
Distributed and Concentrated Inelasticity 
Beam-Column Elements used in 
Earthquake Engineering

Armin Gharakhanloo

Civil and Environmental Engineering

Supervisor: Amir Kaynia, KT

Department of Structural Engineering

Submission date: June 2014

Norwegian University of Science and Technology



 



Preface

This masters thesis has been written at the Department of Structural Engineering at the
Norwegian University of Science and Technology (NTNU). It is the result of 20 weeks
work in the spring semester of 2014, and finalizes my study in Civil Engineering with an
emphasis on Computational Mechanics. My supervisor for the thesis has been Professor
Amir M. Kaynia (NTNU).

Acknowledgements

I would like to express deep gratitude to my supervisor Professor Amir M. Kaynia for
inspiring me to seek out and study state-of-art structural engineering theory, as well as
sharing his insight into nonlinear and earthquake analysis. His frequent counseling and
advice throughout the semester has been very helpful and instructive, and has been of
great significance for the final outcome of the thesis. I would also like to thank several
others for contributions to my research:

• Doctor Georgios Tsionis at the European Labratory of Structural Assessment (ELSA),
Joint Research Centre, Italy for providing experimental data and guidance on the
pseudo-dynamic testing of a reinforced concrete frame.

• Gabriel Sabay at the European Labratory of Structural Assessment (ELSA), Joint
Research Centre, Italy for giving advice on the modeling of material properties.

• Professor Filip C. Filippou at the University of California, Berkeley for providing
assistance with OpenSees, as well as introducing me to the field of nonlinear struc-
tural analysis due to seismic loading at my exchange year at UC Berkeley in 2012 -
2013.

• Doctor Frank McKenna at the University of California, Berkeley for advice and
troubleshooting of OpenSees scripts.

i





Abstract

A suite of beam-column element formulations have been developed for assessment of
the nonlinear response of structures under earthquake loading. They range from simple
concentrated inelasticity elements, to the more advanced distributed inelasticity fiber el-
ements. Research and development of new sophisticated models have been, and still
are, of great interest, as rising computational power and technology has allowed even
faster numerical calculations. Despite the increase of new and improved formulations,
the elements in commonly used finite element software are prone to produce significant
inaccuracies in their approximations of nonlinear structural response. This happens par-
ticularly for beam-column members experiencing strain-softening behaviour, which is
common for columns with large vertical loading. The phenomena is called localization,
and is due to inelastic deformations localizing in concentrated parts of a structural mem-
ber. It brings with it the numerical disadvantage of non-objectivity, which means that the
structural response differs depending on the discretization of elements and integration
points.

This thesis makes a review of the commonly known inelastic beam-column element
formulations with a focus on their advantages and disadvantages. These include the
displacement-based and force-based distributed inelasticity formulations, concentrated
inelasticity elements with springs at member ends, as well as the more sophisticated
concentrated inelasticity elements with fiber discretization. Localization issues are pre-
sented; first the physical definition, which is observed on testing specimen of concrete
columns, and second the numerical definition. Different regularization procedures to
prevent numerical localization have been assessed, and a comprehensive verifying anal-
ysis has been performed with the use of OpenSees.

Finally, the beam-column element formulations are applied in the modelling of a one-
story frame, which has been pseudo-dynamically tested in a laboratory. This is done in
SeismoStruct, where the element discretization properties have been determined based
on the results from the OpenSees analysis. Then, a numerical comparison between ex-
perimental and analysis results have been made. Conclusions on the application of the
different elements have been drawn based on these results. The analysis of the one-story
frame succeded in portraying the characteristics of the discussed element formulations,
thus verifying their capabilities of modeling structures subjected to strong lateral forces.
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Sammendrag

En rekke elementformuleringer har blitt utviklet for vurdering av bjelke-søyler i ikke-
lineær analyse av bygninger påkjent jordskjelvlaster. Disse omfatter alt fra enkle el-
ementer med konsentrert plastisitet, til mer avanserte fiberelementer med plastisitet
fordelt over hele dets lengde. Forskning og utvikling av nye elementmodeller er fort-
satt av stor interesse, ettersom økningen i datakraft og tilgjengelig teknologi muliggjør
enda raskere numeriske beregninger enn tidligere. Til tross for nye og forbedrete formu-
leringer, så er elementene benyttet i dagens elementprogrammer utsatt for å produsere
betydelige unøyaktigheter i beregningene av ikke-lineær respons. Dette er spesielt til-
felle for bjelke-søyler som opplever negativ stivhet, noe som er vanlig for søyler med stor
vertikal belastning. Dette fenomenet kalles lokalisering, og skyldes at de plastiske de-
formasjonene lokaliserer seg i en avgrenset del av elementet. En konsekvens av dette er
at den numeriske analysen av bjelke-søylene blir utsatt for ikke-objektivitet, som vil si at
responsberegningene avhenger av diskretiseringen av elementer og integrasjonspunk-
ter.

Denne masteroppgaven går gjennom kjente bjelke-søyle elementformuleringer med fokus
på deres fordeler og ulemper. Disse inkluderer forskyvningsbaserte og kraftbaserte ele-
menter med fordelt plastisitet, konsentrerte plastisitet-elementer med fjærer på endene, i
tillegg til mer avanserte konsentrerte plastisitet-elementer med fiberdiskretisering. Prob-
lemene med lokalisering blir presentert, og er delt inn i den fysiske definisjonen, som blir
observert ved testing av betongsøyler, og den numeriske definisjonen. Ulike prosedyrer
for å rette opp i numeriske feil, såkalt regularisering, har blitt vurdert, og en omfattende
verifiseringsanalyse har blitt utført ved hjelp av OpenSees.

Til slutt har elementformuleringene blitt anvendt i modelleringen av en en-etasjes be-
tongramme, som har blitt pseudodynamisk testet i et labratorium. Modelleringen har
blitt utført i SeismoStruct, hvor diskretiseringen av elementene har blitt gjort basert på
resultatene fra analysene i OpenSees. En numerisk sammenligning mellom resultater fra
eksperiment og analyse har blitt utført. Konklusjoner knyttet til anvendelsen av de ulike
elementene har så blitt trukket basert på disse resultatene. Analysen av betongrammen
lyktes i å fremstille egenskapene til elementformuleringene, og dermed verifisere evnene
de har til å modellere konstruksjoner utsatt for store horisontale krefter.
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1. Introduction

Structural design in earthquake prone regions is heavily dependent on accurate and reli-
able analysis procedures prior to construction. The ground accelerations experienced can
create large lateral forces on the structures, which often will produce inelastic material
behaviour. Before the arrival of the finite element method these analyses were done by
simple static methods, commonly referred to as equivalent force method, similar to what
is now found and is in use in building codes of countries with low seismic activity. These
methods are however not sufficient for analysis of the stronger earthquakes, as change
of structural properties due to inelasticity will affect the overall response. Because of this
fact it is a rather cumbersome task to predict the behaviour of a building, especially since
there is no known way to foresee what earthquake is next. The last decades improve-
ment of computational power and technology has enabled more sophisticated analy-
sis methods. To obtain more realistic approximations on structural response nonlinear
time-history analysis is used. Many buildings codes now require the use of multiple
time-histories so that several possible response outcomes are predicted, as they are very
much dependent on the structures fundamental periods. Common output from these
analyses is peak forces and displacements, as well as damage due to fatigue. This is
called performance-based design, and is by many viewed on as the antithesis of code-
based design, which has prescribed requirements for structures. The concept is that
instead of fulfilling such requirements, the designer can from his own analysis prove
that the desired performance goals are met. Performance-based earthquake engineering
is the practice in several countries with seismic activity, such as the Unites States (ATC,
1997). An example is the earthquake prone city of San Francisco in California, where
the building codes state a maximum number of storys being allowed for new buildings
based on code-based design. This restriction can however be neglected if performance-
based design is used, and the engineer can demonstrate that the building can withstand
the prescriptive seismic ground motions (Moehle, 2012).

The main focus of this thesis, which is currently also of great research interest, is the el-
ement formulations used for the beam-columns in structural earthquake analysis. They
are primarily divided into two categories; distributed inelasticity, where plasticity can
form anywhere along the member length, and concentrated inelasticity, where the for-
mation of plastic hinges is restrained to the member ends. The distributed inelasticity
members are modelled with the fiber approach, which consists of discretizing the mem-
ber section into several material fibers, in addition to discretization along the element
length. Its two main formulations are the displacment-based (DB) method, which is the
classical textbook finite element formulation, and the force-based (FB) method (Neuen-
hofer & Filippou, 1991). The DB formulation is based on displacement shape functions,
while the FB formulation is based on internal force shape functions. Due to the FB el-
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2 CHAPTER 1. INTRODUCTION

ements not having restrains on their displacement fields they are able to approximate
inelastic structural response with a greater accuracy than DB elements. While these are
the most known finite element formulations, there has also been presented others that
either improve or do not possess their disadvantages (Alemdar & White, 2005; Lee &
Filippou, 2009).

Physical localization is defined as structural properties being dependentent on the mem-
ber’s size when experiencing strain-softening. Strains, deformations, and ductility will
differ for constant concrete section depending on its length (Jansen & Shah, 1997). How-
ever, the prepeak strain-stress response will remain identical for all height-diamater ra-
tios. Research on specimen has resulted in several proposals on how to model local-
ization response (Hillerborg, 1990; Markeset & Hillerborg, 1995). Another localization
issue arises for the numerical analysis of softening behaviour, due to strains concen-
trating at section integration points with highest bending moment values. This yields
non-objective response, which means that the calculated response differs based on finer
mesh discretization and does not converge into one single solution (Zeris & Mahin, 1988;
Coleman & Spacone; 2001; Calabrese, Almeida & Pinho, 2010). Regularization proce-
dures have been developed to correct these issues, and thus obtain objective response.
Some of these methods are adjusting extremity element length of DB members (Zeris &
Mahin, 1988), adding a damage variable to the constitutive relation (Adessi & Ciampi,
2007), and the fracture energy criterion and post-processing of local response (Coleman
& Spacone, 2001).

Concentrated inelasticity elements are designed to lump plasticity at their member ends,
which is expected to occur for beam-columns subject to strong lateral forces. These ele-
ments range from simple one- or two-component models, often with nonlinear springs
at member ends (Filippou, 2013), to more sophisticated elements with FB fiber modelling
at predetermined plastic hinge lengths (Scott & Fenves, 2006; Scott & Ryan, 2013). The re-
cent proposals for concentrated inelasticity elements are able to prevent the localization
issues experienced in regular DB and FB formulations. Thus, a comprehensive analysis
is performed to illustrate the fundamental differences between the discussed elements,
comparing response, regularization procedures and necessary level of discretization.

To fully investigate the strength and accuracy of the element formulations, a compar-
ison to experimental data is performed. This data is taken from the pseudo-dynamic
testing of a one-story reinforced concrete structure in Italy (Ferrara & Negro, 2004). The
comparison with the numerical analysis is done for both global force-displacement and
local moment-rotation response. Finally, the conclusions drawn is that the element for-
mulations yield satisfactory predictions of the response. However, the FB elements give
better base shear values than DB elements, since their force field is enforced, in addition
to having less computational demand due to requiring fewer elements for each struc-
tural member.



2. Distributed plasticity elements

2.1 Model assumptions

The following beam-column elements presented have been based on the Euler-Bernoulli
beam theory. Although the majority of the numerical examples have been performed in
a two-dimensional plane, the assumptions will be presented in three dimensions. In ad-
dition, as the torsional response is considered uncoupled from both the axial and flexural
responses, it will be left out from the models for simplicity.

The variables of the element displacement field are described by

u(x) =


u(x)

w(x)

v(x)

 (2.1)

where u(x) is the axial displacement, and w(x) and v(x) are the transverse displacements
in respectively the z- and y-direction. The section deformation vector, which contains the
axial strain and curvatures, is given by

e(x) =


εa(x)

κz(x)

κy(x)

 =



∂u(x)
∂x

+
1
2

(
∂2w(x)

∂x2

)2

+
1
2

(
∂2v(x)

∂x2

)2

−∂2w(x)
∂x2

∂2v(x)
∂x2


(2.2)

where the geometric nonlinearity is included in the expression for εa(x). The normal
strain εm at the point m shown in figure (2.1), is given as

εm(x, y, z) = εa(x) + yκz(x) + zκy(x) (2.3)

where εa is the strain at the origin a, and κz and κy are the curvatures about the z- and
y-axis. By defining the section kinematic matrix as

as(y, z) =
(
1, y, z

)
(2.4)

it is possible to write equation (2.3) as

εm(x, y, z) = as(y, z)e(x) (2.5)
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Figure 2.1: Section kinematics (Filippou, 2013).

The internal section forces, which are the axial force and bending moments, are defined
as the vector

s(x) =


N(x)

Mz(x)

My(x)

 (2.6)

A constitutive relation is known for the section, and is described by

sn+1(x) = C[sn(x), en(x), en+1(x)] (2.7)

where n denotes the analysis step. The internal section forces sn+1(x) are thus calculated
from the previous section forces sn(x), and the current and previous section deformation
vectors. The relation is linearized and incrementally given as

∆s(x) = ks(x)∆e(x) (2.8)

where the section stiffness matrix is given by

kS =
∂S
∂e

=



∂N
∂ε

∂N
∂κy

∂N
∂κz

∂My

∂ε

∂My

∂κy

∂My

∂κz

∂Mz

∂ε

∂Mz

∂κy

∂Mz

∂κz


(2.9)

For simplicity the coordinate x is left out from the expression for the section stiffness
matrix. The equations stated above define the force-deformation relations of a material
section, and the next step will be to assemble these relations to the element level.
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2.2 Fiber model

Distributed plasticity models have the advantage that there is no predetermined length
that concentrates the inelastic behaviour. Thus, inelasticity can form at any section point
along the element length; where the points are determined by the numerical integration
method used. The drawback of this property is that the computational effort is greatly
increased compared to concentrated inelasticity models, as the interior span of the el-
ements is not assumed linear elastic. Naturally the distributed inelasticity models will
give a closer to exact solution, and thus give an improved approximation of the experi-
mental response.

