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increase in the ice sample stiffness. The objective of this study was to verify whether this phenomenon can be 
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Linear viscoelastic Kelvin, Maxwell and Burgers models were implemented into Matlab by means of the Boltzmann 

principle of superposition in order to simulate the behaviour of ice under cyclic loading. The Burgers model was 

calibrated with the creep test, performed by Sinha (Sinha, 1978), in order to get the input parameters specific for 

simulation of ice behaviour. 
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1.INTRODUCTION 

 

1.1.General 

 

Cold climate coastal and offshore engineering became an important issue with the 

onset of developments of oil and gas fields in arctic and subarctic regions in the late 

1960s. Around 25% of world oil reserves and 75% of world gas reserves are 

concentrated in these regions, making them attractive for further oil and gas 

developments(Wikipedia). However, building of the offshore structures in severe 

arctic climate conditions is a challenging task. Construction and operation in cold 

climate implies working in ice-infested waters. Therefore, for an engineer it is 

important to determine the ice action that an offshore structure can withstand for a 

given structural form, the ice properties and environmental conditions. 

 

There are many parameters that affect ice action. Mainly ice action depends on the 

real contact area and the local stresses, whereas the last two depends on the type of 

ice feature interacting with the structure, properties of the ice feature, scenario of 

interaction of the ice feature with the structure, geometry of the structure and the 

mode of ice failure against the structure.  

 

The most vulnerable type of structure with respect to ice action is a vertical structure. 

Lighthouses, multi-legged offshore structure, bridge piers, etc can be regarded as 

vertical structures. A structure can be considered as vertical if its sloping angle is less 

than 10º. 

 

The ice feature that is believed to create the maximum loads on the structure is ice 

ridge. Therefore this ice feature is considered in design calculations. The part of the 

ice ridge called consolidated layer constitutes to the major part of ice ridge action. At 

the same time the action of the consolidated layer can be seen as the action from 

level ice. 

 

The mode of ice failure against the structure is an important parameter and have a 

strong influence on ice action. Different modes of ice failure my exist even for same 

structure type and they can replace each other during the same event, depending on 

the ice thickness, velocity, the ice feature size, etc (Løset et al, 2006). The 

classification of the failure modes based on observations during the laboratory 

experiments was proposed by Sanderson (1988). When ice interacts with the 
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structure the following failure mechanisms can take place: creep, radial cracking, 

buckling, circumferential cracking, spalling and crushing. From the engineering 

point of view crushing is considered as the most important failure mode for vertical 

structures, since is believed to cause the highest ice action and severe vibrations.  

 

The phenomenon of ice induced vibrations is known since the 1960s. Peyton in 1968 

and Blenkarn in 1970 reported about ice induced vibrations on the drilling platforms 

in Cook Intel, Alaska. Later this phenomenon was noticed when there was an 

interaction of ice with lighthouse (Engelbektson, 1977), bridge piers (Sodhi, 1988) 

and offshore jacket oil platforms (Yue et al., 2001). These observations show that ice 

action should be considered to be dynamic. A common understanding of any 

dynamic action is that external time-varying force can be magnified due to internal 

forces within the structure (Kärnä, 2007). Dynamic ice action can be significant and 

imply structure damages. Moreover, fatigue can occur. Ice induced vibrations can 

lead to unacceptable level of displacement and acceleration of the structure, making 

it uncomfortable and dangerous for crew to stay on the structure. It is clear that 

knowledge of dynamic ice action is essential for economically sound and safe design 

of an offshore structure. Nevertheless, the mechanism responsible for this 

phenomenon is still not fully understood.  

 

1.2. Ice action 

 

1.2.1.Quasi-static global ice action for vertical structures.  

 

Classical procedure of dealing with this  problem is to define an equivalent external 

quasi-static load (Kärnä, 2007). 

 

According to ISO 19906 (2010) when the ice crushing occurs against a structure, the 

quasi-static global ice action normal to the surface, GF , can be expressed as: 

 G GF p A  (1.2.1.1) 

where Gp  is the ice pressure averaged over the nominal contact area associated with 

the global action and A is the nominal contact area, or projected area of the ice 

feature on the structure. When level ice, rafted ice or the consolidated layer of the 

ridge interacts with the structure the nominal contact area can be seen as a product of 

ice thickness h  and the width of the structure w . 
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 G GF p hw  (1.2.1.2.) 

The pressure Gp  is a key parameter when designing the structure against the ice 

action. At the same time pressure Gp  is a function of other parameters.  

  , , , , ( , ),G G R Sp p C w h v K u T    (1.2.1.3) 

where, v  is ice velocity [m/s], RС  is a coefficient that considers the ice strength in 

different ice regimes, ( , )S K u  is a parameter that considers the magnifying 

influences on the external load, K   is stiffness of the structure at the waterline, u is 

peak value of the structural displacement at the waterline, T   is ice temperature. 

It should be mentioned that the ice pressure varies in time. 

 

1.2.2. Ice crushing failure mode 

 

In crushing failure mode several failure mechanisms are considered, which are 

influenced by ice velocity, compliance of the structure and temperature. Ice crushing 

failure involves sequential development of horizontal splits, spalls, that cause ice 

pieces of various size to break off and flakes. During the process of ice compressive 

failure most of the force from the structure is transmitted to the ice through small 

areas termed high-pressure zones. During the ice crushing process, the number of 

high-pressure zones as well as their position change. When the ice velocity if high 

the fracturing of large pieces of ice results in the areas of little or no pressure with a 

narrow contact area. This leads to constant fluctuations in load and pressure. On the 

other hand, when ice velocity is little deformation of the ice leads to simultaneous 

contact between an advancing ice sheet and a structure. Figure 1.2.2.1. shows the 

process of compressive failure of ice in crushing. 

For compliant structures the following failure modes depending on the ice velocity 

are proposed: 

 ductile 

 intermittent ductile-brittle crushing 

 continuous brittle crushing 

These ice failure modes are responsible for different types of dynamic response of 

the structure.  
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Figure 1.2.2.1. Schematic illustration of the main processes of spalling and high-

pressure zones formation (Jordaan,2001). 

 

 

1.2.3. Dynamic ice action on vertical structures 

 

The process of dynamic ice-structure interaction process is controlled by the ice 

velocity and the waterline displacement of the structure. In case of continuous 

crushing of ice usually three different regimes  modes of vibrations may occur: 

 intermittent ice crushing 

 frequency lock-in 

 random vibrations 

Figure 1.2.3.1. Illustrates these three primary modes of ice-structure interaction in 

terms of ice force ( )F t and corresponding displacement ( )u t , as measured in the full 

scale structures in Bohai Bay. (ISO 19906, 2010) 
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Figure 1.2.3.1. Modes of time-varying action due to ice crushing and the 

corresponding dynamic component of structure response. a) intermittent ice crushing 

b)frequency lock-in c) continuous brittle crushing. ( )F t  is ice action, ( )u t  is 

structure displacement, t  is time. (ISO 19906, 2010) 

 

Intermittent ice crushing mode, shown in Figure 1.2.3.1.a., occurs in a range of 

low ice velocity. Intermittent ductile-brittle crushing failure mode is responsible for 

this mode of ice-induced vibrations. Due to the fact that the ice velocity is low, ice 

edge starts to deform in a ductile manner. While ice force is gradually increasing, 

structure moves in the same direction as ice. When the ice action is reaching its 

maximal value, the brittle deformation starts to take place at the ice edge. Due to the 

brittle failure of ice the ice force decrease rapidly. In the intermittent crushing mode 

the structure exhibits relaxation vibrations, that decay due to the damping caused by 

the soil and the structure.  

 

The ice action due to intermittent crushing can be simplified as shown in figure 

1.2.3.2. In intermittent ice crushing mode the period T of the ice action is much 

longer than the longest natural period of the structure. The peak action maxF  can be 

determined by equation 1. 
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Figure 1.2.3.2. Idealized time histories of the ice action due to intermittent crushing. 

a) period of ice action greater than duration of loading/unloading cycle b) period of 

ice action equal to loading/unloading cycle. T  is a period of ice action. t  is time, 

 F t is ice action, maxF  is a maximal value of ice action.(ISO 19906, 2010) 

 

The frequency lock-in mode (Figure 1.2.3.1.b.),or self-excited vibrations, occurs 

when the ice is advancing against the structure with the range of intermediate ice 

speeds. In this mode vibrations are severe and therefore should avoided. Typically, 

the ice speeds in range from 0.04 m/s to 0.1 m/s can be considered as intermediate 

ice speeds. This vibration mode is associated with brittle crushing failure mode of 

ice. Similar to intermittent ice crashing mode, ice edge first exhibits ductile 

deformation that is replaced by brittle deformation once the ice force reaches the 

peak value. The problem arises when the time-varying ice action adapts to frequency 

of the waterline displacements of the structure. Therefore, the time history of the ice 

action depends not only on the properties of ice but also on the characteristics of the 

structure. In the frequency lock-in mode the vibrations of the structure can be seen as 

sinusoidal. According to ISO structures with a fundamental frequency in the range of 

0.4 to 10 Hz may experience the self-excited vibrations.  

 

In order to determine the structural response the time history of ice action due to 

frequency lock-in can be simplified as shown in the figure 1.2.3.3. ISO 19906 (2010) 

suggest to assume a constant peak value of ice action maxF  and the difference F

between maximal maxF  and minimal value of ice action minF . The frequency f=1/T of 

the forcing function is assumed to be equal to the frequency of one of the unstable 

natural modes that has a natural frequency below 10Hz. The peak value maxF  can be 

determined as a global ice action GF , using equation 1, whereas the procedure of 
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finding F  is not so clear and controversial. ISO suggest to take the F  as the a 

fraction q  of maxF . Then the coefficient q  should be scaled so that the velocity 

response at the waterline amount to value 1,4 times the highest ice velocity at which 

a lock-in conditions occur. The expression given in the ISO for estimation of this ice 

velocity is not correct, because according to that expression different types of 

structures will exhibit same vibrations what is not the case in reality.  

 

 

Figure.1.2.3.3. Assumed ice load history for frequency lock-in conditions. t  is time, 

( )F t  is ice action, maxF  is a maximal value of ice action, minF is a minimal value of 

ice action, F  is a difference between maximal and minimal values of ice action, 

T is a period of ice action.(ISO 19906, 2010) 

 

This vibration mode is associated with brittle crushing failure mode of ice. 

Continuous brittle crushing (Figure 1.2.3.1.c.) occurs at higher ice speeds. The ice 

speeds are  typically higher than 100mm/s (ISO 19906, 2010).  This vibration mode 

is characterized by random response of the structure and random ice action.  

 

1.3. Ice properties and dynamic ice action 

 

Although present ISO defines the conditions for frequency lock-in, they are still not 

so clear. Nevertheless, it is obvious that ice drift velocity has a significant influence 

on the process. However, it was observed that the lighthouse Nordstromgrund 

experienced more events of frequency lock-in in March, than in February, and this 

was not due to changes in the ice drift velocities.(personal communications) The 

reason for that might be the difference in the properties of ice. For instance due to the 

fact due to the warmer ice in March. However, it is not straight forward how the ice 
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properties may affect the process of ice-induced vibrations. None of the present 

dynamic ice-structure interaction models include the effect of changing ice 

properties. 

 

Ice exhibits maximal stress near the structure. The stress gradually non-linearly 

decreases with increase of the distance to the structure. At a distance equal to several 

diameters of the structure ice still exhibits stresses. In the time domain the stress 

distribution is different. In the beginning of the process of ice-structure interaction 

the structure moves in the same direction as the ice. Then the ice starts to break in 

crushing within the narrow area around the structure and the structure displaces 

towards the ice. Then this process repeats. This means that when ice is approaching 

the structure it experiences cyclic loading with increasing amplitude. 

