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Abstract: 

 

The objective of this thesis is to propose and evaluate a simplified dynamic model of a wind turbine. This is done by 

assuming that the structure behaves linearly, and that a load model based of the mean and variance of simulated rotor 

thrust, depending linearly on turbulence, is sufficient to estimate the response. 

 

The realistic response of the wind turbine is calculated in time domain using the NREL FAST finite element code, 

whereas the simplified model response are calculated analytically because of the Gaussian behavior of the load 

model.  

It is suspected that more sophisticated simplified load models in the future might not be linear, and the response of 

the simplified system is therefore also calculated using the relatively new probability density evolution method. This 

is done to assess the general feasibility of using this method to estimate responses of such models. Probability 

density evolution is performed numerically using the cell-mapping method, and evaluation of the accuracy and 

performance of these calculations is also a primary object of the thesis. It is also shown how autoregression could be 

used to incorporate correlated forcing in the cell-mapping method. 

 

The wind turbine considered is the NREL 5-MW Baseline turbine, supported by its reference tower. 

 

Results show that the response of the proposed simplified dynamic system is too coarse compared to the simulated 

response distributions. The model seems to overestimate both the mean value and the variance of the true 

displacements. Possible improvements of the dynamic system, especially of the simplified load model, is evaluated 

and discussed. 

 

The results also show that first order autoregression successfully implements correlated force realizations into the 

cell-mapping method, and that both Kaimal simulated turbulence and the proposed simplified thrust are processes 

that could be estimated to a satisfactory degree using first order autoregression.  

With correlated forcing incorporated through autoregression, probability density evolution is shown to provide 

accurate estimates of the model response. The method also shows great promise to be useful when considering future 

simplified models, provided that one could find ways to keep the number of state-space dimensions to a minimum. 
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Sammendrag

På grunn av kompleksiteten til den ikke-lineære strukturelle oppførselen og dynamiske
belastningen av en o�shore vindturbin vil den beste beskrivelsen av responsen gis av
stokastiske elementmetodesimuleringer i tidsplanet.
Slike simuleringer er imidlertid beregningsmessig kostbare, spesielt hvis man må utføre
mange nok til å estimere utmattingsskader. Det er derfor av interesse å studere hvor
nøyaktig en forenklet dynamisk modell kan tilnærme denne responsen.

Denne masteroppgaven tar sikte på å foreslå og evaluere en forenklet dynamisk modell
av en vindturbin. I denne grunnleggende studien er det interessant å avdekke hvor godt
responsen tilnærmes hvis denne modellen gjøres så enkel å utlede og bruke som mulig.
De realistiske responsfordelingene av tårnet i hovedvindretningen er estimert for 15 ulike
lasttilfeller ved bruk av elementmetodesimulering i tidsplanet. Koden som er benyttet til
dette heter FAST og er utviklet av the U.S. Department of Energy's National Renewable
Energy Laboratory (NREL). Responsfordelingene til den forenklede dynamiske modellen
er funnet ved hjelp av den relativt nyutviklede sannsynlighets-evolusjonsmetoden og,
siden den forenklede lastmodellen som vurderes er lineær og Gaussisk, også analytisk
ved hjelp av stokastisk dynamikkteori.
Sannsynlighets-evolusjon har �ere attraktive egenskaper forbundet med å estimere re-
sponsfordelingen til slike forenklede dynamiske modeller med få frihetsgrader, spesielt
for potensielle framtidige systemer med ikke-lineære lastmodeller. Den største fordelen
med denne metoden er at alle regioner av fordelingen estimeres med samme e�ektivitet.
Dette er nyttig når sannsynlighetsfordelingenes haler er viktige, noe de er ved beregning
av utmattingsskader.
På grunn av styrkene forbundet med sannsynlighets-evolusjon er det også en vesentlig
del av målsettingen til denne avhandlingen å evaluere nøyaktigheten og e�ektiviteten til
denne metoden for de aktuelle dynamiske systemene. Sannsynlighets-evolusjon er utført
numerisk ved bruk av cell-mapping metoden, framsatt av Hsu i [1].
For å forbedre denne metoden for problemer som involverer korrelert eksitasjon er det
også vist hvordan autoregresjon kan brukes til å innlemme betingede sannsynligheter av
lastrealiseringene i cell-mapping metoden.

Vindturbinen som studeres i denne avhandlingen er NRELs 5-MW referanseturbin, med
tilhørende referansetårn. [2] Den forenklede lastmodellen, som er modellert med lineær
turbulensavhengighet, er tilpasset til simuleringsresultater av skyvekraften fra rotoren
for de 15 lasttilfellene slik at den gir tilnærmet samme gjennomsnittsverdi og varians.

Ved å sammenlikne elementmetoderesultater og estimerte responsfordelinger ved bruk
av den forenklede modellen er det klart at denne modellen bør forbedres for å gi mer
nøyaktige estimat av responsen.
Den største forenklingen i den foreslåtte lastmodellen er at belastningens variansspekter
antas å være tilnærmet proposjonalt til turbulensens variansspekter. Resultatene viser
at dette medfører at periodiske skyvekraftbidrag fra rotoren neglisjeres i lastmodellen,
samtidig som lastvariansen fra disse bidragene ivaretas over alle frekvenser siden modellen
er tilpasset den totale realistiske lastvariansen. Dette mistenkes å ligge bak størsteparten
av avviket mellom de simulerte og estimerte responsfordelingene, siden det utvilsomt vil
påvirke responsvariansen. Variansen av den modellerte responsen kan generelt sies å være
for høy.
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Det påvises også at de estimerte gjennomsnittsverdiene av forskyvningene generelt virker
å være høye sammenliknet med de reelle gjennomsnittsverdiene, noe som kan tilsi at den
virkelige ikke-lineære strukturen oppfører seg stivere enn den lineariserte strukturen brukt
i den forenklede modellen.

Resultatene viser også at både turbulens simulert ved bruk av Kaimalspekteret, og den
forenklede lastprosessen, kan estimeres tilfredsstillende ved bruk av førsteordens autore-
gresjon. Korrelasjon av de modellerte lastrealiseringene er derfor vellykket inkludert
i cell-mapping metoden for dynamiske modeller av denne typen, og sannsynlighets-
evolusjonsmetoden er da godt egnet til å nøyaktig estimere responsen.

Dette er den første avhandlingen som er skrevet om dette emnet ved NTNUs O�shore
Vindteknologi-gruppe, og selv om en tilfredsstillende forenklet dynamisk modell ikke er
fullt utviklet enda har vi lært mye om hvordan man kan fortsette arbeidet mot å etablere
en slik modell. Vi har også fått verdifull innsikt i sannsynlighets-evolusjonsmetoden, og
hvordan denne kan brukes til å numerisk estimere en vindturbins globale responsfordeling.

xii



Summary

Given the complexity of both the structure and the dynamic loading situation, time
domain simulations using aero-hydro-servo-elastic �nite element codes provides the most
accurate way to determine the response of an o�shore wind turbine.
However, such calculations are computationally expensive, especially when one needs to
perform enough simulations to estimate fatigue damage. It is therefore of interest to
study how accurate a simpli�ed dynamic model could estimate this response.

The main objective of this thesis is to propose and evaluate a simpli�ed dynamic model
of a wind turbine. In this initial study it is interresting to see how well a model as simple
as possible would perform in estimating the structural response.
The realistic response distributions are estimated using the U.S. Department of Energy's
National Renewable Energy Laboratory (NREL) FAST code to perform Monte Carlo
simulations of the turbine in time domain. Response of the simpli�ed dynamic model is
estimated with the relatively new probability density evolution method and, because of
the Gaussian linearity of the proposed load model, also using random vibrations theory
directly.
Probability density evolution possess several strengths associated with estimating the
response distributions for such problems, especially when a nonlinear load model might be
considered in the future. The main advantage is that all areas of the distribution is treated
equally, enabling an e�cient estimation of the distribution tails as well. Evaluating the
performance and accuracy of this method is therefore also a key objective of the thesis.
Probability evolution is performed numerically using the cell-mapping method derived by
Hsu in [1]. In order to make this method more accurate for problems involving correlated
forcing it is also shown how autoregression could be used to incorporate conditional
probabilities of force realizations into the cell-mapping method.

The wind turbine being considered in this thesis is the NREL 5-MW Baseline turbine,
supported by an onshore reference tower. [2] The simpli�ed load model in this study,
which has a linear dependence on wind turbulence, is �tted to simulated thrust values
for 15 load cases in order to obtain a similar mean and variance.

By comparing �nite element simulations and estimated response distributions using the
simpli�ed model, it is clear that the dynamic model would have to be improved in order
to provide more accurate estimates of the response. The largest simpli�cation in the
proposed load model is that it does not account for cyclic thrust contributions from
the rotor, while the variance contained in spectral peaks at these frequencies are still
included in the model. This is suspected to be the main reason for discrepancies between
the simulated and estimated response distributions, as it certainly a�ects the calculated
response variance. This variance is in general observed to be too high.
It is also seen that the estimated mean value of the displacement response seems high
compared to simulation results, which could imply that the realistic nonlinear structure
acts sti�er than the linearized model structure used in this thesis.

The results also show that both Kaimal simulated wind turbulence and the proposed
simpli�ed thrust are accurately estimated using �rst order autoregression.
Correlation of the modeled force realizations are therefore successfully implemented in
the cell-mapping method, and probability density evolution is now well suited to provide
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good estimates of the model response.

This is the �rst thesis written on this subject at the NTNU O�shore Wind Turbine
Technology group, and even though a satisfactory simpli�ed dynamic model is not fully
developed yet, we have indeed learned a great deal on how one could proceed the work
towards establishing such a model. We have also gained valuable insight into the prob-
ability density evolution method, and how it could be used to numerically estimate the
global probability distribution of the structural response.
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1 Introduction

International focus on renewable energy has increased over the recent decades, partly
motivated by a will to reduce emissions of greenhouse gasses and to shift the total energy
production towards a situation more sustainable than the present. In Europe, some
nations are also politically motivated to become independent of foreign energy. Higher
environmental consciousness among consumers is also a factor that could make renewable
energy more economically viable through the use of "Green Certi�cates".
O�shore wind energy could contribute substantially to the percentage of total renewable
energy generated, and it is therefore a market with potential for considerable growth in
the years to come.

This focus has naturally also resulted in an increased research activity on o�shore wind
turbines, like the O�shore Code Comparison Collaboration Continuation (OC4) Project.
OC4 is a multinational research project that aims to compare dynamic computer codes
used to design o�shore turbines and their support structures, with the ultimate goal of
making structure designs, and o�shore wind energy in general, more cost e�cient.
These are capable of nonlinear �nite element simulations in time domain considering
aerodynamics, hydrodynamics and turbine control system. Because of this, they are in
general named aero-hydro-servo-elastic codes.

O�shore wind turbines is subjected to complex dynamic loads that are high compared
to the self-weight of the structure. Nonlinearities and coupling e�ects would a�ect the
response of the structure, and such time domain simulations would undoubtedly provide
the most accurate assessment of this response. However, such simulations are computa-
tionally expensive, in particular when fatigue loads needs to be obtained. It is therefore
of interest to study how good a simpli�ed dynamic model could estimate the structural
response.
Such a simpli�ed dynamic model could for example be used in an early design phase
to compare di�erent support structures. A more ambitious goal is that a model like
this over time should become accurate enough to replace, at least some, time domain
simulations entirely. This could for example be accomplished by having a model with
parameters that could be calibrated using time domain simulations.

One of the main objectives in this thesis is to establish a simpli�ed dynamic model of a
wind turbine and its load situation, and evaluate the calculated response compared to
results obtained by time domain simulations using a certi�ed �nite element code. The
response distribution could for some simple dynamic models be calculated analytically,
but in general one would have to compute this distribution by numerical means if the
structure model or load model should be described nonlinearly.
Monte Carlo simulation provides a straightforward method of obtaining an estimate of
the response distribution. This method is however computationally expensive, especially
when fatigue is important and an accurate estimate of the probability content of the tails
need to be obtained.
An alternative method, which is subjected to ongoing research, is the probability density
evolution method. This is a method that is capable of evolving the entire distribution
using instantaneous probabilities. This makes it just as e�cient when estimating low
probability areas of the distribution. The Monte Carlo Method on the other hand, would
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need many sample points to capture low probability response. Probability evolution
has therefore proven to be e�ective compared to Monte Carlo simulation when a global
distribution estimated is important. [3] This is also true when comparing probability
evolution to improved Monte Carlo methods, such as those described by Robert and
Casella in [4].
Like for Monte Carlo simulation, the e�ciency of probability evolution could also be
dramatically increased by parallel computing using a graphics processing unit.

Because of the advantages associated with this relatively new method, a signi�cant part of
the thesis is also dedicated to probability density evolution. This is the �rst thesis written
on this subject at the NTNU O�shore Wind Turbine Technology group, and emphasis
have been laid on gaining knowledge about the method and how it behaves for problems
relevant to the group. Results obtained using the probability density evolution method
is therefore evaluated and compared to those obtained by Monte Carlo simulations or
analytical stochastic dynamics theory.
It is also shown how autoregressive modeling could be used to incorporate correlated
excitation into probability evolution of the structural response, a subject on which there
is no earlier publications as far as the author knows.

The thesis is divided into �ve main sections. Section 2 cover some of the basic background
theory regarding stochastic structural dynamics, stochastic loads, probability density
evolution and autoregression. Section 3 presents the methods used and section 4 presents
the results obtained. The results are discussed in section 5, and �nally conclusions and
recommendations for further research are given in section 6. Essential Matlab scripts
and other attachments could be found in section 7.
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2 Theory

The following theory sections will introduce some of the main principles used in the
subsequent stochastic analysis of this thesis. This is done rather to give an overview of
the background theory than to provide a complete, in-depth, review of each subject. The
reference literature would in many cases be a good source of detailed information for the
interested reader.

2.1 Stochastic Dynamics of a Linear Single-Degree-of-Freedom System

The physics behind the response of a single-degree-of-freedom (SDOF) system as illus-
trated in �gure 1 is important. This is because it is the most basic conceivable dynamic
system including damping and inertia, and because relatively complex structures could
be simpli�ed and represented through generalized coordinates that behave like SDOF
systems. The following theory of stochastic dynamics is largely based on literature by
Lutes and Sarkani [5], Næss and Moan [6], and Newland. [7]

2.1.1 System Properties

Figure 1: Illustration of a dynamic single-degree-of-freedom system.

The equation of motion for a SDOF system with spring sti�ness k, mass m and viscous
damping coe�cient c, excited by some force f(t), is given as an equilibrium between the
internal inertia, damping and elastic force of the system, and the external force applied:

mü(t) + c u̇(t) + k u(t) = f(t). (1)

In equation (1), u(t) is the time dependent displacement of the mass from the unloaded
equilibrium position of the system. The dots denotes the time derivatives of this displace-
ment. The mass velocity and acceleration is then given as du

dt = u̇(t) and d2u
dt2

= ü(t),
respectively.
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Introducing the damping ratio, ζ = c/(2
√
km), and the natural angular frequency of the

structure, ω0 =
√
k/m, equation (1) could be written as:

ü(t) + 2ζω0 u̇(t) + ω2
0 u(t) =

f(t)

m
. (2)

The solution of the di�erential equation above naturally depends on the excitation of
the system, and analytical solutions for the special cases where f(t) = 0, or where
f(t) is some harmonic function, is for example given by Erwin Kreyzig. [8] This thesis
deals with arbitrary non-periodic excitation functions. In such cases, the response of
the system could be calculated in the frequency domain using the frequency response
function, H(ω), or in the time domain using the impulse response function, h(t).
The frequency response function of the system due to the external force is found by
demanding the harmonic displacement u(t) = ηeiωt in the equation of motion, where η
is an amplitude. This yields:

d2

dt2
(
ηeiωt

)
+ 2ζω0

d

dt

(
ηeiωt

)
+ ω2

0ηe
iωt =

f(t)

m

⇒ ((iω)2 + 2iζω0ω + ω2
0) ηeiωt =

f(t)

m

⇒ ηeiωt = H(ω) f(t) =
1

m(ω2
0 + 2iζω0ω − ω2)

f(t)

and therefore:

H(ω) =
1

m(ω2
0 + 2iζω0ω − ω2)

. (3)

The system response could now be found in the frequency domain by using the Fourier
transformation of the force, F (ω), as shown in equation (4).

u(t) =

∫ ∞
−∞

H(ω)F (ω) eiωt dω

=

∫ ∞
−∞

H(ω)

(
1

2π

∫ ∞
−∞

f(t) e−iωt dt

)
eiωt dω

(4)

As mentioned, the system response could also be calculated in the time domain. This is
done by using the Duhamel convolution integral shown below.

u(t) =

∫ ∞
−∞

f(s)h(t− s) ds (5)

Here, h(t) is the response of the system due to a unit impulse load at t = 0. The integral
in equation (5) could be thought of as a superposition at time t of all impulse responses
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up to t, and the impulse response at t. Introducing the substitution r = t− s results in
equation (6).

u(t) =

∫ ∞
−∞

f(t− r)h(r) dr. (6)

For causal systems there is no response prior to the load, and h(r) = 0 for r < 0 (or
t < s). The impulse response function h(t) could be found as the Fourier transform of the
frequency response function H(ω), since it is shown, e.g. in [6], that these two functions
form a Fourier transform pair.

h(t) =
1

2π

∫ ∞
−∞

H(ω) eiωt dω (7)

Another, perhaps more intuitive, method to determine h(t) is by exciting the system with
a unit impulse load and solve the resulting equation of motion. This is done through the
Dirac delta function, given as:

δ(t) =

{
∞ for t = 0

0 for t 6= 0.
(8)

Combined with equation (1), this results in equation (9).

m
d2

dt2
h(t) + c

d

dt
h(t) + k h(t) = δ(t) (9)

This is a second order homogeneous ordinary di�erential equation for t > 0 as
δ(t 6= 0) = 0. For lightly damped structures where |ζ| < 1 it has the general solution:

h(t) = e−ζω0t (Acos(ωdt) +B sin(ωdt)) (10)

Where ωd = ω0

√
1− ζ2 is the damped natural frequency of the system. A and B

are constants that need to be determined from the initial conditions at t = 0. From
equations (8) and (9) it is clear that one of the h(t) time derivatives has to be in�nite
at t = 0. This is problematic unless it is the double derivative that is in�nite. In this
case however, if d2/dt2(h(t)) = bδ(t) for small |t|, then the two other terms on the right
side of equation (9) is �nite, mbδ(t) = δ(t) and therefore b = m−1. By integration, it is
found that

(
d

dt
h(t)

)
0+

= m−1 (11)

and

h(t) 0+ = 0. (12)
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The initial conditions from equation (11) and (12) put into the solution for h(t) from (10)
yields that A = 0 and B = 1/(ωdm). The resulting impulse response function is shown
in equation (13).

h(t) =
e−ζω0t

ωdm
sin(ωdt) for t ≥ 0 (13)

The same result could naturally be obtained by using equation (7). According to equa-
tion (5), the velocity response at time t could also be found by time di�erentiation as

u̇(t) =

∫ ∞
−∞

f(s) ḣ(t− s) ds (14)

where ḣ(t− s) is found for t− s ≥ 0 from equation (13).

ḣ(t− s) =
e−ζω0(t−s)

ωdm
[ωd cos(ωd (t− s))− ζω0 sin(ωd (t− s))] (15)

2.1.2 Stochastic Properties of the Response

f(t) could be described as a realization of a stochastic load process F (t). This forcing
causes a displacement response u(t), which could be described as a realization of the
stochastic process U(t). It could be shown that for a linear, time invariant structure
as the SDOF system described in 2.1.1, the response would be a stationary stochastic
process provided that F (t) is stationary. Equation (6) gives the connection between the
two processes shown below.

U(t) =

∫ ∞
−∞

F (t− s)h(s) ds (16)

The mean value of the response process is now given as shown in equation (17).

E [U(t)] = lim
N→∞

1

N

N∑
j=1

uj(t)

=

∫ ∞
0
h(s)

 lim
N→∞

1

N

N∑
j=1

fj(t− s)

 ds

=

∫ ∞
0
h(s)E [F (t− s)] ds

(17)
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F (t) could often be modeled as a stationary process for short timespans relevant for
simulations. In this case the mean of the forcing will be constant in time, E [F (t− s)] =
µF , and therefore

E [U(t)] = µF

∫ ∞
0
h(s) ds. (18)

The velocity response of the structure could also be described as a stochastic process
denoted U̇(t). This process would have a mean value of

E [U̇(t)] = lim
N→∞

1

N

N∑
j=1

d

dt
uj(t)

=

∫ ∞
0
ḣ(s)E [F (t− s)] ds.

=
d

dt
E [U(t)].

(19)

From the equation above one could easily see that the mean value of U̇(t) would be zero
for a stationary and time di�erentiable process.
A useful quantity in stochastic dynamics is the autocorrelation function, RU (τ), which
is the correlation a stochastic process have with itself at another time.

RU (τ) = E [U(t)U(t+ τ)] (20)

The autocorrelation function is closely related to the autocovariance function CU (τ),
shown in equation (21).

CU (τ) = E [(U(t)− µU ) (U(t+ τ)− µU )]

= RU (τ)− µU
(21)

A stochastic process is called weakly stationary if the mean is constant in time, and if the
two functions in (20) and (21) depend on τ alone. The Wiener-Khintchine relations now
states that the autocovariance function forms a Fourier transform pair with the power
spectral density (PSD) function, or simply the variance spectrum, of the process. The
variance spectrum of a stochastic process U is denoted by SU (ω) and is given as:

SU (ω) =
1

2π

∫ ∞
−∞

CU (τ) e−iωτ dτ (22)

while CU (τ) could be obtained as the inverse transform:

CU (τ) =

∫ ∞
−∞

SU (ω) eiωτ dω. (23)
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Equation (23) evaluated at τ = 0 illustrates that the variance spectrum could be thought
of as a variance density distribution along frequencies:

CU (0) = E [(U(t)− µU )2] = σ2
U =

∫ ∞
−∞

SU (ω) dω. (24)

It could be shown that SU (ω) is symmetric about ω = 0. This information could be
used to avoid integrating over negative frequencies by de�ning the one-sided variance
spectrum as

S+
U (ω) =

{
2SU (ω) for ω ≥ 0

0 for ω < 0.
(25)

As derived by Næss and Moan [6], the variance spectrum of the load process and the
response process are connected as shown in equation (26).

SU (ω) = H(ω)∗H(ω)SF (ω)

= |H(ω)|2 SF (ω)
(26)

Combined with equation (24), this results in the following expression for the variance of
the stochastic process U(t):

σ2
U =

∫ ∞
0
|H(ω)|2 S+

F (ω) dω. (27)

Variances of time di�erentiated processes could simply be found by di�erentiating the
spectrum from equation (22), obtaining that SU̇ (ω) = |iω|2 SU (ω) = ω2 SU (ω), and
therefore

σ2
U̇

=

∫ ∞
0
ω2 |H(ω)|2 S+

F (ω) dω. (28)

Similarly, one would obtain that

σ2
Ü

=

∫ ∞
0
ω4 |H(ω)|2 S+

F (ω) dω. (29)
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For a SDOF system with the frequency response function derived in 2.1.1, |H(ω)|2 is
found to be:

|H(ω)|2 = H(ω)∗H(ω)

= Re[H(ω)]2 − i2 Im[H(ω)]2

= Re[H(ω)]2 + Im[H(ω)]2

=

(
mω2

0 −mω2

(mω2
0 −mω2)2 + (2mζω0ω)2

)2

+

(
−2mζω0ω

(mω2
0 −mω2)2 + (2mζω0ω)2

)2

=
1

m2 [(ω2
0 − ω2)2 + (2ζω0ω)2]

(30)

These principles are in the following section used to illustrate the response of a SDOF
system subjected to a Gaussian loading process.

2.1.3 Example of a SDOF System Response to Stationary White Noise

Gaussian Loading

A SDOF system like the one illustrated in �gure 1 could for example have values of
m = 1 kg, k = 10 N/m and ζ = 5 %. This would result in the impulse response function
and the squared frequency response functions plotted in �gure 2.

In �gure 2, one could easily identify the natural frequency of the system by the peak in
the plot for |H(ω)|2 at ω0 =

√
k/m ≈ 3.16 rad/s ≈ 0.5 Hz. This peak would be higher

and more narrow if the structure was less damped, increasing the resonance e�ect. Simi-
larly, if the stucture was more damped, the frequency response peak would be wider and
have a smaller amplitude.

