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Abstract 
 

 

Underwater photogrammetry is a good alternative to traditional archaeological excavations, 

which are often less accurate and very destructive to underwater artefacts Furthermore the 

photogrammetric principles applied with the Remotely Operated Vehicles allows us to 

explore objects that are at very great depths. For this thesis proposes a stereo camera system 

unit was designed in order to extract three-dimensional data from digital images. This stereo 

system unit consists of two cameras, two camera housings and a stereo bar mounted on a 

pan/tilt unit. Relative positions between these two cameras will provide us the external 

orientation data and in consequence it might solve the problem caused by the lack of 

ground control data on the underwater site. 
 

This master thesis also gives an insight into some of the mathematical background of 

photogrammetry, especially an influence on the intrinsic camera parameters caused by the 

air-glass-water interface is described. The underwater images are dark, murky and of poor 

quality due to a difficult conditions under water.  In order to improve the perception of the 

underwater images a script based on histogram stretching of a few colour models are 

proposed.  
 

The primary subject of this thesis was a 3D modelling of the underwater shipwreck believed 

to be Den Waagende Thrane (The Waking Crane), which sunk in the Trondheim harbour in 

1713. However due to technical problems this particular measurement has not been 

performed. Two other underwater objects were surveyed from the offshore based on the 

previously prepared data acquisition plans. In result a few three-dimensional models were 

created using different settings and a detailed analysis of the quality and utility of these 

models were conducted.  
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Glossary 
 

 

3D model – a mathematical representation of a three dimensional object. 

 

AUV - Autonomous Underwater Vehicle – a robot submarine that does not require any 

input data from an operator to travel underwater 

 

Aperture (F-number) – a unit that defines the amount of light passing through the camera. 

 

Depth of Field - the zone where the object is acceptably sharp in an image. 

 

DLT - Direct Linear Transformation – an algorithm commonly used in the camera 

calibration in order to calculate the three dimensional position of a point by measuring the 

same point on two images. 

 

DTM – Digital Terrain Model – a continuous digital representation of the ground surface 

or the terrain 

 

Focal length – a distance between the centre of a lens and the focal point. 

 

HiSAS 1030 - Synthetic Aperture Sonar (SAS) - a measuring system that provides ultra-

high-resolution images and bathymetry data of the seabed. Image data is created by a 

combination of number of acoustic pings received by the sonar.  

 

Histogram – a graphical representation of the pixel intensity values in of a digital image. 

 

HSI colour space – a colour space which represents every colour with the Hue, Saturation 

and Intensity components in an RGB colour model. 

 

HSV colour space – a colour space which represents every colour with the Hue, Saturation 

and Value components in an RGB colour model. 

 

ROV – Remotely Operated Underwater Vehicle – remote-controlled robot submarine 

which is connected to a ship by a cable or a tether. The vehicle allows us to explore the sea 

without leaving the deck of a ship. 

 

LSM - Least Squares Method – a procedure used to determine the best fit of the statistical 

data to mathematical function.  
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Mosaic (photomosaic, ortophotomosaic) - a composition image created from individual 

geometrically corrected digital photographs. 

 

Perspective camera model (pinhole camera model) – a model in which the relationship 

between the object and its projection on the image is described by the perspective 

projection. 

 

Polarization filter – a filter that can be mounted on a camera lens in order to reduce the 

glare in glass or water or decrease the haze.  

 

RGB colour model – an additive colour model composed of the Red, Green and Blue 

channel.  

 

y – parallax – „the difference of a point in a y direction is the algebraic difference of the 

distances of the two images from their respective photo nadirs measured in a horizontal 

plane and parallel to the stereo base” (Thompson, 1966). 
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1. Introduction 
 

 

Traditional, manual deep water archaeological excavations are expensive, complex and may 

damage the investigated object. Current efforts aim to preserve underwater heritage, thus 

photogrammetry turns out to be the most suitable choice. The principle of underwater 

photogrammetry does not differ from traditional photogrammetry, but it is essential to take 

into account certain elements that may cause disturbance, such as light refraction effects 

due to two media boundary and the presence of the camera housing. The important 

advantage of using photogrammetry in underwater surveys in comparison with the use of 

other techniques is its simplicity of implementation and the diversity of potential results 

(Drap, P., 2012). Considering the depth photogrammetric measurements can be conducted 

by scuba divers or Remotely Operated Vehicles (ROVs). However use of modern 

techniques such as ROVs, computer technology and sophisticated tools, enhance 

productivity and safety in marine archaeological surveys and excavations. (Jasinski, et al., 

1995). Moreover this method requires little time and does not require specific personnel, 

thus greatly reducing the expenses in a context where time and costs of intervention are 

extremely high (Drap, P., 2012).  

  

1.1 Task description 
 

The aim of this thesis is to find the most optimal way to measure and create an accurate 

3D digital model of underwater archaeological artefacts using digital photogrammetry. 

Measurement of the ancient shipwreck will be conducted by remotely operated vehicle. The 

thesis will include a description of the problem, the current procedures, planning, 

underwater survey and 3D model generation.  

 

1.2 Description of the object 
 

The historical shipwreck is located in the Trondheim harbour approximately 60 meters 

deep (figure 1). The shipwreck was found in the area around Munkholmen in 1995 by a 

scuba diver. The extraordinary preservation of the underwater shipwreck is probably caused 

by a high freshwater content in the Trondheim harbour due to the Nidelva river discharge 

and a small activity of the marine wood-borers. The shipwreck is approximately 18 m long 

and it is protruding up to 20 cm off the seabed. The bow and the other wooden structures 

are still visible on the seabed. According to F. Søreide (2000) “the elements of a hatch can 

be seen near the centre and parts of the stem are still standing up at the front. By the stern 

there are traces of ceramics, yellow bricks and lead”. 
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Figure 1 Position of the shipwreck in the Trondheim harbour. 

 

The shipwreck was investigated by the Hyball ROV equipped with Simrad 971 scanning 

sonar and a video camera. The samples collected on the site was examined and dated back 

to the 17th or 18th century. According to the Official Norwegian archives, the shipwreck 

could be Den Waagende Thrane (The Waking Crane), which sank in 1713 in Trondheim 

harbour. The site plan, shown in the figure 2 was made based on acoustic measurements 

and video images (Søreide, 2000), (Søreide, 2011), (Ødegård, et al., 2013). 

 
 

Figure 2 General site plan of the shipwreck - site (drawing: S. Carpenter) (Søreide, 2000) 

the shipwreck 
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1.3 Problems and limitations 
 

Underwater photogrammetry has some key differences compared to conventional 

photogrammetry methods. These are as follows:  

 

 Limited access to the underwater object, 

 No operational control on data acquisition when measurements are conducted by a 

unqualified scuba diver, 

 Poor illumination and colour absorption, 

 Three-interface (water, glass and air) data collection affects intrinsic parameters of 

the camera and automatic photogrammetric process, 

 Significant light diffusion (the visibility in the water decreases with an increasing 

distance from the object) 

 No control point establishment (Skarlatos & Rova, 2010), (Skarlatos, et al., 2010), 

(Diamanti, et al., 2012). 

 

Camera calibration is a major problem connected with underwater photogrammetry. 

Refraction caused by air-glass-water interface result in a high distorted images and it must 

be taken into consideration during camera calibration process. However according to the 

Young-Hoo Kwon (1998) the refraction error caused by two different media can be 

covered by radial distortion. Consequently standard photogrammetric calibration software 

to calibrate the digital cameras and their housing can be used (Kwon, 1998). 

 

Establishment of the control under the water is mostly impossible and very inaccurate. 

Trilateration methods conducted by a traditional tape measurements can hardly never 

exceed required accuracy. Control points established underwater should be measured with 

a 1/3 accuracy over the whole block. At present mostly scale bars and vertical buoys are 

used in underwater survey to set up a scale and a vertical axis of the object. External 

orientation (coordinates of the projection centre X, Y, Z and the three rotation angles) of 

every camera can be measured by GPS and IMU systems. Jon Henderson (2013) created a 

stereo system which employ these two positioning devices to acquire precise position of 

every underwater photograph. However this method increases significantly cost of the 

measurement (Skarlatos, et al., 2010), (Eric, et al., 2013). 

 

Surveyors have no control on data acquisition when underwater measurements are 

conducted by scuba divers. Additionally the operative time during this kind of surveys is 

very limited (less than 30 min at depth over 30 meters). It is not possible to perform all the 

underwater procedures correctly in very limited time frame. Moreover, according to the 

Norwegian work-safety regulations, in Norway scuba divers can only dive to 30 m (Jasinski, 

et al., 1995), (Eric, et al., 2013). 
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The last issue that can cause problems in underwater survey are occlusions and moving 

objects (the fish, the seaweed, the particles suspended in the water) which can result in an 

inaccurate or incomplete product. Covered objects will not be seen on the photographs and 

moving objects can result in failure in the automatic photogrammetric process. Sometimes 

the underwater object cannot be fully recovered unless the overlaid layer is excavated 

(Søreide, 2000), (Skarlatos, et al., 2010). 

 

1.4 Previous work and existing data 
 

The historical shipwreck was first found and measured during the test run of Side Scan 

Sonar in 1981. More complex examinations were conducted after 1995 by Fredrik Søreide. 

The shipwreck was measured and recorded. Additionally a piece of wood was collected to 

examine its age and dated back to 17th or 18th century. In the following years the shipwreck 

have been the subject of multiple researches. In 1996 a sidesonar survey was carried out by 

researchers from the NTNU in Trondheim to measure both the historical shipwreck and 

the surrounding site. As a result of this investigation a few new wrecks were found. The 

historical shipwreck which is described as no 1 in figure 3 was believed to be Den Waagende 

Thrane and it was examined in detail. The lengths of the object and surrounded artefacts 

were positioned and measured by acoustic method and additionally with measuring rod. 

The historical shipwreck was partly excavated. A few parts of the stern area were excavated 

and carried out to the surface by the ROV. Sediment covering the shipwreck was removed 

in order to expose lower parts of the shipwreck. A layer of boards were removed and the 

lower layer of boards and deck girders were examined in detail. Additionally a few new 

objects were found on the site: glass, pieces of ceramic, lead, iron and wood. Some of the 

objects were carried to the surface for further examination. Unfortunately due to lack of 

sufficient evidence the shipwreck could not be unambiguously identified as Den Waagende 

Thrane. Afterwards the shipwreck was measured by combination of two techniques: 

underwater positioning system and photogrammetry. This method provided fast and good 

results in comparison with previous attempts (Søreide, 2000), (Søreide, 2011). 

 

 
Figure 3 Sonar image with the historical wreck (1) and other, modern wreck (2) (Søreide, 2000) 
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Applied Underwater Robotics Laboratory from NTNU and Norwegian Defence Research 

Establishment conducted surveys in Trondheim harbour in December 2012. During this 

cruise the historic shipwrecks in Trondheim harbour were measured using the Autonomous 

Underwater Vehicle (AUV) equipped with the Synthetic Aperture Sonar (SAS) system. One 

of the research area was focused on the historical shipwreck site which is subject of this 

thesis. Survey was performed between Munkholmen and Lade peninsula. Investigations 

resulted in a high resolution HiSAS 1030 imagery mosaic of the investigated area (figure 4). 

The HiSAS imagery allows to recognize objects smaller than 10 cm. 

 

 
Figure 4 Map of Trondheim harbour with HiSAS 1030 imagery mosaic (Ødegård, et al., 2013) 

The historical site were measured at different angles and ranges and a few data sets were 

acquired (figure 5). The distinctive line in the middle of images is a partially exposed 

keelson. The shadows occurred on a few images point out that the shipwreck is a mound 

rising from the seabed. According to Øyvind Ødegård (2013) “on the images 5-8 it is 

possible to see some vague features running parallel with the keelson with some shorter 

features perpendicular on top of them. This was later identified as probable planking and 

frames attached to the keelson”. The historical shipwreck profile created using the 

barometric data shown in the figure 6 implies that more remains of the historical shipwreck 

may be buried in the sediments (Ødegård, et al., 2013). 
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Figure 5 HiSAS imagery of the historic shipwreck site (Ødegård, et al., 2013) 
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Figure 6 HiSAS image of the historical shipwreck draped on bathymetric model (Ødegård, et al., 

2013) 

 

Nowadays the historic shipwreck is the subject of various examinations carried out by 

NTNU researchers and students. 
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2. Theory 

 
This chapter describes necessary theory concerning the underwater survey. In the first part 

important laws and regulations regarding underwater surveying in Norway is described. 

