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Abstract:

The objective of this thesis is to propose and evaluate a simplified dynamic model of a wind turbine. This is done by
assuming that the structure behaves linearly, and that a load model based of the mean and variance of simulated rotor
thrust, depending linearly on turbulence, is sufficient to estimate the response.

The realistic response of the wind turbine is calculated in time domain using the NREL FAST finite element code,
whereas the simplified model response are calculated analytically because of the Gaussian behavior of the load
model.

It is suspected that more sophisticated simplified load models in the future might not be linear, and the response of
the simplified system is therefore also calculated using the relatively new probability density evolution method. This
is done to assess the general feasibility of using this method to estimate responses of such models. Probability
density evolution is performed numerically using the cell-mapping method, and evaluation of the accuracy and
performance of these calculations is also a primary object of the thesis. It is also shown how autoregression could be
used to incorporate correlated forcing in the cell-mapping method.

The wind turbine considered is the NREL 5-MW Baseline turbine, supported by its reference tower.

Results show that the response of the proposed simplified dynamic system is too coarse compared to the simulated
response distributions. The model seems to overestimate both the mean value and the variance of the true
displacements. Possible improvements of the dynamic system, especially of the simplified load model, is evaluated
and discussed.

The results also show that first order autoregression successfully implements correlated force realizations into the
cell-mapping method, and that both Kaimal simulated turbulence and the proposed simplified thrust are processes
that could be estimated to a satisfactory degree using first order autoregression.

With correlated forcing incorporated through autoregression, probability density evolution is shown to provide
accurate estimates of the model response. The method also shows great promise to be useful when considering future
simplified models, provided that one could find ways to keep the number of state-space dimensions to a minimum.
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Sammendrag

P& grunn av kompleksiteten til den ikke-linezere strukturelle oppforselen og dynamiske
belastningen av en offshore vindturbin vil den beste beskrivelsen av responsen gis av
stokastiske elementmetodesimuleringer i tidsplanet.

Slike simuleringer er imidlertid beregningsmessig kostbare, spesielt hvis man mé utfere
mange nok til & estimere utmattingsskader. Det er derfor av interesse & studere hvor
ngyaktig en forenklet dynamisk modell kan tilnserme denne responsen.

Denne masteroppgaven tar sikte pa & foresla og evaluere en forenklet dynamisk modell
av en vindturbin. I denne grunnleggende studien er det interessant & avdekke hvor godt
responsen tilnsermes hvis denne modellen gjgres sa enkel & utlede og bruke som mulig.
De realistiske responsfordelingene av tarnet i hovedvindretningen er estimert for 15 ulike
lasttilfeller ved bruk av elementmetodesimulering i tidsplanet. Koden som er benyttet til
dette heter FAST og er utviklet av the U.S. Department of Energy’s National Renewable
Energy Laboratory (NREL). Responsfordelingene til den forenklede dynamiske modellen
er funnet ved hjelp av den relativt nyutviklede sannsynlighets-evolusjonsmetoden og,
siden den forenklede lastmodellen som vurderes er linezer og Gaussisk, ogsd analytisk
ved hjelp av stokastisk dynamikkteori.

Sannsynlighets-evolusjon har flere attraktive egenskaper forbundet med & estimere re-
sponsfordelingen til slike forenklede dynamiske modeller med fa frihetsgrader, spesielt
for potensielle framtidige systemer med ikke-linezere lastmodeller. Den stgrste fordelen
med denne metoden er at alle regioner av fordelingen estimeres med samme effektivitet.
Dette er nyttig nar sannsynlighetsfordelingenes haler er viktige, noe de er ved beregning
av utmattingsskader.

P4 grunn av styrkene forbundet med sannsynlighets-evolusjon er det ogsd en vesentlig
del av malsettingen til denne avhandlingen & evaluere ngyaktigheten og effektiviteten til
denne metoden for de aktuelle dynamiske systemene. Sannsynlighets-evolusjon er utfert
numerisk ved bruk av cell-mapping metoden, framsatt av Hsu i [1].

For & forbedre denne metoden for problemer som involverer korrelert eksitasjon er det
ogsa vist hvordan autoregresjon kan brukes til & innlemme betingede sannsynligheter av
lastrealiseringene i cell-mapping metoden.

Vindturbinen som studeres i denne avhandlingen er NRELs 5-MW referanseturbin, med
tilhgrende referansetérn. [2] Den forenklede lastmodellen, som er modellert med lineser
turbulensavhengighet, er tilpasset til simuleringsresultater av skyvekraften fra rotoren
for de 15 lasttilfellene slik at den gir tilnsermet samme gjennomsnittsverdi og varians.

Ved & sammenlikne elementmetoderesultater og estimerte responsfordelinger ved bruk
av den forenklede modellen er det klart at denne modellen bgr forbedres for & gi mer
ngyaktige estimat av responsen.

Den storste forenklingen i den foreslatte lastmodellen er at belastningens variansspekter
antas & veere tilnaermet proposjonalt til turbulensens variansspekter. Resultatene viser
at dette medfgrer at periodiske skyvekraftbidrag fra rotoren neglisjeres i lastmodellen,
samtidig som lastvariansen fra disse bidragene ivaretas over alle frekvenser siden modellen
er tilpasset den totale realistiske lastvariansen. Dette mistenkes & ligge bak storsteparten
av avviket mellom de simulerte og estimerte responsfordelingene, siden det utvilsomt vil
pavirke responsvariansen. Variansen av den modellerte responsen kan generelt sies a vaere
for hgy.
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Det pavises ogsa at de estimerte gjennomsnittsverdiene av forskyvningene generelt virker
& vaere hgye sammenliknet med de reelle gjennomsnittsverdiene, noe som kan tilsi at den
virkelige ikke-linezere strukturen oppforer seg stivere enn den lineariserte strukturen brukt
i den forenklede modellen.

Resultatene viser ogsa at bade turbulens simulert ved bruk av Kaimalspekteret, og den
forenklede lastprosessen, kan estimeres tilfredsstillende ved bruk av fgrsteordens autore-
gresjon. Korrelasjon av de modellerte lastrealiseringene er derfor vellykket inkludert
i cell-mapping metoden for dynamiske modeller av denne typen, og sannsynlighets-
evolusjonsmetoden er da godt egnet til & ngyaktig estimere responsen.

Dette er den forste avhandlingen som er skrevet om dette emnet ved NTNUs Offshore
Vindteknologi-gruppe, og selv om en tilfredsstillende forenklet dynamisk modell ikke er
fullt utviklet enda har vi leert mye om hvordan man kan fortsette arbeidet mot & etablere
en slik modell. Vi har ogsa fatt verdifull innsikt i sannsynlighets-evolusjonsmetoden, og
hvordan denne kan brukes til & numerisk estimere en vindturbins globale responsfordeling.
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Summary

Given the complexity of both the structure and the dynamic loading situation, time
domain simulations using aero-hydro-servo-elastic finite element codes provides the most
accurate way to determine the response of an offshore wind turbine.

However, such calculations are computationally expensive, especially when one needs to
perform enough simulations to estimate fatigue damage. It is therefore of interest to
study how accurate a simplified dynamic model could estimate this response.

The main objective of this thesis is to propose and evaluate a simplified dynamic model
of a wind turbine. In this initial study it is interresting to see how well a model as simple
as possible would perform in estimating the structural response.

The realistic response distributions are estimated using the U.S. Department of Energy’s
National Renewable Energy Laboratory (NREL) FAST code to perform Monte Carlo
simulations of the turbine in time domain. Response of the simplified dynamic model is
estimated with the relatively new probability density evolution method and, because of
the Gaussian linearity of the proposed load model, also using random vibrations theory
directly.

Probability density evolution possess several strengths associated with estimating the
response distributions for such problems, especially when a nonlinear load model might be
considered in the future. The main advantage is that all areas of the distribution is treated
equally, enabling an efficient estimation of the distribution tails as well. Evaluating the
performance and accuracy of this method is therefore also a key objective of the thesis.
Probability evolution is performed numerically using the cell-mapping method derived by
Hsu in [1]. In order to make this method more accurate for problems involving correlated
forcing it is also shown how autoregression could be used to incorporate conditional
probabilities of force realizations into the cell-mapping method.

The wind turbine being considered in this thesis is the NREL 5-MW Baseline turbine,
supported by an onshore reference tower. 2] The simplified load model in this study,
which has a linear dependence on wind turbulence, is fitted to simulated thrust values
for 15 load cases in order to obtain a similar mean and variance.

By comparing finite element simulations and estimated response distributions using the
simplified model, it is clear that the dynamic model would have to be improved in order
to provide more accurate estimates of the response. The largest simplification in the
proposed load model is that it does not account for cyclic thrust contributions from
the rotor, while the variance contained in spectral peaks at these frequencies are still
included in the model. This is suspected to be the main reason for discrepancies between
the simulated and estimated response distributions, as it certainly affects the calculated
response variance. This variance is in general observed to be too high.

It is also seen that the estimated mean value of the displacement response seems high
compared to simulation results, which could imply that the realistic nonlinear structure
acts stiffer than the linearized model structure used in this thesis.

The results also show that both Kaimal simulated wind turbulence and the proposed
simplified thrust are accurately estimated using first order autoregression.

Correlation of the modeled force realizations are therefore successfully implemented in
the cell-mapping method, and probability density evolution is now well suited to provide
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good estimates of the model response.

This is the first thesis written on this subject at the NTNU Offshore Wind Turbine
Technology group, and even though a satisfactory simplified dynamic model is not fully
developed yet, we have indeed learned a great deal on how one could proceed the work
towards establishing such a model. We have also gained valuable insight into the prob-
ability density evolution method, and how it could be used to numerically estimate the
global probability distribution of the structural response.
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1 Introduction

International focus on renewable energy has increased over the recent decades, partly
motivated by a will to reduce emissions of greenhouse gasses and to shift the total energy
production towards a situation more sustainable than the present. In Europe, some
nations are also politically motivated to become independent of foreign energy. Higher
environmental consciousness among consumers is also a factor that could make renewable
energy more economically viable through the use of "Green Certificates".

Offshore wind energy could contribute substantially to the percentage of total renewable
energy generated, and it is therefore a market with potential for considerable growth in
the years to come.

This focus has naturally also resulted in an increased research activity on offshore wind
turbines, like the Offshore Code Comparison Collaboration Continuation (OC4) Project.
OC4 is a multinational research project that aims to compare dynamic computer codes
used to design offshore turbines and their support structures, with the ultimate goal of
making structure designs, and offshore wind energy in general, more cost efficient.
These are capable of nonlinear finite element simulations in time domain considering
aerodynamics, hydrodynamics and turbine control system. Because of this, they are in
general named aero-hydro-servo-elastic codes.

Offshore wind turbines is subjected to complex dynamic loads that are high compared
to the self-weight of the structure. Nonlinearities and coupling effects would affect the
response of the structure, and such time domain simulations would undoubtedly provide
the most accurate assessment of this response. However, such simulations are computa-
tionally expensive, in particular when fatigue loads needs to be obtained. It is therefore
of interest to study how good a simplified dynamic model could estimate the structural
response.

Such a simplified dynamic model could for example be used in an early design phase
to compare different support structures. A more ambitious goal is that a model like
this over time should become accurate enough to replace, at least some, time domain
simulations entirely. This could for example be accomplished by having a model with
parameters that could be calibrated using time domain simulations.

One of the main objectives in this thesis is to establish a simplified dynamic model of a
wind turbine and its load situation, and evaluate the calculated response compared to
results obtained by time domain simulations using a certified finite element code. The
response distribution could for some simple dynamic models be calculated analytically,
but in general one would have to compute this distribution by numerical means if the
structure model or load model should be described nonlinearly.

Monte Carlo simulation provides a straightforward method of obtaining an estimate of
the response distribution. This method is however computationally expensive, especially
when fatigue is important and an accurate estimate of the probability content of the tails
need to be obtained.

An alternative method, which is subjected to ongoing research, is the probability density
evolution method. This is a method that is capable of evolving the entire distribution
using instantaneous probabilities. This makes it just as efficient when estimating low
probability areas of the distribution. The Monte Carlo Method on the other hand, would



need many sample points to capture low probability response. Probability evolution
has therefore proven to be effective compared to Monte Carlo simulation when a global
distribution estimated is important. [3] This is also true when comparing probability
evolution to improved Monte Carlo methods, such as those described by Robert and
Casella in [4].

Like for Monte Carlo simulation, the efficiency of probability evolution could also be
dramatically increased by parallel computing using a graphics processing unit.

Because of the advantages associated with this relatively new method, a significant part of
the thesis is also dedicated to probability density evolution. This is the first thesis written
on this subject at the NTNU Offshore Wind Turbine Technology group, and emphasis
have been laid on gaining knowledge about the method and how it behaves for problems
relevant to the group. Results obtained using the probability density evolution method
is therefore evaluated and compared to those obtained by Monte Carlo simulations or
analytical stochastic dynamics theory.

It is also shown how autoregressive modeling could be used to incorporate correlated
excitation into probability evolution of the structural response, a subject on which there
is no earlier publications as far as the author knows.

The thesis is divided into five main sections. Section 2 cover some of the basic background
theory regarding stochastic structural dynamics, stochastic loads, probability density
evolution and autoregression. Section 3 presents the methods used and section 4 presents
the results obtained. The results are discussed in section 5, and finally conclusions and
recommendations for further research are given in section 6. Essential Matlab scripts
and other attachments could be found in section 7.



2 Theory

The following theory sections will introduce some of the main principles used in the
subsequent stochastic analysis of this thesis. This is done rather to give an overview of
the background theory than to provide a complete, in-depth, review of each subject. The
reference literature would in many cases be a good source of detailed information for the
interested reader.

2.1 Stochastic Dynamics of a Linear Single-Degree-of-Freedom System

The physics behind the response of a single-degree-of-freedom (SDOF) system as illus-
trated in figure 1 is important. This is because it is the most basic conceivable dynamic
system including damping and inertia, and because relatively complex structures could
be simplified and represented through generalized coordinates that behave like SDOF
systems. The following theory of stochastic dynamics is largely based on literature by
Lutes and Sarkani [5], Neess and Moan [6], and Newland. [7]

2.1.1 System Properties

u(t)
>

m |—»
c f(t)

rrrrr/ 77

Figure 1: Illustration of a dynamic single-degree-of-freedom system.

The equation of motion for a SDOF system with spring stiffness k£, mass m and viscous
damping coefficient ¢, excited by some force f(¢), is given as an equilibrium between the
internal inertia, damping and elastic force of the system, and the external force applied:

mii(t) + cat) + ku(t) = f(t). (1)

In equation (1), u(t) is the time dependent displacement of the mass from the unloaded

equilibrium position of the system. The dots denotes the time derivatives of this displace-
2

ment. The mass velocity and acceleration is then given as ‘é—? = 4(t) and ‘Zquj = u(t),

respectively.



Introducing the damping ratio, ¢ = ¢/(2vkm), and the natural angular frequency of the
structure, wg = /k/m, equation (1) could be written as:

i(t) + 2Cwo u(t) + wi u(t) = j;(rf) (2)
The solution of the differential equation above naturally depends on the excitation of
the system, and analytical solutions for the special cases where f(t) = 0, or where
f(t) is some harmonic function, is for example given by Erwin Kreyzig. [8] This thesis
deals with arbitrary non-periodic excitation functions. In such cases, the response of
the system could be calculated in the frequency domain using the frequency response
function, H(w), or in the time domain using the impulse response function, h(t).
The frequency response function of the system due to the external force is found by
demanding the harmonic displacement u(t) = ne®! in the equation of motion, where 7
is an amplitude. This yields:

d? . d ‘ '
W (nezwt) + QCWQa (176“‘”5) + wgnezwt _ j;(nt)
= ((iw)? + 2iCwow + wd) ne™t = f;(nt)

m (w3 + 2iwow — w?)

and therefore:

1
m(wg + 2iCwow — w?)’

H(w) = (3)

The system response could now be found in the frequency domain by using the Fourier
transformation of the force, F'(w), as shown in equation (4).

u(t) = /OO H(w) F(w) ™' dw

:/_ZH(W) <217r /_Zf(t) e it dt) et dw

As mentioned, the system response could also be calculated in the time domain. This is
done by using the Duhamel convolution integral shown below.

(4)

u(t) = /_OO f(s)h(t —s)ds (5)

Here, h(t) is the response of the system due to a unit impulse load at ¢ = 0. The integral
in equation (5) could be thought of as a superposition at time t of all impulse responses



up to t, and the impulse response at ¢. Introducing the substitution r = ¢ — s results in
equation (6).

u(t) = /_OO f(t—r)h(r)dr. (6)

For causal systems there is no response prior to the load, and h(r) = 0 for r < 0 (or
t < s). The impulse response function h(t) could be found as the Fourier transform of the
frequency response function H(w), since it is shown, e.g. in [6], that these two functions
form a Fourier transform pair.

h(t) = % /_ T H(w) e du (M)

Another, perhaps more intuitive, method to determine h(t) is by exciting the system with
a unit impulse load and solve the resulting equation of motion. This is done through the
Dirac delta function, given as:

5(t) =

00 for t=0
0 for t#0.

Combined with equation (1), this results in equation (9).

d? d
This is a second order homogeneous ordinary differential equation for ¢t > 0 as

d(t # 0) = 0. For lightly damped structures where |¢| < 1 it has the general solution:

h(t) = e~ 5“0t (A cos(wqt) + B sin(wat)) (10)

Where wg = wpy/1 — (2 is the damped natural frequency of the system. A and B
are constants that need to be determined from the initial conditions at t = 0. From
equations (8) and (9) it is clear that one of the h(t) time derivatives has to be infinite
at t = 0. This is problematic unless it is the double derivative that is infinite. In this
case however, if d?/dt?(h(t)) = b(t) for small [t|, then the two other terms on the right
side of equation (9) is finite, m bd(t) = §(t) and therefore b = m~'. By integration, it is
found that

(@0), = "

and



The initial conditions from equation (11) and (12) put into the solution for h(t) from (10)
yields that A = 0 and B = 1/(wgm). The resulting impulse response function is shown
in equation (13).

e—Swot
h(t) = sin(wqt) for t>0 (13)

wgm

The same result could naturally be obtained by using equation (7). According to equa-
tion (5), the velocity response at time ¢ could also be found by time differentiation as

a(t) = / F(s)h(t — 5)ds (14)
where A(t — s) is found for t — s > 0 from equation (13).

. e—Swo(t—s)
h(t —s) = Ry [wg cos(wg (t — 5)) — Cwo sin(wg (t — s))] (15)

2.1.2 Stochastic Properties of the Response

f(t) could be described as a realization of a stochastic load process F'(t). This forcing
causes a displacement response u(t), which could be described as a realization of the
stochastic process U(t). It could be shown that for a linear, time invariant structure
as the SDOF system described in 2.1.1, the response would be a stationary stochastic
process provided that F(t) is stationary. Equation (6) gives the connection between the
two processes shown below.

U(t) = /Oo F(t — s)h(s)ds (16)

—00

The mean value of the response process is now given as shown in equation (17).

1 N
EU®)] = Jim > u;(t)
j=1
[ 1y (17)
—/0 h(s) 1\}51100 N ]Z;fj(t s) | ds



F(t) could often be modeled as a stationary process for short timespans relevant for
simulations. In this case the mean of the forcing will be constant in time, E [F(t — s)] =
pr, and therefore

E[U(t)] = ur / h(s) ds. (18)

The velocity response of the structure could also be described as a stochastic process
denoted U(t). This process would have a mean value of

d
= —Fk[U(1)].
SE[U()
From the equation above one could easily see that the mean value of U(t) would be zero
for a stationary and time differentiable process.
A useful quantity in stochastic dynamics is the autocorrelation function, Ry(7), which
is the correlation a stochastic process have with itself at another time.

Ry(r)=E[Ut)U(t+ 7)] (20)

The autocorrelation function is closely related to the autocovariance function Cp(7),
shown in equation (21).

Cy(r) =E[U®) — pu) (Ut +71) - po)]
(21)
= Ry(7) — pu

A stochastic process is called weakly stationary if the mean is constant in time, and if the
two functions in (20) and (21) depend on 7 alone. The Wiener-Khintchine relations now
states that the autocovariance function forms a Fourier transform pair with the power
spectral density (PSD) function, or simply the variance spectrum, of the process. The
variance spectrum of a stochastic process U is denoted by Sy (w) and is given as:

Sy (w) = % /_ T Cu(r) e dr (22)

while Cyy(7) could be obtained as the inverse transform:

Cy(r) = /_OO Sy (w) €T dw. (23)



Equation (23) evaluated at 7 = 0 illustrates that the variance spectrum could be thought
of as a variance density distribution along frequencies:

Co0) = E(U) ~ ) = ot = [ Sylw)de: (24)

It could be shown that Sy(w) is symmetric about w = 0. This information could be
used to avoid integrating over negative frequencies by defining the one-sided variance
spectrum as

25y (w) for w>0

(25)
0 for w<O.

st {

As derived by Nass and Moan [6], the variance spectrum of the load process and the
response process are connected as shown in equation (26).

Sy(w) = H(w)" H(w) Sp(w)
(26)
= [H(w)|* Sr(w)

Combined with equation (24), this results in the following expression for the variance of
the stochastic process U(t):

o0
oF = /O H(w)|? 5} (w) dw. (27)
Variances of time differentiated processes could simply be found by differentiating the
spectrum from equation (22), obtaining that Sp(w) = |iw|* Sy(w) = w? Sy(w), and
therefore
oo
0127 = /0 w? |H(w) > Sf(w) dw. (28)

Similarly, one would obtain that

0'% :/0 wh |H(w)|? S (w) dw. (29)



For a SDOF system with the frequency response function derived in 2.1.1, |H(w)|? is

found to be:

|H(w)|? = H(w)* H(w)
= Re[H(w))? — i% Im[H (w))?

= Re[H (w)]* + Im[H ()]

_ mw% — mw? 2 —2mlwow 2
B <(mw8 — mw?)? + (2m§w0w)2> * ((mwg — mw?)? 4+ (2m§wow)2>
1
m? [(wg — w?)? + (20wow)?]

These principles are in the following section used to illustrate the response of a SDOF
system subjected to a Gaussian loading process.

2.1.3 Example of a SDOF System Response to Stationary White Noise
Gaussian Loading

A SDOF system like the one illustrated in figure 1 could for example have values of
m =1kg, k=10 N/m and ¢ =5 %. This would result in the impulse response function
and the squared frequency response functions plotted in figure 2.

In figure 2, one could easily identify the natural frequency of the system by the peak in
the plot for |H(w)|? at wo = \/k/m ~ 3.16rad/s ~ 0.5 Hz. This peak would be higher
and more narrow if the structure was less damped, increasing the resonance effect. Simi-
larly, if the stucture was more damped, the frequency response peak would be wider and
have a smaller amplitude.

Since this is a one degree of freedom system, there is only one natural frequency.
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Figure 2: Plots of h(t) and |H (w)|? for a SDOF system where m = 1 kg, kK = 10 N/m and
¢=5%.

Now we could assume that this system is excited by a load F that is Gaussian distributed
with a mean value of 30 N, and a standard deviation of 5 N, at each time step At = 0.05 s.
The Gaussian distribution have the following probability density function for the random
variable X:

1 1 /x—pux 2

fX(x)—P[x<X§x+dw]—\/ﬂoxexp[—2< p >] (31)
By picking a force from the Gaussian distribution at each time step we effectively assign
the same energy content for all frequencies up to the Nyquist frequency, which is the
highest detectable frequency for the chosen sampling interval. The Nyquist frequency
fn, is given by the sampling frequency fs, as f, = fs/2 = 1/(0.05%x2) Hz = 10 Hz. In this
case the load variance spectrum would be a constant, Sg. Such spectra is called white
noise spectra, since they contain the same amount of energy for all frequencies. There is
obviously no feasible way of obtaining all frequencies, so an ideal white noise spectrum,
which would have contained infinite variance, cannot be simulated.
Even though white noise loading is used in this simple example, the energy content of
environmental loads is generally a function of frequency. This will become apparent in
later theory sections. The one-sided load variance spectrum and the resulting one-sided
response spectrum, calculated by equation (26), is shown in figure 3. Since the area
below Sp up to the Nyquist frequency should equal the variance of the stochastic load
process, S is found as Sy = 02/ f,, = 25N?/10Hz = 2.5N? /Hz.
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Figure 3: Plots of the example one-sided load spectrum and response variance spectrum.

Using the Duhamel integrals shown in equations (5) and (14), the response realizations
could be calculated in the time domain. wu(t) and 4(t), are shown for one such 220 second
long simulation in figure 4. Since we are interested in the stationary long-term response
of the system, the initial 20 seconds of these time series are removed to exclude initial
transient effects.

Displacement response history
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Figure 4: Time series of the displacement and velocity response of the system.
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It is derived, e.g. by Lutes and Sarkani in [5], that any linear system excited by a Gaus-
sian load process F, will have a Gaussian response process U(t). The derivative of the
response, U (t), will also be Gaussian distributed since it is a limit of a linear combination
of the Gaussian processes U(t) and U(t + At). The mean values and variances of the
two processes U(t) and U(t) are determined by the equations provided in section 2.1.2.
Using Matlab to calculate these values numerically, I found that:

po = 3.000m
i = 0.7520 —

of = 0.1976 m*

2
2 _ m
of = 1.9701 —

The mean value of the response equals the static solution v = f/k = 3 m corresponding
to the mean load, as could be expected for this linear system. Normalized histograms
of the realizations f(¢), u(t) and u(t) during a 1500 second long simulation are plotted
with the respective underlying Gaussian distributions for the stochastic processes F'(t),
U(t) and U(t) in figure 5.

