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Abstract: The potential human and economic loss due to structural collapse of geo-synthetic reinforced soil walls 

during earthquakes us huge. This substantiates the need for reliable design of such structures. The focus of this 

study was numerical and analytical design geo-synthetic reinforced soil walls under dynamic loading.  Two topics 

were addressed; the effect of reinforcement parameters and verification of pseudo-static methods.  

The study is based on a 1 m high reduced-scale shaking table model loaded using stepped-amplitude harmonic 

base acceleration amplitude. A numerical PLAXIS model was developed and verified using physical model data. 

Material properties of the components (e.g. backfill and reinforcements) were based on information from a similar 

model developed using FLAC. The numerical model was used in a parameter study of the effects of reinforcement 

length and strength on the failure surface, facing displacements and reinforcement loads. The accuracy of pseudo-

static methods was studied by comparing physical model results with predictions using the Mononobe-Okabe, the 

horizontal slices and two-part wedge method. Furthermore, guidelines for the Mononobe-Okabe method in 

different seismic design codes (i.e. Eurocode, FHWA/AASTHO and PIANC) were compared. Based on this 

comparison a new pseudo-static coefficient was developed.  

The reinforcement length and strength were found to have a significant effect on model response. For example, an 

increase in reinforcement axial stiffness will give a shallower failure surface and reduced the lateral facing 

displacements. Neither the Mononobe-Okabe, nor the horizontal slice, or the two-part wedge method was able to 

predict both the failure surface and the earth forces for a wide range of acceleration amplitudes. It was found that 

different pseudo-static methods are suitable for different predictions (e.g. of the failure surface) at different 

acceleration amplitudes. For example, single wedge pseudo-static methods gave good predictions for the active 

earth force and failure surface shape for acceleration amplitudes up to 0.30g, but not for higher amplitudes. 

FHWA/AASHTO were found to give better predictions for the failure surface and earth forced (when using 

Mononobe-Okabe) than the Eurocode and PIANC guidelines. Even so, the failure surface predicted using 

FHWA/AASHTO was too shallow compared to the physical measurements for acceleration amplitudes up to 0.30g. 
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Abstract  
The potential human and economic loss due to structural collapse of geo-synthetic reinforced soil 

walls during earthquakes us huge. This substantiates the need for reliable design of such structures. 

The focus of this study was numerical and analytical design geo-synthetic reinforced soil walls under 

dynamic loading.  Two topics were addressed; the effect of reinforcement parameters and 

verification of pseudo-static methods.  

The study is based on a 1 m high reduced-scale shaking table model loaded using stepped-amplitude 

harmonic base acceleration amplitude. A numerical PLAXIS model was developed and verified using 

physical model data. Material properties of the components (e.g. backfill and reinforcements) were 

based on information from a similar model developed using FLAC. The numerical model was used in a 

parameter study of the effects of reinforcement length and strength on the failure surface, facing 

displacements and reinforcement loads. The accuracy of pseudo-static methods was studied by 

comparing physical model results with predictions using the Mononobe-Okabe, the horizontal slices 

and two-part wedge method. Furthermore, guidelines for the Mononobe-Okabe method in different 

seismic design codes (i.e. Eurocode, FHWA/AASTHO and PIANC) were compared. Based on this 

comparison a new pseudo-static coefficient was developed.  

The reinforcement length and strength were found to have a significant effect on model response. 

For example, an increase in reinforcement axial stiffness will give a shallower failure surface and 

reduced the lateral facing displacements. Neither the Mononobe-Okabe, nor the horizontal slice, or 

the two-part wedge method was able to predict both the failure surface and the earth forces for a 

wide range of acceleration amplitudes. It was found that different pseudo-static methods are 

suitable for different predictions (e.g. of the failure surface) at different acceleration amplitudes. For 

example, single wedge pseudo-static methods gave good predictions for the active earth force and 

failure surface shape for acceleration amplitudes up to 0.30g, but not for higher amplitudes. 

FHWA/AASHTO were found to give better predictions for the failure surface and earth forced (when 

using Mononobe-Okabe) than the Eurocode and PIANC guidelines. Even so, the failure surface 

predicted using FHWA/AASHTO was too shallow compared to the physical measurements for 

acceleration amplitudes up to 0.30g.  
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Sammendrag (Norwegian Abstract)  
Kollaps av geo-syntetisk forsterkede støttemurer som følge av seismiske laster kan potensielt føre til 

store menneskelige og økonomiske tap. Dette illustrerer et behov for pålitelige designkriterier for 

slike konstruksjoner. I denne oppgaven har fokuset vært numerisk og analytisk analyse av geo-

syntetisk forsterkede støttemurer utsatt for dynamisk belastning. To temaer har vært berørt; 

effekten av forsterkingsparametere og verifikasjon av pseudo-statiske modeller.  

Grunnlaget for oppgaven er en 1m høy ristebordsmodell som ble belastet med en stegvis økende 

harmonisk akselerasjonsamplitude.En numerisk PLAXIS-modell bel utviklet og verifisert ved hjelp av 

data fra det fysiske modellforsøket. Materialegenskapene til de ulike komponentene (for eksempel 

jorden og jordforsterkingene) ble basert på informasjon fra en lignende modell, utviklet i FLAC. Den 

numeriske modellen ble benyttet i en parameterstudie hvor jordforsterkningenes lengde og styrke 

ble studert med hensyn på deres påvirkning på utvikling av bruddflaten, forskyvningen av 

støttemuren og kreftene i forsterkningene.  

De pseudo-statiske modellenes pålitelighet ble vurdert ved å sammenligne prediksjonene til 

Mononobe-Okabemetoden, «Horisontalskivemetoden» og «Todelskilemetoden» med resultatene fra 

det fysiske modellforsøket. I tillegg ble retningslinjene for Mononobe-Okabemetoden i ulike 

veiledere (dvs. Eurocode, FHWA/AASTHO og PIANC) sammenlignet. Basert på denne 

sammenligningen ble det også forslått en ny pseudo-statisk koeffisient. 

De numeriske undersøkelsene viste at jordforsterkningslengen og –styrken har betydelig effekt på 

responsen i støttemuren. For eksempel vil en økning av den aksiale stivheten i forsterkningene føre 

til en grunnere bruddflate og redusere de horisontale forskyvningene på støttemuren. Ingen av de 

studerte pseudo-statiske metodene var i stand til å beregne både bruddflaten og jordkreftene for et 

bredt spekter av akselrasjonsamplituder.  Den analytiske studien viste at ulike pseudo-statiske 

metoder egner seg for ulike prediksjoner (f.eks. av bruddflaten) ved ulike akselerasjonsamplituder. 

For eksempel, single-kilemetoder viste seg vel egnet til å bestemme de aktive jordkreftene og formen 

på bruddflaten for akselerasjonsamplituder opp til 0.30g. Ellers ble retningslinjene i FHWA/AASTHO 

funnet å gi et bedre estimat en Eurokode 8 og PIANC for bruddflaten og jordkreftene ved bruk av 

Mononobe-Okabemetoden. 
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1 Introduction 
Earth retaining structures are common to many projects. Their main function is to resist lateral earth 

forces, both under static and earthquake loading. Geo-synthetically reinforced soil wall is a retaining 

structure that has become popular in the last decades, partly due to their cost effectiveness 

compared to conventional gravity retaining walls, and partly because they have performed well 

during recent earthquakes (McCarthy p.613, 1998; El-Emam p. 1-2, 2003).  

The potential human and economic loss due to structural collapses during earthquakes is significant 

and the need for reliable and effective design guidelines is therefore crucial (Kramer, 1996). A 

number of devastating earthquakes occur each year all around the world. Even in Norway, where 

seismic activity is relatively low, there are requirements for seismic design. Until recently, seismic 

design of structures in Norway has been mainly considered for offshore structures, but the 

implementation of Eurocodes in 2010 has generated a need for Norwegian engineers to improve 

their knowledge about earthquake resistant design also for onshore structures (NORSAR Engineering, 

2011).  

This study describes a numerical model created in the finite element program PLAXIS 2D Dynamics 

with the intention of optimum design of geo-synthetics layout. In addition, the technical computing 

language MATLAB was used to develop programs for studying the accuracy of pseudo-static 

methods, and for developing a more suitable coefficient for use in the Mononobe-Okabe method.  

1.1 Choice of Subject 
The subject of numerical and analytical analysis of geo-synthetically reinforced soil wall model, 

subjected to dynamic loading, was suggested by Professor Amir M. Kaynia at the Norwegain 

Geotechnical Institute (NGI). Problem definition and research method was worked out in 

consultation with Professor Kaynia. 

This study was tailored to the author’s academic interests and to the notion that Norwegian 

engineers need to improve their knowledge related to seismic design. An important focus has been 

to understand the limitations by using PLAXIS 2D with respect to dynamic analysis. It has also been a 

focus on studying the pseudo-static methods and understanding their limitations.   

1.2 Problem Definition 
Geo-synthetics are planar products manufactured from polymeric materials (the synthetic) used with 

soil, rock, or other geotechnical- related material (the geo) as part of a civil engineering project or 

system. They are in some cases used to construct stable slopes at much steeper angles than would 

otherwise be possible. 

Traditionally, the seismic design of reinforced soil walls is based on classical failure mechanics and 

limit equilibrium (analytical) approaches. There are a variety of analytical approaches, but the 

pseudo-static methods are most common. Recently, the use of numerical solutions, such as finite 

elements, has become more frequent following the development of special elements.  

Two topics were identified as relevant for this study: 
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 The effect of key reinforcement parameters, since “relatively few studies have investigated 

the effect of key reinforcement parameters on the response of reinforced soil walls” (El-

Emam & Bathurst, 2007). 

 According to El-Emam & Bathurst (2004); “few pseudo-static methods have been verified 

using physical tests” and their accuracy is therefore not well documented. Different codes 

also give different suggestions for using these methods; the differences between them are 

thus also relevant.   

1.3 Objective 
Based on the topics identified above the following objectives were identified: 

 The ultimate objective of this study is to create a numerical model and verify it by using 

physical test results.  

 Study key reinforcement parameters and their role on the retaining wall performance under 

dynamic loading. 

 Use physical model to investigate the accuracy of different pseudo-static methods. 

 Study differences in seismic design codes with respect to the suggested pseudo-static 

coefficients, the Mononobe-Okabe method and their accuracy compared to physical results. 

 On this basis, find a more suitable guideline for selecting the pseudo-static coefficient for the 

Mononobe-Okabe method.  

1.4 Research Methodology 
The current study contains two quite distinct parts; one numerical study and one analytical based on 

pseudo-static solutions. Thus to achieve the various objectives, the work was divided in to the 

following tasks:   

 Literature review on general dynamic response of retaining walls. In this part the objective is 

to find a relevant case against which the numerical models (see later points) can be 

calibrated. These include: 

- Experimental studies 

- Empirical solutions 

- Numerical analysis 

 Numerical modelling of the case history/model test identified in the literature review on 

general dynamic response of retaining walls, and verification of model by use of case data. 

 Study of the effect of key reinforcement parameters using the developed numerical model.  

 Literature review of analytical methods used for analysing retaining walls with focus on 

pseudo-static methods. 

 Study of existing pseudo-static methods accuracy by use of literature data. 

 Study of differences in current guidelines for pseudo-static methods and suggest 

improvements  

1.5 Thesis Organisation 
The following three chapters (2-5) are mainly concerned with topics related to the numerical study. 

Chapter 2 presents background material on retaining walls in general, and theory used in connection 

with the numerical simulations. The result of a literary review on general dynamic response is 

presented in Chapter 3. Here, a small-scale shaking table model experiment conducted in Canada is 
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presented. This forms the basis for development of a numerical model, which is described in Chapter 

4. Relevant information about the numerical model’s geometry, loading and material parameters are 

given before it is compared to the physical shaking table model. Chapter 5 presents a numerical 

study of the influence of the strength and length of reinforcement on the failure surface, wall 

displacements and reinforcement loads. 

The next three chapters (6 -8) are concerned with topics related to pseudo-static methods of 

calculating the seismic pressures on retaining walls. The result of a review of analytical methods used 

to analyse retaining walls is presented in Chapter 6.  First, a general summary of different analytical 

methods is presented before three pseudo-static methods (the Mononobe-Okabe, horizontal slices 

and two-part wedge method) are investigated further. Chapter 7 presents a study to determine the 

suitability of these methods for calculating the failure surface geometry and total earth force on the 

back of the facing panel of the shaking table model presented in Chapter 3. In Chapter 8, firstly, a 

short presentation of different design guidelines for calculating the failure surface using the 

Mononobe-Okabe method is given. This is followed by a comparison of these codes, before a 

suggestion for improving the selection of the pseudo-static coefficient is presented. All results are 

discussed in the individual chapters, but a summary of the most important findings is given in 

Chapter 9 together with a presentation of the limitations in this study and proposals for further work.    

1.6 Previous Work 
A major background for the research presented in this study is the PhD thesis by El-Emam (2003) and 

articles related to it (El-Emam & Bathurst, 2004; El-Emam & Bathurst, 2005; El-Emam & Bathurst, 

2007; Zarnani, et al., 2011). It should be noted that the influence of reinforcement parameters in 

design of earth retaining walls has been investigated using numerical modelling (Bathurst & Hatami, 

1998) and by small-scale shaking table models (El-Emam & Bathurst, 2007). Furthermore, numerical 

and analytical analyses for reinforced soil walls have been carried out by Zarnani et al. (2011). Details 

and lessons from this work are compared to the findings in this thesis where relevant.    
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2 Background Material 
This chapter gives a short description of retaining walls in general and focuses on giving the reader a 

basic understanding of terms used later. Subsequently, theory relevant for the development of the 

numerical model (Chapter 4) is presented.        

2.1 Reinforced Soil Walls 
There are different types of retaining walls (e.g. gravity, cantilever and tieback walls) and they are 

used to secure embankments against sliding, or as key elements of harbours. Tall retaining walls are 

often constructed as what is called reinforced soil retaining walls (Figure 2.1). This type of retaining 

wall consists of a facing with a reinforced soil zone behind it (Kramer, 1996). Traditionally, the 

reinforcements consisted of thin steel elements, today the use of geo-grids are becoming more 

common. A geo-grid is a geo-synthetic and is a regular network of tensile elements with apertures of 

sufficient size to interlock with surrounding fill material. 

