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Abstract: 

 

The objective of the master thesis is to use the failure envelope approach to determine the ultimate capacities of a 

suction anchor, and to establish a strain-hardening elasto-plastic model in terms of loads and displacements at 

padeye.  

 

Numerical analysis in Plaxis 3D has been executed for the suction anchor, which has formed a capacity surface in 

terms of combined loading at the padeye. General loading at padeye will result in six force components, which can 

be expressed by three independent variables due to constrained loading conditions. Empirical yield surfaces, that 

take all six force components into account, have been curve-fitted to the Plaxis results. The yield surfaces have been 

used together with load-displacement relations to establish an elasto-plastic formulation with respect to loads and 

displacements in terms of the padeye. The results were further generalized, and can be used to estimate the response 

of other suction anchors.  

 

The elasto-plasticity has been implemented by isotropic hardening, governed by a curve-fitting hyperbola. The 

formulation was implemented in Excel as a spreadsheet that provided accurate results for most load combinations.  

The sheadsheet is applicable for both tensile and compression forces, and laod histories for up to 10 steps can be 

applied. Each load step in the spreadsheet was divided into 100 load increments. The spreadsheet was made in a 

general way, where the input parameters were the ultimate force components, the eccentricities to the neutral planes, 

the elastic stiffness coefficients and empirical curve-fitting coefficients with respect to both the yield surface and the 

hardening law.   

 

Mesh refinements and hand calculations have been applied. Comparisons show that most load cases have an 

adequate convergence; however the torsional capacity was overestimated with about 50%. Analysis without an 

activated padeye showed that the overestimation was caused by the flow around mechanism close to the padeye. The 

author will recommened to model the anchor without a padeye for later studies, and rather apply a set of force 

vectors that give the same load. 
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BACKGROUND 

There is an increasing focus on use of the failure envelope approach to determine ultimate states of offshore 

suction caisson anchors subjected to combined loading (six components of force and moments). The reason 

for that is that this approach considers explicitly the independent load components and allows graphical 

interpretation of the safety factor associated to different load paths. 

The master thesis will use the PLAXIS 3D model of a suction caisson anchor, developed in Project thesis, to 

determine the bearing capacity envelope (combination of vertical load, horizontal loads and moments that 

cause failure of the supporting soil). The results from PLAXIS 3D analyses will be used to determine the 

failure envelope and to express it analytically in non-dimensional form. Numerical experiments will be 

undertaken to study the possibility of establishing strain hardening elasto-plastic model in terms of forces 

and displacement (force resultant model). 

Task description 

In developed the Project thesis from 2012, using the PLAXIS 3D results, it was already established a relation 

(failure envelope) between horizontal and vertical component of the tension force at failure for a given 

geometry of a suction caisson and a given soil profile. It was also found that this relation can be 

approximated by a non-dimensional form for all element net refinements (number of elements). 

The main goals with the master thesis are: 

1. Perform a parameteric study to determine the optimum number of elements that ensures 
convergence and realistic results 

2. Find out whether the suction caisson can be considered rigid (i.e. it only translates  and rotates but 
has no deflections) 

3. Find out non-dimensional analytical expression for failure envelope. 
4. Study the possibility of establishing an elasto-plastic model in terms of forces and displacements. 

This requires establishing whether a yield surface and a hardening parameter can be established. For 
example if the analytical expression of the failure envelope in terms of vertical and horizontal load 
components at the pad eye is  
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it might be possible that yield surfaces can be expressed in terms of a hardening parameter 

(which can be mobilization degree f = /su) and if  

Ho = Hoult*f , Vo = Voult*f, and Mzo = Mzoult*f , then the yield surface has the equation: 

 

   
 

  
    

 

  
    

  
   

       

In addition, the elastic force-displacement relationship must be defined as: 
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And a flow rule: 
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The formulation of an elasto-plastic model can be used to determine the stiffness of suction caisson 

and to construct force-displacement curves along different loading paths.  
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Summary 

The focus of the master thesis is to use the failure envelope approach to determine the ultimate 

capacities of a suction anchor, and to establish a strain-hardening elasto-plastic model in terms of 

loads and displacements at padeye.  

Numerical analysis in Plaxis 3D has been executed for the suction anchor, which has formed a 

capacity surface in terms of combined loading at the padeye. The padeye is the connection between 

the mooring chain and the anchor, and is located about 2/3 of the anchor length below the seabed. 

The suction anchor had an aspect ratio L/D=5, positioned in normally consolidated soft clay, where 

undrained conditions with a linear strength profile were assumed. Six force components will be 

presented during general loading; three translation forces and three moments. Since the forces will 

be applied to the anchor through the padeye, the force components will have constraint relations, 

which make it possible to visualize to the response in terms of three independent variables. 

Two empirical yield surfaces that accounted for all six force components were curve-fitted to the 

obtained capacity surface, and gave appropriate agreement. The average difference between one of 

the empirical yield surfaces and the corresponding Plaxis response were 0.70%. The yield surfaces 

were further used, together with load deflection relations, to establish an elasto-plastic model in 

terms of loads and deflections at padeye position. The formulation was implemented as a 

spreadsheet in Excel. The results were then generalized, so that the results can be applied to other 

suction anchors. 

Mesh refinements and hand calculations were performed in order to ensure that the results from the 

numerical study were reasonable. The agreement was adequate to most load cases, however the 

torsional resisanse were overestimated with about 50%. The reason is that the flow-around 

mechanism that was developed around the padeye, gave an unrealistic resistance. An advice for later 

projects would then be to model the padeye either as a rigid link or simply model the padeye forces 

as a set of load vectors at the anchor. 

The results showed that a misorientation angle of 5 degrees of the padeye with respect to the 

mooring chain will decrease the capacity with about 3%, while the capacity will be decreased with 

about 12% when the misorientation was 10 degrees. When a larger misorientation degree is present, 

the capacity is governed by the ultimate torsional resistance.  

The results from the inclined loading showed that the capacity will increase from 0 to 20 degrees, 

while the capacity is governed by the ultimate vertical resistance when the inclination angle is 30 

degree and more. The results also show that it would be beneficial to lower the padeye position with 

2-3 meters.  

The failure mechanisms can roughly be divided into three parts. The failure mechanism when the 

inclination angle is between 0 and 20 degrees is characterized by rotation about the base of the 

anchor. When the inclination angle is 30 degrees or more, the anchor will translate vertically, and a 

reversed end bearing mechanism is developed. However, when the torsional angle is 20 degrees or 

more, the anchor will rotate about its own axis. 
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The analyses use a linearly- perfectly plastic Mohr-Coulomb material model, and are calculated in 

terms of initial reference position.  
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1 Introduction 

1.1  Background to the master thesis 
In recent years, the offshore industry has moved towards deeper waters. Floating platforms have 

become more common, and triggered new geotechnical solutions, like the suction anchor that is the 

subject of the master thesis. The anchor will be subjected to combined loads from the platform, 

caused by environmental loads. The forces are applied to the system through a connection called a 

padeye. 

The master thesis is an extension of a project work last semester by the same author.  The project 

focused on the ultimate capacity of a suction anchor subjected to combined loads in undrained 

condition. The analysis from that project is replaced with new analyses; the master thesis will for that 

reason be an independent work.  

1.2 The purpose of the master thesis 
The purpose of the master thesis is to determine the failure envelope and to establish an elasto-

plastic model of a suction anchor for combined loads by numerical analyses. Six force components 

will be presented during general loading; one vertical and two horizontal forces, two bending 

moments and a torsional moment. Since the forces will be applied to the anchor through the padeye, 

the force components will have constraint relations. The interaction between these constraint forces 

will form a yield surface in the loading space. The numerical yield surface will be approximated 

empirically by curve fitting. The yield surface, together with load-deflection relations, will be used to 

determine the elasto-plastic formulation in terms of padeye loads and deflections. The elasto-plastic 

formulation will be at a macro level, and measure the relation between padeye forces and 

displacements, rather than the usual relation between stresses and strains.   

A suction anchor will always have some degree of misorientation due to the installation. The 

misorientation of the padeye with respect to the plane of the mooring chain induces a torsional 

moment. One of the aims of the thesis is to determine the impact on the torsional angle due to the 

response. 

The numerical analysis will be carried out in Plaxis 3D. In order to obtain results with a sufficient 

reliability, mesh refinements and hand calculations will be executed. It will also be studied whether 

the anchor can be considered rigid, which is important for the soil-structure interaction. 

The results from the analysis will also be presented in a non-dimensional matter, so that the work 

can be applied to similar situations.  

1.3 The limitations of the master thesis 
The work is limited to one specific suction anchor, with a length-to-depth ratio equal to 5. The 

analysis is limited to the undrained condition, where the undrained strength of the soil is almost 

proportional to the depth. The soil has been modeled with a linear-perfectly plastic Mohr-Coulomb 

material model. The forces are applied to the system through a load vector at the padeye, which is 

located almost 2/3 of the length of the anchor from the anchor top. The load vector varies from 0 to 

90 degrees with respect to the padeye and the mooring chain and from 0 to 90 degrees between the 

horizontal plane and the inclination angle. 
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1.4 Structure of the report 
The report has the following structure: 

Chapter 2 provides an introduction to the topic and offshore geotechnical engineering in general. 

Chapter 3 is the theoretical chapter. Basic geotechnical theory, research on suction anchors, elasto-

plastic theory and basics in finite elements will be presented here. 

Chapter 4 covers the soil modeling. The soil and structure parameters will be covered, as well as the 

model for the report. Plaxis 3D will be discussed briefly and mesh refinements are addressed in this 

chapter, since these are essential for convergence. 

Chapter 5 covers the results. The results from the different load cases from Plaxis 3D will be 

presented, and some failure mechanisms will be shown. The results will be approximated numerically 

by curve fitting, and the elastic stiffness of the system will be constructed. 

Chapter 6 is devoted to the elasto-plastic formulation. The formulation by means of deflections and 

loads applied at padeye, the implementation of the formulation and the results will be presented. 

Chapter 7 gives the results in a generalized way, so that the results from the thesis can be used 

regarded to other suction anchors. The results will also be presented in a non-dimensional way. 

Results from hand calculations will also be included.  

Chapter 8 discusses the results and the modeling considerations. The results and their reliability, the 

empirical curve fitting and the elasto-plastic formulation will be discussed. In addition, guidelines for 

applying the work to other projects will be given. 

Chapter 9 concludes the work and outlines proposals for further work. 
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2 Offshore geotechnical engineering 
This chapter provides an introduction to the subject of suction anchors. Firstly, an overview of 

geotechnical engineering will be presented, and then offshore geotechnical engineering will be 

introduced. Finally, a summary of applications in offshore geotechnics will be presented. 

2.1 Geotechnical engineering 
Geotechnical engineering deals with the physical properties of the soil. The objective of a 

geotechnical calculation is usually to ensure adequate stability of the system and evaluate the 

corresponding deformation. Geotechnical engineering is a large field and contains several 

applications like: 

 Slope stability 

 Settlements calculations 

 Seepage analysis 

 Bearing capacity 

 Earth pressure analysis 

The disciplines of geotechnics are applied to all civil engineering problems: 

 Roads and railways 

 Natural slopes 

 Dam engineering 

 House and building design 

 Bridge design 

 Tunneling 

 Platform design 

 Port facilities 

In all applications, it is essential to obtain information about the physical properties of the site, and 

laboratory tests are usually performed prior to design. Unlike when dealing with structural materials, 

the uncertainty in material behavior is a large consideration. (Wood, 2009) 
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2.2 Offshore geotechnical engineering 
Randolph & Gourvenec (2011) provides a comprehensive introduction of the field, and is the 

reference most widely used thoughtout this chapter.   

Offshore geotechnical engineering is a relatively young discipline, the first fixed installation being 

installed in 1947. Today, there are more than 7,000 platforms around the world. Developments in 

recent years have moved towards deeper waters. In 1970, the definition of deep water was 50-100 

meters, while the definition today is 500 meters and deeper. (Randolph & Gourvenec, 2011) 

 
Figure 1 - The first offshore installation, 1947 (Randolph 
and Gourvenec, 2011) 
 

 
Figure 2 - Na Kita development, the world's deepest platform, 
around 2,000 meters (Randolph and Gourvenec, 2011) 
 

 

The principles in offshore geotechnics are the same as for traditional geotechnics, although there are 

some differences: 

 Site investigations are more expensive.  

 Soil conditions are often more difficult 

 Structural loads are usually significantly larger 

 The focus is more on capacity rather than deformations, although the stiffness is important 

for the dynamical response of the system 

Platforms can be divided into two groups: Fixed platforms and 

floating platforms. The fixed platform can further be divided into 

jackets and gravity-based structures. Jackets usually have a 

foundation concept consisting of pile groups in each corner. 

Traditionally, gravity-based structures have been directly 

embedded is permitted by beneficial soil conditions. However, 

when depths became larger, and soil conditions became less 

favorable, bucket foundation was adopted. 

Figure 3 - Gullfaks C - Gravity-based 
structure, 216 m depth (Randolph and 
Gourvenic, 2011) 
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In deeper waters, floating platforms are 

preferable. The anchoring keeps the 

platform in position. The mooring chain 

between the platform and the anchoring 

system can be either loose or taut. When 

a catenary mooring system is applied, the 

cables are resting on the seabed, thus 

imposing large horizontal loads on the anchors.  For a taut mooring system, the load inclination is 

usually more towards the vertical. The load inclination in the mooring system may for that reason 

vary from horizontal to vertical, depending on the mooring system. (Randolph & Gourvenec, 2011) 

As a consequence of increasingly deeper waters, new anchoring systems have been developed for 

floating platforms: 

 Anchor piles 

 Suction caisson 

 Suction embedded plate anchors 

 Dynamically penetrating anchors 

 

Figure 5 - Overview of anchoring types (Randolph and Gourvenic, 2011) 

2.3 Platform types 
There are numerous platform types, and which platform is best suited for a given project depends on 

several factors. Some commonly used platform types will be introduced in the following sections.  

Figure 4 - catenary, taut and vertical mooring systems (Randoph & 
Gourvenec, 2011) 
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Figure 6 - Platform types; (a) Jack-up, (b) GBS, (c) Jacket, (d) Compliant tower, (e) TLP, (f) FPS (Wilson, 2003) 

2.3.1 Gravity based structures (GBS) 

Gravity based structures are large concrete platforms using their weight to sustain the environmental 

loads. The structures are either installed directly at the seabed, or on concrete buckets. GBSs have 

been used in waters of up to 300 meters. The topside is supported by one or more concrete legs. In 

the case of bucket foundations, installation is achieved by self-weight and suction, when required. 

(Dean, 2009) 

 

Figure 7 - Examples of GBS (Dean, 2009) 

2.3.2 Jacket platforms 

Jackets are the most commonly used platform type for offshore facilities. The jacket consists of an 

open framed steel structure, with legs horizontal bracing and diagonal bracing. Jackets are usually 

supported by piles, but alternatives like suction anchors have also been applied. In some cases, the 

jacket will temporarily be supported by mudmats before pile installation. The piles are then driven, 

and a grouted connection between the mudmats and the piles is installed. The deck, the topside and 

the pipeline are then installed, and the structure is subsequently ready to sustain the environmental 

loads. (Dean, 2009)    
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Figure 8 - Typical jacket (Dean, 2009) 

 
Figure 9  - Jacket construction; (a) fabrication, (b) transportation, (c) 
upending, (d) pile construction, (e) deck and topside installation, (f) 
pipeline attached (Dean, 2009) 

  
 

2.3.3 Jack-up platforms 

The jack-up platform is a mobile platform that consists of a topside with holes that are attached to at 

least three framed legs. The framed legs are attached to circular shallow foundations called 

spudcans, which may have a diameter up to 20 meters. Jack-ups can operate in waters of up to 

approximately 150 meters. Firstly, the topside with corresponding legs is floated to the desired 

position, where the legs are lowered and penetrated into the seabed. After installation, a proof load 

is applied to the system, to ensure that the foundation will have sufficient capacity. (Dean, 2009) 

 

Figure 10 - Jack-ups; before and after installation (Dean, 2009) 

2.3.4 Compliant towers 

The compliant tower is a platform suited for waters of 300-800 meters, 

consisting of a tubular steel truss. The structure is much lighter than a jacket 

structure, and is designed to flex with the waves. The structure may be 

strengthened by laterally spreading mooring chains supported by anchors. The 

truss is usually supported by piles. Due to the flexible response, the crew is 

evacuated when storms and hurricanes are expected. (Wilson, 2003) 
Figure 11 - TLP (Randolph & 
Gouvenec, 2011) 
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2.3.5 Tension-leg platforms (TLP) 

The tension-leg platform is a floating structure, supported by vertically taut cables. The cables are 

designed to remain taut for all loadings. The platform has a large mass, which gives a slight response 

due to the environmental loads. The platform can be economically competitive in waters of between 

300-1200 meters. The cables are usually fixed to foundations anchored by driven piles. In the mid-

1990s, 11 TLPs had been installed; three in the North Sea and eight in the Gulf of Mexico. (Wilson, 

2003) 

2.3.6 FPSs and FPSOs 

In ultra-deep waters, floating production systems (FPS) and floating 

production, storage and offloading platforms (FPSO) may be attractive 

solutions. The platforms are linked to subsea wells, which are fixed to the 

seabed. The floating production platforms will receive and process oil from 

subsea wells; often from several fields. The deepest platform currently 

installed is a FPS, at about 2,000 meters. Many FPSOs are converted oil 

tankers. The FPSO processes and stores the oil from several subsea wells. 

Both types of platform are anchored. (Leffler et al. 2011) 

 

2.4 Applications in offshore geotechnical engineering 
This section will introduce foundation solutions commonly used for offshore platforms. The choice of 

solution depends on several factors. Soil conditions are of great importance, and several different 

foundation solutions might be appropriate for any given platform type.  

2.4.1 Piled foundations 

Piled foundation is an attractive solution in 

situations where soft soil and high horizontal loads 

are present. The piles will then transfer the 

structural loads to layers with increased strength. 

Piles are especially common for jackets, but might 

also be used for anchoring floating facilities like 

TLPs. The piles will then be subjected to pull-out 

forces. The piles are normally installed by driven 

construction regarded to offshore facilities. 