Normalized force distribution

0.08¢
0.06¢
0.04r

0.02¢

20 30 40 50
Force [N]

Normalized displacement response distribution Normalized velocity response distribution

16 2 25 3 3.5 4 45
Displacement response [m] Velocity response [m/s]

Figure 5: Normalized histograms showing realizations of f(¢), u(t) and 4(¢) during a 1500
second simulation. The red plots display the analytical Gaussian distributions for the
random variables F'(t), U(t) and U(t), with their respective mean values.
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One should be aware that if F'(¢) is supposed to model a continuous force on the structure,
which is often the case, then the result j; = 0.7520 m/s is somewhat erroneous. This
is an effect of the discrete nature of the force process. By equation (19) it is apparent
that p; = 0 m/s for a stationary and time differentiable process. Using my script to
calculate y;; and run the simulation for smaller time steps it could indeed be found that
ppr — 0m/s as At — 0 s.

If U(t) is a stationary and differentiable Gaussian process, then U(t) is jointly Gaussian
distributed with U(¢) [6], that is: [9]

Jop(u, i) =Plu < U < u+duni< U < U + du)

1 9 (32)

= e
. _ 2
V2moyoga/1 Py

where

V=50 —1p?m) KU;UMU)Q ~ 2o <U;UMU> (u;UMU> " <u;UMU>2] |

In equation (32), p; is the correlation coefficient between U(t) and U(t), measuring
their linear dependence as a value between -1 and 1.

L Cov[U, U] _ Cyp(t=0) (33)
Puu . ou - o
Var[U] - Var[U] U
According to equation (23), Cp,;(7) could be found as:
Cyp(m) = / Sy (w) ™7 dw
(34)

:/ iw Spr(w) €T dw.

Evaluated at 7 = 0, the integral above results in Cp;; = 0 since w Sy (w) is an odd
function of w. Using the result that U and U are uncorrelated processes, their joint
probability distribution function from equation (32) simplifies to:

Fupsi0 = ful0)Jyi) = = o [—; ((“;U’”‘U)Q ¥ (“;U“ff)?)] . (39)

This joint probability density function of U(t) and U(t) is plotted in figure 6 for the
previously calculated mean values and standard deviations. A normalized joint histogram

13



over the realization pairs of u(t) and «(t) for the 1500 second long simulation is shown
in figure 7 for comparison.

Because of the Gaussian loading process and the linear dynamic system, we are in this
neat case able to find the complete probability information of the response through
exclusive use of the first two moments of the response process, the expected value and the
variance. The methods used to determine these two moments of the response are however,
as shown in 2.1.2, not in any way limited to the description of Gaussian processes.

The Matlab script used to perform the calculations in this section could be found in
attachment 1.

; 0
e : R
0.4 . %:‘:’:‘:“8‘ 0
: I
A

e
LK

““\\

*ﬁkﬂ%"’ o
fff’,"'o "‘.’ ““:“““‘\\\\ \

Joint Probability Density [-]
o

Velocity response [m/s] Displacement response [m]

Figure 6: The analytical joint probability density function of U(t) and U(t). The red
lines mark the mean values py and p;.
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Normalized counts [-]

Velocity response [m/s] Displacement response [m]

Figure 7: Normalized joint histogram over the realization pairs of u(t) and u(t) for a 1500
second long Monte Carlo simulation with a time step of At = 0.05 s, resulting in 30000
sample points. The red lines mark the mean values py and p;.

2.2 Probability Density Evolution

While Monte Carlo Simulation (MCS) of the system provides a straightforward method
of estimating the relevant probabilities of the response, this method is in general com-
putationally expensive. This is especially true if an accurate estimate of the probability
content in the distribution tails are important, which it often is for structures where
fatigue is thought to be a considerable design driver.

One alternative method of obtaining the probability density of the response is to evolve
the probability through the use of a partial differential equation describing the both the
drift of the system due to deterministic behavior, and the diffusion of the system due to
the randomness involved. This enables an instantaneous evolution estimation of every
probability in the state space, given a description of the initial state. The probability
content of the response could now be found accurately through an iteration process that
has proved to be effective compared to MCS of the same system. [3]

Probability evolution methods are subject to substantial ongoing research, especially re-

15



garding their extension to non-linear multi degree of freedom systems, and to situations
with multiple sources of randomness. [10| The analyses in this thesis will solely focus
on randomness in the excitation of a system, while the structural system itself will be
modeled as deterministic and linear.

The following theory on probability density evolution is largely based on Hsu [1], Sun
and Luo [11], Li and Chen [10], and Wijker [12].

2.2.1 Markov Processes and the Fokker-Planck Equation

A Markov process could be described as a process where the next state exclusively de-
pends on the current state. This implies that one could predict the next state of the
process just as accurately knowing the current state as one could knowing the entire
history of the process. This property could be expressed mathematically in terms of the
conditional probability f. of a Markov process X:

fc(xnatn‘xn—htn—l)
=Pl(zn < X < zptdr, ty) | (xn—1 < X < zpq +dz, th—1)] (36)
= fc(xn>tn‘$17tlax2at27-'-axn—latn—l)-

Given such a N-dimensional process X, it is derived e.g. in [12], that the stochastic
differential equation governing the time evolution of the probability density in state
space is:

9 A, 1 LY 92
&fc(w,t\wmto) = — ; oz, [Ai(z) fe] + 5 ;; 9203 [Bij(z)fe] (37)

when neglecting higher-order migration terms. In this equation, @y contains the initial
state of the system at time ¢y, A;(x) is the drift coefficient and B;;() is the diffusion
coefficient of the system. Equation (37) is known as the Fokker-Planck equation. It is in
general subjected to the initial condition shown in equation (38).

fc(m, t|330, to) = 5(33 — w()) (38)

If the conditional probability density function in equation (37) is independent of time,
then f.(x,t|xo,tg) = f(x) and the Fokker-Planck equation simplifies to its steady-state
form:

N

AN,
=) gl @) +

i=1

N N 5?2
>oY 5 Bu@f@)] =o. (39)
i=1 j=1 v
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2.2.2 Numerical Solution of the Fokker-Planck Equation using the
Cell-to-Cell Mapping Method

One way of solving the Fokker-Planck equation numerically is to evaluate its path integral,
which is given by: [11]

f(®ig1,tiy1) = /Rnf(wm,tmxi,ti)f(wz,ti)dwi (40)

where R denotes the state space. Time could now be discretized setting At = t;41 — ¢;
for all ¢ > 0, and t; = iAt. Equation (40) now becomes

f(:IZH_l, (Z + I)At) = f(wi+17 (Z + I)At]a:i, iAt)f(CCi, iAt) dx;. (41)
RTL
The state space R" is also discretized into m cells, Acy, Aco, ..., Acy, with center points
Cl,C2y ...y Cmy, 10 order to numerically solve the integral. Equation (41) could now be
written as a discrete Markov chain:

p(k+1) = P(k)p(k) (42)

where p(k) = [p;(k)] is the probability of finding the system in cell i at time kAt and
P(k) = [P;;(k)] is the probability of finding the system in cell i at time (k + 1)At when
the system is in cell j at time kAt with a probability of one.

pilk) = [ f(z, kAt)dz
Aci (43)

~ Ac; f(ci, kKAL)

Pij(k) = (z, (k + 1)At | ¢j, kAt)da
Bes (44)

~ Ac; f(ACi, (k + I)At ‘ Cj, kAt)

In equation (43) and (44) the approximation of constant probability within cells requires
sufficiently small cell volumes, Ac. The transition matrix P could now be estimated
using a transition time interval that is small enough. Iterations of the Markov chain
from equation (42) would now converge towards the joint probability density of @ as
k — oo. This is in principle the cell-to-cell mapping method derived by Hsu. [1]
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Figure 8 shows the joint probability density of U(t) and U (t) from section 2.1.3, calculated
using the probability density evolution Matlab script in attachment 2. This script is
elaborated in section 3.6 along with a general discussion of the cell-mapping method.

Joint Probability Density [-]

Velocity response [m/s]

i,
4?’3’5?‘"”
-

” '
o’ f ’ ’
f”"

Displacement response [m]

Figure 8: Joint probability density of U(t) and U(t) from section 2.1.3, calculated using

probability density evolution.
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2.3 Environmental Loading

Offshore wind turbines are subjected to highly dynamic, irregular external loads as they
are excited by wind and waves. Such environmental loading processes shows considerable
correlation. The following sections discusses how these could be simulated through the
concept of variance spectra introduced in 2.1.2.

2.3.1 Wind

The wind velocity field acting on a structure in the main wind direction is commonly
described as the sum of a mean wind velocity as a function of height z, and a fluctuating
wind velocity dependent on both height and time. This is illustrated in figure 9.

Viot(z,t) = V(2) + v(z,t) (45)

The mean wind velocity could be described by the Normal Wind Profile (NWP), defined
in equation (46). [13]

V(z) = V(2hup) - ( ° )a (46)

Zhub

The exponent « is determined by the surface roughness. Germanischer Lloyd recom-
mends using a=0.14 for sites located offshore. This is a low value compared to onshore
sites, where a typically lies around 0.2 due to higher surface roughness. [13]

Az

1777777

Figure 9: Superposition of time dependent and mean wind velocities. [14]
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The fluctuating contribution, named turbulence, is best described stochastically as a
process with a mean value of 0 m/s and a standard deviation of o, m/s. The standard
deviation of the turbulence is defined in equation (47) as the coefficient of variation I of
the wind speed at hub height multiplied by vy, which is the short term mean value of
the hub height wind speed. vpyp is typically measured over a period of 10 minutes. [ is
commonly called the turbulence intensity.

oo =1 vpu (47)
This standard deviation could also be described through the Normal Turbulence Model

(NTM) as defined by the International Electrotechnical Commission (IEC) in equa-
tion (48). [13]

Gy =Iyes (0.75 - Ut 5.6%) (48)

Here, I,y is a turbulence intensity specified by IEC for three different turbulence classes.
The velocity variance spectra of the turbulent wind field as a function of frequency, S, (f),
is now defined by:

/0 TS(f)df = o? (49)

One model for these spectra is called the Kaimal model, defined by IEC 61400 3¢
edition [15] as

40’2 (Lk/@hub)
(1 + 6ka/'l_)hub)5/3

Su(f) = (50)

In equation (50), Ly is an integral scale parameter given in IEC 61400 3"¢ edition [15]
for the main wind direction as

Ly =8.10-Ay

51
=8.10- 0.7 - min{60m, zpup } (51)

For the model used in this project zp,=90.55 m yields L;=340.2 m. If one assumes
Vhuy=16 m/s and turbulence class B, then I,.y=0.14. Equation (48) now results in
0,=2.464 m/s. The Kaimal spectrum for this case is plotted in figure 10.
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Figure 10: Logaritmic x-axis plot of the Kaimal spectrum for L;=340.2 m, vp,p=16 m/s
and turbulence class B. It could be shown that the square root of the area under this curve
equals o, = 2.464 m/s, as defined by equation (49).

To generate a wind velocity field in the time domain, v(z,t), one would have to perform
a simulation based on spectral decomposition, as described by e.g. Strommen. [14] The
Fourier series of the wind velocity field at a single point in space could be written as

N
v(t) ~ Z Tk
k=0
N .
= Re (Z - el(wkﬂ-%)) (52)
k=0
N
= Z k- cos(wyt + )
k=0
where
ek =V 2Awy - S(wy) (53)
and

Wg = 27 fk (54)
Y, is a random phase angle for each k described by the uniform probability distribution

between 1y=0 and p=27. When transforming from the time domain to the frequency
domain one lose information about the placement of the velocities along the time axis.
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Simulation is therefore the only way of going back. The simulated turbulence would
however have the same variance, mean value and correlation as the original fluctuating
part of the wind field, and these stochastical properties are in principle what is needed
to simulate response. One such simulation based on the Kaimal spectrum from figure 10
is shown as an example in figure 11.

The Matlab script used to generate spectral decomposition simulations of turbulence
in this thesis, could be found in attachment 3. For the finite element time domain
simulations, stochastic wind is generated using software described in section 3.2.

v(t) [m/s]
(=]
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0 100 200 300 400 500 600
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Figure 11: Matlab plot of simulated wind velocity fluctuations over 10 minutes in the
main wind direction at hub height, given the specified Kaimal spectrum from figure 10.

Turbulence also leads to fluctuating wind velocity components along the two axes per-
pendicular to the main wind direction. These components have their own turbulence
intensity and are calculated in the same manner as described above.

When a complete description of the wind velocity field have been established, the resulting
aerodynamic forces that act on the structure could be calculated using the dimensionless
aerodynamic drag coefficient, C'p. Neglecting the relative velocity of the structure, the
incremental force from aerodynamic drag would be given as:

AF(,1) = %p Cp dA[V (2) + v(z, ). (55)

In equation (55), dA is the cross sectional area of the section and p is the mass density
of the air.
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2.3.2 The Blade Element Momentum Method

The true airflow near the rotor is immensely complicated due to the relative movement
of the blades which also affects the turbulent flow directions. The Blade Element Mo-
mentum (BEM) method is considered one of the best simplified approaches to estimate
the resulting loads acting on the rotor.

This model is based on the idea that the area swept by the rotor could be divided into in-
finitesimal thick annular ring elements, and that angular momentum must be conserved
between the rotor and the fluid within each ring. One assumes that there is no fluid
interaction between the annular rings, and that the wind velocity is constant over each
element. Provided the configuration and aerodynamic coefficients of the blades, airfoil
theory could now be used on these individual blade elements to obtain local lift and drag
forces.

(1-a)Vy .

Rotor plane

Figure 12: Velocity components around rotor blade airfoil. [16]

Figure 12 illustrates some of the terminology used in the following brief summary of the
concept. A complete description of the BEM method and its background theory is for
example given by Det Norske Veritas in [16], or by Manwell et.al in [17].
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From momentum theory it is known that the contribution to total thrust and torque
from a blade section could be found as

dT = pVZ 4a(l — a) wrdr (56)

and

dQ = pVp4d' (1 — a) wriwdr, (57)

respectively. In equation (56) and (57) p is the mass density of the air, Vj is the incoming
wind velocity, r is the radius from the hub to the blade section centroid and dr is the
section length. a and a’ is the axial and angular induction factors, given as:

%1
=1-—— 58
a=1-4 (58)
and
174
1 VYw
a =5 (59)

V1 is the axial wind velocity after the rotor, Vi, is the tangential wind velocity of the
wake after the rotor and w is the angular velocity of the rotor. The contribution to total
thrust and torque from a blade section could also be derived from blade element theory,
as shown in equation (60) and (61).

1
dT = 5B p erl (Cjcosp + Cg sing) cdr (60)

dQ = %B p V2, (Cysing — Cqcosp) cdr (61)

In these equations, ¢ is the angle of the relative wind velocity, V. = Vo (1 — a)/sin ¢.
The angle ¢ is the sum of the local pitch angle 8 of the blade and the local inflow angle
«. B is simply the number of blades considered, and c is the chord length of the blade
section.

In general, the induction factors a and @’ is unknown, and one has to iterate to find these
for every blade section at every time step. This could be done by guessing values for a
and o/, updating the relative angle and then updating the lift and drag coefficients C}
and Cy, which are functions of the local angle of attack. The induction factors could now
be updated by using relationships given by equation (56), (57), (60) and (61).

After obtaining a convergent pair of induction factors for a given blade section, the rele-
vant contribution to the total thrust or torque could be determined. These contributions
are projected into the rotor plane and its normal direction and summed up to represent
the total rotor torque and thrust at each time step.

Figure 13 shows a 60 second estimation of the total thrust resultant obtained using
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the BEM method Matlab script in attachment 4. The wind load for this case is given
by a Kaimal simulation with reference wind speed 10 m/s and a standard deviation
of 1.834 m/s. The rotor considered is the NREL 5-MW Baseline Turbine described in
section 2.3. The mass density of the air is set to 1.25kg/m?3.
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Figure 13: Estimated total rotor thrust resultant for the NREL 5-MW Baseline Turbine
given a 10 m/s reference wind speed with turbulence class B.

It should be stressed that the script in attachment 4 is solely intended to serve as a
simplified illustration of the BEM method. Highly relevant considerations such as the
wind turbine control system, the flexible motion of the blades and fluctuations in the
angular velocity of the rotor are all not included in this script. For the subsequent time
domain analyses of this thesis, the certified code described in section 3.3 will be used to
obtain simulated rotor thrust values.

2.3.3 Waves

Even though wave forces are not included in the simplified load model presented in this
thesis, they would be important when considering more sophisticated models. Because of
this, the inclusion of wave loads is also be important when discussing the future usefulness
of probability evolution for problems of this kind.

In order to mimic realistic sea waves one has to take into account that real sea waves
are a superposition of many waves with different properties regarding amplitude, length
and period. This is done by describing some statistical processes assumed stationary
over the short-term simulations. Such processes are called irregular sea states, and their
properties are modeled using the spectral density function of the surface elevation. [18§]
This method of describing a stationary stochastical process is basically analog to the
description of wind turbulence in 2.3.1.
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Figure 14: Example of a Pierson-Moskowitz spectrum with significant wave height of
2.19 meters and a spectral peak period of 6.37 seconds.

One potential wave energy spectrum is the Pierson-Moskowitz spectrum (PM-spectrum),
defined in equation (62).

5 —4
Spn(w) = % 22wt 1(5) (62)
In equation (62), H, and w), describes the properies of the specific sea state. H, is the
significant wave height, defined as the mean value of the highest 1/3 of the observed
wave heights, measured from trough to crest, in a sample. [18] w), is the angular spectral
peak frequency, which could be defined by the spectral peak period, T}, as w, = 27/T),.
Figure 14 shows the PM-Spectrum for H,=2.19 meters and 7),=6.37 seconds.

The established sea state spectrum could now be discretized and the contributions from
each frequency in every time step could be superimposed to give the surface elevation,
n(t), as in equation (63). As with the turbulence simulation, a uniformly distributed
random phase shift angle between 0 and 27 is introduced for each frequency.

N
Z V2Awy - S(wi) - cos(wit + V) (63)

k=0

One such time domain simulation of the Pierson-Moskowitz spectrum from figure 14 is
shown in figure 15.
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Figure 15: An example of a 200 seconds long time domain simulation of the surface
elevation, given the sea state described by the PM-spectrum in figure 14.

After having described the stochastic nature of the surface elevation y, the kinematics of
the water particles could be estimated as a function of depth using the wheeler stretching
method and wave theory. This is explained in detail by e.g. DNV. [18]

Structures that are slender compared to the wave length, A, is called hydrodynamically
transparent. This implies that the structure only affects the flow locally. For structures
with D less than one fifth of the wave length, where D is the projection of the cross
section obstructing the flow, Morison’s equation is used to derive the wave induced loads
normal to the structure. This formula describe such loads as a sum of the forces caused
by drag of the flow relative to the structure movement, and the inertia forces of the
displaced water volume. [18]

AF(z,t) = pAv + pCa A(D — ) + %pCDD(v — )| —7)]. (64)

In equation (64), dots symbolize time derivation and r is the normal displacement of the
structure. v is here the normal particle velocity and must obviously not be confused with
the wind turbulence velocity, v, from section 2.3.1. A is the cross sectional area, D is the
projected diameter, and p is the mass density of the fluid. The dimensionless values Cp
and C}y is the drag coefficient and the added mass coefficient, respectively.

2.4 Autoregressive Modeling

The white noise example in 2.1.3 illustrated structure response to a loading process
where a load value was picked randomly from a Gaussian distribution. Effectively, this
would imply that the value of the excitation at one point in time are independent of
the values of the excitation in the near past. As seen in 2.3, environmental processes
would generally not display such chaotic behavior, but rather contain some degree of
correlation, or frequency dependence.
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A time series of the process in question could be simulated as shown in 2.3, this would
be an acceptable approach when performing a Monte Carlo simulation of the system
response. When employing the probability density evolution method however, one would
need represent the behavior of the stochastic process through the use of random variables.
This could be achieved through autoregressive modeling. The following derivations on
autoregression theory is based on Brockwell and Davis. [19]

The process providing the variable X; is autoregressive of order p, AR(p), if it is weakly
stationary and could be written on the following form for every step t:

Xe=1 Xeo1+ -+ 0pXie—p + Zt. (65)

In equation (65), ¢1 to ¢, are constants with absolute values below 1, and Z; is a Gaussian
distributed random variable with a mean value of zero and a standard deviation o, picked
as white noise.

For the sake of introducing a minimum of additional parameters into the probability
density evolution, the environmental processes is in the following PDE analyses modeled
as first order autoregressive. A variable determined by a first order autoregressive model,
AR(1), will only depend on the closest preceding value of the variable as shown below.

Xe=0Xi 1+ 24 (66)

Multiplying both sides of equation (66) with X;_. and taking the expectations leads to
an expression for the autocovariance function of the process:

Cx(7) = E[X; X¢_,]

= FEl¢pXi1 Xi—-| + E[Z; Xy 7]

(67)
=¢Cx(t—1)40
= ¢"Cx(0).
In equation (67),
Cx(0) = o?/(1 = ¢?) (68)
Cx(0) = E[Xy X{]
= B(¢Xi-1 + Z1) (9 Xi—1 + Z4)] (69)

= ¢2 Cx(()) +02.

From equation (67) one could see that first order autoregression would model a weakly
stationary process, with constant mean and variance, for ¢ < 1. The variance spectrum
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of this process could now be found from the discrete version of equation (22), as shown
below. [19]

1 - —iTW
S%arm (@) = 5 > e Cx(r)
2 wAt —iwAt
_ oAt 14 ¢€‘A+ oe - (70)
W(1—¢2) 1_¢ezw t 1_¢e wAt
2
_ At(l — 2¢ cos( wAL) + ¢?) 7!
0

Above, At is the time step between points to be modeled by the spectrum. Given a
specific time series, the parameter ¢ and the variance of the white noise contribution, o,
could for example be estimated using the Yule-Walker equations. [19]

However, if the variance spectrum of the process is known, then the unknown model
parameters could be estimated directly using the relationships provided in equations (70),
(68) and (24). This could be done numerically by curve fitting, for example using the
least squared error method.

Figure 16 shows the example Kaimal wind turbulence spectrum from figure 10, and
its estimated first order autoregression spectrum with parameters ¢ = 0.9966 and o =
0.203 m/s, for a time step of At = 0.05 s. The Matlab script used to estimate these
parameters could be found in attachment 5.
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Figure 16: Comparison of the Kaimal spectrum from figure 10 and the best estimate of
its first order autoregression spectrum for time step At = 0.05 s.
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The resulting AR(1) model is

X; = 0.9966 - X;_1 + Z; (71)

where Z; is a Gaussian distributed white noise random variable with ¢ = 0 m/s and
o =0.203 m/s.
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Figure 17: AR(1) simulation of the wind turbulence defined by the spectrum in figure 10.

A time series of the process defined in (71) could now easily be simulated back by speci-
fying the initial value Xy. Xg could for example be picked from a Gaussian distribution
with the same variance as the total process, Cx(0). This is illustrated over ten minutes
in figure 17. While it is worth noting that a higher order autoregressive model would
provide a more accurate estimation of the correlation in the underlying process, one could
see by comparing figure 17 and 11 that a first order autoregression model would describe
the actual turbulence behaviour much better than a white noise signal with the same
mean and variance.

2.5 The Finite Element Method in Structural Dynamics

The results of the simplified stochastic analyses are going to be compared to analyses
performed using finite element software. Problems in structural dynamics lead to partial
differential equations of motion because of their dependency on both time and spatial
position of the distributed mass points. The finite element method (FEM) is based on
the idea of discretizing the spatial distribution of the mass into elements connected at
nodes with defined degrees of freedom. The system could now only vary in space along
these degrees of freedom.

When using the finite element method to consider dynamic problems, the displacements
along the degrees of freedom is time dependent. After having discretized the structure, it
is possible to describe the motion of the system by a set of coupled second-order ordinary
differential equations. This results in a problem that could be written in matrix form
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and solved numerically if the specific boundary values are known. It is shown by Cook et
al. in [20] that the solution of this equation set, under the correct circumstances, would
converge to the true solution of the boundary value problem as the number of elements
are increased.

2.5.1 Deriving the General Equation of Motion

The principle of virtual work could be used, as shown by Cook et al. in [20], to derive a
general form of the equation of motion for a FE discretized structural system.

The principle of virtual work states that work done by external loads must equal the
sum of work absorbed by inertial, dissipative, and internal elastic forces for any virtual
displacement. A virtual displacement, du, is any imagined small motion that satisfies
essential boundary conditions and displacement continuity between elements.

This equilibrium of work is expressed for a single element of volume V and surface area
S as shown in equation (72).