 

Uniaxial cyclic compression tests of sea ice samples were performed at University 

Centre on Svalbard in 2007 (Sæbø, 2007). This experiment indicated that sample 

stiffness firstly increases and then decreases before the sample fails. This change in 

ice stiffness might have an influence on dynamic ice-structure interaction. Decrease 

of the sample can be explained by the development of damage in the sample. 

Increase in the sample stiffness is more difficult to explain within an elastic-plastic-

damage framework. It can be explained by surface flattering and/or by a visco-elastic 

ice material behavior. 

 

In principle the behavior of ice is similar to behavior of metals due to the fact that ice 

is a polycrystalline material (Løset et al, 2006). However, the ordinary engineering 

approach to metals is not applicable to ice due to the fact that ice grains are relatively 

large and ice exists close to its freezing point in nature. The fact that sea ice consists 

of pure ice, brine, air and sometimes solid salts makes its behavior even more 

complicated. Therefore a material model of ice should include linear and non-linear 

aspects of elasticity, visco-elasticity, visco-plasticity. Numerous papers by Sihna 

(1978, 1982, 1984, 1989) and other researches explains this aspects of ice behavior. 

For example, the ice behavior can be described by well-known Burgers model (Løset 

et al, 2006). 

 

1.4. Objective of the thesis 

 

The goal of this work is to find out whether the increase of the stiffness of ice under 

cyclic loading can be explained by viscoelastic behavior of ice. In order to do that 
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numerical simulations of linear viscoelastic model of ice under the cyclic loading is 

performed.  

 

Even though the linear viscoelastic model of ice does not capture all the aspects of 

the ice behavior, for instance it does not include fracture. It can be a good starting 

approximation of the ice response is such a complicated not fully understood process. 

This numerical model is simple and does not require a lot of computational power 

making it easy to perform and analyze many numerical experiments. 

 

First, the concept of general viscoelasticity and linear viscoelasticity is discussed in 

this thesis, followed by the implementation of the model into the Matlab , validation 

of the model, sensitivity analysis, procedure of selecting the input parameter and 

results and discussion. 
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2. THEORY AND METHODS 

 

Sections "viscoelasticity" and " The Boltzmann superposition principle " are based 

on "Continuum Mechanics" by Fridjov Irgens published in 2008. 

 

2.1. Viscoelasticity 

 

2.1.1. General Viscoelasticity 

 

Viscoelastisity is a property of materials. Viscoelastic materials can exhibit both 

elastic and viscous behavior when undergoing deformation. Elastic materials return 

to their original shape once stress that deformed them is removed. Originally 

viscosity was introduced as a measure of resistance of a fluid which is being 

deformed by either shear or tensile stress. Later it was concluded that solids may be 

considered to have viscosity as well. The viscosity of solids is simply considered to 

be several orders higher than one of fluids.  

 

Two different tests are often used to examine viscoelastic response of materials. One 

is the creep test and the other is relaxation test. 

 

In creep test the specimen is subjected to a step constant stress during the time 

interval [0, 1t ]. During the test viscoelastic materials exhibit a time-dependent 

deformation. This phenomena is known as viscoelastic creep. Time dependent strain 

response is a combination of elastic, delayed elastic and viscous strain responses. 

Each of these types of strain responses are explained further in this chapter. An 

example of a creep test is shown in figure 2.1.1.1. 

The axial stress in the test specimen may be described by the following function: 

 0 1( ) [ ( ) ( )]t H t H t t     (2.1.1.1) 

where ( )H t is the Heaviside function.  

The axial strain then is described as follows: 

 0 0 0( , ) ( , ) ( )t t H t      (2.1.1.2) 

where 0( , )t   is a creep function. 
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In relaxation test the specimen is subjected to a constant strain equal to 0 and the 

stress history is recorded. During the test the viscoelastic materials exhibit a time-

dependent decrease in stress. An example of a relaxation test is shown in figure 

2.1.1.2. 

 

Figure 2.1.1.1. Creep test of a viscoelastic material. a) Applied stress b) Strain 

response. 

 

Figure 2.1.2. Relaxation test of a viscoelastic material. a) Applied strain b) Stress 

response. 
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 The axial strain in the test specimen may be described by the following function: 

 0( ) ( )t H t    (2.1.1.3) 

The test result may be described by a relaxation function 0( , )t   such that: 

 0 0 0( , ) ( , ) ( )t t H t      (2.1.1.4) 

A viscoelastic material may be classified as a solid or a fluid. Figure 2.1.1.3. shows 

response of viscoelastic solid, viscoelastic fluid, elastic solid and viscous fluid from 

the creep and relaxation tests.  

 

Figure 2.1.1.3. Fluid and solid response in creep(left) and relaxation(right) test. 

(Irgens,2008) 

 

During a creep test a viscoelastic solid will first exhibit initial elastic strain, primary 

creep (the stage with decreasing strain-rate), that can be described by delayed elastic 

strain in this case, and complete restitution without viscous strain. In a relaxation test 

of a viscoelastic solid the stress decreases towards an equilibrium stress 0( )e e   . 

 

In creep test of viscoelastic fluid the test specimen can exhibit initial elastic strain, 

primary creep, secondary creep. During the secondary creep strain rate is constant. 
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During tertiary creep the rate of strain starts to increase until fracture occurs. After 

unloading the specimen exhibit elastic restitution (initial elastic strain disappears 

momentarily after the stress is removed) and then time dependent restitution. Viscous 

strain does not disappear. In relaxation test of viscoelastic fluid stress approaches 

zero asimptotically. 

 

During creep test of elastic solid, strain is constant and equal to initial elastic strain. 

In relaxation test of an elastic solid the stress is constant and equal to initial stress i  

that was applied to produce the constant strain 0 . 

 

In creep test of viscous fluid, the strain rate is constant and after the stress is removed 

no restitution to initial shape occur. The specimen will get an irreversible viscous 

deformation. During relaxation test of viscous fluid the stress is equal to zero. 

 

2.1.2. Linearly viscoelastic materials 

 

The classical theory of visoelasticity assumes small deformations( Irgens, 2008). The 

response of viscoelastic material can be represented by means of mechanical models. 

This models are the combination of spring and dashpots. Through this combination 

of the analogous responses of spring and dashpot the behavior of the material can be 

represented. The material shows linearly viscoelastic response when their creep and 

relaxation functions are functions only of time: 

 ( ), ( )t t     . (2.1.2.1) 

Therefore plotting of this functions with respect to time can give a nice impression of 

how the corresponding graph of strain or stress should look like in case of creep or 

relaxation test respectively for a particular model considered. The instantaneous 

response is given by a glass compliance (0)g   and the glass modulus, also called 

the short time modulus, (0)g  . ( )e    is equilibrium compliance and 

( )e   is equilibrium modulus, or long time modulus. 

 

2.1.2.1. Mechanical models 

 

The response of linearly elastic material is the same as that of a linear spring.  
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The behavior of a linearly elastic material under uniaxial stress can be described by 

the  response equation of the spring: 

 E   (2.1.2..2) 

where  is stress,  is strain ,E is the modulus of elasticity. The linear spring shown 

in figure 2.1.2.1. is called Hookean model. This model have the following creep and 

relaxation functions respectively: 

 
1

( ) , ( )g e g et t E
E

            (2.1.2.3) 

 

Figure 2.1.2.1. Hookean model. In this figure  is the modulus of elasticity. 

(Irgens,2008) 

 

Hookean model illustrates the concept of elastic response. When undergoing a creep 

test the specimen exhibits a elastic strain response. 

 

The response of linearly viscous material is the same as that of linear dashpot. The 

behavior of a linearly viscous material under uniaxial stress can be described by the 

following  response equation of the dashpot: 
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    (2.1.2.4) 

where   is viscosity of the material and   is the time rate of strain, or strain rate. 

The linear dashpot shown in figure 2.1.2.2. is called Newtonian model.  

 

Figure 2.1.2.2. Newtonian model. In this figure  represents viscosity. [Irgens,2008] 

 

This model have the following creep function, glass compliance, equilibrium 

compliance, relaxation function, glass modulus, equilibrium modulus respectively: 

 ( ) , 0, , ( ) ( ), , 0g e g e

t
t t t      


         (2.1.2.5) 

where ( )t  is a Dirac delta function. 

Newtonian model illustrates the concept of viscous response. When undergoing a 

creep test the specimen exhibits a viscous strain response. 

 

The Maxwell model is a series of linear spring and linear dashpot. The response 

equation of the model is the following: 
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E

 



   (2.1.2.6) 

The strain rate of the model is equal to the sum of strain rates of spring and of 

damper. The creep function, glass compliance, equilibrium compliance of the model 

are the following: 

 
1 1

( ) 1 , ,g e

t
t

E E
  



 
     

 
 (2.1.2.7) 

where 
E


   is the relaxation time. The relaxation function, glass modulus, 

equilibrium modulus of the model are the following: 

 ( ) exp , , 0g e

t
t E E  



 
    

 
 (2.1.2.8) 

The response of Maxwell model is the same as of a viscoelastic fluid. (Irgens, 2008).  

By analyzing the graph (figure 2.1.2.3) of creep function several conclusions can be 

drawn. For instance, in case of creep test the total deformation of the material is 

combination of elastic and viscous deformation. 

 



Theory and Methods 

17 
 

 

Figure 2.1.2.3.Maxwell model. In this figure  represents viscosity and  is the 

modulus of elasticity. (Irgens,2008) 

 

The Kelwin model consists of a linear spring and a linear dashpot in parallel. This 

model is characterized by the following response equation: 

 E     (2.1.2.9) 

The stress in the model is equal to the sum of  the stress in the spring and stress in the 

dashpot. The creep function, glass compliance, equilibrium compliance of the model 

are the following: 

 
1 1

( ) 1 exp , 0,g e

t
t

E E
  



  
      

  
 (2.1.2.10) 

Here  is retardation time and / E  . The relaxation function, glass modulus, 

equilibrium modulus of the model are the following: 

  ( ) 1 ( ) , ,g et E t E        (2.1.2.11) 
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The response of Kelvin model is the same as of a viscoelastic solid (Irgens, 2008).  

 

Figure 2.1.2.4 Kelvin model. In this figure  represents viscosity and  is the 

modulus of elasticity. (Irgens, 2008) 

 

Kelvin model illustrates the concept of delayed elastic response. When undergoing a 

creep test the specimen exhibits a delayed elastic strain response. 

 

The Burgers model consists of a series of Maxwell elements and Kelvin element. 

This model has the following  response equation: 

 1 2 1 2p p q q         (2.1.2.12) 

where: 

 

1
1 1 2 2 1 2

2

1 2
1 1 1 2 2 1 1 2

1 2

1 ,

, , ,

E
p p

E

q E q
E E

   

 
    

 
    

 

   

 (2.1.2.13) 

The creep function, glass compliance, equilibrium compliance of the model are 

expressed as follows: 

 
1 1 2 2 1

1 1 1
( ) 1 1 exp , ,g e

t t
t

E E E
  

 

    
          

    
 (2.1.2.14) 
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Figure 2.1.2.5. Burgers model. In this figure  represents viscosity and  is the 

modulus of elasticity. (Irgens,2008) 

 

The creep function of the Burgers model is equal to sum of the creep functions of 

Maxwell element and Kelvin element. The relaxation function, glass modulus, 

equilibrium modulus of the model are the following: 

 
 1 2 2 2 1 1 2 1

2

1 2

1

1
( ) ( )exp( ) ( )exp( ) ,

4

, 0g e

t q q t q q t
p p

E

    

 

     


 

(2.1.2.15) 

where: 

 
1 2

1 1 2

2 2

1
4

2
p p p

p




   
 

 (2.1.2.16) 

When undergoing a creep test, the strain response of a material, described by Burgers 

model, is a combination of elastic, delayed elastic and viscous strain responses. 