(Randolph & Gourvenec, 2011) 

 

 

Piles in the offshore context usually take a large portion of horizontal loads. However, the interaction 

between the vertical and the horizontal loads for slender piles is usually limited, since the horizontal 

component is mostly taken by the upper part, while most of the vertical component is taken by the 

lower part of the pile. (Randolph & Gourvenec, 2011) 

Figure 13 - Steel jacket with driven piles - North 
Rankin A (Randolph, Gourvenec, 2011) 

Figure 12 - FPS and FPSO (Randolph 
& Gourvenec, 2011) 
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Figure 15 - Failure mechanism short pile, horizontal loaded 
(Randolph & Gourvenec, 2011) 

 

2.4.2 Shallow foundations 

Shallow foundations are advantageous when soil conditions at the seabed are favorable. Shallow 

foundations are often applied with jackets, gravity-based structures and jack-ups. Jackets are often 

supported by steel mudmats before the installation of piles. Gravity-based structures are either 

installed directly on the seabed or on bucket foundations. Jack-ups are usually supported by 

spudcans, which are circular plates that are, during installation, pushed until the desired capacity is 

achieved. (Randolph & Gourvenec, 2011)  

 

Figure 16 - Different applications with shallow foundations. (a)-(b); Gravity-based structures, (c); Tension-leg platform, 
(d); Jacket, (e); Subsea frame (Randolph & Gourvenec, 2011) 

In the early development of gravity-based structures, soil conditions were beneficial due to heavily 

over-consolidated soil, and direct foundations were used. Later on, when the offshore industry 

moved towards deeper waters, soil conditions became less favorable and bucket foundations were 

required. The buckets are installed by self-weight only, in cases where the weight of the platform is 

adequate relative to the surrounding soil. Otherwise, suction will be applied in the final stage of 

installation. In case of floating facilities, suction is usually applied during installation. (Randolph & 

Gourvenec, 2011) 

Figure 14 - Flow around 
mechanism (Randolph & 
Gourvenec, 2011) 
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Figure 17 - Typical jack-up platform with corresponding spudcan foundations (Randolph & Gourvenec, 2011) 

   

2.4.3 Anchors 

Anchors are required to keep floating facilities in position. Floating facilities are suited for deep 

waters, where fixed platforms would not be economical. (Wilson, 2003) 

 

Figure 18 - Buoyant platforms (Randolph & Gourvenec, 2011) 

The increasing focus on deep waters has triggered new anchor solutions. The loads from the platform 

are transferred to the anchor system by mooring chains that are attached to an amplified 

connection. The cables between the platform and the anchors can be either taut or loose. The 

appropriate foundation solution depends on the loading and the soil conditions. (Randolph & 

Gourvenec, 2011) The most common anchor systems will now be presented separately, although 

anchor piles will not be covered, since these have already been presented.  
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2.4.4  Gravity anchors 

Gravity anchors can be applied if the required holding 

capacity is limited. The capacity is generated from 

dead weight and friction between the anchor and the 

seabed. A large portion of the dead weight is often due 

to filled rocks. (Randolph & Gourvenec, 2011) 

2.4.5 Suction anchors 

Suction anchors are large steel cylinders, with a 

typical length-to-depth ratio of 2-6. Suction 

anchors are most commonly used with FPSs and 

FPSOs. Suction anchors are installed in two steps; 

firstly the anchor penetrates by self-weight, then 

suction is applied by pumping water out of the 

top. One of the advantages of suction anchors is 

the simple installation that accurately puts the 

anchor in position. (Randolph & Gourvenec, 2011) 

The research on suction anchors will be covered 

in chapter 3.2. 

 

2.4.6 Drag anchors 

Drag anchors are characterized by their installation, where the anchor is positioned by a drag length. 

The anchors are relatively light and have a large capacity-to-weight ratio. The capacity of drag 

anchors comes from the soil in front of the anchor. Drag anchors can further be divided into fluke 

anchors and vertically loaded anchors. Fluke anchors are applied when the load is mostly horizontal. 

Despite their benefits, drag anchors require a more complicated installation, where it might be 

challenging to achieve the desired position. The experience with drag anchors on permanent floating 

facilities is also limited. (Randolph & Gouvenec, 2011) 

 

Figure 22 - Fluke anchor (Randolph & Gourvenec, 2011) 

 

 

 

Figure 19 - Gravity box anchor (Randolph & 
Gourvenec, 2011) 

Figure 20 - Suction caissons for Laminaria field (Randolph & Gourvenec, 
2011) 

Figure 21 - Vertically 
loaded anchor (Randolph 
& Gourvenec, 2011) 
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2.4.7 Suction embedded plate anchors 

The suction embedded plate anchor is similar to the suction anchor, although a plate is fitted at the 

bottom of the anchor. The anchor combines the benefits of a suction anchor and a plate anchor in 

the sense that installation is efficient, and the plate makes the system more economical. Although 

the anchor is more optimized than the suction anchor, the installation phase requires more time and 

there is limited experience with the anchor (Randolph & Gourvenec, 2011).  

 

Figure 23 - Suction embedded plate anchor (Randolph & Gourvenec, 2011) 

 

 

2.4.8  Dynamically penetrating anchors 

The dynamically penetrating anchors have a missile-

like shape and are well suited for penetration into the 

soil. The anchors are released about 20-50 meters 

above the seabed and will reach velocities in the range 

of 25-35 m/s. The advantages of these anchors are 

their simple production and installation. The primary 

disadvantage is the lack of experience. (Randolph & 

Gourvenec, 2011).   

Figure 24 - Typical dynamically penetrating 
anchors (Randolph & Gourvenec, 2011) 
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3 Theory 
This theory chapter will provide a framework for the topics discussed in the thesis. Firstly, the most 

relevant theory of soil mechanics will be outlined, before mentioning research on suction anchors. 

Thereafter, a review of the theory of elasto-plasticity will be given, before introducing the finite 

element method. 

3.1 Selected theory of soil mechanics 
Since the scope on this thesis is limited to the ultimate capacity and the stiffness relations, the theory 

part will focus on these topics.  

3.1.1 Stresses 

The stresses in the soil will in general be related to loading history and the strains in the soil. Unlike 

structural materials, the relation between stresses and strains will usually not be linear. It is still 

common to assume linear elasticity in settlement calculations and to model the elastic range of an 

elasto-plastic material as linearly-elastic. The elastic relations between the stresses and the strains 

are dependent of the Young’s modules (Young, 1845) and the Poisson’s ratio (Poisson, 1833).  The 

constitutive relations are the following (Augustin, 1828): 
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(3.1) 
 

 

 where σ is normal stress 

  τ is shear stress 

  E is the Young’s modulus 

  υ is the Poisson’s ratio  

  ε is normal strains  

  γ is shear strains 

 

Figure 25 - Stresses in space (Plaxis, 2010) 
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The stresses can also be written in a matrix format (Augustin, 1828): 

[ ]  [

         
         
         

] 
 
(3.2) 

The Cartesian stress matrix can be transposed to the principal directions where the diagonal area of 

the matrix is non-zero. The three principal stresses are obtained by solving an eigenvalue problem 

consisting of the Cartesian stress matrix and a diagonal of the unknown principal stress, leading to 

(Irgens, 2008):  

                   (3.3) 

 where I, II and III are stress invariants, with the following form (Irgens, 2008) : 

           
                     
             

 
(3.4) 

 

The maximum shear stress on a critical plane will be the difference between the largest and the 

smallest principal stress divided by two (Irgens, 2008): 

             (3.5) 
 

3.1.2 The principle of effective stress 

The stresses in the soil can be divided into two components; the effective stress state and the pore 

pressure (Terzaghi, 1943). The principle can be written with matrix notation: 
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(3.6) 
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(3.7) 

 

The strength of the soil is governed by the effective stresses in both drained and undrained 

conditions. However, for undrained conditions the total stresses can also be applied.  

3.1.3 Lateral earth pressure 

The lateral earth pressure is the horizontal normal stress of soil on a vertical plane. Unlike hydrostatic 

pressure, the earth pressure will in general not be isotropic. While the vertical earth pressure is 

governed by the subjected loads, the lateral earth pressure will be dependent on loading history, 

vertical earth pressure and the friction angle and/or the Poisson’s ratio. (Plaxis, 2010) Rankine (1857) 

introduced the earth pressure coefficient k, that is the limit ratio between horizontal/vertical and 
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vertical/horizontal earth pressures. When the horizontal stress is larger than the vertical stress, the 

soil is in a passive state, and when the vertical stress is larger, the soil is in an active state.  

3.1.4 Failure criteria and drainage conditions 

In order to estimate failure, a failure criterion is required. The Tresca and the Mohr-Coulomb criteria 

are commonly used as failure criteria in soil mechanics. Tresca is used in undrained conditions where 

the consolidation due to loading is insignificant, and can be used regarded to both effective and total 

stresses (Nordal, 2010):   

                         
 

(3.8) 

Coulomb (1776) introduced a failure criterion in terms of the normal stress at critical plane and the 

friction angle. It was later modified to the Mohr-Coulomb criterion, that is commonly expressed 

(Nordal, 2010):  

      
 
       

 
(3.9) 

where    is the critical shear stress 

             and    are respectively principal effective and total stress components 

c is the cohesion 

ɸ is the friction angle 

The main difference between Tresca and Mohr-Coulomb is that Tresca is pressure insensitive, while 

Mohr-Coulomb depends on the stress level. During effective stress analysis, the Tresca criterion will 

be governed by the Mohr-Coulomb criterion in undrained condition.  The Tresca criterion is 

implemented in Plaxis with a Mohr-Coulomb material model, where the cohesion equals the 

undrained shear strength and the friction angle equals zero. (Plaxis, 2010) 

3.1.5 Bearing capacity  

Bearing capacity is the ultimate response that the system can resist. At failure, a kinematic 

mechanism is developed, consisting of plastic zones where the shear strength is fully mobilized. The 

bearing capacity in classical soil mechanics is characterized by stress zones. There are three different 

stress zones in total; the passive and active Rankine zones and the Plandtl zone. The Rankine zones 

are characterized by constant principal stresses and mobilization. The Plandtl zone is characterized 

by rotated principal directions and a constant mobilization factor. (Emdal et al. 2004) By combining 

the stress zones and imposing boundary conditions, the bearing capacity will be obtained.  

 

Figure 26 - Stress zones with Mohr-Coulomb (Emdal et al. 2004) 
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The stress zones and the bearing capacity are different for the Tresca criterion and the Mohr-

Coulomb criterion. Since the scope of the thesis will be limited to undrained conditions, bearing 

capacity with Tresca will be the focus. 

Exact solutions will rarely be found in soil mechanics. However, the exact solution for undrained 

conditions with constant shear strength in a plane strain condition with horizontal boundaries, is one 

of the exceptions (Emdal et. al, 2004): 

          (3.10) 

where σv is the vertical stress acting on the loading surface 

Nc is the bearing capacity factor for shallow plane strain problems, equal to π+2 for 

eccentric vertical loading 

 τc is the critical shear strength in the stress zones, equal to the shear strength at 

failure 

 p is the vertical stress acting on the surrounding surface 

The capacity factor can also be solved exactly for inclined loading. The inclination degree is given by 

the roughness ratio r (Emdal et. al): 

  
  
  

  (3.11) 

The non-dimensional factor; fω, can thus be obtained (Emdal et. al, 2004): 

   
 

 
   √      

 (3.12) 

The rotation of the active principal direction on the active Rankine zone can then be calculated 

(Emdal et. al, 2004): 

          (3.13) 

Finally, the bearing capacity factor is observed (Emdal et. al, 2004): 

          
 

    
  

(3.14) 

When the foundation is below ground level, the failure mechanism will involve a larger failure 

surface. The capacity will increase, and the depth correlation coefficient; fD, is introduced. When the 

system is in three dimensions rather than plane conditions, the capacity will change, and the area 

correlation coefficient fA is added. The capacity will then be (Emdal et al. 2004): 

                       (3.15) 

The bearing capacity coefficient for rectangular deep foundations subjected to vertical loads without 

eccentricity, gives a value close to 9. The values of fd and fa are partly based on, which implies that 

the solution cannot be regarded as exact. (Emdal et al. 2004) 

If there is an eccentricity between the resultant force from the subjected loads and the neutral axes, 

a moment will be present. Classical soil mechanics utilize the moment by reducing the dimensions of 

the foundation under the assumption that the soil has no tensile strength. However, most offshore 
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foundations in normally consolidated clay are likely to have a substantial tensile resistance due to 

short term loading, and the effective area approach would be conservative. (Randolph & Gourvenec, 

2011)  

3.2 Research on suction anchors 
This section will introduce some important aspects of suction anchors. Suction anchors can roughly 

speaking be discussed from two perspectives; the installation phase, including the set-up 

characteristics, and the operational conditions, where capacity is the most important issue.  

Andersen el al. (2005) presented a list of installed suction caissons with their corresponding 

properties. Since the first suction anchor was installed in 1981, about 500 suction caissons have been 

installed at 50 different locations, with the deepest installation being at 2,000 meters depth. Despite 

their widespread use, there is no report of failure during operation. In total, 19 experimental studies 

have been reported, addressing most aspects of suction anchors; the installation phase, pullout 

capacity, inclined loading, as well as cyclic loading with different strength profiles. Most of the 

studies are limited to undrained conditions.  

3.2.1 Installation 

The installation phase for a suction anchor involves two steps; firstly the anchor will penetrate by 

self-weight, then suction will bring the anchor further down, until the desired position is achieved. 

The penetration accounted for by self-weight is determined by the weight of the anchor, the shape 

of the anchor and the soil conditions. The suction in the second phase is achieved by pumping water 

out of the top of the anchor. This leads to a differential pore pressure between the exterior and the 

interior of the anchor, and will cause further penetration. The required suction is a key consideration 

at the installation stage. (Randolph & Gourvenec, 2011) 

 
Figure 27 - Installation stages with suction anchor 
(Randolph & Gourvenec, 2011) 

 

Buckling analysis is also of importance to study, since the anchor will be in compression. Another 

important consideration at the installation stage is the soil-plug stability that occurs when the 

resistance against internal soil-plug failure is less than the resistance against further penetration. In 

case of normally consolidated clay with a linearly increasing strength profile, figure 28 gives the 

critical length-to-width ratio, which will depend on the average shear strength, the width of the 

anchor, the internal wall roughness and the increasing coefficient of the strength profile. (Randolph 

& Gourvenec, 2011) 

 

Figure 28 - Plug stability (Randolph & Gouvenec, 2011) 
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3.2.2 Operational conditions 

After installation, the suction anchor has to resist the permanent and environmental forces from the 

mooring chain. Capacity will depend on anchor geometry, installation performance, soil conditions, 

load direction, time after installation, duration of applied loads, and cycles of loads. The stiffness of 

the system is also important, due to the dynamical response of the platform. It is also of interest to 

limit the deformations of the anchor due to position requirements. (Andersen et. al, 2005) 

In general, suction anchors have a large horizontal capacity, and are thus commonly used in catenary 

mooring systems. The reasons why capacity is dependent on the time after installation, are 

thixotropic effects and consolidation. The effective stress state and the pore pressure will change 

over time. The shaft resistance will generally increase due to increased horizontal effective stresses. 

(Andersen & Jostad, 2002) 

The operational considerations will in the following be dealt with in four sub-sections; vertical 

loading, horizontal loading, interaction between horizontal and vertical forces, as well as stiffness. 

Hand calculations of the torsional and the bending moment capacity can be performed by limit state 

equilibrium combined with the information given in the sections below. The results from hand 

calculations will be presented in the chapter on results.  

3.2.2.1 Vertical loading 

An important factor of the pull-out capacity of a suction anchor is the draining conditions. In case of 

undrained conditions, passive suction will be developed. The pull-out capacity will then be governed 

by the exterior skin friction, the reversed end bearing capacity and the weight of the anchor. 

Undrained conditions can be assumed when there is short term loading and the permeability of the 

soil is sufficiently low. This can usually be assumed for normally consolidated clay subjected to 

environmental loads. Drained conditions can be assumed when the anchor is subjected to 

permanent loads or when the soil has a high permeability, like sand. The pull-out capacity in drained 

conditions is determined by the interior and exterior shaft resistance, the weight of the anchor, 

minus the earth pressure acting on the skirt tip at base level. Partly drained conditions are conditions 

where neither drained, nor undrained, conditions can be assumed. The excess pore pressure has 

partly dissipated due to consolidation and there is a change in the effective stress state. The capacity 

is determined by the exterior shaft resistance, the weight of the anchor and a tension force at base 

level. (Thorel et al. 2005)  

 

Figure 29 - Failure mechanisms: (a) drained, (b) partly drained, (c) undrained conditions (Thorel et al., 2005) 
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In order to estimate drainage type, Deng & Carter (2000) introduced a non-dimensional time 

coefficient Tk: 

   
  
   

 (3.16) 

 

 where cv is the consolidation coefficient 

  v is the response velocity due to loading 

  B is the width of the anchor, representing the draining path 

The non-dimensional time coefficient is then linked to the draining coefficient: 

                                              

                                  

                                            

If no drainage takes place during loading, the end bearing capacity can be estimated: 

                (3.17) 

 where Vend is the resistance constitution due to the reverse end bearing mechanism 

  Nc is the reverse end bearing factor 

  su is the shear strength 

  A is the area of the anchor base 

The reverse end bearing factor is often taken as 9 (Randolph & Gourvenec, 2010). However, Jeanjean 

et al. (2006) noted values of Nc equal to 12 at large displacements. 

An important contribution to capacity in all conditions is the shaft resistance. The shaft resistance 

can be calculated from effective stresses by Coulomb’s law of friction or from total stresses, where 

the friction is taken as a portion of the shear strength (Andersen et al. 2005): 

                                                                           
                   (3.18) 

                    
 

(3.19) 

 

where    is the critical shear strength at the skirt at failure 

    
  is the radial horizontal effective stress acting on the skirt 

             is the friction angle of the skirt 

    is the reduction factor for skirt shear strength 

     is the undrained shear strength of the soil  

The total stress approach will be adopted in this project, with α accounting for the remolded soil 

during installation, the consolidation after installation and the skirt roughness.  

There are several approaches for calculating the vertical pull-out capacity of the anchor (Lee et al. 

2005). However, since the anchor has a length-to-depth ratio equal to 5, the vertical capacity can 

simply be calculated from the limit equilibrium in the same way as for piles. The drainage conditions 
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determine the mechanism, and also the force components of the equilibrium equation. For 

undrained conditions, capacity can be expressed as follows: 

         ̅  
 

 
     

          
(3.20) 

The average shear strength is used for the shaft resistance, while the shear strength at the base is 

chosen for the reverse end bearing capacity and W’ denotes the effective weight of the anchor.  

3.2.2.2 Horizontal loading 

The horizontal capacities of suction anchors are 

mainly determined by anchor geometry and 

soil conditions. The horizontal capacity is also 

influenced by the accuracy of the installation 

with respect to torsion-induced rotations. 

There are two possible causes of induced 

rotations. Firstly, the padeye and internal ring 

stiffeners might be slightly inclined from the 

vertical, and cause an unbalanced torsional 

moment during penetration. The second 

possible cause relates to subsea current forces, 

which might result in a mooring chain out of 

position, and further impose an initial torsional 

angle on the suction anchor. Due to the 

misorientation, horizontal forces will also impose 

a torsional moment that will reduce capacity. A 

suction anchor is typically designed for a 

torsional angle of 7.5 degrees. (Lee et al., 2005)   

The failure mechanism of horizontally loaded suction anchors is much like the failure mode of short 

horizontally loaded piles. The suction anchors can usually be considered as rigid (Randolph & 

Gourvenec, 2010), which means that the deformation pattern of the anchor can be described by six 

degrees of freedom; three translations and three rotations. This assumption simplifies the calculation 

of horizontal loading, because the soil-structure interaction can be disregarded. In the results, it will 

be shown how coarse this assumption is. 

The failure capacity will also be influenced by the padeye position. If the load attachment point does 

not correspond with the optimum padeye position, the capacity will be reduced. Capacity can be 

further reduced by tension cracks on the active side. Jostad & Andersen (1999) propose a padeye 

position slightly below the optimum padeye position in order to reduce the effect of tension cracks. 

However, the tension crack envelope is generally not considered for normally consolidated clay 

subjected to short-term loads (Randolph & Gourvenec, 2011).  