Since this is a one degree of freedom system, there is only one natural frequency.
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Figure 2: Plots of h(t) and |H(ω)|2 for a SDOF system where m = 1 kg, k = 10 N/m and
ζ = 5 %.

Now we could assume that this system is excited by a load F that is Gaussian distributed
with a mean value of 30 N, and a standard deviation of 5 N, at each time step ∆t = 0.05 s.
The Gaussian distribution have the following probability density function for the random
variable X:

fX(x) = P [x < X ≤ x+ dx] =
1√

2πσX
exp

[
−1

2

(
x− µX
σX

)2
]
. (31)

By picking a force from the Gaussian distribution at each time step we e�ectively assign
the same energy content for all frequencies up to the Nyquist frequency, which is the
highest detectable frequency for the chosen sampling interval. The Nyquist frequency
fn, is given by the sampling frequency fs, as fn = fs/2 = 1/(0.05∗2)Hz = 10 Hz. In this
case the load variance spectrum would be a constant, S0. Such spectra is called white
noise spectra, since they contain the same amount of energy for all frequencies. There is
obviously no feasible way of obtaining all frequencies, so an ideal white noise spectrum,
which would have contained in�nite variance, cannot be simulated.
Even though white noise loading is used in this simple example, the energy content of
environmental loads is generally a function of frequency. This will become apparent in
later theory sections. The one-sided load variance spectrum and the resulting one-sided
response spectrum, calculated by equation (26), is shown in �gure 3. Since the area
below S0 up to the Nyquist frequency should equal the variance of the stochastic load
process, S0 is found as S0 = σ2

F /fn = 25N2/10Hz = 2.5N2/Hz.
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Figure 3: Plots of the example one-sided load spectrum and response variance spectrum.

Using the Duhamel integrals shown in equations (5) and (14), the response realizations
could be calculated in the time domain. u(t) and u̇(t), are shown for one such 220 second
long simulation in �gure 4. Since we are interested in the stationary long-term response
of the system, the initial 20 seconds of these time series are removed to exclude initial
transient e�ects.

Figure 4: Time series of the displacement and velocity response of the system.
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It is derived, e.g. by Lutes and Sarkani in [5], that any linear system excited by a Gaus-
sian load process F , will have a Gaussian response process U(t). The derivative of the
response, U̇(t), will also be Gaussian distributed since it is a limit of a linear combination
of the Gaussian processes U(t) and U(t + ∆t). The mean values and variances of the
two processes U(t) and U̇(t) are determined by the equations provided in section 2.1.2.
Using Matlab to calculate these values numerically, I found that:

µU = 3.000m

µU̇ = 0.7520
m

s

σ2
U = 0.1976m2

σ2
U̇

= 1.9701
m2

s2

The mean value of the response equals the static solution u = f/k = 3 m corresponding
to the mean load, as could be expected for this linear system. Normalized histograms
of the realizations f(t), u(t) and u̇(t) during a 1500 second long simulation are plotted
with the respective underlying Gaussian distributions for the stochastic processes F (t),
U(t) and U̇(t) in �gure 5.

Figure 5: Normalized histograms showing realizations of f(t), u(t) and u̇(t) during a 1500
second simulation. The red plots display the analytical Gaussian distributions for the

random variables F (t), U(t) and U̇(t), with their respective mean values.
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One should be aware that if F (t) is supposed to model a continuous force on the structure,
which is often the case, then the result µU̇ = 0.7520 m/s is somewhat erroneous. This
is an e�ect of the discrete nature of the force process. By equation (19) it is apparent
that µU̇ = 0 m/s for a stationary and time di�erentiable process. Using my script to
calculate µU̇ and run the simulation for smaller time steps it could indeed be found that
µU̇ → 0 m/s as ∆t→ 0 s.

If U(t) is a stationary and di�erentiable Gaussian process, then U̇(t) is jointly Gaussian
distributed with U(t) [6], that is: [9]

fUU̇ (u, u̇) = P [u < U ≤ u+ du ∩ u̇ < U̇ ≤ u̇+ du̇]

=
1

√
2πσUσU̇

√
1− ρ2

UU̇

eϑ
(32)

where

ϑ = − 1

2(1− ρ2
UU̇

)

[(
u− µU
σU

)2

− 2ρUU̇

(
u− µU
σU

)(
u̇− µU̇
σU̇

)
+

(
u̇− µU̇
σU̇

)2
]
.

In equation (32), ρUU̇ is the correlation coe�cient between U(t) and U̇(t), measuring
their linear dependence as a value between -1 and 1.

ρUU̇ =
Cov[U, U̇ ]√

V ar[U ] · V ar[U̇ ]
=
CUU̇ (τ = 0)

σU · σU̇
(33)

According to equation (23), CUU̇ (τ) could be found as:

CUU̇ (τ) =

∫ ∞
−∞

SUU̇ (ω) eiωτ dω

=

∫ ∞
−∞

iω SU (ω) eiωτ dω.

(34)

Evaluated at τ = 0, the integral above results in CUU̇ = 0 since ω SU (ω) is an odd

function of ω. Using the result that U and U̇ are uncorrelated processes, their joint
probability distribution function from equation (32) simpli�es to:

fUU̇ (u, u̇) = fU (u) · fU̇ (u̇) =
1√

2πσUσU̇
exp

[
−1

2

((
u− µU
σU

)2

+

(
u̇− µU̇
σU̇

)2
)]

. (35)

This joint probability density function of U(t) and U̇(t) is plotted in �gure 6 for the
previously calculated mean values and standard deviations. A normalized joint histogram
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over the realization pairs of u(t) and u̇(t) for the 1500 second long simulation is shown
in �gure 7 for comparison.
Because of the Gaussian loading process and the linear dynamic system, we are in this
neat case able to �nd the complete probability information of the response through
exclusive use of the �rst two moments of the response process, the expected value and the
variance. The methods used to determine these two moments of the response are however,
as shown in 2.1.2, not in any way limited to the description of Gaussian processes.
The Matlab script used to perform the calculations in this section could be found in
attachment 1.

Figure 6: The analytical joint probability density function of U(t) and U̇(t). The red
lines mark the mean values µU and µU̇ .
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Figure 7: Normalized joint histogram over the realization pairs of u(t) and u̇(t) for a 1500
second long Monte Carlo simulation with a time step of ∆t = 0.05 s, resulting in 30000

sample points. The red lines mark the mean values µU and µU̇ .

2.2 Probability Density Evolution

While Monte Carlo Simulation (MCS) of the system provides a straightforward method
of estimating the relevant probabilities of the response, this method is in general com-
putationally expensive. This is especially true if an accurate estimate of the probability
content in the distribution tails are important, which it often is for structures where
fatigue is thought to be a considerable design driver.
One alternative method of obtaining the probability density of the response is to evolve
the probability through the use of a partial di�erential equation describing the both the
drift of the system due to deterministic behavior, and the di�usion of the system due to
the randomness involved. This enables an instantaneous evolution estimation of every
probability in the state space, given a description of the initial state. The probability
content of the response could now be found accurately through an iteration process that
has proved to be e�ective compared to MCS of the same system. [3]
Probability evolution methods are subject to substantial ongoing research, especially re-
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garding their extension to non-linear multi degree of freedom systems, and to situations
with multiple sources of randomness. [10] The analyses in this thesis will solely focus
on randomness in the excitation of a system, while the structural system itself will be
modeled as deterministic and linear.

The following theory on probability density evolution is largely based on Hsu [1], Sun
and Luo [11], Li and Chen [10], and Wijker [12].

2.2.1 Markov Processes and the Fokker-Planck Equation

A Markov process could be described as a process where the next state exclusively de-
pends on the current state. This implies that one could predict the next state of the
process just as accurately knowing the current state as one could knowing the entire
history of the process. This property could be expressed mathematically in terms of the
conditional probability fc of a Markov process X:

fc(xn, tn|xn−1, tn−1)

= P [(xn < X ≤ xn+dx , tn) | (xn−1 < X ≤ xn−1 + dx , tn−1)]

= fc(xn,tn|x1, t1, x2, t2, ..., xn−1, tn−1).

(36)

Given such a N-dimensional process X, it is derived e.g. in [12], that the stochastic
di�erential equation governing the time evolution of the probability density in state
space is:

∂

∂t
fc(x, t|x0, t0) = −

N∑
i=1

∂

∂xi
[Ai(x)fc] +

1

2

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
[Bij(x)fc] (37)

when neglecting higher-order migration terms. In this equation, x0 contains the initial
state of the system at time t0, Ai(x) is the drift coe�cient and Bij(x) is the di�usion
coe�cient of the system. Equation (37) is known as the Fokker-Planck equation. It is in
general subjected to the initial condition shown in equation (38).

fc(x, t|x0, t0) = δ(x− x0) (38)

If the conditional probability density function in equation (37) is independent of time,
then fc(x, t|x0, t0) = f(x) and the Fokker-Planck equation simpli�es to its steady-state
form:

−
N∑
i=1

∂

∂xi
[Ai(x)f(x)] +

1

2

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
[Bij(x)f(x)] = 0. (39)
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2.2.2 Numerical Solution of the Fokker-Planck Equation using the

Cell-to-Cell Mapping Method

One way of solving the Fokker-Planck equation numerically is to evaluate its path integral,
which is given by: [11]

f(xi+1, ti+1) =

∫
Rn
f(xi+1, ti+1|xi, ti)f(xi, ti) dxi (40)

where Rn denotes the state space. Time could now be discretized setting ∆t = ti+1 − ti
for all i ≥ 0, and ti = i∆t. Equation (40) now becomes

f(xi+1, (i+ 1)∆t) =

∫
Rn
f(xi+1, (i+ 1)∆t|xi, i∆t)f(xi, i∆t) dxi. (41)

The state space Rn is also discretized into m cells, ∆c1,∆c2, ...,∆cm with center points
c1, c2, ..., cm, in order to numerically solve the integral. Equation (41) could now be
written as a discrete Markov chain:

p(k + 1) = P (k)p(k) (42)

where p(k) = [pi(k)] is the probability of �nding the system in cell i at time k∆t, and
P (k) = [Pij(k)] is the probability of �nding the system in cell i at time (k + 1)∆t when
the system is in cell j at time k∆t with a probability of one.

pi(k) =

∫
∆ci

f(x, k∆t)dx

≈ ∆ci f(ci, k∆t)

(43)

Pij(k) =

∫
∆ci

f(x, (k + 1)∆t | cj , k∆t)dx

≈ ∆ci f(∆ci, (k + 1)∆t | cj , k∆t)

(44)

In equation (43) and (44) the approximation of constant probability within cells requires
su�ciently small cell volumes, ∆c. The transition matrix P could now be estimated
using a transition time interval that is small enough. Iterations of the Markov chain
from equation (42) would now converge towards the joint probability density of x as
k →∞. This is in principle the cell-to-cell mapping method derived by Hsu. [1]
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Figure 8 shows the joint probability density of U(t) and U̇(t) from section 2.1.3, calculated
using the probability density evolution Matlab script in attachment 2. This script is
elaborated in section 3.6 along with a general discussion of the cell-mapping method.

Figure 8: Joint probability density of U(t) and U̇(t) from section 2.1.3, calculated using
probability density evolution.
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2.3 Environmental Loading

O�shore wind turbines are subjected to highly dynamic, irregular external loads as they
are excited by wind and waves. Such environmental loading processes shows considerable
correlation. The following sections discusses how these could be simulated through the
concept of variance spectra introduced in 2.1.2.

2.3.1 Wind

The wind velocity �eld acting on a structure in the main wind direction is commonly
described as the sum of a mean wind velocity as a function of height z, and a �uctuating
wind velocity dependent on both height and time. This is illustrated in �gure 9.

Vtot(z, t) = V̄ (z) + v(z, t) (45)

The mean wind velocity could be described by the Normal Wind Pro�le (NWP), de�ned
in equation (46). [13]

V̄ (z) = V̄ (zhub) ·
(

z

zhub

)α
(46)

The exponent α is determined by the surface roughness. Germanischer Lloyd recom-
mends using α=0.14 for sites located o�shore. This is a low value compared to onshore
sites, where α typically lies around 0.2 due to higher surface roughness. [13]

Figure 9: Superposition of time dependent and mean wind velocities. [14]
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The �uctuating contribution, named turbulence, is best described stochastically as a
process with a mean value of 0 m/s and a standard deviation of σv m/s. The standard
deviation of the turbulence is de�ned in equation (47) as the coe�cient of variation I of
the wind speed at hub height multiplied by vhub, which is the short term mean value of
the hub height wind speed. vhub is typically measured over a period of 10 minutes. I is
commonly called the turbulence intensity.

σv = I · vhub (47)

This standard deviation could also be described through the Normal Turbulence Model
(NTM) as de�ned by the International Electrotechnical Commission (IEC) in equa-
tion (48). [13]

σv = Iref ·
(

0.75 · vhub + 5.6
m

s

)
(48)

Here, Iref is a turbulence intensity speci�ed by IEC for three di�erent turbulence classes.
The velocity variance spectra of the turbulent wind �eld as a function of frequency, Sv(f),
is now de�ned by:

∫ ∞
0
Sv(f) df = σ2

v (49)

One model for these spectra is called the Kaimal model, de�ned by IEC 61400 3rd

edition [15] as

Sv(f) =
4σ2 (Lk/v̄hub)

(1 + 6fLk/v̄hub)
5/3

(50)

In equation (50), Lk is an integral scale parameter given in IEC 61400 3rd edition [15]
for the main wind direction as

Lk = 8.10 · ΛU
= 8.10 · 0.7 ·min{60m, zhub}

(51)

For the model used in this project zhub=90.55 m yields Lk=340.2 m. If one assumes
vhub=16 m/s and turbulence class B, then Iref=0.14. Equation (48) now results in
σv=2.464 m/s. The Kaimal spectrum for this case is plotted in �gure 10.
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Figure 10: Logaritmic x-axis plot of the Kaimal spectrum for Lk=340.2 m, vhub=16 m/s
and turbulence class B. It could be shown that the square root of the area under this curve

equals σv = 2.464 m/s, as de�ned by equation (49).

To generate a wind velocity �eld in the time domain, v(z, t), one would have to perform
a simulation based on spectral decomposition, as described by e.g. Strømmen. [14] The
Fourier series of the wind velocity �eld at a single point in space could be written as

v(t) ≈
N∑
k=0

xk

= Re

(
N∑
k=0

ck · ei(ωkt+ψk)

)

=

N∑
k=0

ck · cos(ωkt+ ψk)

(52)

where

ck =
√

2∆ωk · S(ωk) (53)

and

ωk = 2πfk. (54)

ψk is a random phase angle for each k described by the uniform probability distribution
between ψk=0 and ψk=2π. When transforming from the time domain to the frequency
domain one lose information about the placement of the velocities along the time axis.
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Simulation is therefore the only way of going back. The simulated turbulence would
however have the same variance, mean value and correlation as the original �uctuating
part of the wind �eld, and these stochastical properties are in principle what is needed
to simulate response. One such simulation based on the Kaimal spectrum from �gure 10
is shown as an example in �gure 11.
The Matlab script used to generate spectral decomposition simulations of turbulence
in this thesis, could be found in attachment 3. For the �nite element time domain
simulations, stochastic wind is generated using software described in section 3.2.

Figure 11: Matlab plot of simulated wind velocity �uctuations over 10 minutes in the
main wind direction at hub height, given the speci�ed Kaimal spectrum from �gure 10.

Turbulence also leads to �uctuating wind velocity components along the two axes per-
pendicular to the main wind direction. These components have their own turbulence
intensity and are calculated in the same manner as described above.

When a complete description of the wind velocity �eld have been established, the resulting
aerodynamic forces that act on the structure could be calculated using the dimensionless
aerodynamic drag coe�cient, CD. Neglecting the relative velocity of the structure, the
incremental force from aerodynamic drag would be given as:

dF (z, t) =
1

2
ρCD dA [V̄ (z) + v(z, t)]2. (55)

In equation (55), dA is the cross sectional area of the section and ρ is the mass density
of the air.
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2.3.2 The Blade Element Momentum Method

The true air�ow near the rotor is immensely complicated due to the relative movement
of the blades which also a�ects the turbulent �ow directions. The Blade Element Mo-
mentum (BEM) method is considered one of the best simpli�ed approaches to estimate
the resulting loads acting on the rotor.
This model is based on the idea that the area swept by the rotor could be divided into in-
�nitesimal thick annular ring elements, and that angular momentum must be conserved
between the rotor and the �uid within each ring. One assumes that there is no �uid
interaction between the annular rings, and that the wind velocity is constant over each
element. Provided the con�guration and aerodynamic coe�cients of the blades, airfoil
theory could now be used on these individual blade elements to obtain local lift and drag
forces.

Figure 12: Velocity components around rotor blade airfoil. [16]

Figure 12 illustrates some of the terminology used in the following brief summary of the
concept. A complete description of the BEM method and its background theory is for
example given by Det Norske Veritas in [16], or by Manwell et.al in [17].
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From momentum theory it is known that the contribution to total thrust and torque
from a blade section could be found as

dT = ρ V 2
0 4a(1− a)π r dr (56)

and

dQ = ρ V0 4a′(1− a)π r3ω dr, (57)

respectively. In equation (56) and (57) ρ is the mass density of the air, V0 is the incoming
wind velocity, r is the radius from the hub to the blade section centroid and dr is the
section length. a and a′ is the axial and angular induction factors, given as:

a = 1− V1

V0
(58)

and

a′ =
Vw
2ωr

. (59)

V1 is the axial wind velocity after the rotor, Vw is the tangential wind velocity of the
wake after the rotor and ω is the angular velocity of the rotor. The contribution to total
thrust and torque from a blade section could also be derived from blade element theory,
as shown in equation (60) and (61).

dT =
1

2
B ρV 2

rel (Cl cosφ+ Cd sinφ) c dr (60)

dQ =
1

2
B ρV 2

rel (Cl sinφ− Cd cosφ) c dr (61)

In these equations, φ is the angle of the relative wind velocity, Vrel = V0 (1 − a)/sin φ.
The angle φ is the sum of the local pitch angle θ of the blade and the local in�ow angle
α. B is simply the number of blades considered, and c is the chord length of the blade
section.

In general, the induction factors a and a′ is unknown, and one has to iterate to �nd these
for every blade section at every time step. This could be done by guessing values for a
and a′, updating the relative angle and then updating the lift and drag coe�cients Cl
and Cd, which are functions of the local angle of attack. The induction factors could now
be updated by using relationships given by equation (56), (57), (60) and (61).
After obtaining a convergent pair of induction factors for a given blade section, the rele-
vant contribution to the total thrust or torque could be determined. These contributions
are projected into the rotor plane and its normal direction and summed up to represent
the total rotor torque and thrust at each time step.
Figure 13 shows a 60 second estimation of the total thrust resultant obtained using
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the BEM method Matlab script in attachment 4. The wind load for this case is given
by a Kaimal simulation with reference wind speed 10 m/s and a standard deviation
of 1.834 m/s. The rotor considered is the NREL 5-MW Baseline Turbine described in
section 2.3. The mass density of the air is set to 1.25 kg/m3.

Figure 13: Estimated total rotor thrust resultant for the NREL 5-MW Baseline Turbine
given a 10 m/s reference wind speed with turbulence class B.

It should be stressed that the script in attachment 4 is solely intended to serve as a
simpli�ed illustration of the BEM method. Highly relevant considerations such as the
wind turbine control system, the �exible motion of the blades and �uctuations in the
angular velocity of the rotor are all not included in this script. For the subsequent time
domain analyses of this thesis, the certi�ed code described in section 3.3 will be used to
obtain simulated rotor thrust values.

2.3.3 Waves

Even though wave forces are not included in the simpli�ed load model presented in this
thesis, they would be important when considering more sophisticated models. Because of
this, the inclusion of wave loads is also be important when discussing the future usefulness
of probability evolution for problems of this kind.
In order to mimic realistic sea waves one has to take into account that real sea waves
are a superposition of many waves with di�erent properties regarding amplitude, length
and period. This is done by describing some statistical processes assumed stationary
over the short-term simulations. Such processes are called irregular sea states, and their
properties are modeled using the spectral density function of the surface elevation. [18]
This method of describing a stationary stochastical process is basically analog to the
description of wind turbulence in 2.3.1.
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Figure 14: Example of a Pierson-Moskowitz spectrum with signi�cant wave height of
2.19 meters and a spectral peak period of 6.37 seconds.

One potential wave energy spectrum is the Pierson-Moskowitz spectrum (PM-spectrum),
de�ned in equation (62).

SPM (ω) =
5

16
H2
s ω

2
p ω
−5 e

− 5
4

(
ω
ωp

)−4

(62)

In equation (62), Hs and ωp describes the properies of the speci�c sea state. Hs is the
signi�cant wave height, de�ned as the mean value of the highest 1/3 of the observed
wave heights, measured from trough to crest, in a sample. [18] ωp is the angular spectral
peak frequency, which could be de�ned by the spectral peak period, Tp, as ωp = 2π/Tp.
Figure 14 shows the PM-Spectrum for Hs=2.19 meters and Tp=6.37 seconds.

The established sea state spectrum could now be discretized and the contributions from
each frequency in every time step could be superimposed to give the surface elevation,
η(t), as in equation (63). As with the turbulence simulation, a uniformly distributed
random phase shift angle between 0 and 2π is introduced for each frequency.

χ(t) =

N∑
k=0

√
2∆ωk · S(ωk) · cos(ωkt+ ψk) (63)

One such time domain simulation of the Pierson-Moskowitz spectrum from �gure 14 is
shown in �gure 15.
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Figure 15: An example of a 200 seconds long time domain simulation of the surface
elevation, given the sea state described by the PM-spectrum in �gure 14.

After having described the stochastic nature of the surface elevation χ, the kinematics of
the water particles could be estimated as a function of depth using the wheeler stretching
method and wave theory. This is explained in detail by e.g. DNV. [18]
Structures that are slender compared to the wave length, λ, is called hydrodynamically
transparent. This implies that the structure only a�ects the �ow locally. For structures
with D less than one �fth of the wave length, where D is the projection of the cross
section obstructing the �ow, Morison's equation is used to derive the wave induced loads
normal to the structure. This formula describe such loads as a sum of the forces caused
by drag of the �ow relative to the structure movement, and the inertia forces of the
displaced water volume. [18]

dF (z, t) = ρA v̇ + ρCAA(v̇ − r̈) +
1

2
ρCDD (v − ṙ)|(v − ṙ)|. (64)

In equation (64), dots symbolize time derivation and r is the normal displacement of the
structure. v is here the normal particle velocity and must obviously not be confused with
the wind turbulence velocity, v, from section 2.3.1. A is the cross sectional area, D is the
projected diameter, and ρ is the mass density of the �uid. The dimensionless values CD
and CA is the drag coe�cient and the added mass coe�cient, respectively.

2.4 Autoregressive Modeling

The white noise example in 2.1.3 illustrated structure response to a loading process
where a load value was picked randomly from a Gaussian distribution. E�ectively, this
would imply that the value of the excitation at one point in time are independent of
the values of the excitation in the near past. As seen in 2.3, environmental processes
would generally not display such chaotic behavior, but rather contain some degree of
correlation, or frequency dependence.
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A time series of the process in question could be simulated as shown in 2.3, this would
be an acceptable approach when performing a Monte Carlo simulation of the system
response. When employing the probability density evolution method however, one would
need represent the behavior of the stochastic process through the use of random variables.
This could be achieved through autoregressive modeling. The following derivations on
autoregression theory is based on Brockwell and Davis. [19]

The process providing the variable Xt is autoregressive of order p, AR(p), if it is weakly
stationary and could be written on the following form for every step t:

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt. (65)

In equation (65), φ1 to φp are constants with absolute values below 1, and Zt is a Gaussian
distributed random variable with a mean value of zero and a standard deviation σ, picked
as white noise.
For the sake of introducing a minimum of additional parameters into the probability
density evolution, the environmental processes is in the following PDE analyses modeled
as �rst order autoregressive. A variable determined by a �rst order autoregressive model,
AR(1), will only depend on the closest preceding value of the variable as shown below.

Xt = φXt−1 + Zt (66)

Multiplying both sides of equation (66) with Xt−τ and taking the expectations leads to
an expression for the autocovariance function of the process:

CX(τ) = E[XtXt−τ ]

= E[φXt−1Xt−τ ] + E[ZtXt−τ ]

= φCX(τ − 1) + 0

= φτCX(0).

