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Abstract

The construction of offshore wind farms for electricity production has shown great

promise. Both as a contributing element in mitigating the ongoing climate changes,

and in lessening the global oil dependency. However, construction and operation cost

is a limiting factor in utilization of offshore wind energy on a significant scale. The

potential for cost reduction related to the support structure is high. In this thesis, a

script was written to optimize the topology of a jacket support structure by utilizing

genetic algorithm (GA).

GA is a heuristic optimization method mimicking the natural process known as

”survival of the fittest”. The algorithm was implemented using a MATLAB script while

dynamic structural response was analyzed by a specialized simulation tool, Fedem

Windpower. The topology optimization took a ground structure approach by utilizing

a master jacket model. Several variations of this master model were continuously

customized by the MATLAB script. Models that failed either by yielding, by fatigue or

by the Fedem solver crashing, were discarded from the optimization. Surviving designs

were evaluated for fitness using a cost related function. The jacket designs with the

highest fitness were most likely to pass their traits on to the next generation of designs.

At the end of this iterative optimization loop, the jacket topology with the highest fitness

was the winner.

Several simple cubic jackets, and more complex 32 m high jackets, were optimized.

As a reference, the resulting topologies were compared with a quick manual optimiza-

tion of the same design domain. The quality of the automatically optimized designs

were highly dependent on the complexity of the ground structure utilized. The designs

produced by GA had a higher fitness, i.e. lower cost, than the manually optimized

counterpart for the simple cubic jacket and vice versa for the complex jacket. A decent

topology was not generated for the most complex case considered, in part due to lack of

computational power. The optimization runs carried out in this thesis has shed light on

the potential and the limitation of GA in general, and on the employed implementation

in particular. Superior and more cost-efficient topologies can likely be designed by an

extended implementation of GA in combination with manual optimization. Suggestions

for further work is given.
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Sammendrag

Store vindparker til havs for produksjon av elektrisitet har vist et stort potensiale. Både

som et bidrag til å dempe dagens klimaforandringer og som et ledd i å gjøre verden

mindre avhengig av olje. Kostnadene relatert til utnyttelse av vindkraft til havs har

imidlertid vært en begrensende faktor for utbygging i stor skala. Det er et høyt po-

tensiale for reduksjon av kostnader knyttet til de understøttende konstruksjonene for

vindmøller til havs. I denne oppgaven ble et skript laget for å optimalisere topologien

til et fagverksunderstell, dvs. en jacket, for en vindmølle til havs ved bruk av ”genetic

algorithm” (GA).

GA er en erfaringsbasert optimaliseringsalgoritme som er inspirert av evolusjons-

teorien. Algoritmen ble implementert gjennom et MATLAB-skript, mens dynamisk

konstruksjonsrespons ble evaluert av et kraftig analyseverktøy, Fedem Windpower.

Optimaliseringen benyttet en grunnstruktur bestående av alle potensielle bjelker i jack-

eten. Flere varianter av denne grunnstrukturen ble kontinuerlig endret av MATLAB-

skriptet. Konstruksjoner som gikk til brudd grunnet flytning eller utmatting, eller som

Fedem ikke klarte å løse, ble forkastet. De gjenstående konstruksjonene ble evaluert av

en kostnadsbasert funksjon. De billigste konstruksjonene hadde størst sannsynlighet for

å videreføre sine egenskaper. Etter et gitt antall iterative generasjoner var det billigste

alternativet vinner av optimaliseringsprosessen.

Flere enkle kubiske jacketer og mer komplekse jacketer på 32 m ble optimalisert.

Som et referansepunkt ble en rask manuell optimalisering foretatt av samme grunnstruk-

tur. Kvaliteten på topologiene som ble funnet ved bruk av GA var i stor grad avhengig

av kompleksiteten til grunnstrukturen. Den enkle kubiske jacketen ble billigere ved

den automatiske enn den manuelle optimaliseringen, og vice versa for den komplekse

jacketen. Den mest komplekse grunnstrukturen som ble optimalisert ga ikke tilfreds-

stillende resultater. Med bakgrunn i de foretatte optimaliseringene i denne oppgaven

har potensialet og begrensningene for GA generelt, og den foretatte implementeringen

spesielt, blitt utforsket. Overlegne og billigere jacketer kan trolig bli laget gjennom en

utvidet implementering av GA kombinert med manuell optimering.
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1 Introduction

According to the Fourth Assessment Report (AR4) by the Intergovernmental Panel on

Climate Change (IPCC), the climate is changing at an alarming rate. Through the 20th

century, the global average surface temperature has risen about 1 ◦C, the global mean

sea level has risen about 1.5 cm and the snow cover of the northern hemisphere is

melting. Between 1970 and 2004, greenhouse gas emissions due to human activities

has seen an increase of 70 %. The largest part of this growth is caused by energy supply,

transport and industry. Furthermore, the assessment states that it is very likely (>90%)

that most of the increase in global temperatures can be attributed to the increase in

anthropogenic greenhouse gas emissions [1].

” Anthropogenic warming over the last three decades has likely had a

discernible influence at the global scale on observed changes in many physical

and biological systems ”

- IPCC AR4 Work Group II [1]

As scientific consensus to a larger and larger extent recognizes the negative impact

greenhouse gases are having on a global scale, the importance of mitigation of climate

changes becomes clearer. From 2000 to 2010, annual greenhouse gas emissions has

risen from 39 GtCO2eq to 49 GtCO2eq and 47 % of this increase is directly attributed to

energy supply. Of all sectors contributing to the total greenhouse gas emissions in 2010,

energy supply was responsible for 35 % [2]. Also, due to the rising global population

and industrialization of developing countries, global energy demand could double or

even triple by 2050 [3]. Hence, the energy supply sector plays an essential part in

mitigating climate change.

Renewable energy (RE) produces energy from sources that are continuously replen-

ished on a human timescale, e.g. solar energy, wind power, geothermal energy and

hydro power. Not only is a transition to RE technologies important with respect to

mitigating the ongoing climate change, but also in making the world less oil dependent.

In 2012, just over half the electricity generating capacity added globally came from RE.

Policies supporting RE has been successful in stimulating this growth [2]. Figure 1.1

illustrates the share of total energy consumption that originated from RE in 2011, and

the subdivision of different types of RE. Traditional biomass is in this context biomass

combusted in inefficient and polluting ways, not what is traditionally thought of as

clean modern RE.
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1 INTRODUCTION

Figure 1.1: Renewable energy’s share of global energy consumption (2011) [4]

Of all RE sources, wind power is the second cheapest, after hydro-power. Wind farms

for electricity production are cost-competitive with new fossil fuel plants [3]. Global

wind power capacity is per 2012 at almost 283 GW. The capacity is growing each year

and appears to become more important in global energy production. In Denmark, for

instance, 30% of the energy consumption is generated by wind power. Furthermore,

wind power accounted for 45% of all new electric generating capacity in the United

States in 2012. China is the country with the highest total wind power capacity in the

world, 75 GW in 2012 [4].

” Since AR4, many RE technologies have demonstrated substantial per-

formance improvements and cost reductions, and a growing number of RE

technologies have achieved a level of maturity to enable deployment at signifi-

cant scale ”

- IPCC AR5 Work Group III [2]

In Norway, wind energy is breaking new ground year by year, and in 2013 a wind

energy production record of 1.9 TWh was set. The equivalent of 1.4 % of the total

Norwegian energy consumption. There are a total of 356 wind turbines in Norway [5].

In figure 1.2, ranging from year 1997 through 2013, the bars with the corresponding

left axis show the annually installed effect, while the line with the corresponding right

axis show the total effect from wind power in Norway.

Offshore wind turbines has not yet seen the light of day along the Norwegian coast.

Still, offshore wind power utilization holds great promise, both because a tendency for

large wind farms is more prevalent offshore and due to higher wind speeds. However,

2



Figure 1.2: Annually installed and total effect from wind power in Norway [5]

offshore wind turbines face many challenges that are absent for onshore installations.

One of these challenges is constructing safe, low maintenance and cost competitive

support structures. Different solutions for these substructures are being utilized, each

with their pros and cons. For water depths between 30 and 60 m, tubular steel lattice

towers, i.e. jackets, are a favored solution. Figure 1.3 shows an offshore wind turbine

with a jacket support structure, designed by Norwegian Owec Tower AS. In order to

expand the use of wind power, minimization of cost is vital. The support structure,

tower and foundation comprise of only 17 % of total capital cost. Yet, the potential for

cost reduction is high [6].

Structural optimization is a design scheme for finding optimal solutions. The goal of

the process is structures that are stiff, economical and easily producible while satisfying

mechanical constraints like displacements, stress levels, fatigue damage, buckling and

eigenfrequencies. Structural optimization is a field that combines many other scientific

areas, such as mechanics, calculus and programming. Today, the available computa-

tional power is increasing at a high rate, which enables researchers to carry out more

elaborate automatic optimization processes. Structural optimization can be done by

altering the size of the members, the boundary shape of the structure or, in the most

general case, the topology of the entire design domain. Several methods can be em-

ployed to arrive at an optimized design. One such method is genetic algorithm (GA),

which mimics the evolutionary process known as ”survival of the fittest”.

3



1 INTRODUCTION

Tools for optimizing the inner and outer diameters of the beams in a predefined

jacket support structure, utilizing (GA), has already been developed at NTNU. In this

thesis, an attempt will be made at writing a script for an automated topology optimiza-

tion process of a jacket support structure. The topology optimization will be done by

reducing the task to an equivalent sizing problem of a ground structure of varying

complexity. Beams that have a diameter which is smaller than a certain limit will be

removed from the jacket. The extensions of the work already done will lay in the ability

to add or remove beams and nodes. A general topology optimization of a jacket for

an offshore wind turbine using GA has, to the best of my knowledge, not been carried

out earlier. Hence, the work will be experimental and it is hard to say how success-

ful the implementation will be beforehand. The objective of the thesis is an immense

undertaking and a series of simplifications will have to be made. A GA optimization

of design parameters will be executed by a MATLAB script, while structural response

will be evaluated by a powerful wind turbine simulation tool: Fedem Windpower. The

objective is to explore the possibilities and limitations of structural optimization by GA

applied to a jacket support structure. The overall long-term goal is to contribute to

the cost reduction of offshore wind turbines through optimization of jacket support

structures.

The literature review in chapter two will serve as a background study in interesting

and relevant topics for the work to be done in this Master’s thesis. The fields of wind

turbines, structural optimization and fatigue analysis will be quickly introduced in a

historical and broad context, before theory of special interest for this thesis is presented

more thoroughly. Chapter three will describe the applied methodology by explaining the

wind turbine analysis model and the code that was written. The code will be presented

in a general manner, except some MATLAB specific implementation methods which will

be presented in a separate subsection. The result of the different optimization runs as

well as discussion will be presented in chapter four. The results are presented in the

same order as they were produced because they represent the path towards the objective

of the thesis, and adjustments were done to the optimization algorithm between runs.

The concluding remarks are given in chapter five, reviewing the pros and cons of the

implementation that was carried out in the thesis and to what extent the objective of

the thesis was met. Finally, some thought on improvements of the implementation are

given in chapter six as a contribution to further work. The last version of the MATLAB

codes that were written will be found in the appendices.
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Figure 1.3: Offshore wind turbine with jacket support structure
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2 Literature Review

This chapter includes a literature background study in topics found relevant for the

objective of this thesis. Namely, wind turbines with emphasis on offshore utilization and

support structures, structural optimization, especially by means of genetic algorithms,

and fatigue analysis.

2.1 Wind Turbines

Mankind has been learning to harness the power of wind for millennia. The first utiliza-

tion of wind power was not to generate electricity but to mill grain or pump water. The

origins of the windmill are uncertain, but the first reliable information of a windmill

dates back to the year 644 BC. The first wind turbine to produce electricity was made

in 1891 by a Danish professor, Poul La Cour. The first really large wind turbine was

installed in the US in 1941, with a rotor diameter of 53.3 m and a power capacity of

1250 kW [7]. Modern offshore wind turbines that are being installed today, typically

have a power output of around 4 MW [4] and rotor diameters of over 100 m.

A wind turbine converts kinetic energy from the moving air into mechanical energy

which in turn is converted to electricity. For an ideal lossless conversion from kinetic to

mechanical energy by a disc shaped energy converter in a disc shaped frictionless air

stream, one can calculate the optimal power output by Betz’s elementary momentum

theory. As kinetic energy is drained from the airflow, the air behind the energy converter

moves slower and expands, as illustrated in figure 2.1. The theoretical power output

from this energy conversion is given in formula (2.1) where ṁ is the mass flow of the

air and v1 and v2 is incoming and outgoing air velocity, respectively [7].

Pmech =
1
2

ṁ (v2
1 − v2

2 ) (2.1)

A trivial maximization of Pmech in formula (2.1) would yield v2 = 0, which is physically

impossible. However, it can be established by the law of conservation of momentum and

the principle of ”action equals reaction” that the optimal ratio of v2/v1 is 1/3. With this

optimal ratio of incoming and outgoing air velocities, the ratio of the power extracted

by the converter and the power of the corresponding free air stream is 0.593, the ”Betz

factor”. In other words, even under ideal conditions with a perfect energy converter can

a maximum of 59.3 % of the kinetic energy in the airflow be converted to mechanical

7
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Figure 2.1: Extraction of mechanical energy from an ideal air flow [7]

energy. The power coefficient, i.e. efficiency, of modern wind turbines vary greatly with

wind speeds and rotor design but can reach as high as 50 % [7].

Wind turbines are classified by how the blades interact aerodynamically with the

wind, by drag or lift, and by the orientation of the rotor axis, vertical or horizontal. Drag

devices (e.g. anemometers) are pushed by the wind like a sail boat, and thus they can

not move faster than the wind pushing them. The efficiency of such devices relatively

low and there is limited commercialization of this design. Most commercial designs

are horizontal-axis wind turbines (HAWTs) that utilize airfoils that generate lift. Each

blade can be regarded as an airplane wing that generates lift partially in the direction

of rotation of the rotor. There can be one or more blades, but most large HAWTs use

three blades. A typical wind turbine consist of a foundation or substructure (offshore),a

tower and the rotor nacelle assembly (RNA). Figure 2.2 shows the major components

of the RNA of a large HAWT [3].
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2.1 Wind Turbines

Figure 2.2: Major components in the RNA of a large HAWT [3]

2.1.1 Offshore Utilization

Although land based wind turbines are dominant, and will be for a long time, a shift

towards offshore wind farms is developing. This tendency is despite the fact that total

installed cost of wind power is in the vicinity of 2000 USD/kW for onshore installations

compared to around twice that for offshore wind power [8]. There are a number

of reasons why it could be favorable to site wind turbines offshore. Many countries,

including Denmark, have limited suitable land to devote to wind energy production.

In most of the world, however, this is not a compelling reason alone to switch from

land based to offshore wind turbines. Another important aspect favoring offshore wind

turbines is the higher mean wind speeds than at a corresponding height onshore. As

seen in figure 2.3, a wind turbine with a hub height of 60 m offshore will have a higher

mean annual wind speed, v̄whub, than an onshore wind turbine with a hub height of 80

m [7].
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Figure 2.3: Mean annual wind speed on- and offshore [7]

The surface roughness, z0 in figure 2.3, is lower at sea than onshore, which is why

the offshore wind speed increases more rapidly with height. The turbulence intensity

is also lower offshore, positive effects of low turbulence include lower fatigue loads.

On the the other hand, the wake behind the rotor lingers longer in low turbulence

conditions. Consequently, distance between wind turbines in an offshore wind park

needs to be greater to obtain the same aerodynamic array efficiency [7]. In figure 2.4

one can easily observe how leeward turbines end up in the wake of the windward ones.

Because onshore wind farms are quite dominant in the terrain, there are also aesthetic

reasons for placing large wind farms far off the coast. A final reason that offshore wind

energy could have a bright future is the prospect of large scale wind farms with power

output comparable to individual power plants. The vast area available at sea makes

this more feasible off- than onshore.

Building safe and economical wind turbine farms offshore also brings considerable

challenges. Environmental factors that need consideration when building offshore

wind turbines include high wind speeds, cyclic wave loading, ice (both crashing into

the substructure and accumulation on the turbine blades), currents, tides, marine

growth and corrosion. In addition, the strength of the sea bottom soil must be tested to

withstand the loading of the foundation. It also has to be taken into account that parts

of the soil might be scoured away around the foundation, which could affect structural

stability and stiffness. Not only are all these mentioned factors hard to predict and
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Figure 2.4: Vattenfall’s Horns Rev 1 offshore wind farm

design for individually, but their coupled effects are also important to consider.

Maintenance in remote locations and harsh weather conditions can be difficult and

time consuming, resulting in longer down times and economical losses. The reliability

of components is consequently all the more important for offshore wind turbines. A

number of concepts has been proposed for delivering personnel and service parts, in-

cluding dynamic platforms on the towers, accessibility under water using submarines

and in the air using helicopters. In figure 2.5, personnel are being lowered onto the

back of a nacelle to a specially built platform. An EU project called LEANWIND, with

among others SINTEF as a contributor, aims to reduce operation and maintenance cost

through state-of-the-art technologies [9], e.g. remote controlled surveillance and main-

tenance by robots. Constructing and operating large offshore structures has been done

by the petroleum industry for decades and a lot of the necessary technology can build

on that experience. However, the profit margins in wind energy is tighter than for oil

production, thus making it harder to be a worthwhile endeavor.

Vattenfall’s Horns Rev 1 wind farm (figure 2.4) with 80 wind turbines and a com-

bined effect of 160 MW produces about 2 % of Denmark’s total energy consumption,

or the equivalent of 150 000 households [10]. The largest offshore wind farm in the

world is the London Array, consisting of 175 turbines with a combined effect of 630 MW,

or the equivalent of nearly 500 000 UK households [11]. Plans existed to extend the

project with 166 new turbines, yielding a total effect of 1 GW, but were shelved due to

the uncertainty of the impact the wind farm would have on the habitat of red-throated
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Figure 2.5: Offshore wind turbine with helicopter supply platform [7]

divers, a threatened bird [12].

Only land based wind energy farms has been constructed in Norway yet, despite

the country’s long coast line and high offshore wind speeds. This is partly due to

challenges concerning deep waters, excessive wave heights and non-homogeneous

seabed conditions. Consequently, it has not been economically justifiable to construct

offshore wind farms in Norway. However, it is likely that as the technology matures,

constructing offshore wind farms off the Norwegian coast will be competitive to other

European nations. The Norwegian Water Resources and Energy Directorate (NVE) has

performed a strategic environmental assessment of 15 zones off the Norwegian coast

suitable for wind energy production. The total power effect of these zones, if developed,

could be between 4.6 and 12.6 GW. As a comparison, the total Norwegian energy

generating capacity was about 32 GW in 2012 [13]. If wind farms are constructed

in these zones, the Norwegian industry could become world leading in offshore wind

energy utilization on deeper waters [14]. As a pilot project, Statoil has already designed

and deployed the worlds first full-scale floating wind turbine, Hywind, at water depths

of 200 m and are continuing development to commercialize the concept. The wind

turbine made up of a large floating tubular substructure, held in its place by three

mooring lines [15].
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2.1.2 Support Structures

One of the major challenges separating offshore from onshore wind turbines are the

support structure. For an onshore installation, the cost of the turbine and tower itself

will typically be 64-84% of total capital costs, while for offshore wind farms it will only

make up 30-50% [8]. To realize cost efficient offshore wind farms, minimization of

the support structure cost is essential. The most cost-effective substructure design will

vary according to water depths. For instance, it would not be economical to install a

several hundred meter high jacket support structure for a wind turbine. In figure 2.6 it

is roughly illustrated which support structure design concepts that are expected to be

best suited for different water depths.

Figure 2.6: Substructure cost at different water depths [16]

For shallow waters below 30 m, monopiles and gravity based foundations are fa-

vored designs. A gravity based foundation, illustrated in figure 2.7a, is typically a

concrete caisson that is brought to the site, placed on the seabed and filled with sand

or gravel. Extensive site-specific preparatory work is required to ensure a level seabed

and to avoid uneven settling [16]. Gravity foundations are most cost effective in very

shallow waters of a few meters. Monopiles, illustrated in figure 2.7b, are steel pipes

that are rammed into the ground by pile drivers. The design is preferred because of its

simplicity, and for its similarity to well developed onshore technologies. Furthermore,

monopiles have a small footprint and no preparatory work of the seabed is required as

long as it consist of sand or gravel [7], making them less harmful to the environment.

However, as the height of a monopile increases, issues regarding coinciding natural

13



2 LITERATURE REVIEW

frequencies of the monopile and excitation forces arise. These vibrations will in con-

sequence reduce the fatigue lifetime. In order to make this relatively soft system stiff

enough, the cost rises, and around water depths of 20 - 30 m they are no longer cost

effective [16].