The failure mechanism will also change with the location of the point of attack. At the optimum 

position, the anchor will mainly translate without rotation, and the failure mechanism will consist of 

a conical wedge and a flow-around zone. If the load attachment point is above the optimum position, 

the center of rotation will be located within the anchor. The failure mechanism will then consist of a 

Figure 30 - Current-induced torsion (Lee et al., 2005) 
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conical wedge form and a rotational soil circle that rotates about the center of rotation, as seen in 

figure 31.  

 

Figure 31 - Failure mechanisms for horizontally loaded suction anchors: (a) translational movement, (b) rotational 
movement, (Randolph & Gourvenec, 2011) 

The reason why the translational failure 

mechanism has the flow-around region, is that 

resistance from the wedge mechanism increases 

with depth, which means that the flow-around 

mechanism will govern. As for laterally loaded 

piles, it might be convenient to examine 

resistance per unit length. The earth pressure 

acting on the anchor will then be treated as a 

strip load. Martin & Randolph (2006) give an 

analytical upper bound solution for the flow-

around mechanism, where q varies between 

9.14Dsu(z) and 11.92Dsu(z), depending on skirt 

roughness. The upper bound solution provides 

excellent results compared to the Randolph & 

Houlsby lower bound solution from 1984, see 

figure 32. 

 

Randolph et al. (1998) presented a capacity diagram for suction anchors with different diameter 

ratios, load attachment points located at the optimum position and at the seabed, and with constant 

and linearly increasing shear strength, normalized by average shear strength, as well as the length 

and width of the anchor.  

Figure 32 - Upper and lower bound solution flow-around 
mechanism (Martin & Randolph, 2006) 
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Figure 33 - Horizontal capacity (Randolph et al., 1998) 

The capacity reduction due to the padeye position for suction anchors with different length-to-width 

ratios in normally consolidated clay was investigated by Supachawarote et al. (2004). The analysis 

was performed with a load inclination angle of 30 degrees, and showed that the largest capacity was 

obtained when the padeye depth was about 70 % of the total anchor length.  

 

Figure 34 - Capacity with padeye positions (Supachawarote et al., 2004) 

Aubeny & Murff (2005) presented a guideline for calculating the horizontal capacity of suction 

anchors:  

          (3.21) 
            (3.22) 

   ∑   (3.23) 

where ΔH is the lateral resistance of the length increment  

D is the diameter of the cylinder 

Δz is the depth of the length increment 

Nps is the lateral bearing capacity factor for the length increment 

su is the shear strength of the length increment 

Hu is the ultimate lateral capacity  

 

Nps is, due to the method, determined by formula 3.24-3.28 (Aubeny & Murff, 2005): 



 

23 
 

          
   

 
  

  (3.24) 

               (3.25) 
              (3.26) 

  
    

         
 (3.27) 

            (3.28) 

where su0  is the shear strength at the seabed 

suinc is the incremental shear strength per unit depth  

r is the roughness of the skirt  

3.2.2.3 Inclined loading 

The suction anchor will in general be subjected to inclined loading, which can be split into a 

horizontal and a vertical force component. Supachawarote et al. (2004) proposed the following 

interaction formula for suction anchors with different aspect ratios: 

 
 

  
    

 

  
     

 
(2.29) 

  
 

 
     

(2.30) 

  
 

  
     

(2.31) 

The equation does not account for the bending moment 

that will be present due to eccentricity between the load 

attachment point and the neutral axes when the loads 

are applied at padeye.  

Capacity diagrams in the horizontal and vertical loading 

space have been studied by several authors. El-Sherbiny 

et al. (2005) performed experimental small-scale analysis 

in normally consolidated clay, where the undrained 

strength profile was measured as              

   [  ], with an anchor geometry of L*D=816mm*102mm. 

The results obtained are presented in figure 35. 

The normalized horizontal capacity due to the average 

shear strength, the length and the width of the anchor 

gave a value equal to 11.6. 

Capacity curves for combined loads, where the padeye 

position was also investigated, were prepared by Taiebat 

& Carter (2005), using the finite element method. 

Combinations of horizontal, vertical and torsional loads 

were interacted. The results were normalized due to 

shear strength, and the length and width of the anchor 

and had an aspect ratio of D/L=2. 

 

Figure 35 - HV-load space (El-Sherbiny et al. 2005) 

Figure 36 - HV-load space (Taiebat & Carter (2005) 
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The results were also normalized and presented in the horizontal, vertical and torsional load space.  

 

Figure 37 - Normalized HVT-space (Taiebat & Carter (2005) 

 

3.2.2.4 Stiffness 

The stiffness of the system will provide information of relevance to the elasto-plastic formulation and 

the reliability evaluation. Poulos & David (1974) gave the continuum elasticity solutions for 

geotechnical applications, like the laterally and vertically loaded pile. The vertical stiffness is obtained 

from figure 38. It is seen that the stiffness will be influenced by the ratio between pile length and 

model height through the influence factor Iρ.  

 

Figure 38 - Vertical loaded pile, Poisson’s ratio of 0.5 (Poulos & David, 1974) 

The stiffness of the laterally loaded pile is given in terms of displacements, and the horizontally 

applied load at a fixed pile head. The stiffness relation is the following: 

  
   

   
  

(3.32) 
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 where   is the lateral displacement at the pile head 

      is the influence factor, given in figure 39 

     is the stiffness of the soil 

    is the pile length 

    is the horizontal load applied at the pile head 

 

Figure 39 - Lateral fixed loaded pile (Poulos & David, 1974) 

KR in the diagram accounts for the soil-pile interaction. The diagram for laterally loaded piles is 

however, limited for aspect ratios of L/D in excess of 10.  

The horizontal stiffness can be approximated as KH=4LG for undrained conditions, where L is the pile 

length and G is the shear stiffness. This is under the assumption that the soil volume is sufficiently 

large. In order to calculate any solution close to being exact, the distance to fixed boundaries should 

be about 20 anchor diameters or more. (Randolph & Gourvenec, 2011) 

3.3 Theory of elasto-plasticity 
In the following section, the theory of elasto-plasticity will be presented. The theory of elasto-

plasticity is in literature usually formulated in terms of stresses and strains, which will also be the 

focus of this section. The formulation can easily be adapted for forces and displacements, which will 

be done later in the exercise. The rate-insensitive elasto-plastic theory will be covered, under which 

the response is independent of time.  

Elasto-plastic materials are characterized by permanent deformations in a loading-unloading 

sequence and energy dissipation when the loading is above the elastic limit. The strains are 

decomposed into elastic and plastic contributions. The elastic contribution will be governed by the 

elasticity matrix. This can be expressed as follows, with matrix notation (Cook et. al, 2001): 

{  }  {    }  {    }  [ ]
  {  }  {    } 

 

(3.33) 

 where {  } is the incremental strain vector 

  {    } is the incremental elastic strain vector 
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  {    } is the incremental plastic strain vector 

  [ ] is the elasticity matrix 

  {  } is the incremental stress vector 

  [  ] is the tangential constitutive matrix 

 

Figure 40 - Elasto-plastic response: (a) material without initial yielding plateau, (b) elastic-perfectly plastic response, (c) 
hardening material (Irgens, 2008) 

Elasto-plasticity consists of three necessary components: 

 Yield criterion 

 Flow rule 

 Hardening rule 

The yield criterion defines the yielding of the material, the flow rule links the plastic strains to a 

potential surface, while the hardening rule relates the plastic strain increment with expansion of the 

yield surface. (Irgens, 2008) 

3.3.1 Yield criterion 

The yield criterion is a function that defines yielding in the material and consists of the stress 

components and state parameters. The yield function is less than zero prior to yielding and equals 

zero during yielding, and cannot have values above zero. (Cook et. al, 2001) 

                       

               

                  

The yield function will form a yield surface in space. In the case of six stress components, the failure 

surface will have a rank of six dimensions. The failure criterion will be governed by the yield criterion 

and the corresponding state parameters. The mobilization degree is often a state parameter for soil 

mechanics and is the state parameter for isotropic hardening in this exercise. The chosen yield 

criteria will depend on the physical properties of the material. The following criteria are commonly 

used (Irgens, 2008): 

                   √       (3.34) 

                          (3.35) 
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where        is the yield function, depending on the stresses and the state parameters 

    is the negative second principal invariant         

   is the yield stress, which will increase with hardening/softening  

 

Figure 41 - Yield criteria in ∏-plane; von Mises, general yield criterion and Tresca (Irgens, 2008) 

3.3.2 Flow rule 

The flow rule relates to the plastic strains and stresses. The relationship can be formulated in the 

following way, in index form (Irgens, 2008): 

    
  
   

  

    
 

(3.36) 

where     
  

 is the incremental strain tensor 

    is a plastic multiplier 

 g is the potential function 

 T is the stress tensor 

In the case of associated flow, the gradient of the potential function will equal the gradient of the 

yield criterion; g=f. In soil mechanics, the principle of associated flow will mean that the dilatational 

angle equals the friction angle. 

3.3.3 Hardening rule 

The hardening rule describes how the stiffness properties of the material change when the material 

approaches failure. The hardening of a material is measured by laboratory tests; the empirical curve 

fitting formulas will be constructed in order to implement the hardening properties in the model. 

(Nordal, 2010) 

An isotropic hardening rule is often assumed, 
under which the yield surface will expand 
isotropically. However, it turns out that 
isotropic hardening often does not correspond 
to real material behavior, due to the 
Bauschinger effect. Kinematic hardening can 
then be implemented, where the yield surface 
translates rather than expands. It is also 
possible to combine the two approaches. 
(Irgens, 2008) 

 
Figure 42 - Kinematic and isotropic hardening (Irgens, 2008) 
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3.4 The finite element method 
The finite element method is a numerical calculation method that has changed the daily life of 

structural engineers due to its benefits. A continuum is discretized into a finite number of elements, 

with the kinematics being ensured by the nodes. The method can be applied to literally all fields of 

engineering. The method is most commonly used for (Zienkiewicz et. al, 2005): 

 Static problems 

 Dynamic problems 

 Flow 

 Electrical engineering 

 Heat transfer 

The calculations can be performed linearly or nonlinearly, and different fields can be combined in 

coupled analyses. The method as applied to soil mechanics has some of the following characteristics: 

 The analysis is usually performed incrementally due to material non-linearity 

 The calculation usually consists of several calculation stages  

 The stresses are divided into effective stresses and pore pressure 

 Soil parameters are included, such as frictional angle and cohesion 

In the following, the method as applied to static problems is summarized, cf. Cook et al. (2001). The 

deformation in an element is discretized in the following way: 

{        }  [        ]{ } (3.37) 

where { } is the deformation vector for an element 

  [ ] is the interpolation function matrix 

  { } is the deformation at the nodes 

The stiffness matrix for an element is constructed in the following way: 

[ ]  ∫ [ ] [ ][ ]  
 

 
(3.38) 

 where [ ] is the strain-displacement matrix, [ ]  [ ][ ] 

  [ ] is the elasticity matric 

  [ ] is the element stiffness matrix 

After assembling the element equations to global size and imposing boundary conditions, the global 

equilibrium equation is constructed: 

{ }  [ ]{ } (3.39) 

 where { }  is the load vector 

  [ ]  is the global stiffness matrix 

  { } is the global displacement vector 

 

The stresses in an element are obtained by the following relation: 
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{ }  [ ]{ }  [ ][ ]{ } (3.40) 

The formulation constrains the system to deform according to the interpolation functions, which 

means that the deformation pattern of the system is restricted. The method gives an upper-bound 

solution, but usually converges towards an exact solution when the number of elements increases. 

Element types and the number of elements are, for that reason, important for purposes of any finite 

element application. (Zienkiewicz et. al, 2005) 

In the case of nonlinearities, the global stiffness equation is solved incrementally. There are four 

main types of nonlinearities (Zienkiewicz & Taylor, 2005): 

 Material nonlinearities due to non-linear relationship between stresses and strains 

 Nonlinearity between displacements and strains due to large displacements 

 Geometric nonlinearities in terms of displacement boundary conditions 

 Geometric nonlinearities in terms of load boundary conditions 

All types of nonlinearities might be relevant for soil mechanics problems. The relationship between 

stresses and strains is usually non-linear for soils that should be included. In soft soil, the large 

deformations might be developed that give rise to a nonlinear relationship between displacement 

and strains. Geometric nonlinearities might become prominent when contact surfaces change during 

loading. Examples include post-failure of a slope or vertical pull-out of a suction anchor; in both cases 

the geometry will change to a large degree.  
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4 Soil modeling 
This chapter will cover the modeling process. Firstly, general modeling considerations will be 

emphasized, before discussing the soil parameters for the project. Thereafter, other parameters and 

properties of the system will be presented. Plaxis 3D will be briefly presented, before addressing the 

soil volume and the failure definition for the thesis. At the end of the chapter, results from mesh 

refinement will be given.  

4.1 Modeling considerations 
In order to solve the system, simplifications are needed. Firstly, the system is discretized by finite 

elements. Thereafter, it is necessary to specify how the equations will be solved. It is important for 

the model to maintain its physical properties and for the model to be efficient. Some of the 

important modeling considerations for this project are as follows: 

 Material properties 

 Soil volume 

 Element properties 

 Geometrical nonlinearities 

 Simplifications of the geometry 

 Number of elements 

 Solution methods 

 Failure definition 

These aspects will be covered in the following paragraphs. 

4.2 Soil parameters 
The soil parameters determine the physical properties of the soil at the site. The results from a 

numerical study will be governed by the input parameters. For that reason, it is important to assign 

appropriate values to the different parameters, and to understand how these will influence the 

results. The soil properties need to be realistic for the given site and for the given loading. However, 

simplifications are always necessary in order to limit the complexity. The soil conditions implied are 

normally consolidated soft clay, typical of the deep water facilities in the Gulf of Mexico (Jeanjean, 

2006).  

4.2.1 Strength parameters 

The study is limited to undrained conditions, which means that the pore pressure will not consolidate 

in any significant way. The strength will thus be governed by the Tresca criterion, which is 

accomplished by using a Mohr-Coulomb material model with a friction angle equal to zero and a 

cohesion equal to the shear strength. Due to the normally consolidated clay, the shear strength will 

increase with depth, and will be almost proportional to depth. The shear strength profile is formula 

4.1 is used throughout the thesis: 

                [   ] (4.1) 
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Figure 43 - Shear strength profile 

The sensitivity of the soil is taken as St=3. This means that the remolded shear strength is a third of 

the original shear strength. The soil close to the structural elements is assumed to be remolded 

during installation. However, the strength at the interfaces will be regained over time. This is due to 

dissipation of excess pore pressure, an increase in horizontal stresses and thixotropy (Jostad & 

Andersen, 2002). A period of time will elapse between the anchor installation and the application of 

the mooring force, which is assumed to be in the range of 60-100 days. Jostad & Andersen (2002) 

give a relation between set-up time, the plasticity index and the thixotropy factor. A low plasticity 

index is assumed. The thixotropy factor is then taken as Ct=1.32, see figure 44. The external skin 

friction can then be modeled as α=Ct/St=1.32/3=0.44. The interface shear strength is then taken as 

su,interface(z)=0.44*su(z). 

 

Figure 44 - Thixotropy strength ratio (Jostad & Andersen, 2002) 
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The soil is modeled with a dilatational angle equal to zero. This assumption leads to associated flow 

for this given project, since the friction angle also is zero. This means that plastic strain increments 

will be normal to the yield surface; the plastic strains will be associated with the yield surface. A 

dilatational angle equal to zero is appropriate when the initial soil is neither dense, nor loose. It is 

believed that associated flow on an element level will also impose associated flow between plastic 

deflections and the corresponding yield surface in terms of padeye location. This means that when 

the elements are integrated into a global scale, the associated flow remains valid. 

The tension strength is modeled without cut-off, which means that the failure will only be governed 

by the shear strength. This choice is made to allow for suction during pull-out; the tip resistance 

during pull-out will then be due to reversed end-bearing capacity. This assumption implies that the 

soil has a low permeability, which is typical of soft clay, and that the loading rate is sufficiently large. 

According to equation 3.17 and the corresponding conditions, a reversed and bearing mechanism will 

be valid if         . 

If the consolidation coefficient is taken as 2 m2/year, which is appropriate for soft clay, and the static 

response is taken as 0.1 meter, which equals a pull-out force of 8,000 kN (obtained from the results), 

the critical load duration will be about 5 hours. If the load acts for more than 5 hours, the situation 

will be partly drained, and a tension criterion might be imposed. It is important to remember that the 

system is limited to short term loads, since the vertical capacity will decrease over time. It should 

also be noted that when there is no tension cut-off, the effect of tension cracks on the active side 

during horizontal loading will be ignored. 

4.2.2 Stiffness parameters 

The stiffness of the soil will usually be related to the strength of the soil. Due to the normally 

consolidated clay, the relationship between strength and stiffness is assumed to be proportional. 

Due to the undrained condition, the bulk modulus will in theory be infinity. However, in order to 

avoid singularity in the stiffness matrix, a finite value of the bulk modulus is used. The stiffness 

parameters are taken to be the following: 

               (4.2) 
              (4.3) 

The stiffness parameters are implemented implicitly through the Young’s modulus and the Poisson’s 

ratio: 

  
 

      
 

(4.4) 

  
 

       
 

(4.5) 

By combining formula 4.2-45, following input parameters for E and υ will then obtained: 

               (4.6) 
        (4.7) 

A perfectly elasto-plastic Mohr-Coulomb material model is chosen, which means that when the 

critical shear stress at a soil element is below the maximum allowable shear stress, the response 

remains linearly elastic, while if the critical shear strength equals the shear strength, the tangential 
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stiffness of the soil element due to loading will be zero. In reality, the shear stiffness is likely to 

gradually decrease with the mobilization factor, f. The chosen stiffness can be regarded as a mean 

stiffness for the total elastic range.  

 

Figure 45 - Linearly elastic-perfectly plastic material model (Plaxis, 2010) 

4.2.3 Initial conditions 

In reality, the ground water head starts hundreds of meters above the seabed, due to the site being 

at deep water. However, the ground water head in the model starts at the seabed, since it will not 

have any impact on the response in this case due to the input parameters, and it is slightly more 

practical. The density of the soil is taken as 15 kN/m3, which means that the effective vertical stress 

increases by 5kPa per meter. The initial horizontal stresses are calculated as: 

   
        

  (4.8) 

where σ’h0 is the initially horizontal effective stresses 

σ’v0 is the initially vertical effective stresses 

K0 is the coefficient of earth pressure at rest     

The coefficient of earth pressure at rest is taken as 1. The theory of elasticity and Jacy’s empirical 

formula would provide the same answer (υ=0.5, ɸ=0). This means that the initial horizontal stresses 

equal the initial vertical stresses, which imposes an initial state without shear stresses (equation 3.5). 

4.3 Properties of the system 
The properties of the system, apart from the soil parameters, include the anchor geometries, the 

material properties of the anchor and how the mooring force is applied to the system. It also includes 

constraint properties that will be used later in the project. Other properties of the model will be 

covered later in the chapter. 

