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Abstract

Offshore wells produce some water, and the ratio of water increases during the
lifetime of a well, in particular when water is injected to increase the extraction
rate. Hence, oil companies demand techniques that enhance the separation of
oil and water. A speed-up of the separation process is achieved by applying
electric fields to turbulent-flow water-in-oil emulsions. The electric field gives
rise to attractive forces between close droplets and increases the probability of
coalescence at contact, while the turbulence enhances the frequency of droplet
collisions.

To improve the understanding of the mutual interaction between the tur-
bulence and the electric field, this thesis presents a framework for computer
simulation of turbulent electrocoalescence. The framework is based on the
Eulerian-Lagrangian approach where each droplet is tracked and the electric
and the hydrodynamic interactions between the droplets are handled.

The forces working between two droplets in stagnant oil are modelled and
compared with experimental data. It was found that the electric dipole-dipole
forces and the film-thinning forces dominate at small droplet spacings.

The turbulence felt by the droplets is modelled by a stochastic differential-
equation model. A new model is proposed to correlate the fluid velocities
seen by close droplets, and this is important for the prediction of the collision
velocity, the collision frequency, and the clustering of droplets.

Two algorithmic improvements are made: An adaptive cell structure and the
cluster integration method. The proposed adaptive cell structure adapts to
the number density of droplets and ensures an efficient computation without
any input from the user regarding the cell structure. The cluster integration
method assembles clusters of droplets that interact and integrates each clus-
ter separately using a variable step-size Runge-Kutta method. A significant
speed-up compared to traditional approaches is reported.

Finally, the results obtained by computer simulations of turbulent electroco-
alescence agree qualitatively with experimental observations in the literature.
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Samandrag

Fra oljebrgnnar til havs kjem det opp ein del vatn saman med oljen. Mengda
av vatn aukar i lepet av produksjonstida, seerleg dersom oljeselskapa pumpar
vatn attende i brennen for a fa ut enda meir olje. Oljeselskapa sper derfor
etter teknologi som skil vatn og olje meir effektivt enn dagens utstyr. A nytte
elektriske felt pa turbulente olje-vatn-blandingar er ein lovande separasjons-
teknologi. Det elektriske feltet skapar tiltrekkjande krefter mellom neere vass-
drapar og aukar sannsynet for samanslaing ved kontakt, medan turbulensen
gjev hyppige drapekollisjonar.

Avhandlinga presenterer eit rammeverk for numeriske simuleringar som
kan nyttast til betre a forsta vekselverknaden mellom turbulens og elektrisk
felt. Rammeverket byggjer pa ein drapefelgjingsmetode, der ein modellerer
kreftene som verkar pa kvar enkelt drape og reknar ut drapebanene. Arbeidet
legg vekt pa modelleringa av kreftene som verkar mellom drapane, model-
leringa av turbulensen og pa utvikling av eigna algortimar.

Dei viktigaste nyvinningane i arbeidet er ein modell finn samanheng mel-
lom rerslene til neere drapar i turbulensen og ein algoritme som er vesentleg
mindre reknekrevjande enn eksisterande algoritmar.

Numeriske simuleringar av turbulente olje-vatn-blandingar syner dei same
trendane som eksperimentelle forsgk i litteraturen. Det foreslegne rammever-
ket kan derfor nyttast under utforming av framtidig separasjonsutstyr.
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1

Introduction

1.1 Motivation for the thesis

Oil in the forms of fuel and petrochemical products is important in our every-
day life. Transportation requires fossil fuels, and wardrobe, sporting equip-
ment, etc. are to a large extent made of oil-based products.

There is no doubt about the fact that oil is a finite resource, but until now,
the world’s production has been ever increasing. However, this situation will
change. ‘In our life time, we will have to deal with a peak in the supply of
cheap oil’, says Robert A. Kaufmann (Appenzeller, 2004). The point in time
where the global oil production reaches its maximum is often called peak oil.
Peak oil is a watershed moment, then we will really feel that oil is a finite
resource. As long as substitutes are not easily available, the price of oil will
increase and the oil companies can then allow themselves to produce oil at a
higher cost. Increased extraction of oil from already existing wells can extend
the moment of peak oil and make the decline in production less steep. The
Norwegian government wants to increase the extraction rate in the North Sea
from 47% (2004) to beyond 50% (Storting proposition no 38 , 2003-2004).

In the tail production of oil wells in the North Sea, an increasing amount
of water is produced, and it has to be separated from the oil before sale.
The wells contain some water initially, and injection of water is a widely used
technique for increasing the oil extraction rate. To keep the production rate
stable on already existing platforms, one has to separate the emulsion of oil
and water more efficiently than today.

There are several techniques to de-emulsify or separate a stable water-in-oil
emulsion, where the water droplets are so fine and the oil is so viscous that the
droplets hardly sediment (Eow et al., 2001). Heating changes the properties
of the oil, the emulsion turns unstable and the droplets sediment faster. The
drawback is that one has to use a significant amount of produced oil or natu-
ral gas for heating, and that has a considerable cost. Chemical de-emulsifiers
can be added to de-stabilise the emulsion. These chemical de-emulsifiers are
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expensive and they have to be separated from the water and oil afterwards.
Another approach, which is cheap and has no environmental impact, is elec-
trostatic destabilisation, electrocoalescence. One benefits from the very dif-
ferent electric properties of oil and water; oil is an insulator and water is a
conductor (Lundgaard et al., 2005). Electrocoalescence has been known since
the beginning of the 20th century when Cottrell patented it (Eow et al., 2001).
An electric field has traditionally been applied on a stagnant or laminar flow
emulsion. Atten (1993) found that it is much more efficient to apply an electric
field to a turbulent-flow emulsion. Turbulence mixes the emulsion very well
and brings the droplets close to each other, while the electric field defeats the
film-drainage forces and increases the probability of successful coalescence at
contact.

There is little work on the effect of turbulence on electrocoalescence in the
literature. Atten (1993) suggested the use of high shears to increase the num-
ber of droplet meeting. Urdahl et al. (2001) reviewed the effect on the collision
rate of different types of shears and turbulence. The mutual effect of turbu-
lence and an electric field has been studied experimentally by Harpur et al.
(1997) and Friedemann et al. (2001). The aim of this thesis is to investigate
numerically, by using computational fluid dynamics (CFD), the interaction be-
tween turbulent flow and electric field.

1.2 Electrocoalescence

Water with a salt content of 3.5 wt% NaCl behaves like an ideal conductor com-
pared to crude oil, which can be considered as an ideal insulator. When an elec-
tric field is applied to water droplets suspended in oil, the water droplets are
polarised. The positive and negative ions travel towards the surface to keep
the potential over the droplet close to zero. The electric field is influenced by
the presence of the droplets. Two droplets in a homogeneous background field
E( are sketched in Figure 1.1. The resulting field is inhomogeneous and gives
rise to dielectrophoretic forces between the droplets, dipole-dipole forces F..
When the droplets are aligned with the field, the dipole-dipole forces are at-
tractive.

Eow et al. (2001) divided the process of electrocoalescence into three stages:

1. The droplets’ approaching each other.
2. The process of film-thinning.

3. Film rupture leading to droplet-droplet coalescence.
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Figure 1.1: Electric forces F, between two conductive spheres with radii ; and
T2, separation vector d, and surface to surface distance h. Ej is
the homogenous background field. From Melheim et al. (2004).

The three stages are distinguished by the inter-surface distance h: Stage 1 is
when the distance between two droplets is larger than the radius of the smaller
droplet, h > 7>, and the drag force is the most pronounced force describing
the motion of the droplets. Stage 2 is the intermediate range, 0.1 yum < h < 1o,
where the attractive electric forces suppress the oil film. Stage 3 is at even
smaller separation distances, h < 0.1 um, where film-rupture and coalescence
take place.

Eow et al. (2001) reviewed the literature on electrocoalescence thoroughly
and discussed the effect of different types and strengths of the electric field,
of voltage shape and frequency, and of the volume fraction of droplets. Ur-
dahl et al. (2001) gave a historical review and an overview of different mech-
anisms bringing the droplets closer. The dimensional parameters for droplet
collisions in turbulence discussed by Urdahl et al. (2001) is based on the ex-
pression for collision frequency of Saffman and Turner (1956), which is valid
when the characteristic response time of the droplets, T, is much less than
the Kolmogorov time scale of the turbulence, T,. In turbulent electrocoa-
lescers, strong electric forces may increase the frequency of collisions and
only large droplets may have response times comparable to the Kolmogorov
time scale. Lundgaard et al. (2005) focused on the instabilities of droplets and
surfaces in addition to give an introduction to basic electrostatics. Hansen
(2005) used a level-set method to calculate Stages 2 and 3 numerically. In the
field of electro-rheology (Klingenberg et al., 1991), conductive metal spheres
suspended in stagnant and laminar-flow oil are investigated. The physics re-
garding the dipole-dipole forces and the film-thinning forces are equal for
metal spheres and small droplets and the expressions for the forces on metal
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spheres can be adapted to water droplets. However, there is an important
difference between rigid spheres and water droplets; the surface of the water
droplets deforms and starts to move when the shear-stresses on the droplet
surface get very high.

In this work, attention is given to describe numerically the behaviour of sus-
pended water droplets in a turbulent-flow oil with an applied electric field. At
contact (Stage 3), instantaneous coalescence is assumed. Different numerical
approaches to calculate turbulent electrocoalescence are discussed in the next
section.

1.3 Numerical approaches

To describe the behaviour of particles suspended in a fluid, there are sev-
eral approaches both for the fluid phase and the particle phase. The term
‘particle’ denotes the dispersed phase that can be solid particles, droplets or
bubbles. The fluid phase is the continuous phase. In the following, various
techniques for the fluid flow will be briefly described. Then approaches for
the particle phase and possible combinations with the fluid-phase methods
will be discussed with respect to turbulent electrocoalescence. A more com-
plete overview of numerical approaches for dispersed multi-phase flows is
given by Loth (2000).

Fluid-phase approaches

The fluid phase is either laminar or turbulent, and usually handled in the
Eulerian way, which means that the Navier-Stokes equations for the fluid are
solved on a grid, contrary to Lagrangian methods. Laminar flows are rarely
found in industrial processes, but they occur in large separation vessels and
in thin films, as for instance the oil film between two close water droplets.
There are mainly three levels in computation of turbulence; direct numerical
simulations (DNS), large-eddy simulations (LES) and Reynolds-averaged Navier-
Stokes equations (RANS) simulations.

In DNS, all time and length scale of the turbulence are solved without mod-
elling. Unfortunately, DNS is computationally expensive and one is limited to
homogeneous turbulence and simple shear flows with low Reynolds numbers
and cyclic boundaries in the flow direction.

LES is, as DNS, unsteady simulations, but the smallest scales are filtered and
modelled. One assumes that the smallest scales are isotropic and that energy
only travels from the larger scales to the smaller, modelled scales. LES is
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more robust than DNS, but one is still limited to small and moderate Reynolds
numbers.

In RANS, the governing equations for the fluid flow are averaged, and the
Reynolds stresses (—u;u;) in the momentum transport equations are mod-
elled. The Reynolds stresses can be found either by solving transport equa-
tions for them, Reynolds-stress models (RSM), or by employing the eddy-
viscosity hypothesis. The most popular way to estimate the eddy viscosity is
by using the k-e-model, where transport equations are solved for the turbulent
kinetic energy k and its dissipation €. RANS is best suited for high-Reynolds-
number turbulence.

Particle-phase descriptions

The particle phase can be handled both by an Eulerian and a Lagrangian for-
mulation. The Eulerian approach is suited both for very detailed calculations
of systems with two different fluids and for the coarse multi-fluid approach,
where the particle phase is handled as a fluid. In the Lagrangian approach, the
particles are tracked and the motion is described by the forces working on the
particles.

The DNS methods for Eulerian treatment of droplets and bubbles handle
the fluids as one single fluid with a jump in the fluid properties at the position
of the interface. There are several methods to handle the interface, examples
are the front-tracking method (Tryggvason et al., 2001), the level-set method
(Osher and Fedkiw, 2001; Hansen, 2005) and the volume-of-fluid (VOF) (Scar-
dovelli and Zaleski, 1999). The strengths of these methods are seen in the
study of phenomena like break-up and coalescence. Laminar flow is most of-
ten considered, but these techniques have been combined with low-Reynolds-
number turbulent flows, in particular the VOF method.

For large scales, the dispersed phase is handled as one or more separate
fluid phases and one has the two-fluid or multi-fluid models. The govern-
ing equations for the particle phase are found by volume averaging (Nigmat-
ulin, 1991, Chap. 1.2) or ensemble averaging (Drew and Passman, 1999, Chap.
9). The inter-phase terms and Reynolds-stress-like terms have to be modelled
to close the equations. Empirical relations (Ergun, 1952) and kinetic theory
(Gidaspow, 1994) have been used to make closure models. A more recent
closure approach for dilute flows is the probability-density-function (PDF) ap-
proach (Simonin et al., 1993). The closure models in the PDF approach are
related to a Lagrangian description of the particle motion, where it is easier to
model for instance turbulent dispersion. Because it can handle an innumerable
amount of particles, the multi-fluid approach is implemented in commercial



6 1 Introduction

CFD-codes. However, the modelling of different particle sizes requires one
particle phase for each particle size and the interactions between the particles
and particle sizes are complex to model. Multi-fluid models are most widely
combined with RANS for the fluid flows, but some combinations with LES are
also seen.

The great advantage of the Lagrangian approach is that the forces working
on each particle can be written down straightforwardly, which makes it easy
to handle complex physics.

The most detailed of the Lagrangian methods with freely moving particles is
the immersed boundary method, where the forces on a solid particle from the
fluid phase and vice versa are calculated on area segments of each particle.

While the particles are larger than the grid size in immersed boundary meth-
ods, the particles are much smaller than the grid in point-particle methods.
The modelled forces are provided with a particular physical meaning and they
are assumed to give separate contributions to the force balance, and they are
added together. In the discrete particle model (DPM), one numerical parti-
cle represents one physical particle, and the inter-particle forces like dipole-
dipole forces, hydrodynamic interactions and collision forces can be modelled
directly. The drawback with DPM is the limited number of particles that can
be handled due to computational resources. The computational barrier can be
passed by letting one numerical particle (parcel) represent many real particles
with equal physical properties; the particle cloud model (PCM). Collisions are
then modelled by a stochastic model (Sommerfeld, 2001). DPM can be com-
bined with DNS calculations of the fluid phase (Patankar and Joseph, 2001),
LES (Laviéville et al., 1995) and RANS (Tsuji et al., 1993). PCM is best suited for
stationary calculations and therefore only combined with RANS.

Conclusion on numerical approach

Table 1.1 summarises possible! combinations of numerical approaches for the
fluid phase and the particle phase, where the asterisk * indicates the approach
in this work.

Recalling the aim of the present work, that is to investigate numerically
the interaction between turbulence and the electric field in coalescence, poses
limitations to the numerical methods. First, the flow is turbulent and many
droplets are needed, which eliminates the DNS methods for the particle phase.
The inter-droplet physics are complex, one has to deal with both dipole-dipole
forces and hydrodynamic interactions and the droplet size spans from 10 um
to 1 mm. Such complex physics cannot be captured without simplifications

10ther combinations are indeed possible, but they are not rational.
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Table 1.1: Combinations of numerical approaches.

Particle phase
Fluid phase Eulerian [ Lagrangian
DNS | Multifluid | Big particles | Point particles
DPM \ PCM
Laminar . . o . o
DNS ° o [
Turbulent | LES . .
RANS . ” .

in the multi-fluid framework and the particle cloud model (PCM). Then one is
left with the discrete particle model (DPM). Due to the droplet growth, it is not
possible to use DNS for the fluid flow calculations. LES is a good candidate
because it captures the large-scale mixing that brings the droplets together
and the turbulence is supposed to be moderate. Because of the filtering, the
smallest scales of the turbulence are not ‘seen’ by the particles in LES. LES
is therefore inaccurate when the droplet response time is shorter than the
smallest time scale resolved. Nevertheless, RANS was chosen, mainly because
it already was available. The advantages of RANS are its robustness and low
computational costs, in particular for steady-state calculations. The drawback
is that the instantaneous fluid velocities seen by the particles have to repro-
duced from the mean values provided by the RANS. Challenges in the chosen
numerical approach are pointed out in the following sections.

1.4 Discrete Particle Model

A discrete particle model tracking each particle in a domain is a powerful tool,
in particular when complex physics is considered. Examples are simulations
of molecules (Allen and Tildesley, 1987), granular flows (Cundall and Strack,
1979), fluidised beds (Hoomans et al., 1996; Xu and Yu, 1997), sedimentation
of clays (Anandarajah, 1999), electro-rheology (Lukkarinen and Kaski, 1998),
particle collisions in turbulence (Laviéville et al., 1995; Wang et al., 2000), and
combustion synthesis of nanoparticles (Zuccaro et al., 2004).

Because it is assumed that forces describing different physics can be su-
perpositioned, it is easy to add new forces. DPM in combination with RANS
requires a careful handling of the turbulence. RANS provides only the mean
values of the Reynolds stresses and the dissipation of turbulent kinetic energy.



8 1 Introduction

The instantaneous velocities must therefore be modelled. This is crucial, be-
cause the dispersion of particles and the particle collision rate depend on the
turbulence.

However, physical models are only half of a discrete particle model; effi-
cient algorithms, suitable data structures and good numerical solvers are also
needed to get reliable results in a reasonable time. For further studies it is con-
venient to break the discrete particle model into four fundamental elements:

1. An appropriate description of the forces working on the particles, suited
to the case one likes to study.

2. A sufficiently physical realisation of the instantaneous velocity at the par-
ticle position due to turbulence.

3. Algorithms that can handle many particles efficiently.

4. Stable and accurate numerical solvers.

These four topics are treated in the following, with respect to numerical sim-
ulations of turbulent electrocoalescence.

Forces working on droplets

The forces working on the particle is analytically expressed by the following
surface integral, appearing from a volume average of the momentum equation
(Nigmatulin, 1991):

Fiia = Jﬂ (—psha + Ta - ng) dA, (1.1)

d

where Agq is the particle surface area, p; is the relative surface pressure, 74 is
the stress tensor on the surface, and ngq is the surface normal vector.

A Lagrangian formulation of the equations governing the particle motion
is employed in the discrete particle model and the models for the forces are
related to different physical phenomena such as drag, lift, added mass, buoy-
ancy, etc. The sum of those forces that have to do with particle-fluid interac-
tion should be consistent with the surface integral in equation (1.1). Reviews
of models for forces working on point particles, including droplets and bub-
bles, are given by Crowe et al. (1998), Loth (2000) and Michaelides (2003).

The position x and velocity V of the particles are calculated by

dx
=V (1.2)
wv_1sg, (1.3)

at " m,
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where m, is the particle mass. The sum of the forces working on a particle
> F), can be written as:

> Fy,=Fp+Fg+Fp+Fy+Fs+Fp_p+Fy, (1.4)

where Fp is the drag force, F, is the gravity force, F; is the lift forces, Fp is
the history force, F4 is the added-mass force, Fp_p is the inter-particle forces
and Fyy is the particle-wall forces.

The drag force is generally given by

Fo = 3pCaAIU = VI (U - V), (1.5)

where p is the fluid density, A is the projected particle area, and U is the
fluid velocity. The drag coefficient Cq depends on the particle Reynolds num-
ber Re, = p |U — V|d,/u, the viscosity ratio between the droplet phase and
the continuous phase, A = p/pyp, and the mobility of the droplet surface. In
paper A (Melheim et al., 2004), a small droplet falling on a bigger droplet in
a stagnant oil under the influence of an electric field was considered. It was
found that the expression of LeVan (1981) for the drag coefficient gave rea-
sonable results. The LeVan expression reads:
24 3A+2+4k(udy) 1 +2/3y1 (U - V|)7!