(67)

In equation (67),

CX(0) = σ2/(1− φ2) (68)

since

CX(0) = E[XtXt]

= E[(φXt−1 + Zt) (φXt−1 + Zt)]

= φ2CX(0) + σ2.

(69)

From equation (67) one could see that �rst order autoregression would model a weakly
stationary process, with constant mean and variance, for φ < 1. The variance spectrum
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of this process could now be found from the discrete version of equation (22), as shown
below. [19]

S+
X,AR(1)(ω) =

1

2π

∞∑
τ=−∞

e−iτω CX(τ)

=
σ2∆t

π(1− φ2)

(
1 +

φeiω∆t

1− φeiω∆t
+

φe−iω∆t

1− φe−iω∆t

)

=
σ2∆t

π
(1− 2φ cos(ω∆t) + φ2)−1

(70)

Above, ∆t is the time step between points to be modeled by the spectrum. Given a
speci�c time series, the parameter φ and the variance of the white noise contribution, σ,
could for example be estimated using the Yule-Walker equations. [19]
However, if the variance spectrum of the process is known, then the unknown model
parameters could be estimated directly using the relationships provided in equations (70),
(68) and (24). This could be done numerically by curve �tting, for example using the
least squared error method.

Figure 16 shows the example Kaimal wind turbulence spectrum from �gure 10, and
its estimated �rst order autoregression spectrum with parameters φ = 0.9966 and σ =
0.203 m/s, for a time step of ∆t = 0.05 s. The Matlab script used to estimate these
parameters could be found in attachment 5.

Figure 16: Comparison of the Kaimal spectrum from �gure 10 and the best estimate of
its �rst order autoregression spectrum for time step ∆t = 0.05 s.
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The resulting AR(1) model is

Xt = 0.9966 ·Xt−1 + Zt (71)

where Zt is a Gaussian distributed white noise random variable with µ = 0 m/s and
σ = 0.203 m/s.

Figure 17: AR(1) simulation of the wind turbulence de�ned by the spectrum in �gure 10.

A time series of the process de�ned in (71) could now easily be simulated back by speci-
fying the initial value X0. X0 could for example be picked from a Gaussian distribution
with the same variance as the total process, CX(0). This is illustrated over ten minutes
in �gure 17. While it is worth noting that a higher order autoregressive model would
provide a more accurate estimation of the correlation in the underlying process, one could
see by comparing �gure 17 and 11 that a �rst order autoregression model would describe
the actual turbulence behaviour much better than a white noise signal with the same
mean and variance.

2.5 The Finite Element Method in Structural Dynamics

The results of the simpli�ed stochastic analyses are going to be compared to analyses
performed using �nite element software. Problems in structural dynamics lead to partial
di�erential equations of motion because of their dependency on both time and spatial
position of the distributed mass points. The �nite element method (FEM) is based on
the idea of discretizing the spatial distribution of the mass into elements connected at
nodes with de�ned degrees of freedom. The system could now only vary in space along
these degrees of freedom.
When using the �nite element method to consider dynamic problems, the displacements
along the degrees of freedom is time dependent. After having discretized the structure, it
is possible to describe the motion of the system by a set of coupled second-order ordinary
di�erential equations. This results in a problem that could be written in matrix form
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and solved numerically if the speci�c boundary values are known. It is shown by Cook et
al. in [20] that the solution of this equation set, under the correct circumstances, would
converge to the true solution of the boundary value problem as the number of elements
are increased.

2.5.1 Deriving the General Equation of Motion

The principle of virtual work could be used, as shown by Cook et al. in [20], to derive a
general form of the equation of motion for a FE discretized structural system.
The principle of virtual work states that work done by external loads must equal the
sum of work absorbed by inertial, dissipative, and internal elastic forces for any virtual
displacement. A virtual displacement, δu, is any imagined small motion that satis�es
essential boundary conditions and displacement continuity between elements.
This equilibrium of work is expressed for a single element of volume V and surface area
S as shown in equation (72).

∫
V
{δu}TFV dV+

∫
S
{δu}TFS dS+

n∑
i=1

{δu}Ti pi =

∫
V

[
{δu}Tρü+ {δu}T cu̇+ {δε}Tσ

]
dV

(72)

FV and FS is the prescribed body forces and surface tractions, while pi is the prescribed
concentrated loads acting in the n corresponding virtual displacements {δu}i. ρ is the
mass density and c is a viscous damping parameter. {δε} represents the strains associated
with the virtual displacements {δu}.
Finite element discretization of the continuous structure lead to the relationships below.
The generalized coordinates q are functions of time, while the shape functions contained
in the shape function matrix N depend on spatial position.

u = Nq

u̇ = Nq̇

ü = Nq̈

ε =
d

dx
Nq = Bq

(73)

Substituting these relationships into the principle of virtual work, and assuming that the
concentrated loads pi act directly in nodes, would now provide:

{δq}T
(∫

V
ρNTN dV q̈ +

∫
V
cNTN dV q̇ +

∫
V
BTσ dV

)

− {δq}T
(∫

V
NTFV dV +

∫
S
NTFS dS +

n∑
i=1

pi

)
= 0

(74)
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In equation (74),

∫
V
ρNTN dV = m

∫
V
cNTN dV = c

(75)

is the consistent element mass and damping matrices, respectively. These are called
consistent because they are based on the same interpolation functions as the sti�ness
matrix, and because they are a direct result from �nite element discretization. It could
be shown that both would be symmetric and positive de�nite. Nonconsistent forms of
these matrices are also used, for example the lumped mass matrix applied in the modal
analysis of this thesis.

The other terms in equation (74) could be rearranged into two vectors. rint describes
internal forces (or moments) applied to the element by nodes to resist internal element
stresses. rext describes external forces (or moments) applied to nodes as a result of
external loads acting on the element. These vectors are presented in equation (76).

rint =

∫
V
BTσ dV

rext =

∫
V
NTFV dV +

∫
S
NTFS dS +

n∑
i=1

pi

(76)

These de�nitions are true in general. For a linearly elastic material the internal force
vector simpli�es to rint = k q, where k is the element sti�ness matrix, and the equation
of motion becomes

mq̈ + c q̇ + k q = rext. (77)

By using the relationship between the element degrees of freedom and the global degrees
of freedom, the global form of the equation of motion is found as:

M Q̈+C Q̇+KQ = Rext = F . (78)

In equation (78), M , C and K is the global mass, damping and sti�ness matrix of the
system, respectively. F represents the load projection into each degree of freedom. If
the global generalized coordinates Q describes the displacements of interest directly, the
equation of motion could be equivalently written as

M ü(t) +C u̇(t) +Ku(t) = F (t). (79)

The structural equation of motion is presented as matrices and vectors in equation (80).
Here, n is the total number of degrees of freedom used to discretize the system, and ui(t)
represent the displacement along each of them.
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M11 M12 · · · M1n

M21 M22 · · · M2n
...

...
. . .

...
Mn1 Mn2 · · · Mnn



ü1(t)
ü2(t)
...

ün(t)

+


C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
. . .

...
Cn1 Cn2 · · · Cnn



u̇1(t)
u̇2(t)
...

u̇n(t)



+


K11 K12 · · · K1n

K21 K22 · · · K2n
...

...
. . .

...
Kn1 Kn2 · · · Knn



u1(t)
u2(t)
...

un(t)

 =


F1(t)
F2(t)
...

Fn(t)


(80)

Equation (79) is discretized in space, but the displacements and forcing are continuous in
time. This is therefore a system of coupled second-order ordinary di�erential equations
in time. One could now further discretize time and use direct numerical time integration
algorithms such as the Newmark Method, e.g. described in [13], to establish the structure
response history.

2.5.2 Modal Analysis

The modal form of the dynamic system is found assuming that the displacements u(x, t)
could be written as a superposition of products between φ(x), accounting for spatial
dependence, and η(t) accounting for time dependence. Written in matrix form:

u(x, t) = Φ(x) · η(t). (81)

Φ(x) is the modal matrix of the system (not to be confused with the autoregression
parameter φ) and η(t) is a vector of generalized modal coordinates. The modal matrix
consist of the eigenvectors of the system:

Φ(x) =
[
φ1, φ2, · · · , φn

]
. (82)

Both eigenvectors and eigenvalues are determined by solving the eigenvalue problem
derived for the undamped and unloaded structure. The equation of motion is in this case
given as:

Mü(t) +Ku(t) = 0. (83)

Substituting for assumed harmonic oscillations, u(t) = φ · eiωt, would now result in

(K − ω2
iM)φi e

iωit = 0. (84)

eiωit could be disregarded as it is not zero in general for non-trivial solutions, leading to
the structural eigenvalue problem presented in equation (85).
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(K − ω2
iM)φi = 0 (85)

Solving the eigenvalue problem presented in equation (85) yields the eigenvalues ω2
i and

eigenvectors φi of the system. Having obtained these one could substitute u in the
equation of motion and premultiply by ΦT :

ΦTMΦ · η̈ + ΦTCΦ · η̇ + ΦTKΦ · η = ΦTF . (86)

Equation (86) could be rewritten to the form of the modal equation of motion:

M̃ · η̈ + C̃ · η̇ + K̃ · η = ΦTF . (87)

Where M̃ , C̃ and K̃ is the diagonal modal mass, damping and sti�ness matrix of the
system, respectively. The modal matrix equation of motion is decoupled because the
eigenvectors of the structural eigenvalue problem (K − ω2

iM)φi = 0 are orthogonal. It

could be proven that M̃ and K̃ are diagonal matrices by premultiplying equation (85)
for the ith solution with φTj to obtain

φTj Kφi = ω2
i φ

T
jMφi. (88)

The similar operation could naturally be performed for the jth solution:

φTi Kφj = ω2
j φ

T
i Mφj . (89)

Transposing equation (88) would yield

(φTj Kφi)
T = (ω2

i φ
T
jMφi)

T , (90)

and, since M and K are symmetric matrices:

φTi Kφj = ω2
i φ

T
i Mφj . (91)

Subtracting equation (91) from equation (89) would result in (92).

(ω2
i − ω2

j )φ
T
i Mφj = 0 (92)

Equation (92) concludes the proof, showing that φTi Mφj must equal zero when i 6= j.
The same result could now be found for the modal sti�ness matrix by substituting this
result into equation (91).
The decoupling of the modal equation of motion causes the generalized coordinates of
each mode to act as a single degree of freedom system, which is a key property of
modal analysis. The contributions of each mode could then be superimposed as shown
in equation (81) to obtain the real displacement u.
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3 Methodology

This section aims to present and discuss the methods used in the thesis.

3.1 The NREL 5-MW Baseline Wind Turbine

The wind turbine considered in this thesis is the U.S. Department of Energy's National
Renewable Energy Laboratory (NREL) 5-MW baseline turbine, as de�ned by Jonkman
et al. [2] This numerical turbine model provides standardized and accurate data for the
properties of a realistically sized o�shore wind turbine, and it is therefore also used in
the OC4 project. Some key properties of the baseline turbine is shown in table 1.

Table 1: Some selected properties of the reference wind turbine. [2]

3.1.1 Reference Tower

Validation of the thrust load model and comparison between results obtained by prob-
ability density evolution and time domain simulations are the main objectives of the
thesis. Because of this, the site-dependent o�shore support structure and wave loads are
not included in the subsequent analyses.
The tower considered in this thesis is the onshore reference tower described in [2]. This
tower is modeled as clamped at the base. It has an outer base diameter of 6 m and a
base thickness of 0.0351 mm. Both the diameter and thickness tapers linearly to top
values of 3.87 m and 0.0247 mm, respectively. The material used is steel with a Young's
modulus of 210 GPa and a shear modulus of 80.8 GPa. To account for secondary steel
and paint, the mass density of the steel is raised from 7850 kg/m3 to 8500 kg/m3. The
tower has a speci�ed structural damping ratio of 1 % for all modes.

I have divided the tower into 20 nodes and 20 elements in order to obtain estimates of
the �rst eigenmodes and frequencies. Each node has one transversal degree of freedom.
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The lumped mass technique, e.g. covered by Chopra in [21] or Murtagh et al. in [22], is
used to obtain a diagonal mass matrix for the tower. The entries of the mass matrix are
shown in the last column of table 2, since M = Diag[Mii] where Mii = mi.
The lumped masses are determined by the mass of the corresponding tower section with
height dzi. The lumped mass acting in the degree of freedom on the top of the tower,
DOF 20, also includes the mass of the rotor and nacelle from table 1. In table 2, Heighti
refers to the height of the DOF measured from the base of the tower, while HtFracti
refers to the percentage of the total height of the tower.

Table 2: Discretization and lumped masses of the reference tower.

In order to obtain the modes of vibration for the tower one would also need to know
the sti�ness matrix of the structure. In this thesis the sti�ness matrix K is obtained
through the �exibility matrix f of the structure. The �exibility matrix of the tower have
been obtained using the unit load method, i.e. introducing a unit load at each degree of
freedom and measuring the corresponding displacement in all degrees of freedom. This
was done using a tower model with 40 elements and nodes in the FEM frame analysis
program "Focus Konstruksjon 2014" developed by Focus Software. [23]

The resulting �exibility matrix are presented in attachment 6. The sti�ness matrix of
the tower could now be found as the inverse of the �exibility matrix,K = f−1. Knowing
both the mass and sti�ness matrix, the undamped and unloaded equation of motion
becomes

Mü(t) +Ku(t) = 0. (93)
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Assuming harmonic response, u(t) = φeiωt, and using the knowledge that eiωt is not zero
in general, equation (93) simpli�es to

(K − ω2M)φ = 0. (94)

Equation (94) is the well known eigenvalue problem in structural dynamics, the solution
of which results in eigenvalues equal to the squared natural frequencies of the tower and
eigenvectors giving the corresponding modes of vibration, φ. These computations are
performed using the Matlab script in attachment 7, and the results are presented in
section 4.1.

3.2 TurbSim

TurbSim is a software developed by NREL to generate numerical, turbulent wind �elds
based on the theory presented in 2.3.1. TurbSim generates time domain simulations of
three dimensional wind velocity vectors at points on a two dimensional grid which is
�xed vertically in space. [24] This is illustrated in �gure 18.

Figure 18: Illustration of a wind velocity �eld generated by TurbSim. [24]

In this thesis TurbSim have been used to generate the wind �elds used in time domain
simulations of the wind turbine. TurbSim reads an input �le containing the necessary
information to simulate the wind velocity �eld. An example of such an input �le, for a
12 m/s reference wind speed and turbulence class B, is shown in attachment 8.
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3.3 FAST

FAST, an acronym for Fatigue, Aerodynamics, Structures and Turbulence, is an aeroe-
lastic �nite element simulation code developed by NREL capable of simulating an entire
wind turbine in time domain. [25] FAST is certi�ed by Germanischer Lloyd for the calcu-
lation of onshore wind turbine loads for design and certi�cation purposes. Wind velocity
simulations from TurbSim are used as input for the environmental loading in the FAST
time domain simulations. FAST input �les describing the reference turbine from sec-
tion 3.1, and its control system, are also provided by NREL.
In this thesis, FAST time domain simulations have been used to obtain time series for
both rotor thrust forces and tower top response. These simulations consider �exible
motion of the tower and blades with aerodynamic damping, the control system of the
turbine and periodic gravity loads.

3.4 Environmental Load Cases

The 15 wind velocity situations considered in this thesis are taken from IEC 61400 3rd
edition [15], using turbulence class B. For this turbulence class, the Normal Turbulence
Model shown in equation (48) provides the standard deviation of the �uctuating wind
velocity using Iref = 0.14.

Table 3: The wind velocity load cases considered in this thesis.

These 15 load cases are presented in table 3, and the turbulence intensity is shown as
a function of the reference wind velocity in �gure 19. The AR(1) model parameters for
these turbulence cases have been estimated using the Matlab script in attachment 5. The
results of these calculations are presented in section 4.3.
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Figure 19: Plot of the class B turbulence intensities for the di�erent reference wind
velocities considered.

3.5 Development of a Simpli�ed Load Model

To obtain the response distribution of the system through the probability evolution
method one would, as it is made apparent in section 2.2, need to know the probability
distribution of the exciting force. The real loading situation of an o�shore wind turbine
is governed by complex environmental processes, nonlinear coupling e�ects and cyclic
loads from rotational components. It is therefore necessary to develop a simpli�ed load
model for which it is feasible to determine the probability density.
Since only the response in the main wind direction is considered, relevant contributions
to the load situation of an o�shore wind turbine would be the total thrust force from wind
loads acting on the rotor, wind loads distributed along the tower above water and wave
loads distributed along the sub-structure under water. The two latter load contributions
could be calculated using equation (55) and (64), respectively.
The accurate estimation of the former load contribution is far more complex, as it depends
on rotational wake of the wind, interaction between wind and the �exible motion of the
blades and the control system of the turbine. The total thrust from wind loads on the
rotor would naturally also be the most signi�cant load for the tower top displacement of
a wind turbine, and its simpli�ed description would therefore be the main objective in
the current load model development.

In general, aerodynamic drag force on an object is described using a dimensionless drag
coe�cient and equation (55), where the drag force is proportional to the wind velocity
squared. For a rotor, it is the relative wind that determines the sectional contributions
to lift and drag along the airfoil axes. This could be seen in �gure 12. As it is mentioned
earlier in this thesis, the load resultants on the rotor also depends on the turbine control
system and interrelation e�ects between the blades and the local wind velocities. It is
therefore not obvious that there exists a good model of the rotor thrust force on a form
where the thrust is proportional to the incoming wind velocity squared.
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For example, when using the attached BEM Matlab script to compare force contributions
dT from di�erent blade sections, one would see that the largest contribution to the total
thrust originates from lift forces in the outer parts of the rotor blades. In these blade
regions, the angular velocity of the rotor ω generates a very high tangential velocity, ωr.
Since the angular velocity of the rotor is not very sensitive to �uctuations in the wind
velocity, one could assume that wind turbulence would cause less variance in the total
thrust force of the rotor than it would do for a stationary object with the same area.

Figure 20: Comparison between a FAST simulation of the reference turbine for a 10 m/s
reference wind speed in turbulence class B, and a corresponding simpli�ed model based on

the squared wind velocity.

Even though this is clearly not the only factor in�uencing the total loading in the main
wind direction, �gure 20 does indeed illustrate that the total thrust calculated using
FAST displays less erratic behavior than a simpli�ed model CV 2, where C is a total
drag coe�cient determined such that the mean value of the two simulations match each
other. Note that since the mass density of the air and the area are implemented in C,
this simpli�ed drag coe�cient would have the dimension kg/m.
All things considered, there is no reason to think that there should exist one constant
simpli�ed drag coe�cient for the turbine either, since the behavior of the total thrust
resultant are very much dependent on the control system. [2]
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An appropriate load model describing the total thrust resultant acting in the mean wind
direction at hub height, over certain Vref intervals, are in this thesis assumed to exist on
the form:

T (Vref , v(t)) = T̄ (Vref ) + t̂ (Vref , v(t)) (95)

where

T̄ (Vref ) = C̄s V
α
ref (96)

and

t̂ (Vref , v(t)) = Ĉs V
β
ref v(t). (97)

The subscript s is short for "simpli�ed". The two simpli�ed coe�cients and the expo-
nents α and β are determined by curve �tting using results from FAST simulations and
the Matlab script in attachment 9. As it could be seen from the equations above, the
total thrust is now given by a term that describes the time invariant mean thrust and
a term that also varies with the reference wind velocity, but depends linearly on the
turbulence, v(t).
The linear dependence on turbulence is certainly not obvious at this point, but it is later
seen in section 4.2 that this model describes the mean and variance of the �uctuations
in the rotor thrust well. It is also an advantage to avoid having a random variable with
fractional exponents.
This result could also be justi�ed, somewhat heuristically, by assuming that the load
model could be written on a form where the thrust resultant is proportional to some
exponential expression of the total wind velocity, f(v) = (Vref + v(t))q. A Taylor series
expansion around v(t) = 0 would now produce the series

f(v) =

∞∑
n=0

f (n)(0)

n!
(v − 0)n

= V q
ref + q V q−1

ref v +
1

2
q (q − 1)V q−2

ref v2 +O(v3).

(98)

Assuming that Vref >> v(t) and neglecting higher order terms of v(t) in equation (98)
would leave the following estimation of f(v) for values of v(t) close to zero:

f(v) ≈ V q
ref + q V q−1

ref v. (99)

In the proposed load model, C̄s would now have the unit (kgm4−α)/(m3 s2−α) and Ĉs
would have the unit (kgm3−β)/(m3 s1−β). The resulting models for the environmental
load cases considered in this thesis are presented in section 4.2.
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3.6 The Probability Density Evolution Script

The probability density evolution method is central in this thesis. The following sections
elaborates, based on the theory presented in section 2.2, how the Matlab script in attach-
ment 2 works. This is done by �rst considering a case of basic white noise forcing, and
then explaining how autoregressive theory is used to incorporate correlated excitation.

3.6.1 Basic PDE Functionality with Uncorrelated Forcing

For white noise forcing, the probability density function of the force alone provides enough
information to estimate the joint probability density of the response in a displacement-
velocity state space.
In this case, the force, displacement and velocity intervals are divided into cells with
assigned cell index numbers and respective widths of dF , dX and dẊ. The displacement
and velocity cells constitute a discretized state space domain where each two dimensional
cell maps into a new cell through an estimate of the response for small time steps. This
new cell is called the image cell of the original cell.
For displacements, the image cell estimate is deterministic when knowing the original
cell. That is, for each cell in the state space domain there is one image cell index for
displacement. In the PDE script this cell is found by using the modi�ed Euler method
as shown in equation (100).

X2 ≈ X1 + ∆t

(
Ẋ1 +

dẊ

2

)
(100)

In this equation, X1 and X2 represents the original and the new displacement. Velocity
response also depends on the force working at that time, and since the force is a random
variable one must estimate the velocity response for each force cell combined with each
displacement-velocity state cell. Since X2 now is estimated, the implicit Euler method
could be used with the SDOF equation of motion (1) to �nd the image cell for each state
and load cell:

Ẋ2 ≈ Ẋ1 + ∆t

(
F1 − CX2−X1

∆t −KX2

M

)
. (101)

In equation (101), Ẋ1 and Ẋ2 represents the original and the new velocity state, while
F1 is the force acting in the original state. The PDE script uses these two equations
to develop a two dimensional state map for displacements X, where each entry is the
displacement image cell index number, and a three dimensional state map for velocities
Ẋ, where each entry is the velocity image cell index number.

Transition between cells is now completely deterministic, and the state maps could be
used to evolve the probability density as illustrated in section 2.2. For each displacement,
velocity and force cell index number, the image cell index number are determined for both
displacement and velocity. The contribution to the image cell probability content is now
given by the probability of being in the original state cell, determined by the previous
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iteration, multiplied with the probability of the current force realization.
An initial probability density description of the response space is required to get the
iterations going, this could for example be a deterministic initial condition where one
starts at a given cell with a probability of one. For increased e�ciency, a sensible selection
of distributed points or a good guess of the response distribution could also be used as
an initial condition.

Convergence towards the exact response probability distribution is obtained as the num-
ber of iterations increase and the total di�usion of probability goes towards a state
of equilibrium, where the probability content assigned to each cell is the same as the
probability content leaving the cell for each iteration. As mentioned in section 2.2, the
relationship between the discretization of the mapping domain and the time step used is
crucial for both e�ciency and accuracy of the PDE method.
Figure 8 shows a converged joint probability density result for the white noise loading
example from section 2.1.3.

3.6.2 Incorporating Correlated Forcing Through First Order Autoregressive

Modeling

Knowing the probability density function of the environmental loading is in general not
enough to establish a good estimate the structure response, since this response also
depends on the frequency content of the force.
Section 2.4 presents how a stochastic process could be modeled by describing the next
value as a deterministic weighted sum of previous values and a random Gaussian noise
term. This thesis would only consider �rst order autoregression, i.e. that the next value
of the force depends exclusively on the previous value. In this case, the relationship
between two neighboring force realizations need to be accounted for when evolving the
probability density of the response. In the attached script, this is done by letting F
describe the previous force realization and incorporating it into the state of system. The
weighting factor φ and the new random variable describing the autoregression noise term,
Z, would now provide a mapping between a given force state and the next.
In this case, the total state space is four dimensional, including the previous and the
current force state, displacement and velocity. The mapping state space is now three
dimensional, including the current force state, displacement and velocity. The projected
probability volume of each cell into the displacement-velocity plane would therefore yield
the estimated joint probability density of these structural responses.
Obviously, adding a dimension to the system state domain does not come numerically
cheap, resulting in considerably reduced e�ciency compared to the iterations described
in 2.4.
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Figure 21: Contour plot of the joint probability density function from �gure 6.

