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There is an increasing focus on use of the failure envelope approach to determine ultimate 

states of offshore mudmat foundations with skirts subjected to combined loadings. The 

reason for that is that this approach considers explicit the independent load components and 

allows graphical interpretation of the safety factor associated to different load paths. 

Thesis objects and contents: 

The thesis will use the PLAXIS 3D model of a mudmat foundation to determine the bearing 

capacity envelopes(combination of vertical load, horizontal load and moments that cause 

failure of the supporting soil). Special focus will be directed towards the effect of torsion 

moment on the failure envelope. 

The main goals of master thesis are summarized as follows: 

1) Parametric studies are needed to investigate the reliability of results when torsion 

moment is included in loading conditions and to determine the optimum element 

mesh (number of elements) to achieve convergence and realistic results. 

2) Use of optimized model to study the shape of failure envelope. 

3) Express enveloped analytically in a non-dimensional form. 

4) Use the results to reveal the failure mechanism, and stress distribution between the 

different parts of the mud mat foundation: skirts, plates/bottom of soil compartment, 

skirt tip. 

5) Evaluate the suitability of the simplified methods accounting for torsion moments by 

comparing the results from PLAXIS with the results from simplified methods.   
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Preface 

This report is a master thesis at the Institute of Geotechnical Engineering, NTNU, 2013. 

 

The main aim of the thesis was to study the bearing capacity envelopes, with special focus on 

the effect of torsion moment on the failure envelope. It has been performed a numerical study 

of element program PLAXIS 3D. The results of the numerical studies are used to verify the 

hand calculation that takes into account the torsions.  

 

The work of this thesis is performed from Jan.9th, 2013 to June.10th, 2013. Workload of this 

thesis had the following time distributions: 

 

              Collection of literature and literary study                          20% 

              Studying the program PLAXIS 3D                                    20% 

              Numerical calculations and processing of data                  40%        

              Writing and editing report                                                  20% 

 

At the beginning of this thesis, I spent about 1 month to collect and study literatures relevant 

to mudmat foundation and failure envelopes. However, the parametric studies to investigate 

the reliable results took more time than I planned. Plenty of problems come out during the 

finite element analyses with PLAXIS 3D, like: nonconvergence of the final results, 

inappropriate selection of drainage type, not enough load steps, etc. It was unfortunately to 

make some changes in the time plan, and more time was spent on PLAXIS 3D models. 

Fortunately, this PLAXIS 3D program equipped me with adequate experience and would be 

beneficial to me in later life of work. 

 

I would like to thank my supervisors, Corneliu Athanasiu (Multiconsult AS) and Gudmund 

Eiksund (NTNU) for their contributions to my thesis. Due to limited literatures on this issue, 

I got lots of vital guidances from Corneliu and frequent assistances from Gudmund. Their 

contributions have been indispensable.  

 

Finally, I would like to thank all the lecturers at NTNU, especially those at the Department of 

Geotechnical Engineering, for a fantastic experience in Norway. I am sure that this two-year 

study in NTNU would be the forever fortune in my life. 
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Summary 

The bearing capacity of the foundation is reduced in combination with horizontal loads and 

moments, and can be further reduced when torsion moment is applied. Therefore, torsion 

moment must be taken into account when calculating the load ing capacity. This is 

particularly relevant for offshore foundations (underwater structures), since torsion is often of 

considerable size. 

The aim of this thesis is to make a numerical study of a rectangular mudmat foundation 

subjected to vertical loading, horizontal loading and torsion moment. The numerical 

calculations were mainly calculated by the finite element program PLAXIS 3D. Meanwhile, 

hand calculations of bearing capacities with Janbu and Davis & Booker methods are also 

carried out for comparison.  

The numerical studies were limited to undrained loading condition, where the undrained 

shear strength increases linearly with depth for a rectangular mudmat foundation; 
 

        a) with outer skirts only 

        b) with both outer and inner skirts 
 

Vertical and horizontal bearing capacities of mudmat foundation from finite element program 

PLAXIS 3D correspond well with the hand calculation results by Janbu method. However, 

the vertical bearing capacities from PLAXIS 3D are slightly higher than Janbu method, with 

a difference of 460kN(Model 1) and 80 kN(Model 2), corresponding to a difference of 6% 

and 1%, respectively. It may have several explanations: 

 The results of finite element programs is dependent on network element and element 

type. Theoretically, the analyses of model with more fine meshes and smaller average 

element size would generate more accurate results.  

 PLAXIS 3D builds a real 3-dimensional model, taking into consideration the 3D 

affections. However, Janbu method is based on the plane strain.  

However, torsional bearing capacity from PLAXIS 3D is almost twice the value determined 

from hand calculations, which may because of the conservative calculation method or some 

possible parametric errors in PLAXIS 3D.  

By intergrating the FEM analyses package PLAXIS 3D with the Swipe test procedure of 

loading, the failure envelopes of mudmat foundation and approximating expressions are 

investigated. Through numerical computations and comparative analyses based on FEM, the 

two-dimensional failure envelopes of mudmat foundation are established by using proposed 

method to evaluate the stability of foundation under combined loadings. These results could 

be utilized to provide vital reference for the design and construction of mudmat foundation. 
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Notations 
 

    Symbol                  Unit                                                                   Term 

A’/Aeff m2 Effective area of mudmat foundation 
B’/Beff m Effective width 

L’/Leff m Effective length 
Cref kN/m2 Cohesion 

Cin kN/m2/m Increase of cohesion 
D m Skirt height 

d m Skirt thickness 

EA kN/m Axial stiffness 
EI kN/m2 Bending stiffness 

Eref kN/m2 Young’s modulus 
Ein kN/m2/m Increase of stiffness 

Fskirt kN Force on the skirt 
H kN Horizontal load 

V kN Vertical load 

T kNm Torsion moment 
Hult kN Ultimate horizontal load 

Vult kN Ultimate vertical load 
Tult kNm Ultimate torsion moment 

Ka - Earth pressure coefficient acting on the active side of the skirt 
Kp - Earth pressure coefficient acting on the passive side of the skirt 

Nc - Bearing capacity factor for clay 

Pa kN Horizontal reaction force due to active earth pressure 
pP kN Horizontal reaction force due to passive earth pressure  

Rinter - Interface strength reduction 
r - Roughness 

ω - Rotation of principal plane when subjected to horizontal load 
Su kN/m2 Static undrained shear strength 

Su,in kN/m2/m Increase of undrained shear strength per meter 

γ kN/m3 Unit weight of the soil 
τ kN/m2 Shear stress 

τh kN/m2 Avarage mobilized shear stress 
τd kN/m2 Avarage mobilized shear strength 

σ kN/m2 Normal stress 
ν - Poisson’s ratio 

φ o Angle of internal friction 

ψ o Dilatancy angle 
p kN Surcharge pressure 

Mstage - Factor of calculation stage 
α o Angle between failure plane and horizontal plane 

eB m Eccentricity along the width 
eL m Eccentricity along the length 

Zr m Reference depth for mean shear strength 

Su,D/2 kN Shear strength at a depth of D/2 
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Chapter 1 INTRODUCTION 

1.1  Background of thesis 

Accelerated global demand of resources has pushed the oil and gas exploration and field 

development continuously move into deeper water. Today, a significant part of the offshore 

field development takes place in the water depths of more than 500 meters, like in the North 

Sea, offshore Australia, and the Bay of Bengal. (Andersen, 2008) 

Jacket platforms used offshore for oil extraction are generally temporarily supported by 

mudmat foundations during installation. Besides, Subsea mudmats are often used to provide 

additional support for equipment on the sea floor, like manifolds, PLEM(pipeline end 

manifold) and PLET(pipeline end termination) when the seabed is too soft to adequately 

support the equipments. See Fig.1.1. 

 

Figure 1.1: PLET supported by mudmat foundation on seabed 

The PLET is assumed to be temporarily supported by a 21m*9m rectangular mudmat 

foundation on seabed in this thesis. Due to an eccentric gravity load and environmental 

actions, the mudmats are subjected to combined vertical, horizontal, moment, and 

torsion(VHMT) loadings.   

The bearing capacity of the foundation is reduced in combination with horizontal loads and 

moments, and can be further reduced when torsion moment is applied. Therefore, torsion 

moment must be taken into account when calculating the loading capacity. This is 

particularly relevant for offshore foundations (underwater structures), since torsion is often of 

considerable size. A typical geometry of mudmat foundation can be: length L=21m, width 

B=9m, and depth D=1m. See Fig.1.2. 

 

Figure 1.2: Skirted shallow foundation for subsea facility (Detail Design Inc.) 
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1.2  Objective of the thesis 

Classical Soil Mechanics has solutions for bearing capacity of foundations subjected to 

vertical loads. Combined loadings, including horizontal load and overturning moments can 

also be solved using classical Soil Mechanics.  However, if the torsion moment is also present 

together with vertical and horizontal forces and with overturning moments, no theoretical 

approach exists and numerical (finite element) analyses must be carried to evaluate the 

foundation capacity. 

This thesis focuses on creating a numerical model of a mudmat foundation subjected to 

combined loadings: vertical loading, horizontal loading, and torsion moment(HVT). Finite 

element analyses(PLAXIS 3D) and hand calculations are undertaken to study the effect of 

torsion moment on bearing capacity of mudmat. Results and analyses are finally compared, 

and give failure envelopes for different combinations of loadings. These failure envelopes 

can be used to provide vital reference for the design and construction of mudmat foundation. 

Different PLAXIS 3D models of mudmat foundations are created and studied. Finally, 

discussions and comparisons based on the hand calculations and PLAXIS 3D results are 

given.  
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1.3  Scope and Limitations 

This thesis focuses on the effects of the torsion on the bearing capacity. Therefore, it is 

appropriate to keep most of the other parameters constant. The task is limited to examining 

two cases. 

i. ) foundation without inner skirts; 

ii. ) foundation with a 1×2 inner skirts. 

 

To calculate the ultimate bearing capacity of mudmat foundation, assumptions of the analyses 

are made as follows: 

 Soft clay is assumed on the seabed, which behaves as a perfectly plastic material. 

 

 Shear strength increases linearly with depth. 

 

 Analyses are restricted to undrained condition. This is because mudmat foundation is 

put on soft clay as a temporary supporter for jacket platforms. When the load is 

applied to the foundation relatively quickly, there is little or no dissipation of excess 

pore pressure. 

 

 A general shear failure occurs, i.e., there is a fully formed failure surface beneath the 

foundation. 

 

 The limit theorems apply. 

 

 Numerical analyses are performed by general element programs PLAXIS 2D and 

PLAXIS 3D, respectively. 
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1.4  Structure of thesis 

 

Chapter 2 is an introduction to the theoretical basis for this thesis. It starts with the very basic 

theory by explaining definitions of what a bearing capacity is, to explain the impact of torsion 

on bearing capacity. The theory about torsion is referred to literatures from supervisor 

(Corneliu Athanasiu). 

 

Chapter 3 deals with the various programs, and requirements for the various parameters, 

which are used for the numerical analyses. 

 

The main results and comparisons are presented in Chapter 4. 

 

Chapter 5 is a discussion section. Here are some comments on the results made in Chapter 4 

and a little discussion about the assumptions of torsion in Chapter 2. In addition, a brief 

comparison of the results from PLAXIS and the proposed method of calculating the effect of 

torque. 
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Chapter 2 THEORETICAL BACKGROUND 

Bearing capacity is the capacity of soil to support the loads applied to the ground. The 
bearing capacity of soil is the maximum average contact pressure between the foundation and 

the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the 
theoretical maximum pressure which can be supported without failure; allowable bearing 
capacity is the ultimate bearing capacity divided by a factor of safety.  

There are many different methods to calculate the bearing capacity of a foundation. The best 

known methods are possibly Terzagi, Meyerhof, Hansen and Verci. In Norway, Janbu 

method is the most prevalent method. In this thesis, Hansen and Janbu methods are used to 

compare with the results from PLAXIS 3D. 

