
An Investigation of Potential Methods for
Topology Preservation in Interactive
Vector Tile Map Applications

Robert Patrick Victor Nordan

Master of Science in Engineering and ICT

Supervisor: Terje Midtbø, BAT

Department of Civil and Transport Engineering

Submission date: June 2012

Norwegian University of Science and Technology

ii

An Investigation of Potential Methods for
Topology Preservation in Interactive Vector Tile

Map Applications
Master thesis TBA4925

Stud.techn. Robert Patrick Victor Nordan
Division of Geomatics
Department of Civil and Transport Engineering
Faculty of Engineering Science and Technology
Norwegian University of Technology and Science (NTNU)

Abstract
Vector tiling is a new trend that the geospatial industry is likely to explore in
coming years, bearing the promise of the advantages in clarity and interactivity
afforded by vector data whilst also providing a cacheable and efficient solution akin
to raster tiles. An important question is then to ascertain how one might ensure
that topological metadata is preserved across tiles; i.e. how does one convey the
fact that two lines on adjacent tiles are in fact part of the same road?

This report aims to explore this question by assessing current vector tile so-
lutions, and creating hypothetical solutions for a vector tile system that delivers
tiles with topology preserved in line with the Simple Features Access Specifica-
tion. Some of the most promising of these are selected for prototyping, and the
prototypes are tested with regard to speed and functionality. Finally conclusions
about suitable methods are drawn based on these tests. Furthermore, the suitabil-
ity of using vector tiles for a Geographic Information System (GIS) application is
discussed.

Sammendrag
Bruken av vektordata tile å lage kartfliser er en ny trend som det er sannsynlig
at geomatikkindustrien vil utforske i de kommende årene, siden det muliggjør den
typen fordeler innenfor klarhet og interaktivitet som vektordata tilbyr, samtidig
som det gir en effektiv løsning som kan mellomlagres slik som fliser laget med
rasterdata. Et viktig spørsm̊al i s̊a måte er hvordan man sikrer at topologiske
metadata bevares mellom fliser, med andre ord: Hvordan formidler man det fak-
tum at to linjer p̊a tilstøtende fliser faktisk er del av det samme veistykket?

iii

Målet med denne rapporten er å utforske dette spørsmålet ved å vurdere ek-
sisterende løsninger med vektorbaserte kartfliser, og skape hypotetiske løsninger
for et vektorbasert system som leverer kartfliser med topologien bevart i tr̊ad med
SFA-standarden. De mest lovende av disse utvelges for testing med prototyper
der hurtighet og funksjonalitet utforskes. Til slutt konkluderes det p̊a grunnlag
av disse observasjonene. Videre vil ogs̊a nytteverdien av å bruke vektorfliser i et
geografisk informasjonssystem bli diskutert.

iv

Preface
It’s a bit bitter-sweet to write the preface to this thesis, as it marks the end of
five great years at NTNU. (As always, the first thing the reader sees is the last
thing the author writes.) I’ve been very happy as a student at the department
of Geomatics, and I look forward to applying my skills in the industry. (I’m also
looking forward to working nine to five, five days a week, since that will actually
be less work than what I’ve been doing in the last year!)

From that perspective, this thesis has been a fitting final task at NTNU. It
combines areas of interest to me, and explores areas that probably will be of
interest to the geospatial industry in the coming years. I would like to thank Sverre
Wisløff, Rune Aasgard and Harald Jansson of Norkart Geoservice for enlightening
discussions that helped shape the research goals for this thesis, Terje Midtbø for
his work as my advisor, and Mats Taraldsvik for continuing to be a useful sounding
board for ideas whenever I wanted to discuss something. Finally, I wish to thank
my parents for giving me a good enough start in life that I’ve ended up writing
these words, and my beloved Christina once again helping to preserve my sanity
while I’ve been working against a deadline.

Trondheim, June 10, 2012

Robert Patrick Victor Nordan
rpvn@robpvn.net

v

vi

Contents
Abstract v

Preface vi

Table of Contents x

List of Figures xi

List of Tables xi

1 Background & Related Work 1
1.1 Interactive Browser Based Maps . 1

1.1.1 Plug-ins Versus HTML & JavaScript 2
1.1.2 Raster Maps . 3
1.1.3 Vector Maps . 3

1.2 Tiling . 5
1.2.1 Tiling in Vector Maps . 7

1.3 Simple Feature Access Specification 8
1.4 Current Browser Based Map Frameworks 8

1.4.1 Plug-in Based Frameworks 9
1.4.2 HTML & JavaScript Based Frameworks 10

1.5 Current Vector Tiling Implementations 12
1.5.1 GIS Cloud . 12
1.5.2 Polymaps & TileStache . 14
1.5.3 Mapnik Metawriter . 16
1.5.4 Nokia Maps 3D . 17

2 Project Goals 19
2.1 Motivation . 19
2.2 Project Outline . 19
2.3 Desired Outcome . 20

3 Challenges with Vector Tile Generation 21
3.1 Generalisation . 21
3.2 Tile Sectioning & Overlap . 22
3.3 Features With Multiple Geometries 22
3.4 Data Completeness . 24
3.5 Unique Feature Identification . 27
3.6 Rendering & Concatenation Order 27

vii

4 Potential Data Structures & Algorithms 29
4.1 Global Feature Search . 29

4.1.1 Tile Specification . 29
4.1.2 Construction & Concatenation Algorithms 29
4.1.3 Probable Advantages . 31
4.1.4 Probable Disadvantages . 31

