and
CL = 1.26, su
h that the turbulen
e integral time and length s
ale were TL =
7.67 · 10−2 s and LE = 4.65 · 10−2 m. 2000 pairs for ea
h initial separationdistan
e were found to be su�
ient. Initial separations l0/η ∈ (1, 4, 16, 64)were 
onsidered. A relative long time step, dt = 0.1TL was used and thetotal simulation time was ≈ 10TL. Tests were done with smaller time stepswithout any signi�
ant di�eren
e in the results. The initial �uid velo
ities werepi
ked from a Gaussian distribution with zero mean and varian
e 2/3k andthen 
orrelated similarly to the Wiener pro
ess in Eq. (14). The turbulen
efrequen
ies for the �rst pair were pi
ked from a Gaussian distribution withmean 〈ω〉 = ε/k and a standard deviation 0.1 〈ω〉, thereafter the last valuesfrom the previous simulated pair were used.Fig. 4 and Fig. 4 show the 1/3 power of the mean square separation versustime for di�erent initial separations, where only the �rst TL is shown in Fig. 4.A linear s
aling is 
learly seen when η ≪ l < LE and this shows that Ri
hard-son's t3-law 
an be reprodu
ed. The dimensionless Ri
hardson's 
onstant aRis about 0.83 whi
h is in reasonably good agreement with re
ent DNS results(aR ≈ 0.87) [26℄. At larger separation distan
es, |l| > 2LE, the �uid parti
lesare separating as 〈l2〉 ∼ t, whi
h indi
ates un
orrelated traje
tories.7
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les in homogeneous turbulen
e5.1 Collision 
ountingIn the present work, the a
tual 
ollisions are 
ounted but not handled, hen
e itis often 
alled the ghost 
ollision approa
h. Be
ause the forward Euler s
hemeis used to update the parti
le position and velo
ity, the time where a 
ollision8
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between parti
le i and j will o

ur 
an be estimated by
tij =

−rij · Vij −

√

(rij · Vij)2 − V 2
ij

(

r2
ij − (Ri + Rj)2

)

V 2
ij

, (18)where rij = Xj − Xi, Vij = Vj − Vi and R is the parti
le radius. If twoparti
les do not overlap, but an overlap is s
heduled during the next timestep, 0 < tij ≤ dt, a 
ollision is 
ounted.Two parameters are used to identify the behavior of the parti
les; the La-grangian pair relative velo
ity statisti
s 〈|wr|〉 and the radial distributionfun
tion g(r). A

ording to Wang et al. [19℄, 〈|wr|〉 measures the turbulenttransport e�e
t and g(r) measures the a

umulation e�e
t, whi
h is 
losely
onne
ted to preferential 
on
entration. The spheri
al formulation of the 
ol-lision kernel is determined by 〈|wr|〉 and g(r) as follows:
Γsph = 2πd2

p 〈|wr|〉 g(r), (19)and the 
ollision rate per unit volume is given by
Ṅc = Γn2

0
/2, (20)where n0 = N/V and V is the a
tual volume. The way 〈|wr|〉 and g(r) are
omputed is des
ribed in Wang et al. [19℄ Parti
le pairs are found when thedistan
e between two parti
le 
entroids r is within (dp − δ/2) ≤ r ≤ (dp +

δ/2) where δ = 0.02dp. The parti
le pairs are 
ounted and the relative radialvelo
ity wr is 
al
ulated by:
wr =

Vij · rij

|rij|
. (21)After a simulation, the obtained data are pro
essed to �nd 〈|wr|〉 and g(r).

g(r) is 
omputed by [19℄
g(r) =

Total number of parti
le pairs dete
ted× Vbox
VsNtN(N − 1)/2

, (22)where Vs = 4/3π
(

(dp + δ/2)3 − (dp − δ/2)3
) is the shell volume, Vbox is thedomain volume and Nt is the number of samples taken to dete
t parti
le pairs.5.2 Empiri
al 
orrelationsIt is di�
ult to measure the 
ollision frequen
y and impa
t velo
ities in tur-bulent parti
le-laden �ows. One therefore has to trust theoreti
al analysis andDNS, where the latter approa
h in general is based on fewest assumptions9
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and simpli�
ations. Sa�man and Turner [5℄ assumed light parti
les in turbu-lent �ow (Stη ≪ 1) and derived the following 
ollision kernel:
ΓSa� = d3

p

(

8πε

15ν

)1/2

. (23)Wang et al. [19℄ made an empiri
al 
orrelation based on the spheri
al formu-lation of the 
ollision kernel, Eq. (19), from DNS of parti
les in isotropi
 andhomogeneous turbulen
e. As mentioned above, Wang et al. measured the rela-tive velo
ity statisti
s 〈|wr|〉 and the relative distribution fun
tion at 
onta
t,
g(r). The 
orrelation for g(r) was made by 
urve-�tting and reads:

g(r)= 1 + 18St2η
(

1− z2

0

)

+Reλz
2

0
(y1 (1− z1) + y2z1 + y3z2) , (24)where

y1 =0.36St2.5
η exp

(

−St2.5
η

)

,

y2 =0.24 exp (−0.5Stη) ,

y3 =0.013 exp (−0.07Stη) ,

z0 =
1

2

(

1 + tanh
(

Stη − 0.5

0.25

))

,

z1 =
1

2

(

1 + tanh
(

Stη − 1.25

0.1

))

,

z2 =
1

2

(

1 + tanh
(

Stη − 6.5

2.5

))

.Both turbulent shear and inertia e�e
ts (a

eleration) 
ontribute to the rela-tive velo
ity statisti
s 〈|wr|〉, whi
h is modeled by
〈|wr|〉 =

(

2

π

(

w2

r,a

el + w2

r,shear))1/2

. (25)Wang et al. found that the model of Kruis and Kusters [7℄, written for heavyparti
les in gaseous �ows, gave a good approximation to the DNS results whenit was multiplied with a fa
tor Cw. The modi�ed Kruis and Kusters modelreads:
w2

r,a

el = Cw

2γθu2

γ − 1

(

1−
(1 + 2θ)1/2

1 + θ

)

×

(

1

(1 + θ)2
−

1

(1 + γθ)2

)