T T Y Ty — Yl pii ull et eVl'o
/V (ou}T Fy AV + /S (6u) Fst+;{5u}i P, = /V [{5u)T pii + {6u} ci + {6e} o] AV
(72)

Fy and Fg is the prescribed body forces and surface tractions, while p; is the prescribed
concentrated loads acting in the n corresponding virtual displacements {du};. p is the
mass density and ¢ is a viscous damping parameter. {J€} represents the strains associated
with the virtual displacements {ou}.

Finite element discretization of the continuous structure lead to the relationships below.
The generalized coordinates g are functions of time, while the shape functions contained
in the shape function matrix IN depend on spatial position.

u=Ngq
u=Ngq
iu=Ng (73)

d
e=—Ngq= Bgq
dx

Substituting these relationships into the principle of virtual work, and assuming that the
concentrated loads p; act directly in nodes, would now provide:

{6q}" </VpNTNdvq°+/VCNTNdvq+/VBTadv)

n (74)

_{5q}T (/NTFVdV—i—/NTFst—G—Zpi) =0
\4 S

i=1
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In equation (74),

/pNTNdV =m
1%
(75)
/cNTNdV =c
.

is the consistent element mass and damping matrices, respectively. These are called
consistent because they are based on the same interpolation functions as the stiffness
matrix, and because they are a direct result from finite element discretization. It could
be shown that both would be symmetric and positive definite. Nonconsistent forms of
these matrices are also used, for example the lumped mass matrix applied in the modal

analysis of this thesis.

The other terms in equation (74) could be rearranged into two vectors. r™ describes
internal forces (or moments) applied to the element by nodes to resist internal element
stresses. T describes external forces (or moments) applied to nodes as a result of

external loads acting on the element. These vectors are presented in equation (76).

i = / B'odV
14

n (76)

PoxXt — / NTFydV + / NTFsdS+) p;
Vv S

=1

These definitions are true in general. For a linearly elastic material the internal force
vector simplifies to ™ = k g, where k is the element stiffness matrix, and the equation
of motion becomes

m{+cq+kq=r">" (77)

By using the relationship between the element degrees of freedom and the global degrees
of freedom, the global form of the equation of motion is found as:

MQ+CQ+KQ=R*=F. (78)

In equation (78), M, C and K is the global mass, damping and stiffness matrix of the
system, respectively. F' represents the load projection into each degree of freedom. If
the global generalized coordinates @ describes the displacements of interest directly, the
equation of motion could be equivalently written as

M ia(t) + Ca(t) + K u(t) = F(t). (79)
The structural equation of motion is presented as matrices and vectors in equation (80).

Here, n is the total number of degrees of freedom used to discretize the system, and u;(t)
represent the displacement along each of them.
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My Mg -+ M| |(t) Cii Ci2 -+ O [wa(®)]
My My -+ My, | |ia(?) N Co1 Cp -+ Cop| |U2(t)
Mnl Mn2 o Mnn un(t) Cnl Cn2 e Cnn_ _an(t)_
(80)
Ki K2 - K| [ui(®)] Fi(t)
N Koy Ko -+ Kol |ua(t) B Fy(t)
Knl Kn2 T Knn_ _un(t)_ Fn(t)

Equation (79) is discretized in space, but the displacements and forcing are continuous in
time. This is therefore a system of coupled second-order ordinary differential equations
in time. One could now further discretize time and use direct numerical time integration
algorithms such as the Newmark Method, e.g. described in [13], to establish the structure
response history.

2.5.2 Modal Analysis
The modal form of the dynamic system is found assuming that the displacements u(x,t)

could be written as a superposition of products between ¢(x), accounting for spatial
dependence, and 7(t) accounting for time dependence. Written in matrix form:

u(z, t) = () - n(t) (s1)
®(x) is the modal matrix of the system (not to be confused with the autoregression

parameter ¢) and n(t) is a vector of generalized modal coordinates. The modal matrix
consist of the eigenvectors of the system:

®(x) = [¢1, b2, -+, D] - (82)

Both eigenvectors and eigenvalues are determined by solving the eigenvalue problem
derived for the undamped and unloaded structure. The equation of motion is in this case
given as:

Mii(t) + Ku(t) = 0. (83)
Substituting for assumed harmonic oscillations, u(t) = ¢ - !, would now result in
(K —wiM) ¢, ™" = 0. (84)

e™it could be disregarded as it is not zero in general for non-trivial solutions, leading to
the structural eigenvalue problem presented in equation (85).
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(K —w/M)¢; =0 (85)
Solving the eigenvalue problem presented in equation (85) yields the eigenvalues w? and

eigenvectors ¢, of the system. Having obtained these one could substitute u in the
equation of motion and premultiply by ®7:

'MP - ij+@7CP® -7+ ®TK® n=2>"F. (86)

Equation (86) could be rewritten to the form of the modal equation of motion:

M- -ij+C -7+ K-n=®"F. (87)

Where M , C and K is the diagonal modal mass, damping and stiffness matrix of the
system, respectively. The modal matrix equation of motion is decoupled because the
eigenvectors of the structural elgenvalue problem (K — w?M)¢; = 0 are orthogonal. It

could be proven that M and K are diagonal matrices by premultiplying equation (85)
for the ith solution with q,’)] to obtain

¢; Ko, = w; ¢] Mo;. (88)

The similar operation could naturally be performed for the jth solution:

¢i Kb; =i ¢f M. (89)

Transposing equation (88) would yield

(6] Koy)" = (wF & M ;)" (90)

and, since M and K are symmetric matrices:

¢iTK¢j = %2 ¢1'TM¢]‘- (91)

Subtracting equation (91) from equation (89) would result in (92).

(W? —w?) ] Mep; =0 (92)

Equation (92) concludes the proof, showing that d)?Md)j must equal zero when 7 # j.
The same result could now be found for the modal stiffness matrix by substituting this
result into equation (91).

The decoupling of the modal equation of motion causes the generalized coordinates of
each mode to act as a single degree of freedom system, which is a key property of
modal analysis. The contributions of each mode could then be superimposed as shown
in equation (81) to obtain the real displacement u.

34



3 Methodology

This section aims to present and discuss the methods used in the thesis.

3.1 The NREL 5-MW Baseline Wind Turbine

The wind turbine considered in this thesis is the U.S. Department of Energy’s National
Renewable Energy Laboratory (NREL) 5-MW baseline turbine, as defined by Jonkman
et al. [2] This numerical turbine model provides standardized and accurate data for the
properties of a realistically sized offshore wind turbine, and it is therefore also used in
the OC4 project. Some key properties of the baseline turbine is shown in table 1.

Table 1: Some selected properties of the reference wind turbine. [2]

Rating 5 MW
Rotor orientation, Configuration Upwind, 3 blades
Control Variable speed, Collective pitch
Drivetrain High speed, Multiple-Stage gearbox
Rotor, Hub diameter 126 m, 3 m
Hub height 90 m
Cut-in, Rated, Cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s
Cut-in, Rated rotor spead 6.9 rpm, 12.1 rpm
Rated tip speed B0 m/s
Overhang, Shaft tilt, Precone 5m, 50, 25"
Rotor mass 110000 kg
Nacelle mass 240 000 kg
Tower mass 347 460 kg
Overall center of mass (-0.2 m, 0.0 m, 64.0 m)

3.1.1 Reference Tower

Validation of the thrust load model and comparison between results obtained by prob-
ability density evolution and time domain simulations are the main objectives of the
thesis. Because of this, the site-dependent offshore support structure and wave loads are
not included in the subsequent analyses.

The tower considered in this thesis is the onshore reference tower described in [2|. This
tower is modeled as clamped at the base. It has an outer base diameter of 6 m and a
base thickness of 0.0351 mm. Both the diameter and thickness tapers linearly to top
values of 3.87 m and 0.0247 mm, respectively. The material used is steel with a Young’s
modulus of 210 GPa and a shear modulus of 80.8 GPa. To account for secondary steel
and paint, the mass density of the steel is raised from 7850 kg/m? to 8500 kg/m®. The
tower has a specified structural damping ratio of 1 % for all modes.

I have divided the tower into 20 nodes and 20 elements in order to obtain estimates of
the first eigenmodes and frequencies. Each node has one transversal degree of freedom.
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The lumped mass technique, e.g. covered by Chopra in [21] or Murtagh et al. in [22], is
used to obtain a diagonal mass matrix for the tower. The entries of the mass matrix are
shown in the last column of table 2, since M = Diag[M;;] where M;; = m,.

The lumped masses are determined by the mass of the corresponding tower section with
height dz;. The lumped mass acting in the degree of freedom on the top of the tower,
DOF 20, also includes the mass of the rotor and nacelle from table 1. In table 2, Height;
refers to the height of the DOF measured from the base of the tower, while HtFract;
refers to the percentage of the total height of the tower.

Table 2: Discretization and lumped masses of the reference tower.

Quter

DOF #, i Heighti | HtFract; dz; Thickness; diameter, Volume; i [ke]
[m] [] [m] [m] [m] [m”3]

1 4,38 0,05 6,57 0,03458 5,89350 4,216663 | 358416
2 8,76 0,10 4,38 0,03406 5,78700 2,696303 | 22918,6
3 13,14 0,15 4,38 0,03354 5,68050 2,606227 | 221529
4 17,52 0,20 4,38 0,03302 5,57400 2,517668 | 21400,2
5 21,90 0,25 4,38 0,03250 5,46750 2,430626 20660,3
6 26,28 0,30 4,38 0,03198 5,36100 2,345101 19933,4
7 30,66 0,35 4,38 0,03146 5,25450 2,261092 19219,3
8 35,04 0,40 4,38 0,03094 5,14800 2,178599 | 18518,1
9 39,42 0,45 4,38 0,03042 5,04150 2,097624 | 17829,8
10 43,80 0,50 4,38 0,02990 4,93500 2,018165 | 17154,4
11 48,18 0,55 4,38 0,02938 4,82850 1,940222 | 164919
12 52,56 0,60 4,38 0,02886 4,72200 1,863797 | 15842,3
13 56,94 0,65 4,38 0,02834 4,61550 1,788888 | 15205,5
14 61,32 0,70 4,38 0,02782 4,50900 1,715495 14581,7
15 65,70 0,75 4,38 0,02730 4,40250 1,643619 13970,8
16 70,08 0,80 4,38 0,02678 4,29600 1,573260 13372,7
17 74,46 0,85 4,38 0,02626 4,18950 1,504418 | 12787,5
18 78,84 0,90 4,38 0,02574 4,08300 1,437092 | 12215,3
19 83,22 0,95 4,38 0,02522 3,97650 1,371282 | 11655,9
20 87,60 1,00 2,19 0,02470 3,87000 0,661437 | 355622,2

In order to obtain the modes of vibration for the tower one would also need to know
the stiffness matrix of the structure. In this thesis the stiffness matrix K is obtained
through the flexibility matrix f of the structure. The flexibility matrix of the tower have
been obtained using the unit load method, i.e. introducing a unit load at each degree of
freedom and measuring the corresponding displacement in all degrees of freedom. This
was done using a tower model with 40 elements and nodes in the FEM frame analysis
program "Focus Konstruksjon 2014" developed by Focus Software. [23]

The resulting flexibility matrix are presented in attachment 6. The stiffness matrix of
the tower could now be found as the inverse of the flexibility matrix, K = f~!. Knowing
both the mass and stiffness matrix, the undamped and unloaded equation of motion
becomes

Mii(t) + Ku(t) = 0. (93)
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Assuming harmonic response, u(t) = ¢e™?, and using the knowledge that €™ is not zero
in general, equation (93) simplifies to

(K —w’M) ¢ =0. (94)

Equation (94) is the well known eigenvalue problem in structural dynamics, the solution
of which results in eigenvalues equal to the squared natural frequencies of the tower and
eigenvectors giving the corresponding modes of vibration, ¢p. These computations are
performed using the Matlab script in attachment 7, and the results are presented in
section 4.1.

3.2 TurbSim

TurbSim is a software developed by NREL to generate numerical, turbulent wind fields
based on the theory presented in 2.3.1. TurbSim generates time domain simulations of
three dimensional wind velocity vectors at points on a two dimensional grid which is
fixed vertically in space. [24| This is illustrated in figure 18.

Figure 18: Illustration of a wind velocity field generated by TurbSim. [24]

In this thesis TurbSim have been used to generate the wind fields used in time domain
simulations of the wind turbine. TurbSim reads an input file containing the necessary
information to simulate the wind velocity field. An example of such an input file, for a
12 m/s reference wind speed and turbulence class B, is shown in attachment 8.
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3.3 FAST

FAST, an acronym for Fatigue, Aerodynamics, Structures and Turbulence, is an aeroe-
lastic finite element simulation code developed by NREL capable of simulating an entire
wind turbine in time domain. [25] FAST is certified by Germanischer Lloyd for the calcu-
lation of onshore wind turbine loads for design and certification purposes. Wind velocity
simulations from TurbSim are used as input for the environmental loading in the FAST
time domain simulations. FAST input files describing the reference turbine from sec-
tion 3.1, and its control system, are also provided by NREL.

In this thesis, FAST time domain simulations have been used to obtain time series for
both rotor thrust forces and tower top response. These simulations consider flexible
motion of the tower and blades with aerodynamic damping, the control system of the
turbine and periodic gravity loads.

3.4 Environmental Load Cases

The 15 wind velocity situations considered in this thesis are taken from IEC 61400 3rd
edition [15], using turbulence class B. For this turbulence class, the Normal Turbulence
Model shown in equation (48) provides the standard deviation of the fluctuating wind
velocity using I,y = 0.14.

Table 3: The wind velocity load cases considered in this thesis.

Turbul Intensit
Load Case | Vier [m/s] o [m/s] urbulence Intensity

[%]
1 2 0,994 49,7
2 4 1,204 30,1
3 6 1,414 23,6
4 g 1,624 20,3
5 10 1,834 18,3
6 12 2,044 17,0
7 14 2,254 16,1
8 16 2,464 15,4
9 18 2,674 14,9
10 20 2,884 14,4
11 22 3,094 14,1
12 24 3,304 13,8
13 26 3,514 13,5
14 28 3,724 13,3
15 30 3,934 13,1

These 15 load cases are presented in table 3, and the turbulence intensity is shown as
a function of the reference wind velocity in figure 19. The AR(1) model parameters for
these turbulence cases have been estimated using the Matlab script in attachment 5. The
results of these calculations are presented in section 4.3.
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Figure 19: Plot of the class B turbulence intensities for the different reference wind
velocities considered.

3.5 Development of a Simplified Load Model

To obtain the response distribution of the system through the probability evolution
method one would, as it is made apparent in section 2.2, need to know the probability
distribution of the exciting force. The real loading situation of an offshore wind turbine
is governed by complex environmental processes, nonlinear coupling effects and cyclic
loads from rotational components. It is therefore necessary to develop a simplified load
model for which it is feasible to determine the probability density.

Since only the response in the main wind direction is considered, relevant contributions
to the load situation of an offshore wind turbine would be the total thrust force from wind
loads acting on the rotor, wind loads distributed along the tower above water and wave
loads distributed along the sub-structure under water. The two latter load contributions
could be calculated using equation (55) and (64), respectively.

The accurate estimation of the former load contribution is far more complex, as it depends
on rotational wake of the wind, interaction between wind and the flexible motion of the
blades and the control system of the turbine. The total thrust from wind loads on the
rotor would naturally also be the most significant load for the tower top displacement of
a wind turbine, and its simplified description would therefore be the main objective in
the current load model development.

In general, aerodynamic drag force on an object is described using a dimensionless drag
coefficient and equation (55), where the drag force is proportional to the wind velocity
squared. For a rotor, it is the relative wind that determines the sectional contributions
to lift and drag along the airfoil axes. This could be seen in figure 12. As it is mentioned
earlier in this thesis, the load resultants on the rotor also depends on the turbine control
system and interrelation effects between the blades and the local wind velocities. It is
therefore not obvious that there exists a good model of the rotor thrust force on a form
where the thrust is proportional to the incoming wind velocity squared.
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For example, when using the attached BEM Matlab script to compare force contributions
dT from different blade sections, one would see that the largest contribution to the total
thrust originates from lift forces in the outer parts of the rotor blades. In these blade
regions, the angular velocity of the rotor w generates a very high tangential velocity, wr.
Since the angular velocity of the rotor is not very sensitive to fluctuations in the wind
velocity, one could assume that wind turbulence would cause less variance in the total
thrust force of the rotor than it would do for a stationary object with the same area.

—FAST simulation

{ I ™ M i) me
T

\ \ \
0 100 200 300 400 500 600
Time [s]

Total thrust resultant [N]

Figure 20: Comparison between a FAST simulation of the reference turbine for a 10 m/s
reference wind speed in turbulence class B, and a corresponding simplified model based on
the squared wind velocity.

Even though this is clearly not the only factor influencing the total loading in the main
wind direction, figure 20 does indeed illustrate that the total thrust calculated using
FAST displays less erratic behavior than a simplified model CV?, where C is a total
drag coefficient determined such that the mean value of the two simulations match each
other. Note that since the mass density of the air and the area are implemented in C,
this simplified drag coefficient would have the dimension kg/m.

All things considered, there is no reason to think that there should exist one constant
simplified drag coefficient for the turbine either, since the behavior of the total thrust
resultant are very much dependent on the control system. |2]
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An appropriate load model describing the total thrust resultant acting in the mean wind
direction at hub height, over certain V,..; intervals, are in this thesis assumed to exist on
the form:

T (Vrey,v(t)) =T (Vyes) + & (Viey, v(t)) (95)
where
T (Vres) = Cs Vi (96)
and
£ (Vieg,0(t)) = Cs Vi pu(t). (97)

The subscript s is short for "simplified". The two simplified coefficients and the expo-
nents o and B are determined by curve fitting using results from FAST simulations and
the Matlab script in attachment 9. As it could be seen from the equations above, the
total thrust is now given by a term that describes the time invariant mean thrust and
a term that also varies with the reference wind velocity, but depends linearly on the
turbulence, v(t).

The linear dependence on turbulence is certainly not obvious at this point, but it is later
seen in section 4.2 that this model describes the mean and variance of the fluctuations
in the rotor thrust well. It is also an advantage to avoid having a random variable with
fractional exponents.

This result could also be justified, somewhat heuristically, by assuming that the load
model could be written on a form where the thrust resultant is proportional to some
exponential expression of the total wind velocity, f(v) = (Vyey +v(t))?. A Taylor series
expansion around v(t) = 0 would now produce the series

n.

oo
F(0)
flo)y=> —=@-0)"
=0 (98)
_ 1 _ .
= VitV o+ g ala— D VI 0 + 00
Assuming that V,cy >> v(t) and neglecting higher order terms of v(t) in equation (98)

would leave the following estimation of f(v) for values of v(t) close to zero:

f) =V +qVi o, (99)

e

In the proposed load model, Cy would now have the unit (kgm?*~®)/(m?3s2~®) and C,
would have the unit (kgm>®~#)/(m3s'=?). The resulting models for the environmental
load cases considered in this thesis are presented in section 4.2.
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3.6 The Probability Density Evolution Script

The probability density evolution method is central in this thesis. The following sections
elaborates, based on the theory presented in section 2.2, how the Matlab script in attach-
ment 2 works. This is done by first considering a case of basic white noise forcing, and
then explaining how autoregressive theory is used to incorporate correlated excitation.

3.6.1 Basic PDE Functionality with Uncorrelated Forcing

For white noise forcing, the probability density function of the force alone provides enough
information to estimate the joint probability density of the response in a displacement-
velocity state space.

In this case, the force, displacement and velocity intervals are divided into cells with
assigned cell index numbers and respective widths of dF', dX and dX. The displacement
and velocity cells constitute a discretized state space domain where each two dimensional
cell maps into a new cell through an estimate of the response for small time steps. This
new cell is called the image cell of the original cell.

For displacements, the image cell estimate is deterministic when knowing the original
cell. That is, for each cell in the state space domain there is one image cell index for
displacement. In the PDE script this cell is found by using the modified Euler method
as shown in equation (100).

Xy ~ X1 + At <X1 + df) (100)
In this equation, X; and X represents the original and the new displacement. Velocity
response also depends on the force working at that time, and since the force is a random
variable one must estimate the velocity response for each force cell combined with each
displacement-velocity state cell. Since X9 now is estimated, the implicit Euler method
could be used with the SDOF equation of motion (1) to find the image cell for each state
and load cell:

(101)

X=X KX,
m :

. . F-C
XQ%X1+A2€< ! At

In equation (101), X; and Xj represents the original and the new velocity state, while
Fy is the force acting in the original state. The PDE script uses these two equations
to develop a two dimensional state map for displacements X, where each entry is the
displacement image cell index number, and a three dimensional state map for velocities
X, where each entry is the velocity image cell index number.

Transition between cells is now completely deterministic, and the state maps could be
used to evolve the probability density as illustrated in section 2.2. For each displacement,
velocity and force cell index number, the image cell index number are determined for both
displacement and velocity. The contribution to the image cell probability content is now
given by the probability of being in the original state cell, determined by the previous
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iteration, multiplied with the probability of the current force realization.

An initial probability density description of the response space is required to get the
iterations going, this could for example be a deterministic initial condition where one
starts at a given cell with a probability of one. For increased efficiency, a sensible selection
of distributed points or a good guess of the response distribution could also be used as
an initial condition.

Convergence towards the exact response probability distribution is obtained as the num-
ber of iterations increase and the total diffusion of probability goes towards a state
of equilibrium, where the probability content assigned to each cell is the same as the
probability content leaving the cell for each iteration. As mentioned in section 2.2, the
relationship between the discretization of the mapping domain and the time step used is
crucial for both efficiency and accuracy of the PDE method.

Figure 8 shows a converged joint probability density result for the white noise loading
example from section 2.1.3.

3.6.2 Incorporating Correlated Forcing Through First Order Autoregressive
Modeling

Knowing the probability density function of the environmental loading is in general not
enough to establish a good estimate the structure response, since this response also
depends on the frequency content of the force.

Section 2.4 presents how a stochastic process could be modeled by describing the next
value as a deterministic weighted sum of previous values and a random Gaussian noise
term. This thesis would only consider first order autoregression, i.e. that the next value
of the force depends exclusively on the previous value. In this case, the relationship
between two neighboring force realizations need to be accounted for when evolving the
probability density of the response. In the attached script, this is done by letting F
describe the previous force realization and incorporating it into the state of system. The
weighting factor ¢ and the new random variable describing the autoregression noise term,
Z, would now provide a mapping between a given force state and the next.

In this case, the total state space is four dimensional, including the previous and the
current force state, displacement and velocity. The mapping state space is now three
dimensional, including the current force state, displacement and velocity. The projected
probability volume of each cell into the displacement-velocity plane would therefore yield
the estimated joint probability density of these structural responses.

Obviously, adding a dimension to the system state domain does not come numerically
cheap, resulting in considerably reduced efficiency compared to the iterations described
in 2.4.
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Figure 21: Contour plot of the joint probability density function from figure 6.

Figure 21 is a contour plot showing the analytical solution of the structural response
given the white noise example from section 2.1.3.

Given the exact same SDOF structure, we could now assume that it is excited at each
time step At = 0.05 s by some force with a mean value of 30 N and fluctuations described
by a first order autoregression model with parameters ¢ = 0.7 and o2 = 12.75N2. Tt
could be shown, as illustrated for a 300 second simulation in figure 22, that this would
produce a long term probability density function of the force that is Gaussian with mean
value 30 N and a standard deviation of 5 N.

The PDF of the force is identical to the one used in 2.1.3, but now the realizations of the
force are no longer uncorrelated. The correlation between the previous and the current
force fluctuation value could be seen in figure 23. The joint PDF in figure 23 is found
as the product of the previous force fluctuation PDF and the conditional PDF of the
current force fluctuation given the previous one. The former is the total PDF of the
force fluctuations, while the latter PDF is given by the autoregressive noise term.

44



i
0 50 100 150 200 250 300
Time [s]

1
o
=]
»

T

o

[=)

>
T

o

[=]

]
T

Probability Density [-
(=]
[=]
I
T

q 0 15 20 25 30 35 40 45 50
Force [N]

Figure 22: 300 second simulated time series, with histogram and analytical PDF, of an
AR(1) load process with up =30 N, ¢ = 0.7, 02 = 12.75N? and At = 0.05 s.
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Figure 23: Joint probability distribution of the previous and current value of the
described load fluctuations in this example.
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Figure 24: Log-log plot of the one-sided variance spectrum of the autoregressive load
process simulated in figure 22, the constant white noise spectra of the same time step and
PDF, and the squared frequency response function of the example structure.
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Figure 25: Contour plot showing the analytical joint PDF of the structural response to
the autoregressive load process from figure 22 and 24.
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The definition of a joint probability of two correlated random variables A and B is shown
in equation (102).

P(A, B) = P(B) - P(A|B) (102)

The variance spectrum of the load process, calculated using equation (70), are presented
in figure 24 with the squared frequency response function of the structure. From this
figure, one could see that the load process has a higher energy content near the natural
frequency of the structure compared to the constant white noise spectrum from figure 3.
The joint probability density of the displacement and velocity response under this load
process should therefore be wider than it is under white noise excitation. This is also
shown to be the case in figure 25, where the analytical joint probability density of the
response are calculated using theory from section 2.1.2.