(a) Gravity based (b) Monopile

Figure 2.7: Substructures for shallow waters [17]

For transitional waters between 30 and 60 m, tripods, jackets and tripiles are being

utilized, collectively termed space frame substructures. A tripod consist of a central

steel tube that is supported by three legs, as illustrated in figure 2.8a. At the end of the

three legs, the tripod is anchored to the seabed by penetrating thinner steel tubes up to

20 m into the soil. Advantages include high stability and stiffness compared to weight,

also on an uneven seabed [7]. The tripod is, however, costly to produce and hard to

transport. In figure 2.8b a steel lattice tower, called a jacket, is illustrated. It is made

of four legs, stabilized throughout its height by X-braces, all made in welded tubular

steel. This design has a high stiffness to weight and cost ratio [7]. Jackets are used

in the offshore petroleum industry and that know-how can be adopted when utilizing

them as wind turbine substructures. For wind turbines, however, lower safety and

environmental risks as well as higher production volume gives room for optimization of

this design [16], which is the topic of this thesis. The tripile foundation, illustrated in

figure 2.8c, can be regarded as a fusion of the tripod, jacket and monopile substructure.

It is currently installed in BARD Offshore 1, a german 400 MW wind farm.

At water depths of several hundred meters, floating wind turbines is the only realistic

concept. Although no large scale wind farms utilize this design today, several designs
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(a) Tripod (b) Jacket (c) Tripile

Figure 2.8: Space frame substructure for transitional waters [17]

are being researched, such as the Hywind pilot project mentioned in the preceding

section. There are considerable challenges to floating wind turbines, e.g. complicated

dynamics. Establishing floating wind turbine farms will be expensive and demanding,

but there is hope that the high reward of mastering such technology will drive research

forward. In the United States alone, it has been estimated that such technology would

unlock 500 GW of offshore wind energy potential [16]. A substantial number when

comparing with the total electric generating capacity of the United States, which is in

the vicinity of 1 TW [18].

2.2 Structural Optimization

In 1638, Galileo Galilei examined the ultimate static load carrying capacity of a can-

tilever beam. Although he incorrectly assumed a uniform tensile stress distribution at

the base of the beam, some regard this as the origin of structural optimization. The

mathematical framework for minimizing and maximizing functions was laid in the 18th

century, when the calculus of variation was established. The basic idea of topology op-

timization is credited to papers that were published around 1900. Among others, one

by Michell. The Michell truss is a truss with an infinite number of members within a

design domain, which has been studied extensively [19].

Today is structural optimization a mature field of research, and optimized structures

as well as parts for the aerospace and automotive industry are in daily production [20].
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Optimization of very simple problems, e.g. calculation of a the optimal size of a simple

cross section, can readily be solved by hand calculations. However, as the number of

variables and constraints rise, analytical hand calculations are useless. Numerical ap-

proaches utilizing computational power are today used for obtaining results for practical

problems.

Structural optimization can be subdivided into three categories depending on how

the initial structure is modified to find an optimal design. A sizing optimization problem

is restricted to changing the cross sections of predefined structural members. Shape

optimization is defined as optimization of the boundary shape, while topology optimiza-

tion includes the possibility of adding or removing holes to a continuum material within

a design domain. Examples of how each of these three categories can optimize a simply

supported beam is illustrated in figure 2.9a-c.

Figure 2.9: Optimization categories: a) Sizing, b) Shape and c) Topology [20]

When performing topology optimization of a truss structure, e.g. a jacket, it is

favorable to apply a ground structure approach rather than considering the design

domain as a continuum that is to be hollowed out. A ground structure is a network of

nodal connections that define all possible members in the truss. The three trusses in

figure 2.10a-c show ground structures, of varying complexity, for transmitting a vertical

load through a rectangular design domain to a fixed connection. In example a, only the

nodes closest to each other are connected, while in example c, all nodes in the ground

structure are connected.

By utilizing this approach, the topology optimization problem is reduced to a sizing

problem. Members that are inefficient can get a size of zero and disappear, while
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Figure 2.10: Ground structures of increasing complexity from a to c [20]

significant members can get a size in accordance with their applied loading. This implies

that solutions in the design domain that are not covered by the ground structure may

never be found. A solution can only be a subset of the ground structure. Members with

a size of zero can be troublesome for numerical structural analysis and is often replaced

by a small, non-zero, value in order to ensure a positive-definite stiffness matrix.

Typically, a structural optimization process will minimize either compliance, i.e.

the inverse of stiffness, structural weight or cost, while being subjected to constraints

like maximum displacement or stress level. The function that is minimized during

optimization is called an objective function. Alternatively, a mechanical property, e.g.

buckling load, can be maximized under cost or weight constraints. The overall goal of

structural optimization is cheaper and more efficient structural designs.

There are several routes to this goal, both methods based on a solid mathematical

framework and more heuristic concepts. Hence, structural optimization can be classified

into two methods [19]:

• Nonlinear programming (NLP) based on gradients

• Heuristic approaches, e.g. genetic algorithm (GA)

When optimizing by NLP, the idea is to calculate sensitivity coefficients which will define

the direction in which the design variables ought to be changed in order to minimize

the objective function. The NLP problem, which is valid if design variables can vary

continuously and constraint functions are continuous and differentiable, can be formu-

lated as follows. Let A = (A1, ..., Am)T be a vector of m independent design variables,

e.g. cross section parameters. The design variables are subject to an upper and lower

bound, AU and AL respectively. Let U = (U1, ..., Un)T be a vector of state variables,

i.e. nodal displacements. The number of state variables, n, is equal to the number of

degrees of freedom in the design problem. A constraint, e.g. maximum displacement

or stress, can now be formulated as an inequality, H j ≤ 0, where j = 1, ..., nI and nI
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is the total number of constraints. An objective function, F(A), represents structural

weight, cost or compliance and is to be minimized. Put together, a NLP problem can be

stated as in formula (2.2).

Minimize F(A)

subject to H j(U(A),A)≤ 0, ( j = 1, ..., nI ) (2.2)

AL ≤ Ai ≤ AU , (i = 1, ..., m)

The problem is nonlinear because the state variables, U(A), is a nonlinear function of

the design variables, A. A gradient based NLP optimization process uses the differential

coefficients of U(A) with respect to A, i.e. sensitivity coefficients, to solve the optimiza-

tion problem. There are various mathematical approaches of solving this problem, the

most popular one being sequential quadratic programming [19].

A structural optimization by NLP is hard to unify with a complex dynamic structure,

like an offshore wind turbine. Solving the NLP problem analytically might find maximal

stiffness for a static load case subjected to a total structural mass constraint, or optimize

the topology to ensure full utilization of all cross sections. However, for a dynamic

analysis of a wind turbine in the time domain, subjected to wave and wind loading,

with notable changes in geometry during analysis, a NLP optimization approach is hard

to realize [6]. Consequently, the optimization process in this thesis will be carried out

using genetic algorithm (GA), a heuristic optimization scheme.
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2.2.1 Genetic Algorithms

The idea of evolutionary computation for optimization and machine learning came

about in the 1950’s, at a time when computers where in their infancy. Computer scien-

tists saw the potential in solving specific problems using evolution inspired procedures.

GAs were invented by John Holland in the 1960’s and his motivation was the oppo-

site of other researchers. He wanted to study if the adaptation, as it occurs in nature,

could be recreated through computer algorithms. A groundbreaking 1975 book by Hol-

land, Adaptation in natural and Artificial systems, theorized the idea of chromosomes

as strings of, not DNA, but binary digits, bits. The book proposed a population-based

algorithm in which the genome is carried on from parent to offspring through crossover,

mutation and inversion [21]. Compared to other optimization schemes, GA has several

advantages and downfalls. Some of the appealing aspects of GA is that it:

• Can search for solutions in an enormous number of possibilities

• Exhibits adaptive traits in that it performs well in changing environments

• Is straightforward to implement on a basic level, as there are no gradients

• Can find high-quality and innovative solutions to difficult or poorly understood

problems

• Can be combined with other, more traditional, optimization methods

• Is a highly parallel algorithm that can take advantage of parallel processing

The above traits can be directly compared to a prime product of natural evolution:

humans. The genetic sequence of humans could have been ordered in an extremely large

number of ways, still we are relatively similar and highly adapted to the environment we

live in. Interpreting electromagnetic radiation with the high acuity of human vision is

surely an impressive feat. Still, humans also show some of the downfalls of optimization

by evolution. Even though humans are impressive creatures, we are not perfectly

adapted to our environment. The fact that one can never be sure that the global optimal

solution of the problem has been found is one of GAs unfavorable traits. Furthermore,

GA can preserve traits at an evolutionary stage were they are no longer advantageous.

Many characters of humans are remnants of previous species which have lost all or

most of their original function, e.g. the appendix, the tailbone and the wisdom teeth.

Mutation, which is one of the design drivers in evolution, can also cause disorders or

cancer.
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Other limitations of GA are [22]:

• Premature convergence

• Difficulty in defining a fitness function

• No effective terminator of optimization

• Hard to decide parameters like population size and mutation probability

In light of these pros and cons, GA has been applied to a broad range of practical

problems, such as:

• Design optimization - e.g. aircraft design and circuit layout

• Economy - e.g. bidding strategies and processes of innovation

• Ecology - e.g. host-parasite coevolution and resource flow

• Machine learning - e.g. weather prediction and artificial intelligence

• Medicine - e.g. breast cancer detection

The odd antenna in figure 2.11 was designed in 2006 for a NASA Space Technology

mission, using GA. Motivated by a limited ability to design better antennas manually,

researchers turned to evolutionary algorithms. Development of GA code and production

of an optimal antenna design took about 4 months and utilized a 10 000 processor

supercomputer. The unconventional design result would most likely not have been

found through a manual optimization strategy. The antenna was successfully put in

orbit and displayed previously unachievable performance [23] .

As the goal of this thesis is to apply GA to a jacket, it will serve as an example

problem in describing GA and its nomenclature. Seeing how closely tied the idea and

history of GAs are with natural evolution, the employed nomenclature has biological

metaphors. A chromosome describes a trait of a problem, e.g. the outer or inner diameter

of a tubular cross section in a jacket structure. If a binary encoding is chosen, each

chromosome consist of a string of bits and each bit can be in one of two states, alleles,

0 or 1. Other encoding possibilities include hexadecimal and value encoding. Each

bit is called a gene and each gene has a particular position, locus, on the chromosome.

Hence, a chromosome encoded with 11 bits can represent 211 = 2048 distinct values.

If the inner and outer tubular beam diameters are given in mm, 2 chromosomes of 11

bit length for each beam will have the ability to describe all outer diameters from 0 to

2047 mm and all thicknesses from 1 mm to a massive cross section, i.e. with an inner

diameter of 0. There will be constraints to a problem that help minimize the number
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Figure 2.11: Antenna design developed by GA for NASA [23]

of combinations possible, e.g. the inner diameter can not be equal to or larger than

the outer. Nevertheless, with a high number of beams in the jacket there will be an

enormous number of feasible combinations, called the search space [21]. The search

space contains all possible solutions of the problem, as it has been formulated.

An optimization process is initiated by a pool of random designs within the search

space, ideally with a large gene pool in order to explore as much of the search space

as possible [22]. This pool of initial designs is the population of the first generation. A

population consists of individuals, each with their own genome, e.g. a distinct jacket

design. All individuals in the population are evaluated and assigned a fitness score.

Higher fitness equals a better individual. In order to evaluate the fitness of an individual,

an objective function has to be defined. Minimizing this function is the goal of the

optimization. The total weight of the structure is an intuitive choice as it is easy to

calculate and closely related to the structural cost. Care should be taken in defining the

fitness function, especially for multicriterion optimization, as it constitutes the definition

of the optimal solution, i.e. the goal of the optimization [22]. If a GA was implemented

without any form of constraint, there would be nothing to stop the process from cutting

all weight resulting in a useless structure. Hence, constraints are included through a

penalty function. The penalty function will typically put constraints on stress levels or

displacements.
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The children of a generation is a recombination of the genome of individuals who

were deemed fit enough to be in the mating pool. A selection method to choose two

parents from the mating pool for breeding has to be applied. A popular method, which

also will be applied in this thesis, is called ”weighted roulette wheel” sampling. All

individuals in the mating pool are assigned a weight, i.e. parenthood probability, pro-

portional to its fitness. Next, all individuals will be assigned a slice of a roulette wheel

based on their weight before the wheel is spun and a parent individual is selected. By

utilizing this method, the individuals with the highest fitness has the highest probability

of passing on its genome.

The recombination of genes during breeding is done by means of crossover and

mutation. Crossover is a recombination of the genes in the chromosomes of two parent

individuals. It can be done at one or more points in the chromosomes, and at fixed or

random positions. Figure 2.12 illustrates a two-point crossover of two chromosomes

with binary encoding. Mutation is a random change in the genome in order to ensure

genetic diversity. The mutation probability constitutes the probability of any given gene

to switch allele from 0 to 1 and vice versa.

Figure 2.12: Example of a two-point crossover with binary encoding [22]

The produced children make out the next generation and will carry on most traits

from the parents with the highest fitness as well as some random mutations. The gen-

eration of children is evaluated for fitness and consecutively breed a new generation.

The loop continues in this manner until a termination criterion is met and an optimized

design of sufficient quality is hopefully found. The optimization termination, i.e. con-

vergence criteria, could be based on a maximum number of generations, total elapsed

time or a negligible change in fitness for a specified number of generations [21]. Several
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termination criteria can also be combined. A simple flowchart of a genetic algorithm is

illustrated in figure 2.13.

Various strategies have been employed in the literature to improve GA. Because the

search space can be enormous, Dede et al. [24] proposed a restricted range approach.

First a preliminary optimization loop is completed and the best design is assigned as a

reference solution. In later optimization loops the reference solution serves as a center

for an upper and lower bound for all design parameters. Bounds of design parameters

can also be applied based on experience or available cross sections in product catalogs.

Another extension of GA is a branch called adaptive genetic algorithms (AGA) in which

the optimization parameters change during the optimization process [22]. The muta-

tion probability can for instance increase if the genetic diversity in the mating pool is

low.

It is expected that as computational power increase, evolutionary optimization meth-

ods will be applied to an even wider range of problems and see further industrial us-

age [23].

Figure 2.13: Simple flowchart for an evolutionary algorithm [22]
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2.3 Fatigue

Fatigue is a process by which a structural member is slowly degraded over time due to

cyclic loading. The damage is localized and permanent, and can culminate in cracks

or complete fracture. The first systematic research in the field was done by Wölher in

the 1860’s. His interest was sparked due to inexplicable fractures in train axle shafts at

stress levels that would be unproblematic if the loading was static. He correctly showed

that steel under cyclic loading can experience crack growth until fatigue fracture occurs.

High-cycle fatigue, i.e. fatigue at stress levels below yielding and over 1E+4 cycles, can

be summarized in three steps: initiation of microscopic cracks, growth of micro- and

macroscopic cracks and sudden fracture [25]. Fatigue failure has caused numerous

aviation accidents and the capsizing of the Alexander L. Kielland oil platform in 1980

that killed 123 people. A more recent example is from the the summer of 2002, when

a NSB Signature train derailed due to an axle fracture caused in part by fatigue. For

offshore structures in the North Sea, 1/4 of all structural damage requiring repair is due

to fatigue [26].

Given the environment an offshore wind turbine is subjected to, fatigue is a limiting

factor and must be taken into account in the design process. Both wind, waves, spinning

blades and the interaction of these forces contribute to oscillations. Care should be

taken to avoid coinciding load excitation frequencies and eigenfrequencies of the wind

turbine. A jacket structure of tubular steel members is welded, and as welds contain a

large number of microscopic cracks they can be an origin of crack growth.

The relation between the magnitude of a stress cycle,∆σ, and the number of cycles

of that magnitude a member can withstand, N , are given in S-N curves, also known

as Wölher curves. In DNV’s recommended practice for fatigue design of offshore steel

structures [27] the mathematical relation is given as follows.

log(N) = log(ā)−m log(∆σ) (2.3)

The variables m and log(ā) are constants that characterize the curve and have differ-

ent values below and above 1E+6 or 1E+7 cycles, depending on whether or not the

member is in seawater. The S-N curve is steeper for lower cycle numbers as illustrated

in figure 2.14 .

In order to carry out a fatigue analysis, the number of stress cycles, ni , at different

magnitudes, ∆σi , has to be predicted. There will be an extremely large number of

different stress ranges throughout the lifetime of a structure. Hence, they have to be
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Figure 2.14: S-N curves for tubular joints with cathodic protection [27]

discretized into a manageable number of stress bins, ∆σi ’s . E.g. if there are n cycles in

a 20-30 MPa interval, one could predict that it is the equivalent of n cycles at 25 MPa.

The stress ranges are extracted from the loading sequence of the spot that is evaluated.

The loading sequence show the progression of stress over time, and in order to extract

stress cycles only the local extrema of the curve (i.e. the peaks and valleys) are required.

To extract the stress ranges from the loading sequence a rainflow counting algorithm

is employed. The method gets its name from the way a raindrop would run down a

pagoda roof. The basic concept of the rainflow counting method is well known, but

how it is employed can vary. In this thesis, a standardization guide by Amzallag et.

al. [28] will be used as the methodology for rainflow counting.

The basic concept of this rainflow counting algorithm is to extract stress ranges

from the load sequence of local extrema by evaluating three consecutive stress ranges

simultaneously. In figure 2.15 the extraction of a stress cycle from a load sequence is

visualized. The method deals with four consecutive stress extrema points at a time,

Si, i+1, i+2, i+3, which make up three stress ranges, ∆S1, 2, 3. If the absolute value of

stress range ∆S2 is smaller than the absolute values of both ∆S1 and ∆S3, it is to be

extracted. The value of ∆S2 is stored and the points that make out ∆S2, Si+1, i+2, are

discarded from the load sequence.
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(a) Before extraction (b) After extraction

Figure 2.15: Example of extraction of one stress cycle [28]

The difference between figure 2.15a and figure 2.15b is that a shaded stress cycle

from 5-9 is extracted and its data points discarded. In figure 2.15b, the next cycle to be

extracted is shaded and the dotted line show how the curve will look after extraction.

This iterative process is carried out until the load sequence is made out of stress ranges

that first increase and then decrease, which is called the residue. The residue contains

the largest stress range in the data. In order to extract cycles from the residue, it

is duplicated and joined together as shown in figure 2.16. This duplicate residue is

subsequently treated in the same manner as the initial load sequence and its cycles are

extracted. At the end of this procedure you are left with the same residue that was

duplicated in the first place and all cycles has been extracted from the load sequence.

Figure 2.16: Cycle extraction of residue by duplication [28]
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When all cycles have been extracted, a damage evaluation can be performed by use

of the Palmgren-Miner rule [27]. The cumulative damage is considered as a sum of the

partial damage contributions from each stress bin, i, as shown in formula (2.4). If this

sum exceeds η (1/safety factor) the fatigue limit state has been reached.

D =
k
∑

i=1

ni

Ni
≤ η (2.4)

In formula (2.4), D is the accumulated damage and k is the number of stress bins. In

stress bin∆σi , ni is the number of cycles due to loading throughout the design lifetime,

while Ni is the number of cycles until failure obtained from the S-N curve.
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3 Methodology

The optimization process in this thesis is based on an interaction between Fedem Wind-

power beta version R7.1-α2 and a MATLAB script. MATLAB (Matrix Laboratory) is a

popular high-level programming language for numeric computation and graphic visu-

alization. Fedem Windpower is a FEM-software specialized in dynamic simulation of

wind turbine systems. It offers tools for designing realistic RNA and support structures,

and for modeling wind and sea conditions. It is developed by Fedem Technology AS

based in Trondheim, Norway. As the goal of this project is to optimize a jacket structure,

an existing model of the transition piece, tower and RNA will be utilized. Namely, a

model from the OC4 project carried out by, among many others, National Renewable

Energy Laboratory (NREL) in the U.S., Fraunhofer Institute for Wind Energy and Energy

System Technology (IWES) in Germany, Fedem Technology AS and NTNU [29]. The

project compares computer codes for coupled simulations of offshore wind turbines.

The standard model used as a basis for simulations in this thesis is shown in figure 3.1.

The jacket seen in the model will be replaced with different ground structures in order

to carry out optimization runs. The wind turbine has a hub height over mean sea level

of 90.55m [30] and the structural components are made up of:

• The ”NREL 5-MW Offshore Baseline Turbine” described by Jonkman et al. [31]

• A 68 m. high conical tower

• A concrete transition piece with dimensions 4 x 9.6 x 9.6 m and a mass of 666 t

(orange in figure 3.1)

• The ”UpWind reference jacket” described by Vorpahl et al. [30], which is about 66

m high.

The methodology of the optimization process will be presented in this chapter. The

FEDEM wind turbine analysis model and its loading be explained first, in section 3.1.

The goal and function of the written MATLAB code will subsequently be laid out in

section 3.2.
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Figure 3.1: 3D wind turbine simulation model from the OC4 project
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3.1 Wind turbine model

3.1 Wind turbine model

A simulation of an offshore wind turbine in the time domain is complex and non-

linear. The analysis tool utilized in this thesis, Fedem Windpower R7.1, is capable of

simulating soil conditions, structural behavior, turbine power output as well as wind

and wave loading. A major downfall of this extensive and precise analysis is that it is

time consuming. No available simulation tools are currently able to simulate at this

level of accuracy considerably faster than real-time. Assessing fatigue damage cannot

be omitted, and a standard design life of a wind turbine is 20 years. Furthermore,

the variable environment an offshore wind turbine is situated in makes it necessary to

evaluate many load cases, typically a few thousand [6]. Hence, conducting a complete

simulation of the entire lifespan of a wind turbine for all load cases is utterly unrealistic

and simplifications has to be made.