, (26)10
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where θ = τp/TL and γ = 0.183ReL. The integral-s
ale Reynolds number ReLis given by ReL = uLE/ν. Consisten
y with the theory of Sa�man and Turnerwhen τp → 0 was a
hieved by introdu
ing the relative velo
ity at 
onta
t dueto pure shear as follows:
w2

r,shear =
1

15

d2

p

τ 2
η

. (27)5.3 Test-
ase setupA 
ubi
 domain with edge lengths 2 ·10−2 m and 
y
li
 boundaries in all dire
-tions was 
onsidered. The turbulen
e was given by a 
onstant ba
kground �eldof k = 1.5 m2/s2 and ε = 244 m2/s3. A �uid density ρ = 1 kg/m3 and kine-mati
 vis
osity ν = 1.825·10−5 ms were used, whi
h gave the Reynolds number
Reλ ≈ 58, the Eulerian integral time s
ale TE = (2/3k)/ε ≈ 4.1 · 10−3 s andthe integral length s
ale is LE = (2/3k)3/2/ε ≈ 4.1 · 10−3 m. The Kolmogorovs
ales were τη = 2.73 · 10−4 s and lη = 70 · 10−6 m. The parti
le diameterwas 
hosen equal to the Kolmogorov length s
ale, dp = 70 · 10−6 m, su
h thatthe point-parti
le approximation held. The density varied from 9.12 kg/m3to 583 kg/m3, hen
e Kolmogorov Stokes numbers in the range 0.5 − 32 weretested. 24000 parti
les were simulated, whi
h 
orresponded to a parti
le vol-ume fra
tion αp = 0.054%.Initially, the parti
le velo
ities and the �u
tuating velo
ities related to ea
hparti
le were sampled from a Gaussian distribution with zero mean and vari-an
e 2/3k. The parti
les were uniformly spread in the entire domain. Thesystem was assumed to equilibrate during the �rst 2.5 · 10−2 s, whi
h equaled
3τp of the heaviest parti
les. After the equilibration period, the 
ollisions were
ounted and 
ollision parameters were sampled, as des
ribed above, for about25TE. A parti
le mesh [24℄ was provided to keep tra
k of 
lose parti
les in the
N parti
le system. A 20 × 20 × 20 mesh was used, that gave about 3 parti-
les per 
ell. The 203 resolution was supposed to be a reasonable 
ompromisebetween 
omputational e�
ien
y and a

ura
y in the 
omputation of the 
or-related Wiener pro
ess. The e�e
t of the mesh has been tested separately inSe
tion 5.5.5.4 ResultsFig. 3 shows the 
ollision frequen
y Ṅc for di�erent Kolmogorov Stokes num-bers Stη. The results for parti
les with 
orrelated motion is 
ompared withthe un
orrelated results, the expression of Wang et al., and that of Sa�manand Turner. There is little di�eren
e in the 
ollision frequen
y obtained withand without 
orrelated Wiener pro
esses.11
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ollisions Ṅc versus Kolmogorov Stokes number Stη.PSfrag repla
ements

00
5

10 20 300.2

0.4

0.6

0.8

1

Stη

〈|
w

r
|〉

Figure 4. Relative velo
ity statisti
s 〈|wr|〉 versus Kolmogorov Stokes number Stη.See Fig. 3 for legend.The relative velo
ity at 
onta
t is shown in Fig. 4, where Wang et al. refersto the 
orrelation given in Eq. (25), where the fa
tor Cw takes the value
Cw = 1.63 for Reλ = 58 [19℄. It is seen that the proposed 
orrelation modeldoes not equilibrate the velo
ity of approa
hing parti
les su�
iently prior toa 
ollision. The results with 
orrelated Wiener pro
esses are almost equal tothe un
orrelated results, ex
ept for low Stokes numbers where a peak in 〈|wr|〉is seen when the Wiener pro
esses were 
orrelated.Fig. 5 shows that the proposed model did not 
apture the peak in the radialdistribution fun
tion g(r), whi
h is estimated by Eq. (24). The un
orrelatedsimulations gave g(r) ≈ 1.0, whi
h shows that the parti
les really were un
or-related. 12
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Figure 6. Number of 
ollisions Ṅc versus parti
le mesh resolution.5.5 E�e
t of the parti
le meshThe 
omplexity of �nding neighboring parti
les is redu
ed from O(N2) to
O(N) by employing a parti
le mesh. The size of a parti
le 
ell is typi
allyslightly bigger than the parti
les for e�
ient 
omputations when 
onta
t for
esare the only intera
tion between the parti
les [27℄. Parti
le intera
tions viathe vortex stru
ture has a typi
al range of LE , de
reasing as exp(−r). Dueto Eq. (11), L∗

E varies 
onsiderably and the e�e
t of di�erent parti
le meshresolutions has to be addressed.The results with di�erent mesh resolutions, 33�403 were obtained at a Kol-mogorov Stokes number Stη = 4.0. 33 
ells means that the entire domain,every parti
le, was taken into a

ount in the 
al
ulation of the 
orrelatedWiener pro
esses, Eq. (14). Fig. 6 shows the 
ollision rate per volume for dif-13
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Figure 7. Relative velo
ity statisti
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ements
00 103 203 303 403

2
4
1
3

Mesh resolution

g
(r

)

