NTNU - Trondheim
Norwegian University of

Science and Technology

MATLAB FEM Code - From Elasticity to
Plasticity

Feysel Nesru Sherif

Geotechnics and Geohazards
Submission date: June 2012
Supervisor: Thomas Benz, BAT

Norwegian University of Science and Technology
Department of Civil and Transport Engineering

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF CIVIL AND TRANSPORT ENGINEERING

Title: Date: 10, June, 2012
MATLAB FEM Code- From Elasticity to Plasticity Number of pages (incl. appendices): 113

Master Thesis | x | Project Work

Name:
Feysel Nesru Sherif

Professor in charge/supervisor:
Professor Thomas Benz

Other external professional contacts/supervisors:

Abstract:

A MATLAB Finite Element code for plane strain analysis of footings on an Elasto-plastic
material using the Mohr Coulomb failure criteria has been developed. The first step is to develop
codes for mesh generation and Gaussian numerical integration. Next, the force matrix, the
stiffness matrix and the self weight matrix are assembled. After that functions for non linear
analysis such as the plastic potential derivatives are formed. Finally plots of the mesh,
displacement shadings, stress shadings and stress-strain curves are developed.

For the purpose of verification results from the code for biaxial test are compared with the
theoretical solution. Additionally comparison is made between the code and prandtl’s bearing
capacity solutions for a footing problem. These results show that accuracy depends on two
factors: - the type of the element and the number of elements used. The three node triangular
element and the four node rectangular element give less accurate results when compared to
higher order element types. And for a relatively accurate result the number of elements should be
too high.

Keywords:

1. Bearing Capacity

2. FEM

3. MATLAB

4. Elasto-Plastic

@ NTNU Date: page 1of 2 pages

06.06.2011

Department of Civil
and Transport Engineering

MASTER THESIS
(TBA4900 Geotechnical Engineering, Master Thesis)

Spring 2012
for
Feysel Nesru Sherif

MATLAB FEM code — from elasticity to plasticity

BACKGROUND

Supported excavations and other comparably complex geotechnical problems were first stud-
ied with the finite element method (FEM) in the early 1970s. Since then, the method has been
considerably refined and developed into a versatile design tool. The conditioning parameters
of FEM analyses are well understood through many case studies presented in literature, often
including a comparison of measured and calculated performance. However, with increasing
versatility and development, the FEM has also become a tool that is increasingly difficult to
understand in all its facets for the practicing engineer as well as for students new to the sub-
ject. A well structured, easy to use FEM code with limited features is therefore a desirable
starting point in teaching the method. Such a code shall be developed within this thesis.

TASK DESCRIPTION

The aim of the thesis is to generate a structured FEM code in MATLAB that can be applied to
basic geotechnical problems. The code shall be structured so that it is easy to understand and
that it can be easily expanded by other students. A good documentation of the code is essen-
tial.

The FEM code generated within this project shall be limited to plain strain. An elasto-plastic
material model with Mohr Coulomb failure criterion shall be implemented. Results of the de-
velopment shall be validated against a commercially available FE code and/or analytical solu-
tions. It shall be also focused on the performance of various element types and integration
techniques.

TBA4900 Geotechnical Engineering, Master Thesis 2
Master thesis for Feysel Nesru Sherif, Spring 2012

The objectives of the thesis are defined as follows:

To summarize the theory of non-linear FEM analysis

To realize and document a plane strain non linear FEM code

To implement an elasto-plastic model with Mohr Coulomb failure criterion.

To validate the implementation against analytical solutions and other FEM codes

To discuss important aspects of the implementation, such as explicit and implicit time
integration, in more depth

To investigate into the performance of various element types

7. To conclude on the generated results

o s wnNh e

S

It is acknowledged that the given task, especially the implicit version of the code is a highly
advanced task and that due to unforeseen programming issues not all objectives may be ful-
filled in the given timeframe. The student may base his work on a 1-point version of the FEM
code Plaxis which the student got access to.

Professor in charge: Prof. Thomas Benz

Department of Civil and Transport Engineering, NTNU

Date: 06.06.2012

g

M@ AT

1\ ONCE

Professor in charge

Dedicated to Dr. Miftah Nesru Sherif

Preface

The purpose of this paper is to compile a FEM code in MATLAB that can be applied to basic
geotechnical problems. It is structured in an easy way so it can be understandable and can be
used as a platform for future work for other geotechnical problems. The FEM code generated
within this paper is limited to plain strain problems with an elasto-plastic material model using
the Mohr Coulomb failure criterion. The final outcome of this work is two codes that can be used
for biaxial test and bearing capacity problem. In a previous project work a similar code for linear
elastic materials has been done.

Acknowledgements

I would like to sincerely acknowledge Professor Thomas Benz, Department of Civil and
Transport Engineering, NTNU for his full cooperation during the progress of the work and for
providing a one point FORTRAN code that made this work to become a reality. | would also like

to thank all my friends and family for their advises and moral supports.

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 BACKGIOUNT ...ttt bbbttt bbbt bt
1.2 Scope and limitation of the Problem ...

1.3 Organization Of the PAPETciiiee e

CHAPTER 2 DISCRETIZATION OF THE DOMAIN
2.1 TYPES OF EIBMIENLScuviciiceeccie ettt ettt e sre e sreenresraenne e
2.2 IMESN GENEIALION ...vvivieiieie ittt bbbt b e s et et et st e st benbe s e eneenee s
PG IS W o] 1o A O] To [o] o IS OSSO

CHAPTER 3 BASIC EQUATIONS IN FEM

3.1 SHAPE FUNCLIONS ...ttt bbbttt bbb

3.2 The strain DiSplacement IMALIIXccooiiiiiiiniiieieiesie e 12
3.3 THe SEITINESS IMAIIIXeveiiieiii ettt 14
3.4 THE FOICE IMBLIIX ...ttt bbbttt 16
3.5 NUMETICAl INTEGIALIONoviiiiiiieieieee bbbt 16

CHAPTER 4 PLANE STRAIN AND STRESS INVARIANTS

.0 PLANE SEIAIN .ottt e e e e e et e e e e e e ———aaas 19

4.2 SEFESS INVAITANTS .oeeeeeeeee ettt e e ettt e e e e e e e e e et e e e e e e e e e e eaeeeas 21

CHAPTER S ELASTO PLASTICITY

T8 A 15 0o 1 od 1 o] ST SS USRS 24
5.2 YIEIA FUNCLIONciiieiecie ettt e et e et e ae et esra e teeneesneenneeneennees 24
5.3 Plastic Potential Function and FIOW RUIEcoeiiiiiiiicecece e 28
5.4 The Plastic Potential DerVALIVEc.coiveieiieii e nae e nneas 28

Vi

CHAPTER 6 ELASTO PLASTICITY IN FINITE ELEMENT ANALYSIS

LG TN A 111 oo 1ot o] IR SUTR PRSP 32
6.2 Explicit Integration With Visco-Plastic Methodccccceviiiiiieiice e 35
ORI @001 =T (o[o [od PP 36
CHAPTER 7 USING THE MATLAB CODE
7% I [0 To 1 od 1 o] PSS SSSSRS 38
7.2 INPUL PAAMEIEISeeiiiiiie ittt ettt e st e et e e e bn e e e bn e e ennes 38
7.3 OULPULS ..ot b et bt bt n bttt s b e et e s e bbb b e n e nne s 40
CHAPTER 8 VERIFICATION AND CONCLUSION
S T80 11 0o 1 od 1 o] RSP TTPSSRRR 42
ST = F- - L] SRS PS TSRS 42
8.3 Bearing Capacity ProbIEM ..o 46
IR B o0 Tod 1115 o] o OSSPSR 54
CHAPTERY9 SUMMARY AND FUTURE WORK
ST RS TH 0 0= PR 55
.2 FULUIE WOTK .ottt e et et e et esae e s be e e e sbeenteenaeareas 55
RETEIENCES ...t 56
Appendix
A Variable NOMENCIATUIE ..o Al
B FUNCHON DESCIIPLION ..ottt bbbt Bl
C The MATLAB COUEoiiiieiecie ettt sttt e e sre e e sraenneenna s C1

viii

List of Figures

2.1:- Three node triangular element and four node rectangular element..............cconiiiiiieienn, 4
2.2:- six node triangular element, eight and nine node rectangular elementccoccevoevvennnne 4
2.3:- Typical region with four node rectangular elements with support condition................ceue.... 5
2.4:- Typical region with three node triangular elements with support condition..............ccccccveu.e. 6
2.5:- Typical biaxial test finite mesh for Q4 and T6 element with support condition..................... 7
3.1:- Natural coordinates in two node line eleMENtcooeiiiiiiiii e 9
3.2:- Natural coordinates in three node triangular element...........cccccevveiiiiie i 9
3.3:- Natural coordinates in four node rectangular elementcccooeveeiiiie s, 10
3.4:- stress-strain and load-displacement relations in linearly-elastic materialcc......... 14
3.5:- Integration order in rectangular €leMENES..........ccoiieiiiii i 17
3.6:- Integration order in triangular elemMeNntsSccooveiiiii i 18
4.1:- A plane strain element in the XY plane ... 19
4.2:- PriNCIPal STrESS SPACEcvieueeiiieiteeie st e ste e et ettt te e et te e te e esaeesteeseesbe e beeneesneesreeneennes 21
5.1:- The Mohr Coulomb failure CrHterioNcccooiiiiieieieee e 25
5.2:- The Mohr Coulomb vyield surface in 3 dimensional principal stress space............ccccceeveunen. 25
5.3:- The Mohr Coulomb yield surface in 2 dimensional principal Stress space...........c.cccceeeveneen. 26
5.4:- The Mohr Coulomb yield criterion in a p-q diagram for triaxial compression case.............. 27
5.5:- The corners of Mohr Coulomb yield SUIfacecccooeieiiiiiiii e, 30
6.1:- NONIINEar SOIULION STFALEGIEScuveiieiiie et bbb 33
6.2:- A SINGIE 10AA STEP ...t 37
8.1:- A typical Diaxial tEST SELUDeiuiriieiiiieie e 42
8.2:- VertiCal SreSS —SIIAIN CUNVE........ccueiieiieeieeieesieeieetee st e e ssee e esee e steeseesseesreeneeeseesneeneeaneensens 43
8.3:- Deviatoric stress — VOIUMELIIC STraiN CUNVEcooiiiiiiieie e 44
8.4:- DeVviatoriC StreSS —MEaN SIIESS CUMVEc..vieerieeeeereesieeieaseeseeeseesseesseeseesseesseessesseesseesseseesses 44
8.5:- Load —diSPlaCeMENT CUIVEcouiiiiieieie ettt 45
8.6:- Schematic diagram for the bearing capacity problemccociiiiiiie, 46
8.7:- Undeformed mesh With SUPPOITccoooiiiiie e 49
8.8:- Deformed mesh With SUPPOITviiiiiiic e 49
8.9:- Stress shadings fOr GXX and GYYccvciviiiiiriii e 50
8.10:- Stress shadings for OXY and GZZcccviiiiiiiiiiiiic 50

8.11:- DiSplacement SNAUINGScceeiiiiiiieiieie ettt besreesbeebesneenneas 51

8.12:- DeVviatoriC StreSS —MEAN SIIESS CUINVEc..iieeiieeeeieesieeiesteesteeeesseesieessesseesseessesseesseessesseessens 51
8.13:- Deviatoric stress —VOIUMELIIC SLrain CUIVEccueiiieieiie e 52
8.14:- Vertical stress —Vertical Strain CUIVEccoocuoiiieiieiie e 52
8.15:- ‘Load’ —diSPIACEMENT CUINVEcueiiiiiiieieeiteeie et 53

List of tables

3.1:- Gauss point coordinates and weights in rectangular elementscccoocvveviiiiiiiinininenn, 17
3.2:- Gauss point coordinates and weights in triangular elements ..., 18
7.1:- Input parameters for DIaXIAIEST. Mcooiiiiiiie e 38
7.2:- Input parameters for DearingCaPaCIY.Mcccviiiirieieeee e 39
7.3:- commands for NUMErICAl QULPULSccuoiiiiiiiiiiei e 40
8.1:- results from Matlah COURooiiiiieic e 43
8.2:- comparison of bearing capacity values for different depth of regionccccooviiinennn, 47
8.3:- comparison of bearing capacity values for different element types........cccooviviiiiinnnen, 48

Xi

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 1

INTRODUCTION
1.1 Background

The finite element method is nowadays the most frequently used computational method in
engineering problems. In this numerical technique all complexities of a problem such as shape,
boundary and loading conditions are kept the same but the results obtained are approximate.
When using this method, calculations are robust due to the large number of unknowns leading to
a large pile of simultaneous equations for the user to solve. Hence the use of computer programs
to take care of these equations is one face of the method.

The evaluation of these simultaneous equations is done by using one of the matrix methods of
solving simultaneous equations. The MATLAB programming language is useful in illustrating
how to program the Finite element method due to the fact that it allows one to very quickly code
Numerical methods and has a vast predefined mathematical library suitable for handling
matrices.

1.2 Scope and limitation of the problem

The MATLAB Finite Element code presented here analyzes the stresses, strains and
displacements and gives the bearing capacity of a uniformly loaded strip footing on an Elasto-
plastic soil material in plane strain condition. Additionally a code for biaxial test is also included.
Bearing capacity analysis begins with the selection of the dimensions of the region which is
usually a rectangular region that is restrained vertically at the left and right sides and totally
restrained at the bottom end. When dividing the region in to smaller pieces five element types are
provided, three quadrilaterals (with 9,8 or 4 nodes) and two triangular (with 3 or 6 nodes).

There are two Load types to be considered; the first one is an external uniform load applied at the
top of the region, which the user needs to provide its length of distribution and magnitude. The
second type is the self weight of the soil which is generated by inserting the unit weight of the
soil material. When analysis begins all the functions developed work in the background to
provide the outputs for the user to see.

Feysel Nesru Sherif 1

MATLAB FEM Code — From Elasticity to Plasticity

1.3 Organization of the paper

Any finite element analysis has the following main steps

Define a set of elements connected at nodes (discretization of the domain).

Assemble the global system, [K]{u} = {f}

Modify the global system by imposing essential (displacements) boundary conditions.
Solve the global system and obtain the global displacements, {u}

For each element, evaluate the strains and stresses at the nodes.

Chapter 2 covers about the types of elements and how the discretization is done and which
boundary conditions to be applied. In chapter 3 the basic equations of finite element analysis in
plane strain elements are presented in matrix form. Chapter 4 discusses about plane strain and
stress invariants. In chapter 5 the main features of an Elasto-plastic Mohr Coulomb material is
presented. The explicit integration scheme in load stepping for an Elasto-plastic material is
shown in chapter 6. In chapter 7 the main features of the code and how the user can implement it
is presented. Finally in chapter 8 the code is tested for validity with a biaxial test and a bearing
capacity problem and the results are compared with results from the PLAXIS software and with
theoretically solutions. Additionally the effect of element number and element type on these
results is discussed. Finally summary and future work based on this code are outlined. For quick
reference, all the functions and script files in the code are provided as an appendix. Additionally
a code for linear elastic materials from a previous work is attached as a reference in the
appendix.

Feysel Nesru Sherif 2

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 2
DISCRETIZATION OF THE DOMAIN

2.1 Types of Elements

The first step in the finite element analysis involves the division of the body into smaller Pieces,
known as finite elements. This is equivalent to replacing the body with an infinite number of
degrees of freedom by a system having finite number of degrees of freedom.

The shapes, number, and configurations of the elements are chosen in a way that the resulting
body resembles as closely as possible to that of the original body. The choice of the type of
element is dictated by the geometry of the body and the number of independent coordinates
necessary to describe the system. In plain strain analysis the geometry, material properties, and
the field variable of the system can be described in terms of two spatial coordinates i.e. x and y.
Elements are considered to be interconnected at specific points called nodes.

Nodes are the selected finite points at which basic unknowns are to be determined in the finite
element analysis .There are two types of nodes, external nodes and internal nodes. External
nodes are those which occur on the edges or surface of the elements and they may be common to
two or more elements. These nodes may be further classified as Primary nodes and Secondary
nodes. Primary nodes occur at the corners of elements. Secondary nodes occur along the side of
an element but not at corners. Internal nodes are the one which occur inside an element and they
are unique to each element. Based on this elements are categorized in to two groups.

1) Basic elements
e Three node triangular element (T3)
e Four node rectangular element (Q4)

2) Higher order elements
e Six node triangular element (T6)
e Eight node rectangular element (Q8)
¢ Nine node rectangular element (Q9)

Feysel Nesru Sherif 3

MATLAB FEM Code — From Elasticity to Plasticity

1@ 2 1@ ®->
T3 Q4

Figure 2.1:- Three node triangular element and four node rectangular element

7 7
44 $ P 4 i 3 o
R PE s .g §c
14 » $: 149 & .
5 5
T6 Q8 Q9

Figure 2.2:- six node triangular element, eight and nine node rectangular element

Feysel Nesru Sherif

MATLAB FEM Code — From Elasticity to Plasticity

2.2 Mesh generation

Mesh generation is the process of determining the nodal and element connectivity in the domain.
Nodes are numbered with an increasing order in the x-direction starting from the bottom left
corner of the domain, which is a rectangle with length L and depth D whose four corner points
are given by:-

Point 1 = (0, -D/2)
Point 2 = (L, -D/2)
Point 3 = (L, D/2)
Point 4 = (0, D/2)

Nodal connectivity is given by a matrix containing the coordinate of each node relative to the
origin. Whereas the element connectivity defines how the elements are connected to each other.
It is given by a matrix with the node identification in each element.

For mesh generation the number of elements in the region is user specified by the number of
elements in x and y direction. For rectangular elements it is generated by dividing the original
rectangle in to smaller equal rectangles whose size depend on the dimensions L and D of the
domain. In case of triangular elements, for the same number of elements in x and y direction,
these rectangles are further divided in to two triangles giving a denser mesh with number of
‘elements’ twice that of the rectangular ones.

i ch
& Gk
& Gk
e Gk
& ch

Figure 2.3:- Typical region with four node rectangular elements with support condition

Feysel Nesru Sherif 5

MATLAB FEM Code — From Elasticity to Plasticity

23

WY

I
O
4

2]

.
=

.ol

e

WY

Figure 2.4:- Typical region with three node triangular elements with support condition

2.3 Support condition
The restrained degrees of freedom in the system are two types

e Translation in x and y direction for the nodes at the bottom of the domain which are
represented by black squares in the mesh and

e Translation in x direction for the nodes at the left and right edge of the domain,
represented by black circles in the mesh.