Furthermore first attempts to introduce photogrammetric methods in underwater survey 

and a few further underwater photogrammetry projects used for different applications are 

presented. Next the camera calibration procedure and the description of the intrinsic 

parameters of the camera is given. Additionally the impact of refraction caused by the 

water-glass and the glass-air interface on the intrinsic parameters under water is presented. 

In addition, parameters of the stereo camera system are shown and the parameters stability 

under water is discussed. The influence of light attenuation, scattering, non-uniform 

illumination and colour absorption and low image contrast on the underwater imagery is 

given. Finally the underwater image processing techniques are described.  

 

2.1 Laws and regulations 
 

There are two main legal acts regulating the cultural heritage in Norway: The Convention 

on the Protection of Underwater Cultural Heritage (UNESCO) and Act of 9 June 1978 

No.50 Concerning the Cultural Heritage.  

 

The regulations in The Convention on the Protection of Underwater Cultural Heritage 

(2011) apply to protect and preserve the underwater cultural heritage without any 

unnecessary change of their original place. All activities connected with the underwater 

cultural heritage should be authorized according to the protection of the heritage. 

Additionally significant actions should be undertaken in order to preserve and improve of 

the quality of underwater cultural heritage. Any activities related to the underwater cultural 

heritage should not affect the object more than necessary. Moreover chosen survey 

methods should not be destructive for the underwater heritage. The underwater object 

should not be recovered without a specific reason. If the excavation of the underwater 

object is required to be done, the methods and techniques used during the process can not 

affect or destroy the underwater object (UNESCO, 2011). 
 

Act of 9 June 1978 No.50 Concerning the Cultural Heritage introduced by the Ministry of 

Climate and Environment forbid to “take any action that may damage, destroy, move, 

change, cover conceal or in any other way unduly disfigure any monument or site. 

Monuments and sites are automatically protected by law” (MCE Ch. II §3, 1978). 

 

Regulations concerned about shipwrecks and underwater monuments and sites are 

described in chapter IV. Ship Finds and Protection of Vessels. The chapter apply that both 

cultural heritage on land and under the water must be protected in the same manner. Any 

ships, hulls, gear, cargo and anything what has been found n on board, or parts of such 
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objects that are more than 100 years old belongs to the state. Moreover the state is allowed 

to excavate, move, examine objects and perform other activities in order to preserve the 

object that irrespective of the owner. Any measurements of the underwater cultural heritage 

cannot be carried out without necessary permission from the competent authority by the 

owner or others. In a case when the permission is granted by the state any measurements 

cannot damage the underwater cultural heritage. In addition measurements must be 

performed in accordance with the appropriate regulations (MCE Ch. IV §10, 1978).  

 

Summary:  

 

Marine archaeological investigations must be carried out before construction work by 

proper authorities. Any damage or change of archaeological sites and monuments should 

be avoided. The owner of the construction is responsible for the costs of such 

investigations. If the cost is found to be extraordinary high, the Norwegian State may 

reimburse or pay for the whole or parts of the investigation. The cultural remains on land 

and under the sea should be protected in the same way. 

 

2.2 Related work 
 

The first attempts to apply photogrammetric procedures in underwater archaeology started 

in the 60s. Early surveys were performed using various submarines and semi-metric or 

metric film-based cameras. With the technology development, underwater measurements 

have become more accessible, faster and less time-consuming. Presently underwater 

photogrammetry is used in the diverse areas such as underwater archaeology, underwater 

surveys, fishery, biology and t ne he petroleum industry (Drap, P., 2012), (Drap , et al., 

2005). 

 

Underwater stereo-video camera systems can be widely used in fisheries researches and in 

monitoring marine fauna populations. Underwater photogrammetry allows us to count and 

measure length of fish without the need to capture and handle them. The present surveys 

strive to automate the measuring process and reduce the time of post-processing (Havrey, 

et al., 2003), (Shortis & Harvey, 1998). 

 

Underwater stereo photogrammetry is often used to study of the population dynamics of 

red coral. In comparison to traditional, manual methods, photogrammetric techniques are 

less likely to destroy the fragile coral. The photogrammetric system allows us to acquire in 

an efficient and precise way data for the analysis. This method provides us reliable data 

about colony sizes, occurrence of breakage of colonies and the occurrence of necrosis 

(Drap, et al., 2013). 
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Photogrammetry is successfully used in underwater archaeology. This method provides 

higher accuracy data and is less time-consuming than traditional archaeological underwater 

measurements. At present the remotely or autonomous operated vehicles allows us to 

survey in very deep waters which were not possible previously. The photographs taken by 

the vehicles may be used to generate an ortophotomosaic or a 3D model of the underwater 

artefacts.  The submerged Pavlopetri town in Greece was surveyed using the stereo-vision 

system. The system uses a stereo-vision diver platform which consists of the two cameras, 

two LED strobe lights, the depth sensor and the GPS receiver. The position of each 

photograph is measured and combined with mapping techniques to create high-resolution 

2D photomosaics and 3D models. The principle of this technique can be also used in ROV 

surveys at great depths. However the accuracy of the marine navigation systems are not 

that as high as GPS measurements (Eric, et al., 2013), (Henderson, et al., 2013), (APOMAB, 

1999). 

 

Aerial photogrammetry principles may be applied in underwater photogrammetric 

measurements. The main differences between underwater and aerial surveys are the 

distance to the seabed and the immersion in water. This approach were successfully used 

both in the VENUS European Project (Virtual ExploratioN of Underwater Sites) and the 

survey of the antique ship from Phanagoria. In VENUS project the Digital Terrain Model 

(DTM) was created from nadir photographs taken by the ROV. In the other project, the 

antique ship was covered by both vertical and oblique images. The camera was fixed on a 

small platform which provides a stable position of the camera. The platform was moved by 

a diver along 2 parallel long rails placed across the excavation site. Additional, oblique 

photographs were taken along the sides of the ship and its keel line. Both techniques 

provided very good and accurate results (Drap, et al., 2007), (Zuchovsky, et al., 2013). 

 

In offshore oil and gas industry, photogrammetry can be used both in underwater 

measurements of smaller-object like flanges, nodes and tees and more extensive surveys. 

Underwater photogrammetry was successfully used by Halliburton/BP Company in the 

Valhall Project. This project is the first long-route underwater survey which determined the 

position of a new platform. The result turned out to be very accurate and allowed to 

detected deviation from the asbuilt drawings (Johannessen & Prytz, 2005).  

 

The greatest survey that used underwater photogrammetry was exploration of the Titanic. 

In 2010 the Woods Hole Oceanographic Institution expedition acquire detailed optical and 

sonar photographs of the Titanic using a Remotely Operated Vehicle and two Autonomous 

Underwater Vehicles. The result of the expedition was a high resolution ortophotomosaics 

and 3D model of the shipwreck (figure 7) (Behance, 2014). 
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Figure 7 Underwater 3D model of the Titanic (AIVL, Woods Hole Oceanographic Institut, 2012) 

 

2.3 Underwater camera calibration 
 

Camera calibration is a process in which parameters of interior orientation are determined: 

principal distance (camera constant), image coordinates of the principal point, lens 

distortions (radial and tangential) and affinity and shear. Radial distortion causes the major 

imaging error in the camera and it must be corrected. This distortion depends on lens 

design, focusing distance, object distance at a constant focus. Tangential distortion is caused 

by decentring and misalignment of the physical elements in lens. Affinity and shear 

components do not have impact on modern digital cameras and can be ignored. In order 

to acquire high quality 3D model, the images must be corrected. Lens distortion deforms 

the photograph and affects the geometry of the output model. The camera calibration 

process should be carried out before every measurement with a fixed focal length because 

every change of the focal length result in a change of the interior parameters. 

 

The camera calibration process is based on a perspective geometrical model and bundle 

adjustment process. The calibration parameters are calculated based on the collinearity 

equation which is extended by the correction terms for the interior orientation and radial 

and tangential lens distortion. The model requires at least 5 corresponding points on a 

several photographs. This method determines all calibration parameters along with their 

precision and reliability. In the camera calibration process the 3D calibration grid is 

preferred from the plane calibration sheet. In addition the object should be covered by both 

horizontal and rotated photographs (Luhmann, et al., 2006), (Remondino, 2006), 

(PhotoModeler Help Topics, 2013). 
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The Brown calibration method is based on the assumption that straight lines in the object 

space must remain straight lines on the image when projected through a perfect lens. Any 

variation from straightness is attributed to radial or decentring (tangential) distortion and a 

least square adjustment is performed to determine the distortion parameters (Fryer, 1986).  

 

The Brown distortion model describes 8 – term physical camera distortion parameters: 

principal distance, principal point offset, three coefficients of radial distortion: k1, k2 and k3 

and two coefficients of tangential distortion p1 and p2.  Brown decomposed the total 

distortions into two components in polar coordinates on the imaging plane – along the 

radius and in tangential direction to the circle with the optical centre at the original point 

(before the distortion). The Brown model can simulate both barrel and pincushion type of 

radial distortion as well as mixture of these two types called sometimes a moustache 

distortion (Nowakowski & Skarbek, 2013). 

 

The joined Brown model for the compensation function has the form:  
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where for the optical centre (xc, yc) we get: 

 

𝑥′
𝑑 = 𝑥𝑑 − 𝑥𝑐 , 𝑥′

𝑢 = 𝑥𝑢 − 𝑥𝑐 , 

𝑦′
𝑑

= 𝑦𝑑 − 𝑦𝑐 , 𝑦′
𝑢

= 𝑦𝑢 − 𝑦𝑐 , 

 

𝑟𝑑 = √𝑥′𝑑
2 + 𝑦′𝑑

2 , 

 

xd, yd - image distorted coordinates of the point, 

xu, yu - image undistorted coordinates of the point, 

x’d, y’d – approximate image distorted coordinates of the point, 

x’u, y’u - approximate image distorted coordinates of the point, 

rd - radial distance, 

ki - radial distortion parameters, 

pi - decentring coefficients  
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All the equations are taken from the “Analysis of Brown camera distortion model” scientific 

paper written by A. Nowakowski and W. Skarbek (Nowakowski & Skarbek, 2013).  

 

Underwater camera calibration must consider both standard interior orientation parameters 

and disturbance caused by the effect of refraction at air-glass-water interface. There are two 

major methods used in underwater surveying. In the first case the camera-housing system 

are treated as a whole unique system. No additional parameters connected with a different 

media interface are modelled. The other method uses both regular interior camera 

parameters and parameters associated with the refraction at air-glass-water interface 

(Diamanti, et al., 2012).  

 

All rays in the submerged camera are refracted twice: at the water-glass and the glass-air 

interface, before they enter the camera (figure 8). The rays passing through the water-glass-

air media do not meet in one common centre of projection. Using the perspective camera 

model for underwater surveying leads to systematic errors. In addition the type of the 

camera housing has a great impact on the camera’s ray in submerged cameras. There are 

two major types of underwater camera housings: flat and dome. Dome ports could 

eliminate refraction effects caused by glass interface however this condition is very hard to 

fulfil. Both camera and housing must be very accurately aligned and precisely manufactured. 

On the contrary flat ports are cheaper and easier to produce but they cause bigger refraction 

effects (Sedlazeck & Koch, 2011).  

 

 
Figure 8 Refraction at air-glass-water interface (Sedlazeck & Koch, 2011) 

Currently there is no available any professional software that can calculate the refraction 

due to water-glass-air interface. So, the unique camera-housing system are predominantly 

used in underwater surveying. If we assume that the camera housing is ideal (the glass port 

is perpendicular to the optical axis of the camera and all optical parts of the camera are 

symmetric along their optical axis) it turns out that the rays displace radially from the 

principal point. Summarizing the main part of the refraction due to the water-air interface 
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is radial. Obviously this assumption cannot be perfectly fulfilled in practice however it the 

large part the refraction error can be corrected using conventional camera calibration 

procedures. (Shortis & Harvey, 1998), (Drap, P., 2012), (Kwon, 1998).  

 

The influence on the image plane by refraction due to the water-air interface is shown in 

figure 9. The object point M are projected on the image plane as point I. The interface plane 

refract the beam, thus the ray goes through the point R’ instead of R. Point I' is the non-

refracted image point and the space between I and I' is the error caused by refraction.  

 

 
Figure 9 Refraction at the water-air interface (Kwon, 1998) 

 

The refractive index is calculated based on the Snell's Law: Refractive index r is a ratio 

between the sinus function of the emergent angle ϕ' and the sinus function of the incident 

angle ϕ. For the water – air interface the refractive index is approximately 1,333. 