The PDE script could now also be used to estimate the response to this load process, for
example by choosing the interval discretizations dX = 0.05 m, dX = 0.05 m/s, dF =
0.5 N and dZ = 0.5 N. For these input values, a contour plot of the estimated response
is presented in 26. This figure shows good agreement with the analytical solution in
figure 25. The noise in the estimated distribution is mainly caused by the relatively coarse
force discretization in this example, showing the importance of domain discretization on
the accuracy of PDE results.

Velocity response [m/s]

05 1 15 2 25 3 35 4 45 5 55
Displacement response [m]

Figure 26: The joint probability distribution of the displacement and velocity response
for the example in section 3.6.2, estimated using the probability density evolution script
with correlated excitation in attachment 2.
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3.6.3 General Comments on Numerical Cell-to-Cell Mapping

While they are two different numerical methods, there is also some similarities between
cell-to-cell mapping and classical Monte Carlo simulation.

MCS involves calculating the response for each time step in a continuous domain and
assigning probability to regions of this domain based on the number of occurrences within
the region. This implies that the number of time steps, or sampling points, would
need to be large in order to accurately estimate low probability regions of the response
distribution.

The cell-to-cell numerical probability evolution method is basically an iteration scheme
where each iteration could be considered as a MCS from one time step to another for
each discretized cell. Each cell is represented by a single point used as an initial state
for each iteration. The responses to these Monte Carlo simulations is then arranged into
target cells in a state space domain grid, and probabilities for the next iteration could
be found. The subdiscretization of each cell to be represented by a single central point
would lead to discretization errors, as illustrated in figure 27 for a two dimensional state
space described by x; and zs.

Discretization

Ax, T Error & (at)
& oy o o

Z[g #IS 216
§ (] [ ]

Zy Z10 Zy Z12

Zs Z Z; Zg \Discrel:izaliml

Error £, (at)
@ @ @ ® > X4
x(0)
i 2o Za Za

Figure 27: Illustration of iteration errors associated with the state space
discretization. [11]

Because of these errors, it is clear that cell-to-cell mapping requires a fine discretization of
the state space for accurate probability estimation. This would result in a large number
of cells, as opposed to a large number of sampling points. A tradeoff between accuracy
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and efficiency would often have to be made, at least for multidimensional state spaces, as
the number of cells increase exponentially as the state space is refined. A discretization
of N cells in each of the n dimensions would result in a total of N™ cells.

As explained in section 3.6.2, incorporating the previous force realization into the state
space would result in four state space dimensions and a total number of cells that would
experience quartic growth with increasing refinement in each dimension. Even using
parallel computing, a state space with more than five dimensions would probably push
the boundaries of what is realistic to evolve with the computational power available
today. [11] This would pose a challenge when using cell-to-cell mapping to estimate
the response of systems with multiple degrees of freedom, or when using higher order
autoregression models to simulate correlated excitation.

It should be noted that improved cell-to-cell mapping methods which relieves the required
domain discretization to some extent does exist. For example, the Generalized Cell
Mapping method proposed by Hsu randomly assigns several initial starting points within
each cell for each iteration. [1] Another method, proposed by Levitas et al. in [26], uses
a hypersurface system constraint to reduce the cell space dimension to n — 1. Such PDE
methods is however beyond the scope of this thesis.

Another factor that is naturally affecting accuracy of the cell-to-cell method is the time
integration scheme used in the iterations. This integration scheme would have to be
evaluated with respect to the behavior (stiffness) of the differential equation and the
time step used to avoid energy drift from leading to a divergent system.

For the relevant time steps and structure considered in this thesis, using the explicit
Euler method to estimate velocities caused substantial energy drift in early versions of
the PDE script. As mentioned in section 3.6.1, the modified Euler method is used for
displacements and the implicit Euler method is used for velocities in the final version of
the script.

More accurate energy conserving methods, like those described by Hairer et al. in [27],
could of course also be used to estimate the response in probability evolution algorithms.
The reward of implementing a more computationally expensive time integration scheme
should obviously be weighed against any loss of performance.

It is clear that a small time step is necessary to obtain accurate estimates of the response
for each iteration. For the cell-mapping method used in this thesis, the number of required
cells is closely related to the time step used. This is because the time step should not
become too small, depending on the structural properties of the structure and the applied
force distribution, compared to the domain covered by each cell. Probability content for
cells in such a system could end up mapping into itself for any probable force, and
therefore never evolving beyond the initial cells.
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3.7 Calculating the Nonlinear First Mode Response Contribution from
Wind Loading Along the Tower

This section is motivated by the fact that, as could be seen in section 4, a simplified model
with linear dependence on turbulence is found to describe the rotor thrust accurately
enough with respect to mean and variance. This rather unexpected result renders proba-
bility evolution unnecessary for Gaussian distributed turbulence, as the thrust would be
Gaussian as well, and an analytic solution of the response could be found using theory
from section 2.1. However, a more complete and realistic load model would surely not
be linear in general for an offshore wind turbine, this could both be true for the rotor
thrust and distributed loads along the structure. In particular, both wave loads acting on
the sub-structure and wind loads acting on the tower would both need to be modeled as
nonlinear. As could be seen from equation (64) and (55), wave loads would be nonlinear
with respect to water particle velocity, and drag forces on the tower are nonlinear with
respect to wind turbulence velocity.

Especially wave loads could be assumed to be non-negligible with regards to the total
displacement of the wind turbine, at least for bottom fixed sub-structures at relatively
deep waters, such as jackets. The contribution of wind loading distributed along the
tower was not included in the simple load model acting on the onshore reference turbine
in this thesis, as rotor thrust would dominate the forcing in the main wind direction.

This section therefore aims to illustrate the usefulness of probability density evolution
associated with nonlinear processes. This is done by calculating the contribution to the
structural response from wind acting along the tower alone for load case 2, as an example.
This section also aims to justify the neglection of tower wind loads in the simplified load
model by illustrating that this contribution is small compared to the rotor thrust, at
least for the load case considered.

3.7.1 General Description of the Modal Force

I section 3.1.1, the tower was discretized into 20 degrees of freedom. The distributed
force from wind loads could then also be discretized and represented by the 20 sectional
contributions in the force vector F = [Fy, Fy,--- , F},--- , Fig, Fho]”.

In F, the ith sectional force is found by combining equation (46) and (55) to F; as shown
in equation (103).

1 ; a 2
Fy=-pCp,d;dz |:‘/ref <z> + U(t)} (103)
2 ’ Zref

In equation (103), d; and dz; is the sectional diameter and height. The spatial dependence
of the turbulence is neglected, and the turbulence at reference height is used for all
heights. While this is a simplified assumption, it is certainly a conservative one. In
a realistic situation the standard deviation of the fluctuations would vary with height,
and spatial correlation of the wind would make it highly implausible that the turbulence
along the tower should act in the same direction at all times.
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Expanding equation (103) would lead to

Fy = Ajv(t)® + Bio(t) + C; (104)

where

1
Ai =5 pCpididz

Z3 @
B; = pCp;d; dzi Vyey ( ) (105)

Zref

1 2 2c
Ci:2PCD,ididZiV;~2ef< > .

Zref

As shown in equation (106), the modal force R; of a given mode j could now be found
using the relevant eigenvector.

Rj(v) = ¢;'F
20 20 20
=0? Y GjiAjitv ) 65 Bji+ ) 65 Chi (106)
=1 =1 i=1

= Aju(t)> + Bju(t) + C;

The modal sums in equation (106) provide three constants of the modal force, A, B and
C. These constants depend on the sectional properties, mean wind velocities and the
mode shape in question. It could be seen that the modal force depends nonlinearly on
turbulence, even though one could argue that this nonlinear term would be negligible for
load situations with small turbulence intensities, where V,.; >> 0.

3.7.2 Probability Density Function of the Modal Force

Because of the squared turbulence term in equation (106), the modal force would not
be Gaussian distributed even if the turbulence is. In the following, v is treated as a
realization of the random variable V representing the wind turbulence velocity, and
r is treated as a realization of the random variable R representing the modal force.
Equation (106) now provide a mapping between these two random variables, R = g(V).
This mapping could be used with the principle of probability density conservation to
obtain the PDF of the modal force. Figure 28 shows a generic plot of equation (106) in
the random space represented by V and R.
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Figure 28: Sketch of the modal force from equation (106) as a function of the random
variable V.

Using the principle of probability density conservation, it becomes clear from figure 28
that the cumulative probability density function (CDF) of the modal force could be
written as:

Fr(r) =P[R <T]

= Plv1 <V < v9]
(107)
:P[V<U2]—P[V<U1]

= Fv[vg] - Fv[’Ul].
The PDF of R is now found as the derivative of the CDF of R, as shown in equation (108).

Fa(r) = & Fn(r)

(108)

In equation (108), v; is the two real roots of g(v;) = r.
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The Jacobian of the random variable mapping is found as
dui _(dr\”!
dr  \ dv;
o do)? + B ) 110
= | 5 (Av®) + Bu(t) +C) (110)
- 1
B + 2121’1)1' '

Given the results above, the PDF of the modal force as a function of modal force would
be given by equation (111) for Gaussian distributed turbulence.

S — 2 I — 2
1 _l<—B+ B2—4A(C—r)) _1<—B— B2—4A(C—r))
2 Ao'v 2 AO’v
fr(r) = e 24 +e 24

Varo,\ B2 —4A(C 1)
(111)

The response PDF of the structure under this PDF of the modal force, which is clearly
not Gaussian, could not be solved analytically. However, the PDF could easily be imple-
mented, like any other, in the probability density evolution method in order to obtain a
numeric estimate of the response PDF for this mode.

It is worth noting that equation (103) does not preserve the sign of the total wind velocity,
since V2, # Viot - |Viot|. As a result of this, equation (111) is only valid for positive values
of the modal force larger than the critical value

. B2
re=0C— —, (112)
4A

which is the value of the modal force leading to complex roots in equation (109). This
modal force occurs at the corresponding critical turbulence velocity value, v,:

Ve = ——. (113)
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3.7.3 Constants of the Modal Force and Resulting Probability Density
Function for Load Case 2

As previously mentioned, the nonlinear behavior of the drag force increase with the
turbulence intensity. Because of this, load case 2 with V,.y =4 m/s and o, = 1.204 m/s
was chosen to serve as an example load case to demonstrate the PDE functionality for
nonlinear processes.

The representative vertical position, height and diameter of the sections are presented in
table 2. The mass density of the air is set to p = 1.25kg/m?, a = 0.14 and Zref = 90 m.
The drag coefficient for each section depends on the Reynolds number of the airflow:

_ V;fot,z' dz P
Hair

Re; (114)

The dynamic viscosity of air is set to g = 1.81-107° N s/m?. Using the mean velocity
at each section to calculate Re; would result in the plot shown in figure 29.
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Figure 29: Reynolds number at different heights of the tower for V,..; = 4 m/s and
a=0.14.

For the Reynolds numbers in this figure the drag coefficient C'p could be approximated
as a constant, Cp; ~ Cp = 0.3. This value could for example be determined using the
Cp diagram of a two dimensional smooth cylinder from [28].

Given these sectional properties and the mode shapes presented in section 4.1, the con-
stants of the modal force because of wind loads distributed along the tower are summed
up to the values presented in table 4, for the first two tower modes.
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Table 4: The constants of the modal force as defined in equation (106), caused by wind
loads distributed along the tower, for the first two fore-aft tower modes.

A [kg/m] B [ke/s] CIN]
Mode 1 25,0108 190,2907 362,7748
Mode 2 41,9390 305,6178 558,6578

Figure 30 and 31 show histograms of simulated modal drag force realizations for mode
1 and 2 respectively. These figures also show the analytical PDF of the modal forces
from equation (111), plotted in red for values larger than r. = 0.83 N for mode 1 and
re = 1.89 N for mode 2. Modal force values smaller than r. will be disregarded in the
following analyses. In practice, this would mean neglecting small negative values of the
modal force. Such values represent about 0.5 % of the total probability content for both
modes.
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Figure 30: Histogram of simulated modal drag force realizations for the first mode
subjected to load case 2. The analytical PDF of the modal force for r. > 0.83 N is plotted
in red.

As could be observed in 30 and 31, both the mean value and the variation of the modal
force is larger for the second mode. This is not an unexpected result when considering
the mode shapes presented under 4.1. Using results from section 4.1 and 4.2, these modal
forces could be compared to the modal forces caused by rotor thrust for the same load
case. The mean value of the modal force because of wind loads along the tower in mode
1 is 400 N, which is about 0.17 % of the mean modal force caused by the rotor thrust.
For mode 2 the mean modal force is 620 N, or 1.52 % of the modal force caused by rotor
thrust for this mode and load case. Based on these results, my neglection of wind loads
acting along the tower in the simplified load model seems justifiable for this load case.
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The results of the PDE response estimation for this nonlinear load situation is presented
for the first mode in section 4.5. The second mode is not considered, as the small increase
in modal force would still not make this mode influential on the tower top displacement
response. It is shown in section 4.1 that the modal stiffness increase by about 2800 %
from the first mode to the second, while the modal amplitude decrease from 100 % to
about 17 % for the tower top.

The response probability is only evolved for white noise forcing, as the AR(1) imple-
mentation described earlier assumes that the noise term is independent of the previous
force realization value, i.e. that Z; = Z;_; = Z. This is elaborated in sections 5 and 6.
While it may be feasible to develop an autoregressive model where the noise term 7 is a
function of the previous force realization, this is beyond the scope of this thesis.
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Figure 31: Histogram of simulated modal drag force realizations for the second mode

subjected to load case 2. The analytical PDF of the modal force for . > 1.89 N is plotted
in red.
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4 Results

This section presents representative results obtained in the thesis. In some cases, the
reader is referred to attachments for additional results.

4.1 Modal Properties of the Reference Tower

The modal results are constricted to the three first modes of the tower structure. This
is because the structural response is mainly determined by the contribution from the
first modes. In fact, for a flexible tower structure in bending, more than 90 % of the
total energy dissipation normally occurs due to the fundamental mode. [22] Considerably
lower accuracy could also be expected in the estimation of higher modes because of the
tower discretization. Table 5 shows calculated normalized values for the three first mode
shapes of the tower, obtained as described in section 3.1.1. The results from table 5 are
plotted in figure 32.

Table 5: Table over the first three normalized tower mode shapes for transversal

displacements.
DOF #, i Heighti [m] &1 [-] &2 [-] &z [-]
1 4,38 0,002581 0,017106 -0,047480
2 8,76 0,010346 0,065261 -0,169198
3 13,14 0,023368 0,140087 -0,336621
4 17,52 0,041684 0,236862 -0,519303
5 21,90 0,065354 0,349236 -0,684589
6 26,28 0,004374 0,471154 -0,801382
7 30,66 0,128763 0,595504 -0,847173
8 35,04 0,168505 0,714944 -0,804511
9 39,42 0,213546 0,822188 -0,668746
10 43,80 0,263793 0,910117 -0,445564
11 48,18 0,319145 0,971278 -0,153362
12 52,56 0,379437 1,000000 0,171320
13 56,94 0,444461 0,990773 0,492172
14 61,32 0,5133950 0,940215 0,765899
15 65,70 0,587578 0,846294 0,945728
16 70,08 0,664946 0,709208 1,000000
17 74,46 0,745528 0,532250 0,910783
18 78,84 0,828743 0,320790 0,678511
19 83,22 0,913861 0,083182 0,326928
20 87,60 1,000000 -0,168547 -0,091946
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Table 6: Properties of the first three tower modes.

Mode # 1 2
Natural frequency, fua [Hz] 0,3361 3,0723
Modal mass [kg] 405574,9 142243,3
Modal stiffness [N/m] 1809033,4 53005758,2
Modal damping [kg/s] 17131,2 549171

3
9,1793
128105,5
426131788,5
147769,8

Table 6 presents the natural frequencies of the relevant modes. It also shows the corre-
sponding modal mass, stiffness and damping, as defined by equations (86) and (87).
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Figure 32: Plots of the first three normalized tower mode shapes for transversal

displacements.
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4.2 Simplified Thrust Force Model

Using 660 second time series simulated in FAST for all 15 load cases, where the initial 60
seconds are discarded to exclude transient effects, the parameters of the simplified rotor
thrust force model proposed in section 3.5 have been estimated using the Matlab script
in attachment 9. The proposed simplified load model describing the rotor thrust, T, is
repeated below for convenience.

T (Vees,v(t)) =T (Vees) + 1 (Vees, v(t))
where

T (Viey) = Cs Vs

and

£ (Veep, v(t) = Co V2 u(t)

The fitted parameters are presented in table 7 for two intervals of reference wind veloci-
ties. Gravity loads, movement of the structure and rotor blades is included in the FAST
simulations, but the tower shadow effect is not. The time step used is At = 0.0125 s.

Table 7: Estimated simplified load model parameters.

Model Interval 2m/fs < Vies € 11 m/s 11 mfs < Vet < 30 m/s
a 1,2 -0,85
B 1,0 1,35
= 40430 kg/mP2508 5515000 kg m185/5285
C: 6007 kg/s 1682000 kg m?33/s235

Figure 33 and 34 respectively show the fit of the simplified load model to the mean
thrust, 7', and the turbulence proportionality constant, C, V;i £ estimated from the FAST
simulations.

The former is fitted to the mean thrust from simulations using the least squared error
method. The latter is estimated as a value that yields a model variance of the force
fluctuations as close as possible to the simulated sample variance, if the same wind
velocity time series are used. It is worth noting that the proposed load model assumes
that the thrust fluctuations goes to zero when the mean wind velocity goes to zero. This
does not seem to be entirely accurate, resulting in a relatively coarse variance fit for
reference wind speeds below the cut-in velocity of 4 m/s.
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Figures 35 to 39 presents the time series of the FAST thrust simulations and the respective
simplified thrust simulations obtained using the same wind velocity samples. The same
figures also show the power spectral densities of these samples, and the analytical thrust
fluctuation PSD for the simplified model with turbulence described as an AR(1) process.

In equation (115) and (116), the analytical autocovariance function of the thrust fluctu-
ations, calculated from the simplified model using first order autoregressive turbulence
with known autocovariance C,(7) and variance spectrum S, (w), is denoted Cr (7). The
corresponding variance spectrum is denoted St (w).

The analytical autocovariance function of the rotor thrust fluctuations could now be
calculated as:

Cr(t)=E[T(t)T(t+ 7)]

(115)

St(w) from figures 35 to 41 could be found as shown in equation (116) by using Cr(7)
from equation (115) and the definition of a variance spectrum from equation (22).

1 o0 ,
Sr(w) = o / Cr(t)e ™7 dr

1 A —iwT
=;;,g@W@V@“W dr (116)
= (C. V) Sy(w)

Figure 40 and 41 show PSD sample estimates for load case 2 and 10 at low frequencies.
In these figures, multiples of the rotor frequency is marked at 3P = 0.37 Hz and 6P =
0.73 Hz for load case 2, and 3P = 0.61 Hz and 6P = 1.21 Hz for load case 10.

Figures 42 to 45 presents 100 second autocovariance plots of the thrust force fluctuations
for the four load cases 2, 4, 8 and 12. These figures show that the correlation in the
thrust behaves quite differently for different load cases, something that is also supported
by the plotted variance spectra.
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Figure 35: Figure showing, for load cases 1-3, time series of the rotor thrust for FAST
simulations and simplified model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust fluctuations calculated using the
AR(1) thrust spectra defined by the parameters presented in section 4.3, is also included.
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Figure 36: Figure showing, for load cases 4-6, time series of the rotor thrust for FAST
simulations and simplified model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust fluctuations calculated using the
AR(1) thrust spectra defined by the parameters presented in section 4.3, is also included.
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Figure 37: Figure showing, for load cases 7-9, time series of the rotor thrust for FAST
simulations and simplified model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the
variance spectra plots, analytical PSDs of the thrust fluctuations calculated using the
AR(1) thrust spectra defined by the parameters presented in section 4.3, is also included.
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Figure 38: Figure showing, for load cases 10-12, time series of the rotor thrust for FAST
simulations and simplified model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the

variance spectra plots, analytical PSDs of the thrust fluctuations calculated using the

AR(1) thrust spectra defined by the parameters presented in section 4.3, is also included.
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Figure 39: Figure showing, for load cases 13-15, time series of the rotor thrust for FAST
simulations and simplified model simulations using the same wind velocity sample to the
left, and the respective power spectral densities of these simulations to the right. In the

variance spectra plots, analytical PSDs of the thrust fluctuations calculated using the

AR(1) thrust spectra defined by the parameters presented in section 4.3, is also included.
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Figure 40: Sample PSD plots at low frequencies for load case 2, with marked multiples of
the rotor frequency, 1P.
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Figure 41: Sample PSD plots at low frequencies for load case 10, with marked multiples
of the rotor frequency, 1P.
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Figure 43: 100 second autocovariances of the different thrust force fluctuations

for load case 4, V,ey =8 m/s.
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4.3 Estimated First Order Autoregression Parameters
4.3.1 AR(1) Parameters Describing Turbulence

In this thesis I utilize autoregression in order to incorporate frequency dependent forcing
into the probability density evolution method. Table 8 presents the estimated first order
autoregression parameters describing turbulence for sampling time steps of At = 0.0125 s
and At = 0.05 s. This is done for all 15 load cases defined in section 3.4.

The parameters have been estimated by numerically curve fitting the different AR(1)
spectra to Kaimal spectra using the Matlab script from attachment 5. The columns
named oy,: shows the total standard deviations of the autoregressive models found by
integrating over the AR spectra.

Plots of the estimated AR(1) spectra and their respective underlying Kaimal spectra are
shown in attachment 10, figure 60 to 63.

Table 8: Table showing estimated AR(1) parameters describing turbulence in the 15 load
cases for time steps of At = 0.0125 s and At = 0.05 s.

At=0.0125s At=0.05s

Load Case = AR(1) ¢v[-] AR(1) o [m/s]  ow:[m/s] | AR(1)$u[-] AR(1) ov[m/s] | Ot [m/s]

1 0,99973 0,02310 0,994 0,99892 0,04616 0,994
2 0,99965 0,03181 1,204 0,99861 0,06355 1,204
3 0,99957 0,04170 1,414 0,99826 0,08333 1,414
4 0,99947 0,05277 1,624 0,99789 0,10542 1,624
5 0,99937 0,06499 1,834 0,99749 0,12981 1,834
] 0,99927 0,07835 2,044 0,99707 0,15649 2,044
7 0,99915 0,09286 2,254 0,99661 0,18549 2,254
8 0,99903 0,10856 2,464 0,99612 0,21679 2,464
-] 0,99830 0,12539 2,674 0,99561 0,25043 2,674
10 0,99876 0,14346 2,884 0,99506 0,28643 2,884
11 0,99862 0,16272 3,094 0,99448 0,32476 3,094
12 0,99846 0,18317 3,304 0,99386 0,36554 3,304
13 0,99830 0,20487 3,514 0,99321 0,40874 3,514
14 0,99813 0,22782 3,724 0,99253 0,45442 3,724
15 0,99795 0,25202 3,934 0,99181 0,50261 3,934

4.3.2 AR(1) Parameters Describing Simplified Thrust Fluctuations

Given the autoregression parameters of the wind turbulence, v(t), the corresponding
parameters of the thrust fluctuations described by the simplified model could be easily
derived since the rotor thrust depends linearly on turbulence.
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Let ¢, and o, be the AR(1) properties for turbulence given in table 8. Wind turbulence
would now be estimated as shown in equation (117).

V= Gy Vi—1 + Ly (117)

In equation (117), Z, ; is white noise Gaussian distributed with mean 0 m/s and standard
deviation o,. Using equation (97) the AR(1) estimated thrust fluctuations are found to
be described by

= U V;Zf ((bv Vi1 + Zv,t)
(118)

= oy tAt—l + CA(s Vt,if Zv,t

= ¢££t—1 + Zﬂt-

This leads to the result that ¢; = ¢,, and that Zf,t is white noise Gaussian distributed

with mean 0 N and standard deviation o; = C’S V;fi £00- Values of these parameters for
time steps of At = 0.0125 s and At = 0.05 s are shown in table 9.
The total standard deviation of the AR(1) described thrust fluctuation process is also

calculated using equation (68) as oot AR = 4 /Ut?/(l - gb?), and presented together with

the sample standard deviation from the FAST simulations, v/S2¢0 pasy-

Table 9: Table showing estimated AR(1) parameters describing thrust fluctuations in the
15 load cases for time steps of At = 0.0125 s and At = 0.05 s.

