
LIDAR Datavarehus

Kjartan Bjørset

Master i ingeniørvitenskap og IKT

Hovedveileder: Terje Midtbø, BAT

Institutt for bygg, anlegg og transport

Innlevert: juni 2013

Norges teknisk-naturvitenskapelige universitet

NORGES TEKNISK-
NATURVITENSKAPELIGE UNIVERSITET
INSTITUTT FOR BYGG, ANLEGG OG TRANSPORT

Oppgavens tittel: LiDAR Data Warehouse Dato: 10.06.2013

Antall sider (inkl. bilag): 121

Masteroppgave x Prosjektoppgave

Navn: Kjartan Bjørset

Faglærer/veileder: Terje Midtbø

Eventuelle eksterne faglige kontakter/veiledere: Alexander Nossum

Ekstrakt:

Denne masteroppgaven har hatt som mål å finne ut hvordan et datavarehus bør designes for å kunne sikre effektiv
handtering av data produsert av laserscannere (LiDAR – Light Detection and Ranging). LiDAR-scannere er
fjermålingssytem som er i stand til å generere nøyaktige og tette punktskyer av omgivelsene. Desse punktskyene kan
brukes innenfor en rekke ulike ingeniørdisipliner, men er ofte store og er vanskelige å handtere med dagens
programvareløsninger. Fordi LiDAR-scanning er dyrt og fordi punktskyene kan brukes om igjen flere ganger av ulike
aktører, kan det ligge langsiktige gevinster i å organisere dataene på en gjennomtenkt måte. Denne masteroppgaven
gir en grundig gjennomgang av LiDAR-data og presenterer en rekke programvareteknologier som er nyttige for å
bygge en prototype LiDAR-datavarehus. Ny kunnskap om hvordan et datavarehus bør designed ved å utvikle og teste
en prototype bestående av en PostGIS database, en Apache Server og en Web-applikasjon. Positive egenskaper ved
PostGIS-databasen er at den støtter SQL-spørringer og har en organisert lagringsstruktur, men lagringseffektiviteten
er betraktlig lavere enn for LAS og LAZ-filer. Masteroppgaven konkluderer med at LAZ-filer er det beste alternativet
med tanke på lagringrseffektivitet. Masteroppgaven ser også nærmere på visualiseringsteknikker for LiDAR-data og
konkluderer med at ved å introdusere en Web-basert visualiseringsløsning vil datatilgangen bli enklere og mer
oversiktlig.

Stikkord:

1. LiDAR

2. Data Warehouse

3. WebGL

4. Geomatics

Kjartan Bjørset 10.06.2013

Oppgavetittel:
LIDAR data warehouse

Type oppgave:
Masteroppgave

Bakgrunn
 LIDAR data høstes i store mengder av mange ulike objekter – deriblant Nidarosdomen

 Data som fanges er punktskyer, noen med egenskaper utover koordinatfestet punkt

 Dette fører til en stor mengde data med varierende kvaliteter. Det finnes ikke noe system
for å samle alle disse data i en felles database og hvor man enkelt kan navigere i en samlet
datamengde og laste ned på tvers av datasettene.

Oppgave (Stikkordsform)
 Implementere en proof-of-concept av et datavarehus som kan lagre punktskyer i et

felles referansesystem uavhengig av datafangstmetode eller tilhørende attributter.

o Definere et dataskjema og et grensesnitt for støttet data

 Undersøke skaleringsmuligheter på databasen

o Velge software, algoritmer/teknikker

o Designe databasen

 Gjennomføre tekniske eksperimenter på forskjellige aspekter med datavarehuset med
reelle datasett

 Implementere et grensesnitt for effektiv uthenting av data

 Implementere en proof-of-concept applikasjon som kan navigere i datamengden
lagret i datavarehuset. Fortrinnsvis ved bruk av standard webteknologier.

Veiledere
Eksterne: Nidarosdomen

NTNU: Terje Midtbø / Alexander S. Nossum / Trond Arve Haakonsen

Norwegian University of Science and
Technology

Master Thesis

LiDAR Data Warehouse

Author:

Kjartan Bjørset

Supervisor:

Dr. Terje Midtbø

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

in the

Research Group: Road, Transport and Geomatics

Department of Civil and Transport Engineering

June 2013

http://www.university.com
http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Faculty of Engineering Science and Technology

Department of Civil and Transport Engineering

Master of Science

LiDAR Data Warehouse

by Kjartan Bjørset

Light Detection and Ranging (LiDAR) scanners generate dense and highly accu-

rate three-dimensional point clouds of their surroundings. These point clouds can

be used in a wide range of engineering applications, but are generally large and

hard to manage using existing software solutions. Because the point clouds can be

used in many different applications, an efficient organization of the data may have

positive effects on data utilization and help justify the high acquisition costs. This

thesis presents a thorough description of the LiDAR data structure and introduces

relevant software solutions for developing a prototype LiDAR data warehouse. By

building and testing the prototype, which consists of a PostGIS database, Apache

server and a Web application, new knowledge was obtained about how a LiDAR

data warehouse should be designed. While the PostGIS database provides a pow-

erful query language and organized management of the data, it has a lower storage

efficiency as compared to LAS and LAZ file management solutions. The results

show that the LAZ file is the best choice for maximized storage efficiency. The

thesis also investigates visualization techniques for LiDAR data and suggests that

a web-based point viewer, which has been successfully implemented, could increase

the accessibility of point cloud data.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Preface

This thesis summarizes a semester of research and software development on the

topic of managing data produced by Light Detection and Ranging (LiDAR) scan-

ners. LiDAR scanners have over the last couple of decades become an efficient and

accurate way of mapping the world around us. Through my studies I have had the

opportunity of trying a few LiDAR scanners and have been impressed with the

accurate 3D point clouds they create. Therefore, when the opportunity of writing

a Master thesis about ”LiDAR data warehouse” presented itself, the decision pro-

cess was short. The thesis has resulted in a prototype of a data warehouse that can

load, store and extract point clouds, in addition having a Web-based application

for 3D visualization. The data that is show-cased in this document, and has been

the basis of development and testing of the system, has been lent to me by two

companies. I owe Blom Geomatics and Nidaros Domkirke Restaureringsarbeider

huge thanks for their cooperation.

Finally, I would like to thank all the people who in some way have helped me get

through this thesis. I would like to thank my primary supervisor, Terje Midtbø,

for giving me the opportunity to work on this topic. I would also like to thank

my co-supervisor Alexander Nossum, who has been an inspiration and of great

help throughout the semester. I would also like to thank my second co-supervisor,

Trond Arve Haakonsen, who has supported me in my work and helped me acquire

data. My fellow students deserves a thank you for the feedback and tips they have

given me during the semester. Lastly, but not least, I would like to thank my dear

Helen for her feedback and support throughout the thesis.

iii

Contents

Abstract ii

Preface iii

List of Figures ix

List of Tables xi

Abbreviations xiii

I Introduction 1

1 Introduction 3

II Background 5

2 LiDAR 7

2.1 Light and Detection Ranging . 7

2.1.1 Technical Description . 9

2.1.1.1 Laser Light . 9

2.1.1.2 Analysing the Returned Light 12

2.2 Applications . 13

2.2.1 LiDAR Data . 16

3 Data Management 19

3.1 Storing Information . 19

3.2 Computer Files . 21

3.2.1 LAS and LAZ . 21

3.2.2 e57 . 23

3.2.3 ASCII . 23

3.2.4 Proprietary formats . 23

3.2.5 Managing the Files . 24

3.2.6 Software for LiDAR Data 24

v

Contents vi

3.3 Databases . 27

3.3.1 Relational Databases . 27

3.4 Object-Relational Databases . 28

3.5 Databases and Geographic Information 29

3.5.1 Databases Representing Points 29

3.5.1.1 PostGIS implementation 30

3.5.1.2 Oracle’s Point Cloud 32

4 Accessing the Data 35

4.1 Access Methods . 35

4.1.1 Hash-based indexing . 35

4.1.2 Tree-based indexing . 36

4.2 Spatial Indexing . 37

4.3 Mapping to One Dimension . 37

4.3.1 kD trees and quadtrees . 38

4.3.2 R-trees . 38

4.3.3 Real World Applications . 39

4.3.4 PostGIS: GiST and R-tree 40

4.3.5 Oracle Point Cloud: R-tree 40

4.3.6 LAX . 40

5 Web Technology 43

5.1 The Internet and the Web . 43

5.1.1 HTML5 . 44

5.1.2 Javascript and the DOM . 44

jQuery . 45

Bootstrap.js . 45

Leaflet.js . 46

5.1.3 HTML5 in the Third Dimension 46

Three.js . 47

III LiDAR Data Warehouse 49

6 State of The Art 51

6.1 OpenTopography . 51

6.1.1 System Architecture . 51

6.1.2 Deliverables . 53

6.2 Denmark: Kortforsyningen . 54

6.3 National Land Survey of Finland 55

6.4 CyArk . 56

7 Prototype 59

7.1 LiDAR Data Warehouse . 59

7.1.1 Prototype Development . 59

Contents vii

7.2 System Components . 60

7.2.1 Layer 1: Spatial Data Storage and Processing 61

7.2.1.1 LiDAR Data Storage 61

7.2.1.2 Database Structure 62

7.2.1.3 Extracting, Transforming and Loading 64

7.2.1.4 Data Accessing . 65

7.2.1.5 Database Modelling Alternatives 65

7.2.2 Layer 2: Server . 66

7.2.3 Layer 3: Client Layer . 66

7.3 Presenting Cloudy . 67

7.3.1 Point Cloud viewer . 68

7.3.2 Data Extraction . 72

7.4 Testing . 73

7.4.1 Storage efficiency . 74

7.4.1.1 Loading data . 76

7.4.1.2 Index Size and Efficiency 77

7.4.2 Web browser testing . 81

IV Conclusions 85

8 Discussion and Future Work 87

8.1 Discussion . 87

8.2 Fulfilling the Requirements . 87

8.3 Lessons learned . 90

8.4 Future Work . 91

9 Conclusion 93

9.1 Conclusion . 93

V Appendices 95

A Prototype Development 97

A.1 Developing Cloudy . 97

B Prototype Experimentation 105

B.1 Extra Functionality . 105

B.2 3D Models From Point Clouds . 105

B.2.1 3D Analysis . 106

B.3 Real-Time Processing: NDVI . 107

C Hardware Comparison 109

C.1 Motivation for testing . 109

Contents viii

C.2 Tests . 110

C.2.1 Test 1 . 110

C.2.2 Test 2 . 111

C.2.3 Test 3 . 112

C.2.4 Test 4 . 112

C.3 Results . 112

D Sequence Diagrams 115

Bibliography 117

List of Figures

2.1 SHOALS Aerial Laser Hydrography System 8

2.2 Laser waveform return . 10

2.3 LiDAR flight overview . 11

2.4 LiDAR mirror scan motion . 12

2.5 LiDAR return waveform from trees 13

2.6 LiDAR data set from Texas, USA 14

2.7 Holmenkollen Bare Earth Model . 15

3.1 Computer storage . 20

3.2 LiDAR in Revit . 26

3.3 LasView . 27

3.4 Size Comparison: Coordinates . 31

3.5 Oracle Point Cloud . 32

4.1 B-tree . 36

4.2 R-tree . 39

4.3 Oracle R-tree . 40

5.1 Bootstrap Example . 46

5.2 WebGL game example . 47

5.3 Three.js globe example . 48

6.1 OpenTopography System Architecture 52

6.2 OpenTopography System Architecture 53

6.3 Laser . 55

6.4 Denmark LiDAR data set . 55

6.5 Finland LiDAR data . 56

6.6 CyArk Point Cloud Viewer . 57

7.1 Development process . 60

7.2 LiDAR . 61

7.3 Cloudy front apge . 68

7.4 Cloudy point viewer . 69

7.5 Cloudy point viewer: Indoor bird’s perspective 70

7.6 Cloudy point viewer: Indoor close-up 70

7.7 Cloudy point viewer: Pruned dataset 71

7.8 Cloudy point viewer: No colour . 72

ix

List of Figures x

7.9 Cloudy export . 73

7.10 Relative storage efficiency . 74

7.11 PostGIS DB single point storage. All database specific storage use
not included . 74

7.12 LAS file single point storage. All LAS specification fields not included 75

7.13 Holmenkollen loading time . 77

7.14 PostGIS Query efficiency . 78

7.15 Index test 1 . 80

7.16 Browser comparison . 82

7.17 Bandwidth effects . 83

A.1 LiDAR version 1 . 98

A.2 LiDAR point viewer version 1 . 98

A.3 LiDAR version 2 . 99

A.4 LiDAR point viewer version 2 . 100

A.5 Cloudy version 2: Cellphone . 100

A.6 LiDAR version 3 . 101

A.7 LiDAR point viewer version 3 . 102

A.8 LiDAR point viewer version 4 . 103

A.9 LiDAR point viewer version 4 . 103

B.1 Cloudy TIN and CAD . 106

B.2 DTM Shadow Analysis . 107

B.3 Holmenkollen NDVI . 108

C.1 Test 2 query result . 111

C.2 Test: Throughput . 113

D.1 Web Map Sequence Diagram . 115

D.2 Browser Point Cloud Creation . 116

D.3 Export Sequence Diagram . 116

List of Tables

3.1 LAS file revisions . 22

3.2 Well Known Binary Codes, written as integers 30

3.3 WKB PointZ space requirement . 30

4.1 Results in milliseconds from running Q1 37

6.1 OpenTopography processing time 54

7.1 Prototype meta data table . 63

7.2 Prototype point data table . 64

7.3 Size Comparison I: Holmenkollen - 9.4 Million points 75

7.4 Size Comparison II: Nidarosdomen - 1.556 Billion points. 76

7.5 Index size comparison . 79

7.6 Index test 2 . 81

C.1 Storage Test Machines . 110

C.2 Test: Time spend (seconds) . 113

xi

Abbreviations

ALH Air LiDAR Hydrography

ALS Aerial LiDAR Scanning

BIM Building Information Model

BLOB Binary Large OBbject

CAD Computer Aided Design

CIM City Information Model

CML Continuous Mapping and Localization

DEM Digital Elevation Model

DSM Digital Surface Model

DTM Digital Terrain Model

GNSS Global Navigational Satellite System

GPS Global Positioning System

HDD Hard Disk Drive

INS Inertial Navigational System

LiDAR Light Detection and Ranging

NCALM National Center for Airborne Laser Mapping

NIR Near Infra Red

NSF National Science Foundation

RADAR Radio Detection and Ranging

SDSC San Diego Supercomputer Centre

SLAM Simultaneous Localization and Mapping

SLR Satellite Laser Ranging

SONAR Sound and Navigation Ranging

SSD Solid State Device

xiii

Abbreviations xiv

TIN Triangular Irregular Network

USGS United States Geological Service

WKB Well Known Binary

WKT Well Known Text

WMS Web Map Service

Part I

Introduction

1

Chapter 1

Introduction

In recent years, the advancement of 3D-mapping tools have made high-resolution,

accurate ”point clouds” available to the engineering industry. In their simplest

form, point clouds contain three-dimensional coordinates but, depending on the

acquisition technique, additional information, such as colour, intensity or classi-

fication values, may be tagged to each point. There are several techniques avail-

able for capturing point clouds: SONAR, RADAR, LiDAR and photogrammetry,

which are all capable of producing vast amounts of point data. Out of these sur-

veying techniques, LiDAR, an acronym for Light and Detection Ranging, has been

deemed the most versatile and accurate. LiDAR systems use laser light to capture

millions of points per seconds - resulting in data called ”point clouds.”