 

𝑟 =
𝑠𝑖𝑛 𝜑′

𝑠𝑖𝑛 𝜑
 

While the camera is in the air, the refractive index is equal 1 and the focal length is f. On 

the contrary when the camera is submerged the focal length value increase proportionally 

to the water refractive index. In consequence change of the focal length entails a high 

decrease of the field of view (figure 10). The underwater image looks wider than it is in 

reality because the emergent angle is larger than the incident angle. In a flat type of camera 

housing the underwater image shows deformation similar to pin-cushion distortion due to 
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the fact that the projection point M, point on the interface plane R and the perspective 

centre of camera N are not collinear (Kwon, 1998), (Lavest, et al., 2003). 

 

 
Figure 10 Variation of the field of view between air and water (Lavest, et al., 2003) 

The camera should be calibrated in the same water medium that will be used in further 

measurements due to fact that the refractive index r can change with the depth, temperature 

and salinity of the water. The shape of the camera housing can change along with a change 

of pressure under the water and influence the interior parameters of the camera (Harveya, 

et al., 2003), (Shortis, et al., 2007). 

 

At present a lot of research are conducted to deal with the refraction due to air-glass-water 

interface. Anne Sedlazeck and Reinhard Koch (2011) propose the refractive calibration 

method based on two stereo images captured using the stereo rig. In this method 

parameters connected with a different media interface are modelled. Beside regular camera 

calibration parameters, the normals of the interface surface with respect to the optical axis 

are used in this process (Sedlazeck & Koch, 2011).   

 

Gili Telem and Sagi Filin (2010) suggested a two phase camera calibration based on the 

collinearity equation. The first step called “dry” estimates the standard intrinsic calibration 

parameters. The second step “wet”, estimates the other parameters connected with the air-

glass-water interface: refraction index, deviation of the optical axis from the interface and 

the distance between the perspective centre and housing port (Telem & Filin, 2010).  
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Anne Jordt-Sedlazeck and Reinhard Koch (2012) in the scientific paper “Refractive 

calibration of underwater cameras” propose calibration method based on both the 

geometric and radiometric parameters. Beside the traditional camera calibration procedure, 

the radiometric components are computed. This unusual solution allows to easily correct 

and enhance colours of the underwater images that afterwards can be used to colour 

correction of texture of the mosaic or the model (Jordt-Sedlazeck & Koch, 2012).  

 

2.4 Calibration of the underwater stereo-camera system 
 

The aim of the calibration of the stereo-camera system is an estimation of the position of 

the left camera relative to the right one. The calibration consists of two steps: relative 

orientation and absolute orientation. Relative orientation defines the separation of the 

perspective centres of the lenses (baseline), the pointing angles of the optical axes of the 

cameras and the roll rotations of the image sensors. External orientation determine 

cameras’ position in the object coordinate system (Shortis & Harvey, 1998), (Luhmann, et 

al., 2006). 

 

 
Figure 11 Relative orientation (Luhmann, et al., 2006) 

The relative orientation is based on complanarity constraint which states that object point 

P and two perspective centres of both cameras O’ and O’’ must lay in the same plane (figure 

11). The local model coordinate system is fixed to the perspective centre O’ of the left 

image. Thus, the exterior orientation (coordinates of the perspective centre and rotation 

angles) of the left image is set to 0. Usual the scale of the model is set to common value bx 
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= 1. Then the parameters of the relative orientation consist of two base components: by, 

bz, and three angles of rotation ωZ, ϕZ, κZ. The relative orientation parameters are calculated 

using the Least Squares Method (LSM) (Luhmann, et al., 2006), (Brager & Chong, 1999). 

 

The epipolar plane is defined by three vectors b, r’ and r’’ and it contains the left image 

point P’ and the right image point P’’ (figure 11). The complanarity constraint requires that 

image rays going through both cameras must intersect (both rays r’ and r’’ must intersect in 

the object point P - there should be no y-parallax). The complanarity constraint is fulfilled 

if the scalar triple product of the three vectors b, r’ and r’’ are equal zero (Luhmann, et al., 

2006). 

 

(𝑏 × 𝑟′) 𝑟′′ = 0 

 

The stability of the stereo–camera system is subject to various conditions under the water. 

The changing pressure along with the water depth may affect the camera system and in 

consequence change the optical path to the lens of each camera.  However as long as 

cameras are not removed from their housings, the system should remain stable. Thus, the 

same as interior orientation, relative orientations parameters should be estimated from data 

collected underwater (Havrey, et al., 2003).  

 

2.5 Underwater light propagation 
 

The poor quality of the underwater images are caused by limited range, insufficient and 

irregular illumination, colour absorption and low image contrast. Both proper illumination 

techniques on the site and image enhancement can improve the image quality. 

The reflection of the light varies greatly depending on the structure of the sea. Incident 

light may bend from the water surface or reflect from it. Bended light result in crinkle 

patterns or diffusion (figure 12). Additionally the light may simultaneously partly reflect 

from the water surface and partly enter the water. The reflected light is both polarised 

horizontally and vertically. The vertical polarisation is very desirable in the underwater 

survey because it allows us to capture more colours then usual and the captured object is 

less reflective. (Iqbal, et al., 2007), (Knight, 2011).  
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Figure 12 Light effects on the water surface (Iqbal, et al., 2007) 

Underwater photographs may be affected by the backscatter and forward scatter 

phenomena which occur when light reflects from suspended particles or other underwater 

objects. Forward scatter appear when the angle of deflection is small and it results in image 

blurring and contrast reduction. Backscatter occurs when the light from the light source is 

reflected to the camera before reaching the object to be illuminated. Backscatter may cause 

bright points in the image (marine snow). The backscatter effect reduce significantly the 

contrast in the image and the marine snow make it impossible to process the data in the 

automated photogrammetric software. The influence of this phenomena increase with the 

distance between the camera and the object. The effect of this phenomena is shown in the 

figure 13 (Bonin, et al., 2011).  

 
Figure 13 Example of backscatter, forward scatter and refraction (Bonin, et al., 2011) 

Water absorbs light across the whole of the visible spectrum and the amount of light 

reduces with depth of water. The artificial lighting is often necessary in the deep water 

measurements. Moreover colours disappear depending on the wavelength length due to 

fact that water absorbs colour. The longer colour wavelengths is the faster colours 

disappears under the water. Therefore the red colour disappears first at the depth of 3 



20 
 

meters. Subsequently orange and yellow colour disappear accordingly at depth of 5 and 10 

meters. Next green and purple colour will go off. The blue colour will disappear the last of 

all colours. Blue or green shade of the underwater pictures are caused by this phenomena 

(Iqbal, et al., 2007). 

 

2.6 Underwater image enhancement 
 

At present two main techniques are used in image pre-processing: an image restoration 

technique and an image enhancement technique. Image restoration technique requires 

additional parameters such as the attenuation and scattering coefficients and the distance 

between the camera and the object to correct the image. Image enhancement methods do 

not require any a priori knowledge of the environment and it may be performed in the 

widely available processing software such as GIMP or Photoshop (Drap, et al., 2011).  

 

Underwater visibility and object structure can be recovered by polarization analysis. Aim of 

this approach it to eliminate the main degradation effects that are associated with partial 

polarization of light. Yoav Y. Schechner and Nir Karpel (2005) prepared algorithm which 

inverts the image formation process in order to enhance the quality of underwater images. 

This method can be efficient in shallow water where the underwater object can be 

illuminated by natural light. Additionally polarization filters decreases the amount of 

incident light to the lens that will result in a dark image. Use of a polarization filter is not 

efficient enough in deep underwater imagery. The comparison between the original and 

enhanced photograph by this technique is shown in figure 14 (Karpel & Schlechner, 2005).   
 

 
Figure 14 Comparison between the original and enhanced photograph (Karpel & Schlechner, 2005) 

Another approach presented by K. Iqbal is based on slide stretching. The method is divided 

into two parts. Firstly, all the processes are conducted on the RGB colour model. The 

colour contrast of the image is equalized by histogram stretching. Subsequently the 
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saturation and intensity stretching on HSI colour model are performed. In consequence the 

image brightness is increased solving the problem of lighting. The photographs before and 

after performed enhancement by integrated colour method are shown in figure 15 (Iqbal, 

et al., 2007).  
 

 

 
Figure 15 Photographs before and after using an Integrated Colour Model (Iqbal, et al., 2007) 

 

Alessandro Rizzi and Carlo Gatta (2004) introduced the Automatic Colour Equalization 

ACE algorithm that can be used to correct underwater images. This method is able to 

reconstruct images with a highly variable lighting conditions. Moreover this algorithm allow 

to extract visual information from the underwater surroundings. The photographs before 

and after performed enhancement by ACE method are shown in figure 16 (Chambah, et 

al., 2004).  

 

 
Figure 16 Photographs before and after the enhancement by ACE method (Chambah, et al., 2004)  
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3. System design 
 

3.1 Vessel and Remotely Operated Vehicle (ROV) 
 

R/V Gunnerus vessel 

 

The research vessel was built in 2006 by Larnes Mekaniske Verksted in Norway (figure 15). 

The length of the vessel is over 30 meters and it is equipped in a few laboratories: wet lab, 

dry lab and computer lab. The the control container and the proper deck space allow to 

perform any measurements involving the ROV. The DP control system used on R/V 

Gunnerus vessel allows us to automatically control the position of the ROV in both local 

and external coordinate systems (Ludvigsen, 2010). 

 

 

Figure 17 R/V Gunnerus NTNU research vessel (NTNU, 2014) 

ROV Minerva 

 

The Remotely Operated Vehicle (ROV) Minerva was designed in 2003 by Sperre AS. The 

dimensions of the ROV are 140 by 80 by 81 cm and it can work down to a depth of 700 

meters. This vehicle can work efficiently at all depths in the Trondheimsfjord. The ROV 

Minerva can be used in marine biology research, deep water archaeology, offshore 

maintenance repair or marine monitoring and mapping. The vehicle is equipped with three 

CCD cameras, two manipulator arms, a scanning sonar, an altimeter and a HiPAP system 

used for the precise positioning.  The most important feature is the very precise DP control 

system which allow us to manoeuvre the ROV automatically. This system can be applied 

to detailed photogrammetric surveys (NTNU, 2014), (Ludvigsen, et al., 2013). The ROV 

Minerva with basic equipment is shown in figure 18. 

 



24 
 

 
Figure 18 ROV Minerva 

3.2 Underwater navigation 
 

There are two main methods used in the underwater survey: the LBL (Long BaseLine) and 

the USBL (Ultra Short BaseLine) systems. The long baseline system (LBS) is an acoustic 

system based on the range measurement from at least 3 transponders mounted on the 

seabed. An interrogator which is mounted on the ROV transmits an acoustic signal to the 

transponders. Next the transponder send a response back to the system and the data is 

delivered to the system (figure 19). The position of the ROV is calculated using the Least 

Squares Method (LSM). This system can achieve a position accuracy below 1 meter. 

However if a few conditions are fulfilled such as an ideal geometry of the network, large 

distances between the transporters or when the LBL system operates without an acoustic 

path to the sea surface, the achieved accuracy can be around 1 cm (APOMAB, 1999).  

 

 
Figure 19 LBL Acoustic Positioning System (AUVAC, 2014)  
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The Ultra Short BaseLine (USBL) system consist of a transducer pole mounted on the 

ROV and transmitter on the vessel (figure 20). Additional sensors such as GPS, gyro, 

electronic compass and a vertical reference unit can be used to compute the pitch, roll and 

bearing of the ROV. The USBL system uses both angles and ranges to compute a position 

of the ROV.  The range between the transducer and the transmitter is calculated based on 

an acoustic signal time. The angle is determined by a phase shift. The advantage of this 

system is that no transponders has to be mounted on the seabed. The accuracy of the USBL 

system depends on the distance between the transducer and the receiver and the quality of 

the sensor (APOMAB, 1999). The USBL system is shown in figure 20. 

 

 
Figure 20 USBL System (Systems, 2014) 

The position of the ROV related to the R/V Gunnerus is computed by the High Precision 

Acoustic Positioning System (HiPAP 500) which combines the advantages of the both the 

USBL and the LBL systems. This system requires only the transducer and one subsea 

transponder.  

 

 

 

http://www.ntnu.edu/marine/gunnerus
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The Dynamic Positioning Control Platform (DP) 

 

The ROV Minerva may be controlled both manually and automatically. However manual 

piloting is very inaccurate and ineffective. The Dynamic Positioning Control Platform (DP) 

was developed on NTNU in order to enhance the accuracy of the ROV’s positioning and 

tracking. This system successfully keeps the position and designed trajectory of the ROV. 