= 1-
4= Re, 3A + 3 + 4k (ud,) 1 ’ (16

where the surface dilational viscosity was neglected (k = 0) and a magnitude
in the variation of the surface tension y; = 107> N/m was used.
The gravity (buoyancy) force is given by

F; = (pp - p) gVpey, (1.7)

where g and e, are the modulus and the direction of the gravity, and V), is the
particle volume.
The added-mass force is due to the displacement of fluid and is given by

mpy (DU dV)

Fa=="\Dr ~ar (1.8)

where %”é—‘t/ can be put on the left-hand side of the momentum equation (1.3).

The inter-particle forces Fp_p can be divided into a dipole-dipole force and
a film-thinning force: Fp_p = F3_4 + Fy. Different models for the film-thinning
force and the dipole-dipole force were tested against experimental data in
paper A (Melheim et al., 2004). Melheim et al. (2004) concluded that the an-
alytical dipole-dipole force expression of Davis (1964) and the film-thinning
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force expression of Vinogradova (1995) gave best results. However, the ana-
lytical solution of Davis requires too much computational effort to be used in
a multi-droplet system . The dipole-induced-dipole model of Siu et al. (2001)
is numerically efficient and gives good results for an inter-surface spacing h
larger than 0.17», where 7» is the radius of the smallest droplet. The dipole-
induced-dipole model is written as

121 B2e0i | Eo 27373

— 2
Fr = I (3K1cos?0-1), (1.9)
12 2¢ A\ Enl2y 3
Fy = —12TF ET;'|4°' "Lk, sin(20), (1.10)

where &, is the permittivity of the oil, d is the particle-centre separation vec-
tor and B is defined as

Ew — &oil
Ew + 26011’

B = (1.11)

where ¢, is the permittivity of water. The coefficients K; and K> are given by

prild® prilal®  3privi (31417 - i %)
ri 3t 3
(a2 =r)"  (1a12 -7) (1412 =7 -3)
Kr=14+ prild|? . Brs\d|? 4 38271 . (1.12)
2(ldi2-72)" 2(ld2-»f)" (1412 -rf-7)

The coefficients K; and K, approach unity as |d| — o, and the well-known
point-dipole model is recovered.
The expression for the film-thinning force of Vinogradova (1995) is written

as
e ST (21 B4 0) ey

where a = 112/ (r1 + 2) is the reduced radius, Vi = V> — Vj is the relative
velocity vector, and e; indicates the direction of the relative motion. b can
regarded as a slip factor and b = 10~5m was shown to give good results for
d, ~ 220 um droplets, while b = 10~" m was used for d;, ~ 115 ym droplets.

Vojir and Michaelides (1994) concluded that the history force can be ne-
glected in random velocitiy fields, e.g. turbulent flows, when there is no mono-
tonical change in the velocity. Further, in the present work, particle flows close
to walls have not been considered. The lift forces F; and the wall forces Fy
are therefore neglected.

K1=1+
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Turbulent dispersion

Turbulent flows are irregular, seemingly random and highly diffusive. The
length scales in the turbulence are limited downwards by viscosity and up-
wards by the geometry of the flow domain. The scales of the turbulence vary
in space and time and are impossible to predict a priori, but it is possible to
extract time-averaged mean values (Ertesvag, 2000, Chap. 1).

By doing numerical simulations of the Reynolds-averaged Navier-Stokes equa-
tions (RANS), one calculates the mean values of the turbulent flow, e.g. the
mean velocities, the mean turbulence quantities, etc. In the derivation of the
RANS, it is assumed that the fluid velocity U can be split into a mean part U
and a fluctuating part u as follows:

U=U +u, (1.14)

where u = 0. Then the turbulence appears in the RANS equations in terms
of the Reynolds stresses —u;u;, that have to be modelled. The most com-
mon modelling approaches are solving transport equations for the Reynolds
stresses or employing the eddy viscosity hypothesis. The particles, however,
see the instantaneous fluid velocity U, for instance in the model for drag
force, equation (1.5). When the mean flow is simulated by a RANS model, one
therefore has to calculate the instantaneous fluid velocity U from the mean
values provided by the RANS. Pope (1985, 1994, 2000) proposed stochas-
tic differential-equation models for the instantaneous velocity based on the
Langevin equation for Brownian motion. Written in its most simple form,
called the simplified Langevin model (SLM), the Langevin model of Pope is
given by

a(P>alt+i

Ui = - 0x; Tr,i

uidt +/CoedWi(t), (1.15)

where (P) is the mean pressure, 17 ; is the Lagrangian time scale of the turbu-
lence, dt is the time step, dW;(t) is the Wiener process, and Cy is known as the
Lagrangian Kolmogorov constant. The value of Cy varies from 2.1 (Pope, 1985)
to 7 (Yeung and Borgas, 2004) in the literature. The Wiener process dW;(t) is
a stochastic term that is sampled from a normal distribution with zero mean
and dt as the root-mean-square; N (0, dt).

Inertial particles do not follow the fluid particles completely, as sketched
in Figure 1.2, which poses challenges to the modelling. The Lagrangian time
scale has to be changed (Thomas and Oesterlé, 2005) and a mean ‘crossing
trajectory term’ is often added to equation (1.15). In paper D (Melheim et al.,
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Figure 1.2: Fluid and particle paths. (From Melheim et al. (2005b)).

2005b), a slightly modified version of the expression of Minier (1999) is com-
pared with experimental data in a horizontal mixing-layer. The mixing-layer
is anisotropic and the gravity works perpendicularly to the stream-wise direc-
tion, and that makes the dispersion difficult to predict. It was shown that
the model of Minier (1999) predicts the dispersion and the particle fluctuating
velocities well, but a drift was seen in the mean particle velocity.

The fluid velocities seen by droplets located within the same turbulent vor-
tex are correlated. Sommerfeld (2001) and Berlemont et al. (2001) included
this effect in stochastic collision models by correlating the velocity of the fic-
titious collision partner with the velocity of the particle in question. Such
an approach is impossible in DPM, where the collision between two particles
is deterministic. The fluid velocities seen by close particles should be cor-
related due to the properties of the turbulence. A physically correct model
should also be able to capture a preferential concentration for Stokes numbers
around unity (Fessler et al., 1994). An attempt was made in paper E (Melheim,
2006), where the velocities were correlated via the stochastic term. To capture
the variation in time and space of the scales of the turbulence, an additional
stochastic differential equation for the turbulence frequency (Pope and Chen,
1990) was solved for each particle.

Algorithms

So far we have been concerned about physical issues. However, a discrete
particle model is useless without appropriate algorithms and numerics. There
are two topics that require special effort, the search for neighbour particles
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and the number of force calculations needed per unit time in order to achieve
the desired numerical accuracy.

The most convenient way to keep track of neighbour particles is the cell
method (Eastwood et al., 1980). By using a uniform grid, it is easy to map the
particles to the cells. Then one only has to search for neighbours in the cell
where a particle is located, and in the neighbouring cells. The complexity of
the search is then reduced from O(N?) to O(N), where N is the number of
particles.

For particles following rectilinear trajectories between collisions with an in-
stantaneous change in velocities at collision (hard-spheres), the algorithm can
be written purely event-driven. In an optimal event-driven simulation, the po-
sition and velocity of a particle are only calculated when a particle takes part
in a collision (Lubachevsky, 1991; Sigurgeirsson et al., 2001). The efficiency
of an event-driven algorithm depends on the number of particles, the number
of collisions and the resolution of the grid. The number of particle cells has
typically to be set before the computation starts. In paper B (Melheim and
Gjelsvik, 2005), an adaptive cell structure is proposed, that adapts to the local
number density of particles and thereby ensures an efficient computation.

In most particle-laden flows, there is a considerable interaction between the
fluid and the particles, and the particles do not move along straight lines.
The drag force requires time-steps in the order of the particle response time
Tp and the interactions between particles in a very viscous fluid cannot be
handled as an instantaneous change in velocity. Small time steps are therefore
needed, and a more sophisticated integrator than the forward Euler scheme,
which is used in event-driven simulations, should be employed. Because of the
small time steps needed, for instance for computation of the collision forces
in soft-sphere collision models (Tsuji et al., 1993), the algorithm is time-driven.
Time-driven algorithms are generally slow compared to event-driven billiards
algorithms.

An algorithm that tries to include the advantages of both event-driven and
time-driven algorithms is proposed in paper C (Melheim, 2005) and is called
the cluster integration method (CIM). In CIM, the particles are equipped with
a virtual radius, and close-particle lists are made of particles with overlapping
virtual radii. A ‘test move’ with the forward Euler scheme, following the pat-
terns of an event-driven algorithm, is performed in order to identify potential
collision partners in the direction of motion. Potential collision partners are
added to each other’s close-particle lists. Clusters are then made from the
close-particle lists and the different clusters are integrated separately using a
variable step-size Runge-Kutta scheme (Hairer et al., 1992, Chap. 11.4). Hence,
the single-particle clusters and clusters with weak interactions between the
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particles can be integrated with a much longer time step than those clusters
with strong particle-particle interactions. CIM was reported to give a signifi-
cant speed-up compared to a traditional time-driven algorithm.

Numerical methods

The equations describing the motion of the particles are ordinary differential
equations (ODEs), while the equations for the fluctuating fluid velocities and
turbulent frequency are stochastic differential equations (SDEs). There are
two numerical approaches to solve an ODE; multi-step methods and one-step
methods (Hairer et al., 1992), where the simplest version of both approaches
is the forward Euler scheme. Furthermore, a third approach is seen in the
literature, a quasi-analytical solution, e.g. in Coimbra et al. (1998).

The Runge-Kutta schemes belong to the one-step methods, and there are
several reasons that make them attractive for evolving particles in time:

— The Runge-Kutta schemes are easy to implement, there is no starting
difficulties and at the end of a time step one has one value.

— The Runge-Kutta schemes are well studied, one can choose a scheme
based on desired properties.

— It is easy to employ variable step size, so-called embedded Runge-Kutta
methods.

— By using Runge-Kutta schemes, one has to separate the numerics and the
physics, which is good for code maintenance.

The model for the turbulent dispersion is given by a stochastic differen-
tial equation for the fluctuating velocities, that contains both a dt term and
a stochastic Wiener process dW. The Runge-Kutta schemes for ordinary dif-
ferential equations cannot in general be used directly on SDEs because they
do not approximate an Ito-Taylor expansion of an SDE (Kloeden and Platen,
1992). The forward Euler scheme approximates the first deterministic and
stochastic term of an Ito-Taylor expansion and can therefore be used, but it is
inaccurate. Burrage and Burrage (1996) made an explicit Runge-Kutta scheme
for SDEs, where the classical 4th order Runge-Kutta scheme is recovered when
the stochastic terms are neglected. Hence, the scheme of Burrage and Burrage
(1996) can be used for the fluctuating fluid velocity together with the classical
RK4 scheme for the particle position and velocity.
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A variable step-size Runge-Kutta scheme also exists for SDE (Burrage and
Burrage, 2002), but such schemes are complex. It is assumed that the stiff-
ness of the velocity equation (1.3) decides the time-step and a variable step-
size scheme can therefore be applied to the position and the velocity only.
The fluctuating velocities, found by the SDE, are updated at the end of every
successful local time-step dt; with a fixed step-size SDE scheme. Minier and
Peirano (2001) stated that the time-step for calculation of the fluctuating ve-
locity should be much larger than the Kolmogorov time scale T, and much
less than the integral time scale T;. The upper bound is satisfied by limiting
the global time step.

1.5 Fluid-flow equations

Due to the presence of particles, the Reynolds-averaging strategy cannot be
employed on the Navier-Stokes equations. However, the averaged continu-
ity and momentum equations appearing from volume averaging (Nigmatulin,
1991) or ensemble averaging (Drew and Passman, 1999) are, except for the
particle source terms and the volume fraction, equal to the Reynolds-averaged
equations. Hence, they are frequently called the Reynolds-averaged Navier-
Stokes equations (RANS). The averaged Navier-Stokes equations for the con-
tinuous phase in a dispersed particle flow can be written as

% (xp) + (O(pUi) =0, (1.16)

axi
_ooP 2
axi an

i oU; an
+ 3% (au (an + axi)) + Fp, (1.17)

where P is the mean pressure and 7, is the mean force of the particles work-
ing on the fluid. Mass transfer is neglected. The momentum equation (1.17)
is in the present work closed by the turbulent viscosity approach, where the
Reynolds stresses —u;u; are expressed by (Pope, 2000, Chap. 4)

9 (apUi) S (apUin)

ot ox; - QT )

oU; U,
+
an aXi

- 2
—PUUj = Mt ( ) - P§k5ij, (1.18)

where k is the turbulent kinetic energy (k = %uiui) and u; is the turbulent
viscosity, modelled by a slightly modified version of the standard k-s-model
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(Launder and Spalding, 1974). Launder & Spalding modelled the turbulent
viscosity as follows:

2
He = Cup, (1.19)

where C;, = 0.09 is a model constant and ¢ is the dissipation rate of turbulent
kinetic energy. Transport equations are solved for the turbulent scalars k and
&, wherein the volume fraction « is included. The transport equation for the
turbulent kinetic energy k reads:

0 — 0 ok
3L (xpk) + E (cxpkUJ) = E (cx (u+ ) axj> + xpPy — xpe + Sk,
(1.20)
where the production of turbulent kinetic energy Py is defined by
oU; an oU;
P, = . 1.21
pPr ut(an+aXi>an (1.21)

Sk accounts for the influence of the particles on the turbulent kinetic energy.
The transport equation for the dissipation rate of turbulent kinetic energy ¢ is
given by:

9 0 7). 9 &) o0&
ot (pe) + 0x (o(pEUJ> - 0x; <0( (H * O 8xj>

+ Cﬂ(xzppk _ ng(xp% +Se, (1.22)

where 0. = 1.3, Ce1 = 1.44, Ce2 = 1.92, and S is a source term due to the
particles.

Inter-phase transfers

A criterion for the inter-phase transfers from the particle phase to the fluid
phase based on the macroscopic momentum-coupling parameter is given by
(Loth, 2000):

L’ |pp—p| g
pVEL?2
xp A3 \pp -p \ g

IIA = , 1.24
A pVKAZ ( )

L= ) (1.23)
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where L equals the largest length scale in the flow and V7 is the largest velocity
scale. A and V, denote the integral scales. The coupling is, according to Loth
(2000), negligible for the mean flow when Il; <« 1. The source terms in the
k and ¢ equations can be neglected when ITp < 1. A low volume fraction of
water droplets (x, < 10%) in oil and a moderate turbulence level Re, =~ 25
typically gives I} < 1 and Iy <« 1, which means that the droplets might have
an influence on the mean flow, but not on the turbulence. Hence, the source
terms Sy and S, can be neglected in the present work.

Solution methods

The momentum equation (1.17) and the transport equations related to the
turbulence models, equations (1.20) and (1.22), are discretised using the finite-
volume method on a grid. Incompressible flow is assumed and the pressure
field is found by the SIMPLE algorithm (Patankar, 1980, Chap. 6). The gov-
erning equations for the fluid motion can be solved both for transient and
steady-state flows. A transient solution requires a volume-averaging of the
particle source terms over each control volume. To gain stability, the drag
force is split into a term dependent on the mean velocity at the centre of the
control volume and an independent term. Steady simulations are more stable,
but require that time-averaged values can be extracted from a large number
of particle trajectories. An iteration process is performed until convergence:
The single phase fluid flow is calculated, then a large number of particles are
tracked and the mean force on the fluid in each control volume is calculated.
Then the flow is calculated again with updated source terms. The iteration is
performed until the number of iterations the fluid solver needs to converge
reached a ‘steady number’ (Kohnen et al., 1994).

1.6 Present contribution

The main contribution of the present work is given in six articles, published
in or submitted to the scientific community.

Together, the contents of articles A-E fill the gap between a general Eulerian-
Lagrangian particle code and a code that can perform numerical simulation
of turbulent electrocoalescence. Figure 1.3 shows how the gap is filled: the
particle-pair forces, an adaptive cell structure and a model for turbulent dis-
persion were implemented in the basic code. The cluster integration method
uses the cell structure and speeds up the computation of the inter-particle
forces. The model for correlating the motion of close particles requires a
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Figure 1.3: Map of articles.

cell structure and a turbulent dispersion model for each single particle. Pa-
per F (Melheim and Chiesa, 2006) on turbulent electrocoalescence concludes
the work and shows that turbulent electrocoalescence can be computed nu-
merically by using a discrete particle method for the droplets and Reynolds-
averaged Navier-Stokes equations for the fluid phase.

As is apparent from the summaries of the articles that follow, the articles
themselves have a wider audience than those interested in numerical simula-
tions of turbulent electrocoalescence. Everyone interested in Lagrangian parti-
cle simulations, in particular those working with deterministic particle-particle
interactions, will hopefully find something interesting and useful.
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Paper A - Forces between two water droplets in oil under the
influence of an electric field

Co-authors: Matteo Chiesa, Stian Ingebrigtsen, and Gunnar Berg

The paper outlines the forces that influence the kinematics of a droplet falling
towards a stationary droplet exposed to an electric field. Experiments and nu-
merical simulations were performed. The experimental setup consisted of two
vertically placed electrodes. One droplet was at rest at the lower electrode and
a smaller droplet was released some millimetres above. The droplet motion
was recorded with a high-speed CMOS camera. The optical observations were
compared with the results from numerical simulations where the governing
equations for the droplet motion were solved by the RK45 Fehlberg method
with step-size control and low tolerances. It was found that the droplet motion
mainly was due to buoyancy, drag, film-drainage, and dipole-dipole forces. At-
tention was paid to internal circulations, non-ideal dipoles, and the effects
of surface tension gradients. The best results were obtained by using the
drag-force model of LeVan (1981), the analytical dipole-dipole force expres-
sion of Davis (1964) and the film-thinning force model of Vinogradova (1995).
It should be mentioned that a better physical interpretation of the slip-factor
in the film-thinning model was given in Chiesa et al. (2005b). The analyti-
cal expression of Davis contains numerical solution of complex series, which
is computationally heavy, and the expression is valid for two droplets only.
Therefore, the dipole-induced-dipole model of Siu et al. (2001) was recom-
mended for multi-droplet systems.

Paper B - Adaptive cell structure for efficient detection of
neighbouring particles in collisional particle-laden flows

Co-author: Anders Gjelsvik

An adaptive algorithm for particle-particle and particle-wall collision detec-
tion in the two-dimensional case was presented. The algorithm ensures ef-
ficient computations of colliding particle flows without any input from the
user regarding the particle cell structure. The physical domain was hierar-
chically divided and structured as a quadtree. The algorithm was intended
for particle-laden flows, which require small time steps, but within each time
step, the algorithm is event-driven. Tests with uniform particle distribution
and fixed cell structures with uniform cell sizes showed that the number of
particles inside a particle cell should be kept in the range of 0.25 to 3.0 by the
adaptive algorithm. Test cases with non-uniform particle distributions were
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performed and showed that the proposed adaptive cell structure is not more
efficient than an optimal uniform cell structure. The advantages are therefore
the user-friendliness and the time not used to search for the optimal uniform
cell structure, and that is difficult to measure.

Paper C - Cluster integration method in Lagrangian particle
dynamics

An efficient and robust approach for numerical simulations of collisional par-
ticle dynamics in the Lagrangian framework was proposed. The algorithm
handles efficiently the interactions between particles and droplets; clusters of
interacting droplets are assembled and integrated separately, using a variable
step-size Runge-Kutta solver. The inter-particle interactions can be both con-
tact forces, hydrodynamic forces, and important for electro-coalescence, the
electric dipole-dipole forces. The cluster integration method was applied on
sedimentation of 5000 particles in a two-dimensional box. A significant speed-
up was achieved. Compared to a traditional discrete element method with the
forward Euler scheme, a speed-up factor of three orders of magnitude in a
dilute regime and two orders of magnitude in a dense regime were observed.