Structural members of reinforced concrete do not consist of homogenous material sec-
tions. A similar case applies for steel sections with initial stresses at the welding points,
which will affect the overall response. This renders it impossible to model the exact
element behaviour without discretizing the sections, and thus taking into account the
different properties of the materials. This approach is called the fiber model, and is the
commonly used distributed inelasticity element model. A fiber model of a reinforced
concrete beam is illustrated in figure (2.2), where it can be seen that different fibers are
made for the unconfined cover concrete, the confined core concrete, and the steel rein-
forcement bars. Thus, the element model will need to include three different material
stress-strain relationships to render the correct response quantities. Computational ef-
fort can however be reduced by adjusting the level of the section discretization. For
instance, the number of fibers in the z-direction of a beam can often be far less than in
the y-direction. This is because the bending moment about the z-axis usually is signif-
icantly larger than about the y-axis, which will result in increased inelasticity and need
for discretization. Although the fiber element is considered more "exact" than other el-
ement formulations, it has its numerical difficulties. One of the most significant is the
interaction between the flexural and shear response, which still is under research.

The most common finite element formulations for the fiber element is the displacement-
based stiffness method, and the force-based flexibility method (Neuenhofer and Filip-
pou, 1997). Their advantages and disadvantages will be discussed in this paper. There
exists several formulations that resolve some of the difficulties with these two methods.
Examples are the mixed formulation, that combines properties from both stiffness and
flexibility methods (Alemdar and White, 2005), and improved flexilibity-based elements
like the Spreading Inelastic Zone Element (Lee and Filippou, 2009). These elements will
however not be discussed further, instead the fundamental differences of the two meth-
ods first mentioned will be presented.

2.3 Displacement-based element formulation

The displacement-based (DB) stiffness method is based on interpolation functions for
the axial and transverse displacements of the element. The commonly used functions
for beam-column elements are linear Lagrangian shape functions for the axial displace-
ments, and cubic Hermitian polynomials for the transverse displacements. These yield
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Figure 2.2: Fibre model of a reinforced concrete beam (Calabrese, Almeida & Pinho,
2010).

the exact response for a linear elastic, prismatic member (Neuenhofer and Filippou,
1997).

The displacement field u(x) is related to the nodal displacments v through the equation

u(x) = N(x)v (2.10)

where N(x) is a matrix containing the interpolation functions of the axial and transverse
displacements. The section deformation vector e(x) (Eq. 2.2), is related to the nodal
displacements by

e(x) = B(x)v (2.11)

The matrix B(x) contains the first derivative of the axial displacement shape function,
and the second derivatives of the transverse displacement shape functions. By combin-
ing the linearized constitutive relation (2.8) with an incremental version of (2.11), the
following expression is obtained for the section force increment

∆s(x) = ks(x)∆e(x) = ks(x)B(x)∆v (2.12)

The equilibrium condition between the nodal forces q and the section forces s(x) is de-
rived from the principle of virtual displacements, and is given by

q =

∫
L

BT(x)s(x)dx (2.13)

while the element stiffness matrix is derived from its derivative with respect to the nodal
displacements. This can easily be done by inserting the expression for ∆s(x) (2.12) into
(2.13). The resulting equation is thus

k =
∂q
∂v

=

∫
L

BT(x)ks(x)B(x)dx (2.14)
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Beam-column material sections very often have irregular and discontinous distribution
of stresses. This is either due to different stiffnesses in the section, like what is the case
for reinforced concrete, or large inelasticity that can result in a nonlinear curvature. The
use of classical integration techniques to solve equations (2.13) and (2.14) are therefore
very inconvenient. Rather numerical integration should be used, which makes it pos-
sible to rewrite the equations mentioned in a discrete form instead of continuous. The
equilibrium condition is thus written as

q =

∫
L

BT(x)s(x)dx ≈ L
Np

∑
i=1

BT
i siωi (2.15)

and the element stiffness matrix as

k =

∫
L

BT(x)ks(x)B(x)dx ≈ L
Np

∑
i=1

BT
i ks,iBiωi (2.16)

where Np is the number of integration points and ωi is the weight of each point i.

2.4 Force-based element formulation

The force-based (FB) flexibility method is based on interpolation functions for the in-
ternal forces, and not displacements which are the common textbook finite element for-
mulation, as well as used in the DB formulation. These functions are chosen so that
they repesent the exact solution of the forces in the elements, and are usually of a lower
deegre of polynomial than the displacement shape functions.

The section forces s(x), also called the force field, are related to the nodal forces q through
the equation

s(x) = b(x)q (2.17)

where b(x) is a matrix containing the force interpolation functions mentioned. For in-
stance, a column subject to horizontal nodal load will have a constant axial force and
and a linearly distributed bending moment in one direction, which makes the choice of
interpolation functions a simple task. The force interpolation matrix for such a case will
be

b(x) =


1 0 0 0 0

0 ξ − 1 ξ 0 0

0 0 0 ξ − 1 ξ

 (2.18)

where the normalized coordinate ξ = x/L is used. The section flexibility matrix is de-
fined as

fs(x) = k−1
s (x) (2.19)

and a similar mathematical procedure as for the DB formulation is used here. By com-
bining the inverse form of (2.11) with the incremental version of (2.17), an expression for
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the incremental section deformation is made

∆e(x) = k−1
s (x)∆s(x) = fs(x)∆s(x) = fs(x)b(x)∆q (2.20)

The principle of virtual forces is then used to define the compatibility condition between
the nodal displacements and section deformations, which is

v =

∫
L

bT(x)e(x)dx (2.21)

Equations (2.20) and (2.21) are then combined to derive the element flexilibity matrix

f =
∂v
∂ f

=

∫
L

bT(x) fs(x)b(x)dx (2.22)

The discrete form of the two equations above are given as

v =

∫
L

bT(x)e(x)dx ≈ L
Np

∑
i=1

bT
i eiωi (2.23)

and

f =

∫
L

bT(x) fs(x)b(x)dx ≈ L
Np

∑
i=1

bT
i fs,ibiωi (2.24)

2.5 Numerical integration rules

In structural analysis the most common numerical integration schemes are the Gaussian
quadrature rules. The Gauss-Legendre quadrature is the most known rule, and is pre-
ferred in classical DB finite element formulations. It is accurate for polynomials up to
a deegre of 2n− 1, where n is the number of integrations points used. Another highly
used rule is the Gauss-Lobatto quadrature, which is accurate for polynomials up to dee-
gre of 2n− 3. Despite its reduced accuracy, it is the commonly used rule for FB elements,
as it unlike the Gauss-Legendre rule has integration points at the element ends (Scott,
2011). The integration points and corresponding weights of both these quadrature rules
are reported in tables (2.1) and (2.2), for the isogeometric element length [−1, 1].
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Table 2.1: Gauss-Legendre quadrature.

Number of
integration

points, n
Points, xi Weights, wi

2 ±
√

1
3 1

3
0 8

9

±
√

3
5

5
9

4
±
√
(3− 2

√
6
5 )/7 18+

√
30

36

±
√
(3 + 2

√
6
5 )/7 18−

√
30

36

5
0 128

225

± 1
3

√
5− 2

√
10
7

322+13
√

70
900

± 1
3

√
5 + 2

√
10
7

322−13
√

70
900

6
±0.2386191860831969 0.4679139345726910

±0.6612093864662645 0.3607615730481386

±0.9324695142031520 0.1713244923791703

7

0 0.4179591836734693

±0.4058451513773971 0.3818300505051189

±0.7415311855993944 0.2797053914892766

±0.9491079123427585 0.1294849661688696
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Table 2.2: Gauss-Lobatto quadrature

Number of
integration

points, n
Points, xi Weights, wi

3
0 4

3

±1 1
3

4
±
√

1
5

5
6

±1 1
6

5
0 32

45

±
√

3
7

49
90

±1 1
10

6
±0.2852315164806451 0.5548583770354863

±0.7650553239294647 0.3784749562978470

±1 0.0666666666666667

7

0 0.4876190476190476

±0.4688487934707142 0.4317453812098626

±0.8302238962785669 0.2768260473615659

±1 0.0476190476190476
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2.5.1 Basic comparison of DB and FB element formulations

1 2 3

A = 2
 = 5/18

A = 1.5
 = 8/18

A = 1
 = 5/18

R,r

0.113 0.387 0.387 0.113

L = 1

0.2

y

σ

Figure 2.3: Cantilever beam with three Gauss-Legendre integration points, and corre-
sponding stress-strain relationship.

The structure that has been analyzed is a cantilever beam with a linearly varying cross
section, shown in figure (2.3). It consists of one element and is only loaded in its axial
direction, which makes it necessary to consider one single deegre of freedom. Its simplic-
ity will make it easier to illustrate the fundamental differences between the DB and FB
methods. Three-point Gauss-Legendre integration have been used, and the stress-strain
relationship is given by

σ =

{
ε for ε ≤ εy

εy + 0.2(ε− εy) for ε > εy
(2.25)

where the yielding strain εy is equal to 1.

FB element

Because the force-based flexibility method enforces the exact internal forces in the ele-
ment, it is the the first method being used. A displacement of v = 1 is applied to beam
end in the axial direction. The section flexibilities are derived from equation (2.9) and
the stress-strain relationship (2.25), which gives

fs =


∂ε

∂N
=

1
A

∂ε

∂σ
=

1
A

for ε ≤ εy

∂ε

∂N
=

1
0.5A

∂ε

∂σ
=

2
A

for ε > εy

(2.26)

Since there is only one deegre of freedom, which is in the axial direction, the force inter-
polation matrix will simply be the scalar

b = 1 (2.27)
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The first step will be to apply to whole displacement v = 1, and calculate the strains at
each integration point. Flexibilities at the sections are

fs,1

fs,2

fs,3

 =


1/2

2/3

1

 (2.28)

which are then assembled to the element level with equation (2.24):

f = L
3

∑
i=1

bT
i fs,ibiωi =

(
1× 1

2
× 1× 5

18

)
+

(
1× 2

3
× 1× 8

18

)
+

(
1× 1× 1× 5

18

)
= 0.713

(2.29)

The nodal force is then calculated as

q = f−1v =
1

0.713
× 1 = 1.403 (2.30)

and by using equation (2.25), and the fact that the axial force is constant throughout the
whole element, the following stresses and strains at each integration point are obtained

σ1

σ2

σ3

 =


0.702

0.935

1.403

⇒


ε1

ε2

ε3

 =


0.702

0.935

1.403

 (2.31)

It can immediately be noticed that the yield strain εy is exceeded at the third integration
point. This makes it necessary to perform another step of calculations; basically an iter-
ation. First the response values and load must be scaled to find the onset of inelasticity:

scale f actor =
1
q
=

1
1.403

= 0.713 (2.32)


σ1

σ2

σ3


yield

=


ε1

ε2

ε3


yield

= scale f actor×


ε1

ε2

ε3

 = 0.713×


0.702

0.935

1.403

 =


0.5

0.667

1

 (2.33)

∆v = (1− scale f actor)v = (1− 0.713)× 1 = 0.287 (2.34)

The section flexibilities for the next analysis step, assuming that the third integration
point is yielding, will be 

fs,1

fs,2

fs,3

 =


1/2

2/3

5

 (2.35)
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with the element flexibility

f = L
3

∑
i=1

bT
i fs,ibiωi =

(
1× 1

2
× 1× 5

18

)
+

(
1× 2

3
× 1× 8

18

)
+

(
1× 5× 1× 5

18

)
= 1.824

(2.36)

Finally, the nodal force increment, stresses, and strains are determined

∆q = f−1∆v =
1

1.824
× 0.287 = 0.157 (2.37)


σ1

σ2

σ3

 =


σ1

σ2

σ3


yield

+


∆σ1

∆σ2

∆σ3

 =


0.5

0.667

1

+


0.079

0.105

0.157

 =


0.579

0.772

1.157

 (2.38)


ε1

ε2

ε3

 =


ε1

ε2

ε3


yield

+


∆ε1

∆ε2

∆ε3

 =


0.5

0.667

1

+


0.079

0.105

0.785

 =


0.579

0.772

1.785

 (2.39)

A method to check if the obtained solution is correct is using the compatibility condition
(2.23):

v = L
Np

∑
i=1

bT
i eiωi =

(
1× 0.579× 5

18

)
+

(
1× 0.772× 8

18

)
+

(
1× 1.785× 5

18

)
= 1.000

(2.40)

which gives the same nodal displacement as the one imposed.