The ROV controlled by the DP system keeps stationary and track lines below 10 cm with 

respect to the references. This system is extremely useful in underwater photogrammetric 

surveys. High control of the flight path is necessary when a certain overlap between the 

images must be achieved. The high variation from the designed track may result in a weak 

coverage of the object and, in consequence a failure in the further 3D modelling process. 

The system is described in detail in “Dynamic Positioning System for a Small Size ROV 

with Experimental Results” scientific paper (Dunkan, et al., 2011), (NTNU, 2014), 

(Ludvigsen, et al., 2013). 

 

3.3 Stereo system unit 
 

The stereo system unit consists of two cameras, two camera housings and a stereo bar 

mounted on a pan/tilt unit. The camera housings will be fixed to the stereo bar on the two 

holders by tie wraps. The position of the holders can be set arbitrarily on the stereo bar. 

The stereo unit is designed considering both the size of the camera and the available space 

on the ROV. In order to optimize the size of the unit both the chosen camera housings 

and the cameras are relatively small 

 

Cameras 

 

Work in a dark environment requires to use highly light sensitive cameras that increase the 

viewing range under water. Additionally these unfavourable conditions under water result 

in a low image sensor signal and in consequence noisy images. The camera should be 

equipped with a high size image sensor which increases light sensitivity of the camera 

(Ludvigsen, 2010). The camera must remain stable during the whole measurement. The 

intrinsic parameters should not change and the focus and the aperture number must be 

thoroughly fixed.  Furthermore due to limited space on the ROV the cameras and the 

camera housings must be respectively small.  

 

The chosen Prosilica GC1380C CCD 1.4 Megapixel industrial block camera (figure 21). 

The cell size of the camera is 6.45 μm. Body dimensions are extremely small and equals 59 

mm x 46 mm x 33 mm. The GC1380 is equipped with the Sony ICX285 CCD Progressive 

type 2/3 sensor. The GC1380 provides low noise and high quality 1360 x 1024 resolution 

images (Allied Vision Technologies, 2013).  
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Figure 21 Prosilica GC1380C camera (Allied Vision Technologies, 2013) 

The camera is equipped with the high-resolution Cinegon 1.4/8 lens. The lens is very stable 

and insensitive to any vibrations which makes its suitable for underwater surveys. Focal 

length is 8.2 mm and image circle is 11 mm. F-number is adjustable and its range is 1.4 – 8. 

The wide camera aperture prevents blurriness on the images caused by ROV movements. 

The focus and Iris settings of the camera can be locked which provide the stability of the 

intrinsic parameters during the measurement. The camera has two ports: the gigabit 

ethernet port and the general purpose I/O port. The ethernet port transfers collected data 

to a computer. The I/O port provides power supply and other functions that allows the 

camera to synchronize with other devices (Kreuznach, 2014). 

 

Camera housing  

 

In the stereo vision system two stainless steel camera housings are used. Due to the fact 

that two different housing will be used, the position of the both cameras in the housings 

were adjusted to be approximately at the same distance from the port glass. In the first, 

larger camera housing (number 1 in the figure 22) additional holes had to be drilled in order 

to fix the camera. The position of the other camera in its housing was adjusted and fixed 

with respect to the position of the first camera.  
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Figure 22 Camera housings 

The pin-outs of every electrical connector between the camera and the camera housing and 

the camera housing and the ROV were measured by a voltmeter to check the electrical 

circuit between them. Each contact of the connector had to be compatible with the 

corresponding connector in order to avoid damage or an incorrect connection between 

them. The preliminary settings of the pin-outs of the cameras were compatible with pin-

outs of the camera housings. Next the ROV’s male connector from the second, small 

camera housing were adapted to the new 10 pin port female connector used in the ROV.  

 

Cameras were connected by the ethernet cable and the power cable to the camera housings. 

The ethernet cable transmits the video and photo data gathered during the measurement.  

The power cable provides the required power to the camera and allows us to communicate 

between the camera with the other, external system.  The inside of the camera housing with 

fixed camera and connection cables is shown in the figure 23. 
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Figure 23 Inside of the second camera housing with connection cables 

 

Stereo unit 

 

The stereo unit consists of the pan/tilt unit, the stainless metal bar and two metal holders. 

The positions of the camera housings can be easily fixed and adjusted on the bar. The stereo 

unit allows us to remotely orient the stereo camera system in horizontal and vertical 

direction by an external system located on the vessel. The pan/tilt unit is shown in figure 

24. 

 

 

 
Figure 24 The stereo pan/tilt unit 

The length of the original stereo bar was too small for this survey. In order to achieve good 

base-to-height ratio and decrease error on depths, a longer stereo bar had to be constructed 

and fixed on the pan/tilt unit. The newly constructed stereo bar with the camera housings 

fixed by stainless tie wraps on the holders is shown in figure 25. 

Stereo bar 

holder 
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Figure 25 The camera housings n the new stereo bar 

 

3.4 Light source 
 

The light disappears very fast under water with increasing depth. Artificial light is often 

necessary in order to illuminate the site during the underwater surveys. There are three main 

light sources used in the underwater survey: standard visible light sources which emit the 

light simultaneously, lasers and strobe or pulse lasers. It is recommended to use more than 

one light to illuminate the scene. The single light source produces a central bright spot 

surrounded by a poorly illuminated area. In the underwater measurements it is common to 

use different, stationary, light sources, especially if they emit a structured light. The light 

intensity cannot be too high so the details on the image can be distinguished easily. The 

advantage of the artificial lights is a reduction of the blurriness in the photographs. Mostly 

a big aperture size is used for shooting photographs under water so the additional 

illumination will allow us to decrease the exposure time. For photogrammetric purposes 

the underwater site should be illuminated evenly. A uniform illumination is required during 

the automatic photogrammetric process. Various lighting conditions between the photos 

may result in a failure of the automatic feature matching in the software. On the other site 

the artificial illumination results in shadows on the side that may cause problems in the 

automatic processing. If it is possible artificial light sources should be avoided during the 

photogrammetric survey (Bonin, et al., 2011), (Ludvigsen, 2010). 

 

In this project due to a very dark environment (the depth of the shipwreck is over 60 m) it 

is required to use additional lighting. During the measurement four 250 Watts halogen lights 

and two 400 Watts HID lights mounted symmetrically on the top of the ROV will be used. 

The biggest advantage of HID lamps is the higher light emission in a spectral band where 

seawater have normally low absorption. The halogen light emits stronger rays in the red 

band of the spectrum and in result the red colour do not vanish that fast. This arrangement 
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should provide full illumination of the field of view of the stereo vision cameras under the 

water (Bonin, et al., 2011). 
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4. Methods and measurement 
 

 

In this chapter the data acquisition and the camera calibration plan will be described. The 

type and size of the calibration sheet and the image shooting plan of the calibration sheet 

will be presented. Next the expected values of the focal length and the Field of View of the 

submerged cameras will be calculated. Based on the determined values, image acquisition 

plan with the number of strips and the exposure positions will be prepared. Furthermore 

the image processing method will be presented. The proposed image enhancement script 

will be explained and results will be presented. The examples of the original underwater 

images and the corrected underwater images will be compared. Finally the performed 

measurement and occurred problems will be described.  

 

4.1 Data acquisition plan 
 

Camera calibration 

 

The aim of the camera calibration is to compute the interior parameters of the camera. A 

few calibration tests will be performed in different environments: in the air, in the 

freshwater and in the saltwater. Every calibration process should entail capturing around 

30–40 photographs of a calibration sheet. The calibration sheet will be photographed from 

4 sides parallel to the edges of the sheet. Both horizontal and rotated images will be taken 

and the images should cover the entire calibration sheet. At first, a test in the air will be 

conducted without the camera housings. The cameras will be fixed on the aluminium bar 

and set on the tripod. The checkerboard will be printed on an A0 format and taped evenly 

to the wall. The camera calibration procedure in freshwater and in saltwater will use a 

waterproof calibration sheet made from an aluminium plate with a printed checkerboard 

(squares size 8 cm). The size of the calibration sheet is 1.60 m x 1.25 m and it is heavy 

enough to submerge it into the water. The camera housings will be fixed to the stereo bar 

and the calibration photographs will be taken both in a test pool and site in the sea. 

 

The historic shipwreck measurement plan 

 

The survey will focus on the main part of the historical shipwreck. The examined area is 20 

m x 2 m and it includes the keelson and the bow of the object (figure 23). Photographs will 

be taken by the two cameras fixed 45 cm apart from each other on a stereo bar. The two 

cameras with 8.2 mm focal length and an 8.77 mm x 6.60 mm (2/3’) sensor format will be 

used. Both vertical and oblique photographs will be taken. The vertical photographs will 

cover the whole investigated area. The oblique photographs will cover distinctive objects 

rising up from the seabed. The fly path are prepared according to aerial photogrammetry 

foundations.  
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The photographs will be taken from a distance of 1.5 meter from the object. It is the 

shortest value where photographs may be taken without causing the ROV to interfere with 

the sandy seabed. Any interface with the seabed will disturb the particles and result in a lack 

of visibility. In this case the base-to-height ratio of the stereo pair will be 1: 3.33. 

Three scale bars (one 4 meters long and two 2 meters long) will be placed on the seabed. A 

long one will be set up parallel and two other perpendicular to the shipwreck. The external 

orientation of every cameras’ position will be computed from the DP system launched on 

the vessel. 

 
Figure 26 The measurement area 

 

The expected focal length and field of view (FOV) under the water are calculated from the 

preliminary values given by the manufacturer of the camera (table 1). The refractive index 

in the salty water is assumed 1.339. The FOV in the air, FOV under the water and focal 

length under the water are computed from the below equations: 

 

𝐹𝑂𝑉𝐴𝑖𝑟 =  2tan−1 (
𝑑

2𝑓
), 

 

𝐹𝑂𝑉𝑈𝑛𝑑𝑒𝑟𝑤𝑎𝑡𝑒𝑟 =  2 sin−1 (
sin

𝐹𝑂𝑉𝐴𝑖𝑟
2

𝑟
) , 

 

𝑓𝑈𝑛𝑑𝑒𝑟𝑤𝑎𝑡𝑒𝑟 =  
𝑑

2 tan(
𝐹𝑂𝑉𝑈𝑛𝑑𝑒𝑟𝑤𝑎𝑡𝑒𝑟

2
)
, 

 

Where:  

FOVAir – Field of View in the air, 

FOVUnderwater – Field of View under the water, 

f Underwater – Focal length under the water, 

d – Diameter of the image sensor, 

r – Refractive index. 
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Table 1  Preliminary and expected focal length and FOV. 

 Focal length [mm] FOV diagonal [deg] 

Preliminary values 8,2 67,6080 

Computed values (expected 

values under the water) 
11,65 49,1015 

 

The further calculations are conducted based on the expected values. The submerged 

camera should cover 1129 mm x 850 mm area with a 0.83 mm terrain pixel size. The overlap 

between photographs taken from the two cameras on the stereo bar are 70% and the 

photographs covered by a stereo unit should overlap 20% (figure 27).  

 

 
 

Figure 27 Stereo overlap plan 

The lateral overlap between every strip should be at least 60%. The flight lines will be 

positioned along the boundaries of the designed area. Flight direction will be consistent 

with the historical shipwreck axis. The vertical photographs will be taken in 6 strips with 

28 photographs on every strip (total 168 photos). The estimated position of the strips and 

the exposures is shown in figure 28. The final values will be calculated after investigation 

of the historical shipwreck by the ROV during the measurement. 

 

 
Figure 28 The data acquisition plan 

The bow and the middle part of the keelson will be covered by the oblique photographs. 

The proposed photographed area is shown in figure 29.  However due to lack of data about 

30% 

Stereo bar Stereo bar 

20% 

70% 
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size of the individual objects, precise plan of a photographing of these areas will be decided 

on side. 

 
 

Figure 29 The historical shipwreck site with a highlighted, probably rising from the seabed parts. 

 

There are a few things that must be taken into consideration while taking underwater 

photographs: the illumination, the Depth of Field (DOF) and the speed of the ROV. The 

aperture and the exposure time camera’s parameters should be balanced. Due to poor 

illumination on the underwater site the aperture should be large enough to enter more light. 

On the contrary the big aperture decrease the DOF that results in a small distance in the 

scene where the object is sharp on the photograph. Additionally the exposure time should 

not be too long because the photographs will be taken by a moving ROV. If the ROV move 

fast, the photographs will be blurry.  