During an earthquake, the retaining wall is subjected to inertial forces due to the backfill inertia. 

Reinforced soil walls must be designed to withstand the static lateral earth pressure, in addition to 

additional forces that are introduced in case of an earthquake (Kramer, 1996).  

 
Figure 2.1 Reinforced soil retaining wall illustration 

 

2.2 Fast Fourier Transformation and Spectral Density  
As defined in Strømmen (2010); “the auto spectral density contains the frequency domain properties 

of the process, i.e. it is the frequency domain counterpart to the concept of variance”. The spectral 

density of a displacement measurement (e.g. for a tower subjected to wind loading) contains 

information about the distribution of displacements with frequency. There are different ways of 

determining spectral density, one way is to use a Fourier transforms. The discrete Fourier transform 

is often used to convert a time series from time domain to frequency domain. A plot of frequencies 

against the spectral densities of amplitudes, found by using a Fourier transform is called a Fourier 

amplitude spectrum.  

For transforming of a continuous time series, x(t), from the time domain to the frequency domain, 

the Fourier transform is: 
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Where t is time and  is the angular frequency.  

By using discrete Fourier transformation one may approximate x(t) as a sum of harmonic 

components, Xk(k,t),  where k=0,1,…N-1. According to Strømmen (2010) the one sided spectral 

density, Sx(k) is given by: 
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There have been developed numerous programs for calculating the spectral densities, e.g. Holst 

(2011) presents a simple program developed using MATLAB (The Mathworks, Inc., 2011).  

2.3 Hardening Soil Model in Dynamic Analysis   
When modelling the behaviour of a soil body, it is essential to consider the inertia of the soil, the 

time dependence of the loading and damping.  In principle all the soil models in PLAXIS are able to 

account for these effects, but it should be noted that these models are not developed specifically for 

dynamic analysis. Thus, all these models have significant limitations when used in dynamic modelling 

(Plaxis bv, 2010).   

The HS model was initially developed for use on sand but can also be used for other soil types. It is an 

advanced soil model based on the theory of hardening plasticity. Compared to, for example Mohr-

Coulomb, the HS model describes soil stiffness more accurately by using three input stiffness’ from 

loading/unloading triaxial and oedometer loading (E50, Eur and Eoed respectively). Another advantage 

of the HS model is that the yield surface can expand due to plastic straining. (Nordal, 2011; Auleda, 

2011).  

Although the HS model is an advanced model, there are limitations for what it is able to model. For 

example; it does not account for softening due to soil dilatancy and de-bounding effects and it does 

not model hysteretic and cyclic loading. Another shortcoming of the HS model is increased 

calculation time, although it is not as high as for example for the Hardening Soil model with small-

strain stiffness. Furthermore, the soil models in PLAXIS do not include viscosity in the material 
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damping term, instead Rayleigh damping is used to account for this (Plaxis bv, 2010; Plaxis, 2011). 

Further details regarding the Hardening Soil model can be found in Schans et. al. (1999). 

2.4 Rayleigh Damping 
As explained by Liu & Gorman (1995), the Rayleigh damping assumes that the damping matrix (C) is 

proportional to the mass (M) and stiffness (K) matrices, thus 

            (2.5)  

   

From this a relationship between the damping ratio (), the angular frequency () and the two 

Rayleigh damping coefficients ( r and r) can be established:   

      
    (2.6)  

   
By selecting two frequencies (1 and 2) and corresponding damping ratios equation (2.6) can be 

solved by 
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2.5 Displacement Drift  
For a numerical simulation of a shaking table experiment, one often wishes to use a zero initial 

velocity and displacement condition. In a finite element model this introduces a shift in the velocity 

term and this causes a drift in the displacement term due to the integration procedure. Madabhushi 

(1990) presents the effect of the initial velocity and displacement conditions on the numerical 

integrations in detail. The following gives a short introduction to the problem.  

Starting with a simple sinusoidal acceleration we obtain the velocity and displacement by integration  

  ( )       (  ) 
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Where a(t), v(t) and u(t) is the time-dependent acceleration, velocity and displacement respectively. 

C1 and C2 are integration constants, a0 the acceleration amplitude, t is time and  the angular 

frequency.  

When using the initial condition v(t=0)=0 and u(t=0)=0 the velocity and displacement becomes 

  ( )   
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In Figure 2.2 the acceleration, velocity and displacement-time series for the above equations are 

illustrated using an angular frequency of 2 (corresponding to a frequency of 1 Hz) and acceleration 

amplitude of 1m/s2. From the figure, drift in displacement is observed. This has an impact on how the 

excitation is applied to numerical model and is discussed further in the presentation of the numerical 

model.  

 

 

 
Figure 2.2 Acceleration time series, velocity shift and displacement drift 
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3 Shaking Table Experiments at RMC: Background 
A number of dynamic shaking table experiments preformed around 2004 at the Royal Military 

College of Canada (RMC). This chapter gives an introduction to relevant aspects of these experiments 

that are relevant for the investigations in this thesis. It should be noted that all the information 

presented in this chapter is based on the PhD thesis by El-Emam (2003) and its related articles, see 

section 1.6. 

3.1 General 
The main goal of the investigations at RMC is to use the results from the scale model shaking table 

tests to refine analytical models and develop guidelines for numerical modelling of reinforced soil 

walls. To achieve this El-Emam and Banthurst investigated the effects of different toe boundary 

conditions, facing panel configurations and reinforcement layouts. 

Fourteen 1/6-scale models with different properties were investigated. The models were all excited 

by the same horizontal sinusoidal vibration at the base and the amplitude was increased in steps 

until failure. A rigid strong box (1.4m wide by 2.7 m long) with a rigid back wall was used to confine 

the models. Although El-Emam (2003) contains information on many different shaking table models 

only one of these is used as basis for this study. The reason is the limited data about relevant 

measurements (e.g. regarding the failure surface) on the other models.  

3.2 Geometry  
The model is referred to as “Wall 1” in El-Emam (2003), an illustration of it is shown in Figure 3.1. It 

was constructed using a hinged-type toe boundary condition (which means that it can rotate but not 

move in the vertical or horizontal direction) and a vertical facing with a thickness of 76 mm. The 

vertical spacing of the reinforcement layers is 185 mm. 

 

 
Figure 3.1 Reduced-scale shaking table model  (El-Emam, 2003) 

 
In  

Figure 3.2 we see a typical cross section of a model from the shaking table tests at RMC and it shows 

where the different measurements of strains and displacements are conducted (note that this setup 
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is not identical to the one used in the relevant model).  In this study, results from the extensometers 

are used in both the numerical and analytical parts. The extensometers consisted of a 1 mm-

diameter lightly pre-tensioned steel wire encircled by a stiff plastic tube. The measurements were 

made by a linear potentiometer. 

Plywood was placed between the rigid back wall and base to allow for the placement of measuring 

instruments. The layer between the plywood and the sand was glued to achieve the necessary 

friction. Steps were also taken to reduce the friction of the model against the side wall and to make 

sure that the predicted internal failure surface did not intersect the back wall.  

 
 

Figure 3.2 General cross section (El-Emam & Bathurst, 2005) 

 

3.3 Soil Properties 
Table 3.1 presents the most important properties for the soil used in the shaking table tests. A direct 

shear test was used by El-Emam (2003) to find the friction angle, dilation angle and cohesion.  

Table 3.1 Soil properties 

Soil property Value  

Peak friction angle, peak,ds 51  

Residual friction angle, residual,ds 46  

Dilation angle,  15  

Cohesion, c 0  

Unit weight,   15,7kN/m3  

3.4 Reinforcement and Facing 
The reinforcement in the models consisted of a polyester rigid with openings of 21mm by 25mm. The 

properties of this geo-grid are given in Table 3.2. Figure 3.1 illustrates the number for reinforcements 

and how they are placed.  

A 76 mm thick, full height facing was used in these tests and it was designed to be perfectly stiff. The 

facing panel was constructed using hollow steel sections which were bolted together using steel rods 



 Shaking Table Experiments at RMC: Background 11 

Master thesis, Spring 2012 
Martin Holst 

with a diameter of 25 mm. Connections between the reinforcements and the facing panel were 

designed to be perfectly rigid.  

Table 3.2 Reinforcement properties 

Reinforcement properties from wide-
width strip tensile tests 

Value  

Axial stiffness, J 90 kN/m  

Yield strength, Ty 13 kN/m  

Compressive strength, Tc 0 kN/m  

Thickness, t 0,002m  

3.5 Natural Frequency and Base Excitation  
Walls of height lower than 10 meters are dominated by their fundamental frequency (Hatami & 

Bathurst, 2000). El-Emam & Bathurst (2004) showed that the natural frequencies of the models were 

much higher than the frequency of the input motion. Therefore it is reasonable to assume that a 

resonance state did not occur to disrupt the physical test results.  

Frequencies of 2 to 3 Hz are suitable to represent most of the frequencies of typical design 

earthquakes in North America (Bathurst & Hatami, 1998). According to Iai (1989) a frequency of 5-

7Hz should be used for representing such design earthquakes in a 1/6 scale model. El-Emam (2003) 

used a frequency of 5 Hz in their shaking table tests. In Figure 3.3 and Figure 3.4 the base input 

acceleration against time in the shaking table tests are shown.  

3.6 Failure Surface 
In the following, the failure surface of this shaking table model is widely referred to (both in the 

numerical and analytical part). Both the terms predicted failure surface and observed failure surface 

are used. To avoid confusion, please note that: The predicted failure surface refers to the failure 

geometry interpreted from extensometer readings at different input base accelerations (factor of 

safety > 1). The observed failure surface is the failure surface geometry at actual failure (factor of 

safety = 1). In this study the failure surface when FS=1 is referred to as the ultimate failure surface.  

 



  12 

Master thesis, Spring 2012 
Martin Holst 

 

 
Figure 3.3 Base acceleration input time series (El-Emam & Bathurst, 2004) 

 
 

 
Figure 3.4 Base acceleration input for the first second 
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4 Shaking Table Experiments at RMC: Numerical Modelling 
This chapter described the development of a numerical model using the finite element program 

PLAXIS 2D Dynamics (Plaxis bv, 2011) for the reduced-scale shaking table model described above. The 

aim of the following is to develop a model to be used in a parametric study by verifying it using 

results from the physical model.  

El-Emam (2003) created a similar model using FLAC (Itasca Consultion Group, 2001) which is 

presented in Zarnani et al. (2011). Zarnani et al. (2011) is used as a basis and as inspiration for 

creating the numerical model in this study. 

4.1 PLAXIS 2D Dynamics 
PLAXIS 2D is a finite element program used for two-dimensional analysis in the geotechnical field. 

PLAXIS Dynamics is an addition to this program and makes it possible to perform dynamic analyses 

(Plaxis bv, 2011). PLAXIS was chosen for the numerical investigations in this study because of: 

 It’s ability to simulate the soil behaviour in both static and dynamic conditions. 

  Its ability to create illustrations and videos of the soil behaviour during dynamic excitation 

(i.e. before the calculations are compete), making it simple to locate irregularities in the 

model without having to finish time-consuming analyses. 

 Its advanced soil models. 

4.2 Model Properties  

4.2.1 Geometry 

The facing panel, soil and back wall were all modelled using 15-node triangular elements. 

Reinforcements were modelled using flexible elastic elements (geo-grid elements (Plaxis bv, 2011)) 

and these were rigidly attached to the facing. The back wall was modelled as rigid and without mass.  

The soil placement was modelled using five construction phases. Displacements were set to zero 

between each phase.  After the soil construction, the entire base of the models was subjected to a 

velocity-time record obtained from the base acceleration-time record used in the physical test. I.e. 

the acceleration is not applied directly since this would create a drift in the displacement term as 

explained in the background material (section 2.5).  
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Figure 4.1 Illustration of the PLAXIS model  

a) Mesh and Geometry b) toe detail 

 

4.2.2 Excitation 

Base input excitation, similar to what’s illustrated in Figure 3.3 (5 Hz with increasing amplitude), was 

used in the numerical simulations, but modifications were made to avoid displacement drift; a “soft 

start” input series was applied. This insured the use of the correct initial condition (zero initial 

acceleration, velocity and displacement). The soft start equation (eq. 5.1) was selected based on a 

series of preliminary numerical analyses to reduce the acceleration-time output error to an 

acceptable level.  

  ( )   (      )
  


    ( ) (5.1)  

   
Where a0 is the amplitude in the original acceleration time series, see Figure 3.3. A velocity series 

was chosen since this gave suitable values also for acceleration and displacement input.  

A “soft transition” curve was applied in the transitions where the velocity amplitude increased due to 

an increase in the acceleration amplitude. The applied velocity-time curve is partly shown in Figure 

4.2.  
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Figure 4.2 Base velocity input for the first 7 seconds 

4.2.3 Mesh and Time Step 

The dominating frequency in the current study was 5 Hz. According to Kanade & Gakki (1997) the 

minimum element height ( h) should be less than one fourth of the minimum wave length (min/4) 

where  

 
     

      

    
 (5.2)  

   
where Vs min is the minimum shear wave velocity and fmax is the maximum frequency. When finding 

the suitable element height, fmax was assumed to be 5Hz. 

The time step ( t) is a function of element height, material shear velocity and material pressure 

velocity (Vp). According to Kanade & Gakki (1997) this should be 

 
   

     

√  
    

 

 
(5.3)  

   
The number of steps and mesh size were selected so as to obtain satisfactory accuracy in the 

numerical integrations. I.e., the number of “dynamic sub steps” was set to 8, the number of 

“additional steps” to 10000 (for the 80 second time series) and a “fine mesh” was selected (414 soil 

elements and 3951 nodes). 

4.2.4 Loads and Boundary Conditions  

A standard absorbent boundary (Plaxis bv, 2011) was applied to the back wall (far right boundary) to 

absorb the increments of stress on the boundaries due to the dynamic loading. Simulations without 

this boundary condition showed only minor changes in the results. This is believed to be due to the 

stiff material parameters of the back wall that effectively reflect the shear and pressure waves. 