4.2 Edge Pointers . 31
4.2.1 Tile Specification . 32
4.2.2 Construction & Concatenation Algorithms 32
4.2.3 Probable Advantages . 35
4.2.4 Probable Disadvantages . 35

4.3 Central Feature Registry . 36
4.3.1 Tile Specification . 36
4.3.2 Construction & Concatenation Algorithms 36
4.3.3 Probable Advantages . 37
4.3.4 Probable Disadvantages . 37

4.4 Probabilistic Matching . 38
4.4.1 Tile Specification . 38
4.4.2 Construction & Concatenation Algorithms 38
4.4.3 Probable Advantages . 39
4.4.4 Probable Disadvantages . 39

4.5 Combined Approaches . 40

5 Application Architecture 41
5.1 Server Side Application . 42

5.1.1 Extensions . 42
5.1.2 Tile Transfer Format . 43
5.1.3 Cache . 45

5.2 Client Side Application . 45
5.2.1 Modifications & Supporting Code 46
5.2.2 Rendering & Concatenation Order 47
5.2.3 Integrated Web Server . 47
5.2.4 Issues With Polygon Union 47
5.2.5 Automatic Tester . 51
5.2.6 Demonstration Applications 53

6 Experimental Design 55
6.1 Data Structures & Algorithms Selected for Testing 55
6.2 Test Cases . 56

6.2.1 General Case - Multiple Geometries 56
6.2.2 Special Case - Single Geometries 56

viii

6.3 Testing Patterns . 59

7 Results & Discussion 60
7.1 Algorithmic Execution Speed Analysis 60

7.1.1 Generalised Global Search 60
7.1.2 Specialised Global Search 60
7.1.3 Edge Pointers . 61
7.1.4 Summary . 61

7.2 Timing Results . 61
7.2.1 Download Times . 62
7.2.2 Concatenation Times . 65

7.3 Non-Normality of Tile Loading & Concatenation Time Distributions 68
7.3.1 Implications . 70

7.4 Feasibility of GIS Operations . 71
7.4.1 Data Completeness . 71
7.4.2 Projection & Distortions . 72
7.4.3 Preservation of Data Integrity 73
7.4.4 Data Upload . 73

8 Conclusions 75
8.1 Observations . 75

8.1.1 Generalised Versus Specialised Methods 75
8.1.2 Importance of Added Data 75
8.1.3 Importance of Caching . 75

8.2 Recommendations . 76
8.2.1 Choice of Methods . 76
8.2.2 Utility for GIS Operations 76

9 Future Work 77
9.1 Further Development, Speed & Compactness 77

9.1.1 Polygon Union in JavaScript 77
9.1.2 GIS Enhancements . 78

9.2 Tile Load Distributions . 78

References 86

Appendix 87

A Project Assignment 87

ix

B Trying Out the Prototype 91
B.1 Online Demonstration . 91
B.2 Running the Prototype Locally . 91

B.2.1 Trying the Experimental Union 92

C Electronic Attachments 93

D Tilestache Modifications 94

E Polymaps Modifications 95

F Test Computer Specifications 96

G Licences 97
G.1 Application . 97
G.2 Project Report . 97

x

List of Figures
1.1 Visualisation of a raster data structure 4
1.2 Visualisation of a vector data structure 5
1.3 Visualisation of a tile pyramid . 6
1.4 Illustration of GISCloud.com interface 13
1.5 Demonstration of Polymaps Statehood example 14
1.6 Illustration of visible edges in Polymaps 15
1.7 Demonstration of Mapnik Metawriter 16
1.8 Illustration of tile loading in Nokia Maps 3D 18
3.1 Illustration of raster tile sectioning 23
3.2 Illustration of vector tile sectioning 23
3.3 Illustration of multiple geometries in The United Kingdom. 25
3.4 Illustration of multiple geometries in Portugal. 26
4.1 Illustration of edge pointer generation algorithm 33
5.1 Illustration of server-client interaction 41
5.2 Illustration of tile removal errors . 46
5.3 Illustration of degenerate vertex edges 49
5.4 Illustration of errors in experimental union 51
5.5 Illustration of pseudo-union in practice 52
5.6 Illustration of a combined raster & vector tile application 54
5.7 Illustration of a pure vector tile application 54
6.1 Illustration of the general case data set 57
6.2 Illustration of the special case data set 58
7.1 Histogram of all 3998 download times for special data set, cached. . 63
7.2 Histogram of all 1999 concatenation times for special data set, cached. 66
7.3 Histogram of 999 concatenation times for special data set, cached. . 66
7.4 Estimated fit of Gamma distribution to the special case, experimen-

tal union data. 70

List of Tables
1.1 Summary of browser based map frameworks. 9
7.1 Number of usable samples from all test runs. 62
7.2 Mean download time from all test runs. 62
7.3 Download time variance from all test runs. 62
7.4 Standard deviation of download time from all test runs. 62
7.5 Mean concatenation time from all test runs. 65
7.6 Concatenation time variance from all test runs. 65
7.7 Standard deviation of concatenation time from all test runs. 65

xi

xii

1 Background & Related Work

1 Background & Related Work

1.1 Interactive Browser Based Maps
Interactive browser based maps are nearly as old as the internet itself, with the
first attempts made as early as 1993.[1] This was less than two years after Tim
Berners-Lee introduced the World Wide Web[2], but already then the basic con-
cepts of a map window with tools for panning and zooming were in place. Seen
with the eyes of today, they seem primitive and slow, for every movement entailed
a full refresh of the web page. Map images had to be generated on the server and
downloaded for every panning or zooming action.

