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Abstract: 

Flow slides in sensitive clay deposits are common phenomena in Scandinavia and Canada. These flow 

slides have caused catastrophes to infrastructure and human life. The post-failure movements of such flow 

slides usually are characterized by their retrogression distances and or by the run-out distance of the slide 

debris. There are empirical and numerical methods used to assess the retrogression distance of slide debris. 

On contrary, convincing and accurate modeling techniques for run-out  of sensitive clay slide debris, 

which is a very complex and challenging process, is yet to be developed  Keeping this in view, this work 

presents a preliminary study to understand the run-out process in sensitive  clay slide debris. An available 

numerical tool called DAN3D has been used to simulate the run-out process of three large flow slides 

occurred in Norway. In addition, back-calculation of a laboratory scale model test has been performed. A 

standardized calibration and adjustments on the models based on back analysis of real cases has to be done 

to use such models on sensitive clay debris analysis extensively. The Study shows that a very simple 

plastic model in DAN3D is able to estimate  the run-out distance and the process. 
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Background 

Landslides have been and are hazards that cause a drastic loss to human life and 

infrastructure. The risk increases in urban and more populated areas. The ability and 

efficiency to predict the intensity of landslides will greatly reduce the risk.  

There are various reasons that could cause landslides. Some of the causes can be: geological, 

morphological or human causes. Among the types of landslides, clay slides (particularly 

highly sensitive clay slides) are the major interest in this thesis work. Highly sensitive clays, 

also known as quick clays, are found in Norway, Sweden and some part of Canada. Post-

failure movements of the debris involved in sensitive clay slides have a potential to destroy 

human life and infrastructure. The ability to predict the extent and intensity of sensitive clay 

slide before it happens enhances to protect settlement and infrastructures from damage.  

Post-failure movements in sensitive clay slides are characterized by two main parts, 

retrogression distance and run-out distance. A sensitive clay slide might be retrogressive, 

flow or may contain both parts. The study of the retrogressive behavior has been given much 

emphasis. This is due to the fact that, in sub aerial landslides retrogression is more of a 

problem than the flowability. The run-out of sensitive clay slides is usually along a 

channelized river or stream and the study of the flow behavior was less important so far. 

However, some of the sub-aerial slides have affected larger areas and the study of the 

flowability is important in this regard. 

Back analysis, which is an analysis of an already occurred event, of the run out distance of 

the flow type slides has been discussed in detail. Empirical and numerical study has been 

made to characterize the run-out of sensitive clay slides.   
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This master thesis is a part of the national program called Natural Hazards- Infrastructure for 

floods and slides (NIFS). 

Task Description 

Empirical studies have been done on the run-out of landslides. Among the empirically 

developed relationship, an extensive data has been analysed by Coromias(1996) .This 

relationship has been applied to 12 landslide cases. 

Numerical study has been made using a quasi-3D code, DAN3D (Dynamic Analysis of 

Landslides in Three Dimensions).The numerical study was conducted on three real cases; the 

Byneset landslide (2012), the Finneidfjord landslide (1996) and the Lyngen landslide (2010). 

In addition, a model laboratory landslide test has been modelled and back analysed using the 

numerical model. The numerical study comprises building a model, parameterizing and 

analyzing the simulation results. 

The following are some of the expected results from this study: 

 Literature review regarding sensitive clay slides in Norway 

 A critical review of various numerical tools available to model run-out distances 

 Application of DAN3D for sensitive clays 

 Back calculation of three major sensitive clay slides in Norway 

 Back calculation of the small scale model tests to study the significance of remolded 

shear strength in run-out of slide debris 

 Suggestion for the further improvement of DAN3D  
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1.  Introduction 

 

Landslides are downward and outward movements of a slope (it can be either gentle or 

steep).The sloping surface might be comprised of one or both of these materials: soil, rock or 

artificial fill. It is possible to differentiate landslides based on the material involved and mode 

of the slide movement.  

There are various reasons that could cause landslides. Some of the causes can be: geological, 

morphological or human causes. Among the types of landslides, clay slides (particularly 

quick clay slides) are the major interest in this thesis work. Quick clays are soft sensitive 

marine clay deposits which are found in Norway, Sweden and Canada .Slides related with 

such clays have caused catastrophes to human life and infrastructure. Ever since the data is 

recorded, as much as 1000 people have died in Norway only .The ability to predict the extent 

and intensity of quick clay slide before it happens enhances to protect settlement and 

infrastructures from damage. A mapping of potential quick clay areas is underway in 

Norway. 

Back analysis, which is an analysis of an already occurred event, of some of the well 

documented cases is the major part of this work. Hazard mapping for quick clay slides can be 

based on retrogressive potential, run out distance, volume of debris and velocity of the sliding 

mass. 

Numerical models that can fairly simulate quick clay slide movements have not yet been 

developed. Quick clay slides have a complex and peculiar behavior than other types of 

landslides for instance rock falls, snow avalanches or other debris flow. The existing 

numerical models are best suited for the before mentioned slide types. The analysis was done 

in a quasi-3D code called DAN3D.In addition, empirical relations has been studied 

together .The analysis results and theoretical backgrounds related with the post slide 

movements are discussed in the subsequent chapters. 
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2. Literature review 

 

Landslide hazard related with sensitive clays are common in Scandinavia and Canada. Such 

clays liquefy when loaded above a certain threshold value and can trigger large slides. The 

Rissa slide in 1978 is the one which is well recorded, a small fill along the shore line has 

mobilized as much as 5 to 6 million m
3 

 of soil mass (Gregersen 1981). 

2.1 Geometrical representation of landslide 

The geometrical representation of landslides is important to characterize and study them in 

detail. A well-developed geometrical representation made by Natterøy (2011) as shown 

below. 

 

(a) 

 

        (b)   (c) 

Figure 2-1 Geometrical representation of a landslide.  (a) Cross section (b) and (c) top view .Glide 

plane also called rupture surface where the slide mass (skredmasser) moves along. hD – deposit depth, 

HT – total drop height, H1 – initial drop height, H2 – vertical extent of failed volume, ΔH – altitude 

difference along back slope, HB – escarpment height, L – total run-out length, LCT – length of fore 

slope, R – retrogression distance, W0 – minimum width of the release gate, Wm – maximum width of 

the release area (Natterøy 2011) 
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 2.2 Types of Landslides 

According to US geological survey slides can be categorized into the following major 

classes: 

 Slides: this is a general term that refers to mass movements. A weak zone 

separating from a more stable underlying material. Slides can be divided in two: 

o Rotational slide-In this type of slides, the rupture surface creates an 

upward concave shape (fig 2-2A). 

o Translational slide-A mass moving along a planar surface .This type of 

slide is the same as block slide but (fig 2-2C) except that block slides 

might be a single unit or coherent pieces. 

 Falls-a sudden movement of masses such as rocks from steep slopes. 

 Topples-forward rotation of masses on a pivotal point. 

 Flows-under flow slides there are five categories 

o Debris flow-due to heavy rainfall or rapid snow melt, loose soil or rock 

might flow along a slope as shown in figure 1f. 

o Debris avalanche-are debris flow with very rapid mass movements. 

o Earth flow-a liquefied material flowing down slope as shown in figure1H 

o Mudflow - are basically earth flows containing wet material. 

o Creep- long term deformation of soil particles that might create a 

downward movement. 

 Lateral spreads-ground motions like earthquake or heavy vibrations might create 

lateral spreads shown in figure2-2J (Highland 2004). 
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Figure 2-2 Landslide types  

  

In addition to the USGS classification a more detailed classification of flow landslides has 

been presented (Hungr et al 2001). Accordingly, flow slides can be divided in to 11 classes. 

 

  



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               5 

 

Material Water Content Velocity Name 

Silt,Sand, 

Gravel,Debris 

(talus) 

dry,moist or 

saturated Various 

Non-liquified sand 

(silt,gravel,debris)flow 

Silt,Sand,  

Debris,Weak 

rock 

Saturated at 

rupture surface 

content Ex.Rapid 

Sand(silt,debris,rock) flow 

slide 

Sensitive clay 

at or above liquid 

limit Ex.Rapid Clay flow slide 

Peat Saturated  

Slow to very 

rapid Peat flow 

Clay or Earth near plastic limit < Rapid Earth flow 

Debris saturated Ex.Rapid Debris flow 

Mud 

at or above liquid 

limit > Very rapid Mud flow 

Debris free water present Ex.Rapid Debris flow 

Debris 

partly or fully 

saturated Ex.Rapid Debris avalanche 

Fragmented 

Rock 

various,mainly 

dry Ex.Rapid Rock avalanche 

 

Table 2-1 Classification of flow slides 

Among the types of slides mentioned in the table above, clay flow slides are the major 

concern of this work. Clay flow slides are rapid flow of liquefied clay which exhibits water 

content close to the original. Some clays exhibit a structural collapse during failure and this 

might result in loss of strength and in turn a rapid movement of the masses might occur .The 

extra sensitive marine clay (quick clay) slides are moderately over consolidated and once 

remolded they will become viscous liquid (Locat 1993). A more detail mechanisms of this 

slides is discussed in the section 2.5. 

2.3 Formation and Origin of Quick Clays. 

Marine clay deposits accumulated in the sea and fjords following the last ice age lead to 

sensitive clays. Leaching of ions, by fresh ground water results in the high sensitivity of these 

clays. Fresh water percolating downwards through the marine deposits due to surface runoff 

or up wards due to artesian pressures removes the salt ions and leaves behind a unstable, 

sensitive structure made up flocculated clay minerals. Upon remolding, the clays will lose 

their structure and surface water is liberated (L’Heureux 2012).A pictorial representation 

showing where we can find quick clays is shown below (Løken 1983).  
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Figure 2-3 Theoretical model showing zones of quick (Løken 1983) 

2.4 Characterization of Quick Clays 

The Norwegian Water and Energy Directorate (NVE) has set a guideline on how to classify 

brittle clays. Clays with remoulded shear strength (Cur) less than 2.0 KPa and sensitivity (St) 

greater than 15 are treated as brittle clays. Furthermore, brittle clays can be categorized as 

quick or sensitive based on the remoulded shear strength. Cur < 0.5KPa are termed as quick 

clays and the remaining as sensitive (NVE 2011).In Sweden clays with sensitivity larger than 

50 and Cur < 0.4 KPa. 

The understanding of the various physical and geotechnical behavior of quick or sensitive 

clays is important to understand the mechanisms of slides due to such materials. Some 

aspects that can characterize quick clays are discussed here. 

Atterberg limits are water contents that are used to characterize cohesive soils. Atterberg 

limits include liquid and plastic limits and they are determined at the laboratory. Liquid limit 

is the water content at which the soil changes from plastic to liquid behavior and Plastic 

limits are the water content expressed as oven dried soil at which the soil begins to crumble 

into short pieces when rolled into a thread about 3mm in diameter. 
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Plasticity index is (Ip) a measure of the plasticity of a soil. Plasticity index is the size of the 

range of water contents which exhibits plastic property. The plasticity index is the difference 

between the liquid limit and the plastic limit.  

Liquidity index (IL) is used for scaling the natural water content of a soil sample to the limits. 

It can be calculated as a ratio of difference between natural water content, plastic limit, and 

plasticity index. 

Laboratory tests show the relationship between atterberg limits and salinity (salt content). As 

mentioned in section 2.1 leaching have resulted in the low salt concentration of such clays. 

The liquid limit and plastic limits show a decrease for lower salt content in the pore water 

(Bjerrum 1954).Quick clays have plasticity indices between 8 and 10 % (Trak and Lacasse  

1996). 

The lower salt concentration also resulted in the lower shear strength of quick clays. As can 

be seen in the figure below, the lower the plasticity index is the lower is the normalized shear 

strength value.   

 

Figure 2-4 Plasticity index vs Shear strength (Bjerrum 1954) 

Sensitivity is the ratio between the intact and remoulded shear strength and it gives a 

more understanding of the behavior of quick clays. A general presentation of sensitivity is 

presented below (V.Thakur  et al 2012). 
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  Sensitivity (St) Classification Remarks 

1 Non sensitive 

L:low             

M:medium      

H:high              

E:extra            

S:sensitive                   

Q:quick 

1-8 LS 

8-16 HS/ES/SQ 

16-32 (30) Q/MQ 

>32 (30) Q 

 

Table 2.4 Classification of Sensitivity 

The liquidity index and sensitivity relations have been studied for clays and are shown in the 

figure below. 

 

Figure2-5 Relation between Liquidity index and Sensitivity (Bjerrum 1954) 

As presented above the characteristics of quick clays will be understood better by 

studying the relationships among the various parameters that will exhibit the peculiar 

behavior of such clays. 

Quickness test is a new type of test performed on a thoroughly remoulded material placed 

in a cylinder .The test was done on several samples and it gives a better understanding of 

the remoulded shear strength and its relationship with flow susceptibility (V.Thakur et al. 

2012).The procedure for the test resembles that of a concrete slump test. Cylinders of 

height 120mm and 45mm and diameter of 100mm and 65mm were used in the test.  

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5

S
en

si
ti

v
it

y
 

Liquidity Index 



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               9 

The results from the test reveals that samples with Cur values less than 0.2KPa are more 

like soup while   those between 0.4Kpa and 1 Kpa are more of viscous or  semisolid. The 

relationship between Cur and Quickness in % is presented below. 

 

Figure 2-6 Test procedure for Quickness test, Quickness [%] is defined by (1-Hf/H0)x100  

(V.Thakur  et al. 2012)  
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Figure 2-7 Quickness versus Remoulded shear strength 

 

Remoulding energy is the energy needed to remould the slide mass (Tavenas et al. 