Paper D - Modeling of the vortex-structure in a particle-laden
mixing-layer

Co-authors: Stefan Horender and Martin Sommerfeld

Numerical calculations of a particle-laden turbulent horizontal mixing-layer
based on the Eulerian-Lagrangian approach were presented in this paper. This
test case was chosen because Dr Stefan Horender did his doctoral work on
it. It is a challenging test case; the turbulence is anisotropic and the gravity
causes a drift in the span-wise direction. A slightly modified version of the
Langevin model of Minier (1999) was used to determine the fluctuating fluid
velocity seen by the particles. The Reynolds-averaged Navier-Stokes equations
for the fluid phase were closed by the standard k-e-model. The numerical
results were compared with particle image velocimetry (PIV) measurements.
The concentration profile and the particle velocity fluctuations were predicted
reasonably well, but a drift was seen in the mean particle velocity. Further
studies are therefore needed.
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Paper E - Correlated motion of inertial particles in turbulent flows

The instantaneous fluid velocity is modelled by evolving in time a stochastic
differential equations for the fluctuating fluid velocity, as described in Paper
D (Melheim et al.,, 2005b). In this paper (Paper E), a model for correlating
the motion of close particles in turbulent flows was proposed. The model
correlated the fluid velocity seen by the particles via the random term in the
stochastic equation for the fluctuating fluid velocity, using the spatial auto-
correlation functions. The intermittency of the turbulence was modelled by
employing an additional stochastic differential equation for the turbulence
frequency. Simulations of fluid-particle pair dispersion showed that the re-
sults followed the classical Richardson t3-law. N inertial particles in isotropic
and homogeneous turbulence were simulated and the results were compared
with empirical correlations based on direct numerical simulations. A deviation
was seen at low Stokes number, but the gap decreased when more particles,
that means particles further away from the particle in question, were included
in the correlation calculations. Both the DNS and the presented calculations
allowed particle overlaps, hence too much weight might be given to viscous
effects, which were neglected in the proposed correlation model. A compari-
son with DNS-data with real particle-particle collisions should be made before
conclusions can be drawn.

Paper F - Simulation of turbulent electrocoalescence
Co-author: Matteo Chiesa

Eulerian-Lagrangian simulations of water droplets in a turbulent oil flow in-
fluenced by electric fields were presented. A two-dimensional channel (3 cm X
6 cm), downstream of a perforated plate was considered, where the electric
fields were directed perpendicularly to the stream-wise direction. In these
simulations, we used the models and algorithms that were presented in the
previous papers. The results show that the mutual interaction of turbulence
and electric fields strongly enhances the droplet growth. A 0.2s treatment
increases the droplet diameter with a factor three, which corresponds to a
ten-fold higher terminal velocity. The results agree qualitatively well with ex-
perimental observations on a macroscopic scale. Quantitative comparisons,
however, require a three-dimensional code and large computational resources.
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1.7 Conclusions and further work

The papers A-F deal with different topics, and they have their separate con-

clusions.

In this section, a main conclusion from each paper is drawn. Sugges-

tions for the direction of further work on computer simulation of turbulent
electrocoalescence are also given.

Conclusions

Paper A.

Paper B.

Paper C.

Paper D.

Paper E.

Paper F.

The point-particle approach with appropriate models for the inter-
droplet forces can be used to calculate electrocoalescence.

The advantage of the proposed adaptive cell structure is its user-
friendliness rather than computational savings.

The proposed algorithm, called cluster integration method, is effi-
cient for a wide range of particle-dynamics applications.

The Langevin-equation approach for the fluctuating fluid velocity
‘seen’ by the particles provides a reasonable prediction of the dis-
persion of particles in anisotropic turbulence.

The proposed model for correlating the fluid velocities felt by close
particles gave better results than existing N-particle models in the
literature.

The results from numerical simulations of turbulent electrocoales-
cence in two dimensions showed the same trends as experimental
results in the literature.

Further work

— The code should be extended to three dimensions to get more reliable
results. A parallelisation of the code might then be necessary.

A criterion for the coalescence probability is needed.
Large-eddy simulations of the fluid phase may improve the results.

Laboratory experiments on turbulent electrocoalescence should be car-

ried out for validation of the numerical models.
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Abstract The combination of an electric field and a moderate turbullemt is a promising technique for
separating stabile water-oil emulsions. Charges induceth® water droplets will cause adjacent droplets to
align with the field and attract each other. The present watknes the forces that influence the kinematics of
a droplet falling towards a stationary droplet. Mathenstimodels for these forces are presented and discussed
with respect to the implementation in a multi-droplet Laggian framework. The droplet motion is mainly due
to buoyancy, drag, film-drainage, and dipole-dipole fordsttention is paid to internal circulations, non-ideal
dipoles, and the effects of surface tension gradients.

Experiments are performed to observe the behavior of thiedalroplet exposed to an electrical field. The
experimental setup consists of two vertically placed ebefets. One droplet is at rest at the lower electrode
and a smaller droplet is released some millimeters above. dftplet motion is recorded with a high-speed
CMOS camera. The optical observations are compared witrethdts from numerical simulations where the
governing equations for the droplet motion are solved byRKd5 Fehlberg method with step size control and
low tolerances. Results, using different models, are coetpand discussed in details. Furthermore, a strategy
that allows to properly describe both the kinematics of laiglrigid sphere particle and of a fluid droplet under
the influence of an electric field is outlined.

Nomenclature

A, Ay Particle surface 9 Radius of stationary particle

a Reduced radius Re, Particle Reynolds number

b Slip length, see Fig. 1 u Continuous phase velocity vector

Cq Drag coefficient v Particle velocity vector

d Separation vector v;  Velocity vector of particle

E.E,, Electric field vector v,  Relative particle velocity vector

e Relative motion vector Vi Particle volume

F. Dielectrophoretic force vector x Particle position vector

Fy Body force vector " Magnitude of the surface tension gradient
Fy Film thinning force vector €0 Vacuum dielectric constant

Fyq Inter-droplet force vector €4 Relative dielectric constant of droplet/particle
Fy Drag force vector coi  Relative dielectric constant of oil

Foy External-droplet force vector 0 Angle betweerE andd

Fayq  Fluid-droplet force vector A Viscosity ratio ¢ = pafjse)

h Least distance between two particleg,.  Viscosity of ol

i Particle: ug  Viscosity of droplet

Tq Particle radius Pe Density of oil

r1 Radius of falling particle pa  Density of droplet/particle
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1 Introduction

The oil extracted from offshore reservoirs will normallyntain a large and, during the reservoir
lifetime, increasing percentage of water emulsified in the Blectric fields are used to extract the
water from the crude oil [1] . The combination of an electradiand a moderate turbulent flow is a
promising and compact technique for separating stabilemait emulsions [2]. Charges induced on
the water droplets will cause adjacent droplets to aligh wie field, attract each other and eventually
coalesce. The sedimentation velocity increases propaitioto the square of the diameter, and
therefore one wishes to get the smallest water dropletsdtesce together or into larger droplets.
The present work outlines the forces that influence the kates of a spheric droplet falling towards
a stationary one. Mathematical models for these forces r@septed and discussed with respect to
the implementation in a multi-droplet Lagrangian framekvdrhe spherical droplet motion is mainly
due to buoyancy, drag, film-drainage, and dipole-dipoledsr General and physically meaningful
models for these forces are needed. The trajectory of aisphdropleti is calculated by integrating
Newton’s second law. The law equates the droplet inertih thi¢ forces acting on it, and reads:

d:l?i
i 1)
d’U,‘

mi = Fiig + Fext + Fyq, 2

wherem;, x;, andwv; are the mass, position, and velocity of the drople}yq represents the vector
of forces acting from the fluid on the dropldf,, is the external force vector, arfd, 4 represents the
inter-droplet force vector.

Droplet tracking with droplet-droplet interaction has glhicomputational cost. It is therefore
important to keep the computational work necessary to tatlethe particle forces as low as possible
since the forces have to be calculated for each particleallifirmodels should be easily imple-
mentable in a numerical code. The computation and implestientcosts of each force have to be
evaluated in relation to the accuracy achieved. In suchuatiah it is also important to asses the
contribution of each force on the total force account.

Experiments are performed to observe the behaviour of thegaroplet exposed to an electrical
field. The experimental setup consists of two verticallycpthelectrodes. One droplet is at rest at
the lower electrode and a smaller droplet is released soitlienetres above. The droplet motion is
recorded with a high-speed CMOS camera. In the present wiindt aeries of experiments is carried
out releasing a rigid sphere particle with density and ptivity similar to water. Electric fields
with different magnitudes are applied and the velocity &f plarticle is recorded as a function of the
distance between the electrode and the particle itself. cArsd series of experiments is performed
releasing water droplets and observing their motion wheatet fields of different magnitudes are
applied. The velocity of the droplet is recorded as a fumctibits distance from the electrode.

The experimental observations are compared with the sesbliained numerically solving the
governing equations for the droplet motion. The compartsetveen observed and predicted veloc-
ities versus normalized particle surface distance fodrjgarticle when no electric field is applied
shows a good agreement. The forces dictating the motioneopdéiticles such as buoyancy, drag,
and film-drainage are properly modelled in our numericahgaork. The prediction of the motion
of a rigid particle under the influence of an electric fieldesgg well with the experimental observa-
tions. The electric force between two conductive partidesodelled with the analytical expression
obtained by Davis [3]. It is possible to conclude that theuaacy of the predictions obtained using
the DID model by Siu et al. [4] also is satisfactory as longresfalling particle is not too close to the
stationary particle.

When comparing the predictions and the observations of titeomof a falling droplet, the effect
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of internal circulation induced in the droplet has to be taik#o account. Internal circulation reduces
the viscous part of the drag force and therefore the dradicieeft needs to be corrected in order to
account for this reduction [5]. Furthermore the surfacesitamvaries over the droplet surface by the
effect of surfactants on the interface and by elongatiohefiroplet, caused by the electric field. This
leads to interfacial stresses that inhibit the creatiomt@rinal circulation. LeVan [6] suggested how to
take into account the effect of surface tension gradient@zky and Davis [7] show that the drainage
between fluid spheres with arbitrary viscosity is differieain rigid particles. The model proposed by
Vinogradova [8] takes into account the slip between thedidiim and the approaching spheres. The
comparison between observed and predicted velocitiesiyersrmalized droplet surface distance
h/r; for fluid droplet shows a good agreement when all the effebsencing the droplet kinematics
are modelled.

2 Modeling the fluid-droplet and body forces

Fluid droplet forces are transfered from the fluid to the ¢tspthrough friction and pressure differ-
ence. These forces are expressed exactly by the followirfigcguintegral:

1 1

vdFﬂuid = Ve » (—psng+ T4 ny) dA 3)
whereV} is the volume of the droplep; is the pressure at the droplet surfang represents the unit
outward normal vector andy is the shear stress tensor at the droplet surface.

The pressure and the friction on the interface are unknowinEan (3) has to be modelled. In

the Lagrangian framework the models for the surface integtampt to provide particular physical
meanings.

Drag force
The ‘steady-state’ drag force acts on a droplet in a unifaresgure field when there is no acceleration
of the relative velocity between the droplet and the convg¥luid. The force reads:

1
Fy= §pCC’dA\u—'u\(u—v), 4)

For a droplet Reynolds numb@&e, below 1, the drag coefficierity for a rigid sphere is given by:

24

Cy= —
d R@d

©)
An internal circulation is induced in fluid spheres, thatuees the viscous part of the drag. For
spherical clean bubbles and droplets, the induced inteir@llation is accounted by the Hadamard-
Rybczynski formula [9]:

24 \+2/3
L=

= 6
Red )\4’1 ()

whereX = pg4/ . is the viscosity ratio. Surfactants on the interface andigdtion of the droplet,
caused by the electric field, give a variation in the surfaosion. The surface tension gradient leads
to interfacial stresses that inhibit the creation of in&mirculation. The surface tension gradient is
included in the formula by LeVan [6]:

o= 24 3N+ 2+ 26(perg) "t 4 2/371 (pte|u — v|) 7!
=

= 7
Reg 3N+ 34+ 2k (perg) ’ ()
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where also the surface dilational viscosityis taken into account. However, in the present work
surface dilational viscosity is neglected,= 0. In Eq. (7) it is assumed that the interfacial tension
varies as follows:

Y =0 + Y1c08Y 8)
where) is measured from the front stagnation point.
Virtual mass force

The virtual mass forc#',, is an unsteady force that describes the acceleration offlaéh a particle
and the fluid have a relative acceleration. It reads:

Va (Du dv
Foyn— PcVd (_ . _) (9)

2 Dt dt

External body forces

We assume that the droplets have no net charge, hence tliecefietd as a far field force can be
neglected. On the other hand, the electric field gives risdifole-dipole interactions between the
droplets, which are modelled as inter-droplet forces. Tihengravity is the only external force and
the buoyancy force is given by:

Fy = (pd — pe) gVaeq (10)
whereg andegy are the modulus and the direction of the gravity.

Observations

In the present work, the effects of the pressure gradieatB#msset history force and the lift forces
have been neglected. The pressure difference over a smgletlis negligible due to the size of
the droplets. The contribution from the gravity is handlegarately. Lift forces are due to droplet
rotation and shear forces, and can therefore be neglected avtigid sphere or droplet is falling in a
stagnant fluid. Due to the small size of the spheres and theviggosity of the oil, the particle time
scale is very small. Thereby follows that the Stokes numbeniall and the Basset history force can
therefore be neglected [10].

3 Modeling droplet-droplet forces

The inter-droplet forces are the film thinning forces, dughte drainage of the fluid between the
droplets, and the electric forces due to polarisation otteuctive water droplets.

Film-thinning force
The film-thinning force is caused by drainage of the liquithflbetween two approaching droplets.
The derivation of the formulas usually requires that the lgetpveen the particles is small< « and
that the flow is within Stokes regime i < a. a = (ryr3)/(r1 + r2) is the reduced radius. For rigid
spheres the film-thinning force is written as [11]:

67 pca’ (v, - er)

Fi=—————e, (11)
h

wherew;, is their relative velocity vector and, indicates the direction of the relative motion.
When the particles are very close, a slip will occur and agozro impact velocity. The formula of
Vinogradova [8] includes a slip distangeas shown in Fig. 1, and is written as:

~ brpca’(v, - e) [2h h 6b
Ff———h {& |:(1+@> In <1+F> —1:|}67-. (12)
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Barnocky and Davis [7] studied the drainage be-
tween fluid spheres with arbitrary viscosity, from z vf
bubbles to rigid particles. The influence of surfac-
tants and the surface tension gradient were not paid
any effort. In our case, the droplet at rest is cov-
ered with surfactants and is therefore handled as a S
rigid sphere. The film force formula of Barnocky

and Dauvis [7] for a fluid sphere approaching a rigid )
sphere reads:

Fo— _67ruca2(w cer) 140476 + 0.004752e b
= h 1+1.13640.19¢2 "

(13)

where¢ = A1\ /(a/h).

Electric forces acting on the spherical droplets
Consider an uncharged spherical droplet placed in
an insulating medium. The droplet is furthermore
subjected to an electric fielf,. The field outside a
dielectric sphere of permittivity, corresponds ex-
actly to the electric field of a dipole located at the sphergree The value of this dipole moment
depends on the sphere size, permittivity and the strendtteaflectric field. Due to the polarisation of
the droplet, the poles will have charges of same magnitutiefjuosite polarity, preserving zero net
charge. In a homogeneous field the net force on the droplerés Subjected to an inhomogeneous
field the droplet will experience a stronger field at one pbntat the other, resulting in a net force
acting on the droplet in the direction of the field gradientpiienomenon called dielectrophoresis.
The resulting force is given by’ = (p- V) E. If the permittivity of the drope, is higher than the
permittivity of the surrounding medium,;, the drop will move towards the high field region. An
inhomogeneous electric field may for instance be set up bybggaoint charge or another dielec-
tric droplet, see Fig. 2. In the latter case the electrasfatice attracts the two droplets, given that
€4 > Eoil-

Figure 1: lllustration of the slip length

Point dipole model
For large droplet distanced|/r, > 1 we can approximate the electrostatic interaction between t
droplets as the force between two dipoles located at theasgleatres, see Fig. 2. This is frequently

1 h F, £Tof 43
’ :
} |
| h |
| ‘d| |

Figure 2: Electric forces between two conductive spheres.
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referred to as thpoint-dipoleapproximation. The forces in radial directiGhand tangential direction
Firead [12]:

_ 127 3% |E0|2’I“§’Ti3
- |d|*

127 3%eoi| Eo|?rars
- d|*

F (3 cos? ) — 1) (14)

K= sin(20), (15)
whered is the angle between the direction of the electrical fiBldand the relative droplet position
vectord. (3 is defined as:

€d — Eoil
ﬂ —

_ fd S 16
€4 + 2¢€.i (16)

The Dipole induced dipole model (DID)

The above point-dipole model is not valid when the droplets approaching each other. In the
literature there are different approaches to find the didigele forces beyond the point dipole ap-
proximation for multiple particles of arbitrary size andsjt@on. Clercx and Bossis [13] presented a
multi-pole expansion method that gives good results, lit#iculation is complex. A more promis-
ing method, themultiple image methqgdvas presented by Yu et al. [14]. The two first terms in the
multiple image method gives the dipole induced dipole m@o#D) [4], which is simple and numer-
ical efficient. Siu et al. [4] show that the DID model is in goagreement with the experimental
values obtained by Klingenberg et al. [12] fal{ /»; > 0.1 for equally sized conductive particles. It
is customary to write the dipole forces on the form:

- 127 3%, ‘E0|2T§T‘;’
B |d|*

127Tﬁ2€0i| |E0‘27’§
- d|*

F, (3K1 cos? ) — 1) a7)

3
F = 1 K, sin(26). (18)

For the DID model the coefficients; and K, are written as:

PP {: N 1/ GO T 1L et k) (19)
- * 4 4 )

(=)t " (2=t (dP =t =)
Ky =1+ —Drldl pri|dy’ 35033 (20)

2(d? —r3)*  2(d}2—r})*  (d? =1} —r)*

In the limit |d| — oo the coefficients; and K, approach unity and we recover the point dipole
model given by Eq. (14) and (15).

The analytical solution

Davis [3] found an analytical solution to Laplace’s equatfor two conducting spheres of arbitrary
size, displacement and net charge, using bi-sphericallowaies. The exact solution for uncharged
spheres is given by:

F, = 4meo| Eo|*r? (F1 cos? 0 + Fysin® 9) (22)
F, = 4meoi| Eo|*ri Fy sin(26), (22)

where the parametefs, F», andF; are complicated series depending on the rgdt#hs-, andr; /rs.
Unfortunately, the computational cost required for cadtinlg F; — F3 is high in a multi-droplet
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situation. However, the exact solution is excellent fordienarking other models in cases with two
particles/droplets. For large drop separatitdigr, >> 1 the force component8; — F3 approach
the values of the point-dipole Eq. (14) and (15). For smalbsationsd|/r, < 1, F;, and F; takes
constant values whilé) diverges. Atten [2] showed thd, takes the asymptotic value:

4 (ro/d])"*

B 3(1—}-7“2/27“1)4. (23)

4 Experimental setup

Background Light

CMOS Camera  Long Distance Test CeH W °

Trans\anon stages

Stationar droplet Setup /

(a) Experimental set-up (b) Experimental observation

Figure 3: (a) Experimental set-up designed for visual olz@n of the behaviour of drops in oil
emulsion exposed to the effect of an external electric figdyl An experimental observation where a
small droplet comes into contact with a bigger one.