In 1996, the commercial service called MapQuest was introduced. It made
available features like routing to determine driving routes between places, and
quickly became very popular. In fact, it held the largest market share of online
map services until 2009[3]. While MapQuest certainly was a step up from previous
efforts, it still performed panning and zooming operations with full page reloads.
In this period, many map services moved from redrawing the map for each request
to caching it, since the limited navigation options meant that only specific bound-
ing boxes could be requested. (The implication being that those images could be
drawn up in advance.)[4]

In the professional GIS field, internet map applications were also being devel-
oped, culminating in the Web Map Server (WMS) standard that was introduced
in the year 2000.[5] It defined clear and interoperable means to fetch map data,
but still required the data to be rendered upon each request.

In 2005, Google introduced their Maps service. Google Maps introduced a new
paradigm, the so called ”slippy map”, where users can pan and zoom fluidly with-
out reloading the page, and without having to install any additional plug-ins in
their browser. This was accomplished through the use of raster tiles (see section
1.2 for more on tiling) and ”Asynchronous JavaScript And XML”, or Ajax as it
is commonly known.[4] Ajax requests allow the browser to add new items to the
web page by manipulating the HTML, and to initiate downloads of new data in
the background.[6]

Another new concept introduced by Google Maps is the use of Application
Programming Interfaces (APIs) to give other developers access to their map tools.
As well as meaning that Google Maps could easily be integrated in any website,
this inspired a blooming of neogeographic ”mash-ups”, where outside developers
used Google Maps in conjunction with their own data to create new products.[7]

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

1

1 Background & Related Work

The Google Maps model quickly became popular, with all the other major map
websites adopting it as well the then nascent OpenStreetMap (OSM) organisation.
(OSM is a freely available map where all the background data is contributed by
volunteers and also freely available.[8]) All of the HTML and JavaScript based web
map frameworks listed in section 1.4 depend on Ajax for fetching data regardless
of whether working with tiles or with WMS, something that proves its utility.

In the last few years web maps have had more functionality added to them,
such as Google Street View [9] and similar services inspired by it, the ability for
users to add their own points of interest, and support for mobile devices and ge-
olocation. (Geolocation is a term applied when the user’s device determines its
position and supplies that to the map service.)[10] However, the basic principles
behind map delivery do not seem to have changed that much. With the arrival and
broad implementation of HTML 5 new possibilities have opened up, and new map
frameworks have started arriving which make use of those features. (See section
1.4 for more information.) As a part of that, the possibility of making more use
of vector tiles has appeared. This is something that will be explored more in this
report.

1.1.1 Plug-ins Versus HTML & JavaScript

There are two main ways of delivering a browser based map: One is to use only
technology available in the typical browser environment, and the other is to make
use of extensions to the browser known as plug-ins. These plug-ins are hooked into
the browser and provide facilities like use of a different programming language, rich
libraries for development, connections to the underlying operating system or access
to hardware components. Examples of plug-ins include Adobe Flash, Microsoft Sil-
verlight and Oracle Java.[11]

Typically, while plug-ins have offered greater power and flexibility to the devel-
oper, they have also burdened the user with increased maintenance issues related
to installing and updating them.[11, 12] Therefore, many users like to avoid them
where possible, and one of the motivations behind the coming HTML 5 standard
is to reduce the reliance on plug-ins.[13] It is the opinion of the author that HTML
5 will grow to be the dominant method of delivering map data on the web.

See section 1.4.1 for more details on the plug-ins currently used for mapping
applications.

2 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

1.1.2 Raster Maps

Raster data is one of the two major ways of modelling spatial data. In a raster
data model, geography is described as a grid of cells, where each cell has a value
denoting the kind of feature that occupies the space represented by the cell.[14]
(See figure 1.1 for an illustration of how raster data is constructed.) It can be
used for data storage and analysis, but also for visualising data of any format. A
typical example of this in a web context is data (that may originally be in a vector
format) rendered to an image file for purposes of display. In other words a visual
representation of the map data, which is how most casual map users interact with
it.

Raster maps are completely dependent on the resolution of the data file where
the source is a raster data file, or the resolution of the rendered image where it has
been rendered from another type of data source. If one only has one resolution
available, zooming in will result in the map data becoming steadily more block-like
and harder to comprehend. Many systems for visualisation, such as WMS or tiling
systems render the map data in many different resolutions as required so that the
user is always presented with relatively smooth images.

1.1.3 Vector Maps

The other major way of representing spatial data is vector data, which is built up
of points with given coordinates. The points can be connected to form lines, and
lines can connect to form polygons, and through those three structures one can
represent every kind of geographic feature.[14] (See figure 1.2 for an illustration
of how vector data is constructed.) This data format is often used for analytic
work, but also for visualisation. One major advantage of this approach is that one
has easy access to all the relevant data of an object, allowing it to be queried for
additional information if needed.

Vector data is independent of resolution, as for every zooming action taken
the map image can be redrawn using the source data. The disadvantage is that
the map image must be redrawn by the client for every action, and that the entire
data set to be must be transmitted, even if it is more detailed then what is needed.