1983).The remoulding energy can also be defined as the strain energy required to remould 

the material. An analytical approach has been proposed by (V.Thakur et al. 2012).The 

approach is based on linear elastic and a linear strain softening behaviour. However, in 

reality the strain softening part is not a linear curve as shown in the figure below but for 

the purpose of simplicity it is good to adopt the linear curve. 
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Figure 2-8 Remoulding Energy,G and S represent the hardening and secant modulus 
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2.5 Quick Clay Slide Types 

Landslides in sensitive clays in general can be classified into three stages: 

 Pre failure stage – this is a stable stage where potential triggering factors evolve 

towards a complete failure. 

 Failure stage – the yielding of the available strength. 

 Post failure stage – is the state where the slide mass can either stabilize itself or 

flow some distance along the surface of rupture. The potential aspects of such 

stage might comprise retrogression or flowability (Locat and Leroueil 1997) . 

 

Based on the mechanism of failure (K.Karlsrud et al.1984) divided Quick clay slides into 

four major types.  

A. Initial Slides-a monolithic rotational slide restricted within a shorter distance. 

B. Retrogressive landslides-if an initial slide leaves unstable back scarp there might 

happen a multiple retrogressive failure until a stable back scarp is formed. The 

presence of highly sensitive or quick clays in the back scarp might lead to 

retrogressive failures which lead to rapid flow of the mass down slope. A pictorial 

representation is shown below. 
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Figure 2-9 Retrogressive Slide (Mitchell and Markell 1974) 

C. Monolithic flake type of slides- a large area can slide out as a single monolithic unit. 

Some Norwegian landslides for example, the 1953 Bekklaget Slide,is such type. 

D. Vertical Sinking and lateral Spreading-this type of slide might involve squeezing out 

of remoulded clay in the down slope. A good example of a spread in sensitive clay 

material is the 2010 landslide at St-Jude, Quebec, Canada (Locat P et al. 2011).  

The slides mentioned from B to D are often very rapid and might cover large areas. 

Monolithic flake type of slides are common in Scandinavia but are not common in 

Canada. Spreads accounts 42% of large landslides recorded in Canada (Locat P et al. 

2011). The table below shows documented Norwegian quick clay slides. 
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Year 

 

Landslide (Ref.^) Type LR LF V cur St IL IP 

    

 

[m] [m] 
[105 x 

m3] [kPa] [-] [-] [%] 

1940 Asrumvannet
 1

 F 

   

0.1 200 3.1 13 

1626 Bakklandet
2
 FL 70 50 

 

0.1 30 2 6 

1988 Balsfjord
3,22

 F 400 

 

8 1 30 3 6 

1974 Båstad
4
 F 230 700 15 0.53 35 1.8 8 

1953 Bekkelaget
5
 FL/F 145 20 1 0.11 150 2.4 11 

1953! Borgen
6
 RR 165 

 

1.6 0.7 100 1.2 20 

1928 Brå
7-9

 FL 197 300 5 0.24 75 2 

 2012 Byneset
10,20

 FL 400 870 3.5 0.12 120 3.9 4.8 

1955 Drammen
5
 RT 45 

 

0.04 2.5 4 1.1 11 

1625 Duedalen
8,9,11,21

 FL 410 

 

5 0.07 209 

  1996 Finneidfjord
12

 RR 150 850 10 0.4 60 

  1980 Fredrikstad
13,14,15

 RR 45 22 1 <0.5 20 1 20 

1959 Furre
16

 FL /F 300 90 30 0.1 115 2.1 11 

1974 Gullaug
17

 F /FL 150 

 

1.25 2 7.5 

  1967 Hekseberg
18

 FL 700 300 2 0.25 100 2.4 4 

2009 Kattmarka
19

 RR 300 350 3-5 0.24 63 2.9 8 

1994 Kåbbel
20

 F 100 10 1 <0.5 >50 >1.2 20 

1944 Lade
8,9,13.21

 FL 40 62 0.05 2.12 6.6 1 

 2002 Leistad
22,15

 F 250 25 

 

0.15 110 1.5 6 

1989 Lersbakken
15,22

 F 65 75 0.75 

 

38-62 

  1954 Lodalen
23

 FL 40 10 0.1 17 3 0.8 17 
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2010 Lyngen
20

 F 153 411 2-3 0.14 51.4 2.1 

 2000 Nedre Kåbbel
20

 F 120 10 1.8 <0.5 >50 >1.2 20 

1978 Rissa
24

 RR&F 1200  50-60 0.25 100 2 5 

1995 Røesgrenda
25

 RR 100 50 0.02 0.1 186 >1.2 <10 

1974 Sem
15,26

 FL 100 20 0.68 1.4 8-14   

1965 Selnes
27

 F 230 >400 1.4 0.35 100 2.3 7 

1962 Skjelstadmarka
28

 F 600 2800 20 0.83 80 1.1 10 

1816 Tiller
8,10,22.23

 FL   55 0.1 90 2.7 4 

2012 Torsnes
23

 RR 25  0.063 <0.5   22 

1953! Ullensaker
29,30

 RR 195 1500 2 0.35 42 1.9 6.7 

1893 Verdal
6,10,11,21

 FL 2000 5000 650 0.2 300 2.2 5 

1959 Vibstad
31

 F 250 250 10 5 8 0.2 17 

 

Table 2.5 slides in sensitive clays in Norway  

*LR = Retrogression distance measured from the toe of slope, LF = run-out distance measured from the toe of 
slope; H = slope height; V = slide volume; cur = remolded shear strength along slip surface; St = sensitivity, w 
= water content, wL = liquid limit, Ip = plasticity index, IL = liquidity index; NA= Exact year data not available, 
F= flow slide, FL= flake slide RR= retrogressive slide, RT= rotational slide 
^References: 

1
Mayerhof(1957),

2
Egeland and Flateland (1988),

3
Rygg and Oset(1996),

4
Gregersen and Løken 

(1979), 
5
Eide and Bjerrum (1955), 

6
Trak and Lacasse (1996), 

7
Holmsen (1929),

8
Reite et al. (1999),

9
Trondheim 

Municipality reports, 
10

Thakur (2012), 
11

Furseth (2006),
12

Longva et al. (2003),
13

Holmsen and Holmsen 
(1946),

14
Karlsreud (1983), 

15
Thakur et al. (2012), 

16
Huchinson(1961), 

17
Karlsrrud (1979), 

18
Drury (1968), 

19
Nordal et al. (2009), 

20
NVE reports, 

21
Natterøy(2011), 

22
NPRA reports, 

23
Sevaldsen (1956), 

24
Gregersen 

(1981), 
25

Larsen (2002), 
26

NGI(1974), 
27

Kenney (1967), 
28

Janbu (2005), 
29

Bjerrum (1955), 
30

Jørstad (1968), 
31

Huchinson (1965) 
  

!
 These two names represent the same landslide  

 

2.6 On the mobility of Quick clay slides 

Landslides related with quick clays have two main parts, retrogression and flow. The 

retrogression behavior has been studied in connection with certain parameters.  Previous 

studies made correlations  between the potential of retrogression and Stability number 

(Ns=γH/Cu) (Mitchell and Markell 1974).The deduction from thid study was ,if the stability 

number is greater than 6 ,there will be a potential of retrogression and if it is less than 6 the 

retrogression will stop. This was based on a collected data of 41 quick clay slides in Canada. 

However, this is subjected to topographical constraints. The stability number was related with 
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the length of retrogression and presented for Norwegian and Canadian landslide cases in the 

figure below. The length of retrogression (LR) was greater than 100m for Ns >4for Norwegian 

slide cases. 

 

Figure 2-10 Retrogression distance versus Stability number 

 

This correlation failed to describe the retrogressive behavior on some slide cases in Norway. 

The Lersbakken slide that occurred in 1989 and the Fredrikstad slide which occurred in 1970. 

Ground investigations at the Lersbakken slide has shown that the initial slide occurred in the 

material with remoulded shear strength less than 1KPa and stability number of 

7.6.Furthermore, the slide debris has moved 10-15 m away from the slide location. However, 

no retrogression was observed.  

Investigations in the Fredrikstad slide has also shown that the initial slide has occurred in 

quick clay with remoulded shear strength of 0.5KPa .Besides, the topographical constraint 

does not exist. But no retrogression was observed again in this case (V.Thakur et al. 2012).  

The retrogression distance was studied together with other parameters like remoulded shear 

strength, liquidity index and sensitivity. Based on collected data such correlations have been 

done for Norwegian and Canadian quick clays as presented below. 
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Figure 2-11 Cur versus Sensitivity for Slides in Norway 

 

 

Figure 2-12 Cur versus Sensitivity for Slides in Canada 

 

The retrogression distance in relation to remoulded strength shows the Cur < 1KPa has a 

higher retrogression distance (LR>100m) while Cur values greater than 1 shows no 

retrogression (V.Thakur et al. 2012).For Norwegian slides Cur values less than 0.5 KPa shows 

retrogression distance greater than 100m. 
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As shown in the above figures the remoulded shear strength together with sensitivity gives a 

better understanding of the retrogression behavior of soils. Furthermore, the remoulding 

energy is an important parameter. 

According to (Lebuis et al. 1983) the risk of retrogression is based on the liquidty 

index,sensitivity and  remoulded shear strength.Three conditions can  be drawn regarding 

retrogression (Tavenas et al. 1983). 

a) Remoulding energy or the ability of the  clay to be remoulded  

b) The ability of the clay to flow out of the landslide crater.The consistancy of 

the remoulded material which is related with the liquididty index and 

remoulded shear strength. 

c) Topographical situation that will enable the evacuation of the debris. 

 

The above mentioned points are the necessary criteria’s for the development of retrogressive 

landslide. 

 

The other part on the mobility of quick clay slides is the flow part. For sub aerial landslides 

retrogression is more of a problem than the flowability (Locat and Leroueil 1997).This is due 

to the fact that the slide mass move along a channelized river or stream. However, some of 

the sub-aerial slides have affected larger areas and the study of the flowability is important in 

this regard. 

 

 On section 2.2 above remoulding energy has been mentioned as one element on the 

characterization of sensitive clay slides. The available potential energy in a soil mass plays an 

important role in the flowability (L’Heureux 2012). 

 

The potential energy in a soil mass (Ep) can be given by the following formula: 

 

                                                                                      ) 

 

Where  HG  is the vertical displacement of the  center of mass of the slide and V is the volume 

of slide mass. The available total energy at time t is given by the following formula 

(L’Heureux 2012). 

 

         )       )       )       )                      ) 
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The subscripts on the above formula represent the friction, remoulding and kinetic energy 

respectively. The available energy will be dissipated due to friction, for remoulding and the 

remaining will be a kinetic energy. The energy is left after dissipation due to friction and   

remoulding which is the kinetic energy that determines the mobility of the slide mass. The 

kinetic energy approaching to zero indicates the slide mass will be at rest. 

 

Remoulding index (ID) introduced to describe the remoulding state (Vaunat and Leroueil 

2002).It is the ratio between the potential and remoulding energy. Furthermore, the 

destruction index was related with the undrained shear strength and plasticity index. Less 

remoulding energy is needed to for cohesion less materials than for cohesive soils .The 

overall point in remoulding energy and the available energy is that, the amount of energy left  

after remoulding should be enough to allow the flow of the slide mass. 

 

Figure 2-13 Energy required to achieve 75% of remoulding in soft sensitive clay at a given plasticity 

and undrained shear strength (Leroueil et al. 1996) 
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2.7 Rheological Properties of Sensitive Clays 

Rheology describes the flow nature of liquids or soft solids. The study of the plastic viscosity, 

yield stress, remoulded strength and their correlations gives a good understanding on the flow 

nature of sensitive clays. A study was conducted on many samples in Canadian sensitive 

soils. Remoulded strength and plastic viscosity values were predicted based on the developed 

correlations. The long run out distance for the well-known slides in Scandinavian and Canada 

are usually related to the remoulded shear strength or in other words to the viscosity of the 

soil mass at the post failure stage.  

Viscosity of sensitive clays might vary based on soil type, pore water salinity, mineralogy 

and water content. The main type of flow is described in figure 2-14 below.The slope of each 

curve represents the viscosity .Curve 2 represents a thickening fluid behavior, in which the 

viscosity increases with increasing shear rate. Curve 3 represents fluidizing liquids, in which 

a decrease in viscosity for increasing shear rate is observed. Curve 4 represents Casson fluids, 

in which the viscosity shows a gradual decrease for an increasing shear rate. Curve 5 

represents Bingham fluids for which a constant viscosity after yielding is observed (Locat 

and Demers 1988). 

 

 

Figure 2-14 Major types of fluid (Locat and Demers 1988) 

 

Based on 70 viscometric laboratory tests on sensitive clays, a gradual decrease in the yield 

stress for increasing water content or liquidity index was observed. The computation of 
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viscosity was based on the shear stress-shear strain curves developed for the tests. From the 

curves two types of fluids were observed, Bingham and Casson. 

 

 

 

Figure 2-15 Shear Stress versus Shear strain for various liquidity index values (Locat and Demers 

1988) 
 

In the figures below the relation between liquidity index, viscosity, yield stress and 

remoulded strength is presented. 

 

 

Figure 2-16 Relation between Liquidity index and Viscosity  
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Figure 2-17 Relation between Yield stress and Remoulded shear strength  

 

 

Figure 2-18 Relation between liquidity index and Remoulded shear strength  

 

Two important empirical relations have been developed based the figures shown above. 
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The relationships presented above are done for Canadian sensitive clays, similar correlations 

has not been developed for Norwegian sensitive clays. Hence, the above equations will be 

used for estimating the viscosity and yield stress in computations later in chapter 4. 

2.8 Run out Prediction methods 

There are four methods that can be used to estimate run out distance of landslides: 

a) Laboratory methods-laboratory methods can simulate landslides that do 

not show any scaling effects. Such method has been applied to debris flows 

consisting of granular materials (Iverson and Denlinger 2001).Rheometric 

tests have been done to study the mobility of quick clays (Khaldoun et al 

2009). The laboratory tests were conducted on samples from Tiller, 

Trondeheim. A very useful and interesting results were found. Four samples 

which are different in weight by percentage of quick clay were tested for 

different yield stress values as shown in the figure below. 