The anchor geometry is governed by the capacity requirements. The supporting earth pressure 

causes structural forces that the anchor has to be designed for. This is accomplished by the desired 

thickness of the plates. The forces from the mooring chain are applied to the anchor through a 

connection called padeye. Due to the concentrated mooring force, there are additional supporting 

plates in the padeye area. In addition, the anchor consists of ring stiffeners, due to stability issues 

arising during the installation, and a sealed cap in order to allow for suction. The anchor is modeled 

without the stiffeners, and the sealed cap is modeled as a circular plate at the seabed. Neither 

simplification will change the response in a significant way for the given purpose.  
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The suction anchor has a total length of 30 meters and a diameter of 6 meters. The padeye is a 

triangular plate located 17.5 to 20.5 meters below the seabed, and is 1 meter wide. The additional 

reinforcing plates are located in the same 3 meter-range as the padeye, see figure 46.  

The plates consist of four different thicknesses in total; 32, 40, 70 and 300 mm. The thickness of the 

cylinder is 32 mm, but is amplified by 70 mm close to the padeye. The padeye plate has a thickness of 

300 mm, while the additional plates close to the padeye are 40 mm. The sealed cap is also 40 mm. 

 

Figure 46 - Geometry suction anchor. Dimensions in meters when not specified 

The forces are applied to the system through the padeye as a load vector, consisting of force 

components in the x-, y- and z-direction. The load attachment point is located 19 meters below the 

seabed level, and has an eccentricity of 3.75 meters from the neutral axis, or simply 0.75 meter from 

the anchor wall. The loads applied to the system are then applied in a realistic way, which will result 

in 6 load components; 2 horizontal loads, 1 vertical load, 2 bending moments and a torsional 

moment. The force components will be constrained, due to the fact that the loads applied to the 

system consist of 3 unconstrained forces at the load attachment point. The relation between the 

forces can be expressed in the following way: 

                     (4.8) 
                     (4.9) 

            (4.10) 
                              (4.11) 

                                              (4.12) 

                                

 

(4.13) 

where P is the magnitude of the force padeye force 

Hx is the horizontal force in the x-direction 

Hy is the horizontal force in the y-direction 

V is the vertical force 

Mx is the bending moment about the x-axis 

My is the bending moment about the y-axis 

T is the torsional moment 
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α is the inclination angle, the angle between horizontal plane and the load 

vector 

β is the torsional angle, the angle between the padeye plane and the mooring 

chain 

ex is the eccentricity in the x-direction, 3.75 m 

ez is the eccentricity in the z-direction 

The magnitude of the total horizontal force has the following expression: 

  √  
    

          √                         
(4.14) 

Pythagorean equation can also be applied with respect to the bending moments: 

  √  
    

  
(4.15) 

The relationship between the mooring force and the translational forces are illustrated by figure 47. 

 

Figure 47 - Relation between the translational forces 

The constraint equations and the eccentricity ez require some discussion. The translational forces are 

simply decomposed due to the load inclination angle and the torsional angle. The torsional moment 

equals the horizontal distance from the neutral axis to the load attachment point, multiplied by the 

force component in the y-direction. The definition of the bending moments is however less obvious, 

and relates to the eccentricity ez, which is the vertical distance between the load attachment point 

and the neutral plane. The neutral plane is the plane where horizontal loads do not causes bending 

moments. ez can be regarded as an elastic property, a plastic property, or be disregarded. Following 

definitions yields; the plastic plane is the plane that gives the largest horizontal capacity and the 

elastic plane is the plane that gives no rotation of the anchor, see figure 48. The argument for 

excluding ez is that the eccentricity is not a known property. It will be shown in section 5.7 that the 

plastic eccentricity is important in order to construct a realistic empirical yield surface. The elastic 

eccentricity is not explicitly needed for this given anchor, but it will be showed in section 7.3 that it 

will be useful to describe the stiffness of arbitrary suction anchors. The suction anchor needs to be 

considered as rigid in the area around the padeye, in order for the constraint equations to be valid. It 

will be shown by analysis that this assumption is appropriate.  
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Figure 48 – Elastic and plastic planes and eccentricities 

Note that the difference between the elastic and plastic eccentricities will only be an issue in z-

direction, and that where are no eccentricities in y-direction. 

4.4 Plaxis 3D 
Plaxis is a finite element software applied to geotechnical problems, which was developed at TU Delft 

in the Netherlands back in the 1980s. Plaxis was launched as commercial software in 1993, and the 

code for three-dimensional problems became available a few years after the turn of the millennium. 

The modeling in Plaxis 3D is similar to the modeling in Plaxis 2D, although the 3D modeling is in 

space. The modeling is efficiently performed by commands. Unlike Plaxis 2D, it is not possible to 

select between different elements. (Plaxis, unknown) The element types will now be presented.  

 

Figure 49 - Soil elements with Plaxis 3D (Plaxis, 2010) 

Plaxis 3D uses a 10-node tetrahedron for the soil elements. Each node in the soil elements consists of 

3 degrees of freedom (DOFs). The elements are numerically integrated from the 4 Gauss points. 

(Plaxis, 2010) 

 

Figure 50 - Area elements with Plaxis 3D (Plaxis, 2010) 
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Plaxis 3D uses a 6-node triangular element for the plate elements. Each node in the plate element 

consists of 6 DOFs, which includes 3 translations and 3 rotations. The plate elements will then be 

capable of calculating moments, as well as shear forces and normal forces. The plate elements are 

numerically integrated from the 3 Gauss points. (Plaxis, 2010) 

 

Figure 51 - Illustration of interface elements with Plaxis 3D (Plaxis, 2010) 

Plaxis 3D uses a 12-node triangular element for the interface elements. The element consists of 6 

coupled nodes that are located in the same place, which makes differential displacements between 

the soil element and the structural element possible.  The interface elements are also integrated 

numerically from 3 Gauss points. (Plaxis, 2010) Note that figure 51 indicates that the interface 

elements are not triangular, which means that is can only be considered as an illustration. 

The three different types of element all have 3 nodes at each edge, and are thus comparable. Also 

note that the different elements have an isoperimetric formulation. The elements in Plaxis 3D have a 

lower order than in Plaxis 2D, meaning that substantially more elements are needed to obtain the 

same degree of accuracy (Cook et. al, 2001).  

The boundary conditions for soil volumes in Plaxis 3D is, by default, the following: Boundaries whose 

surface is normally in the x-direction will be fixed in the x-direction and free in the y- and z-directions; 

boundaries whose surface is normally in the y-direction will be fixed in the y-direction and free in the 

x- and z-directions; the bottom is fixed in all directions; while the ground surface is free in all 

directions. (Plaxis, 2010) 

After all the elements are assembled, the equilibrium equations need to be solved. Due to material 

nonlinearity, the equations need to be solved in an incremental fashion. Plaxis 3D solves the system 

equations in the same way as Plaxis 2D. The default settings will in most cases be appropriate, and 

are also used for this project. (Plaxis, 2010) 

Geometrical nonlinearity and large deformation theory can be introduced by the updated mesh 

option. After each load increment, a new mesh of the model will be generated from the deformed 

mesh. Additional terms will also be present in the stiffness matrix, and a co-rotational rate of 

Kirchhoff stress is adopted. Updated mesh is much more time-consuming than the standard analysis, 

and should only be considered when the geometrical non-linear effects are significant. The 

geometrical nonlinearities are disregarded for purposes of the analysis, which means that the initial 

configuration will be the reference configuration throughout the calculations. (Plaxis, 2010) 
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4.5 Soil volume 
The soil volume size applied in the model is an important factor in the modeling. If the chosen soil 

volume is too small, it will reduce the kinematic freedom of the system. This will limit the 

deformations and might also change the failure mechanisms. However, if an excessive soil volume is 

chosen, the analysis will be more time consuming. How the failure mechanisms will be developed can 

roughly be predicted prior to the analysis. For instance, if average undrained strength, plane 

conditions and smooth wall are assumed, the slip-plane would have an inclination angle of 45 

degrees. The failure mechanisms for suction anchors were presented in section 3.2, and will give 

insight into the necessary soil volume in the model due to failure.  

In the preliminary modeling stage, several soil volumes were tested; initially a soil volume with 

dimensions of Depth*Width*Height=120 m*120 m*60 m was tested, and then reduced. A reduction 

of the initial volume with the same number of elements gave more accurate results in terms of 

capacity, which indicated that the benefits from denser elements outweighed those from smaller 

distances to the boundaries. The geometry finally chosen had the dimensions 80 m*80 m*50 m, 

which still have a sufficient kinematic freedom of the system with respect to the mechanisms that 

will be developed.  

4.6 Failure definition  
The failure definition is also an important factor of the modeling. In theory, the failure state is 

characterized by an additional infinitesimal load increment which results in infinite deformation; the 

system is then said to be singular. However, a singular response in Plaxis 3D does not occur at 

physically realistic displacements. Also, when the system displaces hundreds of meters, the analysis 

becomes time-consuming and is not efficient. An adoptive failure criterion is thus desired. 

The alternative failure criterion can for instance be governed by a deformation criterion. It is 

important that the capacity of the criterion is close to the largest possible load. It is also important 

that a well-defined plastic zone is developed, where the plastic response dominates the overall 

response. The load cases in the project are calculated to about 10 meters padeye deflection. From 

the load-deflection curves, it was observed that the plastic response started at about 0.1 meter, and 

that the yield plateau was well-defined after 1 meter, slightly depending on the load case. The 

definition throughout the thesis is one meter absolute padeye deflection. It should be noted that the 

displacement due to installation of the anchor is reset to zero, in order to isolate the response 

caused by the load cases. 

4.7 Mesh refinements 
The results from a finite element analysis will in most cases contain a degree of discretization error. 

When the number of elements approaches infinity, the responses will converge towards exact 

results. However, when the number of elements increases, the analysis will be more time consuming. 

A certain degree of discretization error must therefore be tolerated. One effective way to measure 

the discretization error is by mesh refinements. The response from the mesh refinements can then 

be compared; if there are large differences between the meshes, further refinements will be needed 

in order to obtain convergence. 5 different mesh refinements have been applied in this project. A 

horizontal and a vertical load case are applied for each mesh refinement. The mesh refinements had 

the following properties and results: 
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Mesh 
no. 

Soil 
elements Nodes 

Av. el. size 
[m] H [kN] V [kN] 

Rel. H. 
err. [%] 

Rel. V. 
err. [%] 

Estimated Time 
[hours] 

1 4,900 9,600 8.08 36,100 16,200 20.3 5.2 0.2 

2 11,900 19,600 5.18 32,600 16,400 8.7 6.5 0.5 

3 20,500 31,800 3.95 31,400 15,400 4.7 0.0 1 

4 53,700 76,500 2.44 31,800 15,100 6.0 -2.0 4 

5 182,000 255,000 1.22 30,000 15,400 - - 15 
Table 1 - Mesh refinements 

The columns with relative error in table 1 show the response relative to mesh refinement number 5. 

The last mesh will also have a certain degree of discretization error. The last column gives a rough 

time estimate for one load case based on experience from this thesis. This calculation time will of 

course be dependent of several factors, although the ratio between the load cases might be of 

interest. The mesh refinements gave the following models in Plaxis 3D: 

 
  

 

 

 
Figure 52 - Mesh refinements; (a) 4,900 el. (b) 11,900 el. (c) 20,500 el. (d) 53,700 el. (e) 182,000 el. 

One way to compare the meshes is by plotting the number of elements against the response. The 

response in this setting is one meter padeye deflection, which is used as the definition of failure. The 

diagram shows the horizontal and the vertical response for the first four meshes. 
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Figure 53 - Convergence - failure load against number of soil elements 

It is observed from table 1 and figure 53 that an increase in the number of elements does not change 

the response in more than 6% when the number of elements has exceeded 20,000 elements. The 

discretization error is however likely to increase with further mesh refinements. During the mesh 

refinements, it has been focused on the density of the mesh where the failure mechanisms are likely 

to be developed, however in a somewhat smooth sense. This will increase the convergence rate 

when it is used in a proper way (Zienkiewicz et. al, 2005). The failure mechanisms will be different 

from the horizontal and the vertical load case. For the vertical load case, it is essential to have a large 

number of elements close to the base due to the reversed end bearing mechanism. The shaft 

resistance will be calculated accurately due to the interface elements. For the horizontal load case 

however, it will be important that there are a large number of elements close to the wall. The 

meshing options in Plaxis limits the user to control the density regions of the mesh, which means that 

some of the refinements favor the horizontal load case more than the vertical, and the other way 

around. This is mainly the reason that an increase in elements can increase the discretization error 

for a load case. However each mesh refinement will give an overall increased accuracy, which can be 

illustrated by averaging the error from the horizontal and the vertical load case. Figure 55 shows the 

important locations for a dense mesh due to the specific load case.  

 

Figure 54 - Locations were a dense mesh is required 
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5 Results 
In this chapter, the results will be presented. Based on the results from the mesh refinements, the 

model will be based on a mesh consisting of 20,500 soil elements. The results from the combined 

loading will be presented first. The combined loading includes 37 load cases, where the direction of 

the load vector was changed; both the inclination angle and the torsional angle were varied. 

Thereafter, the results from the hand calculation will be presented, followed by the load cases that 

correspond to the hand calculations. These analyses will also gain important information to form a 

realistic curve-fitting yield surface. Analyses addressing the effect on anchor stiffness will then be 

presented; it will be shown that the anchor can be considered rigid. Thereafter, the empirical elastic 

stiffness will be determined, and this will be used to form the elastic stiffness matrix of the system. 

Load sequences will then be executed, which will determine the plastic behavior due to cyclic two-

way loads. Finally, empirical capacity curves for combined loading will be presented. The objective of 

each analysis can be summarized as follows: 

Type of analysis Objective Load cases 

Failure load at padeye Yield surfaces and deflections 37 

Hand calculations Compare against numerical results 6 

Failure loads for single-force components Gain information for curve fitting 9 

Elastic soil Determine elastic force-displacement 

relationship 

6 

Parametric stiffness anchor Obtain soil-structure interaction 4 

Load cycles Gain information regarding elasto-plasticity  3 

Figure 55 - Analyses overview 

5.1 Combined loading  
The Plaxis results are based on the model that consists of 20,500 soil elements. Failure was defined 

as one meter padeye deflection. 37 load cases were applied, where the difference between the load 

cases was the direction of the load vector at the padeye. The following angles were combined:  

                       [       ] 

                   [       ] 

Seven different load inclination angles and six different torsional angles were thus used. This results 

in 37 load cases, since the vertical load case is independent of the torsional moment; see chapter 4.2. 

The following failure loads were obtained for the different load cases: 
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P [kN] β=0 β=5 β=10 β=20 β=45 β=90 

α=0 31,400 30,100 27,800 18,300 9,000 6,300 

α=10 34,000 33,000 29,700 18,700 9,100 6,400 

α=20 36,100 34,600 30,400 19,400 9,500 6,800 

α=30 29,700 29,100 26,700 19,700 10,300 7,300 

α=45 21,600 21,500 21,000 18,700 12,200 8,900 

α=60 17,700 17,700 17,700 17,100 14,400 11,700 

α=90 15,400 15,400 15,400 15,400 15,400 15,400 
Table 2 - Failure loads from padeye loads  

5.1.1 Load-deflection curves 

It is important to understand how the system behaves until failure. The load-deflection curves will 

therefore be presented. The load-deflection curves are separated in terms of the rotational angle; β.  

 

Figure 56 - Load-deflection curve, β=0 degrees 

Figure 56 shows that the highest capacity is obtained when the load inclination angle α is 20 degrees. 

The horizontal loads have a well-defined yield plateau, while capacity increases more gradually when 

α is more than 30 degrees. It should be noted that Plaxis does not reduce the soil-structure contact 

area as the anchor deflects, which implies that the vertical load combinations will be slightly 

overestimated.  
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Figure 57 - Load-deflection curve, beta=5 degrees 

Figure 57 shows the load combinations with β equals 5 degrees. The load-deformation pattern is 

much the same as for β equals 0. The capacity due to torsion is barely reduced. 

 

Figure 58 - Load-deflection, β=10 degrees 

Figure 58 shows that the load-deformation pattern is still the same when β is 10 degrees, although 

the capacity for horizontal loads has been noticeably reduced due to the induced torsional moment. 

Also, the yielding plateau is less prominent. 
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Figure 59 - Load-deflection curve, β=20 degrees 

Figure 59 shows that the load-deflection curves were changed, and that the yielding plateau is also 

less defined for horizontal loads. The vertical loads are hardly reduced; this is explained by the fact 

that when the direction of the force is close to vertical, there is virtually no horizontal component left 

to induce a torsional moment. 

 

Figure 60 - Load-deflection curve, beta=45 deg 

Figure 60 shows that the horizontal capacity is reduced significantly, clearly governed by the torsional 

moment capacity. 
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Figure 61 - Load-deflection curve, β=90 degrees 

Figure 61 shows that horizontal loads are further reduced. These results are as expected.  

All the load-deflection curves have one common property; the response is first approximately 

linearly-elastic prior to yielding. The curves start to yield after about 0.1 m deflection, when the loads 

are mobilized at about half of the total capacity. The stiffness in the elastic range seems to be related 

to the strength of the load case.   

5.1.2 Failure mechanisms  

It is necessary to study the failure mode of the system in order to evaluate whether the results are 

reasonable. The failure mechanisms from the analyses where the torsional angle is 0 will be 

presented. Failure mechanisms will be visualized by incremental strains and incremental 

displacements for chosen load cases.   
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Incremental strains 

  

  

Figure 62 - Incremental strains, β=0 degrees: (a) α=0 degrees, (b) α=20 degrees, (c) α=45 degrees, (d) α=90 degrees 

When the inclination angle is increased from 0 to 20 degrees, the soil at the base mobilizes, and a 

larger capacity is obtained. When the inclination angle is 45 degrees, the failure mechanism is 

vertical, with a reversed end-bearing capacity being obtained. The mechanisms at inclination angles 

of 45 and 90 degrees are identical. 
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Incremental displacements 

  

  

Figure 63 - Incremental disp., β=0 degrees: (a) α=0 degrees, (b) α=20 degrees, (c) α=45 degrees, (d) α=90 degrees 

The same conclusions hold true for the incremental displacements as for the incremental shear 

strains.  

 

 



 

48 
 

Incremental displacements anchor, β=0 degrees 

       
Figure 64 - Incremental displacements anchor,β=0: (a) α=0, (b) α=10, (c) α=20, (d) α=30, (e) α=45, (f) α=60, (g) α=90 

Another way of visualizing the failure modes is to isolate the anchor from the soil in the output. The 

failure modes in terms of incremental displacements of the anchor for the inclination angles between 

0 and 90 degrees when β=0 is shown is figure 64. It shows the same characteristics observed 

previously. 

5.1.3 Failure surfaces in two dimensions 

The results from the load cases can be plotted in several ways, with the horizontal-vertical load space 

being commonly used. The horizontal component of the force vector is plotted against the vertical 

force component. In the following ,a HV space with different torsional angles will be shown, which 

means that it is actually a HVβ-space, see figure 65.  

 

Figure 65 - HV space 
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Each point of the curves represent a failure state, given in table 2. The HV space shows several 

interesting tendencies. Firstly, it shows how a torsional angle will reduce the capacity of the system. 

When the angle β is 5 degrees, the capacity is almost unchanged, but when β increases, the capacity 

suddenly drops. Secondly, it can be seen that when the inclination angle α increases from 0, the 

horizontal capacity also increases. This can be explained as follows: Even though the results are 

presented in the HV space, there are other force components as well; namely the bending moments 

and the torsional moment. It turns out that when you load the system with an incremental vertical 

load, you will also unload the system of bending moments, if the horizontal component dominates. 