At =0.0125s At=0.05s

Load Case | AR(1) o;[N] AR(1) o; [N] Got, AR [N] Js_z.m. rasT[N] | Otor, AR f«jgm rast [%6]

1 277,5 554,6 11935,6 19312,2 161,8
2 764,3 1527,0 28970,9 33230,1 114,7
3 1503,0 3003,4 50934,2 51012,1 100,1
4 2535,9 5066,1 78026,8 71836,4 92,1
5 3903,9 7797,7 110125,2 115013,8 104,4
6 4602,3 9192,2 120167,6 116632,8 97,1
7 4429,8 8848,6 107554,2 105059,6 7,7
8 4324,5 8635,8 98128,3 95071,6 96,9
9 4260,6 8509,3 90912,7 81785,2 90,0
10 4228,3 8442,2 85037,9 73849,1 86,8
11 4216,9 8416,2 80210,9 70570,3 88,0
12 4220,8 8423,2 76128,0 69060,1 80,7
13 4237,3 8453,9 72668,8 65604,6 90,3
14 4263,4 8503,9 69703,9 71330,1 102,3
15 4296,8 8569,3 67093,0 68169,6 101,6
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4.4 Response of Tower Top to Rotor Thrust

This section presents results obtained for the tower top response to thrust from the
wind turbine rotor. Finite element MCS results are presented as estimated PDFs using
kernel smoothing on 1800 second response time series with a time step of 0.0125 seconds,
resulting in 144000 sample points. The estimated response of the structure have also
been calculated for the two first modes, using theory presented in section 2.1. In these
calculations, the analytical Kaimal spectra have been used to describe wind velocity
turbulence, while the thrust force are described using the simplified load model from
section 4.2. The modal structure properties used are those presented in 4.1.
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Figure 46: Tower top displacement for the 15 load cases estimated from time domain
simulations in FAST (shown in red), and calculated analytically for the first mode using

the simplified load model (shown in blue).
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Figure 46 and 64 respectively show the total tower top displacement and velocity response
from FAST, and the first mode responses estimated using the simplified load model.
Figure 64 could be found in attachment 11.

Table 10 show statistical properties of the estimated displacement responses. Sy is the
sample mean of the 1800 second FAST simulations, while /S5 is the sample standard
deviation of the same simulations. g, is the analytical mean value of the first mode
response, calculated using the simplified load model:

br - S (19)
Hul = P1,20 fﬁ .

o1 is the analytical standard deviation of the first mode response to excitation by the
simplified load model:

Oul = \/QS%QO : /OOOH(W)P S’F(w) dw
(120)

o
= ¢1,20 - Cs erf \// |H(w)|2 Sy (w) dw.
0

Figure 47 is a plot of the ratio between S; and 1, and /52 and o1, for all 15 load
cases.

Table 10: Table presenting statistical properties of estimated tower top displacements.

Load Case | S; [m] \,-'{S_z [m] iy [m] &y [m] 8,/myy [%] \,"Efﬂ'ul [%]

1 0,0102 | 0,0223 0,0513 0,0095 19,8 236,2
2 0,0572 | 0,0398 0,1180 0,0261 48,5 152,8
3 0,1225  0,0394 0,1919 0,0500 63,8 78,8
4 0,2103 | 0,0475 0,2710 0,0818 77,6 58,0
5 0,3072  0,0646 0,3542 0,1218 86,7 53,1
6 0,3257 | 0,0642 0,3688 0,1387 88,3 46,3
7 0,2647  0,0614 0,3235 0,1291 81,8 47,6
8 0,2268 | 0,0544 0,2838 0,1218 78,5 44,7
9 0,2025  0,0496 0,2613 0,1162 77,5 42,7
10 0,1859 | 0,0475 0,2389 0,1116 77,8 42,5
11 0,1746  0,0466 0,2203 0,1079 79,2 43,2
12 0,1666 | 0,0478 0,2046 0,1047 81,4 45,6
13 0,1613 | 0,0488 0,1911 0,1020 84,4 47,8
14 0,1576 | 0,0544 0,1795 0,0997 87,8 54,5
15 0,1555 | 0,0567 0,1693 0,0976 91,9 58,1
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Figure 47: Plots showing the two ratios from table 10.

Figures 48, 49, 50 and 52 respectively show enlarged plots of the estimated displacement
distributions for load case 2, 6, 4 and 10. These figures include plots of response distri-
butions found using probability density evolution with white noise excitation. Figure 50
and 52 also present distributions found using the probability density evolution with the
previous force realization incorporated using first order autoregression.

Figure 51 and 53 show plots of the analytical model force spectrum, the corresponding
fitted AR(1) spectrum and the constant white noise spectrum near the natural frequency
of the first mode for load case 4 and 10. These spectra are plotted with the squared
frequency response function of the first mode using a logarithmic y-axis.

Figure 54 and 55 presents joint probability density plots of the tower top displacement
and velocity response. Figure 54 is the MCS results from FAST simulations, while the
results in figure 55 is found analytically for the first mode using the simplified load model
and Kaimal turbulence spectra directly.

Figure 56 show the estimated displacement response distributions for the second mode,
calculated analytically using the simplified load model and Kaimal turbulence spectra.
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Figure 48: Probability distributions of tower top displacement for load case 2.
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Figure 49: Probability distributions of tower top displacement for load case 6.
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Figure 51: Semi-logarithmic plots of the thrust variance spectra near the natural
frequency of mode one for load case 4. Plotted with the transfer function of the modal

coordinate response.
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Figure 53: Semi-logarithmic plots of the thrust variance spectra near the natural

frequency of mode one for load case 10. Plotted with the transfer function of the modal
coordinate response.
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Figure 54: Contour plot showing the joint probability density of the displacement and
velocity response, estimated using 1800 second FAST simulations.
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Figure 55: Contour plot showing the joint probability density of the displacement and
velocity response for the first mode, estimated using the simplified load model.
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Figure 56: Tower top displacement distributions calculated analytically for the second
mode using the simplified load model.

4.5 First Mode Response Contribution from Nonlinear Wind Loads
Along the Tower for Load Case 2

The tower top response to wind loads acting along the tower for load case 2 has been
estimated for the first fore-aft mode using both 1200 second Monte Carlo simulations
and probability density evolution.
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Figure 57: Estimated probability distributions of first mode tower top displacement for
wind loads distributed along the tower. The wind loads are described by load case 2.
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The time step used in Monte Carlo simulations is 0.0125 seconds, resulting in 96000
sampling points. Figure 57 presents the estimated displacement response distributions.
A contour plot of the estimated joint displacement-velocity response using Monte Carlo
simulation is shown in figure 58. The turbulence time series used in this simulation
was generated by spectral decomposition of the Kaimal spectrum for load case 2. The
corresponding PDE result for white noise excitation is presented in figure 59. A time
step of 0.04 seconds was used in the PDE iterations. The domain discretizations were
chosen as dX =7.5-107% m, dX = 1.5-107° m/s and dF = 8 N.
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Figure 58: Result of a 1200 second Monte Carlo simulation of the tower top response
under LC2 wind loads along the tower, for the first mode.
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Figure 59: The tower top response under LC2 wind loads along the tower, estimated for
the first mode using white noise probability density evolution.
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5 Discussion

In this section, the results presented in section 4 are evaluated and discussed.

Modal Properties

In [2], Jonkman et al. states that the full-system natural frequencies for the two first fore-
aft tower modes are found to be 0.3240 Hz and 2.9003 Hz, respectively. This corresponds
well with the modal results presented in section 4.1, using a tower divided into 20 degrees
of freedom. A higher accuracy is observed for the first mode, as could be expected because
of the discretization.

The modal stiffness for the first mode could also be approximated by applying a point
load to the top of the tower and treating it as a cantilever. Using the flexibility matrix
in table 11, this modal property could be approximated as the inverse of the entry in the
20th row of the 20th column. This results in an estimated modal stiffness of 1807200 N/m,
a value deviating only 1.8 kN/m from the one presented in table 6. The modal properties
of the structure seems sensible for the early modes considered in this thesis.

It should be borne in mind that the real structure might not act linear, due to effects
influencing the observed structural properties not accounted for. Examples of this could
be gyroscopic forces from rotating machinery and effects of the turbine control system.
The assumption of a structure that behaves linearly must therefore also be viewed as a
model of the realistic situation.

One could suspect, based on the mode shapes presented in table 5 and figure 32, that the
first mode would dominate the response of the tower top because of the small mode shape
amplitudes at this point for the higher modes. This low modal amplitude is an effect of
the relatively large point mass at the top of the tower representing the nacelle and rotor
masses. This suspicion is strengthened by the fact that higher eigenfrequencies than the
first would lie far from the main portion of the thrust fluctuation energy content, which
is shown to occur at low frequencies in figure 35 to 41.

The Simplified Load Model and its Autoregressive Description

The load model is split into two intervals, with one set of model parameters between
reference wind velocities of 2 m/s and 11 m/s, and one set between 11 m/s and 30 m/s.
The rotor thrust force is obviously heavily influenced by the turbine control system. The
sudden change in behavior around the rated wind speed of 11.4 m/s, which could be
observed in figure 33 and 34, is caused by stall development as a turbulent wake forms
above the airfoil because of separation of the boundary layer from the surface. Stalling
of the blades is used to reduce the power from the wind turbine at high wind velocities,
resulting in a close to constant power production in this range.

Figure 33 corresponds well with the thrust values for mean wind velocities presented by
Jonkman et al. in [2|. From figure 33 and 34 one could observe that the mean value and
variance of the load model thrust follows the behavior of the thrust obtained from FAST
results closely for most load cases. This could also be seen by directly comparing time
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series of both thrust simulations, plotted for the same wind history over 600 seconds in
figure 35 to 39. One exception is for load case 1, where the variance of the simplified
thrust is relatively low and the mean value relatively high. The overall good description of
mean and variance is obviously an expected result, since the load model parameters were
estimated as those giving the best fit of the model to these two statistical properties of the
FAST simulations. Even though the simplified load model do provide a good estimate of
the realistic mean value and variance of the rotor thrust, this does not necessarily imply
that the proposed load model is accurate enough to provide a good structural response
estimate.

Particularly, in order to test a plausible load model as simple to use and derive as possible,
no measures were taken to match the variance spectra of the load model with the sample
variance spectra of rotor thrust simulations. It is therefore an implicit assumption in
the simplified load model that the frequency energy content of the rotor thrust could
be reasonably described as proportional to the frequency energy content of the wind
turbulence. To assess the validity of this assumption, both power spectral densities and
sample autocovariances was presented in section 4.2.

First of all, comparing the PSD plots in figure 35 to 39 one could see that first order
autoregression describes the frequency content of the proposed load model well. This is
also observed in the autocovariance plots.

The good estimation of an AR(1) load spectrum to the analytical load spectrum, cal-
culated using the simplified load model and the Kaimal turbulence spectrum, provides
an excellent fit of the two modeled variances. The load model proposed in this thesis is
therefore in general accurately described by first order autoregression. This also leads to
a good fit of the AR(1) estimated thrust variance and the sample thrust variance of the
FAST simulations, which could be observed in table 9. From this table it could also be
observed that the AR(1) parameter ¢ is in general estimated as a value close to one. This
supports other findings showing that the modeled stochastic processes is subjected to a
considerable degree of correlation, and that white noise would describe the relationship
between thrust realizations poorly.

Even though the PSD plots show that first order autoregression seems to describe the
behavior of the simplified load model well, they also show that the proposed load model
fail to account for distinct peaks in the low frequency region of the simulated thrust
spectra. This is by extension also true for the AR(1) spectra since it is an estimate of
the simplified load model spectra.

Such periodic contributions to the thrust stems from the rotor, and could usually be
identified as multiples of the rotational frequency. These multiples are denoted 1P, 2P
and so on, where 1P is the fundamental rotational frequency.

For load case 2, the average rotational velocity of the rotor is about 7.3 rpm, which
would result in a 1P of 0.12 Hz, a 3P of 0.37 Hz and a 6P of 0.73 Hz. The two latter
rotor frequencies could easily be identified as peaks in the PSD of the thrust for load
case 2, presented in figure 40. The 3P rotor frequency, representing the blade passing
frequency for a three bladed rotor like the one considered, contains the highest periodic
energy content for this load case. This frequency could also be readily observed in the
autocorrelation plot of the simulated thrust in figure 42.
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When studying the spectral densities for both the turbulence from attachment 10 and
the thrust from section 4.2 in light of the modal properties presented in table 6, one has
reason to suspect that these cyclic loads indeed would affect the estimated structural
response of the turbine.

This is because the greater part of the energy content in the thrust fluctuations described
by the simplified load model would lie below the first natural frequency of the structure,
0.336 Hz. In practice, this would provide a close to quasistatic loading situation where
inertial effects would only have a small impact on the estimated response. This is not
particularly accurate if periodic rotor loads contribute with significant energy content at
similar or higher frequencies than that of the first mode.

In addition to missing peaks in energy content at these specific frequencies, the accuracy
of the estimated response could also be affected by the fact that the total variance of the
thrust fluctuations are preserved when C, Vri f is fitted as described in section 4.2. This
basically leads to a simplified load model where energy peaks at relevant rotor frequencies
are missing, but the variance contribution contained in those peaks are spread out over
all frequencies.

Even though these periodic thrust contributions could be seen in the PSD plots for all
load cases, the energy content of the peaks decrease relative to the rest of the spectra
as the reference wind velocity and turbulence standard deviation increase. It is also a
point that the positioning of the peaks would move further away from the first natural
frequency of the structure, towards higher frequencies, until the turbine reaches the rated
rotational speed of the rotor.

For load case 10 the rotational velocity of the rotor is 12.1 rpm, which is the rated
speed. This results in a 3P frequency of 0.61 Hz and a 6P frequency of 1.21 Hz. In
figure 41, both peaks are now lower compared to the general trend of the PSD than for
load case 2. Because of these effects, cyclic rotor loads could be suspected to affect the
response somewhat more at lower wind velocities.

Estimated Response Distributions and Evaluation of the Probability
Density Evolution Method

As suspected from evaluating the system eigenvectors, the fore-aft tower top response
seems to be dominated by the first mode. Comparing figure 46 and 56, the displacements
for the second mode are roughly estimated to be about 0.5 % of the corresponding
first mode displacements. Provided that the dynamic model describes the structure and
excitation accurately, the response of the first mode should therefore provide a reasonable
estimate of the total response. Unfortunately, the accuracy of the proposed simplified
dynamic model seems somewhat debatable.

Considering figure 46 and table 10 one could see that use of the proposed simplified load
model probably overestimates the true mean value of the displacement response of the
tower top for all load cases. The analytically solved model response distributions also
show that the response variance appears to be overestimated for all load cases except the
two first.

As could be seen from figure 47, the ratios between the model values of mean and variance
and the simulated values are fairly constant from load case 4 to 15. In this range of
reference wind velocities the average value of Sy /1 is about 83 %, while \/Ss/0y is
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about 49 %. A slight increasing trend in the fit of both response mean and variance
could still be observed for wind velocities above 20 m/s in figure 47.

Discrepancies between simulated response and model response could be caused by either
the model structure or the model thrust, since both of these are simplified. Most probably,
they are caused by a combination of both.

Since all the mean displacements seem to be overestimated, one could argue that the
modal stiffness obtained for the linearized model structure seem to result in a system
that behaves too soft compared to the real turbine including its nonlinear effects.

It is obvious that the control system of the turbine, by definition, would affect the
response to some degree. This is perhaps most visually apparent in figure 46 for load
case 6 (presented as an enlarged plot in figure 49), which has a reference wind velocity
of 12 m/s, just above the rated wind velocity of 11.4 m/s. This is a wind velocity region
where the control system would affect the thrust significantly as stalling of the blades
are initiated, causing two peaks to appear in the FAST simulated Monte Carlo estimate
of the distribution. The control system could also be responsible for at least some of the
skewness observed in a couple of the simulated response distributions.

While the linearization of the structure could account for some discrepancies, the load
model is also likely to affect the estimated response since it neglects cyclic rotor con-
tributions to thrust. This could partially explain the higher response variance in load
case 1 and 2, as these reference wind velocities produce 3P rotor frequencies of about
0.30 Hz and 0.37 Hz respectively, close to the fundamental natural frequency of the tower
at 0.34 Hz. As previously mentioned, the estimated response for load case 1 and 2 is also
influenced by a relatively low thrust fluctuation variance from the model.

As the reference wind velocity increase beyond 4 m/s one could see from figure 47 that
the variance given by the response to the load model becomes larger than the simulated
response variance. One possible explanation for this is that the 3P frequency peak moves
away from the fundamental natural frequency of the system and therefore makes a smaller
impact on the simulated response. This is now combined with the effect of an artificially
high energy content distributed over all frequencies in the load model, originating from
the neglected periodic thrust contributions.

An observation supporting this hypothesis is that the displacement response variance
calculated for the first mode using the simplified load model seems to approach the true
variance of the displacements for high wind velocities, where the energy content in the
rotor frequency peaks is less compared to the general spectral density.

From the first mode model response distributions obtained by PDE in figure 48, 49, 50
and 52, one could see that probability evolution gives a reasonable estimate of the an-
alytical first mode response distribution. This is even true for PDE using white noise
excitation in some cases. All PDE response estimates in these figures are found using a
iteration time step of 0.05 seconds.

One noteworthy thing to learn from these distributions is the apparent importance of
the spectral magnitude of the load process for frequencies close to the natural frequency
of the structure. The spectra in this region is plotted with the squared transfer function
of the structure for load case 4 in figure 51, and for load case 10 in figure 53.

For load case 4 the white noise force spectra happens to lie closer than the approximated
AR(1) spectra to the theoretical model force spectra near the natural frequency of the
first mode. As could be observed in figure 50, PDE with white noise excitation would
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in this case actually yield a better estimate of the model response than correlated PDE
using the relevant fitted AR(1) parameters. For load case 10, figure 53 reveals that the
white noise spectra and the AR(1) spectra have approximately similar spectral densities
near the fundamental natural frequency of the structure. This produces close to identical
displacement response distributions using probability density evolution with and without
incorporated force correlation.

In both of these load cases, the white noise and fitted AR(1) spectra have a smaller mag-
nitude than the real spectrum of the simplified thrust near the natural frequency. This
produces estimated response distributions with a smaller variance than the theoretical
distribution obtained using equation (27)

Even though white noise excitation happens to give relatively accurate response for this
particular time step, dynamic model and load cases, this is in no way thought to be true
in general. For example, by using half the time step in iterations, the Nyquist frequency
doubles and the constant white noise spectra ends up with half its current magnitude.
When considering all frequencies, the autoregressive model would give a much better
estimate of the entire thrust model spectra than a constant spectra would. It is therefore
not hard to find situations where PDE with white noise excitation results in a much
poorer estimation of the structural response than PDE with AR(1) correlated excitation,
something that the example in section 3.6.2 clearly illustrates.

The transfer function in section 3.6.2 also has a broader peak at the natural frequency,
since this system is more damped. This makes the gradient of the excitation spectrum
even more important. This gradient could obviously not be described using a constant
spectrum.

Two important conclusions could be made from these PDE results. First of all, it could
be seen that if the structure is modeled as a single degree of freedom system with low
damping, then a carefully selected iteration time step could result in a fairly accurate
displacement response distribution using PDE with white noise excitation. This could
be useful in some situations since the inclusion of the previous force realization as an
additional dimension in the state space is computationally expensive. However, one
should be aware that changing the time step is closely related to the discretization of the
state space, accuracy and efficiency of the method. One should also note that by doing
this, one would lose some information about the velocity and acceleration of the response
process.

Second of all, first order autoregression seems well suited to represent the correlated
forcing for the load model proposed in this thesis. However, one should note that a
close fit of the autoregression spectra for frequencies close to the natural frequency might
actually be more valuable than a fit that is as good as possible in a global frequency
perspective. The latter approach is used to obtain estimates of the autoregression spectra
used in this thesis.

As shown in figure 64 from attachment 11, the estimated velocity responses is in general
less accurate than the estimated displacements. This is as expected for velocity response,
because of the time differentiation affecting numerical accuracy.
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Response to Nonlinear Wind Loads Along the Tower for Load Case 2

Section 4.5 was included to demonstrate the strength of the probability density evolution
method associated with nonlinear excitation. As could be observed by the results, the
white noise evolution of the structural response to any forcing probability density function
is trivial as long as this function is known.

Probability evolution with white noise forcing provides a reasonable estimate of the tower
top response. The magnitude of this response is very small compared to the estimated
rotor thrust response, and the neglection of tower wind loads in the simplified load model
therefore seems justifiable for this load case.

In order to obtain an even more accurate response distribution, the challenge would in
this case be to model the correlation of the force, or the conditional probability of having
the current force realizations given the previous one. This correlation would, in contrast
to the AR(1) modeled correlation of the simplified thrust earlier in the thesis, not be
independent of the value of the previous force realization.

One way to see this is by trying to write the modal force of mode j as a first order
autoregressive process like it is shown in equation (121). In this equation, turbulence is
still assumed to be accurately modeled as a first order autoregressive model also.

Ajv(t)? + Bju(t) + Cj

R;(t)

Aj (P ve—1 + Zv,t)2 + Bj (o Vi1 + Zyt) + éj (121)

= A; Q2vi + 245 ¢y vi1 Zoy + A Z2, + Bj by vi1 + By Zyy + C

As opposed to the simplified thrust fluctuations in equation (118), the modal force in
equation (121) could not be written on the form of an AR(1) model. All terms involving
Zy+ in this equation would contribute to the variance of the current modal force realiza-
tion, and the cross term 2/1]- ¢y Vi—1 Zyt would make this variance dependent on the last
realization.
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6 Conclusion

The linearized structure properties derived in 4.1 corresponds well with results presented
by Jonkman et al. in [2]. Both eigenvalues and eigenvectors of the model structure
suggests that the first mode would contribute much more to the total response of the
tower top than other modes. This is because of the relatively large mass in this point
representing the nacelle and rotor, and because the natural frequencies of higher modes
are found far from the low frequency main part of the modeled thrust spectra.

In sections 3.5 and 4.2, a simplified load model was proposed to describe the rotor thrust
force of the 5-MW reference turbine. In this initial study it was desirable to assess the
accuracy of a dynamic model that was simple to derive and use.

The proposed load model conserves the mean value and total variance of the simulated
rotor thrust force, but is built on the assumption that the thrust force spectra could be
estimated as one that is proportional to the turbulence spectra. This approximation does
not seem to be good enough, as pronounced spectral peaks from cyclic rotor loads are
not accounted for. In fact, cyclic rotor loads might contribute even more to the thrust
force as the tower shadow effect is not considered in this thesis.

This is suspected to affect the accuracy of the estimated response negatively in two
ways. First of all, it would lead to a falsely low response variance if a non-negligible
multiple of the rotor frequency happens to be close to the fundamental natural frequency
of the structure, which indeed is the case for low wind velocities. For the dynamic
model described in this thesis the majority of the modeled thrust fluctuation energy
content lies below the first natural frequency, leading to a system that in practice behaves
quasistatically.

It would also lead to a falsely high energy content at other frequencies since the energy in
these peaks are still accounted for by fitting the model thrust variance to the simulated
thrust variance. These suspicions are supported by the variances observed in estimated
response distributions for different load cases.

In this thesis the probability density evolution method is successfully used to estimate the
response distribution of single degree of freedom systems. It is also shown how correlated
excitation could be successfully implemented into the cell-mapping method, provided that
the stochastic process could be reasonably modeled using autoregression. The results,
both for the example in section 3.6.2 and the structure response to the simplified load
model in section 4.4, show that incorporating the previous force realization into the
state space certainly has the potential to provide improved response estimates for such
dynamic systems. However, one should be aware that a good fit of the autoregressive
spectra for frequencies near the natural frequency of the structure in many cases would
result in a better estimate of the response than an autoregressive spectra that provides
the best possible global fit.

If the modeled damping is small and the structure is modeled with a single degree of
freedom, then PDE with white noise excitation could also yield a good estimate of the
displacement response. However, adjusting the constant white noise spectra to match
the model force spectra near the natural frequency would in principle imply changing
the iteration time step. This could be problematic for several reasons. One also looses
information about the velocity and acceleration response of the structure.

89



It is shown that first order autoregression provides a satisfactory estimate of the Kaimal
turbulence spectra, and also of the proposed thrust fluctuation spectra because of the
linear relationship between the two. Using autoregression to accurately account for the
periodic correlation observed in rotor thrust simulations would however require a higher
order model.

It is also observed that nonlinear load processes, which would be relevant for example
when considering wave induced forces acting on a site-specific offshore sub-structure,
might be less accurately described by first order autoregression than the current proposed
load process.

As mentioned in the introduction, this is the first thesis written on PDE at the NTNU
Offshore Wind Turbine Technology group. We have learned a lot, and the method shows
great potential to be used in future projects involving simplified dynamic descriptions of
wind turbines.

Recommendations and Comments for Future Studies

This thesis provides a starting point for further development of an accurate and reliable
simplified dynamic model describing an offshore wind turbine. There are still many
unresolved issues and possible improvements to be examined in future studies.

Improving the load model would be a natural way to continue these studies. In this case,
the accurate response estimation of an onshore wind turbine should be a first priority.
This would essentially involve considering cyclic thrust contributions from the rotor.
This could be done by deriving a simplified load spectra model that includes the most
prominent peaks due to rotor thrust contributions. However, this would definitely pose
a challenge when PDE should be used to estimate the response distribution. First order
autoregression would in this case not be able to capture the necessary force correlation,
and using a higher order autoregression model would increase the state space exponen-
tially resulting in considerable loss of computational performance.

One possible solution is to use a simplified spectrum like the one used in this thesis, but
to filter out variance from the peaks, for example by utilizing rotational sampling theory
presented by Connell in [29]. By doing this, the periodic thrust contributions from the
rotor could possibly be approximated as deterministic harmonic forces and therefore be
kept separate from the probability evolution of the response due to wind. In this case
the displacements due to cyclic rotor thrust would somehow have to be combined with
the evolved displacements.