The model that is used for optimizing the supporting jacket in this thesis will be ac-

curate in some aspects and greatly simplified in others. The supporting jacket structure,

the tower and the RNA will all be included in the analysis model. It could be possible

to extract a loading time series at the bottom of the tower in one simulation and later

apply it on top of the supporting structure for future simulations. This would reduce

simulation time, but the interaction between the jacket and the rest of the wind turbine

would be less precise as there are coupled effects. In the applied simulation model,

soil-jacket interaction and soil stiffness is neglected as the jacket is cantilevered at the

bottom of the four legs.

Data about the wind and sea conditions the wind turbine will be subjected to during

analysis are gathered from a 50 m deep reference site in the Dutch North Sea. The data

about this site is reported in the document ”Upwind Design Basis” and are registered

as 3-hour averages over a period of 22 years [32]. The wind turbulence and wave

parameters are taken out of table 59 in ”Upwind Design Basis” [32] at a reference wind

speed of 10 m/s.

The wind definitions is imported to the model through an external wind file (.bts file

extension). The wind file is generated by TurbSim, a tool developed by NREL (National

Renewable Energy Laboratory). TurbSim was set to generate a wind field of 126 x

126 m, which is equal to the rotor diameter. A reference wind speed of 10 m/s and an

turbulence intensity of 15.2 % was utilized. A 16x16 matrix of squares across the wind

field was chosen to define a turbulent wind speed for each time step in the analysis.

This ensures a more realistic wind modeling than setting a constant wind speed. A
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reference speed of 10 m/s was chosen because it will accelerate the turbine to energy

production rotation speed without reaching speeds that would call for breaking.

Wave loading is applied using a JONSWAP (Joint North Sea Wave Project) sea wave

spectrum. A JONSWAP spectrum is used to model irregular waves and is in essence a

sum of sine functions [33]. In Fedem Windpower, this spectrum can be defined by a

couple of user defined parameters. For the single fatigue limit state load case considered

in this thesis, the significant wave height, Hs, is 1.48 m, the spectral peak period, Tp,

is 5.74 s, the number of wave components, n, is 400 and the spectral peakedness, γ,

is 1.0. In figure 3.2, the altering wave height in a 30 s time domain generated with

the preceding parameters is plotted. Marine growth on offshore structures through

its lifespan can be considerable, and influence structural behavior. Marine growth is

accounted for by adding a 10 cm thick layer with density 1100 kg/m3 to all beams with

center of gravity below 2 meters under mean sea level. The mean sea level was altered

to match the height of the different jackets that were analyzed.

0 5 10 15 20 25 30

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

W
a
v
e
H
e
ig
h
t
[m

]

Figure 3.2: Wave height in 30 s time domain

The model has to be configured to export analysis results in order to have data to

import and process in MATLAB. Exported data is axial force and moment about the Y

and Z axis for both ends of all active beams in the model. Total analysis time is set at

90 seconds and data is recorded in every time step, i.e. 0.05 s, of the last 30 seconds of

the analysis. The first 60 seconds are devoted to accelerating the turbine. In order to
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3.1 Wind turbine model

omit saving data for the initial 60 seconds of the analysis, the solver option ”- savestart

60” is added to model.

The dynamics solver in FEDEM it set up to solve the linearized dynamic equation

of motion (equation (3.1)) using a Newmark HHT-α time integration method.

Mk∆r̈k + Ck∆ṙk + Kk∆rk =∆Qk (3.1)

The dynamic equation of motion at time increment k is made up of four force contri-

butions. Inertia forces from the mass matrix, Mk, times the change in accelerations,

∆r̈k. Damping forces from the damping matrix, Ck, times the change in velocities, ∆ṙk.

Elastic forces from the stiffness matrix, Kk, times change in displacements, ∆rk. Finally,

the internal forces equal the change in input forces, e.g. external loading and gravi-

tational forces, ∆Qk. The Newmark time integration method solves the equation to

find accelerations, velocities and displacements for all degrees of freedom in increment

k+ 1. The HHT-α value introduce efficient high-frequency numerical damping without

loss of accuracy [34]. Structural damping is introduced through a mass and a stiffness

proportional contribution, termed Rayleigh-damping. Stiffness proportional damping

is set to 0.01 and mass proportional damping is turned off by a value of 0 to avoid

damping out the critical low frequency vibrations.

Table 3.1 gives an overview of the numeric value of relevant parameters imple-

mented in the Fedem analysis model.
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Table 3.1: Values of parameters in Fedem wind turbine model

Property of Parameter Symbol Value

Wave Loading Significant wave height Hs 1.48 m

Spectral peak period Tp 5.74 s

Wave components n 400

Spectral peakedness γ 1.0

Water density γwater 1025 kg/m3

Marine growth density γgrowth 1100 kg/m3

Wind Loading Reference wind speed vre f 10 m/s

Turbulence intensity T I 15.2 %

Air density γair 1.225 kg/m3

Kinematic air viscosity νair 1.46E-05 m2/s

Jacket Steel Steel density γsteel 7850 kg/m3

Poisson’s ratio ν 0.3

Youngs modulus E 210 GPa

Shear modulus G 80 GPa

Wind Turbine Mass of rotor mrotor 110 t

Mass of nacelle mnacel le 240 t

Mass of tower mtower 217 t

Mass of transition piece mt p 666 t

Analysis Time step ∆t 0.05 s

Total time t tot 90 s

Savestart tsave 60 s

Mass proportional damping α 0

Stiffness proportional damping β 0.01

Numerical damping HHT-α 0.1
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3.2 Programming

In order to create an automated optimization process, a comprehensive MATLAB-script

was written. The goal of the script is that it, after a couple of initial steps, can run

independently until an optimized design is produced. An overview of the entire design

optimization process utilized in this thesis is illustrated in the flowchart in figure 3.3.

Figure 3.3: Flowchart of optimization process
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In the following sections (3.2.1-3.2.3) a walkthrough of the different parts of the

optimization algorithm will be given. It will be presented generically, in that it will

be explained what the purpose of the code is and how it was solved on a general

level. An explanation of the specific MATLAB-implementation will, where deemed

necessary, be presented in section 3.2.4. The complete MATLAB-scripts can be found

in the appendices A through C.

3.2.1 Jacket Ground Structure

The following relates to the MATLAB-function found in appendix A. The topology

optimization takes a ground structure approach, as described in section 2.2. The higher

the number of nodes in the ground structure, the bigger the search space for an optimal

solution. In figure 3.4, one face of the ground structure of two cubes with 3x3 and 5x5

nodes on each face is illustrated. The number of possible beams in the jacket increases

drastically with the number of nodes. The ground structure in figure 3.4a has a total

of 112 possible beams, while for the structure in figure 3.4b, this number is 792.

(a) 3x3 nodes (b) 5x5 nodes

Figure 3.4: Ground structure of cubic jacket (side view)

The goal of the MATLAB-function is to generate a file that specifies the spatial

nodal positions and beam connections, which can be imported to FEDEM Windpower

in order to generate a master model file. The generated file is a ”Fedem Technology

Link Data” (.ftl) file. It also has to return variables containing information about the
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3.2 Programming

ground structure topology and symmetry definitions to the main optimization script.

The input to the function is the number of nodes along the width of the jacket and the

ratio of height divided by width, e.g. a ratio of one generates a cube as in figure 3.6. In

figure 3.5 a ratio of four is utilized, as well as three nodes along the width. Resulting in

a 32 m high jacket ground structure with 928 potential beams. The width of the jacket

is fixed to match the transition piece utilized in the OC4-project. In contrast to the

jacket in the OC4-project, the generated jacket will have a constant width throughout

its height. Furthermore, to restrict the size of the search space, no nodes are defined

in the middle of the jacket. Consequently, no members will be able to cross the hollow

middle of the jacket during optimization.

(a) Side view (b) Top perspective view

Figure 3.5: Ground structure of 32 m high jacket with three nodes along its width

The nodal coordinates are produced by looping through all nodes on each face, while

updating and storing a global position vector for each node. Two opposite faces were

chosen to produce the corner nodes to assure that they were not defined twice. While

in the loop, a variable containing the node number along the width and height is also

stored, e.g. node number 2 along the width and 4 along height on face 2. This variable

will later on be mandatory in defining symmetric beams. To define all possible beams
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in the ground structure, all combinations of nodes on each face has to be identified.

When each node on a face of the jacket is connected to all other nodes on that face,

there will be unwanted beam definitions of two reasons. The corner legs will be defined

twice, one time for each connected face, and many collinear beams will lay on top of

each other. These combinations must be deleted. In order to identify collinear beams,

unit vectors of all beams are calculated. Next, a loop will identify beams with matching

unit vectors and at least one common node. When such a match is found, the longer

of the two will be deleted.

Figure 3.6: Master beams for symmetry in cubic 3x3 ground structure

To achieve symmetry of all four faces of the jacket a set of master beams is extracted.

These master beams will have three or seven slave beams that will get the same cross

sectional parameters during optimization. The master beams are identified by having

at least one node on the left half of one specified jacket face. Except if the beam is on

the vertical middle line, then it is required to have both nodes on that line. In figure 3.6
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the master beams of a 3x3 node ground structure are marked in blue. The green beams

are slave beams. When all master beams are identified, their respective slaves need to

be found. This is done by comparing the width and height number, from the variable

stored earlier, of the nodes of all beams. First, all beams that have the same position

on all faces are identified and listed. However, this process does not put symmetrical

beams that cross the middle of the the face in the same list, i.e. the two longest inclined

blue beams in figure 3.6. They have to be identified and concatenated in a separate

loop (cf. appendix A).

As the jacket is to be attached to the OC4 wind turbine model, some adaptions has to

be applied. The beams that go through the transition piece are added and connected to

the jacket below, i.e. the yellow beams in figure 3.6. The entire structure is also moved

to the correct spatial position to line up with the transition piece in the OC4-model. At

last, a .ftl file with nodal, beam, cross sectional and material definitions is written.

3.2.2 Fatigue Damage

The following relates to the MATLAB-function found in appendix B. Working by the

guidelines of DNV’s recommended practice for fatigue design of offshore steel struc-

tures [27], every beam in every jacket design has to be evaluated for fatigue damage

in eight material spots in both ends. Hence, it was most convenient to write the fatigue

assessment in an external function which could be called by the main optimization

script. The objective of the fatigue function is to determine if a cross section in the

jacket can withstand the cyclic loading of its design lifetime.

Input for the function is a time series of stresses for eight spots in the cross section

that is being evaluated, the design lifetime of the jacket and how many real-time sec-

onds of loading the stress time series corresponds to. These variables are calculated and

fed to the function by the main optimization script. Figure 3.7 illustrates how stresses

in the eight spots around the circumference of the tubular cross section are a linear

superposition of contributions from axial loading and moment around two axes. For-

mulas to calculate the stresses by this superposition are given in DNV’s recommended

practice [27], and are recited in equation (3.2). Ideally, a stress concentration factor

(SCF) ought to be employed in these formulas, whose purpose is to take into consider-

ation the effect of different joint geometries on stress levels. Given the unconventional

and complex joints that are created during a GA optimization, finding the correct SCF’s

would be a very demanding task. Consequently, all SCF’s are set equal to one.
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Figure 3.7: Superposition of stresses in eight spots at a welded intersection [27]
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For a 30 second simulation with a time step of 0.05 seconds, 601 stress values for

each of the eight spots considered in both ends of every beam are obtained. That is

almost 10 000 stress values for each beam in the model. This vast amount of data

makes the fatigue analysis one of the most time-consuming parts of the optimization

process. To remedy some of this computational cost, only stress time series with a range

in their data exceeding some constant value will be submitted to fatigue analysis. From

observations, a 30 second simulation will mostly have less than 10 stress cycles above

1 MPa. Even if these 10 stress cycles all were exactly 20 MPa, it would only correspond

to a fatigue damage of 17% with a design life of 20 years. Bearing this in mind, a

minimum range in the stress time series of 20 MPa, for at least one of the eight spots,

was chosen as a lower limit in order to qualify for fatigue assessment.

In order to extract stress cycles, peaks and valleys in the stress time series has to

be identified for all eight spots. Intermediate data points between local maxima and

minima are irrelevant in fatigue analysis and are discarded. Next, the series of peaks

and valleys is modified until all ∆S2’s are extracted and a residue is left. The residue

is duplicated and the process is repeated (cf. section 2.3). When cycle extraction of

the stress time series is completed, all stress cycles experienced by the cross section

during the simulation is listed for all eight spots around the circumference. In order to
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carry out the fatigue analysis using the Palmgren-Miner rule it is assumed that every

cycle is repeated design life/simulation time times, e.g. for a 30 second simulation time and

a design life of 20 years, each cycle is assumed to act 21E+6 times. This number is

the denominator in the Palmgren-Miner sum, ni , the numerator, Ni , which correspond

to the number of cycles the material can withstand a specific stress level is given by

the S-N curve in figure 2.14. All Ni ’s are calculated using parameters from the row for

tubular cross sections in table 2-2 in DNV’s recommended practice [27], ”S-N curves in

seawater with cathodic protection ”. Although some beams will be above sea level, the

S-N curve for seawater lies below the S-N curve for ”in air” (cf. figure 2.14), thus it is a

conservative simplification. The Palmgren-Miner sum is calculated for all eight spots

in the considered cross section and if any sum exceeds 1 the entire jacket design failed.

The fatigue function returns 1 to the main optimization script if the evaluated cross

section failed by fatigue and 0 otherwise.

3.2.3 Main Optimization Script

The following relates to the MATLAB-script found in appendix C. The main optimization

script initiates the optimization process, calls the functions described in section 3.2.1

and 3.2.2, creates model files, runs FEDEM analyses and imports the results back to

MATLAB, writes progress status while running and preforms all steps involving GA. To

avoid misunderstanding and to clarify the following text, a description of the employed

terminology when applying GA to a jacket is presented in table 3.2.

Table 3.2: Summary of GA terminology in the context of a jacket

Term Definition

Generation A collection of jackets created at the same stage

Individual One jacket topology within a generation

Population All individuals in one generation

Chromosome Inner or outer diameter of a member

Gene A bit within a chromosome

Genome All genes in an individual

Survivor Jacket that did not fail

Casualty Jacket that failed

Mating pool The collection of jackets that can be selected as parents
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Before entering the optimization loop (cf. figure 3.3), a number of preliminary steps

have to be carried out. The master model file has to be created manually in the Fedem

GUI by attaching the jacket ground structure to the transition piece and adding boundary

conditions. The master model file will serve as the basis for writing model files for all

individuals in the optimization process. Several constants that control the script has to

be determined by the user. Table 3.3 presents all initial user input parameters and at

least one typical value for each input.

The design variables that are modified throughout the optimization process are the

inner and outer diameter of all beams. In order to initiate the optimization process,

a first generation of random jacket topologies has to be made. A variable defining

the probability of a beam being activated in the first generation is user specified. This

probability will be low for complex ground structures with many potential beams. If

a beam is activated, its outer diameter is generated by multiplying a random number

between 0 and 1 with the maximum outer diameter. If the random outer diameter

is smaller than the user specified minimum, it is redefined until a valid diameter is

generated. The inner diameter is created randomly within the user defined limits of
inner/outer diameter. Beams that are not activated get an inner and outer diameter of 0

and are removed from the model. Even if a specific beam is removed from all individuals

in the first generation, it should be noted that it’s not lost forever as it can be revived

at a later stage through mutation in the breeding process.

If symmetry is applied it requires further preparation of the initial design parameters.

The optimization script is given a variable describing which beams that need to be equal

in order to obtain symmetry from the jacket ground structure function (cf. section 3.2.1).

A list of master beams is created from this variable. For a symmetric optimization

process, only the parameters of the master beams will be modified, while the remaining

beams will be slaves to the design parameters of the master beams. Design variables

of all slave beams are overwritten. If a master beam is removed from the model, all its

slaves are removed as well. This ensures that all four faces of the jacket are identical

and symmetrical about the vertical middle line.

The diameters of the beams that go through the transition piece are set to be equal

to the values used in the OC4-project [29] throughout the optimization. A variable

containing information about which beams are connected to which nodes is generated.

It will be used later to identify nodes without any connecting beams so they can be

removed from the model. A Fedem model with an unconnected node or beam floating

freely will cause a solver error. Finally, the master model file is read into a variable,
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Table 3.3: Input parameters for main optimization script

Parameter Variable in MATLAB Typical value

Filename of masterfile masterfile OC4-3n.fmm

Height/width ratio lvls 1 or 4

Nodes along the width n 2 or 3

Beam ID offset baseID 10 000

Jacket parent assembly number jpa 5 or 7

Population size pop 16

Concurrent simulation processes conc 4

Number of generations before termination endgen 50 or 100

Fatigue design lifetime yr 20 years

Analysis time step size ts 0.05 s

Effective analysis time eff_t 30 s

Yield limit of steel fy 355 MPa

Threshold for fatigue assessment fatlim 20 MPa

Steel density rho 7850 kg/m3

Price of steel ps 15 NOK/kg

Price of installing a beam pins 15000 NOK/beam

Probability of activating a beam Pb 0.5 to 0.05

Initial mutation probability Pm Pb · 0.02

Minimum mutation probability minPm Pb · 0.02

Maximum mutation probability maxPm Pb · 0.20

Diversity threshold for adaptive mutation tresPm Pb · 0.20

Maximum fitness (optimization goal) maxFit 50 or 100

Length of chromosomes Lc 11 bit

Maximum outer diameter maxDo 1.5m

Minimum outer diameter minDo 0.5 m

Minimum inner/outer diameter ratio minDratio 0.80

Maximum inner/outer diameter ratio maxDratio 0.99

Stiffness proportional damping SPD 0.01

Mass proportional damping MPD 0

Number of cuts during crossover cuts 1 or 2

Symmetry toggle sym true or false
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the contents of this variable will be customized when creating new models during

optimization. The script is at this point ready to enter the optimization loop going

through the user prescribed number of generations.

The first step of the loop is to write Fedem model files with correct design parameters

for all individuals in the generation. This is done by tweaking the master model file,

which is read line by line. Searching for keywords in the master model file makes

is possible to recognize what part of the model file that is being read, e.g. sections

that define design parameters are preceded by ”!*** Beam cross sections ***”. By

exploiting this trait, as well as the parent assembly number, beam identification number

and material number, it is possible to identify each individual beam and replace its

parameters with updated ones. Parameters that are updated include the area, second

and polar moment of area, inner and outer diameter as well as the hydrodynamic

buoyancy and drag diameter. If a beam, node or curve export definition is to be removed

from the model, the numbers of the lines that define it will be stored in a variable. When

all the parameters are updated in the master model file, it can be copied to a new model

file line by line. If a line is marked as deleted, it is simply omitted in this copying process.

Although a Fedem model file (.fmm file extension) contains most of the information

about the model there are mandatory parts that need to be loaded from external files

including rotor blade, transition piece and wind field definitions. At this point, all new

individuals are ready to be submitted to Fedem for dynamic analysis.

Upon completion of the Fedem analysis, an output file containing time series of

the forces is available for all individuals within the current generation. By examining

the structure of the result file, the correct force time series is matched with the correct

beam in the MATLAB script and it can be extracted for further processing. The forces

are converted to stresses by assuming a classic elastic material behavior as shown in

formula (3.3), where Do is the outer diameter of the beam. The stresses σx , σmy and

σmz form the basis for calculating the eight stress spots at the beam intersections as

shown in formula (3.2).

σx =
Nx

A
, σmy =

My

I y

Do

2
, σmz =

Mz

Iz

Do

2
(3.3)

After control of the yield criterion and the fatigue limit state, all surviving individuals

are ready to be evaluated for fitness. A surviving individual is an individual that did

not fail, neither by fatigue, yielding nor by the Fedem solver crashing. The objective
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function that is to be minimized is based on a rough estimate of the total cost of the

jacket. The function is put together by two parts: material cost based on the total weight

of the jacket and a fixed cost per installed beam. Material cost was estimated at 15 NOK/kg

and installation cost, comprised of cutting, welding, painting, etc., was estimated at

15 000 NOK/beam. Hence, the removal of as many beams as possible is favored by the

objective function. The total mass of the structure is calculated by summarizing the

mass of each beam as shown in formula (3.4) where m j is the mass of individual j and

n is the number of beams in individual j. The cross sectional area of beam i is Ai and

∆x i , ∆yi and ∆zi are the lengths of beam i along the global x, y and z axes.

m j =
n
∑

i=1

q

∆x2
i +∆y2

i +∆z2
i Ai ρsteel (3.4)

By multiplying the mass of each individual with the cost of steel and adding a fixed

sum per active beam, the total cost of the jacket is estimated. This sum, in million NOK,

is the value of the objective function for an individual. In order to calculate the corre-

sponding fitness of the individual, the value of the objective function is subsequently

subtracted from a constant value, as shown in formula (3.5). The value of the constant

is arbitrary, as long as the calculated fitness stays positive [35], and it represents an

upper bound for the fitness. Fitness is to maximized during the optimization process.