 

                          

Figure 2-19 Viscosity versus time for varying yield stress values (Khaldoun et al 2009) 
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Some important findings of the test are: 

 Higher water content does not necessarily mean higher mobility, a 

relatively dry sample 61 % by weight of clays show higher mobility 

than the 59 % by weight. 

 A small stress variation (as small as 1%) can cause a higher change 

in mobility. 

 

The relation between the slide distance and yield stress on a laboratory build 

model was also studied and the relations are presented in fig 2-20.As can be 

seen from the figure below the slide distance increase for very low yield 

stress values. Very sensitive clays with a very low undrained shear strength 

values might have higher slide distance. Thus, variation in slope angle and 

undrained shear strength and viscosity are important parameters regarding 

mobility. 
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Figure 2-20 Slide length versus yield stress (Khaldoun et al 2009) 
  

b) Empirical methods- are based on statically collected data and observations 

made based on such data .Such method has been applied to quick clay slides 

and it will be discussed in more details in Chapter 4. 

c) Analytical methods- are approaches based on physical rules of solid and 

fluid dynamics. The three main categories of this approach are lumped mass 

models, 2D models and 3D models. Finite element or finite difference 

methods might be used to solve such approaches ( Hungr et al 2005). 
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d) Numerical methods-are mathematically formulated models that can give 

results based on constitutive laws. They have been in use for landslide run 

out prediction .Various numerical models have been developed for run out 

simulation. Nevertheless, there has not been a specific model developed for 

quick clay slides. An existing model has been applied for quick clays and 

will be discussed in more details in Chapter 4. 
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3.  Case Studies 

Landslides due to clays in three different locations in Norway has been back analyzed 

numerically.In addition, a laboratory model land slide has been simulated and back 

analyzed .The selection of the case studies is done based on the availability of detailed 

information needed for analysis. Two of the three real case studies are very well documented. 

There is small availability of information found on the third case. However, a model was 

developed and studied numerically. The description of each of the case studies is presented 

below. 

3.1 The Byneset Slide 

Byneset is a peninsula found in Trondheim municipality in mid Norway. After the 

glaciaciation era marine clay deposits in the area are exposed due to land uplift, erosion and 

leaching. As a result, highly sensitivity clays are available in the area. 

The Byneset slide has happened in January 2012 about 10 Km south west of Trondheim. The 

slide had mobilized 2-4.10
5
 m

3
 of soil mass .There has been similar slide cases happened in 

the 19
th

 century and several small slides has happened in the area. 

The mapping of quick clay areas in Norway done before the slide has designated the area as a 

potential hazard area. The slide is believed to be triggered due to stream erosion. The slide 

masses completely evacuated out of the release area (which is about 300m long) as shown in 

the figure below (Issler et al. 2012). 

 

Figure 3-1 Byneset landslide release area (Issler et al. 2012) 
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The slide mass has traveled down a gentle slope along a dry water canal about 900 meters. 

Digital elevation model of the area shows the post slide deposits in the figure below. 

 

Figure 3-2 Post slide slide digital elevation model  (Issler et al. 2012) 

 

Geotechnical investigation has been carried out in the area. The carried out investigation 

show there are thick layers of soft clay layer in the area. However there is no evidence that 

the quick clay layer zones deeper than 20m.At the rear of the slide pit is however a rock 

formation was found. Some of the geotechnical parameters used in the numerical study in 

Chapter 4 is presented below. 
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Unit weight γ KN/m
3
 18,3 

Undrained shear strength Cu Kpa 10-25 

Remoulded shear strength Cur Kpa 0,12 

Max.Sensitivity St - 400 

Plasticity index Ip % 5 

Liquidity index IL -  3,8 

 

Table 3-1 Geotechnical Parameters for Byneset  

3.2 Finneidfjord Slide 

Finneidfjord is found in Northern Norway. In June 1996, a sub marine/sub aerial 

retrogressive flow of quick clay slide happened along the shore line .The slide has mobilized 

as much as 1million m
3
 of soil mass. 

It is believed that the slide has been triggered due to excess pore pressure development after 

high precipitation. The slide mechanism is categorized into three stages: initial, main and 

minor slides along the main slide scarp. A swath bathymetry survey indicates the instabilities 

and slide prior to the main slide. The main slide has retrogressed around 200 to 300 m. The 

last stage in the slide accounted for smaller debris flows. The slide mechanism and phases are 

presented in the figure below (Longva et al. 2003). 

 

Figure 3-3 (A) The Finneidfjord Slide Phases (B) The Finneidfjord Slide profile 
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Ground investigation in the area in connection with the construction of E6 highway 

reveals the area consists of soft sensitive clays. Stability analysis done by Janbu in 1996 

(Janbu 1996) shows a low safety margin for the beach slope in the area. Geotechnical 

parameters used in the numerical study are presented below. 

Unit weight γ KN/m
3
 19 

Undrained shear strength Cu Kpa 7-10 

Remoulded shear strength Cur Kpa 0,4 

Max.Sensitivity St - 60 

Plasticity index Ip % 6 

Liquidity index IL -  2,5 

 

Table 3-2 Geotechnical Parameters for Finneidfjord Slide 

3.3 Lyngen Slide 

A retrogressive landslide has happened in September 03, 2010 in Solhov in Lyngen 

municipality. The slide has mobilized 200000-300000m
3
 of soil mass. The slide happened 

close to a shore line and all the sliding mass has went to the nearby sea. 

 

Figure 3-4 The slide at Lyngen (aftenposten.no) 
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The Norwegian Public Roads Administration has made a geotechnical assessment in 1994 in 

the area for the purpose of road construction. Parameters used in the back analysis are 

presented in the table below (Issler et al. 2012). 

Unit weight γ KN/m
3
 20 

Undrained shear strength Cu Kpa 7 

Remoulded shear strength Cur Kpa 0,14 

Max.Sensitivity St - 51 

Plasticity index Ip % - 

Liquidity index IL -  2,1 

 

Table 3-3 Geotechnical Parameters for  Lyngen Slide 

  

The slide area contours has been used to plot the slide surface which are used for numerical 

computation. Since the slide mass has all flown to the sea an ideal terrain contours has been 

made to study the flow of the slide mass. 

3.4 Laboratory model landslide 

A laboratory model landslide has been scaled up and back analyzed numerically to study the 

flow behavior of soft sensitive clays (Appendix 1).The landslide model was built in the 

laboratory and run out distances at different shear strength values has been compared with 

numerical simulation.  

The laboratory land slide has a 2liter volume, 90cm long and a slope of 8.53 degrees. The 

details of the model experiment and numerical back calculation are explained in appendix 1.  
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4. Run out Prediction 
 

The post failure movements of quick clay slides that involve flows cover longer distances in 

some cases based on the topography and other governing parameters discussed in chapter 

2.There are several ways to estimate landslide run out distance, some of the methods were 

mentioned in section 2.8.The movement of flow is complex that there is no single error free 

method to depict the real cases. However, the existing methods can give a good systematic 

approach to assess the impact of a landslide hazard (Quan 2012). 

4.1 Empirical Methods 
 

There are several methods for estimating landslide run out distance empirically. Three types 

of empirical methods will be discussed here based on methods presented by Hunger et al 

(2005). The application of such methods is relatively easier. However, the interpretation of 

such methods lacks consistency among researches in the area. 

4.1.1 Geomorphological approach 
 

This method involves identification and interpretation of recent and ancient landslide 

deposits. Future travel distance estimation is based on such data. Field work and photo 

interpretation are the main sources of the data analysis. The outer deposit margins of previous 

landslides will give an indication to the potential reach of a present landslide in a given 

terrain. The challenge in such a method is to identify earlier landslide deposits (Hungr et al. 

2005). 

4.1.2 Geometrical approach 
 

Geometrical method also called travel angle method is based on the geometrical 

characteristics of landslides. The correlation between the angle of reach (the tangent of the 

height of drop of the slope and the run out distance) called ’’fahrbschung’’ and the volume of 

landslide mass has been studied. Besides, the topography and obstacles of flow was 

incorporated in the study (Corominas 1996). 
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Figure 4-1 (H),travel distance (L),reach angle (α),shadow angle (β),source-talus angle (ψ),substrate 

angle (γ) and shadow distance (S1) (Hungr et al. 2005).  

 

A statical analysis was made on 204 collected data. The collected data was categorized into 

four major classes of landslides, namely 

 Rock falls 

 Debris flows 

 Earth flows 

 Translational slides 
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Figure 4-2 Volume versus reach angle 

 

For each of the above mentioned types there has been an empirical correlation developed 

considering the topographic constraints (Figure 4.3). 

Despite the various conflicting deduction about the relation between the reach angle and 

volume of slide among many researchers, the figure above has shown a good relationship. 

For the four categories mentioned above, there is an empirical equation developed as shown 

below: 

Table 4-1 Regression equation between volume and travel distance 

                      

Rock falls 

log (H/L)= -0,109log vol +0,210 

r
2
=0.759 

                     

Debris flows 

log (H/L) = -0,105log vol – 0,012 

r
2
=0.763 

                    

Earth flows 

log (H/L) = -0,070 log vol – 0,214 

r
2
=0,648 

                   

      Translational slides 

log (H/L) = -0,068 log vol -0,159 

r
2
=0.670 
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Figure 4-3 Obstructions of flow 

 

Quick clay slides can be categorized based on earth flows among the categories. The 

empirical formula has been used for quick clay slide case to see the run out distances.The 

volume versus the length flow as per the formula suggested above was computed for 12 

Norwegian landslide cases. 
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Year 

 

 

 

 

Landslide 

 

 

 

 

Type 

 

             

LR  

                           

LF 

 

 

 

 

L= LR+ 

LF 

H 

 

 

 

 

        V  

 

 

 

L=1.636Vol 
0.07

/H 

(Coromias 1996) 

      [m] [m] [m]   [m3] [m]  

1974 Båstad F 230 700 930 20 1500000 89 

1953 Bekkelaget FL/F 145 20 165 16 100000 59 

1928 Brå FL 197 300 497 79 500000 325 

1980 Fredrikstad RR 45 22 67 8 100000 30 

1959 Furre 
FL 

/F 300 90 

390 

19 
3000000 88 

1974 Gullaug 
F 

/FL 150 

 

150 

30 
900000 128 

1967 Hekseberg FL 700 300 1000 27 200000 103 

1944 Lade FL 40 62 102 5 500000 20 

1954 Lodalen FL 40 10 50 10 100000 37 

2010 Lyngen F 153 411 564 26 220000 100 

1965 Selnes F 230 400 630 10 140000 38 

1959 Vibstad F 250 250 500 25 1000000 107 

 

Table 4-2 Empirical run out prediction 

 

The estimated runs out distances have a higher variation with the observed data. Only for 

landslide cases with a higher slope height and higher volume the above empirical formula 

gave a closer result but it failed to give a reasonable value for most of the cases. The 

higher scatter in the data used for deriving the empirical relations might give optimistic 

results (Hunger et al 2005), whereas in reality the landslide mass travels more beyond the 

computed run out distances. 

 

NVE suggests using 15 times the slope height to estimate the run out distance; such relation e 

could lead to erroneous conclusions. Since some quick landslide cases, for example Byneset 

slide, has happened in a very gentle slope but the slide mass has travelled more than 800 

meters. 

 

4.1.3 Volume based approach 

Volume change method considering material entrainment has been studied previously. 

However, in this section the volume based approach will solely be restricted to correlations 
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developed between the length flow and normalized volume (volume divided by width) for 

Canadian and Norwegian slides. 

J.S L’Heureux (L’Heureux 2012) has made correlations for Norwegian quick clay slide cases 

based on collected landslide data and comparison was made between the length flow and 

normalized volume. Due a scatter in the data a unique empirical relation could not be derived, 

rather, an empirical relation was given for the upper boundary as shown in the figure below. 

 

Figure 4-4 Volume versus length of flow 

 

     (
   

     
)
    

 (4.1.3.1) 

       (
   

     
)
    

     (4.1.3.1) 

Equation 4.1.3.1 is an estimate for Norwegian slide and Equation 4.1.3.2 is for slides in 

Canada. 

The other worth mentioning point regarding run out distance is the relationship between the 

retrogression and the flow distance or the run out distance. As shown in the figure below 

there is a linear relation between the two, in case of Norwegian and Canadian landslide cases. 
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Figure 4-5 Relation between retrogression and flow distance 

 

The above figure shows a linear relationship between the retrogression and flow distances. 

Retrogression does not always mean there will flow as can be seen also for some cases but in 

general there exists a linear relationship among them. 

4.2 Numerical Methods 

Numerical methods application on landslide run out analysis is usually based on distinct 

element or continuum mechanics models. Distinct element (mass point models) comprises a 

sliding and a turbulent behavior based on the formulation given by Voellmy (1955). 