When a good dynamic model of an onshore turbine is established, the load model could
be expanded to include wave loads acting on offshore sub-structures by using theory from
section 2.3.3.

This would involve introducing the water particle velocity as another random variable,
expanding the state space with at least one dimension. Additional dimensions might
be necessary depending on how correlation of the wave loads are modeled. From the
discussion of nonlinear load models one could conclude that first order autoregression
might not directly describe nonlinear load processes as nicely as it describes the proposed
load process in this thesis. Parallel computing would certainly be unavoidable if the state
space is to be expanded with even more dimensions.
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Even if an accurate model giving the approximate response distribution of an offshore
wind turbine is eventually obtained, this is not a particularly useful result in its own
right. The ultimate goal is to estimate the fatigue damage of various structural parts of
the tower and sub-structure. The response distributions could readily be converted to
stress distributions using mechanics theory. However, in order to obtain the necessary
stress range distributions one would also have to gain knowledge about the total number
of stress peaks.

For a narrow banded process x, this number of peaks could be estimated using the
expected number of a-upcrossings per unit of time, v, (a). That is, the expected number
of times a process crosses a given threshold a, heading upwards, per unit of time. This
number is found, as shown in equation (122), as the integral over all positive velocities
& of the product between the positive velocity and the joint probability of having that
velocity at the displacement threshold a. [6]

vi(a) = Oox'm-a,ab X
2 (a) /0 fai(a, &) d (122)

For a broad banded process the number of a-upcrossings per unit of time does not neces-
sarily equal the number of peaks per unit of time, and this could possibly pose a challenge
when estimating fatigue damage exclusively using the joint response distribution.

91






7 Attachments

7.1 Attachment 1:

Matlab script used to perform calculations of analytical SDOF
response to stochastic excitation in section 2.1.3.
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John Magne Hembre 2014

Script written to find and analyze response of a single degree of
freedom system subjected to stationary stochastic delta-correlated
(white noise) gaussian forcing.

d° d° o° o d° d° o°

clc

clear

close all

tic

%

% INPUT:

TS5 55%%%%%

% Forcing properties:

mu_£=0;

% Mean value of gaussian force F [N]
var f£=25;

% Variance of gaussian force F [N”*2]

% Timespan properties:

reclength=620;

% Record length [s]

timestep=0.05;

% Timestep [s]

initial=20;

% Initial time period to be disregarded in the response calculation [s]
% (to obtain stationary signal without start-up singularity)
freqresolution=100000;

% Frequency resolution, deltafreq=fn/freqresolution

% SDOF Structure properties:
M=1;

% System mass [kg]
zeta=0.05;

% System damping [-]

K=3;

% System stiffness [N/m]

% Visualization properties:
histres=75;
% 3D histogram resolution

55555355355 %%5%%%5%%%

SD_f=sqrt(var_f);

% Standard deviation of force signal [N]
n=reclength/timestep;

% Number of timesteps

forcevec=normrnd (mu_f,sqrt(var_f) ,n,1l);
% Vector of gaussian distributed forces
timevec=timestep:timestep:reclength;

% Vector of time values

if initial~=0
initialsteps=initial/timestep;

% Number of initial timesteps to be disregarded
end

fs=1/timestep;

% The sampling frequency [Hz]
fn=£fs/2;

% The Nyquist frequency [Hz]



% Determining SO:
SO=var_£f/fn;
SO0_omega=S0/ (2*pi) ;

frequencies=0:fn/freqresolution:fn;

% Vector of the frequencies considered, in Hz.
omegafrequencies=frequencies*2*pi;

% Vector of the angular frequencies considered, in rad/s.

% Defining the Gaussian Probability Distribution:
gauss=Q@ (mu,sigma,y) (1/(sqrt(2*pi)*sigma))*exp(-0.5*((y-mu)/sigma) ."2);

% Defining the Joint Gaussian Probability Distribution, rho=0 for
% uncorrelated variables:

jointgauss=@ (mu_1,sigma 1,y 1,mu_2,sigma 2,y 2) ((1/(sqrt(2*pi)*sigma_1))*...

exp(-0.5*((y_1-mu_1)/sigma_ 1) .%2))*...
((1/(sqrt(2*pi)*sigma_2))*exp(—0.5*((y_2—mu_2)/sigma_2).A2));

y_f=mu f- (4*sqrt(var_f)):(2*4*sqrt(var_£))/1000:mu_f+(4*sqrt(var_£f));

omegaO=sqrt (K/M) ;

% Angular natural frequency of the SDOF system [rad/s]
omegad=omegal*sqrt (1-zeta”*2) ;

% Damped angular natural frequency of the SDOF system [rad/s]
natfreq=omegal/ (2*pi) ;

% Natural frequency of the SDOF system [Hz]

% Defining the SDOF system impulse response function:
hx=Q (r) (exp(-zeta*omegal*r)/(omegad*M)) *sin (omegad*r) ;

% Defining the SDOF system impulse velocity response function:
hxdot=@ (rr) (exp(-zeta*omegal*rr)/(omegad*M))* ((omegad*cos (omegad*rr))-...
(zeta*omegaO*sin (omegad*rr))) ;

% Defining the squared SDOF system frequency response function:
Hfxsquared=Q (omega) abs(l/(M*2* ( (omegal”~2-
omega”2) *2+ (2*zeta*omegaO*omega) *2))) ;

% Generating vector of the squared transfer function to plot,
% and calculating sigma x=S0*int (|H(omega) | *2):
Hfxsquaredvec=zeros (length (frequencies) ,1);
Sx=zeros (length (frequencies) , 1) ;
var x=0;
var_xdot=0;
deltaomegafreq=(omegafrequencies (2) ~-omegafrequencies (1)) ;
for i=1l:length (omegafrequencies)
Hfxsquaredvec (i) =Hfxsquared (omegafrequencies(i)) ;
Sx (i)=Hfxsquaredvec (i) * (SO_omega) ;
% Finding Sx=|Hfx|*2*Sf, where Sf=S0 (constant), times 2*pi
% since SO (omega)=SO0(f)/(2*pi)
var_x=var_x+(Sx (i) *deltaomegafreq) ;
var_xdot=var_ xdot+(Sx (i) * (omegafrequencies (i) “2) *deltaomegafreq) ;
end

x_total=zeros(n,1);
xdot_total=zeros(n,1);
hx vec=zeros(n,1);
hxdot vec=zeros(n,1);
hx static=0;
hxdot_static=0;
for t=1:n
X_impulse=0;
xdot_impulse=0;
for s=1:t



x_impulse=x_impulse+forcevec(s) *hx((t-1) *timestep-(s-
1) *timestep) *timestep;
% Displacement response at t due to impulse at s
xdot_impulse=xdot_ impulse+ (forcevec(s)*...
hxdot ((t-1) *timestep-(s-1) *timestep) *timestep) ;

% Velocity response at t due to impulse at s

end

x_total (t)=x_impulse;

% Total displacement response at t

xdot_total (t)=xdot_impulse;

% Total velocity response at t

hx static=hx static+hx((t-1) *timestep) *timestep;

% Used to calculate displacement response mean

hxdot static=hxdot static+hxdot((t-1)*timestep) *timestep;

% Used to calculate velocity response mean

hx vec(t)=hx((t-1)*timestep);

% Used to plot impulse response function

hxdot_vec (t)=hxdot((t-1)*timestep) ;

% Used to plot h_dot

end

hx static_real=0;

hxdot_static_real=0;

for t=1:n*1000
hx static_real=hx static_real+hx(t* (timestep/1000))* (timestep/1000) ;
% Used to calculate (the real) displacement response mean

hxdot_static_real=hxdot_static_real+hxdot(t*(timestep/lOOO))*(timestep/lOOO);
% Used to calculate (the real) velocity response mean
end

if initial~=0

x=x total(initialsteps:n);
xdot=xdot_total (initialsteps:n);
timevec_resp=timevec(initialsteps:n);
else

x=x total;

xdot=xdot_total;
timevec_resp=timevec;

end

% Cuts away unwanted initial part

% Displacement response mean:
mu_x=mu_f*hx static

mu_x real=mu_ f*hx static_real
mu_x_fromsignal=mean (x)

% Velocity response mean:
mu_xdot=mu_f*hxdot_static

mu_xdot real=mu_f*hxdot static real % Should be 0
mu_xdot fromsignal=mean (xdot)

toc



7.2 Attachment 2:

Matlab script used to evolve probability distributions of structural
response through the cell-mapping method.
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Script written to find estimate the Joint Probability Density Function
of the response of a SDOF system using the Probability Density Evolution.
The excitation could either be described by the current force
realization, F, picked as white noise, or by the current and

the previous force realization, F and Z. In the latter case the
conditional probability of Z is described using first order
autoregression.

o 00 d° A Jd° d° A° o° d° od° o°

clc

close all

%

% INPUT:
5555555505555 5555555055555 5555555555555 5555555%%5%%%%

% Time properties:
timestep=0.05;
% Time step [s]

% Iteration properties:

itmax=300000;

% Maximum number of iterations

L2 max=10*(-90);

% Convergence criterion; L2 difference
plotfreg=2;

% Plot every plotfreq iteration

% Initial condition, t=0:
initstate disp=0; % [m]
initstate_velo=0; % [m/s]
initstate force=0; $ [N]
initialcond=2; % 1 = Use spike at initstate
% 2 = Use predefined "initpdf" from workspace
% 3 = Other experimental initial states

% Domain properties:

X min=-0.3; % [m]
X max=0.3; % [m]
Xdot min=-0.6; % [m/s]
Xdot max=0.6; % [m/s]
F_min=-300000; $ [N] (used if forcemode=1l or 2)
F _max=300000; $ [N] (used if forcemode=1l or 2)
Z_min=-30000; % [N] (used if forcemode=2)
Z_max=30000; $ [N] (used if forcemode=2)
% Resolution properties:
delta X=(X max-X min)/200; % [m]
delta Xdot=(Xdot max-Xdot min)/200; % [m/s]
delta F=(F _max-F min)/100; % [N]
delta Z=(Z_max-Z min)/30; % [N]
delta u=0.1; % [m/s]
$ delta Z u=0.1; $ [m/s]

% SDOF Structure properties:

M=405574.9;

% System mass [kg]

K=1809033.4;

% System stiffness [N/m]

zeta=0.01;

$zeta=1/ (2*sqrt(K*M)); % [To define zeta from C; zeta=C/ (2*sqrt(K*M)) ]



% System damping [-]

% Force properties:

V_ref=20;

% Mean value of wind velocity V [m/s]
sd u=2.884;

% Standard deviation of gaussian distribution for turbulence u (mean=0)

forcemode=2; % Mode 1: Explicit white noise force with a known
% PDF given force
% [PDF_thrust (F) ]
%
% Mode 2: Explicit force with a known PDF given
% force, modeled as an AR(l) process with
% known parameters phi and noise variance
% [PDF_thrust (F)]

if V_ref<ll
turbconst=6007*V_ref” (1) ;
elseif V_ref>=11
turbconst=1682000*V_ref” (-1.35) ;
end

if forcemode==

phi_force=0.99506;
sigma noise=8442.2;
% noisevar_ force=9;
% sigma_noise=sqrt (noisevar_force) ;

% Noise properties:
n_Z=(Z_max-Z min)/delta Z;
Z=linspace(Z min,Z max,n_Z);

pde=(1/(sqrt(2*pi)*sigma_poise))*exp(—0.5.*(Z./sigma_poise).A2);

figure (50)

plot(z,pd£fZ)

axis([Z_ min Z max 0 1.1l*max(pdfZ)])
end

5555555555555 555555555 T Tt T T T T T T %%%

C=zeta*2*sqrt (K*M) ;
% Calculate C [kg/s] from zeta [-]

omegal=sqrt (K/M) ;
% Angular natural frequency of the SDOF system

n_X=(X _max-X min)/delta X;
n_Xdot=(Xdot max-Xdot min)/delta Xdot;

n_F=(F _max-F min)/delta F; %
n_u=(u_max—u_min)/delta_u; %
% Number of steps in the different domains

% Generating vectors:
X=linspace (X _min,X max,n X);

Xdot=linspace (Xdot_min,Xdot max,n_Xdot) ;
F=linspace (F_min,F max,n F); $
u=linspace(u_min,u max,n_u); %

[rad/s]

(used
(used

(used
(used

% Finding cell ID-number of initial state cells:

for cellindex x=1:(n X-1)

if forcemode
if forcemode

if forcemode
if forcemode

1 or 3)

1l or 3)
2)

if (initsEéte_di§§>=X(cellindex_x))&&(initstate_disp<x(cellindex_x+1))

dl=abs(initstate_disp-X(cellindex x));

d2=abs (initstate_disp-X(cellindex x+1));



if di<d2
initcell disp=cellindex_x;
else
initcell disp=cellindex x+1;
end
break
end
end
for cellindex x=1: (n_Xdot-1)
if (1n1tstate velo>=Xdot (cellindex x)) &&.
(1n1tstate_velo<Xdot(celllndex_x+1))
dl=abs (initstate_velo-Xdot(cellindex x));
d2=abs (initstate_velo-Xdot(cellindex x+1));
if dil<d2
initcell velo=cellindex_x;
else
initcell velo=cellindex x+1;
end
break
end
end
for cellindex f=1:(n_F-1)
if (initstate_force>=F(cellindex f))&&...
(initstate force<F(cellindex f+1))
dl=abs(initstate force-F(cellindex f));
d2=abs (initstate_ force-F(cellindex_ £f+1));
if dil<d2
initcell force=cellindex f;
else
initcell_force:cellindex_f+1;
end
break
end
end

if forcemode==
pdf=zeros(n_X,n Xdot);
pdfa= zeros(n X,n_Xdot) ;

elseif forcemode=
pdf=zeros(n_X,n Xdot,n F);
pdf2=zeros(n_X,n Xdot,n F);

end

disp('Setting up initial state and force properties...')
tic
if initialcond==1
if forcemode==
% If spike: setting the probability of the defined initial state to 1
pdf (initcell disp,initcell velo)=1;
elseif forcemode==
% If spike: setting the probability of the defined initial state to 1
pdf (initcell disp,initcell velo,initcell force)=1;
end

elseif initialcond==
pdf=initpdf;

% Use initial pdf from workspace if predefined

elseif initialcond==



% Used to create other initial states
num=3;
dist=1;

probcells=1/((num*8)+1) ;

pdf (initcell disp,initcell velo,initcell force)=probcells;

for i=1l:num

pdf (initcell disp+dist*i,initcell velo+dist*i,initcell force+dist*i)...
=probcells;

pdf (initcell disp+dist*i,initcell velo+dist*i,initcell force-dist*i)...
=probcells;

pdf (initcell disp+dist*i,initcell velo-dist*i,initcell force-dist*i)...
=probcells;

pdf (initcell disp+dist*i,initcell velo-dist*i,initcell force+dist*i)...
=probcells;

pdf (initcell disp-dist*i,initcell velo-dist*i,initcell force-dist*i)...
=probcells;

pdf (initcell disp-dist*i,initcell velo+dist*i,initcell force-dist*i)...
=probcells;

pdf (initcell disp-dist*i,initcell velo+dist*i,initcell force+dist*i)...
=probcells;

pdf (initcell disp-dist*i,initcell velo-dist*i,initcell force+dist*i)...
=probcells;

end

end

5555555555555 %%5%5%%%%%

% Force PDF properties:

if forcemode==1] % If explicit white noise force PDF...
% Define Force PDF:

sigma_F=sqrt((turbconst”*2)*(sd_u*2)); $ [N]
mu_F=0; % [N]

pdfvec_prevthrust=(1l/(sqrt(2*pi)*sigma F))*...
exp(-0.5.* ((F-mu_F) ./sigma_F) ."2);

% Vector containing previous thrust values (Gaussian distribution)

pdfF=pdfvec_prevthrust;

mode=1; % Mode considered
if mode==1;
modalA=25.0108; $ Mode 1, LC 2
modalB=190.2907; % Mode 1, LC 2
modalC=362.7748; % Mode 1, LC 2
elseif mode==2;
modalA=41.9390; $ Mode 2, 1LC 2
modalB=305.6178; $ Mode 2, 1LC 2
$modalC=558.6578; % Mode 2, LC 2
end

modalthrust PDF=@(sigma_v,A,B,C,Tval)...

(1./(sqrt(2*pi) *sigma_v.*sqrt((B~2)-4*A*(C-Tval)))).*...

(exp (-0.5.* ((-B+sqrt ((B*2)-4*A* (C-Tval))) ./ (2*sigma_v*A)) .*2)+...
exp(-0.5.* ((-B-sqrt ((B*2)-4*A* (C-Tval))) ./ (2*sigma_v*A)) ."2));

% PDF of nonlinear modal force caused by wind distributed along tower

pdfF=modalthrust PDF(sd_u,modalA,modalB,modalC,F) ;
% Vector containing previous thrust values
% (nonlinear PDF of modal force caused by wind distributed along tower)

o0 Ad° A0 O I A A% I A A I A A I I A d° Jd° d° o°

area=trapz (F,pdfF) ;
pdfF=pdfF. /area;
% Normalized pdf of the force



figure (2)
plot (F,pd£fF)

elseif forcemode==2 % If considering frequency dependent force with

% known PDF (F)

sigma_ F=sqrt((turbconst”2)* (sd_u*2));
mu_F=0;

% [N]
% [N]

pdfvec_prevthrust=(1/(sqrt(2*pi)*sigma_F))*...

exp(-0.5.* ((F-mu_F) ./sigma_F) ."2);

% Vector containing previous thrust values (Gaussian distribution)

considered
1, LC 2
1, LC 2
1, LC 2
2, LC 2
2, LC 2
2, LC 2

figure (2)
plot (F,pdfvec_prevthrust)
% mode=1; % Mode
% if mode==1;
% modalA=25.0108; % Mode
% modalB=190.2907; % Mode
% modalC=362.7748; % Mode
% elseif mode==2;
% modalA=41.9390; % Mode
% modalB=305.6178; % Mode
% $modalC=558.6578; % Mode
% end
%
% modalthrust PDF=@ (sigma_v,A,B,C,Tval)...
% (1./(sqrt(2*pi) *sigma_v.*sqrt((B~2)-4*A*(C-Tval)))).*...
% (exp(-0.5.* ((-B+sqrt((B”2)-4*A* (C-Tval)))./(2*sigma_v*A)) .*2)+...
% exp(—0.5.*((—B—sqrt((BA2)—4*A*(C—Tval)))./(2*sigma_y*A)).A2));
% % PDF of nonlinear modal force caused by wind distributed along tower
%
% pdfvec_prevthrust=modalthrust_ PDF (sd_u,modalA,modalB,modalC,F) ;
% % Vector containing previous thrust values
% % (nonlinear PDF of modal force caused by wind distributed along tower)
end

5555555555555 55555555 %%5%%%%

disp(['That took ', num2str(toc), ' s'l])
fprintf('\n"')

statemap F=zeros(n_F,1);
statemap X=zeros(n_X,n Xdot);
statemap Xdot=zeros(n_X,n Xdot,n F);

disp('Calculating transition probabilities...

tic

if forcemode==1| | forcemode==
n_forcing=n F;
forcevec=F;

elseif forcemode==
n_forcing=n_u;
forcevec=currs_T;

end

if forcemode==2| | forcemode==

% Empty vector
% Empty 2D matrix
% Empty 3D matrix

")



for i=l:n_F
for j=1l:n_2
fl=F (i) ;
f2=f1*phi force+Z(j);
% Finding resulting cell ID-number for statemap F:
if £2<=F min
statemap F(i,j)=1;
elseif f2>=F max
statemap F(i,j)=n_F;
else
for cellindex f=1:(n_F-1)
if (f2>—F(ce111ndex f)) && (f2<F(cellindex_£f+1))
dl=abs (f2-F(cellindex f));
d2=abs (f2-F(cellindex f+1));

if dl<d2
statemap F(i,j)=cellindex f;
else
statemap F(i,j)=cellindex f+1;
end
break
end
end
end
end
end
end

for i=1l:n X
x1=X(1i);

for j=1:n Xdot
xdotl—Xdot(j)
x2=xl+timestep* (xdotl+(delta Xdot/2)); % Modified Euler
$x2=x1+timestep* (xdotl) ; % Explicit Euler

% Finding resulting cell ID-number for statemap X:
if x2<=X min
statemap X(i,j)=1;
elseif x2>=X max
statemap X(i,j)=n_X;
else
for cellindex x=1:(n_X-1)
if (x2>—X(celllndex X)) && (x2<X(cellindex x+1))
dl=abs (x2-X(cellindex x));
d2=abs (x2-X(cellindex x+1));
if di<d2
statemap X(i,j)=cellindex x;
else
statemap X(i,j)=cellindex x+1;
end
break
end
end
end

for k=1:n_forcing
f=forcevec (k) ;
xdot2=xdotl+timestep* ( (£-C* ( (x2-x1) /timestep) -K*x2) /M) ;
% Implicit Euler

% Finding resulting cell ID-number for statemap Xdot:
if xdot2<=Xdot min

statemap Xdot (i, j,k)=1;
elseif xdot2>=Xdot max



statemap Xdot (i, j,k)=n_Xdot;
else
for cellindex xdot=1: (n_Xdot-1)
if (xdot2>=Xdot(cellindex xdot))s&s&...
(xdot2<Xdot (cellindex xdot+l))
dl=abs (xdot2-Xdot (cellindex xdot));
d2=abs (xdot2-Xdot (cellindex xdot+l));

if dil<d2
statemap Xdot(i,j,k)=cellindex xdot;
else
statemap Xdot (i, j,k)=cellindex xdot+l;
end
break
end
end
end
end
end
end
disp(['That took ', num2str(toc), ' s'l])

fprintf('\n"')

5555555552595 %%%%%
if forcemode==1 % If explicit white noise force PDF...

disp('Iterating...')

tic

for o=1l:itmax
area_pdf=sum(sum(pdf)) *delta X*delta Xdot; %
pdf=pdf/area pdf; % Normalize

sum_frame=sum(pdf(1l,:))+sum(pdf(n_X,:))+sum(pdf(:,1))+...

sum(pdf (: ,n_Xdot));
sum_picture=sum(sum(pdf (2: (n_X-1) ,2: (n_Xdot-1))));
if sum_ frame>0.00l*sum picture

fprintf('\n"')

disp ({'##### Error: #####'})

disp({'PDF out of bounds'})

disp ({'########H#H#HHAH##H#H#H"))

fprintf('\n')

break
end

L2=sqrt (mean2 ( (pdf-pd£f2) .*2)) ;
if L2<L2_max

disp(['Obtained L2 difference = ', num2str(L2)])
break
end
disp(['Iteration ', num2str(o),', L2-difference = ', num2str(L2)])

if o==itmax
disp('Convergence not obtained before maximum number of iterations')

end
pdf2=pdf;
pdf=zeros (n_X,n_Xdot) ;
for i=1:n X
% For each X...

for j=l:n_Xdot

% For each Xdot...



i2=statemap X(i,]):; % Resulting X-cell ID
for k=1:n_F
% For each F...
j2=statemap Xdot(i,]j,k); % Resulting Xdot-cell ID
pdf (i2,32)=pdf (i2,32)+(pdf2 (i,j) *pdfF (k)) ;
end
end
end

if rem(o,plotfreq)==
figure (1000+0)
area_pdf=sum(sum(pdf)) *delta_ X*delta_ Xdot;
pdfplot=pdf/area pdf; % Normalize
pdfplot=pdfplot’; % Transpose to get axes right for surf
subplot(1,2,1)
surf (X,Xdot,pdfplot, 'EdgeColor', 'none')
xlabel ('Displacement [m]')
ylabel ('Velocity [m/s]')
view (0,90) ;
subplot(1,2,2)
contourf (X,Xdot,pdfplot, 40)
end

end
iteration_time=toc;
fprintf('\n"')

disp(['The ',num2str(o),' iterations took ',...
num2str (iteration_time), ' s,'])

disp(['giving an average of ',...
num25tr(iteration_time/o),' s per iteration'])

fprintf('\n"')

55T TL55%5%%%
elseif forcemode==
% If considering frequency dependent wind force...

disp('Iterating...")

tic

for o=1l:itmax
volume pdf=sum(sum(sum(pdf))) *delta_ X*delta_ Xdot*delta F; $
pdf=pdf./volume pdf; % Normalize

L2=sqrt (mean2 ( (pdf-pd£f2) .*2)) ;
if L2<L2 max

disp(['Obtained L2 difference = ', num2str(L2)])
break
end
disp(['Iteration ', num2str(o),', L2-difference = ', num2str(L2)])

if o==itmax
disp ('Convergence not obtained before maximum number of iterations')
end
pdf2=pdf;
pdf=zeros(n_X,n Xdot,n F);
for i=1:n X
% For each X...
for j=1:n_Xdot
% For each Xdot...
i2=statemap X(i,J): % Resulting X-cell ID
for k=1:n_forcing
% For each F...
for m=1:n Z
k2=statemap F(k,m); % Resulting F-cell ID
j2=statemap_ Xdot (i, j, k2); % Resulting Xdot-cell ID
pdf (i2,32,k2)=pdf (i2,3j2,k2)+(pdf2 (i,j, k) *pdfZ (m)) ;



end
end
end
end
if rem(o,plotfreq)==
pdf2D=sum (pdf, 3) ;

figure (1000+0)

area pdf=sum(sum(pdf2D)) *delta X*delta Xdot;

pdfplot2D=pdf2D/area_ pdf; % Normalize

pdfplot2D=pdfplot2D’'; % Transpose to get axes right for surf

subplot(1,2,1)

surf (X,Xdot,pdfplot2D, 'EdgeColor', 'none')
xlabel ('Displacement [m]')

ylabel ('Velocity [m/s]')

view (0,90);

subplot(1,2,2)
contourf (X,Xdot ,pdfplot2D,40)

end

end

iteration_time=toc;

fprintf('\n"')

disp(['The ',num2str(o),' iterations took ', ...

num2str (iteration_time), ' s,'])
disp(['giving an average of ',...
num2str (iteration_time/o),' s per iteration'])

fprintf('\n"')
end

pdf2D=sum (pdf, 3) ;

figure (5)

area pdf=sum(sum(pd£f2D)) *delta X*delta Xdot;

pdf2D=pd£f2D./area_pdf; % Normalize

pdf2D=pdf2D' ; % Transpose to get axes right for surf

surf (X,Xdot,pd£f2D)
xlabel ('Displacement [m]')
ylabel ('Velocity [m/s]')



7.3 Attachment 3:

Matlab function used to simulate wind turbulence through spectral
decomposition of the Kaimal spectra.
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Function that simulates turbulence through spectral decomposition of the
Kaimal wind spectrum.

d° d° o° o d° d° o°

vis = visualization on/off (1/0)

function v = Kaimalsim(reclength, timestep,v_hub,sigma,hubhght,vis)

clc

maxfreq=1/ (2*timestep) ; % The nyquist frequency [Hz]
N=maxfreq*5000; % Number of points in spectrum
df=maxfreq/N; % Frequency increments [Hz]

freqs=0:df :maxfreq;

if hubhght<60

L k=8.10*0.7*hubhght;
else

L k=8.10*0.7*60;
end

S_f=(4*sigma”2* (L_k/v_hub)) ./ (1+(6.*freqs* (L_k/v_hub))) .~ (5/3);
sigmaest_spec=sqrt(sum(df.*S_f))

maxomega=maxfreq*2*pi;
domega=maxomega/N;
omegas=(2*pi) . *freqgs;

S_omega=S_f./(2*pi);

tmax=reclength; % Wind velocity record length [s]
time=0:timestep:tmax-timestep; % Vector over time steps

v=zeros (1l,length(time)) ;

for k=1:1length (omegas)
omega_ k=omegas (k) ;
S_k=S_omega (k) ;
rand k=rand;
for step num=1:length(time)
v (step_num)=v(step_num)+sqrt (2*S_k*domega) *. ..
cos (omega_k*time (step_num)+2*pi*rand k) ;
end
end

v=v+v_hub;

v=v';

if vis==

figure (1000)

plot(time,v)

grid on

axis ([0 tmax -1.2*min(v) 1.2*max(v)])
xhandle=xlabel('t [s]'):
yhandle=ylabel('v(t) [m/s]');

set (gca, 'fontsize',h 14)

set (xhandle, 'Fontsize',6 14)

set (yhandle, 'Fontsize',6 14)

end
end



7.4 Attachment 4:

Matlab function estimating total thrust and torque at the hub using
blade properties from [2] and the Blade Element Momentum Method.
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Function written to calculate the total thrust and torque force acting

at the rotor center of the NREL 5-MW Reference Wind Turbine (Jonkman

et al. 2009). The result is two vectors with the same length as the input

vector U containing the total calculated thrust and torque in every

time step. The Blade Element Momentum theory used herein is based on

the book "Wind Energy Explained" (Manwell et al. 2002).