Experiments are designed for visual observation of watgpglim oil under the influence of elec-
tric field stress. A vertical5 mm electrode-gap arrangement is placed inside a cubic tdswithl
side lengthd50 mm. The cell is placed in an optical bench to obtain a shadowghgcaepresentation
of the water drops as shown in Fig. 3(a). One drog ofim in diameter is positioned at rest and in
direct contact with the lower high voltage electrode, anio-sullimetre sized droplets are released
within the upper grounded electrode from a glass capill&tfgctric fields are vertical thus parallel
to the drop-drop impact vectors and in the rar2gé — 400 V/mm. Bipolar square voltages with
frequencied 0 Hz and100 Hz are used. Drop interactions and coalescence are recortled Whan-
tom V4 high speed CMOS camera capable of 1000 frames perdetdi2 x 512 pixels resolution.
The position and the velocity of the droplets are digitahyracted from the sequential frames. Un-
certainty in measured droplet diameter is less tham. Water is distilled and a small amounts of
salt is addedd.5 H,0wt% NaCl), and the oil used is Nynas Nytro 10X transformer oil sifilar
experiment is performed with un-deformable rigid sphehed are designed to have similar density
and permittivity to salt water, see Table 1. The fallingdigpheres are of Ugelstad type,150 um
diameter polystyrene base spheres=(1050 kg/m?) covered with 40Gim silver coating. Glass cap-
illaries are made hydrophobic to ease the release of gededabplets, and coated with gold to avoid
static charge transfer from glass to water. At@Ghe oil viscosity is13.7 Pa - s, however some se-
ries with rigid spheres are performed at a slightly highergeratureZ3 — 25°C’) and an interpolated
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Table 1: Properties of Nytro 10X, water with a small salt emitand rigid sphere particle at?ZD.

o]] Water Rigid sphere
Densityp 875kg/m? 1022 kg/m? 1206 — 1210 kg/m?
Viscosity i 13.7-103Pa-s [ 0.98-103Pa-s 00
Relative permittivity= 2.2 1000 1000

Table 2: Experimental series.

Electric field | Rigid sphere radius Droplet radius
0V/mm 82.5um

250V /mm 70.5um 105um

300V /mm 70.5um 110pm and 58um

400V /mm 72 um 110pm

viscosity of 12.5Pa - s is used for these simulations. Fig. 3(b) shows a typicaisiolh between a
200um diameter falling water droplet and a¥in diameter stationary drop.

5 Results and Discussions

Numerically, the governing equations (1) and (2) are soWvid a Runge-Kutta Fehlberg 4-5 solver
with step size control, see for instance Hairer et al. [15jcyxate simulations are ensured by using a
relative tolerance of0—° and an absolute tolerance df-?°. The expression for the forces described
in Section 2 are used. An ideal bipolar squared voltage isnasd.

Figure 4 shows a comparison between experimental obsemgaéind humerical predictions of
the kinematics of a rigid spherical particle falling towsah electrode. No electric field is applied.
Theb constant in the expression of Vinogradova Eq. (12) usedamtimerical calculation is0~" m.
The velocity of the rigid sphere is plotted versus the noizeal distancé:/r;. The good agreement
between observations and predictions shows that drag Edudyancy Eq. (10), and film-drainage
Eq. (12) are well modelled in our numerical framework.

A comparison between observed and predicted velocitiegigarormalized particle surface dis-
tanceh/r, for rigid spheres under the influence of an electric field @ttpd in Fig. 5. The buoy-
ancy, drag, and film-drainage are modelled as in the prewviomnserical exercise presented in Fig.
4. Figure 5(a) shows the effect of different electric fieldgmidudes on the falling velocity of the
particle. The analytical model by Davis Eqg. (21) and (22)3ediin the numerical calculations of the
particle velocity. A good agreement between numericalltesund experimental observations is ob-
tained. The velocity of the falling droplet observed whemthagnitude of the electric field is greatest
| Eo| = 400 V/mm, is higher than for weaker field magnitude. This follows eotpons. Figure 5(b)
shows a comparison between observed and predicted vekotbitained using different models for
the induced electrical forces. The magnitude of the apmledtric field is| E;| = 300 V/mm. The
accuracy of the results obtained by using the DID model i& laig long as the droplets are not too
close to each other. The point dipole does not provide satisfy results.

When comparing predictions and the observations of theanadf a falling fluid droplet, the
effect of internal circulation induced in the droplet hastotaken into account. Internal circulation
reduces the viscous part of the drag force and therefore rttg abefficient needs to be corrected
in order to account for this reduction as outlined in SeconFurthermore the surface tension of
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Figure 4: Predicted and observed velocity versus nornthiigticle surface distance for a falling
rigid sphere with radius; = 82.5 um. No electric field is applied.

the droplet is varied by the effect of surfactants on therfatee and by elongation of the droplet,
caused by the electric field. This leads to interfacial seeshat inhibit the creation of internal circu-
lation. LeVan [6] suggests how to take into account the efiésurface tension gradient. Barnocky
and Davis [7] derived expressions for the drainage betweed $pheres with arbitrary viscosity.
The model proposed by Vinogradova [8] takes interfacia sffects into account. Although Vino-
gradova [8] proposed a correction for hydrophobic surfaitespresent work shows that the Eq. (12)
can be used with good results under other conditions. A casgpabetween observed and predicted
velocities versus normalized particle surface distainte for fluid droplets under the influence of
an electric field is plotted in Fig. 6. The average radius ef dnoplets is"; ~ 110um. The slip
distance used in the Vinogradova equation (12) is 10-%m and the magnitude of the interfacial
tension gradient in Eq. (7) ig; = 107> N/m. Figure 6(a) shows the effect of different electric field
magnitudes on the falling droplet velocity. The analyticaddel by Davis Eg. (21) and (22) is used
in the numerical calculations of the particle velocity argbad agreement between numerical results
and experimental observations is obtained. Figure 6(bjvsteocomparison between observed and
predicted velocities obtained using different models far induced electrical forces. The magnitude
of the applied electric field isE,| = 300 V/mm. The same trend as previously observed for the rigid
spheres is observed.

Figure 7 shows a comparison between observed and predgitegities versus normalized droplet
surface distanck/r, for water droplets of averaged radiys~ 110um. Figure 7(a) shows the results
obtained by different drag force models. The electric fisldanstantE,| = 300 V/mm. The Davis’
analytical expressions, the Vinogradova’'s model Wit 10-5m and Eq. (7) withy; = 1075 N/m
are used in the calculations. The best agreement is obtainei the equation proposed by LeVan [6]
is used in the numerical calculations. Figure 7(b) showsé¢salts obtained for different drainage
models. The electric field is kept constafil,| = 300 V/mm. The Davis’ analytical expressions and
the LeVan drag force model are used in the calculations.drigtmula of Vinogradovah = 105 m.
The best agreement is obtained when the model proposed mgNdova Eq. (12) is used. The
viscous sphere model Eq. (13), provides a severe overdgimaf the velocity, and shows that the
surface cannot be handled as ideal. The results obtainedtfre hard sphere model seems to well
agree with the experimental observations up until the @tsgre very close.

Figure 8 shows a comparison between observed and predidtagities versus normalized droplet
surface distancé/r; for water droplets of different radii. In Fig. 8(a) two diffnt droplet sizes
Tbig = 110 pm, rsman = 58 pm are considered. The electric field is constdii§| = 300 V/mm. The
slip distance in the Vinogradova modelbis= 10~%m for the biggest droplet and= 10~" m for the
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(a) Different electric field magnitudes are applied (b) Constant electric field magnitude is applied
in the numerical calculations of the particle kine- |E,| = 300 V/mm and different models for the
matics. Davis’ analytical expressions are used. induced electrical forces are used in the numerical

calculations of the particle kinematics

Figure 5: Observed and predicted velocities versus nozedparticle surface distankgr; for rigid
spheres. The radius of the sphere,is= 70um and the slip length in Eq. (12) is= 10~" m.
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(a) Different electric field magnitudes are applied (b) Constant electric field magnitude is applied
and in the numerical calculations of the droplet |E,| = 300V/mm and different models for the

kinematics. Davis’ analytical expressions are used induced electrical forces are used in the numerical
in the numerical calculations. calculations of the droplet kinematics

Figure 6: Observed and predicted velocities versus norewliroplet surface distanggr; for water
droplets. The radii of the droplets are~ 110m. The slip distance in Eq. (12) is= 10~°m and
the magnitude of the interfacial tension gradient in Eqig7) = 1075 N/m.
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(a) The results obtained by different drag force (b) The results from different drainage models are
models are compared to experimental observa- compared to experimental observation&,| =
tions. |Ey| = 300V/mm. Davis' analyti- 300 V/mm. In Vinogradova's model = 106 m.
cal expressions, Vinogradova's model with= Davis’ analytical expressions are used.
10~%°m, and an interfacial tension variation of

~v1 = 107°N/m are used in the calculations.

Figure 7: Observed and predicted velocities versus norertiroplet surface distanaér, for water
droplets. The radius of the dropletris= 110um.
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(a) Different droplet sizepig = 110 pm, rsman =
58 pm. |Ep| = 300V/mm. the slip distance in

the Vinogradova model i = 10=%m for rpg ple modeling strategy includes: point dipole, rigid
andb = 107" m for remar. Furthermorey; = sphere drag and no film force. The best modeling
1075 N/m for rpig andy; = 2 - 1075 N/m for strategy employs the models of Davis, LeVan, and
T'small- Vinogradova

(b) ‘Simple’ versus ‘best’ modeling atEy| =
300 V/mm. Droplet sizer = 110 yum. The sim-

Figure 8: Observed and predicted velocities versus norertiroplet surface distanaér, for water
droplets
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Figure 9: Contribution of the force components, scaled withbuoyancy force

smallest one. Furthermore the valueypfor the big dropletisy; = 107> N/m andy; = 2-107°N/m

for the small one. The numerical predictions agree very with the experimental observations. In
Fig. 8(b) numerical prediction obtained with two differegproaches are compared to experimental
observations. The ‘simple approach’ adopts point-dipatgd sphere drag and no film-thinning
force while the ‘best approach’ employs the models of Dawd/an, Vinogradova. The agreement
between observations and predictions obtained by meahg &fimple approach’ is not satisfactory.
Figure 9 shows the contribution of the different forces nalired by the buoyancy force for the
|Eo| = 300 V/mm case. The film-thinning and drag forces almost balance #réed force until the
droplets are very close. One also sees that the film-thinfoireg gives a significant contribution to
the force account far outside the range considered in theadien.

6 Observations

The comparison between observed and predicted velocérsss normalized droplet surface distance
h/r; for fluid droplet shows a good agreement when all the effefbsencing the droplet kinematics
are modelled.

In the case of rigid particle the models used to describe Htpg4), buoyancy Eq. (10), and film-
drainage Eq. (12) give good agreement with the experimebsgrvations. The effect of the electric
forces on the motion of the rigid particles are well takew iatcount when the Davis model Eq. (21)
and (22) are used in the numerical calculations. It was disemved that the numerical efficient DID
model Eq. (17) provides good results as long as normalizeplelrsurface distance is not too small.

When the motion of fluid droplets is to be predicted, the sanpbdel for drag, buoyancy, and
film-drainage used for the rigid particle are not longerdialihe effect of internal circulation induced
in the droplet has to be taken into account together with Hré@tion of the surface tension of the
droplet due to the electric field. In the present work différmodels are assessed. The use of the
model proposed by LeVan Eg. (7) for the drag force, by Vindgke Eg. (12) for the film-thinning
force and the Davis’ analytical expression Eg. (21) and,(@&)vide numerical predictions that well
agree with the experimental observations.
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1 Introduction

Flows with solid particles, droplets or bubbles occur in a wide variety
of industrial applications, engineering problems, and science. Computer
simulations are increasingly used to analyse these flows, for instance
when chemical process equipment is designed.

During the last decade, the ‘Discrete Element Method’ (DEM), where every
single particle is tracked has been used by many investigators and gives
promising results, Refs. [1,2,3].

A crucial point when using the DEM model is the CPU-time consump-
tion of detections of particle collisions. In very dilute flows, where the
volume fraction of particles, «,, is less than 1079, the inter-particle col-
lisions are negligible. When the particles are more densely packed in the
flow or in regions of the flow, the particle-particle interaction becomes
important, Ref. [4]. Then, the algorithm for collision detection is of vital
importance for the overall CPU-time consumption. An efficient solution
strategy for the multi-particle problem was first addressed by Alder and
Wainwright [5]. An efficient method for finding neighbouring particles
is the particle-cell method. Either a uniform raster is used, Refs. [2,6,7],
or a tree structure, Refs. [8,9]. Lubachevsky [6] made a thorough study
of billiards simulations and pointed out some important properties. Sig-
urgeirsson et al. [7] followed up and presented a suitable data struc-
ture. The algorithm of Sigurgeirsson et al. [7] was almost optimal for
billiards simulations where the particles are uniformly distributed. For
non-uniformly distributed particle systems, Sigurgeirsson et al. presen-
ted a strategy for updating the particle cell mesh under computations
and decreased the computational time compared with a fixed structure.

We have implemented an algorithm for simulating hard sphere particle
dynamics in two dimensions, along the lines of Sigurgeirsson et al. [7], us-
ing a cell system for collision detection. Instead of a uniform cell structure
(a raster), we have developed an automatic adaptive particle cell structure
based on a quadtree representation. An adaptive cell structure attempts
to optimise the particle cell size locally and ensures efficient computa-
tions. By automatic we mean that no information about the cell structure
needs to be specified by the user. Several test runs in order to find the
optimal uniform fixed cell-structure are therfore avoided.

The adaptive cell system is the main contribution of the present paper.
However, to make the paper self-contained, we also describe the overall
algorithm and its aspects. The paper is organised as follows: Section 2
gives an overview of the problem. The quadtree cell system and the col-



lision detection algorithm are described, and estimates of the computa-
tional complexity are given. In Section 3, computer experiments with a
‘billiards’ system are described. We have also simulated the repeated ini-
tialisation of the event list at each time step that is required if a particle-
laden flow is to be simulated. From the billiards simulations we establish
the control parameters for the adaptive cell structure Section 4 describes
the strategy for the adaptive cell-size control, and simulation results from
cases were the particle density is highly non-uniform. Section 5 contains
a brief discussion of the performance of the proposed algorithm, and
Section 6 gives the conclusions.

2 Background

2.1 Particle physics

Consider n spherical particles that follow a trajectory between the colli-
sions that is given by:

du;
m;—— = Fpuia + Mg (1)
dt
dxi
= Uu;, 2
T i (2)
where i = 1,...,n. m; is the mass, u; is the velocity and x; is the position

of particle i. Fguiq are forces from the surrounding fluid and g is the
gravitational field.

The collisions are considered to be instantaneous and the particles are
assumed to be rigid spheres. The impulse equation for a collision is then
given by:

my (w —uf) = —my (up — uf) 3)

where subscripts 1 and 2 denote particle number and superscript O de-
notes the state before collision. For an elastic collision we have:

(u?—u?)-n:e(ul—ug)-n (4)

where e is the restitution coefficient and n is the surface normal vector
at the point of impact for particle 1. The velocities after a collision could



therefore be written as:

_ 0 (0 210 mo
U =uj —n(n (u u2)> (1 +e)m1 e (5)
_ 2,0 0 0 o
uz—u2+n(n-(u17u2))(1+e) ey (6)

where the tangential collision forces have been neglected. Further, colli-
sions with the wall change the velocity perpendicular to the wall:

u-ny, =—e,u’-ny (7)

where n,, is the wall normal vector and e,, is the particle-wall restitution
coefficient.

The governing equations for the particle’s trajectory between collision (1)
and (2) are solved by the forward Euler scheme, given by

Yni1 = Vu +Atyy,, ¥y =y(to), (8)

where dt is the time step and y is a vector with a given initial condition,
y(to).

When assuming that the spherical particles move along straight traject-
ories, the time until a collision between particle i and particle j is given
by [2]:

—¥ij - Wij — \/(T’ij “uiy)? = luggl? (Irgl2 = (Ri + Rj)?)
Tk

; )

tij =

where r;; = x; — x;, W;; = u; — u; and R is the particle radius.

2.2 Cell system for collision detection

If we have n particles, checking for collisions by checking every possible
pair of particles would lead to n(n — 1)/2 checks. To avoid this, we use
the cell method. The spatial domain is partitioned into rectangular cells,
and the idea is that if we keep track of which particles are in each cell,
and if the cells are larger than the largest particle, then for each particle
we need only check for collisions with particles in the neighbouring cells.

There is a considerable literature on a collision detection algorithm based
on a cell system. Lubachevsky [6] and Sigurgeirsson et al. [7] use simple
cell systems of uniform grid size. Kim et al. [9] employed a bounded-
balanced tree where the cells are at the leaves. They also describe how to
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Figure 1. An example of a subdivision in cells
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Figure 2. The quadtree corresponding to Fig. 1.

use a hierarchy of grids with different cell sizes to improve the perform-
ance for varying particle sizes. Vemuri et al. [8] used an octree (3D) for
holding the cell structure. It seems that they use a storage scheme where
only the nodes for the cells that contain particles are stored.

We have chosen to use a quadtree to represent the cells (working in two
dimensions). A quadtree is the two-dimensional analogue of an octree
[8], and is frequently used for handling geometrical data and in picture
processing. There is a rich literature on quadtrees and octrees, examples
are Refs. [10,11,12,13].

Each node in the quadtree represents a square spatial area. Each node that



Figure 3. Numbering of quadrants

is not a leaf node, has four sons, which represent a subdivision of the cell
in quadrants to give smaller cells, according to fixed rules. Each leaf node
in the quadtree represents a spatial cell that is not further subdivided.
It is these cells that we use for collision detection. Since the cells are
represented by (leaf) nodes, we shall sometimes refer to them as nodes.
An example of a cell partition is shown in Fig. 1, where node 1 represent
the root, that is divided into four quadrants; node 2, 7, 12, and 17. These
quadrants are in turn subdivided. At this level, only the nodes 14 and 19
are subdivided. The corresponding quadtree is shown in Fig. 2.

A quadtree representation is more complicated to implement than a straight-
forward rectangular grid of equal-sized cells (a raster). In trivial cases, the
computing time may also increase. However, using a quadtree, we obtain
increased flexibility of the cell system. The quadtree cell structure can
easily adapt to complicated geometries, and the cell size can vary with
the spatial variations in the number density of particles.

The root of the quadtree corresponds to a square with side length 1 cov-
ering the area of interest. The physical dimensions are scaled to obtain
unit side length. A key feature of the quadtree is that the subdivision of
cells/nodes follows a fixed labelling sequence for the quadrants, for in-
stance as shown in Fig. 3. This defines the sontype of a node. For the cell
in the southeast (SE) quadrant in Fig. 3, the sontype is 2. With the son-
type recorded at each node, it is possible to calculate the position of a
cell by following links up to the root node. Going downwards, a record
of the sontypes encountered defines a unique path from the root to each
node. Geometrically, to obtain a quadtree with N + 1 levels, we start with a
square with side one and repeat the subdivision procedure N times. This
gives a subdivision in squares of the initial square. The smallest squares
have side length 1/2N. The root node is said to be at level N, while the
leaves are at level 0. For instance, the tree corresponding to the subdivi-
sion in Fig. 1 has N = 3 levels and is shown in Fig. 2.

There are several ways of representing a quadtree, see Samet [10]. One
way is to represent the quadtree as a tree, with pointers. This is easy to
implement as a linked list of nodes. The disadvantage is that the non-
leaf nodes require much space. Other methods avoid pointers. Typically



in Refs. [10,11], the nodes are sorted according to their paths from the
root node and stored with the paths. A path can be coded in two bits
per sontype number (4 possible values). Finding a given node requires a
search among the stored nodes.

We have chosen to work with the full tree representation, with point-
ers. This makes it easier to dynamically change the cell structure during
computations, for instance to use a finer subdivision in places where the
density of particles becomes high. To avoid restructuring we also store
leaf nodes that contain no particles, since this will change as particles
enter and leave during simulation.

We use a linked list of node records to store the quadtree. If the tree
grows, the necessary nodes can be added at the end. At each node we
record 6 items: A pointer to father node, a pointer to each of the four
sons, and the sontype. At the leaf nodes, the first son pointer is set to
zero to indicate that this is a leaf node. The pointers to the three other
sons are not needed, so we use two of these spaces for pointers into lists,
as will be described later.