LiDAR data can be used in a wide range of applications, including traditional

surveying and mapping, 3D visualization, vegetation mass estimation and archae-

ology. In recent years, LiDAR has even been used for wind speed measurements

and sensory units in autonomous cars. For many of these applications, the point

clouds are not the end product, but rather an intermediary step on the way to

the 3D representation or derived information that is needed for a specific purpose.

Because point clouds usually contain millions or even billions of points, after they

have served their purpose, it can be time-consuming and resource demanding to

store these in an organized manner. This often leads to data sets ending up in

files, on external hard drives or other offline storage solutions.

3

Chapter 1. Introduction

Taking into account the vast size of point clouds, and that the user wants a simple

and easy method to store them, the quick and dirty solution of simply saving the

data in files is understandable. However, there might be benefits from having the

LiDAR data stored in a more organized manner. Point clouds are versatile and

can be re-used many times for different purposes. This becomes more interesting

when the acquisition cost is taken into account. Because LiDAR scanning requires

expensive equipment, trained personnel and often includes vehicle or aircraft op-

eration, the data sets come with a hefty price tag. By making point clouds more

available, it becomes easier for users to harness the power of LiDAR data. This

realization has been made by some, such as the governments of Denmark and Fin-

land, who have made all of their raw data available on-line. Another example is

the organization OpenTopography, which is being funded by the US government

and state institutions to do the same.

However, even when the will to organize LiDAR data is there, the path to selecting

a system that can manage the data is complicated. Software solutions for working

with and storing LiDAR data are still in their infancy. Because many of the cur-

rent spatial databases and Geographical Information Systems have poor support

for LiDAR data, it is not straight forward to use these as data management solu-

tions. This master thesis aims to investigate how LiDAR data can be stored in an

efficient, organized and user-friendly manner. This was done by, firstly, developing

a thorough understanding of the challenges related to the structure, acquisition,

storage and visualization of LiDAR data. A LiDAR data warehouse prototype

was developed, followed by an assessment of what the implementation of such a

system would entail.

The report is divided into four parts: Part 1 presents the problem of LiDAR

data management. Part 2 presents background knowledge needed to build a Li-

DAR data warehouse: LiDAR as a remote sensing technique, storage and access

of spatial information, and finally, recent advances in Web technology. In part

3, state-of-the-art solutions are explained together with the prototype developed

during this master thesis. In part 4, the discussion and conclusions are presented.

4

Part II

Background

5

Chapter 2

LiDAR

2.1 Light and Detection Ranging

LiDAR, an acronym for Light and Detection Ranging, is a remote sensing tech-

nique based on the principle of measuring the distance to an object by illuminating

it and analysing the backscatter. It bears resemblance to Sound and Navigation

Ranging (SONAR) and Radio Detection and Ranging (RADAR), but uses light

instead of sound or radio waves to measure distances. Since the 1860s, when the

speed of light was first accurately measured, LiDAR has been a theoretical pos-

sibility, but it was not until the invention of the laser in 1958 that it became an

viable solution[1]. Lasers concentrate light beams, which makes it easier to detect

and isolate light reflected by objects. One of the first successful uses of LiDAR was

measuring the distance to the moon, which was done in 1962 with a few decime-

tre accuracy[1, 2]. Another NASA-related application of LiDAR is Satellite Laser

Ranging (SLR), a crucial part of maintaining accurate satellite altimeter infor-

mation. Many of the early LiDAR applications were based on measuring single

distances between two objects, but it was also realized that by emitting light rays

in several directions, LiDAR could be used as a mapping tool. This was first dis-

covered by the US Navy, who came up with the idea of using LiDAR for submarine

detection in the 1960s [1, 3]. As the military projects were classified information,

7

Chapter 2. LiDAR

the first research papers on this topic surfaced in the 1970s and operational pro-

totypes were developed in the 1980s [4]. One of the first successful attempts at

large-scale Aerial LiDAR Hydrography (ALH) was a joint American-Canadian

project called SHOALS, which was completed in 1994.

(a) SHOALS helicopter (b) SHOALS system overview

Figure 2.1: SHOALS Aerial Laser Hydrography System[5]

Over a period of three years the SHOALS system mapped over 2000 square kilo-

metres of coastal area in the two countries[5]. In addition to the LiDAR scanner,

SHOALS carried an Inertial Navigational System (INS) and utilized the Global

Positioning System (GPS). The GPS and INS helped reduce the number of ground

control points needed to georeference the data, and today this is the standard set

up for all Aerial LiDAR Scanners (ALS). In 1995, the first commercial aerial Li-

DAR scans were carried out and in 2001 there were 75 companies operating 60

scanners across the globe[1]. Since then, LiDAR technology has improved in terms

of accuracy and information quality and is being used in an increasing number of

applications. With the current technology, a single scan can exceed hundreds of

gigabytes of data, thus, challenging the existing hardware, software and IT infras-

tructure solutions.

8

Chapter 2. LiDAR

2.1.1 Technical Description

Current LiDAR scanners are based on one out of two observation techniques

for measuring the distance between the scanner and an object: Time-of-flight

or phase-shift observation[6]. For time-of-flight observation, the scanner observes

the elapsed time for a transmitted laser pulse to return to the scanner. Then the

distance is computed by multiplying time with the speed of light, as shown in

equation 2.1.

d = (t1 − t0) ∗ c (2.1)

tflight =
φ

2Π ∗ fmodulation

(2.2)

The second option is to have transmit a laser beam with sinusoidally modulated

optical power, which makes it is possible to observe the phase change of the re-

turned signal. From the phase change, the time of flight can then be computed

by using equation 2.2. The result is then substituted into equation 2.1. Scanners

that use this technique, typically have a far higher data acquisition rate compared

to time-of-flight-based scanners, but their range is also significantly shorter: The

modulation signal is periodic and introduces ambiguity in the range measurements

for longer distances. As an example, Leica’s phase scanner, HDS6200 has a max-

imum range 79 meters, whereas the time-of-flight scanner, ALS60, has maximum

flying height of 6 km[6].

2.1.1.1 Laser Light

The laser light used for LiDAR is usually in the lower region of the near-infra-red

(NIR) spectrum. Wavelengths between 800 nm to 1550 nm are commonly seen in

the industry[6–8]. Using these wavelength results in vegetation reflecting a large

portion of the light, whereas other materials such as water and asphalt will absorb

9

Chapter 2. LiDAR

it, all of which can be used for classification purposes. For ALH systems such as

SHOALS, a second laser light is used to penetrate the water: Green light with a

wavelength of 532 nm is emitted in addition to the NIR light[5, 6]. This means

the scanner will observe two different returns over an extended time interval, as

illustrated by the idealized return waveform in figure 2.2. This is an important

idea in LiDAR scanning which is increasingly being exploited to analyse the data.

This concept will be presented in full in section 2.2.1.

Figure 2.2: Laser waveform return[5].

The size of light ray that reaches the illuminated object will vary in size depending

on the light source and the scan distance. For ALS this size is usually referred

to as footprint: Big footprint laser scanning refers to ground diameter between

10-70 meters, whereas small footprint scanning refers to a ground diameter in

the sub-metre area[6, 7]. Typically, the ground-based LiDAR scanning implies

small footprint scanners, whereas ALS scanners tend to have a larger footprint.

Footprint size is naturally determined by the flight height, which in turn will have

implications for the flight speed that can be used to survey an area, as illustrated

in figure 2.3.

10

Chapter 2. LiDAR

Figure 2.3: LiDAR flight overview[7]

Another part of the LiDAR scanner that affects the structure of the gathered

information is the mirror motion inside the scanner. There are many different

ways of doing this, in figure 2.4 four of them are shown. The see-saw pattern is

the most common solution for ALS[7].

11

Chapter 2. LiDAR

Figure 2.4: LiDAR mirror scan motion[7]

2.1.1.2 Analysing the Returned Light

Regardless of which observation method, scan pattern or footprint size is being

use, the returning light has to be captured by the optical unit in the scanner.

As shown in figure 2.2, the intensity of the returned light has to be analysed in

order the identify the position of the illuminated object. While 2.2 shows how this

problem can look like for hydrographic LiDAR scans, the principle can also be

applied to forested areas: Parts of the light may be returned by leaves or conifer

needles, while others will be reflected by the ground. An illustration of this can

be seen in figure 2.5, where several returns are returned per light ray.

12

Chapter 2. LiDAR

Figure 2.5: LiDAR return waveform from trees[6].

This figure also shows how different footprint sizes will affect the returned wave-

form. Traditionally, LiDAR scanners have collected this information by identifying

the significant changes in the return waveform and exported this directly as dis-

crete returns[6]. Typically, two to four returns have been the maximum amount,

and there has been no way of seeing the raw waveform data. In 2004, this changed

when new scanners capable of storing the entire waveform, were introduced to the

market. These scanners, often referred to as ”full-waveform LiDAR scanners”,

were a revolution with regards to data quality. There is however a catch to this

technological advance: As reported in a study from 2009, storing full waveform

data would lead to data sets five times bigger than the discrete return data sets

at the time[6]. Seeing as the digitizing interval could, and probably will due to

technological advances, get shorter in the future, these data sets may grow even

larger.

2.2 Applications

One of the earliest applications of LiDAR scanning was the creation of Digital

Surface Models (DSMs) and raster images. This can be done by running the

13

Chapter 2. LiDAR

point clouds through algorithms that produce 2D or 3D representations. A simple

approach would be to snap each point to a regular cell structure and use this

as a raster image with elevation or return intensity tagged to each pixel. This

is demonstrated in figure 2.6, where the left image shows the raw point cloud

coloured by elevation and the right image shows a raster image derived from it.

(a) LiDAR visualization (b) Raster image

Figure 2.6: LiDAR data set from Texas, USA

A more sophisticated approach would be to build a Triangular Irregular Network

(TIN). If this is done for a LiDAR data set that is unclassified, we get a Digital

Surface Model. That is, a surface that follows the highest points in the terrain,

including trees, buildings and other structures. As LiDAR data has become more

detailed, it has become customary to classify points on whether or not they are

ground reflections. Running a triangulation algorithm on these point clouds will

result in a ”bare-earth” TIN, also referred to as ”terrain models” or Digital El-

evation Models (DEM). These have a wide range of applications: 3D modelling,

geological surveys and identifying archaeological dig sites [9]. The non-ground clas-

sified are obviously points off the ground and could be vegetation, buildings and

power lines to mention a few. Especially vegetation ha been a prioritized research

areas, and lately the full-wavelength data is being used to improve classification

algorithms[8].

14

Chapter 2. LiDAR

Figure 2.7: A bare-earth DTM based on classified LiDAR data. Created with
LasTools and visualized in ArcScene 10.1.

LiDAR is increasingly being used in the civil engineering sector as well: During the

planning phase of construction projects, stakeholders are often interested in seeing

what the end product will look like. By using 3D models created from LiDAR

scans combined with CAD drawings, it becomes easy to visualize a project. In

fact, generating entire City Information Models (CIM) has also become a market

in itself. Because of the high density and accuracy of phase-based LiDAR scanners,

scan data are also being used for as-built-surveys, where the scan has to match

the construction plan specifications. A typical use for as-built surveys is scanning

tunnels under construction to minimize the needed concrete lining and ensure that

height clearance is within acceptable limits [10].

LiDAR has also been shown to be able to detect clouds, water vapour, aerosols

and even be used as a measure of wind speed [11]. Finally there is the growing

industry of robotics. While current robots basically are production line workers,

new and interesting prototypes are being developed that in the future can replace

humans for more advanced tasks as well. Since 2010 Google has been developing

the Google Self-Driving Car, which incorporates GNSS navigation, INS and Li-

DAR in order to map the world around it. In the field of robotics this is called

Simultaneous Localization and Mapping (SLAM), or Concurrent Mapping and

15

Chapter 2. LiDAR

Localization [12]. These systems are in principle, survey vehicles with an artificial

intelligence. Although they are not currently being used for surveying or mapping

purposes, the possibility is evidently there. Autonomous drones are also being

developed, which is a promising technique for indoor mapping[13].

2.2.1 LiDAR Data

The design of a LiDAR scanner means that each processed pulse at the very least

holds information about the distance to the surface that reflected it, a scan angle

and an intensity value. Whether or not the full waveform is captured or simply

processed and converted into discrete returns, depends on the system design. RGB

image information can also be added to the scan data, but that is usually done

after the point cloud is processed or 3D models have been created. The customer’s

order and the application the data is to be used for, dictates the form the point

cloud data will be delivered on. A classification scheme for LiDAR data containing

six different data processing levels has been suggested by the National Geospatial-

Intelligence Agency in the US[14]:

• Level 0 - Raw data and Metadata

• Level 1 - Unfiltered 3D Point Cloud

• Level 2 - Noise-filtered Point Cloud

• Level 3 - Georegistered 3D Point Cloud

• Level 4 - Derived Products

• Level 5 - Intel Products

Level 0 The content of the raw data will mainly differ with regards to two

factors. Firstly, whether or not the scan system is moving determines if INS and

GNSS data is needed to compile the point cloud. Another factor is whether or

not the scanner captures full waveform or simply outputs the discrete returns, as

16

Chapter 2. LiDAR

discussed in section . Meta data, such as scan system, date, time and calibration

date are also included.

Level 1 The result of this processing done at this level is an unfiltered point

cloud, which means the data’s 3D representation is computed by using the raw

data. The meta data is also kept for this level.

Level 2 After the 3D point cloud is ready, it is filtered to exclude superfluous

points from overlap sections between scans. As in Level 1, all meta data is kept

for this stage.

Level 3 The georeferencing step is dependant on whether or not the scanner

is stationary. For mobile scans, georeferencing means improving the point cloud

accuracy or transforming the data into a different reference system. For static

scans that are not dependent on having a global position information to compute

the point cloud, this step will give them a global reference.

Level 4 Derived products from laser scans can be DEMs, DSMs and other 3D

models created using relatively simple algorithms. For level 4, the meta data is

not necessarily included.

Level 5 The last level is full-fledged 3D models or information that has to be

created using advanced techniques. City Information Models and Building Infor-

mation Models, which require a lot of work, either computationally or in terms of

man hours, full in under this category. Again, meta data might be missing.

This classification scheme completes this introduction to Light and Detection

Ranging. It shows that LiDAR data is not necessarily just a point cloud, but

may be represented in different ways, depending on acquisition methods, LiDAR

scan systems, and at which processing level the data is at. This makes the task of

storing the data a bit trickier, which is what will be covered in the next chapter.