This will be further explored in section 5.5. Finally, we see that all the β curves intersect when α is 90 

degrees. Again, this is because the horizontal component of the force vector dissipates, and there is 

no horizontal force left to cause torsion.  

In order to see how much the torsional angle β reduces the capacity, it may be convenient to plot the 

inclination angle α against the failure load. Figure 66 shows how the failure load depends on the 

inclination angle α, and the torsional angle β. The failure load tendencies in the figure correspond to 

those of the other figures. 

 

Figure 66 - Failure load P with the angles alpha and beta 

If the chosen definition of failure is a 5-meter padeye deflection, the following HV space would be 

obtained:  
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Figure 67 - HV space, failure defined as 5 m deflection 

Figure 67 shows the HV space where failure is defined as a 5-meter deflection at the padeye. The 

vertical forces increased significantly from the HV space where failure was defined as 1-meter 

padeye deflection, while the change in horizontal capacity is less marked. The shapes of the different 

HV spaces are much the same. 

Capacity curves with other deformation criteria with no torsion are also shown.  

 

Figure 68 - Yield surface in HV space; deflection criteria: 0.2 m, 0.4 m, 0.6 m, 0.8 m and 1 m  
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5.1.4 Three-dimensional plots  

Since the force vector applied at padeye consists of three independent components, see equations 

4.8-4.15, the response can be visualized in the space with three components as well. One option 

might be to transform components into the HVT-space, which consist the total horizontal, vertical 

and torsional load components. H and V are already given, while T is simply H multiplied by sin(β) 

times ex, where ex is the eccentricity between the neutral axis and the load attachment point. The 

results can also be plotted directly in the HxHyV-space, where Hx is the decomposed horizontal load in 

the x-direction and Hy is the decomposed horizontal load in the y-direction. 

 

 

Another option is to plot the failure load P as a function of the angles α and β, see figure 69. 

 

 

 

 

 

 

 

 

 

Figure 69 and 70 has showed that the response can be visualized in by three-dimensional plots, but 

that it may be more difficult to interpret the tendencies.  

 

Figure 69 - HxHyV space 

Figure 70 - P-αβ-space 
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5.2 Hand calculations 
It is important to estimate the results from a numerical study by hand calculation in order to ensure 

that the numerical analyses are reasonable. The predictions should ideally be made prior to the 

analyses, in order to avoid adjustments in the hand calculations to get a good match. It is also 

important that the hand calculations use the same parameters as the numerical model. The hand 

calculations in this section include the ultimate force components of the anchor and the horizontal 

and vertical stiffness. Due to symmetry, neglecting the effects from the padeye, there are a total of 

four force components that need to be determined; the horizontal, the vertical, the bending moment 

and the torsional moment capacity. 

5.2.1 Horizontal capacity 

According to Randolph et al. (1998), the horizontal capacity can be estimated by figure 71: 

       ̅                          (5.1) 

 
Figure 71 - Horizontal capacity (Randolph, 1998) 

 
Figure 72 - Factor flow-around mechanism 
(Martin & Randolph, 2006) 

 

Randolph & Gourvenec (2011) state that the flow-around mechanism will be developed close to the 

surface for soil with linearly increasing strength, and that the mechanism can be assumed to apply 

for the whole pile, since the soft soil at the seabed contributes little support. Figure 72 gives a value 

of 10.8 with a roughness factor α = 0.44. In this approach, the base shear also has to be included. The 

following capacity is then obtained: 

      ̅        (             
 

 
       )             

 

(5.2) 

Finally, the method of Aubeny & Murff (2005) will be presented. The base shear also had to be 

included in this case. The calculations are spreadsheet friendly, and are prepared in Excel with small 

depth increments (Δz=0.1 m, 300 increments). A spreadsheet with larger increments is attached for 

illustration. The method gave a capacity of H=32,300 kN. The following diagrams were obtained: 
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Figure 73 - Diagrams for the suction anchor 

Three different ways of calculating the horizontal capacity have now been executed. The results were 

almost the same; between 32,300 kN and 34,000 kN. 

5.2.2 Vertical capacity 

The maximum vertical pull-out capacity can be calculated by many methods. However, most 

methods will not capture the coefficients that are used for this project. The limit equilibrium where 

the anchor is treated as a pile is a good way to estimate the capacity. The equilibrium in the 

undrained condition gives: 

 

         ̅  
 

 
    

          
(5.3) 

The weight of the anchor is the following: 

   ∑    
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(5.4) 

The effective weight of the anchor is taken as: 
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(5.5) 

The reverse end-bearing capacity factor NC is taken as 9, which should be a conservative value for the 

given input parameters. See chapter 3.2.2 for more details. The undrained shear strength is taken at 

base level. The following capacity is obtained: 

                       
 

 
                                 

 

(5.6) 

If the chosen value of Nc was taken as 12, the capacity would be 16,700 kN. The calculated vertical 

capacity is thus 14,000 kN, but a higher capacity is expected in the model. The reverse end-bearing 

capacity for this anchor represents about half of the total capacity. 

5.2.3 Bending moment capacity 

The bending moment capacity is calculated from the limit equilibrium where the lateral forces acting 

on the suction anchor are treated as a linearly increasing strip load. This leads to the following 

bending moment capacity: 
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If the horizontal capacity is taken as 34,000 kN, the ultimate bending moment will be 204,000 kNm. 

Since the bending moment capacity is only dependent on the horizontal capacity, the discretization 

error is likely to be approximately the same. However, it is unlikely that the limiting earth pressure 

will be fully mobilized close to the rotation center. On the other hand, the shear forces at the 

interfaces might also add a small portion to the bending moment capacity. 

5.2.4 Torsional capacity 

The torsional capacity will also be estimated from the limit equilibrium. Three factors contribute to 

the capacity; the shaft resistance, the base resistance and the resistance due to the padeye. This 

leads to the following expression: 
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(5.10) 

The last term relates to the padeye modeled as a plate. The bearing capacity factor for a plate due to 

the flow-around mechanism can be taken as 12.5, which is typical for drag anchors (Randolph & 

Gourvenec, 2011). The eccentricity; ex, is the distance between the neutral axis and the resultant 

force from the plate, taken as 3.5 meters. Inserting these values gives: 

   
 

 
                   

 

  
                                 

 

 

                                         
 

(5.11) 

The estimated torsional capacity is thus 16,000 kNm. 
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5.2.5 Stiffness 

The vertical stiffness is first calculated in accordance 

with Paulos and David (1974). The height of the model 

is 50 meters, while the length of the pile is 30 meters, 

which gives a height-to-length ratio equal to 1.67. This 

gives an influence factor; Iρ, equal to 0.7, while the 

influence factor would be 1.1 if the model had an 

infinite depth. It should be noted that the method 

assumes constant stiffness, while the stiffness in the 

model is almost proportional to depth. An average 

stiffness over the pile length is applied. The following 

stiffness is obtained with this method: 
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(5.12) 

The fact that the method is based on a constant stiffness makes the method less comparable to the 

model. The method of Randolph & Gourvenec (2011) takes stiffness changes into account, and is 

thus better suited. The stiffness of the pile is divided into the shaft stiffness and the base stiffness, 

which behave like additive springs. The following stiffness is obtained: 
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(5.13) 

 where   is an influence parameter for the size of the soil volume, often taken as 4 

        is the radius of the pile at the pile base 

        is the shear stiffness at the pile base 

Insertion gives a value   =157,000 kN/m. 

 

 

The horizontal stiffness is calculated by using the formula presented in chapter 3.2.2: 

      ̅                              
 

(5.14) 

The horizontal stiffness is thus 204,000 kN/m. 

5.2.6 Summary of the hand calculations 

Hand calculations on both strength and stiffness have now been performed. The results will be used 

to evaluate the reliability of the numerical results. The hand calculations showed the following 

results:  

 

 

Figure 74 - Influence factor axially loaded pile 
(Poulos & David, 1974) 
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Horizontal capacity 32,300 kN – 34,000 kN 

Vertical capacity 14,000 kN 

Bending moment capacity 194,000-204,000 kNm 

Torsional moment capacity 16,000 kNm 

Horizontal stiffness 204,000 kN/m 

Vertical stiffness 157,000 kN/m 

Table 3 - Results from hand calculations 

 

5.3 Single-force components with Plaxis 3D 
In order to calculate the ultimate force components of the anchor, separate analyses were executed, 

where each load component was loaded separately. Due to the constraint relations of the loads, the 

single-force components were represented with a set of load vectors, where the resultant force 

intersected with the three neutral planes in space; load vectors applied at the padeye will result in six 

force components, and it is not possible to isolate the individual components. Two of the neutral 

planes are known prior to analyses, due to symmetry, while the eccentricity between the padeye and 

the neutral plane in the z-direction; ez, needs to be obtained. Failure was defined as one meter 

padeye deflection. The results from these analyses will provide important information, which will be 

used to construct a realistic failure surface, and will also be used for comparison with the hand 

calculations.  

The first step required is to determine the neutral axis of the anchor. Due to symmetry, the neutral 

axis in the xz-plane and the yz-plane will intersect in the middle of the cylinder. This gives an 

eccentricity to the load attachment point in the x-direction of 3.75 meters, while there is no 

eccentricity in the y-direction; ex=3.75 m, ey=0. The definition of the neutral axis in the xy-plane in 

this context is the plane that induces no bending moment due to horizontal loads. Since horizontal 

loads in this plane will not produce any bending moment, the largest horizontal capacity will be 

obtained in this plane. This property can be exploited; the loading plane can be changed until the 

largest capacity is obtained. The loading plane has been lowered by combining a horizontal load at 

the padeye with a bending moment, represented by coupled forces. The eccentricity from the 

padeye will then be ez=M/H. Firstly, four load cases where applied; namely ez=M/H=2.25 m, 3.0 m, 

3.75 m and 4.5 m. The following load-deflection curves were obtained: 
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Figure 75 - Parametric study of ez 

It is seen that 3 meter eccentricity will result in the largest capacity. The second largest was the load 

case where the eccentricity was 2.25 meters. Further analyses with eccentricities of 2.50 meters and 

2.75 meters were then executed, in order to determine the eccentricity in greater detail. However, 

an eccentricity of 3 meters was still the load case that gave the largest capacity. Selected failure 

mechanisms from the analyses will be shown:  
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Horizontal load, z=2.75 meters Horizontal load, z=3 meters 

Figure 76 - Incremental displacements; parametric study of ez 

Figure 76 shows that the anchor mainly translates without rotation at eccentricities of 2.75 and 3 

meters. The capacity can then be fully mobilized. It is seen that the anchor translates more at the 

base than at the top with an eccentricity of 3 meters (insignificant in practice). The reason for this is 

that the unit resistance earth pressure is considerably larger at the bottom.  

The eccentricity; ez, is taken as 3 meters. This means that when the anchor is loaded horizontally, it 

will cause a bending moment of My=Hx*ez= My=3m*Hx The analyses also give an ultimate horizontal 

capacity of 38,000 kN when failure is defined as 1 meter padeye deflection.  

It should be noted that ez, the vertical distance between the padeye and the plane that gives the 

largest horizontal capacity, is a plastic property. It does not contain any information about the elastic 

properties. An elastic xy-plane will be introduced in the generalization chapter, with the following 

definition: When a horizontal load is applied in the elastic xy-plane, the anchor will translate without 

rotation. It will be shown that these planes will not coincide.  

The other single-force components can then be analyzed. The load cases were performed with 

coupled forces that were applied close to the padeye, which resulted in only the desired force 

component. The following results were obtained: 
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Figure 77 - Load-deflection curves 

Figure 77 shows the load-deflection curves from the load cases that have only one force component. 

The deflections are still measured at the padeye. Note that the bending moment in the figure is 

divided by the diameter D=6 m and that the torsional moment is divided by 1 meter. This is done to 

achieve the same dimensions and values in the same range. The bending moment was about the y-

axis. It is assumed that the moments and the horizontal forces had the same capacity in the x- and 

the y-direction, due to the minor impact of the padeye geometry. The ultimate capacity is defined as 

the load that causes 1-meter padeye deflection.  

The results from the force component analyses can be summarized as follows: 

Description Symbol label value 

Distance in the x-direction from the padeye to the neutral 

axis 

ex   [m] 3.75 

Distance in the y-direction from the padeye to the neutral 

axis 

ey  [m] 0 

Distance in the z-direction from the padeye to the plastic 

neutral axis 

ez  [m] 3 

Ultimate horizontal force Hu =Hx,u=Hy,u [kN] 38,000 

Ultimate vertical force Vu [kN] 15,500 

Ultimate bending moment Mu =Mx,u=My,u [kNm] 230,000 

Ultimate torsional moment Tu [kNm] 23,800 

Table 4 - Eccentricities and ultimate forces 
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The ultimate capacities can be compared to the combined loading analyses. An inclination angle; α, 

and a torsional angle; β, of 0 gave a capacity of 314,00 kN, while the ultimate horizontal capacity is 

38,000 kN. Because of the plastic eccentricity of 3 meters, the capacity will be reduced by about 17%. 

For that load case, the mobilization factor of the bending moment was 

f=31,400kN*3m/230,000kNm=41%. The vertical load case gave a capacity of 15,400 kN, while the 

ultimate vertical capacity was 15,500 kN. This means that the influence of the 3.75 meter eccentricity 

due to vertical loads can in practice be neglected. The mobilization factor for the bending moment of 

the vertical load case was f=15,400kN*3.75m/230,000kNm=25%. An angle α of 0 and an angle β of 

90 degrees give a capacity of 6,300 kN. This gives a torsional moment of 

T=6,300kN*3.75m=23,600kNm, while the ultimate torsional moment is 23,800 kNm. This means that 

the capacity for this load case is totally governed by the torsional capacity. 

 

5.4 Stiffness of the anchor 
One assumption that is often made during suction anchor calculations is that the anchor is rigid. The 

soil-structure interaction will then be quite simple, and forces can then be transposed to force 

components without any simplification. Analyses that study the relation between the stiffness of the 

anchor and the load-deflection curve have been carried out, in order to check if the assumption is 

reasonable. Four load cases have been performed, with the difference between each load case being 

the E-modulus to the anchor. The force vector is horizontal, and is applied at the padeye. 

The E-modulus is the following for the different load cases: 

Load Case 1 E1 [MPa] Esteel*10-4 21 

Load Case 2 E2 [MPa] Esteel*10-2 2,100 

Load Case 2 E3 [MPa] Esteel 210,000 

Load Case 4 E4 [MPa] Esteel*102 21,000,000 

Table 5 - E-modulus load cases 

This resulted in the following force-displacement curves: 
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Figure 78 - Load-displacement curve parametric stiffness 

Figure 78 shows how the soil response depends on the stiffness of the structure. Load Case 3 has the 

original stiffness. If the Young’s modulus is increased 100 times, the response is more or less exactly 

the same. This implies that the system can be assumed to be rigid. The figure shows that if the 

Young’s modulus was decreased 100 times, the soil-structure interaction would become important. It 

is interesting to note that when the padeye deflection increases, the capacity is almost the same as 

for the original load case. When E is reduced 10,000 times, most of the capacity at practical 

displacements has dissipated. 

5.5 Elastic soil response 
The elastic soil response is needed for the elasto-plastic formulation, and will in addition give 

information about expected deflections due to small loads. It will be shown that a linearly-elastic 

response can be assumed for loads until the mobilization degree f=0.6 is reached. Further loading will 

cause plastic deflection and a hardening law is needed. Plastic deformations will be covered in the 

next chapter; elasto-plasticity.  

The stiffness matrix in the exercise is obtained by force-displacement relations at the padeye. Three 

separate orthogonal forces are applied at the padeye, and the corresponding padeye displacements 

are measured. The set of orthogonal forces comprises Hx, Hy and V; the two horizontal forces and the 

vertical force, respectively. The relations will give the flexibility matrix, and the stiffness matrix can 

easily be obtained by inversing the flexibility matrix.  The flexibility coefficients are determined by 

empirical curve fitting to the associated load-deflection curves; the elastic part is predicted as the 

part of the load-deflection curves with a linear behavior, and intersects the load-deflection curves 

when the mobilization factor are 0.6. The stiffness can then be regarded as an secant modulus.  

Deflection in the x-direction due to the orthogonal load cases: 
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Figure 79 - Load deflection; deflections measured in the x-direction 

Deflection in the y-direction due to the orthogonal load cases: 

 

Figure 80 - Load deflection; deflection measured in the y-direction 

Deflection in the z-direction due to the orthogonal load cases: 
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Figure 81 - Load deflection; deflection measured in the z-direction 

The empirical elastic curves correspond to the load-deflection curves in a proper way for small loads; 

the assumption of an initial elastic behavior is thus appropriate. The yielding starts to affect the load-

deflection curves when the mobilization factor; f, is approximately 0.6 for all the orthogonal load 

cases. The yielding plateau in the load-deflection curves is prominent for all directions. The following 

flexibility matrix is obtained by curve fitting: 
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(5.15) 

The stiffness matrix of the system is found by inverting the flexibility matrix: 
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(5.16) 

The stiffness matrix is important for the elasto-plastic formulation and for the dynamical response of 

the system. The stiffness of the foundation will have an impact on the eigenfrequencies of the 

platform. For simplicity, assume that the suction anchor is the foundation for a tension leg platform 

in 500-meter deep waters. The stiffness of the cable can be approximated as kcable=EA/L. Appropriate 

dimensions give a vertical cable stiffness of about 40,000kN/m. The stiffness of the system due to the 

stiffness of the foundation will then be                                         and 

a change in the vertical eigenfrequency of 14 percent. In other words, the stiffness of the foundation 

does have a significant impact on the dynamical response and should be accounted for.   

5.6 Load cycles 
Cycles of elasto-plastic loads have been executed in order to gain information about realistic elasto-

plastic behavior. Three different load-case histories have been performed; one in each of the x-, y- 
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and z-directions. Firstly, the anchor was loaded to a mobilization factor f=0.9, then unloaded again 

until f=0.9, and finally reloaded to f=0.9. The following results were obtained: 

 

Figure 82 - Loads and deflections in the x-direction 

 

Figure 83 - Loads and deflections in the y-direction 

 

Figure 84 - Loads and deflections in the z-direction 
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The loading cycles in all directions show the same tendency; namely that the loading cycles form a 

closed loop and that the Bauschinger effect is present. This imposes kinematic hardening rather than 

isotropic hardening. The material properties at element level is modeled as elastic-perfectly plastic, 

which means that the yield surface will not expand during loading. It is thus reasonable that the yield 

surface neither will expand at a global level, only translate. However, the system cannot be subjected 

to a compression force in reality, since the mooring chain is not capable of transferring tensile loads. 

Isotropic hardening is also more commonly applied.  

Also note that the compression force in the vertical load cycle is less than the tensile force. This is 

because the weight of the anchor reduces the compression capacity, while it will increase the tensile 

capacity. 

5.7 Curve-fitting yield surfaces 
Two different curve-fitting yield surfaces will be presented in this section. The difference between 

them is how the bending moment is included. The second formula has a better physical foundation, 

and also provides the most accurate results. For this specific problem it is required that the curve-

fitting formula cooperates with all 6 force components that will be presented during a general load at 

the padeye. However, since the force components are constant to each other, it will still be possible 

to plot the curve-fitting formula in 3 dimensions. The yield surfaces will then be determined in terms 

of loads applied at the padeye. 