Figure 8. Radial distribution g(r) versus parti
le mesh resolution. See Fig. 6 forlegend.ferent mesh resolutions. The 
ollision rate seems to be almost independent ofthe mesh. The relative velo
ity at 
onta
t, shown in Fig. 7, 
hanges signi�-
antly when 
oarser meshes are employed. A 
oarse mesh gives the parti
lesmore time to equilibrate their velo
ities. A smaller relative velo
ity gives riseto a higher value of the radial distribution fun
tion, whi
h is observed in Fig. 8.Fig. 9 shows the CPU-time 
onsumption for di�erent mesh resolutions. TheCPU-time is normalized with the CPU-time of the 203 mesh. Be
ause more
ells have to be visited, only a slight speed-up is a
hieved by using a �nermesh than 203. A �ner mesh also in
reases the possibility of a parti
le trav-eling more than one mesh-edge-length ∆ during one time-step, whi
h 
auseserrors. A 53 mesh 
orresponds to ∆ ≈ LE , whi
h was observed to give reason-ably good results. The drawba
k is that a 53 mesh requires a fa
tor 20 more14
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le mesh resolution.
omputational work than a 203 mesh.6 Dis
ussionA model for 
orrelating the motion of inertial parti
les in turbulent �ows isproposed. The parti
les are evolved in time in the Lagrangian framework anda �uid parti
le is 
onne
ted to ea
h intertial parti
le to provide the instan-taneous �uid velo
ity. The motion of 
lose inertial parti
les is 
orrelated viathe random term in the sto
hasti
 di�erential equation for the 
onne
ted �uidparti
le. A spatial 
orrelation fun
tion determines the strength 
orrelation. Tomodel the intermitten
y of the turbulen
e, a sto
hasti
 di�erential equation forthe turbulent frequen
y is solved. The turbulent frequen
y obeys log-normaldistribution and 
an take any positive value, but limitations were applied toavoid very low and very high values.Initial tests with �uid parti
le pairs show that the separation of parti
les obeysthe well-know Ri
hardson t3-law in isotropi
 and homogeneous turbulen
e.The separation fa
tor in the log-range was shown to be in good agreementwith re
ent DNS data [26℄.Many inertial parti
les were investigated in a box with isotropi
 and homo-geneous turbulen
e. The 
ollision frequen
y, the radial 
ollision velo
ity andthe radial distribution fun
tion were measured and 
ompared with empiri
alexpressions based on DNS data. To get 
omparable data, the present resultswere obtained under similar 
onditions as the DNS. This means that the 
ol-lisions were not handled, only 
ounted, and overlaps were therefore a

epted.The present results reports a higher 
ollision frequen
y than that observedin the DNS, in parti
ular for Stη < 5. Also the relative velo
ity at 
onta
t15



“jamdiss” — 2007-2-23 — 8:06 — page 116 — #124

was overpredi
ted by the presented model 
ompared to empiri
al 
orrelations.The gap in the radial 
ollision velo
ity de
reased when 
oarser meshes wereapplied. Although the 
orrelation most likely is small when the �uid parti
lesare far away from ea
h other, it seems that the velo
ity of the parti
les startapproa
hing ea
h other at large inter-parti
le spa
ings. Unfortunately, 
oarseparti
le meshes, whi
h in
ludes many parti
les in a large neighbourhood of theparti
le in question when 
al
ulating the 
orrelated Wiener pro
esses, lead toa high 
omputational 
ost. A possible approa
h to over
ome the 
omputa-tional demand is to employ te
hniques from the �eld of astrophysi
s, wherefor
es de
rease as 1/r, e.g. the Barnes and Hut algorithm [28℄.Collisions were only 
ounted when parti
les were approa
hing ea
h other, butdata for the relative velo
ity statisti
s and the radial distribution fun
tion weresampled both when the parti
les were approa
hing and when the parti
les wereseparating. Overlaps give the parti
les more time to equilibrate their velo
itiesand in the vis
ous subrange, �uid parti
les separate slowly [26℄. It is thereforereasonable to assume that the relative separation velo
ity is smaller than therelative 
ollision velo
ity. Hen
e a smaller relative velo
ity and more parti
leswere sampled when the parti
les were separating than when the parti
les wereapproa
hing. A

ordingly, the vis
osity might played a disproportionately bigrole in DNS in whi
h ghost 
ollisions were 
onsidered [9,19℄. The e�e
t ofthe vis
osity was negle
ted in the proposed model and one therefore does notexpe
t the model to give good results for very 
lose and overlapping parti-
les. In a 
ollisional system, the size of the parti
les (dp ≈ η) limits the mini-mum parti
le spa
ing and hen
e the vis
ous subrange is avoided. Sigurgeirssonand Stuart [29℄ 
ompared 
ollisional and non-
ollisional parti
le-laden �owsin syntheti
 turbulen
e and found that 
ollisions in
reased the di�usivity ofthe parti
les. Larger di�usivity means a larger relative parti
le velo
ity anda smaller radial distribution fun
tion. Reade and Collins [10℄ showed exa
tlythat hard-sphere 
ollisions de
rease the radial distribution fun
tion.7 Con
lusionsAmodel for 
orrelating the velo
ities of 
lose inertial parti
les is proposed. Themodel provides some promising results. The separation of two �uid parti
lesfollowed Ri
hardson's t3-law, whi
h is not 
aptured by previous N-parti
lemodels. The 
ollision frequen
y, the relative parti
le velo
ity statisti
s andthe radial distribution fun
tion of inertial parti
les in an isotropi
 and homo-geneous turbulen
e were 
ompared with DNS-based empiri
al 
orrelations. Adis
repan
y, espe
ially in the relative velo
ity statisti
s, was seen at low Stokesnumber, but the gap de
reased when more parti
les, that means parti
les fur-ther away from the parti
le in question, were in
luded in the 
orrelation 
al
u-lations. The proposed model does not in
lude the e�e
ts of vis
osity, whi
h 
an16
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be important when 
orrelating the �uid velo
ities seen by very 
lose and over-lapping parti
les. It would therefore be interesting to 
ompare the proposedmodel with DNS-data with real parti
le-parti
le 
ollisions, without overlaps.8 A
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Abstract

The combination of an electric field and a moderate turbulent flow is a promising technique for enhancing the separation of water from oil.
In this work, a numerical framework based on the Eulerian–Lagrangian approach is presented, where the turbulent dispersion and the inter-
droplet hydrodynamic and electrical forces are carefully handled. Water-in-oil emulsions are studied in a channel flow with almost isotropic,
decaying turbulence. The results obtained agree qualitatively with experimentally data reported in the literature. Our simulations show that the
collision frequency is mainly controlled by the turbulence, but strong electric fields may increase the collision rate at low turbulence levels. It
is also observed that turbulent electrocoalescence works equally well for all simulated volume fractions of water droplets.
� 2006 Elsevier Ltd. All rights reserved.