17

Chapter 3

Data Management

3.1 Storing Information

At it’s lowest level, storing digital information consists of writing sequences of bits

in a predefined pattern onto a storage medium. For long-term data storage, this is

ideally done using Hard Disk Drives (HDD) or Solid State Devices (SSD). These

storage devices arrange data bits in blocks and provide functions for manipulating

these blocks via a data bus, such as SATA or IDE[15, 16]. In recent years there has

been a storage technology revolution, as SSDs has become cheaper and faster. This

has had huge implications for performance in data access intensive applications,

something which clearly is the case for LiDAR data applications. Because the

main goal for this thesis has been to create a software application for LiDAR

storage, hardware performance tuning has not been within it’s scope. But due to

a bit of curiosity, a few tests were run to compare the performance of HDD and

SSD. these can be found in appendix C. From these it becomes quite clear that

the SSD revolution indeed has a huge impact on system performance.

19

Chapter 3. Data Management

Figure 3.1: Traditional computer storage[16].

Software applications connect to storage devices either by accessing the file sys-

tem of the Operating System (OS), or by directly manipulating the data on

a block level, as explained above[16]. The latter approach is mostly used for

Database Management Systems (DBMS) that require full control of the data

block management[15]. For normal file management, low-level block control is

not needed and the OS file system can be used. A model that visualizes the hi-

erarchy of computer storage is shown in figure 3.1. In general, applications that

are involved in information management can be split into two groups: Programs

that provide direct access to the computer files in a file system, and Database

Management Systems that abstracts away the actual data storage and instead

provides the ability to manipulate database tables and their content. These two

20

Chapter 3. Data Management

alternatives have different characteristics and areas of use. In this section we will

look at how they relate to LiDAR storage.

3.2 Computer Files

As explained in the previous section, a computer file is simply a sequence of binary

values. Computer files are identified by their extension name, which in the case of a

image file can be ”.png” or ”.jpeg”. A file extension identifies the specification with

which the file was encoded, and is also needed to decode the file. Many computer

files have file headers, although it is no prerequisite. Headers are commonly used

for identification of file type and version number, as well as potentially useful

summary information regarding the file’s content. The file version number is

essential to decode the file correctly, as file specifications tend to change over

time.

Traditionally in the LiDAR industry, each scanner manufacturer has had it’s own

data file format that has required proprietary software packages to open and pro-

cess. Historically, this has been a problem whenever file exchange has been neces-

sary. The early solutions were based on exporting data to ASCII files and sharing

these, but that naturally had limitations: Without a standardized LiDAR format,

there was no way of guarding against inconsistencies between exported informa-

tion from different programs. Consequences of this could be erroneous data or

loss of meta information. This is not a problem today however, as standardized

formats have emerged. The next few sections will describe each of the file types

that are currently available for LiDAR data storage and exchange.

3.2.1 LAS and LAZ

The file format LAS was published in 2003 by the American Society for Pho-

togrammetry and Remote Sensing and has since it’s introduction been updated

four times[17]. The current version is LAS 1.4, which had it’s last revision in

21

Chapter 3. Data Management

2012[18]. While it is specifically made for LiDAR data, any three dimensional

point cloud can be stored using LAS. The general outline of a LAS file as follows:

PUBLIC HEADER

VARIABLE LENGTH HEADER

POINT DATA

The public header holds summary data about the content, such as bounding box of

the coordinates, number of returns, date and year. This header makes it easy to get

the size and extent of a LAS file, which can be used to visualize the outline of the

file content in a map. The variable length header is for user-specific information,

and after that, the point data themselves follow. After launching the first version

of LAS, the ASPRS LAS Committee has revised the format several times. Notable

additions to the format is listed in table 3.1. The current version of LAS supports

up to 15 return values per point, RGB values as added by images from the scan,

a range of classification values and full waveform data[18].

Version Last revision Major changes

1.1[19] 2003 Classification

1.2[20] 2005 Absolute GPS Time, RGB

1.3[21] 2010 Waveform data

1.4[18] 2012 CRS: WKT instead of GeoTIFF, 64 bit fields

Table 3.1: LAS file revisions

The LAS files have become ”de facto” standard for storing LiDAR data in the

industry. Most survey companies will include LAS files in the product delivery.

LAS files have been purpose-built to handle large amounts of point data, and

the number of bytes per point is limited as much as possible. For instance, the

coordinates are stored in integers and a scale factor is stored in the header. This

reduces a coordinate to 12 bytes and at the same time makes you have to define the

accuracy for the data set[22]. Still however, there are improvements that can be

made. The company RapidLasso, launched a compressed format of LAS in 2011,

22

Chapter 3. Data Management

called LAZ. It has been proven to have the capability of losslessy compressing LAS

files down to 7-25% of their original size[22]. They also leave the LAS file header

intact, which means it can be read without decompressing hte file.

3.2.2 e57

E57 is a file standard created by stakeholders in the 3D imaging industry. It is

not exclusively made for LiDAR scanning and has a more general outline than

the LAS files. The problem it is meant to solve is that of storing georeferenced

imagery and point clouds at the same time. This is useful for creating detailed

Building Information Models (BIM), for which a LiDAR point cloud with RGB

values may not suffice. The e57 file type therefore has the ability to store both

georeferenced images and point data. Similar to the LAS format, e57 also allows

for scaling of coordinate values to reduce size[23].

3.2.3 ASCII

ASCII is an text encoding schemes created in the 1960’s[24]. It is a standardized

scheme for encoding characters that is universal and wide-spread. This makes it

easy to rely on for data exchange, which is why it was used as exchange format

in the LiDAR industry up until LAS became widespread. ASCII is however not

storage efficient, as it uses 7 out of 8 bits for representing characters. Thus, 12.5%

of the data capacity is lost for a while[24].

3.2.4 Proprietary formats

While LAS formats are most commonly used for data exchange, the LiDAR ven-

dors still have their proprietary formats. After the introduction of full waveform

data, this has perhaps become more important, as more advanced analysis tech-

niques are becoming available. Leica, Riegl and Faro all have their own LiDAR

data formats.

23

Chapter 3. Data Management

3.2.5 Managing the Files

Having gone through the internals of the different files, it is natural to look at how

the files themselves are managed. For most operating systems, files are usually

organized in the hierarchical file structure that have been used for decades[25].

While organizing files in folders is something any computer user is capable of, it

is not necessarily a reliable solution. As anyone who has owned a digital camera

for a few years will know, it is bound to get messy unless rigid storage procedures

and naming conventions are enforced. And even if that is the case, moving a

few files and folders around will cause disruptive changes to the file organization.

While it is relatively easy to create an application that reads LAS file headers and

displays the information found there in a software application, the underlying file

organization is not very robust. Although a potential disaster on the managerial

side, the upside to a hierarchical file organization that the data can be accessed

by any program that can read the files. As we shall see, there are quite a few.

3.2.6 Software for LiDAR Data

Software that reads, visualizes, transforms and manages LiDAR data are numerous

and serve a multitude of purposes. In this subsection, a small selection of these

software solutions will be presented. Bear in mind that this is an incomplete list

and that there are probably many other solutions out there.

Scanning Software LiDAR scanner vendors usually ship theirs scanners with

software for processing the point clouds. The main purpose of these software

solutions is to make the point cloud data ready for the end user. Leica, Riegl

and Faro are examples of vendors that have their own software for data analysis

and processing. These software package are mostly used for data at levels 0-3,

as described in section2.2.1. Terrasolid is an example of a stand-alone LiDAR

data processing tool. QTModeler and QTReader are other examples of software

24

Chapter 3. Data Management

dedicated to LiDAR data manipulation and viewing. QTReader was used to

visualize the point cloud in figure 2.6.

GIS Software Geographical Information Systems (GIS) have been slow at adopt-

ing support for LiDAR data, mainly because it is structured very differently from

most other types of GIS data. ESRI, the biggest GIS vendor on the market, added

support for loading LAS files in 2006[26]. The spatial database industry, lead on

by Oracle, added support for a Point Cloud type in 2008. The PostgreSQL spatial

extension, PostGIS, does not include point cloud support or a built-in function

for loading LAS files. This is however under development. Among the GIS and

spatial databases listed here, full waveform LiDAR data is not supported.

CAD Programs that can be classified as Computer Aided Design (CAD) soft-

ware, such as Bentley V8, Autodesk Revit or Autodesk Civil 3D, generally support

loading LiDAR data both from las, txt and even proprietary formats. A LAS file

that has been converted to a Autodesk point cloud format and loaded into Re-

vit, is shown in figure 3.2. These programs don’t necessarily have advanced point

cloud editing functionality, but plugins are available that will improve the work

flow. An example is Imagine’s ScanToBim for Autodesk Revit. It makes it easier

to create Building Information Models fro point clouds.

25

Chapter 3. Data Management

Figure 3.2: LiDAR data in Autodesk Revit. Holmekollen data set.

Other Software Solutions Apart from the applications listed so far there are

a few more worth mentioning. These software solutions go under the relatively

wide description of Transform and Extraction (ETL), or are simply libraries that

can be included into bigger programs.

LibLAS, created by the ASPRS, is the official C/C++ LAS conversion library. It

is open source and can be used free of charge, which is done by a many companies,

among them RapidLasso and Oracle.

FME, developed by Safe Software, is an ETL tool which handles a wide range of

file formats. While it’s primary concern is to transform and translate data, it has

also got GIS functionalities.

LasTools is a collection command programs developed by RapidLasso. It can be

used to transform and manipulate LiDAR data. Operations such as creating TINs

or transforming point clouds to and from e57 and ASCII files are possible. It also

includes a LAS viewer, shown in figure 3.3

26

Chapter 3. Data Management

Figure 3.3: LasView. Spatial extent and information from a LAS file

3.3 Databases

While storing data in files is an applicable tactic for small projects with few in-

volved parties, it seldom the desired solution for bigger projects with many collab-

orators and large amounts of data. The bigger the project, the more important it

is to keep an organized and universal ”truth” of the available information. Luckily,

there are systems that can do it for us, called databases.

3.3.1 Relational Databases

During the 1970’s, the foundations of modern database industry were laid down,

as Boyce published his seminal paper on the concept of a Relational Database

Management System (RDBMS) was published in 1970[26]. IBM followed up by

developing the database ”System R”, an attempt to create a relational database

that used the concept of transactions and a query language called SEQUEL[15].

SEQUEL was later renamed SQL, short for Structured Query Langauge, which

became an ISO standard in 1986. By that time several best practices regarding

information modelling has also been established, that for many applications are

27

Chapter 3. Data Management

valid to this date. The acronym ACID, summarize some of they key principles in

traditional database modelling[15].

Atomicity - All or nothing: transaction is fully committed or every change it

made is completely rolled back.

Consistency - Transactions takes the database from one consistent state to an-

other consistent state. Examples of violations are NULL values in primary IDs

and secondary IDs referring to a deleted row.

Isolation - To ensure data integrity at all times, different concurrency control

techniques are implemented to ensure data that is read and updated is valid.

Durability - Committed transactions are permanent, which is ensured by using

transactions log and recovery mechanisms.

It should be noted that these principles are far more important for systems that

deal with a large number of transactions, than for static data, which usually is

the case in the LiDAR industry. Still, these are important principles for general

database modelling and taking them into account will help create a more robust

and organized system.

3.4 Object-Relational Databases

While RDBMS are excellent for storing simple values such as text and numbers

in columns, it is not constructed for storing objects[27]. This became an issue in

the late 1980’s, as object oriented programming was catching on and object-based

storage was needed. This lead to the development of Object-Relational Datbases

(ORDBMS), which was included in the SQL:1999 ISO standard. SQL:1999 is gen-

erally well-supported by current relational database systems, such as DB/2, Oracle

and PostgreSQL. With a ORDBMS it is possible to define new data types and

objects, which also implies the possibility of creating spatial database extensions.

28

Chapter 3. Data Management

This is exactly what creates the foundation for PostGIS and Oracle Spatial Exten-

sion. As a result, PostGIS and Oracle have the strict organizational capabilities

of relational databases, but also allows for spatial objects to be stored.

3.5 Databases and Geographic Information

This leads us on to the topic of geographic information modelling, which is a huge

and advanced topic if need be. For the purpose of this thesis it is however not nec-

essary to delve too far into the definitions of how geographic information should

or should not be done. Because a single point is a 0-dimensional entity, and point

clouds simply are collections of them, there is little need in worrying about topo-

logical questions or other intricacies of the geographic information modelling[26].

What is important in the context of storing point clouds, is to make the point

clouds as compact as possible and at the same time retain data quality.

3.5.1 Databases Representing Points

Whereas the file formats that was presented in section 3.2 have mostly been

purposely built to store LiDAR data, most current databases do not have their

own point cloud types. If you are storing geographic information in a spatial

database, chances are that you are doing so using standards maintained by the

Open Geospatial Concortium (OGC). For storing geometries, the OGC has pro-

vided us with the Well-Known-Text (WKT) and Well-Known-Binary (WKB) for

relational databases. These two are identical, but differ in that WKT is ASCII-

encoded WKB. A Well-Known-Binary is structured as follows: First the endian-

ness, which is whether or not the least significant bit is put first. Then follows

the geoometry code, and after that the number of double precision points that

are needed to complete the geometry type[28]. Some geometry types that are

interesting in the LiDAR context, are listed in table 3.2.

29

Chapter 3. Data Management

Type 2D Z M ZM

Geometry 0000 1000 2000 3000

Point 0001 1001 2001 3001

Polygon 0003 1003 2003 3003

MultiPoint 0004 1004 2004 3004

TIN 0016 1016 2016 3016

Table 3.2: Well Known Binary Codes, written as integers

In the case of storing a single point geometry, we would end up with the space

requirement in table 3.3. This means a single three-dimensional point, if nothing

else is stored, would take up 37 bytes. 10 Million points would then amount to

352.86 MB. This can be modeled by equation 3.1.

Field Endianness Code Float Float Float Sum

Bytes 1 4 8 8 8 37

Table 3.3: WKB PointZ space requirement

SPointZ(n) = 37 ∗ n (3.1)

If we look at the case of storing a 10 Million points in one MultiPoint, we will

get away with 305.18 MB, saving approximately 8.5 %. MultiPoint size can be

modelled by equation 3.2. We are still talking about in the excess of 30 bytes per

point.

SMultiPointZ(n) = 5 + 32 ∗ n (3.2)

3.5.1.1 PostGIS implementation

PostGIS uses WKB to store geometries, but also supports their the Extended-

Well-Knwon-Binary. This is an attempt at enforcing spatial reference info for all

30

Chapter 3. Data Management

geometries, as coordinates have no meaning without a spatial reference. The SRID

adds another 4 byte to the total size of a geometry. This leads to PostGIS having

a raw byte count as shown in equation 3.3 and 3.3.

SPointZ(n) = 41 ∗ n (3.3)

SMultiPointZ(n) = 5 + 36 ∗ n (3.4)

If we compare the raw representation of 10 Million raw coordinates using PostGIS

and the LAS implementation we end up with the result in figure 3.4. Taking into

account the fact that this is the LAS file, and not the compressed LAZ file, it is

clear that PostGIS is not well-suited for LiDAR storage. It is also important to

keep in maind that we have not looked at other values, such as number of returns,

classification, gps time, or the fact that a database system in itself introduces some

overhead[15]. It is evident that the OGC format for storing points is for manholes

and lamp posts, not millions of points from LiDAR scans.