 

2.1  Bearing capacity of foundation 

2.1.1 Ground failure modes 

Shear failure is defined as when the soil divides into separate blocks or zones, which move 
along slip surfaces. Three principal modes of shear failure may be defined: 

a) General Shear Failure 

A continuous slip surface occurs up to ground level. Soil above failure surface in 
state of plastic equilibrium, with heaving on either side. Failure is sudden and 

catastrophic and accompanied by tilting of the footing, see curve a below. 

b) Local Shear Failure 

Significant compression under footing causes only a partial development of plastic 
equilibrium. Failure surface is not continuous. Some minor heaving at ground level 

but no catastrophic failure, see curve b below. 

c) Punching Shear Failure 

Slip surfaces almost vertical, large vertical displacements. No heaving, tilting or 
catastrophic failure. Compression increases the density of the soil, see curve c. 

 

Figure 2.1: three different types of shear failure modes 

 

http://en.wikipedia.org/wiki/Soil
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Foundation_(architecture)
http://en.wikipedia.org/wiki/Shear
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The mode of failure which is likely to occur beneath any foundation depends on: 

 the compressibility of the soil, 

 the foundation depth to width ratio D/B 

Settlement-pressure curves of these three different shear failure modes can be demonstrated 
as follows. 

 

Figure 2.2: settlement-pressure curves for different modes of shear failure 

 

2.1.2 Definitions of bearing capacity 

Ultimate bearing capacity, qult is the intensity of bearing pressure at which the supporting 
ground is expected to fail in shear, i.e. a building will collapse. In Eurocode 7 the equivalent 
value is defined as the ultimate limit state design vertical capacitance, Qd and is expressed as 

a load (force) and not as a pressure or stress.  

Safe bearing capacity, qs is maximum design load which takes into account the extent of the 
site investigation and the consequences of failure. The safe bearing capacity qs can be 

expressed by suggested minimum factors of safety F in equation: qs = qult/F. 

Allowable bearing capacity, qa is the bearing capacity that will cause acceptable settlement of 
the structure.  

When a uniformly distributed load q is applied to a foundation, the foundation will get a  

settlement δ. Settlement will increase with the increase of load q. When the load q reaches 
the ultimate bearing capacity q = qult (See Fig. 2.3), foundation will get a very large 
settlement increase with further increase of the load q. This is considered as a shear failure. 
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Figure 2.3: load-deformation curve 

 

2.1.3 Effect of foundation depth D 

 

Normally, a foundation stands a certain depth under the ground. When a foundation is 

subjected to vertical loadings, the soil under the foundation will be pushed away to both sides 

and soil at the sides will be raised. When the masses are located on the two sides of the 

foundation, with a depth D, it seems like a surcharge pressure which counteracts the shear 

stresses. The size of the surcharge pressure can be defined as p by equation (2.1)below. 

 

                                       p = ρgD = γD                                              (2.1) 

Where,      p = surcharge pressure 

                  γ = ρg = soil density above foundation level 

                  D = foundation depth  

 

2.1.4 Stress field under foundations 

Ultimate bearing capacity is defined as the least pressure (loading) to cause shear failure in 
the soil beneath the foundation. As with retaining walls, failure is assumed to take place 

along a distinct failure surface.  

 Pure vertical loading 

A normal stress zone for bearing capacity subjected to pure vertical load in Su-analysis can be 

seen in Fig.2.4. 
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Figure 2.4: normal stress zone for bearing capacity subjected to pure vertical load in Su-analysis 

The stress zone is a combination of active rankine zone, prandtl zone and passive rankine 

zone. By introduction of horizontal force, there will be shear stresses on the foundation 
interface. Therefore, the foundation plane will no longer be a principal stress plane and the 

principal stresses in the zone under the foundation are rotated an angle ω  (Janbu, 2010).  

When subjected to pure vertical load, failure path will be symmetrical as shown in Fig. 5. 
Also, shear stresses th equal zero since no horizontal forces exist. Due to the impact of 
vertical load on the foundation, soil wedge squeezes in zone 1, pushing the soil in Zone 2 to 

Zone 3. This means that the largest principal stress must be vertical, and zone 1 is an active 
zone (Emdal, A, Grande L, 2004). 

Failure plane in soil wedge zone 1 has a angle of α with the horizontal plane in Fig.5. The 

degree of the angle α depends on the type of analysis, i.e. Su-analysis or  aφ-analysis. In this 
thesis we will only focus on Su-analysis, thus α is always equal to 45 degrees for pure vertical 
load. 

When Zone 2 is pressed by zone 1, it will also push zone 3 to the other side. Thus, zone 3 is 

considered as a passive zone where the main stresses are horizontal and failure plane in this 
zone will be equal to α. For Su analysis of pure vertical load is α = 45 degrees. 

 Inclined and eccentric loading 

When subjected to centric inclined load, Zone 2 is a transition zone where the largest 
principal stresses rotate from vertical position in zone 1 to the horizontal position in zone 3. 
There are various shapes of the curved line between the two zones, depending on whether it 

is Su-analysis or aφ-analysis. In Su-analyses the curved lines in Zone 2 are circular, while in 
aφ-analysis are logarithmic spiral.  

 

1 

2 

3 
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Figure 2.5: Zone combination, subjected to inclined and eccentric load in Su-analysis 

 

When subjected to inclined and eccentric loadings, horizontal load gives a shear stress on the 
foundations, which makes horizontal plane no longer a principal stress plane. The largest 

main stress σ1 will thus get a rotation of angle ω relative to the vertical axis, as shown in 
Fig.2.5. 

Most methods developed for calculating capacity differs between the so-called Su-analyses 

and aφ-analyses. Su-analyses assume a short-term loading and undrained behavior, while aφ-

analyses require a long-term loading and drained behavior. In this thesis, we only focus on 

Su-analyses as mentioned before. 

 

2.2 Effective foundation area 
 

All forces acting on the foundation, including forces transferred from the upper structures, are 

transferred to the foundation base and combined into resultant forces H and V in the 

horizontal and vertical direction, respectively, at the foundation –soil interface. 

 

 

 

 

 

Figure 2.6: horizontal and vertical Loading under idealized conditions 

The load center, denoted as LC, is the point where the resultant of H and V intersects the 

foundation-soil interface, and implies an eccentricity e of the vertical force V relative to the 

center line of the foundation. Reference is made to Fig.2.6, and the eccentricity is calculated 

as: e = M/V. 

LC 

V 

H 

e 

1 
2 
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An effective area Aeff is needed for the bearing capacity analysis. The effective foundation 

area is constructed such that its geometrical center coincides with the load center, and such 

that it follows as closely as possible the nearest contour of the true area of the foundation 

base. (DNV A. G., 2010)  

For a quadratic area of width B, the effective area Aeff can be defined as equation 2.2: 

                                    Aeff = Beff*Leff                         (2.2) 

in which the effective dimensions Beff and Leff depend on which of the two idealized loading 

scenarios leads to the most critical bearing capacity for the actual foundation.(see Fig. 8) 

eL = MY/V 

eB = MX/V 

                                      Beff = B – 2eB                                         (2.3) 

Leff = L – 2eL 

Therefore,  

Aeff = (B – 2MX/V)(L – 2MY/V)                                                                  (2.4 ) 

 

 

 

 

 

    

 

Figure 2.7: effective foundation area 

 

Reference is made to Fig.2.7. Effective area representation that leads to the poorest or most 

critical result for the bearing capacity of the foundation is the effective area representation to 

be chosen. (DNV A. G., 2010) 
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 eB 
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2.3 Janbu method 
 

Janbu method is currently the most widely used method in Norway. As with the other 

methods, Janbu method also distinguishes between Su-analyses and aφ-analyses.  The 

differences between Janbu method and other methods, such as Hansen method, could be that,  

Hansen used a correction factor, while Janbu introduces a concept called roughness. (Janbu, 

2010)  

 

For foundations that are subjected to short-term load, the bearing capacity of the soil could be 

determined by equations 2.5: 

                                 σv = Ncτd + p                                    (2.5) 

where,  

Nc = bearing capacity factor 

τd  = mobilized mean shear strength of the soil in the failure zone under the foundation 

p  = γD = surcharge pressure 

 

2.3.1 Roughness  

 

In Janbu method, roughness r will take the horizontal forces into consideration. Roughness r 

can be determined by the ratio of average mobilized shear stress τh to average mobilized 

shear strength τd. See equation 2.6 below. 

                                      
  

  
                                                      (2.6) 

τh = mobilized shear stress = H/(BL) 

H = horizontal force 

Shear stress τh means the foundation is no longer subjected to vertical load only, but also to 

horizontal load. In the case of horizontal load, failure plane gets a rotation of ω, which can be 

expressed by the formula of r, see equation 2.7. 

        
 

 
   √    ) 

                                                                                     (2.7) 
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2.3.2 Bearing capacity factor Nc 

 

Bearing capacity factor Nc is a function of foundation width/length(B/L) and roughness r, and 

can be determined by equation 2.8. 

       √             

                                                         (2.8) 

                                                                                                     

                                                                     

 

2.3.3 Mean shear strength  

 

To calculate the undrained bearing capacity of soft clay with increasing shear strength with 

depth, a mean Su value taken from a reference depth Zr is used (Emdal, 2011). Theoretical 

solutions of this problem indicate that such a reference depth Zr is about half the maximum 

depth of an active rankine zone (zone 1). One approach to this depth is given in equation XX. 

                               
  

      
   (

 

 
  )                                (2.9) 

Where, Zr is the reference depth when Su linearly increases with depth. 

 

2.3.4 Ultimate vertical capacity by Janbu method 

 

Therefore, the average shear strength is:                                                          (2.10) 

And the ultimate vertical capacity derived by Janbu method is :                        (2.11) 

 

r ω Nc

0 0,000 5,142

0,1 0,050 5,036

0,2 0,101 4,920

0,3 0,152 4,791

0,45 0,233 4,568

0,5 0,262 4,484

0,6 0,322 4,298

0,7 0,388 4,080

0,8 0,464 3,814

0,9 0,560 3,458

0,95 0,627 3,201

0,96 0,644 3,135

0,97 0,663 3,059

0,98 0,685 2,970

0,99 0,715 2,853

1 0,785 2,571  

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0 0.2 0.4 0.6 0.8 1

Nc 

r 

Figure 2.8: Bearing capacity factor Nc - roughness r curve Table 2.1: Bearing capacity factor Nc 
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2.4 Davis & Booker method 
 

2.4.1 Davis & Booker formula for vertical bearing capacity 

 

Davis & Booker method gives an exact solution of bearing capacity for a strip foundation 

where shear strength Su increases with depth. The value of factor F is given in Fig.10 with 

rough and smooth cases. For this thesis, only rough case is considered, because it is believed 

a fragile foundation.  

 

The bearing capacity determined by Davis & Booker method can be expressed by equation 

(2.10) shown below. 

                               
 

 
  [         

  

 
]                             (2.12) 

Where,  Q = vertical load 

              B = foundation width 

              Su0 = shear stress at foundation level 

              ρ = shear stress increase in depth 

 

The correction factor F is given as a function of dimensionless heterogeneity factor  

κ = kB/Suo as presented in Fig. 11. Values of F as a function of κ are shown in Fig.2.9. (Davis, 

1973) 

 

 

Figure 2.9: Bearing capacity modification factor for linearly increasing Su with depth (Davis, 1973) 
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For a mudmat foundation with a depth of D, shear stress at foundation level can be 

determined by Su0 = Su,z=0 + ρD as shown in Fig.2.10. 

 

 

 

 

 

 

 
 

Figure 2.10: Shear strength Su0 of mudmat foundation with a depth of D 

 

2.4.2 Ultimate vertical capacity by Davis & Booker method 

 

In traditional calculations of the load capacity, it is assumed that surcharge pressures from 

any side of the filling with a depth D provides a restoring force p. However, in Janbu method, 

the masses on the foundation level are only considered as a load and cutting contributions 

provided by the soil are not taken into account.  

When the foundation is pressed down by a vertical load, one oppositely directed shear force 

due to friction between foundation and ground will occur. The shear force is exerted around 

the circumference of the foundation base. Along the complete shear failure plane, earth is 

compressed up. Then it also has oppositely directed shear force due to friction between soil 

and soil. The shear force exerted in a zone can be approximately shown in Fig.12. A mean Su 

is used for the analysis of side embankment, ie. Su at a depth of D/2. (Athanasiu, 2006)  

 

Figure 2.11: shear force that counteract the deflection of foundation 
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Figure 2.12: dimension of shear force that counteract the deflection of foundation 

 

The Shear forces dimension that counteracts the deflection of foundation has a perimeter 

equal to C = 2(3B+3L) = 6(B+L). 