A list containing fitness and the respective ID number of the individuals that did not

fail is the result of a generation.

fitness
︸ ︷︷ ︸

to be maximized

= constant
︸ ︷︷ ︸

arbitrary

− (material cost+ installation cost)
︸ ︷︷ ︸

objective function to be minimized

(3.5)

In order to track the optimization evolution and determine which individuals that

will pass on their genome to the next generation, a leader table/mating pool, is updated

and stored for each generation. The number of individuals in the mating pool equals the

population size. The result of the current generation is added to the mating pool from

the preceding generations and sorted from best to worst fitness, mixing the new results

with the old leaders. The bottom half of the mating pool is cut and a new updated

leader table is stored. Hence, an individual in the mating pool will not leave the mating

pool unless replaced by an individual with better fitness. A plot is generated in each

generation, illustrating the evolution of the leading design, the mean of the mating
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pool, the winner of the current generation and the number of casualties, i.e. failed

designs.

As the mating pool of the current generation is available, the script can enter the GA

breeding section in order to produce a new generation of candidate solutions. Design

parameters of the population are converted from decimal to binary numbers to produce

the binary encoded chromosomes. The breeding process is set up such that two parents

will produce two offspring. Both parents are chosen by means of a weighted roulette

wheel (cf. section 2.2.1). Each individual in the mating pool is given a probability

of being chosen as a parent based on its fitness rating. This probability is calculated

relative to the worst individual in order to nullify the effect of the arbitrary constant

chosen when calculating fitness. Consequently, the individual with the lowest fitness

in the mating pool will have zero probability of passing on its genome.

After two parents have been selected, their two offspring are created by performing

a crossover of the parent chromosomes. The number of cuts during crossover is user

specified and cut positions within the chromosome is randomly generated for each set of

parents. When crossover is completed, mutation of the children genome is performed.

A mutation probability of 1 % will, on average, make 1 % of all children genes switch

allele. In later versions of the script, to remedy a mating pool of similar designs late

in the optimization process, an adaptive mutation probability was implemented. The

mutation probability will increase or decrease within user specified limits, depending

on whether the diversity in the mating pool is below or above a user defined threshold.

Diversity is calculated by comparing the number of unequal genes in the worst and

best design in the mating pool divided by the total number of genes in one individual.

All controlling parameters involved in the adaptive mutation are scaled to the user

specified parameter that controls the probability of a beam being activated in the first

generation. This is done because a ground structure with a high number of potential

beams requires a lower mutation probability. E.g. in a ground structure with 1000

possible beams, most of the beams are removed from the individuals in the mating pool

and a mutation probability of 1 % would reactivate far too many.

When crossover and mutation is complete, the children chromosomes are trans-

formed back to decimal numbers and converted from millimeters to meters. The vari-

able containing cross sectional data can be updated with the parameters of the coming

generation. Beams with an outer diameter below the user specified minimum are identi-

fied and removed. Fedem analysis results that are 2 generations old are deleted in order

to free up disc space. At this point, the generation loop starts over again to write model
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files for the next generation. The loop is terminated when it reaches a user specified

number of generations. When completed, the script will print the total time elapsed

as well as the time elapsed while writing model files, running Fedem and preforming

stress analysis.

3.2.4 MATLAB Implementation

While the preceding sections (3.2.1-3.2.3) explained the code in a general manner, this

section will examine some parts of the MATLAB implementation on a more specific

level.

In order to increase the efficiency of the script, variables that have a known size

throughout the optimization had memory preallocated by using the zeros(n,m) func-

tion, producing a n times m matrix of zeros. MATLAB is faster at filling numbers in a

matrix than at resizing them to make room for more values.

The code snippet in computer listing 3.1 shows how node definitions are made for

the first of the four faces.

Listing 3.1: Building nodal positions

1 for s=[1 4 2 3] % counter over faces of cube

2 switch s

3 case 1

4 TwoDl=1;

5 pos = [0 0 0]; % initial position

6 for h=1:hn % height counter

7 for b=1:n % width counter

8 N(i,1:4)=[i1 pos]; % storing node

9 pos = pos + [a 0 0]; % updating position

10 % storing height and width number of node

11 TwoDpos{s,1}(TwoDl,1:3)=[i1 b h];

12 TwoDl=TwoDl+1;

13 i1=i1 + 1;

14 i=i + 1;

15 end

16 pos = [0 0 pos(3)]+[0 0 a]; % updating position

17 end

18 case 4

19 ...
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The variable a is the vertical and horizontal distance between nodes, i1 is a nodal

ID counter and pos is a position vector which is continuously updated. Initially, the

position vector is set to the origin (line 5), a double loop is set to loop through the

number of nodes along the height and the width of the jacket, hn and n respectively.

On line 8 the nodal ID and position is stored. The position vector is updated on line 9

and 16. A variable, TwoDpos, stores the height and the width number of all nodes and

will later be used for defining symmetric beams. When all nodal positions are defined,

a combination of all node pairs on each face is done in order to define the beams of

the ground structure. For the first of the four faces, this is done by utilizing nchoosek(

N1(:,1),2) where N1(:,1) is a list of all nodes on face one. The input variable 2 in

nchoosek tells this built in MATLAB function to return all possible node combinations

in pairs.

Unit vectors of the beams are utilized both in the removal of collinear beams, in

defining symmetric beams and in calculating the total mass of the structure. The unit

vectors are found by the code in listing 3.2. Line 3 extracts the nodal positions of

beam i in order to calculate unit vectors. Line 10 stores the unit vector and length data

for beam i. Absolute values are used to ensure that the direction of the unit vector is

irrelevant.

Listing 3.2: Calculation of beam unit vectors

1 b=length(B);

2 for i=1:b

3 % extracting triad coordinates [x1 y1 z1; x2 y2 z2]

4 pos=[N(N==B(i,1),2:4); N(N==B(i,2),2:4)];

5 dx=abs(pos(2,1)−pos(1,1)); % positive length along axes

6 dy=abs(pos(2,2)−pos(1,2));
7 dz=abs(pos(2,3)−pos(1,3));
8 len=sqrt(dx^2+dy^2+dz^2); % length of beam i

9 % matrix containing unit vector information

10 uvec(i,1:5)=[i len dx/len dy/len dz/len];

11 end

The section of the ground structure function that handles symmetry is to extensive

to be recited and explained here, but the entire operation can be found in appendix A

(listing A.1). It utilizes a mixture of nodal positions and unit vector information to

identify beams that ought to have identical cross sections on all four faces.
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The fatigue function has to extract stress cycles from a stress time series in order

to carry out a fatigue damage assessment (cf. section 2.3). Before stress cycles can

be extracted, the time series of stresses needs to be made up of only local maxima

and minima values. By utilizing the built in MATLAB function findpeaks on both

the original time series and after multiplying it with -1, the peaks and valleys can be

identified. The function also returns the position of the extrema in the time series, which

makes it possible to concatenate the local extrema at correct positions in a variable

named extrema. The cycle extraction is done both from the extrema variable and from

the duplicated residue, the utilized method is the same and the code for cycle extraction

is in listing 3.3. The loop will run as long as a cycle can be be extracted, i.e. when

res==0, and there are at least three datapoints remaining in extrema.

Listing 3.3: Stress cycle extraction from time series

1 while res==0 && length(extrema)>3

2 Nr=length(extrema)−3;
3 while (i <= Nr)

4 % calculate delta amplitudes

5 clear dS

6 dS(1) = abs(extrema(i+1) − extrema(i ));

7 dS(2) = abs(extrema(i+2) − extrema(i+1));

8 dS(3) = abs(extrema(i+3) − extrema(i+2));

9 if ((dS(2) <= dS(1)) && (dS(2) <= dS(3))) % check delta amplitudes

10 cycle(k,s) = dS(2); % storage of the extracted cycle

11 k = k + 1;

12 extrema(i+1:i+2) = []; % discard points that make out cycle

13 res = 0; % check from beginning for dataset

14 i = 1;

15 break

16 % if no cycle was extracted, continue to next set of dS's

17 else

18 i = i + 1;

19 res = 1;

20 end

21 end

22 end

In line 6 through 8, three stress cycles are extracted, dS(1:3), and if dS(2) is smaller

than the two adjacent cycles, dS(2)will be extracted (line 10) and its datapoints deleted

from extrema (line 12). If a cycle is extracted, the search will restart from the beginning

of the dataset. If not, it will move on to the next data point. If the loop can move through
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the remaining data set without extracting a cycle, the extraction is complete.

In order to validate that the cycle extraction was working properly the extracted

cycles were examined. It was confirmed that the largest extracted cycle correctly corre-

sponded with the stress range of the input stress time series. Furthermore, the example

sequence from the article this method is based on, ”Standardization of the rainflow

counting method for fatigue analysis” [28], was loaded into the fatigue function and the

correct cycles were extracted.

Running fedem analyses through MATLAB was done using Windows PowerShell

and the MATLAB function system('command') which calls upon the operating system

to execute a given command as shown in line 10-11 of listing 3.4.

Listing 3.4: Running Fedem from MATLAB

1 %% Run FEDEM with updated parameters

2 fedemt=tic;

3 for runs=1:conc:pop

4 indstr=sprintf('%d ',[runs:runs+conc−1]);
5 fprintf('Running FEDEM. Generation: %d, Individuals: %s\n',gen,indstr);

6 % Parallel for loop for of "conc" models for faster computation

7 parfor p=runs:runs+conc−1
8 inddir=sprintf('Ind_%03.0f_%03.0f',gen,p);

9 modelpath=sprintf('%s\\%s',inddir,currentmodel{p})

10 PSrun = sprintf('powershell −inputformat none fedem −f %s −solve dynamics',

modelpath);

11 system(PSrun);

12 end

13 fprintf('Done!\n\n')

14 end

15 fedemtime(gen)=toc(fedemt);

The command consist of a path to the correct model file as well as some command

options. To call the Fedem executable by simply writing 'fedem' in the command line,

the Fedem executable must be a Windows path variable. The tic command on line 2

starts a stopwatch which will time the Fedem analysis of all individuals in the generation,

on line 15 it is stopped and the elapsed time is stored. The fprintf command on line

5 and 13 writes progress updates to the MATLAB command window. A parfor loop

is utilized to run several Fedem analyses concurrently, maximizing the computation

speed. The MATLAB Parallel Computing Toolbox is required to run a parfor loop.

When all Fedem analyses are completed, the resulting load time series is stored in
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ASCII files. The data in the files can be imported to MATLAB by use of the importdata

function and matched with the correct beam for stress analysis. To validate that the

correct beams were matched with the correct time series from the Fedem analysis, the

imported data in MATLAB was compared with the curves inside the Fedem GUI and

correlation was ensured.

In the breeding section of the main optimization script, chromosomes are defined

by binary numbers. The conversion to and from binary numbers was done by the

functions dec2bin and bin2dec respectively. The function dec2bin will return a string

of bits with a specified length. This string was used for crossover and mutation during

breeding.

An important concept of a GA based optimization is randomness. If an offspring

happens to have favorable traits, they are conserved for later generations. To achieve

randomness in MATLAB, the rand function has been utilized. It provides a uniformly

distributed pseudorandom number on the open interval (0,1). The generated numbers

are not truly random and an identical stream of numbers will be given each time

MATLAB is restarted. However, the addition of rng('shuffle') in the beginning of

the script reseeds the number stream based on current time, ensuring a unique random

stream each time the script is run.
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4 Results and Discussion

This chapter includes results and discussion for three optimization scenarios. In sec-

tion 4.1 and 4.2 a simple cubic ground structure was used to implement and test the

script. First without, and later with, symmetry conditions. In section 4.3 the process was

tested on a more realistic structure. The optimization script has been under continuous

revision while this thesis has been written. Findings presented here should be regarded

as a description of the path that was taken in order to close in on the final goal of this

thesis. Namely, to make a fully automated script for the topology optimization of a full

size jacket. All analyses were run on a desktop computer with an Intel i7 quad-core

processor running at 3.50 GHz and 16 GB of RAM. The script that was utilized in the

simple cubic optimization runs had two major flaws, which were corrected at a later

stage.

First, due to a misunderstanding with my supervisor, the wave loading had a far

too low period. The model was set up with a period of 1 s instead of the intentional

5.74 s. Hence, the cube was subjected to a more intense fatigue loading cycle and the

topology is in consequence more rigid than necessary for the intended loading. This

error was not singled out before a tall jacket structure was subjected to the loading,

and excessive oscillations were induced.

Second, the script did initially not have the ability to extract loading time series for

cross sections that were connected to only one other member. A result of the use of

loading data from triads (i.e. joints with at least three connected beams), instead of

requesting a curve export of both ends of every member in the model. However, this

was only an issue for the asymmetrical case (section 4.1).

53



4 RESULTS AND DISCUSSION

4.1 Simple Asymmetrical Jacket

The first results of a complete optimization process was produced by an asymmetrical

cube with 3x3 nodes on each face. An example of a random design produced for the

first generation is illustrated in figure 4.1. The different colors of the members in the 3D

model are generated by Fedem and represent unique cross section definitions. With no

symmetry conditions, each beam is generated individually and there is no topological

relation between the faces of the jacket. Also, in this early implementation, the corner

legs of the jacket could be removed.

Figure 4.1: Initial random design of a simple asymmetrical jacket

The optimization ran for 100 generations with a population of 12 individuals and

took 17 hours to complete. Figure 4.2 shows a plot of the evolution throughout the

optimization process. The plot shows the fitness on the left abscissa, and the generation

number on the ordinate. The maximum fitness is 50, which would correspond to a

structural cost of 0. The thick blue line indicates the fitness of the best design so far

in the optimization process, while the thin green line shows the fitness of the best

individual in each generation. Whenever the generation winner is better than the

leading design from previous generations, the leading design is updated, as can be seen

from the plot. The dotted line illustrates the mean fitness in the mating pool and it is
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4.1 Simple Asymmetrical Jacket

of interest because it can tell something about the diversity in the mating pool. If the

distance between the mating pool mean and the leading design is small, the diversity

is low. As one would expect, the diversity is high in the initial generations and lower

as the design converges towards a solution. The red bars with the corresponding right

abscissa illustrates the number of casualties, i.e. failures, within each generation. Be it

by the Fedem model crashing, material yielding or fatigue failure.
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Figure 4.2: Optimization evolution of a simple asymmetrical jacket

The fitness increases rapidly for the first 20 generations before the curve flattens.

One surprising observation is that the number of casualties seems independent of how

far the optimization process has gone. It would be reasonable to expect a lower fatality

rate in early generations and higher in later, as the design is pushing its limits. In

generation 8, all individuals failed which can be observed both by the red bar and

by the discontinuity in the green line. The optimal solution was found already in

generation 70, and this winning design is illustrated in figure 4.3.

Although the winning design may look useless at first glance, there are some in-

teresting aspects to the topology. First off, it is obvious that the process has made the

structure lighter and cheaper than the random design illustrated in figure 4.1. Even

without any form of enforced symmetry, a classic X-brace has formed on one face. The

wind direction in the model causes one face of the jacket to get more compressive

loading than the others. This face is the one opposite to the X-brace and this is also the
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Figure 4.3: Winning design of a simple asymmetrical jacket

most rigid face of the winning design.

There are obvious flaws to the winning design, even disregarding the messy topology.

For instance, the light pink vertical cantilever. It is clear that it has no function and

that a design without it would become a new leading design. Furthermore, it is not

likely that the optimal design of this jacket structure would lack corner legs, like in the

winning design in figure 4.3.

This optimization run proved that the script had the ability to reduce the weight

and cost of a jacket through an automated process in a way that correlated well with

the load case. Still, the asymmetrical faces and chaotic topology of the winning design

meant that the end result was of little value.
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4.2 Simple Symmetric Jacket

4.2 Simple Symmetric Jacket

The next expansion of the script was to impose symmetry constraints to the optimization.

The ground structure that was utilized was identical to the one used in the asymmetrical

case. Several optimization runs were executed in order to examine the reliability of the

results from the optimization process. However, it should be noted that the optimization

script was improved between example II and III. Consequently, the difference in winning

designs will be partly due to the random nature of GA and partly due to different versions

of the script being utilized. As illustrated in the initial random topology of figure 4.4,

each face is symmetrical about the vertical middle line, and all faces are identical. The

beams in the corner legs have the same cross section for all four corners and can not

be removed during optimization. This random initial design could have been from

the first generation of any of the optimizations in the following sections, 4.2.1-4.2.3.

All the optimizations presented for a simple symmetric jacket were performed with a

population size of 16 over 50 generations, and the upper bound of the fitness was 50.

Figure 4.4: Initial random design of a simple symmetric jacket
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4.2.1 Example I

Figure 4.5 shows the optimization evolution of example 1 of a simple symmetric jacket.

When compared to the asymmetrical evolution in figure 4.2, two features stand out.

First, the line for the generation winner and the mating pool mean traces the leading

design line more closely. Second, the overall number of casualties is considerably lower.

Both of these features can be attributed to one major change in the breeding process

between the two scripts. During crossover in the asymmetrical case, a new parent

and gene was selected for every locus on the child chromosome. This inferior way of

breeding makes the genome combination far too random, hence all the casualties and

the bad generation winners. The correct way to implement a crossover, which was in

place for the symmetric case, is first to choose two parent individuals and then transfer

a series of genome to the child chromosome by utilizing one or more cut points. A

series of genome contains more information about the trait of a parent individual than

a single gene. In other words, the relative positions of the genes are of importance. In

fact, this positional dependence of genes within a chromosome is a proposed reason

for why GA work, and is called ”the schema theorem” [22].

The optimization was completed in around 17 hours. By the end of the process,

all three fitness curves in figure 4.5 are relatively flat and of similar value, indicating

convergence. However, the winning design of the entire optimization was found in the

last generation. Which means that there were most likely room for improvements in

the design. Actually, the oldest design in the mating pool at the end of the optimization

was from generation 47.

As shown in figure 4.6a, by the tenth generation the topology is starting look like the

final winning design which is illustrated in figure 4.6b. From generation 10 onwards,

the optimization is a only a matter of removing superfluous members and minimizing

the necessary ones. The winning design looks quite reasonable, with relatively large

legs and smaller braces. Nor are there any members that are obviously functionless.
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Figure 4.5: Optimization evolution of a simple symmetric jacket (Ex. I)

(a) Leading design, 10th generation (b) Winning design, 50th generation

Figure 4.6: Topology of an optimized simple symmetric jacket (Ex. I)

59



4 RESULTS AND DISCUSSION

4.2.2 Example II

The script that was run in this example is identical to the one used in example I. Thus,

direct comparison is possible. The apparent differences of the winning design in ex-

ample I, figure 4.6b, and example II, figure 4.8b, serves to show that at least one, and

most likely both, of the optimization runs converged to a local maximum. Although the

winning designs are quite different, their numeric fitness value was very close, 48.3896

and 48.3872 for example I and II, respectively. The winning design of example II might

look a lot lighter than example I, but figure 4.8b hides that the thickness of the legs is

30 mm compared to 15 mm in example I.

The evolution curve for example II, illustrated in figure 4.7, bears a lot of resem-

blance with the evolution of example I, figure 4.5. For the first couple of generations

there is a large gap between the leading design and the mating pool mean. New lead-

ing designs are frequently observed for the first half of the optimization, while for the

second half the three curves flatten and coincide.

It is possible to see traces of the topology that is to become the winning design

already in the leading design of the 5th generation, as illustrated in figure 4.8. The fact

that the optimization process decides which topological ”path” to follow at such an early

stage in both example I and II is worrisome. One would wish that a larger proportion

of the search space was explored before a general topology was determined. It is also

surprising to see the functionless cantilever of the winning design in figure 4.8b, espe-

cially considering that the curve of leading design was relatively flat for 20 generations.

Consequently, an adaptive mutation formulation was implemented for all subsequent

analyses.
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Figure 4.7: Optimization evolution of a simple symmetric jacket (Ex. II)

(a) Leading design, 5th generation (b) Winning design, 50th generation

Figure 4.8: Topology of an optimized simple symmetric jacket (Ex. II)
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4.2.3 Example III

Figure 4.10b shows the winning topology of the third optimization run with a simple

symmetric jacket. This topology had the highest fitness of the three runs with a simple

symmetric jacket, 48.4658. In this instance, a classic X-brace has been formed in parallel

with a horizontal support. The small dimensions of the X-brace has probably made the

horizontal support mandatory in controlling wave induced oscillations of the X-brace.

Maybe a topology with a stronger X-brace and no horizontal support would have become

a new leading design. This option will be explored manually in the following section.

The optimization run in this section was the first to utilize an adaptive mutation

probability. The probability adapts to the diversity of the mating pool by increasing

if the diversity is low and decreasing if the diversity is high. The effect it has on the

optimization evolution is apparent in figure 4.9. The structure is optimized at a slower,

albeit more constant, rate than in example I and II. The mating pool mean also has an

overall greater distance from the leading design than earlier.