Continuum mechanics approach, which is the most commonly used, applies the conservation 

of mass, momentum and energy for the slide dynamics and rheological properties for the 

flowing material. Hungr (1995) proposed continuum based depth average models (Quan 

2012). 
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4.2.1 Review of existing numerical tools 

The classification of dynamic run out models can be based on: solution dimension (1D or 

2D), a solution reference frame (Eulerian or Langrangian) or basal rheology. The following 

table presents some of the various numerical tools available for debris flow analysis. 
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Model Rheology 
Solution 

approach 

Reference 

frame 

Variation 

of 

Rheology 

Entrainment 

rate 

MADFLOW                

(Chen and 

Lee,2007) 

Frictional, 

Voellmy and 

Bingham 

Continuum  

Integrated 

Lagrangian  

with mesh  no Defined 

TOCHING                      

(Crosta et al,2003) 

Frictional 

(elastoplastic 

model) 

Continuum  

Differential  

Differential  

(adaptive  

mesh)  yes  

Process  

based 

RAMMS                 

(Christen et al,2010) Voellmy 

Continuum  

Integrated Eularian  yes  

Process  

based and  

defined  

DAN3D                    

(Hunger and 

McDougall,2009) 

Frictional, 

Voellmy, 

Bingham, 

Newtonian and 

Plastic 

Continuum  

Integrated  

Lagrangian  

meshless  yes  Defined  

FLATMODEL         

(Medina et al,2008) 

Frictional and 

Voellmy  

Continuum  

Integrated  Eulerian  no 

Process  

based  

SCIDDICA s3-hex 

(D'Ambrosio et 

al,2003) Energy based 

                       

Cellular  

Automata  Eulerian  no 

Process  

based 

3dDMM                     

(Kwan and 

Sun,2006) 

Frictional and 

Voellmy  

Continuum  

Integrated  Eulerian  yes  Defined  

PASTOR model       

(Pastor et al,2009) 

Frictional, 

Voellmy and 

Bingham 

Continuum  

Integrated  

Lagrangian  

meshless yes  Defined  

MassMov2D          

(Begueria et 

al,2009) 

Voellmy and 

Bingham 

                   

Continuum  

Integrated  Eulerian  yes  Defined 

RASH3D                    

(Pirulli and 

Mangeney 2008) 

Frictional,  

Voellmy,  

Quadratic  

Continuum  

Integrated  Eularian  no 

No  

entrainment  

rate is used  

FLO-2D  

(O’Brien et 

al.,1993)  Quadratic  

Continuum  

Integrated  Eularian  no  

No  

entrainment  

rate is used  

TITAN2D  

(Pitman and 

Le,2005)  Frictional  

Continuum  

Integrated  

Lagrangian  

with mesh no 

No  

entrainment  

rate is used 

PFC  

(Poisel and Preh, 

2007)  

Inter-particle  

and particle  

wall  

interaction 

Solution of  

motion of  

particles by  

a distinct  

element  

method  

Distinct  

element  

method no  

No  

entrainment  

rate is used  

VolcFlow  

(Kelfoun and 

Druitt,2005)  

Frictional and 

Voellmy  

Continuum  

Integrated  Eulerian  no 

No  

entrainment  

rate is used  

 

Table 4-3 Dynamic run out models (Quan 2012) 
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An International Forum on Landslide Disaster Management held in 2007 (Hungr et al. 

2007 )applied the above mentioned numerical tools on twelve different cases .The main 

results of such study comprise the following key points: 

 Run out modelling is affected by topography and the computation domain. 

 Mesh refinements improve the modelling results. 

  Computational efficiency. Some of the numerical tools need much time and memory 

space than the others. 

 Momentum based approach in formulating the equations of motion is still a reliable 

method. 

 Eulerian and Lagrangian solution approaches have their advantages and dis 

advantages, however, the existing models are consistent in using these solution 

methods. 

 Most of the run out models give reasonable results in back calculating a well-

documented event. Nevertheless, inconsistencies were observed in forward analysis. 

 Calibration of the models requires detailed several case studies. 

 

4.2.3 Application of DAN3D run out model to sensitive clays 

A dynamic three dimensional numerical analysis model developed by Hunger and 

McDougall (McDougall and Hungr 2004) has been used in this work to assess the run out 

distance of landslides due to sensitive clays.  

4.2.3.1 Theoretical Background 

The model was developed based on a semi empirical approach concept of “equivalent fluid” 

defined by Hungr (1995) .An equivalent fluid is a hypothetical material governed by a simple 

rheology representing the heterogeneous and complex landslide materials shown in the figure 

4.6 below. 
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Figure 4-6 A homogeneous apparent fluid replacing the slide mass 

 

Figure 4-7 Forces acting on a sliding block 
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The solution used in the model is a mesh less Lagrangian solution scheme called smoothed 

particle hydrodynamics. Smooth particles are number of elements of the divided slide mass 

which has a finite volume. The reference columns (figure 4-8) will indicate the position of 

particles. The volume of the particles can be altered due to material entrainment. 

 

Figure 4-8 A physical representation of Smoothed particle hydrodynamics 

 

The depth and depth gradient of each particle at a given time can be estimated based on the 

reference column locations satisfying continuity and equation of motion. Numerical integration 

of the momentum balance equations will be used to determine the local instantaneous 

acceleration. In short time step, the flow velocities are updated and the columns advance to a 

new positions. The figure above presents a simplified illustration. 

 

Figure 4.6 shows the forces acting on a sliding mass.The flow resistance term T depends on 

the rheology of the material and other parameters like geology and topography. Five types of 

rheologies are defined and can be implemented in DAN3D simulations: 

 

I. Plastic flow: it is related with a pseudo-static motion of liquefied soil, the base shear 

resistance is assumed to be equivalent to a constant yield strength value. 

τ =-c    (4.2.3.1) 

 Where τ is the shear resistance along the bed  

  

II. Bingham model: is a combination of plastic and viscous behavior. A Bingham fluid is 

assumed to be viscous above a threshold yield stress and rigid below a threshold 

value. The basal resistance term is given by: 
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    (
      

 
 

        

 
 )    

      

 
                    (4.2.3.2)   

 

where         is the Bingham yieldstress ,           is the Bingham viscosity ,V is the 

velocity and   is basal shear resistance. 

 

III. Frictional basal resistance: is given by the difference between normal stress and pore 

pressure at the bed. 

 

τ =  ( σz –u)tanϕ     (4.2.3.3) 

 

Where ϕ is the dynamic basal friction angle, u is the pore pressure and σz   is stress 

normal to the bed. 

 

IV. Voellmy resistance model: is a combination of turbulent and frictional behavior .The 

basal resistance is given by: 

 

   (     
    

 
 )   (4.2.3.4) 

 

Where f is the friction coefficient and ξ turbulence parameter.  

 

V. Newtonian flow: is the function of the velocity and viscosity parameter. It is given by: 

 

  
   

  
    (4.2.3.5) 

Where µ is the viscosity and V is the velocity of the sliding mass. 

 

Among the five rheologies described above plastic and Bingham rheology are theoretically 

suitable for geotechnical analysis and were used in the simulations of landslides. 

4.2.3.2 Building and Parameterizing a model in DAN3D 

The input files needed to be used in DAN3D simulations are topography files in ASCII 

format namely path topography and source depth. 

 Path topography file: is a grid file representing a surface where the sliding mass 

flows. 

 Source topography file: is also called release area which is a vertical depth file of the 

slide mass at initial conditions. This can be obtained by deducting the post slide 

digital elevation model (DEM) from the pre slide DEM (DAN3D user manual). 
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These two inputs have to prepared in a separate mapping tool (Surfer version 11 from Golden 

software’s was used for these purpose) in grid format so as to run the simulations. A detailed 

description on preparing the input files is given in appendix 2.  

 

After preparing the input files proper parameterization has to be done in the various input 

fields. In general the parameters required can be classified into 2: 

I. Material properties: these include unit weight, shear strength, viscosity, rheology 

(one among the five mentioned in section 4.2.3.1 one has to be selected) and friction 

and internal friction angle. For the case studies presented in chapter 3 the selection of 

the model parameters were based on laboratory tests and empirical relations. The 

following table summarizes the parameters used in this study. 
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Table 4-4 Input parameters and defintions 

 

  Definition Byneset Finneidfjord  Lyngen Lab model Remark 

Rheology  see section 4.2.3.1 Plastic 

Plastic and 

Bingham 

 

 

 

Plastic 

 

 

 

Plastic 

 Bingham rheology has been tested 

on all cases but the simulation 

stopped at the start except for 

Finneidfjord slide. 

Unit weight 

(KN/m
3
)   20 19 20  20    

Shear strength (KPa) 

 

 

Undrained strength of 

liquefied material, in 

case quick clays 

remoulded shear 

strength is used 

 
 

 

0,12 

 

0,4 and 0,08 

 
 
 
                        

0,14 

 

 

 

 

 

0,1 - 2 

 

For byneset and the laboratory model 

land cases varying remoulded shear 

strength values were used. 

Different remoulded shear strength 

values were reported for Finneidfjord 

slide thus 0,4Kpa is used with Plastic 

rheology whereas 0,08Kpa was used 

for Bingham rheology. 

Viscosity(KPa.s) 
the dynamic viscosity 

of a material 

 

 

 

 

 

1,95x10
-4 

 

 

7,85x10
-3

   

                                            

 

14,1x10
-3 

  
   

Derived from equation 2.7.1 

 

 

Internal friction angle 

The amount of 

internal friction. This 

value is used to 

compute tangential 

stress components in 

the model. 

20  20 

 

 

 

20-25  

 

 

 

20  

 

 

 

 Varying internal friction angle was 

used for Lyngen slide. 
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The input parameters mentioned in table 4-4 are based on the selected rheologies’ (Plastic 

and Bingham). There are other material parameters which are not mentioned in the above 

table for other rheology types. 

 
 

II. Control parameters-these comprise model time and time stepping. The default value 

for time stepping is 0, 1 second but lesser time stepping gives better accuracy of the 

simulation results. The model time can be increased until a maximum of 2000 

seconds. The simulation can be stopped or be given lesser time based on judgment. 
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5. Results and Discussion 

The simulations in DAN3D were run for the different cases mentioned in chapter 3.The 

results are presented and discussed subsequently. In appendix 1 flow contours for Byneset 

slide and for the laboratory model landslide are presented .The flow contours presented for 

the two cases are plotted as a percentage of the computation time. Flow contours at different 

simulation times are plotted for the three cases in the next sections.  

5.1 Byneset slide simulation 

The input parameters used for Byneset slide are shown in table 3.1.The analysis was done at 

varying shear strength values to study the effect of the flow dependency on shear strength 

value. In chapter two the remoulded shear strength value and it’s relation with retrogression 

distance has been mentioned. The remoulded shear strength value affects the run out distance 

as well.  

 

Figure 5-1 Three dimensional surface map for Byneset slide 

 

The simulation was first done at the remoulded shear strength value 0,12KPa.The flow 

contours and the plots showing velocity and run out distance are shown in figures 5-2, 5-3 

&5-4. The run out distance at the yield strength value fits quite well with the actual observed 

results from the actual landslide (see figure 3.2).However, the simulation results gave higher 
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velocity for a sub-aerial land slide. The basal resistance in Plastic rheology is assumed to be a 

constant value which is the same as the yield strength .Nevertheless, the basal resistance 

shear strength along the slide surface can be higher than the remoulded shear strength value 

(yield strength value for quick clay slides is taken to be the remoulded shear strength based 

on their linear relationship mentioned in section 2.7) of the sliding mass. Figures 5.5 and 5.6 

show the reduction in the run out distance and velocity for increasing remoulded shear 

strength value. 
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Figure 5-2 Flow contours Byneset slide 
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100 seconds 

200 seconds 

400 seconds 

700 seconds 
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Figure 5-3 Horizontal flow distance versus time 

 

 

 

Figure 5-4  Velocity versus time  

 

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600

F
lo

w
 d

is
ta

n
ce

,m
 

time,sec 

Lf vs time-Cur0.12KPa   

Lf vs time

Cur=0.12KPa

0

5

10

15

20

25

0 200 400 600

V
el

o
ci

ty
,m

/s
 

time,sec 

Velocity vs time-Cur =0.12KPa 

Velocity vs

time -Cur

0.12KPa



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               51 

 

Figure 5-5 Horizontal flow distance vs. time at varying shear strength values 

 

 

Figure 5-6 Velocity vs. time at varying shear strength values 

 

The run out distances plotted above are the projected horizontal distances. Since the flow 

along the other direction was relatively small,the main direction was taken into consideration. 

The run out distances can be seen on the flow contour plots also. The flow distances were 

computed from both directions on the other slide cases in the next sections. 
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5.2 Finneidfjord slide simulation 

The Finneidfjord Slide is a subaqueous failure. Since DAN3D does not consider hydro-

dynamic effects in subaqueous failures, adjustments were made on the input topographic 

contours (Issler, et al. 2012). The planar topographic situation (as can be seen on the 3D 

surface map in figure 5.6) and the higher slide mass volume has contributed to the higher run 

out distance.  

 

Figure 5-7 Three dimensional surface map for Byneset  

 

The flow contours for plastic rheology is shown in the figure 5-7 below. The velocity in this 

case is very high as the case for the Byneset slide. The slide debris has higher run out than 

what was reported in table 2.1. 
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Figure 5-8 Flow contours-Plastic rheology 
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Figure 5-9 Flow distance vs. time 

 

 

Figure 5-10 Velocity vs time 

 

The analysis was done on Bingham rheology as well. The value of the remoulded shear 

strength used in such analysis was 0,08KPa (Issler, et al. 2012).The slide mass has travelled a 

lesser distance on Bingham rheology. The simulation on Bingham rheology worked on this 

case only. The flow contour, run out distance and velocity are shown in the figures below. 
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Figure 5-11 Flow contours-Bingham rheology 
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 Figure 5-12 Flow distance vs time 

 

 

Figure 5-13 Velocity vs. time 

 

The two major material input parameters needed for Bingham rheology are remoulded shear 

strength and viscosity. In table two 37 landslide cases has been mentioned for Norwegian 

quick clays. The remoulded shear strength value for most Norwegian quick clay slides, are 

seldom lower than 0,1KPa, for example very low remoulded shear strength value was 

reported for Duedalen slide. 

The other parameter needed for Bingham rheology is the viscosity. The empirical relation 

given in equation 2.7.1 is based on tests on Canadian sensitive clays. There has been no such 

relation developed for Norwegian sensitive clays yet. The assessment of the Bingham 

rheology needs further investigation on the parameters especially on viscosity parameter. In 

comparison with Plastic rheology the run-out distance is much less even at such low shear 

strength value. 