2.2.1 Particle lists

Before the simulation starts, lists of particles contained in each cell must
be established. These lists are set up as linked lists. Since a particle’s
centroid can be in only one cell, all the lists can be contained in a single
array of length n, the number of particles. Each cell has a pointer to the
first particle in the list (the space of the second son pointer is used for
this), and for each particle there is a pointer to the next particle in the
list. The lists are established on basis of the initial particle positions, and
they are updated during the simulations.

2.2.2 Finding the neighbour-particles lists

In the collision detection, there are three cases where neighbour particle
lists are required, as described by Sigurgeirsson et al. [7].

(1) When we establish the initial event list, all particles are considered
systematically. The whole quadtree is traversed, beginning with the
leaf node in the South West corner. For a given cell, only particles
in neighbour cells that are in the North, North East, East and South
East directions are checked for collisions. Particles in neighbour cells
in the other directions will have appeared earlier during the tree tra-
versal and are already checked for collisions. This can be termed a
‘forward’ search.



(2) Immediately after a particle has made a transfer to a new cell, it has
new neighbour cells in the direction of transfer. Only particles in the
new neighbour cells need to be checked for collisions.

(3) After a collision or a check event (described in Section 2.3), particles
in neighbour cells in all directions have to be checked for collisions.

In all three cases, a list of neighbour cells is produced, and from the
particle lists of these neighbour cells a list of particles to be checked is
set up. Therefore, one of the most basic operations in the quadtree is that
of finding neighbour cells under various conditions, see Samet [10].

2.2.3 Handling boundary segments

The boundary of the spatial domain is assumed to be approximated by
piecewise linear segments. In order to check for boundary interaction, we
keep for each cell a list of the boundary segments that are within reach
of particles contained in the cell. These lists are kept as linked lists. They
differ from the particle lists in that a given segment can occur in more
than one list. A son pointer of the corresponding node is used to point at
the beginning of the cell’s boundary segment list.

2.2.4 Merging and splitting cells

We use an adaptive cell structure that may change during the simulations,
as will be described in Section 4. We then need the operations of merging
and splitting cells.

Merging cells means that four cells with a common father node are merged
to one. The father node then becomes a leaf node, corresponding to the
area of the four cells that were merged. The particle lists and the bound-
ary segment lists of the merged cells are merged, and the the necessary
pointers are updated.

Splitting a cell means that a leaf node becomes the father of four leaf
nodes. First, the pointers in the quadtree are updated, then the particle
list is split with respect to the position of the particles. Similarly, bound-
ary segment lists for the new leaf nodes are set up from the list of their
father, including only segments that are within reach from each of the
new cells.



2.3 The algorithm

We shall now consider the case of coupled particle-fluid flows where the
particle trajectories and the fluid flow are calculated separately using
some time step dt. The mutual interaction between the particles and
the fluid is taken into account by transferring information between the
particles and fluid between every time step. It is necessary to divide the
calculation period into very small time steps dt to obtain accurate and
reliable solutions. Sigurgeirsson et al. [7] suggested the use of a billiards
algorithm within each time step and thus rebuilding the event queue at
the beginning of each time step. A similar framework was also used by
Hoomans et al. [2].

Sigurgeirsson et al. [7] identified the following three primary data struc-
tures:

1. The particle information. Arrays with information about the particles,
their positions, velocities, size, etc.

2. The event queue which is a collection of events, each with an event
time and information to carry out the event. In this queue, a maximum
of one event is stored per particle. Possible events are:

e A collision with another particle.

o A wall collision.

e A transfer (the particle moves to a neighbour cell).

e A check (the particle is to be checked for new events). This is a trick
introduced by Sigurgeirsson et al. [7] for handling the double entry
of collisions in the event queue and for labelling the third party if
the new collision partner after a collision or a transfer already is
scheduled.

3. The cell structure which contains information to make a neighbour-
particle list in an efficient way.

The algorithm for performing one time step dt reads:

S1. Initial operations. These operations are for instance adding and ini-
tialising new particles, if there are new particles to add. If the cell
structure is chosen to be adaptive, any splitting or merging of cells is
carried out before the event queue is built.

S2. Calculate the forces on the particles.

S3. Calculate the times to the first collision and the first transfer and
build the event queue of the events that are scheduled within the
time step. A detailed description is given in Section 2.3.1.

S4. Until the event queue is empty, we carry out the following loop:

L1 Handle event. Details are given in Section 2.3.2.



L2 Update the event queue if the new events are scheduled within the
time step dt.
L3 Return to step L1.
S5. Update particle positions at t = ty + dt.
S6. Calculate information for the fluid code.

2.3.1 Build event queue

In the general case of a particle-laden flow, the particle positions and
velocities and the fluid velocity are updated at each time step. New colli-
sion and transfer times are calculated and the event queue is built from
the bottom. The particles-lists are updated during the simulation and are
therefore, except at the first time step, up-to-date.

As outlined in Section 2.2.2, a loop is made over all cells, and neighbour
particle lists are made. From the neighbour-particle lists we are able to
find:

e Time to transfer from the present cell to one of the neighbouring cells
by using the quadtree structure.

e Time to collision with the wall by using the list boundary elements be-
longing to the particle cell.

e Time to collision with the particles in the neighbour particle list, given
by Eq. (9).

Both the time to transfer and the least of the time to wall collision and
the time to particle collision are stored. For administration of the event
queue, the least of the time to transfer and the time to collision is stored
separately.

A binary heap structure is used to find the first event to process and the
following sequence of events. The heap is an efficient data structure for
priority queues and is elegant and easy to maintain, Ref. [14, p.138]. The
heap is also recommended by Lubachevsky [6] and Sigurgeirsson et al. [7].
The length of the queue is limited to the number of particles, but we
restrict this further by only scheduling the events that will happen within
the time step dt.

2.3.2 Handle events
The operation Handle event includes finding the first event to handle,

executing the operations given by the event type, and searching for new
events.

10



First, the time to transfer and the time to collision are compared. If the
time to transfer is less than the time to collision, a transfer is handled.
Otherwise, the next event type could be either a collision, a wall collision,
a check, or a removal. The actions of the different events are:

Transfer :

e The particle is removed from the old cell’s particle list and added to
the new cell’s particle list.

o A neighbour-particle list is made by using the information from the
new neighbour cells only, see Section 2.2.2

e The particle is checked for potential new collisions and transfers.

Particle-particle collision :

e The positions and velocities of involved particles are recalculated.

e The updated positions and velocities are checked. A ‘touch’, but no
collision is possible.

e In case of a collision, the velocities immediately after the collision,
given by Eq. (5) and Eq. (6), are computed.

e The forces on the particles are recalculated.

e The collision partner event type is changed to check.

¢ A neighbour particle list is made from the information in all neigh-
bour cells and the cell itself, and the particle is checked for potential
new collisions and transfers.

Wall collision :

e The particle position is recalculated.

e The updated positions and velocities are checked.

¢ In case of a collision, the boundary properties are checked. The bound-
ary could be:

1) A solid wall.

2) A flow boundary, the particle is then removed.

3) A flow boundary with a ‘particle proof grating’, which behaves
like a solid wall for the particles.

e The particle velocity immediately after the collision, given by Eq. (7),
is calculated.

e The forces on the particle are recalculated.

e The neighbour-particle list is made from the particle lists belonging
to all neighbour cells and the cell itself and the particle is checked for
potential new collisions and transfers

Check :

e The particle in question is checked for collisions and transfers. This
requires that a neighbour particle list be made from the particle lists
belonging to the neighbour cells in all directions, and the cell itself.

11



2.3.3 Computational complexity

We shall now analyse the complexity of the proposed algorithm. The com-
putational complexity of the time-consuming operations is estimated and
presented in Table I.

To find a neighbour-particle cell in the quadtree, different neighbour-
finding algorithms are used, depending on the direction. Computational
complexity for these basic algorithms are given in Ref. [12], as bounds to
the average number of nodes visited. The bound averages are constant
(the largest is 6% in the case of a corner-corner-neighbour) and there-
fore of O(1). To check for transfers after a collision event, the position
of the cell containing the colliding particle is needed (it is not stored).
This requires an ascent to the quadtree root, and therefore the work is of
O (log ncen). This term is avoided with a raster system. It is of the same
order as other terms, though.

For a particle-laden flow, the calculation period is divided into n, time
steps, as mentioned earlier. The event queue is rebuilt at the beginning
of each time step, which requires a traversal through all e cells. For
each cell, there is a cost of finding the forward neighbours O (1) and the
collision times with the neighbouring particles O (n2,). Here the cell posi-
tion is kept track of, so an ascent to the root is not necessary. The cost of
building the heap structure is nj log n;,, where ny, is the number of events
in the heap. Because we only store one event per particle, the maximum
number of elements in the heap is limited to the number of particles, n.

During a simulation, 7, events will happen. n, is the sum of particle-
particle collisions n., particle-wall collisions 7., and transfers 7. For
each event there are costs related to extracting the event and updating the
heap O (log ny,), finding the cell position O (log n¢qy), and checking neigh-
bour particles for new collisions, O(ny). Since the number of particles
per cell typically is of order 1 or less, we assume that

Neenl = N. (10)

It follows from Eq. (10) that the number of neighbour particles ny, is
independent of the number of particles n. If the particles are uniformly
spatially distributed, the number of neighbour particles is of the same
order as the number of neighbouring cells, O(1).

Further, we assume that the number of particle-particle collisions is much
larger than the number of particle-wall collisions n. > n,.. When a col-
lision happens, the event type of the collision partner is changed to a
check. If the new collision partner after a collision, transfer, or check has
a third party as its collision partner, the event type of the third party is

12



Table I
Overview of the computational work.

Operation Cost Calls Complexity

Build event queue

Find forward neighbours <4- 6% Nt - Neell O(nt - Neell)
Find cell position logneen Nt - Neen O(MiNeen - l0g Nen)
Search for collision partners ni NNl O(MNeel - N3)
Build heap nlogn Ny O(n; - nlogn)

Handle event

Extract first event and update queue logn Ntot O (norlogn)
Transfer Nnb Ny O (ny - Nnp)
Collision Nnb Ne O (n¢ - Nnp)
Wall collision b Nwe O (Nyc * M)
Check Nnb Nch O (Nch - Np)
Find cell position log ncen Niot O (Mot - log Neen)

changed to a check. However, according to Sigurgeirsson [15, p. 22] and
our own results, the number of checks ng, is of the order the number of
collisions 7.. Therefore, the total number of events can be written as:

Niot = 2N¢ + Ny (11)

We sum the last column in Table I and insert the assumptions in Eq. (10)
and Eq. (11). The complexity of the algorithm can then be written as:

O (nimlogn) + O ((n. + ny) logn) (12)

3 Billiards

By ‘billiards’ we understand a system of n chaotically colliding hard spher-
ical particles. Each particle moves along straight lines until it collides with
another particle or a wall. The collision is instantaneous, hence the prob-
ability of more than two particles involved in the same collision is zero.
Simulating billiards is a straightforward case that has been studied by
many investigators, for instance Refs. [6,7]. We are not mainly interested
in billiards, but the simplicity of the billiards case makes it well-suited for
testing the algorithm.
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The governing equations (1) and (2) for the particles can be rewritten as:

dui
m; a - 0 (13)
dxi
= U, 14
T u (14)
where i = 1,...,n. It follows from (13) and (14) that the particles move

along straight lines with constant velocity between the collisions. This
implies that the forward Euler scheme, given in Eq. (8), calculates the
position and the velocity of the particles to machine precision. No energy
is lost in the collisions, hence the restitution coefficients e and e, are
equal to unity.

3.1 Test method

It is of basic interest to know as much as possible about how the code
works. We would like to know how the computational work scales with
the number of particles and the number of particle-particle interactions.
Further, we need to establish criteria for splitting and merging cells auto-
matically in the adaptive cell structure. Within the frame of billiards sim-
ulations it should be possible to investigate:

A. How the CPU cost varies with the number of particles n and the num-
ber of collisions n..
B. The influence of multiple time steps.

This has been investigated as follows:

1. Billiards simulations with a single time step, where
(i) The volume fraction «, is constant and the number of particles
varies for some volume fractions.
(ii) The number of particles is constant and the volume fraction «,
varies.
This addresses Item A.
2. Billiards simulations with several time steps, where
(i) The volume fraction «, and the number of time steps n; are con-
stant and the number of particles varies for some volume frac-
tions.
(ii) The number of particles n and the number of time steps n; are
constant and the volume fraction «, varies.

(iii) The number of particles ,n, and volume fraction ,x,, are constant
and the number of time steps varies. The physical simulation time
is kept constant.

This addresses Item B.
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3.1.1 Test case setup

The billiards simulations were carried out in a two-dimensional box where
the length of the sides was 1 m. The mean velocity in both directions
was Om/s, while the root mean square of the velocity components was
1 m/s. Initially, the particle velocity was given a normal distribution. The
particles were initially uniformly distributed within an inner square in the
box, so there were no particles less than 10 cm from the walls at the start
of the simulations.

Since the geometry is fixed, the radius of the particles has to change for
different volume fractions «, and numbers of particles n. A correlation
between area fraction A, and volume fraction «, is given by «, = %%,

where A, is the particle area and A is the total area. The particle radius is

then given by R = %%f An absolute requirement is that there be room

for a particle entirely within a cell in the cell structure. This gives the
minimum cell size and thus the maximum number of cells. In the case of
uniform cell size, the number of cells 7 in the quadtree is nce; = 4V,
where N + 1 is the number of levels in the quadtree.

The test cases that have been carried out are described in Table II. The cal-
culation period is three seconds and is divided into n; time steps. Meas-
urements of the CPU time were done by profiling the code on a Compaq
Alpha 677MHz 21264a computer. It is not possible to both fully optimise
and profile the code, but we assumed that the results regarding how the
CPU time scales in different variables are unaffected by the optimisation
level.

Table IT
Test scheme.
Case  #particles n  Volume fraction «, Neell # time steps n;

I 5000 - 200000 1%, 5%, and 15% 44 — 410 1

II 5000 - 200000 1%, 5%, and 15%  4* — 410 30000

11 50000 0.1% - 15% 47 — 49 1 and 30000

A% 50000 5% 47 — 49 1 - 30000
3.2 Results

First, we ensured that we got the same results with a fine particle cell
structure resolution as with a naive n? search for collision partners in
the entire domain. The velocity distributions at the end of the simulation
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time were compared and we found that the velocity distributions were
equal within sampling variations and that they corresponded to Maxwell
distributions.

To find the best cell size for a given number of particles n and a given
volume fraction «,, we ran each case with different numbers of particle
cells. Because the number of cells is given by 7 = 4V, the cell number
steps are coarse. We did therefore not find the optimal cell size. However,
we belive that the average of the best cell size for several numbers of
particles may give us an idea of what the optimal cell size is.

Particle simulations, where the position of a particle is calculated only
when the particle is involved in a collision, are event-driven. According to
Sigurgeirsson et al. [7] the CPU cost for event-driven billiards simulations
could be written as:

CPU time = a (n. - log n)b‘ , (15)
where b. should be close to unity for an efficient algorithm.

On the other hand, if we assume that the first term in Eq. (12), related to
the search for collision partners and building of the event queue, dom-
inates the computational cost, the CPU time will scale linearly in nlogn.
Then we could write the CPU time as:

CPU time = a(nlogn)?r, (16)

where b, should be close to unity for an efficient algorithm. Because of
the dependency of the number of time steps, the simulations are time-
driven, but within each time step the algorithm is still event-driven.

3.2.1 Case I - Plain billiards

Case I is billiards where the time step dt is equal to the entire calculation
period. The simulations were therefore event-driven and the CPU time
should scale as n.log n. Figure 4 shows the CPU time versus n.logn for
particle volume fraction «, = 1% according to Case I in Table II. The
best fit of the form given by Eq. (15) has b.=1.15. Table IIIl summarises
the simulations for each volume fraction. The exponents b, are close to
one for all cases and the average number of particles per cell is between
0.54 and 0.74 for different volume fractions «,. The average number of
transfers per collision n/n. varies from 1.33 for «, = 15% to 6.75 for
oy = 1%.
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Figure 4. Plain billiards. Particle volume fraction «, = 1%. CPU time versus
N log n. The best fit of the form a(n.logn)?c has b, = 1.15.

Table III
Summary of Case I - Plain billiards.

xXp Ny b, Average n/nge) Average Ny /ne

1% 1 1.15 0.74 6.75
5% 1 1.14 0.54 3.14
15% 1 1.17 0.57 1.33
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Figure 5. Billiards with time stepping. Particle volume fraction «, = 1%. CPU
time versus nlog n. The best fit on the form a(nlogn)?» has b, = 1.05.

3.2.2 Case II - Billiards with time stepping

Case II is equal to Case I, except that the calculation period was divided
into 30000 time steps of 10~*s. Figure 5 shows the CPU time versus
nlogn for 1% particle volume fraction «,. The best fit on the from given
by Eq. (16) has b,=1.05. Table IV summarises the results. b,, is close to
unity for all cases, although a slight increase is seen for the 15% volume
fraction case. A linear scaling in nlogn, indicates that the first term in
Eqg. (12) is larger than the second term, hence the simulations were time-
driven. The average number of particles per cell n/n. for is within the
range n/nen € (0.79,1.02), which is slightly higher than with a single
time step. As in Case I, the average number of transfers per collision
Ny /N varies considerably with the volume fraction.

Table IV
Summary of Case II - Billiards with time stepping.
Xp ne b,  Average n/ncey Average Ny /MNc
1% 30000 1.05 1.02 5.76
5% 30000 1.06 1.02 2.30
15% 30000 1.12 0.79 1.13

3.2.3 Case Il and IV

Figure 6 shows the results for 50000 particles where the volume fraction
o, varied from 0.1% to 15%, hence the number of collisions n. also varied.
The linearity between the CPU time and the number of collisions n. is
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Figure 6. CPU time for constant number of particles, n = 50000. CPU time
versus number of collisions. The best fit on the form ag + a; - n. have
a1 =5.60-10""s for ny = 1 and a; = 5.96 - 107> s for ny = 30000 .
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Figure 7. Billiards with time stepping and a constant number of particles,
n = 25000 and constant volume fraction «, = 5%, hence the number of col-
lisions n. is constant. CPU time versus number of time steps ;.
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Figure 8. Normalised CPU time T versus particles per cell ratio n/ncen for «,=1%
and «p= 5%. The dashed line indicates a level 25% above the minimum value of
T.

clear in the tested range, both without and with time stepping. One also
sees from Fig. 6 that recalculation of the event queue every time step
takes most of the calculation time when many time steps are carried out.

Figure 7 shows the CPU time versus the number of time steps, Case IV,
where the calculation period is fixed and the number of particles and the
number of collisions are constant. The linearity between CPU time and
the number of time steps n; is evident.

3.3 Optimal cell size

Based on the results from the simulations carried out above, we will
now try to find the optimal number of particles per cell. The number
of particles per cell is nearly constant for the best particle cell structures
and the simulations are time-driven for small time steps. We therefore
use the results given in Table IV to ‘normalise’ the CPU time by making
use of the best fit solution the following way:

CPU time
= (nlogmn)bn’ (17)

where b, is given in Table IV. Figure 8 shows the normalised CPU time
T versus the particles-per-cell ratio 1 /ncq, where all simulations with a
particles-per-cell ratio below five are shown. The dashed line indicates
where the computational cost is 25% above the minimum value of T. Fig-
ure 8 indicates that the optimal number of particles per cell 1/ is of
order of 0.2 - 4.0.
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4 Adaptive cell structure

In this section, we describe a simple strategy for locally adapting the cell
size to variations in particle density. The cell size may then vary in space
and with time. This applies to cases of particle-laden flows, since it is
not practical to change the cell sizes at times other than those where the
event list is recalculated, at intervals dt. Cell sizes need not be checked
at every dt; for a given class of problems, the adaptation frequency can
be determined from experience to give the best reduction of CPU time.