 

It should be noted that by varying of viscosity   and the modulus of elasticity E  it 

is possible to change the behavior of the model. For instance, let us consider the 

Kelvin model. Now if we increase value of   compare to E ,basically this mean 

increasing of  , the model will tend to behave like a Newtonian model. And 

conversely with decrease of  the model will tend to behave like a Hookean model. 
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The Burgers model is a more sophisticated, model therefore by varying the material 

parameters it possible to get any model-like behavior, described in this chapter. 

 

2.2. The Boltzmann superposition principle 

 

It is of our interest to be able to predict a strain/stress history for a material in a state 

of uniaxial stress. For instant if the strain/stress history for a material is given it is 

interesting to compute the resulting stress or strain history. It order to do that the 

general response equation should be solved. The general response equation describe 

all different mechanical models that is constructed by adding together linear spring 

and linear dashpot in different combinations and is of the following form: 

 
1

0 0

n nm m

n nn n
n n

d d
p q

dt dt

 

 

   (2.2.1) 

np  and nq  are model parameters. The equation is developed from the basic response 

equations for the Hookean element and the Newtonian element.  

 

The method of solving the response equation is based on the principle of 

superposition, introduced by Ludwig Boltzmann. 

 

Let the strain history be given. Then the given strain history ( )t  can be replaced by 

a step function ( )t  (figure). The step function is constructed in the following way. 

Let t  be the present time and t  be a "moving" time and t t . Let time interval [ 0t ,

t ] be divided in m equal subintervals. And within each time subinterval 1[ , ]n nt t   nt  

is such that: 1n n nt t t   . The condition ( ) 0t   for 0t t  should be satisfied. Then 

the step function ( )t  is defined as follows: 

 
1

( ) ( )
m

n n

n

t H t t 


    (2.2.2) 

where: 

 ( ) ( 1) ( )n n n nt t t t          (2.2.3) 

The stress at the "moving" time t  due to the strain increment n  is: 
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 ( ) ( ) ( ) ( ) ( ) ( )n n n n n nt t t H t t t t t tH t t              (2.2.4) 

In order to get the stress at the present time t  we may superimpose the stress 

contributions ( )n t . This is possible since the response equation (1) is linear. 

Hence the strain history ( )t  results in the following stress at the present time t : 

 
1 1

( ) ( ) ( ) ( )
m m

n n n

n n

t t t t t t   
 

       (2.2.5) 

If m then approximated strain history ( )t  approaches the actual strain history 

( )t  and the approximated stress history ( )t converges towards the actual stress 

history ( )t . Therefore: 

 ( ) ( ) ( )

t

t t t t dt  


   (2.2.6) 

 Any response of a linearly viscoelastic material under uniaxial stress can be 

described by equation 2.2.6. The relaxation function ( )t  should be know 

beforehand (Irgens, 2008). For instance, it can be determined by performing 

relaxation tests of a material. 

For a given stress history the solution can be obtained in the similar manner and the 

strain becomes: 

    ( )

t

t t t t dt  


   (2.2.7) 

The Boltzmann superposition principle illustrates how the response of any 

mechanical model in a uniaxial creep or relaxation test can be numerically solved. In 

this principle the assumption of small deformations is automatically fulfilled when 

the time step is small. In this method the creep function or relaxation function, 

depending on the test of interest, should be known beforehand. Thess functions 

represent the material response. Using the Boltzmann superposition principle the 

linear viscoelastic mechanical models were implemented into Matlab. The Matlab 

code is shown in appendix A.  
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Figure.2.2.1. Superposition of strain increments.(Irgens,2008) 

 

2.3.Validation of the Matlab code. 

 

In order to verify that Matlab code were executed correctly, the numerical solutions 

for the response of Maxwell model obtained for two different creep tests were 

compared with its well-known analytical solutions. Two different types of loading 

were considered. For the first test the input was a stepwise constant stress and for the 

second one the input was a harmonic stress. 

 

 

Figure 2.3.1. Stress history. 
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Assume that Maxwell model is exposed to stepwise axial stress, as shown in figure 

2.3.1. The goal is to find the strain response  t . The creep function for the 

Maxwell model can be written as follows: 

 
1

( ) 1
t

t
E




 
  

 
 (2.3.1) 

where E  is a Young's Modulus, / E  ,where   is viscosity. For simplicity let 

us assume that 1E Pa  and 1 Pa s    

 

The analytical solution of the strain response for the given stress history will be the 

following: 

 0 2
( ) 1 ( ) 2 1 ( ) 1 ( 2 )

t t T t T
t H t H t T H t T

E




  

        
             

      
 (2.3.2) 

where  H t  is a Heaviside step function and 0 1 Pa   , 0,04T s  , 2 0,08T s  , 

for a given stress history, shown in figure 1. It possible to calculate the strain 

response in Excel or any other software using equation 2.3.2. In order to do that the 

Heaviside step function can be approximated by the following equation: 

   2

1

1 kx
H x

e



 (2.3.3) 

where the larger k  corresponds to a sharper transaction at 0x  . 1000k   was used 

in order to perform the calculations in Excel. 

Now we are going to compare the results obtained by running the Matlab code based 

on Boltzmann principle of superposition and results obtained using equation 2. 

(figure 2.3.2.) 

It follows from the figure that analytical and numerical solution give the same result. 

They differ a little bit in the transition regions when t=0;0,04 and 0,08s. With 

increase of the value of k  in equation 2.3.3 the analytical and numerical results will 

tend to be equal in the transition regions. 
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Figure 2.3.2. Comparison of numerical and analytical strain response. 

 

Assume that Maxwell model is subjected to a harmonic uniaxial stress: 

   0 sint t    (2.3.4) 

The analytical solution for the strain response is as following: 

        1 2 0 2 0sin cost t t H t H t           (2.3.5) 

where  H t is a Heaviside step function, 1  and 2 are the storage compliance and 

loss compliance respectively. For Maxwell model parameters 1  and 2  could be 

calculated using the following equations: 

 
1 2

1 1
, 

 
   (2.3.6) 

The strain response obtained by running the Matlab program based on Boltzmann 

principle of superposition and strain response obtained using equation 2.3.5 are 

shown in figure 2.3.3. The following values for the input parameters were used: 
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Figure 2.3.3. Comparison of strain response calculated using 2 different methods.  

 

It follows from figure 2.3.3 that the Matlab program gives reasonable results. 

 

 

Figure 2.3.4. Stress history and corresponding numerically calculated strain response 

for 25s.  

-1 

-0,5 

0 

0,5 

1 

1,5 

2 

2,5 

0 10 20 30 40 50 60 

S
tr

a
in

 

Time,s 

Equation 2.3.2 

Matlab 

0 5 10 15 20 25
-1

0

1

time,s

st
r
e
ss

,P
a

0 5 10 15 20 25
-1

0

1

2

3

time,s

st
r
a

in



Theory and Methods 

26 
 

 

Figure 2.3.5. Stress history and corresponding numerically calculated strain response 

for10s 

 

From figure 2.3.4 and figure 2.3.5 it is clear that there is a phase lag between stress 

and corresponding strain. The phase lag is equal to /  ,where  is a loss angle. 

For Maxwell model it can be calculated using the following equation: 

 
1

tan


  (7) 

For the input values considered / 1   s. This does not contradict with the 

numerical result obtained.  

 

2.4. Cyclic uniaxial compression test.  

 

The test was conducted in the cold laboratory at University Centre on Svalbard in 

2007. The aim of the experiment was to see the evolution of the stress-strain diagram 

in case where the specimen is subjected to a cyclic loading. In order to perform the 

test the "Kompis" machine was used (Figure 2.4.1.). The machine was set to have a 

constant nominal strain of 10
-3

 s
-1

. The vertical test specimen, taken from Svea Bay, 

was used in the test. The ice  sample had a diameter of 70 mm and the length of 175 
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mm. The test was conducted at the temperature about -10ºC. After the sample was 

melted and its salinity was measured. During the test the ice sample was loaded and 

unloaded many time in order to reproduce cyclic loading.  

 

 

a)     b) 

Figure 2.4.1. a) Kompis. b) Closer picture of a compressive unit. (Sæbø, 2007) 

 

The stress history in shown in figure 2.5.2. The stress slowly increased in each cycle, 

starting with the load equal to 0,5-1,0 MPa.  

 

 

Figure 2.4.2. Stress plotted against time. 67 cycles are shown and numbered on the 

upper x-axis. (Sæbø, 2007) 
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During the test it was observed that the Young's modulus of ice sample first increases 

and then decreases when it subjected to cyclic loading with increasing amplitude 

(Figure 2.4.3.). The Young's Modulus was estimated every second cycle by linear 

least square regression (Figure 2.4.4.) 

 

Figure 2.4.3. Young's modulus found by the linear regression for the different cycle 

numbers.( Sæbø, 2007) 

 

Figure 2.4.4. A stress-strain plot for cycle nr 3 and cycle nr 60. The horizontal and 

vertical lines limits the region where the best fit curves were calculated. The 

derivative of the equation on the top of the figures gives Young's Modulus. (Sæbø, 

2007) 
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2.5.System's modulus of elasticity. 

 

The goal of this work is to find out if the change of elastic modulus of ice under 

cyclic loading can be explained by viscoelastic properties of ice. In this work the 

behavior of ice is simulated by means of linearly viscoelastic mechanical models. 

These mechanical models are linear combinations of spring and dashpots. The input 

parameters for the creep functions of the model are not the same as properties of ice. 

For instance, the Young's modulus of spring element in mechanical model is not 

necessarily equal to modulus of elasticity of the simulated ice. From now on, the 

term system's modulus will be used when it comes to the modulus of elasticity of ice. 

 

In order to say something about system's modulus the strain-stress curves should be 

analyzed. There is no one strict technique for definition of the modulus of elasticity 

from the stress-strain curve. In this thesis two definitions are used, shown in the 

figure 2.5.1. One is tangent system's modulus of elasticity tE  and the other one is 

secant system's modulus of elasticity sE .  

 

Figure 2.5.1. Tangent and secant system's modulus. Stress-strain curve in one cycle 

for Burgers model under cyclic loading is used in this figure. 
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The tangent system's modulus of elasticity tE  can be defined as slope of the tangent 

drawn from the initial point on the stress-strain curve. In this paper the secant 

system's modulus of elasticity sE  is defined as the slope of the line drawn from 

origin to the point, corresponding to the maximal stress in a stress-strain curve. 

Therefore sE  can be calculated as follows: 

 sE








 (2.5.1) 

where SE  is a secant system's Young modulus [Pa],   is a difference between 

maximal and initial stress in a stress-strain diagram [Pa],   is corresponding to 

stress strain difference. Secant system's model capture the effects of non-elastic 

deformations. 

 

2.6. Non-linear viscoelastic model for polycrystalline ice. 

 

The model was proposed by N.K. Sinha and presented in several of his papers . In 

this thesis the paper "Rheology of columnar-grained ice", published in 1978 was 

used. The strain response of columnar-grained S-2 ice in a creep test can be 

expressed as follows:  

        , , , , , ,t e d vT t T t T t           (2.6.1) 

where t  is total strain , e  is pure elastic strain, d  is recoverable, delayed elastic 

strain, v  is viscous permanent deformation. Explicit form of equation 2.5. is the 

following: 

   1 exp

s
nb

t T vc a t t
E E

 
  

             
 (2.6.2) 

where  exp /v A Q RT   , A  is a constant for a given stress, R is a gas constant 

[J/mol/K], Q  is the activation energy [KJ/mol], T is temperature [K],   is stress 

[Pa], E is Young's modulus [Pa], t  is time [s], Ta  is inverse relaxation time [1/s], n  

is stress exponent, , ,b c s  are constants. 
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3.RESULTS 

 

3.1. Sensitivity Analysis 

 

Before starting the numerical experiments it is important to perform a sensitivity 

analysis in order to have a better understanding of how the input parameters are 

affecting the output of the model and which input parameters have a significant 

influence on the behavior of the model. 