For a foundation subjected to purely vertical load, the shear forces in the upper layer provide 

an additional capacity to the loading capacity. 

Additional capacity due to shear forces can be expressed by equation (2.13). 

 

                             [
      

 
 

        

 
]  

    
 

 

 
      

 
  

    
 

 

             (2.13) 

Where,   

B = foundation width 

L = foundation length 

A = BL = foundation area 

Su,z=D/2 = average shear strength of the masses at the foundation level 

 

Together, for the pure vertical load case, we have the formula for ultimate vertical bearing 

capacity as in equation (2.14). 

 

                           [            
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Equation 2.12 is not able to calculate the bearing capacity with horizontal loads. By replacing 

the expression of Nc in Janbu method, an equation that takes into account the horizontal 

forces is derived in equation (2.15). 

 

              [                     
  

 
] (  

    

 
)   

      

 
  

    
 

 

          (2.15) 
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2.5  Combined loading forces with torsion moments 
 

Sometimes a torsion moment is applied with vertical and horizontal forces as combined 

loading forces on the foundation. The torsion moment can be caused by horizontal load with 

an eccentricity, or the base plate is subjected to a torsion transferred from the overhead 

structure.  

 

There is currently no good way to calculate the capacity of a foundation subjected to a torsion 

moment. A foundation subjected to torsion will rotate around the axis of the torsion. The 

torsion moment will make different displacements of the foundation depending on how far 

from torsion point you are. This means that the foundation will have various mobilized sizes 

of shear stresses caused by the torsion depending on the distance from the point of torsion. 

This can be illustrated in Fig.2.13, where maximum and average shearing stresses are given 

by equation (2.16).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: shear stress generated from torsion moment 

 

   
 

  
    

                                    
 

  
 

 

 
                  (2.16)  

           
 

  
 

 

 
  

Where,  

 

Ip = polar moment of inertia  

T = torsion moment 

z = distance from the center of the base plate to the point where shear stress works 

τt = shear stress generated from torsion moment at a distance of z 

τt ,max = maximum shear stress generated from torsion moment 

τt ,ave = average shear stress generated from torsion moment 

 

z 

τt = Tz/Ip 

T 

L 
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Shear stress distribution for a foundation subjected to torsion can be seen in Fig.2.14, it is 

natural to assume that it will develop into two oppositely directed shear failure as shown in 

Fig.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: top-view of foundation subjected to torsion, with shear rupture profiles 

 

2.5.1 Superposition method  

 

Torsion moment often occurs due to horizontal load with an eccentricity. Therefore, it is 

natural to consider a load combination where the horizontal load and torsion acting 

simultaneously. 

 

One possible simplified method to calculate how much shear is mobilized by torsion moment 

and horizontal load is to superpose them. That is, the shear stresses caused by the horizontal 

loads and torsion moments are calculated separately for side summing the results (Athanasiu, 

2006). This can be illustrated in Fig.2.15. 
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Figure 2.15: Shear stress due to torsion moment and horizontal force 

                    Where,                 
 

  
               

  

 
                       (2.17) 

 

Here, I is the is the torsion constant for the section, r is the distance between the rotational 

axis and the furthest point in the section (at the outer surface). 

       

To calculate the shear stresses, we need the effective areas which has been determined in 

chapter 2.2: 

        

 

             Where,                                        (2.18) 

   
 

 
 

 

In Janbu method, the affections of horizontal load is taken into account by introducing 

roughness r, which could be represented by the ratio of mobilized shear stress τh to shear 

strength τd . See equation (2.19) 

                                
     

  
                                  (2.19) 

Shear stress caused by torsion moment varies in proportion to the distance to the pivot point. 

It is therefore expedient to make a simplification that, the resultant shear stresses generated 

by torsion moment and horizontal force τh + τt is assumed to have an equal distribution over 

the effective length L' as shown in Fig.2.16.  

  

 

 

 

 

Figure 2.16: Simplified mean shear stress due to torsion moment and horizontal force 
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This simplification gives a mean shear stress expressed in Equation (2.20). 

                             
 

    
                          (2.20) 

 

2.5.2 Shear stress that exceeds the shear capacity 

 

Discussions in chapter 2.2.3 are not sufficient, which do not consider the situation that the 

shear stresses due to torsion moment exceed the shear strength. Thus, a violation will result in 

redistribution of stresses. This is illustrated in Fig.2.17. There is a limit to the amount of shear 

stresses that can be redistributed and this limit can be defined by the roughness r. 

 

 

 

 

 

 

 

 

     (1)τt < τd                    (2) τt = τd                     (3)  τt > τd                   (4) τt > τd                    (5) τt >> τd                                      

Figure 2.17: redistribution of shear stresses of a foundation  
 

Fig. (1) and (2) are the cases of shear stresses due to torsion less than the shear strength. Then 

it is not necessary to redistribute the shear stress. In Fig.(3) the shear stresses partly exceed 

the shear strength which are then redistributed. 

Soil under the foundations must take on the shear stresses which are applied to the foundation. 

Therefore, we allocate the same area of space in Fig. (4) where there is still available capacity 

as in Fig. (3). Fig.(5) shows a case where all the cutting capacity is utilized. In other words, 

this means roughness r = 1, since roughness shows how much of the capacity is utilized.  
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2.5.3 DNV offshore standard method 

 

To calculate the ultimate horizontal capacity of mudmat foundation subjected to combined 

loads with torsion moment, <Offshore Standard DNV-OSD-J101,2007> can be helpful.  

When a torsion moment T is applied to the foundation in addition to the forces H and V, the 

interaction between the torsion and these forces can be accounted for by replacing H and T 

with an equivalent horizontal force H’. The bearing capacity of the foundation is then to be 

evaluated for the force set (H’,V) instead of the force set (H,V) (DNV, 2010). 

The equivalent horizontal force can be calculated as equation (2.21) 

                 
  

  
 √    

  

  
                            (2.21) 

 

where L’ is the length of effective area. 

 

Therefore, the ultimate horizontal capacity can be determined by equation (2.22)  

 

            √    
    

  
                                (2.22) 
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Chapter 3 PLAXIS 3D  PROGRAM AND MODELS 

3.1  Introduction of PLAXIS 3D 

PLAXIS is a widely used numerically simulation tool both for 2-dimensional and 3-
dimensional geotechnical analyses. PLAXIS is based on the finite element method and can 
use various soil models to simulate the soil behavior at different situations. For more details 

related to this application setup and operation, please refer to user manual and reference for 
PLAXIS 3D 2012. 

PLAXIS 3D program is a three-dimensional finite element program widely used in 

geotechnical analysis to perform deformation and stability analysis. The generation of a 
three-dimensional finite element model in the PLAXIS 3D program is based on the creation 
of a geometry model, which involves a composition of volumes, surfaces, lines and points. 

Soil stratigraphy at different locations could be determined through the definition of vertical 
boreholes. Soil layers and ground surfaces could be non-horizontal as well. (PLAXIS 3D 

Reference, 2012) 

PLAXIS 3D program computes the stresses following a Cartesian coordinate system. All of 
these output data, including compressive stresses and forces, pore pressures, will be taken to 
be negative, whereas tensile stresses and forces are taken to be positive. Cartesian coordinate 

system and positive stress directions are shown in Fig.3.1. 

 

Figure 3.1: Cartesian coordinate system and positive stress directions (PLAXIS 3D Reference 2012) 
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3.2 Idealized soil and foundation conditions 
 

The realistic soil conditions at the site may be complicated. For a simplification, only one 

layer of soft clay with shear strength linearly increasing with depth is considered.  

For analysis of skirted foundations, combined loads are normally transferred to the level of 

the skirt tips such that the bearing capacity is related to the shear strength at skirt tip level(e.g. 

Tani & Craig, 1995; Watson & Randolph, 1997). Tani & Craig (1995) propose that the 

behavior of an embedded shallow foundation in an undrained soil with a linear increase in 

strength with depth can be approximated by analyzing a surface foundation, but with the soil 

strength profile described by equation (3.1). 

                         Su = Su0 + kz                                (3.1) 

Where Su0 is the shear strength at foundation level, and k is the strength gradient with a depth 

of z. Centrifuge tests reported by Tani & Craig (1995) and Waton & Randolph (1997) suggest 

this is reasonable for embedment depths less than around 30% of the foundation width. The 

degree of heterogeneity can be represented by the dimensionless coefficient: 

                            
   

   
                                     (3.2) 

For a shallow foundation with skirts of depth D, the shear strength at foundation level is: 

       Su0 = Su,z=0 + kD = 2+1.3*1 = 3.3kPa              (3.3) 

 

 

 

 

 

 

 

Figure 3.2: Idealised soil and foundation conditions 

 

Where, Su,z=0 is the shear strength at the mudline. 

In this thesis, all the finite element analyses were carried out with the software PLAXIS 3D. 
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3.3 Material parameters of soil 
 

The soil conditions at the site consist of a layer of very soft clay at the seabed with a linear 

increase of Su,inc = 1.3kPa/m to a depth of 18 meters.  

An undrained soil condition is represented with a linear elastic perfectly plastic constitutive 

law defined by the undrained Young’s modulus (Eu) and Poisson’s ratio (υ) and failure 

according to Tresca criterion, defining the maximum shear stress in any plane limited to the 

undrained shear strength (Su). (Gourvenec, 2007) 

Relevant parameters can be determined as follows: 

 

 Undrained shear stress profile:   Su=2 +1.3z (kPa) 

 Young’s modulus of the soil is assumed to vary linearly with depth, maintaining a 

constant modulus ratio of Eu/Su =500 

 Possion’s ratio is υ=0.49 

 Lateral earth pressure coefficient is Ko’= υ/(1- υ)=0.96 

 A soil layer with depth of D=2B=18m was selected for models 

Parameters for soil can be summarized below in table 3.1. 

 

Parameters Name Soil Unit 
Material model  Model Mohr Coloumb - 

Drainage type Type Undrained (C) - 

Unit weight above phreatic level  γunsat 15,5  kN/m
3
 

Unit weight below phreatic level  γsat 15,5  kN/m
3
 

Stiffness Eu 1000 kN/m
2
 

Eu,inc 650 kN/m
2
 

Poisson’s ratio vu 0.49 - 

Shear Strength Su,ref 2 kPa 

Su,inc 1.3 kPa 

Lateral earth pressure coefficient Ko 0.96 - 

 

Table 3.1: soil parameters for PLAXIS 3D models 

 

Based on previous analyses in chapter 3.2, a linearly increasing shear strength profile 

described by   
   

   
 

     

   
     according to equations (3.2) is considered.  

The choice of soil model and associated material parameters representing the behavior of clay 

is usually the largest challenge in terms of getting a good result. 
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In PLAXIS 3D, there are various models available, like Mohr Coloumb(MC), Hardning 

Soil(HS) and Soft Soil(SS) models. All these models are basically considered as efficient 

stress models with an isotropic shear strength provided by the cohesion c = atanφ, friction 

angle φ and MC failure criterion.  

It is complicated to use HS and SS models to model a single isotropic undrained shear 

strength profile. Thus, It is not recommended to use these models to model the short-term 

undrained condition. (Andresen, 2004) 

 

The MC model is also regarded as an effective stress model, but since dilatant or contractive 

behaviors are not modeled in the elastic range before strength limit is reached, it is possible to 

select cmod and φmod so proper undrained shear strengths are modeled. 

 

The MC model is used as the total stress model by setting c(z)=Su(z)=2+1.3z and φ= 0. A 

possion’ ratio of υ= 0.49 is used. 

 

In MC models, it is not possible to provide anisotropic shear strength of consolidated active 

and passive triaxial and direct shear tests(SuA, SuP, SuD). Therefore an average value of shear 

strength must be used. See equation (3.4). This simplification does not significantly affect the 

analyses in this thesis. This is because the amount of the active - passive and  triaxial shear 

strength is equal in undrained analysis and the simplifications give reasonable consequences. 

   
 

 
   

    
    

                        (3.4) 

Basically stiffness has no impact on the bearing capacity of a foundation, except for the 

deformation. E-modulus is set to E=1000kN/m2 at mudline, which is a relatively low value 

for clay (Vegvesen, 1992). Results showed that when E-modulus was assigned with values 

from 1000 to 5000, no significantly change occurred on the bearing capacity, but 

displacements became lower. 