0

50

100

150

200

0 1000 2000 3000

F
lo

w
 d

is
ta

n
ce

,m
 

time,sec 

Flow distance vs time 

Flow

distance vs

time

0

2

4

6

8

0 1000 2000 3000

V
el

o
ci

ty
,m

/s
 

time.sec 

Velocity vs time 

Velocity vs time



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               57 

5.3 Lyngen slide simulation 

The Lyngen slide is a retrogressive slide. In DAN3D simulations, it is not possible to 

simulate such slide types because prior to the analysis the path topography and release area 

have to be defined. However, using the original terrain contour maps all the mass 

retrogressed was designated as it is released at once like for Byneset slide case. The main 

objective here is to evaluate the topographic and other parameter effects on the run out 

distance. The contours showing the original terrain are shown in appendix 2.In addition; a 

hypothetical surface was made as path topography by combining with original terrain. This is 

due to the fact that the slide mass has flown to the nearby sea as mentioned in section 3.3. 

The slide surface is shown in the three dimensional terrain maps in figure 5-13. 

 

Figure 5-14 Three dimensional Surface map Lyngen slide 

 

The simulation was run at varying internal friction angle while keeping the remoulded shear 

strength value to be constant (0.14KPa). The results as shown in table 5-1 below gave an 

insignificant variance on the run out distance.  
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Internal friction 

angle(°) 

Lf(m) 

20 1296,266 

21 1316,243 

22 1350,649 

23 1350,717 

24 1365,653 

25 1343,328 

 

Table 5-1 Internal friction angle vs flow distance 

 

The varying shear strength value gives different results on the run out distance as for Byneset 

case. The figures below show the flow contour run out distance and velocity. 
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Figure 5-15 Flow contours-Lyngen slide 

10 seconds 20 seconds 200 seconds 
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Figure 5-16 Flow distance vs time 

 

 

Figure 5-17 Velocity vs. time at varying shear strength values  

 

The run out distance decreases with increasing shear strength value. The run out distances are 

higher even though the slide mass volume is 5 times less than for Finneidfjord slide case. 

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250

F
lo

w
 d

is
ta

n
ce

,m
 

time,sec 

Lf  at different Cur 

Lf vs time-Cur0.14KPa

Lf vs time-Cur0.5KPa

Lf vs time-Cur1KPa

LfvsCur2KPa

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

0 50 100 150 200 250

V
el

o
ci

ty
,m

/s
 

time,sec 

  Velocity at differnt Cur 

velocity vs time-
Cur0.14KPa

Velocity vs time-
Cur0.5Kpa

Velocity vs time-Cur1KPa

Velocity vs time-Cur2KPa



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               61 

This prevails the topographic situation plays an important role on the run out distance. The 

velocities obtained are very high in this case study which is not realistic and needs calibration 

and further investigation. 

5.4 Laboratory model simulation 

The laboratory model’s prior aim was to evaluate the effect of remoulded shear strength on 

run out distance. This has been illustrated on the laboratory model experiment mentioned on 

appendix1.The back analysis was done by scaling up the laboratory model (Appendix 1 

figure 8). The results from the analysis gave a similar trend for the two cases mentioned 

above.  

 

Figure 5-18 Velocity vs. time at varying shear strength values 

 

 

Figure 5-19 Flow distance vs. time 
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In the paper presented in appendix 1 calibration has been done to fit the simulated results 

with the laboratory test.This has been done due to the over estimation of the run out distance 

for higher remoulded shear strength values.   
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6. Conclusion and future work 

 The analysis results in DAN3D are generally based on topography, remoulded shear 

strength, viscosity and rheology type .The main outputs which are important in the study of 

debris flow analysis are the run out distance and the debris velocity. The run out distance for 

channelized flows like Byneset gave closer value, while in Finneidfjord case it gave higher 

results. The velocity from the analysis was higher than expected. Although there is no 

recorded data for quick clay slide velocities, the results are unrealistic. The flow dependency 

on remoulded shear strength value was observed in the simulations as well. The theoretical 

definition for Plastic and Bingham rheologies seem that both can be used for quick clay slide 

debris flow analysis. However, Bingham rheology stopped for the three cases at the initial 

simulation time.  Enormous landslide cases have been back analysed (McKinnon 2010) based 

on Voellmy and Frictional rheologies but almost no cases have been studied on Plastic and 

Bingham rheologies. 

The challenges on simulating quick clay slides lies into three major parts: 

 The slide mechanism and the properties of quick clays. In section 2.5 the slide 

mechanisms has been mentioned, retrogressive and flake and flow type of slides are 

difficult to simulate and back analyse since such slides involve different steps. 

 Sub aqueous failures cannot be analysed directly in this model unless a calibration is 

done to consider the hydro dynamic effects. 

 The need for detailed information on the pre and post slide terrain models. Although 

taking topographical considerations is an advantage, the lack availability of such data 

might give unreasonable results.  

In the future, more studies have to be done to characterize quick clay flow behaviour 

especially for Norwegian quick clays to determine the viscosity parameter more precisely. 

The dynamic analysis model shall be made to incorporate the sensitive clay slide debris 

flows. Laboratory and full scale tests have been done to verify the model applicability. Such 

kinds of tests have to be developed in order to incorporate and enhance the model 

applicability to quick clay slides.  
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Appendix 1: Run-out of sensitive clay debris -A paper submitted to ’’ 

Geotechnical Engineering Journal by South Asian Geotechnical Society.’  
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Run-out of sensitive clay debris: significance of the flow behavior of sensitive clays  
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ABSTRACT: Geohazards in the form of massive flow slides in sensitive clay deposits have been 

responsible for the loss of human lives and damage to nearby infrastructure. The run-out of sensitive 

clay debris involved in such flow slides is, among others, largely influenced by the remolded shear 

strength (cur) of the sensitive clays. The present work studied this factor using a small-scale model 

referred to as the run-out test. The results demonstrated that sensitive clay debris with cur < 0.3 have 

a potential for a longer run-out, whereas a very short run-out was observed for the sensitive clay 

debris with cur >1 kPa. These observations were back-calculated using the three-dimensional 

numerical tool DAN3D. 
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1.  INTRODUCTION 

Rapidly developing flow slides in sensitive clay deposits possess substantial destructive capabilities, 

resulting in the loss of life and destruction of surrounding properties. In the last 40 years, there have 

been one or two sensitive clay landslides per decade with volumes exceeding 500,000 m
3
. In Norway 

alone, several hundred people have died in such landslides in sensitive soft clay slopes, and as 

recently as 1893, the Verdal landslide killed 116 people (Furseth, 2006; Walberg 1993; Issler et al. 

2012, Oset et al. 2013). Geotechnical assessments of such flow slides include an estimation of the 

retrogression and prediction of the run-out of the slide debris. Although the estimation of landslide 

retrogression in sensitive clays has received considerable attention (e.g., Lebuis and Rissmann 1979; 

Tavenas et al. 1983; Karlsrud et al. 1985; Trak and Laccasse 1996; Leroueil et al. 1996; Vaunat  and 

Leroueil 2002; Thakur and Degago 2012), an appropriate method for investigating the run-out of 

sensitive clay debris remains the focus on ongoing research (e.g., Mitchell and Markell 1974; 

Karlsrud 1979; Edger and Karlsrud 1982; Norem et al. 1990, Trak and Lacasse 1996; Locat and 

Leroueil 1997; Hutchinson 2002; Vaunat and Leroueil 2002; Hungr 2005; Locat and Lee 2005; 

Khaldoun et al. 2009; L’Heureux 2012; Issler et al. 2012; Thakur et al. 2013a&b).  

               

Figure1: Flow slides in sensitive clays (Thakur and Degago, 2013). 

The run-out of sensitive clay debris is dependent on several factors, including the thickness of the 

dry crust, sensitive clay layers, boundary conditions, and topographical aspects that may allow 

sensitive clays to ‘escape’ from the slide scarp (Mitchell & Markell, 1974; Lebuis and Rissmann 

1979; Tavenas et al., 1983; Karlsrud et al., 1985; L’Heureux 2012, Thakur et al. 2012, Thakur et al., 

2013a&b). However, the ability of the clay debris to disintegrate and thus flow is one of the decisive 

factors in determining the run-out. Recent studies by Thakur et al. (2012), Thakur and Degago (2012), 

and Thakur et al. (2013a&b) have shown that seemingly small variations in the remolded shear 

strength (cur) have significant effects on the flow behavior of sensitive clays. Based on these studies, 

this paper presents work aimed at experimentally and numerically describing how the flow behavior 

influences the run-out distances of sensitive clay debris under given topographical settings. This study 

further investigates whether all sensitive clay debris has the same potential for run-out. 

2. BACKGROUND 

Highly sensitive clays are mainly found in Canada, Norway, and Sweden. Sensitive clays are often 

categorized using the term sensitivity (St), which is the ratio between the undrained shear strength (cu) 

measured in the intact state (cui) and the remolded (cur) sensitive clay using the fall cone method. 

Rosenqvist (1953) demonstrated that the sensitivity of Norwegian marine clays is related to the 

leaching of salts by fresh groundwater within the grain structure. Bjerrum (1955, 1961) demonstrated 

that highly sensitive clays may have salt contents as low as 0.5%, whereas marine clays commonly 

have salt contents of 3% or more. 
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  Figure 2 :A highly sensitive clay in the intact (left) and fully remolded states (right). 

 

 Transformation from an intact material to a fully remolded state at their natural water content is a 

typical characteristic of highly sensitive clays (Figure 2). Such peculiar behavior is mainly responsible 

for the large run-out of the debris involved in flow slides in sensitive clays. To understand this aspect, 

a brief review of literature on the prediction of run-out distances and the characteristics of sensitive 

clays in their intact and remolded states is presented here.  

2.1 Review of run-out calculation methods  

Over the years, many different run-out and intensity calculation methods have been developed to 

perform debris-flow hazard assessments (e.g., Dai et al. 2002, Hungr et al. 2005, Rickenmann 2005). 

The methods available for run-out estimation can be divided into four different classes: empirical, 

analytical, simple flow routing, and numerical.  

Empirical relationships are the most commonly adopted techniques for estimating the run-out distance 

of slide debris. Mitchell and Markell (1974), Hsü, (1975), Karlsrud (1979), Edger and Karlsrud 

(1982), Karlsrud et al. (1985), Cannon (1993), Corominas, (1996), Locat and Leroueil (1997), 

Rickenmann (1999), Fell et al. (2000), Fannin and Wise (2001), Legros, (2002), Hutchinson (2002), 

Vaunat and Leroueil (2002), Bathurst et al. (2003), Crosta et al. (2003), Hungr (2005), Locat and Lee 

(2005), L’Heuruex (2012), and Thakur and Degago (2013a&b), among others, have reported 

empirical correlations for estimating the run-out distance for various geomaterials, including sensitive 

clays. 

 Ricknemann (1999) proposed an expression (Equation. 1) based on a worldwide dataset including 

154 debris flow events. This function includes the vertical drop, H, and the maximum run-out distance 

LFL and is mainly linked with the debris-flow volume, V (Figure 3). 

 

        

 

 Figure 3: The idealized run-out of the debris from a slide event. 

  LFL = 1.9 V
0.16

 H
0.83                       

(1) 
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Corominas (1996) compared a dataset of 52 debris flows, debris slides, and debris avalanches that 

occurred in the Pyrenees to 19 worldwide events and proposed the following relationship: 

  LFL = 1.03 V
-0.105

 H   (2) 

Locat et al. (2008) proposed a correlation between the run-out distance and normalized slide 

volume for Canadian sensitive clays based on collected landslide data. A unique empirical relation 

could not be derived due to scatter in the data; instead, upper and lower limits were suggested. The 

upper limit is given as follows: 

        (
 

    
)
    

  (3)     (
   

    
)
    

   

Similarly, L’Heureux et al. (2012) suggested the following relationship for Norwegian sensitive clays:
 

      (
 

    
)
    

  (4) 

Equations 3 and 4 suggest that the run-out distance for sensitive clays generally increases with an 

increasing volume of the slide debris (V) per unit width (Wavg). 

 Another important relationship that has been noted is that the run-out distance in sensitive clays is 

closely related to the retrogression distance (LR). Locat et al. (2008) suggested a maximum run-out 

distance for Canadian landslides as: 

  LFL = 8.8 LR
0.8 

    (5) 

L’Hueruex et al. (2012) suggested a maximum run-out distance for Norwegian landslide as: 

   LFL = 9 LR    (6) 

The major advantage of these empirical relationships is their simplicity. The only required input 

data are the longitudinal profile of the flow path and the landslide volume. In contrast, empirical 

relationships are often established using large datasets of observed debris flows without considering 

the specific characteristics of the sliding debris or topographical aspects that may influence the 

dynamic behavior and trajectory.  

The limitations of the empirical approach are often compensated for using analytical models. 

Analytical approaches have been developed for rock avalanches (Körner, 1976; Hungr et al., 2005), 

flow slides (Hutchinson, 1986), snow avalanches (Voellmy, 1955; Perla et al., 1980), and debris flows 

(Rickenmann, 1990).  

Sassa (1988) proposed an analytical model so called the friction or sled model. The landslide is 

represented by a mass concentrated at one point, and the total vertical drop and the total horizontal 

travel distance of the mass are respectively noted H and L. The sliding resistance T obeys the law:  

T = μN,    (7) 
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Where μ is the friction coefficient, N is the normal force exerted by the mass on the sliding surface. 

The loss of potential energy to the energy dissipated by friction was considered to be equal. 