The Open Geospatial Consortium (OGC) has standardised a method for trans-
mitting vector data over the web, called the Web Feature Service specification
(WFS).[16] It allows the query of and transmission of vector data specified by a
bounding box, using the Geographic Markup Language (GML). The Transactional

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

3

1 Background & Related Work

Figure 1.1: Visualisation of the the stages of converting a collection of points to a raster
grid. 1) Define a grid size. 2) Superimpose grid on data points. 3) Count the number
of points in each grid section. 4) Visualise the the grid using grey levels. (Illustration
from [15])

4 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

Figure 1.2: Visualisation of the components that make up a vector data structure. Each
data type is composed of elements of the previous data type.

variant (WFS-T) also allows the user to upload data to the server for editing pur-
poses in a GIS application. WFS, much like WMS, makes no reference to tiling
implementations.

1.2 Tiling
Tiling is the name applied to a method for delivery of map data where the map
client is sent many small pieces of a larger whole, which are then reassembled to
be presented to the user. (The name being derived from the similarity it has to
using many ceramic tiles to make up a larger surface like a floor.)

As mentioned previously, raster tiling techniques for web maps were popu-
larised by Google Maps, and raster tiles are now among the most common forms
of delivering maps on the web. There are a lot of non-standardised implementa-
tions of raster tile solutions available, but all of them share certain common traits.
They are broadly compatible with each other, but may differ in details such as the
position of the coordinate system origin.

Drawing on the experiences of the industry in developing tile solutions, the
OGC coalesced the common features of the various tiling applications into the
Web Map Tile Services (WMTS) standard. It defines common behaviour for cre-
ating interoperable tile server systems, and is a sign of maturity for this kind of
solution. Noticeably, while the WMTS standard is based mainly on experiences

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

5

1 Background & Related Work

with raster tile systems, it has been future-proofed by not placing any restrictions
on what kind of data is delivered in each tile. (It is instead up to implementing
products to announce the kinds of data being delivered through methods defined
by the WMTS, and connecting clients to handle that correctly.)

In order to section the rendering up into tiles, one takes as a starting point a
single tile encompassing the entire world as projected in the chosen projection.[17]
(This is known as zoom level zero.) Thereafter, one divides the tile up into four
equal parts, where each resulting section equals a tile at zoom level one. Each of
these tiles renders an area on quarter the size of the previous zoom layer onto an
area the same size as the previous rendering, which means each geographic feature
is magnified accordingly. This process is repeated as many times as needed to get
to the desired zoom level. (See figure 1.3 for a visualisation.)

Figure 1.3: Visualisation of a tile pyramid, showing how the contents of one tile at a
low zoom level is split into many tiles at a higher zoom level.

6 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

This way of sectioning up the map area is called an image pyramid, or more
technically a quad tree index system.[18] The tile addressing system is is a logical
consequence of this way of sectioning tiles. Every tile is identified by a zoom num-
ber relating to the level of the tree, and a pair of row and column numbers within
that zoom level. Together the three numbers make up a unique key for the tile.
This key is easy to use for fetching tiles, as they can be stored in a folder system
so that the tile Uniform Resource Locator (URL) becomes something along the
lines of ”http://example.com/maptiles/zoom/row/col.png”.

Most raster tile systems use a spherical Mercator projection made popular by
major commercial internet map providers such as Google and Microsoft, as well
as the OpenStreetMap project. [19, 20] It has also been defined as a well-known
scale set in the WMTS standard. (But it must be noted that this is by no means
the only possible projection.) This projection, known as the EPSG:3857 ”WGS 84
/ Pseudo-Mercator”[21] uses metres as its unit of measurement. With the correct
boundaries set, this projection will render a tile containing the world at zoom level
zero as a square, which propagates down to all other zoom levels.

1.2.1 Tiling in Vector Maps

While using vector data for web maps has been the subject of a fair amount of
scientific research, the question of creating a tiling solution with vector data so
far has only been approached by a few researchers.[22, 23] On the other hand,
members of the geospatial industry have recently expressed significant interest in
this. [24, 25, 26] At least four organisations have deployed solutions using some
variation of vector tiles, and one can assume that other companies are working on
the same issues and will probably be following suit by deploying similar solutions
in the near future.

The major potential advantage of using tiled vector maps is the ability to com-
bine the extra information capacity of vector data with the speed of raster tiles.
For example, it could be used to create a fast loading slippy map that also allows
the user to highlight features of interest, query extra information and change map
styles on the fly, without downloading any additional data.

As the development and deployment of vector tile solutions is at such an early
stage, there are no formal standards for implementations. Furthermore there have
not yet evolved any de facto standards as deployed by market leaders. A credible
assumption would be that vector tiling will develop in much the same way as first
Web Map Services and then Web Map Tile Services have: First diverse innovation,

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

7

1 Background & Related Work

then widespread adoption which leads to informal or de facto standardising, and
finally a formal standardisation process. [27, 5, 17] Currently we are experiencing
the first of these phases, and the work contained in this thesis is intended to be
a part of that diverse innovation. (As a side note, there are also elements of the
last phase in play due to the WMTS standard being format-agnostic, so there is a
possibility that it may guide the further development of vector tiles.)

The most significant academic work on vector tile solutions that the author has
been able to locate is [22], which explored many of the same areas as this report.
Hopefully, this report will provide a more thorough examination of some of the
aspects covered there, as well as shed light on some aspects not covered in that
report.