 

Due to numerical problems, ‘tension cut off’ was deselected in PLAXIS 3D models.  
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3.4 Material parameters of foundation 

3.4.1 Base plate and skirts 

In this thesis, it is assumed that a PLET is temporarily supported during installation by a 21m 

by 9m rectangular mudmat foundation. To simplify the calculations, a unit weight of 0kN/m3 

is assigned to base plate and skirts in order to neglect the affections of self-weight of mudmat 

foundation. 

Skirted mudmat foundations with embedment depth to foundation breadth ratio D/B of about 

0,1(D/B=1/9=0,1) are considered under conditions of plane strain with a skirt thickness of 

15mm.  

In addition, the mudmat foundation is assumed behaving elastically, its Young’s modulus is 

E=1E9 kN/m2, and Poisson’s ratio is υ=0.3. Therefore, the base plate and skirts are set to be 

very rigid with a stiffness of E1=E2=1E9 kN/m2. 

Parameters of base plate and skirts are summarized in table 3.2. 

Parameters Steel baseplate Steel skirts 

d 0,2m 0,015m 

γ 0kN/m
3
 0kN/m

3
 

E1=E2 1E9 kN/m
2
 1E9 kN/m

2
 

ν12 0,3 0,3 

 

Table 3.2: Parameters of base plate and skirts 

Mudmat foundations with and without 1*2 inner skirts are shown below in Fig.3.3. 

 

     

Figure 3.3: Mudmat foundations with and without inner skirts 

 



38 
 

3.4.2 Interface 

In PLAXIS 3D, interface must be set along base plate and skirts to take into account the 

interface properties and relative displacement between structure and soil. Without an 

interface the structure and the soil are tied together and no relative displacement 

(slipping/gapping) is possible between structure and soil. 

By using an interface, node pairs are created at the interface of structure and soil. From a 

node pair, one node belongs to the structure and the other node belongs to the soil. The 

interaction between these two nodes consists of two elastic-perfectly plastic springs. One 

elastic-perfectly plastic spring is used to model the gap displacement and the other one is to 

model slip displacement. Also see the connectivity plot of a soil-structure connection with 

and without interface. (PLAXIS, 2012)  

 

Figure 3.4: connectivity plot of a soil-structure connection (PLAXIS, 2012) 

Interface under the base plate may have large affections on the horizontal capacity. The 

strength of the mudmat and clay interface was modeled using an interface factor R, where the 

maximum shear stress at the interface τmax = RSu. The ‘rough’ and ‘smooth’ extremes of 

interface strength correspond to R=1 and R=0 respectively. An intermediate roughness of 

R=0.5 was assumed for PLAXIS models, which is a typical assumption for steel/soft clay 

interface.  

Mudmat foundation with interface activated is shown below in Fig.3.5. 

 

Figure 3.5: Mudmat foundation with interface activated 
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3.5 Descriptions of models 

In order to investigate failure envelopes of mudmat foundation under combined loads(VHT), 

three dimensional perfect elasto-perfectly plastic finite element analysis for bearing capacity 

behaviors of mudmat foundation is carried out by utilizing the specialized finite element 

analysis software PLAXIS 3D for geotechnical engineering projects.  

 

All together 3 models(see Table.3.3) were utilized for the analyses of the effect of torsion 

moment on the bearing capacity of the mudmat foundation.  

 

# Model 1 Model 2 Model 3 

Inner skirts NO NO YES 

Meshes medium fine fine 
 

Table 3.3: Different models for analyses 

Based on the displacement corresponding to the ultimate bearing capacity, failure envelopes 

in different load spaces will be plotted by the loading procedure of Swipe test which was 

originally suggested and applied in a small-scale model tests by Tan (Tan, 1990) and then 

widely applied into practice. The loading procedure includes two loading steps which are 

illustrated in Fig.3.6, an example of search of failure envelope in V-H loading space. (Wu Ke, 

2011) 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.6: The loading procedure of Swipe test 
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3.6 Model geometry  

The lateral dimensions of the 3D models are 40m×30m with one soil layer of 18m as 

described before. These dimensions were selected such that the model boundaries have 

negligible effects on the results. Model geometry is shown below in Fig.3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Geometry of PLAXIS 3D model 

As shown in Fig. 3.7, an inner soil volume with dimensions of 40m×30m×18m is introduced. 

The inner soil volumes have larger affections on the foundation than outer soil volumes, thus 

should be studied more carefully. To achieve a more accurate results, inner soil volumes were 

refined several times to get more fine meshes than outer soil volumes. All of these three 

components have their central point placed in the origin point of the Cartesian coordinate 

system. Dimensions are summarized as shown in Table 3.4. 

 

Components Lateral soil volume Mudmat foundation 

Length/m 40 21 

Width/m 30 9 

Height/m 18 1 

 

Table 3.4: Dimensions of soil volumes and mudmat foundation 
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3.7 Element meshes 

Medium meshes and fine meshes are generated for different models to compare the results.   

The local refinement factors were increased to 1 and 0.5 for lateral soil volume and mudmat 

foundation respectively. The element distribution was set to ‘medium’ and ‘fine’ in order to 

get medium and fine meshes for different models.  

The mesh information is shown in table 3.5. 

Parameters Model 1 Model 2 Model 3 

Meshes Medium Fine Fine 

No. of soil elements 11351 31043 31043 
No. of nodes 18151 47597 47597 

Average element size 1,379m 0,8342m 0,8342m 

Table 3.5: Mesh property for medium meshes and fine meshes 

 

Medium finite element mesh of PLAXIS 3D models is shown in Fig. 3.8. 

 

 

Figure 3.8: Medium meshes of PLAXIS 3D Model 1 

 

18m 
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Fine finite element mesh of PLAXIS 3D models is shown in Fig. 3.9. 

 

 

Figure 3.9: Fine meshes of PLAXIS 3D Model 2 and Model 3 

 

Reference node A,  as shown in Fig. 3.7 is defined in table 3.5 for the load-displacement 

curves which are used to determine the ultimate bearing capacities.  

 

Reference 

node 
Position (m,m,m) 

A Center of base plate, (0,0,0) 

 

Table 3.6: Reference nodes and the positions 

 

 

 

A 



43 
 

3.8 Load combinations 

In this thesis, each analysis followed a single load path to failure in V-T, H-T and V-H-T load 

space, respectively. See Fig. 3.10. A constant vertical load of 20000 kN was imposed as a 

directed force, and the horizontal and torsion load components were applied at a different 

ratios seen in table 3.7. 

 

 

 

 

 

 

Figure 3.10: Mudmat foundation subjected to combined loads of V, H and T 

Loading 

path 
V-T H-T V-H-T 

# 
V T/V H T/H V H/V T/V 

kN kN kN kN kN kN kNm 

1 20E3 0 20E3 0 

20E3 

0.1 

0 
0.2 

2 20E3 0.1 20E3 0.1 
0.4 
0.8 

3 20E3 0.2 20E3 0.2 
1.6 

20E3 

0.1  
 

0.2 
 

4 20E3 0.4 20E3 0.4 
0.2 
0.4 

5 20E3 0.8 20E3 0.8 
0.8 
1.6 

6 20E3 1.6 20E3 1.6 

20E3 

0.1  
 

0,4 
 

0.2 
7 20E3 3.2 20E3 3.2 

0.4 
0.8 

8 20E3 6.4 20E3 6.4 
1.6 

20E3 

0.1  
 

0,8 
9 20E3 12.8 20E3 12.8 

0.2 
0.4 

10 20E3 25.6 20E3 25.6 
0.8 
1.6 

No. of paths 10 10 20 

 
Table 3.7: Loading paths on V-T, H-T and V-H-T load spaces 

 

Representation of the interaction of horizontal load(H) and torsion(T) at a constant vertical 

load(V) is convenient since in reality vertical foundation load is quasi-constant, largely due to 

the self-weight of the super-structure and foundation system, whereas the horizontal and 

torsion components result from the environmental forces are variable, but may be coupled. 

V 



44 
 

3.9 Failure envelopes 

Many researchers have been seeking to characterize a failure envelope in loading space to 

describe the foundation response transformation from safe condition to failure state recently. 

Martin, Murff, Bransby and Randolph have analysed the failure envelope of foundation under 

combined loads in undrained saturated sand clay based on the limited analysis. However, a 

reasonable computation pattern and analysis method is still lacking for the analyses of the 

stability of offshore foundation subjected to torsion moment. (Wu Ke, 2011) 

The applied loads gives rise to load paths that move from the origin across the failure 

envelope, initially at gradients determined by the elastic stiffness, but with the gradients 

changing owing to internal plastic yielding as the paths approach the failure envelope.  

Bounding envelopes of ultimate limit states under combinations of vertical, horizontal and 

torsion loadings(VHT) predicted by the finite element analyses are presented as failure 

envelopes in Fig. XX. The envelopes are plotted in both normalized load space(H/Hult against 

V/Vult) and dimensionless load space(H/ASu0 against V/ASu0) for each of the four torsion 

load cases considered: T/V=0, 0.2, 0.4, 0.8. 

Three-dimensional failure surfaces normally provide a useful qualitative assessment of 

ultimate limit states under general loading. For quantitative comparison, two-dimensional 

slices through the three-dimensional surface are more useful for direct determination of 

ultimate limit states (Gourvenec, 2007). Example of failure envelopes plotted in 

dimensionless load space is illustrated in Fig.3.11. 

 

 

Figure 3.11: Example of failure envelope plotted in dimensionless load space 
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Chapter 4 RESULTS AND COMPARISONS 

4.1 Interpretations of ultimate bearing capacity in PLAXIS 3D 

Ultimate bearing capacity for a particular load combination can be derived from a graph 

shown in Fig.4.1. It shows the Mstage against deformation for a foundation subjected to 

vertical and horizontal loads without torsion. Ultimate bearing capacity is defined as 

described in Chapter 2, when the soil under the foundation has a large deformation without 

further increase of the load q.  

 

Figure 4.1: Mstage-deformation curve from the analysis of PLAXIS 3D 

q is equal to Mstage multiplied by the constant value of 10000, since the vertical load of the 

model is V=10000kN/m2. Therefore, the ultimate vertical capacity of the foundation 

subjected to a load combination of V =10000kN/m2 , H/V=0,1, T/V=0 showing in Fig.4.1 is 

Vult= Mstage* 10000=0,646*10000=6460kN. Similarly, ultimate horizontal capacity is Hult= 

Mstage* 10000*(H/V)=0,646*10000*0,1=646kN. 

The notation adopted for different loads that utilized is shown in Table 4.1 below. 

Parameters Vertical load Horizontal load Torsion load 

Load V H T 

Ultimate load Vult Hult Tult 

Dimensionless load V/ASu0 H/ASu0 T/ABSu0 

Normalised load V/Vult H/Hult T/Tult 

Table 4.1: Summary of notation for loads 
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4.2 Results of hand calculations  

4.2.1 Vertical and horizontal bearing capacities when T=0 

Vertical and horizontal bearing capacities of mudmat foundation calculated by Janbu method 

is shown in Table 4.2 and the plot is shown in Fig.4.2. 

Janbu method 

V (kN) H (kN) 

8037 401 
7909 469 

7761 537 
7487 637 

7379 670 

7128 734 
6818 796 

6420 854 
5863 905 

5718 914 
 

Table 4.2: Summary of vertical and horizontal bearing capacities from hand calculations 

 

Figure 4.2: Results of Janbu method hand calculations illustrated in V-H load space 
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Figure 4.3: Results of Janbu method hand calculations illustrated in V-H dimensionless load space 

 

4.2.2 Vertical and horizontal bearing capacities under different torsions T 

When torsion T is included, DNV standard together with Janbu method is used to determine 

the horizontal bearing capacity under different torsion moments. 

Vertical and horizontal bearing capacities of mudmat foundation calculated by Janbu method 

and DNV standard are shown in Fig.4.4 and Fig.4.5. 

 

Figure 4.4: Bearing capacities under different torsions in V-H load space 
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Figure 4.5: Bearing capacities under different torsions in V-H dimensionless load space 

 

4.3 Results of PLAXIS 3D  

4.3.1 Failure envelopes in V-T load space 

Vertical bearing capacity and ultimate torsion moment determined from PLAXIS 3D can be 

shown below in Table 4.3 for the example of model 1.  