DB element

The DB element will be subjected to the force that corresponds to the displacement in
the FB element, which is the sum of the scaled value of (2.30) and the increment (2.37).

q = scale f actor× q0 + ∆q = 0.713× 1.403 + 0.290 = 1.290 (2.41)

Section stiffnesses at each integration point are derived from (2.9) and (2.25) in a similar
procedure as the flexibilites, but in the inverse form:

ks =


∂N
∂ε

= A
∂σ

∂ε
= A for ε ≤ εy

∂N
∂ε

=
A

0.5
∂σ

∂ε
= 2A for ε > εy

(2.42)
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Since there only is one free deegre of freedom in the cantilever, the shape function N(x)
and its derivative B(x) are given as

N(x) =
x
L
⇒ B(x) =

1
L

(2.43)

The section stiffnesses are calulated as
ks,1

ks,2

ks,3

 =


2

1.5

1

 (2.44)

which gives the following element stiffness by using equation (2.16):

k = L
Np

∑
i=1

BT
i ks,iBiωi =

(
1
1
× 2× 1

1
× 5

18

)
+

(
1
1
× 1.5× 1

1
× 8

18

)
+

(
1
1
× 1× 1

1
× 5

18

)
= 1.5

(2.45)

The nodal displacement is then

v = k−1q =
1

1.5
× 1.290 = 0.860 (2.46)

Equation (2.11) and the chosen shape functions (2.43) show that the axial strain ε is con-
stant through the element. This gives the following strain and stress

ε =
v
L
=

0.860
1

= 0.860⇒ σ = 0.860 (2.47)

and the axial force distribution 
N1

N2

N3

 =


1.720

1.290

0.860

 (2.48)

To check equilibrium, equation (2.15) is used:

q = L
Np

∑
i=1

BT
i siωi =

(
1
1
× 1.720× 5

18

)
+

(
1
1
× 1.290× 8

18

)
+

(
1
1
× 0.860× 5

18

)
= 1.290

(2.49)

which is the same value as the imposed load.
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Observations

The calculated axial forces and strains for both methods are presented in table (2.3).
As previously mentioned, the FB formulation stricty enforces the exact force distribu-
tion through the element with the force interpolation function b(x). This can be seen
from the results, where the axial force is constant and equal to 1.000 at every integration
point. The same is however not the case for the DB formulation, where the axial force
varies throughout the element. Force equilibrium is obviously obtained with the FB for-
mulation, as the forces are exact. For the DB formulation equilibrium is achieved in a
weighted sense, by averaging the values at each integration point based on their numer-
ical rule. This means that it does not satisfy the force equilibrium at an arbitrary point
in the element, but rather in a global sense. Basically, the FB method satisfies the strong
form of equilibrium, while the DB method only satisfies the weak form.

Table 2.3: Axial forces and strains in cantilever beam.

Integration
point

Axial force, N Strain, ε

FB element
1 1.000 0.579
2 1.000 0.772
3 1.000 1.785

DB element
1 1.720 0.860
2 1.290 0.860
3 0.860 0.860

Compared to differences in displacements and strains, differences in the axial force are
not of a large concern, as global equilibrium are satisfied for both methods. A critical
issue arises for the DB element, which can be seen from the results in table (2.3). Because
the strains are assumed constant throughout the beam, the method does not detect that
the third integration point should had begun yielding. This results in a stiffer element
compared to the FB element, which has varying strains, and thus more accurately de-
scribes the response. Numerically this can be seen in the calculation of the nodal dis-
placement (2.46). Although both elements are subjected to the same force of q = 1.290,
the stiffness method’s displacement is calculated as v = 0.860, compared to the flexibility
method’s v = 1.000.

These observations show that the FB flexibility formulation is superior to the DB stiffness
formulation in sake of accuracy. Both methods are vulnerable to numerical integration
errors which are based on the number of integration points used. But, the DB formula-
tion does also have an discretization error because of its interpolation functions. These
displacements shape functions are not exact, and thus often result in errors like the one
seen in the cantilever beam example, where the strain is assumed constant. The only
way to increase the accuracy would therefore be to increase the number of DB elements
for each structural member. However, the drawback of this is that number of nodes
increase, and with it the computational effort.
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2.6 Localization issues

2.6.1 Physical defintion

Figure 2.4: Size dependence due to localization (Calabrese, Almeida & Pinho, 2010).

Localization in structural members is defined as the structural properties being depen-
dent on the member’s size in the case of strain-softening. These properties include stress-
strain relationships, peak strains and deformations, and ductility, among others. The
localization phenomena occurs in concrete members for both tension, where it produces
cracks, and for compression, where damage zones are made. Effects are well docu-
mented for the tensile case, and because the main focus of this thesis is on reinforced
concrete where the steel bars handle the tensile forces, only localization due to compres-
sion is discussed further. Conceptual load-response diagrams are depicted in figure (2.4),
which shows localization of structural members subjected to both uniaxial and flexural
compression.

A concrete beam without reinforcement subjected to compressive stress is illustrated in
figure (2.5). The concrete is divided into three sections, a failure zone with the length
LZ, and surrounding bulk concrete. As the member reaches its peak strength the damage
begins concentrating in the failure zone, where the displacements increase as the load-
carrying capacity decreases. To maintain equilibrium the bulk concrete experiences un-
loading, and thus a decrease in both stress and displacement. The mechanism is shown
in the stress-strain relationships. In a) the bulk concrete carries the load up until the peak
stress, and then unloads elastically as the failure zone softens and dissipates energy in b).
Additonally, the preapeak energy is colored in a), while the postpeak energy is colored
in b).

Several experiments have been performed that verify the localization issue, among the
most cited are the ones by Jansen & Shah (1997). These were performed on both normal
strength (45 MPa) and high strength (90 MPa) concrete, with height to diameter ratios
from 2 to 5.5. Results from the experiments are shown in figure (2.6), with the normal
strength concrete in a), and the high strength in b). From the stress-displacement curves
it can be seen that the response is largely affected by localization, as the prepeak displace-
ment is proportional to the member length. In addition, as the member length increases,
the prepeak response becomes less steep while the postpeak response becomes steeper.
However, the stress-strain curves show that the prepeak strain are identical for all the
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Figure 2.5: Localization behaviour in compression (Jansen & Shah, 1997).

different member lengths. The localization issue first takes place after the peak stress is
reached, with steeper curves and lower ultimate strains as the length increases.

There have been several proposals on how to model the localization issue, particularly
in fracture mechanics research. One of the earliest models presented is the one by Hiller-
borg (1990), which says that the stress-strain relation can be constructed by combining
two different curves. The first curve, shown left in figure (2.7), describes the prepeak
response, which is not affected by the member length. The second curve, shown in the
middle, is the postpeak response, and is based on a function of the member length. To-
gether these two curves combine into the stress-strain curve to the right in the figure.

The strain ε′ is calculated from the prepeak strain ε from the strain-stress curve, and the
post peak displacement w from the strain-displacement curve. Hillerborg presented this
in the given equation

ε′ = ε +
w
l

(2.50)

with
l = βξd (2.51)

where ξd is the depth of the members compression zone, and β is a proportionality factor
commonly set to 0.8. An example of this model is illustrated in figure (2.8), where x is
set as the compression zone depth.

Later research showed that Hillerborg’s formulation overestimated the effect of localiza-
tion. Markeset and Hillerborg proposed the Compressive Damage Zone (CDZ) model
in 1985, which takes into account the effect from longitudinal cracks, lateral strains and
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Figure 2.6: Behaviour of concrete columns in compression with different height-diameter
ratios (Jansen & Shah, 1997).

shear deformations. An illustration of the CDZ model is shown in figure (2.9), which
points out that it is based on three different load-response curves, instead of Hillerborg’s
original two. The first and third curve in the figure are similar to the curves used in
Hillerborg’s model, with the first describing the prepeak stress-strain relationship, and
the third showing the stress-displacement curve of the postpeak response. The second
curve shown in the figure is the new addition of the improved CDZ model. It describes
the additional strain εd caused by the formation of longitudinal cracks and additional
lateral strains. In the fracture process, energy absorption per unit volume Ws can also be
calculated. Combining these three curves gives the complete stress-strain relationship
illustrated in figure (2.10), and comparisons between experimental results and analyses
done with the CDZ model are shown in figure (2.11). These results illustrate adequate
approximations of the postpeak softening response of concrete.
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Figure 2.7: Stress-strain relationship adjusted for member length (Hillerborg, 1990).

Figure 2.8: Numerical example of stress-strain curves based on Hillerborg’s formulation
(Hillerborg, 1990).
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Figure 2.9: CDZ model subject to compression (Markeset & Hillerborg, 1995).

Figure 2.10: Complete stress-strain curve of the CDZ model (Markeset & Hillerborg,
1995).
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Figure 2.11: Comparison of experimental and numerical results with the CDZ model
(Markeset & Hillerborg, 1995).



22 CHAPTER 2. DISTRIBUTED PLASTICITY ELEMENTS

2.6.2 Numerical definition

Objective and non-objective response

Figure 2.12: Objective and non-objective response of a cantilever column (Calabrese,
Almeida & Pinho, 2010).

As discussed in the previous section, the physical definition of localization is that the
material behaviour is dependent on the member length. This can be taken into account
in the numerical analysis by altering the stress-strain relationships of the structural el-
ements. However, another issue arises in the modelling of these structures. Both DB
and FB elements experience numerical problems for strain-softening response. While
hardening behaviour leads to stable solutions, which is called objective response, the
elements do not convergence to a single solution for softening behaviour, called non-
objective response. For the latter case this simply means the calculated response is de-
pendent on the number of elements (DB formulation) or integration points (FB formu-
lation) used, even though the external load and member properties are left unchanged.
This applies for both global force-displacement response and the local moment-curvature
response, and is due to a localization of the computed strains at the sections with the
highest bending moments. A qualitative description of the problem is illustrated in fig-
ure (2.12). It should also be mentioned that unlike the physical localization issue, the
numerical one is made entirely from the finite element assumptions, and is therefore not
experienced in reality.
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Figure 2.13: Displacement-based cantilever column under lateral dispacement (Zeris &
Mahin, 1988).

DB elements

The main numerical localization issue in DB elements is explained by Zeris & Mahin
(1988) for a simple cantilever column subjected to a lateral displacement at its tip. As the
applied displacement increases, the sections near the column’s base begin softening and
lose their capacity. In order to maintain force equilibrium, the remaining sections have
to unload elasticially, conceptually similar to the bulk concrete discussed in the previous
section. The reason for the numerical failure is that while the base sections detects the
softening behaviour through the defined constitutive relation, the rest of the column do
not know that it should unload when assembling the element stiffness matrix (Eq. 2.16).
This results in the unrealistic case where the base sections unload while the top sections
continue to take more bending moment, which is illustrated in figure (2.13).

FB elements

Localization issues in FB elements have been under wide research, as it is gradually
being accepted as having clear advantages over DB elements. Figures (2.14), (2.15)
and (2.16) show three different response curves for a cantilever column subjected to a
lateral displacment. Respectively strain-hardening, elastic-perfectly plastic, and strain-
softening section response, all modelled with one single FB element. It should also be
noted that unlike the DB elements, there is not an issue with force equilibrium in the
FB elements after the onset of softening in a structural member; simply because equilib-
rium is strictly enforced in the formulation. Instead, other issues arise, and are discussed
below.

In the strain-harderning case, both the global force-displacement and local moment-
curvature responses are objective, and converge into a single solution as the number of
integration points along the member is increased. The same is however not the case for
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the elastic-perfectly plastic section, where the moment-curvature becomes non-objective.
As the section and integration point reaches the plastic moment capacity of the member,
the curvature increases with a constant bending moment. Due to the enforcement of
equilibrium, the bending moment distribution is kept linear throughout the member,
which forces the other sections to remain linear elastic. The number of integration points
define the weight of the base section, which can be interpreted as the plastic hinge length.
With the increase of integration points, this length will be shortened, and thus require
higher curvatures to give the same global displacement. This can be understood from
the calculation of the rotations of each integration point, which is

θi = φiωiL (2.52)

where φi is the curvature at each integration point, and ωi is the weight, and L is the
length of the member. Next, the tip displacement of the column is determined from
summing up and multiplying these rotations with their lengths from tip to integration
point. This can be written as

δi =
Np

∑
i=1

θiLi (2.53)

where Np is the number of integration points, and Li is the distance from bottom of inte-
gration point length to top of column. The calculated global response remains objective
since the displacement is prescribed and equilibrium is maintained. Naturally, the plas-
tic hinge length would increase in a real member if the applied displacement were to be
increased. The FB element would, however, not be able to detect it.

Strain-softening is often experienced in reinforced concrete columns that are subjected
to large dead loads and lateral forces (Coleman & Spacone, 2001). In the numerical sense
both the global and local response is non-objective, as seen in figure (2.16). Similarly
to the elastic-perfectly plastic member section, the curvature localizes at the base sec-
tion. But in contrast to the former case the base section begins softening, and is thus
not able to carry the same loading as the section strains increase. Again, as the num-
ber of integration points increase and the plastic hinge region gets smaller, the resulting
growing strains will inflict even lower material stiffness. This is observed in the local
response plot, where increasing the number of integration points yields larger curvature
and lower ultimate base shear. Even though the applied displacement is prescribed, the
different amounts of material stiffness degradation affect the load-carrying capacity, and
thus make the global response non-objective as well.
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Figure 2.14: Cantilever column with strain-hardening response (Coleman & Spacone,
2001).

Figure 2.15: Cantilever column with elastic-perfectly plastic respons. (Coleman & Spa-
cone, 2001).
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Figure 2.16: RC cantilever column with strain-softening response (Coleman & Spacone,
2001).

2.6.3 Regularization techniques

DB elements

The typical regularization procedure for DB beam-columns has been to adjust the ele-
ments lengths on a basis of the plastic hinge lengths of the member. Formerly it was
common to define the size of the most strained element equal to the plastic hinge length,
Lp. This was due to the belief that localization was forced within a single element, and
not just one integration point. Later research showed that this was not true, and that
localization occurs in one integration point, similar to FB element members (Zeris &
Mahin, 1988). To ensure the correct regularization, the weight of the most strained inte-
gration point has to be equal to the predetermined Lp. In the case of an element with two
Gauss-Legendre points, where each point have half the weight, it means that the most
strained element should have the length 2Lp. Table (2.4) depicts the necessary lengths of
the extremity elements for different numbers of integration points.

A comparison between experimental data and analysis results can be seen in figure
(2.17). The DB elements used have 2 integration points, which results in a regularized
element length of 2Lp. Apparently the increased element length gives a better approx-
imation of the ultimate curvature of the member. However, neither of the regularized
lengths render satisfactory bending moment values at the postpeak stage. This is due
to the length of the extremity element being very large compared to the total column
length. In the analysis shown, this element has the length 0.71 m while the column is
1.65 m. The remaining elements are thus considerably smaller, which yield discrepan-
cies in the analysis.

The plastic hinge length Lp is, as previously mentioned, a predetermined modeling as-
sumption. It is commonly estimated by a equation proposed by Paulay and Priestley
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Table 2.4: Regularizaton of DB elements by size adjustment of extremity elements.