The hinged toe boundary was modelled using a free boundary on the side and bottom of the facing 

elements, see Figure 4.1b. At the base a vertical fixity and dynamic load system consisting of 

prescribed displacements was applied on the entire length of the model, except from on the facing 

elements. 
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4.2.5 Material Models and Material Properties 

A numerical model can give a good understanding of the soil stress and strain behaviour and other 

interesting characteristics, but in order to achieve this, the material parameters must be able to 

correctly represent the soil behaviour. Due to limited information on the material used, it has not 

been possible to conduct independent laboratorial experiments for finding these parameters. 

Instead, data compiled for use in the FLAC model (Zarnani et al., 2011) has been adopted for use in 

PLAXIS and used as a basis for the material parameters in this study.   

Transferring material parameters from FLAC to PLAXIS was not “a straight forward procedure”, so 

more suitable values have been found by trial starting with the parameters presented in Zarnani et 

al. (2011) and following different advices in the PLAXIS Tutorials and adjusting the parameters to 

these. Table 4.1 summarises the material parameters and material models used for the different 

components in the numerical models created in PLAXIS. 

4.2.5.1 Facing and Back Wall Properties 

The facing and back wall was modelled using a linear-elastic material model (L E model) and stiffness 

parameters were selected to insure rigid behaviour, which the values found in Zarnani et al. (2011) 

did. Zarnani et al. (2011) found that too high values of the shear and bulk modulus could create 

numerical instability, this did not prove a problem in the current model. The weight of the facing was 

found in El-Emam & Bathurst (2004) and the weight of the back wall was neglected. 

4.2.5.2 Backfill 

The sand was modelled as a cohesion less material and drained conditions was assumed due to the 

use of dry sand in the physical experiments. In PLAXIS (2011) “it is advised to use the Mohr-Coulomb 

model (M-C model) for a first analysis of the problem and use the Hardening Soil model (HS model) in 

additional analysis”. The M-C model was used for the initial analysis (i.e. to determine number of 

steps, times-step etc.), while HS was used in the final analysis in this study. All the results presented 

in the current study are using HS.  

Although the HS model can generate irreversible plastic strains (and thus material damping), the 

irreversible strains are too small to fully simulate the correct material damping because the 

unloading and reloading is perfectly elastic (Plaxis bv, 2011). To be able to simulate the material 

damping properties of soil, Rayleigh damping was applied. A damping ratio of 5% has been assumed 

and applied to the backfill (and facing) material. 

4.2.5.3 Reinforcements  

The axial stiffness for the reinforcements from wide-width strip tensile tests (Table 3.2) showed a 

higher strength than what was used in the numerical model. When using the stiffness (i.e. EA = 90 

kN/m) found in the tensile tests, the numerical values for the top facing lateral displacements was 

low compared to the model results. By trial it was found that stiffness of 50kN/m was suitable. 

4.2.5.4 Interfaces 

Zarnani et al. (2011) found that a soil friction angle of 44 was suitable for the soil-facing interface. As 

in the FLAC model this interface was modelled using a 0.015 m strip of soil directly behind the facing 

with the same material properties as the backfill, except from the soil friction angle.  
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To simulate soil-reinforcement interaction, an interface with a reduced strength (Rinter) was applied 

between the reinforcements and backfill. According to Waterman (2006), Rinter = 0.5 - 0.9 is suitable 

for interfaces between soil and a geotextiles. Rinter = 0.8 was assumed in the current model. 

Table 4.1 PLAXIS Model Material Properties 

The back wall was 
modelled 
Parameter 

Symbol Facing Soil-facing 
interface 

Backfill Reinforceme
nts 

Unit 

Material type Type Soil Soil Soil Geogrid - 

Material model Model L. Elastic HS HS Elastic - 

Dry weight  sat/ unsat 17.20/17.20 15.70/15.70 15.70/15.70 - kN/m
3
 

Young’s modulus E’ 2.475106 - - - kN/m
2
 

Young’s modulus E50
ref - 15.33103 15.33103 - kN/m

2
 

Oedometer 
modulus 

Eoed - 8000 8000 - kN/m
2
 

Power m - 0.5 0.5 - kN/m
2
 

Unloading modulus Eur
ref - 46103 46103 - kN/m

2
 

Poisson’s ratio ’ (nu) 0.1250 - - - - 

Reference stress Pref - 100 100 - kN/m
2
 

Cohesion c’ref - 0 0 - kN/m
2
 

Friction angle  - 44 51 -  

Dilatancy angle  - 15 15 -  

Stiffness EA1/EA2 - - - 50 kN/m 

Interface strength 
reduction 

Rinter 1.0 (rigid) 1.0 (rigid) 1.0 (rigid) - - 

Damping  r/r 0,06277/ 
0,00159 

0,06277/ 
0,00159 

0,06277/ 
0,00159 

- - 

4.3 Model Verification   
In this section, the numerical results are compared to the results found in the physical shaking model 

test. The fundamental frequency, lateral displacements at the top of the facing panel, earth forces 

and failure surfaces are studied, as these are considered important indications on the model’s 

accuracy. The aim is to show the limitations of the numerical model and see what aspects of the 

model that might need further study. 

4.3.1 Fundamental Frequency  

 According to Zarnani et al. (2011) it is important that the fundamental input frequency is different 

from the fundamental frequency of the model wall to avoid early failure due to resonance. To find 

the fundamental frequency of the model wall, the model was subjected to a base input excitation for 

six seconds and then left to vibrate freely. The excitation was similar to the first six seconds used to 

simulate the shaking table excitation which is presented in section 4.2. Lateral displacements were 

measured for the free vibration at the top of the facing and the fast Fourier transform (FFT) was used 

to transfer the response to the frequency domain using a program from Holst (2011). The Fourier 

amplitude spectrum for the numerical model is presented in Figure 4.3, El-Emam (2003) found that 

the fundamental frequency of the physical model wall was 22 Hz. The fundamental frequency for the 

PLAXIS model wall is estimated to 19 Hz.   
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Figure 4.3 Fourier amplitude spectrum for the lateral displacements at the top of the model wall during the 
free vibration 

 

4.3.2 Lateral Displacements at the Top of the Facing Panel 

The measured lateral displacement on the top of the facing panel measured in the shaking table test 

(El-Emam, 2003) and the numerically predicted lateral displacements are shown in Figure 4.4. The 

numerical predictions are in satisfactory agreement with the measured displacements for the lower 

accelerations, up to about 35 seconds (input base acceleration amplitude of 0.35g). From this point 

on, the physical model experience a sharp increase in the lateral displacement and in the range 35-50 

seconds the numerically predicted displacements are too small. Zarnani et al. (2011 p.306) notes 

that: “Sharp increases in displacement versus peak base acceleration can be found in literature for 

similar reduced-scale (i.e. physical shaking table) models”. The sharp increase occurs because of the 

change in the soil response from elastic to plastic behaviour. The amplitude where it occurs is 

referred to as critical acceleration. A sharp increase in the numerically predicted lateral 

displacements is not observed until around 40 s (input base acceleration amplitude of 0.40g) and the 

facing displacements develops faster than in the physical model.  

 
Figure 4.4 Numerical and measured time histories for  horizontal displacements at the top of facing panel  
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4.3.3 Zone of Movement 

Shear zones for the numerical model for different base accelerations are presented in Figure 4.5 a)-f) 

using the total deviatoric shear stress plots from PLAXIS. El-Emam (2003 p.205) confirmed that 

“extensometer readings can be used to estimate the failure surface in shaking table tests” and the 

inferred failure surfaces for different input accelerations from the extensometer readings in the 

physical model are also included in the figure. 

The predicted failure zone evolves from a single wedge to a two wedge mechanism with increased 

base accelerations. A similar mechanism can be observed from the physical results (see stapled lines 

in the figure marked “failure surface (from model)”), but this is not as evident as in the numerical 

results.  A similar observation was made by Zarnani et al. (2011) for the FLAC model. The predicted 

failure surfaces are in reasonable agreement for base input acceleration amplitudes up to 0.30 g. 

Above 0.30 g, the agreement between the measured and predicted zones of movement is 

diminished.  

It should also be noted that at lower base input acceleration amplitudes the zone of soil movement 

intersects all the reinforcement layers. As the acceleration amplitudes increase, only the bottom 

layers are sufficiently long to intersect the failure surface.  
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a) Base Acceleration input amplitude = 0.05g 
 

 
b) Base Acceleration input amplitude = 0.15g 
 

 
c) Base Acceleration input amplitude = 0.30g 
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d) Base Acceleration input amplitude = 0.40g 
 

 
e) Base Acceleration input amplitude = 0. 50g 
 

 
f) Base Acceleration input amplitude = 0. 60g 
 

Figure 4.5 Numerical and observed soil failure zone surfaces 
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4.3.4 Total Earth Forces  

The earth force resultant is important in calculations that concern the stability of a retaining wall. El-

Emam (2003) noted that “the total earth force at the back of the facing panel is the summation of 

the total connections loads and the horizontal load developed at the toe”. Figure 4.6 presents the 

measured total earth force, PAE, acting at the back of the facing panel found by El-Emam (2003) for 

different input accelerations. From the PALXIS model the numerically predicted reinforcement loads 

are known and from these the predicted total earth forces are calculated and included in the figure.  

El-Emam (2003) only presents data for the reinforcement loads for input base accelerations up to 0.5 

g; therefore the following results only cover input base accelerations between 0 g and 0.5 g. 

Furthermore, El-Emam (2003) does not report measurement for base input acceleration amplitudes 

of 0.05 and 0.15 g. The “measured” values in Figure 4.6 for these amplitudes are found by 

interpolation of the values at 0 g, 0.10 g and 0. 20 g. 

It is observed that the measured and predicted total earth forces are in reasonable agreement for 

input base accelerations up to 0.15 g, but after this the numerical model overestimates the total 

earth force.  

 

 
Figure 4.6 Total earth force (PAE), measured and numerically predicted (El-Emam, 2003) 
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4.4 Comments and Discussion  
Zarnani et al. (2011) found that there are no significant difference in numerical results if the entire 

soil structure is constructed instantaneously, compared to in steps to simulate soil placement. The 

reason for using steps to simulate soil placement is that this was considered more intuitive to the 

reader and the extended calculation time proved minimal.  

To put a shaking table in the desired motion (as shown in Figure 3.3) requires some type of initial 

excitation. Details on the exact shape of the initial acceleration, velocity or displacement time series, 

i.e. details on how the physical model is put in motion, are not known.  Thus, it is reasonable to 

expect that the base input time series in the physical model is not identical to the one used in the 

numerical simulation where a “soft start” and “soft transition” curve was used. The number of cycles 

that differ in the two models (physical and numerical respectively) are relatively few for each 

“amplitude plateau”. The consequence of the use of a “soft start” and “soft transition” in the 

numerical simulation is therefore considered minor.  

A relatively high soil friction angle was used for the backfill material (51). In PLAXIS, the use of high 

friction angles are not recommended due to increased calculation requirements (Plaxis, 2011). 

Furthermore, it is important to note that numerical instability can occur when high values are used. 

In the current model no instability was observed, but the calculation time was long, in excess of 7 

hours. By increasing the number of “dynamic sub steps” and reducing the number of “additional 

steps” the same numerical accuracy could be obtained, but with a shorter calculation time. The 

drawback of this is that PLAXIS does not store information on other steps that the additional ones. 

Thus, high calculation time was accepted to make it possible to extrude data at a great number of 

time intervals.    

One of the main reasons for choosing PLAXIS was its advanced (complex) soil models, but Zarnani et 

al. (2011) pointed out that one does not simply improve the simulation accuracy by using a complex 

material model as opposed to a simple one. Thus, the need for complex models is in question. Use of 

a simpler model (Mohr-Coulomb) would result in a shorter calculation time. Even so, the ability to 

adjust the stiffness’ proved useful to obtain a better fit for measured results for the lower base input 

accelerations, e.g. of the lateral displacements on the facing top. 

The limitation in all the available PLAXIS material models is that they do not account for softening 

due to soil dilatancy and they do not model effects due to cyclic loading. The hardening soil model 

with small-strain stiffness (HSsmall model) “can, to some extent, be used to model cyclic loading” but 

this model “is not suitable for cyclic loading problems in which softening plays a role and softening 

due to soil dilatancy are not taken in to account” (Plaxis, 2011). The reason that the HS model was 

preferred on the expense of the HSsmall model was that the calculation time was much longer for 

the latter and this proved a great disadvantage when searching for suitable soil parameters.   

It has not been possible to obtain a response spectrum for the lateral displacements at the top of the 

retaining wall for the physical model, thus it has not been possible to do a detailed study of the 

differences in the two response spectrums. But, the predicted fundamental frequency is well above 

the fundamental frequency of the base input excitation (5 Hz) and the numerical model will 

therefore not be affected noteworthy by resonance effects. 
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It should be noted that the available illustrations from El-Emam (2003) used in the following does not 

give the observed failure zones for the exact same values as the base input acceleration amplitudes 

studied in this study (0.05 g, 0.15 g, 0.30 g, 0.40 g, 0.50 g and 0.60 g). E.g. the base input acceleration 

amplitude for the situation in Figure 4.5 a) is set as 0.05 g, but El-Emam only gives an illustration for 

0.06 g for the physical model. It is assumed that the differences between the failure surface for 0.05 

g and 0.06 g, thus these illustrations are used in the current study. A similar assumption is made for 

higher amplitudes.  

4.5 Summary of Numerical Model Development and Verification 
This chapter described the results from a numerical model created to simulate the shaking table 

model described in chapter 3. PLAXIS 2D was used together with a Hardening soil model for the 

backfill. Elastic-plastic material parameters were collected from El-Emam (2003) and used as a basis 

for a trial procedure to find suitable material parameters suitable for the current study. The 

numerical model was subjected to a soft start base input series based on the information of the input 

base acceleration as used in the physical tests.  