Parameters unit  
Phase 

# 
V T/V Mstage T  V V/Asuo T/ABSuo V/Vult  T /Tult  

A= 189 m2 1 10000 0 0,784 0 7840 7,90 0,000 1,000 0,000 

B= 9 m2 2 10000 0,2 0,781 1562 7810 7,87 0,175 0,996 0,182 

Suo= 5,25 kPa 3 10000 0,4 0,768 3072 7680 7,74 0,344 0,980 0,358 

   
4 10000 0,8 0,709 5672 7090 7,15 0,635 0,904 0,661 

Vult= 7840 kN 5 10000 1,6 0,507 8112 5070 5,11 0,908 0,647 0,946 

Tult= 8576 kNm 6 10000 3,2 0,268 8576 2680 2,70 0,960 0,342 1,000 

   
7 10000 6,4 0,133 8512 1330 1,34 0,953 0,170 0,993 

   
8 10000 12,8 0,065 8320 650 0,66 0,932 0,083 0,970 

Table 4.3: Data analyses for determinations of failure envelopes of Model 1 in V-T load space 

Failure envelopes for PLAXIS Model 1 are illustrated in V-T normal load space, 

dimensionless load space, and normalized load space, respectively. See Fig.4.6 to Fig.4.8. 
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Figure 4.6: Failure envelope of PLAXIS Model 1 in V-T load space 

 

 

Figure 4.7: Failure envelope of PLAXIS Model 1 in V-T dimensionless load space 
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Figure 4.8: Failure envelope of PLAXIS Model 1 in V-T normalized load space 

 

4.3.2 Failure envelopes in H-T load space 

Horizontal bearing capacity and ultimate torsion moment determined from PLAXIS 3D can 

be shown below in Table 4.4 for the example of model 1.  

Parameters unit  Phase # H T/H Mstage T  H H/ASuo T/ABSuo H/Hult  T /Tult  

A= 189 m2 1 2000 0 0,362 0 724 0,73 0,000 1,000 0,000 

B= 9 m2 2 2000 0,2 0,362 144,8 724 0,73 0,016 1,000 0,020 

Suo= 5,25 kPa 3 2000 0,4 0,362 289,6 724 0,73 0,032 1,000 0,039 

Hult= 724 kN 4 2000 0,8 0,362 579,2 724 0,73 0,065 1,000 0,079 

Tult= 7372,8 kNm 5 2000 1,6 0,362 1158,4 724 0,73 0,130 1,000 0,157 

   6 2000 3,2 0,361 2310,4 722 0,73 0,259 0,997 0,313 

   
7 2000 6,4 0,345 4416 690 0,70 0,494 0,953 0,599 

   
8 2000 12,8 0,248 6348,8 496 0,50 0,711 0,685 0,861 

   
9 2000 25,6 0,14 7168 280 0,28 0,803 0,387 0,972 

   
10 2000 51,2 0,072 7372,8 144 0,15 0,826 0,199 1,000 

   
11 2001 102,4 0,036 7372,8 72,036 0,07 0,826 0,099 1,000 

Table 4.4: Data analyses for determinations of failure envelopes of Model 1 in H-T load space 

Failure envelopes for PLAXIS Model 1 are illustrated in V-T normal load space, 

dimensionless load space, and normalized load space, respectively. See Fig.4.9 to Fig.4.11. 
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Figure 4.9: Failure envelope of PLAXIS Model 1 in H-T load space 

 

 

Figure 4.10: Failure envelope of PLAXIS Model 1 in H-T dimensionless load space 
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Figure 4.11: Failure envelope of PLAXIS Model 1 in H-T normalized load space 

 

4.3.3 Failure envelopes in V-H load space 

Vertical and horizontal bearing capacities determined from PLAXIS 3D can be shown below 

in Table 4.5 for the example of Model 2.  

 T/V=0 T/V=0.2 T/V=0,4 T/V=0,8 

Parameters unit V H/V Mstage V H Mstage V H Mstage V H Mstage V H 

A= 189 m2 10000 0 0,746 7460 0 0,743 7430 0 0,73 7300 0 0,672 6720 0 

B= 9 m2 10000 0,1 0,646 6460 646 0,642 6420 642 0,629 6290 629 0,58 5800 580 

Suo= 5,25 kPa 10000 0,2 0,387 3870 774 0,387 3870 774 0,386 3860 772 0,378 3780 756 

Hult= 780 kN 10000 0,4 0,195 1950 780 0,195 1950 780 0,195 1950 780 0,194 1940 776 

Vult= 7460 kN 10000 0,8 0,096 960 768 0,096 960 768 0,096 960 768 0,095 950 760 

Tult= 14080 kNm 10000 1,6 0,046 460 736 0,046 460 736 0,046 460 736 0,046 460 736 

Table 4.5: Data analyses for determinations of failure envelopes of Model 1 in V-H load space 

Failure envelopes for PLAXIS Model 1 are illustrated in V-H normal load space, 

dimensionless load space, and normalized load space, respectively. See Fig.4.12 to Fig.4.14. 
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Figure 4.12: Failure envelope of PLAXIS Model 1 in V-H load space 

 

 

Figure 4.13: Failure envelope of PLAXIS Model 1 in H-T dimensionless load space 
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Figure 4.14: Failure envelope of PLAXIS Model 1 in H-T normalized load space 
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4.4 Comparisons of hand calculations and PLAXIS 3D 

4.4.1 Ultimate bearing capacities: Vult, Hult, Tult 

The plots of Mstage vs displacement(Mstage vs uz) and vertical load vs displacement(V vs uz) of 

PLAXIS 3D Model 2 are shown in Fig. 4.15 and Fig.4.16. 

 

Figure 4.15: Mstage vs vertical displacement, PLAXIS 3D Model 2 

 

Figure 4.16: Vertical load vs vertical displacement, PLAXIS 3D Model 2 
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Final results show that: ultimate vertical bearing capacity obtained from Janbu method, Davis 

& Booker method, as well as finite element method utilizing PLAXIS 3D varies not 

significantly.  

The results are shown in Table 4.2, and plots are illustrated in Fig.4.2.  

# Method Vult 
(kN) 

Hult 
(kN) 

Tult 
(kNm) 

1 Janbu 7379 670 3515 

2 Davis & Booker 8875 
 

 3955 

3 

PLAXIS 
3D 

Model 1: Medium, 

no inner skirts 
7840 724 7500 

4 
Model 2: Fine,  

no inner skirts 
7460 670 6890 

5 Model 3: Fine,  

with inner skirts  
7410 1014 8430 

Table 4.6: Ultimate bearing capacities Vult, Hult and Tult derived from different methods 

 

 

Figure 4.17: Comparison of ultimate bearing capacity Vult, Hult and Tult from different methods 
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4.4.2 Failure envelopes in V-T load space 

Failure envelopes computed by hand calculations and PLAXIS 3D for the foundation 

subjected to vertical load V and torsion moment T are illustrated in normal load space (V–T),  

dimensionless load space (V/ASu0 – T/ABSu0) and normalized load space (V/Vult – T/Tult), 

respectively. See Fig.4.18 to Fig. 4.20. 

 

Figure 4.18: Comparison of hand calculation and PLAXIS 3D in V-T normal load space 

 

Figure 4.19: Comparison of hand calculation and PLAXIS 3D in V-T dimensionless load space 
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Figure 4.20: Comparison of hand calculation and PLAXIS 3D in V-T normalized load space 

4.4.3 Failure envelopes in H-T load space 

Failure envelopes obtained from Janbu method and PLAXIS 3D when subjected to horizontal 

load H and torsion moment T are illustrated in dimensionless load space (H/ASu0 – T/ABSu0) 

and normalized load space (H/Hult – T/Tult), repectively. See Fig.4.21 to Fig.4.23. 

 

Figure 4.21: Comparison of Janbu and PLAXIS 3D in H-T load space 
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Figure 4.22: Comparison of hand calculation and PLAXIS 3D in H-T dimensionless load space 

 

 

Figure 4.23: Comparison of hand calculation and PLAXIS 3D in H-T normalized load space 
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4.4.4 Failure envelopes in V-H load space 

 Torsion moment T=0 

When torsion moment is T=0: failure envelopes determined by Janbu and D&B method 

captures some of the failure envelopes from finite element results. The results are shown in 

Table 4.7, and the plot is illustrated in Fig.4.24.  

Janbu 
PLAXIS 3D 

Model 1 Model 2 Model 3 

V H V H V H V H 

8146,2 776,4 7840 0 7460 0 7410 0 

8036,7 892,4 6810 681 6460 646 6880 688 

7909,5 1006,9 4120 824 3870 774 5360 1072 

7760,9 1119,0 2080 832 1950 780 2950 1180 

7487,2 1280,1 1030 824 960 768 1460 1168 

7378,8 1330,8 500 800 460 736 710 1136 

7128,2 1425,4       

6818,5 1505,7       

6419,8 1561,2       

5863,2 1566,1       

Table 4.7: Ultimate bearing capacity Vult and Hult derived from different methods 

 

Figure 4.24: Comparison of failure envelopes on V-H space from different methods 
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 Torsion moment T/V=0, 0.2, 0.4, 0.8 

Failure envelopes in the V-H loading space for the foundation subjected to different torsion 

moments determined by Janbu method and PLAXIS 3D models are shown in Fig.4.25 and 

Fig.4.26 below for medium meshes model and fine meshes model respectively. It can be 

observed that the failure envelopes in the V-H loading space are decreasing with the increase 

of torsion moments.  

 

Figure 4.25: Comparison of failure envelopes by Janbu method and PLAXIS 3D Model 1 

 

Figure 4.26: Comparison of failure envelopes by Janbu method and PLAXIS 3D Model 2 
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4.5 Approximating expressions for prediction of ultimate limit states 

As shown in previous figures such as Fig.4.22, two-dimensional slices through a three-

dimensional envelope illustrate how the foundation capacity varies with interaction of the 

different load components, and permit direct determination of ultimate limit states under 

general loading. For routine use it is convenient if the form of the interaction diagram can be 

defined explicitly. The complex shape of failure envelopes for general loading conditions is 

not conducive to an interpolating expression, and the dependence of the VHT interaction on 

foundation geometry and soil strength profile makes the nature of finding an approximating 

expression all the more challenging. 

Approximating expressions to describe VHM failure envelopes for shallow foundations with 

bonding on the foundation/soil interface have been proposed in the past (e.g. Bransby & 

Randolph, 1998). A simplifying transformation based on an upper-bound solution from 

limited plane strain finite element analyses was proposed by Bransby & Randolph(1998), and 

the expression was derived for a surface strip foundation and a soil with a shear strength 

profile linearly increasing with depth given by κ=6. See Equation (4.1)  
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Where, Vult, Hult and Mult are the capacities under pure vertical, horizontal and moment load 

respectively, and M* is a modified moment parameter given by the expression: 

                                            
  

     
 

 

     
 

 

 

 

    
                                        (4.2) 

Where, L is the height above the foundation of the center of rotation of the scoop mechanism 

governing ultimate moment capacity, Mult. 

To describe the VHT failure envelopes for this mudmat foundation, an approximating 

expression similar to Equation (4.2) is introduced as shown in Equation (4.3). 
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Where, Vult, Hult and Tult are the capacities under pure vertical, horizontal and torsion load 

respectively. 

Different trials of the parameters a, b, c were undertaken to find out the most approximating 

values for Equation (4.3). The method is that: by  comparing the V-H plots from PLAXIS 

Model 1 and from Equation (4.4) shown below, the most approximating values of a, b, and c 

of the expression is determined. 
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Determinations of parameters a, b and c for the elipse type relation of V-H-T are illustrated 

below. 

 For PLAXIS Model 1 

The comparing V-H plots determined from PLAXIS Model 1 and Equation (4.4) by 

parameters in Table 4.8 are illustrated in Fig.4.27. 

a 4 Hult 724 kN 

b 5 Vult 7840 kN 

c 2.5 Tult 7500 kNm 

Table 4.8: Parameters a, b, c and ultimate bearing capacities determined from PLAXIS Model 1 

 

 

Figure 4.27: Determination of approximating expression by PLAXIS Model 1 
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 For PLAXIS Model 2 

The comparing V-H plots determined from PLAXIS Model 2 and Equation (4.4) by 

parameters in Table 4.9 are illustrated in Fig.4.28. 

a 4 Hult 670 kN 

b 5 Vult 7460 kN 

c 2.5 Tult 6890 kNm 

Table 4.9: Parameters a, b, c and ultimate bearing capacities determined from PLAXIS Model 2 

 

Figure 4.28: Determination of approximating expression by PLAXIS Model 2 

Approximating values of parameters a, b and c for Equation (4.3)  could be: a=4, b=5, c=2.5. 