 

It is in our interest to analyze the behavior of the Burgers model in a creep test. As it 

was mentioned before Burgers model consists of Maxwell and Kelvin unit combined 

in series. The creep function of the model is a sum of creep functions of Maxwell and 

Kelvin unit. Therefore, it makes sense to perform  the sensitivity analysis of these 

two units first. Thereby the sensitivity analysis of Kelvin, Maxwell and Burgers 

model is presented in this chapter. 

 

At this stage of research using physically reasonable parameters is not so important. 

What is important is to try to combine the input parameters into dimensionless 

coefficients and see their influence on the behavior and output of the models. 

Therefore the input parameters used in this analysis are not suitable for simulating 

the ice behavior. 

 

For each of the models two types of loading were considered: constant loading and 

cyclic loading. It is important to analyze the behavior of the models under constant 

loading first before looking into details into more complicated cyclic loading tests. 

 

It was decided not to use dimensionless graphs in this section to be able to see clearly 

the influence of each input parameter. 

 

3.1.1. Kelvin model 

 

The model was subjected to a step constant stress 0  during the time interval [ 0t , 1t ]. 

The creep function of the model is described by equation 2.1.2.10.. The input 

parameters for Kelvin model are viscosity  , modulus of elasticity E , applied stress 

0  and time 1 0t t t   , where 0t  is time when constant stress is applied and 1t  is 

time when stress is removed. The output is strain  . 
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The parameter that has a significant influence on the strain response of the model is 

/t  , where / E  . For instance, it was concluded that if / 5t    the strain 

reaches it maximal value equal to 0 / E  at time 1t  This phenomenon can be 

explained by the nature of the integral 2.2.7 and creep function 2.1.2.10. It is clear 

that with increase of the value of /t  in equation 2.1.2.10 ( )t  approaches the value 

of 1/ E (Table 3.1.1.1). When calculating the strain response of the model using the 

Boltzmann principle of superposition we discretize the given stress history in order 

to solve the convolution integral 2.2.7. numerically. Therefore we are dealing with 

summation of the strain response obtained for values of moving time. So when 

/ 5t    the strain reaches it maximal value equal to 0 / E  at time 1t  due to the 

behavior of   1 exp /t    and summation. In order to validate this property of 

Kelvin model several tests were conducted numerically. The extensive results can be 

seen in appendix B. In figure 3.1.1. two selected cases are presented. 

The ratio 0 / E  has an influence on the values of strain response but not on the 

shape of the strain response curve. 

 

Table 3.1.1.1.Values of creep function multiplied with modulus of elasticity for 

certain values of t/λ ratio. 

/t     ( ) 1 exp /t E t      

1 0.63212 

2 0.86466 

3 0.95021 

4 0.98168 

5 0.99326 

6 0.99752 

10 0.99995 

100 1.00000 

 

As it was already mentioned before it is possible to change the response of this 

viscoelastic model to either predominant elastic or viscous response just by varying 

the input parameters. It is of in interest to check for the values of input parameters for 

which the Kelvin model will have a completely elastic behavior or viscous behavior. 

It is clear that for Kelvin model this strongly depends on the value of  . Using the 

expression / 5t    it is possible to set the condition for an elastic behavior.  
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a) 

 

b) 

Figure 3.1.1.1. Stress history and strain response of Kelvin model in a creep tests. 

The value /t   were kept equal to 5. The following input parameters were selected 

for the tests: 

a) 01 ; 1 ; 1 ; 0.2t s Pa E Pa Pa s        

b) 0100 ; 100 ; 1000 ; 20000t s Pa E Pa Pa s        
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a) 

 

b) 

Figure 3.1.1.2. Selecting of a critical value of  in order to obtain elastic behavior of 

the Kelvin model. The following values of the input parameters were assigned to the 

model: 0100 ; 1 ; 1 ; 0.2t s Pa E Pa Pa s       . a) Strain response of the 

model for 210s. b)Strain response of the model for first 12s. 
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Instead of assigning the difference of 1t  and 0t  to t , we can give a relatively small 

time step compared to total loading time in which the strain response should reach 

it's maximal value equal to 0 / E . For example if we have a 100s stress history we 

may assume that the model shows elastic behaviour if the strain reaches value of 

0 / E  within first second after loading. Out of this condition we can derive the 

critical value for  . And if critical  then we have elastic behavior of the model. 

The example is shown in Figure 3.1.1.2. For viscous behavior of Kelvin model 

viscosity should be much less than elasticity of the model. It is harder to give a clear 

criterion of initiation of predominantly viscous response of Kelvin model. Even 

though, the following condition may be used: / 0.01t   , where 1 0t t t   .  

An example of the viscous response of the model is shown in figure 3.1.1.3. 

 

 

Figure 3.1.1.3. Viscous response of Kelvin model. The following values of the input 

parameters were used: 01 ; 100 ; 1 ; 10000t s Pa E Pa Pa s       . 

 

Using the condition / 5t    we may also judge how the model will behave for a 

given stress history and value of  . 

 

Harmonic stress was described by the following equation: 
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where 0  is an amplitude of the stress [Pa],   is an angular frequency [rad/s], t  is 

time [s]. It is also of our interest to analyze the response of the model to absolute 

value of harmonic stress described in equation 3.1.1. 

 0 sin t    (3.1.1.2.) 

Once again it is useful to establish some kind of criterion that explains for which 

combination of the input parameters Kelvin model acts like a elastic or like a viscous 

model. The criterion can be derived from the following basis. When viscoelastic 

model is subjected to harmonic or cyclic stress there will be a phase lag between the 

stress and strain response (Figure 3.1.1.4.).  

 

Figure 3.1.1.4. Phase lag between harmonic stress and corresponding strain response. 
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equation: 

 tan   (3.1.1.3.) 
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equal / 2 . However tan( / 2)  is undefined, but this condition will be fulfilled 

when  . For engineering purposes it is useful to know what values of   

will correspond to either case when tan  equal 0 or / 2 . Therefore the model was 

tested for different combination of the input parameters. When ratio /T   is greater 

than or equal to 1000 Kelvin model acts like a Hookean model, whereas if /T   is 

less than or equal to 0.001 Kelvin model acts like a Newtonian model. Here T is a 

period of harmonic loading or double time of one cycle in case of cyclic loading. 

Elastic behavior of Kelvin model is shown in figure 3.1.1.5. It is characterized by 

instantaneous strain response to applied stress. Strain is in phase with stress and 

reaches its maximal value equal to 0 / E  during each cycle. Viscous behavior of 

Kelvin model is shown in figure 3.1.1.6. Strain response is out of phase with applied 

stress. Phase angle is equal to / 2 . 

 

The input parameters were combined into the dimensionless coefficients described 

by equation 3.1.4. and the influence of these coefficients on the strain response of 

Kelvin model under cyclic loading, described by equation 3.1.1.2  was analyzed. 

 0;
f

K f M
E E


    (3.1.1.4) 

where / 2f   is frequency [Hz]. 

The following cases were considered: 

1. The coefficients K and M were kept constant and equal to 1. The modulus of 

elasticity and the stress amplitude were fixed and equal to 1 Pa. Frequency, 

number of cycles and viscosity were being changed during the tests. 

2. The coefficients K and M were kept constant and equal to 1. Frequency was 

kept equal to 0.0667 Hz. Viscosity, modulus of elasticity and stress amplitude 

were being changed during the tests. 

3. The coefficient M was kept constant and equal to 1. Frequency was fixed and 

equal to 0.0667 Hz. Viscosity was being changed during the tests. 

4. The coefficient K was kept constant and equal to 1. Frequency was fixed and 

equal to 0.0667 Hz. Amplitude of stress was fixed and equal to 1. Relation 

between viscosity and Young's modulus were kept constant and equal to 15. 

The values for coefficient M were being changed. 
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a) 0 2 ; 100 ; 1 ; 0.1Pa T s E Pa Pa s       

 

b) 0 1 ; 2 50 ; 10 ; 0.01Pa T s E Pa Pa s        

Figure 3.1.1.5. Elastic response of the Kelvin model under harmonic loading. 
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a) 0 1 ; 100 ; 1 ; 100000Pa T s E Pa Pa s       

 

b) 0 2 ; 100 ; 1 ; 100000Pa T s E Pa Pa s       

Figure 3.1.1.6. Viscous response of the Kelvin model under harmonic loading. 
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The results for each case are presented below. In case 2 there was no difference 

between the strain response curves, due to the fact that ratios /T   and / E  were 

kept constant. Therefore case 2 is not included below.  

From figures 3.1.1.7.-3.1.1.9. it is clear that when the cyclic loading is applied to 

Kelvin model the strain starts to increase during a certain amount of time and then it 

reaches mean value and after that only oscillations around this mean value of the 

strain occur. This mean value of strain is the same for all tests conducted and equal to 

02 / ( / )E  , where 2 /  is a mean value of sin( )t . The time, strain need to 

reach the phase ,where only oscillations around the mean value equal to 

02 / ( / )E   occur ,can be obtained from the following expression: / 5t   , 

where t  is time that is needed. The basis for using this expression has been 

discussed above in this section. For instance from figure 3.1.1.7. it is clear that higher 

the value for viscosity more time required for strain to reach the stationary oscillation 

around the mean value. The amplitude of this stationary oscillation is proportional to 

 .(figure 3.1.1.8.) Higher the value of  smaller the amplitude. From figure 3.1.1.9. 

it is clear that the ratio of the amplitude of stationary strain oscillations to mean strain 

value is constant for case 4. 

 

Figure 3.1.1.7. Strain responses of Kelvin model in case 1. In the legend: T  is 

duration of one cycle [s],  is viscosity [Pa∙s], E  is modulus of elasticity, 0A   is 

an amplitude of cyclic stress [Pa], # is number of cycles.  
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Figure 3.1.1.8. Strain responses of Kelvin model in case 3. In the legend: T  is 

duration of one cycle [s],  is viscosity [Pa∙s], E  is modulus of elasticity, 0A   is 

an amplitude of cyclic stress [Pa], # is number of cycles.  
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Figure 3.1.1.9. Strain responses of Kelvin model in case 4. In the legend: T  is 

duration of one cycle [s],  is viscosity [Pa∙s], E  is modulus of elasticity, 0A   is 

an amplitude of cyclic stress [Pa], # is number of cycles.  

3.1.2. Maxwell model. 

 

The Maxwell model and it's creep and relaxation function are shown in Figure 

2.1.2.3 

 

The case when the model is subjected to a constant stress 
0  during the time interval 

[ 0t , 1t ]. is considered in this part. The creep function of the model is described by 

equation 2.1.2.7. The input parameters that may influence the behavior of the model 

are viscosity  , modulus of elasticity E , applied stress 
0  and time 

1 0t t t   , 

where 
0t  is time when constant stress is applied and 

1t  is time when stress is 

removed. The output is strain  . An example of creep test is shown in figure 3.1.2.1. 

By analyzing the strain response of Maxwell model in creep test the following 

conclusions can be drawn: 

 At time 0t  model exhibits an instantaneous strain equal to 0 / E , which 

completely vanishes once the loading is removed. 

 The ratio  1 0 /t t   could be seen as a slope angle of the strain response 

curve during the time interval [ 0t , 1t ]. The value of this ratio multiplied on 

0 / E determines to what level the strain will grow during the time [ 0t , 1t ] in 

addition to instantaneous strain. 

 The ratio of  1 0 /t t   determines the value of irreversible deformation. 

In order to get elastic response of Maxwell model the ratio of  1 0 /t t   should be 

relatively small. The assumption of  1 0 / 0.01t t    works quite well, since the 

ratio of 0 / E  is less than 1 for ice. In order to get viscous response of Maxwell 

model the ratio of  1 0 /t t   should be relatively big. The assumption of 

 1 0 / 100t t    works quite well in this case. It should be mentioned that the 

model will still exhibit instantaneous strain of value 0 / E  so we just need to select 

the value of input parameters in such a way that this instantaneous strain can be 
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considered negligible. The elastic and viscous strain response of the Maxwell model 

are shown in figure 3.1.2.2. and 3.1.2.3. respectively. 