Figure 3.4: Coordiante size comparison: PostGIS vs LAS

31

Chapter 3. Data Management

3.5.1.2 Oracle’s Point Cloud

While PostGIS doesn’t currently have support for point clouds, Oracle’s database

11gR2 with the Spatial Extension has a working solution. Oracle has created a

Point Cloud object that is optimized for storing LiDAR data. As can be seen in

figure 3.5, Oracle uses a object type called ”SDO PC BLK” for storing the actual

point data, whereas the spatial extent and summaries for each block is stored in a

separate ”SDO PC” type. The point cloud blocks are stored as so-called Binary

Large Objects (BLOBs), which can be compressed if it is transformed to Oracle’s

SecureFile type.

Figure 3.5: Oracle Point Cloud[29]

In a presentation given by Oracle in 2009, it was stated that a normal LAS file

containing 26 Million points, taking up 552 MB, would be stored in 839.5 MB as a

normal BLOB. Furthermore, that as compressed SecureFiles, the LAS file’s content

would occupy 223.4 MB[30]. This suggests that Oracle Point Clouds can store LAS

data with a size reduction of approximately 60%. Apologizes are in order for not

32

Chapter 3. Data Management

having proper references in this regard, but as always with proprietary software

applications, it is hard to come by. Another key feature of the Point Cloud object

is the R-tree index on the meta data table, which makes it easier to retrieve data

from specific areas. This brings us over on the topics for next chapter, which is

indexing and data access.

33

Chapter 4

Accessing the Data

4.1 Access Methods

Finding a piece of information within a large collection of data is a time-consuming

task if no attention is given to the storage structure. In order to speed up data

retrieval, a wide range of access methods and storage techniques have been de-

veloped for different types of data. The basic principle of these methods is to

organize the data with regards to key values, similar to how a librarian organizes

books with regards to titles or author names. Which key is chosen, and how it is

used, has large implications for performance of a data management system. This

section will explain indexing techniques and how they are applied in real world

applications.

4.1.1 Hash-based indexing

Apart from storing information in a heap file, i.e. no specific structure, there are

mainly two techniques for organizing data: Hashing and tree-based indexing[15].

The former is a way of organizing data by running the data key through a ”hash

function”. This function can be just about anything, as long as it maps input

values to a set of output values. The output values are addresses of ”buckets”

35

Chapter 4. Accessing the Data

where the record data is stored. For this technique to work efficiently, the function

needs to uniformly distribute data across the different buckets. If one bucket gets

all the data, it is no better than storing data in a heap file. When a data record is

requested, the record key is run through the has function and the content of the

bucket is returned and looked through.

4.1.2 Tree-based indexing

Tree-based indexing is a hierarchical way of organizing key values. Out of all the

tree-based indices, the B-tree and it’s variations are most frequently used. A B-tree

is in a modified version of the Binary Search Tree (BST). The difference between

a BST and a B-tree lies in that the B-trees allow several keys and pointers per

node, as shown in figure 4.1. This results in a bigger fan-out, more efficient data

traversal and reduced index size[15, 31]. Depending on fan-out, the run time of a

single key value search will be O(logbn) in O-notation[15]. Here, the n is data size

and b is the blocking factor, which should be adjusted according to the data block

size of the underlying storage medium. Different B-trees can differ with regards

the number keys or nodes allowed, whether or not keys stored in internal nodes

reappear in the leaf nodes, and whether not the leaf nodes have pointers between

them.

Figure 4.1: B-tree[31]

36

Chapter 4. Accessing the Data

A typical query that will be sped up by a B-tree indexing is Q1. Instead of reading

the database table sequentially, also referred to as a scan, the B-tree search will

return the record IDs almost instantaneously. Obviously, this is a huge time saver

for large database tables. Table 4.1 shows the difference between using a B-tree

index to run query Q1, as opposed to having no index at all. The table in the

query contains 29 million rows with three integers and a geometry data type.

Q1: SELECT * FROM point_table WHERE id>5000000 AND id<5000500;

Index type Average query time

No index 6527.3 ms

B-tree on ID 2.7 ms

Table 4.1: Results in milliseconds from running Q1

4.2 Spatial Indexing

Multidimensional indexing requires more advanced techniques compared to index-

ing one-dimensional keys. Essentially, when two or more dimensions are present,

the problem consists of indexing records with regards to two or more columns.

Many spatial indices have been proposed throughout the years, but only a few of

them have actually been implemented in commercial products. In this section the

most important index types will be presented.

4.3 Mapping to One Dimension

It is possible to map multidimensional data to one dimension by using Z-ordering,

also known as Morton index, or Hilbert curves. These orderings organize data

recursively in a Z- and H-like form, respectively. These orderings are not necessar-

ily used for indexing purposes, but often act either as access patterns or are used

during construction of the indices[26, 32].

37

Chapter 4. Accessing the Data

4.3.1 kD trees and quadtrees

Other examples of tree indices that deal with 2-dimensional data are the 2-D tree

and the quadtree. These tree structures subdivide 2-dimensional spaces based

on insertions of new points. They differ in that the quadtree will split a square

into four new sub-squares, while the 2D-tree use a binary division technique and

only ends up with two new rectangles per point. This means the quadtree uses

regular spatial division, whereas the kD tree uses a irregular spatial division[26].

Both of these indexing techniques are general and can be implemented for higher

dimensions as well. The kD tree would be the 3-D tree for three dimensions, while

octtree would be the three-dimensional equivalent of the quadtree.

4.3.2 R-trees

When it was published in 1984, the R-tree was intended for two dimensional

structures by using their bounding rectangles as index representation. Similar to

the B-tree, the R-tree is height balanced with leaf nodes containing pointers to the

data objects[33]. A difference compaired to the R-tree is that there is a possibility

of having overlapping nodes. Thus, several sub-trees might have to be visited

to find the objects within a bounding box search. The R-tree, as visualized in

Guttmann’s 1984 publication, is show in figure 4.2[33].

38

Chapter 4. Accessing the Data

Figure 4.2: R-tree[33]

4.3.3 Real World Applications

This section will briefly introduce some real world implementations of spatial in-

dexing. While there are numerous spatial indices in the literature, only a few of

them get implemented in commercial products.

39

Chapter 4. Accessing the Data

4.3.4 PostGIS: GiST and R-tree

PostGIS uses a R-tree that is implemented on top of the Generalized Search Tree

Index (GiST) that is provided by the PostgreSQL database. GiST is a general

index which can work with both R-trees and B-trees[34].

4.3.5 Oracle Point Cloud: R-tree

In section 3.5.1.2, we read that Oracle uses a R-tree for indexing the point cloud

meta data that are derived from the point cloud chunks. The outline of these

chunks can be seen in figure 4.3. As can be seen in the figure, the amount of boxes

that needs to be indexed is quite small compared to the total size of the survey

area.

Figure 4.3: Oracle R-tree[30]

4.3.6 LAX

Finally, a short note on LAX, which is a file for storing index information, de-

veloped by RapidLasso[35]. LAX is a simple file for storing a description for a

40

Chapter 4. Accessing the Data

quad-tree, which can be used to speed up spatial queries for LAS and LAZ files.

According to RapidLasso, this indexing is used by OpenTopography, which will

be presented in chapter 6.

41

Chapter 5

Web Technology

5.1 The Internet and the Web

The Internet combined with the World Wide Web has over the last couple of

decades become intrinsic parts of communication and data technology. Many

services that were analogue only ten years ago, have been moved to ”the Web”:

Anything from filing tax returns and checking the bank account, to buying concert

tickets or simply sharing is just a few clicks away. Entirely new business areas have

also emerged: Facebook, Twitter and other social media are examples of companies

that couldn’t have existed without the Web and globally interconnected computers.

The geospatial industry has also seen a considerable market growth over the last

decade. After Google Maps was launched in 2006, we have seen an increase in the

use of online map services[36]. What the future holds is difficult to say, but it is

possible to see some of the potential of future applications by looking at the tools

that currently are at our disposal. This section will explain important advances

in web technology in the context of web development and 3D content.

43

Chapter 4. Advances in Web Technology

5.1.1 HTML5

The Hyper Text Markup Language (HTML) is a markup language created by Tim

Berners-Lee in 1989[37]. HTML was initially created as a markup language for

researchers to share documents using networks, but quickly caught on in the IT

community. Web browsers became popular in the early 1990’s, supporting HTML

and as well as extension to it for improved functionality. The latter lead to a

situation where no real HTML standard was upheld, something which still plagues

web browsers used today. As a response to this trend, Berners-Lee created the

World Wide Web Consortium (W3C) was created to manage the HTML standard.

Despite his effort to standardize HTML, it continues to be a matter of debate where

several organizations would like to have their say[38].

HTML5 is the new version of the HTML standard and has a planned completion

data in 2022. However, seeing as it is an open standard, many browsers already

support some of the implementations that have been finalized. Because a large

number of innovative applications are being developed with pieces of HTML5 in

them, the term ”HTML5” has turned into a bit of a buzz word. This resembles

the situation a few years back when the term ”Web 2.0” was used to describe the

general web trends surrounding user-oriented services[39]. Regardless of whether

we are looking at the actual HTML5 standard or the web applications that are

being programmed in it’s spirit, there are a few ideals that holds true[38]:

• Fewer plug-in programs, such as Flash or Windows Media Player

• Web applications that resemble desktop applications

• Media platform independence

5.1.2 Javascript and the DOM

While the HTML5 standard will make it easier to develop web applications that

fulfil the three ideals above, it is already to some extent being done with the aid

44

Chapter 4. Advances in Web Technology

of JavaScript libraries in conjunction with the Document Object Model (DOM).

The DOM is the form of a HTML page after it has been processed and stored

in the web browser, while the JavaScript programs can be used to manipulate

these the DOM through the JavaScript API. Because JavaScript is a client-side

programming language, applications that are built using it can be more responsive

than the ones that require server-side processing.

There are several problems with these two technical solutions. DOM is not consis-

tently defined across different web browsers, which makes development inefficient,

seeing as special cases for each web browser must be treated separately. As for the

JavaScript, it is tempting to quote Douglas Crockford, who described it as ”...a

collection of good ideas and few really bad ones[40].” Looking at the amount of

JavaScript libraries on the Web, it is however undoubtedly a popular language.

New libraries are popping up on almost a weekly basis, covering new and spe-

cialized needs for web applications programmers. Examples of popular Javascript

libraries are Twitter’s Bootstrap library, jQuery and Backbone. For the GIS sector

it is worth mentioning that Google Maps JavaScript API, OpenLayers and Leaflet

are all based on JavaScript programming. Three of these will be used later on and

are presented below.

jQuery is a JavaScript library that makes HTML document traversal and ma-

nipulation, event handling and animation easier for the developer. It supports

most browsers and create an abstraction level above the different DOM manipu-

lation functions of each browser. As such, this library in part is fixing the mess

created by different DOM implementations.

Bootstrap.js is a JavaScript library created by Twitter. It is a framework for

creating websites and web applications that work different screen sizes. It makes it

far easier to create the user interface and can save developers considerable amounts

of grunt work.

45

Chapter 4. Advances in Web Technology

Figure 5.1: Bootstrap Example

Leaflet.js is a light-weight JavaScript library for creating web maps. It is in

essence a simpler version of OpenLayers (also a JavaScript library), but has fewer

and simpler functions. It has become very popular in the last couple of years.

5.1.3 HTML5 in the Third Dimension

Finally we arrive at the most exciting innovations of HTML5, namely the real-

time 3D rendering independent of any plug-ins. In 2011, an organization called

the Khronos Group launched the first version of the WebGL API, which defines

functions to render 3D geometries using the HTML canvas element[41]. WebGL

is a truly exciting technology, as it allows the web browser to directly access the

Graphics Processing Unit (GPU). Although web browser just recently started sup-

porting WebGL, it is already showing great potential. In figure 5.2, a screenshot

from a race car game demo is shown. The car can be driven around just like in a

desktop game application, but it is actually running on the web browser.

46

Chapter 4. Advances in Web Technology

Figure 5.2: WebGL game example

Three.js is a JavaScript library that provides a high-level interface to the We-

bGL API. Because OpenGL programming is relatively time-consuming, using a

high-level JavaScript instead, saves a lot of time and energy. The Three.js library

provides relatively easy functions for defining three-dimensional shapes. There are

also a multitude of 3D model loaders, so that CAD drawings and SketchUp models

can be loaded in as DOM element and then rendered in the browser window. To

move the focus back to geographical information, a final example of a 3D globe is

shown in figure 5.3. In this example, the earth is rotating and clouds are moving

around in real time.

47

Chapter 4. Advances in Web Technology

Figure 5.3: Three.js globe example

48

Part III

LiDAR Data Warehouse

49

Chapter 6

State of The Art

6.1 OpenTopography

OpenTopography is an American organization dedicated to making LiDAR data

open and accessible. Hosted by San Diego Supercomputer Centre (SDSC), and

sponsored by the National Science Foundation (NSF), OpenTopography has the

expertise and financial muscles to deliver stable and efficient LiDAR data services.

On their web pages it is possible to find LiDAR scans from all over the United

States and order the data on different formats. While OpenTopography hosts

most of the data themselves, they also act as a portal to downloading LiDAR

data from the United States Geological Service(USGS), the National Center for

Airborne Laser Mapping (NCALM) and ”Community Contributors”, which are

smaller data providers. If any of these data sets are chosen, the user is simply

redirected to the provider’s download solution.

6.1.1 System Architecture

OpenTopography’s system was initially based on the architecture from a project

from 2010, called GEON. This system used a DB2 database with spatial ex-

tension to store the LiDAR data. By loading ASCII-encoded LiDAR data into

51

Chapter 6. State of The Art

the database, and distributing this across several database tables, it allowed the

database cluster to serve the data quickly on request. By indexing with B-trees on

either longitude or latitude, the data could be partitioned efficiently. The shape

of the scanned area would naturally have impact on the efficiency of index-aided

retrievals. A drawback by this implementation was that the database storage

consumed approximately six times larger than the original scan data [42].

Figure 6.1: System architecture of OpenTopography in 2010[42]

In 2011, OpenTopography’s system architecture went through changes with re-

gards to storage solution. In addition to having the database from the 2010 con-

figuration, it also supported LAS file storage and processing. By using LibLAS,

LAS and LAZ files are easily read, transformed and extracted. However, the LAS

files still needs to be organized by a spatial database: Each LAS file’s header in-

formation is read and stored in a meta data table in the DB/2 database. This

database table is used to get file identifiers when a user requests data from a cer-

tain area. Any output in addition to the point cloud itself will be generated with

3rd party applications, such as hill shades or KMZ files served by Global Mapper

[43]. A system architecture overview from 2011 is shown in figure 6.2.

52

Chapter 6. State of The Art

Figure 6.2: System architecture of OpenTopography in 2011[43]

6.1.2 Deliverables

The deliverables that are possible to download from OpenTopography can be

defined once the ”get data” option is chosen. The first choice the user makes

is the spatial extent of the data set, which can be done by drawing a bounding

box or specifying coordinate bounds. There is a limit of 50 million points per

job for anonymous users, and 150 million points for logged in users. The type

of returns that should be included can also be chosen; either ”all”, ”ground” or

”unclassified”. After that is done, the desired products can be chosen and altered

with different parameters.