The overall results suggest that the numerical model is best suited for input base acceleration 

amplitudes up to 0.30 g. At higher acceleration amplitudes the numerical model over-predict the 

volume of the disturbed soil zone, this affects the results of the forces that act on the back of the 

facing and the lateral displacement. 

These are some important findings from the current chapter: 

 Even though complex soil models are used, it is challenging to create a dynamic model in 

PLAXIS 2D Dynamic that simulate reinforced retaining wall behaviour for a wide range of 

acceleration amplitudes.  

 The failure surface evolves from a single to a two-wedge mechanism and the inclination of 

the surface decreases with increasing base input amplitudes. 

 The developed numerical model is best suited for parameter studies up to base input 

acceleration amplitudes up to 0.30 g 

  



 Numerical Study: Effect of Reinforcement Parameters 25 

Master thesis, Spring 2012 
Martin Holst 

5 Numerical Study: Effect of Reinforcement Parameters 
So far in this study a numerical model has been developed and verified using the results from the 

shaking table tests at RMC. In this chapter, this model is used to study the influence of reinforcement 

strength and length on the failure surface, wall displacements and reinforcement loads. El-Emam & 

Bathurst (2007) also studied the effects of reinforcement design parameters (i.e. stiffness, length and 

vertical spacing), but they used physical shaking table models (El-Emam, 2003). In their study, the 

influence of reinforcement design parameters on facing displacements, total earth forces at the back 

of the facing panel and reinforcement connection loads was discussed.  

Chapter 4 concluded that the numerical model is best suited for a parametric study for base 

acceleration amplitudes up to 0.30g. Three base input acceleration amplitudes, 0.05g, 0.15g and 

0.30g respectively, are used to illustrate the findings of the reinforcement design parameters study. 

Please note that the sketch of the reinforced soil wall (used to illustrate the failure surfaces) is 

obtained from El-Emam (2003).  

5.1 Effect on Failure Surface     
The failure surfaces for models with different reinforcement axial stiffness (EA) are shown in Figure 

5.1 for different base input acceleration amplitudes. The effect of axial stiffness on the failure surface 

development varies with the input base amplitude. How much the failure surface is affected by the 

increase in axial stiffness varies with the different base amplitudes, i.e. the effect of axial stiffness are 

not increased with increasing base amplitudes or vice versa, but generally the failure surface 

becomes shallower with increasing axial reinforcement stiffness. From Figure 5.1 c), the failure 

surface is not a straight line for the lowest stiffness (EA=40 kN/m). 

In Figure 5.2, results for different base input acceleration amplitudes and four different 

reinforcement lengths (L) are presented. From Figure 5.2 a) and c) it is observed that the failure 

surface generally becomes shallower with increasing reinforcement length. The results shown in 

Figure 5.2b) do not show the same tendency; the failure surface predicted using the shortest and 

longest reinforcement length’s (L=0.80 m and L=1.40 m respectively) are almost identical. It should 

also be noted that the failure surface is no longer straight for the shortest reinforcement length in 

Figure 5.2 c). 
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a) Base input acceleration amplitude: 0.05 g 

 

 
b)   Base input acceleration amplitude : 0.15 g 

 

 
c)  Base input acceleration amplitude: 0.30 g 

 
Figure 5.1 Change in failure surface: Effect of reinforcement stiffness 
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a) Base input acceleration amplitude: 0.05 g 

 

 
b) Base input acceleration amplitude: 0.15 g 

 

 
c) Base input acceleration amplitude: 0.30 g 

 
Figure 5.2 Change in failure surface: Effect of reinforcement length 
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5.2 Effect on Facing Displacements     
The lateral displacement at the top of the facing as a function of time is shown in Figure 5.3 for 

models with different reinforcement axial stiffness (EA). Increasing the reinforcement stiffness 

reduces the lateral facing displacements significantly, e.g. it is observed that an increase in stiffness 

from 40 to 90 kN/m results in a reduction of top facing lateral displacements by 50 % for an input 

base amplitude of 0.30g (at 30 s). Figure 5.3 also shows that the decrease in the displacements is 

non-linear with respect to the reinforcement stiffness; increasing the stiffness from 40 to 50kN/m 

results in a larger decrease in displacements than increasing the stiffness from 50 to 60kN/m for an 

input base amplitude of 0.30g (at 30 s).  

Figure 5.4 shows the lateral displacement at the top of the facing as a function of time for models 

with different reinforcement lengths. Decreasing the reinforcement length has little effect on the 

lateral facing displacements for peak base input values under 0.20 g (20 s), but for values over 0.20 g 

a significant effect of increasing the length is observed; e.g. increasing the reinforcement length from 

0.8 to 1.4 m results in a 30 % decrease in lateral facing displacements for a peak base input value of 

0.30 g (30 s).  

These results are supported by El-Emam & Bathurst (2007) who found that higher reinforcement 

axial stiffness resulted in smaller lateral facing displacements for peak base input values up to 0.24g. 

They also found that an increase in reinforcement length results in a decrease in the wall’s lateral 

displacement. 

 

 
Figure 5.3 Top facing lateral displacements: Effect of reinforcement stiffness 
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Figure 5.4 Top facing lateral displacements: Effect of reinforcement length 

 

5.3 Effect on Reinforcement Connection Loads 
The total connection load between the facing and the geo-synthetic reinforcements are shown in 

Figure 5.5 as a function of base input acceleration amplitudes for different levels of reinforcement 

axial stiffness. There are no significant changes in the total connection loads for varying stiffness’ for 

base input amplitudes of 0.05 g and 0.15 g. However, the results at base input acceleration 

amplitude of 0.3 g indicate that stiffer reinforcements are subjected to increased axial loads.  

Individual connection loads are given in Appendix 1 as a function of the reinforcement’s position 

above the toe. Here, no clear tendency as to how the connection loads strength affects this with 

varying base amplitudes is observed. Connection loads for different base amplitudes and 

reinforcement lengths were also investigated and are given in Appendix 1, no clear conclusions can 

be drawn from these results.  
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Figure 5.5 Total reinforcement connection loads 
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5.4 Comments and Discussions  
For the lower base input amplitudes, the failure surface is shallow (see Figure 5.1a)) and most of the 

reinforcement layers (for the different lengths) are long enough to intersect the failure line and have 

sufficient pull-out resistance, i.e. they are all able to withstand the earth forces (both dynamic and 

static). For higher acceleration amplitudes the longer reinforcements are able to intersect the failure 

line with more of their reinforcement layers and are thus better capable to resist the earth forces 

(Zarnani, et al., 2011).  

The failure surface becomes shallower with increasing axial reinforcement stiffness and 

reinforcement length, something which coincides with decrease in lateral wall displacements. The 

failure zone are only located behind the facing, i.e. it does not extend below the toe. Thus, the active 

earth force resultant from the dynamic excitation will act on the back of the facing. Understanding 

Newton’s second law (force = mass  acceleration), it is reasonable to expect that the magnitude of 

soil mass in motion will affect the forces on the retaining wall. I.e. when the failure surface depth 

increases, the forces on the retaining wall increases and this results in larger facing displacements. 

It is known (chapter 4) that the failure surface evolves from a single to a two-wedge mechanism. At 

what acceleration amplitude the mechanism changes (from single to two-wedges) is believed to be 

affected by the reinforcement properties. From Figure 5.1c) and Figure 5.2c) indications that a 

lowering of the axial stiffness and/or a shortening of the reinforcement length leads to a change in 

the failure surface shape; it is no longer a straight line for EA=40 kN/m and L=0.8 m at base input 

amplitudes of 0.30 g.  

El- Emam & Bathurst (2007) found that “the magnitude of the total reinforcement connection loads 

decreased with increasing reinforcement length and decreasing stiffness”, the same is not observed 

in the current study. The reason for this is not known, but; Rinter = 0.8, was used in the numerical 

model in the interface between the reinforcement’s and the backfill, and this parameter is believed 

to affect the transfer of forces to the reinforcements. No detail study of the effect of Rinter was done, 

thus the effect of this parameter is unknown. 

To get a better understanding of the stability of the numerical model (and also the effect of more 

reinforcement properties), a stability analysis should be carried out. This analysis should find how 

(and how much) the various model parameters (e.g. Rinter, stiffness and damping) affect the stability 

of the numerical model. Such an analysis has not been carried out in the current study due to limited 

time. This is a clear disadvantage and will decrease the reliability of the results presented.  

Please note that the deviation tendency found in Figure 5.2 a) and c), opposed to Figure 5.2 b), are 

believed to be due to human error in extracting the results from PLAXIS, thus little attention should 

be made to the results in Figure 5.2 b). 
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5.5 Summary of Numerical Study on Effect of Reinforcement Parameters  
This chapter describes the results from a numerical parameter study of the effect of reinforcement 

strength and length on the failure surface, wall displacements and reinforcement loads. The study 

was carried out using the PLAXIS model described in chapter 4 and thus the investigation covers 

acceleration amplitudes of up to 0.30 g. The major conclusions from the numerical results are: 

 The failure surface becomes shallower with increasing axial reinforcement stiffness and 

reinforcement length.  

 The magnitude of facing displacements is reduced with increasing axial stiffness and 

reinforcement length.  

 A lowering of the axial stiffness and/or a shortening of the reinforcement length leads an 

earlier development of the two wedge failure mechanism. 

 A sensitivity study should be carried out for the numerical model if it should be used for 

further studies of reinforcement parameters. 
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6 Literary Review: Analytical Methods for Seismic Design 
There are a variety of different ways of calculating the seismic pressures on retaining walls. This 

chapter can be seen as a background for chapter 7. First, there is given a short overview of the 

various methods used for seismic design of reinforced soil walls. Then, more detailed descriptions of 

three pseudo-static methods are given.  

In Table 6.1, the most well-known methods for calculation of the seismic pressures (and in some 

methods displacements) on a yielding retaining wall are presented.  The cost of getting the necessary 

material parameters needed for an accurate finite element calculation is quite expensive (Kramer, 

1996; Ausilio, et al., 2000). Therefore, most of the methods used to calculate such problems are 

simplified analytical methods, even though the finite element method is the most “all-inclusive” 

approach to solving such problems. In the literature and design codes reviewed in this study, the 

most commonly used type of simplified analytical methods is the pseudo-static.   

Table 6.1 Dynamic pressures and displacements on retaining walls – Various calculation methods 

 (Kramer, 1996; Shukla, et al., 2002; Nouri, et al., 2005) 

Type Name Additional information 

Pseudo-static methods Mononobe-Okabe  method 
(M-O) 

 May be used for reinforced slopes, 
but primarily used for unreinforced 
slopes 

 Two-part wedge method 
(TPW) 

 Based on the M-O method 

 Often used for reinforced slopes 

 Two wedge failure mechanism 

 Logarithmic spiral method  Logarithmic spiral failure 
mechanism 

 Circular slip method  Circular slip failure mechanism 

 Vertical slice method  
(VSM) 

 Divides a logarithmic spiral failure 
mechanism in to vertical slices 

 Horizontal slice method 
(HSM) 

 Combines a logarithmic spiral failure 
mechanism and the Mononobe-
Okabe method. 

Pseudo-dynamic 
methods 

Steedman-Zeng method  Accounts for phase difference and 
amplification effects in the backfill 

Displacement 
calculations 

Newmark’s method  Used as a basis for other 
displacement methods 

Whole falling mass 
equilibrium methods 

Cullmann’s method  For analysis of homogeneous soils 
and specific failure surfaces 

Numerical techniques Finite element method  Can implement complex models for 
soil and reinforcement materials 

 Used in the computer program 
PLAXIS 

 Finite difference method  Used in the computer program 
FLAC  
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6.1 Introduction to Pseudo-Static Analysis 
Pseudo-static analysis is one of the simplest approaches used in earthquake engineering to analyse 

the seismic response according to Melo & Sharma (2004). The pseudo-static analysis is basically a 

representation of the earthquake excitation by constant accelerations. Initial forces in the horizontal 

and vertical directions, Fh and Fv respectively, due to these accelerations are  

        
 

(6.1)  

        
 

(6.2)  

Where W is the weight of the failure mass. The pseudo-static coefficients in the horizontal and 

vertical direction (kh and kv) is the ratio between the acceleration in the respective direction and the 

gravity constant (g) i.e.    
                       

 
 and    

                     

 
. These forces act 

through the centre of the failure mass (Kramer, 1996). 

A pseudo-static parameter is not able to represent all the effects of seismic loading, e.g. effect due to 
the duration of seismic loading, frequency content and soil acceleration amplification etc. Thus, 
finding a coefficient that fits perfectly is impossible, and according to Kramer (1996): “Selecting 
appropriate seismic coefficients is the most challenging part of the pseudo-static analysis”.  
 
Different codes and rules of practise have recommended coefficients for design; e.g. Eurocode 

(Europe), FHWA/AASHTO (the United States) and PIANC (international). Table 6.2 gives examples of 

recommended values of kh, but generally the seismic coefficient should be based on the anticipated 

level of acceleration (Kramer, 1996). In the mentioned guidelines formulas for calculating kh based on 

the acceleration amplitudes are given. 

Table 6.2 Recommended horizontal seismic coefficients (Melo & Sharma, 2004) 

Horizontal Seismic 
Coefficient, kh 

Description 

0.05-0.15 Guidelines in the United States 

0.12-0.25  Guidelines in Japan 

0.1/0.2/0.5 “severe”/ “violent, destructive” 
/“catastrophic” earthquakes (Terzaghi, 1951) 

6.2 Mononobe-Okabe Method (M-O) 
This pseudo-static method was proposed in the 1920’s by Okabe, Matsou and Mononobe to analyse 

seismic pressures. Later in the 1960’s Seed and Whitman developed this method further and 

described how to estimate the dynamic earth pressure against a wall by using static forces to 

represent the inertial effects of earthquake loading .  

6.2.1 Assumptions 

There are three basic assumptions in the Mononobe-Okabe Method (Li & Aguilar, 2000): 

 The retaining wall is assumed to move a sufficient distance at the base to mobilise the full 

shear strength of the backfill. 

 One neglects the dynamic amplification and represents the earthquake loading through 

constant seismic coefficients. 
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 The kinematic boundary conditions are considered immaterial. 