Integration rule Number of IPs Weight of extremity IP, ω Element length, Lp

Gauss-Legendre

2 1 2

3 0.55556 3.6

4 0.34785 5.74952

5 0.23693 8.44142

Gauss-Lobatto
3 0.33333 6

4 0.16667 12

5 0.1 20

(1992), which is made from empirical observations:

Lp = 0.08L + 0.022 fydB (2.54)

where L is the member length, fy is the yield stress of the steel reinforcement, and db is
the diameter of the longitudinal bars. Based on the information given in table (2.4), it
is evident that a high number of integration points in the extremity element will cause
it to have impractical lengths; often even longer than the member itself. This makes it
obvious that only a low number of Gauss-Legendre integration points can be used for
regularized DB element members.

A different regularization method is proposed by Adessi and Ciampi (2007), and is based
on the integral definition of the associated variable governing the damaging evolution
process. In others words, the constitutive relation is modified to have a damage variable
that represents the irreversible degradation of the member strength and stiffness. This
damage variable is given by the equation

D =
Y−Y0

aY + R
(2.55)

where Y0, a and R are parameters adjusting the intitial conditions and damage rate. The
variable Y describes the flexural deformation state, and is given as

Y = φe + β(φp)φp (2.56)

where φe is the elastic curvature, and β(φp) is an increasing function of the plastic curva-
ture φp. Further it is assumed that the axial response is linear elastic, and that bending is
only in one direction. By including the damage variable defined in equation (2.55), the
section forces are written as

s(x) =

(
EAε

(1− D)2EI(φ− φp)

)
(2.57)
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Figure 2.17: Local response of DB element member. (Calabrese, Almeida & Pinho, 2010)

where φ is the total curvature. The corresponding section stiffness is

ks(x) =

EA 0

0 (1− D)2EI

 (2.58)

Adessi and Ciampi’s approach has been shown to be effective, but only as long as the
dimension of the extremity element are either smaller or the same size as the forming
plastic hinge.

FB elements

Two recognized regularization techniques for members consisting of FB elements have
been proposed by Coleman and Spacone (2001). The constant fracture energy criterion
regularizes the global force-displacement response. It is based on including an addi-
tional material parameter, the fracture energy Gc

f , which is defined by

Gc
f =

∫
σ dup = LIP

∫
σ dεp (2.59)

Here ui is the plastic displacement, εp is the plastic strain, and LIP is the length of the
integration point where the localization occur. The Kent and Park (1971) stress-strain
relationship for concrete under compression is shown in figure (2.18). The shaded area
describes the fracture energy divided by the length of the crack band, which is equal to
LIP for FB elements. The postpeak response is linear softening untill it reaches 20 % of
the compressive strength f ′c , where it is assumed to remain constant. This turning point
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is predetermined by the strain value ε20, while the fracture energy can be determined
from experimental testing. From figure (2.18), the following equation is derived

ε20 =
Gc

f

0.6 f ′c LIP
− 0.8 f ′c

E
+ ε0 (2.60)

The quantities Gc
f , f ′c , Young’s modulus E, and ε0, which is the strain corresponding to

the peak stress, are assumed constant. Because the length of the integration point LIP
varies with the level of discretization, if follows that the value ε20 has to be adjusted
for a constant fracture energy to be preserved. By determining an unique value for ε20
depending on the integration scheme used, constant stress-displacement is assumed in-
stead of a constant stress-strain relation. This will ensure global objectivity for softening
response, and thus yield better approximations of experimental results. The concept is
similar to the physical localization theory in section (2.6.1), where the stress-strain rela-
tions where adjusted for the member lengths.

Figure 2.18: Kent-Park stress-strain law (Coleman & Spacone, 2001).

Because of the fact that the length of the first integration point does not always corre-
spond to the length of physical plastic hinge, the constant fracture energy criterion is
insufficient for regularization of local response. Thus Coleman & Spacone’s second pro-
posal is that the internal element forces and deformations have to be post-processed to
obtain objectivity. A deformed beam is illustrated in figure (2.19), with the relevant mo-
ment and curvature distribution. The total curvatures of the plastic hinges consist of an
elastic and an inelastic component. The inelastic curvature of the model is approximated
as

φmodel
i ≈ δi

LIP

(
L
2
− LIP

2

) (2.61)

The inelastic hinge rotation is thus calulated as θi = φiLIP. Alternatively, the actual
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Figure 2.19: Deformed interior beam with plastic hinges. (Coleman & Spacone, 2001)

predicted length of the plastic hinge can be substituted in the equation (2.61), yielding

φ
predict
i ≈ δi

Lp

(
L
2
−

Lp

2

) (2.62)

which is the true curvature of the deformed member. Calculation of the total curvature
is done with the equation

φ = φe + (scale f actor)φmodel
i (2.63)

where φe is the elastic curvature component. The scale factor is obtained by combining
equations (2.61) and (2.62), and for a double-curvature member is given as

scale f actor =
ωIPL2(1−ωIP)

Lp(L− Lp)
(2.64)

where ωIP is the weight of the extremal integration point. For members with single
curvatures, like for instance cantilever columns, the expression is

scale f actor =
ωIPL2(2−ωIP)

Lp(2L− Lp)
(2.65)



2.7. CANTILEVER COLUMN SUBJECT TO PUSHOVER ANALYSIS 31

Obviously, if the length of the first integration points LIP is equal to the length of the plas-
tic hinge Lp, there is no need for a scaling factor, and thus no regularization is required to
obtain objectivity. It is however problematic to ensure that these two lengths correspond
to each other. Very often the length of the element has to be adjusted, with additional ele-
ments being necessary. Thus, the computational advantage of the FB formulation is lost.
Alternatively the integration scheme can be changed. For short elements the number of
integration points has to be decreased, which reduces accuracy, and for longer elements
integration points have to be increased, which raises computational demand.

The damage variable regularization procedure by Adessi and Ciampi can also be used
for FB elements. However, to fully be efficient it requires the structural members to be
subdivided into several elements, which obviously eliminates one of the main benefits
of the FB formulation.

2.7 Cantilever column subject to pushover analysis

2.7.1 OpenSees

The Open System for Earthquake Engineering Simulation, abbreviated as OpenSees, is
used for the following analysis. It is developed by the Pacific Earthquake Engineering
Research Center, which is located at the University of California, Berkeley. As it is pri-
marily created for research purposes it lacks a graphical interface, and is rather based on
input scripts written in a combination of the TCL programming language and integrated
OpenSees commands. This makes it a tedious task to create large and complicated struc-
tural models. However, the fact that OpenSees is an open-source software has allowed
developers from both academical and private institutions to contribute to improve the
software. Because of this, OpenSees is one of the state-of-art structural engineering soft-
wares available. The user interface is depicted in figure (2.20).

2.7.2 Model definition

The reinforced concrete cantilever column, shown in figure (2.21), has been used to show
differences in response between DB and FB elements. Pushover analyses have been per-
formed for both hardening and softening response. The column cross section shown
has symmetric reinforcement about both section axes, and it is assumed that the hoop
spacing is too large to provide any confinement effects for the concrete core. The steel
reinforcement is described by a Giuffre-Menegotto-Pinto model with isotropic strain
hardening, while the concrete is described by a Kent-Scott-Park model with zero ten-
sile strength.

2.7.3 DB formulation

Based on the research done by Calabrese, Almeida and Pinho (2010), two Gauss-Legendre
integration points has been used for the DB elements. Higher number of integration
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Figure 2.20: OpenSees user interface.
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Figure 2.21: Reinforced concrete cantilever column-
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Figure 2.22: Global hardening response for DB formulation.

points do not give any significant improvement in accuracy, compared to increasing the
number of elements. Also, all the elements have the same size within the different dis-
cretizations.

Hardening response

The global force-displacement response illustrated in figure (2.22) shows hardening ob-
jetivity as the number of DB elements increase. Similar to what was experienced in the
numerical example in section (2.5.1), using only a single DB element greatly overesti-
mates the strength and post-yield stiffness of the beam-column member. The plots show
that reasonable results are acquired with the use of six elements.

While objectivity is obtained for a relatively low number of elements for the global re-
sponse, the same is not the case for the local moment-curvature response shown in figure
(2.23). As can be seen, a similar response curve is achieved as the elements increase, but
the ultimate curvature still differs with a large magnitude. This same issue with the DB
elements has also been observed by Calabrese, Almeida and Pinho (2010). The reason
for local non-objectivity is that the DB formulation only satisfies force equilibrium in an
average sense.

Softening response

To ensure a softening response, the column has been subjected to an additional axial
compression load corresponding to 50 % of the axial yield limit. The global response is
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Figure 2.23: Local hardening response for DB formulation at 3 % drift.

shown in figure (2.24), where it is clearly non-objective compared to the hardening re-
sponse. However, an important similarity is that for both response cases lower numbers
of elements tend to overestimate the post-yield stiffness. Despite the large axial forces
on the column, using only two DB elements nearly cancels out the expected softening re-
sponse, and rather makes it close to perfectly plastic. The corresponding local response
is illustrated in figure (2.25), where it like its hardening counterpart does not converge
into a single solution as the number of elements increase.

Regularization of softening response

The results obtained have been regularized by adjusting the length of the extremity ele-
ment, so that the bottom integration point coincides with the plastic hinge length. The
regularization procedure based on Adessi and Ciampi’s damage variable is not imple-
mented in OpenSees, and thus requires development and adjustment of already inte-
grated commands. Because of this fact, it will not be used in this analysis. As shown
in table (2.4), the necessary length for an element with two Gauss-Legendre integration
points is 2Lp. According to equation (2.54), the plastic hinge length of the column is
equal to

Lp = 0.08L + 0.022 fydB = 0.08× 3 + 0.022× 500× 0.025 = 0.515 m (2.66)

which means that the extremity base element has to have the length 1.030 m. The remain-
ing elements have identical sizes, similar to the non-regularized discretization. Reg-
ularized softening responses are illustrated in figures (2.26) and (2.27), and show that
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the procedure with adjusting extremity element lengths is highly effective. The global
force-displacement response show nearly identical trends for all discretizations, while
the local moment-curvature response follow a similar path untill an ultimate curvature
of approximately 0.05 m−1.
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Figure 2.24: Global softening response for DB formulation

0 0.02 0.04 0.06 0.08 0.1 0.12
0

200

400

600

800

1000

1200

1400

Curvature [m−1]

B
en

di
ng

 M
om

en
t [

kN
m

]

2 DB elements
4 DB elements
6 DB elements
8 DB elements
10 DB elements

Figure 2.25: Local softening response for DB formulation at 4 % drift.
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Figure 2.26: Regularized global softening response for DB formulation
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Figure 2.27: Regularized local softening response for DB formulation at 4 % drift.
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2.7.4 FB formulation
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Figure 2.28: Global hardening response for FB formulation.

Hardening response

Global and local hardening for the FB formulation are depicted in figures (2.28) and
(2.29). The results clearly show that both the global response lines and the local ultimate
curvatures converge into single solutions as the number of integration points increase; a
case of objectivity. Unlike the local hardening case of the DB formulation in figure (2.23)
where the response was non-objective, the FB formulation achieves objectivity because
it strictly enforces force equilibrium. This confirms that the FB elements not only have
equilibrium on the element level, but also on section level.

Softening response

Similar to the softening case of the DB element column, there has been added an ax-
ial compression load corresponding to 50 % of the axial yield limit. Because of the fact
that the FB formulation gives a more flexible solution, the softening response is clearly
observed for all variants of section discretization. However, as expected, the global soft-
ening response illustrated in figure (2.30) in non-objective, and it can even be noticed
that the member with six integration points show something similar to a snap-back be-
haviour. They do however show a nearly identical response untill the peak base shear
is reached. The local response is depicted in figure (2.31), and also shows its expected
non-objectivity.
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Figure 2.29: Local hardening response for FB formulation at 1.8 % drift.
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Figure 2.30: Global softening response for FB formulation.
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Figure 2.31: Local softening response for FB formulation at 3 % drift.

Regularization of softening response

The global softening response has been regularized using the constant fracture energy
criterion. This means that instead of the commonly used ultimate strain of ε20 = 20 ε0,
where ε0 is the strain at the peak stress, separate ultimate strains are determined based
on number of integration points used. The fracture energy Gc

f is assumed to be 180 MPa,
while the other material parameters are the previously used f ′c = 30 MPa, Ec = 30 GPa
and ε0 = 0.002. Table (2.5) lists the different ultimate strains obtained for each specific
plastic hinge length, based on equation (2.60).

Table 2.5: Ultimate strain values based on the constant fracture energy criterion.

Number of IPs Plastic hinge length, m Ultimate strain, ε20

3 0.5 0.0212

4 0.25 0.0412

5 0.15 0.0679

6 0.10 0.1012

The regularized global response is depicted in figure (2.32), and shows a significant im-
provement compared to the non-regularized response in figure (2.30). All variations of
section discretization have the same trend, but as the number of integration points in-
crease higher force values are obtained in the post-yield response. This phenomena has
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also been observed by Calabrese, Almeida and Pinho (2010). To enable the regularization
of the local response according to the procedure presented in section (2.6.3), properties
of the cracked concrete section have been determined. It is assumed that the reinforcing
hoops have a diameter of 10 mm. Material moduluses are Es = 200 GPa and Ec = 30 GPa,
while reinforcement yield strength is fs = 500 MPa. Based on linear elastic response of
cracked sections (Moehle, 2012), the yield moment has been calculated:

b = 500 mm → d = (500− 50− 12.5− 10) mm = 427.5 mm → d′ = 72.5 mm (2.67a)

As = A′s = (6 + 2/3× 2 + 1/3× 2)× π × (12.5 mm)2 = 3927 mm2 (2.67b)

n =
Es

Ec
= 6.667 (2.67c)

ρ = ρ′ =
As

bd
= 0.0184 (2.67d)

k =

[
(ρ + ρ′)2 + 2

(
ρ + ρ′

d′

d

)
n

]1/2

− (ρ + ρ′)n = 0.2916 (2.67e)

k = 0.2916 → kd = 124.7 mm (2.67f)

Icr =
b(kd)3

3
+ (n− 1)A′s(kd− d′)2 + nAs(d− kd)2 = 2.7843× 109 mm4 (2.67g)

Myield =
1
n
× fs Icr

d− kd
= 689.6 kNm (2.67h)

The yield moment found was then used to find the corresponding yield curvature from
the moment-curvature analysis results, which turned out to be equal to φyield = 0.00455
m−1. Regularized local response, which is determined from post-processing the non-
regularized analysis results, is illustrated in figure (2.33). It is clearly seen that the ul-
timate curvatures are now converging to similar values. However, the response paths
do not coincide, which is due to the fact that only the curvature values are regularized.
This simply means that the curvatures are adjusted to achieve objectivity by forcing the
bending moments away from their original x-axis values.