• Raw point cloud: LAS, LAZ or ASCII

• Terrain Model: DEM by local gridding or Delaunay Triangulation (TIN)

• Derived products: Hillshade and slope grids in GeoTiff or Erdas IMG format.

• Visualization: Google Earth KMZ files for visualization

After submitting an order, OpenTopography handles it on the go. The processing

time is highly dependent on the size of the data set, as well as chosen products and

53

Chapter 6. State of The Art

preferences. On top of this comes server load at the time of ordering. Table 6.1

shows the same data set being downloaded with different settings. As can be seen,

choosing all products will increase the processing time substantially compared to

just getting the raw data. It should be noted that selecting ASCII files results in

them being zipped, while the same is not the case for downloading the data set

as a single LAS or LAZ file. Tests performed on different areas show relatively

speaking similar results.

Job Points File Format Products Time Point Files Size

ME1 27,158,487 LAS, LAZ, ASCII All products 325 s 369 MB

ME2 27,158,487 LAS, ASCII All products 380 s 552 MB

ME3 27,158,487 LAS, LAZ, ASCII - 151 s 552 MB

ME4 27,158,487 ASCII - 130 s 309 MB

ME5 27,158,487 LAS - 40 s 518 MB

ME6 27,158,487 LAZ - 30 s 59.8 MB

Table 6.1: OpenTopography processing time of Mount Edwards in Colorado,
USA.

6.2 Denmark: Kortforsyningen

Denmark was one of the first countries in the world to obtain complete LiDAR

coverage. The entire data set is available on the Ministry of Environment’s web

sites, stored as zipped LAS files. While there is no available information on system

architecture, it is evident that the LiDAR storage is entirely file-based: As a

user you can choose any number of tiles in an online map viewer and proceed to

download them. The tiles marked in the map viewer are immediately presented as

a list of downloadable zip files, indicating that no processing is being done. This

solution is different to OpenTopography, as it does not give you the opportunity to

download subsections or combinations of the tiles, nor get derived products from

it. Other products, such as a DEMs, can however be downloaded separately by

going through the same process of selecting tiles.

54

Chapter 6. State of The Art

Figure 6.3: .

Figure 6.4: Denmark LiDAR data set

6.3 National Land Survey of Finland

Just like Denmark, Finland has obtained complete LiDAR coverage and published

this online. The web application is quite similar to that of Denmark’s, but serves

the files on the compressed LAS format, LAZ. As have been previously discussed

in section xxx, the LAZ format performs better than zipped LAS with regards

to storage efficiency and is far more practical for meta information retrieval and

file loading. In practice however, these two solutions are very similar: They both

use file servers combined with a map viewer that has references the tiles to file

identifiers.

55

Chapter 6. State of The Art

Figure 6.5: Finland LiDAR data

6.4 CyArk

While the three projects mentioned so far are led by governmental-funded orga-

nizations with a mission of making LiDAR data available to all potential users,

CyArk is an ideal organization with a different goal: To digitally preserve cultural

heritage sites all around the world. They do this by collecting precise information

from heritage sites using LiDAR scanners, total stations and photography. The

data is made publicly available through their own web site, www.cyark.org. On

this web page they have a map with markers for each scanned heritage site, which

links to a site with all related information and 3D models.

56

Chapter 6. State of The Art

Figure 6.6: CyArk Point Cloud Viewer

A WebGL-based 3D viewer for raw point clouds as well as derived models. No raw

data extraction is however publicly available, but the points can be seen in a point

cloud viewer. This 3D viewer typically loads a point cloud The point cloud loader

typically loads the data at a rate of 20 000 points per second. The point cloud

visualized in fiugre 6.6 contains 1.7 Million points and loads in approximately 1.5

minutes.

57

Chapter 7

Prototype

7.1 LiDAR Data Warehouse

In the chapter 2-4, different aspects of LiDAR data acquisition and data manage-

ment was presented. Chapter 6 finished off part 2 by show-casing the capabilities

of modern web technology, before a selection of the state-of-the-art LiDAR online

services were presented in the beginning of part three. In this chapter the LiDAR

data warehouse prototype built during this master thesis will be presented. This

is accomplished by giving a thorough presentation of the system architecture and

the rationale behind the design decisions made during the development phase.

Finally, tests are performed to assess the system quality.

7.1.1 Prototype Development

The requirements of the LiDAR data warehouse were stated in the project de-

scription and given further depth in discussion with the thesis supervisors. The

key requirements for the system has been narrowed down to four points:

R1 Support storage of georeferenced LiDAR data

R2 Enable visualization through the use of Web technologies

59

Chapter 7. Prototype

R4 Implement user interface for efficient extraction of LiDAR data

R3 Use open-source technology where applicable

The prototype was developed using an iterative development process, where a

three-step method has been applied for each iteration, as shown in figure 7.1.

This approach divides the overall design challenge into manageable problems and

makes it possible to create a skeleton system early on[44]. Because of this, what is

presented in this chapter not a complete recap of the different development stages

the prototype has been through. Detailed descriptions of the changes between the

different iterations can be found in appendix A.

Figure 7.1: Development process

7.2 System Components

The LiDAR data warehouse can be split into three different modules or layers:

The spatial data storage and processing layer, the server layer and the web client

layer. This general outline resembles the structure of the 2011 version of Open-

Topography, seen in figure 6.2. By creating well-defined interfaces between the

layers, the components within each layer can be changed relatively easily. Out

of the three components, the web client and backend storage has received most

attention, whereas the server layer is simply handling user data access.

60

Chapter 7. Prototype

Figure 7.2: Cloudy point viewer

7.2.1 Layer 1: Spatial Data Storage and Processing

The first layer comprise of the storage solution chosen for the system, combined

with extraction and loading tools. Given the objective of storing georeferenced

point clouds, we are effectively looking at level 3 in the NGA’s data processing

classification list, presented in section 2.2.1. A second option would be to also

include full waveform LiDAR, as stored in LAS 1.3 and LAS 1.4[18, 21]. Al-

though this would be interesting and usable for waveform algorithm research, it

also increases the storage need approximately by a factor of 5[6]. Because of the

increased data size, combined with the fact that full waveform is mostly inter-

esting for algorithm research, it was decided that was not to be included for the

prototype.

7.2.1.1 LiDAR Data Storage

The choice between LiDAR storage solutions

As explained earlier, LAS and LAZ files are excellent storage solutions for LiDAR

data. Despite this, it was decided to choose the PostGIS for LiDAR storage. The

rationale behind this choice is the following: Spatial databases for LiDAR data

storage are commercially available. Oracle Spatial Extension is an example of this,

61

Chapter 7. Prototype

and while the current PostGIS version has not been developed for LiDAR storage,

efforts are being made to build a Point Cloud object similar to Oracle’s solution[45].

While this means the current PostGIS version is inefficient at storing LiDAR, it

still provides us with many of the same spatial functions we would expect from a

Oracle database. Because of the modular structure of the prototype, it would be

easy to change the database engine, as long as it provides us with the same query

capabilities. The mix of a large number of spatial functions and a solid system for

transforming between spatial reference systems, results in a versatile and robust

system for working with the LiDAR data.

7.2.1.2 Database Structure

The prototype’s PostGIS database consists of two types of tables: A meta data

table and tables that hold the actual point clouds. In the meta data table, all meta

information for a data set is stored, together with aggregated spatial information

and a bounding polygon. This means it works in much the same way a LAS file

header does, but also includes the exact outline of the scan. Table 7.1 shows an

example of what a meta data table could look like. The polygons in the meta data

table are indexed using PostGIS GiST and R-tree combination, which speeds up

spatial queries on the data.

62

Chapter 7. Prototype

Metadata table

id PRIAMRY ID

Source VARCHAR

Name VARCHAR

BoundingPolygon BBOX3D

SRID INTEGER

HREF INTEGER

Number of points BIGINT

Number of classes INTEGER

Max number of returns INTEGER

Scan date DATETIME

Uploaded date DATETIME

Table 7.1: Prototype meta data table

Seeing as this database scheme implies storing a summary information and bound-

ing polygon derived from the point raw data tables, the scheme is not compliant

with best practices in database modelling. If a set of points is deleted from a

point table, this would lead to an inconsistencies between the points stored in the

raw data table and the derived information in the meta data table. This is how-

ever not a big problem for LiDAR data: Once the point clouds are stored in the

database, they are not likely to be updated. In other words, there is in practice

a write-once policy for the point data and therefore the ACID violations become

less significant. This ”lesser form” of database modelling is based on Kimball’s

data warehouse approach[46]. It was introduced in the 1990’s and used in order to

improve performance of large data intensive systems, which resembles the current

state of LiDAR data.

63

Chapter 7. Prototype

Point table

Point PointZ

Green INTEGER

Red INTEGER

Blue INTEGER

Intensity INTEGER

Class INTEGER

Table 7.2: Prototype point data table

The point data in the prototype simply stored as separate tables, as shown in table

7.2. This solution is similar to the architecture chosen for OpenTopography’s first

implementation[42]. The reason as to why all the points were not stored in one

table and then tagged with a ”point cloud ID”, becomes apparent when the storage

overhead is taken into account. A single integer of 4 bytes would add another 38

MB to a point cloud that holds 10 million points. Seeing as table names are unique

within a database, they will work as ID’s on their own accord. An overhead such as

this is however dwarfed by the general storage inefficiency of the PostGIS database,

which will be shown in section 7.4.

7.2.1.3 Extracting, Transforming and Loading

What is usually referred to as Extracting, Transforming and Loading (ETL) in the

database community, is the process of grabbing data, extracting valuable informa-

tion from it and then making it compliant with the application’s data structure,

before finally, it is loaded into the system[46]. For LiDAR data this problem boils

down to what type of meta data and raw data that is to be kept. For the purpose

of this prototype, all the data was not kept, as this made the development process

simpler. Ideally however, no information should be left behind. Seeing as most

LiDAR scans are stored on LAS format, the ETL process will usually comprise of

gathering all the information from the LAS headers and the point clouds in the

raw data. For LAS 1.2 and below, the loading can be done with LibLAS, which like

64

Chapter 7. Prototype

the LAS format is created by the ASPRS. For this project, the temporary solution

of using the command-line programs was chosen for loading LAS files instead of

programming a PostgreSQL database loader. This would not be acceptable for a

real world application but results in the same data being loaded into the database

and saves development time.

7.2.1.4 Data Accessing

In order to enable LiDAR data sharing via Internet, the server has to communi-

cate with the database: The Apache server connects to the PostgreSQL database

server using the php extension ”pgsql”, which enables the two applications to

communicate. The Cloudy web client module is served only one type of data:

JSON-encoded information. This can either be from the meta data table and

raw point cloud data. The former is used for visualization in a web map viewer,

whereas the latter is used for point cloud 3D visualization. These data values are

easily extracted from the PostgreSQL server using built-in functionality.

While the bounding polygons can be handled quite easily by the web client, the

load time and resources required to visualize a large LiDAR data set requires more

considerations with regards to data size and processing. If such considerations

are not taken, the client browser or the server could crash. The server needs to

determine how to scale the data that is requested. Potential pruning of the data

set is however also related to the database design.

7.2.1.5 Database Modelling Alternatives

Retrieving a pruned data set quickly from the database can be done using one of

two techniques:

• Thinning of data by query

• Thinning of data by storage

65

Chapter 7. Prototype

The point data could either be selected by a query that leaves out points before

they are shipped off the return set. The other option is to have pruned data set

stored in the database, working as a quick selection of points.

7.2.2 Layer 2: Server

The second layer consists of the server that grabs data from the backend storage

and serves it to the web client. The server was also planned to take care of job

scheduling and organize the files ordered by users. Choosing the server was not a

overly important architectural choice, seeing as the main challenges as defined in

the project description are best solved by the frontend and backend modules. The

final decision was to go with an Apache server, because it has a large user base and

long development history, both of which is useful when you run into development

problems. Currently, the systems serves a total of three different web pages, and

each of them are related to a php script. Their php scripts perform the following

tasks:

getpoints.php - Returns points based on spatial queries. Determines how much

a data set should be pruned getdata.php - Returns the meta data information

to displayed in the map export.php - Starts the export scripts that stores infor-

mation in text files, which then is transformed to LAS files.

7.2.3 Layer 3: Client Layer

As explaind in section 5.1.2, web technologies have been developed over the last

few years that has enabled us to create more responsive and interactive web appli-

cations. Because web browsers are becoming increasingly powerful, we can create

applications that offload the server with regards to certain tasks. Open-source

Javascript libraries, created by eager developers all over the world, makes it easier

to develop simple and user-friendly web sites without spending a lot of time on

it. For the Cloudy prototype, three libraries have made the development process

easier:

66

Chapter 7. Prototype

• Leaflet.js

• Bootstrap.js

• Three.js

The combination of Leaflet.js and Three.js makes it possible to visualizes the

extent of the point clouds in a map viewer, and provides real-time rendering of

3D points. This means that the users does not have to install any software on

their computer to get a look at the data: Everything is directly accessible through

the web browser. Additionally, Bootstrap.js makes it easy to create a organized

and user-friendly web site in a short amount of time. Sequence diagrams for the

interaction between the web client and server can be seen in Appendix D. The

sequence diagram in figure D.2 shows ow the data is subdivided and sent off to

the client’s web browser, where each chunk becomes it’s own ”point cloud object.”

This object oriented way of organizing the points in the point cloud viewer makes

it more scalable and efficient than what would be the case for loading in everything

in one chunk. It resembles the ”tiling” in a Web Map Services (WMS).

7.3 Presenting Cloudy

The front page is a simple map viewer with the point clouds highlighted as blue

polygons. To the left there is an information box for selected point clouds. It

contains information about the number of points in the data set, the horizontal

coordinate system and vertical reference system. Upon polygon clicks the map

viewer will navigate to that polygon. The settings allows the user to change the

background map. Currently, OpenStreetMap and the Norwegian Mapping Service

maps are available.

67

Chapter 7. Prototype

Figure 7.3: Cloudy front page

7.3.1 Point Cloud viewer

The point cloud viewer is initiated when the user presses the visualization button

on the front page. This opens up a new window where the 3D points are loaded into

the WebGL window. The loading time is dependent on the extent and density of

the point cloud that is being loaded. If it is split up into several point cloud tiles,

these will load and get built individually. Throughout the development phase,

it was realized that tiling of the point cloud queries is practical for web client

performance, this is discussed in the test section. The point viewer can visualize

different values of the point cloud, such as RGB, intensity or classification. It is

also easy to implement other visualizations that are real-time by the web viewer.

Height indication by colour is an example.

68

Chapter 7. Prototype

Figure 7.4: Cloudy point viewer

The point cloud viewer has functionality for changing colour based on classification

values, RGB values, height, intensity value and NDVI. These colour schemes can

either be applied via the data loaded from the database, or ratios such as the

NDVI and height can be comptued on the go. The NDVI is explained in detail in

appendix C.

69

Chapter 7. Prototype

Figure 7.5: Cloudy point viewer: Indoor bird’s perspective

Figure 7.6: Cloudy point viewer: Indoor close-up

70

Chapter 7. Prototype

As can be seen in figure 7.5 and 7.6, the point cloud viewer works well for small,

indoor scans as well. The point clouds in these figures have not been georeferenced

before they were loaded into Cloudy, and therefore these are tagged as ”unknown.”