6.2.2 Earth Pressure Coefficient and Critical Surface  

By using the classical limit equilibrium theory on an active or passive Coulomb soil wedge, Seed and 

Whitman showed that the pseudo-static soil thrust can be obtained (Caltabiano, et al., 2000). The 

details are explained in numerous articles and books, e.g. Kramer (1996), Zarrabi-Kashani (1979) and 

Cai and Bathurst (1996). By using the same notation as Dowrick (1977) and Kramer (1996), the total 

active thrust can be expressed as 

 
            

 

 
       (    ) (6.3)  

 
Where H is the height of the wall and  

 
 is the dry density of the soil.  The active dynamic earth 

pressure coefficient (KAE) is given by  
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Where     . Furthermore,      and   is defined in Figure 6.1, while   is 
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Where    is the horizontal seismic coefficient. 
 
 

 
Figure 6.1 Mononobe-Okabe Method  (Kramer, 1996) 
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According to Zarrabi-Kashani (1979), the critical failure surface for active earth pressure conditions is 
inclined at an angle 
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  (6.6)  

Where  

     √   (     )    (     )     (     )       (     )    (     )  

 

           (     )    (     )     (     )   

The solution by this method is based on the limit equilibrium of the soil wedge and one does not take 

in to account the wall (Caltabiano, et al., 2000). Also note that this method is subjected to the same 

limitations as the Coulomb theory. Even so, this method provides a simple way of estimating 

earthquake induced pressures on retaining walls (Kramer, 1996).  

6.3 Two-Part Wedge Method (TPW) 
Another limit-equilibrium (and pseudo-static method) is the two-part wedge method; as the name 

suggests the seismic pressures are calculated using two wedges. The assumptions from chapter 6.2.1 

are still relevant.   

The failure zone comprises of two masses (1 and 2) as described in Shukla et al. (2002), see Figure 

6.2. Forces (P1 and V1) acting on the second wedge from the first is given by 

 

    

(    )   
                

                
    

       
                

                

 (6.7)  

and 

              

 
(6.8)  

The quantity W is the weight of the soil wedge,   is the angle of the failure surface and    = tan-1(tan 

/FS), where  is the friction angle and FS the factor of safety. Lambda ( ) is the inter-wedge shear 

mobilization ratio that varies between 0 and 1, and    and    are denoted as earlier.  

In this study, a formulation proposed by Bathurst (1994) is used for determining the critical failure 

surface by trial. This technique assumes equilibrium in the horizontal direction. This renders the 

following equation for calculation of the horizontal active force acting on the retaining wall (PAE): 
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(6.9)  

The critical geometry is found when PAE=0. When calculating the failure surface, FS is set equal to 1. 

The tension mobilised in the respective reinforcement layer is given by (Reddy & Madhav, 2008): 



 Literary Review: Analytical Methods for Seismic Design 37 

Master thesis, Spring 2012 
Martin Holst 

               
 
  

 
(6.10)  

Where hi and Lei is the depth and effective length of the reinforcement layer and  
 

 is the angle of 

interface friction between the reinforcement and the soil. 

 

6.4 Horizontal Slice Method (HSM) 
Earlier, the vertical slices method (VSM) was often used to analyse reinforced slopes. Here, the 

reinforcements cross slices and the forces mobilised appear as unknowns in the principal equations. 

The method of horizontal slices was proposed in 1992 by Lo and Xu to evade these unknowns.  

6.4.1 Assumptions  

This method divides the failure zone in to a number of horizontal slices, and (as shown in Figure 6.3) 

the forces generated from the reinforcements do not intersect the horizontal slices. Inertia forces 

due to seismic waves are introduced as pseudo-static forces acting in the centre for gravity of each 

slice. Also, rigid-plastic behaviour is assumed in each slice. Coarse materials are usually used as 

backfill materials behind retaining walls; therefore pore-water pressures are neglected. Also, the soil 

is assumed to be cohesion less (Nouri, et al., 2005).  

In addition, the following assumptions are given as described by Shahgholi et al. (2001): 

 the vertical pressure   on a horizontal slice under seismic loading is(    )  , where   is 

the unit weight of soil and h is the vertical distance between any point in soil mass and 

external borders of soil mass; 

 the factor of safety is equal to 
                           

                           
 and the same for all slices;  

 the failure surface does not pass below the toe of the slope.  

 

Figure 6.2 The two-part wedge method (Shukla, et al., 2002) 
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Figure 6.3 Horizontal slices method a) general b) one slice (Shahgholi, et al., 2001) 

6.4.2 Formulation 

By simplifying the method from 1992, Shahgholi, Fakher and Jones was able to make the method 

suitable for analysing the seismic forces on reinforced retaining walls (Nouri, et al., 2005). An 

additional development of this method was proposed by Choudhury et al (2006) for a retaining wall 

subjected to harmonic seismic acceleration.  

The full formulation of the general HMS requires extensive mathematical derivation, thus only a 

simplified method is presented to illustrate the concept and the advantages of the method. A more 

complete formulation of the HMS is presented in Nouri et al. (2005) and in Shahgholi (2001). The 

following presentation is based on the work by Choudhury et al. (2006) and Ahmad & Choudhury 

(2008) and incorporates the horizontal seismic acceleration due to the shear wave velocity (Vs) in the 

soil.  

The seismic inertia forces in the horizontal and vertical direction, qhi and qvi respectively can be 

expressed by 
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(6.12)  

Where T is the period of seismic shaking, t is time and mi is the mass of the ith slice. Vp is the primary 

wave velocity and z is the depth below the surface (Figure 6.3a). By considering Figure 6.3b the 

following equilibrium conditions can be obtained 
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where 
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FS is the factor of safety,    the available shear resistance and    the required shear resistance.    is 

the soil friction angle.  

By considering the equilibrium equation for the ith slice in the horizontal condition with FS=1, the 

tensile force (ti) for a vertical slope can be expressed as 

∑     (             )   

                      

 

 
 

(6.15)  

In this study, two failure surfaces (linear and polylinear) have been of interest, see Figure 6.4. The 

linear failure surface angle ( base) is found by optimising the active earth pressure coefficient (KAE) 

with respect to its maximum value by considering different angles ( i) and values for t/T. The critical 

value for  base is then chosen as the angle for all the slices and this gives the critical linear failure 

surface. The active earth pressure coefficient is given by 
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where    is the wall friction angle and  
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The critical polylinear failure surface is found by using the  base angle as the angle for the first slice, 

i.e. the slice closest to the wall toe.  Regarding the other slices, the angle that give the highest tensile 

force (using equation 6.15) are selected as the slice angle (  ) for the respectable slice.  

KAE for the polylinear can be expressed as (Ling & Leshchinsky, 1998): 

 
    

∑  
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Figure 6.4 Polylinear and linear failure surfaces (Ahmad & Choudhury, 2008) 
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7 Shaking Table Experiments at RMC: Pseudo-Static Analysis 
The technical computing language MATLAB (The Mathworks, Inc., 2011) was used to develop 

programs for calculating the pseudo-static failure surfaces and active earth pressures for the shaking 

table model. These programs are based on the pseudo-static methods described in chapter 6. 

MATLAB code is given in Appendix 2.  

The purpose of this chapter is to verify the pseudo-static models and to find how suitable they are for 

calculating the failure surface and active earth forces acting on the retaining wall. This is done using 

results from the physical model presented in chapter 3. It should be noted that a numerical model 

(like the one presented in chapter 4) also can be used to verify analytical (pseudo-static) methods, 

but since this has not been the focus of this study it is not discussed further.  

In the first part of this chapter the assumptions behind the pseudo-static calculations are presented. 

Later, the results from the pseudo-static calculations are presented and comparisons are made 

between these results and the results from the physical shaking table model.  

7.1 Pseudo-Static Coefficient 
The pseudo-static coefficient used in this chapter is based on direct measurements from the shaking 

table tests at RMC. El-Emam (2003) presents information about the soil amplification factor (AF) for 

the back fill surface specific for this models test (Figure 7.1). In simple terms, soil amplification is the 

ground’s capacity to amplify seismic shaking. In this study, the soil amplification factor (AF) is defined 

as the ratio of the soil and rock response spectrum at the resonant peak. Values for the horizontal 

pseudo-static coefficient are calculated from the acceleration at the top of the backfill surface, using 

that: 

   
    

    
   

 
 

 

(7.1) 

Where ab is the base input acceleration amplitude and   
    

 is the pseudo-static coefficient based on 

data from the reduces-scale shaking table model test at RMC (chapter 3).  

 
Figure 7.1 Outward soil amplification factor at backfill surface (El-Emam & Bathurst, 2004) 
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The vertical pseudo-static coefficient (kv) was set to zero, while values for kh
spes are presented 

together with the input base acceleration amplitude in Table 7.1. 

Table 7.1 Horizontal pseudo-static coefficient 

ab kh
spes 

0.05g 0.0549 

0.15g 0.1663 

0.30g 0.3498 

0.40g 0.5163 

0.50g 0.8288 

0.60g 1.0154 

7.2 Material Parameters  
Table 7.2 shows the parameters used in the pseudo-static studies. The soil parameters are based on 

the information in El-Emam (2003) presented in chapter 3 and the wall-soil friction angle ( ) is set 

according to what was found in the numerical study by Zarnani et al. (2011).  

Table 7.2 Material parameters in the pseudo-static studies 

Property  Value 

Friction angle,  51 

Unit weight of soil,   15.7 kN/m3 

Wall-soil friction angle, δ 44 

Shear wave velocity, Vs 68.8 m/s 

Primary wave velocity, Vp 112.4 m/s 

7.3 Failure Surface 
The predicted failure surfaces from extensometer measurements (inferred failure zones) are shown 

in Figure 7.2 a)-f). Figure 7.2 f) also includes the observed failure surface (also referred to as the 

ultimate failure surface), indicated by the triangular-dashed line. The figures also shows the 

predicted failure surfaces using the Mononobe-Okabe method (M-O), the horizontal slices method 

(HSM) and the critical surfaces calculated using the two-part wedge method (TPW). Please note that 

the calculated failure surfaces, using the M-O method and the linear HSM, are so similar that the 

indicated failure lines overlap for most of the illustrations. The safety factors (see section 6.3) used in 

the two-part wedge calculations are presented in Table 7.3.  

Table 7.3 Safety factors used for the two-part wedge calculations 

Pseudo-static 
coefficients (kh

spes) 
TPW 

(=0) 

TPW 

( =1) 

0.0549 2.56 2.74 

0.1663 2.03 2.15 

0.3498 1.61 1.62 

0.5163 1.33 1.34 

0.8288 1.06 1.08 

1.0154 1.0 
(failure) 

1.0 
(failure) 
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The M-O method and the linear HSM overestimate the inclinations of the failure surface at the lower 

base acceleration amplitudes (ab  0.40 g, Figure 7.2 a)- d)), but these methods give the best 

prediction for the failure surface shape. At the higher amplitudes (ab > 0.40 g) these methods under-

predict the inclination of the failure surface.  

At a base input acceleration of about 0.60g, the shaking table model fails. The ultimate failure surface 

predicted using the TPW method (FS=1, see Table 7.3) with an inter-wedge shear mobilization of 0 

fits reasonably well with the observed one. The same is not true for predictions using =1.  

The TPW method generally predicts a failure surface that evolves (with increased higher base input 

acceleration amplitudes) by a reduction in the inclination of the first wedge; the point where the first 

and second wedge meets, only experiences small changes with increasing input amplitudes. At 0.50 g 

(Figure 7.2e)) and for =0, it is observed that there is an irregularity in the way the failure surface 

evolves. The TPW predicted failure surface “jumps” back and forth when the input base acceleration 

increases from 0.40 g to 0.50 g and back to 0.60 g, both with respect to the first wedge inclination 

and where the second wedge meets the first with respect to the lateral distance from the facing.  

The failure surface predicted using the polylinear HSM does not resemble failure surface from El-

Emam (2003) at any base input acceleration amplitudes.     
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a) ab=0.05 g, kh

spes=0.0549 
 

 
b) ab=0.15 g, kh

spes =0.1663 
 

 

 
c) ab=0.30 g, kh

spes =0.3498 
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d) ab=0.40 g, kh

spes =0.5162 
 

 
e) ab =0. 50 g, kh

spes =0.8288 
 

 
f) ab=0.60 g, kh

spes =1.0154 

 
Figure 7.2 Observed and calculated failure surface geometry (El-Emam, 2003)  

NOTE: The M-O and Linear HSM failure surface overlap in most of the illustrations above. 
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7.4 Earth Forces on the Retaining Wall 
Figure 7.3 shows the earth forces on the retaining wall measured in the physical shaking-table model 

for different base input accelerations. The figure also shows the predicted horizontal active force 

acting on the retaining wall (PAE) using the M-O, the HSM and the TPW method. 

The M-O and the HSM predictions are in reasonable agreement with the measured values for input 

base accelerations up to 0.30g. For higher base amplitudes, these predictions overestimate the earth 

forces. PAE predicted using polylinear HMS is in reasonable agreement with the measured values for 

all the studied base input acceleration amplitudes. The TPW method (both for =0 and =1) under-

predicts the earth forces for all base input acceleration amplitudes. 

 

 
Figure 7.3 Total active earth force on the back of the facing.  

NOTE:  is denoted l in the figure 
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7.5 Comments and Discussions  
An important assumption in pseudo-static theory is rigid soil behaviour. El-Emam & Bathurst (2004) 

showed that the entire wall system in the shaking table test does not move as a single body.  Also, a 

single coefficient is used to represent the dynamic movement (  
    

 ). Thus, it is not reasonable to 

expect completely accurate predictions when using M-O, HSM and TPW. Even so, these methods are 

accurate in describing some aspects of the seismic loading on the retaining wall. 

The numerical simulation conducted in this study and the numerical investigations by Zarnani et al. 

(2011) found that the failure mechanism evolves from a single to a two wedge mechanism as the 

base input acceleration increases. Since the TPW method is able to capture the two wedge 

mechanism, it is reasonable to expect this method to make a good prediction for the failure surface 

where this mechanism is fully developed (FS=1). A similar argument can be made to partly explain 

why the single wedge pseudo-static methods (M-O and linear HSM) gives the best prediction for the 

failure surface shape for the lower base input accelerations: The failure mechanism is a single wedge 

for the lower base input acceleration amplitudes. 