These prescribed degrees of freedom, being zero, usually reduce the size of the stiffness matrix
and hence the calculation effort. Representation of support conditions in the finite element mesh
is shown in figures 2.3 and 2.4 above.

Feysel Nesru Sherif 6

MATLAB FEM Code — From Elasticity to Plasticity

However, for the case of biaxial test the restrained degrees of freedom are,

e Translation in x and y direction for the node at the bottom left of the domain which is
represented by black squares in the mesh.

e Translation in x direction for the nodes at the left edge of the domain, represented by
black circles in the mesh and

e Translation in y direction for the nodes at the bottom of the domain, represented by black
circles in the mesh.

[,

Figure 2.5:- Typical biaxial test finite mesh for Q4 and T6 element with support condition

Feysel Nesru Sherif 7

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 3
BASIC EQUATIONS IN FEM

3.1 Shape functions

In the finite element analysis the aim is to find the field variables at nodal points by rigorous
analysis, assuming that at any point inside the element basic variable is a function of values at
nodal points of the element. This function which relates the field variable at any point within the
element to the field variables of nodal points is called shape function or interpolation function.
Taking displacement as the field variable this relationship can be expressed as:-

u= Zn:Niui ... 3.1
i=1

V= Zn:Nivi .. 3.2
i=1

Where

u= horizontal displacement

v=vertical displacement

u; = horizontal displacement at node i

vi = vertical displacement at node i

N; = shape function expression at node i

Summation is over the number of nodes (n) of the element.

The shape functions are always expressed in terms of the natural coordinate system. A natural
coordinate system is a coordinate system which permits the specification of a point within the
element by a set of dimensionless numbers, whose magnitude never exceeds unity. It is obtained
by assigning weights to the nodal coordinates in defining the coordinate of any point inside the
element. Hence such system has the property that i coordinate has unit value at node i of the
element and zero value at all other nodes. As an illustration the use of shape functions is shown
for three element categories.

Feysel Nesru Sherif 8

MATLAB FEM Code — From Elasticity to Plasticity

For a two node line element

1 2
:: 1 g:-l -—-S

3

Figure 3.1:- Natural coordinates in two node line element

u= ZNiui =Nu; +N,u,
From equation 3.1, i=1

S BV ()

2
Where, 2 2
u
u=[N, NZ]{ 1} ... 33
u2
For a three node triangular element
i
(0.1) GR3
2
" 5
(0.0} (1.0}

Figure 3.2:- Natural coordinates in three node triangular element

From equations 3.1 and 3.2,

u= > Nu; = Nu,+N,u, +N,u,

i=1

V=Y NV, = NV +N,v, +N,v,

i=1

Feysel Nesru Sherif

MATLAB FEM Code — From Elasticity to Plasticity

N,=1-&-n7 , N,=¢ and N, =73

ul
Vl
U_N10N20N30u2 Y
\Y B 0 N1 0 N2 0 N3 g [T .
u3
V3
For a four node rectangular element
{7
(-1.1) (1.1)
49 $-
(0,0) "’é
1@ r'Y
(-1.-1) (1.-1)

Figure 3.3:- Natural coordinates in four node rectangular element

From equations 3.1 and 3.2,

n
u= > Nju; = Nyu, +N,u, +Nyu, +N,u,

i=1

n
V=Y NV, = NV +NLV, +Nv +N, v,
i=1

Feysel Nesru Sherif 10

MATLAB FEM Code — From Elasticity to Plasticity

....................... 3.5

Where,
N, = 1-9)A-n) N, = 1+5)A-1n)
4 4
N, = d+8)A+n) N, = 1-2)A+n)
4 4
ul
Vl
ul (N, O N, 0 N, O N, O
{v}_[o N, 0 N, 0 N, O N4j
u4
V4

Using similar procedure, the shape functions for higher order elements can be formulated as

presented in the function shape_func in appendix C.

Feysel Nesru Sherif

11

MATLAB FEM Code — From Elasticity to Plasticity

3.2 The Strain displacement matrix

Relationship between strains at any point in the element with nodal displacement can be formed
using strain displacement matrices.

fe}=

M M &, M

Where

{€} = strain at any point in the element.

{u} = displacement vector of nodal values for the element
[B] = strain displacement matrix

The strain displacement matrix is a function of the partial derivatives of shape functions with
respect to the Cartesian coordinates x and y. Because shape functions are not directly functions of
x and y but of the natural coordinates & and n, the chain rule can be used for differentiation. For
example considering a four node quadrilateral element:-

oN, N, o N, oN,

— 0 — 0
OoX OX OoX OoX
=0 M o M 4 N 45 N 37
oy oy oy oy
ON, ON;, ON, ON, oN, oON, oN, ON,
oy oX oy ox oy oX oy OX

N _aN oz oN oy

But, =
ox 0& ox 0On oX

...................... 3.8

and,
N _oNog oN an
oy 0&oy onoy

............................ 3.9

Feysel Nesru Sherif 12

MATLAB FEM Code — From Elasticity to Plasticity

Which can be expressed at any node in matrix form as:-

N | (o5 on) N
OX | _|ox ox || o0&
N | lag an | o,
oy oy oy)| on

............................... 3.10

Introducing the Jacobian matrix which relates derivatives of the function in local natural
coordinate system to derivatives in global coordinate system,

x oy N, ON, oN, oON, A
0 0 0 0 0 0

[J] = L P] s] N 3.11
ox oy N, ON, oN, ON, Y,

on 0On on 0oOn oOn On Ya

<X

o<

X
X

Therefore
N[N
oX | _ 4] 0&
% =J T 3.12
oy on

Hence the strain displacement matrix can be calculated for any type of element using these
expressions.

Feysel Nesru Sherif 13

MATLAB FEM Code — From Elasticity to Plasticity

3.3 The Stiffness Matrix

Displacements in an element are a result of externally applied loads or self weight. Relationship
between these parameters can be formed using what is called stiffness. Consider a small portion
of linearly elastic material subjected to externally applied nodal force,{dF}, resulting
displacements {du}, strains {de} and stresses {do} at the nodes. The relationship between these
variables can be plotted graphically as shown below.

R Fi

N

- 6 -
Figure 3.4:- stress-strain and load-displacement relations in linearly-elastic material

From the principle of minimum potential energy which states that “Work done by external
applied loads is equal to internal strain energy” the following equations can be written.

The external work, We, is equal to the area under the force displacement graph,

W, _Laudr orin matrix form, W, :l{du}T {dF}
2 200 3.13

And the internal work, Wij, is equal to the area under the stress strain graph, integrated over the
volume of the element.

w =2 [dedodv w=1 [{de} {do}av
22 or in matrix form, vol 3.14

Substituting equations 3.1 and 3.3 in to equation 3.14,

Feysel Nesru Sherif 14

MATLAB FEM Code — From Elasticity to Plasticity

W =%f{du}T[B]T[C][B]{du}dV 3.15

vol

Equating the external and internal work and simplifying yields,

{dF}= [[BI [CIIBIAVUU} ..o 3.16

vol

The element stiffness matrix, [Ke], relating nodal forces {dF} to nodal displacements
{du}, is therefore:

[K.1= [[BI'[C][B]dV
Ol 3.17

Combining equations 3.16 and 3.17 gives the generalized equation of displacement based finite
element equation

CFF=IKHKU oo 3.18

From which the nodal displacements are evaluated using

LUF=TK Y oo 3.19

The stiffness matrix for the whole system which is called the global stiffness matrix (size= total
unknowns x total unknowns) can be assembled first by making all elements zero and then by
placing the stiffness matrix of each element in the “place” corresponding to the degree of
freedom of each point in the global system. The integral can be evaluated using the Gauss
numerical integration method.

Feysel Nesru Sherif 15

MATLAB FEM Code — From Elasticity to Plasticity

3.4 The Force Matrix

Forces acting on an element can either be externally applied loads or due to the self weight. In
either case these loads can only be applied at the nodes as a point load, hence they have to be
distributed to the corresponding nodes using the shape functions using the expressions below.

{F}=[INT{X,3dV + [[NT{T3dI
vol e 3.20

{XJ={0}
While, 7

Where

Y = self weight of material {T} = externally applied uniform load
N = shape function

3.5 Numerical integration

During the evaluation of the stiffness matrix and the force or self weight matrix, integrations
over the volume or the area of the element are encountered .Numerical integration is essential for
practical evaluation of these integrals over the domain of the element. The common method of
integration is the Gauss integration method since it uses a minimal number of sample points to
achieve a desired level of accuracy.

Before integration, the number of integration points (integration order) must be selected. From
which the corresponding coordinates and weights of each point is selected and the integration is
performed using:-

[] f(g,n)dgdn=§n:§n:ijif(§,n) 3.21

-1-1 j=1 i=1
Where
&= natural x coordinate of the Gauss sample point
n = natural y coordinate of the Gauss sample point
W= weight of the Gauss sample point
n=number of integration points (integration order)

f (§,n) =value of the function at the sample points

Feysel Nesru Sherif 16

MATLAB FEM Code — From Elasticity to Plasticity

The selection of the integration order depends on the accuracy desired and the type of element
selected for analysis. For example using six point integration for a Q4 element is waste of
memory, as it will take longer time for integration, while compared to the accuracy achieved
using two or three point integration. But it will be a good choice for higher order elements like
Q8 and Q9 element. The minimum number of sample points that can be taken for integration is
one which is for a line element. This is applied during the distribution of the external applied
load to the corresponding nodes. For quadrilateral elements the integration order is the between
two and seven, for example If n=2 there are 2x2=4 integration points and if n=3 there are 3x3=9
integration points which are symmetric about the natural coordinate axis with & and n coordinates
having the same magnitude. Whereas in case of triangular elements the definition is different as
illustrated below.

Ei=ni Wi

E1=0 W1=2
§1=£2=+0.577350269189626 | W1 =W2=1
E1=E3==0.774596669241483 W1 = W3 = 0.555555555555556
E2=0 W2 =0.888888888888889

4 | £1=E4=+0.861134311594053 W1 =W4 =0.347854845137454
£2=E3=40.339981043584856 | W2 = W3 =0.652145154862546
5 | £1=£5==+0.906179845938664 | W1 =WS5 = 0.236926885056189
E2=E4=+ 0.538469310105683 W2 =W4 =0.478628670499366
£3=0 W3 = 0.568888888888889

6 | £§1=£6=+0.932469514203152 | W1 =W6 =0.171324492379170
E2=E5==+ 0.661209386466265 W2 =W5 =0.360761573048139
£3=E4=40.238619186003152 | W3 =W4 =0.467913934572691
7 | E1=£7=£0.949107912342759 W1 =W7 =0.129484966168870
£2=£6=+0.741531185599394 W2 = W6 =0.279705391489277
E3=£5=+0.405845151377397 W3 = W5 =0.381830050505119
E4=0 W4 =0.417959183673469

Table 3.1:- Gauss point coordinates and weights in rectangular elements

WIN L[S

'Y i
- . -
2x2 integration 3%3 integration

Figure 3.5:- Integration order in rectangular elements

Feysel Nesru Sherif 17

MATLAB FEM Code — From Elasticity to Plasticity

n [giorni Wi Remark

1 | &1=n1=0.3333333333333 Wi=1

3 | E1=E3=1n1=12=0.1666666666667 W1=W2-= Used in the code if
£ 2 =n3=0.6666666666667 W3=10.3333333333333 | integration order is 2

7 | E1=E3=n1=n2=0.1012865073235 W1l=W2-= Used in the code if
£2=13=10.7974269853531 W3=10.1259391805448 | selected integration
E4=E5=15=n6=0.4701420641051 W4 =Ws5 = order is less than or
£6=14=0.0597158717898 W6=0.1323941527885 | equal to 5
E7=n7=0.3333333333333 W7 =0.225 (2<n<))

13 | E1=E3=n1=n2= 0.0651301029022 W1=W2-= Used in the code if
£2=13=0.8697397941956 W3=10.0533472356088 | selected integration
E4=E8=15=n9=0.3128654960049 W4 = W5 =W6= order is less than or
E5=E7=n 6=n 8=0.6384441885698 W7=W8= equal to 7
E6=E9=14=n7=0.0486903154253 W9=0.0771137608903 | (5<n<7)
E10=£12=110=n11=0.2603459660790 | W10 =W11=
£13=113=10.3333333333333 W12=0.1756152576332

W13=-0.149570044467

Table 3.2:- Gauss point coordinates and weights in triangular elements

3 point integration 7 point integration

Figure 3.6:- Integration order in triangular elements

Feysel Nesru Sherif 18

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 4
PLANE STRAIN AND STRESS INVARIANTS

4.1 Plane Strain

In geotechnical analysis, problems that have one very large spatial dimension compared to the
others are often encountered. In these situations, it is often reasonable to assume that the primary
field variables in the long direction are zero, such analysis is called plane strain analysis. In the
displacement based finite element method, the primary field variable is the displacement, which
may vary throughout the region being modeled. Stresses and strains are secondary variables and
can be evaluated from the displacements.

‘ y

‘Im/ B
/ I _

Figure 4.1:- A plane strain element in the xy plane

The stresses and strains in a plain strain element are given in matrix form as:-

le}=

In plane strain case the strain in the z direction is zero, &,; = 0.

Feysel Nesru Sherif 19

MATLAB FEM Code — From Elasticity to Plasticity

O-XX
(o}
{of=1 "= [C]{g} 4.2
Ty
O-ZZ
While, o, =v(0 +0y,) e 4.3
u
=)
.. 4.4
1-v v 0 1%
1-—
£ 1% v 0 1%
C=——"— 1-2v e 4.5
L+v)@-2v)| 0O 0 5 0
1% 1% 0 1-v
Where
¢ = the strain vector v = displacement in y direction
B = the strain displacement matrix u = displacement in x direction
o = the stress vector C = the linear elastic constitutive matrix
u= the displacement vector Vv = poisson’s ratio

E = young’s modulus

During the calculation of the stiffness matrix, internal nodal reactions and others, the strain
displacement matrix (B) which was originally a 3X8 matrix should be modified into a 4X8
matrix so that matrix multiplication is possible because the stress, the strain and the constitutive
matrix for plane strain case have a fourth row for the accommodation of stresses and strains in
the z direction.

Feysel Nesru Sherif 20

MATLAB FEM Code — From Elasticity to Plasticity

4.2 Stress Invariants

As shown above, a plane strain state of stress can be specified with four components with a fixed
coordinate system (Gxx, Oyy, Txy, Ozz). The magnitude of these stresses depends on the orientation
of the chosen coordinate system. Another way of specifying stress state is using the principal
stresses (o1, 02, 03), Which act in the same direction and have the same magnitude for a given
stress state, regardless of the chosen orientation of coordinate axes. Principal stresses are
therefore frequently used to show a stress point in space. The plot of the principal stresses on a
three dimensional graph, known as principal stress space, shows the stress state and stress paths.
Figure 3.2 shows a principal stress space.

In the figure, a line representing a hydrostatic stress state (c; = o, = 63) is shown, this line is
called the space diagonal. The plane normal to the space diagonal, represented by
o1 + 02 + 63 = Constant and bound by the condition that all principal stress are greater than zero,
is called the deviatoric plane. The shaded region on the deviatoric plane represents the region
where o1 > 0, > o3. Another way to describe the state of stress geometrically is to use stress
invariants in the principal stress space.

O

0,=0,=0,

0,+0,+0, =
2 3
constant

Figure 4.2:- Principal stress space

The location of a stress point (let point B, in figure 4.2) in the stress space can be described
numerically using the following invariants

Feysel Nesru Sherif 21

MATLAB FEM Code — From Elasticity to Plasticity

_01+0,+0y

S 4.6

1
t=—= ((71_(72)2+(O'2_03)2+(03_01)2
Ng] \/(i 4.7

_ooa| 1 [2(0,—03)
oo [\/5(("1—‘73) % 48

The distance along the space diagonal from the origin to the deviatoric plane (OA) is represented
by the stress invariant s, while t is the distance from the space diagonal to the stress point (AB)
and Lode angle (8) is the angular position of the stress point in the deviatoric plane. The value of

Lode’s angle on the plane varies between the extremities of the intermediate principal stresses
as:-

©6=+30°, triaxial compression, |6’1| 2|c 2| = |c’3|and

©6=-30°, triaxial extension, |c’1]| =|c2| = |c 73|

In Geotechnical Engineering, the most widely used invariants are mean and deviatoric stress which
can be expressed in terms of Cartesian stresses as:-

O'm = p =
S . 4.9
Rewriting equation 4.7 in Cartesian form,
1 2 2 2 2
t=—,/\(c—0oy) +(co,—0,) +(0,, —0,) +67,
J§\/((yy) (! F) y) 4.10
: 3
From which, q=,/=-t
2 4.11

Feysel Nesru Sherif 22

MATLAB FEM Code — From Elasticity to Plasticity

Similarly the Lode angle is given by

Hzlsin{_:%@%}
3 LA RN 4.12

where
J;=5,5,5, —5,7, 413
S O T 4.14
Sy =0y T 4.15
S = T 4.16

The principal stresses can be expressed in terms of these invariants as:-

2 . 27
= —qsin(@——
O, p+3q (3)

... 4.17
2 .
o, =p+—=qsin(o)
B 4.18
o, = p+gqsin(6’+2—7z)
3 B 4.19

Note that, since compression is negative, in these equations the value of p is negative and that of

q is positive.

Feysel Nesru Sherif

23

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 5
ELASTO PLASTICITY

5.1 Introduction

Due to the complexity of real soil behavior, a single constitutive model that can describe all facts
of behavior, with a reasonable number of input parameters, has not been achieved. Consequently,
there are many soil models available, each of which has different advantages and disadvantages.
The Mohr-Coulomb material model is one of the well known elastic perfectly plastic soil
models. The main features of this model are discussed below.