Figure 21 is a contour plot showing the analytical solution of the structural response
given the white noise example from section 2.1.3.
Given the exact same SDOF structure, we could now assume that it is excited at each
time step ∆t = 0.05 s by some force with a mean value of 30 N and �uctuations described
by a �rst order autoregression model with parameters φ = 0.7 and σ2 = 12.75N2. It
could be shown, as illustrated for a 300 second simulation in �gure 22, that this would
produce a long term probability density function of the force that is Gaussian with mean
value 30 N and a standard deviation of 5 N.

The PDF of the force is identical to the one used in 2.1.3, but now the realizations of the
force are no longer uncorrelated. The correlation between the previous and the current
force �uctuation value could be seen in �gure 23. The joint PDF in �gure 23 is found
as the product of the previous force �uctuation PDF and the conditional PDF of the
current force �uctuation given the previous one. The former is the total PDF of the
force �uctuations, while the latter PDF is given by the autoregressive noise term.
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Figure 22: 300 second simulated time series, with histogram and analytical PDF, of an
AR(1) load process with µF = 30 N, φ = 0.7, σ2 = 12.75N2 and ∆t = 0.05 s.

Figure 23: Joint probability distribution of the previous and current value of the
described load �uctuations in this example.
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Figure 24: Log-log plot of the one-sided variance spectrum of the autoregressive load
process simulated in �gure 22, the constant white noise spectra of the same time step and

PDF, and the squared frequency response function of the example structure.

Figure 25: Contour plot showing the analytical joint PDF of the structural response to
the autoregressive load process from �gure 22 and 24.
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The de�nition of a joint probability of two correlated random variables A and B is shown
in equation (102).

P (A,B) = P (B) · P (A|B) (102)

The variance spectrum of the load process, calculated using equation (70), are presented
in �gure 24 with the squared frequency response function of the structure. From this
�gure, one could see that the load process has a higher energy content near the natural
frequency of the structure compared to the constant white noise spectrum from �gure 3.
The joint probability density of the displacement and velocity response under this load
process should therefore be wider than it is under white noise excitation. This is also
shown to be the case in �gure 25, where the analytical joint probability density of the
response are calculated using theory from section 2.1.2.

The PDE script could now also be used to estimate the response to this load process, for
example by choosing the interval discretizations dX = 0.05 m, dẊ = 0.05 m/s, dF =
0.5 N and dZ = 0.5 N. For these input values, a contour plot of the estimated response
is presented in 26. This �gure shows good agreement with the analytical solution in
�gure 25. The noise in the estimated distribution is mainly caused by the relatively coarse
force discretization in this example, showing the importance of domain discretization on
the accuracy of PDE results.

Figure 26: The joint probability distribution of the displacement and velocity response
for the example in section 3.6.2, estimated using the probability density evolution script

with correlated excitation in attachment 2.
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3.6.3 General Comments on Numerical Cell-to-Cell Mapping

While they are two di�erent numerical methods, there is also some similarities between
cell-to-cell mapping and classical Monte Carlo simulation.
MCS involves calculating the response for each time step in a continuous domain and
assigning probability to regions of this domain based on the number of occurrences within
the region. This implies that the number of time steps, or sampling points, would
need to be large in order to accurately estimate low probability regions of the response
distribution.
The cell-to-cell numerical probability evolution method is basically an iteration scheme
where each iteration could be considered as a MCS from one time step to another for
each discretized cell. Each cell is represented by a single point used as an initial state
for each iteration. The responses to these Monte Carlo simulations is then arranged into
target cells in a state space domain grid, and probabilities for the next iteration could
be found. The subdiscretization of each cell to be represented by a single central point
would lead to discretization errors, as illustrated in �gure 27 for a two dimensional state
space described by x1 and x2.

Figure 27: Illustration of iteration errors associated with the state space
discretization. [11]

Because of these errors, it is clear that cell-to-cell mapping requires a �ne discretization of
the state space for accurate probability estimation. This would result in a large number
of cells, as opposed to a large number of sampling points. A tradeo� between accuracy
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and e�ciency would often have to be made, at least for multidimensional state spaces, as
the number of cells increase exponentially as the state space is re�ned. A discretization
of N cells in each of the n dimensions would result in a total of Nn cells.
As explained in section 3.6.2, incorporating the previous force realization into the state
space would result in four state space dimensions and a total number of cells that would
experience quartic growth with increasing re�nement in each dimension. Even using
parallel computing, a state space with more than �ve dimensions would probably push
the boundaries of what is realistic to evolve with the computational power available
today. [11] This would pose a challenge when using cell-to-cell mapping to estimate
the response of systems with multiple degrees of freedom, or when using higher order
autoregression models to simulate correlated excitation.

It should be noted that improved cell-to-cell mapping methods which relieves the required
domain discretization to some extent does exist. For example, the Generalized Cell
Mapping method proposed by Hsu randomly assigns several initial starting points within
each cell for each iteration. [1] Another method, proposed by Levitas et al. in [26], uses
a hypersurface system constraint to reduce the cell space dimension to n− 1. Such PDE
methods is however beyond the scope of this thesis.

Another factor that is naturally a�ecting accuracy of the cell-to-cell method is the time
integration scheme used in the iterations. This integration scheme would have to be
evaluated with respect to the behavior (sti�ness) of the di�erential equation and the
time step used to avoid energy drift from leading to a divergent system.
For the relevant time steps and structure considered in this thesis, using the explicit
Euler method to estimate velocities caused substantial energy drift in early versions of
the PDE script. As mentioned in section 3.6.1, the modi�ed Euler method is used for
displacements and the implicit Euler method is used for velocities in the �nal version of
the script.
More accurate energy conserving methods, like those described by Hairer et al. in [27],
could of course also be used to estimate the response in probability evolution algorithms.
The reward of implementing a more computationally expensive time integration scheme
should obviously be weighed against any loss of performance.

It is clear that a small time step is necessary to obtain accurate estimates of the response
for each iteration. For the cell-mapping method used in this thesis, the number of required
cells is closely related to the time step used. This is because the time step should not
become too small, depending on the structural properties of the structure and the applied
force distribution, compared to the domain covered by each cell. Probability content for
cells in such a system could end up mapping into itself for any probable force, and
therefore never evolving beyond the initial cells.
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3.7 Calculating the Nonlinear First Mode Response Contribution from
Wind Loading Along the Tower

This section is motivated by the fact that, as could be seen in section 4, a simpli�ed model
with linear dependence on turbulence is found to describe the rotor thrust accurately
enough with respect to mean and variance. This rather unexpected result renders proba-
bility evolution unnecessary for Gaussian distributed turbulence, as the thrust would be
Gaussian as well, and an analytic solution of the response could be found using theory
from section 2.1. However, a more complete and realistic load model would surely not
be linear in general for an o�shore wind turbine, this could both be true for the rotor
thrust and distributed loads along the structure. In particular, both wave loads acting on
the sub-structure and wind loads acting on the tower would both need to be modeled as
nonlinear. As could be seen from equation (64) and (55), wave loads would be nonlinear
with respect to water particle velocity, and drag forces on the tower are nonlinear with
respect to wind turbulence velocity.
Especially wave loads could be assumed to be non-negligible with regards to the total
displacement of the wind turbine, at least for bottom �xed sub-structures at relatively
deep waters, such as jackets. The contribution of wind loading distributed along the
tower was not included in the simple load model acting on the onshore reference turbine
in this thesis, as rotor thrust would dominate the forcing in the main wind direction.

This section therefore aims to illustrate the usefulness of probability density evolution
associated with nonlinear processes. This is done by calculating the contribution to the
structural response from wind acting along the tower alone for load case 2, as an example.
This section also aims to justify the neglection of tower wind loads in the simpli�ed load
model by illustrating that this contribution is small compared to the rotor thrust, at
least for the load case considered.

3.7.1 General Description of the Modal Force

I section 3.1.1, the tower was discretized into 20 degrees of freedom. The distributed
force from wind loads could then also be discretized and represented by the 20 sectional
contributions in the force vector F = [F1, F2, · · · , Fi, · · · , F19, F20]T .
In F , the ith sectional force is found by combining equation (46) and (55) to Fi as shown
in equation (103).

Fi =
1

2
ρCD,i di dzi

[
Vref

(
zi
zref

)α
+ v(t)

]2

(103)

In equation (103), di and dzi is the sectional diameter and height. The spatial dependence
of the turbulence is neglected, and the turbulence at reference height is used for all
heights. While this is a simpli�ed assumption, it is certainly a conservative one. In
a realistic situation the standard deviation of the �uctuations would vary with height,
and spatial correlation of the wind would make it highly implausible that the turbulence
along the tower should act in the same direction at all times.
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Expanding equation (103) would lead to

Fi = Ai v(t)2 +Bi v(t) + Ci (104)

where

Ai =
1

2
ρCD,i di dzi

Bi = ρCD,i di dzi Vref

(
zi
zref

)α

Ci =
1

2
ρCD,i di dzi V

2
ref

(
zi
zref

)2α

.

(105)

As shown in equation (106), the modal force Rj of a given mode j could now be found
using the relevant eigenvector.

Rj(v) = φj
TF

= v2
20∑
i=1

φj,iAj,i + v
20∑
i=1

φj,iBj,i +
20∑
i=1

φj,iCj,i

= Âj v(t)2 + B̂j v(t) + Ĉj

(106)

The modal sums in equation (106) provide three constants of the modal force, Â, B̂ and
Ĉ. These constants depend on the sectional properties, mean wind velocities and the
mode shape in question. It could be seen that the modal force depends nonlinearly on
turbulence, even though one could argue that this nonlinear term would be negligible for
load situations with small turbulence intensities, where Vref >> σv.

3.7.2 Probability Density Function of the Modal Force

Because of the squared turbulence term in equation (106), the modal force would not
be Gaussian distributed even if the turbulence is. In the following, v is treated as a
realization of the random variable V representing the wind turbulence velocity, and
r is treated as a realization of the random variable R representing the modal force.
Equation (106) now provide a mapping between these two random variables, R = g(V ).
This mapping could be used with the principle of probability density conservation to
obtain the PDF of the modal force. Figure 28 shows a generic plot of equation (106) in
the random space represented by V and R.
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Figure 28: Sketch of the modal force from equation (106) as a function of the random
variable V.

Using the principle of probability density conservation, it becomes clear from �gure 28
that the cumulative probability density function (CDF) of the modal force could be
written as:

FR(r) = P [R ≤ r]

= P [v1 < V < v2]

= P [V < v2]− P [V < v1]

= FV [v2]− FV [v1].

(107)

The PDF of R is now found as the derivative of the CDF of R, as shown in equation (108).

fR(r) =
d

dr
FR(r)

=

2∑
i=1

fV (vi)
∣∣∣ d
dr
vi

∣∣∣ (108)

In equation (108), vi is the two real roots of g(vi) = r.
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v2(r)

v1(r)

}
=
−B̂ ±

√
B̂2 − 4Â(Ĉ − r)

2Â
(109)

The Jacobian of the random variable mapping is found as

dvi
dr

=

(
dr

dvi

)−1

=

(
d

dvi
(Â v(t)2 + B̂ v(t) + Ĉ)

)−1

=
1

B̂ + 2Âvi
.

(110)

Given the results above, the PDF of the modal force as a function of modal force would
be given by equation (111) for Gaussian distributed turbulence.

fR(r) =
1

√
2πσv

√
B̂2 − 4Â(C̄ − r)

e− 1
2

(
−B̂+

√
B̂2−4Â(Ĉ−r)
2Âσv

)2

+ e
− 1

2

(
−B̂−

√
B̂2−4Â(Ĉ−r)
2Âσv

)2


(111)

The response PDF of the structure under this PDF of the modal force, which is clearly
not Gaussian, could not be solved analytically. However, the PDF could easily be imple-
mented, like any other, in the probability density evolution method in order to obtain a
numeric estimate of the response PDF for this mode.

It is worth noting that equation (103) does not preserve the sign of the total wind velocity,
since V 2

tot 6= Vtot · |Vtot|. As a result of this, equation (111) is only valid for positive values
of the modal force larger than the critical value

rc = Ĉ − B̂2

4Â
, (112)

which is the value of the modal force leading to complex roots in equation (109). This
modal force occurs at the corresponding critical turbulence velocity value, vc:

vc = − B̂

2Â
. (113)
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3.7.3 Constants of the Modal Force and Resulting Probability Density

Function for Load Case 2

As previously mentioned, the nonlinear behavior of the drag force increase with the
turbulence intensity. Because of this, load case 2 with Vref = 4 m/s and σv = 1.204 m/s
was chosen to serve as an example load case to demonstrate the PDE functionality for
nonlinear processes.

The representative vertical position, height and diameter of the sections are presented in
table 2. The mass density of the air is set to ρ = 1.25 kg/m3, α = 0.14 and zref = 90 m.
The drag coe�cient for each section depends on the Reynolds number of the air�ow:

Rei =
Vtot,i di ρ

µair
. (114)

The dynamic viscosity of air is set to µair = 1.81 · 10−5 N s/m2. Using the mean velocity
at each section to calculate Rei would result in the plot shown in �gure 29.

Figure 29: Reynolds number at di�erent heights of the tower for Vref = 4 m/s and
α = 0.14.

For the Reynolds numbers in this �gure the drag coe�cient CD could be approximated
as a constant, CD,i ≈ CD = 0.3. This value could for example be determined using the
CD diagram of a two dimensional smooth cylinder from [28].

Given these sectional properties and the mode shapes presented in section 4.1, the con-
stants of the modal force because of wind loads distributed along the tower are summed
up to the values presented in table 4, for the �rst two tower modes.
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Table 4: The constants of the modal force as de�ned in equation (106), caused by wind
loads distributed along the tower, for the �rst two fore-aft tower modes.

Figure 30 and 31 show histograms of simulated modal drag force realizations for mode
1 and 2 respectively. These �gures also show the analytical PDF of the modal forces
from equation (111), plotted in red for values larger than rc = 0.83 N for mode 1 and
rc = 1.89 N for mode 2. Modal force values smaller than rc will be disregarded in the
following analyses. In practice, this would mean neglecting small negative values of the
modal force. Such values represent about 0.5 % of the total probability content for both
modes.

Figure 30: Histogram of simulated modal drag force realizations for the �rst mode
subjected to load case 2. The analytical PDF of the modal force for rc > 0.83 N is plotted

in red.

As could be observed in 30 and 31, both the mean value and the variation of the modal
force is larger for the second mode. This is not an unexpected result when considering
the mode shapes presented under 4.1. Using results from section 4.1 and 4.2, these modal
forces could be compared to the modal forces caused by rotor thrust for the same load
case. The mean value of the modal force because of wind loads along the tower in mode
1 is 400 N, which is about 0.17 % of the mean modal force caused by the rotor thrust.
For mode 2 the mean modal force is 620 N, or 1.52 % of the modal force caused by rotor
thrust for this mode and load case. Based on these results, my neglection of wind loads
acting along the tower in the simpli�ed load model seems justi�able for this load case.
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The results of the PDE response estimation for this nonlinear load situation is presented
for the �rst mode in section 4.5. The second mode is not considered, as the small increase
in modal force would still not make this mode in�uential on the tower top displacement
response. It is shown in section 4.1 that the modal sti�ness increase by about 2800 %
from the �rst mode to the second, while the modal amplitude decrease from 100 % to
about 17 % for the tower top.

The response probability is only evolved for white noise forcing, as the AR(1) imple-
mentation described earlier assumes that the noise term is independent of the previous
force realization value, i.e. that Zi = Zi−1 = Z. This is elaborated in sections 5 and 6.
While it may be feasible to develop an autoregressive model where the noise term Z is a
function of the previous force realization, this is beyond the scope of this thesis.

Figure 31: Histogram of simulated modal drag force realizations for the second mode
subjected to load case 2. The analytical PDF of the modal force for rc > 1.89 N is plotted

in red.
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4 Results

This section presents representative results obtained in the thesis. In some cases, the
reader is referred to attachments for additional results.

4.1 Modal Properties of the Reference Tower

The modal results are constricted to the three �rst modes of the tower structure. This
is because the structural response is mainly determined by the contribution from the
�rst modes. In fact, for a �exible tower structure in bending, more than 90 % of the
total energy dissipation normally occurs due to the fundamental mode. [22] Considerably
lower accuracy could also be expected in the estimation of higher modes because of the
tower discretization. Table 5 shows calculated normalized values for the three �rst mode
shapes of the tower, obtained as described in section 3.1.1. The results from table 5 are
plotted in �gure 32.

Table 5: Table over the �rst three normalized tower mode shapes for transversal
displacements.
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Table 6: Properties of the �rst three tower modes.

Table 6 presents the natural frequencies of the relevant modes. It also shows the corre-
sponding modal mass, sti�ness and damping, as de�ned by equations (86) and (87).

Figure 32: Plots of the �rst three normalized tower mode shapes for transversal
displacements.
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4.2 Simpli�ed Thrust Force Model

Using 660 second time series simulated in FAST for all 15 load cases, where the initial 60
seconds are discarded to exclude transient e�ects, the parameters of the simpli�ed rotor
thrust force model proposed in section 3.5 have been estimated using the Matlab script
in attachment 9. The proposed simpli�ed load model describing the rotor thrust, T , is
repeated below for convenience.

T (Vref , v(t)) = T̄ (Vref ) + t̂ (Vref , v(t))

where

T̄ (Vref ) = C̄s V
α
ref

and

t̂ (Vref , v(t)) = Ĉs V
β
ref v(t)

The �tted parameters are presented in table 7 for two intervals of reference wind veloci-
ties. Gravity loads, movement of the structure and rotor blades is included in the FAST
simulations, but the tower shadow e�ect is not. The time step used is ∆t = 0.0125 s.

Table 7: Estimated simpli�ed load model parameters.

Figure 33 and 34 respectively show the �t of the simpli�ed load model to the mean
thrust, T̄ , and the turbulence proportionality constant, Ĉs V

β
ref , estimated from the FAST

simulations.
The former is �tted to the mean thrust from simulations using the least squared error
method. The latter is estimated as a value that yields a model variance of the force
�uctuations as close as possible to the simulated sample variance, if the same wind
velocity time series are used. It is worth noting that the proposed load model assumes
that the thrust �uctuations goes to zero when the mean wind velocity goes to zero. This
does not seem to be entirely accurate, resulting in a relatively coarse variance �t for
reference wind speeds below the cut-in velocity of 4 m/s.
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Figure 33: Plot showing the �t of the simpli�ed load model with respect to the mean
thrust value.

Figure 34: Plot showing the �t of the simpli�ed load model with respect to the
turbulence proportionality constant Ĉs V

β
ref .
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Figures 35 to 39 presents the time series of the FAST thrust simulations and the respective
simpli�ed thrust simulations obtained using the same wind velocity samples. The same
�gures also show the power spectral densities of these samples, and the analytical thrust
�uctuation PSD for the simpli�ed model with turbulence described as an AR(1) process.

In equation (115) and (116), the analytical autocovariance function of the thrust �uctu-
ations, calculated from the simpli�ed model using �rst order autoregressive turbulence
with known autocovariance Cv(τ) and variance spectrum Sv(ω), is denoted CT (τ). The
corresponding variance spectrum is denoted ST (ω).
The analytical autocovariance function of the rotor thrust �uctuations could now be
calculated as:

CT (τ) = E[T (t)T (t+ τ)]

= E[(Ĉs V
β
ref v(t)) (Ĉs V

β
ref v(t+ τ))]

= (Ĉs V
β
ref )2E[v(t) v(t+ τ)]

= (Ĉs V
β
ref )2Cv(τ).

(115)

ST (ω) from �gures 35 to 41 could be found as shown in equation (116) by using CT (τ)
from equation (115) and the de�nition of a variance spectrum from equation (22).

ST (ω) =
1

2π

∫ ∞
−∞

CT (τ) e−iωτ dτ

=
1

2π

∫ ∞
−∞

(Ĉs V
β
ref )2Cv(τ) e−iωτ dτ

= (Ĉs V
β
ref )2 Sv(ω)

(116)

Figure 40 and 41 show PSD sample estimates for load case 2 and 10 at low frequencies.
In these �gures, multiples of the rotor frequency is marked at 3P = 0.37 Hz and 6P =
0.73 Hz for load case 2, and 3P = 0.61 Hz and 6P = 1.21 Hz for load case 10.

Figures 42 to 45 presents 100 second autocovariance plots of the thrust force �uctuations
for the four load cases 2, 4, 8 and 12. These �gures show that the correlation in the
thrust behaves quite di�erently for di�erent load cases, something that is also supported
by the plotted variance spectra.
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Figure 35: Figure showing, for load cases 1-3, time series of the rotor thrust for FAST
simulations and simpli�ed model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust �uctuations calculated using the

AR(1) thrust spectra de�ned by the parameters presented in section 4.3, is also included.
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Figure 36: Figure showing, for load cases 4-6, time series of the rotor thrust for FAST
simulations and simpli�ed model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust �uctuations calculated using the

AR(1) thrust spectra de�ned by the parameters presented in section 4.3, is also included.
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Figure 37: Figure showing, for load cases 7-9, time series of the rotor thrust for FAST
simulations and simpli�ed model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust �uctuations calculated using the

AR(1) thrust spectra de�ned by the parameters presented in section 4.3, is also included.
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Figure 38: Figure showing, for load cases 10-12, time series of the rotor thrust for FAST
simulations and simpli�ed model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust �uctuations calculated using the

AR(1) thrust spectra de�ned by the parameters presented in section 4.3, is also included.
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Figure 39: Figure showing, for load cases 13-15, time series of the rotor thrust for FAST
simulations and simpli�ed model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust �uctuations calculated using the

AR(1) thrust spectra de�ned by the parameters presented in section 4.3, is also included.
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Figure 40: Sample PSD plots at low frequencies for load case 2, with marked multiples of
the rotor frequency, 1P.

Figure 41: Sample PSD plots at low frequencies for load case 10, with marked multiples
of the rotor frequency, 1P.
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Figure 42: 100 second autocovariances of the di�erent thrust force �uctuations
for load case 2, Vref = 4 m/s.

Figure 43: 100 second autocovariances of the di�erent thrust force �uctuations
for load case 4, Vref = 8 m/s.
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Figure 44: 100 second autocovariances of the di�erent thrust force �uctuations
for load case 8, Vref = 16 m/s.

Figure 45: 100 second autocovariances of the di�erent thrust force �uctuations
for load case 12, Vref = 24 m/s.
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4.3 Estimated First Order Autoregression Parameters

4.3.1 AR(1) Parameters Describing Turbulence

In this thesis I utilize autoregression in order to incorporate frequency dependent forcing
into the probability density evolution method. Table 8 presents the estimated �rst order
autoregression parameters describing turbulence for sampling time steps of ∆t = 0.0125 s
and ∆t = 0.05 s. This is done for all 15 load cases de�ned in section 3.4.
The parameters have been estimated by numerically curve �tting the di�erent AR(1)
spectra to Kaimal spectra using the Matlab script from attachment 5. The columns
named σtot shows the total standard deviations of the autoregressive models found by
integrating over the AR spectra.

Plots of the estimated AR(1) spectra and their respective underlying Kaimal spectra are
shown in attachment 10, �gure 60 to 63.

Table 8: Table showing estimated AR(1) parameters describing turbulence in the 15 load
cases for time steps of ∆t = 0.0125 s and ∆t = 0.05 s.

4.3.2 AR(1) Parameters Describing Simpli�ed Thrust Fluctuations

Given the autoregression parameters of the wind turbulence, v(t), the corresponding
parameters of the thrust �uctuations described by the simpli�ed model could be easily
derived since the rotor thrust depends linearly on turbulence.
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Let φv and σv be the AR(1) properties for turbulence given in table 8. Wind turbulence
would now be estimated as shown in equation (117).

vt = φv vt−1 + Zv,t (117)

In equation (117), Zv,t is white noise Gaussian distributed with mean 0 m/s and standard
deviation σv. Using equation (97) the AR(1) estimated thrust �uctuations are found to
be described by

t̂t = Ĉs V
β
ref vt

= Ĉs V
β
ref (φv vt−1 + Zv,t)

= φv t̂t−1 + Ĉs V
β
ref Zv,t

= φt̂ t̂t−1 + Zt̂,t.