Based on the results presented, these methods (M-O and linear HSM) seem useful for predictions up 

to acceleration amplitudes of 0.30g: The predicted and the physical failure surface shows the same 

tendency in how they develop (they have the same shape and becomes deeper with increasing 

amplitudes). The same is also observed in by Zarnani et al. (2011). Even so, it should be noted that 

the acceleration amplitude where the failure mechanism changes from a single wedge to a two 

wedge mechanism is not fixed and as shown previously (Chapter 5) it is influenced by the 

reinforcement properties. Thus, the “area” where these methods are applicable is not fixed, 

therefore an upper limit for use of these methods of 0.30 g cannot be assumed for all design 

situations.  

 As previously noted, the inter-wedge shear mobilization ratio () lies between 0 and 1. In the results 

presented, there is a significant difference between results predicted using TPW  with =0 and TPW 

with =1. But, the effects of  has not been the focus in this study. Thus, investigations as to why =0 

seems more suitable then =1 is not conducted. Additional information about the influence of  can 

be found in Vieira (2008).  

Both for =0 and =1, the TPW method accurately calculates at what base input amplitude failure 

occurs (FS=1, see Table 7.3). The TPW method (=0) prediction for the ultimate failure surface is 

accurate when compared to the one observed in the physical experiment (FS=1, ab=0.60g). Also, the 

predicted PAE using the TPW method (=0) is in reasonable compliance with the measured values. 

Even so, the TPW (=0) prediction is not accurate for lower base input acceleration amplitudes (FS>1, 

ab<0.60g) and the predicted failure surface “jumps” back and forth; there is no clear tendency of how 

the mechanism develops. Thus, it is not possible to exclude the possibility that the compliance 

between the predicted ultimate failure surface using TPW (=0) and the observed failure surface is a 

coincidence.  

The polylinear HSM method does not account for the moment equilibrium. Thus, the force in the 

horizontal direction might be reasonable and at the same time the inclination of the failure surface 

might be wrong. A better result for the predicted failure surface using the polylinear HSM is believed 

to be obtained if the moment equilibrium was satisfied in this approach. It should also be noted that 
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the polylinear HSM does not take the reinforcement length or stiffness in to consideration, thus 

making it unable to account for changes to these parameters.  

7.6 Summary of the Pseudo-Static Analysis of the Shaking Table 

Experiments at RMC 
This chapter describes the results of pseudo-static calculations using specific pseudo-static 

coefficients and the Mononobe-Okabe, the horizontal slices and the two-part wedge method. The 

calculations were carried out using MATLAB and the included results focuses on the failure surface 

geometry and total earth force on the back of the facing panel.  

Furthermore, the major findings in this chapter were:  

 This study has found notable differences in using the different pseudo-static methods. 

Neither the Mononobe-Okabe, nor the horizontal slice, or the two-part wedge method is 

able to predict both the failure surface and the earth forces for a wide range of acceleration 

amplitudes (0-0.60 g).   

 The single wedge pseudo-static methods proved suited for calculating the failure surface and 

earth pressures for lower acceleration amplitudes (up to 0.30 g) in the physical model, but 

the failure depth is generally predicted as too shallow. But, it is noted that because these 

methods are unable to account for e.g. reinforcement stiffness, this is not necessarily true for 

all design situations.  

 There are indications that the two-part wedge method is suited for predicting the ultimate 

failure surface, but further studies are needed to confirm this since no clear tendency in 

development of the predicted failure surface is observed.   

 The polylinear HSM proves suited for predicting the total earth forces up to acceleration 

amplitudes of 0.60g, but are unable to account for reinforcement length or stiffness. 
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8 Pseudo-static Analysis: Different Guidelines 
As noted in the introduction to the pseudo-static methods in chapter 6, “selecting appropriate 

seismic coefficients is the most challenging part of the pseudo-static analysis”. This chapter studies 

the horizontal pseudo-static coefficient effect on the Mononobe-Okabe method, but also the results 

from predictions using the polylinear horizontal method are presented. The first part of this chapter 

is a short presentation of relevant design codes (i.e. Eurocode 8, FHWA(2001)/AASHTO(2002) and 

PIANC(2001)) suggestions for the horizontal pseudo-static coefficient. This is followed by a study of 

the accuracy of these codes. This study is the basis for a proposal of a new way of determining the 

horizontal pseudo-static coefficient presented in the last part. 

8.1 Guidelines for the Horizontal Pseudo-Static Coefficient 

8.1.1 Eurocode 8 

Eurocode 8: Part 5 (EC8) dictates that one shall use the following values for the horizontal seismic 

coefficient if specific values are not known  

 
  

   
 

 
  

 

(8.1) 

Where   is the ratio of the design ground acceleration (ag) on firm rock to the acceleration of gravity 

(g), i.e.  =ag/g. In this study, ag is set equal to the amplitude of the input base acceleration (ab). 

The soil factor (S) is 1.6 for soft to medium firm cohesionless soils. Details’ regarding the factor r are 

given in the following table and are valid for retaining walls up to 10 meter s high.    

Table 8.1 Factor for calculation of the horizontal seismic coefficient according to the Eurocode 

Type of retaining structure r 

Free gravity walls that can accept a displacement (dr )up to dr=300 S (mm) 2 

Free gravity walls that can accept a displacement (dr) up to dr=200 S (mm) 1,5 

Flexural reinforced concrete walls, anchored or braced walls, reinforced concrete 

walls founded on vertical piles, restrained basement walls and bridge abutments 

1 

 

8.1.2 FHWA(2001)/AASHTO(2002) 

The Federal Highway Administration (FHWA, 2001) and the American Association of State Highway 

and Transportation Officials (AASHTO, 2002) proposes the same equation for calculating the 

horizontal seismic coefficient; 

    
     (     

    

 
)
    

 
 

 

(8.2) 

Where amax is taken as the Peak Ground Acceleration (PGA). In this study amax is taken as the 
amplitude for the horizontal input base acceleration measured on the top of the retaining wall (i.e. 

AFabase, see section 7.1). 

8.1.3  PIANC (2001) 

The Permanent International Association for Navigation Congresses (PIANC, 2001) suggest using the 

following formula for the horizontal seismic coefficient 
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         (

    

 
) 

 

(8.3) 

Where amax is as in FHWA(2001)/AASHTO(2002). 

8.2 Predictions using EC8, PIANC (2001) and FHWA(2001)/AASHTO(2002) 

8.2.1 Assumptions and Limitations 

This chapter is only concerned with base input acceleration amplitudes up to 0.30 g. The values used 

for the horizontal seismic coefficient (kh
spes), have so far been directly based on the peak acceleration 

measured on the shaking table backfill surface, and the maximum kh
spes have been calculated as 1. 

0154. This is an unrealistic value to be used in real life earthquake engineering where kh values over 

0.30 are seldom used (Table 6.2), e.g. the FHWA (2001) and AASHTO (2002) do not use limit-

equilibrium pseudo-static methods for sites with peak horizontal ground accelerations above  0.30g.  

M-O is used for evaluating the different codes with respect to the failure surface. Regarding the 

predicted active earth forces; results from M-O and polylinear HSM are discussed. Note that the 

same material parameters used in chapter 7 (see Table 7.2) are used in the following calculations.  

Also note that specific values for the horizontal pseudo-static coefficients are given in Appendix 3. 

8.2.2 Failure Surface 

The predicted failures surfaces using Mononobe-Okabe are presented in Figure 8.2 for different base 

input acceleration amplitudes. The different predictions are performed using codes described above 

(Eurocode 8, PIANC (2001) and FHWA (2001)/AASHTO(2002) respectively). Included in the figure are 

also predictions using   
    

 and the failure surfaces measured by El-Emam (2003). All the studied 

approaches (different codes) predicts too shallow failure surfaces compared to what is measured in 

the physical model. Zarnani et al. (2011) found a same underestimation of the failure surface using 

FHWA (2001)/AASHTO (2002). 
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a) Input base acceleration amplitude: 0.05g 

 
b) Input base acceleration amplitude: 0.15g 

 
c) Input base acceleration amplitude: 0.30g  

 

 
 

Figure 8.1 Predicted failure surfaces using M-O and Eurocode 8,  
PIANC (2001) and FHWA(2001)/AASHTO(2002) (El-Emam, 2003) 
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8.2.3 Earth Forces 

The predicted active earth forces calculated using the different design code guidelines for the 

horizontal pseudo-static coefficient are presented in Figure 8.2 for different base input acceleration 

amplitudes. Included are also measured values from the shaking table model (El-Emam, 2003).  

Figure 8.2 a) presents data for predictions of the active earth forces using the M-O method. Results 

referred to as “Directly measured” and “Eurocode” (predicted using   
    

 and   
   respectively) are 

in reasonable good agreement with the measured values. FHWA (2001)/AASHTO (2002) estimations 

are conservative, e.g. at a base input amplitude of 0.30 g forces are overestimated by 44%. 

Predictions using PIANC (2001) under predict earth forces on the retaining wall.  

When using the Polylinear HSM, all the suggested horizontal pseudo-static coefficients leads to a 

underestimation of the forces on the retaining wall (Figure 8.2b) ). FHWA (2001)/AASHTO (2002) 

guidelines prove to be most accurate, but the forces are underestimated by 13 % for base input 

amplitude of 0.30g. Also here the predictions using PIANC (2001) guidelines are the least accurate.  

 

 
a) Mononobe-Okabe 

 

 
b) Polylinear HSM 

Figure 8.2 Predicted active earth forces using Eurocode, PIANC and FHWA/AASHTO (El-Emam, 2003) 
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8.2.4 Observations 

The horizontal pseudo-static coefficients suggested in the various codes are less suited for calculating 

the forces using the polylinear HSM than the M-O method. This suggests is that one pseudo-static 

coefficient is not necessarily well suited for use in different pseudo-static method, i.e. different 

methods require different guidelines for the pseudo-static coefficients.  

FHWA (2001)/AASHTO (2002) prove best suited for predicting both the earth force and failure 

surface. The predicted active earth pressures are conservative and the predicted failure surface is 

closest to the ones measured in the physical model.  

8.3 Predictions using ABC-coefficient  
A new horizontal pseudo-static coefficient (kh

ABC-MO) is suggested when calculating the failure surface 

and active earth force using the Mononobe-Okabe method (see equation 9.5). It is based on FHWA 

(2001)/AASHTO (2002) guidelines since these were found to be the most accurate: 

   
    (      

    

 
 )

    

 
  

 

(8.4) 

where amax is the Peak Ground Acceleration (PGA). A, B and C are constants. 

FHWA (2001)/AASHTO (2002) guidelines under-predict the depth of the failure surface and slightly 

over-predict the earth force, i.e. kh
FHWA is both to low and too high. Ideally kh

ABC-MO should account for 

both these observations and thus predict a deeper failure surface and a lower earth force, but this is 

not possible with only one parameter. Thus, the following requirements were used to make it 

possible to find a suitable guideline for the pseudo-static coefficient:   

 The predicted failure surface shall not under- or overestimate the failure surface with more 

than 20 % with regards to measured surfaces in El-Emam (2003).   

 The predicted earth forces shall be conservative, i.e. higher than the measured values in El-

Emam (2003).  

The effects of A, B and C on the predicted inclination of the failure surface and active earth forces 

predicted using M-O were studied (Appendix 4). The observations made there, together with a trial 

procedure, lead to the following suggestion for calculating the horizontal pseudo-static coefficient: 
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) 

 

(8.5) 

8.3.1 Failure Surface 

The predicted failure surface calculated using kh
ABC-MO is presented in Figure 8.2 for different base 

input acceleration amplitudes. Included are also observed failure surfaces from the shaking table 

model (El-Emam, 2003) and predicted ones using FHWA (2001)/AASHTO (2002). Compared FHWA 

(2001)/AASHTO (2002), estimations using kh
ABC-MO give a more accurate estimate for the failure 

surface for base acceleration amplitudes up to 0.30g. 
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a) Input base acceleration amplitude: 0.05g 

 
b) Input base acceleration amplitude: 0.15g 

 
c) Input base acceleration amplitude: 0.30g 

 
Figure 8.3 Failure surface predicted using kh

ABC-MO
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8.3.2 Earth Forces 

In Figure 8.4 the predicted active earth forces using both FHWA (2001)/AASHTO (2002) guidelines 

and kh
ABC-MO are presented for different base input accelerations. Included are also measured values 

from El-Emam (2003). The earth forces are generally over-predicted when using kh
ABC-MO, up to two 

times the measured value at 0.15 g.  

  

 
Figure 8.4 Active earth forces calculated using kh

ABC-MO
 

 

8.4 Comments and Discussions  
The main advantage of using kh

ABC-MO when calculating the M-O failure surface is that the accuracy of 

the predicted failure surface is notably improved compared to other guidelines. Thus, the required 

reinforcement length estimation is improved. This contributes to a more secure seismic retaining 

wall design. Since the use of kh
ABC-MO leads to an overestimation of the earth forces, it will lead to a 

more expensive earthquake design. The increased design forces will lead to the use of more resilient 

reinforcements and facing design.  

The major issue with respect to the reliability of the proposed pseudo-static value is that the 

experimental data that it is based on is very limited; only a single shaking table model is studied. 

Furthermore, only two features of the shaking table model results are studied (predicted failure 

surface and active earth force). The need for further studies of reduced scale models is therefore 

necessary to prove the accuracy of this parameter. Thus, the proposed pseudo-static coefficient 

should be viewed as the start of a further development of the guidelines in FHWA (2001)/AASHTO 

(2002), i.e. a further optimisation of the three parameters (A, B and C respectively)  is possible.  