 

Figure 3.1.2.1. Maxwell model. Creep test. Input parameters:

0 1 ; 100 ; 1 ; 100Pa t s E Pa Pa s        

 

Figure 3.1.2.2. Elastic behavior of Maxwell model in creep test. Input parameters: 
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0 1 ; 100 ; 1 ; 10000Pa t s E Pa Pa s        

 

Figure 3.1.2.3. Viscous behavior of Maxwell model in creep test. Input parameters: 

0 1 ; 100 ; 1 ; 1Pa t s E Pa Pa s        

 

The case when the model is subjected to a cyclic stress is considered in this part. 

Applied harmonic stress is described by equation 3.1.1.1 and cyclic stress by 

equation 3.1.1.2. When Maxwell model is subjected to harmonic or cyclic stress 

there will be a phase lag between the stress and strain response. For Maxwell model 

the tangent of the phase angle   can be expressed by the following equation : 

 
1

tan


  (3.1.2.1.) 

For elastic behavior of the model   should be equal 0 and hence tan  should be 0. 

This means that  . For viscous response of the model   should be equal 

/ 2 . Hence, 0 . When ratio /T   greater or equal to 1000 Maxwell model 

acts like Newtonian model (figure3.1.2.4.), whereas if /T   less or equal to 0.001 

Maxwell model acts like Hookean model(figure 3.1.2.5.). Here T is a period of 

harmonic loading or double time of one cycle in case of cyclic loading.  
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Figure.3.1.2.4. Viscous response of the Maxwell model under harmonic loading. 

Input:
 0 1 ; 10 ; 1 ; 0.01Pa t s E Pa Pa s      

 

 

 

Figure.3.1.2.5. Elastic response of the Maxwell model under harmonic loading. 
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 0 2 ; 10 ; 1 ; 1000Pa T s E Pa Pa s       
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The influence of the input parameters, combined into the dimensionless coefficients, 

described by equation 3.1.1.4, on the strain response curves under cyclic loading 

were analyzed. The similar combinations of the input parameters as for Kelvin model 

were used. This means the same cases 1-4 we considered. The results for each case 

are presented figures 3.1.2.6.-3.1.2.8. In case 2 there was no difference between the 

strain response curves, since ratios of T to   and 0 sigma to E  were kept constant. 

Therefore case 2 is not presented. 

 

From figures 3.1.2.6-3.1.2.8 the following conclusion can be drawn. The maximal 

value of the stair in the tests is equal to   01/ / (2 / )E t      , where t  is 

duration of the test and 2 /  is a mean value of sin( )t . From case 3 it is clear that 

when ratio 0 / E  is constant the value of starin depends on  . Greater the value of 

 , less is strain  . In case 4 the value strain depends on the ratio 0 / E . 

 

 

Figure 3.1.2.6. Strain responses of Maxwell model in case 1. In the legend: T  is 

duration of one cycle [s],  is viscosity [Pa∙s], E  is modulus of elasticity, 0A   is 

an amplitude of cyclic stress [Pa], # is number of cycles.  
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Figure 3.1.2.7. Strain responses of Maxwell model in case 3. In the legend: T  is 

duration of one cycle [s],  is viscosity [Pa∙s], E  is modulus of elasticity, 0A   is 

an amplitude of cyclic stress [Pa], # is number of cycles.  

 

Figure 3.1.2.8. Strain responses of Maxwell model in case 4. In the legend: T  is 

duration of one cycle [s],  is viscosity [Pa∙s], E  is modulus of elasticity, 0A   is 

an amplitude of cyclic stress [Pa], # is number of cycles.  
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3.1.3. Analysis of Burgers model 

 

Burgers model and it's creep and relaxation function are shown in figure 2.1.2.5.  

 

The case when the model is subjected to a constant stress is considered in this part. 

the model is supposed to be subjected to a step constant stress 
0  during the time 

interval [ 0t , 1t ]. The creep function of the model is described by equation 2.1.2.14. 

The input parameters that may influence the behavior of the model are viscosity of 

Maxwell unit 1 , modulus of elasticity of Maxwell unit 1E , viscosity of Kelvin unit 

2 , modulus of elasticity of Kelvin unit 2E , applied stress 
0  and time 

1 0t t t   , 

where 
0t  is time when constant stress is applied and 

1t  is time when stress is 

removed. The output is strain . An example of creep test in shown in figure 3.1.3.1.  

 

Figure 3.1.3.1. Burgers model. Creep test. Input parameters:

0 1 1 2 21 ; 100 ; 1 ; 100 ; 1 ; 10 .Pa t s E Pa Pa s E Pa Pa s          
 

 

By analyzing the strain response of Burgers model in creep test the following 

conclusions can be drawn: 

 At time 0t  model exhibits an instantaneous strain equal to 0 1/ E , that 

vanishes once the loading is removed. 

10 60 110 160 210
0

0.2

0.4

0.6

0.8

1

time,s

st
r
e
ss

,P
a

10 60 110 160 210
0

1

2

3

time,s

st
r
a

in



Results 

49 
 

 The ratio of  1 0 1/t t   determines the value of irreversible deformation. 

 The value of 1 0

1 2 1

1 1 t t

E E 

 
  

 
 multiplied on 0  determines the limit that 

strain is trying to reach during the creep test. 

 The curvature of the strain response is determined from the condition for 

Kelvin unit. Condition  2/ 5    determines the time   when strain 

contribution of Kelvin unit reaches it's maximal value equal to 0 2/ E  and 

stay constant until the load is removed. After the time   the strain of the 

Burgers model is equal to 1 0
0

1 2 1

1 1 t t

E E




 
   

 
 

 In order to stay in the framework of Burgers model the contribution of both 

Kelvin and Maxwell unit should be significant. This gives the following 

limits for the input parameters: 

 

2

1

2

1

0.01 100;

0.01 100.

E

E

t E



 

 
 

 (3.1.3.1.) 

The conditions for elastic response of Kelvin and Maxwell model were discussed 

before. Since the creep function of Burgers model is a sum of creep function of 

Maxwell and Kelvin model, both conditions one for Kelvin and one for Maxwell unit 

should be fulfilled in order to get an elastic response of Burgers model, unless one of 

the units is irrelevant. For Maxwell unit the condition is  1 0 1/ 0.01t t   . For 

Kelvin unit the condition is 2/ 5   ,where   is selected relatively small time 

interval, after which the strain response of Kelvin unit does not change in time and 

can be seen as an elastic response. Elastic response of Burgers model in creep test is 

shown in figure 3.1.3.2. In creep test shown in the figure both Maxwell and Kelvin 

units are giving significant contributions, since 1 2E E . The input parameters were 

selected in such a way that both Maxwell and Kelvin unit act completely elastic and 

therefore Burgers model is transformed into two Hookeans elements combined in 

series. Hence the strain response is determined by  1 2 01/ 1/E E   . 
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Now let us consider the case when condition for elastic behavior is fulfilled only for 

Maxwell unit and the contribution of the Kelvin unit is significant. In this case the 

model will respond as series of Hookean unit and Kelvin unit.(Figure 3.1.3.3.) And 

vice versa if condition for elastic behavior is fulfilled for Kelvin unit only and the 

contribution of Maxwell unit is significant the model will respond as series of 

Hookean unit and Maxwell unit.(Figure 3.1.3.4.) 

 

Figure 3.1.3.2. Elastic response of Burgers model. Input parameters:
 

0 1 1 2 21 ; 100 ; 1 ; 10000 ; 1 ; 0.002 .Pa t s E Pa Pa s E Pa Pa s          
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Figure 3.1.3.3.Burgers model. Creep test. Input parameters:
 

0 1 1 2 21 ; 100 ; 1 ; 10000 ; 1 ; 10 .Pa t s E Pa Pa s E Pa Pa s          
 

 

Figure 3.1.3.4.Burgers model. Creep test. Input parameters:
 

0 1 1 2 21 ; 100 ; 1 ; 100 ; 1 ; 0.002 .Pa t s E Pa Pa s E Pa Pa s          
 

 

The conditions for viscous response of Kelvin and Maxwell model were discussed 

before. In order to get a viscous response of Burgers model conditions for Kelvin and 

Maxwell unit should be fulfilled. The condition for Kelvin model is 

1 0 2( ) / 0.01t t   . The condition for Maxwell model is  1 0 1/ 100t t   .Viscous 

response of Burgers model is shown in figure 3.1.3.5. 

 

Now let us consider the case when condition for viscous behavior is fulfilled only for 

Maxwell unit the model will respond as Newtonian model (Figure 3.1.3.6.) unless 

the contribution of Kelvin unit is extremely significant.(Figure 3.1.3.7.) This 

reasonable since the strain response of Maxwell unit is not limited, whereas the strain 

response of Kelvin unit is limited by the value of 0 2/ E . If condition for viscous 

behavior is fulfilled for Kelvin unit only the model will respond as Maxwell 

model.(Figure 3.1.3.8.). 
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giving the conditions for elastic or viscous response of the Burgers model. Moreover, 

Maxwell unit has a bigger contribution to the model, since the strain response of this 

unit is not limited and constantly grow during the test depending with the rate 

dependent on the input parameters for the unit. However, it of course depend on the 

input parameters. 

 

Figure 3.1.3.5. Viscous response of Burgers model. Input parameters:
 

0 1 1 2 21 ; 100 ; 1 ; 1 ; 1 ; 10000 .Pa t s E Pa Pa s E Pa Pa s          
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Figure 3.1.3.6. Burgers model. Creep test. Input parameters:
 

0 1 1 2 21 ; 100 ; 1 ; 1 ; 1 ; 10 .Pa t s E Pa Pa s E Pa Pa s          
 

 

Figure 3.1.3.7. Burgers model. Creep test. Input parameters:
 

0 1 1 2 21 ; 100 ; 1 ; 1 ; 0.01 ; 0.1 .Pa t s E Pa Pa s E Pa Pa s          
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Figure 3.1.3.8. Burgers model. Creep test. Input parameters:
 

0 1 1 2 21 ; 100 ; 1 ; 100 ; 1 ; 10000 .Pa t s E Pa Pa s E Pa Pa s          
 

 

Burgers model consists of the Kelvin and Maxwell unit combined in series. 

Therefore, in order to get predominantly viscous or elastic response of Burgers 

model under cyclic loading conditions for predominantly viscous or elastic response 

for Kelvin and Maxwell unit should be fulfilled. These conditions were discussed 

before. Also the contribution of one unit compare to another should be taken into 

account. In order to get a predominantly viscous response of Burgers model the input 

parameters should fulfill the following conditions: 1/ 1000T    and 2/ 0.001T   , 

where T is a period of harmonic loading or double duration of one cycle in case of 

cyclic loading, 1 1 1/ E   is the parameter of Maxwell unit and 2 2 2/ E   is a 

parameter of Kelvin unit. If 1/ 0.001T    and 2/ 1000T   , the response of Burgers 

model is predominantly elastic. 

 

The influence of the input parameters, combined into the dimensionless coefficients, 

described by equation 3.1.1.4, on the strain response curves under cyclic loading 

were analyzed. The similar combinations of the input parameters as for Kelvin and 

Maxwell model were considered. The difference  in the analysis of  Burgers model is 

that there is two pairs of the dimensionless coefficients  described by equation 

3.1.1.4., one for Kelvin and one for Maxwell unit. 