The adaptation strategy is based on the results regarding the optimal
number of particles per cell in the previous section. Figure 8 shows that
the computational cost is acceptable for a particles-per-cell ratio n/7cen
within the range n/ncen € (0.2,4.0). These numbers are averages. Consid-
ering single cells and observing that a cell can only be split in four cells
and vice versa, we propose the following strategy:

e Split a cell in four if it contains 3 particles or more.
e Merge four cells that have the same father node if they together contain
0 or 1 particle.

For cells that contain particles, this will give an average number per cell
within the range given above. To carry out this strategy, it is necessary to
count the particles in each cell when the update is to be considered.

4.1 Update interval

With the criterion for splitting and merging of cells given above, we have
to find how often the adaption should be done and to check how the
computational work is affected. This is done by running billiards simu-
lations similar to those described in Section 3. We found that updating
the particle cell structure every time has an acceptably low cost, less than
10% above that of a fixed cell structure, for a tested number of particles
between 5000 and 50000.

The simplicity of updating the particle cell structure every time step
makes it attractive: We may use the instantaneous particle distribution
directly and it works for all kind of particle flows with small time steps.
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4.2 Description of the numerical experiments

Simulations of particles in a gravity field and a 90° bend were carried out
with the adaptive cell structure and several fixed cell structures for each
number of particles. The number of particles was in the range 5000 —
50000. The density of particles was kept constant and equal to 5% by
varying the particle size.

In Fig. 9 and Fig. 11 we plot three curves:

Adaptive, that refers to the adaptive cell structure as described above.

Optimal, that refers to the fixed cell structure that gives the shortest CPU
time. At least three simulations were run to find the best fixed cell struc-
ture.

Billiards, that refers to the cell structure that was the best fixed cell struc-
ture in the billiards case, Section 3.2.2, with equal number of particles
and the same density of particles «,. Billiards can therefore be regarded
as a ‘qualified guess’ for cases where the cell structure not is known.

A fixed cell structure means that the cell size is given initially and that
the cell size is uniform in the entire domain.

4.3 Particles in a gravity field

We ran a test case with particles falling in a gravity field, with the influ-
ence of the fluid neglected. This has many physical aspects in common
with industrial applications, for instance the filling of a silo or a hopper.
Initially, the particles were uniformly distributed in the domain and the
initial velocities were zero. Due to the gravity, the particles accelerated
towards the bottom of the box. Because energy was lost in the collisions,
the particles gathered in the bottom of the box. The particle-particle resti-
tution coefficient e and the particle-wall restitution coefficient e,, were
chosen to be 0.9 and 0.99, respectively. The simulations were carried in
a square box with side lengths 1 m. Initially, the particles were uniformly
distributed, as in the billiards case, and the velocity of the particles was
zero. 20000 time steps of 10~* s each were computed.

Figure 9 shows the CPU time versus number of particles n for two fixed
cell structures and the adaptive cell structure. A small difference between
the optimal fixed cell structure and the adaptive cell structure is ob-
served, only slightly in favour of the adaptive cell structure. A signific-
antly higher computational cost was obtained with the cell structures that
were optimal for the billiards simulations, which had a coarser resolution
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Figure 9. CPU time versus number of particles n for particles in a gravity field.
The CPU-time consumption of the adaptive cell structure (O), the case-optimal
fixed cell structure (A), and the fixed cell structure that was best in billiards
case (O) are compared.

than the optimal cell structure in the sedimentation case.

4.4 Bend

90° bends appear in many processing applications, for instance in pneu-
matic transport systems. This case will show how the algorithm works in
complex geometries where the particles are bound to be in a small part
of the area spanned out by the extreme values of the geometry.

The bend with outer radius 1m and inner radius 0.95m is shown in
Fig. 10. The particles entered the bend at the left boundary with a mean
velocity of 4m/s in the x direction and 0 m/s in the y direction. The
velocities were Gaussian distributed with a standard deviation of 0.1 m/s
in both x and y direction. During the particles’ travel through the bend,
only gravity and collision forces were acting on the particles. The restitu-
tion coefficients e and e,, were 1.0.

The physical simulation time was 2.0s, with 20000 time steps of 10~*s
each. Initially, no particles were inside the bend. The particles started en-
tering the bend when the simulations started and the number of particles
reached a steady state after 0.4 s.

Figure 10 shows how the cell structure adapted to the regions with a high
density of particles. The quadrant at bottom left is not divided while the
densely packed regions have a cell width of the same order as the particle
diameter.
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Figure 11. CPU time versus number of particles n for a 90° bend. The CPU-time
consumption of the adaptive cell structure (O), the case-optimal fixed cell struc-
ture (A), and the fixed cell structure that was best in billiards (0O0) are compared.
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Figure 11 shows the CPU time versus number of particles n for two fixed
cell structures and the adaptive cell structure. The best fixed cell struc-
ture and the adaptive cell structure are equally fast. The adaptive cell
structure was more efficient than the best fixed cell structure for 10000
to 40000 particles, but when 50000 particles are computed, the fixed cell
structure is fastest. The reason is probably a shift in the maximum resol-
ution for the adaptive cell structure, which increases the number of levels
in the quadtree by one. As for the simulations of sedimenting particles,
the best fixed cell structure resolutions for the bend are not those that
were best for billiards.

5 Discussion

An adaptive algorithm for efficient detection of neighbouring particles in
the frame of the Eulerian-Lagrangian approach is presented and tested.
The algorithm uses a quadtree structure in two dimensions and the cell
size may vary in space and time. Attention is also paid to link piecewise
linear segments in the arbitrary shaped flow boundary to the particle cell
structure.

Billiards simulations were done to ensure that the proposed algorithm
is close to optimal for simple cases. From the simulations with uniform
particle distribution in space (billiards), criteria for splitting and mer-
ging cells was established. We found that the number of particles per cell
should be in the range of 0.25 to 3.0 for efficient computations, independ-
ent of the number of particles and the density of particles. In the adaptive
cell structure, cells are split and merged between each time step to keep
the number of particles within the proposed range. Two cases: particles
in a gravity field and in a 90° bend, have been simulated with the new ad-
aptive algorithm and the computational time has been compared with the
simulations with a fixed cell structure. The best fixed cell structure and
the adaptive cell structure seemed to be equally fast. In cell structures
with uniform cells, many cells may be in regions with few or no particles,
but the cost of visiting an empty cell is small. The computational costs are
mainly due to calculations of potential collisions with neighbour particles,
that is minimised by finding the cell size that minimise the product of the
number of transfer and the number of neighbouring particles squared. It
is not straightforward to find the best fixed uniform cell size. In order to
find the ‘optimal’ fixed cell structure in Fig. 9 and Fig. 11 there was run at
least three simulations for each number of particles. This means that the
total consumed CPU-time for the best fixed cell-structure is much larger
than the total CPU-time needed by the adaptive cell structure. For cases
where the optimal fixed cell structure not is known a priori, a cell size
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based on the knowledge about billiards simulations or from the literature
might be a proper choice. In the presented test cases we observe that the
fixed cell structure that was best for billiards is up to three times slower
than the adaptive cell structure.

6 Conclusion

In this paper we have presented and tested an algorithm that uses an
adaptive quadtree structure for neighbour particle detections. We have
found that:

e A quadtree structure provides a flexible particle cell structure for effi-
cient neighbour-particle detection that also handles complex flow bound-
ary geometries.

e The criterion for splitting and merging cells should be based on the
number of particles per cell.

e A number of particles per cell between 0.25 and 3 is reasonable and
establishes suitable lower and upper limits for the presented automatic
adaptive cell structure.

e The advantages of an adaptive algorithm appear in flows where the
particles are not uniformly distributed, in complex geometries, and oth-
erwise where information about the best cell size is not known a priori.
Several simulations to find the optimal cell size resolution is avoided
by using an adaptive algorithm.
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Abstract

An efficient and robust approach is proposed in order to conduct numerical simulations of collisional particle dynamics
in the Lagrangian framework. Clusters of particles are made of particles that interact or may interact during the next global
time-step. Potential collision partners are found by performing a test move, that follows the patterns of a hard-sphere model.
The clusters are integrated separately and the collisional forces between particles are given by a soft-sphere collision model
However, the present approach also allows longer range inter-particle forces. The integration of the clusters can be done by an
one-step ordinary differential equation solver, but for dilute particle systems, the variable step-size Runge—Kutta solvers as the
Dormand and Prince scheme [J. Comput. Appl. Math. 6 (1980) 19] are superior. The cluster integration method is applied on
sedimentation of 5000 particles in a two-dimensional box. A significant speed-up is achieved. Compared to a traditional discrete
element method with the forward Euler scheme, a speed-up factor of three orders of magnitude in the dilute regime and two
orders of magnitude in the dense regime were observed. As long as the particles are dilute, the Dormand and Prince scheme
ten times faster than the classical fourth-order Runge—Kutta solver with fixed step size.

0 2005 Elsevier B.V. All rights reserved.

PACS 02.70.Ns; 45.50.-j; 47.11.4j

Keywords: Discrete element method; Lagrange simulations; Soft-sphere dynamics; Particle-cell structure; Runge—Kutta; Variable time-step

1. Introduction cations. A time-consuming part of ‘discrete element
method’ (DEM) simulations where every particle is
Computer simulations of particle-laden flows, tracked, is the calculations of the collisional forces.
where the Newtonian equations of motiormo$pheri- The collisional forces may result in a change in the
cal particles are solved numerically, constitute a useful velocity of the particles involved in the collision and a
framework for computation of many industrial appli-  collision can last for a very short period of time. There
are two main approaches for handling collisions, the
" Tel.: +47 41215517: fax: +47 73592889. hard-sphere approach[2], where the collisions are
E-mail address: jens.a.melheim@ntnu.rd.A. Melheim). handled as an instantaneous change of velocities, and

0010-4655/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.05.003
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the soft-sphere approach3], where the actual forces  box, the variable step and fixed step solver are about
acting during the collision are modeled. The advantage equally fast. Compared to a soft-sphere algorithm, that
of the hard-sphere approach is the numerical efficiency uses a cell method for finding neighbors and the for-
in dilute systems. In cases were the interaction with ward Euler scheme, the present approach is superior.
the fluid is neglected, the position and the velocity
of a particle are updated only when the particle is
involved in a collision, so-calledvent-driven simu- 2. Cluster integration method
lations. Unfortunately, the hard-sphere approach fails
in semi-dense and dense systems, when the assump- The basic idea is to control the error of the parti-
tion of instantaneous binary collisions is invalid and cle simulation by varying the time-step, for instance
theinelastic collapse occur[4]. The soft-sphere model by employing an embedded Runge—Kutta method with
does always work, but one has to use very small time- self-adjusting step-siz¢8]. For a given maximum
stepg5]. error, the greatest allowed time-step for integration
In present work, the numerical efficiency of the of the particles varies over several orders of magni-
hard-sphere approach is combined with the robust- tude, depending on the actual forces working on the
ness of the soft-sphere approach. The particles within particles. To save computational time, the particles
acluster of close neighboring particles are integrated should be integrated with the largest possible time-
simultaneously, while each cluster is integrated sepa- step. Therefore, only particles that interact or may
rately, using different time-steps. The time-step size is interact during the next global time-stéyp are inte-
decided by the estimated error, by using an embeddedgrated simultaneously. Particles that are far from other
Runge—-Kutta (RK) methofll]. However, one is free  particles can be integrated alone.
to choose another one-step ordinary differential equa-  Clusters of particles that are very close are formed,
tion (ODE) solver. The presented algorithm is quite and the particles in a cluster are integrated simultane-
similar to that of Reed and Flurchi¢B] designed for ously one global time-stepz. A particle-cell struc-
molecular dynamics. Reed and Flurchick grouped the ture [2] is used to detect neighbor particles and wall
molecules in monomers and polymers and achieved segments. It is an absolute requirement that there be
a speedup up to a factor 7 compared to a Verlet al- room for a particle and its close neighborhood, the vir-
gorithm[7]. The monomers (molecules with no close tual radius, in each cell in the cell structure, as itis in
neighbors) are moved along straight trajectories until Fig. 1L Sigurgeirsson et a[9] found that the number
the collision radiug¢gy hits the collision radius of an-  of cell should be of the same order as the number of
other molecule or a group of molecules. The polymers particles for efficient computations. A list of particles
are calculated with a Verlet algorithm. A main differ- (cpl ) and a list of wall segments ) are connected
ence between the algorithm of Reed and Flurchick and to each cell, as sketched ig. 2
the algorithm presented here is the way single particles ~ As shown inFig. 1, only particles that at the be-
are handled. In the presented algorithm, particles that ginning of a global time-step have overlapping virtual
travel far from other particles are integrated with the radii r,, the dashed circles, are considered as close
same ODE solver as the particles within clusters, in- neighbors. Close particles are added to each others
stead of being moved along straight trajectories. It is close neighbor particle lispfipb). In Fig. 1, the black
therefore possible to handle particle-fluid forces and particle A has initially the close neighbors B, C, and D.
far-field forces acting on single particles in a proper The shaded particles are also within the checked cells
way. when patrticle A is evaluated, but the virtual radii of
The proposed algorithm is tested on 5000 particles these particles do not overlap the virtual radius of par-
settling in a box. As long as most of the particles are ticle A. However, the non-close neighbors are checked
flying around in the box, the variable step size ODE for a potential collision during the time-step bytest
solver is faster than the classical fourth-order Runge— move. By doing a test move, one time-step is exe-
Kutta method (RK4) with fixed time-stefj8]. During cuted with the forward Euler scheme, as illustrated
the first time-steps a speed-up factor 10 is observed.in Fig. left). During the test move potential colli-
When most particles are at rest at the bottom of the sions with other particles are detected and transfers to
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Fig. 1. Particles in a particle-cell structure at the beginning of

O e T

v | [ L] ] ]

pnbp

Fig. 2. The relationships between the list of celkel| s), the
cell-particle list €pl ), the cell-wall list ¢w ), the close particle
(pnbp), and close wallnbw) lists.

a neighboring particle-cells are handled. A potential
particle—particle collision is detected when the virtual
radii of two particles collide during a test move, as il-
lustrated inFig. 3(right). The particles are then added
to each others close particle lisgsnpp). If the cen-
troid of a particle crosses a particle-cell boundary dur-
ing the test motion, the particle is transferred to the
particle list of the new cell and the particles in the
new neighboring cells are checked for potential col-
lisions, similarly to what is done in hard-sphere codes
[9,10]. The queue of collisions/transfers is sorted by
the time to collision/transfer estimated by the forward
Eulers scheme. The entire particle has to move inside

a global time-step, where patrticle A, B, C, and D form a cluster.

the checked area when the actual particle path is calcu-
lated in order to avoid instabilities. The virtual radius
ry is estimated similarly as the cut-off radius of Ver-
let[11]:

@)

wherer is the particle radius and, is acritical ve-
locity related to the expected deviation from a straight
lined trajectory, due to collisions and the ballistic be-
havior. The critical velocityv, is typically of same
order as the fluctuating particle velocity.

After the transfers and collisions are handled and
the close-particles listpObp) are complete, the clus-
ters are assembled. First, duplicate entries are deleted
from the close particles lists. Then the lists are tra-
versed recursively, as illustrated by the solid arrows in
Fig. 4. The first place in the close-particle lisfnbp)
is used to label already visited lists in order to avoid
infinite loops.

Note that a particle can only be part of one cluster.
Thereby it follows that the maximum number of par-
ticles in a cluster equals the number of particieand
that the maximum number of clustekgnax equalsn.

A list of length n contains the particles, where parti-

ry —r = Atvg,
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t=tn t=t, + At

Fig. 3. (Left) Test motion, the dotted circles, to check the area the particle will move within. The solid line shows the accurately computed

particle trajectory. Right) A situation where the test motion predicts a collision during the time-step.

oW =

Fig. 4. The recursive algorithm working on the close particle lists that corresponds to the situétignlin

1c(0) Ie(1) le(k)
| } }
aplep] [ | - [ ][]

Fig. 5. The list of particles, sorted by cluster, where anothel tiskeeps the last particle in each cluster.

cles belonging to the same cluster are placed after eachstance by

other. Another listl(c) keeps the position of the last

particle in each cluster, as shownFiy. 5. St = min(At, E,C,min),
The clusters, including the single-particle clusters, a

are now integrated over the global time-st®psepa-  wherer, min is the shortest collision period within the

rately by using any one-step ODE solver. A significant cluster andz is a chosen constant. The properties of

reduction in the CPU time and an accurate solution the chosen ODE solver and the desired accuracy de-
is possible by employing an embedded Runge—Kutta cide the value of:.

schemd8], that automatically adjusts the local time- During the integration, the close particle lists are
step in order to keep the local error less than the given used for calculation of the inter-particle forces. The
tolerances. When a fixed time-step ODE solver is em- wall segments belonging to the particle cells that were
ployed, the time-step is calculatedpriori, for in- visited by the particle during the test move are added

@
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@
Fig. 6. Particles settling in a box. (a}=0.0 s; (b)r =0.2 s; (c)t =0.4 s; (d)r =0.6 s.

(b)

to the neighboring wall segment ligiribw). The wall
segments irpnbw are handled as the close-neighbor
particles. After the integration, the position of the par-

ticles are checked against the particle-cell structure

and the mesh for the calculation of the fluid equations.
Due to the possible different results from the test move
and the final computation, particles might be mapped
to wrong particle cell. Incorrectly mapped particles are
transferred to the correct particle cell.

A summary of the cluster integration algorithm
reads:

(1) Add particles with overlapping virtual radii to
their respective close-particles list.
(2) Perform a test motion with the forward Euler

scheme and handle transfers. Add particles that

will become close during the time-step to their re-
spective close-particle lists.

(3) Trim the close-particle lists.

(4) Build the patrticle clusters.

(5) Integrate each cluster separately.

(6) Check new particle position versus the particle-
cell structure.

The idea of particle clusters is to some extent sim-
ilar to the polymers of Reed and FlurchicK6]. In

the present work, contrary to Reed and Flurchick, a
particle-cell structure is used, the clusters/polymers
are rebuilt every global time-step, and one ODE solver
is employed for all particles.

3. Description of thetest cases

The performance of the algorithm was tested by the
settling of 5000 spherical particles in a square two-
dimensional box with edge lengths 1 m. The parti-
cle diameter wagd = 3.568 mm and the density was

(©) (d)

p = 2400 kgm®. This gave an area fraction of par-
ticles A,/A = 5%. Initially, the particles were ran-
domly placed within an inner square ab0< 0.9 m, as
shown inFig. 6(@). The initial particle velocities were
sampled from a normal distribution function with zero
means = 0 m/s and variance’? = 1 n?/s. The gov-
erning equations for the particles are written as:

dxi

=, 3
7 =" (3)
dl),‘ 1
— = —F¢, 4
T g+mi c (4)

where the contact forceB¢,, and F ¢, were modeled
as[5]:

Fcp=(=k8 —nv, -n)n, (5
(=nv, - 0)t, |nvr't|<,uf|FCn|7

Fe, = 6

ct {—ufmcm, v, -t > pslFenl,  ©

where the tangential spring has been neglected. The
contact forces only take place when there is an over-
lap § > 0. v, is the relative velocityr andt¢ are the
normal and tangential unit vectors,is the damping
coefficient, andu s is the coefficient of friction. In
the test case, the restitution coefficientand colli-
sion timet, were chosen to take the value®® and
5.10°% s, respectively. The corresponding stiffness
is k = 1.12- 10’ N/m and damping coefficient i =
0.60 N/ms. The particle-wall restitution coefficieay,

and stiffnessk,, were chosen equal to the particle—
particle parameters. A global time-stepaf = 10% s

and a rather conservative virtual raditys= 1.2r were
used, which corresponds, according to Eb), to a
critical velocityv. < 3.57 my/s.