5.2 Yield Function

Based on the current stress state, an Elasto-plastic material behaves either as an elastic solid or a
plastic solid. The transition from elasticity to plasticity is described by the yield criterion which
forms a surface in three dimensional principle stress space. Stress states lying within the yield
surface are regarded as elastic, while stress states lying on the yield surface are plastic. As the
material deforms plastically, the stresses must remain on the yield surface and so stress states
lying outside the yield surface are inadmissible and must be redistributed through an iterative
procedure. Algebraically, these surfaces are expressed in terms of yield or failure function (F).
This function, which has units of stress, is dependent on material properties and invariant
combinations of the stress components. The derivation of the Mohr Coulomb vyield function is
discussed below.

The shear strength of soil at failure (tf) is given by the Mohr Coulomb failure criterion, which
can be expressed as:-

T, =CHo,tand ... 5.1
Or alternatively
T, =(0,+a)tangcooooiiiiiii 5.2
Where
A=C-COlP .., 53

The Mohr Coulomb failure criterion can be plotted on shear strength versus normal stress graph
as shown in figure 5.1.

Feysel Nesru Sherif 24

MATLAB FEM Code — From Elasticity to Plasticity

a | |o —

O,

Figure 5.1:- The Mohr Coulomb failure criterion

In three dimensional principal stress space the plot of this failure criterion is an irregular
hexagonal pyramid.

g,

3

Figure 5.2:- The Mohr Coulomb yield surface in 3 dimensional principal stress space

Since the intermediate principal stress (c2) does not affect the Coulomb criterion, and including
the effect of cohesion (attraction) it can also be plotted in two dimensional principal stress space.

Feysel Nesru Sherif 25

MATLAB FEM Code — From Elasticity to Plasticity

1+ sing

e sin e

P

O,

Figure 5.3:- The Mohr Coulomb vyield surface in 2 dimensional principal stress space

From figure 5.3, the yield function defining the Mohr-Coulomb failure criterion in terms of the
maximum and minimum principal stresses will be

F:(%}singb—[%}—c-cowzo 5.4

Substituting equation 4.17 and 4.19 in to equation 5.4, a general invariant form of the yield
function will become,

cos@ sindsing

F = psing+ —c-co0s¢p=0.............55
psing Q(\/g 3] ¢

For a triaxial compression case, where ©=30 this can be written as

F:psin¢+q(0.5—¥j—c-cos¢:0 5.6

Feysel Nesru Sherif 26

MATLAB FEM Code — From Elasticity to Plasticity

Since, c-cosg=a-sing

With attraction (a = negative), Equation 5.6 can be rearranged as

il 6sin ¢
g=(p ®(3—9n¢j ... 5.7
With, M =50 5.8
3-sing

Equation 5.7 simplifies to

g=M(P=a).cciiiiriiiii 5.9

Equation 5.9 is the plot of the Mohr-Coulomb failure criterion in a triaxial stress space
commonly known as, p-g diagram.

i
q

_B‘/ -

Figure 5.4:- The Mohr Coulomb yield criterion in a p-q diagram for triaxial compression case

Feysel Nesru Sherif 27

MATLAB FEM Code — From Elasticity to Plasticity

5.3 Plastic potential Function and Flow rule

The plastic potential function, G, specifies the direction of the plastic strain increment, which is
proportional to the derivative of G with respect to the corresponding stress.

{Ag"}:Ai[ﬁj ... 5.10
oo

Where AL is a scalar quantity called plastic multiplier. This scalar is not a property of the
material but rather a property of the flow conditions. The plastic potential function is defined by

G:psiny/+q(C:)/S§9—Smesm//j—c-cosv/=O 5.11.

When the friction angle (¢) and dilatancy angle (y) are equal, the flow condition is said to be
associated flow and the yield and plastic potential function are identical and equation 5.10 can be
written as

{Agp}:A/l(g—F] 5.12
o

Otherwise the flow is said to be non-associated flow.

5.4 The Plastic potential Derivative

During the calculation of plastic strain increments, the plastic potential derivative should be
evaluated according to chain rule.

(SHEHEN Mo

Expressing the quantities g and © in terms of J, and J; simplifies the derivative process,

(@jz o (@j+ s (ﬂ]+ s (aij 5.14
oo op)\ oo 0J, \ 0o 0J,)\ 0o
Where

3,=9 and 3, =-0.385sin(30)

Feysel Nesru Sherif 28

MATLAB FEM Code — From Elasticity to Plasticity

After differentiation, the terms q and © are restored in the equations. Expressing equation 5.14
in separate form for simplicity,

oG
(%j:(dgl-mﬁdgz-mz+dgs-m3){a} 5.15
Where
(g—G}dgl:sin(w)
P, 5.16
[E] =dg, =M[1+(tan ftan 3(9)+(M (tan30—tan6))]
aJ, 29 V3 517
[gTGJ:dQB:1'5(\@8'”62)%'22/%59]
3 R 5.18
(@j:ml{a} 5.19
O
(%j:mz{a} 5.20
oo
oJ
(52)-meer
G/ 5.21
1 101
1 1101
M= | 5.22
3oy t+o,+0,)]0 0 0 0
1 101
2 -1 0 1
11-1 2 0 -1
m,==
3]0 0 6 O
L O 5.3

Feysel Nesru Sherif 29

MATLAB FEM Code — From Elasticity to Plasticity

Sx Sz z-xy SZ
m, = l SZ Sy TXV SX
3 Ty Ty =35, —27,
Sz Sx _ZTxy Sz 5.24
O-XX
O
fof=1"
z-xy
O 5.25
ST TP 526
Sy=0w =P 527
$;=0u =P 528

The yield and plastic potential functions of a Mohr Coulomb material are a function of the Lode
angle, which in turn is variable depending on the stress state, as shown in equations 5.5 and
5.11.During the calculation of the plastic strains the plastic potential derivative becomes
indeterminate when the lode angle approaches the corners of the hexagonal surface (£30°).

g,

1

/ 8=30°

Figure 5.5:- The corners of Mohr Coulomb vyield surface

Feysel Nesru Sherif 30

MATLAB FEM Code — From Elasticity to Plasticity

This problem can be resolved by smoothening the corners of the yield surface if the lode angle
gets close enough to £30°. This is achieved by substituting ©=+30° in equation 5.11 depending
on whether it is getting close to triaxial compression or extension. In these cases the terms dg,
and dgs in equations 5.17 and 5.18 respectively should be modified as,

For ©=30° triaxial compression case

dg, = 22> (3—siny)
q

..................... 5.29
a9, =0 5.30
For ©=-30° triaxial extension case
0.25 .
09, == CHsINV) 5.31
95 =0 o, 5.32

Feysel Nesru Sherif

31

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 6
ELASTO PLASTICITY IN FINITE ELEMENT ANALYSIS

6.1 Introduction

Non-linear problems in finite element analysis can be grouped into the following three
categories, based on the sources of non-linearity:

1. Material Nonlinearity Problems
2. Geometric Nonlinearity Problems and
3. Both material and Geometric Nonlinearity Problems.

Here, only the case of Material Nonlinearity is discussed. Nonlinearity due to an Elasto Plastic
material causes the governing finite element equations to be reduced to the following
incremental form,

[KIEAUY ={AFY oo 6.1

Where

[K] = the global system stiffness matrix

{Au} = the vector of incremental nodal displacements
{Af} = the vector of incremental nodal forces and

I = the increment number

To obtain a solution to a boundary value problem, the change in boundary conditions is applied
in a series of increments and for each increment equation 6.1 must be solved. The final solution
is obtained by summing the results of each increment. Due to the nonlinear constitutive behavior
of the Mohr Coulomb material, the global stiffness matrix is dependent on the current stress and
strain levels and therefore is not constant, but varies over an increment.

In practical Finite Element Analysis, two main types of solution strategies can be used to solve
this equation. The first method, known as the Tangent Stiffness Method, considers the reduction
of the material stiffness as failure is approached. Hence the global stiffness matrix is updated at
each iteration to achieve convergence. In this method the numbers of iterations needed to achieve
convergence are relatively small but the cost of computer memory, due to the formation of the
global stiffness matrix at each iteration, is very large and hence is not used here.

Feysel Nesru Sherif 32

MATLAB FEM Code — From Elasticity to Plasticity

In the second method, known as the Constant Stiffness Method, the stiffness matrix is formed
only once and is kept constant throughout which makes the memory cost small due to this reason
this method is used here.

| y
K
/ Ko /
O, — O, — —
- -
€1 € £ €1 € £
a) constant stiffness method b) tangent stiffness method

Figure 6.1 Nonlinear solution strategies

Constant stiffness methods uses repeated elastic solutions to achieve convergence by iteratively
varying the loads on the system. For each load increment the displacement increment must be
solved, which in turn is used to find the total strain increments using the strain-displacement
matrix.

{AUY =[KTYATY 6.2
{AY =[BAUY oo 6.3
If the material is yielding, the strains will contain both elastic and plastic parts,
{AgY ={AcY +{Ac”Y .o, 6.4
But it is only the elastic strains that generate stresses through the elastic constitutive matrix C,
{AGY =[CHAEY oo 6.5

These stresses are then added to the previously existing stresses and the resulting stresses are
used to check whether yield is violated or not.

Feysel Nesru Sherif 33

MATLAB FEM Code — From Elasticity to Plasticity

{o} ={c} " +{Ac} ..o 6.6

If the stress is below the yield surface (F < 0) then it is in the elastic state and the whole process
is repeated with an increased load in equation 6.2.

On the other hand, if the stress is outside the yield surface (F > 0), the stress is over estimated
and it should be redistributed so that it can be brought back as near as possible to the yield
surface (F = 0). At this stage the material is behaving plastically and the plastic strains should be
calculated. This calculation requires the differentiation of the yield and plastic potential
derivatives with respect to stress and the general formula is given by Vermeer (1979) as:-

{Agp}zAﬁ{(l—w)(%]l_ +a)[%jl 6.7

Where AL is the increment of the plastic multiplier and ® is a parameter which depends on the
type of time integration used. For @ = 0 the integration is called explicit and for ® = 1 it is called
implicit. During implicit integration the derivative of the plastic potential function has to be
calculated at the current stress, which is unknown, this complicates the coding process and is not
used here though it is advantageous. Hence using the explicit integration for which differentials
are calculated at the previous known stress, equation 6.7 will be reduced to:-

i-1
{AeP}= M(ﬁj 6.8
oo

These plastic strains are used to calculate the ‘excess’ load at the nodes and these loads are used
in addition to the external load increment for the next iteration. These load can be generated
using two methods, the Visco-plastic method and the initial stress method. The Visco-plastic
method, which is used here, is discussed next.

Feysel Nesru Sherif 34

MATLAB FEM Code — From Elasticity to Plasticity

6.2 Explicit integration with visco-plastic method

As outlined before, if the stress state violates yield, the stress state can only be sustained
momentarily and plastic straining (referred to as visco-plastic strains in this method) occurs. The
magnitude of the visco-plastic strain rate is determined by the value of the yield function, which
is a measure of the degree by which the current stress state exceeds the yield condition. The
visco-plastic strains increase with time or iteration, causing the material to relax with a reduction
in the yield function and hence the visco-plastic strain rate.

For time independent Elasto-plastic materials, the visco-plastic strain rate is given by,

{6e"} = At*F *{@} 6.9
oo
Where

At = a pseudo time step and for a Mohr Coulomb material it is given by,

_AQ+v)(-2v)

= e e 6.10
E(1-2v+sin® ¢)
F = the value of the yield function at the current stress.
{0G/0c} = the plastic potential derivative at the current stress state.
This strain is accumulated from one iteration to the next as
{Ae™Y ={Ae™Y {5} ..o, 6.11

When the visco-plastic strain rate in equation 6.8 becomes very small (at convergence), the
accumulated visco-plastic strain and the associated stress change are equal to the incremental
plastic strain and stress change respectively.

The stress increment associated with the visco-plastic strain change is,

{AGPY =[CHOE™Y oo, 6.12

And the associated nodal force vectors would be

{ArY = [BTCLOE YAV oo 6.13

vol

Feysel Nesru Sherif 35

MATLAB FEM Code — From Elasticity to Plasticity

These nodal reactions are accumulated at each iteration by summing equation 6.13 for all
elements with yielding gauss points. Finally the applied load vector would take the form,

{AFY ={af¥ "+ Y [BC{EE YAV 6.14

all
elements

This load is then used in equation 6.2 and the process is repeated until convergence is achieved.
If convergence is achieved, the stresses, strains and displacements from the last iteration are
recorded for use in the next load step.

6.3 Convergence

During the iteration process from equation 6.2 through 6.14 the process is repeated until the
stresses are close enough to the yield surface within a certain error which should be less than a
predefined tolerance which is set to be 0.01. When this criterion is met the solution is said to be
converged. Convergence is indicated by either of the following

e The incremental displacements from equation 6.2 is nearly the same from one iteration to
the next

e The yield function, F is too small

e The visco-plastic strain is too small

e The stress increment from equation 6.5 is nearly the same from one iteration to the next

To calculate the error the displacement condition is used. In this condition the difference
between the absolute maximum of the incremental displacements in iteration i and iteration i-1
should be less than the predefined tolerance. The whole load stepping in shown in the flow chart
in the next page.

Feysel Nesru Sherif 36

MATLAB FEM Code — From Elasticity to Plasticity

Start Iteration, i

Start Step, j

4

Read Load increment, Af
Reset, Ae*P=0, 6€'P=0
Reset updated displ.inc, du =0
Reset, Ar=0

»l

Update load, Aff= Af"lf Ar
Displ.inc, Au' =KAf '
Update disp.inc, du'= du™+Au’

Y
>

Total strain inc, Ae'=B Au'
Total stress inc, Ac'=C A€’
Update stress, o'=0'+ Ad'
Calculate vield function, F (¢, d,c)

Go to

next
Gauss point

No

Is F>0

/

After looping
through all Gauss
points continue

yes

Visco-plastic strain inc, (68””)_‘=At*F* (0G/d0)
Update Vis. Pla. strain, (Ae™) = (AstAp)"1 +(6€")'
Calculate nodal loads, Ar'=[B" (5&")

_| Forall elements Ar'=5[B" (6¢"°)'

X

Calculate error

yes, New iteration

Is e>tolerance

No

Update displacement, u'=u""+ Au’
Update stress, o'=0"'+ AG'

Update strain, e’=¢/+ A€’

\ 4

New load step

Figure 6.2:- A single load step

Feysel Nesru Sherif

37

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 7
USING THE MATLAB CODE

7.1 Introduction

The functions that have been developed are arranged in four groups depending on what they
primarily perform.

Meshing:- contains functions used for discretization of the domain.
Integrations:- contains functions used for the Gauss numerical integration.
Subfunctions:- contains the main functions for finite element analysis.
Plotting:- contains functions that are used for plotting the output results.

howpnE

The description of each function and the functions themselves are provided in appendix B and C
respectively. Additionally the descriptions of frequently used variables in these functions are also
given in appendix A. Two files are presented depending on the analysis type to be performed.

1. Dbiaxialtest.m :- Performs biaxial test for a Mohr Coulomb soil.
2. bearingcapacity.m :- calculates bearing capacity of a strip footing on a Mohr Coulomb soil.

7.2 Input parameters

The input parameters for these analyses are shown in the following tables.

parameter name Variable name | Unit of input Remark
values

Length of region L Meter

Depth of region D Meter

No. of Element in x-dir. | numx

No. of Element in y-dir. | numy

Young’s modulus E KPa

Poisons ratio nu

cohesion C KPa

Angle of friction phi °

Dilatancy angle tsi °

Initial vertical stress S V KPa Negative

Initial horizontal stress | s h KPa Negative

Load increment df KN/m Negative

Number of steps nsteps

Type of element elemType ‘Q9 Q8 Q4 Capitalized
"T6°/°T3’ And quoted

Order of integration normal_order

Table 7.1:- Input parameters for biaxialtest.m

Feysel Nesru Sherif 38

MATLAB FEM Code — From Elasticity to Plasticity

parameter name Variable name | Unit of input Remark
values

Length of region L Meter

Depth of region D Meter

Number of Elements | numx

in X-direction

Number of Elements | numy

in y-direction

Young’s modulus E KPa

Poisons ratio nu

cohesion C KPa

Angle of friction phi °

Dilatancy angle tsi °

Unit weight gamma KN/m3

Load increment df KN/m Negative

Number of steps nsteps

x-coordinate of load | load_edgel Usually at O

starting point

x-coordinate of load | load_edge2 known node

ending point coordinate

Type of element elemType ‘Q9°/°Q8/Q4’ Capitalized
"T6°/°T3’ And quoted

Order of integration normal_order

Table 7.2:- Input parameters for bearingcapacity.m

The minimum and maximum values for the order of integration depends on the type of element
selected. For T6, Q8 and Q9 elements the minimum value is 3 while for Q4 and T3 elements it is
2. For Q4, Q8 and Q9 elements the maximum value is 7 while for T3 and T6 elements it is 6.
Additionally the number of elements in the x- direction for T3 and T6 elements is twice the value
inserted for numx. For example, to get a region with 30 elements in x direction and 40 in y
direction the input for triangular elements should be , numx=15 and numy=40 which gives a total
of 1200 elements.

Care should be taken when inserting the ending location of the applied load increment
(load_edge?2) for bearingcapacity.m. This is because the user has to provide the coordinate by
dividing the length (L) with the number of elements in x direction which gives the spacing
between each node from which the value of the load ending point coordinate can be calculated.

In both cases the user have to open the file and insert the input parameters directly which are
located at the beginning of the script files. After giving the values and saving, it can be executing
using the Run (F5) button. Eventually calculation progress will show up and then the outputs will
be displayed.

Feysel Nesru Sherif 39

MATLAB FEM Code — From Elasticity to Plasticity

7.3 Outputs

The outputs of the analysis are displayed automatically when the calculation is finished. The
default way of displaying the calculation results is in picture form these are:-

e The finite element mesh.

The deformed finite element mesh
Displacement shadings (u_x and u_y)
Stress shadings (Gxx, Oyy, Txy and 6,)
Deviatoric stress vs. mean stress plot.
Vertical stress vs. vertical strain plot.
Deviatoric stress vs. volumetric strain plot.
Load vs. vertical displacement plot.