(118)

This leads to the result that φt̂ = φv, and that Zt̂,t is white noise Gaussian distributed

with mean 0 N and standard deviation σt̂ = Ĉs V
β
ref σv. Values of these parameters for

time steps of ∆t = 0.0125 s and ∆t = 0.05 s are shown in table 9.
The total standard deviation of the AR(1) described thrust �uctuation process is also

calculated using equation (68) as σtot,AR =
√
σ2
t̂
/(1− φ2

t̂
), and presented together with

the sample standard deviation from the FAST simulations,
√
S2tot,FAST .

Table 9: Table showing estimated AR(1) parameters describing thrust �uctuations in the
15 load cases for time steps of ∆t = 0.0125 s and ∆t = 0.05 s.
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4.4 Response of Tower Top to Rotor Thrust

This section presents results obtained for the tower top response to thrust from the
wind turbine rotor. Finite element MCS results are presented as estimated PDFs using
kernel smoothing on 1800 second response time series with a time step of 0.0125 seconds,
resulting in 144000 sample points. The estimated response of the structure have also
been calculated for the two �rst modes, using theory presented in section 2.1. In these
calculations, the analytical Kaimal spectra have been used to describe wind velocity
turbulence, while the thrust force are described using the simpli�ed load model from
section 4.2. The modal structure properties used are those presented in 4.1.

Figure 46: Tower top displacement for the 15 load cases estimated from time domain
simulations in FAST (shown in red), and calculated analytically for the �rst mode using

the simpli�ed load model (shown in blue).

72



Figure 46 and 64 respectively show the total tower top displacement and velocity response
from FAST, and the �rst mode responses estimated using the simpli�ed load model.
Figure 64 could be found in attachment 11.

Table 10 show statistical properties of the estimated displacement responses. S1 is the
sample mean of the 1800 second FAST simulations, while

√
S2 is the sample standard

deviation of the same simulations. µu1 is the analytical mean value of the �rst mode
response, calculated using the simpli�ed load model:

µu1 = φ1,20 ·
C̄s V

α
ref

K̃1

. (119)

σu1 is the analytical standard deviation of the �rst mode response to excitation by the
simpli�ed load model:

σu1 =

√
φ2

1,20 ·
∫ ∞

0
|H(ω)|2 S+

T (ω) dω

= φ1,20 · Ĉs V β
ref

√∫ ∞
0
|H(ω)|2 S+

v (ω) dω.

(120)

Figure 47 is a plot of the ratio between S1 and µu1, and
√
S2 and σu1, for all 15 load

cases.

Table 10: Table presenting statistical properties of estimated tower top displacements.
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Figure 47: Plots showing the two ratios from table 10.

Figures 48, 49, 50 and 52 respectively show enlarged plots of the estimated displacement
distributions for load case 2, 6, 4 and 10. These �gures include plots of response distri-
butions found using probability density evolution with white noise excitation. Figure 50
and 52 also present distributions found using the probability density evolution with the
previous force realization incorporated using �rst order autoregression.
Figure 51 and 53 show plots of the analytical model force spectrum, the corresponding
�tted AR(1) spectrum and the constant white noise spectrum near the natural frequency
of the �rst mode for load case 4 and 10. These spectra are plotted with the squared
frequency response function of the �rst mode using a logarithmic y-axis.

Figure 54 and 55 presents joint probability density plots of the tower top displacement
and velocity response. Figure 54 is the MCS results from FAST simulations, while the
results in �gure 55 is found analytically for the �rst mode using the simpli�ed load model
and Kaimal turbulence spectra directly.

Figure 56 show the estimated displacement response distributions for the second mode,
calculated analytically using the simpli�ed load model and Kaimal turbulence spectra.
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Figure 48: Probability distributions of tower top displacement for load case 2.

Figure 49: Probability distributions of tower top displacement for load case 6.
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Figure 50: Probability distributions of tower top displacement for load case 4.

Figure 51: Semi-logarithmic plots of the thrust variance spectra near the natural
frequency of mode one for load case 4. Plotted with the transfer function of the modal

coordinate response.
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Figure 52: Probability distributions of tower top displacement for load case 10.

Figure 53: Semi-logarithmic plots of the thrust variance spectra near the natural
frequency of mode one for load case 10. Plotted with the transfer function of the modal

coordinate response.
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Figure 54: Contour plot showing the joint probability density of the displacement and
velocity response, estimated using 1800 second FAST simulations.
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Figure 55: Contour plot showing the joint probability density of the displacement and
velocity response for the �rst mode, estimated using the simpli�ed load model.
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Figure 56: Tower top displacement distributions calculated analytically for the second
mode using the simpli�ed load model.

4.5 First Mode Response Contribution from Nonlinear Wind Loads
Along the Tower for Load Case 2

The tower top response to wind loads acting along the tower for load case 2 has been
estimated for the �rst fore-aft mode using both 1200 second Monte Carlo simulations
and probability density evolution.

Figure 57: Estimated probability distributions of �rst mode tower top displacement for
wind loads distributed along the tower. The wind loads are described by load case 2.
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The time step used in Monte Carlo simulations is 0.0125 seconds, resulting in 96000
sampling points. Figure 57 presents the estimated displacement response distributions.
A contour plot of the estimated joint displacement-velocity response using Monte Carlo
simulation is shown in �gure 58. The turbulence time series used in this simulation
was generated by spectral decomposition of the Kaimal spectrum for load case 2. The
corresponding PDE result for white noise excitation is presented in �gure 59. A time
step of 0.04 seconds was used in the PDE iterations. The domain discretizations were
chosen as dX = 7.5 · 10−6 m, dẊ = 1.5 · 10−5 m/s and dF = 8 N.

Figure 58: Result of a 1200 second Monte Carlo simulation of the tower top response
under LC2 wind loads along the tower, for the �rst mode.

Figure 59: The tower top response under LC2 wind loads along the tower, estimated for
the �rst mode using white noise probability density evolution.
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5 Discussion

In this section, the results presented in section 4 are evaluated and discussed.

Modal Properties

In [2], Jonkman et al. states that the full-system natural frequencies for the two �rst fore-
aft tower modes are found to be 0.3240 Hz and 2.9003 Hz, respectively. This corresponds
well with the modal results presented in section 4.1, using a tower divided into 20 degrees
of freedom. A higher accuracy is observed for the �rst mode, as could be expected because
of the discretization.
The modal sti�ness for the �rst mode could also be approximated by applying a point
load to the top of the tower and treating it as a cantilever. Using the �exibility matrix
in table 11, this modal property could be approximated as the inverse of the entry in the
20th row of the 20th column. This results in an estimated modal sti�ness of 1807200 N/m,
a value deviating only 1.8 kN/m from the one presented in table 6. The modal properties
of the structure seems sensible for the early modes considered in this thesis.

It should be borne in mind that the real structure might not act linear, due to e�ects
in�uencing the observed structural properties not accounted for. Examples of this could
be gyroscopic forces from rotating machinery and e�ects of the turbine control system.
The assumption of a structure that behaves linearly must therefore also be viewed as a
model of the realistic situation.

One could suspect, based on the mode shapes presented in table 5 and �gure 32, that the
�rst mode would dominate the response of the tower top because of the small mode shape
amplitudes at this point for the higher modes. This low modal amplitude is an e�ect of
the relatively large point mass at the top of the tower representing the nacelle and rotor
masses. This suspicion is strengthened by the fact that higher eigenfrequencies than the
�rst would lie far from the main portion of the thrust �uctuation energy content, which
is shown to occur at low frequencies in �gure 35 to 41.

The Simpli�ed Load Model and its Autoregressive Description

The load model is split into two intervals, with one set of model parameters between
reference wind velocities of 2 m/s and 11 m/s, and one set between 11 m/s and 30 m/s.
The rotor thrust force is obviously heavily in�uenced by the turbine control system. The
sudden change in behavior around the rated wind speed of 11.4 m/s, which could be
observed in �gure 33 and 34, is caused by stall development as a turbulent wake forms
above the airfoil because of separation of the boundary layer from the surface. Stalling
of the blades is used to reduce the power from the wind turbine at high wind velocities,
resulting in a close to constant power production in this range.

Figure 33 corresponds well with the thrust values for mean wind velocities presented by
Jonkman et al. in [2]. From �gure 33 and 34 one could observe that the mean value and
variance of the load model thrust follows the behavior of the thrust obtained from FAST
results closely for most load cases. This could also be seen by directly comparing time
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series of both thrust simulations, plotted for the same wind history over 600 seconds in
�gure 35 to 39. One exception is for load case 1, where the variance of the simpli�ed
thrust is relatively low and the mean value relatively high. The overall good description of
mean and variance is obviously an expected result, since the load model parameters were
estimated as those giving the best �t of the model to these two statistical properties of the
FAST simulations. Even though the simpli�ed load model do provide a good estimate of
the realistic mean value and variance of the rotor thrust, this does not necessarily imply
that the proposed load model is accurate enough to provide a good structural response
estimate.
Particularly, in order to test a plausible load model as simple to use and derive as possible,
no measures were taken to match the variance spectra of the load model with the sample
variance spectra of rotor thrust simulations. It is therefore an implicit assumption in
the simpli�ed load model that the frequency energy content of the rotor thrust could
be reasonably described as proportional to the frequency energy content of the wind
turbulence. To assess the validity of this assumption, both power spectral densities and
sample autocovariances was presented in section 4.2.

First of all, comparing the PSD plots in �gure 35 to 39 one could see that �rst order
autoregression describes the frequency content of the proposed load model well. This is
also observed in the autocovariance plots.
The good estimation of an AR(1) load spectrum to the analytical load spectrum, cal-
culated using the simpli�ed load model and the Kaimal turbulence spectrum, provides
an excellent �t of the two modeled variances. The load model proposed in this thesis is
therefore in general accurately described by �rst order autoregression. This also leads to
a good �t of the AR(1) estimated thrust variance and the sample thrust variance of the
FAST simulations, which could be observed in table 9. From this table it could also be
observed that the AR(1) parameter φ is in general estimated as a value close to one. This
supports other �ndings showing that the modeled stochastic processes is subjected to a
considerable degree of correlation, and that white noise would describe the relationship
between thrust realizations poorly.

Even though the PSD plots show that �rst order autoregression seems to describe the
behavior of the simpli�ed load model well, they also show that the proposed load model
fail to account for distinct peaks in the low frequency region of the simulated thrust
spectra. This is by extension also true for the AR(1) spectra since it is an estimate of
the simpli�ed load model spectra.

Such periodic contributions to the thrust stems from the rotor, and could usually be
identi�ed as multiples of the rotational frequency. These multiples are denoted 1P, 2P
and so on, where 1P is the fundamental rotational frequency.
For load case 2, the average rotational velocity of the rotor is about 7.3 rpm, which
would result in a 1P of 0.12 Hz, a 3P of 0.37 Hz and a 6P of 0.73 Hz. The two latter
rotor frequencies could easily be identi�ed as peaks in the PSD of the thrust for load
case 2, presented in �gure 40. The 3P rotor frequency, representing the blade passing
frequency for a three bladed rotor like the one considered, contains the highest periodic
energy content for this load case. This frequency could also be readily observed in the
autocorrelation plot of the simulated thrust in �gure 42.
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When studying the spectral densities for both the turbulence from attachment 10 and
the thrust from section 4.2 in light of the modal properties presented in table 6, one has
reason to suspect that these cyclic loads indeed would a�ect the estimated structural
response of the turbine.
This is because the greater part of the energy content in the thrust �uctuations described
by the simpli�ed load model would lie below the �rst natural frequency of the structure,
0.336 Hz. In practice, this would provide a close to quasistatic loading situation where
inertial e�ects would only have a small impact on the estimated response. This is not
particularly accurate if periodic rotor loads contribute with signi�cant energy content at
similar or higher frequencies than that of the �rst mode.
In addition to missing peaks in energy content at these speci�c frequencies, the accuracy
of the estimated response could also be a�ected by the fact that the total variance of the
thrust �uctuations are preserved when Ĉs V

β
ref is �tted as described in section 4.2. This

basically leads to a simpli�ed load model where energy peaks at relevant rotor frequencies
are missing, but the variance contribution contained in those peaks are spread out over
all frequencies.

Even though these periodic thrust contributions could be seen in the PSD plots for all
load cases, the energy content of the peaks decrease relative to the rest of the spectra
as the reference wind velocity and turbulence standard deviation increase. It is also a
point that the positioning of the peaks would move further away from the �rst natural
frequency of the structure, towards higher frequencies, until the turbine reaches the rated
rotational speed of the rotor.
For load case 10 the rotational velocity of the rotor is 12.1 rpm, which is the rated
speed. This results in a 3P frequency of 0.61 Hz and a 6P frequency of 1.21 Hz. In
�gure 41, both peaks are now lower compared to the general trend of the PSD than for
load case 2. Because of these e�ects, cyclic rotor loads could be suspected to a�ect the
response somewhat more at lower wind velocities.

Estimated Response Distributions and Evaluation of the Probability
Density Evolution Method

As suspected from evaluating the system eigenvectors, the fore-aft tower top response
seems to be dominated by the �rst mode. Comparing �gure 46 and 56, the displacements
for the second mode are roughly estimated to be about 0.5 % of the corresponding
�rst mode displacements. Provided that the dynamic model describes the structure and
excitation accurately, the response of the �rst mode should therefore provide a reasonable
estimate of the total response. Unfortunately, the accuracy of the proposed simpli�ed
dynamic model seems somewhat debatable.

Considering �gure 46 and table 10 one could see that use of the proposed simpli�ed load
model probably overestimates the true mean value of the displacement response of the
tower top for all load cases. The analytically solved model response distributions also
show that the response variance appears to be overestimated for all load cases except the
two �rst.
As could be seen from �gure 47, the ratios between the model values of mean and variance
and the simulated values are fairly constant from load case 4 to 15. In this range of
reference wind velocities the average value of S1/µu1 is about 83 %, while

√
S2/σu1 is

85



about 49 %. A slight increasing trend in the �t of both response mean and variance
could still be observed for wind velocities above 20 m/s in �gure 47.
Discrepancies between simulated response and model response could be caused by either
the model structure or the model thrust, since both of these are simpli�ed. Most probably,
they are caused by a combination of both.

Since all the mean displacements seem to be overestimated, one could argue that the
modal sti�ness obtained for the linearized model structure seem to result in a system
that behaves too soft compared to the real turbine including its nonlinear e�ects.
It is obvious that the control system of the turbine, by de�nition, would a�ect the
response to some degree. This is perhaps most visually apparent in �gure 46 for load
case 6 (presented as an enlarged plot in �gure 49), which has a reference wind velocity
of 12 m/s, just above the rated wind velocity of 11.4 m/s. This is a wind velocity region
where the control system would a�ect the thrust signi�cantly as stalling of the blades
are initiated, causing two peaks to appear in the FAST simulated Monte Carlo estimate
of the distribution. The control system could also be responsible for at least some of the
skewness observed in a couple of the simulated response distributions.

While the linearization of the structure could account for some discrepancies, the load
model is also likely to a�ect the estimated response since it neglects cyclic rotor con-
tributions to thrust. This could partially explain the higher response variance in load
case 1 and 2, as these reference wind velocities produce 3P rotor frequencies of about
0.30 Hz and 0.37 Hz respectively, close to the fundamental natural frequency of the tower
at 0.34 Hz. As previously mentioned, the estimated response for load case 1 and 2 is also
in�uenced by a relatively low thrust �uctuation variance from the model.
As the reference wind velocity increase beyond 4 m/s one could see from �gure 47 that
the variance given by the response to the load model becomes larger than the simulated
response variance. One possible explanation for this is that the 3P frequency peak moves
away from the fundamental natural frequency of the system and therefore makes a smaller
impact on the simulated response. This is now combined with the e�ect of an arti�cially
high energy content distributed over all frequencies in the load model, originating from
the neglected periodic thrust contributions.
An observation supporting this hypothesis is that the displacement response variance
calculated for the �rst mode using the simpli�ed load model seems to approach the true
variance of the displacements for high wind velocities, where the energy content in the
rotor frequency peaks is less compared to the general spectral density.

From the �rst mode model response distributions obtained by PDE in �gure 48, 49, 50
and 52, one could see that probability evolution gives a reasonable estimate of the an-
alytical �rst mode response distribution. This is even true for PDE using white noise
excitation in some cases. All PDE response estimates in these �gures are found using a
iteration time step of 0.05 seconds.
One noteworthy thing to learn from these distributions is the apparent importance of
the spectral magnitude of the load process for frequencies close to the natural frequency
of the structure. The spectra in this region is plotted with the squared transfer function
of the structure for load case 4 in �gure 51, and for load case 10 in �gure 53.
For load case 4 the white noise force spectra happens to lie closer than the approximated
AR(1) spectra to the theoretical model force spectra near the natural frequency of the
�rst mode. As could be observed in �gure 50, PDE with white noise excitation would
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in this case actually yield a better estimate of the model response than correlated PDE
using the relevant �tted AR(1) parameters. For load case 10, �gure 53 reveals that the
white noise spectra and the AR(1) spectra have approximately similar spectral densities
near the fundamental natural frequency of the structure. This produces close to identical
displacement response distributions using probability density evolution with and without
incorporated force correlation.
In both of these load cases, the white noise and �tted AR(1) spectra have a smaller mag-
nitude than the real spectrum of the simpli�ed thrust near the natural frequency. This
produces estimated response distributions with a smaller variance than the theoretical
distribution obtained using equation (27)

Even though white noise excitation happens to give relatively accurate response for this
particular time step, dynamic model and load cases, this is in no way thought to be true
in general. For example, by using half the time step in iterations, the Nyquist frequency
doubles and the constant white noise spectra ends up with half its current magnitude.
When considering all frequencies, the autoregressive model would give a much better
estimate of the entire thrust model spectra than a constant spectra would. It is therefore
not hard to �nd situations where PDE with white noise excitation results in a much
poorer estimation of the structural response than PDE with AR(1) correlated excitation,
something that the example in section 3.6.2 clearly illustrates.
The transfer function in section 3.6.2 also has a broader peak at the natural frequency,
since this system is more damped. This makes the gradient of the excitation spectrum
even more important. This gradient could obviously not be described using a constant
spectrum.

Two important conclusions could be made from these PDE results. First of all, it could
be seen that if the structure is modeled as a single degree of freedom system with low
damping, then a carefully selected iteration time step could result in a fairly accurate
displacement response distribution using PDE with white noise excitation. This could
be useful in some situations since the inclusion of the previous force realization as an
additional dimension in the state space is computationally expensive. However, one
should be aware that changing the time step is closely related to the discretization of the
state space, accuracy and e�ciency of the method. One should also note that by doing
this, one would lose some information about the velocity and acceleration of the response
process.

Second of all, �rst order autoregression seems well suited to represent the correlated
forcing for the load model proposed in this thesis. However, one should note that a
close �t of the autoregression spectra for frequencies close to the natural frequency might
actually be more valuable than a �t that is as good as possible in a global frequency
perspective. The latter approach is used to obtain estimates of the autoregression spectra
used in this thesis.

As shown in �gure 64 from attachment 11, the estimated velocity responses is in general
less accurate than the estimated displacements. This is as expected for velocity response,
because of the time di�erentiation a�ecting numerical accuracy.
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Response to Nonlinear Wind Loads Along the Tower for Load Case 2

Section 4.5 was included to demonstrate the strength of the probability density evolution
method associated with nonlinear excitation. As could be observed by the results, the
white noise evolution of the structural response to any forcing probability density function
is trivial as long as this function is known.

Probability evolution with white noise forcing provides a reasonable estimate of the tower
top response. The magnitude of this response is very small compared to the estimated
rotor thrust response, and the neglection of tower wind loads in the simpli�ed load model
therefore seems justi�able for this load case.

In order to obtain an even more accurate response distribution, the challenge would in
this case be to model the correlation of the force, or the conditional probability of having
the current force realizations given the previous one. This correlation would, in contrast
to the AR(1) modeled correlation of the simpli�ed thrust earlier in the thesis, not be
independent of the value of the previous force realization.
One way to see this is by trying to write the modal force of mode j as a �rst order
autoregressive process like it is shown in equation (121). In this equation, turbulence is
still assumed to be accurately modeled as a �rst order autoregressive model also.

Rj(t) = Âj v(t)2 + B̂j v(t) + Ĉj

= Âj (φv vt−1 + Zv,t)
2 + B̂j (φv vt−1 + Zv,t) + Ĉj

= Âj φ
2
v v

2
t−1 + 2Âj φv vt−1 Zv,t + Âj Z

2
v,t + B̂j φv vt−1 + B̂j Zv,t + Ĉj

(121)

As opposed to the simpli�ed thrust �uctuations in equation (118), the modal force in
equation (121) could not be written on the form of an AR(1) model. All terms involving
Zv,t in this equation would contribute to the variance of the current modal force realiza-
tion, and the cross term 2Âj φv vt−1 Zv,t would make this variance dependent on the last
realization.
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6 Conclusion

The linearized structure properties derived in 4.1 corresponds well with results presented
by Jonkman et al. in [2]. Both eigenvalues and eigenvectors of the model structure
suggests that the �rst mode would contribute much more to the total response of the
tower top than other modes. This is because of the relatively large mass in this point
representing the nacelle and rotor, and because the natural frequencies of higher modes
are found far from the low frequency main part of the modeled thrust spectra.

In sections 3.5 and 4.2, a simpli�ed load model was proposed to describe the rotor thrust
force of the 5-MW reference turbine. In this initial study it was desirable to assess the
accuracy of a dynamic model that was simple to derive and use.
The proposed load model conserves the mean value and total variance of the simulated
rotor thrust force, but is built on the assumption that the thrust force spectra could be
estimated as one that is proportional to the turbulence spectra. This approximation does
not seem to be good enough, as pronounced spectral peaks from cyclic rotor loads are
not accounted for. In fact, cyclic rotor loads might contribute even more to the thrust
force as the tower shadow e�ect is not considered in this thesis.
This is suspected to a�ect the accuracy of the estimated response negatively in two
ways. First of all, it would lead to a falsely low response variance if a non-negligible
multiple of the rotor frequency happens to be close to the fundamental natural frequency
of the structure, which indeed is the case for low wind velocities. For the dynamic
model described in this thesis the majority of the modeled thrust �uctuation energy
content lies below the �rst natural frequency, leading to a system that in practice behaves
quasistatically.
It would also lead to a falsely high energy content at other frequencies since the energy in
these peaks are still accounted for by �tting the model thrust variance to the simulated
thrust variance. These suspicions are supported by the variances observed in estimated
response distributions for di�erent load cases.

In this thesis the probability density evolution method is successfully used to estimate the
response distribution of single degree of freedom systems. It is also shown how correlated
excitation could be successfully implemented into the cell-mapping method, provided that
the stochastic process could be reasonably modeled using autoregression. The results,
both for the example in section 3.6.2 and the structure response to the simpli�ed load
model in section 4.4, show that incorporating the previous force realization into the
state space certainly has the potential to provide improved response estimates for such
dynamic systems. However, one should be aware that a good �t of the autoregressive
spectra for frequencies near the natural frequency of the structure in many cases would
result in a better estimate of the response than an autoregressive spectra that provides
the best possible global �t.
If the modeled damping is small and the structure is modeled with a single degree of
freedom, then PDE with white noise excitation could also yield a good estimate of the
displacement response. However, adjusting the constant white noise spectra to match
the model force spectra near the natural frequency would in principle imply changing
the iteration time step. This could be problematic for several reasons. One also looses
information about the velocity and acceleration response of the structure.
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It is shown that �rst order autoregression provides a satisfactory estimate of the Kaimal
turbulence spectra, and also of the proposed thrust �uctuation spectra because of the
linear relationship between the two. Using autoregression to accurately account for the
periodic correlation observed in rotor thrust simulations would however require a higher
order model.
It is also observed that nonlinear load processes, which would be relevant for example
when considering wave induced forces acting on a site-speci�c o�shore sub-structure,
might be less accurately described by �rst order autoregression than the current proposed
load process.

As mentioned in the introduction, this is the �rst thesis written on PDE at the NTNU
O�shore Wind Turbine Technology group. We have learned a lot, and the method shows
great potential to be used in future projects involving simpli�ed dynamic descriptions of
wind turbines.

Recommendations and Comments for Future Studies

This thesis provides a starting point for further development of an accurate and reliable
simpli�ed dynamic model describing an o�shore wind turbine. There are still many
unresolved issues and possible improvements to be examined in future studies.