1.3 Simple Feature Access Specification
The Simple Features Access Specification (SFA) is an OGC standard for accessing
geographic information in a predictable and interoperable fashion.[28] It defines
a baseline set of common geographic constructs that all conforming implementa-
tions must provide, with extensions for specific situations such as access through
Structured Query Language (SQL).[29]. All OGC standards regarding data stor-
age and vector data refer to the SFA, and most spatial databases and data formats
also base themselves on this specification. (In general, the constructs contained in
the SFA are constructs that were widely agreed upon and implemented in most
geographic system even before the standards process started, as is often the case
in a standardisation process.)

Since the current standard methods of dealing with vector data, WFS and
GML, comply with the SFA it is of interest to establish in what ways vector tile
solutions could be made to be compliant as well. This is particularly important
if one was to consider using such solutions for GIS analysis work in addition to
presentation.

1.4 Current Browser Based Map Frameworks
The following is an overview of current browser based map frameworks in common
use, along with some of their defining characteristics. Table 1.1 summarises them
for easy reference.

8 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

Name Type Map types
ArcGIS Silverlight Silverlight, Proprietary Raster & vector
ArcGIS Flex Flash, Proprietary Raster & vector
OpenScales Flash Raster & vector
OpenLayers HTML4, JavaScript Mainly raster, some vector
Leaflet HTML5, JavaScript Mainly raster, some vector & tiles
Cartagen HTML5, JavaScript Vector only
Polymaps HTML5, JavaScript Mainly raster, some vector & tiles
Tile5 HTML5, JavaScript Raster
Ovi Maps 3D HTML5, JS, WebGL, prop. Vector

Table 1.1: Summary of browser based map frameworks. Frameworks are available under
an open source licence except where noted.

1.4.1 Plug-in Based Frameworks

These frameworks are dependent upon the user having external plug-ins installed in
their browser. Currently, the two plug-ins that are used for mapping applications
as identified in the following section are Adobe Flash and Microsoft Silverlight,
both of which are proprietary but freely available for installation in browsers. They
provide general purpose programming environments which allow for many different
types of interactivity, where mapping is just one. The Flash plug-in is available
for Windows, Mac OS X and Linux operating systems as well as several mobile
phone operating systems such as Android. (But not iOS, the second most popular
smartphone operating system.)[30, 31] The Silverlight plug-in is only available for
Windows, Mac OS and Windows Phone 7 operating systems.[32]

ESRI ArcGIS API for Microsoft Silverlight A commercial product from
Environmental Systems Research Institute (ESRI), the world’s largest vendor of
commercial geographical informations systems. [33] The ESRI ArcGIS API allows
the creation of rich internet applications with mapping, and allows the use of both
raster and vector data sources. The framework is closely tied to ESRI’s ArcGIS
Server products and is designed to utilise them as much as possible, and while
using the ArcGIS API for Silverlight is free of charge deploying a ArcGIS Server
can be very expensive. The product depends on the Microsoft Silverlight plug-in,
and cross platform support is therefore somewhat limited. [34, 35]

Vector tiles are not directly supported, but can probably be approximated
through custom code. This would be accomplished by creating a special class that

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

9

1 Background & Related Work

requests and receives vector tiles in response to map movements, concatenates
them and then inserts them into the map as a standard vector data type.

ESRI ArcGIS API for Adobe Flex Functionally more or less equivalent to
the ArcGIS API for Silverlight, this product uses the Adobe Flash plug-in and is
therefore supported on more platforms. According to ESRI, the choice between
Flash and Silverlight platforms should depend entirely on what the developer is
most comfortable with.[34]

OpenScales An open source framework using the Adobe Flash plug-in that can
utilise both raster and vector data sources, with emphasis on compatibility with
specifications set forth by the Open Geospatial Consortium. Originally began as a
port of the OpenLayers project (see the next section) from JavaScript to Action-
Script, it has evolved to take advantage of the capabilities of the Flash platform.[36]
As a result it has vector capabilities on par with the ArcGIS API products.

Vector tiles are not directly supported, but can probably be approximated
through custom code in the same way as previously noted.

1.4.2 HTML & JavaScript Based Frameworks

These frameworks only depend on features present in the browser to function.
When a framework is said to depend on HTML 4, it will work on all current
browsers as well as older browsers such as Internet Explorer 6. (Released in
2001.[37]) If the framework depends on HTML 5, it requires a newer browser.
HTML 5 support has been added piece by piece to browser releases in the last few
years, and can be said in general to be supported by the current versions of all
major browsers. [38]

OpenLayers Currently the most popular open source web map framework[20],
OpenLayers is JavaScript based and designed to function in older browsers such
as Microsoft Internet Explorer 6.[39] It depends on HTML 4 and therefore does
not make use of the newer features available in HTML 5, which is what allows it
to support older browsers but also precludes it from making use of more powerful
features in modern browsers. Historically it has not been very strong on mobile
devices, but there has been some recent development to improve the support in
that area.

While it does support vectors, it is known to have somewhat poor performance
if many vectors are displayed simultaneously. [39] Vector tiles are not directly

10 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

supported, but can supported with custom code as has been done in [40]. (See
section 1.5.3 for more information.)

Leaflet Leaflet is a relatively recent mapping framework which has already ac-
quired a fair amount of traction. Using HTML 5 to gain speed and features at the
expense of backwards compatibility, it focuses on a solid implementations of core
features. The architecture is meant to be easy to extend via third party plug-ins
for new functionality. Furthermore, equal weight is placed on compatibility with
both desktop and mobile browsers.[41]

As mentioned in section 1.5.1, GisCloud uses Leaflet with some custom code
and a proprietary back-end to allow for the use of vector tiles. This implementation
appears to preserve topology between objects, but also makes compromises such
as delivering objects that at the given scale would be visualised as single pixels as
single pixel values without any other information. That reduces the possibilities
for geographic analysis somewhat. Since it has been implemented there can be
no doubt that vector tiling is possible with this framework, and a topologically
coherent system should be achievable with a certain amount of custom code.