Equation 8.4 is basically a generalised expression for kh
ABC-MO. By introducing a specific set of A, B and 

C’s for the different pseudo-static methods (e.g. M-O, HSM and TPW method), kh
ABC might be 

adapted for a variety of different pseudo-static methods. This might simplify the notations in design 

guidelines concerned with multiple methods and help making them more applicable.  
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8.5 Summary of the Pseudo-Static Analysis using Different Guidelines 
This chapter presents the proposed horizontal pseudo-static coefficient from different guidelines 

(Eurocode 8, PIANC (2001) and FHWA(2001)/AASHTO(2002) respectively) and studies how suitable 

these guidelines are for predicting the failure surface and active earth forces for the shaking table 

test performed by El-Emam (2003) by using M-O method and HSM. Based on this study a new 

pseudo-static coefficient is suggested for use in the Mononobe-Okabe method (kh
ABC-MO). The base 

input acceleration amplitudes (peak acceleration amplitudes) studied here range from 0.05 to 0.30g.  

The major conclusions this chapter: 

 FHWA (2001)/AASHTO (2002) is best suited for predicting the failure surface and active earth 

forces compared to the other design codes, but like the other codes it significantly 

underestimates the failures surface depth.  

 The different pseudo-static methods require individually tailored guidelines for the pseudo-

static coefficients, i.e. one kh is not necessarily suited for use in multiple pseudo-static 

methods (e.g. M-O and HSM).  

 Predictions using kh
ABC-MO (and M-O) for the failure surface are more accurate than 

predictions using FHWA(2001)/AASHTO(2002), PIANC(2001) and Eurocode 8.  

 Predictions using kh
ABC-MO (and M-O) for the earth forces are very conservative; the earth 

forces are heavily overestimated.  

 Further data is needed to verify kh
ABC-MO.  
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9 Summary and Conclusions 
The focus of this study is numerical and analytical design of geo-synthetic reinforced soil walls under 

dynamic loading. The major components are: 

 Development and verification of a numerical PLAXIS model using physical model data to 

simulate the behaviour of a reduced-scale shaking test. 

 A numerical parameter study of the effects of reinforcement length and strength on the 

failure surface, facing displacements and reinforcement loads. 

 A comparison of the physical model results with the Mononobe-Okabe, horizontal slices and 

two-part wedge method. 

 A comparison of different codes for seismic design using the Mononobe-Okabe method  

 A suggestion for selecting the horizontal pseudo-static coefficient to improve design using 

the Mononobe-Okabe methods. 

In this chapter, the final conclusions of this thesis are presented. Also, the major limitations and 

suggestions to future studies are presented.  

9.1 Limitations 
General limitations: 

 The major limitation in this study is that only a single reduced-scale shaking table model is 

used as background for the numerical and pseudo-static investigations (and simulations).   

 Only horizontal excitation is considered.  

 Cohesion and effects of wet soil are neglected; the backfill soil is dry and cohesionless. 

Limitations in the numerical simulations and in the numerical results:   

 The hardening soil model is not able to account for softening due to soil dilatancy and effects 

due to cyclic loading. 

 Data from triaxial and oedometer testing on the backfill material is not available.    

 The effects of numerical instability on the numerical results are unknown since a sensitivity 

study is not conducted. 

 Specific details concerning the initial excitation of the physical model experiment is 

unknown. 

Limitations concerning the pseudo-static predictions: 

 Investigations of the accuracy of different pseudo-static methods are limited to the 

Mononobe-Okabe, horizontal slices and two-part wedge method.  

 Concerning the Horizontal Slices Method; the simple formulation by Choudhury et al. (2006) 

and Ahmad & Choudhury (2008) is used, i.e. moment equilibrium is not considered.   

 The investigation of current design codes is limited to FHWA (2001)/AASHTO (2002), PIANC 

(2001) and Eurocode 8.  

 Only active earth forces have been considered. 
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9.2 Conclusions  
The final conclusions are: 

 A numerical model has been developed using PLAXIS 2D Dynamics and verified using a 

reduced-scale shaking table model. PLAXIS 2D Dynamics proved capable of creating a 

numerical model based on results of physical experiments, but there are significant 

limitations to this model. Therefore, the developed model is only suitable for simulating soil 

and retaining wall behaviour up to a base input acceleration amplitude of 0.30g. 

 

 A lowering of the axial stiffness and/or a shortening of the reinforcement length, leads to an 

earlier development of the two-wedge failure mechanism. Also, the failure surface becomes 

shallower and the magnitude of the facing displacements is reduced with increasing axial 

stiffness and reinforcement length.  

 

 No conclusive results was found concerning the effect of reinforcement stiffness and length 

on the reinforcement loads 

 

 The numerical parameter study suggest that pseudo-static methods that does not account 

for key reinforcement properties (e.g. the Mononobe-Okabe and the horizontal slices 

method) are not suited for use in seismic design where an accurate prediction of the failure 

surface is vital.  

 

 The accuracy of pseudo-static models have been studied using programmes developed in 

MATLAB. This study has shown large variations between, and in, the accuracy of the 

Mononobe-Okabe, horizontal slices and two-part wedge method for predicting active earth 

forces and the failure surface for different acceleration amplitudes.  

 

 Neither the Mononobe-Okabe, nor the horizontal slice, or the two-part wedge method is 

able to predict both the failure surface and the earth forces for a wide range of acceleration 

amplitudes (0-0.60 g).  The different methods are best suited for predictions either before or 

after the development of the two-wedge failure mechanism.  

 

 The single-wedge pseudo-static methods (Mononobe-Okabe and linear horizontal slices 

method) are suitable for predicting the failure surface shape up to the critical acceleration (in 

this study, approximately 0.30 g), but when using guidelines in FHWA (2001)/AASHTO (2002), 

Eurocode 8 and PIANC (2001) the failure surface depth is under-predicted.  

 

 Single-wedge pseudo-static methods are reasonably accurate in predicting the active earth 

forces for the physical model for acceleration amplitudes up to acceleration amplitudes of 

0.30 g.  

 

 The two-part wedge method is able to predict the ultimate failure using =0, but is not 

possible to exclude the possibility that this is coincidence. Thus, the two-part wedge method 

might be accurate in calculating the ultimate failure surface, but further studies are needed 

to confirm this.  
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 The polylinear HSM are reasonably accurate for predicting the total earth forces for a wide 

range of acceleration amplitudes, but is not suited for predicting the failure surface. Special 

consideration should be taken when using this pseudo-static model since it is unable to 

account key reinforcement parameters (e.g. reinforcement length and strength).  

 

 A review of current guidelines or seismic design has shown that: FHWA (2001)/AASHTO 

(2002) guidelines for the horizontal pseudo-static coefficient give more accurate predictions 

(for both the failure surface and earth forces) than PIANC (2001) and Eurocode 8, when using 

the Mononobe-Okabe method.  

 

 On the basis of this review, a simple pseudo-static coefficient has been proposed. This 

coefficient has been shown to give better estimations for the failure surface than FHWA 

(2001)/AASHTO(2002), but use of this leads to an overestimated active earth force.   

9.3 Possible Future Work 
The following work is suggested as a continuation of the work in this thesis:  

 The numerical model should be subjected to a more detailed sensitivity study to test the 

robustness of the numerical results.  

 The numerical model could be developed further, either using PLAXIS 2D Dynamics or an 

alternative finite element program (e.g. ABAQUS FEA), by incorporating soil softening in the 

material model. 

 Verification of the Mononobe-Okabe, horizontal slices and two-part wedge method using the 

developed numerical model, this should also include vertical acceleration. 

 Verification of the Mononobe-Okabe, horizontal slices and two-part wedge method using 

other physical models.  
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Appendix 1 – Reinforcement connection loads 

Effect of reinforcement stiffness 

 
a) Input base amplitude: 0.05g 

 

 
b) Input base amplitude: 0.15g 

 

 
c) Input base amplitude: 0.30g 
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Effect of reinforcement length 

 
Input base amplitude: 0.05g 

 

 
Input base amplitude: 0.15g 

 

 
Input base amplitude: 0.30g 
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Appendix 2 – Pseudo-static methods – MATLAB code 
It is assumed that the basics of MATLAB are known to the reader and that the theory in section 6.2-

6.4 is read. Thus, please note that the comments in these MATLAB codes are restricted to describing 

the general steps of these programs and cannot be analysed without additional information (chapter 

6).     

Mononobe-Okabe method 
clear all 
close all 

  
%% Input 
phi=[insert value];    %Soil friction angle [deg] 

  
delta=[insert value];  %Wall friction angle [deg] 
beta=[insert value];   %Backfill surface inclination [deg] 
omega=[insert value];  %Facing inclination, zero=vertical [deg] 

  
gamma=[insert value];  %Unit soil weight [kN/m3] 
H=[insert value];      %Wall height [m] 

  
kh=[insert value];     %Horizontal pseudo-static coefficient 
kv=[insert value];     %Vertical pseudo-static coefficient 

  
n=[insert value];      %Number of reinforcements 
Sv=[insert value];     %The reinforcement vertical spacing [m] 
L=[insert value];      %Reinforcements length [m] 

  
%% Transferring degrees to radians 
psi_rad=atan(kh/(1-kv)); 

  
phi_rad=(phi*2*pi)/360; 
delta_rad=(delta*2*pi)/360; 
beta_rad=(beta*2*pi)/360; 
omega_rad=(omega*2*pi)/360; 

  
%% Failure surface inclination 
C1E=sqrt(tan(phi_rad-psi_rad-beta_rad)*(tan(phi_rad-psi_rad-

beta_rad)+cot(phi_rad-psi_rad-

omega_rad))*(1+tan(delta_rad+psi_rad+omega_rad)*cot(phi_rad-psi_rad-

omega_rad))); 
 

C2E=1+(tan(delta_rad+psi_rad+omega_rad)*(tan(phi_rad-psi_rad-

beta_rad)+cot(phi_rad-psi_rad-omega_rad))); 

  
alfa_AE_rad=phi_rad-psi_rad+atan((-tan(phi_rad-psi_rad-beta_rad)+C1E)/C2E); 
alfa_AE=alfa_AE_rad*360/(2*pi); 

  
%% Calculating reinforcements placement above toe 
if mod(n,2) == 0 
    for i=1:1:n 
        h(i)=(H/2)-(Sv/2)-(((n/2)-1)*Sv)+(i-1)*Sv;  
    end 
else 
     for i=1:1:n 
        h(i)=(H/2)-(((n-1)/2)*Sv)+(Sv*(i-1)); 
    end        
end 
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%% Calculating KAE and PAE 
KAE=((cos(phi_rad-omega_rad-

psi_rad))^2)/((cos(psi_rad)*((cos(omega_rad))^2)*cos(delta_rad+omega_rad+ps

i_rad))*((1+sqrt((sin(delta_rad+phi_rad)*sin(phi_rad-beta_rad-

psi_rad))/(cos(delta_rad+omega_rad+psi_rad)*cos(beta_rad-omega_rad))))^2)) 
PAE=0.5*KAE*gamma*(H^2)*(1-kv) 

  
%% Calculating reinforcement loads 
for j=1:1:n 
   Lt(j)=L-(h(j)/tan(alfa_AE_rad)); 
                if Lt(j)>0 
                    T(j)=2*(Lt(j)*gamma*(H-h(j)))*tan(phi_rad); 
                else 
                    T(j)=0; 
                end 

  
end 

  
%Display failure surface inclination 
disp('failure line incl, alfa_AE') 
disp(alfa_AE) 

  
%Plot reinforcements and failure surface 
x0=[0 L 0 0 L 0 0 L 0 0 L]; 
y0=[h(1) h(1) h(1) h(2) h(2) h(2) h(3) h(3) h(3) h(4) h(4)]; 

  
plot(x0,y0); 
hold on 

  
top=1/tan(alfa_AE_rad); 

  
x1=[0 top]; 
y1=[0 1]; 

  
plot(x1,y1); 
hold on 
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Two-part wedge method 
clear all 
close all 

  
%% Input 
phi=[insert value];             %Soil friction angle [deg] 
gamma=[insert value];           %Unit soil weight [kN/m3] 
H=[insert value];               %Wall height [m] 
lamda=[insert value];           %inter-wedge shear mobilization ratio  
                                %0<=Lambda<=1 

  
kh=[insert value];              %horizontal pseudo-static coefficient 
n=[insert value];               %Number of reinforcements 
Sv=[insert value];              %The reinforcements vertical spacing [m] 
L=[insert value];               %Reinforcements length [m] 

  
%% Zeroing of parameters 
H1=0;                           %Height of 1st wedge 
H2=0;                           % = H-H1 
H1_div_H=0;                     % = H1/H 
teta2=0;                        %angle between the horizontal plane and  
                                %the inclination of the "2nd" wedge's 
                                %surface 
teta1=0;                        %angle between the horizontal plane and  
                                %the inclination of the "2nd" wedge's 
                                %surface 
dif=0.01;                       %Selected interval of studied values of 

H1/H 

  
L1=0;                           %Width of 1st Wedge     
L2=0;                           %Width of 2st wedge 

  
Lt=zeros(n,1); 
T1=0; 
T2=0; 
k=1; 
Test=0; 
resulttrac=1; 
FS=1; 

  
phi_rad=(phi*2*pi)/360; 
phi_rad_f=phi_rad; 

  
Results=zeros(10000000,16); 
Results(:,10)=10; 
h=zeros(n,1);                       %%Reinforcements position above toe [m] 

  
%% Calculating reinforcements placements above toe 
if mod(n,2) == 0 
    for i=1:1:n 
        h(i)=(H/2)-(Sv/2)-(((n/2)-1)*Sv)+(i-1)*Sv;  
    end 
else 
     for i=1:1:n 
        h(i)=(H/2)-(((n-1)/2)*Sv)+(Sv*(i-1)); 
    end        
end 
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%%Calculations of the critical failure surface, i.e. the one with the 

lowest safety factor (FS) 

 

for FS=1:0.01:20 
    if Test<=4 
        phi_rad_f=phi_rad/FS; 

     
    for teta2=5:1:90 
        teta2_rad=teta2*2*pi/360; 

     

     
        for teta1=teta2:1:90 
        teta1_rad=teta1*2*pi/360; 

         
            for H1_div_H=0:dif:H 
            H1=H*H1_div_H; 
            H2=H-H1; 

             
            A1=1/(sin(teta1_rad)-(tan(phi_rad_f)*cos(phi_rad_f))); 
            B1=(tan(phi_rad_f)*sin(teta1_rad))+cos(teta1_rad);   