Notice also the ”Level of Detail” in this picture, which is 12.5 % of the original

data set size. The data set in figure 7.4 shows a 100 % level of detail and the 2.4

Million points is on the verge of crashing the Chrome browser running it. If we

wanted to load in the entire data sets, as the outline suggests in figure 7.3, the

same pruning of the data would be enfored and it would result in the image seen

in figure 7.7. Notice also that there is only RGB data for parts of the point cloud.

Figure 7.7: Cloudy point viewer: Pruned dataset

Some data sets are indeed colour-less and will in that case be coloured as white in

the current version of Cloudy. This was the case for LiDAR data acquired for the

Nidarosdomen cathedral in Trondheim, shown in figure 7.8.

71

Chapter 7. Prototype

Figure 7.8: Cloudy point viewer: No colour

7.3.2 Data Extraction

The data extraction window is launched from the point cloud viewer. In the

current version, it is only possible to select each point cloud, but the functionality

of selecting subsets is easy to implement with a Leaflet plugin. As with the ETL

process, the ideal solution is to utilize LibLAS and create a database script for

extracting the data on a LAS format. The implementation of the current version

is however limited to exporting the data on a text file which is then manually

transformed to the LAS format. The export page is not fully operational in the

current version of Cloudy, but the conceptual export page can be seen in figure

7.9.

72

Chapter 7. Prototype

Figure 7.9: Cloudy export

The export form page requires the user to fill in email address and select what

type of data the database should export. After the form is filled in, it is sent to

the server, which creates an export job for the PostgreSQL server based on the

data order. This job is run and stored to file. A sequence diagram that show how

this interaction can be seen in figure D.3 in appendix D.

7.4 Testing

In order to assess the quality of the system, a number of tests have been devised

and run. The tests are divided into two main categories. One test category is

focused on measuring the storage efficiency and data access speeds. The other

category is concerned with the web viewer’s performance. Both test categories

have been used throughout the development phase, and helped understand the

performance characteristics of different methods.

73

Chapter 7. Prototype

7.4.1 Storage efficiency

Because one of the biggest challenges with LiDAR data is the data size, the storage

efficiency is an important metric in assessing a storage solution’s quality. Figure

7.10 shows how the chosen PostGIS implementation performs compared to a LAS

1.2 file, even with less information included. There is far more content in the LAS

file and still the PostGIS table is three times bigger. When the GiST index is

inlcuded, the result is even worse.

Figure 7.10: Relative storage efficiency: 9.4 million points. *The TXT file
storage and PostGIS database table contains only XYZ, RGB, Classification

and Intensity values. LAS and LAZ files contain orignial scan data.

As was explained in section 3.5.1.1, the main problem with the point geometry

is that for each point, a full double precision number is stored per coordinate, in

addition to a geometry type and SRID. We can re-run the comparison from section

3.5.1.1 with the database table that is used as reference in 7.10. The difference is

mainly the addition of RGB values, intensity and classification. Table 7.11 and

7.12 shows how the values relates to storage implementation in LAS and PostGIS.

Data WKT PointZ + SRID R G B intensity classification SUM

Byte 28 4 4 4 4 4 52

Figure 7.11: PostGIS DB single point storage. All database specific storage
use not included

74

Chapter 7. Prototype

Data X Y Z R G B intensity classification SUM

Byte 4 4 4 2 2 2 2 1 21

Figure 7.12: LAS file single point storage. All LAS specification fields not
included

By looking at figure 7.10, it is clear that the database implementation takes up

more space than what is indicated by figure 7.11. This is most likely due to

database implementation, which has not been thoroughly investigated and there

it is hard to say anything about it. As can be seen from table 7.3, the table size

in PostGIS as reported by the psql relation size function amounts to 1046 MB,

which leads to approximately 117 bytes per point. In the table C is short for

classification value and I is short for intensity value.

Solution Points (M) Content Size (MB) Avg. byte/point

LAZ 9.4 Original 42 5

LAS 9.4 Original 304 34

TXT 9.4 XYZ RGB IC 511 57

PostGIS 9.4 XYZ RGB IC 1046 117

PostGIS + Index 9.4 XYZ RGB IC 1640 183

Table 7.3: Size Comparison I: Holmenkollen - 9.4 Million points

The biggest data set to be loaded into the database, was a collection of approx-

imately 60 individual scans from the Nidarosdomen cathedrag. All together, the

data set contained over 1.5 billion points. This data set was too big for the SSD

hard drive without making a serious effort at deleting data. When loaded into

PostGIS, which took 15 long hours on a Seagate Momentus XT hard drive, the

point cloud containing three coordinates in addition to 7 integer values took up

over 100 GB. Comparatively, a LAZ file takes up 2.24 GigaBytes, which is 7.3 %

of the LAS file. The PostGIS table is almost 4 times bigger compared to the LAS

file. The e57 file and the LAS file are almost the same size.

75

Chapter 7. Prototype

Solution Points (B) Content Size (GB) Avg. byte/point

LAZ 1.556 Original 2.24 1.7

LAS 1.556 Original 30.44 20.0

e57 1.556 Original 10.27 20.5

TXT 1.556 XYZ RGB IC RN 56.79 38.3

PostGIS 1.556 XYZ RGB IC RN 119.0 71.7

Table 7.4: Size Comparison II: Nidarosdomen - 1.556 Billion points.

7.4.1.1 Loading data

Loading data was done using the COPY command in PostgreSQL. This can either

be done from the psql command line, from PgAdmin3 or by running the function

from a psql script. The first solution that was used for loading data from a text

file, consisted of the following three steps:

• Copy data from file

• AddGeometryColumn

• Create Index

Tests were run using these loading steps on the full Holmenkollen data set, which

contains 29 Million points. The results are shown in figure 7.13, where the total

load time is 37 minutes. Indexing is the most time-consuming part of the operation.

76

Chapter 7. Prototype

Figure 7.13: Holmenkollen loading time consumption: 29 Million points

A more efficient approach would be to create the geometries on the go instead of

loading in x, y and z to a table and then generating the Point geometry. This saves

us the middle ”Add Geometry” part in figure 7.13. This idea was implemented

and defined as it’s own function on the PostgreSQL server. The load function is

called ”lidarload” and creates a point data table directly from the text file input:

• Copy data from file and create geometry on the go

• Create index

Unfortunately, no timed tests were not run for this function, but it is clearly a

better solution because it gets rid of an extra step.

7.4.1.2 Index Size and Efficiency

The index size of the point tables were tested as well. Indexing was not done for

the Nidarosdomen data set simply because it would take too much time. Typi-

cally, indexing would add a 50% space requirement to the point data tables. The

efficiency of the PostGIS R-tree and GiST combination can be seen in figure 7.14.

77

Chapter 7. Prototype

For small queries, there is a signficant speedup, but as the query size approaches

1/3 of the data set, the index has little effect.

Figure 7.14: PostGIS Query efficiency: 29 Million points

As is explained in section, each point will be represented as one geometry in the

combined GiST and R-tree index, which makes the indexing scheme extremely

inefficient. Because of this, attempts were made to look at indexing schemes more

similar to those implemented by RapidLasso and Oracle. One approach was to

store data points as MutliPoint geometries instead of points. A PostgreSQL script

was created for this purpose. A short, pseudocode representation is shown in

listing 7.1.

for x = minx; x < xmax; x =+ xstep {

for y = miny; y < ymax; y =+ ystep {

collection = Select points in bbox(x, y, x + xstep , y + ystep);

Insert into newtable (collection);

}

}

Listing 7.1: Grid function queries

78

Chapter 7. Prototype

By adjusting the xstep and ystep, it is possible to create different types of bounding

boxes. When the GiST command is used on MultiPointZ instead of PointZ, the

result is fewer geometries to index. This naturally results in smaller index size.

This was done for different step size, as shown in table 7.5.

Table Points (M) Content Table rows Index size (KB)

H-Standard 9.4 PointZ RGB IC 9 367 818 443 392

H-Grid 5m 9.4 MultiPointZ 39 752 1992

H-Grid 10m 9.4 MultiPointZ 10 000 520

H-Grid 20m 9.4 MultiPointZ 2 500 192

H-Grid 40m 9.4 MultiPointZ 625 32

Table 7.5: Index size comparison

From this table we can see that indexing on a few thousand multipoints will im-

prove the index storage efficiency considerably. From these numbers we can also

compute number the number of bytes each row adds to an index: Each point

amounts to approximately 50 bytes. To see what effect these inedxing schemes

would have on the performance on queries, a few tests based on the code in listings

7.2 were run. The four bounding boxes used together constitute an area that con-

tains all 9.4 Million points in the Holmenkollen set used in table 7.4 and visualized

in figure 7.7.

For i=0; i<4 i++ {

SELECT geometry FROM H_Table

WHERE ST_Intersects(multipoint ,ST_MakeEnvelope(BBOX i));

}

For i=0; i<4 i++ {

SELECT id FROM H_Table

WHERE ST_Intersects(multipoint ,ST_MakeEnvelope(BBOX i));

}

Listing 7.2: Grid function queries

79

Chapter 7. Prototype

The sesults show that some gridding has positive effect on select queries, but only

up to a certain point. The 40x40m grid has not got a positive effect on the query

processing. It should also be noted that the MultiPointZ data have not gotten

any RGB, intensity or classification values. This might have unforeseen effects

on the data. Other tests were performed as well, where single points were being

picked out. In these tests, the MultiPointZ indexings performed considerably

worse, compared to the PointZ index.

Figure 7.15: Index test 1: Full dataset

Table 7.6 shows the result of selecting points within a 10x10m grid in the Hol-

menkollen data set used in 7.5. The index tests that have been run have shown

how the size and speed relates to each other. It is however important to keep

in mind that the MultiPointZ tables are smaller because the data tagged to each

point has not been included.

80

Chapter 7. Prototype

Table Time (ms)

H-Standard 2

H-Grid 5m 6

H-Grid 10m 8

H-Grid 20m 33

H-Grid 40m 112

Table 7.6: Index test 2: 10x10m bounding box

7.4.2 Web browser testing

Because the point cloud viewer runs on the web browser, these test are highly

dependent on the efficiency of the web browser. In fact, some browser don’t

support WebGL properly and cannot run the point viewer at all. The effect of

different browser performance can be seen in figure 7.16, where a total number of

2.4 Million points is being loaded into the point viewer. The points are loaded

into the browser in four chunks containing approximately 600 000 points each.

Interestingly, Chrome starts struggling at 1.8-2 Million points, whereas the FireFox

browser keeps on going after that point. The results of the browser tests indicated

that memory management could be the issue: FireFox crashed time and time again

when approaching 2.4 GB RAM, whereas Chrome did the same around 1.8 GB

RAM usage. This result was consistent for different computers. The point record

for the prototype was 3.2 Million points, running on FireFox.

81

Chapter 7. Prototype

Figure 7.16: Browser comparison: Loading 2.4 Million points

This chunking has, through a wide range of testing during the development phase

shown to be more efficient than loading everything at once: The PostgreSQL

database server uses a certain amount of time for each request, and the bigger

or more advanced a request is, the longer the processing time will be. In figure

7.17, a test of how 1.7 Million points are loaded into the browser is shown. The

bottom x-axis shows the transfer time from query was sent till the time it had

all the points. Each coloured box refers to one data chunk being loaded into the

browser. The number of points per chunks are found in the graph explanation.

This was tested for a 100 Mbit network and then the 1.5 Mbit transfer time was

calculated. ”Inifinite bandwidth” is the query time.

82

Chapter 7. Prototype

Figure 7.17: Bandwidth effects. Loading 1.7 Million points

No have been run on that tests the 3D acceleration via metric such as frames

per second. The reason is simply that there has been no need for this. From

running the application on different, the general observation has been made that

the number of points and browser’s memory usage limitations are restrictive long

before the actual 3D rendering becomes an issue.

83

Part IV

Conclusions

85

Chapter 8

Discussion and Future Work

8.1 Discussion

In Part III, state-of-the-art LiDAR online services were presented together with the

thesis prototype. Because any serious attempt at developing a prototype should

result in a system that surpasses current solutions or that has some innovative

aspects to it, the following is a discussion about whether the proposed LiDAR

data warehouse meets these criteria. This will be done by looking at how well the

prototype fulfils the system requirements and by comparing it to the state-of-the-

art solutions. The tests from section 7 will be used to assess the prototype and

will, together with knowledge from part II, help unravel potential shortcomings in

the design. Finally, the lessons learned from this thesis will be presented together

with suggestions for future work.

8.2 Fulfilling the Requirements

The requirements for the system were stated in the beginning of section 7. These

have acted as guidelines during the development of the system and will, in the

following paragraphs, be used to assess the end product.

87

Chapter 8. Discussion and Future Work

R1: Support storage of georeferenced LiDAR data

Data storage in the prototype is handled by PostgreSQL’s spatial extension, Post-

GIS. While PostGIS is excellent at storing relatively small geographic objects, it

is ill-suited for large amounts of point data. The test section is a testament to

this fact, seeing as the prototype’s storage efficiency is extremely poor compared

to existing file-based solutions. A LiDAR data set stored in a PostGIS database

table took up 3.5 times the space of a LAS file, and staggering 42 times more than

a LAZ file. The inefficiency lies in the data structures used in PostGIS, which have

been thoroughly described in section 3.5. However, compared to these early notes,

the tests show that the PostGIS database is even less storage efficient than antic-

ipated. Unsuccessful attempts have been made at figuring out how the database

storage works on a low level. Index size has also been an issue, although some

promising work was done on this area. A reduction of index size by a factor of 200

was attainable using 5x5m grids of MultiPointZ geometries instead of the normal

PointZ geometry. Furthermore, there are also positive effects of using PostGIS for

LiDAR storage: Queries can easily be run using standardized SQL queries, which

also includes a wide range of spatial operators. It is also important to note that

there are database solutions that are optimized for LiDAR data and, therefore,

storing LiDAR data in a spatial database is not inherently a bad idea.

R2: Enable visualization through the use of Web technologies

The prototype has two types of LiDAR data visualizations. One is based on a

traditional web map approach, where the outline of the scans are visualized as

polygons. The second, and most interesting, is a 3D point viewer built using a

WebGL-based JavaScript library. The point viewer has proved to be capable of

loading in 3.2 million points if run on a Mozilla FireFox browser. This number is

high enough for the point viewer to visualize large aerial scans or detailed terrestrial

scans. For the data sets that exceed this maximum point number, data pruning

techniques have been employed to load them in. An advantage of the web-based

application is that it runs directly in the browser and requires no extra installation.

88

Chapter 8. Discussion and Future Work

The point viewer is also capable of visualizing different properties of the LiDAR

point cloud, such as classification values and RGB colours. Using a 100 Mbit

line it was shown that the point viewer would build approximately 35 000 points

per second. This is transfer rate exceeds the observed performance of the CyArk

viewer. Shortcomings of the point viewer is that it does not stream the data,

but loads it in piecewise. The infinite case of the the chunk loading described

in section 7.4.2 would be a constant stream. This is however more challenging

to implement, especially seeing as the Three library doesn’t support dynamically

changing ”ParticleSystem” objects.