 

In this survey the aperture of both lenses will be set to the smallest value 1.4 mm. The 

exposure time will be set to 1/40 or 1/50 sec and the ROV movement will be adjusted that 

the photographs will be still sharp. The ISO, brightness and White Balance (WB) 

parameters will be set on the site depending on the underwater environment.  

 

4.2 Image processing 
 

The aim of the underwater image processing is a restoration of colour, contrast and lighting 

in the images. Underwater images are blurred, murky and dominated by a blue colour and 

cannot be used efficiently without previous enhancement in the further image processing 

analysis. The proposed algorithm perform calculations on RGB, HSI and HSV colour 

maps. The initial processing on RGB model will balance red and green channels in 

comparison to blue channel. Next the HSI and HSV models will be used to enhance other 

variables: Saturation (S), Intensity (I) and Value (V). Saturation and intensity values generate 
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the wider colour range and allow us to strengthen the contrast ratio in the underwater 

images. The value ‘V’ is the largest component of a colour in HSV model and it defines the 

brightness of colours. The value allows to brighten the image and helps distinguish details 

in the image (Iqbal, et al., 2007).  

 

The algorithm corrects images in three colour compositions: RGB, HSV and HSI. First 

RGB histogram percentage linear stretching is used to correct colours and equalize contrast 

of the image. The 1% of the upper and the bottom values of red, green and blue channel 

are specified. The old minimum values are matched to the new minimum values, and the 

old maximum values are matched to the new maximum values.  Middle values are spread 

evenly between the new minimum and maximum values. Next 1% linear stretching are 

performed on saturation and value on HSV colour model in order to enhance lighting and 

improve true colour of the image. Finally intensity value are equalized by contrast-limited 

adaptive histogram equalization on HSI colour model to balance lighting and brighten the 

image.  

 

The result of processing of the test images is shown in figure 30. It appears that proposed 

algorithm works successfully on the underwater photos. It both equalizes the colour 

contrast and brightens the image. Blue and green tones are reduced and contrast is increased 

what result in clear and readable images. 
 

 

BEFORE AFTER 
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Figure 30 Pictures before and after image correction. 
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4.3 Measurement 
 

 

The measurement of the historic shipwreck  

 

First the ROV was submerged in order to investigate the underwater shipwreck. The all 

area of interest were carefully examined by the camera located on the underwater vehicle. 

The historic shipwreck is consistent with the previously seen maps and plans. A particular 

attention was paid to the protruding parts of the object in order to decide which elements 

must be covered additionally by the oblique imagery. In result of this investigation the bow 

and the middle part of the underwater object marked red on figure 31 were decided to be 

photographed by oblique images. 

 
 

 
Figure 31 Marked areas that will covered by the oblique photographs 

The water environment surrounding the underwater shipwreck was very clear. The water 

was not turbid so the visibility was extremely high. The amount of the particles in water 

were very low. No layer of sediment was settled on the object and the wooden parts were 

clearly visible. The seaweed occurred only on a few parts of the object. No other, significant 

obstacles occurred on the object that may influence the created model except a starfish on 

the wooden keelson.  

 

As it is clearly seen in figure 32 the visibility decreases with the increasing distance from the 

object. The first and the second photographs are taken respectively from approximately 3 

meters and 1 meter distance from the historical shipwreck. The bow on the second image 

is clearly visible without any big loss of colour. In consequence it can be assumed that the 

used light is sufficient to brighten up the area of interest and no additional adjustment need 

to be performed. Additionally as it was predicted, the artificial lighting resulted in the 

shadows on the underwater scene. However on this depth where no natural light occurs 

artificial lighting is necessary.  

 

 
 



40 
 

 

 
Figure 32 The keelson (1) and the bow (2) captured by the ROV 

A few unexpected problems occurred during the measurement. First the software was 

supposed to take photographs from the both cameras simultaneously failed. Software did 

not recognize one of the cameras and consequently no surveys could have been performed 

until this problem was solved. The other problem was connected with the used equipment. 

One cable was rusted and it had to be replaced. Due to lack of the spare equipment, the 

cable must have been purchased. The cable did not come on time and the measurement 

had to be postponed.  Finally it has been decided to perform test measurement offshore of 

the pipeline and the submerged object. The historical shipwreck will be measured in August 

2014 and it will be a subject of scientific paper.  

 

The measurement of the pipeline and the submerged object  

 

On the beginning the cameras were connected to the computer and a few test were 

performed to check if software is working properly. The focus of the both cameras were 

tested once more and the exposure value were set to 1/50 second. Unfortunately the left 



41 
 

and the right camera did not take photographs simultaneously. The time between exposures 

differed by 0.1 second. In order to reduce the error due to this time difference, the ROV 

speed was decreased and set to 0.2 m/s. In that case the ROV will move 2 cm between the 

camera exposures. This value should not influence the automatic 3D model generation but 

it may interfere with the stereo calibration parameters. The positioning system failed due to 

equipment failure and in consequence no external position data was available.  

 

The Pan/Tilt unit could not be connected to the computer so other equipment had to be 

used. The new unit was not able to move as freely or easily in every direction as the previous 

one so the stereo bar must had to be fixed in two positions on the ROV: in the front to 

take oblique photographs and on the side to take vertical photographs.  

 

The camera housings were fixed on the stereo bar in a distance of 43 cm. The stereo bar 

was fastened securely on the ROV first on the front and then on the side of the vehicle in 

order to verify if it can easily fit on the vehicle (figure 33). The position of the lights were 

adjusted in order to illuminate the underwater site evenly. Furthermore the lights were 

turned on to check if any shadows is caused by the protruding parts of the vehicle. The 

range of the ROV is limited to 1000 metres due to the length of the cable. 

 

 

 
Figure 33 The stereo bar fixed in the front (1) and on the side (2) of the ROV 
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The pipeline measurement 

 

In order to shoot the vertical photos the stereo bar was fixed on the side of the ROV. The 

vehicle together with the measuring rod carried by the manipulator arm were submerged. 

The underwater positioning system did not work so the area had to be searched in order to 

find the pipeline. The measuring rod was placed along the pipeline. The measurement will 

be conducted similarly to the previously prepared plans for the measurement of the 

historical shipwreck. All the necessary data was inputted into the DP control system. The 

area will be covered by three strips from a distance of 2 meters from seabed. The length of 

the strip was set to 20 meters and the distance between the two neighbouring strips were 

set to 40 cm. The photographs will be taken every 1 seconds and in result the distance 

between neighbouring exposures will be 20 cm. The additional data will be removed later 

in the post processing. The above settings were set accordingly to the calculated values 

from table 2. The flight plan was calculated assuming that the image width along flight 

direction is equal to the total length of the area covered simultaneously by the left and the 

right image.  

 

Table 2 Flight plan settings 

Area width [mm]  20000 

Area height [mm]  1000 

   

   

Image scale factor H/c 223,10 

Length overlap % B 40 

Sideway overlap % S 60 

   

   

GSD [mm] GSD 1,11 

Photo width [pix] sL 1360 

Photo height [pix] sC 1024 

Photo width in image space [mm] w 8,772 

Photo height in image space [mm] h 6,605 

Image width along flight direction 

[mm] SL 1980 

Image height across flight direction 

[mm] SC 1134 

   

   

Longitudinal overlap [mm] p 792 

Transversal overlap [mm] q 680 
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The length of the baseline [mm] B 1188 

Baseline in the image space [mm] b 5 

The distance between two neigh-

bouring flight lines [mm] 

A 453 

  

The covered model area [mm2] Fm 1568160 

   

Numbers of photo per strip  17 

Strips per block  3 

Total number of photos  51 

 

 

Before the DP system was launched the vehicle had to be set along the pipeline. Without 

the positioning system the vehicle could not be aligned accurately along the object. 

Additionally the ROV was very shaky and it did not keep a stable position. As soon as the 

vehicle was set into the desired direction the DP control system was started. The vehicle 

got out of the set direction but it still covered the area of interest. The DP system worked 

very well even without data from the positioning system. The ROV moved according to 

the settings input to the system. During the measurement the software responsible for 

taking photographs crashed. A part of the first line and the second line were not covered 

by photographs and the whole process had to be repeated. The vehicle was set up again 

approximately in the same position and the DP control system was launched. However the 

connection between the ROV and the computer got lost and the vehicle had to be surfaced 

and brought offshore. Afterwards the vehicle was repaired but due to lack of time the 

pipeline could not be remeasured. In addition the scale bar had not been photographed 

during this run and in result no external data is available. 

 

Camera calibration 

 

Before any further measurements the stereo bar were mounted in the front of the vehicle 

in order to take oblique photographs. The calibration sheet was submerged from the shore 

using ropes. Around 160 photographs were taken simultaneously from both of the cameras.  

The three sides of the calibration sheet were photographed from different angles. No 

measurements were conducted from one of the sides of the calibration sheet due to limited 

space caused by the close proximity to the shore. All the photographs were taken without 

use of the artificial light due to very good visibility under water. No particular problems 

occurred during this process. 
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The underwater object 

 

The neighbouring area were investigated in order to find a suitable underwater object. It 

has been decided that the submerged winter shovel would be measured. The object has 

sufficient size and it is placed not that far from the area where the camera calibration 

process was performed. The underwater object were covered by the photographs from all 

sides. Photographs were taken constantly at 2 seconds interval from different angles and 

distances from the object. The position of the ROV was navigated manually using a special 

control panel. The vehicle was moved based on a view from the video camera (figure 34). 

During the measurement the captured data was constantly checked. Again the software 

responsible for taking photographs crashed but due to a huge amount of taken photographs 

this did not affect the conducted project. Finally around 550 photographs of the object 

were taken simultaneously by the left and the right camera. No external data was obtained 

during this run.  

 

  
Figure 34 The measurement process of the underwater object 
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5. Data processing 
 

5.1 Image enhancement 
 

The underwater images were corrected using the previously proposed script described in 

4.2 section. The aim of this process is an improvement of the quality of the underwater 

images and increased feature detection in further automatic processing. To this analysis 4 

photographs taken from different angles and distances to the object were chosen. Original 

photographs were compared with three differently processed images with accordingly 

applied algorithms: histogram equalization on RGB model, Intensity, Saturation and Value 

correction on HSI and HSV colour models and with both previously mentioned 

adjustments. Colours in the original underwater photographs are muted and dominated by 

blue hue.  

 

The images with performed contrast stretching on RGB model are brighter and well 

contrasted. The average colours in the images are equalized, thus blue colour does not 

dominate the whole scene. This algorithm works well when the object is photographed 

from the close distance (1-2 m). However noise and blurriness increase along with the 

distance from the object. The centre of the distant images is overexposed and dark colours 

are dominated by magenta tone. Colours are not similar to the true hue. Images with applied 

Intensity, Saturation and Value correction increase visibility on the photographs and 

enhance the true characteristic of the object. The processed images are sharper and clearer 

and features are well recognizable but blue colour is still dominant. The centre of the 

photographs are not that overexposed considering the previous correction. Finally the 

combination of these two methods results in both colour corrected and less blurred images. 

The middle of the photograph is still bright but in comparison to the previous algorithms 

the result is satisfactory. The colour is still not close to the real hue and the noise ratio is 

increased on the images photographed from larger distance from the object. Comparison 

results is shown in table 3. 

 

Table 3  Images corrected on the proposed model 

Original photograph RGB correction I, S and V correction 
RGB and I, S and V 

correction 
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Additionally photographs were processed in Adobe Photoshop Lightroom 5.4 and the 

suggested algorithm. The three enhancement methods are proposed. First process were 

conducted only in Adobe Photoshop Lightroom. In this process automatic white balance 

was set and contrast and exposure values were increased.  In addition shadows and whites 

details values were increased to brighten the dark areas. Saturation and luminance of yellow, 

green and blue were adjusted on the HSL colour model to enhance and restore the true 

colours. The colours in the processed images are still muted but they are closer to the 

natural colour then in the previous test. Next saturation, intensity and value enhancement 

of the previously corrected photographs using the proposed model were used. The 

individual features on the images become more visible however noise raised and yellow 

colour become dominant. In the last process automatic white balance was also performed. 

Additionally colour temperature was slightly decreased. Contrast and exposure values were 

increased and highlights and overall saturation were adjusted. Green and yellow colour were 

corrected on the HSL model. Colours are muted, however they are more natural than in 

the first and second case. Finally the first and the third colour correction model conducted 

in the Adobe Photoshop Lightroom will be used in the further automatic photogrammetric 

process. These methods provide the most similar results comparing to the natural colours. 

