


E.5. CROSS-HOLE TEST 5
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APPENDIX E. RESULTS OF CROSS-HOLE TESTING AT ESP,
BYNESET

E.6 Cross-Hole Test 6

For test 6, a horizontal strike of a sledge hammer served as source. The
steel rod was struck parallel to, but against the direction of wave propaga-
tion. An illustration clarifying the strike direction is presented in Figure
6.6.

Figure E.12 shows the total response registered by accelerometers Al and
A2.

A close-up used for determination of the s-wave travel time, and conse-
quently vy and Gjnqz, is shown in Figure E.13.
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E.6. CROSS-HOLE TEST 6
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E.7. CROSS-HOLE TEST 7

E.7 Cross-Hole Test 7

For test 7, a horizontal strike of a sledge hammer served as source. The
steel rod was struck parallel, and in direction with wave propagation. An
illustration clarifying the strike direction is presented in Figure 6.6.

Figure E.14 shows the total response registered by accelerometers Al and
A2.

A close-up used for determination of the s-wave travel time, and conse-
quently vs and Gjqz, is shown in Figure E.15.
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E.7. CROSS-HOLE TEST 7
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APPENDIX E. RESULTS OF CROSS-HOLE TESTING AT ESP,
BYNESET

E.8 Cross-Hole Test 8

For test 8, a horizontal strike of a sledge hammer served as source. The
steel rod was struck normal to the direction of wave propagation, from
the right to the left, defined when standing by the rod looking towards
Al and A2. An illustration clarifying the strike direction is presented in
Figure 6.6.

Figure E.16 shows the total response registered by accelerometers Al and
A2,

A close-up used for determination of the s-wave travel time, and conse-
quently vs and Gz, is shown in Figure E.17.

210
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Appendix F

Results of Shear Tests

Shear tests were performed on samples from every site. All tests were run
undrained. For information about the behavior of the soils, the results are
presented here.

Resulting parameters, deformation modulus M, friction angle ¢ and at-
traction a, is given in table F.1.

The modulus and friction angle is determined from equations (F.1) and
(F.2).

q= M@ +a) (F.1)
_ bsing
M=a—0s (:2)

The Stjgrdal Clay

The stress path of the Stjordal clay used for bender element testing is
shown in Figure F.1. The sample shows an initial dilative behavior before
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APPENDIX F. RESULTS OF SHEAR TESTS

Table F.1: Soil parameters resulting from shear tests.

Modulus, Attraction, Friction tang

M[-] alkPal angle, ¢[deg] -]
Stjordal clay 1.19 19 30 0.573
Tiller clay 1.25 8 31 0.604
Esp clay 1.13 10 28 0.541

it contracts, and then dilates again. Also, the sample shows an initial
drained behavior which is hard to explain.

Figure F.2 shows the development in shear stress with axial strain. The
pore pressure is plotted in the same diagram, showing a normal build-up
of pore pressure.

Testing performed on the same clay during the autumn of 2012, as part of
the NTNU course Geotechnics, Field an Laboratory Investigations, showed
¢ = 25° and a = 17 kPa. The results of this test (Table F.1) deviate some
in comparison to previous results, but not to an unreasonable extent. The
friction angle determined here is somewhat higher, giving some doubt to
what results should be trusted.
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Figure F.1: Stress path of Stjordal clay, for the second test performed, shown
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during the second shear test performed on Stjordal clay.
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APPENDIX F. RESULTS OF SHEAR TESTS

The Tiller Clay

The stress path of the Tiller clay used for bender element testing is shown
in Figure F.3. The clay show a contractive failure mechanism. Also, the
sample shows an initial drained behavior which is hard to explain.

Figure F.4 show the development in shear stress with axial strain. The
pore pressure is plotted in the same diagram, showing a build-up of pore
pressure which may be somewhat low.

The Esp Clay

The stress path of the Esp clay used for bender element testing is shown
in Figure F.5. The clay show a contractive failure mechanism, similar to
that of the Tiller clay.

Figure F.6 show the development in shear stress and pore pressure with
axial strain.
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APPENDIX F. RESULTS OF SHEAR TESTS
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Figure F.5: Stress path of Esp clay, shown with assumed failure line.
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Appendix G

Variation in v with Time of
Consolidation

G.1 Observations from Bender Element Tests

Stjgrdal Clay

Figure G.1 shows the variation in shear wave velocity, vs, and axial strain,
€4, With time of consolidation for the second bender element test per-
formed on Stjgrdal clay. A clear increase in v, and consequently Gz, 1S
observed.
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APPENDIX G. VARIATION IN Vg WITH TIME OF

CONSOLIDATION
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Figure G.1: Variation in shear wave velocity and vertical strain with consol-
idation time. The plot presents the results of the second bender element test
performed on Stjgrdal clay.