Therefore, an approximating expression for the prediction of ultimate limit states could be: 
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Chapter 5 DISCUSSIONS 

5.1  Vertical load and failure mechanism 

Fig.5.1 illustrated the vertical bearing capacities of mudmat foundation determined from hand 

calculations and PLAXIS 3D models. 

 

Figure 5.1: Vertical bearing capacities 

Some conclusions can be summarized by the following points. 

 PLAXIS 3D programs consistently provides higher capacity than Janbu method. 

Model 1 with medium element networks gives a relatively higher value than Model 2 

with fine element networks.  

 It may also be noted that Davis & Booker method provides much higher capacity than 

Janbu method and PLAXIS 3D program. 

 The 1*2 inner skirts did not increase the vertical bearing capacity as we expected, in 

the opposite, the vertical bearing capacity was slightly reduced by 0,7%. 

These conclusions remind us  that: the user should be aware of the problem, taking into 

account the finite element program can provide some unonservative result. It is also clear that 

an even finer element network would have lower capacity. Janbu method basically provides 

solution for 2 dimensional cutting shape, but taking into account the 3D effect by multiplying 

the capacity factor with an area factor. However, PLAXIS generated a full 3 dimensional 

shear failure. This may also be used to explain why the PLAXIS provides higher capacity. 

Fig.5.2  to Fig.5.5 illustrate the failure mechanism and stress distribution of the soil 

surrounding the mudmat foundation skirt tips and baseplate along the length, for Model 2 

without inner skirts. 
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Figure 5.2: Deformed mesh due to ultimate vertical load Vult 

 

Figure 5.3: Total displacement under Vult illustrated with shadings of A-A cross section 

 

Figure 5.4: Total normal stresses, subjected to pure vertical loading 

 

Figure 5.5: Plastic points of A-A cross section in PLAXIS 3D Model 2 
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5.2  Horizontal load and failure mechanism 

Fig.5.6 illustrated the horizontal bearing capacities of mudmat foundation determined from 

hand calculations and PLAXIS 3D models. 

 

Figure 5.6: Horizontal bearing capacities 

Some conclusions can be summarized by the following points. 

 Again, PLAXIS 3D analyses with coarse element networks provide higher capacity 

than the analysis of fine element networks. The explanation for this is shown in 

Section 5.1. 

 The 1*2 inner skirts increase the horizontal bearing capacity significantly by more 

than 50 percent. 

 Comparing with the finite element program PLAXIS 3D, the traditional formulas 

derived by Janbu method give a slightly lower capacity.  

This could be interpreted by that: PLAXIS 3D takes into account all affections, while the 

other methods give a more conservative result. It is therefore appropriate to create a 

composite bearing capacity formula that takes into account everything. So the results from 

PLAXIS 3D can be verified. 

Fig.5.7  to Fig.5.10 illustrate the failure mechanism of the soil surrounding the mudmat 

foundation skirt tips and baseplate along the length, for Model 2 without inner skirts. 
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Figure 5.7: Deformed mesh due to ultimate vertical load Hult 

 

Figure 5.8: Total displacement under Hult illustrated with shadings of A-A cross section 

 

 

Figure 5.9: Shear stress between base plate and soil compartment 

 

 

Figure 5.10: Plastic points of A-A cross section in PLAXIS 3D Model 2 
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5.3  Torsion moment and failure mechanism 

The torsional bearing capacity determined from PLAXIS 3D does not correspond well with 

that from hand calculations. A large difference showed up, which is not as we expected. See 

Fig.5.11. 

 

 

Figure 5.11: Torsional bearing capacities 

 

The reasons could be that:  

 Janbu and D&B methods only consider the plain strain, without taking into account 

the 3D affections, and this may result in very conservative results.  

 Besides, there could be some parametric errors in the PLAXIS 3D models, which may 

result in the results shown above. 

The analyses in PLAXIS 3D clearly show that torsion reduces significantly the vertical 

bearing capacity, but slightly reduces the horizontal bearing capacity. This is illustrated in 

Fig.5.12 for the comparisons of two capacity curves for load combinations with and without 

torsion. 
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Figure 5.12: V-H capacity curves with and without torsions 

The vertical bearing capacity is significantly reduced when the shear stresses due to torsion 

and horizontal load (τtot=τt+τh) exceed the shear capacity, this was discussed previously in 

Chapter 2.  

A horizontal cross section at skirt tips (D=1m) from PLAXIS 3D analyses when subjected to 

pure torsion showed that:  

 

 Soil elements at skirt tips close to the corners are more easily mobilized, thus corner 

areas of mudmat foundation seems more vulnerable to generate failure surface when 

subjected to pure torsions; 

 Soil elements in the central area of mudmat foundation are not mobilized obviously, 

which means the torsions do not have large affections in the central areas of mudmat 

foundation when subjected to pure torsions; 

 

The failure mechanism illustrated by total displacements of horizontal cross section at sk irt 

tips are shown below in Fig.5.13. 
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Figure 5.13: Total displacements of horizontal cross section at skirt tips in shadings and arrows 

When mudmat foundation is subjected to vertical load and torsion together, with the increase 

of torsion, failure areas seem to move forward to the corners.  This is illustrated by 

comparisons of figures below. 

   

                         V=10000, T/V=0,2                                      V=10000, T/V=0,8 

   

                         V=10000, T/V=3,2                                      V=10000, T/V=12,8 

Figure 5.14: Horizontal cross sections, when subjected to constant V and increasing T 
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5.4  Inner skirts 

Skirted foundations under combined loadings were numerically investigated, Bransby and 

Randolph (1999), Gourvenec (2003) etc. for clays with undrained constant shear strength Su 
and varying shear strength Su with depth. According to Gourvenec, negative excess pore 

pressures can develop within the soil plug during undrained uplift (owing to overturning or 
the buoyancy of a floating structure) that enables mobilization of reverse end bearing 
(Gourvenec, 2011). These features of mudmat foundations cause classical soil mechanical 

theories to underestimate the foundation capacities. Thus, the use of explicitly derived failure 
envelopes(see Chapter 4) would be an attractive alternative for design. 

 
Mudmat foundations are often equipped with both outer and inner skirts, which will penetrate 
the seabed during installation confining a soil plug. The skirts could enhance additional 

bearing capacities for mudmat foundation, and this could be interpreted by the suction 
developed within the skirt when subjected to combined loadings. 

 

 

Figure 5.15: Comparisons of bearing capacities for mudmat with and without inner skirts  

Some conclusions can be summarized by the following points:  

 Vertical bearing capacity was not increased by inner skirts, to the opposite, it was 

slightly reduced. This may be due to the interface roughness R=0.5. 

 Horizontal and torsion bearing capacity were significantly increased, corresponding to 

an increase of 51% and 22%, respectively.   

 Therefore, inner skirts have significant affections on both horizontal and torsion 

bearing capacities. 

The failure mechanism of mudmat foundations with inner skirts subjected pure horizontal 
loading are illustrated by Fig.5.16 and Fig.5.17. 

 

 

Figure 5.16: Vertical cross section of mudmat with inner skirts 
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Figure 5.17: Total displacements of mudmat with inner skirts, horizontal loading 

 

When subjected to pure torsion moment, the failure mechanism illustrated by total 

displacements of horizontal cross section at skirt tips are shown below in Fig.5.17 and 

Fig.5.18. 

 

 

Figure 5.18: Total displacements of horizontal cross section at skirt tips 

When mudmat foundation is subjected to horizontal load and torsion together, with the 

increase of torsion, horizontal displacement gradually becomes negligible while the rotationa l 

displacement becomes predominant. When shear stresses due to torsion and horizontal load 

(τtot=τt+τh) exceed the shear capacity, total displacement changes slightly. This is illustrated 

by comparisons in Fig.5.19. 

   
                             H=2000 kN, T/H=0.2                                        H=2000 kN, T/H=0.8 

   
                             H=2000 kN, T/H=6.4                                        H=2000 kN, T/H=12.8 

Figure 5.19: Horizontal cross sections, when subjected to constant H and increasing T 
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5.5  Suitability of simplified method accounting for torsion 

Fig.4.25 and Fig.4.26 showed the failure envelopes on V-H space accounting for torsion 

moments determined from simplified method(Janbu method and DNV standard) and PLAXIS 

3D.  

By comparing these two plots, some points can be concluded: 

 When torsion was relatively small(for example, T/V=0, and T/V=0.2), this simplified 

method did not give results that correspond well with PLAXIS 3D program. The 

PLAXIS 3D program gave little more conservative results.  

 

 However, when torsion was relatively large (for example, T/V=0.8), the simplified 

method gave much more conservative results than PLAXIS 3D program. 

 

 The failure envelopes given by PLAXIS 3D did not show many differences with the 

increase of torsion moments, i.e. the failure envelopes were very close. 

 

 However, the failure envelopes given by simplified method seemed more divergent 

than those from PLAXIS 3D for combinations of T/V=0, 0.2, 0.4, and 0.8. 
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Chapter 6 CONCLUSIONS 
 

This thesis aims at evaluating the bearing capacity of rectangular mudmat foundation 

subjected to combined loadings including vertical loading, horizontal loading and torsion 

moments, as well as comparing the results from finite element program PLAXIS 3D and Jan 

bu method.  

Vertical and horizontal bearing capacities of mudmat foundation from finite element program 

PLAXIS 3D correspond well with the hand calculation results by Janbu method. However, 

the vertical bearing capacities from PLAXIS 3D are slightly higher than Janbu method, with 

a difference of 460kN(Model 1) and 80 kN(Model 2), corresponding to a difference of 6% 

and 1%, respectively. It may have several explanations: 

 The results of finite element programs is dependent on network element and element 

type. Theoretically, the analyses of model with more fine meshes and smaller average 

element size would generate more accurate results.  

 PLAXIS 3D builds a real 3-dimensional model, taking into consideration the 3D 

affections. However, Janbu method is based on the plane strain.  

However, torsional bearing capacity from PLAXIS 3D is almost twice the value determined 

from hand calculations, which may because of the conservative calculation method or some 

possible parametric errors in PLAXIS 3D.  

By intergrating the FEM analyses package PLAXIS 3D with the Swipe test procedure of 

loading, the failure envelopes of mudmat foundation and approximating expressions are 

investigated. Through numerical computations and comparative analyses based on FEM, the 

two-dimensional failure envelopes of mudmat foundation are established by using proposed 

method to evaluate the stability of foundation under combined loadings. These results could 

be utilized to provide vital reference for the design and construction of mudmat foundation. 

By comparing the results from PLAXIS 3D with those from simplified method accounting 

for torsion moments with Janbu method and DNV standard(see Fig.4.25 and Fig.4.26), some 

points can be concluded: 

 When torsion was relatively small(for example, T/V=0, and T/V=0.2), this simplified 

method did not give results that correspond well with PLAXIS 3D program. The 

PLAXIS 3D program gave more conservative results. 

 However, when torsion was relatively large (for example, T/V=0.8), the simplified 

method gave much more conservative results than PLAXIS 3D program. 

Some man-made errors probably exist in the judgement of limit equilibrium states and 

ultimate capacities, due to some inaccuracies of FEM analyses.  
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Chapter 8 APPENDIX  

1. Hand calculations of bearing capacity with Janbu method 

The model of mudmat foundation for hand calculations is shown below.  

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Simplified model of mudmat foundation for hand calculations 

 

Find the shear and normal stress acting on both sides of the wall for undrained condition.  

γ =15.5kN/m3, r =0.5, B=9m, D=1m, p=15.5kPa 

                     

   
 

      
   (

 

 
  )       

Mean Su: Su=2+1.3*D=5.25kPa, q=0 

 Vertical bearing capacity: 

ω=0.5arcsinr=0.262 

Nc=1+π-2ω+cos2ω=4.484 

qv=NcSu+p=4.484*5.25+15.5=39kPa 

V=qv*A=39.04*189=7379kN 

 Horizontal bearing capacity: 

V 

Fskirt Fskirt Shear force T 

V 

A 

A 

A A 
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pP=q+γz+κSu, pA=q+γz-κSu,    √  
 

 
  for 0<r<1. 