Although colours are muted it these will provide better result because of lower level of 

noise in the images.  The high contrast and exposure values of the images results in reduced 

visibility and low feature recognition. Comparison results is shown in table 4. 
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Table 4  Images corrected in Adobe Photoshop Lightroom and the proposed model 

Original 

photograph 

Images corrected 

by Lightroom (1) 

S, I and V 

correction 

Images corrected by 

Lightroom (2) 

    

    

    

    
 

5.2 Camera calibration process 
 

The camera calibration process was performed in the two different software: AgiSoft Lens 

and Camera Calibration Toolbox for MatLab. In both software the radial and the tangential 

distortions are modelled using Brown’s distortion model. The estimated interior camera 

parameters are the horizontal and vertical focal lengths, the coordinates of the principal 

point, the radial and tangential lens distortions and the skew coefficient. Both systems 

define the origin of the image coordinate system at the top left image pixel. The 

checkerboard calibration sheet is used for the processing in these software. 

 

Camera calibration toolbox for MatLab is an open source code created by Jean-Yves 

Bouguet. The software is based on a method described in scientific paper “A Four-step 

Camera Calibration Procedure with Implicit Image Correction” where empirical inverse 

model is used to correct images. The empirical inverse model combine the pinhole model 

camera with the corrections for radial and tangential distortions. The Direct Linear 
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Transformation (DLT) and the non-linear least-square parameter estimator is used to 

estimate initial values for the camera parameters. The image correction is performed by an 

interpolation of the correct image points using the physical camera parameters calculated in 

the previous steps. This software can be used both with 2D calibration sheets and 3D 

calibration grids (Heikkilä & Silven, 1997).  

 

Formulas used to calculate the interior parameters in both AgiSoft Lens and Camera 

Calibration Toolbox for MatLab are given in manuals available online and are listed below 

(Bouguet, 2013), (Lens, 2011): 

 

𝑥 =
𝑋

𝑍
 

 

𝑦 =
𝑌

𝑍
 

 

𝑥′ = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) + 𝑝2(𝑟2 + 2𝑥2) + 2𝑃1𝑥𝑦 

𝑦′ = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) + 𝑝1(𝑟2 + 2𝑦2) + 2𝑃2𝑥𝑦 
 

𝑢 = 𝑐𝑥 + 𝑥′𝑓𝑥 + 𝑦′ ∙  𝑠 

𝑣 = 𝑐𝑦 + 𝑦′𝑓𝑦 

 

The unit conversion are computed using the following formula: 

 

[
𝑢
𝑣
1

] = 𝐾𝐾 ∙  [
𝑥′
𝑦′
1

] 

 

𝐾𝐾 = [
𝑓𝑥 𝑓𝑥  ∙  𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] 

Where: 

𝑟 = √𝑥2 + 𝑦2 

 

X, Y, X - point coordinates in the local camera coordinate system, 

u, v - projected point coordinates in the image coordinate system, 

fx, fy – horizontal and vertical focal lengths, 

cx, cy – coordinates of the principal point, 

k1, k2, k3 – radial lens distortions, 

p1, p2 – tangential lens distortions, 

s – skew coefficient. 

The stereo camera calibration is performed in the “Camera Calibration toolbox for 

MatLab” software. The extrinsic parameters of the left camera are fixed and set to 0. The 

position of the right camera with respect to the left camera are defined by the rotation 
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vector and the translation vector. The model is scaled based on the size of the squares from 

the checkerboard.  

 

In AgiSoft Lens the camera calibration process is conducted entirely automatically. No 

manual measurements of the checkerboard had to be performed. Different set of 

parameters can be chosen for calculations. The focal length must always be fixed, but cx, 

cy, k1, k2, k3, k4, p1, p2 and skew parameters can be chosen arbitrarily. The processes were 

performed using all parameters besides the k4. The software recommends to use 

photographs where the checkerboard fills up the entire view. However the calibration 

images do not fulfil this requirement, due to the fact that the camera calibration will be 

performed in two different software and Camera Calibration Toolbox for MatLab needs to 

cover the whole or the same part of the calibration sheet on every image, it has been decided 

to take photographs according to the recommendations given by Camera Calibration 

Toolbox for MatLab manual.  

AgiSoft lens did not measure any points on the rotated photographs (figure 35). Probably 

the algorithm used in this software is less advanced and it cannot deal with the differently 

rotated images.  

 

 
Figure 35 The horizontal and the rotated image with the measured image points in the AgiSoft Lens. 

In Camera Calibration Toolbox for MatLab the grid corners need to be extracted manually 

on the each photograph. This software is more advanced than AgiSoft Lens and it allows 

us to set various parameters during the calibration procedure. The Toolbox can compute 

the interior camera parameters using different calibration grids (planar 2D sheets or 3D 

calibration grids). Furthermore the parameters of the stereo calibration can be calculated.  

In this camera calibration process, a length of the squares on the checkerboard plate was 

inputted into the software to scale the stereo calibration parameters to the actual values. 

The grid corners had to be marked starting from the same corner in the clockwise direction 

otherwise the software will not compute the result correctly. The image points with errors 

measured in Camera Calibration Toolbox for MatLab is shown in figure 36. 
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Figure 36 The image points with errors measured in the Camera Calibration Toolbox for MatLab. 

 

The camera calibration performed in the air 

 

Computed focal lengths of the left and right camera do not differ much from the 

preliminary value 8.2 mm provided by the manufacturer. The focal lengths, the coordinates 

of the principal points and the radial distortions k1 and k2 calculated respectively for the 

right camera and the left camera by both software are almost the same. On the other hand, 

the rest of the parameters differ significantly from each other. The accuracy of the 

computed parameters are mostly high. However the accuracy of the skew and the tangential 

distortion coefficient p2 calculated in the AgiSoft Lens exceed the computed values and in 

result cannot be considered as reliable. The positions of the right and the left camera 

calibrated in the air is shown in figure 37. 

 

Table 5 Camera calibration parameters of the left and the right camera performed in the air 

Intrinsic 

parameters 
Right camera Left camera 

AgiSoft Accuracy Toolbox Accuracy AgiSoft Accuracy Toolbox Accuracy 

fx [mm] 8,314 0,008 8.317 0,006 8,349 0,019 8,347 0,006 

fy [mm] 8,313 0,008 8,315 0,006 8,349 0,013 8,347 0,006 

cx [mm] 4,492 0,010 4,489 0,007 4,484 0,012 4,488 0,006 

cy [mm] 3,396 0,008 3,399 0,006 3,296 0,023 3,392 0,005 

Skew [deg] 0,0011 0.0012 0.0003 0.0001 0,0012 0.0013 0.0003 0.0001 

k1 [pix-2] 
-

0.12721 
0.00542 -0.12541 0.00374 -0.12213 0.00663 -0.12490 0.00309 

k2  [pix-4] 0.19425 0.03369 0.20692 0.02084 0.16676 0.04711 0.20163 0.01704 

k3  [pix-6] 
-

0.07756 
0.06167 0.00015 0.00018 -0.00332 0.09953 -0.00012 0.00016 

p1 [pix] 0.00044 0.00024 -0.00071 0.00021 -0.00038 0.00026 -0.00023 0.00019 
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p2 [pix] 
-

0.00021 
0.00031 -0.11059 0.03438 0.00050 0.00031 -0.09583 0.02814 

 

 

      
Figure 37 The positions of the right and the left camera calibrated in the air 

 

 

The camera calibration performed in the sea 

 

 

The calculated preliminary focal length is 11.65 and it is close to the computed focal lengths 

included in table 6. All computed values by AgiSoft Lens and Camera Calibration Toolbox 

for MatLab differ significantly from each other. The accuracy of the computed parameters 

are high.  

If we divide the focal lengths of the cameras calibrated in the saltwater and in the air it will 

turn out that approximate water refractive index is equal around 1.35 and it is close to the 

assumed value 1.339. The positions of the right and the left camera calibrated in the sea is 

shown in figure 38. 
 

Table 6 Camera calibration parameters of the left and the right camera performed in the sea 

Intrinsic 

parameters 
Right camera Left camera 

AgiSoft Accuracy Toolbox Accuracy AgiSoft Accuracy Toolbox Accuracy 

fx [mm] 11,216 0,019 11,351 0,079 11,273 0,021 11,208 0,076 

fy [mm] 11,105 0,013 11,126 0,056 11,080 0,014 11,088 0,048 

cx [mm] 4,233 0,012 4,328 0,086 3,690 0,017 3,859 0,082 

cy [mm] 3,453 0,023 3,316 0,116 3,336 0,025 3,585 0,108 

Skew [deg] -0.0696 0.0055 0.0006 0.0030 -0.1667 0.0069 -0.0139 0.0031 

k1 [pix-2] 0.11379 0.00952 0.09395 0.04768 0.17510 0.00771 0.11647 0.03100 

LEFT 
RIGHT 



52 
 

k2  [pix-4] 0.87851 0.12467 0.67518 0.05026 0.12107 0.07873 0.46175 0.29467 

k3  [pix-6] 
-

0.41499 
0.47544 0.01945 0.00333 0.866721 0.23587 0.03045 0.00290 

p1 [pix] 0.01729 0.00062 -0.00647 0.00389 0.01957 0.00068 -0.01463 0.00374 

p2 [pix] 
-

0.01088 
0.00056 -3.61981 6.31782 -0.02586 0.00075 0.21670 0.99945 

 

   
Figure 38 The positions of the right and the left camera calibrated in the saltwater 

 

The comparison between these two calibrations results are shown in table 7. The intrinsic 

parameters of the regular camera and the submerged camera significantly differ from each 

other. Consequently, the camera calibration process must be performed before each 

underwater survey. 

 

For the further processes the cameras’ intrinsic parameters calculated in Camera Calibration 

Toolbox for MatLab was chosen. This software computed the final values based on a larger 

amount of photographs, especially including the rotated images. In consequence, the 

intrinsic parameters of the cameras calculated in that software is assumed to be more 

reliable than in AgiSoft Lens.  

 

 

Table 7 Comparison of the intrinsic parameters computed in the both software. 

Intrinsic Calibration in the air Calibration in the sea 

RIGHT 
LEFT 
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parameter

s 

Right camera Left camera Right camera Left camera 

AgiSof

t 

Toolbo

x 

AgiSof

t 

Toolbo

x 

AgiSof

t 

Toolbo

x 

AgiSof

t 

Toolbo

x 

fx [mm] 8,314 8.317 8,349 8,347 11,216 11,351 11,273 11,208 

fy [mm] 8,313 8,315 8,349 8,347 11,105 11,126 11,080 11,088 

cx [mm] 4,492 4,489 4,284 4,488 4,233 4,328 3,690 3,859 

cy [mm] 3,396 3,399 3,296 3,392 3,453 3,316 3,336 3,585 

Skew [deg] 0,0011 0.0003 0,0012 0.0003 -0,0696 0.0006 -0,1667 -0.0139 

k1 [pix-2] -0.12721 -0.12541 -0.12213 -0.12490 0.11379 0.09395            0.17510 0.11647           

k2  [pix-4] 0.19425 0.20692 0.16676 0.20163    0.87851 1.67518 0.12107 0.46175 

k3  [pix-6] -0.07756 0.00015 -0.00632 -0.00012 -0.41499 0.01945 0.86672 0.03045 

p1 [pix] 0.00044 -0.00071 -0.00038 -0.00023  0.01729 -0.00647 0.01957 -0.01463 

p2 [pix] -0.00020 -0.11059 0.00050 -0.09583 -0.01088 -3.61981 -0.02586 0.21670 

 

The extrinsic parameters of the stereo pairs calculated by Camera Calibration Toolbox for 

MatLab in the air and in the saltwater are given in table 8. The air stereo pair calibration is 

very accurate. The calculated distance between the cameras is 31,001 cm and it is equal to 

the distance measured manually by a ruler during the measurement (31 cm). As it is clearly 

seen on figure 39 the positions of the cameras are accurately placed in the same line. 

 

Table 8 Extrinsic parameters (position of the right camera with respect to the left camera) 

 

Translation vector Rotation vector The 

measured 

distance 

between two 

cameras  

[cm] 

The 

calculated 

distance 

between two 

cameras [cm] 

X [mm] 
Y 

[mm] 

Z 

[mm] 
φ [deg] ω [deg] κ [deg] 

Air -310.080 0.312 2.346 -0.00298 0.04123 0.00148 31 31,001 

Saltwater -426.560 -20.641 48.909 -0.01416 -0.04151 0.04770 42 42,985 
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Figure 39 The camera and the calibration sheet positions of the stero pair 

The extrinsic parameters calculated for the submerged stereo pair are not reliable due to 

the fact that the photographs were not taken simultaneously. The vehicle was moving with 

0.2 m/s speed and the time difference between the exposures was around 0.1 second. In 

result the vehicle changed its position by approximately 2 cm between these two exposures. 