An initial test with two particles approaching each
other with a relative velocity, = 2m/s was done to
check the accuracy of the different ODE solvers, the
forward Euler scheme, the classical RK4 schdje
and the Dormand and Prince 5(4) schefhg The
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error is defined by the reproduction of the specified in the Dormand and Prince scheme. At 0.4 s, no

restitution coefficient: speed-up was achieved by employing a variable step
1(v]/100] = o)) size ODE solver. The traditional soft-sphere method
ernor= ————, @) refers to a method that searches for neighbor particles

¢ in a fixed particle-cell structure and the motion of the

whereu? is the velocity before the collision. To com-  particles is calculated with the forward Euler scheme.
pute a collision within a relative tolerance of 1%, the The cluster integration method with variable step size
forward Euler scheme needs 500 sub-steps (500 evalu-was up to three orders of magnitude faster than the tra-
ations of F ¢), RK4 needs 4 sub-steps (16 evaluations ditional method, while RK4 with fixed time-step was
of F¢) and the Dormand and Prince scheme needs 3 ahout 100 times faster. The CPU time was measured
sub-steps (21 evaluations 6Y). The parametet in by usingtime on a Compagq Alpha 677 MHz 21264a
Eq. (2) equals the number of needed sub-steps for the computer. Each case was run three times and the max-
respective ODE solver. In the case of a variating time- jmum relative standard deviation of the measured CPU
step, the shortest time-step wag = 1. /a. time was 163- 10~2. Due to the very long computa-
tional time only the first B s were calculated with the
traditional soft-sphere method. A potential platform

4. Results dependency was also checked. The simulations were
_ o run once on a 32 bit Linux computer with the Portland
Fig. 6shows the situation after=0.0s, =0.2s,  Group F77 compiler and the trends were confirmed.

t =04 s, andr = 0.6 s. Initially, the particles were

spread over the entire area of the box and most of

the particles could be integrated separately.r At 5. Discussion

0.4 s most particles were settled and they belonged to

the same Cluster. The measured CPU t|me ShOWﬂ in An a|gorithm that gives efficient and accurate in-
Fig. 7 reflects this behavior. The Dormand and Prince tegration of the governing equations in Lagrangian
scheme with a relative tolerance of 0and an ab-  particle dynamics is presented. The main ideas are
solute tolerance of 1¢° gave a speed-up factor of  that only particles that interacts are integrated simul-
10 the first 0.2 s compared with the fixed-step RK4 taneously and that the integration of should be done
solver. The relative and absolute tolerance is defined yjth the largest possible time-step. By forming clus-
by the relative and absolute difference between the ters of close particles and by integrating the clusters
4th and the 5th order Rung—Kutta scheme embeddedseparate|y by a variable step-size embedded Runge—
Kutta scheme, a significant speed-up can be achieved.
A settling process is simulated and the CPU-time con-
sumption is measured at different stages in the settling
process. Initially, when the particles are flying around,
10 a speed-up of factor of 10 is seen compared to a fixed
time-step Runge—Kutta solver, that also uses the clus-
ter integration method. When the particles are settled,
102 most of the particles are in the same cluster, and the
fixed and variable time-step approach is about equally
efficient. In the selected case, where the collision time

\

CPU time (s)

10° was quite short, the traditional soft-sphere method,
0 0.2 0.4 0.6 that uses the particle-cell structure directly to form
t(s) close-neighbor-lists and the forward Euler scheme,

Fig. 7. CPU time versus elapsed time. CPU time consumed by is very slow compared with the presented approac_h.
the traditional soft-sphere approaa) @nd the cluster integration There are three reasons for this: First, a drawback with

method with the classical RK4), and the variable time-step Dor-  the forward Euler scheme is the number of time-steps
mand and Prince schems) needed to compute a collision within a given toler-
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ances. Second, the used soft-sphere code updates thReferences

neighbor-particles lists every time-step by traversing

the particle-cell structure, that has a significant costs.

Third, the number of particles to check for potential
collisions is reduced by applying a close-particle-list
in addition to the particle-cell structure.

Besides a significant speed-up of Lagrangian par-

ticle dynamic calculations, the cluster integration
method is robust and flexible. The inelastic collapse

is handled and collision parameters that represent the

material properties can be directly. The algorithm is
suitable for a wide range of applications; fluid forces

can easily be added and by increasing the virtual ra-

dius, it is possible to calculate semi-long and long-
range inter-particle forces.
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ABSTRACT
Numerical calculations of a particle-laden turbulent hori
zontal mixing-layer based on the Eulerian-Lagrangian aygmh

are presented. Emphasis is given to the determination of the

stochastic fluctuating fluid velocity seen by the particles i
anisotropic turbulence. The stochastic process for thetdhte
ing velocity is a “Particle Langevin equation Model”, based
the Simplified Langevin Model. The Reynolds averaged Navier
Stokes equations are closed by the standard k-epsilonlerbe
model. The calculated concentration profile and the meam, th
root-mean-square (rms) and the cross-correlation termghef
particle velocities are compared with particle image vétoe-

try (P1V) measurements. The numerical results agree reasign
well with the PIV data for all of the mentioned quantities.eTh
importance of the modeled vortex structure “seen” by thetipar
cles is discussed.

INTRODUCTION
Prediction of the particle concentration and mean and fluctu

ating particle velocities are important in the modelingted par-
ticle collision frequency and for the interaction betwess parti-
cle and the fluid phase in turbulent particle-laden flowsclsas-
tic models for particle collisions depend directly on thetiote
velocity fluctuations and the number density of particles3]1
The trajectories of the particles are especially importainén

evaporation takes place, where the temperature and the-chem

ical composition of the particles depend on their history |
the Lagrangian particle tracking approach the instantaséoid

Stefan Horender
Martin Sommerfeld
Institut fur Verfahrenstechnik
Martin-Luther-Universitat Halle-Wittenberg
D-06099 Halle (Saale) Germany
E-mail: martin.sommerfeld@iw.uni-halle.de

velocity is unknown. However, the Eulerian approach for th
turbulent fluid phase gives mean velocities and some aver:
turbulence parameters that can be used to model the instal
neous fluid velocity. Minier [4] suggested a Langevin equati
model for the instantaneous fluid velocity working on thetipar
cles. Minier extended the “Simplified Langevin Model” (SLM)
for fluid particles, see Pope [5] and references thereimedial
particles. Hereafter we will call the model of Minier the ‘fi#a
cle Langevin Model” (PLM). Previous models for the turbulen
structure, such as the “eddy-life time” approach [6] and‘the-
dom walk” models [7] have shown good results for particles i
grid turbulence. Coimbrat al. [8] calculated the mean and the
rms of the fluid velocities in the two-dimensional mixing ¢y
of Hishidaet al.[9] with an eddy life-time model. However, the
prediction of the rms of the particles velocity fluctuatidased
and showed that the eddy-life time approach is insufficiant
anisotropic turbulent flows. The combination of the Eule@g-
proach for the fluid flow and the stochastic differential egpra
of Minier [4] for the fluctuating velocity seen by the par@slwas
recently presented by Nauwet al. [10]. Naudet al. closed the
Reynolds averaged Navier-Stokes equations by the Sintplifi
Langevin Model. Liuet al.[11] combined a Langevin equation
model for the instantaneous fluid velocity with a Reynoldest
model for the continuous phase and got reasonable resuttesfo
average velocities and the velocity fluctuations in a periaden
swirl flow.

In this work we have written the PLM for the fluctuating
fluid velocities and a standatde model has been used for the
continuous phase. The numerical simulations were compai

Copyright (© 2005 by ASME



with the horizontal mixing-layer experiments of Horend#2].
The particles with mass mean diametery@0where injected
slightly above the splitter plate on the low-speed side. e
ing layer has a clear vortex structure and due to gravity the d
persion of the particles depends on the modeled life-timee, f
qguency and strength of the vortex structure. We observelieat
PLM was able to reproduce the measured concentration profile
the rms of the particle velocity and the particle velocitpss-
correlations terms in anisotropic and non-homogeneoumitur
lence. For comparison, we showed that a random walk model [7]
could not predict the concentration profile and the rms ofidre
ticle velocities correctly. The reason is the insufficiemdaling
of the cross-correlations terms, while the rms of the fluid gy
fluctuations were predicted well.

In the following, attention is first given to the modeling of
the continuous phase, then the modeling of the fluid veleagn
by the particles. The models determining the motion of heavy
particles in gas are outlined and the experimental setupaflyo
presented. Then the results for the turbulent horizontaingit
layer, laden with glass particles are presented and disduss

MODELS FOR THE FLUID FLOW

The fluid flow was assumed to be incompressible and the
particle volume fractiom, was very small§p < 1). Then the
Reynolds averaged continuity and momentum equations are:

oU; _
5O 1)
0 ,— _ 1 0P 0
g(ul) a_xJ(U'U‘):_E& ax,( i)
d aU; 0U 1
+67x,{v<axj o >}+p For (2)

wherepy is the fluid density and; is the mean fluid velocity de-
fined byU; = U; + u;. P is the mean pressurejs the kinematic
viscosity and7p is the mean force of the particles working on
the fluid. The momentum equation (2) was closed by the turbu-
lent viscosity approach, where the Reynolds stressgs; were
expressed by [13]:

an 2 o
0_X|> —§k5|j~,

wherek is the turbulent kinetic energk & %m) andvy is the
turbulent kinematic viscosity, modeled by the standagemodel
of Launder & Spalding [14]. Launder & Spalding modeled the

_u,ujfvt<au' + (3)

0xj

2

turbulent kinematic viscosity as follows:

k2
:Cu*>
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whereC,, = 0.09 is a model constant ards the dissipation rate
of turbulent kinetic energy. Transport equations are sbfeethe
turbulent scalark ande. The transport equation for the turbulen
kinetic energy reads:

d

dxJ ®)

ok
((v+vt)a ) + PR —¢,
where the production of turbulent kinetic enefgyis defined by:
_ oU; an
Rc=wt < + o )

aX]‘
The transport equation for the dissipation rate of turbikeretic
energye is given by:

U,

aX]‘ ’ (6)

de 0t 0 o€
5 '6_x,-76_x,~(<v+ >ax>+Cgl Pc— Cezs (7)
wheregg = 1.3,C¢1 = 1.44, andCe» = 1.92. The direct influence

of the particles on the turbulent kinetic energy was neghict
The momentum equation (2) and the transport equations
lated to the turbulence models, Eqn. (5) and (7), were digewct
using the finite-volume method on a staggered grid. The cc
vective terms were discretized by a central differencirigesee
and the pressure field was found by the SIMPLE algorithm. Tl
calculations were performed on a grid with 10@8 x 49 cells.
Tests were carried out on a finer grid (2008 x 99) to ensure a
grid independent solution of the flow field. The relative @eain
of the shear-layer growth between the coarse and the fine g
was 6%, which is less than the deviation between the nunieri
and experimental results. After the fluid flow had converdieel,
particles were tracked and the mean force on the fluid in ea
control volume was calculated. Then the flow was calculats
with updated source terms. The iteration was performeditineti
number of iterations the fluid solver needed to convergeredc
a “steady number” [15].

FLUID VELOCITY SEEN BY THE PARTICLES

In the Eulerian-Lagrangian methodology, the mean values
the fluid velocity components and the turbulent scalars &eng
by the Eulerian approach for the fluid flow. However, the pa

ticles see the instantaneous fluid velodey The instantaneous
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Figure 1. FLUID AND PARTICLE PATHS.

velocity is stochastic, and should not only obey the corttetiu-
lence statistics, but it should also represent the large scatex
structures. Pope [5,13] presented the Simplified Langeadé!l
(SLM) for the instantaneous fluid velocities in the Lagramgi
approach following a fluid particle. By using this modeling a
proach, the velocity of the fluid particles are given by als&stic
differential equation for each velocity component. Thesmm
els have a clear correspondence to the well establishedoREsyn
Stress Models. Inertial particles do not follow the fluid (e,

as illustrated in Fig. 1. Minier [4] suggested a model based o
the Simplified Langevin Model that takes into account thét dri
between the inertial particles and the fluid particles, tagi€le
Langevin Model (PLM). An elaborated presentation of PLM is
given by Minier and Peirano [16] and recently Mingtral. [17]
introduced a two-way coupling term. In the present formatat

the two-way coupling is handled in the momentum equation (2)

and is therefore not considered in the Particle Langevin éllod
for the fluctuating velocity. Written for the fluctuating weity
u;, the Particle Langevin Model is given by:

dy :fujg—:idt+

aruj
0x i

—%uidw \/e ((Co-i- g) bk/k— %)dwa). (®)
—_—

1 v

oU;

dt+(V; —Uj)

The first term (1) on the right hand side is a fluid drift terme th

change of the fluctuation due to the changes of the fluid flow.

In the present work, the Reynolds stresses are calculated fr
Eqn. (3). The second term (I1) handles the drift between #re p
ticle and the fluid velocity field. Minier [4] proposed thisteas

amean-drift-termand used the ensemble averaged particle veloc-

ity, that is known when solving a pdf for the particle phasain
Eulerian framework. As mentioned by Maclnnes & Bracco [6],
the average particle veIocik&/,—) at the particle position is not
knowna priori. Therefore, the instantaneous particle velodjty
and fluid velocityU; are used in the current work, as proposed

3

by Simoninet al.[18]. A consequence of using the instantaneot
velocities also in the calculations of the Csanady’s factera
possible over-prediction of those factors in low-speedoresg
The third term (l11) is the memory term, relating the new fluct
ating fluid velocity to the previous by the Lagrangian timealsc
TLi. The Lagrangian time scale in an arbritrary direction iegiv
by:

Ti=73—%- 9)

where the constanil takes the valu€y = 2.1 [19]. The differ-
ence between the stream-wise and the transversal time scale
handled by the Csanady'’s factdys given by:

Vi —U)?
blsz+(b\\7bL)7(4l) jl)z, (10)
‘V—U
2 0.5
2‘\/ _U‘
bH: l+BT/3 (11)
2 0.5
V-0l
b, = 1+4[32T/3 , (12)

wheref} is the ratio between the Lagrangiinand EulerianTg
time scaled = T, /Te = 1/C.. In the current worlC_ = 1.1 is
used. Term Ill has a clear correspondence tolitrear-return-
to-equilibriummodel for the redistribution term in a Reynolds
Stress Model. Thénear-return-to-equilibriummodel is indeed
a simple model for the redistribution term, but it seems odie
crucial in the modeling of the motion of inertial particleghe
fourth term (1V) is the diffusion term, that includes randoass
through the Wiener proces8\{(t). The diffusion in the different
directions is independent, but anisotropicis a dimensionless
turbulent kinetic energy weighted by the Csanady’s factioas
was introduced by Minier [4] and is defined by:

_ 33iab?
2 57 .b

Nt

(13)

For comparison, the instantaneous fluid velocity was al
calculated by the random walk model (RWM) of Sommerfel
et al. [7], that also can been seen as a Langevin model for
Ornstein-Uhlenbeckrocess written in finite difference form [5].
The model should therefore work well in isotropic and homog
neous turbulence. The fluctuating velocity at the next titep s
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Unt1,i IS given by:

Uni1i = Rei(dt)uni + 014 /1 - REE;, (14)

whereg; denotes a normal distribution with zero mean and a vari-
ance equal unityo is given by the turbulent kinetic energy as
follows ot = 1/2/3k. Rp; is the velocity correlation function
Rpi = RLRei. R_ is the Lagrangian velocity correlation given
by:

dt
RL=exp(—=), (15)
T
where the Lagrangian time scdleis determined from:
- o?
TL=cr s (16)

wherecr = 0.24 is consistent witlCy = 2.1 in the PLM given
in Eqn. (8). The drift between the inertial particles andfthi,
the so-called “crossing-trajectory-effect”, is handlgddm addi-
tional Eulerian velocity correlation functioRg i, by using the
longitudinal and transverse correlation coefficiefitandg

riri

RE,i:(f*g)WﬁL@ (17)

where T is the displacement between the inertial particle and
fluid particle that were at the same position at the previone t
step. The longitudinal and transverse correlation coefiitsi for
homogeneous and isotropic turbulence are given by:

T
f= exp<——> , (18)
Le
_ 7] il
g= (1 e exp ) (29)
where the integral length scdlg is determined from:
LE = C|_:|.:|_O'f4 (20)

PARTICLE MOTION
The particles were tracked individually in the Lagrangian

framework and were assumed to be spherical and adiabatic.

Due to the large density ratio between the particleg €

2950kg'm®) and the carrier phase{( = 1.2kg/m®) only the
drag and the gravity forces were considered. Collisionwéen
the particles were neglected. Then the Lagrangian equsitian
determine the motion dfl particles could be written as:

dXn o

o =V (21)
dv, BN

= :—n(vnfu)m (22)

wheren=1,...,N. The particle response tintg is defined by:

_4ppdy 1

== === 23

n 3 Pf CD ‘an U>| ( )
where the drag coefficie@p is given by the standard correla-
tion:

% (1+0.15(Rep) %)

R
. , Re, < 1000
0.44 ,

(24)
Re, > 1000

with the particle Reynolds numb&g, = (dp|7 — U\)/v. The
fluid properties in the position of the particles were fougdib-
ear interpolation between the fluid cell centers. The motibn
the parcels was calculated sequentially. Each parcelsepted
a number of real particles with equal properties. Data wane-s
pled in each fluid cell for the back-coupling of the drag farce
For comparison with experimental results, data were sagriple
the same way as by the PIV, described below. That is in boxes
3.2x3.2x2mm. In order to obtain statistically reliable data als:
in the outskirts of the mixing layer, a huge number of par¢&08

) was needed. The time step was limited upwards by the parti
response time, the Lagrangian time scale and the size of the
control volumes for the fluid flow calculatiohs, as follows:

dt =min (0.2r,0.1T|_,O.5|°—V) ) (25)

&
v1

EXPERIMENTAL SETUP

The wind tunnel was thoroughly explained by Hardalupe
& Horender [20] and only the key features will be mentione
here. Figure 2 shows the horizontal setup, where the crass <
tion of the tunnel is B x 0.3m and the distance from the edge
of the splitter plate to the end of the channelis 1 m . Thetsplit
plate is 300mm long and 0.5 mm tick at the edge. A pipe wil
inner diameter 5mm and outer diameter 7mm, with the outl
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pressure supply _@ 100

Laser sheet

: ]
pressure drop /
-Camem
!
splitter plate
Figure 2. DRAWING OF THE EXPERIMENTAL SETUP. b
0 100 200 300 400 500
X, (mm)

placed on the upper edge of the splitter plate, was useddotinj  Figure 3. MOMENTUM THICKNESS & IN STREAM-WISE DIRECTION
the particles. The air velocities weresdn/s and 08m/sonthe  x;. o DENOTES THE EXPERIMENTS AND A DENOTES THE NUMERI-
the high-speed and low-speed side respectively. The &mbel CAL SIMULATION.

intensities were around 3% on the undisturbed high-spekd si
The properties of the air were densfiy = 1.2kg/m? and kine-
matic viscosityy = 1.5-10-°m?/s. The injection rate of parti-
cles was M- 10 *kg/s that corresponds to a local mass loading
of 12%. The density of the particles was 2950kg and the
particles were in the range 70-116n with a mass mean dia-
meter 9Qum. The inlet particle velocity was.8m/s with rms

of stream-wise and cross-stream velocity fluctuations®f)'s

and 02m/s respectively. A particle image velocimeter (PIV)
measured the particles over a cross section 300 mm dowmstrea
of the edge of the splitter plate. The size of the interragati
windows was 2 x 3.2mm and 400 images were recorded with
a sampling frequency of 3Hz. The laser sheet was approxiynate
1mm thick. The uncertainties were 2% and 7% for the mean par- TR
ticle velocity and the rms of the velocity fluctuations, 6% tioe 1OC (#,Ce”)zo
mean particle concentration and 15% for the cross-coioelat
between the stream-wise and cross-stream velocities. Ater-u
tainties were expected to be somewhat larger in regionsfexith

Figure 4. MEAN CONCENTRATION OF PARTICLES C. THE SYM-
BOLS (0) DENOTE THE EXPERIMENTAL RESULTS, THE SOLID LINE

particles. DENOTES THE PLM MODEL, EQN. (8), AND THE DASHED LINE DE-
NOTES THE RWM MODEL, EQN. (14)
RESULTS
The development of the momentum thicknesgor the cle injection pipe and the results should therefore be szm@-
single-phase flow is shown in Fig. 3. The experiments shows a tive for the entire mixing-layer. Figure 4 shows the mean hem
non-linearity in the mixing-layer growth close to the siglitplate concentration profile and we observe a good agreement betw

that was not obtained by the numerical simulations. A reason the measured number density and the PLM model. The diffe
might be the low turbulent Reynolds number and the intermit- ence between the PLM and the random walk model (RWM)
tency of the flow. Further down-stream, the growth of the mgxi significant. Probably reasons for the difference in theetision
layer was well predicted by the stand&rd-model, and we may of particles will be addressed in the discussion. One alss s¢
conclude that thd-e-model is suited for mixing-layer calcula-  that few particles are present fgg > 20mm, which increases
tions, which agrees with the findings of Coimtatal. [8]. the uncertainties in this region.