             
            L2=H2/tan(teta2_rad); 
            L1=H1/tan(teta1_rad); 

             
            W1=gamma*L1*H1*0.5; 
            W2=gamma*((H+H1)/2)*L2; 

             
            P1=(W1+(B1*A1*kh*W1))/((lamda*tan(phi_rad_f))+(B1*A1)); 
            V1=lamda*P1*tan(phi_rad_f); 

             
            A2=1/((tan(phi_rad_f)*sin(teta2_rad))+cos(teta2_rad)); 
            B2=(tan(phi_rad_f)*cos(teta2_rad))-sin(teta2_rad); 

             
            T1=0; 
            T2=0; 

             
            for j=1:1:n 
                if h(j)<=H2 
                Lt(j)=L-(h(j)/tan(teta2_rad)); 

                 
                if Lt(j)>0 
                    T(j)=2*(Lt(j)*gamma*(H-h(j)))*tan(phi_rad_f); 
                else 
                    T(j)=0; 
                end 
                T2=T2+T(j); 
                else 

                     
                Lt(j)=L-L2-((h(j)-H2)/tan(teta1_rad)); 
                if Lt(j)>0 
                    T(j)=2*(Lt(j)*gamma*(H-h(j)))*tan(phi_rad_f); 
                else 
                    T(j)=0; 
                end 
                T1=T1+T(j); 

                 
                end 
            end 
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            PAE=P1-((B1*A1*T1)/((lamda*tan(phi_rad_f))+(B1*A1)))+(kh*W2)-

T2-((B2*A2)*(W2+V1)); 

             
            T_total=T(1)+T(2)+T(3)+T(4); 

             
            KAE=(2*T_total)/(gamma*(H^2));   

             
            Results(k,:)=[teta2 teta1 H1_div_H H1 H2 L1 L2 PAE KAE FS T(1) 

T(2) T(3) T(4) 0 T_total]; 

                      
            if abs(PAE)<=0.01 
            if KAE>0 
            Test=1+Test;                    
            x= [0 L2 L1+L2]; 
            y= [0 H2 H]; 

             
            x0=[0 L 0 0 L 0 0 L 0 0 L]; 
            y0=[h(1) h(1) h(1) h(2) h(2) h(2) h(3) h(3) h(3) h(4) h(4)]; 

  
            plot(x0,y0); 
            hold on 

           
            plot(x,y,'-.or') 
            ylim([0 H])  
            hold on 
            PAE2=P1+(kh*W2)-(A2*A2)*(W2+V1); 
            KAE2=(2*PAE2)/(gamma*(H^2)); 
            Results_relevat(resulttrac,:)=[teta2 teta1 H1_div_H H1 H2 L1 L2 

PAE KAE FS T(1) T(2) T(3) T(4) 0 T_total]; 
            resulttrac=1+resulttrac; 
            end 
            end  
            k=k+1; 
            end 
        end 
    end 
end 
end 
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Horizontal slices method - Linear and polylinear 
%All relevant notations are as described in chapter 6.4. 
close all 
clear all 

  
%Input 
phi=[insert value];         %Soil friction angle[deg] 
delta=[insert value];       %Wall friction angle[deg] 

  
kh=[insert value];          %Horizontal pseudo-static coefficient 
kv=[insert value];          %Vertical pseudo-static coefficient 

  
gamma=[insert value];       %Unit soil weight [kN/m3] 

  
H=[insert value];           %Wall height [m] 
Vs=[insert value];          %Shear wave velocity [m/s] 
Vp=[insert value];          %Primary wave velocity 

  
n=[insert value];           %Number of reinforements => number of slices  
Sv=[insert value];          %The reinforcement vertical spacing [m] 
L=[insert value];           %Reinforcements length [m] 

  
T=[insert value];           %Period of seismic shaking 
t=[insert value];           %Time 

  

  
%%Calculation: linear HSM 
alfa=0;                     

  
% Transferring degrees to radians 
phi_rad=(phi*2*pi)/360;        
delta_rad=(delta*2*pi)/360;    

  
%%Calculating alfa_base by trying different values of t and inclination 

angle (here “alfa” is inclination angle). 
Kae_matrix=zeros(100000,3); 
j=1; 

  
for t=0:0.01:10 
for alfa=15:1:90 
    alfa_rad=(alfa*2*pi)/360; %Converts alfa to radians 

     
    m1=2*pi*cos(2*pi*((t/T)-(H/(T*Vs))))+(((T*Vs)/H)*(sin(2*pi*((t/T)-

(H/(T*Vs))))-sin(2*pi*(t/T)))); 
    m2=2*pi*cos(2*pi*((t/T)-(H/(T*Vp))))+((T*Vp)/H)*(sin(2*pi*((t/T)-

(H/(T*Vp))))-sin(2*pi*(t/T))); 

     
%Calculating different values for linear KAE and stores relevant 

%information in a matrix (“Kae_matrix”) 
    Kae0= (1/(tan(alfa_rad)))*((sin(alfa_rad-

phi_rad))/(cos(delta_rad+phi_rad-alfa_rad))); 
    Kae1=((kh*T*Vs*m1)/(2*(pi^2)*H))*(cos(alfa_rad-

phi_rad)/((tan(alfa_rad)*cos(delta_rad+phi_rad-alfa_rad)))); 
    Kae2=((kv*T*Vp*m2)/(2*(pi^2)*H))*(sin(alfa_rad-

phi_rad)/((tan(alfa_rad)*cos(delta_rad+phi_rad-alfa_rad)))); 

     
    Kae=Kae0+Kae1+Kae2; 
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    Kae_matrix(j,1)=alfa; 
    Kae_matrix(j,2)=t; 
    Kae_matrix(j,3)=Kae; 

     
    j=j+1; 
end 
end 

  
%Calculates the correct value of the linear KAE and displays it: 
Maximum_Kae=max(Kae_matrix(:,3)); 
disp('KAE_lineær') 
disp(Maximum_Kae) 

  
%Finds relevant value for the time: 
for j=1:1:100000 
    if Kae_matrix(j,3)==Maximum_Kae 
        alfa_base=Kae_matrix(j,1); 
        t_used=Kae_matrix(j,2); 
    end 
end 

  
alfa_base_rad=(alfa_base*2*pi)/360; %Makes the alfa base angle in to 

radians 

  
%%Calculation: polylinear HSM 

  
%Accounts for n being similar or odd 
h=zeros(n,1);           %Reinforcements position above toe [m] 
if mod(n,2) == 0 
    for i=1:1:n 
        h(i)=(H/2)-(Sv/2)-(((n/2)-1)*Sv)+(i-1)*Sv;  
    end 
else 
     for i=1:1:n 
        h(i)=(H/2)-(((n-1)/2)*Sv)+(Sv*(i-1)); 
    end        
end 

  
%Calculates the height from the toe to the top of the slices 
dz_top=zeros(n,1);      %height from the surface to the top of the slice 
for j=1:1:n-1    
    dz_top(j)=((h(j)+h(j+1))/2);   
end 
dz_top(n)=H; 

  
%Calculates slice thickness 
dz=zeros(n,1);          %slice thickness  
dz(1)=dz_top(1); 
for k=2:1:n 
dz(k)=dz_top(k)-dz_top(k-1); 
end 

  
%creating different matrixes for use later 
l=zeros(90,n+1);        %Top width of slice 
l_0=zeros(n+1,1);       %Bottom width of slice 
V=zeros(90,n+1);        %Top inter wedge force  
V_0=zeros(n+1,1);       %Bottom inter wedge force 
W=zeros(90,n);          %Weight of slice 
m=zeros(90,n);          %Mass of slice [1000*kg/m] 
qv=zeros(n,1);          %As described in theory 
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qh=zeros(n,1);   %As described in theory 
av=zeros(n,1);  %As described in theory 
ah=zeros(n,1);  %As described in theory 
tensile=zeros(90,n);    %Tensile force 
N=zeros(90,n);          %As described in theory 
S=zeros(90,n);          %As described in theory 

  
%Implementing initial conditions from linear HSM (geometry and forces from 

bottom slice) 
alfa_slice_1=zeros(n,1); 
alfa_s=zeros(90,n); 

  
l_0(2)=dz(1)/tan(alfa_base_rad); 
alfa_slice_1(1,1)=alfa_base; 
alfa_slice_0=alfa_base; 
z=zeros(n+1,1); 
z(1)=0; 
z(n+1)=H; 

  
t_summert=0; %Zeros the parameter that describes the total tensile forces 

  
%%Finds geometry of all wedges (except the bottom one which was found above 

%by using linear HSM) and calculates corresponding forces.  

 
for i=2:1:n 
        av(i)=kv*9.81*sin(pi*2*((t_used/T)-((H-dz_top(i))/Vp))); 
        ah(i)=kh*9.81*sin(pi*2*((t_used/T)-((H-dz_top(i))/Vs))); 

    
        %Tries different angles from alfa_base to vertical (0-90) and  
        %calculates the corresponding forces 
        for alfa_slice=alfa_base:1:90 
        alfa_slice_rad=(alfa_slice*2*pi)/360;  

         
        alfa_s(alfa_slice,i)=alfa_slice; 

         
        V_0(i)=l_0(i)*(1+kv)*gamma*(H-dz_top(i-1));       

         
        l(alfa_slice,i+1)=l_0(i)+abs((dz(i)/tan(alfa_slice_rad)));    

         
        V(alfa_slice,i+1)=l(alfa_slice,i+1)*(1+kv)*gamma*(H-dz_top(i));       

         
        W(alfa_slice,i)=((l_0(i)+l(alfa_slice,i+1))/2)*dz(i)*gamma;      
        m(alfa_slice,i)=W(alfa_slice,i)/9.81;                         

         
        N(alfa_slice,i)=((V(alfa_slice,i+1)-

V_0(i))+W(alfa_slice,i))/((tan(phi_rad)*sin(alfa_slice_rad))+cos(alfa_slice

_rad)); 
        S(alfa_slice,i)=N(alfa_slice,i)*tan(phi_rad); 

         
        tensile(alfa_slice,i)=-

(S(alfa_slice,i)*cos(alfa_slice_rad))+((N(alfa_slice,i))*sin(alfa_slice_rad

))+(m(alfa_slice,i)*ah(i)); 

         
        z(i)=z(i-1)+dz(i-1); 
        end 

         
      %Finds maximum tensile force,  
      Maximum_tensile(i)=max(tensile(:,i)); 
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      %Finds the corresponding geometry to the maximum tensile force, i.e. 
      %the critical surface for the ith slice, and stores the inter-wedge 
      %forces and the correct geometry 
      for p=1:1:90     
            if tensile(p,i)==Maximum_tensile(i) 
                t_summert=tensile(p,i)+t_summert; %Ads max tensile  
                                                  %force to the total  
                                                  %tensile force 
                alfa_slice_1(i)=alfa_s(p,i);                        
                alfa_slice_0=alfa_s(p,i); 
                l_0(i+1)=l(p,i+1); 
                V_0(i+1)=V(p,i+1); 

                 
             end          
        end 
end 

  
%Calculates forces from the first (bottom) slice 
av(1)=kv*9.81*sin(pi*2*((t_used/T)-((H-dz_top(i))/Vp))); 
ah(1)=abs(kh*9.81*sin(pi*2*((t_used/T)-((H-dz_top(1))/Vs)))); 

  
W(:,1)=l_0(2)*dz(1)*0.5*gamma; 
m(:,1)=W(alfa_slice,i)/9.81; 
V(:,2)=l_0(2)*(1+kv)*gamma*(H-dz_top(1)); 
N(:,1)=((V(alfa_base,2))+W(alfa_base,1)+(m(alfa_base,1)*av(1)))/((tan(phi_r

ad)*sin(alfa_base_rad))+cos(alfa_base_rad)); 
S(:,1)=N(alfa_base,1)*tan(phi_rad);       
tensile(:,1)=-

(S(alfa_base,1)*cos(alfa_base_rad))+((N(alfa_base,1))*sin(alfa_base_rad))+(

m(alfa_base,1)*ah(1)); 

  
%Sums all the tensile forces and calculates the poly linear  
%earth pressure coefficient  
t_summert=tensile(1,1)+t_summert; 
KAE_polylinear=t_summert/(0.5*gamma*(H^2)); 

  
%Plot and displays results  
disp('KAE_polylinear') 
disp(KAE_polylinear) 
figure 
     plot(l_0(:),z(:),'-.or') 
     ylim([0 H]) 
     hold on 

  
x0=[0 L 0 0 L 0 0 L 0 0 L]; 
y0=[h(1) h(1) h(1) h(2) h(2) h(2) h(3) h(3) h(3) h(4) h(4)]; 
    plot(x0,y0); 
    hold on 

  
x1=[0 H/tan(alfa_base_rad)]; 
y1=[0 H]; 
x2=[l_0(:);z(:)]; 
    plot(x1,y1); 
    hold on 

  
%Calculates and displays PAE (both linear and polylinear)     
PAE_linear=0.5*Maximum_Kae*gamma*(H^2) 
PAE_polylinear=0.5*KAE_polylinear*gamma*(H^2) 
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Appendix 3 – Horizontal Pseudo-static Coefficients from Current 

Seismic Design Codes 
 

Input acceleration 
amplitude 

 

  
    

 

 

  
   

 

  
      

 

  
     

0.00g 0 0 0 0 

0.05g 0.0549 0.0533 0.0275 0.0766 

0.15g 0.1663 0.1600 0.0832 0.2135 

0.30g 0.3498 0.3200 0.1749 0.3848 

0.40g 0.5163 0.4267 0.2582 0.4821 

0.50g 0.8288 0.5333 0.4144 0.5149 
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Appendix 4 – Effect of changing A, B and C 

Failure surface  
 

 
Failure surface for different values of A (amax=0.30g) 

 

 
Failure surface for different values of B (amax=0.30g) 

 

 
Failure surface for different values of C (amax=0.30g) 
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Active earth forces 
 

 
Earth forces for different values of A 

 

 
Earth forces for different values of B 

 

 
Earth forces for different values of C 
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