Cartagen Cartagen is an open source HTML 5 framework that focuses purely
on vector data. Users can style the map using Geographic Style Sheets (GSS), and
it allows great interactivity. Cartagen is closely tied to OpenStreetMap data, using
a data format known as OSM-JSON for importing and exporting vector data.[42]

Cartagen is focused on vectors, but currently operates by reading in big vector
data files. All generalisation and similar processing is done in the client, which
can cause rather long processing times when drawing data. There is no support
for vector tiles, but support could probably be approximated with some amount of
custom code. In contrast to previous frameworks, this one has innate support for
vectors but no support for tiles. Therefore the custom code would have to handle
tile logic, download and concatenation before appending new vector info to the
map.

Polymaps Polymaps is a relatively new mapping framework that aims to allow
fast and easy rendering of maps, while using Scalable Vector Graphics (SVG) for
displaying vector data. It also allows styling of map data with ordinary Cascading
Style Sheets (CSS).[43] It makes use of features in HTML 5, thereby sacrificing
backwards compatibility for a greater feature set. Polymaps is designed to be sim-
ple and easy to use for both cartographers and designers.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

11

1 Background & Related Work

As mentioned in section 1.5.2, Polymaps supports vector tiles out of the box.
They are however not topologically coherent, with visible seams between the tiles in
the tiling demonstration.[44] Building a topologically coherent vector tile system
based on this framework would probably be fairly straight-forward with some
custom code that handles concatenation.

Tile5 An open source framework focusing on mobile devices and providing the
same API regardless of data source, using HTML 5.[45] Has reached maturity, but
active development has been reduced and the product is only being maintained.[46]

Supports vector data sources like GeoJSON, but not tiling directly. Could
probably be approximated with custom code in a similar fashion to OpenLayers
or Leaflet.

1.5 Current Vector Tiling Implementations
The following paragraphs detail four current vector tile solutions. Not all infor-
mation pertaining to these solutions is publicly available, and they may depend
on proprietary components on the server side. Information about them has been
collected from public statements by the makers and by examination of client side
behaviour in web browsers.

1.5.1 GIS Cloud

GIS Cloud is a company that offers GIS tools for use in an online, browser-based
environment with data storage on their servers. (So called ”cloud computing”.)[47]
As a part of these services, they have developed a mapping client that can utilise
tiled vector data (among many data sources) for faster delivery and display.[48]

The tiles are highly optimised for speed and are generated on demand by a
proprietary back-end. The tile addressing scheme seems to be similar to the com-
mon approach of establishing a pyramid as detailed in section 1.2. The features
are pre-generalised and all coordinates are converted to screen coordinates, and
every object that is calculated to have a display size of under a pixel is dropped
and replaced by a single pixel value.[49] The tiles do not contain metadata, but
every object (that is displayed as more than one pixel in size) is identified with a
unique identification number. When a user clicks on a tile for more information, a
POST request[50] with that identification number is sent to the server asking for
information which is then received and displayed.

12 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

Figure 1.4: Illustration of GISCloud.com interface, showing a vector tile presentation
of population in Africa.

It appears to be through this identification number that topology is preserved,
as the individual tiles do not carry any other indications of objects in neighbour-
ing tiles. Therefore the concatenation of tiles is probably accomplished by looking
for features in neighbouring tiles with matching ID numbers and then creating a
union of them, in a fashion akin to the method described in section 4.1. Unlike the
Polymaps case, it is quite evident that the contents of the tiles are concatenated in
some fashion, as hovering the mouse over a polygon will highlight the whole poly-
gon with accentuated edges. If features on different tiles were not concatenated,
the accentuated edges would not be along tile boundaries rather than borders.

The client side of GIS Cloud utilises a lot of open source code, like the Leaflet li-
brary, but the back-end is completely proprietary and tailored for their purposes.[49]
As such it should be possible to examine the client code and build a similar client
side solution based on the same tools. However, the most important part of any
tiling solution is the server side back-end, and since the GIS Cloud back-end is
proprietary not much can be learned about it other than publicly disclosed details.
There is no way to directly build a vector tile solution on the GIS Cloud back-end,
but the public details can be taken into consideration when designing a similar
solution.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

13

1 Background & Related Work

1.5.2 Polymaps & TileStache

Polymaps is a web mapping framework designed by SimpleGeo Inc. and Stamen
Design, designed to take advantage of HTML 5 capabilities. One of the features of
this framework that is displayed as an example [44] (See figure 1.5) is the ability
to use vector tiles as a data source. There do not appear to be any production
deployments using this yet.

Figure 1.5: Demonstration of the Polymaps Statehood example, using vector tiles.

14 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

The tiles are generated as individual GeoJSON files[51, 52], and since they are
compliant with the GeoJSON standard they appear to not contain any special
optimisations beyond what is allowed by the standard. Each tile has a number of
self-contained features that would still be usable if every other tile was missing.
The features do however have unique identification numbers which identify them
even when they are split across several tiles, like with the GIS Cloud example.
These ID numbers are checked against a table to retrieve information on the fea-
tures. (In principle it could also have led to a query over the network for more
information.)