The function takes the following input:

U = a time series of the wind velocity at hub height. [m/s]

Time = the corresponding time vector for the wind velocity [s]

B = number of blades on rotor.

Omega = angular velocity of the rotor [rad/s]. Omega is assumed
constant for the calculation of a and a' (The axial and angular
induction factors) (Could be found in Jonkman et al. 2009)

rho = mass density of the air considered (standard is 1.25). [kg/m"*3]

maxdev = The maximal deviation required between iteration rounds for the
values of a and a'. (e.g. 0.00001)

d° A0 o I I A O A A A I A I I A I I A A I I A I I A o° d° o°

function [total_ thrust, total_torque,...
mom_total thrust, mom total torque] = BEM(U,Time,B,Omega,rho,maxdev)

clc
close all
tic

r=[2.8667;5.6000;8.3333;11.7500;
15.8500;19.9500;24.0500;28.1500;
32.2500;36.3500,40.4500;,44.5500;
48.6500;52.7500;56.1667;58.9000;61.6333];
% Values of blade section locations [m]

dr=[2.7333;2.7333;2.7333;4.1000;
4.1000;4.1000;4.1000;4.1000;
4.1000;4.1000;4.1000;4.1000;
4.1000,4.1000;2.7333;2.7333;2.7333];
% Values of blade section lengths [m]

twist=[13.308;13.308;13.308;13.308;
11.480,;10.162;9.011;7.795;
6.544;5.361,;4.188;3.125;
2.319;1.526;0.863;0.370;0.106] .*(pi/180) ;
% Values of blade section twist angle [rad]

chord=[3.542;3.854;4.167;4.557;
4.652;4.458;4.249;4.007;
3.748;3.502;3.256;3.010;
2.764;2.518;2.313;2.086;1.419];

% Values of blade section chord lengths [m]

foilnumbers=[1;1;2;3;

765

78;
8;8];

4;4;
6;7;
8;8

’

(oo IEN NS |

’

’



Determines what airfoil table to use:

Cylinder 1 (Special case, does not use external file)
Cylinder 2 (Special case, does not use external file)
DU40_Al7

DU35_Al17

DU30_A1l7

DU25 Al7

DU21 Al7

: NACA64_Al7

o0 d° A o d° d° o d° o°
m\lm(ﬂthl—‘

fid=fopen ('DU21_Al7.dat','r');
DU21 Al7_temp=textscan(fid, '$f');
fclose (fid) ;
DU21 Al7_ temp=DU21 Al7_ temp{l};
DU21_Al7=zeros ( (length (DU21_Al7_temp)/4) ,4);
for i=l:4:length(DU21 _Al7_temp)
DU21 A17(((1+3)/4) 1)=DU21 Al7_ temp(i,l);
DU21_A17(((1+3)/4) 2)=DU21 Al7 temp (i+l,1);
DU21 A17(((i+3)/4),3)=DU21_Al7 temp(i+2,1);
DU21 A17(((i+3)/4),4)=DU21_Al7_ temp(i+3,1);
end
clear('DU21_Al7_temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3
% and 4) for different angles of attack (coloumn 1) for airfoil DU21 Al7.

fid=fopen ('DU25_Al7.dat','r');
DU25 Al7_ temp=textscan(fid, '3%f');
fclose (£id) ;
DU25 Al7_temp=DU25 Al7_temp{l};
DU25_Al7=zeros((length(DU25 Al7_ temp)/4),4);
for i=1:4:length(DU25 Al7 temp)
DU25 A17(((i+3)/4),1)=DU25_Al7 temp(i,l1);
DU25 Al17(((i+3)/4),2)=DU25 Al7_ temp(i+l,1);
DU25 A17(((i+3)/4),3)=DU25 Al7_ temp(i+2,1);
DU25 A17(((i+3)/4),4)=DU25_Al7 temp(i+3,1);
end
clear ('DU25 Al7_ temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3
% and 4) for different angles of attack (coloumn 1) for airfoil DU25_Al7.

fid=fopen ('DU30_Al7.dat','xr");

DU30_Al7_ temp=textscan(fid, '3%f');

fclose (fid) ;

DU30_Al7_ temp=DU30_Al7_ temp{l};

DU30_Al7=zeros ((length (DU30_Al7_ temp)/4),4);

for i=1:4:length(DU30_Al7_temp)
DU30_A17(((i+3)/4),1)=DU30_Al7 temp(i,1);
DU30_A17(((i+3)/4),2)=DU30_Al7_ temp(i+l,1);
DU30_A17(((i+3)/4),3)=DU30_Al7 temp(i+2,1);
DU30_A17(((i+3)/4),4)=DU30_Al7 temp(i+3,1);

end

clear ('DU30_Al7_ temp')

% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3

% and 4) for different angles of attack (coloumn 1) for airfoil DU30_A1l7.

fid=fopen ('DU35_Al7.dat','r');

DU35 Al7_ temp=textscan(fid, '%f');

fclose (fid) ;

DU35_Al7_temp=DU35 Al7_temp{l};

DU35_Al7=zeros ( (length (DU35_Al7_temp)/4) ,4);

for i=1:4:length(DU35_Al7_ temp)
DU35 A17(((i+3)/4),1)=DU35 Al7 temp(i,1);
DU35 A17(((i+3)/4),2)=DU35 Al7 temp(i+l,1);
DU35 Al17(((i+3)/4),3)=DU35_Al7 temp(i+2,1);



DU35 A17(((i+3)/4),4)=DU35_Al7 temp(i+3,1);
end
clear ('DU35 Al7_ temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3
% and 4) for different angles of attack (coloumn 1) for airfoil DU35_Al7.

fid=fopen ('DU40_Al7.dat','xr");

DU40_Al7_ temp=textscan(fid, '3%f');

fclose (fid) ;

DU40_Al7_ temp=DU40_Al7_ temp{l};

DU40_Al7=zeros((length (DU40_Al7 temp)/4),4);

for i=1:4:length(DU40_Al7_temp)
DU40_A17(((i+3)/4),1)=DU40_Al7 temp(i,1);
DU40_A17(((i+3)/4),2)=DU40_Al7_ temp(i+l,1);
DU40_A17(((i+3)/4),3)=DU40_Al7 temp(i+2,1);
DU40_Al17(((i+3)/4),4)=DU40_Al7 temp (i+3,1);

end

clear ('DU40_Al7_ temp')

% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3

% and 4) for different angles of attack (coloumn 1) for airfoil DU40_Al7.

fid=fopen ('NACA64_Al7.dat',6'r');
NACA64_Al7_ temp=textscan(fid,'%f');
fclose (fid) ;
NACA64_Al7_ temp=NACA64_Al7_temp{l};
NACA64 Al7-zeros((length(NACA64 Al7_temp)/4) ,4);
for i=1:4:length(NACA64_Al7_temp)
NACA64 Al17(((i+3)/4),1)=NACA64_Al7 temp(i,1);
NACA64 Al7(((i+3)/4) ,2)=NACA64_Al7 temp(i+l,1);
NACA64 A17(((1+3)/4) 3)=NACA64_Al7 temp(i+2,1);
NACA64_A17(((1+3)/4) 4)=NACA64_Al7_ temp(i+3,1);
end
clear ('NACA64_Al7_ temp')
% Generate a matrix containing coefficients Cl, Cd and Cm (coloumn 2, 3
% and 4) for different angles of attack (coloumn 1) for airfoil NACA64_Al7.

foilarray{1,1}=0;

foilarray{2,1}=0;

foilarray{3,1}=DU40_Al7;

foilarray{4,1}=DU35_Al7;

foilarray{5,1}=DU30_Al7;

foilarray{6,1}=DU25 Al7;

foilarray{7,1}=DU21_Al7;

foilarray{8,1}=NACA64_Al7;
clear('DU21_Al17','DU25_Al7','DU30_Al7','DU35_Al7','DU40_Al7', 'NACA64_Al7')
% Generate an array containing the airfoils above. Their order corresponds
% to the order given in the vector foilnumbers.

n=length (U) ;
% Number of time steps in the vector U

total thrust=zeros(n,l);
total_ torque=zeros(n,l);
mom_total_ thrust=zeros(n,1);
mom_total_ torque=zeros(n,l);
theta_mat=zeros(n,17);

a mat=zeros(n,17);

for i=1:n

% For all time steps in U...

Uval=U (i) ;

accumulatedthrust=0;
accumulatedtorque=0;



mom_accumulatedthrust=0;
mom_accumulatedtorque=0;
for j=1:17

% For all blade sections...

sigma_mark=(B*chord(j))/ (2*pi*r(j));
% Local solidity
lambda_r=(Omega*r(j))/Uval;

% Local speed ratio
airfoil=foilnumbers (j) ;

% Determines relevant airfoil number

if airfoil==
a=0;
a mark=0;
theta=atan((l-a)/((l+a_mark) *lambda r));
% Calculating the angle of the relative wind [rad]
Cl=0;
Cd=0.5;
elseif airfoil==
a=0;
a mark=0;
theta=atan((1—a)/((1+a_mark)*lambda_r));
% Calculating the angle of the relative wind [rad]
Cl=0;
Cd=0.35;

else

counter=1l;

% Iteration counter set to zero
a_mark_guess=0;

a _guess=0;

% Establish first guesses; a=0 and a'=0
flag=0;

while flag==

% Iterate to find a and a' for section...

if counter>150
disp('Warning: No convergence obtained before 500 iterations')
a_new=1/3;
a_mark new=(1-3*a new)/(4*a-1);
break
$return
end

theta=atan((1—a_guess)/((1+a_mark_guess)*lambda_r));

% Calculating the angle of the relative wind [rad]
alpha=theta-twist(j);

% Calculating the angle of attack [rad]

alphadeg=alpha* (180/pi) ;

% Calculating the angle of attack to use in table [deg]

theta mat(i,]j)=theta; %%%%%%%5%5%5%%5%55%%%5%5%5%5%%5%5%%%%%5%%%%%%%%5%%%%

aoacounter=1;

% Angle of attack counter

aoaflag=0;

while aocaflag==0;
angle=foilarray{airfoil,1l} (acacounter,1) ;
nextangle=foilarray{airfoil,1l} (acacounter+l,1) ;
if alphadeg==angle
% If exact match for angle in table...

Cl=foilarray{airfoil,1l} (aocacounter, 2) ;



end

Cd=foilarray{airfoil,1l} (aocacounter, 3) ;
aocaflag=1;

elseif alphadeg==nextangle

% If exact match for next angle in table...
Cl=foilarray{airfoil,1l} (aoacounter+1,2) ;
Cd=foilarray{airfoil,1l} (aocacounter+1,3) ;
aocaflag=1;

elseif (angle<alphadeg && nextangle>alphadeg) |]|...

(angle>alphadeg && nextangle<alphadeg)

% If angle of attack inbetween angle and next angle in table,

% then interpolate...
Cl_l=foilarray{airfoil,l} (acacounter,2);
Cl_2=foilarray{airfoil,1l} (acacounter+l,2);
Cd_1=foilarray{airfoil,1l} (acacounter,3);
Cd_2=foilarray{airfoil,1l} (acacounter+l,3);
Cl=(((alphadeg-angle)/ (nextangle-angle))* (Cl_2-Cl _1))+Cl_1;
Cd=(((alphadeg—angle)/(nextangle—angle))*(Cd_2—Cd_1))+Cd_1;
aocaflag=1;

elseif aoacounter>size (foilarray{airfoil,1l},1)
disp('Error: Angle of attack not recognized')
return

end

aocacounter=aoacounter+l;

% Update angle of attack counter

a_pew=1/(1+((4*sin(theta)”2)/(sigma_mark*Cl*cos(theta))));
a_mark new=1/(((4*cos(theta))/(sigma mark*Cl))-1);

%convergencearray a{i,1l}(j,counter)=a_new-a_guess;
%convergencearray a mark{i,1l} (j,counter)=a mark new-a mark guess;
% Arrays that could be used to check convergence values of a and a'

if (abs(a_mark new-a mark guess)<maxdev)&s&. ..

end

(abs (a_new-a_guess)<maxdev)
flag=1;

% Check convergence

a_guess=a_ new;
a_mark guess=a_mark_new;

% Update guesses
counter=counter+l;

% Update induction factor counter

end

a=a new;
a mark=a mark new;

a mat(i,j)=a;

end

sectionthrust=sigma mark*pi*rho*...

(((Uva1A2)*((1—;)A2))/(sin(theta)AZ))*...
((Cl*cos (theta) )+ (Cd*sin(theta))) *r(j) *dr (Jj);

% Calculating thrust contribution from sections using blade
% element theory [N]

sectiontorque=sigma mark*pi*rho*...

(((Uval~2)*((1-a)*2))/(sin(theta)*2))*...
((Cl*sin(theta) )+ (Cd*cos (theta))) *(r(j)*2) *dr (j) ;

% Calculating torque contribution from sections using blade



end
toc
end

% element theory [Nm]

accumulatedthrust=accumulatedthrust+sectionthrust;
accumulatedtorque=accumulatedtorque+sectiontorque;

% Accumulating thrust and torque for all 17 sections for each
% time step using blade element theory

mom_sectionthrust=rho* (Uval”2)*4*a* (1-a)*pi*r(j)*dr(j)

% Calculating thrust contribution from sections using

% momentum theory [N]
mom_sectiontorque=4*a mark* (l-a)*rho*Uval*pi* (r(j)~3) *Omega*dr(j) ;
% Calculating torque contribution from sections using

% momentum theory [Nm]

mom_accumulatedthrust=mom_ accumulatedthrust+mom_sectionthrust;
mom_accumulatedtorque=mom accumulatedtorque+mom_ sectiontorque;
% Accumulating thrust and torque for all 17 sections for each
% time step using momentum theory

end

total_thrust(i,l)=accumulatedthrust;
total torque(i,l)=accumulatedtorque;

mom_total_ thrust(i,1l)=mom_accumulatedthrust;
mom_total_ torque(i,l)=mom_accumulatedtorque;






7.5 Attachment 5:

Matlab script used to estimate the turbulence AR(1) parameter values
for the load cases defined in section 3.4.
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%
% John Magne Hembre 2014
%

% Script written to determine AR(1l) parameters for the turbulence in the

% 15 load cases.
%

clc
close all

% INPUT:
5555535555535 %%5%%%5%%%

reclength=3000; $ [s]
timestep=0.0125; $ [s]
hubhght=90; % [m]

v_hub=[2,4,6,8,10,12,14,16,18,20,22,24,26,28,30]';
sigma=[0.994,1.204,1.414,1.624,1.834,2.044,2.254,2.464,2.674...
2.884,3.094,3.304,3.514,3.724,3.934]1";

N=4000000; % Number of points in spectra

if hubhght<60
L k=8.10%0.7*hubhght;

else

L k=8.10*%0.7*60;
end
searchmin=0.997; % Search from phi value...
searchmax=1; % Search to phi value...
searchresolution=0.000001; % Increment of phi to find best fit
histres=30; % Histogram resolution

5555555355355 %5%%%5%%%5%%%

% Estimating AR(1l) parameters:

TV LLTLIIL9%%%%
time=linspace (0, reclength,reclength/timestep) ;

maxfreq=1l/ (2*timestep) ; % The nyquist frequency [Hz]
fregs=linspace (0,maxfreq,N) ;

dfreg=abs (fregs (2) -freqgs (1)) ;

maxomega=maxfreq*2*pi;

omegas=linspace (0 ,maxomega,N) ;
domega=abs (omegas (2) -omegas (1)) ;

S_f=zeros(15,1);
var_ fromspec=zeros(15,1);
for i=1:15
for j=1:N
% Variance spectrum given by hertz:
S f(i,j)=(4*sigma(i)*2* (L _k/v_hub(i)))./...
(1+(6.*freqgs(j) *(L_k/v_hub(i)))) .~ (5/3);
% Calculating variances from spectrum:
var_ fromspec(i,l)=var_fromspec(i,1l)+S_£f(i,]j)*dfreq;
end
end
% Variance spectrum given by angular frequency:
S_omega=S_f./(2*pi);

% Iterating to estimate phi from the spectrum above:
phinum=(searchmax-searchmin) /searchresolution;

% Number of values of phi to try

phivals=linspace (searchmin+searchresolution, ...

$ [m/s]

% [m/s]



searchmax-searchresolution,phinum) ;

S _bestfit=zeros(15,N);
phi_bestfit=zeros(15,1);
var_bestfit=zeros(15,1);

for

i=1:15

disp(['Curve fitting AR(1l) spectrum for LC number ',...

num2str(i), '...'])

C_O=sigma (i) *2;
least sgerror=0;

for

end
end

j=1:phinum

currentvar=C_0* (1-phivals(j) *2);

S_gurrentphi=(2*timestep*currentvar)./(2*pi.*(1—2*phivals(j).*...
cos (omegas*timestep) +phivals (j) *2)) ;

sgerror=0;

for k=1:N/5

% (N/5 for efficiency;

% S_omega ~ S_currentphi ~ 0 for higher frequencies)
sgerror=sqgerror+ (S_omega (k) -S_currentphi (k))*2;

end

if j==1||sqgerror<least sqgerror
least sqgerror=sqgerror;
S_bestfit(i,:)=S_currentphi;
phi_bestfit(i)=phivals(]);
var_bestfit(i)=currentvar;
end

5555555355355 %5%%%5%%%5%%%

fprintf('\n"')

% Simulating time series for comparison:
LTI 559%%%%

AR sim=zeros (15,length(time)) ;
kai_sim=zeros(15,length(time));

for

end

i=1:15

disp(['Generating a ', num2str(reclength), ...
' s AR(1l) simulation of LC number ',...
num2str(i), '...'])

% Simulating a time series using the AR(l) properties found by curve
% fitting the Kaimal spectra:
AR sim(i,1)=normrnd(0,sigma(i)) ; % Simulate initial value
for j=2:length(time)
AR sim(i,j)=phi_bestfit (i) *AR sim(i,j-1)+...
normrnd (0, sqrt(var_bestfit(i)));
end






7.6 Attachment 6:

Flexibility matrix, f, of the discretized reference tower described in
section 3.1.1. [m/N]
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Flexibility matrix of the discretized reference tower. [m/N]

Table 11

{03
FEES'S
L1073
08+0's
L1073
0695
{03
BI0T'w
L1073
£059°E
L0-3
06TTE
{0-3
9608°T
L1073
AFTE'T
{03
9530°C
{0-3
BEELT
L1073
+OER'T
{03
BIST°T
80-3
0T’
80-3
0569
80-3
0Z80°s
80-3
HISE
80-3
02ETT
80-3
0E5T°T
60-3
00ts's
60-3
00BET

0

{03
08t0°s
L3
a9y
{03
A
{03
£584°E
{03
BELE'E
L03
9886T
{03
7519°C
L3
0Z9TT
{03
TTEET
{03
THTI'T
L3
ETFE'T
{03
+980°T
20-3
00458
203
0859
203
0884t
20-3
OTTEE
203
0811
203
0LETT
603
00s2's
603
OOTE'T

1%

{03
0655t
L3
TTOT'F
03
FERE
{03
965+°E
o3
TEOT'E
]
EBSLT
{03
BOTE'T
L3
SE60'T
f03
B98L°T
{03
SHT15'T
L3
TEST'T
03
04107
80-3
0LE0°8
803
00sT9
803
0EIST
80-3
08TTE
803
0866'T
803
0ITTT
63
0046
603
0OFE'T

8T

{3
BIOT
]
L5BL°E
L3
96%°E
{3
SESTE
L3
EZERT
L3
6LTST
{3
E9TIT
]
EIEE'T
(o3
+T99°T
{3
B0 T
]
T99T°T
803
094t
80-3
005",
803
0Z8Ls
803
08Tt
80-3
0986
803
OLLE'T
803
059%0°T
63
0089
603
00LT°T

LT

{03
£059°E
{03
BELE'E
L3
TEOT'E
{03
£BERT
£03
5£95°T
L3
SIETT
{03
BTEDT
{03
tie'T
{03
08T5°T
{03
I560°T
{03
180°T
80-3
0Z8L°8
80-3
00469
80-3
055E’s
80-3
0+b6'E
80-3
0ERLT
80-3
0L58°T
6073
00886
60-3
008E't
60-3
000T°T

9T

{03
06TZ'E
L3
9886T
L3
EBSLT
{03
BITST
L3
SEGTT
L3
TL90°T
{03
SIEET
L3
BITST
{03
9E8ET
{03
558T°T
80-3
00066
80-3
06808
80-3
0LEF9
80-3
0L56't
80-3
0659°F
80-3
0055°T
80-3
OLE9'T
6073
00EL'®
60-3
00TT't
60-3
00ED'T

ST

{03
9608°T
L3
Z5T9°T
{03
BOTH'T
{03
ESTIT
{03
GTEDT
L03
SLERT
{03
TEFS'T
L3
EEFE'T
{03
T6SIT
{03
BSL0°T
203
06106
203
058E°L
20-3
0£06°S
203
eSSy
203
OFiEE
20-3
085ET
203
0515 T
603
0095°8
603
00TE'E
013
0009°s

T

03
SHTET
03
09T
03
SE50°T
03
B9EE'T
03
LT
L3
BITOT
03
EEFE'T
03
£98TT
03
BHTTT
80-3
07556
803
02ET'E
803
010
80-3
004E'S
803
02Ty
803
0080°E
80-3
055T°T
803
096ET
603
00062
63
00ES'E
01-3
00062