Improving the load model would be a natural way to continue these studies. In this case,
the accurate response estimation of an onshore wind turbine should be a �rst priority.
This would essentially involve considering cyclic thrust contributions from the rotor.
This could be done by deriving a simpli�ed load spectra model that includes the most
prominent peaks due to rotor thrust contributions. However, this would de�nitely pose
a challenge when PDE should be used to estimate the response distribution. First order
autoregression would in this case not be able to capture the necessary force correlation,
and using a higher order autoregression model would increase the state space exponen-
tially resulting in considerable loss of computational performance.
One possible solution is to use a simpli�ed spectrum like the one used in this thesis, but
to �lter out variance from the peaks, for example by utilizing rotational sampling theory
presented by Connell in [29]. By doing this, the periodic thrust contributions from the
rotor could possibly be approximated as deterministic harmonic forces and therefore be
kept separate from the probability evolution of the response due to wind. In this case
the displacements due to cyclic rotor thrust would somehow have to be combined with
the evolved displacements.

When a good dynamic model of an onshore turbine is established, the load model could
be expanded to include wave loads acting on o�shore sub-structures by using theory from
section 2.3.3.
This would involve introducing the water particle velocity as another random variable,
expanding the state space with at least one dimension. Additional dimensions might
be necessary depending on how correlation of the wave loads are modeled. From the
discussion of nonlinear load models one could conclude that �rst order autoregression
might not directly describe nonlinear load processes as nicely as it describes the proposed
load process in this thesis. Parallel computing would certainly be unavoidable if the state
space is to be expanded with even more dimensions.
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Even if an accurate model giving the approximate response distribution of an o�shore
wind turbine is eventually obtained, this is not a particularly useful result in its own
right. The ultimate goal is to estimate the fatigue damage of various structural parts of
the tower and sub-structure. The response distributions could readily be converted to
stress distributions using mechanics theory. However, in order to obtain the necessary
stress range distributions one would also have to gain knowledge about the total number
of stress peaks.
For a narrow banded process x, this number of peaks could be estimated using the
expected number of a-upcrossings per unit of time, ν+

x (a). That is, the expected number
of times a process crosses a given threshold a, heading upwards, per unit of time. This
number is found, as shown in equation (122), as the integral over all positive velocities
ẋ of the product between the positive velocity and the joint probability of having that
velocity at the displacement threshold a. [6]

ν+
x (a) =

∫ ∞
0
ẋ fxẋ(a, ẋ) dẋ (122)

For a broad banded process the number of a-upcrossings per unit of time does not neces-
sarily equal the number of peaks per unit of time, and this could possibly pose a challenge
when estimating fatigue damage exclusively using the joint response distribution.
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7 Attachments

7.1 Attachment 1:

Matlab script used to perform calculations of analytical SDOF
response to stochastic excitation in section 2.1.3.
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%
% John Magne Hembre 2014
%
% Script written to find and analyze response of a single degree of 
% freedom system subjected to stationary stochastic delta-correlated 
% (white noise) gaussian forcing.
% 
clc
clear
close all
tic
%
% INPUT:
%%%%%%%%%%%%%%%%%%%%
 
% Forcing properties:
mu_f=0;  
% Mean value of gaussian force F [N]
var_f=25;  
% Variance of gaussian force F [N^2]
 
% Timespan properties:
reclength=620;   
% Record length [s]
timestep=0.05;  
% Timestep [s]
initial=20;
% Initial time period to be disregarded in the response calculation [s]
% (to obtain stationary signal without start-up singularity)
freqresolution=100000;
% Frequency resolution, deltafreq=fn/freqresolution
 
% SDOF Structure properties:
M=1;
% System mass [kg]
zeta=0.05;
% System damping [-]
K=3;
% System stiffness [N/m]
 
% Visualization properties:
histres=75;
% 3D histogram resolution
 
%%%%%%%%%%%%%%%%%%%%
 
SD_f=sqrt(var_f);
% Standard deviation of force signal [N]
n=reclength/timestep;              
% Number of timesteps
forcevec=normrnd(mu_f,sqrt(var_f),n,1);  
% Vector of gaussian distributed forces
timevec=timestep:timestep:reclength;
% Vector of time values
if initial~=0
initialsteps=initial/timestep;
% Number of initial timesteps to be disregarded
end
 
fs=1/timestep;        
% The sampling frequency [Hz]
fn=fs/2;                       
% The Nyquist frequency [Hz]
 



% Determining S0:
S0=var_f/fn;
S0_omega=S0/(2*pi);
 
frequencies=0:fn/freqresolution:fn;
% Vector of the frequencies considered, in Hz. 
omegafrequencies=frequencies*2*pi;
% Vector of the angular frequencies considered, in rad/s. 
 
% Defining the Gaussian Probability Distribution:
gauss=@(mu,sigma,y) (1/(sqrt(2*pi)*sigma))*exp(-0.5*((y-mu)/sigma).^2);
 
% Defining the Joint Gaussian Probability Distribution, rho=0 for 
% uncorrelated variables:
jointgauss=@(mu_1,sigma_1,y_1,mu_2,sigma_2,y_2) ((1/(sqrt(2*pi)*sigma_1))*...
    exp(-0.5*((y_1-mu_1)/sigma_1).^2))*...
    ((1/(sqrt(2*pi)*sigma_2))*exp(-0.5*((y_2-mu_2)/sigma_2).^2));
 
y_f=mu_f-(4*sqrt(var_f)):(2*4*sqrt(var_f))/1000:mu_f+(4*sqrt(var_f));
 
omega0=sqrt(K/M);
% Angular natural frequency of the SDOF system [rad/s]
omegad=omega0*sqrt(1-zeta^2);
% Damped angular natural frequency of the SDOF system [rad/s]
natfreq=omega0/(2*pi);
% Natural frequency of the SDOF system [Hz]
 
% Defining the SDOF system impulse response function:
hx=@(r) (exp(-zeta*omega0*r)/(omegad*M))*sin(omegad*r);
 
% Defining the SDOF system impulse velocity response function:
hxdot=@(rr) (exp(-zeta*omega0*rr)/(omegad*M))*((omegad*cos(omegad*rr))-...
    (zeta*omega0*sin(omegad*rr)));
 
% Defining the squared SDOF system frequency response function:
Hfxsquared=@(omega) abs(1/(M^2*((omega0^2-
omega^2)^2+(2*zeta*omega0*omega)^2)));
 
% Generating vector of the squared transfer function to plot,
% and calculating sigma_x=S0*int(|H(omega)|^2):
Hfxsquaredvec=zeros(length(frequencies),1);
Sx=zeros(length(frequencies),1);
var_x=0;
var_xdot=0;
deltaomegafreq=(omegafrequencies(2)-omegafrequencies(1));
for i=1:length(omegafrequencies)
    Hfxsquaredvec(i)=Hfxsquared(omegafrequencies(i));
    Sx(i)=Hfxsquaredvec(i)*(S0_omega);
    % Finding Sx=|Hfx|^2*Sf, where Sf=S0 (constant), times 2*pi 
    % since S0(omega)=S0(f)/(2*pi)
    var_x=var_x+(Sx(i)*deltaomegafreq);
    var_xdot=var_xdot+(Sx(i)*(omegafrequencies(i)^2)*deltaomegafreq);
end
 
x_total=zeros(n,1);
xdot_total=zeros(n,1);
hx_vec=zeros(n,1);
hxdot_vec=zeros(n,1);
hx_static=0;
hxdot_static=0;
for t=1:n
    x_impulse=0;
    xdot_impulse=0;
    for s=1:t



            x_impulse=x_impulse+forcevec(s)*hx((t-1)*timestep-(s-
1)*timestep)*timestep;
            % Displacement response at t due to impulse at s
            xdot_impulse=xdot_impulse+(forcevec(s)*...
                hxdot((t-1)*timestep-(s-1)*timestep)*timestep);
            % Velocity response at t due to impulse at s
    end
    x_total(t)=x_impulse;
    % Total displacement response at t
    xdot_total(t)=xdot_impulse;
    % Total velocity response at t
    hx_static=hx_static+hx((t-1)*timestep)*timestep;
    % Used to calculate displacement response mean
    hxdot_static=hxdot_static+hxdot((t-1)*timestep)*timestep;
    % Used to calculate velocity response mean
    hx_vec(t)=hx((t-1)*timestep);
    % Used to plot impulse response function
    hxdot_vec(t)=hxdot((t-1)*timestep);
    % Used to plot h_dot
end
 
hx_static_real=0;
hxdot_static_real=0;
for t=1:n*1000
    hx_static_real=hx_static_real+hx(t*(timestep/1000))*(timestep/1000);
    % Used to calculate (the real) displacement response mean
    
hxdot_static_real=hxdot_static_real+hxdot(t*(timestep/1000))*(timestep/1000);
    % Used to calculate (the real) velocity response mean
end
 
if initial~=0
x=x_total(initialsteps:n);
xdot=xdot_total(initialsteps:n);
timevec_resp=timevec(initialsteps:n);
else
x=x_total;
xdot=xdot_total;
timevec_resp=timevec;
end
% Cuts away unwanted initial part
 
% Displacement response mean:
mu_x=mu_f*hx_static
mu_x_real=mu_f*hx_static_real
mu_x_fromsignal=mean(x)
 
% Velocity response mean:
mu_xdot=mu_f*hxdot_static
mu_xdot_real=mu_f*hxdot_static_real  % Should be 0
mu_xdot_fromsignal=mean(xdot)
 
toc



7.2 Attachment 2:

Matlab script used to evolve probability distributions of structural
response through the cell-mapping method.
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%
% John Magne Hembre and Michael Muskulus, 2014 
%
% Script written to find estimate the Joint Probability Density Function
% of the response of a SDOF system using the Probability Density Evolution. 
% The excitation could either be described by the current force 
% realization, F, picked as white noise, or by the current and
% the previous force realization, F and Z. In the latter case the
% conditional probability of Z is described using first order
% autoregression.
%
clc
close all
%
% INPUT:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% Time properties:
timestep=0.05;
% Time step [s]
 
% Iteration properties:
itmax=300000;
% Maximum number of iterations
L2_max=10^(-90);
% Convergence criterion; L2 difference
plotfreq=2;
% Plot every plotfreq iteration
 
% Initial condition, t=0:
initstate_disp=0;     % [m]
initstate_velo=0;     % [m/s]
initstate_force=0;    % [N]
initialcond=2;        % 1 = Use spike at initstate
                      % 2 = Use predefined "initpdf" from workspace
                      % 3 = Other experimental initial states
 
% Domain properties:
X_min=-0.3;         % [m]
X_max=0.3;          % [m]
Xdot_min=-0.6;      % [m/s]
Xdot_max=0.6;       % [m/s]
F_min=-300000;      % [N]         (used if forcemode=1 or 2)   
F_max=300000;       % [N]         (used if forcemode=1 or 2)
Z_min=-30000;       % [N]         (used if forcemode=2)
Z_max=30000;        % [N]         (used if forcemode=2)
 
% Resolution properties:
delta_X=(X_max-X_min)/200;        % [m]
delta_Xdot=(Xdot_max-Xdot_min)/200;     % [m/s]
delta_F=(F_max-F_min)/100;         % [N]
delta_Z=(Z_max-Z_min)/30;         % [N]
 
 delta_u=0.1;         % [m/s]
% delta_Z_u=0.1;     % [m/s]
 
% SDOF Structure properties:
 
M=405574.9;
% System mass [kg]
K=1809033.4;
% System stiffness [N/m]
zeta=0.01;
%zeta=1/(2*sqrt(K*M)); % [To define zeta from C; zeta=C/(2*sqrt(K*M))]



% System damping [-]
 
% Force properties:
V_ref=20;
% Mean value of wind velocity V [m/s]
sd_u=2.884;  
% Standard deviation of gaussian distribution for turbulence u (mean=0)
 
forcemode=2;          % Mode 1: Explicit white noise force with a known
                      %         PDF given force
                      %         [PDF_thrust(F)]
                      %
                      % Mode 2: Explicit force with a known PDF given 
                      %         force, modeled as an AR(1) process with 
                      %         known parameters phi and noise variance
                      %         [PDF_thrust(F)]
                      
if V_ref<11
    turbconst=6007*V_ref^(1);
elseif V_ref>=11
    turbconst=1682000*V_ref^(-1.35);
end
 
if forcemode==2
 
    phi_force=0.99506;
    sigma_noise=8442.2;
%     noisevar_force=9;
%     sigma_noise=sqrt(noisevar_force);
    
    % Noise properties:
    n_Z=(Z_max-Z_min)/delta_Z;
    Z=linspace(Z_min,Z_max,n_Z);
    pdfZ=(1/(sqrt(2*pi)*sigma_noise))*exp(-0.5.*(Z./sigma_noise).^2);
    figure(50)
    plot(Z,pdfZ)
    axis([Z_min Z_max 0 1.1*max(pdfZ)])
end
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
C=zeta*2*sqrt(K*M);
% Calculate C [kg/s] from zeta [-]
 
omega0=sqrt(K/M);
% Angular natural frequency of the SDOF system [rad/s]
 
n_X=(X_max-X_min)/delta_X;
n_Xdot=(Xdot_max-Xdot_min)/delta_Xdot;
n_F=(F_max-F_min)/delta_F;                   % (used if forcemode = 1 or 3)
n_u=(u_max-u_min)/delta_u;                   % (used if forcemode = 2)
% Number of steps in the different domains
 
% Generating vectors:
X=linspace(X_min,X_max,n_X);
Xdot=linspace(Xdot_min,Xdot_max,n_Xdot);
F=linspace(F_min,F_max,n_F);                 % (used if forcemode = 1 or 3)
u=linspace(u_min,u_max,n_u);                 % (used if forcemode = 2)
 
% Finding cell ID-number of initial state cells:
for cellindex_x=1:(n_X-1)
    if (initstate_disp>=X(cellindex_x))&&(initstate_disp<X(cellindex_x+1))
        d1=abs(initstate_disp-X(cellindex_x));
        d2=abs(initstate_disp-X(cellindex_x+1));



        if d1<d2
            initcell_disp=cellindex_x;
        else
            initcell_disp=cellindex_x+1;
        end
        break
    end
end
for cellindex_x=1:(n_Xdot-1)
    if (initstate_velo>=Xdot(cellindex_x))&&...
            (initstate_velo<Xdot(cellindex_x+1))
        d1=abs(initstate_velo-Xdot(cellindex_x));
        d2=abs(initstate_velo-Xdot(cellindex_x+1));
        if d1<d2
            initcell_velo=cellindex_x;
        else
            initcell_velo=cellindex_x+1;
        end
        break
    end
end
for cellindex_f=1:(n_F-1)
    if (initstate_force>=F(cellindex_f))&&...
            (initstate_force<F(cellindex_f+1))
        d1=abs(initstate_force-F(cellindex_f));
        d2=abs(initstate_force-F(cellindex_f+1));
        if d1<d2
            initcell_force=cellindex_f;
        else
            initcell_force=cellindex_f+1;
        end
        break
    end
end
 
if forcemode==1
    pdf=zeros(n_X,n_Xdot);
    pdf2=zeros(n_X,n_Xdot);
elseif forcemode==2
    pdf=zeros(n_X,n_Xdot,n_F);
    pdf2=zeros(n_X,n_Xdot,n_F);
 
end
 
 
 
 
 
disp('Setting up initial state and force properties...') 
tic
if initialcond==1
    if forcemode==1
    % If spike: setting the probability of the defined initial state to 1
        pdf(initcell_disp,initcell_velo)=1;
    elseif forcemode==2
    % If spike: setting the probability of the defined initial state to 1
        pdf(initcell_disp,initcell_velo,initcell_force)=1;
    end
    
elseif initialcond==2
    pdf=initpdf;
    % Use initial pdf from workspace if predefined
    
elseif initialcond==3



    % Used to create other initial states
    num=3;
    dist=1;
      
    probcells=1/((num*8)+1);
    pdf(initcell_disp,initcell_velo,initcell_force)=probcells;
    for i=1:num
    pdf(initcell_disp+dist*i,initcell_velo+dist*i,initcell_force+dist*i)...
        =probcells;
    pdf(initcell_disp+dist*i,initcell_velo+dist*i,initcell_force-dist*i)...
        =probcells;
    pdf(initcell_disp+dist*i,initcell_velo-dist*i,initcell_force-dist*i)...
        =probcells;
    pdf(initcell_disp+dist*i,initcell_velo-dist*i,initcell_force+dist*i)...
        =probcells;
    pdf(initcell_disp-dist*i,initcell_velo-dist*i,initcell_force-dist*i)...    
        =probcells;
    pdf(initcell_disp-dist*i,initcell_velo+dist*i,initcell_force-dist*i)...
        =probcells;
    pdf(initcell_disp-dist*i,initcell_velo+dist*i,initcell_force+dist*i)...
        =probcells;
    pdf(initcell_disp-dist*i,initcell_velo-dist*i,initcell_force+dist*i)...
        =probcells;
    end
end
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Force PDF properties:
if forcemode==1 % If explicit white noise force PDF...
    % Define Force PDF:
    
     sigma_F=sqrt((turbconst^2)*(sd_u^2));      % [N]
     mu_F=0;                                    % [N]
     
     pdfvec_prevthrust=(1/(sqrt(2*pi)*sigma_F))*...
         exp(-0.5.*((F-mu_F)./sigma_F).^2);
     % Vector containing previous thrust values (Gaussian distribution)
     
     pdfF=pdfvec_prevthrust;
 
%      mode=1;                                            % Mode considered
%      if mode==1;
%          modalA=25.0108;                                % Mode 1, LC 2
%          modalB=190.2907;                               % Mode 1, LC 2
%          modalC=362.7748;                               % Mode 1, LC 2
%      elseif mode==2;
%          modalA=41.9390;                                % Mode 2, LC 2
%          modalB=305.6178;                               % Mode 2, LC 2
%          %modalC=558.6578;                              % Mode 2, LC 2
%      end     
% 
%      modalthrust_PDF=@(sigma_v,A,B,C,Tval)...
%      (1./(sqrt(2*pi)*sigma_v.*sqrt((B^2)-4*A*(C-Tval)))).*...
%      (exp(-0.5.*((-B+sqrt((B^2)-4*A*(C-Tval)))./(2*sigma_v*A)).^2)+...
%      exp(-0.5.*((-B-sqrt((B^2)-4*A*(C-Tval)))./(2*sigma_v*A)).^2));
%      % PDF of nonlinear modal force caused by wind distributed along tower
%     
%      pdfF=modalthrust_PDF(sd_u,modalA,modalB,modalC,F);
%      % Vector containing previous thrust values 
%      % (nonlinear PDF of modal force caused by wind distributed along tower)
    
    area=trapz(F,pdfF);
    pdfF=pdfF./area;
    % Normalized pdf of the force



    
    figure(2)
    plot(F,pdfF)
     
elseif forcemode==2 % If considering frequency dependent force with
                    % known PDF(F)
                    
     sigma_F=sqrt((turbconst^2)*(sd_u^2));      % [N]
     mu_F=0;                                    % [N]
     
     pdfvec_prevthrust=(1/(sqrt(2*pi)*sigma_F))*...
         exp(-0.5.*((F-mu_F)./sigma_F).^2);
     % Vector containing previous thrust values (Gaussian distribution)
     
     figure(2)
     plot(F,pdfvec_prevthrust)
 
%      mode=1;                                            % Mode considered
%      if mode==1;
%          modalA=25.0108;                                % Mode 1, LC 2
%          modalB=190.2907;                               % Mode 1, LC 2
%          modalC=362.7748;                               % Mode 1, LC 2
%      elseif mode==2;
%          modalA=41.9390;                                % Mode 2, LC 2
%          modalB=305.6178;                               % Mode 2, LC 2
%          %modalC=558.6578;                              % Mode 2, LC 2
%      end     
% 
%      modalthrust_PDF=@(sigma_v,A,B,C,Tval)...
%      (1./(sqrt(2*pi)*sigma_v.*sqrt((B^2)-4*A*(C-Tval)))).*...
%      (exp(-0.5.*((-B+sqrt((B^2)-4*A*(C-Tval)))./(2*sigma_v*A)).^2)+...
%      exp(-0.5.*((-B-sqrt((B^2)-4*A*(C-Tval)))./(2*sigma_v*A)).^2));
%      % PDF of nonlinear modal force caused by wind distributed along tower
%
%      pdfvec_prevthrust=modalthrust_PDF(sd_u,modalA,modalB,modalC,F);
%      % Vector containing previous thrust values 
%      % (nonlinear PDF of modal force caused by wind distributed along tower)
     
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
disp(['That took ', num2str(toc), ' s'])
fprintf('\n')
 
 
 
 
 
statemap_F=zeros(n_F,1);                     % Empty vector
statemap_X=zeros(n_X,n_Xdot);                % Empty 2D matrix
statemap_Xdot=zeros(n_X,n_Xdot,n_F);         % Empty 3D matrix
 
disp('Calculating transition probabilities...')
tic
 
if forcemode==1||forcemode==3
    n_forcing=n_F;
    forcevec=F;
elseif forcemode==2
    n_forcing=n_u;
    forcevec=currs_T;
end
 
if forcemode==2||forcemode==3



for i=1:n_F
    for j=1:n_Z
    f1=F(i);
    f2=f1*phi_force+Z(j);
    % Finding resulting cell ID-number for statemap_F:
        if f2<=F_min
            statemap_F(i,j)=1;
        elseif f2>=F_max
            statemap_F(i,j)=n_F;
        else
            for cellindex_f=1:(n_F-1)
            if (f2>=F(cellindex_f))&&(f2<F(cellindex_f+1))
                d1=abs(f2-F(cellindex_f));
                d2=abs(f2-F(cellindex_f+1));
                if d1<d2
                    statemap_F(i,j)=cellindex_f;
                else
                    statemap_F(i,j)=cellindex_f+1;
                end
                break
            end 
            end
        end
    end
end
end
 
for i=1:n_X
    x1=X(i);
    
    for j=1:n_Xdot
        xdot1=Xdot(j);
        x2=x1+timestep*(xdot1+(delta_Xdot/2));             % Modified Euler
        %x2=x1+timestep*(xdot1);                           % Explicit Euler
        
        % Finding resulting cell ID-number for statemap_X:
        if x2<=X_min
            statemap_X(i,j)=1;
        elseif x2>=X_max
            statemap_X(i,j)=n_X;
        else
            for cellindex_x=1:(n_X-1)
            if (x2>=X(cellindex_x))&&(x2<X(cellindex_x+1))
                d1=abs(x2-X(cellindex_x));
                d2=abs(x2-X(cellindex_x+1));
                if d1<d2
                    statemap_X(i,j)=cellindex_x;
                else
                    statemap_X(i,j)=cellindex_x+1;
                end
                break
            end 
            end
        end
        
        for k=1:n_forcing
            f=forcevec(k);
            xdot2=xdot1+timestep*((f-C*((x2-x1)/timestep)-K*x2)/M);
            % Implicit Euler
            
            % Finding resulting cell ID-number for statemap_Xdot:
            if xdot2<=Xdot_min
                statemap_Xdot(i,j,k)=1;
            elseif xdot2>=Xdot_max



                statemap_Xdot(i,j,k)=n_Xdot;
            else
                for cellindex_xdot=1:(n_Xdot-1)
                if (xdot2>=Xdot(cellindex_xdot))&&...
                        (xdot2<Xdot(cellindex_xdot+1))
                    d1=abs(xdot2-Xdot(cellindex_xdot));
                    d2=abs(xdot2-Xdot(cellindex_xdot+1));
                    if d1<d2
                        statemap_Xdot(i,j,k)=cellindex_xdot;
                    else
                        statemap_Xdot(i,j,k)=cellindex_xdot+1;
                    end
                    break
                end 
                end
            end
        
        end
    end
end
 
disp(['That took ', num2str(toc), ' s'])
fprintf('\n')
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if forcemode==1 % If explicit white noise force PDF...
 
disp('Iterating...') 
tic
for o=1:itmax
    area_pdf=sum(sum(pdf))*delta_X*delta_Xdot;  %
    pdf=pdf/area_pdf;                           % Normalize
    
    sum_frame=sum(pdf(1,:))+sum(pdf(n_X,:))+sum(pdf(:,1))+...
        sum(pdf(:,n_Xdot));
    sum_picture=sum(sum(pdf(2:(n_X-1),2:(n_Xdot-1))));
    if sum_frame>0.001*sum_picture
        fprintf('\n')
        disp({'##### Error: #####'})
        disp({'PDF out of bounds'})
        disp({'####################'})
        fprintf('\n')
        break
    end
    