The analysis performed shows that even though the FB formulation has its advantages,
mainly not requiring an element discretization, it does not provide the same level of
objectivity for the regularized softening response as the DB formulation.
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Figure 2.32: Regularized global softening response for FB formulation.
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Figure 2.33: Regularized local softening response for FB formulation at 3 % drift.
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2.8 Comparison and summary

Comparisons of response for both DB and FB element cantilever columns are depicted
in figures (2.34) and (2.35). The discretizations used are considered to give reasonable
accuracy for both element formulations. Global hardening response is shown to be close
to identical for the DB and FB elements, with only the DB elements having a slightly
stiffer inelastic response. The softening response, however, differs significantly, even
though the responses have been regularized. This shows that the representation of strain
softening behaviour is highly dependent on which element formulation is used to model
the structural members. Obviously, this is making it difficult to predict which one to
use without comparing analysis results versus experimental data. To sum it up, the
characteristics of each element formulation discussed is listed in table (2.6).

Table 2.6: Properties of distributed inelasticity formulations.

Displacement-based element (DB) Force-based element (FB)

• Based on displacement shape
functions.

• Based on internal force shape
functions.

• Weak form of equilibrium is
satisfied.

• Strong form of equilibrium is
satisfied.

• Discrepancies from exact solution
can arise from both numerical

integration errors and inaccurate
shape functions.

• Discrepancies from exact solution
can only arise from numerical

integration errors.

• Needs several elements to describe
inelastic behaviour of a beam-column

member accurately.

• Only one element per beam-column
member is sufficient to represent

inelastic behaviour.

• Gauss-Legendre is the commonly
used integration method.

• Gauss-Lobatto is the commonly
used integration method.

• Often gives a stiffer solution than
the exact one.
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Figure 2.34: Global hardening response of 6 DB element member, and 5 integration point
FB member.
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Figure 2.35: Global regularized softening response of 6 DB element member, and 5 inte-
gration point FB member.



3. Concentrated plasticity elements

3.1 Point-hinge models

Structures subject to strong lateral forces will have their most significant inelastic de-
formations at their member ends. The bending moments will experience larger values
at these points, opposed to element dead and live loads that produce moments in the
middle span of beam members. This knowledge was the basis for the earliest nonlin-
ear beam-column member formulations. The first point-hinge model was introduced by
Clough, Benuska and Wilson in 1965 (Filippou, 2013), and is named the two-component
model. It consists of two structural beam components in a parallell series, as illustrated
in figure (3.1). The lower component in the figure is elastic-perfectly plastic, while the
upper one is elastic without any ultimate limit. The interaction between these two com-
ponents enables the model to represent bilinear response.

As the formulation is based on a parallell model, the total beam stiffness is determined
by directly summing up the stiffnesses of both components. The factor γ represents the
ratio between the elastic stiffness EI and the post-yield stiffness (1 − γ)EI. Thus the
elastic rotational stiffness will be the sum of both components

kelastic = γEI + (1− γ)EI = EI (3.1)

while the post-yield stiffness will be the rotational stiffness of only the upper component,
as the lower one has reached perfect plasticity, and therefore has zero stiffness. The
moment-curvature relation of the two-component model is shown in figure (3.2), and
illustrates the rotational response. Here the factor γ is set to the stiffness ratio (1− β) of
an bilinear approximation, and Mp is the yielding moment of the model. The red line
describes the total response of the model, while the black line with slope βEI represents
the hardening stiffness contribution from the post-yield component.

Despite the two-component model’s strength of simulating an exact bilinear response, it
does not represent the cyclic loading of concrete members with sufficient accuracy. The
model overestimaes the energy dissipation when members are subjected to inelastic load
cycles. Therefore the model is only applicable for steel members with stable hysteresis
loops, or non-cyclic inelastic deformations concrete members (Fardis, 2009).

To prevent the issues experienced with the two-component model, Giberson proposed
the one-component model in 1967 (Filippou, 2013). As illustrated in figure (3.3), it con-
sists of a series model of a linear elastic beam with nonlinear rotational springs at its
member ends. These springs only contribute to the rotational stiffness when the plas-
tic capacity of the beam is reached at a particular end. The force-displacement relation

44
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Figure 3.1: Two-component model (Filippou, 2013).

Figure 3.2: Moment-curvature relation of a two-component model (Filippou, 2013).

in figure (3.3) shows the linear hardening response of each spring under antisymmetric
bending, where η is the hardening stiffness ratio. Since it is a series model, the total beam
stiffness is found by inverting the sum of the component flexibilities. The flexibility ma-
trix of the elastic beam component is

felastic =
L

6EI

[
2 1

1 2

]
(3.2)

while the flexibilities of the nonlinear springs are

fplastic =
L

6ηEI

[
ri 0

0 rj

]
(3.3)

The variables ri and rj either have the valure 0 or 1, depending on if the beam has reached
its plastic moment capacity at either ends. Thus, the beam rotational stiffness is either
fully elastic and the inverse of equation (3.2), fully plastic and the inverse of equation
(3.3), or a combination of both flexibilities, in case only one of the member ends has
reached its capacity.
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Figure 3.3: One-component model with nonlinear spring stiffness relation (Filippou,
2013).
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3.2 Improved plastic hinge integration methods

The two-component and one-component models discussed in the previous section have
the advantage that they are both fundamentally simple, and therefore easily can be fol-
lowed up by hand calculations. However, they have significant drawbacks as well. The
plastic hinges are for instance concentrated at the end nodes, as if they were singulari-
ties. This is obviously not the case in reality, as a larger portion of the member ends are
expected to reach plasticity and thus function as hinges. In addition, both models also
seperate between the axial and moment response, meaning that a calibration is necessary
to achieve their correct interaction (Scott & Fenves, 2006).

To deal with these issues, recent concentrated plasticity elements have fiber modelling
at specific lengths at their member ends. Research has been done not only to improve
the two-component and one-component model, but also to achieve objectivity for soft-
ening response of FB elements. Thus, the fiber modelled member ends are based on the
FB formulation presented in section (2.4). As the interior region outside the prescribed
plastic hinge lengths are assumed to be linear elastic, the formulation has to be slightly
rewritten. The compatibility condition now consists of three different parts, one from
each plastic hinge, and one from the interior region. It is given as

v =

∫ Lpi

0
bT(x)e(x)dx +

∫ L−Lpj

Lpi
bT(x)e(x)dx +

∫ L

L−Lpj
bT(x)e(x)dx (3.4)

where Lpi and Lpj are the plastic hinge lengths at respectively nodes i and j. Due to
inelasticity leading to nonlinear analysis, the hinge regions need to be integrated numer-
ically as usual. This gives the expression

v =
Np

∑
i=1

bT
i eiωi + f el

intq (3.5)

where f el
int is the flexibility matrix of the interior region of the element, and ωi is the

length weight of the plastic hinge integration points. As it is linear elastic, it is evaluated
by the closed-form integral

v =

∫ L−Lpj

Lpi
bT(x) f el

s b(x)dx (3.6)

The section flexibility f el
s is simply given as

f el
s =

 1
EA

0

0
1

EI

 (3.7)

and eventually the element flexibility is expressed by
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f =
Np

∑
i=1

bT
i fs,ibiωi + f el

int (3.8)

As previously explained, the new concentrated plasticity element based on FB fiber for-
mulation eliminates the issues experienced with the earlier plastic hinge models. The
next focus is therefore solely on representing the strain softening behaviour as accu-
rately as possible. Three criteria that a plastic hinge integration rule has to satisfy is the
following (Scott & Fenves, 2006):

1. There should be integration points at the element ends, such that the largest bend-
ing moments due to lateral loads are detected.

2. Quadratic polynomials should be integrated exactly to provide the exact solution
for linear curvature distributions.

3. The plastic hinge regions at both ends should be integrated by the use of only one
integration point.

The integration rules used for the distributed plasticity, Gauss-Legende and Gauss-Lobatto,
do not fulfill these criteria. Although both of them satisfy the second one, only Gauss-
Lobatto satifies the first, as it has integration points at the element ends. The third criteria
is satisfied be neither integration rules, as the number of integration points has to be ad-
justed depending on the plastic hinge length of the member, which is not a fundamental
property of either rules. Next, three commonly known plastic hinge integration rules are
presented, which eventually leads to a new method, the modified Gauss-Radau integra-
tion method proposed by Scott and Fenves (2006).

Midpoint and endpoint integration

Two basic plastic hinge integration methods are the midpoint and endpoint methods,
which are illustrated in figure (3.4). Both include only one integration point at each plas-
tic hinge. The midpoint method has the intregration points located at the center of its
plastic hinge regions, with weights equal to the length of each plastic hinge. Obviously,
this method does not satisfy criteria (1), as the integration points are not at the element
ends. This will result in an overestimation of the moment capacity of the element in
case of lateral loading, as reduced moments and curvatures are detected at the control-
ling sections. Midpoint integration does also not give an exact integration of quadratic
polynomials, criteria (2), and is therefore not able to accurately represent response due
to element loads.

The endpoint integration method has its integration points located at the element ends,
with weights equal to the plastic hinge lengths. A significant drawback however, is that
the endpoint method only is capable of exactly integrating constant functions, which
means that a order of accuracy is lost compared to the midpoint method. Thus, the
endpoint method satifies criteria (1) and (3), but not (2).
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Figure 3.4: Midpoint and endpoint plastic hinge integration methods (Scott & Fenves,
2006).

Figure 3.5: Two-point and modified Gauss-Radau plastic hinge integration methods
(Scott & Ryan, 2013).
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Two-point Gauss-Radau integration

The previously discussed plastic hinge integration methods each have one integration
pointat each element end, which is not enough to integrate on a high enough order to
achieve exact solutions. Therefore the number of integration points have to be increased
to at least two. The Gauss-Legendre integration rule does not have points at the element
ends, while a two-point Gauss-Lobatto rule is of a lower order, and does not yield exact
integration of quadratic polynomials. However, the advantages of both these integration
rules can be found in the Gauss-Radau quadrature. It has an integration point at one
element end, but not the other, and has an accuracy of 2Np− 2, which is one order higher
than Gauss-Lobatto. Thus, an element using a two-point Gauss-Radau integration rule
will instantly satisfy criteria (1) and (2).

The integration scheme of the Gauss-Radau rule for a plastic hinge region is shown in
a) in figure (3.5). Integration points are situated at points 0 and 2/3 on an element with
unit length, with corresponding weights equal to 1/4 and 3/4. Using a two-point Gauss-
Radau rule has two special properties (Scott & Fenves, 2006). The first is that when the
sum of the plastic hinge lengths are equal to the member length, the two seperate two-
point schemes combine into a four-point integration scheme. Second, when each hinge
length are identical and the sum is equal to the member length (Lpi = Lpj = L/2),
Simpson’s 3/8 integration rule is obtained, which increases the accuracy by one order.
Despite its obvious advantages over the one-point integration methods, the two-point
Gauss-Radau method is not capable of representing softening behaviour in a satisfactory
way. This is because it does not satisfy criteria (3), as the plastic hinge region contain two
integration points, making the end controlling section having the weight Lp/4 instead
of the desired Lp.

Modified two-point Gauss-Radau integration

To fulfill the criteria stated, Scott and Fenves (2006) proposed a modified two-point
Gauss-Radau integration scheme. It is illustrated in b) in figure (3.5), and shows that
the plastic hinge regions only contain one integration point each. The second integration
point has been extended into the linear elastic interior of the member. This has been done
by applying the Gauss-Rada integration rule over the lengths 4Lpi and 4Lpj, instead of
the previous Lpi and Lpj. As a result, their proposal theoretically satisfies all criteria
necessary to represent strain softening behaviour of beam-column elements.
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3.3 Comparison of concentrated plasticity elements

The cantilever column from section (2.7) has been analyzed using the plastic hinge inte-
gration rules discussed. There are two available FB plastic hinge elements in OpenSees.
The original command consists of an element with Modified Gauss-Radau integration at
its hinges and an linear elastic interior, similar to the one presented in this thesis. How-
ever, a recently updated element command allows choosing between either midpoint,
endpoint, Gauss-Radau or Modified Gauss-Radau integration. Another significant prop-
erty of the new command is that the element interior is assumed inelastic, such that in-
elasticity can spread anywhere on the element, and plastic hinges also can form on the
interior due to element loads. This is done by adding two Gauss-Legendre integration
points on the element interior, and thus increasing the number of controlling sections to
four for the one-point methods, and six for the Gauss-Radau methods. A summary of the
integration method’s capabilities of representing strain-softening behaviour is shown in
table (3.1).

Table 3.1: Strain softening criteria of plastic hinge integration methods.