£T

{3
9580°Z
3
TTER'T
3
B98L°T
{3
+E99°T
3
08E5T
L3
9EEET
{3
T65T'T
3
BFETT
803
0066
803
0555°8
803
0L5T°L
803
04009
803
OLERY
803
OF9L'E
803
0508°T
80-3
0T46'T
803
08LT°T
603
00FE'L
603
00sC'E
013
000z'e

it

{03
BEELT
03
THIa'T
03
915 T
{03
BHET
03
T56C°T
L3
SSETT
{3
B540°T
80-3
07996
803
05358
80-3
085"t
80-3
0L£E™D
803
0DETE'S
80-3
OE0E
80-3
093EE
803
00E5°T
80-3
06£4°T
80-3
055T°T
6073
008S"9
603
0096
013
0005°L

T

{03
FOEET
L3
ETFE'T
L3
THel’T
{03
79511
L3
180T
80-3
00066
80-3
06T
80-3
0ZET'E
80-3
045T°L
80-3
04FES
80-3
096t'S
80-3
0079t
80-3
004L°E
80-3
DESE'T
80-3
09EL°T
80-3
0485°T
80-3
05E0°T
6073
00TE'S
60-3
0049°T
0T-3
0ooEs

0T

{03
B55T°T
L1073
+920°T
L1073
0410°T
80-3
09446
80-3
0Z8L'8
80-3
06808
80-3
0558°%
80-3
0ToL's
80-3
04009
80-3
0ETES
80-3
00E9't
80-3
0976°E
80-3
0982
80-3
0TL5T
80-3
0756 T
80-3
eET
60-3
00516
60-3
0052’
60-3
005E'T
01-3
000T'9

6

80-3
0016
803
00458
803
04E0°8
80-3
0#05°2
803
0046
803
0LER
80-3
0Z06°S
803
00£E's
803
0LERY
80-3
0Z0E'
803
00LL'E
803
09EE°E
80-3
02042
803
0ELTT
803
0959°T
80-3
O0T0E'T
603
0056
603
0009t
603
000T'Z
01-3
000F'S

g

803
0569
803
08t59
803
00sT9
803
0Z54's
803
05525
803
0456
80-3
0655
803
0Z9T't
803
0948
80-3
095E°E
803
0696 T
803
0T45T
80-3
0ELTT
803
09LL°T
803
0ZEET
80-3
0600°T
603
00t
603
00t6"E
603
00T8'T
013
0004

L

803
0Z20°s
803
026l
803
015
803
08Tt
803
OttE'E
803
06%9°E
80-3
OFiEE
803
0060°E
803
0508°T
80-3
00T5T
803
09ETT
803
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7.7 Attachment 7:

Matlab script used to derive the modal properties of the reference
tower described in section 3.1.1.
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Script written to estimate mode shapes and natural frequencies of
the onshore tower structure described by Jonkman in "Definition of a
5-MW Reference Wind Turbine for Offshore System Development" (2009)

Input (in workspace):

- Stiffnes matrix; Kmat (inverse of flexibility matrix)
- Mass matrix; Mmat

- Vector containing height of DOF's; HDOF

00 d° A d° d° A O° d° A° o° d° o° o°

Input:

zeta=0.01; % Structural damping ratio (all modes)
M=Mmat;

K=Kmat;

%

clc

close all

BTNt TNV LIT5%%%
% Obtaining natural frequencies and mode shapes:

eigenmatrix=M\K; % eigenmatrix = inv (M) *K
% Solving the eigensystem:
[eigenvecs,lambdas]=eig (eigenmatrix) ;
% Considering the six first eigenvalues:
omegas=zeros (1,6) ;
modes=zeros (21,6) ;
sortedeigenvecs=zeros (20,20) ;
sortedeigenvals=sort (max(lambdas)) ;
for i=1:20
for j=1:20
if sortedeigenvals (i)==lambdas(j,j)
sortedeigenvecs (:,i)=eigenvecs(:,Jj)
end
end
end
maxvals=max (abs (sortedeigenvecs)) ;
for i=1:9
omegas (1,i)=sqrt(sortedeigenvals(i)) ;
for j=1:21
if j==
modes (j,1)=0;
else
modes (j,i)=sortedeigenvecs (j-1,1i) /maxvals (i) ;
end
end
end

omegal=omegas (3) ;
omega2=omegas (4) ;
omega3=omegas (5) ;

phil=modes(:,3);
phi2=modes (:,4)*(-1) ;
phi3=modes (:,5) *(-1);

figure (1)

plot(phil, HDOF, '-bo', 'LineWidth',3,...
'MarkerSize',10, 'MarkerFaceColor','b');

hold on

plot(phi2 ,HDOF,'-ro', 'LineWidth',3,...
'MarkerSize',10, 'MarkerFaceColor','r")

plot (phi3,HDOF, '-mo', 'LineWidth',3,...



'MarkerSize',10, 'MarkerFaceColor', 'm')
axis([-1 1.2 0 90])
xhandle=xlabel ('Normalized modal amplitude, \phi [-]'):;
yhandle=ylabel ('DOF height [m]');

legendhandle=legend ({['f_{Nat,1l} = ', num2str(omegal/(2*pi)),' Hz'],...

['£ _{Nat,2} = ', num2str(omega2/(2*pi)),' Hz']...

['f_{Nat,63} = ' ,num2str (omega3/ (2*pi)),' Hz']}, 'Location’', 'EastOutside') ;
grid on
hold off

set(gca, 'fontsize',17)
set (xhandle, 'Fontsize',17)
set (yhandle, 'Fontsize',17)

R R R R R o e R R R R e o R R R R R R R R R T R T R TR R
% Obtaining modal masses and stiffnesses:

phil=modes (2:21,3);
phi2=modes (2:21,4) *(-1);
phi3=modes (2:21,5) * (-1) ;

m_mass_1l=(phil.')*M*phil;
m_mass_2=(phi2.')*M*phi2;
m _mass_3=(phi3.')*M*phi3;

m_stif 1=(phil.')*K*phil;
m_stif 2=(phi2.')*K*phi2;
m_stif 3=(phi3.')*K*phi3;

m_damp 1=2*m mass_l*omegal*zeta;
m_damp 2=2*m mass_2*omegal*zeta;
m_damp 3=2*m mass_3*omega3*zeta;

m_stif ctrl l=omegal”2*m mass_1;
m_stif ctrl 2=omega2”2*m mass_2;
m_stif ctrl 3=omega3”2*m mass_3;






7.8 Attachment 8:

Example of a TurbSim input file used to simulate a fluctuating wind
field with a reference wind velocity of 12 m/s and turbulence class B.
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TurbSim Input File. Valid for TurbSim v1.06.00, 21-Sep-2012

————————— Runtime Options

2692473
RANLUX

False

False

False

True

False

True
False

False

True

———————— Turbine/Model Specifications

0.02500000
660.00000000

660.00000000

88.15000000

160.00000000
160.00000000

RandSeedl
RandSeed2

WrBHHTP
WrFHHTP
WrADHH
WrADFF
WrBLFF

WrADTWR
WrFMTFF

WrACT
Clockwise

ScalelEC

NumGrid 2
NumGrid Y
TimeStep
AnalysisTime

UsableTime

HubHt
GridHeight
Gridwidth
VFlowAng
HFlowAng

- First random seed (-2147483648 to 2147483647)

- Second random seed (-2147483648 to 2147483647) for intrinsic pRNG,
or an alternative pRNG: "RanLux" or "RNSNLW"

- Output hub-height turbulence parameters in binary form?
(Generates RootName.bin)

- Output hub-height turbulence parameters in formatted form?
(Generates RootName.dat)

- Output hub-height time-series data in AeroDyn form? (Generates
RootName.hh)

- Output full-field time-series data in TurbSim/AeroDyn form?
(Generates Rootname.bts)

- Output full-field time-series data in BLADED/AeroDyn form?
(Generates RootName.wnd)

- Output tower time-series data? (Generates RootName.twr)

- Output full-field time-series data in formatted (readable) form?
(Generates RootName.u, RootName.v, RootName.w)

- Output coherent turbulence time steps in AeroDyn form? (Generates
RootName.cts)

- Clockwise rotation looking downwind? (used only for full-field
binary files - not necessary for AeroDyn)

- Scale IEC turbulence models to exact target standard deviation?
[0=no additional scaling; l=use hub scale uniformly; 2=use
individual scales]

- Vertical grid-point matrix dimension

- Horizontal grid-point matrix dimension

- Time step [seconds]

- Length of analysis time series [seconds] (program will add time
if necessary: AnalysisTime = MAX(AnalysisTime,
UsableTime+GridWidth/MeanHHWS) )

- Usable length of output time series [seconds] (program will add
Gridwidth/MeanHHWS seconds)

- Hub height [m] (should be > 0.5*GridHeight)

- Grid height [m]

- Grid width [m] (should be >= 2* (RotorRadius+ShaftLength))

- Vertical mean flow (uptilt) angle [degrees]

- Horizontal mean flow (skew) angle [degrees]

———————— Meteorological Boundary Conditions----------------——-

"IECKAI"

"]1-ED3"

14.60

"NTM"

default
npLn

88.15000000
12.00000000

default
default
default

———————— Non-IEC Meteorological

default
0.00

default
default

TurbModel

IECstandard

IECturbc

IEC_WindType

ETMc

WindProfileType

RefHt
URef

ZJetMax
PLExp
z0

Latitude
RICH_NO
UStar

ZI

- Turbulence model ("IECKAI"=Kaimal, "IECVKM"=von Karman,
"GP_LLJ", "NWTCUP", "SMOOTH", "WF_UPW", "WF_07D", "WF_14D",
"TIDAL", or "NONE")

- Number of IEC 61400-x standard (x=1,2, or 3 with optional 61400-1
edition number (i.e. "1-Ed2") )

- IEC turbulence characteristic ("A", "B", "C" or the turbulence
intensity in percent) ("KHTEST" option with NWTCUP model, not used
for other models)

- IEC turbulence type ("NTM"=normal, "xETM"=extreme turbulence,
"XEWM1"=extreme l-year wind, "xXEWM50"=extreme 50-year wind,
where x=wind turbine class 1, 2, or 3)

- IEC Extreme Turbulence Model "c" parameter [m/s]

- Wind profile type ("JET";"LOG"=logarithmic;"PL"=power
law; "H2L"=Log law for TIDAL spectral model;"IEC"=PL on rotor
disk, LOG elsewhere; or "default")

- Height of the reference wind speed [m]

- Mean (total) wind speed at the reference height [m/s] (or "default"
for JET wind profile)

- Jet height [m] (used only for JET wind profile, valid 70-490 m)

- Power law exponent [-] (or "default")

- Surface roughness length [m] (or "default")

Boundary Conditions------------

- Site latitude [degrees] (or "default")

- Gradient Richardson number

- Friction or shear velocity [m/s] (or "default")
- Mixing layer depth [m] (or "default")



default
default
default
default
default
default

default

———————— Coherent Turbulence Scaling

"M:\eventdata"
"Random"
true

1.0

0.5

30.0

PC_UW

PC_UV

PC_VW
IncDecl
IncDec?2
IncDec3
CohExp
CTEventPath
CTEventFile
Randomize

DistScl

CTLy

CTLz

CTStartTime

Hub mean u'w' Reynolds stress (or "default")

Hub mean u'v' Reynolds stress (or "default")

Hub mean v'w' Reynolds stress (or "default")

u-component coherence parameters (e.g. "10.0 0.3e-3" in quotes)
(or "default")

v-component coherence parameters (e.g. "10.0 0.3e-3" in quotes)
(or "default")

w-component coherence parameters (e.g. "10.0 0.3e-3" in quotes)
(or "default")

Coherence exponent (or "default")

Parameters-——-—--—-—-—-———-——-—---—-
Name of the path where event data files are located
Type of event files ("LES", "DNS", or "RANDOM")
Randomize the disturbance scale and locations? (true/false)
Disturbance scale (ratio of wave height to rotor disk). (Ignored

when Randomize = true.)

Fractional location of tower centerline from right (looking
downwind) to left side of the dataset. (Ignored when Randomize
= true.)

Fractional location of hub height from the bottom of the dataset.
(Ignored when Randomize = true.)

Minimum start time for coherent structures in RootName.cts
[seconds]

NOTE: Do not add or remove any lines in this file!







7.9 Attachment 9:

Matlab script used to analyze FAST simulation output and estimate
parameters in the simplified thrust model.
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Script written to analyze output from time domain simulations in FAST
and estimate parameters for the simplified thrust force model.

Input from workspace used in this script:

- Thrust matrix "Thrust classB" from FAST

- Thrust matrix under mean wind loading "Thrust meanwind" from FAST
- Wind matrix "Wind classB" from FAST

- Vector phi_bestfit over AR(1l) turbulence phi values

- Vector var_bestfit over AR(l) turbulence noise variances

00 d° A d° d° A O° d° A° o° d° o° o°

0]
i
Q

close all

% Wind speeds:
V_ref vec=[2,4,6,8,10,12,14,16,18,20,22,24,26,28,30];

% Time vector:
timestep=0.0125;
time=linspace (0,600,600/timestep) ;

LT LLLTDTTT2555%5%%%%%

% Mean of thrust:

meanvec=mean (Thrust_classB) ;

meanthrust meanwind=mean (Thrust_meanwind) ;

% Search properties to find best C_simp,l for section 1:

minsearch meansec_1=40000; % Search from...
maxsearch meansec_1=42000; % Search to...
N_search_meansec_1=2000; % Number of points

C_simpl vec=linspace (minsearch meansec_1,maxsearch meansec 1, ...
N_search meansec_1);

% Search for best fit for section 1:
meanvalsl=meanvec(1l:5);
Vrefvalsl=V_ref vec(1l:5);
Vrefvalsl (6)=11;
for i=1:N_search_meansec_1
sgerrorl=0;
calcmeanl=C_simpl vec(i) .*Vrefvalsl.”(1.2);
for j=1:5
sgerrorl=sgerrorl+ (meanvalsl (j) -calcmeanl (j))*2;
end

if i==1||sqgerrorl<least_sqgerrorl
least _sqgerrorl=sqerrorl;
C_simpl bestfit=C_simpl vec(i);
calcmeanl bestfit=calcmeanl;
end
end

% Search properties to find best C_simp,2 for section 2:

minsearch meansec_2=5400000; % Search from...
maxsearch meansec_2=5500000; % Search to...
N_search meansec_2=100000; % Number of points

C_simp2 vec=linspace (minsearch meansec_2,maxsearch meansec 2,...
N_search_meansec_2);

% Search for best fit for section 2:
meanvals2=meanvec(6:15) ;
Vrefvals2=V_ref vec(6:15);
Vrefvals2=[11l Vrefvals2];



for i=1:N_search_meansec_2
sgerror2=0;
calcmean2=C_simp2 vec (i) .*Vrefvals2.*(-0.85);
for j=2:1length(calcmean2)
sgerror2=sgerror2+ (meanvals2 (j-1) -calcmean2 (j))*2;
end

if i==1||sqgerror2<least_sqgerror2
least sgerror2=sqgerror2;
C_simp2 bestfit=C_simp2 vec(i);
calcmean2 bestfit=calcmean2;
end
end

% Obtaining turbulence time series:
meanwindvec=mean (Wind_classB) ;
Turb_classB=zeros (48000,15) ;
for i=1:15
for j=1:48000
Turb_classB(j,i)=Wind classB(j,i)-meanwindvec(i)
end
end

% Obtaining force fluctuation time series:
Forcefluct classB=zeros(48000,15);
for i=1:15
for j=1:48000
Forcefluct classB(j,i)=Thrust_classB(]j,i)-meanvec(i);
end
end

TELLLLLLLLLL555%5%5%%%%%%
% Finding C_simp (Vref) from simulation time series, T(t) = C_simp (Vref) *u:
varvec=var (Forcefluct classB);
Csearch=linspace (10000,70000,60000) ;
Cvec=zeros (1,15);
for i=1:15
for j=1l:length(Csearch)
curr_C=Csearch(j) ;
curr_thrust=curr C.*Turb classB(:,i);
curr_var=var (curr_thrust) ;
curr_diff=abs(curr_var-varvec(i));

if j==1||curr_diff<best diff
best diff=curr diff;
Cvec(i)=curr_C;
end
end
Cvec (i)
end

% Search properties to find best C_simp turb for section 1:

minsearch turbsec 1=5000; % Search from...
maxsearch turbsec_1=10000; % Search to...
N_search_turbsec_1=10000; % Number of points

C_simpl turb vec=linspace (minsearch_turbsec_1,maxsearch_turbsec 1,...
N_search turbsec 1);

% Search for best fit for section 1:

Cvalsl=Cvec(1l:5);

Vrefvalsl=V_ref vec(1l:5);

Vrefvalsl (6)=11;

for i=1:N_search_ turbsec_1
sgerrorl=0;



calcvall=C_simpl_ turb vec(i) .*Vrefvalsl.”(1);
for j=1:5

sgerrorl=sqgerrorl+(Cvalsl (j) -calcvall(j))*2;
end

if i==1||sqgerrorl<least_sqgerrorl
least sqgerrorl=sqerrorl;
C_simpl turb bestfit=C_simpl turb vec(i);
calcvall bestfit=calcvall;
end
end

% Search properties to find best C_simp turb for section 2:

minsearch turbsec 2=1500000; % Search from...
maxsearch turbsec 2=1800000; % Search to...
N_search_ turbsec_2=300000; % Number of points

C_simp2 turb vec=linspace (minsearch turbsec_2,maxsearch turbsec 2,...
N_search turbsec 2);

% Search for best fit for section 2:

Cvals2=Cvec(6:15) ;

Vrefvals2=V_ref vec(6:15);

Vrefvals2=[11l Vrefvals2];

for i=1:N_search_ turbsec 2
sgerror2=0;
calcval2=C_simp2_ turb vec (i) .*Vrefvals2.”(-1.35);
for j=2:1length(calcval2)

sgerror2=sqerror2+(Cvals2(j-1) -calcval2 (j))*2;

end

if i==1||sqgerror2<least_sqgerror2
least_sqgerror2=sqgerror2;
C_simp2 turb bestfit=C_simp2 turb vec(i);
calcval2 bestfit=calcval2;
end
end

figure (101)

plot(V_ref vec,Cvec, 'b*','LineWidth',1.5, 'MarkerSize',15)

hold on

axis([1 31 0 70000])

plot(Vrefvalsl,calcvall bestfit, 'LineWidth',3,'Color','r"')

plot(Vrefvals2,calcval2 bestfit, 'LineWidth',3, 'Color','r')

xhandle=xlabel ('V_{ref} [m/s]');

yhandle=ylabel ('C_s*V_{ref}~\beta [kg/s]');

legendhandle=legend. ..
({['C_s*V;{ref}A\beta estimated from' 10 'FAST simulations'], ...
['C_s*V;{ref}A\beta from the' 10 'simplified load model'l}, ...
'Location', 'EastOutside') ;

grid on

hold off

set (gca, 'fontsize',17)

set (xhandle, 'Fontsize',17)

set (yhandle, 'Fontsize',17)

% Comparing model and simulated thrust:
C_modelvec=zeros(1,15);
for i=1:5
for j=1:48000
total_ thrust _model(j,i)=calcmeanl bestfit(i)+...
calcvall bestfit(i).*Turb_classB(j,i):

C_modelvec(i)=calcvall bestfit(i);
end



end
for i=1:10
for j=1:48000
total thrust model(j,i+5)=calcmean2 bestfit(i+l)-...
calcval2 bestfit(i+l) .*Turb_classB(j,i+5);
end

C_modelvec (i+5)=calcval2 bestfit (i+l);
end

5355553555555 %%%%%%
% Frequency analysis:

fn=1/(2*0.0125) ;
% Nyquist frequency

% Plotting frequency content of force:
num=2“nextpow2 (48000) ;
% Number of points in the DFT (next power of 2 from length of the
% signal).
points_considered = ceil ((num+l)/2);
freq=(0:points_considered-1) *2*fn/num;
% Vector of the frequencies considered in DFT, in Hz.
% delta_frequency=(2*fn)/n yields a maximal frequency of fn, since
% points considered = n/2.
omegafreg=freq*2*pi;
% Vector of the angular frequencies considered in DFT, in rad/s.

PSDmat=zeros (15,points_considered) ;
PSDmodelmat=zeros (15,points_considered) ;

for i=1:15
FFTsignal T=fft(Thrust classB(:,i) ,num);
% Fast Fourier Transform of the signal.
FFTsignal T=FFTsignal T (l:points_considered) ;
% Disregard the upper half of FFTsignal due to symmetry about the
% Nyquist frequency.
Mag signal T=abs (FFTsignal T);
Mag_signal T=Mag_signal T*2;
% Multiply the magnitude of the signal by two since half the signal
% was disregarded.
Mag signal T=Mag signal T."*2;
% Square the magnitude of the signal to obtain the power spectrum
Mag _signal T(1)=Mag_signal T(1)/2;

Mag signal T(length(Mag signal T))=Mag signal T (length(Mag signal T))/2;

% Adjust unique endpoints

Mag_signal_ T=Mag_signal_T/48000;

% Scaling magnitude of the FFT so that it is not a function of the
% length of the signal.

FFTsignal model=fft(total thrust model(:,i) ,num);
% Fast Fourier Transform of the signal.
FFTsignal model=FFTsignal model (1:points_considered) ;
% Disregard the upper half of FFTsignal due to symmetry about the
% Nyquist frequency.
Mag_signal_model=abs (FFTsignal_model) ;
Mag signal model=Mag signal model*2;
% Multiply the magnitude of the signal by two since half the signal
% was disregarded.
Mag_signal model=Mag signal model."2;
% Square the magnitude of the signal to obtain the power spectrum
Mag _signal _model (1)=Mag_signal model (1) /2;
Mag signal model (length (Mag signal model))=...
Mag_signal _model (length(Mag signal model))/2;



% Adjust unique endpoints

Mag signal model=Mag signal model/48000;

% Scaling magnitude of the FFT so that it is not a function of the
% length of the signal.

% Smoothing signals using a lowpass Butterworth filter:
[b,a]l]=butter(5,0.1, 'low');

% 5th order lowpass Butterworth filter with normalized cut-off
% frequency of 0.06 (for deterministic LC)

filteredPsD T=filtfilt(b,a,Mag _signal T);
filteredPSD_model=filtfilt(b,a,Mag_signal_model) ;

PSDmat (i, :)=filteredPSD_T;
PSDmodelmat (i, :)=filteredPSD_model;
end

% Calculating the analytical variance spectra of the force fluctuations
% using the load model and an AR(1l) variance spectra for turbulence:

S_turb AR=zeros(15,length(freq));
S_forcefluct AR=zeros(15,length(freq)) ;
for i=1:15
phi=phi bestfit(i,1);
noisevar=var bestfit(i,1);
for j=1l:1ength(freq)
omega=2*pi*freq(j) ;
S_turb_AR(i,j)=((noisevar*timestep)/pi)*...
(1/ (1-2*phi*cos (omega*timestep) +phit2)) ;

S_forcefluct AR(i,j)=S_turb AR(i,j)* (C_modelvec(l,i))*2;
end
end

sigma=[0.994,1.204,1.414,1.624,1.834,2.044,2.254,2.464,2.674...
2.884,3.094,3.304,3.514,3.724,3.934]1";

LT LTLTLTLTLILEL%%%%
% Calculating sample autocovariances:

taumax=600; % [s]
n=taumax/0.0125; % [-1]

FASTsample=Thrust classB(:,8);
mean FASTsample=mean (FASTsample) ;
var_ FASTsample=var (FASTsample) ;
MODsample=total_ thrust model(:,8);
mean MODsample=mean (MODsample) ;
var_ MODsample=var (MODsample) ;
C_tau FASTsample=zeros(l,n);
C_tau MODsample=zeros(1l,n);
for h=1:n
Sum_FAST=0;
Sum_MOD=0;
for t=1: (n-h)
Sum_FAST=Sum_FAST+ (FASTsample (t+h,1) -mean FASTsample)*...
(FASTsample (t) -mean_ FASTsample) ;
Sum_MOD=Sum_MOD+ (MODsample (t+h,1) -mean MODsample) *. ..
(MODsample (t) -mean_MODsample) ;
end
C_tau FASTsample (h)=Sum_ FAST/n;
C_tau MODsample (h)=Sum MOD/n;
end



7.10 Attachment 10:

Plots of the estimated turbulence AR(1) spectra with parameters from
table 8, and their corresponding Kaimal spectra.
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Figure 60: AR(1) wind turbulence spectra for At = 0.0125 s and At = 0.05s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 1 to 4.
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Figure 61: AR(1) wind turbulence spectra for At = 0.0125 s and At = 0.05 s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 5 to 8.
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Figure 62: AR(1) wind turbulence spectra for At = 0.0125 s and At = 0.05s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 9 to 12.
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Figure 63: AR(1) wind turbulence spectra for At = 0.0125 s and At = 0.05s (in red),
and the corresponding Kaimal spectra (in blue) for load cases 13 to 15.
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7.11 Attachment 11:
Tower top velocity response for the 15 load cases estimated from time

domain simulations in FAST, and calculated analytically for the first
mode using the simplified load model.
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Figure 64: Tower top velocity for the 15 load cases estimated from time domain
simulations in FAST (shown in red), and calculated analytically for the first mode using

the simplified load model (shown in blue).
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