The mesh and the shading diagrams show the overall property of the domain while the curves are
plotted for a stress point in the element at the upper left corner. In this element the first gauss
point is selected as a stress point for rectangular elements and the third gauss point in triangular
elements. Examples of outputs from a bearing capacity problem are shown in chapter 8, pages
49-53.

Another way of accessing the outputs is to see the numerical results to several decimal places at
each node on the Command window by using the following commands.

Command | Result displayed

sigma(:,;,1) | oxx at all gauss points
sigma(:,:,2) | oyyat all gauss points
sigma(:,:,3) | txy at all gauss points
sigma(:,:,4) | o, atall gauss points
stress (1,:,:) | oxx at all gauss points
stress (2,:,:) | oyyat all gauss points
stress (3,:,:) | txy at all gauss points
stress (4,:,:) | o, at all gauss points

u X Horizontal displacement at each node
uy Vertical displacement at each node
min(u_y) Largest downward displacement
max(u_y) Largest upward displacement
min(u_x) Largest left ward displacement
max(u_x) Largest right ward displacement

Table 7.3:- commands for numerical outputs

Feysel Nesru Sherif 40

MATLAB FEM Code — From Elasticity to Plasticity

In table 7.3 both sigma and stress shows the stresses at the gauss points but in a different manner.
sigma(,:,:)

The first position is the element number which is between 1 and number of elements in the
domain. The second position is the gauss point number which is between 1 and kk (the number
of gauss points in the element). The third position is the stress name as shown in the table
above.For example sigma(4,1,2) displays the value of oyy for the first gauss point in the fourth
element.

stress(:,:,:)

The first position is the stress name as shown in the table above. The second position is the gauss
point number which is between 1 and kk (the number of gauss points in the element). The third
position is element number which is between 1 and number of elements in the domain. For
example stress(2,1,4) displays the value of oy for the first gauss point in the fourth element.

Feysel Nesru Sherif 41

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER 8
VERIFICATION AND CONCLUSION

8.1 Introduction

Now all the required functions developed, it is time to see the results and compare these results
with values from theoretical solutions and the PLAXIS software. For this purpose two types of
problem sets are discussed, biaxial test and bearing capacity problem.

8.2 Biaxial test

A typical biaxial test setup used is shown in figure 8.1. The soil is initially subjected to an initial
stress in the axial (oy) and lateral (o) directions. When the test start incremental load is applied
in the vertical direction until failure.

Ov+olf
SN A S B

2
i'\'lll.

A

Figure 8.1:- a typical biaxial test setup

In this example the following input parameters are used

Modulus of elasticity, E=10,000KPa Poisson’s ratio, v=0.25,

Angle of friction, ¢p=30° Dilatancy angle, y=30°
Cohesion, c=1KPa unit weight, y=0

Initial vertical load, oy =-1KPa Initial horizontal load, o, =-1KPa
Length of region, L=1m depth of region, D=2m

Number of steps, nsteps=100 load increment, df=-0.1KN/m

Feysel Nesru Sherif 42

MATLAB FEM Code — From Elasticity to Plasticity

The theoretical solution for the failure load, according to Mohr Coulomb failure criteria is given

by,
o= | TENP N o0 [S0P\ . 8.1
1-sing 1-sing
o, =1 2ESINS0 g €030) 6 s6akpa
1-sin30 1-sin30

In the Matlab code the above problem is solved using different combinations of element types
and numbers. The results are summarized in table 8.1

Element numx=3 and numy=4 numx=5 and numy=6
type oy (KPa) | u_y(mm) oy (KPa) | u_y(mm)
Q4,Q9, T6 |-6.4 -2.7 -6.4 -2.4

Q8 -6.4 -2.8 -6.4 -2.8

T3 -6.4 -2.6 -6.4 -2.4

Table 8.1:- results from Matlab code

As can be seen the results are unchanged regardless of the number of elements involved for
biaxial test. Plots of stresses and strains for this problem are shown below.

Tr

-.'. 1 1 1 1 1 1 1 1 1

|
0 01 02 0.3 04 0.5 0.6 07 0.8 0.9 1

epsyy x 10

Figure 8.2:- vertical stress —strain curve

Feysel Nesru Sherif 43

MATLAB FEM Code — From Elasticity to Plasticity

55

=

4.5

U_E 1 1 1 1 1 1 1 |
0 1 2 3 4 5 B 7 g

epsvol x 107
Figure 8.3:- deviatoric stress — volumetric strain curve

55

4.5

35

25

L 3
05 M 1 1 1 1 |

0.5 1 1.5 2 2.5 3 3.5

Figure 8.4:- deviatoric stress —mean stress curve

Feysel Nesru Sherif 44

MATLAB FEM Code — From Elasticity to Plasticity

i

10

load

Figure 8.5:- load —displacement curve

Note that these plots the stresses and loads start from the initial confining stress value. A
problem encountered here is the preparation of the load displacement curve as shown in figure
8.5. This is because there is no mechanism implemented that would reduce the load increments
at the beginning of each load step when failure is approached. Hence on the load displacement
curve presented here ‘load’ is just the summation of the load increments at the beginning of each
step (before equilibrium). Solving this problem with the PLAXIS software gives a vertical yield
stress of -6.464KPa which is close to the theoretical value calculated above and also with the
Matlab code result.

Feysel Nesru Sherif 45

MATLAB FEM Code — From Elasticity to Plasticity

8.3 Bearing capacity problem

The bearing capacity problems that can be analyses in the code are surface footings with a
uniform vertical loading. A typical schematic diagram of a bearing capacity problem is shown
below. For the time being only the bearing capacity of weightless soil is considered in the code
but templates for initial stress generation with gravity loading and ko procedure are included in
the code but not used here.

df
S 2 B
et Fe— *
¥ ¥
o F 5
P 3
| © ¥
L A A A AN
. L .

Figure 8.6:- schematic diagram for the bearing capacity problem

In this problem the following input parameters are used

Modulus of elasticity, E=10,000KPa Poisson’s ratio, v=0.3,
Angle of friction, ¢=5° Dilatancy angle, y=5°
Cohesion, c=1KPa unit weight, y=0
load_edgel=0 load edge2=1

Length of region, L=5m Number of steps, nsteps=80

load increment, df=-0.1KN/m

Note that the difference between load_edgel and load_edge2 is the loaded area which is 1m
wide as shown in figure 8.6. Also the maximum number of iteration is kept to be 20 since the
load increment is small and hence the solution will converge after a few iterations. The order of
integration (normal_order) used is 2 for Q4 and T3 elements and 3 for T6, Q8 and Q9 elements.

Feysel Nesru Sherif 46

MATLAB FEM Code — From Elasticity to Plasticity

For a weightless soil, y = 0, the ultimate bearing capacity of strip foundations has closed form
solutions according to Prandtl,

c-N, for ¢=0
Oy =9, v e 8.2
(z+2)-c for ¢=0
Where
Nc is a bearing capacity factor given by,
Ne=(Ng=Dcotg..............ooiiii 8.3
While, N, =e’“a"¢[wJ 8.4
1-sing

For the soil parameters given above the bearing capacity of the soil using equation 8.2 will be
g, =¢-N, =1*6.489 = 6.489KPa

This problem is first solved using the Matlab code for different domain depth (D) using a Q4
element. Keeping the number of element constant (numx=30 and humy=80) and varying the
depth for a 5m long region gave the following results.

Depth (m) | Bearing capacity (KPa)
3 5.63

4 6.055

6 6.289

Table 8.2:- comparison of bearing capacity values for different depth of region

From these results it can be seen that for an accurate result the dimension of the region should be
sufficiently large. Hence for a footing with a width B, the length of the region should be at least
5*B and the depth should be 4*B. for the proceeding calculations a region 5m long a 6m deep is

used. Since the stress shadings and plots does not show these values with such precision, they
can be seen in Matlab by typing stress(:,:,ule) in the command window. The term ule refers to
the element at the left top corner and this element’s gauss point is the stress point selected for
plotting the curves.

Feysel Nesru Sherif

47

MATLAB FEM Code — From Elasticity to Plasticity

For comparison of results for different element types the number of elements is set to be 1200
and the dimension of the region 5m x 6m (L x D). The results are shown in table 8.3.

Element type | numx | numy | Bearing capacity (KPa)
Q4 30 40 6.167

T3 15 40 5.943

T6 15 40 6.41

Q8 30 40 6.403

Q9 30 40 6.4023

Table 8.3:- comparison of bearing capacity values for different element types

As can be seen from these results, higher order elements (T6, Q8 and Q9 with normal_order =3)

give a more accurate result than those of primary elements (T3 and Q4 with normal_order = 2).

In the primary elements the number of elements can be increased beyond 1200, for example, for

a Q4 element increasing the number of elements to 3200 (numx = 40 and numy = 80) gives a
bearing capacity of 6.388KPa which is still less accurate than those of the higher order types

with 1200 elements. For the case of higher order elements increasing the number of elements is
possible but restricted by the computer memory allocated for MATLAB.

Solving this same problem in the PLAXIS software using T6 elements with fine mesh gives a

bearing capacity value of 6.5113KPa. Hence the value from the Matlab code is close to both the

closed form solution and the PLAXIS software. A problem encountered in the bearing capacity

problem is the preparation of the load displacement curve as in the case of the biaxial test. This is

because there is no mechanism implemented that would reduce the load increments at the
beginning of each load step when failure is approached. Hence on the load displacement curve
presented here ‘load’ is just the summation of the load increments at the beginning of each step
(before equilibrium). Out puts for the Q9 element in table 8.2 are shown below.

Feysel Nesru Sherif

48

MATLAB FEM Code — From Elasticity to Plasticity

Undeformed FE mesh

Figure 8.7:- undeformed mesh with support

Mumerical deformed mesh
T

[1]
|

[t t

[TEEy]

[
ERERE
111t
11

|

]
|

Figure 8.8:- deformed mesh with support

Feysel Nesru Sherif 49

MATLAB FEM Code — From Elasticity to Plasticity

stress plot, sigma, x

Stress plot, Sigmayy

.
:

B g 10
1a

Figure 8.9:- stress shadings for oyxand oy

stress plot, sigma, y

.

& 8 10
Stress plot, sigmazz
0
-1
-2
-3
2 B g 1IIZI

Figure 8.10:- stress shadings for oy, and o,

Feysel Nesru Sherif

50

MATLAB FEM Code — From Elasticity to Plasticity

Defarmation plot, LJH

———

Defarmation plot, U 3
ETOrmMa&ton plo v }I{:I'H:I
2 -
' 05
of -1
15
F
. - 2
B -4 2 B g 10
Figure 8.11:- displacement shadings
3 _
251
2 -
o 15}
'1 -
05}
D/ 1 1 1 1 1]
0 1 2 3 4 5 6

Figure 8.12:- deviatoric stress —mean stress curve

Feysel Nesru Sherif 51

MATLAB FEM Code — From Elasticity to Plasticity

P e e S et

[i
1
0.5

U 1 |

0 1 2

epsvol x 107
Figure 8.13:- deviatoric stress —volumetric strain curve
?’ —

1
0 1 2

epsyy x 107

3 4 5 6

Figure 8.14:- vertical stress —vertical strain curve

Feysel Nesru Sherif

52

MATLAB FEM Code — From Elasticity to Plasticity

load

Figure 8.15:- ‘load” —displacement curve

Feysel Nesru Sherif

53

MATLAB FEM Code — From Elasticity to Plasticity

8.4 Conclusion
As can be seen from the above problems the accuracy of results is dependent on

e The type of element
e The number of elements and
e For bearing capacity problems the dimension of the domain

Elementary element types (Q4 and T3) with an order of integration of 2 give a less accurate
result when compared to higher order element type (T6, Q8 and Q9) with an order of integration
of 3 for a given number of elements. Increasing the number of elements in elementary element
types makes the result more accurate, similarly increasing the number of elements has the same
effect on higher order elements but the time it takes for analysis is too long and takes too much
memory and usually results “out of memory” message from MATLAB due to the large size of
the stiffness matrix. The integration order used for the above problems is only the minimum
values but increasing it could make the results more accurate especially in higher order elements
when great accuracy is intended. But in the present case it would not make any difference except
slowing down the calculation.

In bearing capacity calculation, results are highly dependent on the dimensions of the domain
compared to that of the loaded area, the larger the dimensions the more accurate is the result.
Allocating a domain length, L, of five times the load span and a depth, D, of four times the load
span gave a good result in the above calculations. Another issue is the number of steps and the
size of load increment to be used, since both have to be inserted as an input. When the number of
steps is under estimated the soil will not reach at its plastic state and the analysis will be elastic.
Therefore it is advisable to make the number of steps large when the load increment is small.
Due to the explicit nature of the integration used in the code, it is strongly recommended to use a
small load increment. When solving a problem, it is advisable to start using the Q4 element with
an integration order of 2 for a quick and rough calculation and to see if the number of steps is
large enough, after which higher order elements with a larger integration order can be employed
for a fine and accurate result.

Feysel Nesru Sherif 54

MATLAB FEM Code — From Elasticity to Plasticity

CHAPTER9
SUMMARY AND FUTURE WORK

9.1 Summary

From the calculations in the previous chapter, it is seen that higher order elements are more
accurate than that of the elementary element types. A larger number of elements also improves
the accuracy of results. One shortcoming in the code is there is no algorithm for the reduction of
externally applied loads as failure is approached, which makes the load increment constant
before and after the onset of plasticity. This problem made the plotting of the actual load
displacement curve impossible. Instead the load displacement curve presented here is just the
sum of the load increments at the beginning of each load step.

9.2 Future Work
In the future, this code can be expanded to include other geotechnical problems like

e Earth pressure calculations.
e Slope stability and
e Consolidation.

Feysel Nesru Sherif 55

MATLAB FEM Code — From Elasticity to Plasticity

References

A.J.M. Ferreira
MATLAB Codes for Finite Element Analysis,Solids and Structures, Universidade do Porto
Portugal, Springer Science +Business Media B.V, 2009

Carlos A. Felippa, Introduction to Finite Element Methods,University of Colorado
Boulder, Colorado, USA, 2004

David M. Potts and Lidija Zdravkovic’, Finite element analysis in geotechnical engineering:
Theory, Thomas Telford Ltd, London 1999

David M. Potts and Lidija Zdravkovic’, Finite element analysis in geotechnical engineering:
Application, Thomas Telford Ltd, London 2001

D. M. Potts, Numerical analysis: a virtual dream or practical reality?
Ge otechnique 53, No. 6, 535-573, 2003

D. V. Griffiths and S.M. Willson, An explicit form of the plastic matrix for a Mohr-Coulomb
material, communications in applied numerical methods, vol. 2, 523-529 (1986)

Dr James P Doherty, Introducing plasticity into the finite element method,
Computational Geomechanics (CIVIL8120) Notes, The University of Western Australia
School of Civil and Resources Engineering, 2010

Klaus-Jurgen Bathe, Finite Element Procedures, Prentice-Hall Inc., 1996

O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method for Solid and Structural
Mechanics, Elsevier Butterworth-Heinemann, oxford, 6th edition, 2005.

PLAXIS. Plaxis 2D - Version 10. Plaxis bv, Delft, The Netherlands, 2010.
PLAXIS, validation and verification, Plaxis bv, Delft, The Netherlands, 2011.

S.S Bhavikatti, Finite Element Analysis, New Age International (P) Ltd. Publishers, 2005

Singiresu S. Rao, The Finite Element Method in Engineering, 4™ edition, Elsevier Science and
Technology Books, 2004

Dr Stephano Dal Pont, David Noel, Sundararajan Natatajan, Dr Stephane PA Bordas, Extended
Finite Element and Flexible Finite Element Method MATLAB Toolbox, 2008

Yingren Zheng, Xiaosong Tang, Shangyi Zhao, Chujian Deng, Wenjie Lei
Strength reduction and step-loading finite element approaches in geotechnical engineering
Journal of Rock Mechanics and Geotechnical Engineering. 2009, 1 (1): 21-30

Feysel Nesru Sherif 56

Appendix A

Variable Nomenclature

Bfem:- the strain displacement matrix.

botEdge :- nodes along bottom edge of the domain in pairs

botNodes :- nodes along bottom edge of the domain

C: - The elastic compliance matrix.

coord:- matrix of the coordinates of the gauss points in the natural coordinate system.
CP: - The plastic compliance matrix.

dispNodes :- nodes which are restrained from displacement in any direction.
dispNodesl:- nodes which are restrained from displacement in x-direction.
dNdxi:- matrix of the derivative of the shape function.

dof:- vector of the total degree of freedom.

E:-modulus of elasticity

eldof:- matrix containing the degree of freedom in an element

element :— a matrix that contains the node id in each element.

Elements: — a matrix that contains the node id in each element for Q8 or Q9 element before
rearranged in the final manner.

elemType:- the type of element selected.

eta:- the natural y coordinate of the gauss points.

F: - the force matrix

f:- the externally applied force matrix.

F:- the total load (the sum of external load and self weight).

fac:- magnification factor for plotting outputs.

field:- a command for the output data to be plotted in color shading.

gamma :- self weight of soil.

iel:- a counter running from 1 up to the number of elements in the region.
inc_u:- the node counting increment in x direction (default=1)

inc_v:- the node counting increment in y direction

invJO:- inverse of Jacobian matrix.

J0:- Jacobian matrix.

Al

K: - the global stiffness matrix.

kk:- a counter running from 1 up to the number of gauss points in the element.

L, D: - Dimensions of the region in x and y direction respectively.

leftEdge :- nodes along left edge of the domain in pairs

leftNodes :- nodes along left edge of the domain

leftNodes1:- nodes along left edge of the domain except the lower left node.

lIn :- lower left node

load_edgel:- the x-coordinate of the node at which the externally applied load starts.
load_edge2:- the x-coordinate of the node at which the externally applied load ends.
Irn :- lower right node

N:-shape function vector.

nn:- number of nodes in an element.

nnx:- number of nodes in the x direction.

nny:- number of nodes in the y direction.

node :- matrix that contains the coordinate of the nodes.

node_pattern:- counting order of nodes arranged numerically.