5.7.1 The first curve-fitting yield surface 

The first curve is based on the following formula: 

 
  
  
    

  

  
    

 

  
    

  
  
    

  

  
    

 

  
     

 

(5.17) 

where  Hx is the horizontal force in the x-direction 

   Hy is the horizontal force in the y-direction 

   V is the vertical force 

   Mx is the bending moment about the x-axis 

   My is the bending moment about the y-axis 

   T is the torsional moment 

   Hu is the ultimate horizontal force in the y-direction, equal to 38,000 kN 

   Vu is the ultimate vertical force, equal to 15,500 kN 

   Mu is the ultimate bending moment about the y-axis, equal to 230,000 kNm 

   Tu is the ultimate torsional moment capacity      

   a, b, c, d are curve-fitting constants      

The coefficient a relates to both horizontal components and the coefficient d relates to both bending 

moments components, due to symmetry. It is thus only four coefficients that determine the surface. 

The moments can then be eliminated due to the constraints by using equations 4.11-4.13: 
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(5.18) 

The equation can also be presented in terms of P, α and β by applying equations 4.10-4.13: 
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(5.19) 

The latter expression is useful in order to determine the magnitude of the force vector for given 

angles. This can for instance be done by Newton's iterations (Kreyszig, 2006): 

        
     
      

 

 

 
(5.20) 

where: 
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(5.21) 

It is important to have sufficient iterations to ensure convergence of the empirical surface. The 

following error tolerance has been applied: 

      |  
    
  

|       
(5.21) 

Optimization of the empirical coefficients can be achieved by the method of least squares (Kreyszig, 

2006). Conservative adjustments can then be made manually. The following values for the 

coefficients were obtained at the end:  

 

 

 

Coefficient Value 

a 3 

b 5 

c 1 

d 4 

Table 6 - Empirical coefficients 

The empirical yield surface will be plotted against the Plaxis results after the second empirical yield 

surface is presented. 
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5.7.2 The second curve-fitting yield surface 

The second curve-fitting formula uses the following formula: 
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(5.22) 

where  Hx is the horizontal force in the x-direction 

   Hy is the horizontal force in the y-direction 

   V is the vertical force 

   Mx is the bending moment about the x-axis 

   My is the bending moment about the y-axis 

   T is the torsional moment 

   Hu is the ultimate horizontal force in the y-direction, equal to 38,000 kN 

   Vu is the ultimate vertical padeye force, equal to 15,400 kN 

   Mu is the ultimate bending moment about the y-axis, equal to 230,000 kNm 

   Tu is the ultimate torsional moment capacity      

   a, b, c, d are curve-fitting constants  

The difference between the empirical yield surfaces is how the formulas interact with the bending 

moments. Since the pile can be considered rigid, a constraint relation between bending moments 

and translational forces can be expressed analytically if the earth pressure resistance can be 

expressed as a function. Due to the strength profile, the earth pressure per unit length can be 

approximated as linearly increasing; see chapter 5.2. The limit strip load can be simplified as follows: 

         
    
  

        
    
  

 
(5.23) 

The simplified strip load and the calculated strip load can be compared (the base shear is distributed 

to the last pile meter): 

 

Figure 85 - Strip load; hand calculated and simplified 
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The analytical expression is obtained by solving the three equations below. The equations are based 

on the limit equilibrium, and exploit the property that the external moment can be expressed as the 

resultant force multiplied by the projected distance from the neutral point (where the three plastic 

planes intersect): 

∑    (5.24) 

∑    (5.25) 

      (5.26) 

The eccentricity e, in the third equation denotes the distance between the horizontal neutral plane 

and the resultant force.   

Equilibrium of the horizontal forces gives the following expression: 

  
 

 
                 

 

 
    

(5.27) 

A non-dimensional earth pressure-to-length ratio is introduced: 

  
 

 
 

(5.28) 

The expression can then be simplified as: 

            
 

 
  

(5.29) 

Equilibrium of the bending moment gives the following expression: 
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(5.30) 

The expression can be rewritten as: 

  
    

 
           

 (5.31) 

Applying the third equation and introducing the non-dimensional eccentricity factor; n=e/L, gives: 

                           (5.32) 

This third-degree equation can be solved when the eccentricity; z, is known. There are three 

solutions, where only one of the roots is of interest. The reduced horizontal capacity, due to the 

moment, is given by equation 5.29, where l is given of equation 5.32. This rather complicated 

expression is difficult to implement, and a simplified empirical formula would be beneficial. It turns 

out, after several trial functions, that the equation is very similar to the following expression: 
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(5.33) 
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The analytical expression can be plotted against equation 5.33, with different values of d being 

chosen; 1, 1.5 and 2. 

 

Figure 86 - Reduction due to padeye position 

This relation will make the interaction between the force components more physical, and will 

increase the accuracy.  

The moments in the yield surface can be eliminated through equations 4.11-4.13: 
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(5.34) 

The equation can further be presented in terms of P, α and β by applying equations 4.10-4.13: 
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(5.35) 

This expression will be used in order to determine the magnitude of the force vector for given angles. 

This can for instance be done by Newton's iterations, see equation 5.20. The yield surface 2 has the 

following expression: 
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(5.36) 

The same error tolerance has been applied for the second yield surface, see equation 5.21. The 

denominator in the horizontal load part decreases when the moment increases; this will effectively 

reduce the horizontal capacity. It is seen from Plaxis results that the moment does not significantly 

reduce the vertical capacity, and it is therefore not included in the equation due to its complexity. 

However, the vertical capacity in the equation is replaced by the vertical capacity with respect to 

padeye loading; 15,500kN is replaced by 15,400kN. This means that the vertical loading term 

indirectly includes the interaction with the bending moment. 

The method of least squares is applied in order to obtain the best curve fitting for the empirical 

coefficients (Kreyszig, 2006). Adjustments are then applied to make the surface slightly more 

conservative. The following values were obtained: 

Coefficient Value, optimized: accuracy=99.35% Value, modified: accuracy=99.30% 

a 5.5 5 

b 4.8 5 

c 2.1 2 

d 2.0 2 

Table 7 - Empirical coefficients 

Yield surfaces against Plaxis results 

The two different yield surfaces will be compared to the Plaxis results. The yield surfaces will then be 

discussed briefly.  

  

Figure 87 - Yield surfaces, β=0 degrees 
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Figure 87 shows the results from Plaxis against both empirical formulas when   is 0 degrees. Both 

empirical yield surfaces intersect most load cases quite well, although the first curve-fitting formula 

underestimates, in particular, the load case when the inclination angle; α, is 20 degrees. It also has 

one limitation; when α increases from 60 to 90 degrees, the curve suggests that the vertical capacity 

will be reduced due to an increasing moment. However, the results from Plaxis suggest that this 

additional moment has a negligible impact on the vertical capacity. 

 

Figure 88 - Yield surfaces, β=5 degrees 

Figure 88 shows the yield surfaces when the torsional angle is 5 degrees. Both empirical curves fit 

well with the Plaxis results, although the second empirical curve fits better. Both curves overestimate 

the horizontal load case by about 2%.   

 

Figure 89 - Yield surfaces, β=10 degrees 

Figure 89 shows the yield surfaces when the torsional angle β is 10 degrees. The first empirical curve 

underestimates the horizontal load cases by a few percent. The second curve has a good curve fit. 
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Figure 90 - Yield surfaces, β=20 degrees 

Figure 90 shows that the first empirical yield surface does not have the same shape as the Plaxis 

results, although the second empirical yield surface fits well. 

 

Figure 91 - Yield surfaces, β=45 degrees 
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Figure 92 - Yield surfaces, β=90 degrees 

Figure 91 and figure 92 show that both curve-fitting surfaces correspond well with the Plaxis results. 

It can be concluded that the second curve-fitting yield surface corresponds better with the Plaxis 

results. This applies to both the shape of the curve and the accuracy for all values of the angle β. 

From the method of least squares, the average error of the curve fitting caused by the load cases was 

0.70%. This means that for an arbitrary load case, the difference between the failure load from Plaxis 

and the corresponding point from the empirical surface is expected to be 0.70%. In other words, the 

second curve-fitting formula interpolates the results almost perfectly.  

Both empirical formulas consist of four empirical coefficients, although the latter formula is more 

comprehensive. This is especially prominent due to differentiation, which is required because of 

Newton's iterations and the implementation of the elasto-plastic formulation due to the flow rule. 

However, the second curve-fitting formula is definitely not too complicated to implement. 

The results from the second yield surface are plotted against the Plaxis results in isolation, to show 

the accuracy: 
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Figure 93 - Plaxis results versus yield surface 2 
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6 Elasto-plastic formulation 
The elasto-plastic formulation will be presented in this chapter. The first section will be devoted to 

the formulation due to padeye loads and deflections, while the implementation and how to use the 

formulation will be the focus towards the end of the chapter. The theory applied uses a formulation 

with respect to stresses and strains. The formulation given in this chapter will be adopted in terms of 

displacements and loads at the padeye. 

6.1 Formulation 
Elastic and plastic deformation might take place during a load step. How much the elastic and plastic 

deformation contribute, and how the mobilization and stiffness change, are described by an elasto-

plastic formulation. An elasto-plastic formulation requires several elements (Cook et. al, 2001):  

 Compatibility 

 Stiffness matrix 

 Yield criterion 

 Flow rule 

 Hardening rule 

These elements are used to trace the displacements, control yielding and the tangential stiffness of 

the system. Each element will be dealt with separately. How to put the elements together, is also 

discussed. 

6.1.1 Compatibility 

Compatibility simply states that the total displacements are equal to the sum of the elastic and the 

plastic displacements (Cook et. al, 2001): 

{     }  {    }  {    } (6.1) 

After a load step, the displacement vectors will be updated: 

{    }    {   }  {    }  (6.2) 

{    }   
 {   } 

 {    } 
 (6.3) 

{     }    {    }  {     }  (6.4) 
 

6.1.2 Stiffness and flexibility matrixes 

The stiffness and flexibility matrixes are already obtained, see equations 5.15 and 5.16. The flexibility 

matrix controls the elastic deflections, while the stiffness matrix shows the stiffness behavior of the 

system. Elastic deflections are governed by the following equation: 
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6.1.3 Yield criterion 

The yield criterion defines how the system yields. Two different yield formulas have already been 

presented in section 5.7. When the state parameter f is inserted, the yield criterion is complete. The 

state parameter has an initial value. If the expression is less than 0 it implies that the plastic criterion 

is not fulfilled, and only elastic response takes place. Two yield criterions will be presented. The first 

one  has the following expression: 

   
  

      
    

  

      
    

 

    
    

  
      

    
  

      
    

 

    
       

(6.6) 

And the second one is given of: 
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(6.7) 

If compression force applied to the padeye also will be present, absolute signs will be needed for 

each force component, and is thus implemented in the spreadsheet. Eliminating the moments 

achieved by applying equation 4.11-4.13, which results equation 6.8 and 6.9 for yield surface 1 and 2. 
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(6.9) 

 

6.1.4 Flow rule 

An associated flow rule is used: 
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(6.10) 

where duP is the incremental plastic displacement vector 

  dλ is a plastic multiplier 

  the latter term is the gradient to the yield surface, and is normal to the yield surface 
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The flow rule implies that the plastic displacement vector will be normal to the yield surface. The 

gradient of yield criterion number is given of equation 6.11, while the gradient for yield surface 2 is 

given of equation 6.12.   
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(6.12) 

6.1.5 Hardening rule 

The hardening rule describes how the system plasticizes. The hardening rule is obtained by curve 

fitting to the test data. The curve-fitting formula can, for instance, result from a power law or a 

hyperbola. The power law is obtained from equation 6.13 while the hyperbola is obtained from 

equation 6.14 (Nordal, 2010). 

 ( ̅ )         ̅ 
     

(6.13) 
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(6.14) 

where    is the initial value of the state parameter, taken as 0.6 

a, b, k1, k2 are empirical hardening coefficients 

 ̅  is the plastic displacement measure 
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Displacement hardening is assumed for the thesis (strain hardening applied on displacements). The 

hardening laws are used in combination with a hardening criterion, which can, for instance, be an 

isotropic, a kinematic or a mixed hardening criterion. Although isotropic hardening might not be the 

best suited criterion for this particular system, it is still chosen, due to its simplicity and the fact that 

a compression force will not be expected, since the forces are applied to the padeye through a 

mooring chain that cannot carry significant tension. 

In order to isolate the plastic displacements from a load case, the relation of equation 6.15 is applied 

 ̅  √{   }
 
{   }  √{        }

 {        } 
 

 √              
                

                
  

(6.15) 

The elastic displacements are measured from equation 6.5. Plastic curve fitting has been applied for 

three load cases; loading in the x-, y- and z-directions. Both hyperbola and power law have been 

applied. The optimization has been achieved by the method of least squares. Firstly, the optimization 

has been done with respect to the specific load case. Then, a common optimization for all three load 

cases was applied. Voce rule was also tested, but did not give appropriate results. Results from the 

three different load cases were as follows:  

 

Figure 94 - Empirical curve fitting for hardening; loading in the x-direction 

Figure 94 plots the plastic load against the mobilization factor f, for loading in the x-direction. It is 

noted that the power law does not offer a good fit with the Plaxis results. It is also observed that the 

optimization for this load case gave a good fit for the hyperbola. 
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Figure 95 - Empirical curve fitting for hardening; loading in the y-direction 

Figure 95 plots the plastic load against the mobilization factor f, for loading in the y-direction. The 

empirical curves correspond well with the Plaxis results. 

 

Figure 96 - Empirical curve fitting for hardening; loading in the z-direction 

Figure 96 plots the plastic load against the mobilization factor f, for loading in the z-direction. The 

curve fitting optimized on the basis of vertical loading interpolates the Plaxis results well, and the 

empirical curves optimized for all the three load cases correspond adequately. 
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Based on the three load cases, it can be concluded that the hyperbola is the best function for this 

problem. When each load case is optimized separately, the accuracy increases, although the 

hyperbola optimized on the basis of the three load cases also delivers quite good results. The 

following coefficients were obtained after the method of least squares was applied: 

Optimization a b 

All load cases 2.056 0.393 

x-direction 2.318 0.152 

y-direction 2.051 0.544 

z-direction 2.030 0.410 

Figure 97 - Empirical coefficient values hyperbola 

Anisotropic hardening properties have now been demonstrated. The anisotropy can be implemented 

by interpolation, although it will increase the complexity of the formulation. One possible 

interpolation function is the following: 
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(6.16) 

However, it will in the following be shown that the interpolation actually delivers less accurate 

results for a chosen load case, where α=30 degrees and β=10 degrees:  

 

Figure 98 - Hardening curve, α=30 degrees, β=10 degrees; interpolated and optimized based on three LC, hyperbola 
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A modified weighted interpolation function is thus needed, if interpolation is considered being used. 

The following equation is chosen: 
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(6.17) 

 

 where          are empirical coefficients that weigh the impact of load direction 

The weighting coefficients are then determined from the same load case; α=30 degrees, β=10 

degrees. The method of least squares gave the values   =0,   =2.03 and   =0.99, respectively. This 

implies that the empirical hardening behavior in the x-direction is disregarded, which would not be 

favorable. The weighting coefficients gave the following hardening behavior:  

 

Figure 99 - Hardening curve, α=30 degrees, β=10 degrees; weighted interpolation and optimized based on three LC 

It is seen that the increase in accuracy is not significant, and that the initial hardening model actually 

provides proper results. The initial hardening response, which was obtained by optimization of the 

three orthogonal load cases, will for that reason be applied.  

6.1.6 Putting it all together 

The pieces have now been presented, and it remains to put the puzzle together. The procedure is 

done accorded to Nordal (2010). Firstly, it is solved for the plastic resistance: 
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The first term in the equation is the derivative of the yield surface with respect to the state 

parameter; f, the second term is obtained from curve fitting as shown, while the third term gives a 

relation between the plastic displacements and the plastic multiplier. 

The first term will be as follows for the first yield surface: 

  

  
  

 

 
[  

  
    

      
  

    
    ] 

 

  
 

    
      

     

    
      

|          |

    
      

     

    
     

(6.19) 

The third term is the plastic resistance equation, given as: 
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(6.20) 

Then it is solved for the plastic parameter: 
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(6.21) 

Thereafter, it is solved for the plastic deformation: 
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(6.22) 

The tangential stiffness matrix of the system can be solved by the following formula: 
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(6.23) 

And finally, the displacement vector can be updated: 

{     }  {    }  {    } 
(6.24) 

The displacements will then be as follows after load step n: 

{    }    {   }  {    }  (6.25) 

{    }   
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 {    } 
 (6.26) 

{     }    {    }  {     }  (6.27) 
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6.2 Implementation 
This section describes how the elasto-plasticity has been implemented. A spreadsheet has been 

developed in Excel, applying the formulas already presented. However, the method uses load 

control, rather than displacement control. Firstly, the solution steps used in the spreadsheet will be 

presented. Thereafter, a simple demonstration will show how the model works.    

6.2.1 Solution steps 

The theory has been presented, and it is time for solving the system of equations (the equations in 

this section will not be numbered, but listed in steps). The following procedure has been used: 

1. Choose an arbitrary load vector. If the force components are HX, Hy and V, the force vectors 

will be as follows: 
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(6.28) 
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(6.29) 

 

The load-step vector and the total load vector will the same for the first load step. 

2. Divide the load-step vector into a large number of smaller incremental load vectors. Each 

load step is divided into m=100 load increments. 

{  }  
 

 
{  }     [   ]       { }      { }    {  }       

(6.30) 

 

3. Calculate the incremental elastic deformations caused by the incremental load vector. 

{    }      [ ]
   {  }      (6.31) 

4. Calculate the mobilization factor of the system and the corresponding state parameter, 

which expresses how mobilized the soil is. The mobilization factor is obtained by solving the 

equation F(f*)=0, where F is the yield criterion and f* is the mobilization factor. Note that the 

yield criterion is only depended on f*, since finite values for the force components are 

already substituted into the equation. The equation is solved by Newton's iterations: 

  
     

   
 
 
    

   
 

     
   
 
 

 
(6.32) 

 

It is important to perform sufficient iterations to ensure convergence of the yield surface. 

The following error tolerance has been applied: 
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(6.33) 

 

The following conditions express the yields for the corresponding state parameters: 
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    { }       (6.34) 
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(6.35) 

Note that the state parameter; f, cannot decrease; only increase.  

5. Calculate the accumulated incremental plastic displacement measure. 

                                     ̅         

             ̅         ̅           ̅      

(6.36) 

 

6. Calculate the plastic scalar; dλ. 
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(6.37) 

7. Calculate the incremental plastic displacement vector. The trapezoidal rule is applied to 

increase the accuracy. 

{    }     
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} 

(6.38) 

8. Update the displacement vectors. 

{   }    {   }      {    }    (6.39) 

{   }   
 {   }     

 {    }   
 (6.40) 

{ }    {   }    {   }   
 (6.41) 

9. Repeat the process until l = m, and a new load step can be applied. 

The process applies load control rather than displacement control, which is usual practice for elasto-

plasticity due to stress-strain relations. The elasto-plastic stiffness matrix is not needed, but might be 

calculated if desired.  