For r =0,5, κ =2.31,  

pP,z=0 =0+0+2.31*5.25= 12.1kPa 

pP,z=1 =0+15.5*1+2.31*5.25=27.6kPa 

pA,z=0 =0+0-2.31*5.25= -12.1kPa 

pA,z=1 =0+15.5-2.31*5.25= 3.4kPa 

Neglect tensile stresses in the calculation as they vanish with the first tension crack. 

Depth of zero active earth pressure from the relationship (pA,z=1 / pA,z=0) = (1-z)/z yields now 

z= 0.78m. Passive and active earth pressure distribution along the skirt is seen in Fig.11.2. 

 

 

 

 

 

 

PP = 0.5*1*(12.1+27.6)=19.85kN/m 

PA =0.5*3.4*(1-0.78)=0.37kN/m 

Neglect active earth pressure, since it is close to 0 and is much smaller  than passive earth 

pressure.  

Horizontal load capacity of one skirt:  

Fskirt = PP *DL = 19.85*1*9=178.65kN 

Shear stress under base plate, at tip skirts: 

th = rSu0 =0.5*(2+1.3*1)=1.65kPa 

Shear force of base plate: 

T = thA= 1.65*189=312kN 

Therefore, the horizontal load capacity can be determined by: 

H = 2Fskirt + T = 2*178.65+312= 670kN 

3.4kPa 

PA 

PP 

12.1kPa 

27.6kPa 

Fskirt 
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2. Hand calculations to determine failure envelopes 
 

 Janbu method, V-H failure envelopes 

 

 

 

 Davis & Booker method, V-T failure envelopes 

 

 

 

 

 

 

 

 

 

r ω Nc Zr Mean Su p qv th th/qv 2Pp V H V/ASu0 H/ASu0

0 0,000 5,142 2,591 5,37 15,5 43,1 0,00 0,00 332,76 8146 333 8,03 0,33

0,1 0,050 5,036 2,589 5,37 15,5 42,5 0,33 0,01 338,99 8037 401 7,93 0,40

0,2 0,101 4,920 2,581 5,36 15,5 41,8 0,66 0,02 344,75 7909 469 7,81 0,46

0,3 0,152 4,791 2,566 5,34 15,5 41,1 0,99 0,02 349,92 7761 537 7,70 0,53

0,45 0,233 4,568 2,522 5,28 15,5 39,6 1,49 0,04 356,19 7487 637 7,50 0,63

0,5 0,262 4,484 2,500 5,25 15,5 39,0 1,65 0,04 357,74 7379 670 7,44 0,66

0,6 0,322 4,298 2,437 5,17 15,5 37,7 1,98 0,05 359,67 7128 734 7,30 0,72

0,7 0,388 4,080 2,341 5,04 15,5 36,1 2,31 0,06 359,36 6818 796 7,15 0,78

0,8 0,464 3,814 2,186 4,84 15,5 34,0 2,64 0,08 355,33 6420 854 7,02 0,84

0,9 0,560 3,458 1,915 4,49 15,5 31,0 2,97 0,10 343,92 5863 905 6,91 0,89

0,92 0,584 3,365 1,833 4,38 15,5 30,3 3,04 0,10 339,93 5718 914 6,90 0,90

0,94 0,611 3,260 1,735 4,26 15,5 29,4 3,10 0,11 334,91 5552 921 6,90 0,91

0,96 0,644 3,135 1,612 4,10 15,5 28,3 3,17 0,11 328,31 5356 927 6,92 0,91

0,98 0,685 2,970 1,441 3,87 15,5 27,0 3,23 0,12 318,8 5104 930 6,97 0,92

1 0,785 2,571 1,000 3,30 15,5 24,0 3,30 0,14 292,87 4533 917 7,27 0,90

T τ r ω F Nc ρB/4 Su,z=D 1+0,2B/L p
additional shear 

factor
Su,z=D/2 qv th 2Pp V T'

0 0 0 0 1,46 5,14 2,925 3,3 1,086 15,5 1,270 2,65 50,40 0,00 234,90 9525 0

1000 0,122 0,037 0,018 1,46 5,10 2,925 3,3 1,086 15,5 1,270 2,65 50,20 0,15 236,06 9488 146

2000 0,243 0,074 0,037 1,46 5,07 2,925 3,3 1,086 15,5 1,270 2,65 50,00 0,31 237,22 9449 292

4000 0,487 0,147 0,074 1,46 4,98 2,925 3,3 1,086 15,5 1,270 2,65 49,57 0,62 239,48 9368 584

8000 0,973 0,295 0,150 1,46 4,80 2,925 3,3 1,086 15,5 1,270 2,65 48,60 1,24 243,86 9185 1168

10000 1,216 0,369 0,189 1,46 4,69 2,925 3,3 1,086 15,5 1,270 2,65 48,05 1,54 245,98 9082 1460

12000 1,460 0,442 0,229 1,46 4,58 2,925 3,3 1,086 15,5 1,270 2,65 47,46 1,85 248,06 8970 1752

13555 1,649 0,500 0,262 1,46 4,48 2,925 3,3 1,086 15,5 1,270 2,65 46,96 2,09 249,65 8876 1978

14000 1,703 0,516 0,271 1,46 4,46 2,925 3,3 1,086 15,5 1,270 2,65 46,81 2,16 250,10 8847 2043

20000 2,433 0,737 0,414 1,46 3,99 2,925 3,3 1,086 15,5 1,270 2,65 44,37 3,09 256,01 8385 2919

24000 2,919 0,885 0,543 1,46 3,52 2,925 3,3 1,086 15,5 1,270 2,65 41,93 3,71 259,78 7924 3503

26000 3,162 0,958 0,641 1,46 3,15 2,925 3,3 1,086 15,5 1,270 2,65 39,96 4,02 261,63 7552 3795

27100 3,296 0,999 0,762 1,46 2,67 2,925 3,3 1,086 15,5 1,270 2,65 37,45 4,19 262,63 7078 3955



80 
 

 Janbu method and DNV standard, V-H failure envelopes 

 

 

 

 

 

 

 

 

 

 

 

 

T/V= 0 T/V= 0,2

r H' Nc V H V/ASu0 H/ASu0 r H' Nc V H V/ASu0 H/ASu0

0 332,8 5,14 8146,2 332,8 8,210 0,335 0 332,8 5,14 8146,2 86,4 8,210 0,087

0,1 401,4 5,04 8036,7 401,4 8,100 0,404 0,1 401,4 5,04 8036,7 195,5 8,100 0,197

0,2 469,5 4,92 7909,5 469,5 7,971 0,473 0,2 469,5 4,92 7909,5 281,0 7,971 0,283

0,3 537,0 4,79 7760,9 537,0 7,822 0,541 0,3 537,0 4,79 7760,9 360,0 7,822 0,363

0,45 636,9 4,57 7487,2 636,9 7,546 0,642 0,45 636,9 4,57 7487,2 473,2 7,546 0,477

0,5 669,6 4,48 7378,8 669,6 7,436 0,675 0,5 669,6 4,48 7378,8 510,0 7,436 0,514

0,6 733,9 4,30 7128,2 733,9 7,184 0,740 0,6 733,9 4,30 7128,2 582,5 7,184 0,587

0,7 795,9 4,08 6818,5 795,9 6,872 0,802 0,7 795,9 4,08 6818,5 653,3 6,872 0,658

0,8 854,3 3,81 6419,8 854,3 6,470 0,861 0,8 854,3 3,81 6419,8 721,7 6,470 0,727

0,9 905,3 3,46 5863,2 905,3 5,909 0,912 0,9 905,3 3,46 5863,2 785,7 5,909 0,792

0,92 913,7 3,37 5717,6 913,7 5,762 0,921 0,92 913,7 3,37 5717,6 797,4 5,762 0,804

0,94 921,2 3,26 5551,8 921,2 5,595 0,928 0,94 921,2 3,26 5551,8 808,6 5,595 0,815

0,96 927,1 3,13 5355,8 927,1 5,398 0,934 0,96 927,1 3,13 5355,8 818,7 5,398 0,825

0,98 930,0 2,97 5103,9 930,0 5,144 0,937 0,98 930,0 2,97 5103,9 827,1 5,144 0,834

1 916,6 2,57 4532,9 916,6 4,568 0,924 1 916,6 2,57 4532,9 825,7 4,568 0,832

T/V= 0,4

r H' Nc V H V/ASu0 H/ASu0

0 332,8 5,14 8146,2 #NUM! 8,210 #NUM!

0,1 401,4 5,04 8036,7 #NUM! 8,100 #NUM!

0,2 469,5 4,92 7909,5 #NUM! 7,971 #NUM!

0,3 537,0 4,79 7760,9 #NUM! 7,822 #NUM!

0,45 636,9 4,57 7487,2 205,6 7,546 0,207

0,5 669,6 4,48 7378,8 268,2 7,436 0,270

0,6 733,9 4,30 7128,2 374,2 7,184 0,377

0,7 795,9 4,08 6818,5 469,1 6,872 0,473

0,8 854,3 3,81 6419,8 558,5 6,470 0,563

0,9 905,3 3,46 5863,2 644,3 5,909 0,649

0,92 913,7 3,37 5717,6 661,0 5,762 0,666

0,94 921,2 3,26 5551,8 677,4 5,595 0,683

0,96 927,1 3,13 5355,8 693,6 5,398 0,699

0,98 930,0 2,97 5103,9 709,4 5,144 0,715

1 916,6 2,57 4532,9 723,6 4,568 0,729

T/V= 0,8

r H' Nc V H V/ASu0 H/ASu0

0 332,8 5,14 8146,2 #NUM! 8,210 #NUM!

0,1 401,4 5,04 8036,7 #NUM! 8,100 #NUM!

0,2 469,5 4,92 7909,5 #NUM! 7,971 #NUM!

0,3 537,0 4,79 7760,9 #NUM! 7,822 #NUM!

0,45 636,9 4,57 7487,2 #NUM! 7,546 #NUM!

0,5 669,6 4,48 7378,8 #NUM! 7,436 #NUM!

0,6 733,9 4,30 7128,2 #NUM! 7,184 #NUM!

0,7 795,9 4,08 6818,5 #NUM! 6,872 #NUM!

0,8 854,3 3,81 6419,8 #NUM! 6,470 #NUM!