Accordingly: 

H/L = T/N = μ   (8) 

μ is usually consider to be equal to the tangent of the friction angle φ  of the material. Scheidegger 

(1973) proposed to estimate the run-out distance of rock falls: 

                   LFL = LT (1 − HT LT
-1

)tanφm   (9) 

Here, the reach angle (φm) is expressed by arctan (HT /LT). HT and LT are respectively the vertical 

and horizontal distances from the head of the landslide source to the distal margin of the displaced 

mass. 

An approach based on the energy balance is suggested by Scheidegger (1973), Hsü (1975), Sassa 

(1988) Vanaut and Leroueil (2002), and Thakur and Degago (2013) for the estimation of run-out in 

sensitive clay debris.  The approach by Thakur and Degago (2013) suggests, in flow slides of 

sensitive clays, the change in potential energy before and after the slide is transformed to a different 

form of energy that results in disintegration of the soil to its remolding state and slide movement 

(kinetic and frictional energy). The available potential energy is a function of slope geometry and soil 

density. The available potential energy to be transformed and the disintegration energy have huge 

significance in deciding the extent of landslides in sensitive clays. It also implies that, for a given 

change in potential energy, sensitive clays with higher disintegration energy result in smaller slide 

movement than sensitive clays with lower disintegration energy. The slide movement is characterized 

by the run-out distance and the retrogression distance, which is controlled by the amount of energy 

transferred to kinetic and frictional energy during the slide process.  

Over the past two decades, a large number of numerical models have been developed for other 

landslide types or snow avalanches. Although the constitutive behavior of slide debris remains an 

open topic for discussion, quasi-two-dimensional numerical models (e.g., BING (Imran et al. 2001) 

and NIS (Norem et al. 1987, 1989)) and quasi-three-dimensional models (e.g., DAN3D (McDougall 

and Hungr, 2004; McDougall, 2006), MassMov2D (Beguería et al., 2009), LS-RAIPD (Sassa, 1988; 

Sassa 2004; Sassa et al. 2010) and RAMMS (Christen et al. 2002)) are commonly used to estimate 

run-out distances. Importantly, none of these tools were developed for the estimation of the run-out 

distance of sensitive clay debris flows. 

2.2 Characterization of sensitive clays 

 A characterization of sensitive clays is presented in Figures 4, 5 and 6 using the index properties 

obtained for more than 500 samples taken from 130 boreholes throughout Norway.  

 Norwegian sensitive clays follow the A-line, PI = 0.73 (LL - 20), on Casagrande’s plasticity chart 

(Figure 4). Here, PI and LL refer to the plasticity index and liquidity limit, respectively. Norwegian 

sensitive clays having St > 15 are typically low-plasticity materials, with plasticity index, PI (IP), 

values of less than or approximately equal to 10, meaning that they transform into brittle materials 

when subjected to external loading. 
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   Figure 4: Norwegian sensitive clays plotted on Casagrande’s plasticity chart. 

 

 Sensitive clays are uniquely related to their St and LL (wL) values, and the majority of highly 

sensitive clays have a water content (w) > wL (Figure 5). A ratio w/wL > 1.0 characterizes open void 

structures that allow sensitive clays to be metastable in nature. These clays are susceptible to flow 

slides when their liquidity index (IL) is greater than 1.2 (Lebuis and Rissmann 1979; Leroueil et al. 

1983; Burland, 1990;). The friction angle φ varies between 25° and 28° when these clays are normally 

consolidated, although φ decreases with increasing w/wL, as shown in Figure 6. 

   

 

          
Figure 5: The relationship between soil sensitivity and the normalized natural water content for 

Norwegian sensitive clays.  
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Figure 6: The relationship between the friction angles measured from consolidated triaxial tests under 

the undrained condition and the normalized natural water content for Norwegian sensitive clays.  
 

It has been well documented (e.g., Lacasse et al., 1985; Lunne et al. 1997) that routine sampling 

procedures (e.g., using 54-mm cylinders) lead to sample disturbances in sensitive soft clays. In turn, 

sample disturbances lead to, among other problems, the underestimation of the pre-consolidation 

pressure, cui and the rate of strain softening. Figure 7 illustrates the effect of sample disturbance in soft 

sensitive clay from the Kløfta roadway project in Norway. The figure shows that a 54-mm sampler 

induced a large amount of disturbance in the sample. Consequently, the stress-strain-deformation 

characteristics obtained from laboratory tests are not representative of the true response of the 

material in the field. Therefore, larger-diameter samplers, such as 76-, 95-, or 230-mm samplers, are 

becoming increasingly popular in Norway. In addition, the sample quality also influences St. Table 1 

presents a comparison between the measured cui and St values from a block sample and from 54-mm 

diameter samplers from the Kløfta roadway project in Norway. The measured value of cur = 0.2 kPa 

was clearly unaffected by the type of sampling. The measured cui for a block sample was 27 kPa, 

whereas 54-mm-diameter samples at the same depth had cui values of 8.6 and 11.7 kPa. The range of 

error for the St values in Table 1 was on the order of 300%, which has a significant effect in the 

interpretation and design procedures. Consequently, cui and St are influenced by sample disturbance, 

whereas cur is not dependent on the quality of the sample. 
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Table1.  The effects of sample disturbance 

Depth 

(m) 

cui 

(kPa) 

cur 

(kPa) 

St 

(-) 

18.5A 27 0.2 135 

18.5B 8.6 0.2 42 

18.5B 11.7 0.2 58 

A Block sample; B 54-mm-diameter sample 

 

            
 

Figure 7: The effects of sample disturbance illustrated using anisotropically consolidated undrained 

triaxial tests on soft sensitive clays sampled using different samplers. Here, σa’ and σr’ are the 

effective stresses in the axial and radial directions, respectively. The presented results are from a 

Kløfta roadway project in Norway (Source; SVV, 2009). 

 

 During a landslide, the flow behavior of slide debris can be quite complex and various types of 

behavior can exist depending on natural water content, salt content, and liquidity index of the soil 

(Locat and Demers, 1988). Locat and Demers, (1988) and Locat and Lee (2005) suggests that the 

study of the plastic viscosity, yield stress, remolded strength, and their correlations provides a good 

understanding of the flow characteristics of slide debris. They have presented the rheological 

properties of Canadian sensitive soils. Such studies are yet to done for Norwegian sensitive clays. The 

literature reports a large discrepancy between laboratory and back-calculated field values of viscosity 

and the measured shear stress. As the objective of this paper is to discuss the correlation of the flow 

potential of sensitive clay debris and their remolded shear strengths, no further discussion is presented 

with regard to rheological models and their applicability to run-out distance modeling. 
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3. LABORATORY MODEL TEST 

       In this section, a simple test procedure used to estimate run-out distances is presented. The model 

test aims to provide the basis for understanding of the run-out of fully remolded sensitive clay debris 

using a small-scale laboratory model. Thakur and Degago (2012) have presented a similar test, the 

quickness test, to define the collapse behavior of remolded sensitive clays. However, the quickness 

test is not meant to model the run-out.  

3.1 Test procedure  

The model test is based on the concept of a dam breach. The model test is performed by filling a box 

with remolded sensitive clay, slowly releasing the filled mass from one end (gate), and measuring the 

run-out distance as the material is subjected to flow. The open-ended box used in this study has a 

length (Lo) = 200 mm, height (Ho) = 150 mm, and width (Wo) = 100 mm. An overview of the model 

used in the study is presented in Figure 8. The thoroughly remolded material is placed into the box 

and leveled off and then allowed to flow outward as the gate is slowly lifted upward with minimum 

disturbance to the sample. The flow length or the run-out (LFL) is observed and measured along a 

gently inclined ramp. An inclination of 8.5° was chosen.  

 

 
Figure 8: The run-out model test set-up. 

 

3.2 Characterization of the tested materials  

       The model tests were performed on sensitive clay samples collected from three different landslide 

locations in central Norway. These sites have been studied extensively in connection with landslide 

hazards. The laboratory index properties of the sampled material are presented in Table 2. The liquid 

limit (wL), cui and cur of the tested material were obtained using the fall-cone method, as described by 

the National Standard NS 8015 in Norway. The remolded shear strength (cur) of sensitive clays is 
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dependent on the natural water content, which is illustrated in Figure 9 for all three clays. The tested 

sensitive clays had different salt contents, clay fractions, and mineral compositions, which in turn led 

to the same cur values at different water contents (w). 

   Table 2 Engineering characterization of the tested material 

Properties Byneset Lersbekken Olsøy 

Sampling depth (H) [m] 4 – 12 6 – 10 4 – 15 

Clay fractions (< 2 µm) [%] 30 – 55 30 50 – 65 

Water content (w) [%] 27 – 48 22 – 34 28 – 38 

Plasticity index (IP) [%] 3 – 15 5 – 7 3 – 10 

Liquidity index (IL) [-] 0.9 – 5.4     0.7 – 2.0 0.6 – 3 

Undisturbed undrained shear 

strength (cui) [kPa] 

 

5.2 – 72 

 

12 – 58 

 

60 – 100 

Remolded undrained shear 

strength (cur) [kPa] 

0 – 3 0 – 2 0 – 2.1 

Sensitivity (St) [-] 4 – 400 16 – 29 30 – 100 

Over consolidation ratio 

(OCR) [-] 

1.1 – 3.3 1.8 – 2.0 2– 4 

Salinity (g/l) 0.6 – 0.74 1.5 – 1.6 0.9 – 2.0 

 

 

                      Figure 9: The remolded shear strength as a function of the water content for the tested sensitive clays. 
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Figure 10: LF versus cur values determined for soil samples collected from the Byneset landslide 

location. 

 

3.3 Results and observations 

Run-out model tests were performed on more than 35 different remolded sensitive clay samples 

extracted from the Lersbekken, Byneset, and Olsøy landslide locations. The observations during a 

run-out test conducted on Byneset, Lersbekken and Olsøy clay indicated that sensitive clays with cur = 

0.1 kPa behaved as fluids, and therefore, the highest run-outs were observed for this particular cur. 

Importantly, the lowest possible cur value that can be measured using the fall cone apparatus is 0.1 

kPa. Sensitive clays having cur = 0.1 kPa behave like water, and therefore, the run-out in such 

materials will depend on the available slide volume (remolded sensitive clay debris) and the formation 

of the terrain. Because the aim at this stage of the study was to visualize the run-out of sensitive clays 

at different cur values but not to predict the run-out distance for cur = 0.1 kPa, the run-out (LFL) at cur = 

0.1 kPa was considered as a reference value for comparison with the run-outs observed at the other cur 

values. For this purpose, a normalized run-out, (LF), which is the ratio of the flow length at a given cur 

to the run-out at cur = 0.1 kPa, was used in this study. The relationship between LF and cur is presented 

in Figures 10-12.  

Interestingly, remolded sensitive clays having cur ~ 0.5 kPa are not as fluid as they were originally 

assumed, and sensitive clays with 0.5 kPa < cur < 2.0 kPa were semisolid in nature. This behavior can 

be observed in terms of LF: LF is reduced from 100% to approximately 18% for the Byneset clay, 22% 

for the Lersbakken clay, and 20% for the Olsøy clay when cur is increased from 0.1 to 0.3 kPa. LF was 

further reduced by less than 95% when cur was increased to 1.0 kPa for all of the tested clays.   
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Figure 11: LF versus cur values determined for soil samples collected from the Lersbakken landslide location. 

 

                     

Figure 12: LF versus cur values determined for soil samples collected from the Olsøy 

landslide location. 

The observed behavior is in line with Mitchell and Markell (1974); Lebuis and Rissmann 1979; 

Locat et al. (2008); Thakur et al. (2013a&b) who reports that sensitive clays having cur > 1.0 kPa are 

less likely to experience a flow slide and therefore no run-out of the slide debris.  

The results show that the run-out distances or flow lengths observed for the Lersbekken, Byneset, 

and Olsøy clays are identical. A combined plot with data for all three landslide locations is shown in 

Figure 13. For clay samples with cur > 1.0 kPa, very little run-out was measured. Interestingly, the 

run-out behavior of sensitive clay changed dramatically within the range cur < 0.3 kPa. The results of 
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the run-out tests shown in Figure 16 clearly demonstrate that the Lersbekken, Byneset, and Olsøy 

materials had nearly identical responses. 

 

 
 

Figure 13: Compilation of LF versus cur values registered on soil samples taken from the three 

landslide locations. 

4.  BACK-CALCULATION OF THE MODEL TEST RESULTS USING DAN3D 

         As mentioned earlier, several numerical tools are available to simulate debris flow and flow 
slides in a variety of geomaterials, except sensitive clays. Issler et al. (2012) suggested that DAN3D is 
the most appropriate tool and has the greatest potential to model run-out in sensitive clays. Therefore, 
DAN3D was chosen in this work to study the effect of the cur value of sensitive clays on the run-out 
distance.  
 

4.1   Brief description of DAN3D  

      Dynamic Analysis of Landslides (DAN) is a quasi-two-dimensional model that was developed by 

Hungr (1995) and was further extended to DAN3D by McDougall and Hungr (2004) and McDougall 

(2006). The version of DAN3D used in this study was kindly provided by Prof. Oldrich Hungr for use 

in research. The basic premise of the analysis is that as a result of sliding or other failure, a pre-

defined volume of soil or rock ("the source volume") changes into a fluid and flows downslope, 

following a path of a defined direction and width. A digital terrain model of the landslide path and a 

digital elevation model of the depth in the release area (“landslide scar”) are prerequisite as the input. 