This variation is very easy to notice in the plot from Camera Calibration Toolbox for 

MatLab (figure 40). The position of the left camera is shifted with respect to the right one. 

The calculated Z value of the translate vector indicates that the vehicle could move around 

5 cm between the two exposures of the right and the left camera. In addition a distance 

between these two cameras are 42,985 cm (table 8). The difference between the computed 

value and the manually measured distance is not that large and it is equal 1 cm. 
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Figure 40 The camera and the calibration sheet positions of the submerged stero pair 
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5.3 3D model generation 
 

The underwater object 

 

177 colour corrected photographs were loaded to AgiSoft PhotoScan. Photographs taken 

from the left and the right camera were sorted and calibrated accordingly to the left and 

right camera calibration files. The camera positions and their orientation were computed 

by the “Align photos” command. Photographs were aligned with a high accuracy and a 

generic pair selection which allowed to decrease time of the process by preselecting the 

overlapping pair of photos before the main align process. In result a sparse point cloud 

model were produced. The sparse cloud and the calculated cameras’ positions are shown in 

the figure 41. The photographs evenly cover the entire underwater object from the all sides.  

 

 
Figure 41 The sparse cloud and the cameras’ positions generated by PhotoScan 

The valid part of the object was selected and a few high quality dense point clouds were 

produced using various depth filtering options: Aggressive, Moderate and Mild. The Mild depth 

filtering selection provides the highest feature reconstruction level and it should be used 

when improved accuracy is required. The Aggressive mode corrects the dense cloud and 

deletes the protruding points from the model. In result less detailed point cloud is created. 

The Moderate option gives result between the Aggressive and Mild depth filtering options 

(Photoscan, 2013). The comparison of these three depth filtering methods of the point 

cloud is shown in figures 42 and 43. 
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Figure 42 Comparison of Aggressive, Moderate and Mild depth filtering modes – top view 

 

 

 
Figure 43 Comparison of Aggressive, Moderate and Mild depth filtering modes – side view 
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The Aggressive depth filtering mode created an insufficient numbers of points. The resulted 

dense cloud has a lot of holes, in particular in places where seaweed or poor image coverage 

occurred. This mode properly removes unnecessary points. However, in result an 

incomplete model was created. The Aggressive depth filtered dense cloud was too low quality 

and will not be used in further processing. The Moderate depth filtering mode reconstructed 

the underwater model well. The seaweed is fairly well preserved comparing to the other 

filtering options. The Mild depth filtering mode provided more disordered result however 

it preserved more points in comparison to the other methods. Moreover, this mode 

reconstructed the largest amount of individual features.  

 

Before further processing, the inaccurate or supplementary points of the dense cloud 

should be manually removed. Nevertheless this process in PhotoModeler software is very 

imprecise and it easily eliminates both unnecessary and required points during this 

procedure so it will not be used in this project. 

 

The mesh will be created both in PhotoScan and Geomagic. In PhotoScan the process will 

be conducted using only “Mild” dense cloud. Further processes will be conducted in 

Geomagic using the Moderate and the Mild depth filtered dense cloud. The “Mild” and the 

“Moderate” dense point clouds were exported to the PLY (Polygon File Format) format that 

contains points’ coordinates and additional information about their colour.  

 

 

3D polygonal object created in the AgiSoft PhotoScan. 

 

The underwater object was reconstructed using Built Mesh command. Number of polygons 

in the final mesh were set to 1500000 and the surface type was assigned to arbitrary which 

was recommended by the software for this structure. Three 3D polygon objects were 

created automatically using three different methods: without interpolation, with 

interpolation and with extrapolation of the dense point cloud.  

 

In the first case no interpolation technique was used. Due to fact that the only surrounding 

points of the dense cloud were connected in triangles the final object has a lot of holes 

(figure 44). The seabed are reconstructed very well however in the places where seaweed or 

poor coverage occurred the model is incomplete. The shovel is fairly well reconstructed 

taking into account the fact that the bottom – left corner of the object does not stand out 

from the background. 
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Figure 44 3D polygon object constructed without interpolation technique presented in shaded and solid 

mode 

In order to enhance the object’s structure Close Holes feature was used to fill up existing 

holes. The algorithm used in PhotoModeler is very basic and it does not allow to choose 

any particular filling preferences. The default setting fills up holes with a flat surface which 

in most cases do not reflect the actual characteristic of the object. The only parameter that 

can be set in this command is the size of holes which will be filled. However the analysed 

object cannot be reconstructed properly using this option. A high value of this feature ruins 

the geometry of the object which in consequence leads to a poor result. On the contrary a 

low value does not influence the 3D polygon object much (figure 45).  

 

 
Figure 45 Different values of “Fill Holes” command of the 3D polygon object constructed without 

interpolation technique 

Respectively the extrapolated 3D object reconstruction mode were used. This technique 

provides a smooth model without any holes. The new, additional points are estimated 

outside the known range based on its relationship with the existing dense cloud points 

High value  Low value  
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(Photoscan, 2013). The advantage of this technique is solid model. However this technique 

tends to produce incorrect additional polygons. Seaweed and poor coverage places are well 

reconstructed but the bottom – left corner of the shovel is missing data. No additional 

operations were conducted on this mesh due to fact that this algorithm filled up all holes. 

The 3D polygon object constructed using this technique is shown in the figure 46. 

 

  
Figure 46 3D polygon object constructed with extrapolation technique presented in shaded and solid 

mode 

The last technique used is an object reconstruction based on the interpolation method. This 

setting allows us to construct solid surface by inserting additional points between already 

existed dense cloud points within a range of a particular radius. Predominantly the 

underwater object was properly reconstructed. However the bottom – left corner of the 

shovel is still incomplete. In comparison to the previous methods, the interpolation 

technique provides the most detailed result. The created seabed does not differ from the 

one which is produced using the extrapolated technique. However the seaweed and the 

shovel is better constructed using the interpolated technique. No additional operations such 

as filling holes were performed on this model. The 3D polygon object constructed using 

this technique is shown in the figure 47. 
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Figure 47 3D polygon object constructed with interpolation technique presented in shaded and solid 

mode 

Three close-ups of the 3D model (the shovel, the handle and the poor photo covered part 

of the object) were generated and compared. The first model, created without any 

interpolation technique reconstructed the shovel the most accurately. The dense cloud in 

the one corner of the shovel is not very consistent. This is due to a small difference in 

colour between the seabed and the shovel. The part of the shovel coalesced with the 

background. However regardless of the poor data, the first technique managed to 

reconstruct the shovel quite accurately. Algorithms used by the software in interpolated and 

extrapolated methods have not been able to reconstruct this area well and it removed a lot 

of data (figure 48).  

 

Without interpolation Interpolated Extrapolated 

   
Figure 48 Model of the shovel created by three different techniques 
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The handle of the shovel was not reconstructed well in any of the presented techniques 

(figure 49). It is caused by the moving seaweed which entwined the handle and in result 

influenced the geometry and aspect of the dense cloud. The model created without any 

interpolation technique reconstructed the handle the closest to its true appearance. 

However a lot of disconnected polygons appeared around the handle. The other techniques 

managed to connect points into polygons but in result the handle become very distorted.  
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Figure 49 Model of the handle created by three different techniques 

The part of the object with a poor photo coverage created without using any interpolation 

techniques did not fill up any holes (figure 50). The mesh is rough and irregular and a lot 

of disconnected polygons occurred. On the other hand interpolation and extrapolation 

method worked very well in this situation. In addition objects created by interpolated and 

extrapolated method do not differ much from each other. 
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Figure 50 Model of a poor photo covered part of the object created by three different techniques 

The last step of the 3D modelling is a building a model texture. PhotoScan allow us to use 

a few texture mapping modes: Generic, Adaptive ortophoto, Ortophoto, Spherical, Single Photo and 

Keep uv. The choice of the texturing mode should be dependent on the structure of the 

object. The Ortophoto and Adaptive ortophoto modes should be used for flat areas due to fact 

that both algorithms project the textures using orthographic projection. Spherical mapping 

mode should be used only for ball-shaped forms. Aim of the Single photo mode is formation 

of texture based on only one chosen photograph. Default, generic mode can be used for 

any kind of shapes. This algorithm does not work based on any preliminary type of the 

surface, thus it works very well with the non-uniform shape of the object. Keep uv command 

allows us to reconstruct texture using different parameters (for example higher resolution) 

(Photoscan, 2013). Two texture mapping techniques were used: Generic using average and 

maximum intensity of all pixel values and Adaptive ortophoto using maximum intensity value 

of the all pixels. Additionally colour correction mode was chosen due to high brightness 

and colour variations between the underwater photographs.  
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The best texture was created using the Generic technique computed with the average value 

of the all pixels. Texture corresponds to the real appearance of the shovel. Final colours are 

quite haze however the individual details are still well recognizable. The texture created 

based on the maximum intensity value of the all pixels are very bright and blurry. Single 

features are poorly recognizable. Adaptive ortophoto mode did not produce a correct texture 

due to an orthographic projection used in this method. The handle has been reprojected 

additionally on the seabed, resulting in the confusing result. Dense cloud, coloured mesh 

created based on the dense cloud colours and three resulting models are shown in figure 

51. Textures were built for a polygonal model which was created using the interpolation 

technique.  

 

Coloured mesh created based on the dense 

cloud colours 
Generic 

  

Generic with maximum intensity Adaptive ortophoto 

  

Figure 51 Different texturizing techniques available in the AgiSoft PhotoScan 
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The model created based on the interpolation technique with generic texture using average 

value of the all pixels is exported to the 3D pdf file which is available electronically with this 

thesis in appendix 1. 

 

3D polygonal object created in Geomagic. 

 

The Moderate dense cloud were imported to Geomagic and filtered. Variable positions of 

the seaweed on the subsequent photographs resulted in an inaccurate and incomplete 

model. The biggest point disorder were seen quite well on the object’s handle which was 

fully covered by the hanging seaweed (figure 52).  

 

 
Figure 52 Seaweed covering up the actual surface of the object 

 

The points which were considered as seaweed entangling the underwater object were 

removed in order to clean the model and reveal the true characteristic of the object. 

Additional points were removed carefully so the geometry of the underwater object would 

not change significantly (figure 53). 

 

 
Figure 53 Removal of the seaweed from the underwater model 
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Afterwards the dense cloud were filtered automatically using a few functions in Geomagic. 

Firstly the disconnected components were selected and deleted using the Disconnected Points 

option with separation value set to low. Next, the points were ordered using the Reduce Noise 

command using prismatic shapes (aggressive) mode and medium smoothness level. These 

options allows us to preserve the real characteristics of the object by maintaining the 

sharpness of the features. Due to fact that this function does not remove noise on the 

object’s edges, it fits points properly to the various planes such as a plane or sphere 

(Geomagic Studio 2014, 2014). 

 

After all adjustments a polygon object was created using surface wrapping. The model was 

created using the maximum degree of the noise reduction and additional removal of the 

small components. Moreover Optimize for Spare Data option was used to help to wrap very 

unordered points and fill more holes. Additionally every hole below 15 unit will be filled 

automatically during the process. Maximum number of the resulting triangles were set to 

1500000.  

 

All previously described operations were conducted both on the “Mild” and “Moderate” 

dense point clouds and compared (figure 54). The polygon object created from the 

“Moderate” dense point cloud are less accurate and more incomplete in comparison to the 

polygon object created from “Mild” data set. A large number of big holes occurred on the 

“Moderate” dense point cloud especially in the places where seaweed occurred. This model 

provides better filtered result where single objects are more recognizable. However a lot of 

data is lost. The “Mild” polygon object has more noise but the surface is better 

reconstructed comparing to the other model. The green structures on both models indicate 

mesh errors.  
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Figure 54 Uncorrected polygon model created from the dense point cloud using the moderate (1) and the 

mild (2) depth filtering 

Further processes will be conducted in Geomagic using the polygon model constructed 

from the Mild depth filtered dense cloud. 

 

The polygon object were automatically repaired using the Mesh Doctor tool. The process 

were conducted using the default settings of this command. The following problems were 

repaired during this process:  

 

- Non-Manifold Edges (triangles present on the edge of the mesh that are connected 

to the mesh just on the one side). 