It was decided to change the input parameters for Kelvin unit first and kept the ratio 

1  for Maxwell unit constant. Secondly, the input parameters for Maxwell unit were 

being changed while the ratio 2  for Kelvin unit was kept constant.  The Young's 

modulus of Kelvin unit was equal to Young's modulus of Maxwell unit for all the 

cases examined. In total 8 cases were considered. Input parameter were changed 5 

times within each case. It was decided to stick to the previous abbreviator. Therefore 

the cases corresponding to change of the input parameters in Maxwell unit carry 

index "a". The results are presented in figures 3.1.3.9. to 3.1.3.12. Case 1, case 1a, 

case 2 and case 2a are excluded. In case 2 and case 2a the strain response is equal for 

all five combinations of the input parameters considered. In the legend of figures 

3.1.3.9. to 3.1.3.12. T  is duration of one cycle [s], 1  is viscosity of Maxwell unit 

[Pa∙s], 1E  is modulus of elasticity of Maxwell unit, 2  is viscosity of Kelvin unit 
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[Pa∙s], 2E  is modulus of elasticity of Kelvin unit, 0A   is an amplitude of cyclic 

stress [Pa], # is number of cycles. 

 

. 

 

Figure 3.1.3.9. Strain responses of Burgers model in case 3 for first 20 cycles. 
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Figure 3.1.3.10. Strain responses of Burgers model in case 4. 

 

Figure 3.1.3.11. Strain responses of Burgers model in case 3a during first 50 seconds. 
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Figure 3.1.3.12. Strain responses of Burgers model in case 4a during first 20 cycles.  

From figures 3.1.3.9.-3.1.3.12. it follows that Maxwell unit is strongly influence on 

the shape of the strain response curves of Burgers model. This is due to the fact that 

the damper in Maxwell unit can experience unlimited deformations and it's response 

is simply governed by ration 1/T  , where T is duration of a cycle [s]. With a 

decrease in ratio 2 1/   the response of the Burgers model becomes more similar to 

the response of Kelvin unit and a spring combined in series (figure 3.1.3.10 and 

figure 3.1.3.11). The delayed-elastic deformations are fully-developed after the time 

equal to 25 . This is a property of Kelvin model, that was already explained earlier 

 

3.2. Sensitivity analysis of the secant system's modulus. 

 

Numerical results obtained during the sensitivity analysis are used in this part in 

order to analyze the change in secant system's modulus of elasticity during the cyclic 

loading creep tests. 

 

3.2.1. Kelvin model 

The stress-strain curves for case 2 to 4 are shown in the figures 3.2.1.1.a-3.2.1.3.a. 

The secant system's modulus of elasticity was estimated for each cycle for all of the 
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cases considered in the previous section. The method of estimation of this modulus is 

explained in section 2.5. The results are presented in figures 3.2.1.1.b-3.2.1.3.b.. In 

the legend of all figures below T  is duration of one cycle [s],  is viscosity of a 

damper [Pa∙s], E  is modulus of elasticity of spring, 0A   is an amplitude of cyclic 

stress [Pa], # is number of cycles. 

 

 

Figure 3.2.1.1.a. Kelvin model response under cyclic loading. Stress-strain curve in 

case 2. 
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Figure 3.2.1.1.b. Secant system's modulus of elasticity estimated for each cycle in 

case 2 when material, represented by Kelvin model, exhibit cyclic loading.  

 

Figure 3.2.1.2.a. Kelvin model response under cyclic loading. Stress-strain curve in 

case 3. 
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Figure 3.2.1.2.b. Secant system's modulus of elasticity estimated for each cycle in 

case 3 when material, represented by Kelvin model, exhibit cyclic loading.  

 

Figure 3.2.1.3.a. Kelvin model response under cyclic loading. Stress-strain curve in 

case 4. 
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Figure 3.2.1.3.b. Secant system's modulus of elasticity estimated for each cycle in 

case 3 when material, represented by Kelvin model, exhibit cyclic loading.  

3.2.2. Maxwell model 

 

The stress-strain curves for cases 2 to 4 are shown in the figures 3.2.2.1.a-3.2.2.3.a. 

The secant system's modulus of elasticity was estimated for each cycle for all of the 

cases considered in the previous section. The method of estimation of this modulus is 

explained in section 2.5. The results are presented in figures 3.2.2.1.b-3.2.2.3.b.. In 

the legend of all figures below T  is duration of one cycle [s],  is viscosity of a 

damper [Pa∙s], E  is modulus of elasticity of spring, 0A   is an amplitude of cyclic 

stress [Pa], # is number of cycles. 
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Figure 3.2.2.1.a. Maxwell model response under cyclic loading. Stress-strain curve in 

case 2 for first 20 cycles. 

 

Figure 3.2.2.1.b. Secant system's modulus of elasticity estimated for each cycle in 

case 2 when material, represented by Maxwell model, exhibit cyclic loading.  
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Figure 3.2.2.2.a. Maxwell model response under cyclic loading. Stress-strain curve in 

case 3 for first 5 cycles for navy line and first 10 cycles for red line. 

 

Figure 3.2.2.2.b. Secant system's modulus of elasticity estimated for each cycle in 

case 3 when material, represented by Maxwell model, exhibit cyclic loading.  
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Figure 3.2.2.3.a. Maxwell model response under cyclic loading. Stress-strain curve in 

case 4 for first 5 cycles for black line and first 10 cycles for red line. 

 

Figure 3.2.2.3.b. Secant system's modulus of elasticity estimated for each cycle in 

case 4 when material, represented by Maxwell model, exhibit cyclic loading.  
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3.2.3. Burgers model 

 

The stress-strain curves for cases 2 to 4 are shown in figures 3.2.3.1.a-3.2.3.3.aand 

cases 3a and 4a  are shown in the figures 3.2.3.4.a and 3.2.1.4.a. The secant system's 

modulus of elasticity was estimated for each cycle for all of the cases considered. 

The method of estimation of this modulus is explained in section 2.5. The results are 

presented in figures 3.2.3.1.b-3.2.3.5.b.. In the legend of figures 3.1.3.9. to 3.1.3.12. 

T  is duration of one cycle [s], 1  is viscosity of Maxwell unit [Pa∙s], 1E  is modulus 

of elasticity of Maxwell unit, 2  is viscosity of Kelvin unit [Pa∙s], 2E  is modulus of 

elasticity of Kelvin unit, 0A   is an amplitude of cyclic stress [Pa], # is number of 

cycles. 

 

 

Figure 3.2.3.1.a. Burgers model response under cyclic loading. Stress-strain curve for 

first 5 cycles in case 2. 
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Figure 3.2.3.1.b. Secant system's modulus of elasticity estimated for each cycle in 

case 2 when material, represented by Burgers model, exhibit cyclic loading.  

 

Figure 3.2.3.2.a. Burgers model response under cyclic loading. Stress-strain curve in 

case 3 for first 4 cycles for a navy line and first 10 cycles for a pink line. 
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Figure 3.2.3.2.b. Secant system's modulus of elasticity estimated for each cycle in 

case 3 when material, represented by Burgers model, exhibit cyclic loading.  

 

Figure 3.2.3.3.a. Burgers model response under cyclic loading. Stress-strain curve for 

first 4 cycles in case 4. 
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Figure 3.2.3.3.b. Secant system's modulus of elasticity estimated for each cycle in 

case 4 when material, represented by Burgers model, exhibit cyclic loading.  

 

Figure 3.2.3.4.a. Burgers model response under cyclic loading. Stress-strain curve in 

case 3a for first 5 cycles for navy line and first 10 cycles for red line. 
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Figure 3.2.3.4.b. Secant system's modulus of elasticity estimated for each cycle in 

case 3a when material, represented by Burgers model, exhibit cyclic loading.  

 

Figure 3.2.3.5.a. Burgers model response under cyclic loading. Stress-strain curve in 

for first 10 cycles in case 4a. 
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Figure 3.2.3.5.b. Secant system's modulus of elasticity estimated for each cycle in 

case 4a when material, represented by Burgers model, exhibit cyclic loading.  

 

3.3. Calibration of the model. 

 

Sinha (1978) performed uniaxial compressive creep test of ice made in a cold room 

at -10ºC from deaerated water. The specimens had a rectangular form with the 

following dimensions: 5 x 10 x 25 cm
3
. The long direction of the grains was 

perpendicular to the 10 x 25 cm
2
 face. In this paper he also presented a non-linear 

viscoelastic model to describe the strain response observed during the experiment  

 

The Sinha's non-linear model was implemented into Matlab using The Boltzman 

principle of superposition and equation (2.5.2.) in order to get the creep curves 

instead of picking the values manually from the graphs presented in  his paper. The 

Matlab code can be seen in the appendix C. Two creep tests were selected when ice 

temperature was -19.8ºC and -10ºC. The strain response curve of linear viscoelastic 

model was fitted onto Sinha's strain response curves from creep tests by varying the 

input parameters for creep function of the Burgers model (figure 3.3.1 and  figure 

3.3.2.). By this, input parameters for linear viscoelastic model were obtained. This 

process also served to compare linear viscoelastic model with a non-liear one. The 

following input parameters for linear viscoelastic model were obtained. 
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For ice at -10ºC : 1 2 1 29.3 ; 4570 ; 1116E E GPa GPa s GPa s        

For ice at -19.8ºC: 1 2 1 29.3 ; 100000 ; 2325E E GPa GPa s GPa s        

 

Figure 3.3.1. Creep and recovery of ice at -10ºC. Constant stress of 1MPa was 

applied during first 800 seconds. 
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Figure 3.3.2. Creep and recovery of ice at -19.8ºC. Constant stress of 0.49 MPa was 

applied during first 800 seconds. 

3.4. Numerical simulation of cyclic uniaxial compression test. 

 

In order to get similar strain response of ice as in the uniaxial compression cyclic test 

performed at UNIS different variation of the input parameters for linear viscoelastic 

Burgers model were considered. The best fitted curve were obtained when the input 

parameters were 15 times smaller than the ones got during the calibration of linear 

viscoelastic model by means of Sinha's creep test with -10ºC fresh ice. The reduction 

in the values of the input parameters can be explained by the fact that sea ice is 

weaker than the fresh ice. It should be noted that the ratios 1  and 2  were kept the 

same to the ones obtained for fresh ice. Strictly speaking this ratios might not be the 

same for sea ice. However, no information regarding this topic was found or 

available. The real stress history of the cyclic uniaxial compression  test were used as 

the input for the model (Figure 3.4.1). 
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Figure 3.4.1. Stress-history of uniaxial cyclic compression test performed at UNIS. 
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Figure 3.4.2. Comparison of strain response in uniaxial cyclic test with strain 

response simulated by linear viscoelastic model. 
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4.ANALYSIS AND DISCUSSION. 

 

4.1. Sensitivity analysis.  

 

The sensitivity analysis showed that the case when mechanical model is subjected to 

a cyclic stress can be considered as a creep test, in which the stress is oscillating 

around it's constant mean value. This explains that the final stress of mechanic model 

can be estimated as the value of creep function of the model for time equal the 

duration of test multiplied on average value of applied cyclic stress. 

 

The ratio /t  , where t  is duration of the application of the stress and / E   

is a parameter of the model, determines the shape of ,so to speak, the "viscous" part 

of the creep function and therefore the shape of the "viscous " strain response curve 

for all the mechanical models considered. Here by term "viscous" I meant both 

viscous and delayed-elastic deformations, or in other words all deformations except 

elastic ones. Strictly speaking, one may predict the behavior of a material in the 

framework of selected mechanical model just by knowing the value of /t  , 

duration of the application of the stress, t , can be seen as n T , where T  is 

duration of one cycle and n  is a number of cycles. In case of constant loading the 

number of cycles is equal 1 and duration of the cycle is just equal to duration of the 

application of the stress. In case of Burgers model there will be two different  , one 

for Maxwell unit and one for Kelvin unit, since the Burgers model is a combination 

of two of those.  

 

More extensive information on the input parameters affecting the strain response of 

mechanical models in a creep test is presented in the corresponding part in Results 

section. This was done in order to make it easier for a reader to follow the 

conclusions drawn from the sensitivity analysis. One of the important observation 

during sensitivity analysis was that for Kelvin when if / 5t    the strain reaches it 

maximal value equal to / E  at time 1t . Variable 1t  is time when stress is removed, 

  is mean stress, E  is Young's modulus of a spring element in Kelvin model. This 

feature of Kelvin model will be frequently used in the following discussions. 