Nodes :- matrix that contains the coordinate of the nodes for Q8 or Q9 element before rearranged
in the final manner.

nonelem:- number of gauss points in an element.

normal_order :- number of gauss integration points (order of integration).

nu :- Poisson's ratio

numberelem:- total number of elements in the domain for a T3 or T6 element.
numelem:- number of elements in the region.

numnode:- total number of nodes in the region.

numx:- number of elements in the x direction.

numy:- number of elements in the y direction.

ptl, pt2, pt3, pt4:- coordinates of the corner points of the domain.

Q: - coordinates matrix of the gauss integration points.

gt:- type of integration to be done.

quadorder :-number of gauss integration points.

rightEdge :- nodes along right edge of the domain in pairs

A2

rightNodes :- nodes along right edge of the domain

rightNodes1:- nodes along right edge of the domain except the lower right node.
sdim:- coordinate dimension of element for gauss integration either line element (value=1) of
plane element (value=2).

se:- plotting color for the finite element mesh (default ‘blue’)

selfwt:- the self weight matrix.

sigmatox :- externally applied horizontal load.

sigmatoy :- externally applied vertical load.

Stresspoints:- nodes at which the stress is calculated.

topEdge :- nodes along the top edge of the domain in pairs

topEdgel:- nodes along the top edge of the domain in triples for Q9,Q8 and T6 elements.
topNodes :- nodes along the top edge of the domain

total_unknown:- the total degree of freedom in the domain.

type:-the type of element selected for shape function calculation.

U:- nodal displacements.

u_x:- nodal displacements in x-direction.

u_y:- nodal displacements in y-direction.

udof:- vector of the horizontal degree of freedom.

ule :- upper left element.

uln :- upper left node.

urn :- upper right node.

vdof:- vector of the vertical degree of freedom.

W: - vector of weight for the gauss integration.

Xi:- the natural x coordinate of the gauss points.

xX:- a vector of x coordinates of nodes for a T6 element.

yy:- a vector of y coordinates of nodes for a T6 element.

A3

Appendix B

Function Description

square_node_array:- Generates a quadrilateral array of nodes between the counterclockwise
ordering of nodes ptl - pt4.

Inputs: - ptl, pt2, pt3, pt4, nnx, nny.

Outputs: - node

g4totq8:- Forms the element and node matrices for Q8 element, from the element and node
matrices of a Q4 element with the element and node matrices arranged in a counterclockwise
order.

Inputs:-element, node, numx, numy.

Outputs: - Elements, Nodes

g4totq9:- Forms the element and node matrices for nine Q9 element, from the element and node
matrices of a Q4 element with the element and node matrices arranged in a numerical
counterclockwise order.

Inputs:-element, node, numx, numy.

Outputs: - Elements, Nodes

structured_qg8 mesh:- Forms the element and node matrices for Q8 element, with the element
and node matrices arranged in a nodal counterclockwise order (primary nodes then secondary
nodes)

Inputs: - ptl, pt2, pt3, pt4, numx, numy.

Outputs: - node, element

structured_qg9_mesh:- Forms the element and node matrices for Q9 element, with the element
and node matrices arranged in a nodal counterclockwise order (primary nodes-> secondary nodes
then internal nodes)

Inputs: - ptl, pt2, pt3, pt4, numx, numy.

Outputs: - node, element

make_elem:- creates a connectivity list of primary nodes in Q4 and T3 element.
Inputs: - node_pattern, numx, numy, inc_u, inc_v
Outputs: - element

mesh_region:- switching the element type selected, it forms the final nodal and element
connectivity.using the above six functions for Q4, Q8, Q9 and T3 element.

Inputs: - ptl, pt2, pt3, pt4, numx, numy, elemType

Outputs: - node, element

Bl

mesh_t6_elem:- Forms the element and node matrices for T6 element, with the element and
node matrices arranged in a nodal counterclockwise order (primary nodes then secondary nodes).
Inputs: - L, D, numx, numy

Outputs: - node, element

supportcond:- Forms a vector of nodes which are restrained in x direction or in both x and y
direction which are the supports of the domain. It also forms a matrix of nodes for load
application at the top of the domain.

Inputs: - elemType, numx, numy

Outputs: - topEdge, topEdgel, dispNodes, dispNodes1, leftNodesl

elementdof:- Forms the global degree of freedom nodes in each element from the node
identification number.

Inputs: - elemType, sctr

Outputs: - eldof

gauss_pt_wt:- Returns the weights and coordinates of the gauss integration points.
Inputs: - quadorder, qgt, sdim
Outputs: - W, Q

gauss_rule:- Provides the weight vector and gauss point coordinate matrix of the element based
on the integration order selected.

Inputs: - iel, elemType, normal_order

Outputs: - W, Q

shape_func:- Gives the shape function and its derivatives with respect to x and y.
Inputs: - type, coord, dim
Outputs: - N, dNdxi

Bmatrix:- Gives the strain displacement matrix (B matrix size 3x8) for each element.
Inputs: - pt, elemType, iel
Outputs: - Bfem

Bmatrix4:- Gives the strain displacement matrix (B matrix size 4x8) for each element.

Inputs: - pt, elemType, iel
Outputs: - Bfem4

B2

stiffness_matrix:- Generates the element and global stiffness matrix.
Inputs: - node, element, elemType, normal_order, C
Outputs: - K

force_matrix:- Generates the force matrix due to externally applied loads for Q4 and T3
elements and the position of the vertically applied load (sctry) in the global degree of freedom.
Inputs: - node, topEdge, sigmatoy, sigmatox, load_edgel, load_edge2, D

Outputs: - f, sctry

force_matrix689:- Generates the force matrix due to externally applied loads for Q9, Q8 and T6
elements and the position of the vertically applied load (sctry) in the global degree of freedom.
Inputs: - node, topEdge, topEdgel, sigmatoy, sigmatox, load_edgel, load_edge2, D

Outputs: - f, sctry

selfwt_matrix:- Generates the force matrix due to self weight.
Inputs: - elemType, normal_order, gamma, node, element
Outputs: - selfwt

displacements:- evaluates the unknown degree of freedom (displacements) at the nodes.
Inputs: - dispNodes, dispNodes1, numnode, K, f, selfwt
Outputs: - U, u_x, u_y

stress_calculation:- calculates the element strains and stresses at the nodes in X, y, xy and zz
directions.

Inputs: - node, element, elemType, U, normal_order, C

Outputs: - stress, strain

invariants:- calculates the stress invariants for a single gauss point.
Inputs: - stress

Outputs: - p, q, theta

invariantsl:- calculates the stress invariants at each gauss point. This can be used outside the
iteration loop.
Inputs: - element, stress

Outputs: - p, q, theta

invariants2:- calculates the stress invariants at each gauss point. This can be used inside the
iteration loop.

Inputs: - kK, iel, stress

Outputs: - p, q, theta

B3

formdg:- calculates the partial derivatives of the plastic potential with respect to p, J, and Js.
Inputs: - tsi, g, theta
Outputs: - dgl, dg2, dg3

formdm:- Generates the partial derivatives of the p, J, and J; with respect to stress for use in the
plastic potential derivative.

Inputs: - KK, iel, stress

Outputs: - m1, m2, m3

internalrxn:- Generates the vector of nodal force reactions due to internal stress. It can be used
outside the iteration loop if the stress at each gauss point is given.

Inputs: - node, element, elemType, normal_order, stress

Outputs: - r

principal_stress:- calcualtes the principal stresses from the stress invariants.
Inputs: - KKk, iel, p, g, theta
Outputs: - s1, s2, s3

plastic_mat:- Generates the plastic constitutive matix CP at each gauss point.
Inputs: - E, nu, phi, tsi, iel, kk, stress
Outputs: - CP

makedgds:- Forms the partial derivatives of the plastic potential function with respect to stress at
each gauss point.

Inputs: - tsi, element, iel, kk, stress

Outputs: - dgds

makedfds:- Forms the partial derivatives of the yield function with respect to stress at each
gauss point.

Inputs: - phi, element, iel, kk, stress

Outputs: - dfds

plot_mesh:- Plots the finite element mesh
Inputs: - node, connect, elem_type, se
Outputs: - plot

plot_m:- Plots the finite element mesh with the support condition.
Inputs: - elemType, dispNodes, dispNodesl
Outputs: - plot

plot_def:- Plots the deformed finite element mesh with the support condition.
Inputs: - fac, u_x, u_y, elemType, dispNodes, dispNodes1
Outputs: - plot

B4

plot_field:- Forms a color dependent finite element mesh for plotting outputs
Inputs: - node, connect, elem_type, field
Outputs: - plot

plot_sig:- plots the color coded stress distribution in the finite element region along with color
bar scale.

Inputs: - fac, u_x, u_y, elemType, stress
Outputs: - plot

plot_defo:- plots the color coded displacement intensity in the finite element region along with
color bar scale.

Inputs: - fac, u_x, u_y, elemType
Outputs: - plot

B5

Appendix C
The MATLAB code

make_elem

function element=make elem(node pattern,numx,numy,inc_u, inc_v)

% creates a connectivity list of primary nodes in Q4 and T3 element
if (nargin < 5)

disp ('Not enough parameters specified for make elem function')
end
inc=[zeros (1, size(node pattern,2))];
e=1;
element=zeros (numx*numy, size (node_pattern,2));

for row=1l:numy
for col=1:numx

element (e, :)=node pattern+inc;
inc=inc+inc_u;
e=e+l;

end

inc=row*inc v;
end

o)

end % end of function

mesh_t6_elem
function [node,element] =mesh t6 elem(L, D, numx, numy)

$Forms the element and node matrices for T6 element, with the element
%and node matrices arranged in a nodal counterclockwise order
% (primary nodes then secondary nodes) .

xx=repmat ((0:L/ (2*numx) :L) ', 2*numy+1, 1) ;

yy=sort (repmat ((-1*D/2:D/ (2*numy) :D/2) "', 2*numx+1,1));
node=[xx vyvy];

inc u=[2 2 2 2 2 2];

inc v=[2+ (4*numx) 2+ (4*numx) 2+ (4*numx) 2+ (4*numx) 2+ (4*numx) 2+ (4*numx)];

node patternl=[1 2 3 2*numx+3 4*numx+3 2*numx+2];

node pattern2=[3 2*numx+4 4*numx+5 4*numx+4 4*numx+3 2*numx+3];
elementsl=make elem(node patternl,numx,numy,inc u,inc_v);
elements2=make elem(node pattern2,numx,numy,inc u,inc_v);

numberelem=2*numx*numy;
elements=zeros (numberelem, 6) ;
elements(1l:2:end, :)=elementsl;
elements (2:2:end, :)=elements?2;
element (:,1)=elements(:,1

)
element (:,2)=elements(:,3);
element (:,3)=elements(:,5);
element (:,4)=elements(:,2);
element (:,5)=elements(:,4);
element (:, 6)=elements(:,6);

[

end $ end of function

c1

mesh_region

function [node,element]= mesh region(ptl, pt2, pt3, pt4,numx,numy,elemType)

o

switching the element type selected, it forms the final nodal and
element connectivity.using the above six functions for 04,08,09 and
T3 element.

o

o\

global L D
nnx = numx+1;
nny = numy+1;

switch elemType

case '0Q4'
node=square node array(ptl,pt2,pt3,pt4,nnx,nny);
inc u=1;
inc_v=nnx;
node pattern=[1 2 nnx+2 nnx+l];

[element]=make elem(node pattern,numx,numy,inc u,inc v);

case 'Q9'
[node, element]=structured g9 mesh (ptl,pt2,pt3,pt4, numx, numy) ;

case 'Q8'
[node, element]=structured g8 mesh (ptl,pt2,pt3,pt4, numx, numy) ;

case 'T3'

node=square node array (ptl,pt2,pt3,pt4,nnx,nny);

node patternl=[1 2 nnx+1];

node pattern2=[2 nnx+2 nnx+1l];

inc u=1l;

inc_v=nnx;

numberelem=2*numx*numy;

element=zeros (numberelem, 3) ;

elementl=make elem(node patternl,numx,numy,inc u,inc v);
element2=make elem(node pattern2, numx,numy, inc_u,inc_v);

element (1:2:end, :)=elementl;
element (2:2:end, :)=element?2;
otherwise

error ('only 04,09,08,and T3 are supported by this function');
end

o)

end % end of function

C2

g4totq8

function

o o° oe

o\

nnx=numx-+1;
num_u=numx;
num_v=numy;
inc u=[2 2 212 2 2 1];

if numx==
inc v=[8 8 8 8 8 8 8 8];

else
inc_v=[8+43* (numx-2)
84+3* (numx-2)

end

node pattern=[1 2 3 2*nnx+1 3*nnx+2 3*nnx+l 3*nnx
inc=[zeros(l,size(node pattern,2))];

e=1;

8+3* (numx-2)
8+3* (numx-2)

8+3* (numx-2)
8+3* (numx-2)

elements=zeros (num_u*num v, size (node pattern,2));

for row=l:num v
for col=l:num u
elements (e,
inc=inc+inc_u;
e=e+l;
end
inc=row*inc v;
end

Elements=elements;

numNode=size (unique (Elements), 1) ;

Nodes=zeros (numNode, 2) ;
numElement=numx*numy;

for i=l:numElement

:)=node pattern+inc;

[Elements, Nodes]=g4totg8 (element, node, numx, numy)

forms the element and node matrices for eight node rectangular element,
from the elemet and node matrices of a four node rectangular element
with the element and node matrices arranged in a counterclockwish order
Inputs:-element,node, numx and numy.

8+3* (numx-2) ...
8+3* (numx-2)];

2*nnx];

Nodes (Elements (i, 1) ,1)=node (element (i, 1),1);
Nodes (Elements (i, 1), 2)=node (element (i,1),2);

Nodes (Elements (i,2),1)=(node(element (i, 1), 1) +node(element(i,2),1))/2;

Nodes (Elements (i, 2),2)= node(element(i,1l),2);

Nodes (Elements (i, 3),1)=node (element (i,2),1);
Nodes (Elements (i, 3),2)=node (element (i, 2),2);

Nodes (Elements (i, 4),1)=node (element (i,

2),1

Nodes (Elements (i, 4),2)=(node (element (i, 2),

)7
2)+node (element (i, 3),2))/2;

c3

end

end

Nodes (Elements (i,5),1)=node (element (i, 3),1
Nodes (Elements (i,5),2)=node (element (i, 3),2

Nodes (Elements (i, 6),1)=(node (element (i, 3),1)+node (element (i, 4),1))/2;

)7
)7

Nodes (Elements (i, 6),2)= node (element (i, 3),2);

Nodes (Elements (i, 7),1)=node (element (i, 4),1

);

Nodes (Elements (i, 7),2)=node (element (i,4),2);

Nodes (Elements (i, 8),1)=node (element (i, 4),1
Nodes (Elements (i, 8),2)=(node (element (i,

Nodes=Nodes

Elements(:
Elements(:
Elements(:
Elements(:
Elements(:
Elements(:
Elements(:
Elements (:

[

=elements
elements
elements

4

4

4

1)
2)
3)
r4)
5)
6)
7)
8)

elements
elements
=elements
=elements

4

4

4

4

% end of function

(
(
(
elements(:
(
(
(
(

~ N 0~ N

~

~ 0~
O o BN JOUOWR

~

Ne Ne Ne Ne Ne Ne N

~e

4),

);
2)+node (element (i,1),2))/2;

C4

g4totq9

function [Elements,Nodes]=g4totgq9 (element,node, numx, numy)

o\°

forms the element and node matrices for nine node rectangular element
given the elemet and node matrices of a four node rectangular element
and the number of elements in x and y direction

o\

o\°

nnx=numx-+1;
num_u=numx;
num_v=numy;
inc u=[2 2 2 2 2 2 2 2 2];

if numx==
inc v=[14 14 14 14 14 14 14 14 14];

else
inc v=[14+4* (numx-3) 14+4* (numx-3) 14+4* (numx-3) 14+4* (numx-3)...
14+4* (numx-3) 14+4* (numx-3) 14+4* (numx-3) 14+4* (numx-3) 14+4* (numx-3)1];

end
node pattern=[1 2 3 2*nnx+2 4*nnx+1 4*nnx 4*nnx-1 2*nnx 2*nnx+1];
inc=zeros(l,size(node pattern,2));

e=1;

elements=zeros (num_u*num v, size (node pattern,2));

for row=l:num v
for col=l:num u
elements (e, :)=node pattern+inc;
inc=inc+inc_u;
e=e+l;
end
inc=row*inc v;
end

Elements=elements;
numNode=size (unique (Elements), 1) ;
Nodes=zeros (numNode, 2) ;
numElement=numx*numy;

for i=l:numElement

Nodes (Elements (i, 1), 1)=node (element (i, 1),1);
Nodes (Elements (i, 1), 2)=node (element (i,1),2);

Nodes (Elements (i, 2),1)=(node (element (i,1),1)+node (element (i,2),1))/2;
Nodes (Elements (i, 2),2)= node(element(i,1l),2);

Nodes (Elements (i, 3),1)=node (element (i, 2),1);
Nodes (Elements (i, 3),2)=node (element (i,2),2);

Nodes (Elements (i, 4),1)=node (element (i, 2),1);
Nodes (Elements (i,4),2)=(node (element (i,2),2)+node (element (i,3),2))/2;

c5

end

end

Nodes (Elements (i, 5),1)=node (element (i, 3),1);
Nodes (Elements (i, 5),2)=node (element (i, 3),2);

Nodes (Elements (i, 6),1)=(node (element (i, 3),1)+node (element (i,4),1))/2;

Nodes (Elements (i, 6),2)= node (element (i, 3),2);

Nodes (Elements (i, 7),1)=node (element (i, 4),1);
Nodes (Elements (i, 7),2)=node (element (i,4),2);

Nodes (Elements (i, 8),1)=node (element (i, 4),1
Nodes (Elements (i, 8),2)

Nodes (Elements (i, 9),1)=(node (element (i, 1), 1)+node (element (i,2),1))/2;
Nodes (Elements (i, 9),2)=(node (element (i,4),2)+node (element (i,1),2))/2;

Nodes=Nodes;
Elements (:,1)=elements

) (
Elements (:,2)=elements (
Elements (:, 3)=elements (
Elements(:,4)=elements (
Elements (:,5)=elements (:
Elements (:, 6)=elements (
Elements (:,7)=elements (
Elements (:, 8)=elements (
Elements (:, 9)=elements (

[

% end of function

~

W oo NI W

N N SN N N N~ O~

~

(node (element (i,

Ne Ne Ne Ne Ne Ne Ne N

~.