PACS: 45.50.−j; 82.70.Kj; 83.10.Rs; 83.95.Pt

Keywords: Emulsion; Turbulence; Simulation; Multiphase flow; Electrocoalescence; Eulerian–Lagrangian

1. Introduction

The separation of water from oil is a bottleneck in offshore
oil production. The oil–water mixture produced from oil wells
often consists of oil as the continuous phase with water dis-
persed as small droplets. Traditionally, the separation of water
from oil is done in several stages and in large vessels. The sepa-
ration relies on buoyancy as the driving force; the heavier water
droplets will fall and form a dense-packed layer at the bottom
of the separation vessels. There, the droplets coalesce and form
a continuous water phase that is drained out of the separation
vessel. The speed of the sedimentation process is controlled by
the terminal velocity, which in the Stokes regime is given by

Vs = �dd2
d

18�

(
1 − �

�d

)
g, (1)

where the falling droplet is assumed to behave like a rigid
sphere in an infinite stagnant fluid. We observe that the terminal

∗ Corresponding author. Tel.: +47 41215517; fax: +47 73592889.
E-mail address: jensm@pvv.ntnu.no (J.A. Melheim).

0009-2509/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ces.2006.02.022

velocity of the droplets is proportional to the square of the
droplet diameter. The only way to speed up the sedimentation
process is to make small water droplets coalesce into larger
ones. Effective coalescence is achieved through the combined
effect of an electric field that induces attractive forces between
the water droplets and a turbulent flow regime that provides a
high collision frequency.

Traditionally, one has introduced the electric field within the
last-stage separation vessel by using bare electric grids (Sams
and Zaouk, 2000). These grids are sensitive to water bridging,
resulting in unwanted short-circuits. Another problem is the
large droplet spacing in dilute mixtures, where the attractive
electric forces among the droplets become almost insignificant.
In the last years, equipment vendors have shown a renewed in-
terest in electrocoalescence. They have realized that the ineffi-
ciency of traditional electrocoalescers is mainly due to the fact
that large droplet spacings hinder the electrical forces to have
a large impact on the coalescence. To improve the efficiency,
Atten (1993) suggested to combine large shears and electrical
forces. A more efficient electrocoalescence was easily achieved
by placing the electrodes at the inlet piping of the first-stage sep-
aration vessel, see Fig. 1. This had a huge impact on separation
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Mixture

HV Pipe

Fig. 1. Schematics of the modern in-line electrostatic coalescers, from Hansen
(2005).

efficiency, and laboratory results reported an up to 50-fold re-
duction in separation time (Friedemann et al., 2001) and a 10-
fold increase in the volume-weighted mean diameter (Harpur
et al., 1997). Even though many years of research have been
put into the electrocoalescence process, more detailed under-
standing is needed. The lack of knowledge of the electrocoa-
lescence process demands numerical tools able to predict the
droplet behavior in a turbulent flow under the influence of an
electric field.

Turbulent flows are irregular, seemingly random and highly
diffusive. The droplet paths in a turbulent velocity field depend
on the droplet response time �d and the velocity field they
have been exposed to. Droplet collisions, which may lead to
coalescence, are due to motion of droplets relative to each other.
To characterize the behavior of droplets in turbulent flows, it is
convenient to use the Kolmogorov Stokes number, St , which
is defined by

St ≡ �d

��
, (2)

where �d is the droplet response time �d = 1
18 ��d

2
�/� and �� the

Kolmogorov time scale �� = (�/�)1/2. Only very small droplets
(St>1) follow the flow perfectly, and big droplets (St?1) are
not influenced by the turbulence at all. The collision frequency
between very small droplets yields the expression of Saffman
and Turner (1956) and is small compared to the collision fre-
quency between bigger droplets with uncorrelated velocities
(Abrahamson, 1975). There is a considerable literature on the
collision frequency of droplets between these two extremes:
Williams and Crane (1983) and Kruis and Kusters (1997) based
their expressions on an analytical approach while the expres-
sions of Sundaram and Collins (1997) and Wang et al. (2000)
were supported by direct numerical simulations. For Stokes
numbers St around unity, a preferential concentration is expe-
rienced (Squires and Eaton, 1991). The droplets accumulate in
regions with high strain between the vortices, and this enhances
the collision frequency. There is a consensus in literature that
the collision frequency decreases when the Stokes number be-
comes less than one. To benefit from the turbulence, one should,
therefore, try to keep the droplet response time �d of the same
order as, or larger than, the Kolmogorov time scale ��.

In the present work, the “steady-state” Reynolds-averaged
Navier–Stokes equations (RANS) closed with the k.� turbu-
lence model is combined with a discrete particle model (DPM)
to calculate turbulent electrocoalescence. The instantaneous
fluid velocity “seen” by the droplets is realized by evolving
in time a stochastic differential equation for the fluctuating
fluid velocity at the positions of the droplets. The fluid velocity
seen by close droplets is correlated as proposed by Melheim
(2006). Another Lagrangian method is the cloud particle model,
where one numerical particle represents many physical ones
and the collisions are determined by stochastic models, see for
instance Sommerfeld (2001). The advantage of the cloud par-
ticle model is the opportunity to handle many droplets, but
it is not straightforward to model inter-droplet hydrodynamic
and electric forces in a stochastic collision model. Takeda et
al. (2004) combined the DPM with large-eddy simulations
(LES) and simulated bubble coalescence and break-up in a bub-
ble column. LES predicts unsteady flows better than RANS,
as for instance bubble columns and fluidized beds, but LES
is more unstable. The smallest time scales, which are im-
portant for the droplet collisions, are still filtered away. The
DPM was successfully used by Chen et al. (1994) to simulate
chain-formation and electrocoalescence of water droplets in a
stagnant oil.

In the following, the basics equations governing the particle
motion and the fluid flow in the Eulerian–Lagrangian frame-
work are reviewed. A channel flow with almost isotropic, de-
caying turbulence is calculated, and the effects of the electric
field, turbulence level and droplet volume fraction are inves-
tigated. The results show that turbulent electrocoalescence is
very effective and the trends that have been observed experi-
mentally are confirmed.