6.2.2 Elasto-plastic spreadsheet 

The spreadsheet was implemented in Excel. The properties of the spreadsheet will be explained in 

the following. First of all, the properties obtained have to be specified. All the values can easily be 

changed, for instance if used with other projects. 
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Input, coefficients: 

Type Value 

fo [] 0.6 

a [] 5.0 

b [] 5.0 

c [] 2.0 

d [] 2.0 

Hu [kN] 38,000 

Vu [kN] 15,400 

Mu [kNm] 230,000 

Tu [kNm] 23,800 

ex [m] 3.75 

ez [m] 3 

k1 [] 2.056 

k2 [] 0.393 
Table 8 - Input parameters 

The stiffness matrix were also given as input. The load history also needs to be specified. Up to 10 

load steps can be included in the model, with each step being divided into 100 load increments. 

Load step dHx dHy dV 

1 30,000 0 0 

2 -30,000 0 0 

3 -30,000 0 0 

4 30,000 0 10,000 

5 3,000 0 -10,000 

6 0 0 0 

7 0 0 15,000 

8 0 0 -15,000 

9 0 6,000 0 

10 1,000 -1,000 1,000 

Total 4,000 5,000 1,000 
Table 9 - Load history 

The model continuously calculates the response due to the solution steps explained in the previous 

section. The second yield surface was chosen, since the yield surface provided remarkably accurate 

results.  
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Table 10 - Calculation process for Load Step 1, which is further divided into 100 smaller increments 

The output from the different load steps is summarized in order to interpret the data. Only the 

output from the five first load cases is shown. 

Output Final Load Step 1 Load Step 2 Load Step 3 Load Step 4 Load Step 5 

f* []   0.951 0.001 0.951 0.649 0.095 

f [] 0.974 0.951 0.951 0.951 0.951 0.951 

alpha [deg] 8.88 0 0 0 90 0 

beta [deg] 51.34 0 0 0 0 0 

abs(Q) [kN] 6,481 30,000 0 30,000 10,000 3,000 

Qmax [kN] 6,654 31,560 0 31,560 15,400 31,560 

(u)pl [mm] 636.329 493.3 493.3 493.3 493.3 493.3 

ux,el [mm] 18.5 142.9 0.0 -142.9 -5.0 14.3 

uy,el [mm] 83.3 0.0 0.0 0.0 0.0 0.0 

uz,el [mm] 5.7 -15.0 0.0 15.0 76.9 -1.5 

ux,pl [mm] 440.4 440.4 440.4 440.4 440.4 440.4 

uy,pl [mm] 0.0 0.0 0.0 0.0 0.0 0.0 

uz,pl [mm] -50.0 -159.5 -159.5 -159.5 -159.5 -159.5 

ux [mm] 459.0 583.3 440.4 297.6 435.4 454.7 

uy [mm] 83.3 0.0 0.0 0.0 0.0 0.0 

uz [mm] -44.3 -174.5 -159.5 -144.5 -82.6 -161.0 

abs(u)[ mm] 468.6 608.8 468.4 330.8 443.2 482.4 
Table 11 - Output data 

The data in the spreadsheet are also plotted in load-deflection diagrams where the response is 

automatically showed.  
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6.3 Elasto-plastic response 
The following sections will cover the elasto-plastic behavior of the model compared to the response 

obtained by Plaxis analyses.  

6.3.1 Response against Plaxis results 

The spreadsheet has been presented, and it is time to show how the empirical results correspond to 

the numerical results. The load-deflection curves where the torsional angle β is 0 and 10 degrees, 

except for the vertical load case, are as follows:  

  

  

  

Figure 100 - Elasto-plastic response; Plaxis and empirical results, β=0 degrees 
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Figure 100 shows the elasto-plastic behavior from Plaxis curves and empirical curves when the 

torsional angle is 0 degrees. It is observed that the best curve fitting is obtained when the inclination 

angle is between 20 and 30 degrees.  

  

  

  

Figure 101 - Elasto-plastic response; Plaxis and empirical results, β=10 degrees 

Figure 101 shows the elasto-plastic behavior from Plaxis curves and empirical curves when the 

torsional angle is 10 degrees. The curve fitting for all the horizontal load cases interpolates the Plaxis 
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results in a proper way; the tendency is thus for the quality of the curve fitting to increase with the 

torsional angle β.  

 

6.3.2 Two-way loading 

It can be concluded that the elasto-plasticity behaves accurately for proportional loading, especially 

since the plastic anisotropy of the anchor response is disregarded, and instead optimized as a whole. 

Since isotropic hardening is assumed, the formulation would, however, not provide realistic results 

for two-way loading due to the Bauschinger effect. A load cycle in the x-direction is applied to 

illustrate its limitation.  

 

Figure 102 - Load cycle in the x-direction; Plaxis and empirical isotropic response 

If cyclic two-way loads were expected, kinematic hardening would clearly be favorable due to the soil 

parameters applied in this thesis.  

6.3.3 Normality 

Another interesting aspect of the Plaxis results is whether the normality assumption is applicable at a 

macro level between padeye loads and padeye displacements. The soil parameters in the thesis 

impose associate flow at element level since the dilatational angle equaled zero. The question is then 

whether the normality assumption remains valid after all the elements have been integrated at the 

global level. Some degree of discretization error will in any case be present, due to the finite element 

discretization. The yield surface, which the Plaxis results will be compared against, will also contain a 

degree of error; even though the chosen yield surface provides accurate results, the points are still 

not interpolated exactly. Plastic displacement vectors in the xz-plane were normalized and plotted 

against the yield surface when the rotational angle β was zero. The normalized plastic incremental 

displacements were isolated by subtracting the incremental elastic displacements, obtained from the 

stiffness matrix, from the total incremental displacements, and then normalized: 

{    }          
 

{     }  [ ]
  {  }

√ {     }  [ ]
  {  }   {     }  [ ]

  {  } 
 

(6.42) 
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The following normality is observed: 

 

Figure 103 - Normality; plastic displacement vectors 

Figure 103 shows that the normality assumption is valid for the global system. The elasto-plastic 

formulation also assumes associated flow, which means that the plastic displacement increments will 

be normal to the yield surface.  

6.4 Elasto-plasticity: Summary 
The elasto-plasticity has been implemented in an Excel spreadsheet. The hardening rule is 

represented by the hyperbola, and isotropic hardening is assumed. The second yield surface was 

taken as the yield criterion, with the mobilization factor taken as the state parameter. The results for 

proportional loading corresponded well, but were not appropriate in relation to two-way loading. 

The normality assumption was applicable at the global level with respect to padeye loads and padeye 

deflections.  
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7 Generalization 
In this chapter, the results will be presented in a generalized way. The capacity will first be presented 

in a non-dimensional way, before showing normalized capacity curves. Thereafter, the focus will be 

on stiffness. Generalization of elasto-plasticity will then be dealt with. Finally, it will be shown how 

the generalized response corresponds to suction anchors with aspect ratios L/D equal to three and 

eight. Note that the generalization is still limited to undrained conditions.  

7.1 Non-dimensional results 
Non-dimensional results will be presented in the following, thus making the results applicable to 

situations with other anchor geometries and other soil conditions. It is debatable which parameters 

the anchor should be generalized with respect to. For horizontal loads, it has been chosen to 

generalize the results with respect to the width and the length of the anchor, as well as the average 

shear strength. The generalization should provide a good fit for other anchors as well, since the flow-

around mechanism gives the same unit resistance with depth, while for shallow suction anchors, the 

base shear will compensate somewhat for the decrease in earth pressure resistance. For vertical 

loading, both the base resistance and the shaft resistance contribute significantly to overall capacity. 

While the shaft resistance is dependent on both the length and the width of the anchor, the base 

resistance is not directly dependent on the length, but is dependent on the width to the power of 

two. The shaft resistance will also be dependent on the roughness of the wall, and might change 

from project to project. The vertical results will be generalized on the basis of the same parameters 

as for horizontal loading, and a simple diagram will be presented illustrating how the results may be 

applicable to other suction anchors. Non-dimensional capacity coefficients are introduced: 
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(7.1) 
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(7.2) 

For interaction between horizontal and vertical loads, the non-dimensional coefficient will be 

obtained by combining equation 4.10 and 4.14. 
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(7.3) 

 where P is the magnitude of the failure capacity 

  N is a non-dimensional factor 

  L is the length of the anchor 

  D is the diameter of the anchor 

    ̅ is the average undrained strength. 

The capacity curves from Plaxis can now be presented in a non-dimensional fashion: 
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Figure 104 - Non-dimensional HV space 

 

Figure 105 - Non-dimensional capacity 

The figures show the capacities in a non-dimensional way, and include the reduction in capacity due 

to the other force components present. The non-dimensional capacity curves can now be used to 

calculate capacity for other suction anchors. It should be noted that non-dimensional results will 

overestimate capacity, due to the discretization error with finite elements. Comparisons against hand 

calculations show that the vertical and the horizontal loads are overestimated by approximately 10%, 

while the torsional moment is overestimated by 50%. If the capacity curves are used, these should be 

adjusted for the discretization error.  

The following expression makes the results from the vertical and the inclined loading applicable to 

other projects:  
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It involves three terms; a shaft term, a base term and a weight term. A diagram with the following 

assumptions is presented below: It is assumed that the weight ratio remains constant, that the ratio 

between the shear strength at the base and the average shear strength is the same as for this 

project, i.e. 32kPa/17kPa=1.89, and that the reversed end bearing coefficient is taken to be 9. The 

following diagram is then obtained, with a roughness factor of the wall equal to r=0.4, 0.6 and 0.8, 

respectively: 

 

Figure 106 - Vertical capacity factor; wall roughness = 0.4, 0.6, 0.8, Nc=9, W'/(LDsu)=0.54, su(L)/su=1.89 

Figure 106 shows that the vertical capacity factor changes significantly depending on the aspect 

ratio. 

7.2 Normalized strength 
The Plaxis results in the HV space can be normalized with respect to the maximum horizontal and 

vertical force components. The maximum horizontal load that can be applied to the system is 

38,000kN, while the maximum vertical force is 15,500 kN. 

 

Figure 107 - Normalized results 
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Figure 107 shows that horizontal loading at the padeye will mobilize the horizontal capacity at about 

83%. This means that the vertical distance between the load attachment point and the neutral plane 

reduces the moment by approximately 17%. The diagram does not capture the normalization due to 

torsion. A change in the aspect ratio will change of torsional resistance differently than the 

horizontal. The normalization is thus limited to suction anchors with an aspect ratio equal to 5 for the 

load cases where the torsional angle is different from zero.   

The empirical yield surface will, however, be capable of normalizing all the force components in a 

proper way. The empirical yield surface interpolated the Plaxis results almost perfectly, and will be a 

powerful tool in estimating the capacity of suction anchors with an arbitrary geometry and, at least, 

for normally consolidated clay conditions. The following equation is presented: 
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where a, b c, and d are empirical coefficients, which gave values of 5, 5, 2 and 2, 

respectively, due to curve fitting 

hx, hy, v, t, my and mx are normalized force components, resulting from the 

following expressions: 
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The ultimate force components and the eccentricities for a given project can then be inserted into 

the equations, thus obtaining the capacity surface. The surface can also be presented in the HVT-

space: 

 
 

    
            

(7.7) 

 where   √  
    

   and    √  
    

  

The latter equation imposes an insignificant adjustment of the original yield surface, since the 

resultant direction of the moment and the direction of the horizontal force will, in general, not 

coincide. However, this can safely be disregarded. The normalized HV space with constant torque-

mobilization curves will now be shown: 
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Figure 108 - Normalized HV space with constant mobilized torque 

The ultimate force components can be roughly estimated from the following equations: 
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where Hu, Vu, Mu and Tu are ultimate force components 

   is the horizontal capacity factor, which can be given a value in the range of 10-11, 

although this study has given it a value of 38,000/(30*6*17)=12.4 

z* is the distance between the seabed and the load attachment point 

   is, in this context, the distance from the seabed to the plastic neutral plane minus 

the distance from the seabed to the padeye 

  is the horizontal distance between the neutral axis and the load attachment point 

α  is the roughness factor for the shafts 

W’ is the effective weight of the anchor 

Nc is the reverse end bearing capacity factor, often taken to be 9 

Tpadeye is the torsional resistance due to the area of the padeye, which may be 

disregarded 

Note that the equation for the bending moment was derived for a linearly increasing earth pressure 

resistance per unit length. For situations were the earth pressure per unit length can be considered 

as constant, the ultimate capacity would be 0.25LHu, obtained from limit equilibrium. How the 

normalized yield surface can be applied in practice, will be showed by varying the padeye location 

based on the properties addressed by the thesis: 
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Figure 109 - Parametric padeye positions, ez=0-5 meters 

A quite interesting conclusion can be drawn from the figure; that it would be beneficial to lower the 

padeye position in response to any kind of inclined loading. The vertical plastic eccentricity for this 

project is 3 meters from the plastic neutral plane. The optimum padeye position for most kinds of 

inclined loading will be one meter above the neutral plane. Due to horizontal loads, the optimum 

padeye position will be at the neutral plane; which is the definition of the plastic neutral plane. A 

padeye position 2 meters below the plastic neutral plane was included as well; the curve shows that 

an increase in the vertical load causes a larger bending moment, rather than unloading of the 

bending moment as observed when the padeye position is above the neutral plane. This can also be 

shown by the constraint loading equations.  

It is also interesting to use the empirical yield surface with respect to the hand calculations obtained 

in this thesis. The ultimate components are inserted in equation 7.6, and compared against the Plaxis 

results: 

 

Figure 110 - Plaxis results compared to hand calculations 
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Figure 110 show that the capacity curves overestimates is entire load space compared to the hand 

calculations, and that the system is more sensitive in terms of misorientation with respect to the 

installation. 

7.3 Non-dimensional stiffness 
It can also be useful to present the stiffness of the system in a non-dimensional manner. It will then 

be possible to measure the displacements for small loads, and the elasto-plastic stiffness matrix will 

be given for arbitrary suction anchors (formulas will not be numbered). 

Several factors have an influence on the stiffness of the system: 

 Soil conditions 

 Stiffness profile 

 Type of loading 

 Geometry of the anchor 

The non-dimensional stiffness of the system will be limited to the undrained condition, which implies 

that the applied loads can be considered short-term loads. When the loads are acting on the system 

for a sufficiently long period of time, the soil will start to consolidate, and the displacements will be 

extended without any change in external loading. The stiffness profile of the soil and the geometry of 

the anchor will obviously have an impact on stiffness. The stiffness profile for this project is as 

follows: 

                                  [   ] (7.13) 
     (7.14) 

where G is the shear modulus 

 K is the bulk modulus, which can be regarded as infinite, due to the undrained 

conditions 

 n is a constant, which implies that G is proportional to the strength 

The average shear stiffness will be used in defining the non-dimensional stiffness of the system. The 

most significant anchor geometries for this project are the length and the diameter of the anchor. It 

has already been shown that the suction anchor can be considered as rigid, which means that the 

stiffness of the anchor is much greater than the stiffness of the surrounding soil. The stiffness 

equation for the system is as follows: 

{ }  [ ]{ } (7.15) 

 where { } is the load vector at the padeye 

  [ ] is the stiffness matrix 

  { } is the displacement vector at the padeye 

It might be convenient for formulation purposes if all terms in the stiffness equation are non-

dimensional. This will be accomplished if both the load vector and the displacement vector are non-

dimensional. The following generalization can be chosen: 

{ }  
{ }

     ̅
  { }  

{ }

 
   

(7.16) 
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where { } is the non-dimensional load vector determined by the length, the diameter and 

the average shear stiffness 

{ } is the non-dimensional displacement vector determined by the diameter 

The non-dimensional system equation will then be: 

{ }  [ ]{ } [ ]  
[ ]

   ̅
 

(7.17) 

The following non-dimensional stiffness matrix is obtained by insertion: 

[ ]  [
         
      
         

] 
 
(7.18) 

The stiffness matrix for a project can then be expressed as follows: 

[ ]    ̅ [
         
      
         

] 
 
(7.19) 

Since the shear modulus and the shear strength profile are proportional, the stiffness matrix can also 

be specified in terms of the proportional factor, the length and the average shear strength: 

[ ]      ̅ [
         
      
         

] 
 
(7.20) 

where n is the proportional factor between the shear modulus and the shear strength, 

which equals 100 for this project 

The model applied for the thesis focuses on the ultimate state. A larger soil volume should be applied 

if the focus is on the stiffness properties. The obtained matrix is for that reason likely to overestimate 

the stiffness, and should not be used for other projects without adjustment. 

The obtained matrix is defined in terms of padeye loads and deflections. The matrix is only suited for 

other projects if the eccentricities between neutral planes and load attachment points are the same, 

relative to the anchor geometries. This is highly unlikely, and a stiffness relation in terms of loads and 

responses at the optimum load attachment point would for that reason be more suited. The 

optimum load attachment point in this sense is where the three neutral planes intersect. The 

stiffness matrix at this point can then be transposed to any point at the suction anchor, under the 

assumption that the anchor can be considered rigid. 

The displacements are therefore constrained. The constraint relations between the padeye and the 

optimum load attachment point will be shown. Both the loads and the displacements will be 

constrained. The displacement relations are as follows:  
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(7.21) 

The expression can also be stated the other way around: 
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(7.22) 

There is a similar relation between forces applied at the padeye and force resultants: 
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(7.23) 

The equation states that an applied force vector at the padeye can be expressed as a transformed 

force vector at the optimum load attachment point.   

One assumption is required to determine the stiffness matrix; namely an uncoupled stiffness matrix 

at the optimum load attachment point. Due to the padeye plate, the system is not fully symmetrical, 

but this will not influence the coupling significantly. The neutral plane normal to the z-axis is defined 

as the plane that causes translations without rotations due to horizontal loads. The uncoupling 

assumption is thus appropriate. Plaxis results confirm the assumption. 
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(7.25) 

 

where  Kh is the horizontal stiffness 

   Hv is the vertical stiffness 

   Km is the bending stiffness 

   Kt is the torsional stiffness 

The stiffness coefficients are determined from load-deflection curves. 
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Inserting the constraint equations, the following system equations are obtained between the padeye 

load and the deflection: 
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And finally: 
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 (7.27) 

where   ,   ,    and     are the elastic stiffness coefficients resulting from the force 

components of the anchor 

   is the eccentricity in the x-direction between the padeye and the neutral plane; 

3.75 m 

   is the eccentricity in the z-direction between the padeye and the elastic neutral 

plane, which is defined as the plane that causes translation without rotation due to 

horizontal loads. 

The padeye position is not restricted to a fixed position under this formulation, which makes the 

formulation general with respect to anchor geometry and the stiffness profile of the soil. 

Note that the definition of ez in terms of capacity was different from the elastic definition. In the 

latter case, ez was the eccentricity between the load attachment point and the plastic neutral plane, 

which is the plane that provides the largest horizontal capacity.  

 

Figure 111 - The suction anchor; difference between elastic and plastic eccentricities 
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The planes will, in general, not coincide. This can be illustrated by comparing the responses caused 

by an applied bending moment, where the soil is first modeled as linearly elastic, then as elasto-

plastic, with the moment giving rise to a failure mechanism. The plastic eccentricity, which was 

presented in section 4.3, is 3.0 meters, while the elastic eccentricity is 2.2 meters.  