In figure 4.10a, the leading design of the 15th generation is illustrated. Although

the topology of the winner in figure 4.10b can be found within the leading design

of generation 15, there are many other possibilities that have been discarded in the

optimization process. Also, note when comparing against example I and II, that the

topology in figure 4.6a and 4.8a are taken at generation 10 and 5 respectively.

An interesting observation can be made in the last generations of this optimization.

From generation 44 to 47, the mating pool mean has more or less the same fitness as

the leading design. The low diversity throughout these generations make the mutation

probability increase. Consequently, a lot of bad designs are created, which can be seen

both from the falling curve of generation winners and the high number of casualties in

the last generations. The implementation of an adaptive mutation worked as intended

except at the very end. The upper boundary of the mutation probability should probably

have been reduced in this case. Fine-tuning the parameters for the adaptive mutation

probability is hard and requires a lot of trial and error.
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Figure 4.9: Optimization evolution of a simple symmetric jacket (Ex. III)

(a) Leading design, 15th generation (b) Winning design, 46th generation

Figure 4.10: Topology of an optimized simple symmetric jacket (Ex. III)
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4.2.4 Manual Optimization Comparison

In order to have a basis of comparison for the automatically optimized designs, a simple

manual optimization was carried out. A classic topology with one X-brace on each face

as well as four legs was assumed as the optimal design, illustrated in figure 4.11. The

initial cross sections of the legs and braces were set equal to the inner and outer diam-

eters of the legs and braces in the ”UpWind reference jacket” from the OC4 project [30].

Figure 4.11: Topology for manual optimization of a simple symmetric jacket

To minimize the cost of the structure manually, the outer diameter was kept constant

while a sizing optimization was carried out for the inner diameters. In other words, the

manual optimization process had two design variables, the inner diameter of the braces

and the inner diameter of the legs. The jacket was subjected to the same loading and

stress assessment as in example I through III. If a brace or leg failed, either by yielding

or fatigue, the inner diameter was decreased and vice versa if no failures occurred. This

iterative process was carried out until an increase of 1 cm of the inner diameter of either

the legs or the braces would cause a failure. A total of six analyses was necessary to

meet this requirement. To compare this result with the jackets that were optimized by

GA, the fitness score of the manually optimized jacket was calculated by the same rules
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as in the automatic optimizations. The fitness results of all simple symmetric jackets

are reported in table 4.1.

Table 4.1: Fitness values of the optimized simple symmetric jackets

Topology Figure Fitness

Example I 4.6b 48.3896

Example II 4.8b 48.3872

Example III 4.10b 48.4658

Manual Optimization 4.11 47.9314

All of the designs generated by genetic algorithm beat the jacket created through a

simple manual optimization. Furthermore, the design with the highest fitness was from

example III which was the first process to have an adaptive mutation formulation. It is

surprising that all the fitness values in table 4.1 are so close to each other given the clear

differences in the topologies. Perhaps there is no one global solution that is remarkably

better than the second best.

Optimization of the simple cubic jacket structure has proved the ability of the opti-

mization script to create reasonable designs. The results were compelling and proved

the potential of evolutionary optimization. It also demonstrated the scripts ability to

beat a simple manual optimization. However, the simple jacket that has been studied

in this section is about 8 m high and would never be built as a jacket for a wind turbine.

It was decided that time was better spent pursuing a realistic height for the jacket than

to add more nodes to the cubic ground structure, e.g. 5x5 nodes on each face as in

figure 3.4b.
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4.3 Complex Symmetric Jacket

A jacket with a height/width ratio of four and a height of about 32 m was utilized for the

optimization runs in this section. A realistic, albeit low, height of a jacket for an offshore

wind turbine. The ground structure for this jacket with three nodes along the width

can be seen in figure 3.5. An optimization with two nodes along the width was also

performed. For the following results a maximum fitness of 100 is utilized.

There were several issues that arose when trying to optimize a full size jacket.

First, it became clear that a far too low wave period had been utilized so far in the

previous analyses and the intense loading induced a lot of oscillations. The loading was

manageable for the stiff cube but caused fatigue failure in almost all of the complex

jacket designs. Second, there where problems with Fedem not exporting load results

for some, seemingly random, members in the jacket. Neither me nor my supervisor,

Daniel Zwick, got to the bottom of this issue but it might be related to the fact that

a beta version of Fedem 7.1 was employed. The latter problem was circumvented by

treating individuals that exhibited this behavior as casualties.

4.3.1 Three Nodes Along the Width

The jacket that was subjected to an optimization process in this section was simply put

four of the cubes in section 4.2 stacked on top of each other. The ground structure has

928 beams and thus there is a huge search space to explore. The entire process took

about 45 hours and most time was devoted to building model files. The master model

file for this optimization is over 300 000 lines long and most of the lines are curve

export definitions. The optimization evolution can be seen in figure 4.12. The fitness

increases quickly for the first couple of generations before the evolvement halts and the

curves flatten. However, in the last couple of generations there is a notable increase in

fitness. It would be very interesting to see how it would have evolved from generation

50 and on. The termination criteria of 50 generations was not ideal in this instance.

In figure 4.13a an example of an initial random design from the first generation is

illustrated. The probability for activating beams in the initial individuals was set rela-

tively high in order to ensure that some individuals would survive the first generation.

Hence, there are a lot of beams in the initial topology. In figure 4.13b, the optimiza-

tion has been running for five generations and many of the beams have already been

minimized or removed completely, especially in the top and bottom of the jacket. After

30 generations, figure 4.13c, there has been an overall unimpressive evolution of the
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4.3 Complex Symmetric Jacket

topology. There are still large V-shaped beam pairs that must have a rather bad stiffness

to weight ratio. Even the winning design found in generation 49, figure 4.13d, has a

lot of the same negative traits and a rather unappealing topology. It is apparent that

the winning topology is nowhere near the global optimal solution.

The 32 m high jacket with three nodes along the width proved too complicated for

the optimization run performed here. However, given a different termination criteria

and more computational power the result might have been satisfactory.
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Figure 4.12: Optimization evolution of a complex symmetric jacket (Three nodes)
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4 RESULTS AND DISCUSSION

(a) Initial random design (b) Leading design, 5th generation

Figure 4.13: Topology evolution of a complex symmetric jacket (Three nodes)
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4.3 Complex Symmetric Jacket

(c) Leading design, 30th generation (d) Winning design, 49th generation
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4 RESULTS AND DISCUSSION

4.3.2 Two Nodes Along the Width

As the script was not able to produce a high-quality result with three nodes along the

width and a termination criteria of 50 generations, both of these factors were altered. A

ground structure with 2 nodes along the width and half as many nodes along the height

was employed, which decreases the complexity of the ground structure drastically. It

has 124 potential beam positions, in contrast to 928 with three nodes along the width.

Also, the termination criteria was changed from 50 generations to 100, still with a

population of 16.

When nodes are only located in the legs of the jacket and symmetry is imposed, all

members between legs are either horizontal or X-braces. No ”V” shaped braces, as there

are several examples of in figure 4.13, can be generated. All though that sounds solely

positive, it should be noted that the two members of the X-braces are not connected at

the intersection and will behave independently. Hence, the model will give a poorer

representation of the actual stiffness of the structure as it would be built in reality, with

welded intersections at the X-braces.

The entire optimization took roughly 24 hours, subdivided into 12 hours of Fedem

analyses, 10 hours of stress and fatigue analyses and 2 hours of writing model files. For a

master model with two nodes along the width, writing model files is no longer the most

time consuming part of the optimization process. The evolution of the optimization

process is illustrated by figure 4.14. Most of the increase in fitness from generation

one is done before the 25th generation. The second half of the optimization, from

generation 50 to 100, shows signs of many bad designs through the fluctuating fitness

of the generation winners and a high number of casualties.

The evolution of the topology is illustrated in figures 4.15a - 4.15d and exhibit

how structural cost is being minimized by the optimization script. A lot of the initial

weight has been cut already in the 5th generation, figure 4.15b. From generation 30,

figure 4.13c, and onwards the only non-sizing optimization changes is the removal of

two horizontal beams on each face. The winning design in figure 4.15d seems logical

for the given loading, with a thin stabilizing X-brace in the the middle of each face

and rather massive legs. It is impressive that the single brace formed exactly halfway

up the jacket, where there is a high need for stiffening, considering that there is no

enforced symmetry about the horizontal middle line. However, the design seems prone

to buckling failure, which is not evaluated by the script.
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Figure 4.14: Optimization evolution of a complex symmetric jacket (Two nodes)
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4 RESULTS AND DISCUSSION

(a) Initial random design (b) Leading design, 5th generation

Figure 4.15: Topology evolution of a complex symmetric jacket (Two nodes)
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4.3 Complex Symmetric Jacket

(c) Leading design, 30th generation (d) Winning design, 91th generation
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4 RESULTS AND DISCUSSION

4.3.3 Manual Optimization Comparison

To better assess the quality of the optimized topologies of the complex symmetric jacket,

a simple manual optimization was carried out. For both the ground structures with

two and three nodes along the width, as illustrated by the node layout in figure 4.16a

and 4.16b, respectively. Four X-braces of equal width and height on each face were

assumed to be the optimal topology, as illustrated in figure 4.16c. The optimization

was carried out in the same manner as for the simple symmetric case in section 4.2.4.

Inner diameters were customized iteratively until an increase of 1 cm in either the

braces or legs would cause failure. Fitness was evaluated by the same lines of code

as the designs produced by GA. In addition, a manual enhancement of the already

automatically optimized design was carried out for the jacket with two nodes along the

width. It was possible to increase the inner diameter of the braces of the topology in

figure 4.15d by 1 cm without causing failure. The results are summarized in table 4.2.

Table 4.2: Fitness values of the optimized complex symmetric jackets

Ground Structure Optimization Figure Fitness

Three nodes along width Automated 4.13d 87.9016

Manual 4.16b 96.7836

Two nodes along width Automated 4.15d 97.2175

Manual enhancement 4.15d 97.3586

Manual 4.16a 97.7768

For the ground structure with three nodes along the width, the manual optimization

had almost 10 ”fitness points” more than the automated. One such point corresponds

to 1 million NOK in construction cost. The huge gap was not surprising considering the

irrational topology of the winning design in figure 4.13d.

The manual optimization marginally beat both the automatically generated and

the manually enhanced topology for the jacket with two nodes along the width. When

comparing the topology of the manual optimization, figure 4.16c, with the winner of the

evolutionary optimization in figure 4.15d, it might look like the latter is fitter. However,

the legs of the automatically generated design have an outer diameter of 1.537 m and

a thickness of 25 mm, while the corresponding numbers for the manual topology are

1.2 m and 20 mm. Hence, although there is a higher number of beams in the manual

topology, the material cost of the evolutionary topology is higher.
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4.3 Complex Symmetric Jacket

(a) Two node layout (b) Three node layout (c) Topology

Figure 4.16: Topology for manual optimization of a complex symmetric jacket

An interesting observation was made during the manual optimization. Namely, that

the inner diameters of the legs and braces in the two and three node layout case ended

up being identical for both manual optimizations. This implies that the node connecting

two members forming a X-brace might not be as crucial as previously expected. As long

as there are mostly tensile or compressive forces in the braces, and buckling is not

accounted for, this observation makes sense.

The manual optimization carried out in this section verified the poor quality of

the optimization in section 4.3.1 and the competitive quality of the optimization in

section 4.3.2. Still, a quick manual optimization proved to be the overall winner in

optimizing a complex symmetric jacket.
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5 Conclusion

The preceding results has shed light on the pros and cons of genetic algorithms as an

optimization technique in general, and on the specific implementation utilized in this

thesis in particular. Regarding GA in general, many of the favorable and unfavorable

traits listed in section 2.2.1 has proved to be correct. The optimization process found

innovative solutions in an enormous search space and the script took advantage of

parallel computing during Fedem analyses. Writing the code during implementation

of the algorithm was time-consuming, but at the same time straightforward. The most

challenging part of the script was actually implementing symmetry constraints, which

has nothing to do with GA. Writing a NLP based optimization algorithm would have

been a greater challenge to overcome. Although GA indeed proved powerful, it has been

quite obvious that the winning topologies found were not the global optimal solutions

of the given problems.

The winning jacket topologies were, with the exception of the complex jacket with

three nodes along the width, reasonable for the given loading. The fitness values were

also almost equal to the results found by means of manual optimization. The four

greatest downfalls of the applied implementation, from a structural engineering point

of view, are probably the exclusion of:

• Buckling assessment of members

• Stress concentration factors (SCF) in the fatigue analysis

• Soil-structure interaction with the sea floor

• Evaluation of an ultimate limit state load case

Implementing one or more of these factors into the algorithm would have made the

end result more credible. The ground structure utilized could also have been more

general in that an optimal structure most likely has inclined legs. An optimal solution

might also have members crossing the middle of the jacket or some other shape than

a rectangular base. The ground structures in the implementation were in other words

far from exploring the entire reasonable design domain. The objective function that

was implemented was based on estimates and common sense, and surely has room for

improvement. The termination criteria, a specified number of generations, was also

heuristic. A convergence based criteria would have been more sensible, all though it

would be hard to estimate the run time of an optimization process in advance. Also,

input parameter values to the optimization script has been found, to a large extent, by
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5 CONCLUSION

trial and error. An issue that seemed to affect all optimization runs was the dependence

on the very first generations. The general topology of the winning design was often

found quickly while the rest of the optimization was only tweaking this initial winner.

However, the implementation of an adaptive mutation probability seemed to reduce

the extent of the issue. The problem might have been circumvented by running several

optimizations of the same structure simultaneously and merging them as they converge

towards their respective maxima.

Interesting observations include the verification of the schema theorem. There was

a significant drop in the number of casualties when the crossover was implemented

correctly, which can be seen when comparing figure 4.2 to the other optimization

evolution graphs. A bit-wise crossover does not carry enough information to pass on

traits to the next generation in an effective manner.

The jacket topologies generated by means of evolutionary optimization showed

a complexity-dependent quality. The simple symmetric examples all beat the quick

manual optimization of the same ground structure. The complex symmetric jacket

topology with two nodes along the width was almost on par with its manual optimization

counterpart. The most complex optimization run, with three nodes along the width,

did not yield a decent result. However, this computationally expensive optimization

run was limited by the amount of processing power.

All though the topologies that were generated through the course of this thesis

are not suitable for production because of the above mentioned downfalls, important

aspects regarding the use of evolutionary optimization on a jacket has been explored.

The results have shown that structural cost can be minimized in a reasonable manner

using genetic algorithms. The method is valuable and shows great promise because it is

powerful and at the same time easy to implement. If a more general ground structure

were to be optimized on a supercomputer by use of a combination of GA and manual

optimization, it is likely that cost-efficient and superior designs can be constructed.
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6 Further Work

The following list of thoughts and possible improvements is put together to aid coming

research or theses within the topic of this project:

• A disproportionally small amount of time was devoted to finding a good objec-

tive function, considering its importance in the optimization. A better defined

objective function can yield improved results.

• Long members, e.g. jacket legs between joints, were in this implementation

defined as several collinear segments between nodes of equal distance. If these

split members were redefined as single members, it would make the cost function

more correct and it would simplify the implementation of a buckling assessment.

• The sudden death approach to failed designs utilized in this implementation

means that no penalty is given to high stresses below yielding or near fatigue

limit state designs. A more gradual penalty formulation would probably have

been advantageous.

• The addition of the jacket base width as a design variable or the addition of nodes

in the middle of the jacket would have made the topology optimization even more

general, at the cost of a larger search space.

• While NASA optimized a small antenna on a 10 000 processor supercomputer, a

jacket was in this thesis optimized on a PC with one ”quad-core” processor. Better

results could probably have been found with more processing power.

• Implementation of stress concentration factors at the joints by the rules of DNV [27]

would have made the fatigue assessment more correct.
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A Jacket ground structure function

Listing A.1: Entire jacket ground structure function

1 %% Function for writing .ftl file of jacket and defining symmetrical members

2 % Input: (nodes along width of jacket, height/width ratio)

3 % Output: [Beam definitions, Node definitions, Symmetry definitions]

4 % Written by Johan H. Martens, spring 2014

5

6 function [B,N,S] = jacket_ftl_creator(n,lvls)

7 a = 2*4.016/(n−1); % reference distance between nodes

8 S = cell(5,1); % preallocating symmetry matrix

9 TwoDpos=cell(4,1);

10 N=zeros(4*n^2−4*n,4); % Preparing nodal position vector

11 k=(n−1)*a; % jacket width

12 i=1; % counter for total number of nodes

13 i1=100; % counters for node id (4 faces)

14 i2=200;

15 i3=300;

16 i4=400;

17 % Finding number of nodes through the height of the jacket (hn)

18 if lvls==1

19 hn=n;

20 else

21 hn=n+(lvls−1)*(n−1);
22 end

23

24 %% Defining nodal positions (face 1 and 4 "owns" edgenodes)

25 for s=[1 4 2 3] % counter over faces of cube

26 switch s

27 case 1

28 TwoDl=1;

29 pos = [0 0 0]; % initial position

30 for h=1:hn % height counter

31 for b=1:n % width counter

32 N(i,1:4)=[i1 pos];

33 pos = pos + [a 0 0];

34 TwoDpos{s,1}(TwoDl,1:3)=[i1 b h];

35 TwoDl=TwoDl+1;

36 i1=i1 + 1;

37 i=i + 1;

38 end

39 pos = [0 0 pos(3)]+[0 0 a];

40 end
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41 case 4

42 TwoDl=1;

43 pos = [k k 0];

44 for h=1:hn

45 for b=1:n

46 N(i,1:4)=[i4 pos];

47 pos = pos + [−a 0 0];

48 TwoDpos{s,1}(TwoDl,1:3)=[i4 b h];

49 TwoDl=TwoDl+1;

50 i4=i4 + 1;

51 i=i + 1;

52 end

53 pos = [k k pos(3)] + [0 0 a];

54 end

55 case 2

56 TwoDl=1;

57 pos = [0 k−a 0];

58 for h=1:hn

59 for b=2:n−1
60 N(i,1:4)=[i2 pos];

61 pos = pos + [0 −a 0];

62 TwoDpos{s,1}(TwoDl,1:3)=[i2 b h];

63 TwoDl=TwoDl+1;

64 i2=i2 + 1;

65 i=i + 1;

66 end

67 pos = [0 k−a pos(3)] + [0 0 a];

68 end

69 h=1;

70 for edge=1:hn

71 TwoDpos{s,1}(TwoDl ,1:3)=[TwoDpos{1,1}(1+n*(edge−1),1) n h];

72 TwoDpos{s,1}(TwoDl+hn,1:3)=[TwoDpos{4,1}(n*edge,1) 1 h];

73 TwoDl=TwoDl+1;

74 h=h+1;

75 end

76 case 3

77 TwoDl=1;

78 pos = [k a 0];

79 for h=1:hn

80 for b=2:n−1
81 N(i,1:4)=[i3 pos];

82 pos = pos + [0 a 0];

83 TwoDpos{s,1}(TwoDl,1:3)=[i3 b h];
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84 TwoDl=TwoDl+1;

85 i3=i3 + 1;

86 i=i + 1;

87 end

88 pos = [k a pos(3)]+[0 0 a];

89 end

90 h=1;

91 for edge=1:hn

92 TwoDpos{s,1}(TwoDl ,1:3)=[TwoDpos{4,1}(1+n*(edge−1),1) n h];

93 TwoDpos{s,1}(TwoDl+hn,1:3)=[TwoDpos{1,1}(n*edge,1) 1 h];

94 TwoDl=TwoDl+1;

95 h=h+1;

96 end

97 end

98 end

99

100 %% Extracting faces of cube in different subsets and combining them

101 m = length(N); % number of nodes

102 j=1; % counter

103 for i=1:m % for all nodes

104 if N(i,1) < 200 % if id of face 1

105 N1(j,1)=N(i);

106 j=j+1;

107 end

108 end

109 C1 = nchoosek(N1(:,1),2); % all possible combinations between two nodes on face 1

110 j=1; % counter

111 for i=1:m

112 if N(i,1) < 300 && N(i) >= 200 % checking for correct id

113 N2(j,1)=N(i);

114 j=j+1;

115 end

116 if N(i,2)==0 && N(i,3)==0 % finding relevant corner nodes

117 N2(j,1)=N(i);

118 j=j+1;

119 end

120 if N(i,2)==0 && N(i,3)==k % finding relevant corner nodes

121 N2(j,1)=N(i);

122 j=j+1;

123 end

124 end

125 C2 = nchoosek(N2(:,1),2);

126 j=1;
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127 for i=1:m

128 if N(i,1) < 400 && N(i) >= 300

129 N3(j,1)=N(i);

130 j=j+1;

131 end

132 if N(i,2)==k && N(i,3)==0

133 N3(j,1)=N(i);

134 j=j+1;

135 end

136 if N(i,2)==k && N(i,3)==k

137 N3(j,1)=N(i);

138 j=j+1;

139 end

140 end

141 C3 = nchoosek(N3(:,1),2);

142 j=1;

143 for i=1:m

144 if N(i,1) >= 400

145 N4(j,1)=N(i);

146 j=j+1;