2. Modeling framework

2.1. Discrete particle model

In the discrete particle model, each droplet is tracked indi-
vidually. The position x and velocity V of the droplets are cal-
culated by

dx
dt

= V, (3)

dV
dt

= 1

md

∑
Fd , (4)

where
∑

Fd is the sum of the forces acting on a droplet. The
realization of the instantaneous velocity field “seen” by the
droplets is crucial for the droplet trajectories, and thereby the
collision frequency and collision velocity. The instantaneous
fluid velocity is modeled by employing stochastic differential
equations for the fluctuating fluid velocities at the particle po-
sition. Efficient and accurate calculations are ensured by em-
ploying an algorithm proposed by Melheim (2005), called the
cluster integration method.
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2.1.1. Forces acting on the droplets
In a turbulent water-in-oil emulsion influenced by an electric

field, the following forces are assumed to affect the droplet
motion:∑

Fp = FD + FB + FH + FA + FFilm + FEl, (5)

where FD is the drag force, FB is the buoyancy force, FH is
the history force, FA is the added-mass force, FFilm is the film-
thinning forces and FEl is the inter-droplet electric forces. The
history force is assumed to be negligible in very random flows
(Vojir and Michaelides, 1994). Lift forces and wall effects are
neglected because we assume spherical droplets and we are only
interested in the flow in the middle of the channel, where the
turbulence is nearly isotropic and the mean velocity gradients
are small.

Small contaminated water droplets in oil behave almost
as rigid spherical particles. In the present work, the droplet
Reynolds number Red = �|U − V|dd/� is around unity and
below and the maximum Bond number Bo = |�d − �|gd2

d/�,
where � is the surface tension, is of order O(10−3). Hence,
the droplets are in the spherical region in the shape map of
Fan and Tsuchiya, see Loth (2000). Furthermore, Loth (2000)
showed that the expressions Clift et al. (1978) proposed for
“grossly contamined” droplets are almost identical to that
of rigid spheres for droplet Reynolds numbers Red less than
80. Expressions valid for rigid spheres are therefore used to
model the drag force in this work. Chiesa et al. (2005) studied
forces between two water droplets under the influence of an
electric field and recommended expressions for the different
forces. The expressions given below for the film-thinning and
dipole–dipole forces that were suggested by Chiesa et al. are
used in the present work.

The drag force is written as

FD = 1
2 �CdA|U − V|(U − V), (6)

where Cd is given by

Cd = 24

Red

(
1 + 3

16
Red

)
for Red �1, (7)

Cd = 24

Red

(
1 + 1

6
Re2/3

d

)
for Red > 1. (8)

Because of the applied electric field, close droplets will coalesce
quickly, and “swarm” effects are therefore neglected.

The buoyancy force is given by

FB = (�d − �)gV deg , (9)

where eg is the direction of the gravity.
The mean fluid flow is stationary and there is no steep spatial

velocity gradients away from the walls. Hence, the added-mass
force becomes

FA = 1

2
�Vd

(
du
dt

− dV
dt

)
, (10)

where u is the fluctuating fluid velocity.

Vinogradova (1995) proposed an expression for the film-
thinning force between hydrophobic spheres that reads

FFilm = − 6��a2(Vr · er )

h

×
{

2h

6b

[(
1 + h

6b

)
ln

(
1 + 6b

h

)
− 1

]}
er , (11)

where a = r1r2/(r1 + r2) is the reduced radius, Vr ≡ V2 − V1
is the relative velocity vector, and er indicates the direction of
the relative motion, h is the smallest surface-to-surface distance
and b is a fitting parameter, that can be regarded as a slip factor.
b was given the value b = 10−7 m in this work.

Water droplets are polarized by an applied electric field.
Polarization results in an inhomogeneous electric field, which
again gives rise to electric dipole–dipole forces. The dipole-
induced-dipole (DID) model of Siu et al. (2001) is computa-
tionally efficient and suited for multi-droplet systems. Chiesa
et al. (2005) showed that the DID model was superior to the
point-dipole model at small droplet spacings. The DID model
is written as

Fr = 12�	2�oil|E0|2r3
2 r3

1

|d|4 (3K1cos2 
 − 1), (12)

Ft = −12�	2�oil|E0|2r3
2 r3

1

|d|4 K2 sin(2
), (13)

where 	 is defined as

	 = �w − �oil

�w + 2�oil
. (14)

The coefficients K1 and K2 are given by

K1 = 1 + 	r3
1 |d|5

(|d|2 − r2
2 )4 + 	r3

2 |d|5
(|d|2 − r2

1 )4

+ 3	2r3
1 r3

2 (3|d|2 − r2
1 − r2

2 )

(|d|2 − r2
1 − r2

2 )4 ,

K2 = 1 + 	r3
1 |d|3

2(|d|2 − r2
2 )3 + 	r3

2 |d|3
2(|d|2 − r2

1 )3

+ 3	2r3
1 r3

2

(|d|2 − r2
1 − r2

2 )3 . (15)

We observe that the coefficients K1 and K2 approach unity as
|d| → ∞, and the point-dipole model is recovered. It is as-
sumed that the droplets are uniformly distributed over the cross-
section, such that the background field E0 remains unchanged.

2.1.2. Turbulence
The instantaneous velocity “seen” by the droplets is needed

in the above models for the forces. Melheim (2006) proposed
a model for the fluctuating fluid velocity that correlates the
fluid velocities seen by close droplets. The model of Melheim
is based on the Refined Langevin Model of Pope and Chen
(1990). Written for the fluctuating velocity in isotropic and
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Table 1
Constants in models describing the turbulence working on the droplets

C0 C� �2 Cl

5.0 1.6 1.0 4.0

homogeneous turbulence, the Refined Langevin Model be-
comes

dui = − 1

T ∗
L

uidt +√
C0k� dWi , (16)

where the instantaneous integral time scale T ∗
L is given by

T ∗
L = 1

1
2 〈�〉 + 3

4C0�
. (17)

The average turbulent frequency 〈�〉 is defined by 〈�〉 ≡ �/k

and the instantaneous turbulence frequency � is determined by
the following stochastic differential equation:

d� = − C��〈�〉
(

ln(�/〈�〉) − 1
2 �2

)
dt

+ �
√

2C�〈�〉�2 dW . (18)

The model constants used in the present work are given in
Table 1.