Unlike the GIS Cloud example, the Polymaps example does not appear to con-
catenate the tiles and their features in any way. There are visible gaps between
polygons, and there is no highlighting when the mouse is held over a feature.(See
figure 1.6 for an illustration.)

Figure 1.6: Illustration of visible edges and lack of highlighting in Polymaps

Both the client side and the server side of this example are fully open source.
The back-end used is called TileStache, and is designed to be easily extensible
to handle both new types of input and new types of output. Therefore there are
great opportunities for learning from the set-up, and also for building a vector
tile solution based on it. (It is possible to deploy an exact clone of the existing

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

15

1 Background & Related Work

example.) The inherent extensibility in TileStache makes it a good candidate for
building upon.

1.5.3 Mapnik Metawriter

The Mapnik rendering engine is a popular open source tile renderer, which is used
by the OpenStreetMap project. As a part of the Google Summer of Code 2010
(An initiative sponsored by Google that sponsors open source development[53]), a
tile metadata renderer was implemented. This renderer outputs JSON tiles that
contain coordinates and information regarding features as they are rendered on the
raster tiles, and is intended as a complement to the raster tiles. Figure 1.7 shows
a demonstration of how it is used to add extra information and interactivity. It
could probably be successfully used for a pure vector tile implementation as well,
if one does not deliver the raster tiles.

Figure 1.7: Demonstration of Mapnik Metawriter, showing a bridge section highlighted.

The client side is implemented as a plug-in for OpenLayers, where the vectors
from the tiles are loaded in as ordinary vector objects in OpenLayers. This gets
a bit slow and inefficient at lower zoom levels when more objects are on screen at
once. There is no concatenation of feature segments, as each vector tile instead
carries the entire feature that intersects it, not just the intersection. While being
easier to handle (it simply checks whether the feature in question has already been

16 Stud.techn. Robert Patrick Victor Nordan

1 Background & Related Work

added), this would appear to create a fair bit of unnecessary data transfer.

Both the server side (Mapnik) and the client side (OpenLayers) are fully open
source, making it possible to work with them. However, given that this imple-
mentation is tightly coupled to the raster visualisations provided by Mapnik and
OpenStreetMap it might be wiser to build upon a vector tile solution that is more
flexible, such as Tilestache.

1.5.4 Nokia Maps 3D

While not using vector map data per se, the Nokia Maps 3D WebGL client uses
vector data to construct 3D models of buildings that aerial photography is draped
over, providing a richly detailed model of major cities such as New York.[54] The
client uses WebGL, a rendering context for the HTML 5 Canvas element for dis-
playing 3D graphics in the browser, which is normally hardware accelerated for
greater speed.[55] All of this data is delivered as tiles, with each tile having vector
data detailing the model and a corresponding raster tile with image data to drape
over the buildings.[56] The city models appear to have been pre-generated and
then sliced into tiles according to a grid system, with the tile format being specifi-
cally engineered to correspond to OpenGL graphics vertex arrays. This allows for
optimal rendering speed.

However, there is no preservation of topology in this approach. When a build-
ing straddles the divide between two tiles, each tile contains half a building with
an open side facing the tile border, and no knowledge of what it is. For the display
to look correct the other half must be rendered as well, and because the building
halves line up it looks correct. (As can be seen in figure 1.8.)

The whole tool chain (both server side and client side) for Nokia Maps 3D is
proprietary, so the amount of knowledge that can be gleaned is limited and there
is no possibility of building a new vector tile solution on top of this technology.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

17

1 Background & Related Work

Figure 1.8: Illustration of tile loading in Nokia Maps 3D. When the models are half
loaded, the structure of the tiles becomes visible.

18 Stud.techn. Robert Patrick Victor Nordan

2 Project Goals

2 Project Goals

2.1 Motivation
The motivation for this project is to explore aspects of vector tiling that have not
been thoroughly examined before. It is the author’s firm belief that vector tiling
is a concept that is gathering a growing amount of enthusiasm in the geospatial
industry, and that we will be seeing more and more of it in the years to come.
Some products have already been deployed, and it seems reasonable to assume
that others could be in development. Academically, there are still a lot of areas
within vector tiling that can be explored in greater detail. Therefore there is a
significant opportunity to experiment and codify knowledge on the subject that
may be of use to both future research and practical applications.

Of particular interest to the author is how vector tiles can bridge the divide
between the purely presentational function of raster tiles and the analytical op-
portunities of vector data. This includes looking at how topological information
can be preserved, along with data completeness, data accuracy and similar issues.

2.2 Project Outline
In the course of this project the following goals are to be obtained:

Analyse current vector tile research & implementations Establish known
developments in the area of vector tiles and look at what can be learned from
them.

Theorise on ways to ensure topological consistency Examine possible strengths
and weaknesses of different approaches.

Build prototypes & automated tests Implement the most promising meth-
ods for testing.

Perform tests & analyse results Collect data and work with it to obtain in-
sights into whether theorised strengths and weaknesses were correct.

Draw conclusions regarding vector tile strengths, weaknesses & opportunities
Based on the experiments performed as well as literature studied, make rec-
ommendations that can be of use to future vector tile projects.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

19

2 Project Goals

2.3 Desired Outcome
The desired result of this project is to have gathered useful information about
vector tile systems that can be referenced for future development of similar appli-
cations. A set of technology demonstrators shall have been produced, and been
tested in a reproducible fashion. Specifically, the demonstrators shall implement
various methods of preserving topological information for vector tiles. The exper-
imental data that will have been generated will be used to make inferences about
possible future applications.