- Self-Intersections (triangles which are twisted or twined together with situated next 

to or very close to the other triangles). 

- Highly-Creased Edges (triangles that are next to and joined with each other at sharp 

angles). 

- Spikes (sets of minimum three triangles which are visible as a point on a mostly-

smooth polygon object). 

- Small Components (sets of disconnected triangles which are protruding from the 

mesh). 

- Small Tunnels (double-layered formations in the polygonal objecct with a front and 

back opening) 

- Small Holes (small hollow spaces in the 3D polygon mesh). 

 

Description of the above errors is obtained from the Geomagic Studio 2014 Manual 

(Geomagic Studio 2014, 2014).  

 

The remaining holes were filled both automatically and manually using the Fill Holes 

command. There are three filling options: curvature, tangent and flat. The Curvature and the 

tangent techniques both compute new polygons based on the curvature of the surrounding 

mesh but the tangent option does not significantly change the geometry of the object like 

the curvature one. The flat technique fills up holes with a basic flat surface (Photoscan, 2013). 

The graphical representation of these 3 techniques are shown in figure 55.  

 

 
Figure 55 Different filling holes techniques: curvature, tangent and flat (Geomagic Studio 2014, 2014) 
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Smaller holes were filled in automatically using the tangent filling hole technique. The 

remaining big holes were filled manually using the curvature, tangent or flat technique 

depending on the existing holes and their surroundings. Example of the structures filled up 

by the Fill holes command using tangent and flat option is shown in figure 56.  

 

  
Figure 56 Holes filled by the tangent (1) and the flat (2) technique 

The final result after all necessary adjustments is shown in figure 57. Geomagic managed 

to produce the polygonal model of the shovel quite precisely. Both the seabed and the 

shovel are reconstructed very well. Nevertheless the result do not look very natural in the 

parts of the object where the big holes were manually filled out. The shape of the handle 

and the seaweed are of poor quality and extremely noisy.  

 

 
Figure 57 The polygonal model of the underwater object 
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A few close-ups of the shovel, the handle and a poor photo covered part of the polygon 

object were made. The shovel are reconstructed very well on this model. The shovel are 

solid and without any holes. In comparison to the previous software, Geomagic allowed us 

to leave the empty space under the shovel without the need to combine the surrounding 

triangles. In consequence the model presents the actual shovel’s surface (figure 58).  

 

  
Figure 58 Close-up of the shovel generated by Geomagic 

The handles original shape were very well preserved. The upper side of the handle is better 

reconstructed then the bottom side which was covered by the hanging seaweed. Despite 

the fact that mesh correction was performed a lot of non-manifold edges occurred on the 

handle (figure 59).   

 

  
Figure 59 Close-up of the handle generated by Geomagic 

The poor photo covered part of the object were entirely filled up manually using the tangent 

filling holes technique. The created mesh is smooth and looks very artificial (figure). 

Additionally this process tends to merge disconnected triangles with the mesh and produce 

poor result that affects the final geometry (dark brown structures). 
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Figure 60 Close-up of a poor photo covered part of the object 

Finally a model texture was created. The photographs have been projected on the polygon 

object manually by selecting corresponding points between the photograph and the model. 

The procedure has been continued until the model position corresponds to the position of 

the object on the photograph. Additional feature blend combined new image colour with an 

existing texture colour. However this option did not work well on this project (figure 60). 

The colours of the photographs used in this project differed too much from each other and 

the process failed. The texturizing result is not satisfactory therefore texture generated from 

the point cloud colours will be used. 

 

 
Figure 61 Textures generated in the Geomagic software 

The model created in Geomagic is exported to the 3D pdf file which is available 

electronically with this thesis in appendix 2. 
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Part of the pipeline 

 

The Mild depth filtered dense cloud were created in PhotoScan accordingly to the 

previously presented methods. The sparse cloud and the calculated cameras’ positions are 

shown in figure 62.  

 

 
Figure 62 The sparse cloud and the cameras’ positions generated by PhotoScan 

The dense cloud and the cameras positions are distorted due to lack of external data (no 

scale bar, ground control points on the scene and no preliminary positions of the cameras) 

and no common coverage between two strips. As it is shown in figure 63 camera positions 

are curving down to the seabed. 

 

 
Figure 63 Deviations of the camera’s positions 
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The underwater pipeline was reconstructed using the Built Mesh command. The maximum 

number of polygons in the mesh were set to 8500000 and the surface type was assigned to 

arbitrary which was recommended by the software for this structure. The 3D polygon 

objects were created automatically based on the interpolation technique. The created mesh 

shows in detail deviations of the model’s shape (figure 64). The object is curving down in 

the middle. The biggest difference can be seen on these two disconnected strips. The strips 

are pointing out into two different directions. Moreover the shorter strip steer more 

upwards then the longer one thereby resulting in incorrect model. 

 

 

 
Figure 64 Deviation of the shape of the created model 

Afterwards the texture was created using the Generic technique computed with the average 

value of the all pixels. The texture corresponds to the real appearance of both the seabed 

and the pipeline. The shaded mesh and the textured mesh are shown in figure 65. The 

texture brightness is not consistent along the whole object. Places where edges of the 

photographs are seen are darker. Due to fact that light is highly absorbed under water the 

centre of photographs are better illuminated then the edge.  

 

  
Figure 65 The shaded model and the textured model of the underwater pipeline 
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The seaweed has a negative impact on the result. The seaweed which is winded around the 

pipeline deforms the model. The structure created in places where seaweed occurred does 

not resemble the actual object and in result it cannot be accepted. Despite the previous fact 

the final mesh is very accurate. Even very small objects such as a thin cable seen in figure 

66 are well reconstructed. Additionally the appearance of the other parts of the mesh such 

as seabed or rocks highly corresponds to the actual structure. 

 

  

  

Figure 66 The close-ups of the underwater pipeline and rocks 

The model of the pipeline created based on the interpolation technique with generic texture 

using average value of the all pixels is exported to the 3D pdf file which is available 

electronically with this thesis in appendix 3. 
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6. Concluding remarks 
 

6.1 Analysis and conclusions 
 

A few important conclusions were drawn during this thesis which are presented below.  

 

The camera calibration must be performed before every photogrammetric survey, because 

the intrinsic parameters of a submerged camera change significantly in comparison to the 

primary values. The focal length is larger and the Field of View is decreased underwater, 

thus a smaller area will be covered by a photograph then in the air. These changes should 

be taken into consideration during a preparation of a data acquisition plan. The data 

acquisition plan can be made based on assumed values calculated using approximate 

refraction index due to air-glass-water interface or using real values computed from the 

camera calibration procedure. The second procedure is recommended when a project is 

conducted based on the aerial photogrammetry principles and the underwater object is 

covered by vertical photographs. Due to the fact that the focal length and the Field of View 

parameters are very susceptible to the alterations in an underwater environment, the area 

that is covered by a single photograph can change and the overlap between photographs 

can turn out insufficient to achieve good stereo coverage. In that case the data acquisition 

plan should be created based on larger overlap or real values computed from the camera 

calibration procedure. If the close-range photogrammetry principles are used to measure 

the underwater object, that data acquisition plan can be created based on the approximate 

intrinsic camera parameters computed using an assumed refraction index. Additionally the 

underwater object should be covered by photographs from all sides to avoid bad object 

reconstruction. Furthermore the camera calibration should be performed from a close 

distance to the surveyed object, thus the environment will remain the same and intrinsic 

camera parameters will not change. 

 

The underwater images are very dark and low quality, thus a few processing operations had 

to be performed: colour enhancement, haze removal and brightening of the image. These 

operations will improve an automatic photogrammetric point extraction conducted in 

Agisoft PhotoScan. The photographs were enhanced using both a script based on the 

Integrated Colour Model written by K. Iqbal and various functions from Photoshop 

Lightroom. The image processing performed in Photoshop Lightroom gave us better 

results than the first proposed technique. In contrast to the script, Photoshop allows us to 

use greater amount of adjusting parameters and in consequence get a result closest to the 

real appearance of the underwater object. The images processed in the script are too bright 

and too contrasted so they cannot be used in this project.  

 

The underwater site should be illuminated evenly and no changes in brightness should 

occur between photographs. Significant differences will influence the automatic 
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photogrammetric point extraction process. If it is possible, no artificial light should be used. 

The lights often cause shadows on a scene which cover a part of the surveyed area and in 

result no data will be extracted there. In case when the artificial light had to be used more 

than one light should be used. The lights should be fixed symmetrically on the vehicle so 

that they should illuminate a larger area than image coverage. So the image will not only be 

bright in the centre of the image. 

 

Due to the fact that any ground control points with known coordinates cannot be set up 

underwater, all other available methods that will provide us external data should be used. 

On the site a scale bar and vertical buoys should be used to scale the object and determine 

the horizontal direction. Underwater positioning systems and the extrinsic parameters of 

the stereo system unit will provide us the approximate position of the cameras during each 

exposure. This data can decrease a possibility of the object deformation which occurred in 

the pipeline model. Furthermore the surveyed area should be solid (square or rectangular) 

without any holes between the strips in order to avoid a problem which also occurred in 

pipeline measurement where one strip is protruding up with respect to the second one.  On 

the other hand a measurement of the shovel which is based on the close range 

photogrammetry principles does not require additional external data. Only a use of the scale 

bar or vertical buoy is sufficient. The possibility of object deformation is highly decreased 

if the object is covered by photographs from the all sides.  

 

The software which was responsible for taking simultaneous pictures failed. The left and 

the right camera were not taken photographs simultaneously. The difference between the 

exposures were not constant (around 0.1 second) and it was sufficient to influence the 

relative orientation of the stereo system unit. In consequence the extrinsic parameters of 

the stereo system could not be used. This software failure and a lack of data from the 

underwater positioning system resulted in no external data of both the objects.  

 

Seaweed must be removed if we want to achieve a good and reliable three-dimensional 

model. The moving objects will influence the final result, especially if they cover the area 

of interest. Seaweed can also be removed from the dense cloud, however it will not produce 

a precise result. Seaweed which was hanging on the handle of the shovel was removed 

manually in the dense cloud, however created model was still not very accurate.  

  

The construction of the three-dimensional model should be performed in a few software. 

Agisoft PhotoScan should be used to perform point extraction from the images and 

Geomagic should be used to clean the dense cloud and to create a three-dimensional model 

of the object.  PhotoScan is highly advanced software which generates very accurate dense 

cloud, however the other features such as cleaning the dense cloud or building a mesh are 

very limited. Geomagic is more advanced 3D modelling tool in comparison to PhotoScan. 

This software allows us to choose from a variety of parameters and options to create the 
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three-dimensional model. Additionally Geomagic offers automatic repair of the model and 

very advanced hole closing tools.  The texturizing of a model in Geomagic is performed 

manually and it is very time consuming. Especially in big projects this may significantly 

increase the processing time. Furthermore this algorithm does not work well if colours on 

the images differ from each other. When the object is photographed from different 

distances and angles, the illumination and colours on the images will change between the 

pictures. On the other hand texturizing in AgiSoft PhotoScan is completely automatic and 

very accurate. This software uses the positions of the cameras to set the image to the right 

position. In addition the colour correction algorithm works very well even on differently 

toned pictures. The whole 3D modelling process can be completely performed in Agisoft 

PhotoScan if a highly detailed result is not required. However if a highly detailed and 

accurate three-dimensional model is needed, the processes should be performed both in 

PhotoScan and Geomagic. 

 

The remotely operated vehicle is very susceptible to any individual software and equipment 

failures. Despite the fact that the photogrammetry planning was very well prepared, due to 

technical problems the primary assumptions of this thesis was not fulfilled. Even so this 

project allowed us to understand more of the issues connected with underwater surveys 

and draw conclusions that should be implemented in further measurements. 

 

6.2 Future work recommendation 
 

Removal of seaweed covering the measured object is suggested in order to increase a quality 

of a model. 

 

The underwater positioning system and the Inertial Measurement Unit (IMU) should be 

used to compute the approximate XYZ position and ϕ, ω, κ orientation data of the each 

camera position during exposure. 

 

A pan/tilt unit freely movable in all directions should be used. Such a pan/tilt unit should 

allow us to arbitrary move a stereo bar in order to take both vertical and oblique 

photographs without a need to change the position of the entire rig during measurement. 

 

Also improvements to the software used for camera synchronization is needed. 

 

 

http://en.wikipedia.org/wiki/Inertial_measurement_unit
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