The fluid velocity seen by close droplets are correlated via
the Wiener process dW as follows (Melheim, 2006):

dWn =
∑N

m=1 fmndW ∗
m√∑N

m=1 f 2
mn

, (19)

where N is the number of droplets and dW ∗
m represents inde-

pendent Wiener processes. fmn is given by

fmn= 1

lmn

√
(l

‖
mn exp(−lmn/L

∗
E,n))

2+(l⊥mn exp(−2lmn/L
∗
E,n))

2,

(20)

where lmn=‖xm−xn‖. l‖mn and l⊥mn are the separation distances
between droplet n and droplet m in the stream-wise and span-
wise directions, respectively. In Eq. (20), the longitudinal and
transversal autocorrelation functions are assumed to be equal.
The instantaneous integral length scale associated with particle
n, L∗

E,n, is determined by

L∗
E,n = Cl

1
1
2 + 3

4 C0

1

�n

√
2

3
k

1

exp(1)
, (21)

where Cl is the ratio between the Eulerian and Lagrangian time
scales Cl = TE/TL and is given in Table 1.

2.1.3. Cluster integration method
An efficient and accurate computation is achieved by using

the cluster integration method, which is described in Melheim
(2005). Each droplet is equipped with a virtual radius and clus-
ters are assembled of droplets with overlapping virtual radii as
shown in Fig. 2. A test move following the pattern of an event-

Fig. 2. Particle cells and droplets which are equipped with a virtual radius.

driven hard-sphere algorithm (Sigurgeirsson et al., 2001) is em-
ployed to search for droplets that might have overlapping vir-
tual radii during the next global time step �t . Then the clusters
are integrated separately one global time step �t using the em-
bedded Runge–Kutta scheme of Dormand and Prince (1980).
After a local time step is successfully performed for the posi-
tions and velocities of the droplets within a cluster, the fluctuat-
ing velocities and the turbulence frequencies of those droplets
are updated using a Runge–Kutta scheme for stochastic differ-
ential equations (Burrage and Burrage, 1996).

An adaptive cell structure is applied to optimize the search
for close droplets (Melheim et al., 2005). The cell structure
adapts to the number density of droplets and to the droplet size.
Because the cell structure is also used to correlate the Wiener
process in Eq. (19), the minimum cell width �xd

min is of order
O(LE). Furthermore, there should be room for a droplet and its
virtual neighborhood in a cell. Accordingly, the cell structures
used in this work were coarser than what was stated as optimal
for hard-sphere simulations by Sigurgeirsson et al. (2001).

2.2. Fluid-flow equations

The volume-averaged Navier–Stokes equations for an incom-
pressible and isentropic fluid are given by

�


�t
+ �
Ui

�xi

= 0, (22)

�

�t
(
Ui) + �

�xj

(
UiUj ) = − 

1

�

�P

�xi

+ �

�xj

(−
uiuj )

+ �

�xj

[

�

(
�Uj

�xj

+ �Uj

�xi

)]

+ 1

�
Fd , (23)

where Ui is the mean fluid velocity, P is the mean pressure and
Fd is the mean force of the particles working on the fluid. The
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momentum equation (23) is closed by the turbulent viscosity
approach, where the Reynolds stresses −uiuj are expressed by
(Pope, 2000)

−uiuj = vt

(
�Ui

�xj

= �Uj

�xi

)
− 2

3
k�ij , (24)

where k is the turbulent kinetic energy (k = 1
2 uiui). The tur-

bulent kinematic viscosity �t is modeled by the standard k.�
model of Launder and Spalding (1974):

�t = C�
k2

�
, (25)

where C� = 0.09 is a model constant and � is the dissipation
rate of turbulent kinetic energy. Transport equations are solved
for the turbulent scalars k and �. The transport equation for
the turbulent kinetic energy k, where the volume fraction 
 is
included, reads

�

�t
(
k) + �

�xj

(
kUj ) = �

�xj

(

(� + �t )

�k

�xj

)
+ 
Pk − 
�,

(26)

where the production of turbulent kinetic energy Pk is defined
by

Pk = �t

(
�Ui

�xj

+ �Uj

�xi

)
�Ui

�xj

. (27)

The transport equation for the dissipation rate of turbulent ki-
netic energy � is given by

�

�t
(
�) + �

�xj

(
�Uj) = �

�xj

(



(
� + �t

��

)
��

�xj

)

+ C�1

�

k
Pk − C�2


�

k
�, (28)

where �� = 1.3, C�1 = 1.44, and C�2 = 1.92.
The momentum equation (23) and the transport equations re-

lated to the turbulence models, Eqs. (26) and (28) are discretized
using the finite-volume method on a non-staggered grid. The
convective terms are discretized by a power-law scheme and
the pressure field is found by the SIMPLE algorithm (Patankar,
1980). After the fluid flow has converged, a continuous flow
of droplets are tracked for a certain period and the mean force
on the fluid and the mean volume fraction of droplets in each
control volume are calculated. Then the flow is calculated with
updated source terms and volume fractions. This iteration pro-
cess is performed until the fluid flow converged quickly with
updated source terms, this means that a stationary solution is
reached.

3. Channel for the numerical experiments

A two-dimensional channel, sketched in Fig. 3, was con-
sidered for the numerical experiments. The flow-field down
stream of a perforated plate was assumed. An electric field
was applied perpendicularly to the flow direction and the di-
rection of gravity was against the flow. An ideal bipolar square

E0

3 cm

6 cm

Fig. 3. Sketch of the channel used in the numerical experiment.

Table 2
Inflow data

Re� Uy,inlet (m/s) kinlet (m2/s2) �inlet (m2/s3)

9 0.15 0.0013 0.027
125 0.30 0.005 0.22
15 0.45 0.011 0.73

Table 3
Test matrix

Case E0 (V/mm) 
d (%) Re�

1 250 2 12.5
2 0 2 12.5
3 125 2 12.5
4 500 2 12.5
5 250 2 9
6 250 2 15
7 250 1 12.5
8 250 5 12.5

voltage was considered. Plug profiles were given on the inlet,
and due to the short channel length, the flow in the middle of
the channel was considered as decaying isotropic turbulence.
Three different set of inflow data were considered, with Taylor-
scale Reynolds number Re� in the range 9–15, which is rather
low. The inlet data are given in Table 2. Not only the flow
was varied, but also the effects of different electric fields and
the volume fractions of droplets in the channel were studied.
The test matrix is presented in Table 3, where Case 1 is the
reference case.