    L2=sqrt(mean2((pdf-pdf2).^2));
    if L2<L2_max
        disp(['Obtained L2 difference = ', num2str(L2)])
        break
    end
    disp(['Iteration ',num2str(o),', L2-difference = ',num2str(L2)])
    if o==itmax
        disp('Convergence not obtained before maximum number of iterations')
    end
    pdf2=pdf;
    pdf=zeros(n_X,n_Xdot);
    for i=1:n_X            
    % For each X...
      for j=1:n_Xdot
      % For each Xdot...



      i2=statemap_X(i,j);             % Resulting X-cell ID
        for k=1:n_F
        % For each F...
            j2=statemap_Xdot(i,j,k);  % Resulting Xdot-cell ID
            pdf(i2,j2)=pdf(i2,j2)+(pdf2(i,j)*pdfF(k));
        end
      end
    end
if rem(o,plotfreq)==0
figure(1000+o)
area_pdf=sum(sum(pdf))*delta_X*delta_Xdot;
pdfplot=pdf/area_pdf;                % Normalize
pdfplot=pdfplot';                    % Transpose to get axes right for surf
subplot(1,2,1)
surf(X,Xdot,pdfplot,'EdgeColor','none')
xlabel('Displacement [m]')
ylabel('Velocity [m/s]')
view(0,90);
subplot(1,2,2)
contourf(X,Xdot,pdfplot,40)
end
 
end
iteration_time=toc;
fprintf('\n') 
disp(['The ',num2str(o),' iterations took ',...
    num2str(iteration_time), ' s,'])
disp(['giving an average of ',...
    num2str(iteration_time/o),' s per iteration'])
fprintf('\n')  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif forcemode==2
% If considering frequency dependent wind force...
 
disp('Iterating...') 
tic
for o=1:itmax
    volume_pdf=sum(sum(sum(pdf)))*delta_X*delta_Xdot*delta_F;   %
    pdf=pdf./volume_pdf;                                        % Normalize
    
    L2=sqrt(mean2((pdf-pdf2).^2));
    if L2<L2_max
        disp(['Obtained L2 difference = ', num2str(L2)])
        break
    end
    disp(['Iteration ',num2str(o),', L2-difference = ',num2str(L2)])
    if o==itmax
        disp('Convergence not obtained before maximum number of iterations')
    end
    pdf2=pdf;
    pdf=zeros(n_X,n_Xdot,n_F);
    for i=1:n_X
    % For each X...
      for j=1:n_Xdot
      % For each Xdot...
      i2=statemap_X(i,j);               % Resulting X-cell ID
        for k=1:n_forcing
        % For each F...
        for m=1:n_Z
              k2=statemap_F(k,m);          % Resulting F-cell ID
              j2=statemap_Xdot(i,j,k2);    % Resulting Xdot-cell ID
              pdf(i2,j2,k2)=pdf(i2,j2,k2)+(pdf2(i,j,k)*pdfZ(m));



        end
        end
      end
    end
if rem(o,plotfreq)==0
pdf2D=sum(pdf,3);
figure(1000+o)
area_pdf=sum(sum(pdf2D))*delta_X*delta_Xdot;
pdfplot2D=pdf2D/area_pdf;            % Normalize
pdfplot2D=pdfplot2D';                % Transpose to get axes right for surf
subplot(1,2,1)
surf(X,Xdot,pdfplot2D,'EdgeColor','none')
xlabel('Displacement [m]')
ylabel('Velocity [m/s]')
view(0,90);
subplot(1,2,2)
contourf(X,Xdot,pdfplot2D,40)
end
 
end
iteration_time=toc;
fprintf('\n') 
disp(['The ',num2str(o),' iterations took ',...
    num2str(iteration_time), ' s,'])
disp(['giving an average of ',...
    num2str(iteration_time/o),' s per iteration'])
fprintf('\n')  
    
end
 
pdf2D=sum(pdf,3);
figure(5)
area_pdf=sum(sum(pdf2D))*delta_X*delta_Xdot;
pdf2D=pdf2D./area_pdf;               % Normalize
pdf2D=pdf2D';                        % Transpose to get axes right for surf
surf(X,Xdot,pdf2D)
xlabel('Displacement [m]')
ylabel('Velocity [m/s]')



7.3 Attachment 3:

Matlab function used to simulate wind turbulence through spectral
decomposition of the Kaimal spectra.
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%
% John Magne Hembre 2014
%
% Function that simulates turbulence through spectral decomposition of the 
% Kaimal wind spectrum.
%
% vis = visualization on/off (1/0)
 
function v = Kaimalsim(reclength,timestep,v_hub,sigma,hubhght,vis)
 
clc
 
maxfreq=1/(2*timestep);    % The nyquist frequency [Hz]
N=maxfreq*5000;            % Number of points in spectrum
df=maxfreq/N;              % Frequency increments [Hz]
freqs=0:df:maxfreq;
 
if hubhght<60
    L_k=8.10*0.7*hubhght;
else
    L_k=8.10*0.7*60;
end
 
S_f=(4*sigma^2*(L_k/v_hub))./(1+(6.*freqs*(L_k/v_hub))).^(5/3);
 
sigmaest_spec=sqrt(sum(df.*S_f))
 
maxomega=maxfreq*2*pi;
domega=maxomega/N;
omegas=(2*pi).*freqs;
 
S_omega=S_f./(2*pi);
 
tmax=reclength;                      % Wind velocity record length [s]
time=0:timestep:tmax-timestep;       % Vector over time steps
 
v=zeros(1,length(time));
 
for k=1:length(omegas)
    omega_k=omegas(k);
    S_k=S_omega(k);
    rand_k=rand;
    for step_num=1:length(time)
        v(step_num)=v(step_num)+sqrt(2*S_k*domega)*...
            cos(omega_k*time(step_num)+2*pi*rand_k);
    end
end
 
v=v+v_hub;
v=v';
 
if vis==1
figure(1000)
plot(time,v)
grid on
axis([0 tmax -1.2*min(v) 1.2*max(v)])
xhandle=xlabel('t [s]');
yhandle=ylabel('v(t) [m/s]');
set(gca,'fontsize',14)
set(xhandle,'Fontsize',14)
set(yhandle,'Fontsize',14)
 
end
end



7.4 Attachment 4:

Matlab function estimating total thrust and torque at the hub using
blade properties from [2] and the Blade Element Momentum Method.
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% Function BEM:
%
% John Magne Hembre 2014
%
% Function written to calculate the total thrust and torque force acting
% at the rotor center of the NREL 5-MW Reference Wind Turbine (Jonkman 
% et al. 2009). The result is two vectors with the same length as the input
% vector U containing the total calculated thrust and torque in every
% time step. The Blade Element Momentum theory used herein is based on 
% the book "Wind Energy Explained" (Manwell et al. 2002).
%
% The function takes the following input:
%
% U = a time series of the wind velocity at hub height. [m/s]
%
% Time = the corresponding time vector for the wind velocity [s] 
%
% B = number of blades on rotor.
%
% Omega = angular velocity of the rotor [rad/s]. Omega is assumed 
%         constant for the calculation of a and a' (The axial and angular 
%         induction factors) (Could be found in Jonkman et al. 2009)
%
% rho = mass density of the air considered (standard is 1.25). [kg/m^3]
%
% maxdev = The maximal deviation required between iteration rounds for the 
%          values of a and a'. (e.g. 0.00001)
%
 
function [total_thrust, total_torque,...
    mom_total_thrust, mom_total_torque] = BEM(U,Time,B,Omega,rho,maxdev)
 
clc
close all
tic
 
r=[2.8667;5.6000;8.3333;11.7500;
    15.8500;19.9500;24.0500;28.1500;
    32.2500;36.3500;40.4500;44.5500;
    48.6500;52.7500;56.1667;58.9000;61.6333];
% Values of blade section locations [m]
 
dr=[2.7333;2.7333;2.7333;4.1000;
    4.1000;4.1000;4.1000;4.1000;
    4.1000;4.1000;4.1000;4.1000;
    4.1000;4.1000;2.7333;2.7333;2.7333];
% Values of blade section lengths [m]
 
twist=[13.308;13.308;13.308;13.308;
    11.480;10.162;9.011;7.795;
    6.544;5.361;4.188;3.125;
    2.319;1.526;0.863;0.370;0.106].*(pi/180);
% Values of blade section twist angle [rad]
 
chord=[3.542;3.854;4.167;4.557;
    4.652;4.458;4.249;4.007;
    3.748;3.502;3.256;3.010;
    2.764;2.518;2.313;2.086;1.419];
% Values of blade section chord lengths [m]
 
foilnumbers=[1;1;2;3;
    4;4;5;6;
    6;7;7;8;
    8;8;8;8;8];



% Determines what airfoil table to use:
% 1: Cylinder 1 (Special case, does not use external file)
% 2: Cylinder 2 (Special case, does not use external file) 
% 3: DU40_A17
% 4: DU35_A17
% 5: DU30_A17
% 6: DU25_A17
% 7: DU21_A17
% 8: NACA64_A17
 
fid=fopen('DU21_A17.dat','r');
DU21_A17_temp=textscan(fid,'%f');
fclose(fid);
DU21_A17_temp=DU21_A17_temp{1};
DU21_A17=zeros((length(DU21_A17_temp)/4),4);
for i=1:4:length(DU21_A17_temp)
    DU21_A17(((i+3)/4),1)=DU21_A17_temp(i,1);
    DU21_A17(((i+3)/4),2)=DU21_A17_temp(i+1,1);
    DU21_A17(((i+3)/4),3)=DU21_A17_temp(i+2,1);
    DU21_A17(((i+3)/4),4)=DU21_A17_temp(i+3,1);
end
clear('DU21_A17_temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3 
% and 4) for different angles of attack (coloumn 1) for airfoil DU21_A17.
 
fid=fopen('DU25_A17.dat','r');
DU25_A17_temp=textscan(fid,'%f');
fclose(fid);
DU25_A17_temp=DU25_A17_temp{1};
DU25_A17=zeros((length(DU25_A17_temp)/4),4);
for i=1:4:length(DU25_A17_temp)
    DU25_A17(((i+3)/4),1)=DU25_A17_temp(i,1);
    DU25_A17(((i+3)/4),2)=DU25_A17_temp(i+1,1);
    DU25_A17(((i+3)/4),3)=DU25_A17_temp(i+2,1);
    DU25_A17(((i+3)/4),4)=DU25_A17_temp(i+3,1);
end
clear('DU25_A17_temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3 
% and 4) for different angles of attack (coloumn 1) for airfoil DU25_A17.
 
fid=fopen('DU30_A17.dat','r');
DU30_A17_temp=textscan(fid,'%f');
fclose(fid);
DU30_A17_temp=DU30_A17_temp{1};
DU30_A17=zeros((length(DU30_A17_temp)/4),4);
for i=1:4:length(DU30_A17_temp)
    DU30_A17(((i+3)/4),1)=DU30_A17_temp(i,1);
    DU30_A17(((i+3)/4),2)=DU30_A17_temp(i+1,1);
    DU30_A17(((i+3)/4),3)=DU30_A17_temp(i+2,1);
    DU30_A17(((i+3)/4),4)=DU30_A17_temp(i+3,1);
end
clear('DU30_A17_temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3 
% and 4) for different angles of attack (coloumn 1) for airfoil DU30_A17.
 
fid=fopen('DU35_A17.dat','r');
DU35_A17_temp=textscan(fid,'%f');
fclose(fid);
DU35_A17_temp=DU35_A17_temp{1};
DU35_A17=zeros((length(DU35_A17_temp)/4),4);
for i=1:4:length(DU35_A17_temp)
    DU35_A17(((i+3)/4),1)=DU35_A17_temp(i,1);
    DU35_A17(((i+3)/4),2)=DU35_A17_temp(i+1,1);
    DU35_A17(((i+3)/4),3)=DU35_A17_temp(i+2,1);



    DU35_A17(((i+3)/4),4)=DU35_A17_temp(i+3,1);
end
clear('DU35_A17_temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3 
% and 4) for different angles of attack (coloumn 1) for airfoil DU35_A17.
 
fid=fopen('DU40_A17.dat','r');
DU40_A17_temp=textscan(fid,'%f');
fclose(fid);
DU40_A17_temp=DU40_A17_temp{1};
DU40_A17=zeros((length(DU40_A17_temp)/4),4);
for i=1:4:length(DU40_A17_temp)
    DU40_A17(((i+3)/4),1)=DU40_A17_temp(i,1);
    DU40_A17(((i+3)/4),2)=DU40_A17_temp(i+1,1);
    DU40_A17(((i+3)/4),3)=DU40_A17_temp(i+2,1);
    DU40_A17(((i+3)/4),4)=DU40_A17_temp(i+3,1);
end
clear('DU40_A17_temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3 
% and 4) for different angles of attack (coloumn 1) for airfoil DU40_A17.
 
fid=fopen('NACA64_A17.dat','r');
NACA64_A17_temp=textscan(fid,'%f');
fclose(fid);
NACA64_A17_temp=NACA64_A17_temp{1};
NACA64_A17=zeros((length(NACA64_A17_temp)/4),4);
for i=1:4:length(NACA64_A17_temp)
    NACA64_A17(((i+3)/4),1)=NACA64_A17_temp(i,1);
    NACA64_A17(((i+3)/4),2)=NACA64_A17_temp(i+1,1);
    NACA64_A17(((i+3)/4),3)=NACA64_A17_temp(i+2,1);
    NACA64_A17(((i+3)/4),4)=NACA64_A17_temp(i+3,1);
end
clear('NACA64_A17_temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3 
% and 4) for different angles of attack (coloumn 1) for airfoil NACA64_A17.
 
foilarray{1,1}=0;
foilarray{2,1}=0;
foilarray{3,1}=DU40_A17;
foilarray{4,1}=DU35_A17;
foilarray{5,1}=DU30_A17;
foilarray{6,1}=DU25_A17;
foilarray{7,1}=DU21_A17;
foilarray{8,1}=NACA64_A17;
clear('DU21_A17','DU25_A17','DU30_A17','DU35_A17','DU40_A17','NACA64_A17')
% Generate an array containing the airfoils above. Their order corresponds
% to the order given in the vector foilnumbers.
 
n=length(U);
% Number of time steps in the vector U
 
total_thrust=zeros(n,1);
total_torque=zeros(n,1);
mom_total_thrust=zeros(n,1);
mom_total_torque=zeros(n,1);
theta_mat=zeros(n,17);
a_mat=zeros(n,17);
for i=1:n
% For all time steps in U...
    
    Uval=U(i);
    
    accumulatedthrust=0;
    accumulatedtorque=0;



    mom_accumulatedthrust=0;
    mom_accumulatedtorque=0;
    for j=1:17                  
    % For all blade sections...
        
        sigma_mark=(B*chord(j))/(2*pi*r(j));
        % Local solidity
        lambda_r=(Omega*r(j))/Uval;
        % Local speed ratio
        airfoil=foilnumbers(j);
        % Determines relevant airfoil number
        
        if airfoil==1
            a=0;
            a_mark=0;
            theta=atan((1-a)/((1+a_mark)*lambda_r));
            % Calculating the angle of the relative wind [rad]
            Cl=0;
            Cd=0.5;
        elseif airfoil==2
            a=0;
            a_mark=0;
            theta=atan((1-a)/((1+a_mark)*lambda_r));
            % Calculating the angle of the relative wind [rad]
            Cl=0;
            Cd=0.35;
        
        else
            
        counter=1;
        % Iteration counter set to zero
        a_mark_guess=0;
        a_guess=0;
        % Establish first guesses; a=0 and a'=0
        flag=0;
        while flag==0
        % Iterate to find a and a' for section...
        
        if counter>150
            disp('Warning: No convergence obtained before 500 iterations')
            a_new=1/3;
            a_mark_new=(1-3*a_new)/(4*a-1);
            break
            %return
        end
        
        theta=atan((1-a_guess)/((1+a_mark_guess)*lambda_r));
        % Calculating the angle of the relative wind [rad]
        alpha=theta-twist(j);
        % Calculating the angle of attack [rad]
        alphadeg=alpha*(180/pi);
        % Calculating the angle of attack to use in table [deg]
        
        theta_mat(i,j)=theta; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
        aoacounter=1;
        % Angle of attack counter
        aoaflag=0;
        while aoaflag==0;
            angle=foilarray{airfoil,1}(aoacounter,1);
            nextangle=foilarray{airfoil,1}(aoacounter+1,1);
            if alphadeg==angle
            % If exact match for angle in table...
                Cl=foilarray{airfoil,1}(aoacounter,2);



                Cd=foilarray{airfoil,1}(aoacounter,3);
                aoaflag=1;
            elseif alphadeg==nextangle
            % If exact match for next angle in table...
                Cl=foilarray{airfoil,1}(aoacounter+1,2);
                Cd=foilarray{airfoil,1}(aoacounter+1,3);
                aoaflag=1;
            elseif (angle<alphadeg && nextangle>alphadeg) ||...
                    (angle>alphadeg && nextangle<alphadeg)
            % If angle of attack inbetween angle and next angle in table,
            % then interpolate...
                Cl_1=foilarray{airfoil,1}(aoacounter,2);
                Cl_2=foilarray{airfoil,1}(aoacounter+1,2);
                Cd_1=foilarray{airfoil,1}(aoacounter,3);
                Cd_2=foilarray{airfoil,1}(aoacounter+1,3);
                Cl=(((alphadeg-angle)/(nextangle-angle))*(Cl_2-Cl_1))+Cl_1;
                Cd=(((alphadeg-angle)/(nextangle-angle))*(Cd_2-Cd_1))+Cd_1;
                aoaflag=1;
            elseif aoacounter>size(foilarray{airfoil,1},1)
                disp('Error: Angle of attack not recognized')
                return
            end
            aoacounter=aoacounter+1;
            % Update angle of attack counter
        end
        
        a_new=1/(1+((4*sin(theta)^2)/(sigma_mark*Cl*cos(theta))));
        a_mark_new=1/(((4*cos(theta))/(sigma_mark*Cl))-1);
        
        %convergencearray_a{i,1}(j,counter)=a_new-a_guess;
        %convergencearray_a_mark{i,1}(j,counter)=a_mark_new-a_mark_guess;
        % Arrays that could be used to check convergence values of a and a'
        
        if (abs(a_mark_new-a_mark_guess)<maxdev)&&...
                (abs(a_new-a_guess)<maxdev)
            flag=1;
        end
        % Check convergence
        
        a_guess=a_new;
        a_mark_guess=a_mark_new;
        % Update guesses
        counter=counter+1;
        % Update induction factor counter
        
        end
        
        a=a_new;
        a_mark=a_mark_new;
        
        a_mat(i,j)=a;
        
        end
        
        sectionthrust=sigma_mark*pi*rho*...
            (((Uval^2)*((1-a)^2))/(sin(theta)^2))*...
            ((Cl*cos(theta))+(Cd*sin(theta)))*r(j)*dr(j);
        % Calculating thrust contribution from sections using blade 
        % element theory [N]
        
        sectiontorque=sigma_mark*pi*rho*...
            (((Uval^2)*((1-a)^2))/(sin(theta)^2))*...
            ((Cl*sin(theta))+(Cd*cos(theta)))*(r(j)^2)*dr(j);
        % Calculating torque contribution from sections using blade 



        % element theory [Nm]
        
        accumulatedthrust=accumulatedthrust+sectionthrust;
        accumulatedtorque=accumulatedtorque+sectiontorque;
        % Accumulating thrust and torque for all 17 sections for each 
        % time step using blade element theory
        
        mom_sectionthrust=rho*(Uval^2)*4*a*(1-a)*pi*r(j)*dr(j);
        % Calculating thrust contribution from sections using
        % momentum theory [N]
        mom_sectiontorque=4*a_mark*(1-a)*rho*Uval*pi*(r(j)^3)*Omega*dr(j);
        % Calculating torque contribution from sections using
        % momentum theory [Nm]
        
        mom_accumulatedthrust=mom_accumulatedthrust+mom_sectionthrust;
        mom_accumulatedtorque=mom_accumulatedtorque+mom_sectiontorque;
        % Accumulating thrust and torque for all 17 sections for each 
        % time step using momentum theory
 
    end
    
    total_thrust(i,1)=accumulatedthrust;
    total_torque(i,1)=accumulatedtorque;
    
    mom_total_thrust(i,1)=mom_accumulatedthrust;
    mom_total_torque(i,1)=mom_accumulatedtorque;
    
end
toc
end





7.5 Attachment 5:

Matlab script used to estimate the turbulence AR(1) parameter values
for the load cases de�ned in section 3.4.
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%
% John Magne Hembre 2014
%
% Script written to determine AR(1) parameters for the turbulence in the 
% 15 load cases.
%
 
clc
close all
 
% INPUT:
%%%%%%%%%%%%%%%%%%%%%%%%%%
 
reclength=3000;    % [s]
timestep=0.0125;   % [s]
hubhght=90;        % [m]
v_hub=[2,4,6,8,10,12,14,16,18,20,22,24,26,28,30]';                  % [m/s]
sigma=[0.994,1.204,1.414,1.624,1.834,2.044,2.254,2.464,2.674...
    2.884,3.094,3.304,3.514,3.724,3.934]';                          % [m/s]
 
N=4000000;        % Number of points in spectra
 
if hubhght<60
    L_k=8.10*0.7*hubhght;
else
    L_k=8.10*0.7*60;
end
 
searchmin=0.997;                % Search from phi value...
searchmax=1;                    % Search to phi value...
searchresolution=0.000001;      % Increment of phi to find best fit
 
histres=30;                    % Histogram resolution 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%
 
% Estimating AR(1) parameters:
%%%%%%%%%%%%%%%%%%%%%%%%%%
time=linspace(0,reclength,reclength/timestep);
maxfreq=1/(2*timestep);       % The nyquist frequency [Hz]
freqs=linspace(0,maxfreq,N);
dfreq=abs(freqs(2)-freqs(1));
maxomega=maxfreq*2*pi;
omegas=linspace(0,maxomega,N);
domega=abs(omegas(2)-omegas(1));
 
S_f=zeros(15,1);
var_fromspec=zeros(15,1);
for i=1:15
    for j=1:N
        % Variance spectrum given by hertz:
        S_f(i,j)=(4*sigma(i)^2*(L_k/v_hub(i)))./...
            (1+(6.*freqs(j)*(L_k/v_hub(i)))).^(5/3);
        % Calculating variances from spectrum:
        var_fromspec(i,1)=var_fromspec(i,1)+S_f(i,j)*dfreq;
    end
end
% Variance spectrum given by angular frequency:
S_omega=S_f./(2*pi);
 
% Iterating to estimate phi from the spectrum above:
phinum=(searchmax-searchmin)/searchresolution; 
% Number of values of phi to try
phivals=linspace(searchmin+searchresolution,...



    searchmax-searchresolution,phinum);
 
S_bestfit=zeros(15,N);
phi_bestfit=zeros(15,1);
var_bestfit=zeros(15,1);
for i=1:15
disp(['Curve fitting AR(1) spectrum for LC number ',...
    num2str(i), '...'])
C_0=sigma(i)^2;
least_sqerror=0;
for j=1:phinum
    currentvar=C_0*(1-phivals(j)^2);
    S_currentphi=(2*timestep*currentvar)./(2*pi.*(1-2*phivals(j).*...
        cos(omegas*timestep)+phivals(j)^2));
    
    sqerror=0;
    for k=1:N/5 
    % (N/5 for efficiency; 
    % S_omega ~ S_currentphi ~ 0 for higher frequencies)
        sqerror=sqerror+(S_omega(k)-S_currentphi(k))^2;
    end
    
    if j==1||sqerror<least_sqerror
        least_sqerror=sqerror;
        S_bestfit(i,:)=S_currentphi;
        phi_bestfit(i)=phivals(j);
        var_bestfit(i)=currentvar;
    end
end
end
 
%%%%%%%%%%%%%%%%%%%%%%%%%%
 
fprintf('\n')
 
% Simulating time series for comparison:
%%%%%%%%%%%%%%%%%%%%%%%%%%
AR_sim=zeros(15,length(time));
kai_sim=zeros(15,length(time));
for i=1:15
    disp(['Generating a ', num2str(reclength),... 
        ' s AR(1) simulation of LC number ',...
        num2str(i), '...'])
 