  

Figure 112 - Response caused by applied bending moment; (a) failure mechanism, (b) linearly-elastic response 

 

7.4 Elasto-plasticity generalization 
The generalization presented so far can also be implemented in the elasto-plastic formulation. A 

generalized stiffness matrix, yield surface and normalized ultimate strength have been presented, 

and only the hardening remains to be determined. The hardening rule in the elasto-plastic 

formulation was obtained by curve fitting between the mobilization factor and the displacements. If 

the displacements are normalized, for instance with respect to the diameter of the anchor, the 

hardening rule is also obtained. Other considerations, like for instance whether kinematic hardening 

should be applied, will be the same for the conventional formulation. 

The spreadsheet made for the project was implemented in a generalized way; the empirical 

coefficient, the ultimate components, the stiffness matrix and the eccentricities can all be easily 

changed for purposes of another project. However, the hardening rule needs to be determined.  
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8 Discussion 
In this chapter, the results from the project will be evaluated. Firstly, the modeling considerations 

will be discussed. The reliability of the model and the results will be addressed, before the tendencies 

of the results will be presented. These include tendencies of the load-deflection curves, the failure 

mechanisms and the capacity curves. The empirical data will then be addressed, before discussing 

generalization.  

8.1 Modeling considerations 
Modeling considerations are examined prior to analyses. Simplifications will always be necessary, 

however it is important that the physical behavior remains modeled in a proper way, and that 

operation of the model is not too time-consuming. This section discusses some of these 

considerations. 

Geometrical nonlinearities due to combined loading have been disregarded. The geometrical 

nonlinearities will have a large impact on some of the load cases; when a vertical pull-out load is 

applied, the contact area between the shaft and the soil will decrease, implying that a lower capacity 

will be obtained when implementing the nonlinearity, due to displacement boundaries. The 

geometrical load boundaries will also be important for the load cases where a large torsional 

moment is present. The failure mechanism of the anchor is then governed by anchor rotation about 

the z-axis. During rotation, the misorientation of the anchor will decrease, implying that the torque 

will also decrease. This response will only be obtained if geometrical nonlinearities are included. 

Geometrical nonlinearities will only be important for large deformations, and will be more time-

consuming to model. The load cases where the load vectors were pointed in the y- and z-directions 

were additional to conventional analyses, calculated with the updated mesh option. The updated 

mesh option will update the mesh due to the deformed geometry, and the strain measure is also 

different; nonlinearities between displacements and strains will be accounted for. The following 

response was obtained: 

 

 

Figure 113- Updated and unchanged mesh for vertical load case 
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Figure 113 shows that the updated mesh gives a reduced capacity for the vertical load case. The 

difference between the curves is especially prominent when the padeye has deflected about one 

meter. The updated mesh calculation had approximately reached the failure state when deflected 

one meter and a further increase in load would result in infinite deflections; the system is singular. 

The ultimate capacity with the updated mesh is 14,700 kN, which means that the conventional 

calculation, with failure taken as one meter padeye deflection, overestimated the capacity by about 

5%. It might thus be appropriate to adjust the failure definition for purposes of later projects. For 

instance, failure can be defined as D/10. It should be noted that the simple material model; the 

linearly-elastic Mohr-Coulomb model, does not account for softening at large shear strains. This 

means that in reality, the true load-deflection curve would most likely have an even larger softening 

response. The load case where loading was pointed in the y-direction gave the following response 

under the updated mesh option, compared to the conventional calculation: 

 

Figure 114 - Updated and unchanged mesh for the load case pointed in y-direction 

Figure 114 shows that the geometrical nonlinearities are of benefit to the system for large torsional 

angles. After a horizontal yielding plateau, the system shows a hardening behavior due to a decrease 

in the eccentricity between the loading line and the neutral axis. 

The response changes significantly for large deflections. However, since failure was defined as one 

meter padeye deflection, the analysis without geometrical nonlinearities will have a limited impact. A 

smaller deformation criterion might be adopted in order to limit the differences between the 

analyses. Alternatively, a correction factor, which accounts for the nonlinearity, can be introduced.    

Soil volume of the model is also a major consideration. In order to achieve the best failure 

mechanisms, it is important that the element mesh is dense where the failure mechanisms are 

expected. However, it would also be important, due to stiffness, to have a sufficiently large soil 

volume, in order to capture deflections that will have an influence on the response. The main focus 

of the thesis was on capacity. Soil volume of the model was therefore chosen for reasons of capacity, 

and the stiffness obtained should either be adjusted to reflect the distances to the boundaries, or 

calculated by other methods.  
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The geometry of the anchor was modeled with few simplifications. The ring stiffeners used for 

installation stability purposes were omitted, since the installation phase in Plaxis does not simulate 

the self-weight and the suction penetration. Compression forces in the anchor due to installation will 

therefore not be present. This simplification makes the modeling of the anchor more convenient. 

37 load combinations were chosen for the main analyses. The load cases were designed to map the 

entire load space with regard to tensile forces. Even though large torsional angles due to 

misorientation are highly unlikely, these were still included in order to obtain the response in the 

entire load space. The load cases were constructed in such a way as to have the most load cases 

where needed. For instance, since the failure mechanism and the vertical capacity were more or less 

exactly the same whether the inclination angle was 60 or 90 degrees, there was no need for load 

cases in between these. The same can be said for the torsional angle; most of the capacity due to 

torsional resistance was mobilized when the torsional angle was 20 degrees, and only one torsional 

angle was placed in between, in order to obtain a smoother capacity surface. 

8.2 Reliability of the model  
In any numerical study, it is essential to evaluate the reliability of the results. The reliability of the 

results can first be compared against hand calculations. Mesh refinements are also essential for the 

finite element model. It will also be important to examine the responses, and look for unphysical 

behavior. This can for instance be irregularities in the load-deflection curves, unreasonable changes 

in stress states caused by loads, unrealistic failure mechanisms, interface mobilization, continuity of 

the anchor, etc. If any one of the said responses gives answers that cannot be explained, something 

is likely to be wrong with the model.  

The results from the hand calculations gave answers that differed slightly from the corresponding 

load cases in Plaxis with the model of 20,500 soil elements: 

Force component 
Hand 

calculation Plaxis Error [%] 

Horizontal [kN] 34,000 38,000 12 

Vertical [kN] 14,000 15,400 10 

Bending moment [kNm] 204,000 230,000 12 

Torque [kNm] 16,000 23,800 49 
Figure 115 - Results from hand calculations and from Plaxis 

Figure 115 compares the hand calculated results to the results from Plaxis. The results from Plaxis are 

10-12% overestimated compared to the corresponding hand calculation, except for the torsional 

moment, which is overestimated by 49%. It should be noted that the hand calculations are not exact 

solutions either, and that 10-12% does not mean that the discretization error of the model is 10-12%. 

Nonetheless, the discretization error of the torsional resistance is more than one would desire. As 

described in the theoretical chapter, the resistance caused by torsion is due to three features; the 

shaft resistance, the base resistance, and the resistance due to the padeye. The shaft resistance 

contributed most significantly. It was suspected that the large error was caused by the padeye, and a 

load case with torsion, where the padeye plate was not activated was executed.  
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Figure 116 – Respnce with and without the padeye with respect to torsion, inc disp; (a) with padeye (b) without padeye, 
(c) response 

Figure 116 shows that the torsional stiffness will be calculated accurately if the padeye is not 

activated. At failure, a flow around mechanism is developed around the padeye. It turns out that a 

very fine mesh is needed around the plate in order to compute the response accurately. It would for 

that reason be better to not model the padeye at all. Equivalent padeye loads could rather be applied 

as a set of load vectors. 

The mesh refinements could indicate that the model offered a good convergence. However, a slow 

convergence rate might also be a possibility, which could convey a false impression. five mesh 

refinements were executed and compared in section 4.7. It was observed that the horizontal load 
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case for mesh refinement number three actually gave a more accurate answer than mesh refinement 

number four. Due to the nature of finite elements, the response should move towards correct results 

when the number of elements increases in a uniform way. However, the users of Plaxis 3D have 

limited control over the meshing options, and the difference between the mesh refinements will not 

be increased in a uniform way. Uniform mesh refinements are not desired either, since it is more 

important to increase the density of the mesh where the critical response is located. In the case of 

mesh refinement number four, the elements where positioned in a way that favored the vertical 

failure mechanism more than the horizontal one. Since mesh refinement number four was 

substantially more time consuming and provided only slightly better accuracy, mesh refinement 

number three was chosen for the main analyses. Mesh number five was too time-consuming for this 

parametric study. 

8.3 Observations of the capacities  
The capacity curves were given in terms of a load vector applied at the padeye position, with the 

inclination angle and the torsional angle mapping the entire load space for tensile forces. First of all, 

it was shown that the horizontal load-deflection curves for horizontal loading had a better defined 

yield plateau than for vertical loading. This can be explained by the failure mechanisms; the 

horizontal failure mechanism, consisting of the wedge mechanism at the upper part, and the flow-

around mechanism at the lower part, is closer to a rigid slip-plane mechanism than the vertical 

failure mechanism, which mechanism involves soil movements into the anchor, thus implying that 

the capacity will constantly increase with larger deflections. However, when the geometrical 

nonlinearities are included, the softening response will dominate after approximately one meter of 

padeye deflection. 

The failure mechanisms can roughly be divided into four categories:  

 Vertical failure mechanism, where the soil plug translates with the anchor, and a classical 

reversed end-bearing capacity is observed. 

 Horizontal failure without anchor rotation, involving a wedge mechanism that gradually 

converts into the flow-around mechanism. 

 Horizontal translations with rotations. The rotation center is then close to the anchor. The 

horizontal capacity is then reduced in order to maintain equilibrium due to the moment. 

 Torsional failure mechanism, where the anchor rotates about the z-axis. 

Vertical failure dominates when the load inclination angle is 30 degrees or more, and the maximum 

horizontal force is observed when the inclination angle is 20 degrees, due to the unloading of the 

bending moment, which is more beneficial than vertical loading with respect to capacity. When the 

inclination angle is zero, the rotation center is almost at the anchor base, and the soil at the lower 

part is not mobilized in any significant way. A torsional angle of 5 degrees does not reduce the 

capacity to any large extent; when the inclination angle is zero, the capacity is reduced by 4%. When 

the torsional angle is 10 degrees, the maximum reduction is present when the inclination angle is 20 

degrees; the capacity has now been reduced by 16%, which is a relatively large reduction. When the 

torsional angle is further increased to 20 degrees, only half of the capacity is left for the horizontal 

load cases, and the capacity and the corresponding failure mechanism are totally governed by the 

torsion. It should be noted that torsional angles of these magnitudes are definitely not realistic in 

practice, and are primarily included to obtain a complete surface, and to gain a deeper 
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understanding of the system. The torsional resistance of the system is likely to overestimate capacity 

more than the other force components, when considering comparisons against hand calculations. 

This implies that the true torque reduction will be increased. However, the normalized curves are still 

applicable, where the ultimate forces are either hand calculated or obtained by numerical studies. 

The normalized curves will then interact with all six force components in a constrained way, since the 

loads will be applied at the padeye. 

8.4 Evaluation of the empirical data 
Two different yield surfaces were considered, both focusing of the relation between the six different 

force components of the system. Constrained loading conditions were then introduced, and both 

yield surfaces could be expressed in terms of three unknowns. The three translational forces were 

chosen, since these are the forces imposed as a load vector at the padeye. When the three padeye 

forces are represented in space, information will actually be provided on all the six force 

components. The first yield surface had a simpler form than the second one, but the second provided 

by far the most accurate curve fitting. Comparisons between them can be made, assuming 

mobilization f=1: 

Yield Surface 1 Yield Surface 2 
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Simple form                                                             Slightly more extensive                                          

Easy to implement in elasto-plasticity            Time consuming to implement                             

Provides a decent curve fitting                                                     Provides excellent curve fitting                            

No physical foundation                                     Has a physical foundation                                      

Figure 117 - Comparisons yield surfaces 

Both capacity curves are quite good, although the second yield surface is more accurate. Optimizing 

showed that the average expected error for a load case was only 0.7%.  

The elastic stiffness coefficients were obtained by examination of load cases in the three normal 

directions, where linear curves were curve fitted based on the initial response of the load-deflection 

curves. The flexibility and stiffness matrix were then obtained. It was chosen to measure the loads 

and the displacement directly from the padeye. It would also be possible to load and measure the 

response at the optimum load attachment point, and then transpose the response to the padeye. 

The latter method would be generally applicable to other projects, although the eccentricity ez 

would also be needed.  

The curve fitting between the mobilization factor and the plastic deflections was based on elasto-

plasticity. Power law, Voce rule and hyperbola were all considered. The hyperbola offered the most 
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suitable shape and gave the best estimation through the method of least squares. The same 

hardening rule with the same coefficients was applied in all directions.  

Elasto-plasticity in terms of padeye loads and deflections was implemented by isotropic hardening, 

although specific load cycles in Plaxis indicated that kinematic hardening would be more appropriate. 

However, since the anchor will be loaded from a mooring chain, two-way loads are not likely due to 

loads from the platform.  

8.5 How to apply the generalized results 
Generalized results were presented in chapter 7. The generalized results can be applied in other 

projects, and a lot of time can be saved. However, it is important to first understand that the non-

dimensional results obtained from this study are upper bound solutions. Adjustments and 

comparisons are thus required. The second curve-fitted capacity curve will, however, be a powerful 

tool, which can be used to estimate the capacity surface. The fact that the generalization directly 

reflects the padeye loads makes it especially practical to use.  

The values of the stiffness coefficients are likely to be overestimated, because of the distances to the 

boundaries, which is just in excess of six diameters. In other words, the model is sufficiently large for 

capacity, but will overestimate stiffness. 

The generalized stiffness matrix, in which the eccentricities can easily be changed from project to 

project, may also be useful; if the various stiffness coefficients are known, the stiffness matrix with 

regard to any padeye position can be obtained. However, the elastic neutral plane is then needed.  
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9 Conclusion & further work 

9.1 Conclusion 
Capacity curves in Plaxis 3D for a suction anchor with an aspect ratio equal to 5 have been obtained, 

based on ultimate loads applied at the padeye, which is located approximately 2/3 of the anchor 

length from the seabed. The thesis is limited to undrained loading conditions. A parametric variation 

of the load directions has been executed, so that the entire loading space defined by tensile forces 

has been studied. The capacity curves show that misorientation of the anchor caused by the mooring 

plane will reduce capacity by about 3% when such misorientation is 5 degrees and 12% when such 

misorientation is 10 degrees, due to horizontal and slightly inclined loads. There is in practice no 

reduction in capacity when the inclination angle is 45 degrees or more, for realistic torsional angles.   

Two empirical curves have been determined in order to make the results applicable to other 

projects. The empirical formulas combine the six force components present in terms of padeye loads. 

Due to eccentricities to the three neural planes, there will be three forces and three moments 

present. One of the empirical curves interpolated all the Plaxis results with an average error of 0.7%, 

consisting of four empirical coefficients. This yield surface has been used to derive an elasto-plastic 

formulation, in terms of padeye loads and padeye deflections. Isotropic displacement hardening has 

been applied, and a general Excel spreadsheet has been established. The elastic and the plastic 

relationships have been determined from curve fitting.  

The results have been further generalized, so that the work in the thesis can be used for other 

suction anchors. The normalized capacity curve, in particular, can be efficiently used in other 

projects.  

The reliability of the results is mainly acceptable, although the torsional moment is overestimated by 

about 50%, due to the discretization error. It is showed that the overestimation is mainly due to the 

flow around mechanism of the padeye. 

9.2 Further work 
In further work, the numerical modeling can be executed in other programs, a kinematic hardening 

formulation can be constructed and experiments based on combined loading can be performed. 

More advanced material models can be applied, and capacity curves can be designed for drained 

conditions as well. 
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10.1 Attachment A - Horizontal capacity (Deng & Carter, 2000) 
Course increments, showed as an ilustration 

z [m] Nps Su(z) q(z) [kN/m] v(z) M(z) 

0 2,35 2 28,2 28,2 28,2 

1 4,76 3 85,7 113,9 142,1 

2 6,46 4 155,1 269,0 411,2 

3 7,66 5 229,8 498,9 910,0 

4 8,51 6 306,2 805,1 1715,1 

5 9,10 7 382,2 1187,3 2902,4 

6 9,52 8 456,9 1644,2 4546,6 

7 9,81 9 530,0 2174,2 6720,8 

8 10,02 10 601,4 2775,6 9496,4 

9 10,17 11 671,2 3446,8 12943,2 

10 10,27 12 739,7 4186,5 17129,7 

11 10,35 13 807,0 4993,5 22123,2 

12 10,40 14 873,4 5866,9 27990,1 

13 10,43 15 939,0 6805,9 34796,0 

14 10,46 16 1004,1 7810,0 42606,0 

15 10,48 17 1068,7 8878,7 51484,7 

16 10,49 18 1132,9 10011,6 61496,2 

17 10,50 19 1196,9 11208,4 72704,6 

18 10,50 20 1260,6 12469,0 85173,7 

19 10,51 21 1324,2 -19647,8 109715,7 

20 10,51 22 1387,7 -18260,2 91455,5 

21 10,51 23 1451,0 -16809,1 74646,4 

22 10,52 24 1514,3 -15294,8 59351,6 

23 10,52 25 1577,6 -13717,2 45634,4 

24 10,52 26 1640,8 -12076,4 33558,0 

25 10,52 27 1704,0 -10372,3 23185,7 

26 10,52 28 1767,2 -8605,1 14580,6 

27 10,52 29 1830,4 -6774,8 7805,8 

28 10,52 30 1893,5 -4881,2 2924,6 

29 10,52 31 1956,7 -2924,6 0,0 

30 10,52 32 2924,6 0,0 0,0 

  
Vmax [kN]= 33441,0 -44189,9 Mst 
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10.2 Attachment B - Incremental displacements, horizontal planes 
Incremental displacements for horizontal planes, located at z=-5m, z=-10m and z=-15m 
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10.3 Attachment C - Flow around mechanism padeye, incremental 

displacements 

 

Horizontal plane, z=-19m.  

 

yz-plane, x=3.5m. 
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10.4 Attachment D - Example elasto-plasticity 
Input: 

Imput, ceofficients: 
 

Input, load history 
  Type Value 

 
Load step dHx dHy dV 

fo [] 0,6 
 

1 15000 0 0 

a [] 5,0 
 

2 -35000 0 0 

b [] 5,0 
 

3 45000 0 0 

c [] 2,0 
 

4 -53000 0 0 

d [] 2,0 
 

5 58000 0 0 

Hu [kN] 38000 
 

6 -61000 0 0 

Vu [kN] 15400 
 

7 62500 0 0 

Mu [kNm] 230000 
 

8 0 0 0 

Tu [kNm] 23800 
 

9 0 0 0 

ex [m] 3,75 
 

10 0 0 0 

ez [m] 3 
 

tot 31500 0 0 

k1 [] 2,056 
     k2 [] 0,393 
     Stiffness matrix: 
       211443 0 13744 

   K [kN/m]= 0 60000 0 
     13744 0 130893 
   Flexibility matrix: 

 
  

     4,76E-06 0 -5,00E-07 
   F [m/kN]= 0 1,67E-05 0 
     -5,00E-07 0 7,69E-06 
   Output: 
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10.5 Attachment E - Deflection space Plaxis, β=0 
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