A fluid with density � = 800 kg/m3 and dynamic viscosity
� = 4 × 10−3 kg/m/s models a relatively light crude oil. The
crude oil was assumed to be a perfect insulator, with a relative
permittivity �oil = 2.2. A surface tension of 20 × 10−3 N/m is
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a typical value for emulsion produced from offshore oil-fields
(Sjöblom et al., 2003).

Water droplets were inserted at the inlet every time step, so
that the volume fraction 
d given in Table 3 was fulfilled. A
salt content of 3.5 wt% was assumed, so that the water can be
regarded as a perfect conductor, �w = 1000. The water density
was �d = 1000 kg/m3. The inserted droplets were given the
mean fluid velocity plus a random velocity v, which was picked
from a normal distribution with zero mean and a standard de-
viation of ( 2

3kinlet)
1/2. The inlet droplet diameter was sampled

from a normal distribution with mean 20 �m and a standard
deviation of 2 �m. To capture the dipole–dipole forces and the
film-thinning forces, the virtual radius in the cluster integration
method was set to rv,i = 3ri .

A global time step of �t = 10−4 s was used, where the local
time step was determined by a relative tolerance of 10−4 in
the variable step-size Runge–Kutta scheme of Dormand and
Prince (1980). The local time step �t was limited downwards
to 1

3 × 10−7 s. 104 global time steps were carried out in each
droplet tracking. The physical time of one droplet tracking was
then 1 s. During 1 s, typically 106 droplets were inserted at the
inlet.

4. Results

The mean fluid velocity along the centerline of the channel
is plotted in Fig. 4. The dashed line represents the fluid velocity
when the droplets are taken into account and the continuous
line represents the fluid velocity without droplets. These curves
are compared with the mean droplet velocity represented by
the small triangles in Fig. 4. The mean-fluid velocity is slightly
increased due to the presence of the droplets. The droplets
follow the fluid motion and move at the same velocity as the
fluid. Fig. 5 shows that the turbulent kinetic energy k of the
fluid phase does not change when the droplets are added to the
fluid. The continuous and the dashed lines in Fig. 5 are almost
identical. The difference between the turbulent kinetic energy
“seen” by the droplets and the turbulent kinetic energy of the
fluid phase is due the assumption of homogeneous turbulence
in Eq. (16). The effect of this difference is considered negligible
within the present investigation.

4.1. Effect of the electric field

The mean droplet diameter along the channel centerline is
plotted in Fig. 6, where different electric field magnitudes are
applied perpendicularly to the fluid flow. The high turbulence
level and the large number of droplets in the proximity of the
channel inlet give a high collision frequency and a rapid droplet
growth. Further downstream (y > 1 cm), where the turbulence
is less intense, the calculated mean droplet diameter seems to be
independent of the applied electric field for moderate field mag-
nitudes E0 �250 V/mm. A significantly faster droplet growth
is experienced for the strongest field. Similar results were ob-
served experimentally by Harpur et al. (1997). A dimensioning
parameter for the gravity separator vessel placed after the in-
line electrocoalescer in the process chain is the diameter dV 0.5.
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The dV 0.5 diameter is the largest diameter satisfying the fol-
lowing expression:

The sum of the volume of all droplets with dd �dV 0.5

Total volume
<0.5%.

(29)

Fig. 7 shows the effect of the applied electric field on the
size of the dV 0.5 droplet at the channel outlet. The dashed
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Fig. 7. dV 0.5-droplet versus electric field.
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line shows the mean diameter of the in-flowing droplets and
the solid line the droplet with diameter dV 0.5 at the outlet.
The dV 0.5 droplet diameter increases for stronger electric
fields.

4.2. Effect of turbulence

Fig. 8 shows the mean diameter along the centerline for dif-
ferent turbulence levels. An electric field of 250V/mm perpen-
dicular to the direction of the emulsion flow was applied. We
observe that the droplet growth is fastest for the lowest tur-
bulence level. Higher turbulence regime corresponds to larger
emulsion flow velocity, and thus at Re�=12.5 and 15 the emul-
sion flow is two and three times larger than in the lowest turbu-
lence case, Re� = 9. The emulsion residence time under the in-
fluence of the electric field is longer at the low turbulent regime.
This explains why the droplet growth is fastest at low turbu-
lence regime. Towards the outlet of the channel, the droplet di-
ameter increases faster at higher turbulence levels. The droplet
diameter dV 0.5, shown in Fig. 9, decreases only slightly for a
higher flux of mixture, due to the increase in the turbulence
level.
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Fig. 9. dV 0.5 versus the turbulence level at the inlet.
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volume fractions 
d .

4.3. Effect of volume fraction

The droplet growth at different droplet volume fractions 
d is
shown in Fig. 10. An electric field of 250V/mm perpendicular to
the direction of the emulsion flow was applied. Unsurprisingly,
the droplets grow faster when they are close to each other at
high droplet volume fractions. Close to the inlet, where there
are many small droplets and a high turbulence level, the growth
is particularly fast in the 
d = 5% case. The change in the
diameter dV 0.5, shown in Fig. 11, is more interesting for the
performance of the electrocoalescer. In the 
d = 1% case, one
only needs to separate 50% of the dispersed phase in order to
achieve an oil of export quality, while when the volume fraction
is 
d =5%, one has to get rid of 90% of the droplets to achieve

d = 0.5%. We observe in Fig. 11 that the droplet diameter
dV 0.5 is almost independent of droplet volume fraction.

5. Discussion

In the present work, the “steady-state” RANS closed with the
k.� turbulence model was combined with a DPM to investigate
the combined effect of turbulence and electric dipole–dipole
forces in two dimensions. The instantaneous fluid velocity
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Fig. 11. Terminal velocity for the dV 0.5-droplet versus the volume fraction
of droplets 
d .

“seen” by the droplets is realized by evolving in time a stochas-
tic differential equation for the fluctuating fluid velocity at the
positions of the droplets, where the fluid velocities seen by
close droplets are correlated. The viscous effects are neglected
in the model that is used to correlate close fluid velocities,
Eq. (20). Hence, the velocities of very close droplets are not
so well-correlated as they should be in the viscous sub-range.
As a consequence, frequencies of collisions and collision im-
pact velocities might have been over-predicted. This partially
explains the fast droplet growth when no electric field was
applied. Strong attractive electric forces will determine the
motion of close droplets, and thereby reduce the importance
of the modeling of the viscous sub-range when high voltages
are applied.