147 end

148 end

149 C4 = nchoosek(N4(:,1),2);

150 C = [C1;C2;C3;C4]; % adding combinations of each face to a single vector

151

152 %% Removing duplicate node combinations at corners

153 c = length(C); % number of combinations

154 dup=0; % number of duplicates

155 for i=1:c

156 for j=1:c

157 if i~=j && (all(C(i,:) == C(j,:)) || all(C(i,:)==[C(j,2) C(j,1)])) && (all(C(j

,:) ~= [0 0]))

158 C(i,:)=[];

159 C(end+1,:)=[0 0];

160 dup=dup+1;

161 end

162 end

163 end

164 C=C(1:end−dup,:);
165

166 %% Removal of beams that are collinear (on top of each other)

167 c=length(C); % number of beam combinations

168 for i=1:c % for all beams
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169 % extracting triad coordinates [x1 y1 z1; x2 y2 z2]

170 pos=[N(N==C(i,1),2:4); N(N==C(i,2),2:4)];

171 dx=abs(pos(2,1)−pos(1,1)); % positive length along axes

172 dy=abs(pos(2,2)−pos(1,2));
173 dz=abs(pos(2,3)−pos(1,3));
174 len=sqrt(dx^2+dy^2+dz^2); % length of beam i

175 % matrix containing unit vector information [beam# length unitvector]:

176 uvec(i,1:5)=[i len dx/len dy/len dz/len];

177 end

178 q=1;

179 remID=0;

180 for i=1:c % double loop to check all members against each other

181 for j=1:c

182 % if two different members have the same unit vector

183 if i~=j && all(uvec(i,3:5)==uvec(j,3:5))

184 % if one of them is longer than the other & they have at least one node in

common, then erase the longer one:

185 if uvec(i,2) > uvec(j,2) && (C(i,1)==C(j,1) || C(i,1)==C(j,2) || C(i,2)==C(j

,1) || C(i,2)==C(j,2))

186 if ~any(remID==i) && abs( uvec(i,2)−uvec(j,2)) > 0.01

187 remID(q,1)=i;

188 q=q+1;

189 end

190 elseif uvec(i,2) < uvec(j,2) && (C(i,1)==C(j,1) || C(i,1)==C(j,2) || C(i,2)

==C(j,1) || C(i,2)==C(j,2))

191 if ~any(remID==j) && abs( uvec(i,2)−uvec(j,2)) > 0.01

192 remID(q,1)=j;

193 q=q+1;

194 end

195 end

196 end

197 end

198 end

199

200 %% Defining symmetrical members and output variable S

201 q=1;

202 c1=1;

203 c2=1;

204 c3=1;

205 c4=1;

206 c5=1;

207 S{5,1}=0;

208 % subdividing beams into four faces and one corner (S{1:5,1})
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209 for i=1:c

210 if ~any(remID==i) % If beam was not removed above −> add to final beam defenitions,

B

211 B(q,1:2)=[C(i,1:2)];

212 % Extracting symmetry data into S

213 % S will contain beams on each face in S{1:4,1} and corner beams in S{5,1}

214 for s1=1:length(C1)

215 % if the node combination of beam q are on side one

216 if all(B(q,:)==C1(s1,:)) || all([B(q,2) B(q,1)]==C1(s1,:))

217 % if both nodes are not corner nodes −> add to beams of side 1 S{1,1}

218 if ~(all(N(N==B(q,1),2:3)==[0 0]) && all(N(N==B(q,2),2:3)==[0 0])) && ~(

all(N(N==B(q,1),2:3)==[k 0]) && all(N(N==B(q,2),2:3)==[k 0]))

219 S{1,1}(c1,1:3)=[q C(i,1:2)];

220 c1=c1+1;

221 % else if both nodes are on a corner and has not been added

222 % to corner beam matrix −> add to S{5,1}

223 elseif ~any(S{5,1}(:,1)==q)

224 S{5,1}(c5,1:3)=[q C(i,1:2)];

225 c5=c5+1;

226 end

227 end

228 end % Repeat for face 2:4

229 for s2=1:length(C2)

230 if all(B(q,:)==C2(s2,:)) || all([B(q,2) B(q,1)]==C2(s2,:))

231 if ~(all(N(N==B(q,1),2:3)==[0 0]) && all(N(N==B(q,2),2:3)==[0 0])) && ~(

all(N(N==B(q,1),2:3)==[0 k]) && all(N(N==B(q,2),2:3)==[0 k]))

232 S{2,1}(c2,1:3)=[q C(i,1:2)];

233 c2=c2+1;

234 elseif ~any(S{5,1}(:,1)==q)

235 S{5,1}(c5,1:3)=[q C(i,1:2)];

236 c5=c5+1;

237 end

238 end

239 end

240 for s3=1:length(C3)

241 if all(B(q,:)==C3(s3,:)) || all([B(q,2) B(q,1)]==C3(s3,:))

242 if ~(all(N(N==B(q,1),2:3)==[k k]) && all(N(N==B(q,2),2:3)==[k k]))&& ~(

all(N(N==B(q,1),2:3)==[k 0]) && all(N(N==B(q,2),2:3)==[k 0]))

243 S{3,1}(c3,1:3)=[q C(i,1:2)];

244 c3=c3+1;

245 elseif ~any(S{5,1}(:,1)==q)

246 S{5,1}(c5,1:3)=[q C(i,1:2)];

247 c5=c5+1;
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248 end

249 end

250 end

251 for s4=1:length(C4)

252 if all(B(q,:)==C4(s4,:)) || all([B(q,2) B(q,1)]==C3(s4,:))

253 if ~(all(N(N==B(q,1),2:3)==[k k]) && all(N(N==B(q,2),2:3)==[k k])) && ~(

all(N(N==B(q,1),2:3)==[0 k]) && all(N(N==B(q,2),2:3)==[0 k]))

254 S{4,1}(c4,1:3)=[q C(i,1:2)];

255 c4=c4+1;

256 elseif ~any(S{5,1}(:,1)==q)

257 S{5,1}(c5,1:3)=[q C(i,1:2)];

258 c5=c5+1;

259 end

260 end

261 end

262 q=q+1;

263 end

264 end

265 % Updated unitvectors

266 clear uvec

267 b=length(B);

268 for i=1:b

269 % extracting triad coordinates [x1 y1 z1; x2 y2 z2]

270 pos=[N(N==B(i,1),2:4); N(N==B(i,2),2:4)];

271 dx=abs(pos(2,1)−pos(1,1)); % positive length along axes

272 dy=abs(pos(2,2)−pos(1,2));
273 dz=abs(pos(2,3)−pos(1,3));
274 len=sqrt(dx^2+dy^2+dz^2); % length of beam i

275 % matrix containing unit vector information [beam# length unitvector]

276 uvec(i,1:5)=[i len dx/len dy/len dz/len];

277 end

278 % Defining masterbeams for symmetry from an eigth of the jacket

279 nl=1;

280 for i=1:b

281 % if one of the beam nodes are on the left half of the master surface

282 if (N(N==B(i,1),2)<=(k/2) && N(N==B(i,1),3)==0 && N(N==B(i,2),3)==0) || (N(N==B(i,2)

,2)<=(k/2) && N(N==B(i,1),3)==0 && N(N==B(i,2),3)==0)

283 % if NOT one node is on the edge of the master surface and one

284 % outside

285 if ~((N(N==B(i,1),2)==(k/2) && N(N==B(i,2),2)>(k/2)) || ((N(N==B(i,2),2)==(k/2)

&& N(N==B(i,1),2)>(k/2))))

286 if ~any(S{5,1}(:,1)==i)

287 S{6,1}(nl,1:3)=[i B(i,1:2)]; % Masterbeams

93



A JACKET GROUND STRUCTURE FUNCTION

288 nl=nl+1;

289 end

290 end

291 end

292 end

293 % Identifying symmetrical beams by checking 2D position

294 for s=1:4 % for all surfaces

295 for i=1:length(S{s,1}) % for beams on suface s

296 if ~any(S{6,1}(:,1)==S{s,1}(i,1)) % if the beam i is not a masterbeam

297 Snode(1)=S{s,1}(i,2); % extracting nodes of slavebeam i

298 Snode(2)=S{s,1}(i,3);

299 % Extracting 2D position of nodes for slavebeam i

300 STwoDpos(1,1:2)=TwoDpos{s,1}(TwoDpos{s,1}==Snode(1),2:3);

301 STwoDpos(2,1:2)=TwoDpos{s,1}(TwoDpos{s,1}==Snode(2),2:3);

302 % for nodes on other half than mastersurface −> convert 2D

303 % position to respective node on left half

304 if n > 2

305 if (STwoDpos(1,1)>=ceil(n/2) && STwoDpos(2,1)>ceil(n/2)) || (STwoDpos

(1,1)>ceil(n/2) && STwoDpos(2,1)>=ceil(n/2))

306 for node=1:2

307 if STwoDpos(node,1)==n

308 STwoDpos(node,1)=1;

309 elseif STwoDpos(node,1)==ceil(n/2)

310 % do nothing

311 else

312 STwoDpos(node,1)=2*(n−STwoDpos(node,1));
313 end

314 end

315 end

316 end

317 for j=1:length(S{6,1}) % for all master beams

318 S{j,2}(1,1)=S{6,1}(j,1);

319 % Extracting 2Dpos of masterbeam j

320 Mnode(1)=S{6,1}(j,2);

321 Mnode(2)=S{6,1}(j,3);

322 MTwoDpos(1,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==Mnode(1),2:3);

323 MTwoDpos(2,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==Mnode(2),2:3);

324 % If master and slavebeam have the same 2D position

325 if (all(STwoDpos(1,1:2)==MTwoDpos(1,1:2)) && all(STwoDpos(2,1:2)==

MTwoDpos(2,1:2))) || (all(STwoDpos(2,1:2)==MTwoDpos(1,1:2)) && all(

STwoDpos(1,1:2)==MTwoDpos(2,1:2)))

326 % if beam i is not already added

327 if ~any(S{j,2}==S{s,1}(i,1))
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328 % check that they are of equal length

329 if uvec(S{6,1}(j,1),2)==uvec(S{s,1}(i,1),2)

330 % Add slavebeam to S{j,2}

331 S{j,2}(1,end+1)=S{s,1}(i,1);

332 end

333 end

334 end

335 end

336 end

337 end

338 end

339 % Beams crossing the vertical middle need special treatment:

340 del_cell=0; % for removing cells of concatenated salvebeams

341 % for all sets of symmetrical beams defined so far

342 for j=1:length(S{6,1})

343 % if the set of slavebeams has not been concatenated earlier

344 if ~isempty(S{j,2})

345 % extracting a beam (cb(1)=current beam 1)

346 cb(1)=S{j,2}(1,1);

347 cn(1,1:2)=B(cb(1),1:2);

348 % extracting 2Dpos of current beam

349 cbTwoDpos{1}(1,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==cn(1,1),2:3);

350 cbTwoDpos{1}(2,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==cn(1,2),2:3);

351 if mod(n,2)==0 % for even nodal width

352 limit=n/2+0.5;

353 else % for odd nodal width

354 limit=ceil(n/2);

355 end

356 % if beam is crossing the vertical middle line of the face

357 if (cbTwoDpos{1}(1,1)>limit && cbTwoDpos{1}(2,1)<limit || (cbTwoDpos{1}(2,1)>

limit && cbTwoDpos{1}(1,1)<limit))

358 maxh(1)=max(N(N==cn(1,1),4),N(N==cn(1,2),4)); % max height of beam

359 minh(1)=min(N(N==cn(1,1),4),N(N==cn(1,2),4)); % min height of beam

360 % for all sets of symmetrical beams

361 for i=1:length(S{6,1})

362 % if i is not same beam as j && set has not been extracted

363 if i~=j && ~isempty(S{i,2})

364 cb(2)=S{i,2}(1,1); % extracting current beam 2

365 cn(2,1:2)=B(cb(2),1:2);

366 % extracting 2Dpos of current beam 2

367 cbTwoDpos{2}(1,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==cn(2,1),2:3);

368 cbTwoDpos{2}(2,1:2)=TwoDpos{1,1}(TwoDpos{1,1}==cn(2,2),2:3);

369 maxh(2)=max(N(N==cn(2,1),4),N(N==cn(2,2),4));
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370 minh(2)=min(N(N==cn(2,1),4),N(N==cn(2,2),4));

371 % if current beam 1 and 2 has the same unit vector and

372 % heigth specifications −> reflect node number of

373 % current beam 2 over the vertical middle line

374 if (uvec(cb(1),2)==uvec(cb(2),2)) && (maxh(1)==maxh(2)) && (minh(1)

==minh(2))

375 for node=1:2

376 if cbTwoDpos{2}(node,1)==1 % if node 1 horizontally

377 cbTwoDpos{2}(node,1)=n; % reflect to node n horizontally

378 elseif cbTwoDpos{2}(node,1)==n % etc...

379 cbTwoDpos{2}(node,1)=1;

380 elseif cbTwoDpos{2}(node,1)>ceil(n/2)

381 cbTwoDpos{2}(node,1)=2*(n−cbTwoDpos{2}(1,1));
382 elseif cbTwoDpos{2}(node,1)<ceil(n/2)

383 cbTwoDpos{2}(node,1)=n+1−cbTwoDpos{2}(node,1);
384 end

385 end

386 % if 2Dpos of the two currentbeams coincide one way or the other

387 if (all(cbTwoDpos{2}(1,1:2)==cbTwoDpos{1}(1,1:2)) && all(

cbTwoDpos{2}(2,1:2)==cbTwoDpos{1}(2,1:2))) || (all(

cbTwoDpos{2}(2,1:2)==cbTwoDpos{1}(1,1:2)) && all(cbTwoDpos

{2}(1,1:2)==cbTwoDpos{1}(2,1:2)))

388 % concatenate symmetrical beam set

389 S{j,2}=[S{j,2} S{i,2}];

390 % erase the copied set from its initial cell

391 S{i,2}=[];

392 del_cell(1,end+1)=i;

393 end

394 end

395 end

396 end

397 end

398 end

399 end

400 % Tiding up S which is a function output

401 S{end+1,2}(1,1:length(S{5,1}))=S{5,1}(:,1);

402 S(del_cell(1,2:end),:)=[];

403 S(:,1)=[];

404 % each cell of S now contatins beams that will get equal design parameters

405

406 %% Adaptions for OC4 transition piece

407 tcn=zeros(4,2);

408 for i=1:length(N) % identifying top corner nodes
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409 % z coordinate has to be found using tolerance of 0.01 (numerical error)

410 if all(N(i,2:3)==[0 0]) && abs(N(i,4)−k*lvls) < 0.01

411 tcn(1,1)=N(i,1);

412 elseif all(N(i,2:3)==[0 k]) && abs(N(i,4)−k*lvls) < 0.01

413 tcn(2,1)=N(i,1);

414 elseif all(N(i,2:3)==[k k]) && abs(N(i,4)−k*lvls) < 0.01

415 tcn(3,1)=N(i,1);

416 elseif all(N(i,2:3)==[k 0]) && abs(N(i,4)−k*lvls) < 0.01

417 tcn(4,1)=N(i,1);

418 end

419 end

420 % moving entire cube to correct position

421 N(:,2:4)=N(:,2:4)+repmat([−4.016 −4.016 7.619−(lvls−1)*(n−1)*a],m,1);
422 % defining trasition piece nodes and pariing up with respective jacket nodes

423 N(end+1,:)=[701 −4 −4 16.15]; % node, plate level 1

424 tcn(1,2)=N(end,1); % pairing top corner node with respective plate node

425 N(end+1,:)=[705 −4 −4 20.15]; % node, plate level 2

426 N(end+1,:)=[702 −4 4 16.15];

427 tcn(2,2)=N(end,1);

428 N(end+1,:)=[706 −4 4 20.15];

429 N(end+1,:)=[703 4 4 16.15];

430 tcn(3,2)=N(end,1);

431 N(end+1,:)=[707 4 4 20.15];

432 N(end+1,:)=[704 4 −4 16.15];

433 tcn(4,2)=N(end,1);

434 N(end+1,:)=[708 4 −4 20.15];

435 % Updating beam defenitions

436 m = length(N); % number of nodes

437 for i=m−7:2:m−1 % adding vertical members through transition plate

438 B(end+1,:)=[N(i,1) N(i+1,1)];

439 end

440 B = [B; tcn]; % connecting cube to vertical t.p. beams

441

442 %% Writing fedem .FTL file

443 b = length(B); % number of combinations/beams

444 B(:,1:3) = [zeros(b,1) B(:,1:2)];

445 ftlname=sprintf('Jacket_%dlvls.ftl',lvls);

446 fID = fopen(ftlname,'w');

447 fprintf(fID,'FTLVERSION{4 ASCII}\n');

448 fprintf(fID,'# Node coordinates\n');

449 fprintf(fID,'# NODE{id state x y z}\n\n');

450 for i = 1:m % writing node defenitions

451 fprintf(fID,'NODE{%d 0 %d %d %d}\n',N(i,1),N(i,2),N(i,3),N(i,4));
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452 end

453 fprintf(fID,'\n# Member definitions\n');

454 fprintf(fID,'# BEAM2{id n1 n2 {PMAT pid}{PBEAMSECTION gid}{PORIENT oid}\n\n');

455 h=1;

456 for i = 10001:b+10000 % beam id offset: 10 000

457 fprintf(fID,'BEAM2{%d %d %d {PMAT 1} {PBEAMSECTION %d}}\n',i,B(i−10000,2),B(i
−10000,3),i);

458 B(h,1)=i; % Adding beam number to first column of B

459 h=h+1;

460 end

461 fprintf(fID,'\n# Member properties\n');

462 fprintf(fID,'# PBEAMSECTION{gid a iyy izz ixx ky kz cx cz}\n\n') ;

463 for i = 10001:b+10000 % writing cross section parameters (dummy), offset 10000

464 fprintf(fID,'PBEAMSECTION{%d %d %d %d %d %d %d %d %d}\n',i

,0.4398,0.1083,0.1083,0.2166,2,2,0,0);

465 end

466 fprintf(fID,'\n# Material properties\n');

467 fprintf(fID,'# PMAT{pid e g ny rho }\n\n');

468 fprintf(fID,'PMAT{1 2.10e+11 8.08e+10 0.3 7850 {NAME "Steel"}}\n\n');

469 fclose(fID);

470 end % end of function
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B Fatigue damage function

Listing B.1: Entire fatigue damage function

1 %% Function for assessing fatigue damage of one cross section

2 % Input: (loading seqence of eight spots [MPa], design life [years], ...