R3: Implement user interface for efficient extraction of LiDAR data

The implementation of the data export user interface is described in section 7.3.2.

It has not received the same amount of attention as the rest of the system. None of

the export data tests were included for the thesis report, as they would have added

little insight. Exporting the data itself is simply done by running an SQL query

with the export specification and then saving this to a file. Thus, the processing

time would be very similar to what has been thoroughly tested in other parts

of the systems. The user interface is quite similar to the solutions presented in

section 6, but has the extra feature of showing a pruned version of the data set as

well.

R4: Use open-source technology where it is applicable

One of the motivations behind the use of open source technology was that it

would make the system easy to replicate while simultaneously lowering the costs

of development. Finding the open source software packages that would make it

possible to develop the system was not a difficult task. All of the JavaScript

libraries used in this project are freely available to the public. The same is true

for the Apache server and the PostGIS database. The latter, however, has had

a detrimental effect on storage performance. From the discussion above and in

89

Chapter 8. Discussion and Future Work

section 3.5.1.2, it is evident that the Oracle database would have been a preferable

storage solution.

8.3 Lessons learned

While the prototype did not turn out to be the perfect LiDAR data warehouse, it

has offered insight into the issues and challenges related to LiDAR data manage-

ment. This section will present they key observations which has been made during

the thesis.

Simplification of Data: Given a globally referenced 3D box, the internal points

of that box can be stored with smaller data type such as an integer, if it is accom-

panied with a scaling factor. This simplification step is an important part of the

LAS and e57 file specification, as explained in section 3.2. The result of this trick

is that the coordinates of a point can be stored in 12 bytes instead of 24, which

would be the case if the coordinates are stored using double precision float data

types. The same idea applies to other data types: Limit the data types as much

as possible.

Compression is Key: The storage efficiency tests that were carried out in section

7.4, show how important compression is for efficient LiDAR data storage. The LAZ

files are 7-25% of the original LAS files, which amounts to substantial amounts of

storage space for large data sets. While LAZ files show the best performance, the

idea of compression has also been implemented by Oracle. The take-home message

is no LiDAR data management system without compression.

The Potential of Web-based GIS: Whereas the backend database of the pro-

totype in no way is competing with current solutions for LiDAR storage, the front

end web client is an example of an application that introduces something new: It

is capable of retrieving point data, TINs, CAD models and more. It makes the

whole concept of georeferenced data a lot more exciting, as it comes to live in the

90

Chapter 8. Discussion and Future Work

3D viewer. That this can all be done from a browser opens up a new world of

opportunities for GIS.

8.4 Future Work

The objective of developing a LiDAR data warehouse is not an easy one. Be-

cause knowledge about LiDAR and geographic information storage is required, in

addition to being capable of using several different programming techniques, the

system naturally will have some shortcomings. This section gives topics related to

the LiDAR data warehouse that requires further work in order to create a better

solution. Finally, a slightly visionary and interesting research topic is presented.

Use a LiDAR-optimized database: Because the storage solution of the pro-

totype is inefficient compared to file-based solutions, it becomes difficult to argue

for choosing the database option. However, by using a spatially enabled Oracle

database or an equivalent solution, the benefits of database management won’t

come at a high price.

Dynamic visualization: The Web-based point cloud visualization implemented

for the prototype uses a relatively rigid point selection algorithm. The point viewer

itself has however been built in an object-oriented manner, where a chunk of points

of any size can be loaded in an visualized according to it’s coordinates. This opens

up for a more dynamic way of getting points. As an example, querying for point

clouds using a road section presented as a polygon would make it possible to get

a denser point cloud surround the road and sparser coverage in the round lying

areas.

Full waveform LiDAR: A topic which was barely touched upon in section 2,

was full waveform LiDAR. Getting easy access to large amounts of full waveform

data through something like a spatial database would be interesting, as different

algorithms for automatic detection or improved precision through better waveform

analysis could be the result. These data are stored in LAS 1.3 and 1.4 as byte

91

Chapter 8. Discussion and Future Work

strings that represent the actual waveform. These have a starting point and length,

meaning there is a three dimensional spatial extent when the scan angle and scan

system position is taken into account. This makes it possible to store as a spatial

object, and how that should be done in a database context would be interesting

to look closer at.

Virtual reality: An exciting idea that should be investigated regarding LiDAR

data, is the visualization of LiDAR data on smart phones or other portable devices.

In Appendix A, a screen shot from a cellphone running the point cloud viewer is

shown in figure A.5. This was an early version of the point cloud viewer, but still

rendered over half a Million points on a 2 year old smart phone. By creating an

application that tracks the camera and orientation change, it would be possible to

create a virtual reality viewer of the point cloud. With recent product launches

such as Google Glass, this might be an interesting idea for the future.

92

Chapter 9

Conclusion

9.1 Conclusion

This thesis has investigated how a data warehouse could be designed in order to

facilitate efficient management of data produced by Light Detection and Ranging

(LiDAR) scanners. This has been done by gaining an understanding of the LiDAR

data structures and how these can be stored and managed. Furthermore, a LiDAR

data warehouse has been developed, tested and compared to existing solutions.

The results of this study indicate that the chosen approach of using a PostGIS

database for point cloud storage is suboptimal due to poor storage efficiency. The

data organization that causes this to be the case has been explained in section 3.5,

thoroughly tested in 7.4 and finally analysed in chapter 8. The conclusion is that

the PostGIS table implementation, which has a smaller amount of information

than the LAS file, takes up 3.5 more storage space. Moving on to LAZ files, the

worst case scenario is that the PostGIS table takes up 42 times more storage space.

Therefore, the finding of this thesis indicates that for maximized storage efficiency,

LAZ files should be used for storing LiDAR files.

Accessibility of the LiDAR data is another issue that has been thoroughly investi-

gated during the prototype development. Current online LiDAR solutions mainly

use web maps to visualize the extent of the data sets. This was easily implemented

93

Chapter 9. Conclusion

with the PostGIS database in combination with a Leaflet-based web site, but the

prototype also offers three dimensional visualization of the point clouds. The idea

of creating a Web application to increase LiDAR data accessibility has been in-

fluenced by CyArk’s web viewer, which was developed to visualize laser scans of

heritage sites. A similar web viewer has been developed for this prototype and has

shown promising test results. Up to 3.2 Million points have successfully been vi-

sualized in the Web application and, with no required plug-ins, looking at LiDAR

data now requires the same amount of effort as reading the online news.

Since the first commercial LiDAR surveys were carried out less than 20 years ago,

LiDAR technology has grown to become an industry of it’s own. While aerial

scans and construction site surveys are typical uses of LiDAR scanners today, this

might change in the future. Exciting technology such as autonomous cars and

drones might cause an increase in the number of sensory units, which would lead

to even more data being gathered. Managing these data and making them easily

accessible should be a primary concern of LiDAR data users. Countries such as

Sweden, Denmark and the US have recognized the value of making these point

clouds available online, for anyone to download. Hopefully this trend will continue,

in which case the lessons learned from this thesis could provide insight into making

an optimized warehouse for LiDAR data storage.

94

Part V

Appendices

95

Appendix A

Prototype Development

A.1 Developing Cloudy

Developing the LiDAR data warehouse started off after the initial planning phase

was finished. Using an iterative development process, it has been possible to feed

the knowledge from each iteration step into the next one. Thus, the system has

improved drastically over the course of this master. The largest revisions of the

prototype will be presented in this appendix chapter.

Iteration 1: Getting started

The initial version of Cloudy was finished in late February. For the initial version

of the system, the Holmenkollen data set was used. At this point the system

included the following software packages:

• Leaflet.js

• Three.js

• Simple HTML/CSS

• PostgreSQL + PostGIS

97

Appendix A. Prototype Development

Figure A.1: LiDAR version 1

Figure A.2: LiDAR point viewer version 1

98

Appendix A. Prototype Development

Iteration 2: Additional Scans and Bootstrap

The second revision is shown in figure A.3. It included the data set from Nidaros

Domkirkes Restaureringsarbeider (NDR), which was an indoor scan of the Nidaros

cathedral in Trondheim. Sadly however, colour information was not present for

this scan. Another indoor scan, captured with a Faro 3D scanner, was also added

to the database. A notable change in the Cloudy system is the use of bootstrap.js,

which makes it easer to build a neat looking and User Interface (UI). It was however

not implemented for the point viewer at this point. Out of curiosity, a mobile test

was run as well, on a Samsung Galaxy S2 with the Google Chrome browser set to

development mode. It actually rendered a point cloud of 568 000 points. This can

be seen in figure A.5 Summarized, the changes were:

• Bootstrap.js

• New data sets: Indoor scans

Figure A.3: LiDAR version 2

99

Appendix A. Prototype Development

Figure A.4: LiDAR point viewer version 2

Figure A.5: Cloudy version 2: Cellphone

100

Appendix A. Prototype Development

Iteration 3: New Look and Improved Controls

For the third iteration, the look was changed to create a better user experience.

The controls for the point cloud viewer were also significantly improved, as they

up until this point had simply been changing camera position based on mouse

position. Controls were now implemented using a system working in the following

manner:

Notable additions:

• New Look

• Improved user interface

• Export functionality

Figure A.6: LiDAR version 3

101

Appendix A. Prototype Development

Figure A.7: LiDAR point viewer version 3

Iteration 4: Final Delivery

Cleaning up the code and adding final touches, such as a loading bar which indi-

cates when the system is working. For the final versions, the point cloud chunks

have been finalized with call functions for colouring based on different variables.

Figures A.9 and A.8 shows what height and intensity colouring looks like.

• Progress bar

• Object-oriented Particle Systems

102

Appendix A. Prototype Development

Figure A.8: LiDAR point viewer version 4

Figure A.9: LiDAR point viewer version 4

103

Appendix B

Prototype Experimentation

B.1 Extra Functionality

Creating a LiDAR data warehouse prototype lead to many hours of research and

development, something which also spawned creative processes that lead to so-

lutions that not necessarily are within the project’s development goals. These

solutions are still interesting however, as they show how potent the combination

of the spatial database and web GIS is. Two such spin-off projects will be pre-

sented here: One section will present derived 3D model visualization and analysis.

The other section will explain how Normalized Differentiated Vegetation Index

(NDVI) can be implemented and run as a service on the Web Client itself.

B.2 3D Models From Point Clouds

RapidLasso’s command line tools, LasTools, includes functionality for creating

Triangular Irregular Networks from las files. Using this program, combined with

the selection of ground-classified points from the Holmenkollen data set, a bare-

earth DEM was created. The output format of the program is OBJ, which is

simply a list of points and triangle definitions. This data set was previously used

as an example of a bare-earth mode in figure 2.7. In that figure, ArcScene was

105

Appendix B. Prototype Experimentation

used for visualization. However, it turned out that it was easy to get hold of a

OBJ loader to the three.js library, which made it easy to import and visualize this

data set in the point cloud viewer. A result of this is seen in figure B.1, where a

Collada model of the Empire State building also was added by using a 3D model

loader library.

Figure B.1: Cloudy TIN and CAD: DTM from Holmenkollen and a CAD file
loaded into the Cloduy point viewer

B.2.1 3D Analysis

As soon as we are working with surface models, it is easy to extend the functionality

to do 3D analysis. Simple operations such as doing volumetric measurements could

be thought of. Another type of analysis is line of sight and shadow analysis for

planned buildings. The latter was easily implemented by constructing a box,

adding it to the scene and letting it cast shadow onto the DTM. The beauty of a

web application such as Cloudy is that as long as it has unambiguous coordinates,

everything can easily be added to the scene. The true potential of georeferenced

data is by no means fully utilized by current applications.

106

Appendix B. Prototype Experimentation

Figure B.2: DTM Shadow Analysis using a box model to represent a tall
building

B.3 Real-Time Processing: NDVI

The Normalized Differentiated Vegetation Index (NDVI) is a technique for detect-

ing chlorophyll-based organizations among other objects. It is an integral part of

mapping vegetation coverage from satellite and aerial photography. NDVI pro-

vides an easy way to see growth and decline in a bio mass, and will in fact detect

a decline in the productivity of a plant’s photosynthesis before it can be detected

in leaves’ colour. This is because the NDVI is based on the fact that leaves and

other chlorophyll-based biomass absorbs a lot of red light and reflects a lot of the

infra-red light[47]. This is a property almost no other objects exhibit, and means

that it can be used for identification purposes if both red colour channel and

Near-Infra-Red light (NIR) are available. The NDVI index is defined in equation

B.1.

NDV I =
V IS −NIR

V IS +NIR
(B.1)

107

Appendix B. Prototype Experimentation

Interestingly, as explained in section 2, most LiDAR scanners are based on NIR

laser. This means that one of the prerequisites for creating a NDVI index is

naturally present in LiDAR data sets. If the RGB values have been matched to

the point cloud as well, everything is in place for a NDVI analysis. There are few

publications on the topic of LiDAR NDVI, and it is not commonly used in the

industry, but still a feasible option for vegetation detection[48]. The Holmenkollen

data set is shot with a 1064nm laser and has RGB attached to it, which made it

applicable for a NDVI test. The result is shown in figure B.3. Bear in mind

that this is not the standard NDVI index colouring scheme, but a simple red-blue

gradient.

Figure B.3: Holmenkollen NDVI

108

Appendix C

Hardware Comparison

C.1 Motivation for testing

Almost all the of the development of the prototype has been done using a Win-

dows 8 system installed on an Intel 520 240 GB storage device. The Intel 520

is a Solid-State Device, which means that it utilizes NAND flash cells to store

information, as oppposed to a Hard Disk Drive (HDD), which reads and writes

bits to magnetized metal disks[15]. Traditionally, SSDs have been expensive and

high-performing storage mediums. The random data access has been particularly

impressive on these devices, and was the main selling point on earlier devices ci-

texxx. In fact, five years back the SSD and HDD would have comparable sequential

read performance, and the random read performance alone could often not justify

the high price. Today, the situation is completely different, as relatively cheap

SSDs with impressive performance and high capacity can are available. Whereas

many companies have adopted the SSD, it is still expensive in terms of GB per

dollar. Seeing as the LiDAR industry requires a lot of GigaBytes, they are likely to

do this change at a later stage. This section simply shows how big the performance

difference is between a HDD and a SSD.

109

Appendix C. Hardware Comparison

Test machine SSD HDD
Hardware

RAM 8 GB DDR3 8 GB DDR3
CPU Intel i7-720QM Intel i7-720QM

Storage Intel 520 240 GB Seagate Momentus XT
500GB 7200RPM

Software
OS Windows 8 Ubuntu 12.04

Database PostgreSQL 9.2.2 PostgreSQL 9.2.2
Spatial Extension PostGIS 2.0 PostGIS 2.0

Table C.1: Storage Test Machines

C.2 Tests

In order to see the performance difference in using a SSD compared to a tradi-

tional magnetic disks for spatial queries on a PostGIS database, four tests were

constructed and run on two systems with the specifications listed in table C.1.

As can be guessed from this table, the only difference in the hardware was the

storage solution and OS. The database tables were identical on both systems and

both had been clustered on a GiST index prior to testing. While every measure

was taken to ensure equal test set up, no data has been gathered on performance

difference for PostGIS running on Ubuntu compared to running on Windows. The

results are therefore more of an indication than a correct result.