);
4),2)+node (element (i,1),2))/2;

Cé

square_node_array

function node=square node array(ptl,pt2,pt3,ptd4,nnx,nny)

o\°

Generates a quadratleral array of nodes between the counterclockwise
% ordering of nodes ptl - pt4d,given number of elements in x and y direction

if (nargin < 6)
disp ('Not enough parameters specified for quare node array function')

end

Q

% get node spacing along u direction
xi pts=linspace(-1,1,nnx);

[

% get node spacing along v direction
eta pts=linspace(-1,1,nny);

for r=1:nny
eta=eta pts(r);

for c=l:nnx
xi=xi pts(c);

% get interpolation basis at xi, eta
N=shape func('Q4', [xi,etal);

N=N(:,1);
node ((r-1) *nnx+c, :)=[x_pts*N,y pts*N];
end

end

o)

end % end of function

structured_qg8_mesh
function [node,element]=structured g8 mesh (ptl,pt2,pt3,ptd4, numx, numy)

$Forms the element and node matrices for Q8 element,
$with the element and node matrices arranged in a nodal
$counterclockwise order (primary nodes then secondary nodes)

nnx=numx+1;
nny=numy+1;
node=square node array (ptl,pt2,pt3,pt4,nnx,nny);

inc u=1;

inc_v=nnx;
node pattern=[1 2 nnx+2 nnx+l];

element=make elem(node pattern, numx,numy,inc_u,inc_v);
[element, node]=g4totg8 (element, node, numx, numy) ;

[

end % end of function

structured_qg9_mesh
function [node,element]=structured g8 mesh (ptl,pt2,pt3,pt4, numx, numy)

$Forms the element and node matrices for Q9 element, with the element
%and node matrices arranged in a nodal counterclockwise order
% (primary nodes-> secondary nodes then internal nodes)

nnx=numx+1;
nny=numy+1;
node=square node array (ptl,pt2,pt3,pt4,nnx,nny);

inc u=1;

inc_v=nnx;

node pattern=[1 2 nnx+2 nnx+l];

element=make elem(node pattern, numx,numy,inc_u,inc_v);
[element, node]=g4totg9 (element, node, numx, numy) ;

[

end $ end of function

C8

Bmatrix
function Bfem =Bmatrix (pt,elemType,iel)

% Gives the strain displacement matrix (B matrix of size 3x8)of each element

global node element

sctr element (iel, :);

nn = length(sctr);

[N, dNdxi] = shape func(elemType,pt);
J0 = node(sctr, :) '*dNdxi;

invJd0 = inv (JO) ;

dNdx = dNdxi*invJo0;

Gpt = N'*node(sctrzr, :);

o°

element shape functions
element Jacobian matrix

o

o°

derivatives of N w.r.t XY
GP in global coord, used

o°

Bfem = zeros(3,2*nn);

Bfem(1l,1:2:2*nn) = dNdx(:,1)"' ;

Bfem(2,2:2:2*nn) = dNdx(:,2)"' ;

Bfem(3,1:2:2*nn) = dNdx(:,2)"' ;

Bfem(3,2:2:2*nn) = dNdx(:,1)"' ;
end % end of function

Bmatrix4

function Bfem4 =Bmatrix4 (pt,elemType,iel)
% Gives the strain displacement matrix (B matrix of size 4x8)of each element

global node element

sctr = element (iel, :);

nn = length(sctr);

[N, dNdxi] = shape func(elemType,pt); % element shape functions

J0 = node(sctr, :) '*dNdxi; % element Jacobian matrix
invJ0 = inv (J0);

dNdx = dNdxi*invJO0; $ derivatives of N w.r.t XY

o\°

Gpt = N'*node(sctr,1); GP in global coord, used

Bfem4 = zeros(4,2*nn);

Bfem4 (1,1:2:2*nn) = dNdx(:,1)"' ;
Bfemd (2,2:2:2*nn) = dNdx (:,2)" ;
Bfemd (3,1:2:2*nn) = dNdx (:,2)" ;
Bfemd (3,2:2:2*nn) = dNdx (:,1)" ;

end % end of function

C9

gauss_rule

function [W,Q] = gauss rule(iel,elemType,normal order)

% Provides the weight vector and gauss point coordinate matrix of
% the element based on the integration order selected.

global node element

sctr = element (iel, :); % element connectivity
if ((elemType == '04') & (normal order <8))
[W,Q] = gauss_pt wt(normal order, 'GAUSS',2);
elseif ((elemType == 'Q8') & (normal order < 8))
[W,Q] = gauss_pt wt(normal order, 'GAUSS',2);
elseif ((elemType == 'Q9') & (normal order < 8))
[W,Q] = gauss _pt wt(normal order, 'GAUSS',2);
elseif elemType == 'T3'
[W,Q] = gauss_pt wt(normal order, 'TRIANGULAR',?2);
elseif elemType == 'T6'

[W,Q] = gauss_pt wt(normal order, 'TRIANGULAR',2);
end

o)

end % end of function

gauss_pt_wt
function [W,Q] = gauss_pt wt(quadorder, gt, sdim)

o)

% Returns the weights and coordinates of the gauss integration points

if (nargin < 3) % set default arguments
if (strcmp(gt, "GAUSS') == 1)
dim = 1;
else
dim = 2;
end
end

if (nargin < 2)
type = 'GAUSS';
end

if (strcmp(gt, "GAUSS') == 1)

quadpoint=zeros (quadorder”sdim , sdim) ;
quadweight=zeros (quadorder”sdim, 1) ;

rlpt=zeros (quadorder,1l); rlwt=zeros(quadorder,1l);

C10

switch (quadorder)
case 1
rlpt (1) = 0.000000000000000;
rlwt (1) 2.000000000000000;

case 2
rlpt(l) = 0.577350269189626;
rlpt(2) =-0.577350269189626;

rlwt (1) = 1.000000000000000;
rlwt(2) = 1.000000000000000;

case 3
rilpt (1) = 0.774596669241483;
rilpt (2) =-0.774596669241483;
rlpt(3) = 0.000000000000000;

rlwt (1) = 0.555555555555556;
rlwt (2) .555555555555556;
rlwt (3) = 0.888888888888889;

Il
o

case 4
rlpt(l) = 0.861134311594053;
rlpt(2) =-0.861134311594053;
rlpt(3) = 0.339981043584856;
rlpt (4) =-0.339981043584856;
rlwt (1) = 0.347854845137454;
rlwt (2) = 0.347854845137454;
rlwt (3) = 0.652145154862546;
rlwt (4) = 0.652145154862546;

case 5
rlpt(l) = 0.906179845938664;
rlpt (2) =-0.906179845938664;
rlpt(3) = 0.538469310105683;
rlpt (4) =-0.538469310105683;
rlpt(5) = 0.000000000000000;
rlwt (1) = 0.236926885056189;
rlwt (2) = 0.236926885056189;
rlwt (3) = 0.478628670499366;
rlwt (4) = 0.478628670499366;
rlwt (5) = 0.568888888888889;

case 6
rlpt (1) = 0.932469514203152;
rlpt(2) =-0.932469514203152;
rlpt(3) = 0.661209386466265;
rlpt (4) =-0.661209386466265;
rlpt(5) = 0.238619186003152;
rlpt (6) =-0.238619186003152;

rlwt (1) = 0.171324492379170;
rlwt (2) = 0.171324492379170;
rlwt (3) = 0.360761573048139;

C11

rlwt (4) = 0.360761573048139;
0.467913934572691;
rlwt (6) = 0.467913934572691;

-
-
=
put
a1

Il

case 7
ript (1) = 0.949107912342759;
ript(2) = -0.949107912342759;
rlpt(3) = 0.741531185599394;
rlpt(4) = -0.741531185599394;
rlpt(5) = 0.405845151377397;
rlpt(6) = -0.405845151377397;
rlpt(7) = 0.000000000000000;
rlwt (1) = 0.129484966168870;
rlwt(2) = 0.129484966168870;
rlwt (3) = 0.279705391489277;
rlwt (4) = 0.279705391489277;
rlwt (5) = 0.381830050505119;
rlwt (6) = 0.381830050505119;
rlwt (7) = 0.417959183673469;

otherwise

disp ('unsupported integration order')

o)

end % end of quadorder switch

n=1;
if (sdim ==)
for i = l:quadorder

quadpoint(n,:) = [rlpt(i)]1;
quadweight (n) = rlwt (i),
n = n+l;

end

elseif (sdim ==)
for i = l:quadorder
for j = l:quadorder
quadpoint(n,:) = [rlpt(i), ript(j)];
quadweight (n) = rlwt(i)*rlwt(j);
n = n+l;
end
end

end

Q=quadpoint;
W=quadweight;

% END OF GAUSSIAN QUADRATURE DEFINITION FOR RECTANGULAR ELEMENTS

C12

elseif

if

en

if

el

el

el

(strcmp(gt, "TRIANGULAR")

—= 1)

(quadorder > 7) % check
disp ('Quadrature order too
quadorder = 1;

d

(guadorder ==) %
quadpoint = [0.3333333333333,
quadweight = 1;
seif (quadorder ==)
quadpoint = zeros(3, 2);
quadweight = zeros(3, 1);

quadpoint (1, :
quadpoint (2, :
quadpoint (3, :

quadweight (1)
quadweight (2)
quadweight (3)

[
[
[

0.1666666666667,
0.6666666666667,
0.1666666666667,

0.3333333333333;
0.3333333333333;
0.3333333333333;

seif (quadorder <= 5)

quadpoint = zeros(7, 2);
quadweight = zeros(7, 1);
quadpoint(l,:) = [0.1012865073235,
quadpoint (2,:) = [0.7974269853531,
quadpoint (3,:) = [0.1012865073235,
quadpoint (4,:) = [0.4701420641051,
quadpoint (5,:) = [0.4701420641051,
quadpoint (6,:) = [0.0597158717898,
quadpoint (7,:) = [0.3333333333333,
quadweight (1) 0.1259391805448;
quadweight (2) = 0.1259391805448;
quadweight (3) = 0.1259391805448;
quadweight (4) = 0.1323941527885;
quadweight (5) = 0.1323941527885;
quadweight (6) = 0.1323941527885;
quadweight (7) = 0.2250000000000;

se

quadpoint = zeros(13, 2);
quadweight = zeros(13, 1);
quadpoint (1l ,:) = [0.0651301029022,
quadpoint (2 ,:) = [0.8697397941956,
quadpoint (3 ,:) = [0.0651301029022,
quadpoint (4 ,:) = [0.3128654960049,
quadpoint (5 ,:) = [0.6384441885698,
quadpoint (6 ,:) = [0.0486903154253,
quadpoint (7 ,:) = [0.6384441885698,
quadpoint (8 ,:) = [0.3128654960049,

0.1666666666667
0.1666666666667
0.6666666666667

O OO OO oo

.1012865073235
.1012865073235
. 7974269853531
.0597158717898
.4701420641051
.4701420641051
.3333333333333

OO OO OO oo

.0651301029022
.0651301029022
.8697397941956
.0486903154253
.3128654960049
.6384441885698
.0486903154253
.6384441885698

for valid quadrature order
high for triangular quadrature');

e e e e e e

Ne Ne N

~.

[O I IR R W Y

% set quad points and quadweights
0.3333333333333 1;

Ne Ne Ne Ne Ne N

~e

C13

quadpoint (
quadpoint (10
quadpoint (11
quadpoint (12,
quadpoint (13

quadweight (1
quadweight (2
quadweight (3
quadweight (4
quadweight (5
quadweight (6
quadweight (7
quadweight (8
quadweight (9
quadweight (1
quadweight (1
quadweight (1
quadweight (1

end

Q=quadpoint;
W=quadweight/2;

end

end

o
°

2R

9
10, :

2R

e ee
—_— — — — —

oNeoNoNoNolNoNoloNololNololNe]

end of function

— —

.0486903154253,
.2603459660790,
.4793080678419,
.2603459660790,
.3333333333333,

ol oNeoNoNe]

.0533472356088;
.0533472356088;
.0533472356088;
.0771137608903;
.0771137608903;
.0771137608903;
.0771137608903;
.0771137608903;
.0771137608903;
.1756152576332;
.1756152576332;
.1756152576332;
.1495700444677;

O OO O o

.3128654960049
.2603459660790
.2603459660790
.4793080678419
.3333333333333

e e e

Ne Ne N

~e

Cl4

shape_func

function [N,dNdxi]=shape func (type,coord,dim)

o)

% Gives the shape function and its derivatives with respect to x and y
if (nargin ==)
dim=1;

end

switch type

case 'L2'
$%%%%5%%%5%%%5%%%5%%%%%%% L2 TWO NODE LINE ELEMENT $%%%%%%%%%%%%%%%%%%%%
o
o
% l-—————- 2

if size(coord,2) < 1
disp ('Error coordinate needed for the L2 element')
else
xi=coord (1) ;
N=([1l-x1i,1+xi]/2)";
dNdxi=[-1;11/2;

if size(coord,2) < 2

disp('Error two coordinates needed for the T3 element')
else

xi=coord(1l); eta=coord(2):;

N=[l-xi-eta;xi;eta]l;

dNdxi=[-1,-1;1,0;0,1];
end

C15

if size(coord,2) < 2
disp ('Error two coordinates needed for the T6 element')
else
xi=coord(1l); eta=coord(2):;
N=[1-3* (xit+eta)+t4d*xi*eta+2* (xi"2+eta”2);
xi*(2*xi-1);
eta* (2*eta-1)
4xxi* (1-xi-eta);
d*xi*eta;
4*eta* (l-xi-eta)];

’

dNdxi=[4* (xi+eta) -3, 4* (xi+eta) -3;

4*xi-1, 0;
0, d*eta-1;
4* (1-eta-2*x1i), -4+*xi;
d*eta, 4*xi;
-4*eta, 4*(l-xi-2*eta)l];
end
ase 'Q4'
$%%%%5%%%5%%%%%%% Q4 FOUR NODE QUADRILATERIAL ELEMENT %%%%%%%%%%%%%%%%
% e 3
% \ \
% \ \
% \ \
3 \ \
% | \
% \ \
% \ \
% \ \
% | \
% l-——— 2

Ci16

if size(coord,2) <

disp('Error two coordinates needed for the Q4 element')

else

xi=coord (1) ;

N=1/4*[(l-xi)*(l-eta);
(1+x1i) * (1-eta);
(1+xi) * (1l+eta);
(1-x1i) * (1+eta)];
dNdxi=1/4*[-(l-eta), -(l-xi);
l-eta, - (1+x1i);
l+eta, 1+x1i;
-(l+eta), 1-xi];
end
case 'Q8'
$%%5%%5%%5%%%%%%%% Q9 NINE NODE QUADRILATERIAL ELEMENT %%
% e T 3
% \ \
% \ \
3 \ \
3 \ \
% 8 6
% \ \
% \ \
3 \ \
3 \ \
% l-———————- 55— 2
if size(coord,2) < 2
disp('Error two coordinates needed for the Q8 element')
else
xi=coord(l); eta=coord(2):;
N=1/4*[-1* (1-xi)* (l-eta)* (1l+xi+eta);
-1*(1+x1i) *(l-eta) * (1-xi+eta);
-1*(1+x1i) * (1+eta) * (1-xi-eta);
-1*(1-x1i) * (1+eta) * (1+xi-eta);
2* (1-x172) * (1-eta) ;
2% (1+xi) * (1-eta”2);
2* (1-x172) * (1+eta) ;
2* (1-x1) * (1-eta”2)];
dNdxi=1/4*[(1-eta) * (2*xi+eta), (1-x1i) * (2*eta+xi
(l-eta) *(2*xi-eta), (1+x1i) * (2*eta-xi
(1l+eta) * (2*xi+eta), (1+x1i) * (2*eta+xi
(l+eta) * (2*xi-eta), (1-x1i) * (2*eta-xi
-4*xi* (1l-eta), -2* (1-x1"2);
2* (l-eta”2), -4*eta* (1+x1i) ;
-4*xi* (l+eta), 2* (1-x1"2) ;
-2* (l-eta”2), -4d*eta* (1-x1)];

end

2

eta=coord(2) ;

o

)
)
)
)

o

’
’
’

’

C17

R Jmmmm e 3
\ \
\ \
\ \
\ \
8 9 6
\ \
\ \
\ \
\ \
R R 2

if size(coord,2) < 2

e

disp ('Error two coordinates needed for the Q9 element')

1se

xi=coord(1l); eta=coord(2):;

N=1/4* [xi*eta* (xi-1) * (eta-1);
xi*eta* (xi+1) * (eta-1);
xi*eta* (x1i+1) * (eta+1)
xi*eta* (xi-1) * (eta+1)
-2*eta* (xi+1) * (x1i-1)*
-2*xi* (xi+1) * (eta+l) *
-2*eta* (xi+1) * (xi-1) * (eta+1
-2*xi*(xi-1)* (eta+l) * (eta-1);
4* (xi+1) * (xi-1) * (eta+l) * (eta-1)];

eta-1);
eta-1);
)

’

—~ e~~~

dNdxi=1/4* [eta* (2*xi-1) * (eta-1), xi* (xi-1)* (2*eta-1);
eta* (2*xi+1) * (eta-1), xi* (xi+1) * (2*eta-1);
eta* (2*x1i+1) * (eta+1), x1*(xi+1)*(2*eta+1);
eta* (2*xi-1) * (eta+1), *(xi-1)* (2*eta+l);
-4*xi*eta* (eta-1), —2*(xi+1)*(xi—l)*(Z*eta—l);
-2*(2*xi+1) * (eta+l) * (eta-1), -4*xi*eta* (xi+l)
-4*xi*eta* (eta+l), 2% (x141) *(x1i-1) * (2*eta+l) ;
-2*(2*xi-1) * (eta+l) * (eta-1), -4*xi*eta*(xi-1);
8*xi* (eta™2-1), 8*eta* (xi”2-1)1;
end
otherwise
disp(['Element ', type,' not yet supported'])
N=[]; dNdxi=[];
end