The coalescence efficiency is the probability of two droplets
coalescing when they are in near contact. There are several
parameters involved in this process, such as the impact velocity,
the electrostatic forces and properties of the droplet surfaces.
Due to the lack of a precise model for coalescence efficiency,
each collision leads to coalescence in our approach. This might
be an adequate approximation when electric fields are applied
and when the water-droplet surfaces are not too contaminated.
The validity of the approximation is more doubtful in the case
with no applied electric field.

A channel flow with almost isotropic, decaying turbulence
is calculated and the effects of electric field, turbulence level
and droplet volume fraction are investigated. The macroscopi-
cal behavior of the water-in-oil emulsion obtained numerically
shows the same trends as the experimental results obtained by
Harpur et al. (1997). Unfortunately, there is a lack in the liter-
ature of experimental work that provide more detailed data.

In the present investigation, the electric field magnitude is
varied. This exercise shows, as expected, that the strongest field
gives the best coalescence rate and therefore the best efficiency
of the turbulent electrocoalescer. From the dipole–dipole force
expression, we observe that the electric forces are proportional
to the square of the electric field magnitude. Although the re-
sults without an electric field are not reliable due to the as-
sumption of successful coalescence at every contact, it is ob-

served that the weakest electric fields do not increase the num-
ber of droplet contacts. Weak electric fields seem only to assist
the coalescence process, an observation which agrees with the
conclusions of Harpur et al. (1997).

The influence of the turbulence level on the coalescer effi-
ciency is investigated by varying the fluid velocity. The rea-
son why the droplet growth is slightly faster for the lowest
turbulence regime Re� = 9 is due that the emulsion residence
time under the influence of the electric field is longer. One can
still observe that the increased turbulence level to some extent
balances the shorter residence time. There is almost no differ-
ence in the most turbulent region (y < 2 cm). One should there-
fore try to keep the turbulence level high. However, turbulent
break-up provides limitations to the maximum stable droplet
size, and that is of order dp,max = O(�0.6�−0.4�−0.6) (Hinze,
1955). Because the aim of turbulent electrocoalescence is to re-
move the smallest droplets by letting them coalesce, break-up
of droplets larger than ≈ 250 �m does not matter. A maximum
stable droplet diameter of 250 �m gives a maximum dissipa-
tion � of order 102 m2/s3, which is far higher than the values
in the present work (�max = 0.73 m2/s3).

Given a constant electric field magnitude of 250V/mm ap-
plied perpendicularly to the direction of the emulsion flow, one
can observe that it is slightly favorable to treat a 
d =5% emul-
sion compared to a 
d = 2% or a 
d = 1% emulsion. This is
due to the fact that the water droplets are closer to each other at
high droplet volume fractions than at small droplet volume frac-
tions for emulsions with the same size distribution. However,
contrary to traditional methods with a laminar-flow emulsion,
which need a certain volume fraction of droplets to be efficient
(Bailes and Larkai, 1984), the turbulent coalescer tested here
is equally efficient over the range of tested volume fractions.

6. Conclusions

A model of a turbulent electrocoalescer is studied numer-
ically in the Eulerian–Lagrangian framework proposed here.
The following has been observed:

• Turbulence intensity is an important parameter to achieve
frequent droplet collisions, which may lead to coalescence
and, therefore, to an efficient electrocoalescer.

• Strong electric fields increased the number of droplet con-
tacts, while weaker electric fields only assisted the process
of coalescence.

• Even a short treatment with electric field increased the droplet
diameter dV 0.5 considerably.

• Turbulent electrocoalescence worked equally well for the
tested range of droplet volume fractions.

Notation

A projected droplet area, see Eq. (6), m2

C0 Kolmogorov constant, dimensionless
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Cd drag coefficient, dimensionless
Cl ratio between the Lagrangian and Eulerian time

scale, dimensionless
d inter-droplet distance vector, m
〈d〉 number mean droplet diameter, m
dV 0.5 dimensioning diameter, see Eq. (29), m
dd droplet diameter, m
dWi Wiener process, s1/2

E0 electric background field, V/m
FA added mass force, see Eq. (10), N
FB buoyancy force, see Eq. (9), N
FD drag force, see Eq. (6), N
FEl electric dipole–dipole force, see Eq. (11), N
FFilm film-thinning force, see Eq. (11), N
g standard Earth gravity, g = 9.81 m/s2

k turbulent kinetic energy, m2/s2

LE Eulerian integral length scale, m
L∗

E instantaneous Eulerian integral length scale, see
Eq. (21), m

md droplet mass, kg
N number of droplets, dimensionless
r droplet radius, m
Re� Taylor-scale Reynolds number, Re� = ((20/3)

k2/��)1/2, dimensionless
St Stokes number, see Eq. (2), dimensionless
t time, s
�t global time step, s
TL Lagrangian integral time scale, s
T ∗

L instantaneous Lagrangian integral time scale, see
Eq. (17), s

ui fluctuating fluid velocity component, m/s
Ui mean fluid velocity component, m/s
U fluid velocity vector, m/s
V droplet velocity vector, m/s
Vd droplet volume, m3

Vs droplet terminal velocity, see Eq. (1), m/s
x droplet position vector, m

Greek letters


 volume fraction of fluid phase, dimensionless

d droplet volume fraction, dimensionless
�t local time step, s
� dissipation rate of turbulent kinetic energy, m2/s3

�oil permittivity of oil, dimensionless
�w permittivity of water droplets, dimensionless

 angle between E0 and d, dimensionless
� dynamic viscosity of continuous phase, kg/m/s
� kinematic viscosity of continuous phase, m2/s
�t turbulent viscosity, see Eq. (25), m2/s
� density of continuous phase, kg/m3

�d droplet density, kg/m3

� surface tension, N/m
�d droplet response time, s
�� Kolmogorov time scale, s
� turbulence frequency, s−1

〈�〉 mean turbulence frequency, 〈�〉 ≡ �/k, s−1
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