Integration
method

(1) Integration
points at element

ends

(2) Exact integration
of quadratic
polynomials

(3) One
integration point
in plastic hinge

region

Midpoint No No Yes

Endpoint Yes No Yes

Gauss-Radau Yes Yes No

Modified Gauss-Radau Yes Yes Yes

Hardening response

Global hardening behaviour response is depicted in figures(3.6). The Modified Gauss-
Radau method with an elastic interior is showing a overly conservative elastic stiff-
ness, which is expected. While the midpoint, Gauss-Radau, and Modified Gauss-Radau
method with inelastic interior have identical elastic response, the endpoint method do
not. This discrepancy is due to the endpoint integration rule not being capable of ex-
actly integrating linear functions. Even though the midpoint and Gauss-Radau meth-
ods give higher post-yield force values, all methods have the same response trend for
strain-hardening. Thus, they can all be assumed to model this kind of global structural
behaviour in a feasible manner.

On the other hand, an interesting property of the Gauss-Radau method is seen in fig-
ure (3.7), which is of the local moment-curvature response. While all the other integra-
tion methods yield approximately identical ultimate curvature values, the Gauss-Radau
method gives a significantly larger one. This is because the integration weight of the
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element end integration point is 1/4 of the plastic hinge length, as oppposed to the
other methods having the weight as the whole hinge. Thus, to maintain similar force-
displacement response as the other methods, the curvature of the end integration point
of the Gauss-Radau method has to become larger.

Softening response

The global and local softening behaviour responses are shown respectively in figures
(3.8) and (3.9). The localization issue of the Gauss-Radau method due to it having two
integration points in the plastic hinge is again easily seen. While the other methods
show identical trends, the Gauss-Radau response do not. Also, as expected, the endpoint
method differs slightly in the linear elastic range. The overestimation of the post-yield
strength of the midpoint method comes from the fact that it does not have integration
points at the element ends. As can be seen from the local response, the Gauss-Radau
method’s ultimate curvature is, similiar to the hardening case, affected by the localiza-
tion problem with the integration weigths.

The results show that the Modified Gauss-Radau and the endpoint method yield the
best estimates of both force-displacement and moment-curvature response. However,
the endpoint method must be used with caution, as significant discrepencies may occur
because of its low order of integration. This leaves the Modified Gauss-Radau method
superior, and is the plastic hinge integration method that should be used to correctly
estimate both hardening and softening response of beam-column members. Wether the
element interior should be modelled as linear elastic or not, depends on if distributed
or concentrated member loads are considered large enough to form plastic hinges. In
addition, an elastic interior will require less computational effort than an inelastic one.
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Figure 3.6: Global hardening response of plastic hinge integration methods.
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Figure 3.7: Local hardening response of plastic hinge integration methods at 3 % drift.
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Figure 3.8: Global softening response of plastic hinge integration methods.
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Figure 3.9: Local softening response of plastic hinge integration methods at 3 % drift.



4. Application of element models

4.1 SeismoStruct

The characteristic properties of the different element formulations were presented in the
previous chapters with the use of OpenSees. Based on these commonly accepted results
the state-of-art seismic engineering software SeismoStruct has been developed. Unlike
OpenSees, SeismoStruct has an user interface, seen in figure (4.1), making it simpler to
construct larger models. It contains all the elements discussed earlier, like the DB ele-
ment, FB element, and the Modifed Gauss-Radau plastic hinge element. The integrated
DB element does not have an option of adjusting the number of integration points. It
uses a 2-point Gauss-Legendre scheme, which is the same as the one used in OpenSees.
The FB element of SeismoStruct can have its integration points adjusted from three to
ten controlling sections. The plastic hinge element of SeismoStruct has an elastic interior,
with no choice of making it inelastic. This will anyhow not be of any issue as long as the
distributed member loads are small.

Figure 4.1: SeismoStruct user interface.

55
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4.2 One-story reinforced concrete building prototype

The Joint Research Centre of the Europen Commission have performed several seismic
experiments on the behaviour of industrial and residential structures. To compare the
accuracy of the different element formulations a one-story RC industrial building has
been examined. The prototype was made of cast-in-situ beams and columns, consisting
of two two-bay frames connected by a slab. A picture of the structure is seen in figure
(4.2). To make the structure authentic, it was designed for a dead load equal to 27 kN/m3

including the weight of the slab. The geometry of the prototype is shown in figure (4.3),
with the column cross section in figure (4.4). All six columns are 300×300 mm and iden-
tical, having 8 φ 14 mm longitudinal reinforcement bars throughout their whole length.
The transverse reinforcement, which is for both shear forces and confinement, consists of
6 mm bars. In the critical regions, which are 1 m from the bottom and top cross sections,
the stirrups were placed with 50 mm spacing. Outside the critical regions, the spacing
is150 mm. The design of the transverse reinforcement, counting as 4 stirrup legs in both
the height and width of the section, yields significant confinement effects. The experi-
ment report does not state any information on the beam 600×300 mm sections, except
that they have such reinforcement that the plastic hinges will form in the columns. The
slab between the two frames have a thickness of 150 mm.

Prior to the testing of the prototype itself, the materials used for construction were tested.
Concrete cube specimen tests gave cylindrical compressive strengths of fcm = 42.74 MPa
for the columns, and fcm = 47.2 MPa for the beams. The longitudinal steel reinforcement
had a yielding strength of fy = 550 MPa, and a tensile strength of ft = 657 MPa.

The cast-in-situ prototype was subjected to a pseudo-dynamic displacement motion.
These horizontal displacements were applied with the use of hydraulic jacks, which can
be seen are connected to the beams in figure (4.2). In addition, vertical jacks were used to
apply additional loads on the slab, such that the columns obtain proper values of axial
load. The total vertical loads on the prototype, including slab self weight, were approx-
imately 600 kN. Positioning of the vertical jacks are shown in figure (4.5). They have
the functionality of swinging around their base hinged connections during the test. This
makes the jacks always oriented towards a fixed base point, which means that they do
not produce any second order P-delta effects.

The pseudo-dynamic displacement time-history is determined from performing a pre-
liminary dynamic analysis of the prototype. It must be noted that this makes the ex-
periment less authentic, as the damping of the structure is modelled in the analysis,
instead of taking effect in the test itself. The seismic ground motion were simulated by
an artifical accelerogram, which was generated to yield a response spectrum similar to
what given by Eurocode 8 for a subsoil of type 2B. This accelerogram is shown in figure
(4.6) for a peak ground acceleration of 0.32g. The prototype was subjected to four differ-
ent time-histories based on scaling of the ground motion; 0.05g, 0.32g, 0.64g, and 0.80g.
The time-history of 0.05g was applied to calibrate the testing devices, and is therefore
included in neither the report or this analysis.

Displacement time-histories for the relevant accelerogram scalings are depicted in figure
(4.7). It can clearly be seen that the 0.32g ground motion yields an elastic response, as
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Figure 4.2: One-story reinforced concrete building (Ferrara & Negro, 2003).

there are no signs of irregularities in the displacement. The 0.64g response gives larger
displacement values and some inelasticity, while the 0.80g motion results in large inelas-
ticity. These characteristics were also observed on the prototype. As shown in figure
(4.8), the 0.64g time-history resulted in cracking of the columns. Figure (4.9) depicts
cover spalling of the concrete after the 0.80g test, in addition to the maximum deflection
that occured.



58 CHAPTER 4. APPLICATION OF ELEMENT MODELS

Figure 4.3: Geometry of the prototype (Ferrara & Negro, 2003).
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Figure 4.4: Column geometry and reinforcement (Ferrara & Negro, 2003).

Figure 4.5: Scheme of vertical jacks (Ferrara & Negro, 2003).
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Figure 4.6: Artifical ground accelerogram with PGA 0.32g.
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Figure 4.7: Displacement time-histories from dynamic analysis.



4.2. ONE-STORY REINFORCED CONCRETE BUILDING PROTOTYPE 61

Figure 4.8: Crack patterns on northern frame - western column at the end of 0.64g test
(Ferrara & Negro, 2003).

Figure 4.9: Cover spalling and maximum deflection from the 0.80g test (Ferrara & Negro,
2003).



62 CHAPTER 4. APPLICATION OF ELEMENT MODELS

4.3 Analysis

4.3.1 Modelling

Due to the symmetry of the prototype the static time-history analysis model can be sim-
plified to consist of only one frame. The model used is illustrated in figure (4.10). Analy-
ses have been performed with the use of DB elements, FB elements, and FB plastic hinge
elements. Each intensity of the ground motion included in the report is analyzed (i.e.,
0.32g, 0.64g, and 0.80g). Based on the findings of the previous chapters, the FB elements
are modelled with five integration points along their lengths. The DB elements have
their default value of two integration points, with six elements used for each column
member. Equation (2.54) is used to calculate the necessary length of the plastic hinge:

Lp = 0.08L + 0.022 fydB = 0.08× 5.05 + 0.022× 550× 0.014 = 0.573 m (4.1)

Thus, the plastic hinge column elements have hinges of 0.573 m at the top and base, while
the DB element column have extremity elements of twice the plastic hinge length, which
is 1.146 m. The FB element columns are modelled with only one element, and do not
take any predetermined plastic hinge length into account. Also, since information on the
concrete fracture energy is not given, the FB members are not regularized. The column
discretization of the different element models are illustrated in figure (4.11). Since the
beams are supposed to have an overstrength compared to the columns, no specific hinge
lenghts are used. Rather, they are discretized into four elements for the DB formulation,
and a default SeismoStruct hinge value of 16.67 % the member length is used for the
plastic hinge formulation. It must also be noted that due to the different spacing in
transverse reinforcement, the confinement effect differs throughout the column lengths.
The plastic hinge lengths at the top and base have a confinement factor of 1.3549, while
the interior part has a confinement factor of 1.0701, giving the hinges a significantly more
ductile behaviour than the interior. These values have been obtained from SeismoStruct.

The computational times of each time-history analysis are listed in table (4.1). As ex-
pected, the DB formulation requires more computational effort than the FB distributed
and concentrated plasticity elements. This is due to the increased number of nodes,
which is necessary to achieve sufficient accuracy. The average computational time per
step is not significantly larger for the DB elements compared to the FB elements. How-
ever, this difference is expected to increase as the strucural models increase in size. Text-
book matrix multiplication and inversion have running times of n3 for a square n × n
matrix. Basically, this means that as the size of the matrices increase due to increased
number of nodes, the computational demand of DB elements increases significantly com-
pared to FB elements. Despite the fact that the running times of the matrix operations
can be reduced to n2.373 with more efficient algorithms, there is a clear advantage of us-
ing FB elements on larger models (Robinson, 2005). The total run times of the different
PGA ground motions differ because they do not have a similar amount of time steps.
While the 0.32g motion has 1310 steps, the 0.64g motion has 1230 steps, and the 0.80g
motion has 1000 steps.
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Figure 4.10: SeismoStruct model of prototype frame.
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Figure 4.11: Discretization of column members.
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Table 4.1: Computational times of analysis.

PGA Element formulation Total time, sec Average time per step, sec

0.32g
DB 43 0.033

FB 37 0.028

Plastic hinge 26 0.020

0.64g
DB 40 0.033

FB 35 0.029

Plastic hinge 24 0.020

0.80g
DB 32 0.032

FB 29 0.029

Plastic hinge 19 0.019

4.3.2 Global response

First, the base shear time-histories from SeismoStruct are compared to the experimen-
tal data. These results are depicted in figures (4.12), (4.13), and (4.14), for the 0.32g,
0.64g, and 0.80g ground motions respectively. All element types show identical response
paths as the experiment results for the 0.32g motion, despite overestimating the force val-
ues slightly at each cycle peak. This overestimation is largest for the DB elements, and
smaller for FB and plastic hinge elements. Between the pseudotime of approximately 4
and 8 seconds, all three analysis results show a larger discrepancy in force values. The
distributed and concentrated FB elements improve the force prediction for the remaining
time steps, while the DB elements do not. A similar trend is seen for the 0.64g motion
(Fig. 4.13), although the force value discrepancies are substantially larger at the begin-
ning of the time-history.

The analysis of the 0.80g ground motion shows a significantly different response (Fig.
4.14), as large levels of inelasticity are obtained in both the SeismoStruct model and the
experimental prototype. Like the other ground motion scalings, the numerical analysis
is inaccurate in the initial phase of the analysis. After this point, the plastic hinge element
model yields the most accurate response compared to the other element formulations.

The peak values of base shear from the time-histories are listed in table (4.2). The ob-
servation that the DB element model overestimates the force values compared to the FB
and plastic hinge element models is again confirmed by the numbers. While the ele-
ments based on the FB formulation have peak base shear errors ranging from -0.8 % to
6.0 %, the DB formulation yield errors between 18.9 % and 26.5 %. Figures (4.15), (4.16),
and (4.17) illustrate the force-displacement response from the experiment and analyses.
The experimental results are shown in red, while the different element models are in
blue. Force-displacement response for the 0.32g is shown to be highly linear elastic, with
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Table 4.2: Peak base shear values.

Peak base shear [kN] Error (%)

PGA Experimental DB FB Plastic hinge DB FB Plastic hinge

0.32g 109.4 138.4 116.0 115.2 26.5 6.0 5.3

0.64g 122.0 145.1 117.3 117.4 18.9 -3.9 -3.8

0.80g 118.3 146.0 117.2 117.3 23.4 -0.9 -0.8

the FB and plastic hinge element models having a slightly better representation of the
experiemental results than the DB element model. On the stronger ground motions es-
pecially, it can be noticed that the elastic stiffness of the analysis models are significantly
higher than those of the experimental results. This may explain why the base shear val-
ues have been overestimated for the whole time-history of the 0.32g earthquake, and
at the beginning of the stronger ground motions. However, the response of the 0.64g
and 0.80g time-histories show that the inelastic response range is significantly better
predicted, particularly for FB and plastic hinge elements.