 

To compare different creep tests results under same loading conditions the same 

number of points should be used in approximation of the input stress curve. This is 

especially important when the model is subjected to time-varying stress. For 
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example, mechanical model is subjected to a cyclic stress  0 sin t    and 

several tests should be performed. There can be two different cases. The first one, 

when the number of cycles is the same for the tests and the second one, when the 

duration of the test is the same. In order to get the accurate and comparable results in 

the first case the number of points ,approximating the sinus simply should kept 

constant. Whereas in the second case the ratio of / iT t  should be kept constant and 

equal to number of points approximating the cycle. In this ratio T is duration of the 

cycle and it  is time step. In order to get the accurate numerical creep tests results 

the input stress curve should be approximated with sufficient number of points . For 

both cases the number of points approximating the sinus should be selected 

beforehand and greater or equal 10. 

 

4.2. Sensitivity analysis of the secant system's modulus. 

 

4.2.1. Kelvin model 

 

When Kelvin model under cyclic loading is considered, the secant system's modulus 

of elasticity SE  is increasing during the test until a certain value after which it is a 

constant. The time t  required for SE  to reach this constant value could be derived 

from relationship / 5t   . The time t  could be seen as /n f , where n  is the 

number of cycles and f  is frequency of a cyclic loading [Hz]. 1/f T , where T  is 

time of one cycle [s]. 

 5
n

f 
  (4.2.1.1.) 

Using expression 4.2.1.1. it is possible to say after which number of cycles n  the 

system modulus SE  can be considered as constant.  

 

In case 2 (Figure 3.2.1.1.a and Figure 3.2.1.1.b) the ratio  /n f   and ratio 0 / E  

were kept constant. If both of this ratios are keeping constant the corresponding 

strain responses of Kelvin model are equal. However, the system modulus will 

change with change of 0 , since the value of secant system's modulus of elasticity 

SE  is proportional to amplitude of the cyclic loading. With increase of 0  the 
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modulus SE  increases (Figure 3.2.1.1.b.). From expression 4.2.1.1. for case 2, it 

follows that after cycle number 10 the secant system's modulus of elasticity can be 

considered to be constant. The values for system modulus SE  in case 2 are shown in 

the table 4.2.1.1. From the table it follows that the ratio    ,40 ,11 ,40 ,1/S S S SE E E E   

is less than 0.1, where ,40SE is the value of system modulus at cycle 40, ,11SE  is the 

value of system modulus at cycle 11 and ,1SE  is the value of system modulus at cycle 

1. This means that after cycle 10 the value of system modulus increases less than in 

10%. Therefore equation 4.2.1.1. can be used for prediction the number of cycles n  , 

after which the system modulus SE  can be considered as constant. 

 

Table 4.2.1.1. The values for secant system's modulus of elasticity SE  for case 2. 

 

Input parameters 

0

3.75 ,

7.5 ,

0.25 ,

0.25 .

Pa s

T s

E Pa

Pa





 







 

0

7.5 ,

7.5 ,

0.5 ,

0.5 .

Pa s

T s

E Pa

Pa





 







 

0

15 ,

7.5 ,

1 ,

1 .

Pa s

T s

E Pa

Pa





 







 

0

30 ,

7.5 ,

2 ,

2 .

Pa s

T s

E Pa

Pa





 







 

0

60 ,

7.5 ,

4 ,

4 .

Pa s

T s

E Pa

Pa





 







 

n  SE  

1 1.638692 3.277384 6.554767 13.10953 26.21907 

11 17.1252 34.25041 68.50081 137.0016 274.0032 

40 18.29829 36.59658 73.19316 146.3863 292.7726 

 

In case 4 (Figure 3.2.1.3.a and Figure 3.2.1.3.b) the ratio  /n f   and was kept 

constant, while the ratio 0 / E  were being changed. The ratio of 0 / E  affects on 

the value of the strain response and therefore has an influence on the value of SE . 

With increase of E  secant system's modulus of elasticity SE  increases (Figure 

3.2.1.3.b.). 

 

In case 3 (figure 3.2.1.2.a and figure 3.2.1.2.b) viscosity   was not kept constant 

and therefore the ratio  /n f   was not constant as well. From expression 6.1. it 

follows that different number of cycles in each test were required for system modulus 

SE to reach the constant value. Moreover the constant value of system modulus SE
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was different in each test, due to the fact that viscosity was different for each test. 

From figure 3.2.1.2.b it follows that the value of system modulus SE  increase with 

an increase of viscosity. The value of   changes the shape of the hysteresis loops 

(Figure 4.2.1.4.). With an increase of viscosity hysteresis loops becomes narrower 

and less tilted. This results in an increase of the system modulus. 

 

From figures 3.2.1.1b-3.2.1.3.b it follows that the final values of secant system's 

modulus are several orders higher that the Young's modulus of the spring. This is due 

to the fact that delayed elastic deformations are becoming smaller and smaller during 

the experiment, giving a high value for the secant modulus according to equation 

2.5.1. This effect becomes even worse  with decrease of ratio /T  , which affect the 

slope of the stress-strain curve. In this ratio T  is a duration of a cycle. To be honest 

the estimation of a secant modulus of elasticity of non-elastic system might seems to 

be a strange idea and of course the values obtained for the secant system's modulus 

has nothing to do with the real case. However, this analysis will help when it comes 

for analysis of Burgers model.  

 

Figure 4.2.1.4. Stress-strain curves for cycles 2 and 39 in case 2. 
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4.2.2. Maxwell model 

 

The numerical tests indicated that there is no change in secant system's modulus of 

elasticity of material  represent by Maxwell mechanical model in a cyclic loading test 

(Figure 3.2.2.1.b.-3.2.2.3.b.). This is due to the fact that there is no change in a shape 

of a stress-strain curves during the test. For instance, when the period of cyclic 

loading changes from cycle to cycle we observe the different amount of viscous 

deformations, different shape of stress-strain curve within each cycle and therefore 

different values for secant system's modulus. The secant system's modulus can be 

seen as 
0

01/ ( )  , where 0  is the value of creep function at initial time of stress 

application and 
0

  is the value of creep function at the time when stress reach it's 

maximal value. Therefore for Maxwell model the following conclusion can be 

drawn. Higher the value of the ratio / (2 )T   lower is the value of secant system's 

modulus. The inclination of the stress-strain curve is governed by the same principle. 

 

The is no change in tangent system's modulus of elasticity when the material is 

represented by Maxwell model, because the inclination and shape of stress-strain 

curve stays the same during the test. 

 

4.2.3. Burgers model 

 

From all of the figures presented in section 3.2.3. the following conclusions can be 

drawn. Once the delayed-elastic deformations are fully developed the shape of the 

strain-stress curve is governed by the ratio 1/T  , where T  is a period of cyclic 

loading and 1  is a characteristic of the Maxwell element. Before that time the shape 

of this curve is changing and therefore the value of secant system's modulus. When 

2  is large, more time is required for development of delayed-elastic deformations. 

However, as the time passes the influence of the damper in Maxwell unit becomes 

stronger and stronger, more viscous deformations develop. As a result the shape of 

the strain-stress curve is governed by Maxwell unit and almost no change in secant 

system's modulus occurs. Its value tends to the value of tangent system's modulus, 

that equal to the value of Young's modulus of a spring of Maxwell model. Lower the 

value of ratio 2 1/   more change in the secant system's modulus occurs during the 

creep test. 
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4.3. Calibration of the model. 

 

Sinha (1978) performed his creep tests for fresh columnar-grained ice. This type of 

ice and stress condition is common in many field situations, like fresh lakes and 

rivers. We are of course more interested in sea ice. The reason for  calibration with 

these creep tests was that  Sinha's non-linear viscoelastic model describes them well.  

The linear viscoelastic Burgers model was not only calibrated with creep tests but 

also compared with a non-linear model.  

 

From figures it clear that the main difference between the strain responses of linear 

and nom-linear viscoelastic model are in the region corresponding to delayed elastic 

deformations. And in turn this will affect on the rate of change of the secant system's 

modulus in case of application of cyclic loading to the model. However, this rate of 

change will be also controlled by the period of this cyclic loading. Even though the 

final value of the secant system's modulus should be the same for both linear and 

non-linear model in case when the total duration of the stress application in the test is 

not less than 200s for ice at -10ºC and 300s for ice at -20ºC. The strain response in a 

creep test of linear and non-linear viscoelastic model for ice at -10ºC has a little 

discrepancy. 

 

By analyzing the obtained input parameters for linear viscoelastic model it is clear 

that the value of viscosity 1  and 2  are higher for colder ice. This means that 

colder ice is more solid and its behavior is more elastic than of the warmer ice. This 

can also be seen from corresponding strain diagrams. Warmer ice experience more of 

viscous/creep deformations than the colder one. 

 

It should be mentioned that obtained input parameters are valid only for the 

corresponding ice temperatures, extent of applied stress and the total duration of 

stress application less than 800s. However, the duration of stress application can be 

increased for the case with ice temperature equal to -10ºC, due to the fact that the 

strain response curves of linear and non-linear are in a good correlation after time 

equal to 200s. 

 

4.4.Numerical simulation of cyclic uniaxial compression test. 

 

From figure 3.4.2 it follows that the peaks of the numerically simulated strain curve 

are in correspondence with the peaks of the strain curve obtained in test up to a 
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certain point. Further the fracture occurs in the ice test sample. The linear 

viscoelastic Burgers model is not taking fracture into account. The main difference 

between the numerically simulated strain diagram and the one from the test are in the 

region where the irreversible deformations take place. In figure 3.4.2. this areas can 

be easily detected.  

 

The main feature of viscoelastic model is that deformations are time-dependent. In 

other words, viscous and delayed-elastic deformations require some time to develop. 

The period of a loading cycle is relatively small in the experiment. Each loading 

cycle is followed by relatively long pause of 15 seconds during which the stress is 0. 

Therefore, there is not enough time for sufficient irreversible deformations to 

develop. Whereas delayed elastic deformations have enough time to recover. The 

irreversible deformations of linear viscoelastic Burgers model are constant only after 

sufficient time has passed (figure 2.1.2.5.). Whereas in cyclic uniaxial compression 

test these deformations are constant in time immediately after the stress is removed. 

Therefore the irreversible deformations that occur in the cyclic uniaxial compression 

test cannot be described by means of linear viscoelastic model. These deformations 

can be due to surface flattening or due to plastic behavior of ice in the experiment. 

 

If the surface flattening is the case, the irreversible deformations can be seen as 

accumulated strain. In other words, the edge of the ice sample may not be flat and 

perfectly parallel during the test. This result in uneven contact area and therefore in 

uneven stress distribution over the contact area. This means, that some time is needed 

to develop a perfectly flat contact area at the beginning of each cycle. The 

irreversible deformations can be then explained by reduction in the length of the ice 

sample due to surface flattening effect. Our main goal is to see whether this surface 

flattening effect may affect the change in Young's modulus of ice. From figure 2.4.4 

it follows that the effect of surface flattening was excluded in the estimations of the 

Young's modulus of tested ice sample. The initial curvature of stress-strain diagram 

was not taken into account.  

 

The irreversible deformations of ice in cyclic uniaxial compression test can be also 

described by the theory of plasticity. According to this theory, material experiences 

plastic deformations once applied stress exceeds the yield stress. In this theory the 

duration of application of the stress in not important. From figure 3.4.2. it seems that 

ice is hardening  from time equal to 400s. When time equal to 700s ice cannot resist 
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the stresses anymore. After that time either  thickening of the  ice sample takes place 

or fracture in the ice sample occurs.  

 

Figure 4.4.1. (Irgens, 2008) illustrates elastic-plastic material response, where 
p is 

plastic deformation, yf  is yield stress.  