The run-out estimation can be performed using several alternative rheological relationships, including 

Frictional, Plastic, Newtonian, Bingham, and Voellmy models: 
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Plastic model 

 τ = τy    (10) 

Frictional model 

   τ = (1 − rᵤ) σn tan φ   (11) 

Newtonian model 

τ = 2μv/h    (12) 

Bingham model 

τ = τy + 2μv/h    (13) 

Voellmy model 

τ = σn tan φ + γv²/ξ   (14) 

where τ is the bed shear stress, τy is the yield shear strength, rᵤ is the pore pressure ratio, σn is the 

bed-normal total stress, φ is the apparent friction angle, γ is the unit weight of the slide debris, μ is the 

viscosity, v is the depth-averaged flow velocity, and ξ is the turbulent friction coefficient (in m/s
2
). In 

general, there is a lack of knowledge about parameter like φ, μ, ξ and v for remolded Norwegian 

sensitive clay debris. Accordingly, the Newtonian model and the the Voellmy model or the Friction 

model could not be used in this study. Issler et al. (2012) suggests that the Bingham model is not 

suitable for sensitive clay debris. Therefore, despite its simplicity, the plastic model was chosen in this 

study.  

4.2 Back-calculation of the model tests  

       Because all of the normalized run-out behaviors were nearly identical for all three clays, the model 

tests for the Byneset clay were chosen for the back-calculation. The back-calculation of the model 

tests in DAN3D require input files containing information regarding the topography and initial 

conditions (Figure 14) of the model tests in the form of three ASCII grid files. The calculations were 

performed using the plastic model (Equation 10) for various τy values. The τy was considered to be 

equal to cur. The input parameters were configured according to Table 3. 

 

Figure 14 The path topography defined in the DAN3D calculations. 
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4.3 Simulation results and discussion 

        Thakur et al. (2013a&b) and Thakur and Degago (2012) reported that sensitive clays having cur > 

1.0 kPa are less likely to experience a flow slide, i.e., zero retrogression after an initial slide and no 

run-out of the slide debris. This finding was confirmed by the model test results. Therefore, a back-

calculation was performed at cur values up to 1.0 kPa. The numerically calculated run-out results for 

sensitive clay debris, in the form of a flow depth contour map for cur = 0.1, 0.3, and 1.0 kPa, are 

shown in Figure 15. The calculation results are in agreement with the model tests; i.e., lower cur 

values yield a higher LFL. A comparison between the numerical calculation and the results from the 

model tests, presented in Figure 16, indicate an identical trend between the laboratory observations 

and numerical simulation. In particular, for cur < 0.3 kPa, there was good agreement between the back 

calculation using the plastic model and the laboratory test results. The run-out distance was drastically 

reduced with small increases in cur. Note that this particular range of cur is of interest because the 

majority of large flow slides in Norway (e.g., the landslides in Verdal (1893), Braa (1928), Selnes 

(1965), Hekseberg (1967), Baastad (1974), Rissa (1978), Kattmarka (2009), Lyngen (2010), and 

Byneset (2012)) having LFL > 200 m had cur ≤ 0.3 kPa.   

 

Figure 15 Run-out at various cur shown in a form of contour maps. 

 

Figure 16 Back-calculated LF for cur values for the Byneset sensitive clay along with the model test 

results. 
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 However, the numerical results appear to have over-predicted the flow length for sensitive clay 

debris having cur > 0.3 kPa. Such over-prediction is attributed to the choice of constitutive model. The 

plastic model in DAN3D assumes zero friction between the slide debris and sliding plane (or bed) 

along the flow path. In contrast, there will always be some degree of frictional resistance along the 

sliding plane in the model test, which will counteract the flow of sensitive clay debris. The amount of 

frictional resistance will depend on the roughness of the bed, slope of the sliding plane, thickness of 

the slide debris, and the internal friction of the material. In the case of sensitive clay debris having 

relatively low cur values, the friction resistance between the contact surfaces will be less important 

because the inter-particle friction between the sliding material will be sufficiently low (similar to that 

of water) that the contact friction will have little influence on the flow. In contrast, semisolid sensitive 

clays with larger cur values (>0.3 kPa) will flow similarly to a monolithic mass, and therefore, the 

friction at the contact plane will have a decisive role in the run-out process. For comparison purposes, 

a simple correction is applied to the numerical results. The correction (τy
*
) is assumed to be equal to 

the shear stresses that may result on the sliding plane due to the weight of the slide debris itself. 

Accordingly, τy
* 

per m
2
 can be expressed as γ.Ho.sinα, where γ is assumed as 20 kN/m

3
, Ho is 0.15 m, 

and α is 8.5°, resulting in an additional resistance of approximately 0.45 kPa. A new set of 

calculations that incorporate the additional τy
*
 were performed for sensitive clay debris having cur >0.3 

kPa. The new results are presented in Figure 16 as DAN3D (corrected). Despite several 

approximations the new results exhibit a better fit with the results of the model tests. 

 This simple exercise demonstrates the importance of considering the effect of bed friction in 

numerical calculations. This simple back-calculation has encouraged the authors to study the run-out 

simulation for a complex case. Therefore, a back-calculation of a large flow slide, the Byneset 

landslide, occurred on the early morning of January 1, 2012 is presented in the next section. 

 

 

5. BACK-CALCULATION OF THE BYNESET FLOW SLIDE  

        The Byneset flow slide took place in a highly sensitive clay deposit, and it is believed that the 

slide was initiated due to natural erosion at the toe of the slope. Byneset is located approximately 10 

km west of Trondheim. The flow slide was approximately 150 m in width. The flow slide retrogressed 

backward to a distance approximately 450 m from the toe of the slope. The total run-out of the 

sensitive clay debris was approximately 870 m from the toe of the slope. The volume of the slide 

debris was estimated to be on the order of 3-3.5 × 10
5
 m 

3
. A detailed ground investigation was 

performed by the authorities soon after the flow slide, and the results were presented by Thakur 

(2012). An overview of the geotechnical properties of the sensitive clay deposit from the flow slide 

area is presented in Table 2. Photos taken immediately after the flow slide illustrate that the slide 

masses evacuated the slide scar almost completely, as shown in Figures 17 and 18. The slide debris 

followed a water canal over a distance of approximately 870 m. Due to low discharge in the canal, 

water is not expected to have played an important role in the run-out of the slide debris. Completely 

remolded sensitive clay debris were observed along the entire flow path. A typical area of the flow is 

shown in Figure 19. 
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Figure 17 The Byneset flow slide (Source NVE, 2012). A closer view of the slide area and the gate. 

 The Byneset flow slide was back-calculated using DAN3D. The remolded shear strengths of the 

sensitive clay involved in the flow slide were as low as 0.1 kPa. Accordingly, several simple 

approximations were made to back-calculate the flow slide: 

(1) The slide debris obeys the plastic model. 

(2) The effects of friction along the contact surface between the flow path and slide debris were 

neglected. 

(3) External factors, such as the effects of vegetation and water or snow along the flow path, were 

not considered in the model. 

(4)  It was assumed that the run-out is solely controlled by the remolded shear strength and 

topography of the area. 

 

 

Figure 18 The extent of the Byneset flow slide (Source NVE, 2012). 
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Figure 19 The remolded sensitive clay debris along the flow path. (Source NVE, 2012). 

 

Figure 20: Back calculation of the Byneset flow slide. Run-out of sensitive clay debris, shown as a 

flow/deposit contour map at different stages of the simulation. The lower right figure shows the new 

topography of the area after the flow slide. 
 

 The results at stages of 1%, 5%, 25%, 50%, and 100% (at the end) of the calculation are shown in 

Figure 20. The different stages of the simulation give an idea over how the slide debris must have run-

away from the slide area along the canal. The total run-out of the slide debris obtained at the end of 

the simulation (100%) is quite similar to that observed in the field. To support this similarity, a 

topographical map of the area is shown in the same figure (lower left). The extent of the run-out of the 

sensitive clay debris on the map is marked as A, B, C, and D. the actual mapping and the calculated 

run-out distance using the plastic model are quite similar. . The velocity of the slide debris was 

between 15 and 20 m/s, which is a relatively high velocity for such sub-aerial flow slides. It is 
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difficult to verify the obtained velocity, as actual measurements are not available. However, slide 

debris involved in the Rissa landslide (1978) in Norway also had a velocity of approximately 11-12 

m/s. Therefore, it is possible to conclude that the obtained velocity for the Byneset flow slide is 

reasonable. In summary, the back- calculated run-out distance is in agreement with the field 

evidences. 

 

8. CLOSING REMARKS 

       This work presents a simple laboratory procedure that focuses on the effect of the remolded 

behavior of sensitive clays in terms of the run-out distance. Model tests were performed on more than 

35 samples from three landslide sites. These results demonstrate that sensitive clays with cur < 0.3 kPa 

can be susceptible to large run-out, whereas the run-out is drastically reduced with increasing cur. This 

relationship was validated by back-calculating the model test and the Byneset flow slide using the 

DAN3D software. The numerical results demonstrated that the plastic model in DAN3D can be a 

good alternative for use with sensitive clays having cur < 0.3 kPa. However, the run-out distance can 

be over-estimated by the plastic model for sensitive clays having cur larger than 0.3 kPa in the absence 

of an appropriate correction with respect to the frictional resistance along the sliding surface. Further 

studies should be performed to test the other models in DAN3D using reliable input parameters. The 

model tests shall be carried on for different α values and using different volume of sensitive clay 

debris to study scale effects. 

 

9. ACKNOWLEDGEMENT 

       The authors wish to acknowledge the National research program “Natural hazards: Infrastructure 

for Floods and Slides (NIFS)” for supporting this work. The authors would like to thank Morten Hoel, 

Annette Kleppe and Erlend Hundal from the University College Sor - Trondelag for helping with the 

laboratory testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               87 

10. REFERENCES 

Bathurst, J.C., Burton, A., and Ward, T.J. (2003) “Debris flow run-out and landslide sediment delivery model 

tests”. Journal of Hydraulic Engineering, 123-5, pp410–419. 

Begueria, S., Van Asch, Th.W.J., Malet, J.P., and Gröndhal, S. (2009) “A GIS-based numerical model for 

simulating the kinematics of mud and debris flows over complex terrain”. Natural Hazards and Earth System 

Sciences 9, pp1897-1909. 

Bjerrum, L. (1955) “Stability of natural slopes in quick clay”. Géotechnique, issue 5-1, pp101–119. 

Bjerrum, L., (1961) “The effective shear strength parameters of sensitive clays”, Proc. 5th International 

Conference Soil Mechanics Foundation Engineering Paris, pp23–28. 

Bjerrum, L., and Kjærnsli, B. (1957) “Analysis of the stability of some Norwegian natural clay slopes”. 

Géotechnique, issue 7-1, pp1–16. 

Burland, J. B. (1990) “30
th

  Rankin Lecture: on the compressibility and shear strength of natural clays”. 

Géotechnique, issue 40-3, pp329–378. 

Cannon, S.H. (1993) “An empirical model for the volume-change behavior of debris flows”, In: Shen, H.W., Su, 

S.T., Wen, F. (Eds.), National Conference on Hydraulic Engineering. ASCE, San Francisco, pp1768–1773. 

Christen, M. Bartelt, P., and Gruber, U., (2002) “AVAL-1D: An Avalanche Dynamics Program for the 

Practice”, In: International Congress Interpraevent 2002 in the Pacific Rim - Matsumo, Japan, Congress 

publication, 2, pp715-725.   

Corominas, J., (1996) “The angle of reach as a mobility index for small and large landslides”. Canadian 

Geotechnical Journal, 33-2 , pp 260–271.  

Crosta, G.B., Cucchiaro, S., and Frattini, P., (2003) “Validation of semi-empirical relationships for the 

definition of debris-flow behavior in granular materials”, In: Rickenmann, D., Chen, C. (Eds.), 3rd Int. Conf. 

on Debris-Flow Hazards Mitigation. Millpress, Davos, pp821–831. 

Dai, F.C., Lee, C.F., and Ngai, Y.Y., (2002) “Landslide risk assessment and management: an overview”. 

Engineering Geology, 64-1, pp65–87. 

Edgers L., and Karlsrud, K., (1982) “Soil flows generated by submarine slides”, NGI Publication 143. 

Fannin, R.J., and Wise, M.P., (2001) “An empirical–statistical model for debris flow travel distance”. Canadian 

Geotechnical Journal, 38, pp982–994. 

Fell, R., Hungr, O., Leroueil, S., and Reimer, W., (2000) “Keynote Lecture – Geotechnical engineering of the 

stability of natural slopes, and cuts and fills in soil”, GeoEng 2000, issue 1, p21–120. 

Furseth A (2006). Skredulykker i Norge. Tun Forlag, Oslo. 

Hsü, K., (1975) “Catastrophic debris streams (Sturzstroms) generated by rock falls”. Geological Society of 

America Bulletin, 86, pp129–140. 

Hungr, O. (2005) “Classification and terminology”. Debris-flow hazards and related phenomena. Springer. 

ISBN 3-540-20726-0, pp9–24.  



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               88 

Hungr, O., Corominas, J., and Eberhardt, E., (2005) “Estimating landslide motion mechanism, travel distance 

and velocity”, In: Hungr, O., Fell, R., Couture, R., Eberhardt, E. (Eds.), Landslide Risk Management. Taylor 

& Francis Group, Vancouver, pp99–128. 

Hutchinson,  J. N. (2002) “Chalk flows from the coastal cliffs of northwest Europe, Catastrophic landslides: 

Effects, occurrence, and mechanism”s. Geol. Soc. of Ame. Reviews in Eng. Geo., pp257–302. 

Hutchinson, D. J. (1961) “A landslide on a thin layer of quick clay at Furre, central Norway”. Geotechnique, 

issue11-2, pp69–94. 

Hutchinson, J.N., 1986. A sliding-consolidation model for flow slides. Canadian Geotechnical Journal 23, 115–

126. 

Imran, J., Parker, G., Locat, J., and Lee, H., (2001) “1D numerical model of muddy subaqueous and subaerial 

debris flows”. Journal of Hydraulic Engineering, 127-11, pp959–968. 