I=eye (dim) ;
=[1;

for
Nv=[Nv;I*N(1i)];

end

i=l:size (N, 1)

C18

if (dim ==)
B=dNdxi;
elseif (dim ==)
B=zeros (dim*size (N, 1), 3);

B(l:dim:dim*size (N,1)-1,1) dNdxi(:,1);
B(2:dim:dim*size (N, 1),2) = dNdxi(:,2);

B(l:dim:dim*size (N,1)-1,3) = dNdxi(:,2);
B(2:dim:dim*size (N, 1), 3) dNdxi(:,1);

o)

end % end of function

C19

displacements
function [U,u x,u y] =displacements (dispNodes,dispNodesl, numnode, K, £, selfwt)

% evaluates the unknown degree of freedom (displacements) at the nodes

total unknown=2*numnode;

udofs = [(dispNodes.*2)-1; (dispNodesl.*2)-1]; Sprescribed disp.in x-dir
vdofs = dispNodes.*2; %prescribed disp. in y-dir
dofs=union (udofs(:),vdofs(:)); %overall prescribed disp.

unknowndof=setdiff ((l:total unknown)',dofs);

F=f (unknowndof) +selfwt (unknowndof) ;
u=K (unknowndof, unknowndof) \F;
U=zeros (total unknown,1);
U (unknowndof) =u;

u x = U(l:2:2*numnode-1) ;
uy = U(2:2:2*numnode) ; % 2

[

end % end of function

force_matrix
function f=force matrix(node, topEdge, sigmatoy, sigmatox,load edgel,load edge2)

% Generates the force matrix due to externally applied loads
for Q4 and T3 elements.

o
°

numnode = size (node, 1) ;
total unknown = numnode*2;
f = zeros(total unknown,1);

[W,Q]l=gauss pt wt(l,'GAUSS',1);

iil=intersect (find (node(:,

1) ==load edgel) ,unique (topEdge)) ;
Jjl=intersect (find(node(:,1)=

)

)

==load_edge2),unique (topEdge)) ;

’

ii2=find(topEdge(:,1)==1iil
jj2=find (topEdge(:,2)==77j1

’

for e =ii2:33j2
sctr = topEdge(e,:);
sctry = sctr.*2 ;
sctrx = sctr.*2-1;
for g=l:size (W, 1)
pt = 0(g,:);

wt = W(q);
N = shape func('L2',pt);
J0 = abs(node(sctr(2))-node(sctr(l)))/2;
f(sctry) = f(sctry) + N*sigmatoy*det (JO) *wt;
f(sctrx) = f(sctrx) + N*sigmatox*det (JO) *wt;
end % end of quadrature loop
end % end of element loop

[

end % end of function

C20

elementdof

function eldof =elementdof (elemType, sctr)

% forms the global degree of freedom nodes in each element from the node

% i1dentification number.

switch (elemType)

case

eldof=[sctr

case

eldof=[sctr

case

eldof=[sctr

case

eldof=[sctr

case

eldof=[sctr(1l)*2-1;sctr(1l)*2; ...
2)*2=-1;sctr(2)*2; ...
sctr(3)*2-1;sctr(3)

'Qg'

'Q8'

(
sctr(
sctr(
sctr(
sctr(
sctr(
sctr(
sctr(
'Q4'

1) *
2) *
3 *
4) *
5) *
6)*
7)) *
8 *

)
)
)
)
)
)
)
)

sctr

sctr

sctr
IT6I

(1
(2
(3
(4

sctr
sctr
sctr
sctr
sctr
IT3I

(
(
(
(
(
(

sctr(
case 'L3'
eldof=[sctr
sctr(
case 'L2'
eldof=
end
end % end of function

(1) *2-1;sctr
(2)*2-1;sctr
(3)*2-1;sctr
(4)*2-1;sctr
sctr(5)*2-1;sctr
(6)*2-1;sctr
(7)*2-1;sctr
(8)*2-1;sctr
(9)*2-1;sctr

2-1;sctr
2-1;sctr
2-1;sctr
2-1;sctr
2-1;sctr
2-1;sctr
2-1;sctr
2-1;sctr

~ o~ o~~~ o~~~

) *2-1;sctr
) *2-1;sctr
) *2-1;sctr
) *2-1;sctr

1)*2-1;sctr
2)*2-1;sctr
3)*2-1;sctr
4)*2-1;sctr
5)*2-1;sctr
6)*2-1;sctr

(1)*2-1;sctr
sctr(2)*2-1;sctr(
3)*2-1;sctr(

[sctr(l)*2-1;sctr(l)*
sctr(2)*2-1;sctr(2)*

C21

force_matrix689

function f=force matrix689 (node, topEdge, topEdgel, sigmatoy, sigmatox, ...

load edgel, load edge2)

o

Generates the force matrix due to externally applied loads
for Q09,08 and T6 elements.

o
°

numnode = size (node, 1) ;
total unknown = numnode*2;
f = zeros(total unknown,1);

[W,Q]=gauss_pt wt (2, 'GAUSS',1);

iil=intersect (find (node(:,1)
jjl=intersect (find(node(:,1)
ii2=find(topEdge(:,1)==1iil);
jj2=find (topEdge (:,2)==331);
ee2=topEdgel (1l:end, 2) .*2;eed=ece2-1;
eel=unique (topEdge) ;

ee3=eel (l:2:end) .*2;eeb6=ce3-1;

==load_edgel),unique (topEdge)) ;
==load_edge2),unique (topEdge)) ;

for e =ii2:jj2
sctr = topEdge(e,:);
sctry = sctr.*2 ;
sctrx = sctr.*2-1;

for g=l:size (W, 1)
pt = Q(q,:);

wt = W(q);
[N, dNdxi] = shape func('L2',pt);
J0 = abs(node(sctr(2))-node(sctr(l)))/2;
f(sctry) = f(sctry) + N*sigmatoy*det (JO) *wt;
f(sctrx) = f(sctrx) + N*sigmatox*det (JO) *wt;
end % of quadrature loop

end % of element loop

f (ee3)=f (ee3)*(2/3);

f(ee2)=f(ee2)*(4/3);

f(ee6)=f(eeb6)*(2/3);

f(eed)=f(eed)*(4/3);

end % end of function

C22

formdg
function [dgl,dg2,dg3] =formdg(tsi, g, theta)

% calculates the partial derivatives of the plastic potential with respect
% to p, J2 and J3.

dgl=sind(tsi);

if sind(theta)>0.49 % close to theta=30 corner,smoothen the curve with
sw=1; % triaxial compression case sl > s2 = s3
dg2=(0.25/q) * (3-sw*sind (tsi)) ;
dg3=0;
elseif -1*sind(theta)>049 % close to theta=-30 corner,smoothen the curve
sw=-1; % with triaxial extension case sl = s2 > s3
dg2=(0.25/q) * (3-sw*sind (tsi));
dg3=0;
else % all other cases
dg2=(sqrt (3) *cosd (theta) / (2*q)) * (1+ (tand (theta) *tand (3*theta)) +...
*

((sind(tsi)/sqrt (3)) * (tand(3*theta)-tand (theta))));
dg3=1.5*((sqrt (3) *sind (theta))+ (sind(tsi) *cosd (theta))/ (g"2*cosd(3*theta)))

end
end % end of function

formm
function [ml,m2,m3] = formm(kk,iel, stress)

%Generates the partial derivatives of the p, J2 and J3 with respect to
%stress for use in the plastic potential derivative.

s_xx=stress(1l,kk,iel);s yy=stress(2,kk,iel);
t xy=stress(3,kk,iel) ;s zz=stress(4,kk,iel);
pl=(s_xx+s yy+ts zz)/3;

sx=s xx-pl;
sy=s_yy-pl;
sz=s_zz-pl;
ml=1/(3*(s_xx+s yy+s zz))*[1 1 0 1;1 1 0 1;0 0 0 0;1 1 O 1];

m2=1/3*[2 -1 0 -1;-1 2 0 -1;0 0 6 0;-1 -1 0 2];

m3=1/3*[sx sz t Xy sz;sz sy t Xy sx;t xy t xy -3%*sz -2*t xy;sz sx -2*t xy
szl;

[

end $ emd of function

’

Cc23

internalrxn
function [r] = internalrxn(node,element,elemType,normal order, stress)

%Generates the vector of nodal force reactions due to internal stress. it
%can be used out side the iteration loop if the stresses at each gauss
%point is given.

numnode = size (node, 1) ;

numelem = size (element,1);
total unknown = numnode*2;
r=zeros (total unknown,1);

for iel = 1 : numelem
sctr = element (iel, :); % element connectivity
nn = length(sctr); % number of nodes per element
eldof =elementdof (elemType, sctr) ; %element degree of freedom
[W,Q] = gauss_rule(iel,elemType,normal order) ; % determine GP

for kk = 1 :nn
pt =0 (kk,:);
[N, dNdxi] = shape func(elemType,pt);
J0 = node(sctr, :) '*dNdxi;
Bfem4 =Bmatrix4 (pt,elemType,iel);
r (eldof) =r(eldof)+Bfemd'*stress(:,kk,iel)*W(kk)*det (JO) ;

end % end of looping on Gauss Points
end % end of looping on elements
end % end of function
invariants
function [p,q,theta] = invariants(stress)

%calculates the stress invariants for a single gauss point

s _xx=stress(l); s _yy=stress(2); p=(s_xx+s_yy+s zz)/3;
t xy=stress(3); s_zz=stress(4);
t=sqgrt((s_xx-s_yy)"2+(s_yy-s zz)" 2+ (s_zz-s xx)"2+6*t xy"2)/sqrt(3);
g=sqgrt(l1.5) *t;
SX=5_XX-P; Sy=s_yy-p; Sz=s_zz-p;
if g<le-6
theta=0;
else
J3=sx*sy*sz- (sx*t xy"2);
sine=-3*j3*sqrt (6) /t"3;
if sine>1;
sine=1;
end
if sine<-1;
sine=-1;
end
theta=1/3* (asind(sine));
end

end % end of function

C24

invariantsl
function [p,q,theta] =invariantsl (element, stress)

% calculates the stress invariants at each gauss point.This can be used
% outside the iteration loop.

numelem=size (element, 1) ;
nonelm=size (element, 2);
p=zeros (1l,nonelm, numelem) ;
g=zeros (l,nonelm, numelen) ;
theta=zeros (1, nonelm, numelem) ;

for iel = 1 : numelem
sctr = element(iel,:); % element connectivity
nn = length(sctr); % number of nodes per element

for kk = 1l:nn
s_xx=stress(1l,kk,iel);s yy=stress(2,kk,iel);
t xy=stress(3,kk,iel);s zz=stress(4,kk,iel);
pl=(s_xx+s yy+ts zz)/3;
t=sqrt((s_xx-s_yy) "2+ (s_yy-s zz)"2+(s_zz-s_Xxx)"2+6*t _xy"2)/sqrt(3);
gl=sqrt(l.5)*t;
sx=s_ xx-pl;
sy=s_yy-pl;
sz=s_zz-pl;
if gl<le-6
thetall=0;
else
J3=sx*sy*sz-(sx*t xy"2);
sine=-3*j3*sqrt (6) /t"3;
if sine>1;
sine=1;
end
if sine<-1;
sine=-1;
end
thetall=1/3* (asind(sine)) ;
end
p(:,kk,iel)=pl;
q(:,kk,iel)=qgql;
theta(:, kk,iel)=thetall;

end % end of looping on GPs
end % end of looping on elements
end % end of function

C25

invariants2
function [p,q,thetal =invariants2 (kk,iel,stress)

% calculates the stress invariants at each gauss point.This can be used
% inside the iteration loop.

s_xx=stress(1l,kk,iel);s yy=stress(2,kk,iel);
t xy=stress(3,kk,iel);s zz=stress(4,kk,iel);
p=(s_xx+s_yy+s zz)/3;
t=sqrt ((s_xx-s_yy) " 2+(s_yy-s zz)"2+(s_zz-s_Xx)"2+6*t xy"2)/sqrt(3);
g=sqgrt(1.5) *t;
SX=S_XX-P;
Sy=s_yy-p;
sz=s_zz-p;
if g<le-6
theta=0;
else
J3=sx*sy*sz-(sx*t _xy"2);
sine=-3*j3*sqrt (6) /t"3;
if sine>1;
sine=1;
end
if sine<-1;
sine=-1;
end
theta=1/3* (asind(sine));
end

o)

end % end of function

makedfds

function [dfds] =makedfds (phi,element,iel, kk,stress)

$Forms the partial derivatives of the yield function with
%respect to stress at each gauss point.

numelem=size (element, 1) ;
nonelm=size (element,2);
dfds=zeros (4, nonelm, numelem) ;

s_xx=stress(1l,kk,iel);s yy=stress(2,kk,iel);
t xy=stress(3,kk,iel);s zz=stress(4,kk,iel);
pl=(s_xx+s yyt+s zz)/3;

t=sqgrt((s_xx-s_yy)"2+(s_yy-s zz)" 2+ (s_zz-s xx)"2+6*t xy"2)/sqrt(3);
gl=sqrt(l.5)*t;

sx=s xx-pl;

sy=s_yy-pl;

sz=s_zz-pl;

Jj2=-sx*sy-sy*sz-sz*sx+t xy"2;

J3=sx*sy*sz- (sx*t xy"2);

th=-3*sqrt (3)*j3/(2*3271.5);

C26

if th>1

th=1;
end
if th<-1
th=-1;
end

thetal=asind (th)/3;

if sind(thetal)>0.49 % close to theta=30 corner,smoothen the curve
% with triaxial compression case sl > s2 = s3
sw=-1;
cphi=0.25*sqrt (3/32) * (1+ (sw*sind(phi) /3));

dfds (:,kk,iel)=[(sind(phi) /3)+sx*cphi;...
(sind (phi) /3)+sy*cphi; ...
t _xy*cphi;...
(sind (phi) /3) +sz*cphil;

elseif (-1*sind(thetal))>0.49 % close to theta=-30 corner,smoothen the curve
% curve with triaxial extension case sl = s2 > s3
sw=1;

cphi=0.25*sqrt (3/32) * (1+ (sw*sind (phi) /3)) ;

dfds (:,kk,iel)=[(sind(phi) /3)+sx*cphi;...
(sind (phi) /3)+sy*cphi; ...
t _xy*cphi;...
(sind (phi) /3) +sz*cphil;
else
alpha=atand(abs ((s_xx-s_yy)/(2*t _xy))); % all other conditions
kl=1;k2=1;
if abs(s_xx)>abs(s_yy)
kl=-1;
end
if t xy <0
k2=-1;
end

dfds (:,kk,iel)=[sind(phi)+kl*sind(alpha); ;...
sind (phi) -kl*sind(alpha);...
2*k2*cosd(alpha);...
01
end

end % end of function

c27

makedgds
function [dgds] =makedgds(tsi,element,iel, kk, stress)

$Forms the partial derivatives of the plastic potential function with
%respect to stress at each gauss point.

numelem=size (element, 1) ;
nonelm=size (element,2);
dgds=zeros (4,nonelm, numelem) ;

s _xx=stress(1l,kk,iel);s yy=stress(2,kk,iel);
t xy=stress(3,kk,iel);s zz=stress(4,kk,iel);
pl=(s_xx+s yy+s zz)/3;

t=sqrt((s_xx—s_yy)A2+(s_yy—s_zz)A2+(s_zz—s_xx)A2+6*t_xyA2)/sqrt(3);
gl=sqrt(l1.5)*t;

sx=s_ xx-pl;

sy=s_yy-pl;

sz=s_zz-pl;

j2=-sx*sy-sy*sz-sz*sx+t xy"2;

J3=sx*sy*sz-(sx*t _xy"2);

th=-3*sqgrt (3) *j3/(2*32"1.5);

if th>1
th=1;
end
if th<-1
th=-1;
end
thetal=asind (th) /3;

if sind(thetal)>0.49 % close to theta=30 corner,smoothen the curve
% with triaxial compression case sl > s2 = s3
sw=-1;
ctsi=0.25*sqrt (3/32)* (1+ (sw*sind(tsi) /3)

(sind(tsi)/3)+sx*ctsi;...
(sind (tsi) /3)+sy*ctsi;...
t xy*ctsi;

(sind(tsi) /3)+sz*ctsi];

dgds (:, kk,iel)=][

elseif (-1*sind(thetal))>0.49 % close to theta=-30 corner,smoothen the curve
% curve with triaxial extension case sl = s2 > s3
sw=1;

ctsi=0.25*sqrt (3/32)* (1+ (sw*sind(tsi) /3)

(sind(tsi) /3)+sx*ctsi;...
(sind (tsi) /3)+sy*ctsi;...
t xy*ctsi;...

(sind(tsi) /3)+sz*ctsi];

dgds (:, kk,iel)=][

else

C28

alpha:atand(abs((s_xx—s_yy)/(Z*t_xy))); % all other conditions

k1=1;k2=1;
if abs(s_xx)>abs(s_yy)
kl=-1;
end
if t xy <0
k2=-1;
end

dgds (:,kk,iel)=[sind(tsi)+kl*sind(alpha);...
sind(tsi)-kl*sind(alpha); ...
2*k2*cosd(alpha);...