The results for the particle-laden flow are presented 300 mm The mean patrticle velocities, shown in Fig. 5, are general
downstream of the edge of the splitter plate. At this locatfee well predicted by the RWM while the PLM over-predicts the-pat
mixing-layer should be undisturbed by the presence of thie-pa  ticle velocity, in particular on the low-speed side. Figarghows
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20

X, (mm)

_20 -

0.5

Figure 5. THE STREAM-WISE (UPPER) AND CROSS-STREAM
(LOWER) MEAN PARTICLE VELOCITY AT X3 = 300mm THE SYM-
BOLS (o) DENOTE THE EXPERIMENTAL RESULTS, THE SOLID LINE
DENOTES THE PLM MODEL, EQN. (8), AND THE DASHED LINE DE-
NOTES THE RWM MODEL, EQN. (14)

that the rms of the fluctuating particle velocities are fatdrepre-
dicted by the PLM than by RWM. We also observe that the PLM
slightly over-predicts the rsm of the fluctuating particidocity

in the stream-wise direction. However, Horender [12] p&diht

0.6

0.2 0.4
v, (m/s)

Figure 6. THE STREAM-WISE (UPPER) AND CROSS-STREAM
(LOWER) PARTICLE FLUCTUATING VELOCITY AT X3 = 300 mm THE
SYMBOLS (0) DENOTE THE EXPERIMENTAL RESULTS, THE SOLID
LINES DENOTE THE PLM MODEL, EQN. (8), AND THE DASHED LINE
DENOTES THE RWM MODEL, EQN. (14).

rather roughly. In the numerical simulations a particlentger

of 90um was considered, hence only one particle relaxation tin
was present, whereas in the experiments the particle teaxa
time varied with a factor two. It should also be mentioned tf

out that the rms velocities might have been measured too low calculations of the presented statistics were based orutinder

by the PIV. The results of the modeled large scale vortexcstru
ture are shown by the particle velocity cross-correlafian,) in
Fig. 7. The isotropic model does not correlate the particletdi-
ation velocity in different directions, hence no vortexusture is
predicted.

DISCUSSION

The turbulent dispersion, shown by the number density pro-
file in Fig. 4, depends on several parameters. For instanse wa
the particle size distribution used in the experiments nnesb

of particles in the irrogations windows, which gives the 8ma
particles present in the experiments too much weight. Desp
the uncertainties in the particle size distribution wasphgicle
number density profile well predicted by the PLM. The calct
lated dispersion of particles into the low-speed side shibats
vortex structure has been modeled well.

Compared to the measurements, the PLM gives too high v
ues for the stream-wise mean particle velocity. Two reasoas
the modeling of the “crossing trajectory effect” and thetiote
size distribution. Firstly, due to the gravity and the mean v
locity gradient, term Il in Eqn. (8) is in average positivenice
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<V V>,

Figure 7. THE PARTICLE CROSS-CORRELATIONS (V1V2) AND THE
NORMALIZED ONES (V1V2),,.

the mean fluid velocity seen by the particles is larger than th
mean fluid velocity. A larger “seen” than real fluid velocity i
physical in this case, but the difference might be over-joted.
Secondly, the particle size distribution might be impottem
the mean particle velocity on the low-speed side. Smaligast
travel more easily towards the gravity into the low-speegae
and they furthermore retard faster to the low-speed sidzcitg)
due to a shorter particle relaxation time.

Figure 6 shows that the rms of the fluctuating particle veloc-
ities are close to zero for the RWM. However, Fig. 8 shows that

the RWM reproduce the diagonal terms in the Reynolds stress

matrix well. This indicates that the integral time scalewas

modeled too short. Figure. 8 also shows that the cross corre-

lation (uup) was not reproduced by the RWM, hence a vortex
structure was not predicted.

The large scale vortex structure transports particles with
high velocity from the high-speed side to the low-speed aiu®
vice versa. The over-prediction of the rms of the particle ve
locity fluctuationsvy; andv, by the PLM can therefore be ad-

7

dressed to the modeling of the vortex-structure. Posséasans
for the over-prediction ofi1, vo and (viv2) are over-prediction
of Csanady’s factors and the “crossing trajectory effect® do
the use of the instantaneous particle velocity insteadeétrer-
age particle velocity, but there might also be a shortcorofrige
model on this point. Another reason might be the effect ofgrre
ential concentration. The particles were tracked seqakynénd
the fluctuating fluid velocities related to each particlesenie-
dependent, therefore a preferential concentration, thatmea-
sured by Hardalupas & Horender [20], cannot be predicted.
turbulent flows with a particle Stokes number around unity tt
particles spin out of the eddies into regions where strgidiom-
inates vortices [22,23]. It is not necessarily anythingngwith
the reproduction of the Reynolds stresses (Fig. 8), buthike f
Reynolds stresses seen by the fluid are not those seen byrthe
ticles, because the particles are accumulated in straohong-
nating regions. This may lead to an over-prediction of the pe
ticle fluctuating cross-correlation terms, which is seefim 7.

If we normalize the cross-correlatiofyivz),, = (Vivo) /(ViVa),
the numerical results agrees well with the experimentalltes
Hishida [9] also reported values ¢f1v»),, around 0.7.

CONCLUSION

In this paper numerical calculations of a particle-ladem, t
bulent mixing-layer based on the Eulerian-Lagrangian eagin
have been presented. The mixing-layer was horizontal aad
particles were injected from a jet placed just above thetspli
plate, on the low-speed side. The stochastic process fdiuitre
tuating velocity was modeled by the Particle Langevin eiguat
Model (PLM). The Particle Langevin Model is based on the co
responding Simplified Langevin Model for single-phase flow:
that again has a clear correspondence to the Reynolds St
Models. The Reynolds averaged Navier-Stokes equations
the fluid flow were closed by the standard k-epsilon turbugen
model without additional source terms. It was found that tt
PLM is able to reproduce the anisotropic turbulence and tire v
tex structure in the mixing-layer quite well. The PLM was com
pared with a random walk model that does not model the vort
structure. It was found that the modeling of the vortex gtrcee
is important for the prediction of the particle number dgnand
the rsm of the particle velocity fluctuations.
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Figure 8. THE REYNOLDS STRESSES, SEEN BY THE FLUID (SOLID
LINES) AND SEEN BY THE PARTICLES (0=RWM, [J=PLM).
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Abstract

A model for correlating the motion of NNV inertial particles in turbulent flows in the
Eulerian-Lagrangian framework is proposed. The Reynolds-averaged Navier-Stokes
equations provide only a mean fluid velocity field and a mean turbulence field. One
therefore has to reproduce the instantaneous fluid velocity seen by the particles to ob-
tain realistic particle trajectories. This is often done by evolving in time a stochastic
differential equations for fluid particles, where one fluid particles follows each iner-
tial particle. The velocity of close fluid particles is correlated, and in the proposed
model, the velocity is correlated via the random term in the stochastic differential
equations. Turbulence is characterized by time and length scales varying in time
and space, and this intermittency is modeled by employing a stochastic differential
equation for the turbulence frequency. The present results of fluid-particle pairs sim-
ulations yield the classical Richardson t3-law. N inertial particles in isotropic and
homogeneous turbulence are simulated and the results are compared with empirical
correlations based on direct numerical simulations.

Key words: Particles, Turbulence, Lagrangian, Collisions,
PACS: , 47.11.4j, 47.27. Eq, 47.55 Kf

1 Introduction

Particle contacts, resulting in collision, agglomeration or coalescence, take
place in many particle-laden turbulent flows. The number of particle contacts
and the outcome of such contacts are influenced by the concentration of parti-
cles and the relative particle velocity at the time of contact. For particles with
a response time 7, comparable to some time scales of the fluid, the velocity of

* Tel.: +47 41215517, Fax: +47 55 57 43 31, E-mail: jensm@pvv.ntnu.no

Preprint submitted to European Journal of Mechanics/B-Fluids



the particles located in the same turbulent eddy will be correlated. Further-
more, if the particle response time 7, is of same order as the Kolmogorov time
scale 7,, the particles concentrate in regions with high strain [1].

In Eulerian-Lagrangian simulations of turbulent particle-laden flows, where
the mean velocity and turbulence parameters calculated, the instantaneous
fluid velocity has to be modeled. The Langevin-equation model [2] is a stochas-
tic model for the fluid velocity working on inertial particles, and it gives sat-
isfactory results in flows like wall-jet [3] and mixing-layer [4], that include
anisotropic turbulence. However, the Langevin equation determines indepen-
dent particle trajectories. It is reasonable to assume that particles that are
close to each other will see almost the same velocity field.

The aim of this work is to find a correlation for the fluid velocity at the position
of inertial particles that are spatially close to each other. By correlating the
velocity correctly, it should be possible to calculate the collision frequency,
the collision impact velocity and the preferential concentration of particles in
turbulent flows.

There is a considerable literature on the collision frequency in various tur-
bulent flows [5,6,7,8]. Sundaram and Collins [9] made direct numerical simu-
lations (DNS) of a homogeneous turbulent flow and found a correlation be-
tween the collision frequency and the particle Stokes number based on the
Kolmogorov time scale 7,,. The Kolmogorov Stokes number is defined by
Tp

St, = (1)

Tn

Reade and Collins [10] connected the collision frequency to the effect of prefer-
ential concentration, or clustering, of particles. Clustering of particles has been
observed both in numerical calculations [1] and experimentally [11]. The cen-
trifugal forces in a vortex try to move the particles out of the vortex. These
forces are most effective at Kolmogorov Stokes numbers St, around unity.
Large-eddy simulations of homogeneous and isotropic turbulence laden with
heavy particles showed a smaller impact velocity than estimated by kinetic
theory [12].

Sommerfeld [13] and Berlemont et al. [14] suggested models that correlate the
velocity of the fictive collision particle to the velocity of the real colliding par-
ticle in a stochastic collision model. Berlemont et al. ran also simulations with
multiple particles and detection of every collision. Then the fluid velocities
of the colliding particles were correlated after the collision. As mentioned by
the authors, the models of Sommerfeld and Berlemont et al. cannot predict
clustering of particles.

Another family of models handles the dispersion of fluid particle pairs by a



stochastic differential equation (SDE). Models have been made for the inter-
particle distance [15] and the inter-particle velocity [16]. These models handle
the relative motion of two particles well and are for instance used to close
probability density function (pdf) transport equations.

Kaplan and Dinar [17] correlated the motion of N particles via the random
term in the Langevin-equation model by using the spatial autocorrelation func-
tion and a fixed integral length scale Lg. An advantage of using the random
term for correlating the motion is that the equations are valid for any number
of particles. The model of Kaplan and Dinar fails to reproduce Richardson’s
t3>-law. In the current work, the motion of N inertial particles also are cor-
related via the random term by using the spatial autocorrelation function.
Contrary to what was done by Kaplan and Dinar, the spatial correlation is
based on the instantaneous integral length scale L};, calculated by evolving in
time a stochastic differential equation for the turbulence frequency [18]. Hence
the intermittency of the turbulence is modeled, and, as we will show in Sec. 4,
the classical Richardson #3-law is successfully reproduced by the new model.

The paper is organized as follows. In Section 2, models for the instantaneous
fluid velocity and the turbulence frequency are presented. A simple correla-
tion function based on the instantaneous integral length scale is proposed.
Section 3 briefly presents the governing equations for the motion of heavy
particles in a gas without gravity. The results for dispersion of fluid-particle
pairs in homogeneous turbulence are shown in Section 4. Section 5 shows the
results of the collision rate, the relative velocity at contact and the radial dis-
tribution function for heavy particles suspended in isotropic and homogeneous
turbulence. The results are compared with the correlations obtained from DNS
calculations [19]. A discussion of the results follows in Section 6 and Section 7
concludes the paper.

2 Models for the fluid velocity

To determine realistic particle paths in cases where only mean fluid flow values
are provided, one has to reproduce the instantaneous velocity seen by the par-
ticles. A Reynolds-averaged Navier-Stokes simulation usually gives back the
mean velocity U and mean turbulence parameters like the turbulent kinetic
energy k, its dissipation € and the Reynolds stresses —%;%;. In non-adiabatic
cases, one also has the mean temperature and the chemical composition of the
fluid.



2.1 Single fluid particle

Pope [20,21,22] proposed a model framework for fluid particles. In the models
of Pope, stochastic differential equations for the instantaneous fluid velocity U;
are solved in time. From many fluid-particle trajectories one can make statis-
tics, which can be used to close pdf-equations. In homogeneous and isotropic
turbulence, the Simplified Langevin Model (SLM) of Pope reads:

au; =
p Ox; 17,

where U, is the instantaneous fluid velocity, u; is the fluctuating fluid velocity,
dW; is the Wiener process, and Cj is the Kolmogorov constant. T}, is the
Lagrangian time scale determined by

1k

T = —— .
T ITG:

(3)
A shortcoming of the SLM is the lack of information about the instantaneous
length and time scales; the intermittency of the turbulence cannot be deter-
mined. Pope and Chen [18] proposed an additional model equation for the
turbulence frequency w. The average turbulence frequency is defined by

(W)=, (4)

and the stochastic differential equation model for the turbulent frequency w
is written as:

o

dw = —Cyw (w) (ln(w/ (w) — %O’Q> dt
+wy/2C, (w) o2 dW, (5)

where the constant C, = 1.6. ¢% is the variance of In(w/ (w)) and is assumed
to take the value 1 in the current work. In the original model [18], there
is an extra constant S,, but this constant is neglected in later works [22].
Eq. (5) obeys a log-normal distribution of the turbulence length and time
scales. The modeled intermittency influences the model instantaneous velocity
in the following way [18]:

10(p) di — iul dt + +/Cokw dW;, (6)

dU; =

where the instantaneous integral time scale 77} is given by

1
T = — . 7
L %(w)Jr%Cow (@)



Eqs. (5-7) constitute the Refined Langevin Model [18].

2.2  Correlated motion

The linear combination theorem and central limit theorem applied on M in-
dependent normal distributions with zero mean and equal variance gives [23]:

M
\/ Zm:l a%@

Then N€ has zero mean and equal variance to that of N,,. N¢ approaches
a normal distribution as M — oo. In the following, this property is used to
correlate the random terms in Eq. (5) and Eq. (6). The Wiener processes
are correlated by using the spatial autocorrelation function for isotropic and
homogeneous turbulence:

Ne =

1 2 2
f’mn = I \/(l"f‘nn €xXp <_lm'ﬂ/L*E,n)) + (ZTJT_LTL eXp (_QlTILTL/L*E,n>> (9)
where I, = ||€m — @, I and I is the separation distance between parti-

cle n and particle m in the stream-wise and span-wise direction, respectively.
The longitudinal and transverse autocorrelation functions are assumed to be
equal. The instantaneous integral length scale associated with particle n, Lj

is determined by
1 1 /2.1
L —k— 10
En — Cl 1 300 W, 3 e’ ( )

where Cj is the ratio between the Eulerlan and Lagrangian time scales C; =
Tg/Ty. e is defined by e = exp(1) such that

. 11 21
Le = <LE”> <Cl L 300 Wy gkg>
1 1 /2
Cl 1 300 < > _ka (11)

given 0 = 1 in Eq. (5). The correlated motion model, written for the fluctu-
ating velocity by using the continuity, becomes:

1
Aty ; = — U At + ) Cokw, AW ; (12)
7 TLn
dw, = —Cyw, (W) <ln(wn/ (w) — %) dt
20y {w) AWy, (13)



where
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where NNV is the number of particles and dW} are independent Wiener pro-
cesses. Four Wiener processes are related to each particle, one for each velocity
component u, ; and one for the turbulence frequency w. f,, is given by Eq. (9).
To ensure stable simulations, w is kept within the range w € (0.1 (w) , 40 (w))
in the present work. Calculation of dW is computationally expensive for sys-
tems with many particles; the complexity is of order O(N?). A speed-up can
be achieved by looping over the closest neighbors in Eq. (14); those which
give a significant contribution to dWJ. The closest neighbors can be found
for instance by employing a particle mesh [24]. The complexity of calculating
dW¢ is then reduced to O(N).

AWe = (14)

3 Lagrangian particle model

The particles were tracked individually in the Lagrangian framework and they
were assumed to be spherical and adiabatic. Due to the large density ratio
between the particles (p, = 9 — 550 kg/m?) and the surrounding fluid (p; =
1.0kg/m?) only the drag force was considered. The drag force is modeled by
the Schiller and Naumann correlation, which is reasonably good for particle
Reynolds numbers, Re, = (d,|V — U]|)/v, lower than 800 [25]. In order to
compare with DNS data, the gravity was neglected. The Lagrangian equations
that determine the motion of N particles can then be written as:

dX
"=V,
dt '
dv, 1+ 0.15Re0-087
=————W,-U), (15)
dt Tp.n
where n =1,..., N. The particle response time 7, ,, is defined by
d2
Ty (16)
’ 18u

4 Dispersion of fluid particle pairs

To validate the proposed model for the correlated motion, dispersion of two
fluid particles in homogeneous isotropic turbulence is performed. From a small
initial separation [y, the average dispersion, measured by the average of the



separation distance squared (I?), undergoes three regimes. This first is the
viscous range (I < ), where the turbulence has little or no influence on the
separation. The proposed model is made for real particles with diameter of
order O(n), hence very small separation distances are avoided. In the inertial
range (n < | < Lg), the relative dispersion is unaffected by both the viscos-
ity and the large scales of the turbulence. Recently, Yeung and Borgas [26]
did DNS and reported that the separation distance in this region is highly
intermittent. The average dispersion in the inertial range follows Richardson’s
t3-law:

(1) = apet’, (17)

where ap is a non-dimensional constant. By inclusion of an equation for the
turbulence frequency in our model, the first moment of the intermittency, that
was observed by Yeung and Borgas, should be captured. At large separation
distances (I > Lg), the motion is uncorrelated and the average separation
distance goes as (1) ~ kTyt.

A background turbulence field with turbulent kinetic energy k = 0.345m?/s?
and dissipation e = 1.0 m?/s® was considered. The fluid properties were density
p = 1.2kg/m? and viscosity u = 1.8-1075Pa - s. The values above correspond
to the Reynolds number Re), = 230 and the Kolmogorov scales n = 2.42 -
10™*m and 7, = 3.873 - 107%s. The model constants were Cy = 5.33 and
C, = 1.26, such that the turbulence integral time and length scale were 77, =
7.67-1072s and Ly = 4.65 - 1072m. 2000 pairs for each initial separation
distance were found to be sufficient. Initial separations ly/n € (1,4,16,64)
were considered. A relative long time step, dt = 0.17;, was used and the
total simulation time was = 107T},. Tests were done with smaller time steps
without any significant difference in the results. The initial fluid velocities were
picked from a Gaussian distribution with zero mean and variance 2/3k and
then correlated similarly to the Wiener process in Eq. (14). The turbulence
frequencies for the first pair were picked from a Gaussian distribution with
mean (w) = ¢/k and a standard deviation 0.1 (w), thereafter the last values
from the previous simulated pair were used.

Fig. 4 and Fig. 4 show the 1/3 power of the mean square separation ver