 

 

Figure 4.4.1.Elastic-plastic material response. a) General response b) Linearly 

elastic-perfectly plastic material c) Linearly elastic-plastic hardening material 

(Irgens, 2008). 

 

After analyzing the stress-strain curves (figure 2.4.4.) and strain-time curves (figure 

3.4.2.) and keeping in mind the cyclic stress history (figure 3.4.1.) , it seems that ice 

behaves as a linearly elastic-perfectly plastic material in the cyclic uniaxial 

compression test performed at UNIS. This means that the ice experience elastic 

deformation until the stress exceeds the yield stress. Then plastic deformation takes 

place. When it comes to rheological model, the ideal plastic unit can be used in order 

to capture the irreversible deformations of the ice in the test. The unit and its 

response is shown in figure 4.4.2.  

 

 

Figure 4.4.2. Ideal plastic unit. 
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In order to determine the yield stress the Tresca criteria can be used. 

 

The numerical simulation of the cyclic uniaxial compression test showed that the 

linear viscoelastic model can't capture the effect of increasing Young's modulus to 

the same extent as in the test.  

 

4.5. Summary 

 

The goal of this work was to simulate the behaviour of ice under cyclic loading. The 

linear viscoelastic Kelvin, Maxwell and Burgers models were implemented in Matlab 

by means of The Boltzman superposition principle. This method was verified using 

cases which could be represented by analytical solutions. During the extensive 

sensitivity analysis carried out, it was determined that the ratio  /n f   influences 

the shape of the strain response curve in a creep test for all of the models considered 

in this study. With the knowledge of parameter  /n f  , preliminary conclusion on 

the result of the test can be drawn. 

The change of the second modulus is defined by the Kelvin unit which determines 

the delayed elastic deformations. The time required for these deformations to fully 

developed is given by 25 . The changes in the value of the second modulus occurs 

only before this value is attained. However in linear viscoelastic Burgers model, this 

change is relatively small . This is because the Maxwell unit in the Burger model has 

a major influence on the shape of the stress-strain curves. 

Available literature was used to obtain the input parameters for Burgers model for 

ice. They were obtained by calibration of the model data with the experimental data 

presented therein by producing a best fit curve. Since this study utilized a non-linear 

model to replicate the experimental data, it was also used to compare the results of a 

linaer model with a non-linear model. The region conforming to the delayed elastic 

deformation was not represented accurately by the linear model. 

Uniaxial cyclic compression test performed at UNIS was modeled using the linear 

viscoelastic Burgers model using the scaled down input parameters obtained through 

calibration with fresh ice creep test to enable their application to this case. The 

viscoelastic model was unable to completely agree with the findings from the test 

carried out at UNIS. 
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5.CONCLUSIONS  

 

5.1. Conclusions 

 

From the extensive sensitivity analysis carried out, it was concluded that the ratio  

n/fl  is the most important parameter that influences the shape of the stress strain 

curve in a creep test for all of the models used in this study. This parameter can be 

used to draw preliminary conclusions on the result of the test. 

The change in the second modulus is defined by the Kelvin unit which determines 

the delayed elastic deformations. The time required for these deformations to fully 

developed is given by 25 .  

It is found that linear viscoelastic Burgers model explains the change in the secant 

system's modulus though the change is not to the as much as seen in the test. Thus, it 

can be concluded that this model can not yet fully explain the phenomena observed 

in the experiment. 

 

 

5.2. Recommendations for future work 

 

In order to better represent the behaviour of ice, a model which incorporates more 

non-linear behaviour can be developed. This could be achieved by including large 

number of Maxwell units in parallel. A combination of Maxwell, Kelvin and Burger 

units in parallel can also be examined for this purpose.   

The uniaxial cyclic compression test of sea ice conducted at UNIS was numerically 

simulated in this study by linear viscoelastic Burger's model. It would be interesting 

to study the  performance of the model by including plastic deformations. 

Also, to further improve the numerical simulation, it is recommended to include 

dilatancy and fracture characteristics, residual deformation and the residual strength 

of the specimen could be included. 

More exhaustive uniaxial cyclic compression testing of sea ice including larger range 

of periods and more variety of loading and their combinations could be done to 

ascertain the suitability of the viscoelastic theory. It is also recommended to include 

creep and relaxation tests on samples similar to the ones used for the cyclic test to 

obtain better input parameters for the numerical model. 
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APPENDIX 

 

A. Matlab code for linear viscoelastic models 

 

A-1. Linear viscoelastic Kelvin model. Creep test. 

 

 

% Matlab script for linear viscoelastic Kelvin model. Creep test 

with any type of loading(constant/cyclic) 

clear all; 

format long; 

Input=load('file name.txt'); %File with stress history, if available 

time=enter either from the input file or manually via some script; 

 

%Stress: 

sigma= enter either from the input file or manually via some script; 

 

eta=1;%Youngs modulus [Pa] 

eta_prime=50;% viscosity [Pa*s] 

lambda=eta_prime/eta; %Relaxation time [s] 

  

% estimation of stress difference within a time step 

for i=1:length(sigma)-1 

    d_sigma(i,1)=(sigma(i+1)-sigma(i)); 

end 

%estimation of strain( eq. 2.2.7.) 

e(1,1)=0; 

 for i=2:length(sigma)-1 

    e(i,1)=0; 

    for k=1:i-1 

        alpha(i,1)=1/eta*(1-exp(-((time(i,1)-time(k,1))/lambda))); 

%creep function of Kelvin model(eq. 2.1.2.7). 

        e(i,1)=e(i,1)+d_sigma(k,1)*alpha(i,1); %strain 

    end 

end 

 

A-2. Linear viscoelastic Maxwell model. Creep test. 

 

 

% Matlab script for linear viscoelastic Maxwell model. Creep test 

with any type of loading(constant/cyclic) 

clear all; 

format long; 
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Input=load('file name.txt'); %File with stress history, if available 

time=enter either from the input file or manually via some script; 

 

%Stress: 

sigma= enter either from the input file or manually via some script; 

 

eta_prime= enter parameter value;% Viscosity [Pa*s] 

eta= enter parameter value;%Young's modulus [Pa] 

lambda=eta_prime/eta; %Relaxation time [s] 

  

% estimation of stress difference within a time step 

for i=1:length(sigma)-1 

    d_sigma(i,1)=(sigma(i+1)-sigma(i)); 

end 

 

%estimation of strain( eq. 2.2.7.) 

e(1,1)=0; 

  

for i=2:length(sigma)-1 

    e(i,1)=0; 

    for k=1:i-1 

        alpha(i,1)=1/eta*(1+(time(i,1)-time(k,1))/lambda); %creep 

function of Maxwell model(eq. 2.1.2.7) 

        e(i,1)=e(i,1)+d_sigma(k,1)*alpha(i,1); %strain 

    end 

end 

 

A-3. Linear viscoelastic Burgers model. Creep test. 

 

 

%Matlab script for linear viscoelastic Burgers model. Creep test 

with any type of loading(constant/cyclic) 

clear all; 

format long; 

Input=load('file name.txt'); %File with stress history, if available 

 

time=enter either from the input file or manually via some script; 

%Stress: 

sigma= enter either from the input file or manually via some script;  

 

eta_1=enter parameter value; %Youngs modulus of Maxwell unit [Pa] 

eta_prime_1=enter parameter value; %Viscosity of Maxwell unit[Pa*s] 

  

eta_2= enter parameter value; %Youngs modulus of Kelvin unit 
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eta_prime_2= enter parameter value; %Viscosity of Kelvin unit 

 

lambda_1=(eta_prime_1)/(eta_1); %Relaxation time of Maxwell unit [s] 

lambda_2=(eta_prime_2)/(eta_2); %Relaxation time of Kelvin unit [s] 

  

% estimation of stress difference within a time step 

for i=1:length(sigma)-1 

    d_sigma(i,1)=(sigma(i+1)-sigma(i));     

end 

  

%estimation of strain( eq. 2.2.7.): 

e(1,1)=0; 

 for i=2:length(sigma)-1 

    e(i,1)=0; 

    for k=1:i-1 

        alpha(i,1)=1/eta_1*(1+(time(i,1)-

time(k,1))/lambda_1)+1/eta_2*(1-exp(-(time(i,1)-

time(k,1))/lambda_2)); %creep function of Burgers mode(eq. 2.1.2.14) 

        e(i,1)=e(i,1)+d_sigma(k,1)*alpha(i,1); strain 

    end 

end 
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B. Results of the numerically simulated creep tests for Kelvin model 

 

The property of Kelvin model is characterized by the following property. If 

/ 5t   , the strain reaches it maximal value equal to 0 / E  at time 1t . time 

1 0t t t   , where 0t  is time when constant stress 0  is applied and 1t  is time when 

stress is removed,   s relaxation time, E  is Young's modulus. This property of 

Kelvin model  is supported by the following result of numerical simulation of creep 

tests. 
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   a)      b) 

 

   c)      d) 

Figure B.1. Stress history and strain response for creep tests of Kelvin model. The 

value /t   were kept equal to 5. The following input parameters were selected for 

the tests: 

a) 01 ; 1 ; 1 ; 0.2t s Pa E Pa Pa s        

b) 010 ; 1 ; 1 ; 2t s Pa E Pa Pa s        

c) 0100 ; 1 ; 1 ; 20t s Pa E Pa Pa s        

d) 01000 ; 1 ; 1 ; 200t s Pa E Pa Pa s        
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   a)      b) 

 

   c)      d) 

Figure B.2. Stress history and strain response for creep tests of Kelvin model. The 

value /t   were kept equal to 5. The following input parameters were selected for 

the tests: 

a) 0100 ; 1 ; 1 ; 20t s Pa E Pa Pa s        

b) 0100 ; 1 ; 10 ; 200t s Pa E Pa Pa s        

c) 0100 ; 1 ; 100 ; 2000t s Pa E Pa Pa s        

d) 0100 ; 1 ; 1000 ; 20000t s Pa E Pa Pa s        
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   a)      b) 

 

   c)      d) 

Figure B.3. Stress history and strain response for creep tests of Kelvin model. The 

value /t   were kept equal to 5. The following input parameters were selected for 

the tests: 

a) 0100 ; 1 ; 1000 ; 20000t s Pa E Pa Pa s         

b) 0100 ; 0.1 ; 1000 ; 20000t s Pa E Pa Pa s        

c) 0100 ; 10 ; 1000 ; 20000t s Pa E Pa Pa s        

d) 0100 ; 100 ; 1000 ; 20000t s Pa E Pa Pa s        
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C. Matlab code for non-linear viscoelastic model 

 

 

%non-linear viscoelastic model of Sinha. creep test 

clear all; 

format long; 

  

time=0..800s; 

sigma=constant stress=1MPa; % stress [Pa] 

 

eta_1=9.3 GPa;%Youngs modulus [Pa] 

c=3; %constant (Sinha, 1978) 

b=0.34; %constant (Sinha, 1978) 

n=3; %constant (Sinha, 1978) 

s=1; %constant (Sinha, 1978) 

a=0.000250; % inverse relaxation time (Sinha 1978) 

ep=0.000000176; %viscous strain (Sinha, 1978) 

m=mean(sigma); %mean value of stress (Sinha, 1978) 

% estimation of stress difference within a time step: 

for i=1:length(sigma)-1 

    d_sigma(i,1)=(sigma(i+1)-sigma(i)); 

end 

  

e(1,1)=0; 

 %estimation of strain( eq. 2.2.7.): 

for i=2:length(sigma)-1 

    e(i,1)=0; 

    for k=1:i-1 

        e(i,1)=e(i,1)+d_sigma(k,1)/eta_1+c*(d_sigma(k,1)/eta_1)*(1-

exp(-(a*(time(i,1)-

time(k,1)))^b))+ep*((d_sigma(k,1)/m)^3)*(time(i,1)-time(k,1)); 

%equation 2.6.2.(Sinha,1978) 

    end 

end 
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