Issler, D., Cepeda, J.M., Luna B.Q. and Venditti, V., (2012) “Back-analyses of run-out for Norwegian quick-

clay landslides”. NIFS report. Available at www.naturfare.no  

Karlsrud, K. (1979) “Skredfare og planlegging”, Lecture notes NIF-Course, Hardanger.  

Karlsrud, K., Aas, G., and Gregersen, O. (1985) “Can we predict landslide hazards in soft sensitive clays? 

Summary of Norwegian practice and experience”. NGI Publication nr 158. 

Karlsrud, K., Lunne, T., and Brattlien, K., (1996) “Improved CPTU interpretation based on block samples”, In 

Proceedings of the 12th Nordic Geotechnical Conference, Iceland, issue 1 pp195–201. 

Khaldoun, A., Moller, P., Fall, A., Wegdam, G., De Leeuw, B., Méheust, Y., Fossum, J. O. and Bonn, D., 

(2009) “Quick clay and landslides of clayey soil”. Phys. Rev. Lett. 103, 188301. 

Körner, H.J., (1976) “Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinene”. Rock 

Mechanics, 8, pp225–256. 

L’Heureux, J. S., (2012) “A study of the retrogressive behaviour and mobility of Norwegian quick clay 

landslides”, Proc. 11
th

  INASL, Banff, Canada, issue 1, pp981–988. 

Lacasse, S., Berre, T., and Lefebvre, T., (1985)” Block sampling of sensitive clays”, International Conference of 

Soil Mechanics and Foundation Engineering, issue 2, pp887–892. 

Lebuis. J., and Rissmann, P., (1979) “Les coulées argileuses dans le région de Québec et de Shawinigan. In: 

Argiles sensibles, pentes instables, mesures correctives et coulées des régions de Québec et Shawinigan”, 

Geo. Assoc. of Canada Guidebook, pp19–40 

Legros, F., (2002) “The mobility of long-runout landslides”. Engineering Geology, 63, pp301–331. 

Leroueil, S., Locat, J., and Vaunat, J., (1996) “Geotechnical characterisation of slope movements”, Proceedings 

of the 7th International Symposium on Landslides, pp53–74. 

Leroueil, S., Tavenas, F., and Le Bihan, J.P. (1983) “Propriétés caracteristiqués des argiles de I’est du Canada”. 

Canadian Geotechnical Journal, issue 20, pp681–705. 

Locat, A., Leroueil, S., Bernander, S., Demers, D., Locat, J., and Ouehb, L., (2008) “Study of a lateral spread 

failure in an eastern Canada clay deposit in relation with progressive failure: The Saint-Barnabé-Nord slide”, 

Proceedings of the 4th Canadian Conference on Geohazards : From Causes to Management, pp89-96. 

http://www.naturfare.no/


                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               89 

Locat, J., and Demers, D. (1988) “Viscosity, yield stress, remolded strength, and liquidity index relationships for 

sensitive clays”. Canadian Geotechnical Journal, issue 25, pp799–806. 

Locat, J., and Lee, H. J. (2005) “Subaqueous debris flow”. Debris-flow hazards and related phenomena. 

Springer. ISBN 3-540-20726-0, pp203–246. 

Locat, J., and Leroueil, S. (1988) “Physicochemical and mechanical characteristics of recent Saguenay Fjord 

sediments”. Canadian Geotechnical Journal, issue 25, pp382–388. 

Locat, J., and Leroueil, S., (1997) “Landslide stages and risk assessment issues in sensitive clays and other soft 

sediments”,  Proc. International Workshop on Landslide Risk Assessment, (Cruden and Fell ed.) Hawaii, 

Balkema, Rotterdam, pp261-270.  

Locat, P., Leroueil, S., and Locat, J., (2003) “Characterization of a submarine flow-slide at Pointe-du-Fort, 

Saguenay Fjord, Quebec, Canada”, Proceeding of the 1
st
 Symposium on Submarine Mass Movements and 

their Consequences, pp521–529. 

Locat, P., Leroueil, S., and Locat, J., (2008) “Remaniement et mobilité des débris de glissements de terrain dans 

les argiles sensible de l’est du Canada”, Proceedings of the 4
th

 Canadian Conference on Geohazards: From 

Causes to Management. Presse de l’Université Laval, Québec, pp97–106. 

Lunne, T., Berre, T., and Strandvik, S., (1997) “Sample disturbance effects in soft low plastic Norwegian clay”, 

In Proceedings of the Conference on Recent Developments in Soil and Pavement Mechanics, pp81–102. 

McDougall, S., (2006). “A new continuum dynamic model for the analysis of ex-tremely rapid landslide motion 

across complex 3D terrain”. PhD thesis, University of British Columbia, Vancouver, Canada. 

McDougall, S., and Hungr, O., (2004) “A model for the analysis of rapid landslide motion across three-

dimensional terrain”. Canadian Geotechnical Journal, 41, pp1084–1097. 

Mitchell, R.J., and Markell, A.R. (1974) “Flow slides in sensitive soils”. Can. Geot. Journal,  issue 11-1, pp11–

31. 

NGF (1974). Guidelines by Norwegian Geotechnical Society.  

Nordal, S., Alen, C., Emdal, A. Madshus, C., and Lyche E. (2009) Landslide in Kattamrka in Namsos 13. March 

2009. Transportation Ministry, Norway, 2009, Report ISBN 978-82-92506-71-4. 

 Norem, H., Irgens, F. and Schieldrop, B., (1987) “A continuum model for calculating snow avalanche 

velocities”, In: Avalanche formation, movement and effects, Proceedings of the Davos symposium, 

September 1986. IAHS publication no. 162, pp 363-379 

Norem, H., Locat, J., and Schieldrop, B. (1990) “An approach to the physics and the modeling of submarine 

flowslides”. Marine Geotechnology, 9, pp93–111. 

NVE (2012). Kvikkleireskred ved Esp, Byneset I Trondheim. Norwegian Water and Energy Directorate (NVE), 

Oslo, Norway. NVE Report no. 1-2012 prelim-inary version 2012-01-09, 79 pp. 

Oset, F., Thakur, V., Dolva, B. K., Aunaas, K., Sæter, M. B., Robsrud, A., Viklund, M. Nyheim, T., Lyche, E. 

and  Jensen O. A. (2013) “Regulatory framework for Regulatory framework for road and railway 

construction on the sensitive clays of Norway”. Natural Hazards book: Advances in Natural and 

Technological Hazards Research, ISSN: 1878-9897 (Print) 2213-6959 (Online). 



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               90 

Perla, R., Cheng, T.T., and Mc Clung, D.M., (1980) “A two parameter model of snow avalanche motion”. 

Journal of Glaciology, 26-94, pp197–208. 

Rickenmann, D., (1990) “Debris Flows 1987 in Switzerland: modelling and fluvial sediment transport”. In: 

Sinniger, R.O., Monbaron, M. (Eds.), Hydrology in Mountainous Regions; Lausanne Symposium. IAHS, 

Lausanne, pp371–378. 

Rickenmann, D., (1999) “Empirical relationships for debris flows”. Natural hazards, 19-1, pp47–77. 

Rickenmann, D., (2005) “Run-out prediction methods”, In: Jakob, M., Hungr, O. (Eds.), Debris-flow Hazards 

and Related Phenomena. Springer, Berlin, pp305–324. 

Rickenmann, D., (2005) Hangmuren und Gefahrenbeurteilung. Kurzbericht für das Bundesamt für Wasser und 

Geologie. Unpublished report, Universität für Bodenkultur, Wien, und Eidg. Forschungsanstalt WSL, 

Birmensdorf, 18p. 

Rickenmann, D., Laigle, D., McArdell, B., and Hübl, J., (2006) “Comparison of 2D debris-flow simulation 

models with field events”. Computational Geosciences 10-2, pp241–264. 

Rickenmann,D., and Koch, T.,(1997) “Comparison of debrisflowmodeling approaches”, In: Chen, C. (Ed.), 1st 

Int. Conf. on Debris-Flow Hazards Mitigation, San Francisco, pp 576–585. 

Rosenqvist, I. T. (1953) Considerations on the sensitivity of Norwegian clays. Geotechnique 3, 195–200. 

Sassa, K. (1988) “Special lecture: Geotechnical model for the motion of landslides”, In: C. Bonnard (ed.), Proc. 

of 5
th

 Symp. on Landslides, Balkema, Rotterdam, pp37–55. 

Scheidegger, A. E. (1973) “On the prediction of the reach and velocity of catastrophic landslides”. Rock 

Mechanics, 5, pp231–236. 

SVV (2009). Technology report 2425. Norwegian Roads Authority. 

Tavenas, F., Flon, P., Leroueil, S., and Lebuis, J., (1983) “Remolding energy and risk of slide retrogression in 

sensitive clays”, Proceedings of the Symposium Slopes on Soft Clays, Linköping, pp423–454. 

Thakur V (2012) Landslide at Byneset. NIFS report. ISBN nr 978-82-410-0822-1. Available at 

www.naturfare.no  

Thakur, V., and Degago, S.A. (2012) “Quickness of sensitive clays”. Géotechnique Letters, issue 2-3, pp87–95. 

Thakur, V., and Degago, S.A. (2013b) “Disintegration of sensitive clays”. Géotechnique Letters, issue 3-1, 

pp20–25. 

Thakur, V., Degago S, Oset, F., Dolva, B. K., Aabøe, R., Aunaas, K., Nyheim, T., Lyche, E., Jensen O. A. 

Viklund, M., Sæter, M. B., Robsrud, A., Nigguise, D., and L’Heureux J.S. (2013b) “Characterization of 

post-failure movements of landslides in soft sensitive clays”. Natural Hazards book: Advances in Natural 

and Technological Hazards Research, ISSN: 1878-9897 (Print) 2213-6959 (Online). 

Thakur, V., Oset, F., Aabøe, R., Berg, P. O., Degago, S. A., Wiig,  T., Lyche, E., Haugen, E. E. D., Saeter, M. 

B., and Robsrud, A.  (2012) “A critical appraisal of the definition of Brittle clays (Sprøbruddmateriale)”, 

Proc. 16th  Nordic Geotechnical Meeting Copenhagen, issue 1, pp451– 462. 

Trak, B., and Lacasse, S., (1996) “Soils susceptible to flow slides and associated mechanisms”, Proceedings of 

the 7th International Symposium on Landslides, Trondheim, issue 1, pp 497–506. 

http://www.naturfare.no/


                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               91 

Vaunat, J., and Leroueil, S. (2002) “Analysis of Post-Failure Slope Movements within the Framework of Hazard 

and Risk Analysis”. Natural Hazards, issue 26, pp83–102. 

Voellmy, A., 1955. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 212–285.  

 

 

 

 

 

 

 

 

 

  



                                                                                          

Norwegian University of Science 

and Technology 

Master Thesis – June 2013 

 

 

Numerical modeling of run-out of sensitive clay debris                                                                               92 

Appendix 2: Preparation of Input files for DAN3D Analysis using 

ArcGIS10 and Surfer 11 

 

The back analysis done for Lyngen slide and for lab model slide preparation requires input 

data necessary for DAN3D simulation .ArcGIS 10 and Surfer 11(Golden Software, Inc) were 

used based on NGI Report number 20092228-00-2-R. 

 Lyngen Slide 

1. Original terrain contour-the dotted line shows the slide boundary 

 

Figure A2-1 Pre slide contour map 

2. The original contour was gridded as shown below and elevation points at each grid 

intersection was recorded : 

 

Figure A2-2 Pre slide gridded contour map 
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3. The recorded elevation points are recorded and in note pad file using the following 

format: 

ncols <value> [these are the number of columns] 

nrows <value> [these are the number of rows] 

xllcorner <value> [this is the x coordinate of the center or lower-left corner of the lower-left cell] 

yllcorner <value> [this is the y coordinate of the center or lower-left corner of the lower-left cell] 

cellsize <value> [this is the resolution of your data] 

nodata_value [0] 

25 23 21 19 16 14 11 9 7 3 2 1 

25 23 20 18 15 14 12 10 9 4 3 0 

25 23 20 18 15 14 12 10 7 5 4 0 

25 22 19 18 16 14 12 10 7 6 5 0 

25 22 19 17 16 14 11 8 7 2 0 0 

24 21 19 17 15 14 13 11 9 5 5 0 

22 19 16 15 15 14 12 11 9 8 4 3 

24 22 20 18 16 15 12 11 10 8 7 4 

25 22 20 19 17 16 14 11 10 9 7 5 

25 22 21 19 18 16 14 12 11 9 7 6 

25 23 21 19 18 17 15 13 11 10 8 6 

25 23 21 20 18 17 16 14 12 10 9 7 

26 23 21 20 19 18 16 15 13 11 10 8 

26 24 22 21 19 18 16 15 14 11 10 9 

26 24 23 21 20 18 17 16 14 10 6 5 

 

 

 This elevation points were scaled up to create raster data in ArcGIS 

4. Gridded raster data set was created in ArcGIS from the text file provided in step 3: 

 

Figure A2-3 Raster data 
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5. The raster data shown above is comprised of the original terrain and hypothetically drawn 

area. Contour map generated from the raster is shown below. The dotted area designates the 

ideal slide surface merged with the original terrain map from figure A-1.  

 

Figure A2-4 Contour map 
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6. The dotted line in figure A-1 shows the boundary of the slide.The area was plotted in ArcGIS 

to  designate the release area. 

 

Figure A2-5 Release area 

7. The release area was changed to raster data and depth data was given.The volume of the 

release area was checked in ArcGIS. Then the raster  data from the release area was merged 

with the raster data created in step 4. 

8. The two raster data sets in step 3 and 7 are changed to text files. These two files were opened 

in Surfer 11. 

9. The two grid files were used to create the release area and path topography .The two plots 

shown below  were used in DAN3D 

 

 

 

Figure A2-6 Grid files for DAN3D  

 
Path topography 

 
Release area 