3 % ... analysis time [s])

4 % Output: fail = true or false

5 % Written by Johan H. Martens, spring 2014

6

7 function [fail] = fatiguefail(lseq,yr,eff_t)

8 cycle=0; % variable to store stress cycles

9

10 %% Extracting stress cycles from load sequence

11 % for all eigth stress spots around the circumference of the cross section

12 for s=1:8

13 clear extrema

14 % Extracting local extrema (peaks and valleys) of timeseries

15 [pks,pkspos]=findpeaks(lseq(:,s)); % finding position and value of peaks

16 [vlys,vlyspos]=findpeaks(−lseq(:,s)); % finding position and value of valleys

17 vlys=−vlys;
18 extrema = [pkspos pks; vlyspos vlys]; % combining peaks and valleys

19 extrema = sortrows(extrema,1); % putting in correct order

20 extrema = extrema(:,2); % storing values

21 extrema(2:length(extrema)+1) = extrema;

22 extrema(1) = lseq(1,s); % adding first datapoint

23 extrema(end+1) = lseq(end,s); % adding last datapoint

24 i=1; % counters

25 k=1;

26 res=0;

27 while res==0 && length(extrema)>3

28 Nr=length(extrema)−3;
29 while (i <= Nr)

30 % calculate delta amplitudes

31 clear dS

32 dS(1) = abs(extrema(i+1) − extrema(i ));

33 dS(2) = abs(extrema(i+2) − extrema(i+1));

34 dS(3) = abs(extrema(i+3) − extrema(i+2));

35 if ((dS(2) <= dS(1)) && (dS(2) <= dS(3))) % check delta amplitudes

36 cycle(k,s) = dS(2); % storage of the extracted cycle

37 k = k + 1;

38 extrema(i+1:i+2) = []; % discard points that make out cycle

39 res = 0; % check from beginning for dataset

40 i = 1;
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41 break

42 % if no cycle was extracted, continue to next set of dS's

43 else

44 i = i + 1;

45 res = 1;

46 end

47 end

48 end

49 % adding residue to itself to extract cycles from residue

50 residue=[extrema; extrema];

51 i=1;

52 res=0;

53 while res==0 && length(residue)>3

54 Nr=length(residue)−3;
55 while (i <= Nr)

56 % calculate delta amplitudes

57 clear dS

58 dS(1) = abs(residue(i+1) − residue(i ));

59 dS(2) = abs(residue(i+2) − residue(i+1));

60 dS(3) = abs(residue(i+3) − residue(i+2));

61 if ((dS(2) <= dS(1)) && (dS(2) <= dS(3))) % check delta amplitudes

62 cycle(k,s) = dS(2); % storage of the extracted cycle

63 k = k + 1;

64 residue(i+1:i+2) = []; % discard points that make out cycle

65 res = 0; % check from beginning for dataset

66 i = 1;

67 break

68 % if no cycle was extracted, continue to next set of dS's

69 else

70 i = i + 1;

71 res = 1;

72 end

73 end

74 end

75 end

76

77 %% Finding S−N parameters

78 % number of times eff_t (effective analysis time) occur during design lifetime

79 n=yr*365*24*60*60/eff_t;

80 % S−N curve data for tubular joints in seawater with cathodic protection (DNV RP)

81 if n <= 1E6

82 m=3;

83 loga=11.764;
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84 elseif n > 1E6

85 m=5;

86 loga=15.606;

87 end

88

89 %% Accumulating damage in each stress spot

90 spotD=zeros(1,8); % vector to store accumulated spot damage

91 for s=1:8

92 for i=1:length(cycle(:,s)) % for all cycles

93 if cycle(i,s) > 1 % omit contribution from stress ranges below 1 MPa

94 N1=10^(loga−m*log10(cycle(i,s)));
95 spotD(1,s)=spotD(1,s) + n/N1;

96 end

97 end

98 end

99

100 %% Checking for failure and creating output variable

101 if any(spotD(1,:)>=1) % if any spot had accumulated damage >= 1

102 fail=1; % fatigue failure of cross section

103 else

104 fail=0; % no fatigue failure of cross section

105 end

106 end % end of function
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C Main optimization script

Listing C.1: Entire main optimization script

1 %% Main optimization script (compatible with FEDEM R7.1)

2 % Written by Johan H. Martens, spring 2014

3

4 clc % clear command window

5 clear all % clear variables

6 close all % close figures

7 rng('shuffle') % reseed MATLAB random number generator

8

9 %% User input

10 masterfile ='OC4−4lvls−2n.fmm';% Master model file

11 lvls = 4; % Height/width ratio of jacket

12 n = 2; % Nodes along width of jacket

13 baseID = 10000; % Beam ID offset in model

14 jpa = 7; % Jacket parent assembly number in master modelfile

15 pop = 16; % Population size

16 conc = 4; % Number of concurrent processes during fedem analysis

17 endgen = 100; % Total number of generations (termination criteria)

18 yr = 20; % Design life [years]

19 ts = 0.05; % Timestep for data output

20 eff_t = 30; % Effective analysis time [s]

21 fy = 355; % Yield limit of steel [MPa]

22 fatlim = 20; % Omit fatigue check for stress ranges below fatlim

23 rho = 7850; % Steel density [kg/m^3]

24 ps = 15; % NOK/kg steel in structure

25 pins = 15000; % Price of installing one beam [NOK]

26 Pb = 0.50; % Probability of activating initial beam

27 Pm = Pb*0.02; % Initial mutation probability

28 minPm = Pb*0.02; % Minimum mutation probability

29 maxPm = Pb*0.20; % Maximum mutation probability

30 tresPm = Pb*0.20; % Diversity treshold for adapting Pm

31 maxFit = 100; % Maximum fitness (optimization goal)

32 Lc = 11; % Length of chromosomes [bit]

33 maxDo = 2.0; % Maximum allowed diameter in model [m]

34 minDo = 0.5; % Minimum allowed diameter in model [m]

35 minDratio = 0.8; % Lower inner/outer diameter ratio boundary

36 maxDratio = 0.99; % Upper inner/outer diameter ratio boundary

37 SPD = 0.01; % Stiffness proportional damping

38 MPD = 0; % Mass proportional damping

39 cuts = 1; % Number of cuts in chromosome during crossover

40 sym = true; % Toggle symmetry of all four sides of jacket
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41

42 %% Defining and preallocating variables

43 % Model info: [beams (#,node1,node2),Nodes (#, position), Symmetry data]

44 [B,N,S] = jacket_ftl_creator(n,lvls); % from jacket funtion

45 T=N(1:end−8,:); % Nodes (− 8 nodes in transition piece)

46 t=length(T); % Number of nodes

47 b=length(B); % Number of beams

48 totmass=zeros(pop,endgen); % for total mass of structure

49 obj=zeros(pop,endgen); % for value of objective function for all generations

50 fit=zeros(pop,endgen); % for value of fitness for all generations

51 poppos=zeros(pop,endgen); % for position relative to fitnesses

52 yield=zeros(1,5,endgen); % for yield failures

53 crash=zeros(pop,1,endgen); % for storing crashed individuals

54 P=zeros(endgen,3); % for plot data

55 fatigue=zeros(pop,endgen); % for storing individuals failed by fatigue

56 gentime=zeros(1,endgen); % for timing computation time of generations

57 stresstime=zeros(1,endgen); % computation time of stress analysis

58 fedemtime=zeros(1,endgen); % computation time of fedem analysis

59 writetime=zeros(1,endgen); % time for writing model files

60 masterB=zeros(1,size(S,2)); % for master symmetry beams

61 relfit=zeros(pop,endgen); % for relative fitness

62 csp=zeros(b,8,pop,endgen); % for cross sectional parameters of all beams

63 nts = eff_t/ts+1; % number of timesteps from analysis

64 % cross sectional parameter ID in .fmm model file

65 sectioninfo = {'AREA = '; 'AREA_MOMENT_IP = '; 'AREA_MOMENT_IY = '; 'AREA_MOMENT_IZ = ';

'HYDRO_DB = '; 'HYDRO_DD = '; 'TUBE_DI = '; 'TUBE_DO = '};

66

67 %% Initial cross sectional parametres (creation of first generation)

68 for j=1:pop % population

69 nr=1;

70 for i = 1:b−8 % beams

71 % beam created by probability Pb || cornerbeams can not be removed

72 if rand(1) < Pb || any(S{end,1}==i)

73 Do=maxDo*rand(1); % random value between 0 and maxDo [m]

74 while Do < minDo % make sure Do is valid

75 Do=maxDo*rand(1);

76 end

77 Di=Do*rand(1); % random inner diameter

78 while Di < minDratio*Do || Di > maxDratio*Do % make sure Di is valid

79 Di=Do*rand(1);

80 end

81 else

82 Di=0;
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83 Do=0;

84 rb(nr,j)=i; % matrix containing id of removed beams

85 nr=nr+1;

86 end

87 I=pi/64*(Do.^4−Di.^4);
88 % parameters [Area Ip Iy Iz HydroDB HydroDD Di Do]

89 csp(i,:,j)=[pi/4*(Do.^2−Di.^2) 2*I I I Do Do Di Do];

90 end

91 end

92 % if symmetry==true, copy masterbeam parameters to slavebeams

93 if sym==1

94 for i=1:size(S,1)

95 masterB(i)=S{i,1}(1,1); % creating list of masterbeams

96 end

97 clear rb

98 for ind=1:pop

99 nr=1;

100 for i=1:size(S,1)

101 csp(S{i,1}(1,:),:,ind)=repmat(csp(masterB(i),:,ind),[length(S{i,1}(1,:)) 1])

;

102 if csp(masterB(i),8,ind)==0

103 % matrix containing id of removed beams

104 rb(nr:(nr+length(S{i,1})−1),ind)=S{i,1};
105 nr=nr+length(S{i,1});

106 end

107 end

108 end

109 end

110

111 % Writing parameters of beams inside transition piece for all generations:

112 % values from OC4 documentation

113 Do=1.2;

114 Di=1.160;

115 I=pi/64*(Do.^4−Di.^4);
116 csp(end−7:end,:,:,:)=repmat([pi/4*(Do.^2−Di.^2) 2*I I I Do Do Di Do],[8 1 pop endgen]);

117

118 % Finding all beams connected to each node. Will later be used to

119 % determine if a node has no connecting beams

120 Att=cell(3,t); % Preallocating cell array

121 for tri=1:t % For all triads/nodes

122 Att{1,tri}=T(tri,1); % store node number in row 1

123 for beam=1:b % For all beams

124 % If current triad has a connected beam
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125 if B(beam,2)==T(tri,1) || B(beam,3)==T(tri,1)

126 % Store beamnumber in cell in row 2

127 Att{2,tri}=[Att{2,tri} B(beam,1)];

128 end

129 end

130 end

131

132 %% Reading master modelfile into cell array

133 clear fmmcell

134 if (exist(masterfile,'file') == 2) % checking for masterfile

135 Fin = fopen(masterfile, 'r'); % Open masterfile for reading

136 % Saving file as a cell array, one cell per line

137 fmmcell=textscan(Fin,'%s','Delimiter','\n');

138 else

139 fprintf('No master model file!')

140 return

141 end

142

143 %% Optimization loop through all generations

144 for gen=1:endgen

145 fprintf('\nCommencing generation %d \n\n',gen)

146 iterationtime=tic; % timer of each generation

147 clear currentmodel

148 remT=cell(pop,2); % Vector will contain triads to be removed

149 h=1;

150

151 %% Creating new model files with updated parameters

152 fprintf('Writing .fmm''s for generation %d, Individuals: ',gen)

153 writet=tic;

154 for p=1:pop

155 fprintf('%d ',p)

156 readbeams = 0; % logicals and counters for reading of .fmm masterfile

157 readtriads = 0;

158 readsections = 0;

159 readjoints = 0;

160 readcurves = 0;

161 beam_ID = 0;

162 % lines to be ignored from masterfile when generating .fmm files

163 del_lns=[];

164 % model filename

165 currentmodel{p} = sprintf('%s_%03.0f_%03.0f.fmm',masterfile(1:end−4),gen,p);
166

167 %% Identifying nodes without connecting beams
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168 for tri=1:t % For all nodes

169 % Row 3 of Att will contain a counter of matched beams

170 Att{3,tri}(1,p)=0;

171 for remB = 1:size(rb(:,p,gen),1) % For all removed beams

172 if rb(remB,p,gen)~=0

173 % For all beams connected to node

174 for attB = 1:length(Att{2,tri})

175 % If match (connected==removed)

176 if Att{2,tri}(1,attB)==rb(remB,p,gen)+baseID

177 % Count + 1 match

178 Att{3,tri}(1,p)=Att{3,tri}(1,p)+1;

179 end

180 end

181 end

182 end

183 % Number of connected beams that are removed

184 match=Att{3,tri}(1,p);

185 % Number of connected beams

186 connected=length(Att{2,tri});

187 % If all beams connected == number of matches (removed beams)

188 if connected==match

189 % List triad/node in removal vector remT{p,1}

190 remT{p,1}=[remT{p,1} Att{1,tri}(1,1)];

191 end

192 end

193

194 %% Reading through entire masterfile line by line and customizing

195 for ln=1:length(fmmcell{1,1})

196 Lin=fmmcell{1,1}{ln,:}; % Get next line of masterfile

197

198 %% Beam definitions

199 if readbeams == 0

200 if (strfind(Lin, '!*** Beams ***') > 0)

201 readsections = 0;

202 readtriads = 0;

203 readbeams = 1; % Activate beamreading

204 readjoints = 0;

205 readcurves = 0;

206 end

207 else

208 if (strfind(Lin,sprintf('ID ='))>0)

209 for i=1:size(rb,1)

210 % If beam is removed from model
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211 if (strfind(Lin,sprintf('ID = %.0f;',rb(i,p,gen)+baseID)) > 0)

212 % checking for correct assembly number

213 if (strfind(fmmcell{1,1}{ln+7,:},sprintf('PARENT_ASSEMBLY = %d',

jpa)) > 0)

214 % Delete entry from model file

215 del_lns=[del_lns ln−4:ln+16];
216 end

217 end

218 end

219 % If beam is active −> add correct damping factor

220 elseif (strfind(Lin,sprintf('STIF_PROP_DAMP'))>0)

221 if (strfind(fmmcell{1,1}{ln+2,:},sprintf('aID: %d',jpa))>0)

222 fmmcell{1,1}{ln,:}=sprintf('STIF_PROP_DAMP = %f;',SPD);

223 end

224 elseif (strfind(Lin,sprintf('MASS_PROP_DAMP'))>0)

225 if (strfind(fmmcell{1,1}{ln+10,:},sprintf('aID: %d',jpa))>0)

226 fmmcell{1,1}{ln,:}=sprintf('MASS_PROP_DAMP = %f;',MPD);

227 end

228 end

229 end

230

231 %% Triad (node) definitions

232 % only enter triadreading if any triad must be removed

233 if ~isempty(remT{p,1})

234 % If any triads are to be removed

235 if readtriads == 0

236 if (strfind(Lin, '!*** Triads ***') > 0)

237 readsections = 0;

238 readtriads = 1; % Activate triadreading

239 readbeams = 0;

240 readjoints = 0;

241 readcurves = 0;

242 end

243 else

244 for i=1:length(remT{p,1})

245 % If triad is removed from model

246 if (strfind(Lin,sprintf('ID = %.0f;',remT{p,1}(1,i))) > 0)

247 % checking for correct assembly number

248 if (strfind(fmmcell{1,1}{ln+4,:},sprintf('PARENT_ASSEMBLY = %d',

jpa)) > 0)

249 % Delete entry from model file

250 del_lns=[del_lns ln−8:ln+5];
251 end
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252 end

253 end

254 end

255 % If a removed triad is connected to a joint, the joint also

256 % has to be removed:

257 if readjoints == 0

258 if (strfind(Lin, '!*** Joints ***') > 0)

259 readsections = 0;

260 readtriads = 0;

261 readbeams = 0;

262 readjoints = 1; % Activate jointreading

263 readcurves = 0;

264 end

265 else

266 for i=1:length(remT{p,1})

267 % If triad is removed from model

268 if (strfind(Lin,sprintf('SLAVE_TRIAD = aID: %.0f uID: %.0f;',jpa,

remT{p,1}(1,i))) > 0)

269 % Delete corresponding joint

270 del_lns=[del_lns ln−16:ln+3];
271 end

272 end

273 end

274 end

275

276 %% Beam cross section definitions

277 if readsections == 0

278 if (strfind(Lin, '!*** Beam cross sections ***') > 0)

279 readsections = 1; % Activate reading of beam cross sections

280 readtriads = 0;

281 readbeams = 0;

282 readjoints = 0;

283 readcurves = 0;

284 end

285 else

286 if (strfind(Lin,'ID')>0)% if keyword ID is found

287 for i=1:b % cycling through all beams in model

288 if (strfind(Lin,sprintf('ID = %.0f;',i+baseID))>0)

289 % checking for correct material and parent assembly

290 if (strfind(fmmcell{1,1}{ln+1,:},sprintf('MATERIAL = aID: %.0f

uID: 1;',jpa)) > 0)

291 if beam_ID==0

292 % If beam is removed from model
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293 if any(rb(:,p,gen)==i)

294 % Delete entry from model file

295 del_lns=[del_lns ln−23:ln+8];
296 break

297 else

298 % if beam is active in model

299 beam_ID=i; % store ID

300 break

301 end

302 end

303 end

304 end

305 end

306 end

307 if beam_ID > 0 % If beam is active

308 for var_ln=ln−24:ln+7 % For relevant lines

309 Lin=fmmcell{1,1}{var_ln,:}; % Extract line

310 for k=1:8 % Cycle through parameters

311 % Find parameter in current line

312 if (strfind(Lin,sectioninfo{k}) > 0)

313 % Replacing parameters with updated ones

314 fmmcell{1,1}{var_ln,:}=sprintf('%s%f;',sectioninfo{k},csp(

beam_ID,k,p,gen));

315 break

316 end

317 end

318 end

319 end

320 beam_ID=0;

321 end

322

323 %% Curve export definitions

324 if readcurves == 0

325 if (strfind(Lin, '!*** Curves ***') > 0)

326 readsections = 0;

327 readtriads = 0;

328 readbeams = 0;

329 readjoints = 0;

330 readcurves = 1; % Activate curvereading

331 end

332 else % finding result object

333 if (strfind(Lin,sprintf('Y_AXIS_RESULT_OBJECT = aID: %d',jpa)) > 0)

334 for i=1:b % finding corresponding beam
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335 if (strfind(Lin,sprintf('uID: %d',i+baseID)) > 0)

336 % if current curve corresponds to a removed beam

337 if any(rb(:,p,gen)==i)

338 % Delete entry from model file

339 del_lns=[del_lns ln−42:ln+5];
340 break

341 end

342 end

343 end

344 end

345 end

346 end

347

348 %% Making folders and writing model file of current individual

349 inddir=sprintf('Ind_%03.0f_%03.0f',gen,p);

350 mkdir(inddir)

351 modelpath=sprintf('%s\\%s',inddir,currentmodel{p});

352 % Create model file for current iteration

353 Fout = fopen(modelpath,'w');

354 for ln=1:length(fmmcell{1,1}) % For all lines in masterfile

355 if ~any(del_lns==ln) % As long as line is not marked to be deleted

356 % Copy line to new modelfile

357 fprintf(Fout,'%s\n',fmmcell{1,1}{ln,:});

358 end

359 end

360 % Copy result directory and transition piece defintion to new individual

361 cf_source = [masterfile(1:end−4) '_RDB'];

362 cf_destination = [inddir '\' currentmodel{p}(1:end−4) '_RDB'];

363 copyfile(cf_source,cf_destination);

364 end

365 writetime(gen)=toc(writet); % model file writing timer

366 fprintf('\nDone!\n\n')

367 fclose('all');

368

369 %% Run model files of current generation in FEDEM

370 fedemt=tic;

371 for runs=1:conc:pop

372 indstr=sprintf('%d ',[runs:runs+conc−1]);
373 fprintf('Running FEDEM. Generation: %d, Individuals: %s\n',gen,indstr);

374 % Parallel for loop for of "conc" models for faster computation

375 parfor p=runs:runs+conc−1
376 inddir=sprintf('Ind_%03.0f_%03.0f',gen,p);

377 modelpath=sprintf('%s\\%s',inddir,currentmodel{p})
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378 PSrun = sprintf('powershell −inputformat none fedem −f %s −solve dynamics',

modelpath);

379 system(PSrun);

380 end

381 fprintf('Done!\n\n')

382 end

383 fedemtime(gen)=toc(fedemt); % timer of fedem analysis

384

385 %% Extracting timeseries results from analysis and evaluating damage

386 stresst=tic;

387 cfail=1;

388 yfail=1;

389 fprintf('Importing forcedata from analysis, converting to MPa\n and checking for

yielding and fatigue damage\n\n')

390 for ind=1:pop % for all individuals

391 file = sprintf('Ind_%03.0f_%03.0f\\timeseries.asc',gen,ind);

392 if (exist(file,'file') == 2)

393 % loading forcedata from file into the struct timeforces

394 timeforces=importdata(file,'\t',7);

395 timeforces.data(:,1)=[]; % deleting timestep column

396 % if correct number of datapoints

397 if size(timeforces.data,1)==nts

398 for beam=1:b−8 % for all beams (except 8 in transition piece)

399 % if beam is not removed and individual has not failed

400 if ~any(rb(:,ind,gen)==beam) && fatigue(ind,gen)==0 && ~any(yield(:,1,

gen)==ind) && ~any(crash(:,1,gen)==ind)

401 Do= csp(beam,8,ind,gen); % Outer diameter

402 A = csp(beam,1,ind,gen); % Area

403 I = csp(beam,3,ind,gen); % Moment of inertia

404 % number of skipped beams so far

405 ns = sum(rb(:,ind,gen)<beam) − sum(rb(:,ind,gen)==0);

406 % number of active beams

407 na = b − sum(rb(:,ind,gen)>0);

408 for End=1:2 % for both ends of beam

409 % COLLAPSING CODE FOR READABILITY

410 % Extracting forces of current beam end, calculating stresses and converting to MPa

411 if End==1

412 timestresses=timeforces.data(:,[beam beam+na beam+2*na]−ns).*repmat([1/A (Do/2)/I (

Do/2)/I],nts,1)./(1000^2);

413 elseif End==2

414 timestresses=timeforces.data(:,3*na+[beam beam+na beam+2*na]−ns).*repmat([1/A (Do/2)

/I (Do/2)/I],nts,1)./(1000^2);

415 end
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416 % Checking for empty datasets (ISSUE WITH EMPTY CURVE EXPORTS FROM FEDEM!)