4.3.3 Local response

Moment-rotation responses at the base of the north-western column, which is basically
the western column in the frame model, are depicted in figures (4.18), (4.19), and (4.20)
for the three acceleration levels . While the global force-displacement response from the
analysis has its displacement values enforced to be similar to the experimental values,
the same does not apply for the local response. This gives an increased discrepancy be-
tween the analysis and the experiment. The local response for the 0.32g ground motion
shows fairly accurate hysteretic curves from the analysis, with the FB and plastic hinge
element models displaying a better approximation of the experimental results than the
DB element model. An important observation is that the DB element model overesti-
mates the bending moment values significantly for all the analyses.

The moment-rotation responses get less accurate as the ground motion intensity in-
creases. The results clearly show that all the analysis models are overly conservative in
estimating the peak rotations occuring at the column base. As for the force-displacement
response, there can also be seen that the analysis models have a higher elastic stiffness
than the experimental prototype. Unfortunately, the experiment report does not provide
any information on either elastic moduli or strain values at peak stresses for the concrete,
which makes it difficult to determine necessary property values on the section level. The
strain value at peak stress were assumed to be 0.002 in the analysis. Nevertheless, espe-
cially the FB and plastic hinge elements produce decent results based on the similarity
of the response paths.
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Figure 4.12: Base shears from analysis versus experimental results for 0.32g ground mo-
tion.
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Figure 4.13: Base shears from analysis versus experimental results for 0.64g ground mo-
tion.
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Figure 4.14: Base shears from analysis versus experimental results for 0.80g ground mo-
tion.



4.3. ANALYSIS 69

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
a)fExperimentalfdata

B
as

ef
S

he
ar

f[k
N

]

Experimental

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
b)fDBfelements

f
DBfelements

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
c)fFBfelements

RooffDisplacementf[mm]

f
FBfelements

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150
d)fPlasticfhingefelements

f
Plasticfhingefelements

Figure 4.15: Force-displacement response from analysis versus experimental results for
0.32g ground motion.
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Figure 4.16: Force-displacement response from analysis versus experimental results for
0.64g ground motion.
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Figure 4.17: Force-displacement response from analysis versus experimental results for
0.80g ground motion.
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Figure 4.18: Moment-rotation response of north-western column for 0.32g ground mo-
tion.
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Figure 4.19: Moment-rotation response of north-western column for 0.64g ground mo-
tion.
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Figure 4.20: Moment-rotation response of north-western column for 0.80g ground mo-
tion.
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4.4 Alternative analysis

An alternative analysis procedure has been performed to investigate if better accuracy
is obtained for the response calculations. There is no information in the report stating
that the frame specimen was repaired between the testing of the 0.32g, 0.64g and 0.80g
motions (Ferrera &Negro, 2004). This means that the 0.64g and 0.80g tests may not have
begun at an initial state as the ones assumed in the numerical analysis of section (4.3).
Based on the pictures from the laboratory, like figure (4.8), it seems likely that the mem-
ber stiffnesses have been altered, and thus have different properties than first expected.
Because of this, the three ground motions intensities have been combined into one sin-
gle displacement motion, and thus preserving the material properties from the end of
one time-history analysis to the next. This procedure resulted in better accuracy for the
global response, but unfortunately no improvement of the local response, which there-
fore have not been presented.

The base shear time-histories and force-displacement results are depicted in figures (4.21)
to (4.24). It can be seen that the force values from the analysis are closer to the experi-
mental results compared to the case in figures (4.13) and (4.14). However, this is not
apparent in table (4.3), where the peak base shear values are almost entirely identical
to the previous analysis. Obviously the peak values have not been affected, but rather
the prediction of the remaining response cycles have been improved; especially for the
initial phase of the time-histories. This is further supported by the force-displacement
responses, which now tend to have elastic stiffnesses more similar to the experimental
results. Again, the FB and plastic hinge elements show superior accuracy compared to
the DB elements, which as before still overestimates the force values.

Table 4.3: Peak base shear values from alternative analysis.

Peak base shear [kN] Error (%)

PGA Experimental DB FB Plastic hinge DB FB Plastic hinge

0.64g 122.0 145.7 117.0 117.4 18.9 -3.9 -3.8

0.80g 118.3 143.5 115.7 114.8 23.4 -0.9 -0.8
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Figure 4.21: Base shears from alternative analysis versus experimental results for 0.64g
ground motion.
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Figure 4.22: Base shears from alternative analysis versus experimental results for 0.80g
ground motion.
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Figure 4.23: Force-displacement response from alternative analysis versus experimental
results for 0.64g ground motion.
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Figure 4.24: Force-displacement response from alternative analysis versus experimental
results for 0.80g ground motion.
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4.5 Conclusions

Based upon the analyses of the three ground motion intensities for each element formu-
lation, the following conclusions are drawn:

The running times of the different analyses, listed in table (4.1), show that the compu-
tational demand of structural members with several DB elements is larger than similar
members modeled with FB elements. This is expected, as gaining sufficient accuracy
with the DB formulation requires several elements for each member, while the FB for-
mulation can do with only one. Thus, the increased number of structural nodes raise the
computational effort for each analysis. Since the one-story frame is a rather small model,
the difference in average time per analysis step will increase drastically as the size of the
structure increases. The fastest known matrix multiplication and inversion algorithm
has a running time of n2.373 for a n× n square matrix. Thus, using FB elements instead
of DB elements for large finite element models will be very beneficial for computational
cost. Plastic hinge elements which have elastic interiors and FB hinge regions, will re-
duce the computational time of analysis. These kind of elements are however primarily
designed for analysis of structures subjected to strong lateral forces. If the peak bending
moments occur at member interiors instead of at member ends, the correct inelasticity
will not form. Thus, the practicing engineers must determine if dead loads are of critical
importance to structures before modeling them with this type of plastic hinge elements.
While lateral forces from earthquakes will be dominant for regular frame-based residen-
tial buildings, the same may not be the case for structures like ports and quays, which
often experience large member loads.

The accuracy of the element formulations can be seen in their comparison with the exper-
imental data from the prototype testing. Base shear time-history plots from the analysis
show a good correspondance, although the force values are being slightly larger than
experimental results for the 0.32g ground motion. Overestimated base shear values is
escpecially the case for the DB element model, but this can be expected as the formula-
tion often yields a too stiff solution. The first analysis, where each ground motion was
subjected separately, gave too large force values that were expected to occur because of
the numerical model having a higher elastic stiffness than the prototype. Yet this was
shown to not be the case when the ground motions were subjected consecutively, such
that the material stiffness was not brought to its initial state. Generally the response
paths of all element formulations show very good results for approximation of global
response. However, the approximation of local response for these ground motions are
less satisfactory. While all element types yield inaccuracies in their predictions, the FB
and plastic hinge models are slightly better than the DB model.

As a concluding remark, the observations from the analyses show that the FB and plastic
hinge elements give the most accurate approximations of the pseudo-dynamic response
of the one-story frame. Due to the prototype not having any significant strain-softening
behaviour, the advantage of the Modified Gauss-Radau integration of the plastic hinge
element have not been observed. Also, the accuracy of the DB element model would
likely improve by discretizing the members into even more elements; but obviously at
the cost of increased running time.
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A. OpenSees scripts

A.1 DB cantilever column

## Displacement-based cantilever column ##

set ResponseType Hardening; # Hardening or Softening
set ResponseType Regular; # Regular or Regularized

set dataDir CantileverResults;
file mkdir $dataDir;
set m 1;
set mm [expr $m./1000];

# GEOMETRY
set LCol [expr 3*$m];

foreach nElements {2 3 4 6 8 10} {
wipe;
model BasicBuilder -ndm 2 -ndf 3;

# NODES
if {$ResponseType == "Regular"} {

for {set i 1} {$i <= [expr $nElements+1]} {incr i} {
set Y [expr ($i-1)*$LCol./$nElements]
node $i 0 $Y

}

set fys 500;
set db [expr 25*$mm];
set Lp [expr 0.08*$LCol + 0.022*$fys*$db];

} elseif {$ResponseType == "Regularized"} {
set fys 500;
set db [expr 25*$mm];
set Lp [expr 0.08*$LCol + 0.022*$fys*$db];

node 1 0 0;
node 2 0 [expr 2*$Lp];

for {set i 3} {$i <= [expr $nElements+1]} {incr i} {
set Y [expr $Lp + ($i-2)*($LCol-$Lp)/($nElements-1)]
node $i 0 $Y
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}
}

print -node

# BOUNDARY CONDITIONS
fix 1 1 1 1;

# SECTIONS
set SectionType InelasticFiber; # Either Elastic or InelasticFiber
set ColSecTag 1;
set HCol [expr 500*$mm];
set BCol $HCol

if {$SectionType == "Elastic"} {
set Ec 30e9;
set Acol [expr $HCol*$BCol];
set Icol [expr $BCol*pow($HCol,3)/12];
section Elastic $ColSecTag $Ec $Acol $Icol;

} elseif {$SectionType == "InelasticFiber"} {
source ConcreteSI.tcl
source BuildRCrectSection.tcl

set cover [expr 50*$mm];
set numBarsTopCol 6;
set numBarsBotCol 6;
set numBarsIntCol 8;
set barAreaTopCol [expr 491*$mm*$mm];
set barAreaBotCol [expr 491*$mm*$mm];
set barAreaIntCol [expr 491*$mm*$mm];

set nfCoreY 20;
set nfCoreZ 20;
set nfCoverY 20;
set nfCoverZ 20;
BuildRCrectSection $ColSecTag $HCol $BCol $cover $cover $IDconc

$IDconc $IDSteel $numBarsTopCol $barAreaTopCol $numBarsBotCol $barAreaBotCol
$numBarsIntCol $barAreaIntCol $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ

} else {
puts "No section has been defined"
return -1

}

# MASS
set concWeight [expr 25e3*$m*$m];
set g 9.81;
set distMassCol [expr $concWeight*$HCol*$BCol/$g];

# ELEMENT
set IDColTransf 1;
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geomTransf Linear $IDColTransf; # Linear or PDelta
set nIntegPoints 2;

for {set i 1} {$i <= [expr $nElements]} {incr i} {
element dispBeamColumn $i $i [expr $i+1] $nIntegPoints $ColSecTag

$IDColTransf -mass $distMassCol
}

# EIGENPERIOD
set pi 3.1416;
set lambda [eigen 1];
set omega [expr pow($lambda,0.5)];
set T [expr 2*$pi/$omega];

# RECORDERS
recorder Node -file $dataDir/DispFree$nElements.out -time -node
[expr $nElements + 1] -dof 1 2 3 disp;
recorder Node -file $dataDir/DisplacementBase.out -time -node 1 -dof 1 2 3 disp;
recorder Element -file $dataDir/ForceColumnBase$nElements.out -time
-ele 1 section 1 force;
recorder Element -file $dataDir/DeformationColumnBase$nElements.out -time
-ele 1 section 1 deformation;

# GRAVITY
set ColWeight [expr $distMassCol*$g];

pattern Plain 1 Linear {
for {set i 1} {$i <= [expr $nElements]} {incr i} {

eleLoad -ele $i -type -beamUniform 0 -$ColWeight;
}

if {$ResponseType == "Softening"} {
load 2 0 -6057e3 0; # 50% of axial yield limit

} else {
}

}

set Tol 1.0e-8;
constraints Transformation;
numberer Plain;
system BandGeneral;
test NormDispIncr $Tol 6 ;
algorithm Newton;
set NstepGravity 10;
set DGravity [expr 1./$NstepGravity];
integrator LoadControl $DGravity;
analysis Static;
analyze $NstepGravity;

loadConst -time 0.0

puts "Model built"
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puts "First period is $T sec"

# LATERAL LOAD
set Tolerance 1.0e-8;
set MaxIterations 10;
set MaxDisplacement [expr 0.04*$LCol];
set DisplacementIncrement [expr $MaxDisplacement/1000];
set ControlDOF 1;

constraints Plain;
numberer RCM;
system BandGeneral;
test NormDispIncr $Tolerance $MaxIterations;
algorithm Newton;
integrator DisplacementControl [expr $nElements + 1] $ControlDOF
$DisplacementIncrement;
analysis Static;

set Load 1000;
pattern Plain 2 Linear {

load [expr $nElements + 1] $Load 0.0 0.0;
}

# ANALYSIS
analyze 1000; #Steps

}
puts "Analysis performed"
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A.2 FB cantilever column

## Force-based cantilever column ##

set ResponseType Softening; # Hardening or Softening

set dataDir CantileverResults;
file mkdir $dataDir;
set m 1;
set mm [expr $m./1000];

# GEOMETRY
set LCol [expr 3*$m];

foreach nIntegPoints {3 4 5 6 7 8} {
wipe;
model BasicBuilder -ndm 2 -ndf 3;

# NODES
node 1 0 0;
node 2 0 $LCol;

# BOUNDARY CONDITIONS
fix 1 1 1 1;

# SECTIONS
set SectionType InelasticFiber; # Either Elastic or InelasticFiber
set ColSecTag 1;
set HCol [expr 500*$mm];
set BCol $HCol

if {$SectionType == "Elastic"} {
set Ec 30e9;
set Acol [expr $HCol*$BCol];
set Icol [expr $BCol*pow($HCol,3)/12];
section Elastic $ColSecTag $Ec $Acol $Icol;

} elseif {$SectionType == "InelasticFiber"} {
source ConcreteSI.tcl
source BuildRCrectSection.tcl

set cover [expr 50*$mm];
set numBarsTopCol 6;
set numBarsBotCol 6;
set numBarsIntCol 8;
set barAreaTopCol [expr 491*$mm*$mm];
set barAreaBotCol [expr 491*$mm*$mm];
set barAreaIntCol [expr 491*$mm*$mm];

set nfCoreY 20;
set nfCoreZ 20;
set nfCoverY 20;
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set nfCoverZ 20;
BuildRCrectSection $ColSecTag $HCol $BCol $cover $cover $IDconc $IDconc

$IDSteel $numBarsTopCol $barAreaTopCol $numBarsBotCol $barAreaBotCol
$numBarsIntCol $barAreaIntCol $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ

} else {
puts "No section has been defined"
return -1

}

# MASS
set concWeight [expr 25e3*$m*$m];
set g 9.81;
set distMassCol [expr $concWeight*$HCol*$BCol/$g];

# ELEMENT
set IDColTransf 1;
geomTransf Linear $IDColTransf; # Linear or PDelta
element forceBeamColumn 1 1 2 $nIntegPoints $ColSecTag $IDColTransf
-mass $distMassCol

# EIGENPERIOD
set pi 3.1416;
set lambda [eigen 1];
set omega [expr pow($lambda,0.5)];
set T [expr 2*$pi/$omega];

# RECORDERS
recorder Node -file $dataDir/DispFree$nIntegPoints.out -time -node 2
-dof 1 2 3 disp;
recorder Node -file $dataDir/DisplacementBase.out -time -node 1
-dof 1 2 3 disp;
recorder Node -file $dataDir/ReactionBase$nIntegPoints.out -time -node 1
-dof 1 2 3 reaction;

for {set i 1} {$i <= [expr $nIntegPoints]} {incr i} {
recorder Element -file $dataDir/ForceColumnSec$i.nP$nIntegPoints.out

-time -ele 1 section $i force;
recorder Element -file $dataDir/DeformationColumnSec$i.nP$nIntegPoints.out

-time -ele 1 section $i deformation;
}

# GRAVITY
set ColWeight [expr $distMassCol*$g];

pattern Plain 1 Linear {
eleLoad -ele 1 -type -beamUniform 0 -$ColWeight;

if {$ResponseType == "Softening"} {
load 2 0 -6057.7e3 0; # 50% of axial yield limit

} else {
}
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}

set Tol 1.0e-8;
constraints Transformation;
numberer Plain;
system BandGeneral;
test NormDispIncr $Tol 6 ;
algorithm Newton;
set NstepGravity 10;
set DGravity [expr 1./$NstepGravity];
integrator LoadControl $DGravity;
analysis Static;
analyze $NstepGravity;

loadConst -time 0.0

puts "Model built"
puts "First period is $T sec"

# LATERAL LOAD
set Tolerance 1.0e-8;
set MaxIterations 10;
set MaxDisplacement [expr 0.03*$LCol];
set DisplacementIncrement [expr $MaxDisplacement/1000];
set ControlDOF 1;

constraints Plain;
numberer RCM;
system BandGeneral;
test NormDispIncr $Tolerance $MaxIterations;
algorithm Newton;
integrator DisplacementControl 2 $ControlDOF $DisplacementIncrement;
analysis Static;

set Load 1000;
pattern Plain 2 Linear {

load 2 $Load 0.0 0.0;
}

# ANALYSIS
analyze 1000; #Steps

}
puts "Analysis performed"
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A.3 Plastic hinge cantilever column

## Force-based plastic hinge cantilever column ##

set InteriorResponse Inelastic; # Elastic or Inelastic
set IntegrationMethod HingeRadau; # HingeMidpoint, HingeEndpoint,
HingeRadau, or HingeRadauTwo
set ResponseType Softening; # Hardening or Softening

set dataDir CantileverResults;
file mkdir $dataDir;
set m 1;
set mm [expr $m./1000];

# GEOMETRY
set LCol [expr 3*$m];

wipe;
model BasicBuilder -ndm 2 -ndf 3;

# NODES
node 1 0 0;
node 2 0 $LCol;

# BOUNDARY CONDITIONS
fix 1 1 1 1;

# SECTIONS
set ColSecTag 1;
set HCol [expr 500*$mm];
set BCol $HCol

source ConcreteSI.tcl
source BuildRCrectSection.tcl

set cover [expr 50*$mm];
set numBarsTopCol 6;
set numBarsBotCol 6;
set numBarsIntCol 8;
set barAreaTopCol [expr 491*$mm*$mm];
set barAreaBotCol [expr 491*$mm*$mm];
set barAreaIntCol [expr 491*$mm*$mm];

set nfCoreY 20;
set nfCoreZ 20;
set nfCoverY 20;
set nfCoverZ 20;
BuildRCrectSection $ColSecTag $HCol $BCol $cover $cover $IDconc
$IDconc $IDSteel $numBarsTopCol $barAreaTopCol $numBarsBotCol $barAreaBotCol
$numBarsIntCol $barAreaIntCol $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ

# MASS
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set concWeight [expr 25e3*$m*$m];
set g 9.81;
set distMassCol [expr $concWeight*$HCol*$BCol/$g];

# ELEMENT
set IDColTransf 1;
geomTransf Linear $IDColTransf; # Linear or PDelta

set fys 500;
set db [expr 25*$mm];
set Lp [expr 0.08*$LCol + 0.022*$fys*$db];

if {$InteriorResponse == "Elastic"} {
set Ecol 36.68e9;
set Acol [expr $HCol*$BCol];
set Icol [expr $BCol*pow($HCol,3)/12];
element beamWithHinges 1 1 2 $ColSecTag $Lp $ColSecTag 0 $Ecol $Acol
$Icol $IDColTransf -mass $distMassCol

} elseif {$InteriorResponse == "Inelastic"} {
element forceBeamColumn 1 1 2 $IDColTransf $IntegrationMethod $ColSecTag
$Lp $ColSecTag 0 $ColSecTag -mass $distMassCol

}

# EIGENPERIOD
set pi 3.1416;
set lambda [eigen 1];
set omega [expr pow($lambda,0.5)];
set T [expr 2*$pi/$omega];

# RECORDERS
if {$InteriorResponse == "Elastic"} {

recorder Node -file $dataDir/DispFreeElasticInterior.out -time -node 2
-dof 1 2 3 disp;
recorder Node -file $dataDir/ReactionBaseElasticInterior.out -time
-node 1 -dof 1 2 3 reaction;
recorder Element -file $dataDir/ForceColumnBaseElasticInterior.out
-time -ele 1 section 1 force;
recorder Element -file $dataDir/DeformationColumnBaseElasticInterior.out
-time -ele 1 section 1 deformation;

} elseif {$InteriorResponse == "Inelastic"} {
recorder Node -file $dataDir/DispFree$IntegrationMethod.out -time -node 2
-dof 1 2 3 disp;
recorder Node -file $dataDir/ReactionBase$IntegrationMethod.out -time
-node 1 -dof 1 2 3 reaction;
recorder Element -file $dataDir/ForceColumnBase$IntegrationMethod.out
-time -ele 1 section 1 force;
recorder Element -file $dataDir/DeformationColumnBase$IntegrationMethod.out
-time -ele 1 section 1 deformation;

}
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# GRAVITY
set ColWeight [expr $distMassCol*$g];

pattern Plain 1 Linear {
eleLoad -ele 1 -type -beamUniform 0 -$ColWeight;

if {$ResponseType == "Softening"} {
load 2 0 -6057.7e3 0; # 50% of axial yield limit

} else {
}

}

set Tol 1.0e-8;
constraints Transformation;
numberer Plain;
system BandGeneral;
test NormDispIncr $Tol 6 ;
algorithm Newton;
set NstepGravity 10;
set DGravity [expr 1./$NstepGravity];
integrator LoadControl $DGravity;
analysis Static;
analyze $NstepGravity;

loadConst -time 0.0

puts "Model built"
puts "First period is $T sec"

# LATERAL LOAD
set Tolerance 1.0e-8;
set MaxIterations 10;
set MaxDisplacement [expr 0.033*$LCol];
set DisplacementIncrement [expr $MaxDisplacement/1000];
set ControlDOF 1;

constraints Plain;
numberer RCM;
system BandGeneral;
test NormDispIncr $Tolerance $MaxIterations;
algorithm Newton;
integrator DisplacementControl 2 $ControlDOF $DisplacementIncrement;
analysis Static;

set Load 1000;
pattern Plain 2 Linear {

load 2 $Load 0.0 0.0;
}

# ANALYSIS
analyze 1000; # Steps

puts "Analysis performed"
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A.4 Material data

## Material data ##

# Units: kg, m, sec

#CONCRETE

# nominal concrete compressive strength
set fc -30e6; # Concrete Compressive Strength, Pa
set Ec 30e9; # Concrete Elastic Modulus
set Gc 180; # Fracture energy, N/mm

# Unconfined concrete
set fc1U $fc; # UNCONFINED concrete , maximum stress
set eps1U -0.002; # strain at maximum strength of unconfined concrete
set Kres 0.2; # ratio of residual/ultimate to maximum stress
set fc2U [expr $Kres*$fc1U]; # ultimate stress
set eps2U [expr 20*$eps1U]; # strain at ultimate stress

uniaxialMaterial Concrete01 $IDconc $fc1U $eps1U $fc2U $eps2U;

## REINFORCING STEEL

set Fy 500e6; # Steel yield stress (Pa)
set Es 200e9; # modulus of steel
set Bs 0.010; # strain-hardening ratio
set R0 18; # control the transition from elastic to plastic branches
set cR1 0.925; # control the transition from elastic to plastic branches
set cR2 0.15; # control the transition from elastic to plastic branches

set IDSteel 3
uniaxialMaterial Steel02 $IDSteel $Fy $Es $Bs $R0 $cR1 $cR2
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A.5 Fiber section builder

proc BuildRCrectSection {id HSec BSec coverH coverB coreID coverID steelID
numBarsTop barAreaTop numBarsBot barAreaBot numBarsIntTot barAreaInt
nfCoreY nfCoreZ nfCoverY nfCoverZ} {

# Fiber rectangular RC section, 1 steel layer top, 1 bot, 1 skin, confined core

# by: Silvia Mazzoni, 2006
# adapted from Michael H. Scott, 2003

set coverY [expr $HSec/2.0];
set coverZ [expr $BSec/2.0];
set coreY [expr $coverY-$coverH];
set coreZ [expr $coverZ-$coverB];
set numBarsInt [expr $numBarsIntTot/2];

# Define the fiber section

section fiberSec $id {

# Define the core patch

patch quadr $coreID $nfCoreZ $nfCoreY -$coreY $coreZ -$coreY -$coreZ $coreY
-$coreZ $coreY $coreZ

# Define the four cover patches

patch quadr $coverID 2 $nfCoverY -$coverY $coverZ -$coreY $coreZ $coreY $coreZ
$coverY $coverZ
patch quadr $coverID 2 $nfCoverY -$coreY -$coreZ -$coverY -$coverZ $coverY
-$coverZ $coreY -$coreZ
patch quadr $coverID $nfCoverZ 2 -$coverY $coverZ -$coverY -$coverZ -$coreY
-$coreZ -$coreY $coreZ
patch quadr $coverID $nfCoverZ 2 $coreY $coreZ $coreY -$coreZ $coverY -$coverZ
$coverY $coverZ

# define reinforcing layers

layer straight $steelID $numBarsInt $barAreaInt -$coreY $coreZ $coreY $coreZ;
layer straight $steelID $numBarsInt $barAreaInt -$coreY -$coreZ $coreY -$coreZ;
layer straight $steelID $numBarsTop $barAreaTop $coreY $coreZ $coreY -$coreZ;
layer straight $steelID $numBarsBot $barAreaBot -$coreY $coreZ -$coreY -$coreZ;

}; # end of fibersection definition
}; # end of procedure



B. Matlab scripts

B.1 Regularization of local FB response

%% Regularization of local FB response %%

clear all; close all; clc;

L = 3;
fy = 500;
db = 0.025;
wip = 0.5*[1/3 1/6 1/10 0.066667];
Lip = L*wip;
Lp = 0.08*L + 0.022*fy*db;

curvt = load (’DeformationColumnSec1.nP3.out’);
momentt = load (’ForceColumnSec1.nP3.out’);
curv3 = -curvt(11:end,3);
moment3 = -momentt(11:end,3)/1000;
curvt = load (’DeformationColumnSec1.nP4.out’);
momentt = load (’ForceColumnSec1.nP4.out’);
curv4 = -curvt(11:end,3);
moment4 = -momentt(11:end,3)/1000;
curvt = load (’DeformationColumnSec1.nP5.out’);
momentt = load (’ForceColumnSec1.nP5.out’);
curv5 = -curvt(11:end,3);
moment5 = -momentt(11:end,3)/1000;
curvt = load (’DeformationColumnSec1.nP6.out’);
momentt = load (’ForceColumnSec1.nP6.out’);
curv6 = -curvt(11:end,3);
moment6 = -momentt(11:end,3)/1000;

Myi = 752.62;
Phiy = 0.00455; %From reading of results

for i = 1:length(wip)
scale(i) = (wip(i)*L^2*(2-wip(i)))/(Lp*(2*L-Lp));

end

for i = 1:length(curv3)
if curv3(i) > Phiy

Phii = curv3(i) - Phiy;
deltai = Phii*Lip(1)*L;
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Phimodel = deltai/(Lip(1)*(0.5*L-0.5*Lip(1)));
curvreg3(i) = Phiy + scale(1)*Phimodel;

else
curvreg3(i) = curv3(i);

end
end

for i = 1:length(curv4)
if curv4(i) > Phiy

Phii = curv4(i) - Phiy;
deltai = Phii*Lip(2)*L;
Phimodel = deltai/(Lip(2)*(0.5*L-0.5*Lip(2)));
curvreg4(i) = Phiy + scale(2)*Phimodel;

else
curvreg4(i) = curv4(i);

end
end
for i = 1:length(curv5)

if curv5(i) > Phiy
Phii = curv5(i) - Phiy;
deltai = Phii*Lip(3)*L;
Phimodel = deltai/(Lip(3)*(0.5*L-0.5*Lip(3)));
curvreg5(i) = Phiy + scale(3)*Phimodel;

else
curvreg5(i) = curv5(i);

end
end
for i = 1:length(curv6)

if curv6(i) > Phiy
Phii = curv6(i) - Phiy;
deltai = Phii*Lip(4)*L;
Phimodel = deltai/(Lip(4)*(0.5*L-0.5*Lip(4)));
curvreg6(i) = Phiy + scale(4)*Phimodel;

else
curvreg6(i) = curv6(i);

end
end