0,9 905,3 3,46 5863,2 103,4 5,909 0,104

0,92 913,7 3,37 5717,6 197,0 5,762 0,199

0,94 921,2 3,26 5551,8 263,2 5,595 0,265

0,96 927,1 3,13 5355,8 320,7 5,398 0,323

0,98 930,0 2,97 5103,9 376,3 5,144 0,379

1 916,6 2,57 4532,9 455,0 4,568 0,459
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3. Data of PLAXIS Models to determine failure envelopes 

 V-T failure envelopes from PLAXIS 3D: 

Model 1: 

 

Model 2: 

 

Model 3: 

 

 

 

 

 

 

unit Phase # V T/V Mstage T V V/Asuo T/ABSuo V/Vult T/Tult

A= 189 m2 1 10000 0 0,784 0 7840 7,90 0,000 1,000 0,000

B= 9 m2 2 10000 0,2 0,781 1562 7810 7,87 0,175 0,996 0,182

Suo= 5,25 kPa 3 10000 0,4 0,768 3072 7680 7,74 0,344 0,980 0,358

4 10000 0,8 0,709 5672 7090 7,15 0,635 0,904 0,661

Vult= 7840 kN 5 10000 1,6 0,507 8112 5070 5,11 0,908 0,647 0,946

Tult= 8576 kNm 6 10000 3,2 0,268 8576 2680 2,70 0,960 0,342 1,000

7 10000 6,4 0,133 8512 1330 1,34 0,953 0,170 0,993

8 10000 12,8 0,065 8320 650 0,66 0,932 0,083 0,970

V-T
Parameters

unit Phase # V T/V Mstage T V V/Asuo T/ABSuo V/Vult T/Tult

A= 189 m2 1 10000 0 0,746 0 7460 7,52 0,000 1,000 0,000

B= 9 m2 2 10000 0,2 0,743 1486 7430 7,49 0,166 0,996 0,186

Suo= 5,25 kPa 3 10000 0,4 0,73 2920 7300 7,36 0,327 0,979 0,366

kN 4 10000 0,8 0,672 5376 6720 6,77 0,602 0,901 0,675

Vult= 7460 kN 5 10000 1,6 0,477 7632 4770 4,81 0,855 0,639 0,958

Tult= 7968 kNm 6 10000 3,2 0,249 7968 2490 2,51 0,892 0,334 1,000

7 10000 6,4 0,124 7936 1240 1,25 0,889 0,166 0,996

8 10000 12,8 0,06 7680 600 0,60 0,860 0,080 0,964

V-T
Parameters

unit Phase # V T Mstage T V V/Asuo T/ABSuo V/Vult T/Tult

A= 189 m2 1 10000 0 0,741 0 7410 7,47 0,000 1,000 0,000

B= 9 m2 2 10000 0,2 0,737 1474 7370 7,43 0,165 0,995 0,166

Suo= 5,25 kPa 3 10000 0,4 0,725 2900 7250 7,31 0,325 0,978 0,326

kN 4 10000 0,8 0,674 5392 6740 6,79 0,604 0,910 0,606

Vult= 7410 kN 5 10000 1,6 0,507 8112 5070 5,11 0,908 0,684 0,912

Tult= 8896 kNm 6 10000 3,2 0,277 8864 2770 2,79 0,993 0,374 0,996

7 10000 6,4 0,139 8896 1390 1,40 0,996 0,188 1,000

8 10000 12,8 0,069 8832 690 0,70 0,989 0,093 0,993

Parameters

V-T
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 H-T failure envelopes from PLAXIS 3D: 

Model 1: 

 

Model 2: 

 

Model 3: 

 

 

 

 

unit Phase # H T/H Mstage T H H/ASuo T/ABSuo H/Hult T/Tult

A= 189 m2 1 2000 0 0,362 0 724 0,73 0,000 1,000 0,000

B= 9 m2 2 2000 0,2 0,362 144,8 724 0,73 0,016 1,000 0,020

Suo= 5,25 kPa 3 2000 0,4 0,362 289,6 724 0,73 0,032 1,000 0,039

Hult= 724 kN 4 2000 0,8 0,362 579,2 724 0,73 0,065 1,000 0,079

kN 5 2000 1,6 0,362 1158,4 724 0,73 0,130 1,000 0,157

Tult= 7372,8 kNm 6 2000 3,2 0,361 2310,4 722 0,73 0,259 0,997 0,313

7 2000 6,4 0,345 4416 690 0,70 0,494 0,953 0,599

8 2000 12,8 0,248 6348,8 496 0,50 0,711 0,685 0,861

9 2000 25,6 0,14 7168 280 0,28 0,803 0,387 0,972

10 2000 51,2 0,072 7372,8 144 0,15 0,826 0,199 1,000

11 2001 102,4 0,036 7372,8 72,036 0,07 0,826 0,099 1,000

Parameters

H-T

unit Phase # H T/H Mstage T H H/Asuo T/ABSuo H/Hult T/Tult

A= 189 m2 1 2000 0 0,335 0 670 0,68 0,000 1,000 0,000

B= 9 m2 2 2000 0,2 0,335 134 670 0,68 0,015 1,000 0,019

Suo= 5,25 kPa 3 2000 0,4 0,335 268 670 0,68 0,030 1,000 0,038

Hult= 670 kN 4 2000 0,8 0,335 536 670 0,68 0,060 1,000 0,077

kN 5 2000 1,6 0,335 1072 670 0,68 0,120 1,000 0,154

Tult= 6963,2 kNm 6 2000 3,2 0,335 2144 670 0,68 0,240 1,000 0,308

7 2000 6,4 0,32 4096 640 0,64 0,459 0,955 0,588

8 2000 12,8 0,227 5811,2 454 0,46 0,651 0,678 0,835

9 2000 25,6 0,128 6553,6 256 0,26 0,734 0,382 0,941

10 2000 51,2 0,066 6758,4 132 0,13 0,757 0,197 0,971

10 2000 102,4 0,034 6963,2 68 0,07 0,780 0,101 1,000

H-T
Parameters

unit Phase # H T/H Mstage T H H/Asuo T/ABSuo H/Hult T/Tult

A= 189 m2 1 2000 0 0,507 0 1014 1,02 0,00 1,000 0,000

B= 9 m2 2 2000 0,8 0,506 809,6 1012 1,02 0,09 0,998 0,096

Suo= 5,25 kPa 3 2000 1,6 0,49 1568 980 0,99 0,18 0,966 0,187

Hult= 1014 kN 4 2000 3,2 0,478 3059,2 956 0,96 0,34 0,943 0,364

kN 5 2000 6,4 0,428 5478,4 856 0,86 0,61 0,844 0,652

Tult= 8396,8 kNm 6 2000 12,8 0,284 7270,4 568 0,57 0,81 0,560 0,866

7 2000 25,6 0,157 8038,4 314 0,32 0,90 0,310 0,957

8 2000 51,2 0,081 8294,4 162 0,16 0,93 0,160 0,988

9 2000 102,4 0,041 8396,8 82 0,08 0,94 0,081 1,000

Parameters

H-T
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 H-V-T failure envelopes: 

Model 1: 

 

 

 

 

 

 

 

 

 

 

unit

A= 189 m2

B= 9 m2

Suo= 5,25 kPa

Hult= 800 kN

Vult= 7840 kN

Parameters

V H/V Mstage V H Mstage V H Mstage V H Mstage V H
10000 0 0,784 7840 0 0,781 7810 0 0,768 7680 0 0,709 7090 0

10000 0,1 0,681 6810 681 0,677 6770 677 0,665 6650 665 0,613 6130 613

10000 0,2 0,412 4120 824 0,411 4110 822 0,409 4090 818 0,401 4010 802

10000 0,4 0,208 2080 832 0,208 2080 832 0,208 2080 832 0,208 2080 832

10000 0,8 0,103 1030 824 0,103 1030 824 0,103 1030 824 0,103 1030 824

10000 1,6 0,05 500 800 0,05 500 800 0,05 500 800 0,05 500 800

T/V=0 T/V=0.2 T/V=0,4 T/V=0,8

V/Vult H/Hult V/Vult H/Hult V/Vult H/Hult V/Vult H/Hult

1,000 0,000 0,996 0,000 0,980 0,000 0,904 0,000

0,869 0,851 0,864 0,846 0,848 0,831 0,782 0,766

0,526 1,030 0,524 1,028 0,522 1,023 0,511 1,003

0,265 1,040 0,265 1,040 0,265 1,040 0,265 1,040

0,131 1,030 0,131 1,030 0,131 1,030 0,131 1,030

0,064 1,000 0,064 1,000 0,064 1,000 0,064 1,000

V/ASu0 H/ASuo V/ASu0 H/ASuo V/ASu0 H/ASuo V/ASu0 H/ASuo

7,901 0,000 7,871 0,000 7,740 0,000 7,145 0,000

6,863 0,686 6,823 0,682 6,702 0,670 6,178 0,618

4,152 0,830 4,142 0,828 4,122 0,824 4,041 0,808

2,096 0,838 2,096 0,838 2,096 0,838 2,096 0,838

1,038 0,830 1,038 0,830 1,038 0,830 1,038 0,830

0,504 0,806 0,504 0,806 0,504 0,806 0,504 0,806

Dimensionless load

T/V=0 T/V=0.2 T/V=0,4 T/V=0,8

Normalized load

T=0 T/V=0.2 T/V=0,4 T/V=0,8
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Model 2: 

 

 

 

 

 

 

 

 

 

 

 

unit

A= 189 m2

B= 9 m2

Suo= 5,25 kPa

Hult= 780 kN

Vult= 7460 kN

Parameters

V H/V Mstage V H Mstage V H Mstage V H Mstage V H
10000 0 0,746 7460 0 0,743 7430 0 0,73 7300 0 0,672 6720 0

10000 0,1 0,646 6460 646 0,642 6420 642 0,629 6290 629 0,58 5800 580

10000 0,2 0,387 3870 774 0,387 3870 774 0,386 3860 772 0,378 3780 756

10000 0,4 0,195 1950 780 0,195 1950 780 0,195 1950 780 0,194 1940 776

10000 0,8 0,096 960 768 0,096 960 768 0,096 960 768 0,095 950 760

10000 1,6 0,046 460 736 0,046 460 736 0,046 460 736 0,046 460 736

T/V=0,8T/V=0 T/V=0.2 T/V=0,4

V/Vult H/Hult V/Vult H/Hult V/Vult H/Hult V/Vult H/Hult

1,000 0,000 0,996 0,000 0,979 0,000 0,901 0,000

0,866 0,828 0,861 0,823 0,843 0,806 0,777 0,744

0,519 0,992 0,519 0,992 0,517 0,990 0,507 0,969

0,261 1,000 0,261 1,000 0,261 1,000 0,260 0,995

0,129 0,985 0,129 0,985 0,129 0,985 0,127 0,974

0,062 0,944 0,062 0,944 0,062 0,944 0,062 0,944

V/ASu0 H/ASuo V/ASu0 H/ASuo V/ASu0 H/ASuo V/ASu0 H/ASuo

7,518 0,000 7,488 0,000 7,357 0,000 6,772 0,000

6,510 0,651 6,470 0,647 6,339 0,634 5,845 0,585

3,900 0,780 3,900 0,780 3,890 0,778 3,810 0,762

1,965 0,786 1,965 0,786 1,965 0,786 1,955 0,782

0,967 0,774 0,967 0,774 0,967 0,774 0,957 0,766

0,464 0,742 0,464 0,742 0,464 0,742 0,464 0,742

Dimensionless load

T=0 T/V=0.2 T/V=0,4 T/V=0,8

Normalized load

T=0 T/V=0.2 T/V=0,4 T/V=0,8
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Model 3: 

 

 

 

 

 

unit

A= 189 m2

B= 9 m2

Suo= 5,25 kPa

Hult= 1136 kN

Vult= 7410 kN

Parameters

V H/V Mstage V H Mstage V H Mstage V H Mstage V H
10000 0 0,741 7410 0 0,737 7370 0 0,725 7250 0 0,674 6740 0

10000 0,1 0,688 6880 688 0,684 6840 684 0,671 6710 671 0,621 6210 621

10000 0,2 0,536 5360 1072 0,534 5340 1068 0,527 5270 1054 0,498 4980 996

10000 0,4 0,295 2950 1180 0,295 2950 1180 0,293 2930 1172 0,289 2890 1156

10000 0,8 0,146 1460 1168 0,146 1460 1168 0,146 1460 1168 0,146 1460 1168

10000 1,6 0,071 710 1136 0,071 710 1136 0,071 710 1136 0,071 710 1136

T/V=0 T/V=0.2 T/V=0,4 T/V=0,8

V/Vult H/Hult V/Vult H/Hult V/Vult H/Hult V/Vult H/Hult

1,000 0,000 0,995 0,000 0,978 0,000 0,910 0,000

0,928 0,606 0,923 0,602 0,906 0,591 0,838 0,547

0,723 0,944 0,721 0,940 0,711 0,928 0,672 0,877

0,398 1,039 0,398 1,039 0,395 1,032 0,390 1,018

0,197 1,028 0,197 1,028 0,197 1,028 0,197 1,028

0,096 1,000 0,096 1,000 0,096 1,000 0,096 1,000

V/ASu0 H/ASuo V/ASu0 H/ASuo V/ASu0 H/ASuo V/ASu0 H/ASuo

7,468 0,000 7,428 0,000 7,307 0,000 6,793 0,000

6,934 0,693 6,893 0,689 6,762 0,676 6,259 0,626

5,402 1,080 5,382 1,076 5,311 1,062 5,019 1,004

2,973 1,189 2,973 1,189 2,953 1,181 2,913 1,165

1,471 1,177 1,471 1,177 1,471 1,177 1,471 1,177

0,716 1,145 0,716 1,145 0,716 1,145 0,716 1,145

Dimensionless load

Normalized load

T=0 T/V=0.2 T/V=0,4 T/V=0,8

T=0 T/V=0.2 T/V=0,4 T/V=0,8