417 if all(timestresses==0)

418 % Delete individuals with totally unloaded members

419 fprintf('Warning: empty matrix of stresses extracted from individual %d, beam %d\n',

ind,beam)

420 fprintf('Individual discarded from optimization\n')

421 crash(cfail,1,gen)=ind; % storing crashed individuals

422 cfail=cfail+1;

423 break

424 end

425 sigx=timestresses(:,1); % Stress from axial force

426 sigy=timestresses(:,2); % Stress from moment about Y−axis
427 sigz=timestresses(:,3); % Stress from moment about Z−axis
428 % Calculating stresses in 8 spots around every beam end

429 % according to DNV−RP−C203 s.32 (SCF=1)

430 clear sig

431 sig(:,1)=sigx+sigy;

432 sig(:,2)=0.5*sigx+sqrt(2)/2*sigy−sqrt(2)/2*sigz;
433 sig(:,3)=sigx−sigz;
434 sig(:,4)=0.5*sigx−sqrt(2)/2*sigy−sqrt(2)/2*sigz;
435 sig(:,5)=sigx−sigy;
436 sig(:,6)=0.5*sigx−sqrt(2)/2*sigy+sqrt(2)/2*sigz;
437 sig(:,7)=sigx+sigz;

438 sig(:,8)=0.5*sigx+sqrt(2)/2*sigy+sqrt(2)/2*sigz;

439

440 %% Checking for yielding and fatigue damage

441 maxstress=max(max(abs(sig))); % maximum stress in current section

442 if maxstress > fy

443 % for first yield current in generation

444 if yfail == 1

445 yield(yfail,1:3,gen)=[ind beam+baseID maxstress];

446 yfail=yfail+1;

447 fprintf('Individual %d failed by yielding at %0.f MPa (beam: %d)\n',ind,

maxstress,beam+baseID)

448 break

449 % if a new individual yields

450 elseif ind ~= yield(yfail−1,1,gen)
451 yield(yfail,1:3,gen)=[ind beam+baseID maxstress];

452 yfail=yfail+1;

453 fprintf('Individual %d failed by yielding at %0.f MPa (beam: %d)\n',ind,

maxstress,beam+baseID)

454 break

455 end
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456 end

457 % only do fatigue check if highest stress cycle is above fatlim

458 if max(range(sig,1)) > fatlim

459 % run fatigue analysis in external function,

460 % fatiguefail returns fatigue(ind,gen)=1 for failure

461 fatigue(ind,gen)=fatiguefail(sig,yr,eff_t);

462 if fatigue(ind,gen)==1

463 fprintf('Individual %d failed by fatigue (beam ID: %d)\n',ind,beam+baseID)

464 break

465 end

466 end

467 % BRINGING CODE UP TO CORRECT LEVEL AGAIN

468 end

469 end

470 end

471 else % not enough datapoints (premature termination of analysis)

472 fprintf('Corrupt timeseries data for individual %d\n',ind)

473 crash(cfail,1,gen)=ind; % storing crashed individual

474 cfail=cfail+1;

475 end

476 else % no data (totally failed analysis)

477 fprintf('No timeseries data for individual %d\n',ind)

478 crash(cfail,1,gen)=ind; % storing crashed individual

479 cfail=cfail+1;

480 end

481 end

482 stresstime(gen)=toc(stresst);

483 fprintf('Done!\n\n')

484

485 %% Calculating weight of structures

486 totmass(:,gen)=zeros(pop,1);

487 % looping through population of current generation

488 for ind=1:pop

489 for j=1:b−8 % cycling through beams

490 if ~any(rb(:,ind,gen)==j) % exclude removed beams

491 % extracting triad coordinates [x1 y1 z1; x2 y2 z2]

492 pos=[N(N==B(j,2),2:4); N(N==B(j,3),2:4)];

493 dx=pos(2,1)−pos(1,1); % length along axes

494 dy=pos(2,2)−pos(1,2);
495 dz=pos(2,3)−pos(1,3);
496 len=sqrt(dx^2+dy^2+dz^2); % length of beam j

497 vol=len*csp(j,1,ind,gen); % volume of beam j [m^3]

498 % mass of beam j added to totmass(pop x gen) [kg]
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499 totmass(ind,gen)=totmass(ind,gen)+vol*rho;

500 end

501 end

502 end

503

504 %% Calculating objective function/fitness and updating leadertable

505 for i=1:pop

506 % price of structure (estimate in NOK), the more removed beams the cheaper

507 obj(i,gen)=totmass(i,gen)*ps+(b−sum(rb(:,i,gen)>0))*pins;
508 % fitness = constant − objective value, (higher = better)

509 fit(i,gen)=maxFit−obj(i,gen)/1E6;
510 end

511 % sorting by fitness and pairing with correct population numnber

512 [fit(:,gen), poppos(:,gen)]=sort(fit(:,gen),'descend');

513 % result of current generation before yield and fatigue

514 genres=[fit(:,gen), poppos(:,gen)];

515 nr=0; % counter

516 clear surv % preparing variable of survivors

517 for i=1:pop

518 if ~any(genres(i,2)==crash(:,1,gen)) % if individual did not crash

519 if ~any(genres(i,2)==yield(:,1,gen)) % if individual did not yield

520 if fatigue(genres(i,2),gen)==0 % and not fail by fatigue

521 nr=nr+1; % add to number of survivors

522 surv(nr,:)=genres(i,:); % store survivors

523 end

524 end

525 end

526 end

527

528 ncrash=sum(crash(:,1,gen)>0); % number of crashed individuals

529 nfat=sum(fatigue(:,gen)>0); % number of failures by fatigue

530 nyield=sum(yield(:,1,gen)>0); % number of failures by yeilding

531 fprintf('%d of %d individuals survived generation %d!\n',nr,pop,gen)

532 if nr~=pop

533 fprintf('%d failed by fatigue, %d crashed and %d yielded\n',nfat,ncrash,nyield)

534 end

535 nosurv=0;

536 if ~exist('surv','var')

537 fprintf('\nNo individuals from generation %d survived\n',gen)

538 nosurv=1;

539 if ~exist('leaders','var')

540 fprintf('\nAll initial designs failed! Optimization terminated. \n')

541 return
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542 end

543 end

544 % if there are survivors, update leadertable

545 if nosurv==0

546 if gen==1

547 % for first generation all survivors are leaders

548 templead=[surv ones(size(surv,1),1)*gen];

549 else

550 % adding result of current generation (>1) to temporary leader table

551 templead=[leaders(:,:,gen−1);surv ones(size(surv,1),1)*gen];

552 end

553 % sorting list containing old leaders and new candidates

554 templead=sortrows(templead,1);

555 % inverting list (best fitness on top)

556 temp=templead;

557 for i=1:size(templead,1)

558 templead(i,:)=temp(end+1−i,:);
559 end

560 % creating new leadertable

561 if length(templead) > pop

562 % saving sorted top designs as new leaders

563 leaders(1:pop,:,gen)=templead(1:pop,:);

564 else

565 leaders(1:size(templead,1),1:3,gen)=templead;

566 end

567 P(gen,2)=surv(1,1); % best design within current generation

568 else % if there are no survivors

569 leaders(:,:,gen)=leaders(:,:,gen−1);% copy leadertable from previous generation

570 P(gen,2)=NaN; % no best design in current generation

571 end

572 % If only one survivor of generation 1, then terminate

573 if size(leaders,1)==1 && gen==1

574 fprintf('\nOnly one surviving design of first generation! Optimization terminated. \

n')

575 return

576 end

577

578 %% Plotting optimization evolution graph

579 P(gen,1)=leaders(1,1,gen); % overall leader in generation i

580 P(gen,3)=mean(leaders(:,1,gen)); % mean of leadertable in generation i

581 P(gen,4)=pop−nr; % number of casualties in current generation

582 close all

583 figure
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584 [ax, h1, h2] = plotyy(1:gen,P(1:gen,1:3),1:gen,P(1:gen,4),'plot','bar');

585 set(h1(1),'LineWidth',3)

586 set(h1(2),'LineWidth',1.5)

587 set(h1(3),'linestyle','−−','color',[.3 .3 .3],'LineWidth',2.5)

588 set(h2, 'FaceColor', [.6 0 0]);

589 hleg=legend('Leading Design','Generation Winner','Mating Pool Mean');

590 set(hleg,'FontSize',24,'Interpreter','latex','position',[−0.04 0.75 0.4 0.3]);

591 xlabel('\textbf{Generation}','FontSize',26,'Interpreter','latex')

592 set(get(ax(1), 'Ylabel'), 'String','\textbf{Fitness}','FontSize',26,'Interpreter','latex

');

593 set(ax(1),'Xlim',[1 gen+2])

594 set(ax(1),'YLim',[80 100],'YTick',[80:5:100],'fontsize',20);

595 set(ax(2),'Xlim',[1 gen+2],'XTick',[0:10:gen])

596 y2lab=get(ax(2), 'Ylabel');

597 set(y2lab,'String','\textbf{Casualties}','color',[.6 0 0],'FontSize',26,'Interpreter','

latex');

598 set(y2lab,'Units','Normalized','Position',[1.03 .2 0])

599 set(ax(2),'YLim',[0 pop*3],'YTick',[0:2:pop],'YColor',[.6 0 0],'fontsize',20);

600 grid on

601 grid minor

602 set(gcf,'Units','normal')

603 set(gca,'Position',[.05 .07 .9 .91])

604 drawnow;

605 save('plotdata.txt','P','−ascii')
606

607 %% printing leadertable to command window

608 fprintf('\nLeading designs at end of generation %d \n [Fitness Individual Generation]\n'

,gen)

609 disp(leaders(:,:,gen))

610

611 %% Calculating relative fitnesses and creating mating pool

612 fprintf('\nPreforming crossover and mutation\n')

613 % Calculating relative fitness for use in weighted roulette wheel

614 % scaling fitness such that worst leader has zero fitness (will not pass on genome)

615 relfit(1:size(leaders,1),gen)=leaders(:,1,gen)−min(leaders(:,1,gen));
616 % making sum(relfit) = 1 −> relfit conatins probabilities of becoming parents

617 relfit(:,gen)=relfit(:,gen)/sum(relfit(:,gen));

618 % If sum(relfit(:,gen))=0 −> NaN will be generated, if so, use relfit and

619 % leadertable of previous generation

620 if any(isnan(relfit(:,gen)))

621 relfit(:,gen)=relfit(:,gen−1);
622 leaders(:,:,gen)=leaders(:,:,gen−1);
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623 fprintf('\n Too low diversity in leadertable, reusing leadertable of generation %d \

n',gen−1)
624 end

625 n_pool=size(leaders(:,:,gen),1); % number of parents

626 parents=cell(2,3); % clearing parent matrix

627 matingpool=cell(n_pool,2); % clearing mating pool

628 % creating mating pool (binary chromosomes)

629 if sym==0

630 for i=1:n_pool

631 % generation and population number of leader i

632 popgen=[leaders(i,2,gen) leaders(i,3,gen)];

633 % converting Di (in mm) to binary (Lc bits)

634 matingpool{i,1}=dec2bin(1000*csp(1:end−8,7,popgen(1),popgen(2)),Lc);
635 % converting Do (in mm) to binary (Lc bits)

636 matingpool{i,2}=dec2bin(1000*csp(1:end−8,8,popgen(1),popgen(2)),Lc);
637 end

638 % if symmetry, then only masterbeams are design variables

639 elseif sym==1

640 for i=1:n_pool

641 popgen=[leaders(i,2,gen) leaders(i,3,gen)];

642 matingpool{i,1}=dec2bin(1000*csp(masterB,7,popgen(1),popgen(2)),Lc);

643 matingpool{i,2}=dec2bin(1000*csp(masterB,8,popgen(1),popgen(2)),Lc);

644 end

645 end

646

647 %% Adaptive mutation probability

648 % number of equal genes between best and worst individual in mating pool

649 eqg=sum(sum(matingpool{1,1}==matingpool{end,1}));

650 % number of genes in total

651 numg=size(matingpool{1,1},1)*Lc;

652 % gene diversity

653 div=(numg−eqg)/numg;
654 % adjust mutation probaility

655 if div > tresPm

656 if Pm > minPm

657 Pm = Pm − Pb*0.01;

658 end

659 else

660 if Pm < maxPm

661 Pm = Pm + Pb*0.01;

662 end

663 end

664
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665 %% Breeding (crossover and mutation)

666 clear children

667 children=cell(n_pool,2);

668 c=1; % children counter

669 while c < pop % making "pop" new children two at a time

670 parent=cell(2,3);

671 rndm=rand(1); % selecting first parent by weighted roulette wheel

672 for k=1:n_pool

673 if sum(relfit(1:k,gen))>=rndm

674 parent{1,1}=matingpool{k,1}; % Extracting beam Di's of first parent

675 parent{1,2}=matingpool{k,2}; % Extracting beam Do's of first parent

676 parent{1,3}=k; % Storing parent ID to avoid identical parents

677 break

678 end

679 end

680 rndm=rand(1); % selecting second parent by weighted roulette wheel

681 for k=1:n_pool

682 if sum(relfit(1:k,gen))>=rndm

683 % Making sure parents are not identical

684 if k~=parent{1,3}

685 parent{2,1}=matingpool{k,1};% Extracting beam Di's of second parent

686 parent{2,2}=matingpool{k,2};% Extracting beam Do's of second parent

687 parent{2,3}=k;

688 break

689 end

690 end

691 end

692 % Preforming crossover for all design parameters (chromosomes)

693 % Establishing cut positions for current parents

694 cpos=zeros(1,cuts);

695 for cut=1:cuts

696 if cut==1

697 % finding first cut position (random)

698 cpos(cut)=ceil(rand(1)*(Lc−cuts));
699 else

700 % finding consecutive cut positions

701 cpos(cut)=ceil(rand(1)*(Lc−cuts+cut−1));
702 % checking that position is valid

703 while cpos(cut) <= cpos(cut−1)
704 cpos(cut)=ceil(rand(1)*(Lc−cuts+cut−1));
705 end

706 end

707 end
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708 % Breeding two children from two parents by crossover:

709 for j=1:size(parent{1,1},1) % beams

710 cross=0; % 0: parent 1 to child 1, 1: parent 2 to child 1

711 for cut=1:cuts+1

712 % First cut

713 if cut==1

714 % Di beam j child c

715 children{c ,1}(j,1:cpos(cut))=parent{1+cross,1}(j,1:cpos(cut));

716 % Do beam j child c

717 children{c ,2}(j,1:cpos(cut))=parent{1+cross,2}(j,1:cpos(cut));

718 % Di beam j child c+1

719 children{c+1,1}(j,1:cpos(cut))=parent{2−cross,1}(j,1:cpos(cut));
720 % Do beam j child c+1

721 children{c+1,2}(j,1:cpos(cut))=parent{2−cross,2}(j,1:cpos(cut));
722 % Intermediate cut(s)

723 elseif cut < cuts+1

724 children{c ,1}(j,cpos(cut−1)+1:cpos(cut))=parent{1+cross,1}(j,cpos(cut
−1)+1:cpos(cut));

725 children{c ,2}(j,cpos(cut−1)+1:cpos(cut))=parent{1+cross,2}(j,cpos(cut
−1)+1:cpos(cut));

726 children{c+1,1}(j,cpos(cut−1)+1:cpos(cut))=parent{2−cross,1}(j,cpos(cut
−1)+1:cpos(cut));

727 children{c+1,2}(j,cpos(cut−1)+1:cpos(cut))=parent{2−cross,2}(j,cpos(cut
−1)+1:cpos(cut));

728 % Last cut

729 elseif cut==cuts+1

730 children{c ,1}(j,cpos(cut−1)+1:Lc)=parent{1+cross,1}(j,cpos(cut−1)+1:Lc
);

731 children{c ,2}(j,cpos(cut−1)+1:Lc)=parent{1+cross,2}(j,cpos(cut−1)+1:Lc
);

732 children{c+1,1}(j,cpos(cut−1)+1:Lc)=parent{2−cross,1}(j,cpos(cut−1)+1:Lc
);

733 children{c+1,2}(j,cpos(cut−1)+1:Lc)=parent{2−cross,2}(j,cpos(cut−1)+1:Lc
);

734 end

735 % Switching crossing factor between cuts

736 if cross==0

737 cross=1;

738 else

739 cross=0;

740 end

741 end

742 % Mutation of Di and Do for beam j of both children
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743 for bit=1:Lc % for all bits in chromosome

744 % Mutation criteria

745 if rand(1) <= Pm

746 % child c, Di mutation

747 switch children{c,1}(j,bit)

748 case '0'

749 children{c,1}(j,bit)='1';

750 case '1'

751 children{c,1}(j,bit)='0';

752 end

753 % child c, Do mutation

754 switch children{c,2}(j,bit)

755 case '0'

756 children{c,2}(j,bit)='1';

757 case '1'

758 children{c,2}(j,bit)='0';

759 end

760 % child c+1, Di mutation

761 switch children{c+1,1}(j,bit)

762 case '0'

763 children{c+1,1}(j,bit)='1';

764 case '1'

765 children{c+1,1}(j,bit)='0';

766 end

767 % child c+1, Do mutation

768 switch children{c+1,2}(j,bit)

769 case '0'

770 children{c+1,2}(j,bit)='1';

771 case '1'

772 children{c+1,2}(j,bit)='0';

773 end

774 end

775 end

776 end

777 c=c+2; % Updating children counter, 2 children produced

778 end

779 % converting children Di and Do chromosomes back to decimal and meters

780 if sym==0

781 for i=1:pop

782 csp(1:end−8,7,i,gen+1)=bin2dec(children{i,1}(:,1:Lc))/1000;
783 csp(1:end−8,8,i,gen+1)=bin2dec(children{i,2}(:,1:Lc))/1000;
784 end

785 elseif sym==1
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786 for i=1:pop

787 csp(masterB,7,i,gen+1)=bin2dec(children{i,1}(:,1:Lc))/1000;

788 csp(masterB,8,i,gen+1)=bin2dec(children{i,2}(:,1:Lc))/1000;

789 end

790 end

791

792 %% Producing new set of valid design parameters from breeding result

793 for j=1:pop

794 nr=1; % counter for removed beams

795 if sym==0 % for unsymmetric case

796 for i=1:b−8
797 Do=csp(i,8,j,gen+1);

798 if Do < minDo % remove beams with Do < minDo

799 Do=0;

800 rb(nr,j,gen+1)=i; % matrix containing id of removed beams

801 nr=nr+1;

802 elseif Do > maxDo % limit diameter to maxDo

803 Do=maxDo;

804 end

805 Di=csp(i,7,j,gen+1);

806 if Do~=0 % if beam is not removed

807 % make sure Di is valid

808 if Di < minDratio*Do || Di > maxDratio*Do

809 while Di < minDratio*Do || Di > maxDratio*Do

810 Di=Do*rand(1);

811 end

812 end

813 else % if beam is removed

814 Di=0;

815 end

816 I=pi/64*(Do.^4−Di.^4);
817 % adding [Area Ip Iy Iz HydroDB HydroDD Di Do] to csp for next gen

818 csp(i,1:8,j,gen+1)=[pi/4*(Do.^2−Di.^2) 2*I I I Do Do Di Do];

819 end

820 % if symmerty, then masterbeams decide parameters of slavebeams

821 elseif sym==1

822 for i=1:length(masterB)

823 Do=csp(masterB(i),8,j,gen+1);

824 if Do < minDo % remove beams with Do < minDo

825 Do=0;

826 % matrix containing id of removed beams

827 rb(nr:(nr+length(S{i,1})−1),j,gen+1)=S{i,1};
828 nr=nr+length(S{i,1});
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829 % corner beams cannot be removed −> generate random cross section!

830 if any(S{end,1}==masterB(i))

831 % make sure Do is valid

832 while Do < minDo

833 Do=maxDo*rand(1);

834 end

835 end

836 % limit diameter to maxDo

837 elseif Do > maxDo

838 Do=maxDo;

839 end

840 Di=csp(masterB(i),7,j,gen+1);

841 if Do~=0 % if beam is not removed

842 % make sure Di is valid

843 if Di < minDratio*Do || Di > maxDratio*Do

844 while Di < minDratio*Do || Di > maxDratio*Do

845 Di=Do*rand(1);

846 end

847 end

848 else

849 Di=0;

850 end

851 I=pi/64*(Do.^4−Di.^4);
852 % filling csp matrix with symmetrical beam properties

853 csp(S{i,1},1:8,j,gen+1)=repmat([pi/4*(Do.^2−Di.^2) 2*I I I Do Do Di Do],[

length(S{i,1}(1,:)) 1 1 1]);

854 end

855 end

856 end

857 fprintf('Done!\n')

858

859 %% Removing 2 generations old RDB folders to free disc space

860 % does not remove .fmm (can be rerun to bring back RDB)

861 if gen > 2

862 fprintf('\nDeleting RDB folders for generation %d\n',gen−2)
863 for ind=1:pop

864 try

865 inddir=sprintf('Ind_%03.0f_%03.0f',gen−2,ind);
866 model = sprintf('%s_%03.0f_%03.0f.fmm',masterfile(1:end−4),gen−2,ind);
867 RDBpath=sprintf('%s\\%s',inddir,model);

868 rmdir(sprintf('%s_RDB',RDBpath(1:end−4)),'s')
869 catch

870 fprintf('Could not delete RDB folder for individual %d\n',ind)
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871 end

872 end

873 fprintf('Done!\n')

874 end

875 % storing elapsed generation time

876 gentime(gen)=toc(iterationtime);

877

878

879 % Generation completed, go to top to commence next generaion

880 end

881

882 %% Optimization successfully completed, present total time used!

883 fclose('all');

884 tottime=sum(gentime)/60;

885 totstress=sum(stresstime)/60;

886 totfedem=sum(fedemtime)/60;

887 totwrite=sum(writetime)/60;

888 fprintf('\nTotal fedem analysis time: %d h %d min!\n',floor(totfedem/60),round(rem(

totfedem,60)))

889 fprintf('\nTotal stress analysis time: %d h %d min!\n',floor(totstress/60),round(rem(

totstress,60)))

890 fprintf('\nTotal model writing time: %d h %d min!\n',floor(totwrite/60),round(rem(

totwrite,60)))

891 fprintf('\nScript successfully completed in: %d h %d min!\n',floor(tottime/60),round(rem

(tottime,60)))
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