    % Simulating a time series using the AR(1) properties found by curve 
    % fitting the Kaimal spectra:
    AR_sim(i,1)=normrnd(0,sigma(i));    % Simulate initial value
    for j=2:length(time)
        AR_sim(i,j)=phi_bestfit(i)*AR_sim(i,j-1)+...
            normrnd(0,sqrt(var_bestfit(i)));
    end
end





7.6 Attachment 6:

Flexibility matrix, f , of the discretized reference tower described in
section 3.1.1. [m/N]
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Table 11: Flexibility matrix of the discretized reference tower. [m/N ]
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7.7 Attachment 7:

Matlab script used to derive the modal properties of the reference
tower described in section 3.1.1.
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%
% John Magne Hembre 2014
%
% Script written to estimate mode shapes and natural frequencies of
% the onshore tower structure described by Jonkman in "Definition of a 
% 5-MW Reference Wind Turbine for Offshore System Development" (2009)
%
% Input (in workspace): 
% - Stiffnes matrix; Kmat (inverse of flexibility matrix)
% - Mass matrix; Mmat
% - Vector containing height of DOF's; HDOF 
%
% Input:
zeta=0.01;                           % Structural damping ratio (all modes)
M=Mmat;
K=Kmat;
%
clc
close all
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Obtaining natural frequencies and mode shapes:
 
eigenmatrix=M\K;                                   % eigenmatrix = inv(M)*K
% Solving the eigensystem:
[eigenvecs,lambdas]=eig(eigenmatrix);
% Considering the six first eigenvalues:
omegas=zeros(1,6);
modes=zeros(21,6);
sortedeigenvecs=zeros(20,20);
sortedeigenvals=sort(max(lambdas));
for i=1:20
    for j=1:20
        if sortedeigenvals(i)==lambdas(j,j);
            sortedeigenvecs(:,i)=eigenvecs(:,j);
        end
    end
end
maxvals=max(abs(sortedeigenvecs));
for i=1:9
    omegas(1,i)=sqrt(sortedeigenvals(i));
    for j=1:21
        if j==1
            modes(j,i)=0;
        else
            modes(j,i)=sortedeigenvecs(j-1,i)/maxvals(i);
        end
    end
end
 
omega1=omegas(3);
omega2=omegas(4);
omega3=omegas(5);
 
phi1=modes(:,3);
phi2=modes(:,4)*(-1);
phi3=modes(:,5)*(-1);
 
figure(1)
plot(phi1,HDOF,'-bo','LineWidth',3,...
    'MarkerSize',10,'MarkerFaceColor','b');
hold on
plot(phi2,HDOF,'-ro','LineWidth',3,...
    'MarkerSize',10,'MarkerFaceColor','r')
plot(phi3,HDOF,'-mo','LineWidth',3,...



    'MarkerSize',10,'MarkerFaceColor','m')
axis([-1 1.2 0 90])
xhandle=xlabel('Normalized modal amplitude, \phi [-]');
yhandle=ylabel('DOF height [m]');
legendhandle=legend({['f_{Nat,1} = ',num2str(omega1/(2*pi)),' Hz'],...
  ['f_{Nat,2} = ',num2str(omega2/(2*pi)),' Hz']...
  ['f_{Nat,3} = ',num2str(omega3/(2*pi)),' Hz']},'Location','EastOutside');
grid on
hold off
set(gca,'fontsize',17)
set(xhandle,'Fontsize',17)
set(yhandle,'Fontsize',17)
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Obtaining modal masses and stiffnesses: 
 
phi1=modes(2:21,3);
phi2=modes(2:21,4)*(-1);
phi3=modes(2:21,5)*(-1);
 
m_mass_1=(phi1.')*M*phi1;
m_mass_2=(phi2.')*M*phi2;
m_mass_3=(phi3.')*M*phi3;
 
m_stif_1=(phi1.')*K*phi1;
m_stif_2=(phi2.')*K*phi2;
m_stif_3=(phi3.')*K*phi3;
 
m_damp_1=2*m_mass_1*omega1*zeta;
m_damp_2=2*m_mass_2*omega2*zeta;
m_damp_3=2*m_mass_3*omega3*zeta;
 
m_stif_ctrl_1=omega1^2*m_mass_1;
m_stif_ctrl_2=omega2^2*m_mass_2;
m_stif_ctrl_3=omega3^2*m_mass_3;





7.8 Attachment 8:

Example of a TurbSim input �le used to simulate a �uctuating wind
�eld with a reference wind velocity of 12 m/s and turbulence class B.
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TurbSim Input File. Valid for TurbSim v1.06.00, 21-Sep-2012  

 

---------Runtime Options----------------------------------- 

2692473             RandSeed1       - First random seed  (-2147483648 to 2147483647)  

RANLUX              RandSeed2       - Second random seed (-2147483648 to 2147483647) for intrinsic pRNG,                         

                                      or an alternative pRNG: "RanLux" or "RNSNLW" 

False               WrBHHTP         - Output hub-height turbulence parameters in binary form?   

                                      (Generates RootName.bin) 

False               WrFHHTP         - Output hub-height turbulence parameters in formatted form?   

                                      (Generates RootName.dat) 

False               WrADHH          - Output hub-height time-series data in AeroDyn form?  (Generates  

                                      RootName.hh) 

True                WrADFF          - Output full-field time-series data in TurbSim/AeroDyn form?  

                                      (Generates Rootname.bts) 

False               WrBLFF          - Output full-field time-series data in BLADED/AeroDyn form?   

                                      (Generates RootName.wnd) 

True                WrADTWR         - Output tower time-series data? (Generates RootName.twr) 

False               WrFMTFF         - Output full-field time-series data in formatted (readable) form?   

                                      (Generates RootName.u, RootName.v, RootName.w) 

False               WrACT           - Output coherent turbulence time steps in AeroDyn form? (Generates  

                                      RootName.cts) 

True                Clockwise       - Clockwise rotation looking downwind? (used only for full-field  

                                      binary files - not necessary for AeroDyn) 

 0                  ScaleIEC        - Scale IEC turbulence models to exact target standard deviation?  

                                      [0=no additional scaling; 1=use hub scale uniformly; 2=use  

                                      individual scales] 

  

--------Turbine/Model Specifications----------------------- 

16                  NumGrid_Z       - Vertical grid-point matrix dimension 

16                  NumGrid_Y       - Horizontal grid-point matrix dimension 

0.02500000          TimeStep        - Time step [seconds] 

660.00000000        AnalysisTime    - Length of analysis time series [seconds] (program will add time  

                                      if necessary: AnalysisTime = MAX(AnalysisTime,  

                                      UsableTime+GridWidth/MeanHHWS) ) 

660.00000000        UsableTime      - Usable length of output time series [seconds] (program will add  

                                      GridWidth/MeanHHWS seconds) 

88.15000000         HubHt           - Hub height [m] (should be > 0.5*GridHeight) 

160.00000000        GridHeight      - Grid height [m]  

160.00000000        GridWidth       - Grid width [m] (should be >= 2*(RotorRadius+ShaftLength)) 

0                   VFlowAng        - Vertical mean flow (uptilt) angle [degrees] 

0                   HFlowAng        - Horizontal mean flow (skew) angle [degrees] 

   

--------Meteorological Boundary Conditions------------------- 

"IECKAI"            TurbModel       - Turbulence model ("IECKAI"=Kaimal, "IECVKM"=von Karman,  

                                      "GP_LLJ", "NWTCUP", "SMOOTH", "WF_UPW", "WF_07D", "WF_14D",  

                                      "TIDAL", or "NONE") 

"1-ED3"             IECstandard     - Number of IEC 61400-x standard (x=1,2, or 3 with optional 61400-1  

                                      edition number (i.e. "1-Ed2") ) 

14.60               IECturbc        - IEC turbulence characteristic ("A", "B", "C" or the turbulence  

                                      intensity in percent) ("KHTEST" option with NWTCUP model, not used  

                                      for other models) 

"NTM"               IEC_WindType    - IEC turbulence type ("NTM"=normal, "xETM"=extreme turbulence,  

                                      "xEWM1"=extreme 1-year wind, "xEWM50"=extreme 50-year wind,  

                                      where x=wind turbine class 1, 2, or 3) 

default             ETMc            - IEC Extreme Turbulence Model "c" parameter [m/s] 

"PL"                WindProfileType - Wind profile type ("JET";"LOG"=logarithmic;"PL"=power  

                                      law;"H2L"=Log law for TIDAL spectral model;"IEC"=PL on rotor  

                                      disk, LOG elsewhere; or "default") 

88.15000000         RefHt           - Height of the reference wind speed [m] 

12.00000000         URef            - Mean (total) wind speed at the reference height [m/s] (or "default"  

                                      for JET wind profile) 

default             ZJetMax         - Jet height [m] (used only for JET wind profile, valid 70-490 m) 

default             PLExp           - Power law exponent [-] (or "default")            

default             Z0              - Surface roughness length [m] (or "default") 

 

--------Non-IEC Meteorological Boundary Conditions------------ 

default             Latitude        - Site latitude [degrees] (or "default") 

0.00                RICH_NO         - Gradient Richardson number  

default             UStar           - Friction or shear velocity [m/s] (or "default") 

default             ZI              - Mixing layer depth [m] (or "default") 



default             PC_UW           - Hub mean u'w' Reynolds stress (or "default") 

default             PC_UV           - Hub mean u'v' Reynolds stress (or "default") 

default             PC_VW           - Hub mean v'w' Reynolds stress (or "default") 

default             IncDec1         - u-component coherence parameters (e.g. "10.0  0.3e-3" in quotes)  

                                      (or "default") 

default             IncDec2         - v-component coherence parameters (e.g. "10.0  0.3e-3" in quotes)  

                                      (or "default") 

default             IncDec3         - w-component coherence parameters (e.g. "10.0  0.3e-3" in quotes)  

                                      (or "default") 

default             CohExp          - Coherence exponent (or "default") 

 

--------Coherent Turbulence Scaling Parameters------------------- 

"M:\eventdata"      CTEventPath     - Name of the path where event data files are located 

"Random"            CTEventFile     - Type of event files ("LES", "DNS", or "RANDOM") 

true                Randomize       - Randomize the disturbance scale and locations? (true/false) 

 1.0                DistScl         - Disturbance scale (ratio of wave height to rotor disk). (Ignored  

                                      when Randomize = true.) 

 0.5                CTLy            - Fractional location of tower centerline from right (looking  

                                      downwind) to left side of the dataset. (Ignored when Randomize  

                                      = true.) 

 0.5                CTLz            - Fractional location of hub height from the bottom of the dataset.  

                                      (Ignored when Randomize = true.) 

30.0                CTStartTime     - Minimum start time for coherent structures in RootName.cts  

                                      [seconds] 

 

================================================== 

NOTE: Do not add or remove any lines in this file! 

================================================== 
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Matlab script used to analyze FAST simulation output and estimate
parameters in the simpli�ed thrust model.
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%
% John Magne Hembre 2014
%
% Script written to analyze output from time domain simulations in FAST
% and estimate parameters for the simplified thrust force model.
%
% Input from workspace used in this script:
% - Thrust matrix "Thrust_classB" from FAST
% - Thrust matrix under mean wind loading "Thrust_meanwind" from FAST
% - Wind matrix "Wind_classB" from FAST
% - Vector phi_bestfit over AR(1) turbulence phi values
% - Vector var_bestfit over AR(1) turbulence noise variances
%
clc
close all
 
% Wind speeds:
V_ref_vec=[2,4,6,8,10,12,14,16,18,20,22,24,26,28,30];
 
% Time vector:
timestep=0.0125;
time=linspace(0,600,600/timestep);
 
%%%%%%%%%%%%%%%%%%%%%%%
% Mean of thrust:
meanvec=mean(Thrust_classB);
meanthrust_meanwind=mean(Thrust_meanwind);
 
% Search properties to find best C_simp,1 for section 1:
minsearch_meansec_1=40000;            % Search from...
maxsearch_meansec_1=42000;            % Search to...
N_search_meansec_1=2000;              % Number of points
C_simp1_vec=linspace(minsearch_meansec_1,maxsearch_meansec_1,...
    N_search_meansec_1);
 
% Search for best fit for section 1:
meanvals1=meanvec(1:5);
Vrefvals1=V_ref_vec(1:5);
Vrefvals1(6)=11;
for i=1:N_search_meansec_1
    sqerror1=0;
    calcmean1=C_simp1_vec(i).*Vrefvals1.^(1.2);
    for j=1:5
        sqerror1=sqerror1+(meanvals1(j)-calcmean1(j))^2;
    end
    
    if i==1||sqerror1<least_sqerror1
        least_sqerror1=sqerror1;
        C_simp1_bestfit=C_simp1_vec(i);
        calcmean1_bestfit=calcmean1;
    end
end
 
% Search properties to find best C_simp,2 for section 2:
minsearch_meansec_2=5400000;          % Search from...
maxsearch_meansec_2=5500000;          % Search to...
N_search_meansec_2=100000;            % Number of points
C_simp2_vec=linspace(minsearch_meansec_2,maxsearch_meansec_2,...
    N_search_meansec_2);
 
% Search for best fit for section 2:
meanvals2=meanvec(6:15);
Vrefvals2=V_ref_vec(6:15);
Vrefvals2=[11 Vrefvals2];



for i=1:N_search_meansec_2
    sqerror2=0;
    calcmean2=C_simp2_vec(i).*Vrefvals2.^(-0.85);
    for j=2:length(calcmean2)
        sqerror2=sqerror2+(meanvals2(j-1)-calcmean2(j))^2;
    end
    
    if i==1||sqerror2<least_sqerror2
        least_sqerror2=sqerror2;
        C_simp2_bestfit=C_simp2_vec(i);
        calcmean2_bestfit=calcmean2;
    end
end
 
% Obtaining turbulence time series:
meanwindvec=mean(Wind_classB);
Turb_classB=zeros(48000,15);
for i=1:15
    for j=1:48000
        Turb_classB(j,i)=Wind_classB(j,i)-meanwindvec(i);
    end
end
 
% Obtaining force fluctuation time series:
Forcefluct_classB=zeros(48000,15);
for i=1:15
    for j=1:48000
        Forcefluct_classB(j,i)=Thrust_classB(j,i)-meanvec(i);
    end
end
 
%%%%%%%%%%%%%%%%%%%%%%%
% Finding C_simp(Vref) from simulation time series, T(t) = C_simp(Vref)*u:
varvec=var(Forcefluct_classB);
Csearch=linspace(10000,70000,60000);
Cvec=zeros(1,15);
for i=1:15
    for j=1:length(Csearch)
        curr_C=Csearch(j);
        curr_thrust=curr_C.*Turb_classB(:,i);
        curr_var=var(curr_thrust);
        curr_diff=abs(curr_var-varvec(i));
        
        if j==1||curr_diff<best_diff
            best_diff=curr_diff;
            Cvec(i)=curr_C;
        end
    end
    Cvec(i)
end
 
% Search properties to find best C_simp_turb for section 1:
minsearch_turbsec_1=5000;             % Search from...
maxsearch_turbsec_1=10000;            % Search to...
N_search_turbsec_1=10000;             % Number of points
C_simp1_turb_vec=linspace(minsearch_turbsec_1,maxsearch_turbsec_1,...
    N_search_turbsec_1);
 
% Search for best fit for section 1:
Cvals1=Cvec(1:5);
Vrefvals1=V_ref_vec(1:5);
Vrefvals1(6)=11;
for i=1:N_search_turbsec_1
    sqerror1=0;



    calcval1=C_simp1_turb_vec(i).*Vrefvals1.^(1);
    for j=1:5
        sqerror1=sqerror1+(Cvals1(j)-calcval1(j))^2;
    end
    
    if i==1||sqerror1<least_sqerror1
        least_sqerror1=sqerror1;
        C_simp1_turb_bestfit=C_simp1_turb_vec(i);
        calcval1_bestfit=calcval1;
    end
end
 
% Search properties to find best C_simp_turb for section 2:
minsearch_turbsec_2=1500000;          % Search from...
maxsearch_turbsec_2=1800000;          % Search to...
N_search_turbsec_2=300000;            % Number of points
C_simp2_turb_vec=linspace(minsearch_turbsec_2,maxsearch_turbsec_2,...
    N_search_turbsec_2);
 
% Search for best fit for section 2:
Cvals2=Cvec(6:15);
Vrefvals2=V_ref_vec(6:15);
Vrefvals2=[11 Vrefvals2];
for i=1:N_search_turbsec_2
    sqerror2=0;
    calcval2=C_simp2_turb_vec(i).*Vrefvals2.^(-1.35);
    for j=2:length(calcval2)
        sqerror2=sqerror2+(Cvals2(j-1)-calcval2(j))^2;
    end
    
    if i==1||sqerror2<least_sqerror2
        least_sqerror2=sqerror2;
        C_simp2_turb_bestfit=C_simp2_turb_vec(i);
        calcval2_bestfit=calcval2;
    end
end
 
figure(101)
plot(V_ref_vec,Cvec,'b*','LineWidth',1.5,'MarkerSize',15)
hold on
axis([1 31 0 70000])
plot(Vrefvals1,calcval1_bestfit,'LineWidth',3,'Color','r')
plot(Vrefvals2,calcval2_bestfit,'LineWidth',3,'Color','r')
xhandle=xlabel('V_{ref} [m/s]');
yhandle=ylabel('C_s*V_{ref}^\beta [kg/s]');
legendhandle=legend...
    ({['C_s*V_{ref}^\beta estimated from' 10 'FAST simulations'],...
    ['C_s*V_{ref}^\beta from the' 10 'simplified load model']},...
    'Location','EastOutside');
grid on
hold off
set(gca,'fontsize',17)
set(xhandle,'Fontsize',17)
set(yhandle,'Fontsize',17)
 
% Comparing model and simulated thrust:
C_modelvec=zeros(1,15);
for i=1:5
    for j=1:48000
        total_thrust_model(j,i)=calcmean1_bestfit(i)+...
            calcval1_bestfit(i).*Turb_classB(j,i);
        
        C_modelvec(i)=calcval1_bestfit(i);
    end



end
for i=1:10
    for j=1:48000
        total_thrust_model(j,i+5)=calcmean2_bestfit(i+1)-...
            calcval2_bestfit(i+1).*Turb_classB(j,i+5);
    end
    
        C_modelvec(i+5)=calcval2_bestfit(i+1);
end
 
%%%%%%%%%%%%%%%%%%%%%%%
% Frequency analysis:
 
fn=1/(2*0.0125); 
% Nyquist frequency
 
% Plotting frequency content of force:
    num=2^nextpow2(48000);
    % Number of points in the DFT (next power of 2 from length of the
    % signal).
    points_considered = ceil((num+1)/2);
    freq=(0:points_considered-1)*2*fn/num;
    % Vector of the frequencies considered in DFT, in Hz. 
    % delta_frequency=(2*fn)/n yields a maximal frequency of fn, since 
    % points considered = n/2.
    omegafreq=freq*2*pi;
    % Vector of the angular frequencies considered in DFT, in rad/s.
    
    PSDmat=zeros(15,points_considered);
    PSDmodelmat=zeros(15,points_considered);
    
for i=1:15
    FFTsignal_T=fft(Thrust_classB(:,i),num);
    % Fast Fourier Transform of the signal.
    FFTsignal_T=FFTsignal_T(1:points_considered);
    % Disregard the upper half of FFTsignal due to symmetry about the
    % Nyquist frequency.
    Mag_signal_T=abs(FFTsignal_T);
    Mag_signal_T=Mag_signal_T*2;
    % Multiply the magnitude of the signal by two since half the signal
    % was disregarded.
    Mag_signal_T=Mag_signal_T.^2;
    % Square the magnitude of the signal to obtain the power spectrum
    Mag_signal_T(1)=Mag_signal_T(1)/2;
    Mag_signal_T(length(Mag_signal_T))=Mag_signal_T(length(Mag_signal_T))/2;
    % Adjust unique endpoints
    Mag_signal_T=Mag_signal_T/48000;
    % Scaling magnitude of the FFT so that it is not a function of the 
    % length of the signal.
    
    FFTsignal_model=fft(total_thrust_model(:,i),num);
    % Fast Fourier Transform of the signal.
    FFTsignal_model=FFTsignal_model(1:points_considered);
    % Disregard the upper half of FFTsignal due to symmetry about the
    % Nyquist frequency.
    Mag_signal_model=abs(FFTsignal_model);
    Mag_signal_model=Mag_signal_model*2;
    % Multiply the magnitude of the signal by two since half the signal
    % was disregarded.
    Mag_signal_model=Mag_signal_model.^2;
    % Square the magnitude of the signal to obtain the power spectrum
    Mag_signal_model(1)=Mag_signal_model(1)/2;
    Mag_signal_model(length(Mag_signal_model))=...
        Mag_signal_model(length(Mag_signal_model))/2;



    % Adjust unique endpoints
    Mag_signal_model=Mag_signal_model/48000;
    % Scaling magnitude of the FFT so that it is not a function of the 
    % length of the signal.
    
    % Smoothing signals using a lowpass Butterworth filter:
    [b,a]=butter(5,0.1,'low');
    % 5th order lowpass Butterworth filter with normalized cut-off 
    % frequency of 0.06 (for deterministic LC)
    filteredPSD_T=filtfilt(b,a,Mag_signal_T);
    filteredPSD_model=filtfilt(b,a,Mag_signal_model);
    
    PSDmat(i,:)=filteredPSD_T;
    PSDmodelmat(i,:)=filteredPSD_model;
end
    
% Calculating the analytical variance spectra of the force fluctuations
% using the load model and an AR(1) variance spectra for turbulence:
 
S_turb_AR=zeros(15,length(freq));
S_forcefluct_AR=zeros(15,length(freq));
for i=1:15
    phi=phi_bestfit(i,1);
    noisevar=var_bestfit(i,1);
    for j=1:length(freq)
        omega=2*pi*freq(j);
        S_turb_AR(i,j)=((noisevar*timestep)/pi)*...
            (1/(1-2*phi*cos(omega*timestep)+phi^2));
        
        S_forcefluct_AR(i,j)=S_turb_AR(i,j)*(C_modelvec(1,i))^2;
    end
end
 
sigma=[0.994,1.204,1.414,1.624,1.834,2.044,2.254,2.464,2.674...
    2.884,3.094,3.304,3.514,3.724,3.934]';
    
%%%%%%%%%%%%%%%%%%%%%%%
% Calculating sample autocovariances:
 
taumax=600;                         % [s]
n=taumax/0.0125;                    % [-]
 
FASTsample=Thrust_classB(:,8);
mean_FASTsample=mean(FASTsample);
var_FASTsample=var(FASTsample);
MODsample=total_thrust_model(:,8);
mean_MODsample=mean(MODsample);
var_MODsample=var(MODsample);
C_tau_FASTsample=zeros(1,n);
C_tau_MODsample=zeros(1,n);
for h=1:n
    Sum_FAST=0;
    Sum_MOD=0;
    for t=1:(n-h)
        Sum_FAST=Sum_FAST+(FASTsample(t+h,1)-mean_FASTsample)*...
            (FASTsample(t)-mean_FASTsample);
        Sum_MOD=Sum_MOD+(MODsample(t+h,1)-mean_MODsample)*...
            (MODsample(t)-mean_MODsample);
    end
    C_tau_FASTsample(h)=Sum_FAST/n;
    C_tau_MODsample(h)=Sum_MOD/n;
end



7.10 Attachment 10:

Plots of the estimated turbulence AR(1) spectra with parameters from
table 8, and their corresponding Kaimal spectra.
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Figure 60: AR(1) wind turbulence spectra for ∆t = 0.0125 s and ∆t = 0.05 s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 1 to 4.

Figure 61: AR(1) wind turbulence spectra for ∆t = 0.0125 s and ∆t = 0.05 s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 5 to 8.
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Figure 62: AR(1) wind turbulence spectra for ∆t = 0.0125 s and ∆t = 0.05 s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 9 to 12.

Figure 63: AR(1) wind turbulence spectra for ∆t = 0.0125 s and ∆t = 0.05 s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 13 to 15.
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7.11 Attachment 11:

Tower top velocity response for the 15 load cases estimated from time
domain simulations in FAST, and calculated analytically for the �rst

mode using the simpli�ed load model.
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Figure 64: Tower top velocity for the 15 load cases estimated from time domain
simulations in FAST (shown in red), and calculated analytically for the �rst mode using

the simpli�ed load model (shown in blue).
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