C.2.1 Test 1

Test 1 is the control query, which simply performs a data table scan for 200 000

rows. This means no spatial indices are being used, the data records are simply

retrieved from disk.

SELECT * FROM holmenkollen LIMIT 200000;

Listing C.1: Test 1 query

110

Appendix C. Hardware Comparison

C.2.2 Test 2

Test 2 performs four queries, as shown in listings C.2. The result of this query

is the data set shown in figure C.1. Summed up the query returns roughly 2,39

Million rows.

Figure C.1: Test 2 query result

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (592960 , 6648724 , 593240 , 6648474 , 32632));

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (593240 , 6648724 , 593520 , 6648474 , 32632));

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (592960 , 6648224 , 593240 , 6648474 , 32632));

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (593240 , 6648224 , 593520 , 6648474 , 32632));

Listing C.2: Test 2 queries

111

Appendix C. Hardware Comparison

C.2.3 Test 3

Test 3 queries consists of four separate queries that access four separate, squares

of 30x30 meters. Queries can be seen below in listing C.3.

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (592735 , 6648735 , 592765 , 6648765 , 32632));

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (593235 , 6648735 , 593265 , 6648765 , 32632));

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (592735 , 6648265 , 592765 , 6648235 , 32632));

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (593235 , 6648265 , 593265 , 6648235 , 32632));

Listing C.3: Test 3 queries

C.2.4 Test 4

Test 4 queries, shown in listings C.3, consists of two stripes that are orthogonal to

eachother. They are have the dimensions 30x970 meters and 30x1000m.

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (593235 , 6648265 , 592265 , 6648235 , 32632));

SELECT id, ST_x(point), ST_y(point), ST_z(point), r, g, b, i, c FROM holmenkollen

WHERE ST_Intersects(point ,ST_MakeEnvelope (593235 , 6648000 , 593265 , 6649000 , 32632));

Listing C.4: Test 4 queries

C.3 Results

The test results shows that the Cloudy prototype is well served with being devel-

oped using a SSD-based system. The throughput for all queries are approximately

an order of magnitude faster on the SSD-based than on the HDD-based system.

112

Appendix C. Hardware Comparison

Surprisingly, there is not much difference in the relative performance gain with

respect to different access patterns. In fact, there is a slight tendency towards the

SSD being even faster in the case of a database scan query.

Test HDD SSD

1 32.28 1.71

2 285.35 23.57

3 4.60 0.36

4 54.14 4.27

Table C.2: Test: Time spend (seconds)

In figure C.2, the throughput in rows per second is shown for the SSD in green

and HDD in blue. The SSD returns 100-120 000 rows per second, while the HDD

delivers a 6000-8000 rows per second. Had a HDD-based system been used to run

the Cloudy prototype, the system would have been considerably slower.

Figure C.2: Test: Throughput

113

Appendix D

Sequence Diagrams

Figure D.1: Web Map Sequence Diagram

115

Appendix D. Sequence Diagrams

Figure D.2: Browser Point Cloud Creation

Figure D.3: Export Sequence Diagram

116

Bibliography

[1] M. Flood. Lidar activities and research priorities in the commercial sector.

International Archives of Photogrammetry and Remote Sensing, 2001.

[2] P. A. Forrester and K. F. Hulme. Review: Laser rangefinders. Optical and

Quantum Electronics, 1981.

[3] G.C. Guenther. Airborne laser hydrography. Technical report, US Depart-

ment of Commerce, Washington, DC, 1985.

[4] Banic J. Sizgoric, S. and G. C. Guenther. 1970-1990: Airborne lidar hydrog-

raphy status. EARSeL Advances in Remote Sensing, 1992.

[5] Irish J.L. and White T.E. Coastal engineering applications of high-resolution

lidar bathymetry. Coastal Engineering, 1998.

[6] Mallet C. and Bretar F. Full-waveform topographic lidar: State-of-the-art.

Journal of Photogrammetry and Remote Sensing, 64(1):1–16, 2009.

[7] U.S. Government. A Guide to Lidar Data Acquisition and Processing for the

Forests of the Pacific Northwest. General Books, 2011.

[8] F. Bretar A, A. Chauve A, C. Mallet A, and B. Jutzi B. Managing full

waveform lidar data: A challenging task for the forthcoming years. In The

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. Vol. XXXVII. Part B1. Beijing 2008.

[9] Arlen F. Chase, Diane Z. Chase, John F. Weishampel, Jason B. Drake,

Ramesh L. Shrestha, K. Clint Slatton, Jaime J. Awe, and William E. Carter.

117

Bibliography

Airborne lidar, archaeology, and the ancient maya landscape at caracol, be-

lize. Journal of Archaeological Science, 38(2):387 – 398, 2011.

[10] Marko Pejić. Design and optimisation of laser scanning for tunnels geometry

inspection. Tunnelling and Underground Space Technology, 37(0):199 – 206,

2013.

[11] Y. B. et. al. Kumar. Development of lidar technologies under project lidar.

Ineternational Journal of Advanced Engineering Sciences and Technologies,

2011.

[12] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The slam

problem: a survey. In Proceedings of the 2008 conference on Artificial In-

telligence Research and Development: Proceedings of the 11th International

Conference of the Catalan Association for Artificial Intelligence, pages 363 –

371, 2008.

[13] A. Bachrach, A. de Winter, Ruijie He, G. Hemann, S. Prentice, and N. Roy.

Range - robust autonomous navigation in gps-denied environments. In

Robotics and Automation (ICRA), 2010 IEEE International Conference on,

pages 1096–1097, 2010.

[14] National Geospatial-Intelligence Agency. Nga standardization document light

detection and ranging (lidar) sensor model supporting precise geopositioning.

Technical report, 2011.

[15] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

3 edition, 2003.

[16] Mike Mesnier, Gregory R Ganger, and Erik Riedel. Object-based storage.

Communications Magazine, IEEE, 41(8):84–90, 2003.

[17] The American Society for Photogrammetry and Remote Sensing. Asprs lidar

data exchange format standard version 1.0, 2003. URL http://asprs.org/

a/society/committees/standards/asprs_las_format_v10.pdf.

118

http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf
http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf

Bibliography

[18] The American Society for Photogrammetry and Remote Sensing. Las spec-

ification version 1.4 - r12, 2012. URL http://asprs.org/a/society/

committees/standards/LAS_1_4_r12.pdf.

[19] The American Society for Photogrammetry and Remote Sensing. Las

specification version 1.1, 2005. URL http://www.asprs.org/a/society/

committees/standards/asprs_las_format_v11.pdf.

[20] The American Society for Photogrammetry and Remote Sensing. Las specifi-

cation version 1.2, 2008. URL http://asprs.org/a/society/committees/

standards/asprs_las_format_v10.pdf.

[21] The American Society for Photogrammetry and Remote Sensing. Las spec-

ification version 1.3 – r11, 2010. URL http://asprs.org/a/society/

committees/standards/LAS_1_3_r11.pdf.

[22] M. Isenburg. Laszip: lossless compression of lidar data, 2012.

[23] D. Huber. The astm e57 file format for 3d imaging data exchange. pages

78640A–78640A–9, 2011.

[24] Robert W. Bemer. A proposal for character code compatibility. Communi-

cations of the ACM, 3(2):71–72, 1960.

[25] Gary Marsden and David E. Cairns. Improving the usability of the hierarchi-

cal file system. In Proceedings of the 2003 annual research conference of the

South African institute of computer scientists and information technologists

on Enablement through technology, SAICSIT ’03, pages 122–129, 2003.

[26] GIS: A Computing Perspective, 2nd Edition. CRC Press, Inc., 2004.

[27] Readings in database systems. The MIT Press, 2005.

[28] Open GIS Consortium. Opengis implementation standard for geographic in-

formation - simple feature access - part 2: Sql option, 2010.

[29] Horhammer M. Ravada S. and Kazar B. M. Point cloud: Storage, loading,

and visualization.

119

http://asprs.org/a/society/committees/standards/LAS_1_4_r12.pdf
http://asprs.org/a/society/committees/standards/LAS_1_4_r12.pdf
http://www.asprs.org/a/society/committees/standards/asprs_las_format_v11.pdf
http://www.asprs.org/a/society/committees/standards/asprs_las_format_v11.pdf
http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf
http://asprs.org/a/society/committees/standards/asprs_las_format_v10.pdf
http://asprs.org/a/society/committees/standards/LAS_1_3_r11.pdf
http://asprs.org/a/society/committees/standards/LAS_1_3_r11.pdf

Bibliography

[30] M. D. Smith and D. C. Finnegan. Visualization, analysis and

management of 3d lidar topography in oracle spatial 11g, 2009.

URL download.oracle.com/otndocs/products/spatial/pdf/osuc2009_

presentations/osuc2009_usace_smith.pdf.

[31] Douglas Comer. Ubiquitous b-tree. ACM ACM Computing Surveys, 11(2):

121–137, 1979.

[32] Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-tree

using fractals. In Proceedings of the 20th International Conference on Very

Large Data Bases, pages 500–509, 1994.

[33] A. Guttman. R-trees: a dynamic index structure for spatial searching. SIG-

MOD Rec., 14(2):47–57, 1984.

[34] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized

search trees for database systems. In IN PROC. 21 ST INTERNATIONAL

CONFERENCE ON VLDB, pages 562–573, 1995.

[35] M. Isenburg. Lasindex - simple spatial indexing of lidar data, 2012. URL

http://www.youtube.com/watch?v=FMcBywhPgdg.

[36] T Edwin Chow. The potential of maps apis for internet gis applications.

Transactions in GIS, 12(2):179–191, 2008.

[37] Matthew B. Hoy. Html5: A new standard for the web. Medical Reference

Services Quarterly, 30(1):50–55, 2011.

[38] Pro HTML5 Programming (Powerful APIs for Richer Internet Application

Development). Apress, 2010.

[39] Johan van Wamelen and Dennis de Kool. Web 2.0: a basis for the second

society? In Proceedings of the 2nd international conference on Theory and

practice of electronic governance, pages 349–354, 2008.

[40] JavaScript: The Good Parts. O’Reilly, 2008.

120

download.oracle.com/otndocs/products/spatial/pdf/osuc2009_presentations/osuc2009_usace_smith.pdf
download.oracle.com/otndocs/products/spatial/pdf/osuc2009_presentations/osuc2009_usace_smith.pdf
http://www.youtube.com/watch?v=FMcBywhPgdg

Bibliography

[41] Khronos Group. Webgl specification version 1.0.2, 2013. URL https://www.

khronos.org/registry/webgl/specs/1.0/.

[42] Viswanath Nandigam, Chaitan Baru, and Christopher Crosby. Database de-

sign for high-resolution lidar topography data. In Scientific and Statistical

Database Management.

[43] Sriram et. al. Krishnan. Opentopography: A services oriented architecture for

community access to lidar topography. In Proceedings of the 2nd International

Conference on Computing for Geospatial Research & Applications, COM.Geo

’11, pages 7:1–7:8, 2011.

[44] C. Larman and V.R. Basili. Iterative and incremental developments. a brief

history. Computer, 36(6):47–56, 2003.

[45] Paul Ramsey. Postgis point clouds source code, 2013. URL https://github.

com/pramsey/pointcloud.

[46] Ralph Kimball et al. The data warehouse. Toolkit. John Wiley, 1996.

[47] R. S. Defries and J. R. G. Townshend. Ndvi-derived land cover classifications

at a global scale. International Journal of Remote Sensing, 15(17):3567–3586,

1994.

[48] A. M. Griffin. Using lidar and normalized difference vegetation index to

remotely determine lai and percent canopy cover at varying scales.

121

https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
https://github.com/pramsey/pointcloud
https://github.com/pramsey/pointcloud

	Abstract
	Preface
	List of Figures
	List of Tables
	Abbreviations
	I Introduction
	1 Introduction

	II Background
	2 LiDAR
	2.1 Light and Detection Ranging
	2.1.1 Technical Description
	2.1.1.1 Laser Light
	2.1.1.2 Analysing the Returned Light

	2.2 Applications
	2.2.1 LiDAR Data

	3 Data Management
	3.1 Storing Information
	3.2 Computer Files
	3.2.1 LAS and LAZ
	3.2.2 e57
	3.2.3 ASCII
	3.2.4 Proprietary formats
	3.2.5 Managing the Files
	3.2.6 Software for LiDAR Data

	3.3 Databases
	3.3.1 Relational Databases

	3.4 Object-Relational Databases
	3.5 Databases and Geographic Information
	3.5.1 Databases Representing Points
	3.5.1.1 PostGIS implementation
	3.5.1.2 Oracle's Point Cloud

	4 Accessing the Data
	4.1 Access Methods
	4.1.1 Hash-based indexing
	4.1.2 Tree-based indexing

	4.2 Spatial Indexing
	4.3 Mapping to One Dimension
	4.3.1 kD trees and quadtrees
	4.3.2 R-trees
	4.3.3 Real World Applications
	4.3.4 PostGIS: GiST and R-tree
	4.3.5 Oracle Point Cloud: R-tree
	4.3.6 LAX

	5 Web Technology
	5.1 The Internet and the Web
	5.1.1 HTML5
	5.1.2 Javascript and the DOM
	jQuery
	Bootstrap.js
	Leaflet.js

	5.1.3 HTML5 in the Third Dimension
	Three.js

	III LiDAR Data Warehouse
	6 State of The Art
	6.1 OpenTopography
	6.1.1 System Architecture
	6.1.2 Deliverables

	6.2 Denmark: Kortforsyningen
	6.3 National Land Survey of Finland
	6.4 CyArk

	7 Prototype
	7.1 LiDAR Data Warehouse
	7.1.1 Prototype Development

	7.2 System Components
	7.2.1 Layer 1: Spatial Data Storage and Processing
	7.2.1.1 LiDAR Data Storage
	7.2.1.2 Database Structure
	7.2.1.3 Extracting, Transforming and Loading
	7.2.1.4 Data Accessing
	7.2.1.5 Database Modelling Alternatives

	7.2.2 Layer 2: Server
	7.2.3 Layer 3: Client Layer

	7.3 Presenting Cloudy
	7.3.1 Point Cloud viewer
	7.3.2 Data Extraction

	7.4 Testing
	7.4.1 Storage efficiency
	7.4.1.1 Loading data
	7.4.1.2 Index Size and Efficiency

	7.4.2 Web browser testing

	IV Conclusions
	8 Discussion and Future Work
	8.1 Discussion
	8.2 Fulfilling the Requirements
	8.3 Lessons learned
	8.4 Future Work

	9 Conclusion
	9.1 Conclusion

	V Appendices
	A Prototype Development
	A.1 Developing Cloudy

	B Prototype Experimentation
	B.1 Extra Functionality
	B.2 3D Models From Point Clouds
	B.2.1 3D Analysis

	B.3 Real-Time Processing: NDVI

	C Hardware Comparison
	C.1 Motivation for testing
	C.2 Tests
	C.2.1 Test 1
	C.2.2 Test 2
	C.2.3 Test 3
	C.2.4 Test 4

	C.3 Results

	D Sequence Diagrams
	Bibliography