01;
end
end $ end of function
plastic_mat
function [CP] = plastic mat (E,nu,phi,tsi,iel, kk, stress)

% Generates the plastic constitutive matix CP at each gauss point

s_xx=stress(1l,kk,iel);s yy=stress(2,kk,iel);
t xy=stress(3,kk,iel);s zz=stress(4,kk,iel);
pl=(s_xx+s yy+s zz)/3;

t=sqrt((s_xx—s_yy)A2+(s_yy—s_zz)A2+(s_zz—s_xx)A2+6*t_xyA2)/sqrt(3);
g=sqgrt (l1.5)*
sx=s xx-pl;
sy=s_yy-pl;
sz=s zz-pl;
j2=-sx*sy-sy*sz-sz*sx+t xy"2;
j3=sx*sy*sz-(sx*t xy"2);
th=-3*sqrt (3)*j3/(2*j2"1.5);
if th>1
th=1;
end
if th<-1
th=-1;
end
thetal=asind (th) /3;

if sind(thetal)>0.495 % close to theta=30 corner,smoothen the curve
% with triaxial compression case sl > s2 = s3
sw=-1;

cphi=0.25*sqrt (3/32) * (1+ (sw*sind (phi) /3));
ctsi=0.25*sqrt (3/32) * (1+ (sw*sind(tsi)/3));
kphi=sind (phi) * (1+nu) /3;

ktsi=sind (tsi) * (l+nu)/3
cl=kphi+cphi* (sx* (1-nu)+nu* (sytsz));
c2=kphi+cphi* (sy* (1-nu)+nu* (sx+sz)) ;
c3=cphi* (1-2*nu) *t xy;
cd4=kphi+cphi* (sz* (1-nu)+nu* (sx+sy));

C29

els

els

end
end

rl=ktsi+ctsi* (sx* (1-nu)+nu* (sy+sz));
r2=ktsi+ctsi* (sy* (1-nu) +nu* (sx+sz));
r3=ctsi* (1-2*nu)*t xy;
rd=ktsi+ctsi* (sz* (1-nu)+nu* (sx+sy));
A=[rl*cl rl*c2 rl*c3 rl*c4;
r2*cl r2*c2 r2*c3 r2*c4d;
r3*cl r3*c2 r3*c3 r3*c4d;...
rd*cl rd*c2 rd*c3 rd*c4d];
CP=E*A/ ((1l+nu) * (1-2*nu) * (kphi*sind (tsi)+2*cphi*ctsi*j2* (1-2*nu)));

eif -1*sind(thetal)> 0.49
sw=1; % close to theta=-30 corner,smoothen the curve
$ with triaxial extension case sl = s2 > s3
cphi=0.25*sqrt (3/32) * (1+ (sw*sind (phi) /3)
ctsi=0.25*sqrt (3/32)* (1+ (sw*sind(tsi) /3)
kphi=sind (phi) * (1+nu) /3;
ktsi=sind (tsi) * (l+nu)/3
cl=kphi+cphi* (sx* (1-nu)+nu* (sy+sz));
c2=kphi+cphi* (sy* (1-nu) +nu* (sx+sz));
c3=cphi* (1-2*nu) *t xy;
c4=kphi+cphi* (sz* (1-nu)+nu* (sx+sy)) ;
rl=ktsi+ctsi* (sx* (1l-nu)+nu* (sy+sz));
r2=ktsi+ctsi* (sy* (l-nu)+nu* (sx+sz));
r3=ctsi* (1-2*nu)*t_ xy;
rd=ktsi+ctsi* (sz* (1-nu)+nu* (sx+sy));
A=[rl*cl rl*c2 rl*c3 rl*c4;
r2*cl r2*c2 r2*c3 r2*c4;
r3*cl r3*c2 r3*c3 r3*c4;
rd*cl rd*c2 rd4*c3 rd*c4d];
CP=E*A/ ((1+nu) * (1-2*nu) * (kphi*sind (tsi)+2*cphi*ctsi*j2* (1-2*nu)));

e % all other cases
alpha=atand(abs ((s_xx-s_yy)/ (2*t _xy)));
kl=1;k2=1;

if abs(s_xx)>abs(s_yy)
kl=-1;

end

if t xy <0
k2=-1;

end

cl=sind(phi)+kl* (1-2*nu) *sind (alpha) ;
c2=sind(phi) -k1* (1-2*nu) *sind (alpha) ;
c3=k2* (1-2*nu) *cosd (alpha) ;
c4=2*nu*sind (phi) ;
rl=sind(tsi)+kl* (1-2*nu) *sind(alpha) ;
r2=sind(tsi)-kl*(1-2*nu) *sind(alpha);
r3=k2* (1-2*nu) *cosd (alpha) ;
r4=2*nu*sind(tsi) ;
A=[rl*cl rl*c2 rl*c3 rl*c4;
r2*cl r2*c2 r2*c3 r2*c4d;
r3*cl r3*c2 r3*c3 r3*c4;
r4*cl r4*c2 rd*c3 rd*cd];
CP=E*A/ ((1+nu) * (1-2*nu) * (1-2*nu+sind (phi) *sind(tsi))) ;

o)

% end of function

C30

principal_stress

function [sl,s2,s3] = principal stress(kk,iel,p, g, theta)
%calcualtes the principal stresses from the stress invariants
sl=p(:,kk,iel)+gq(:,kk,iel)*(2/3)*sind(theta(:,kk,1el)-120);
s2=p(:,kk,iel)+gq(:,kk,iel)*(2/3) *sind (theta(:, kk,iel));
s3=p(:,kk,iel)+g(:,kk,iel)*(2/3) *sind (theta(:, kk,i1el)+120);

[

end % end of function

selfwt_matrix
function selfwt=selfwt matrix(elemType,normal order,gamma,node,element)
% Generates the force matrix due to self weight

numelem=size (element, 1) ;
numnode = size (node, 1) ;

total unknown = numnode*2;
selfwt=zeros (total unknown,1l);

for iel = 1 : numelem
sctrl = element (iel, :); % element connectivity
swpt=sctrl.*2; selement degree of freedom
[W,Q] = gauss_rule(iel,elemType,normal order) ;

for g=l:size(W,1)
pt = 0(g,:);

wt = W(q); % quadrature point
[N, dNdxi]=shape func(elemType,pt):
J0 = node(sctrl, :)'*dNdxi; % element Jacobian matrix
selfwt (swpt) = selfwt (swpt)+ N* (-1*gamma) *det (JO0) *wt;
end
end
end % end of function

C31

stiffness_matrix

function K=stiffness matrix(node,element,elemType,normal order,C)

[

% Generates the element and global stiffness matrix

numnode = size (node,l);
numelem = size(element,1l);
total unknown = numnode*2;

K = zeros(total unknown,total unknown);

for iel = 1 : numelem
sctr = element (iel, :); % element connectivity
nn = length(sctr); % number of nodes per element
eldof =elementdof (elemType, sctr); %element degree of freedom
[W,0] = gauss_rule(iel,elemType,normal order) ;

o\°

for kk = 1 : size(W,1) Loop on Gauss points
pt = Q(kk,:); % quadrature point
[N, dNdxi] = shape func(elemType,pt);
J0 = node(sctr, :) '*dNdxi; $ element Jacobilian matrix
Bfem =Bmatrix (pt,elemType, iel);
K(eldof,eldof) = K(eldof,eldof)+Bfem'*C(1:3,1:3)*Bfem*W (kk) *det (JO) ;

)

end % end of looping on Gauss Points

[

end % end of looping on elements

[

end % end of function

stress_calculation

function [stress,strain] =stress calculation(node,element,elemType, ...
U,normal order,C)

% calculates the element strains and stresses at the nodes
in x, vy and xy directions.

oe

numelem=size (element, 1) ;

switch elemType

case 'Q9'
stresspoints=[-1 -1;1 -1;1 1;-1 1;0 -1;1 0;0 1;-1 0;0 01,
case 'Q8'"
stresspoints=[-1 -1;1 -1;1 1;-1 1;0 -1;1 0;0 1;-1 0];
case 'Q4'
stresspoints=[-1 -1;1 -1;1 1;-1 1];
case 'T3'
stresspoints=[0 0;1 0;0 11];
otherwise
stresspoints=[0 0;1 0;0 1;0.5 0;0.5 0.5;0 0.51;
end
for iel = 1 : numelem
sctr = element(iel,:); % element connectivity
nn = length(sctr); % number of nodes per element

C32

eldof =elementdof (elemType, sctr);
[W,Q] = gauss_rule(iel,elemType,normal order) ;

for kk = 1l:nn
pt = stresspoints(kk, :);
[N, dNdxi] = shape func(elemType,pt);
J0 = node(sctr, :) '*dNdxi;
Bfem =Bmatrix (pt,elemType, iel);
strain=Bfem*U (eldof) ;
stress(iel, kk, :)=C*strain;

oo

quadrature point
element shape functions
element Jacobian matrix

oo

o°

end % end of looping on gauss points
end % end of looping on elements
end % end of function

Supportcond

function [topEdge, topEdgel, dispNodes,dispNodesl]=
supportcond (elemType, numx, numy)

oe

Forms a vector of nodes which are restrained in x direction or in both
x and y direction which are the supports of the domain.

%It also forms a matrix of nodes for load application at the top of the
%domain.

oe

switch elemType
case 'Q9'
nnx=numx*2+1;
nny=numy*2+1;
urn =nnx*nny;
uln =urn- (nnx-1);

oe

upper right node number
upper left node number

o\°

lrn = nnx; % lower right node number

1lln = 1; % lower left node number

topEdge = [uln:1:(urn-1); (uln+l):l:urn]';
topEdgel=[uln:2: (urn-2); (uln+l):2: (urn-1); (uln+2):2:urn 1°';
botEdge = [1lln:1:(lrn-1); (lln+1):1:1rn]1°';
leftEdge=[(lln:nnx: (uln-nnx)); (lln+nnx:nnx:uln)]"';
rightEdge=[(nnx:nnx: (urn-nnx)) ; (nnx+nnx:nnx:urn)] "';

% GET NODES ON ESSENTIAL BOUNDARY

botNodes = unique (botEdge) ;

topNodes = unique (topEdge) ;

leftNodes = unique (leftEdge) ;

rightNodes = unique (rightEdge) ;

dispNodes = botNodes;
rightNodesl=rightNodes (2:end) ;
leftNodesl=leftNodes (2:end) ;
dispNodesl=union (leftNodesl, rightNodesl) ;

C33

case 'Q8'
nnx=numx*2+1;
nny=numy*2+1;

urn =(nnx*nny) - (numx*numy) ; 5 upper right node number

uln =urn- (nnx-1); % upper left node number

lrn = nnx; % lower right node number

1ln = 1; % lower left node number

topEdge = [uln:1:(urn-1); (uln+l):l:urn]';

topEdgel=[uln:2: (urn-2); (uln+l):2: (urn-1); (uln+2):2:urn 1°';

botEdge = [1lln:1:(lrn-1); (lln+l):1:1rn]';

% GET NODES ON ESSENTIAL BOUNDARY

botNodes = unique (botEdge) ;

topNodes = unique (topEdge) ;

leftNodes = union((lln:nnx+numx+1:uln), ...
(nnx+1:nnx+numx+1:uln-numx+1)) ';

rightNodes = union ((nnx:nnx+numx+l:urn), ...

(nnx+numx+1 :nnx+numx+1:urn-nnx)) ';
dispNodes = botNodes;
rightNodesl=rightNodes (2:end) ;
leftNodesl=leftNodes (2:end) ;
dispNodesl=union (leftNodesl, rightNodesl) ;
leftEdge=[leftNodes (l:nny-1,:),leftNodesl];
rightEdge=[rightNodes (l:nny-1,:),rightNodesl];

case {'0Q4','T3"}
nnx=numx+1;
nny=numy+1;
uln = nnx* (nny-1)+1;

o

upper left node number

urn = nnx*nny; % upper right node number
lrn = nnx; % lower right node number
1ln = 1; % lower left node number
topEdge = [uln:1:(urn-1); (uln+l):l:urn]';
topEdgel=topEdge;

botEdge = [1lln:1:(lrn-1); (lln+1l):1:1rn]1°';
rightEdge = (lrn:nnx: (urn))';

% GET NODES ON ESSENTIAL BOUNDARY

botNodes = unique (botEdge) ;

topNodes = unique (topEdge) ;

rightNodes = unique (rightEdge) ;

leftNodes = rightNodes- (nnx-1);

dispNodes = botNodes;

rightNodesl=rightNodes (2:end) ;

leftNodesl=leftNodes (2:end) ;

dispNodesl=union (leftNodesl, rightNodesl) ;
case 'T6'

nnx=numx*2+1;

nny=numy*2+1;

urn =nnx*nny;

uln =urn-(nnx-1);

o\°

upper right node number
upper left node number

o\°

lrn = nnx; % lower right node number

1ln = 1; % lower left node number

topEdge = [uln:1l:(urn-1); (uln+l):l:urn]1°';
topEdgel=[uln:2: (urn-2); (uln+l):2: (urn-1); (uln+2):2:urn 1°';
botEdge = [1lln:1:(lrn-1); (lln+1):1:1rn 1°';

C34

% GET NODES ON ESSENTIAL BOUNDARY

botNodes = unique (botEdge) ;
topNodes = unique (topEdge) ;
leftNodes =(lln:nnx:uln)';
rightNodes =(lrn:nnx:urn)';

dispNodes = botNodes;
rightNodesl=rightNodes (2:end) ;
leftNodesl=leftNodes (2:end) ;

dispNodesl=union (leftNodesl, rightNodesl) ;
leftEdge=[leftNodes (l:nny-1,:),leftNodesl];
rightEdge=[rightNodes (1l:nny-1, :),rightNodesl];

end
end % end of function
plot_def

function plot def(fac,u x,u y,elemType,dispNodes,dispNodesl)
% Plots the deformed finite element mesh with the support condition
global node element

figure

clf

hold on

plot mesh (node+fac*[u x u yl],element,elemType, 'b-");
title (' Numerical deformed mesh ')

plot (node (dispNodes, 1) ,node (dispNodes, 2), "ks');

plot (node (dispNodesl, 1) ,node (dispNodesl,2), "ko");

o)

end % end of function

plot_defo

function plot defo(fac,u x,u y,elemType)

o\°

plots the color coded displacement intensity in the finite element
% region along with color bar scale.

global node element

figure

clf

subplot(2,1,1);

plot field(node+fac*[u x u y],element,elemType,u x);
colorbar

title('Deformation plot, U X')

subplot(2,1,2);

plot field(nodet+fac*[u x u y],element,elemType,u y);
colorbar

title('Deformation plot, U Y'")

o)

end % end of function

C35

plot_field

function plot field(node,connect,elem type,field)

[

if

e
els

e
end
$ £
if

end

hol
hol

if
o
els
o
els
o
els
o
els

els
o
end

for

end

sha
axi
if
h
end
end

(size(field) == size(connect)
lementalField=1;

e

lementalField=0;

11l node if needed
(size(node,2) < 3)
for c=size(node,2)+1:3

node (:,c)=[zeros(size(node,1),1)];

end

dState=ishold;
d on

(strcmp (elem type, 'Q9"))
rd=[1,5,2,6,3,7,4,8,11;

eif (strcmp(elem type, 'T3'))
rd=[1,2,3,11;

eif (strcmp(elem type, 'T6'))
rd=[(1,4,2,5,3,6,11;

eif (strcmp(elem type,'04'))
rd=[1,2,3,4,11;

eif (strcmp(elem type, '08'))
ord=[1,5,2,6,3,7,4,8,11;

eif (strcmp(elem type, 'L2'))
rd=[1,2];

e=1l:size(connect, 1)
xpt=node (connect (e,ord), 1) ;
ypt=node (connect (e, ord), 2) ;
zpt=node (connect (e, ord), 3) ;

if (elementalField)
fpt=field(e,ord);
else
fpt=field(connect (e,ord));
end

fill3 (xpt, ypt, zpt, fpt)

ding interp

s equal

(~holdState)
old off

[

% end of fuction

)

o

o\°

o\°

Q9

T3

T6

04

08

L2

% Forms a color dependent finite element mesh for plotting outputs

element

element

element

element

element

element

C36

plot_m
function plot m(elemType,dispNodes,dispNodesl)

o)

% Plots the finite element mesh with the support condition
global node element

v=get (0, 'ScreenSize");

figure('Color',[1 1 1])

hold on

plot mesh (node, element,elemType, 'b-");

plot (node (dispNodes, 1), node (dispNodes, 2), "ks');
plot (node (dispNodesl, 1) ,node (dispNodesl,2), 'ko');
axis off

o)

end % end of function
plot_sig
function plot sig(fac,u x,u y,elemType,stress)

% plots the color coded stress distribution in the finite element
% region along with color bar scale.

global node element

figure

clf

subplot (3,1,1);

plot field(node+fac*[u x u_y],element,elemType,stress(:,:,1));
colorbar

title('Stress plot, sigma xx')

subplot (3,1,2);

plot field(node+fac*[u x u y],element,elemType,stress(:,:,2));
colorbar

title('Stress plot, sigma yy')

subplot (3,1, 3);
plot field(node+fac*[u x u_y],element,elemType,stress(:,:,3));
colorbar

title('Stress plot, sigma xy')

end $ end of function

C37

plot_mesh

function plot mesh (node, connect,elem type, se)

% Plots the finite element mesh

if (nargin < 4)
se="w-"';
end

holdState=ishold;
hold on

% fill node if needed
if (size(node,2) < 3)
for c=size(node,2)+1:3

node (:,c)=[zeros(size(node,1),1)];

end
end

for e=l:size (connect, 1)

if (strcmp(elem type, 'Q9")) %
ord=[1,5,2,6,3,7,4,8,11;

elseif (strcmp(elem type, '08")) %
ord=[1,5,2,6,3,7,4,8,1];

elseif (strcmp(elem type, 'T3")) %
ord=[1,2,3,1]1;

elseif (strcmp(elem type, 'T6")) %
ord=[1,4,2,5,3,6,1];

elseif (strcmp(elem type, '04")) %
ord=[1,2,3,4,1];

elseif (strcmp(elem type, 'L2')) 3
ord=[1,2];

end

for n=l:size(ord, 2)

xpt (n)=node (connect (e,ord(n)),1l);
ypt (n) =node (connect (e, ord(n)),2);
zpt (n)=node (connect (e, ord(n)),3);
end
plot3 (xpt, ypt, zpt, se)

end
axis equal

if (~holdState)
hold off
end

o)

end % end of function

9-node quad element

8-node

3-node

6-node

4-node

2-node

quad element

triangle element
triangle element
quadrilateral element

line element

C38

	Title Page
	abstract title keywords.pdf
	Binder3.pdf
	abstract title keywords.pdf
	Thesis_Feysel_2012.pdf
	Preface acknowledgement.pdf
	Binder2.pdf
	Binder1.pdf
	table of contents list of figures.pdf
	all chapters.pdf
	appendix A variables descri.pdf
	Appendix B function descri.pdf

	appendix C all functions.pdf