Esp Clay

Figure G.2 shows the variation in v and e, with time of consolidation for
the first bender element test performed on Esp clay. The development of
the first 90 minutes of consolidation is shown in Figure G.3. Although v, is
seen to level out some time before ¢, stabilizes, the tendency of increasing

vs with increasing ¢, is evident.

Figure G.4 shows the variation in vs and e, with time of consolidation for
the second bender element test performed on Esp clay. The development
of the first 60 minutes of consolidation is shown in Figure G.5, giving
a more detailed view of the corresponding effects of increasing vy with

increasing eg.

The effect of time of consolidation is similar for all tests, showing an
increasing v, with time. For the Esp clay, a larger increase is measured
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G.1. OBSERVATIONS FROM BENDER ELEMENT TESTS

during the second test than for than during the first. This may be related
to sample quality. Both samples were taken from the same block sample,
however the first sample was built in the triaxial apparatus the same day
as the block was opened. The second test was run ten days after opening
the block sample, hence the sample used for this test was expected to be
somewhat more disturbed. Although measured v, is lower at the start
of the second test than the first, and show a larger increase in the initial
consolidation phase, both tests level out at about the same values of vs.
This substantiates the validity of the tests.
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Figure G.2: Variations in shear wave velocity and vertical strain with consolida-
tion time. The plot presents the results of the first bender element test performed
on FEsp clay.

Figure G.6 shows the variation in v and ¢, with time of consolidation for
the bender element test performed on a half-height sample of Esp clay.
The development in vs with time is similar as for the longer samples,
although the maximum value obtained is lower.
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APPENDIX G. VARIATION IN Vg WITH TIME OF
CONSOLIDATION
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Figure G.3: V; wariation of Esp clay for the first 90 min of consolidation.
Results presented are from the first bender element test performed on Esp clay.
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Figure G.4: Variations in shear wave velocity and vertical strain with con-
solidation time. The plot presents the results of the second bender element test
performed on Esp clay.
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G.1. OBSERVATIONS FROM BENDER ELEMENT TESTS
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Figure G.5: V; variation of Esp clay for the first 90 min of consolidation. The
plot presents the results of the second bender element test performed on Esp clay.
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Figure G.6: Variations in shear wave velocity and vertical strain with consoli-
dation time. The plot presents the results of the bender element test performed on
a half-height sample of Esp clay.
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APPENDIX G. VARIATION IN Vg WITH TIME OF
CONSOLIDATION

G.2 Observations from Previous Study

Figure G.7 presents variation in shear wave velocity with time of consol-
idation resulting from a resonant column test performed by Westerlund
(1978). Long-term consolidation showed increasing Gy,q. due to secondary
effects (Westerlund, 1978). The results of this study matches the findings
of Westerlund (1978).
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G.2. OBSERVATIONS FROM PREVIOUS STUDY
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CONSOLIDATION
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Appendix H

Signals of Opposite Polarity
for Identification of the
S-Wave

During cross-hole testing at Esp, Byneset, sources producing opposite ini-
tial particle motion were used. Observations of received signals of opposite
polarity were used for a more reliable determination of the s-wave arrival

time.

For test number 2 and 8, the rod was inflicted with hammer blows from
opposite directions, for the purpose of reversing the signal. The signals
received at Al and A2 during test 2 and test 8 were plotted together
for comparison. This is presented in Figure H.1. Vi = 155 m/s and the
distance between the rod and Al (2 m) is used for extrapolation of the
signals, giving a corresponding starting point in ¢t = 0, assumed to be at
the time of the hammer blow.

Figure H.2 shows the peaks used for determination of the s-wave travel
time, t5. The selection of these particular points was based on observations
of opposite polarity.
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APPENDIX H. SIGNALS OF OPPOSITE POLARITY FOR

IDENTIFICATION OF THE S-WAVE
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Figure H.2: First peak of the s-wave identified based on observations of opposite
polarities. (a) First peak of test 2. The red and blue curve represents signal
registered at A1 and A2, respectively. (b) First peak of test 8. The green and
orange curve represents signal registered at A1 and A2, respectively.
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