20 Stud.techn. Robert Patrick Victor Nordan

3 Challenges with Vector Tile Generation

3 Challenges with Vector Tile Generation
When considering the question of making vector based tiles, one must inevitably
look to raster based tiles and draw on the experiences and research made in that
area. Beyond that, one can also expect that certain traits of raster tile solutions
will be transferred to vector tile solutions, creating a hybrid with characteristics
from both raster tile and traditional vector solutions. On the other hand, some
challenges are unique to vector tiles (especially those pertaining to preservation of
topology), which will affect vector tile solutions in their own way.

3.1 Generalisation
In a raster solution the geographic data is rendered for each zoom level, with all
the relevant generalisation and styling rules applied. On the other hand, in a clas-
sic vector solution all the data is transferred and the local client renderer does the
job of generalisation. Arguments can be made both that this is an advantage for
vector solutions because it guarantees that the accuracy of the rendered map is
only limited by the accuracy of the data, and that it is a disadvantage because of
the large data transmissions and processing time required. Imagine, for example,
that one was to render an entire country using vector data. If one was zoomed out
to see the entire country, extremely high resolution data is only an extra burden.

The vector tile generator in Tilestache (and therefore the prototype) does not
pre-generalise, opting instead to transmit the full data set of each tile. For a low
zoom level with a highly detailed data set, this can be problematic and slow down
the transfer and display of tiles. In the tests executed, this problem has been
avoided by limiting them to only use zoom levels that correspond with the detail
level of the data set.

Previous research in progressive vector transmission[57, 58] has demonstrated
the possibility of pre-generalising vector data, caching it and transferring more
and more detailed vector sets as the user zooms in. From there it is not hard to
imagine doing the same for each zoom level in a vector tile solution. In fact it
would probably be easier as one has a very specific set of zoom levels to prepare,
and one could use the same kind of generalisation procedures as one does for raster
tiles. (One could check how the contents of the vector tile is rendered as a raster
and drop any features that are rendered to be less than one pixel in size.) Of
course, this is probably best done ahead of time and cached.

Another solution for pre-generalisation is to pre-generalise the entire data set

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

21

3 Challenges with Vector Tile Generation

to several levels of resolution and store them in a multi-scale database. One can
then source the tiles from the appropriate generalised data set depending on zoom
level. This method has a lot in common with a common method of creating gen-
eralised data sets for raster data.[59]

3.2 Tile Sectioning & Overlap
Tilestache adopts the popular system for tile sectioning and addressing described
in section 1.2 for vector operations mainly because it uses the same system for
raster operations, and therefore the prototype uses it too.

One intuitive reason to adopt a similar addressing approach to that commonly
used by raster tiles like Tilestache has done is compatibility. It would be natural
to combine vector and raster based tiles for many types of applications, whether
it is to add a simple layer of interactivity on a raster map, or to add map details
to aerial imagery. Making sure that both types of tiles have the same addressing
and equal tile sizes at each zoom level makes the job a lot easier.

A side effect of the chosen sectioning method, which is likely to be noticed for
every vector tile solution, is that every vector tile generated has edges that overlap
with the edge of the neighbouring tile. When you draw a line and declare that
everything east of the line is in tile A while everything west is in tile B, the binary
nature of rasters will ensure that that line will slice neatly in the infinitesimal gap
between two pixels, as seen in figure 3.1. (The actual size of the gap depends on
the resolution of the raster data.) In the meantime, when dividing up into vector
tiles there are no neat gaps to be exploited in that way, and so the intersection of
the bounding line and the geographical data must contain the bounding line itself.
(As seen in figure 3.2.)

In itself this is not very dramatic, but it does raise some interesting questions
when it comes to polygon clipping operations, which are further detailed in section
5.2.4.

3.3 Features With Multiple Geometries
When thinking about features being sliced apart by the intersections between tiles,
one might generally imagine a large polygon being divided up among several tiles.
Detecting if this has happened is simple enough, one only needs to check if a
feature segment on a tile intersects with the edge of the tile. However, a much
more difficult to detect situation arises when one employs features with multiple

22 Stud.techn. Robert Patrick Victor Nordan

3 Challenges with Vector Tile Generation

Figure 3.1: Illustration of raster tile sectioning. Notice how the stapled edge neatly
aligns with the gap between raster cells.

Figure 3.2: Illustration of vector tile sectioning. Notice how the stapled edge intersects
with data content.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

23

3 Challenges with Vector Tile Generation

geometries. This leads to a need for more complicated algorithms.

As defined in the SFA standard, any feature can have multiple geometries rep-
resented in a GeometryCollection. These geometries can for example be MultiSur-
faces/MultiPolygons, MultiCurves/MultiLineStrings or MultiPoints, which each
are a collection of surfaces, curves and points that make up a feature. Using a
world map as an example, many countries would be represented as MultiPolygons,
for example the United Kingdom of Great Britain and Northern Ireland. This
country consists of at least two distinct parts separated by sea no matter what
level of generalisation is applied, in addition to numerous smaller islands that ap-
pear when the map is displayed with sufficient detail. (See figure 3.3.)

When the tiles are sized so that all of the polygons are in the same tile, there is
no problem, and similarly if one or more the multiple polygons intersects with the
border between tiles any algorithm developed for single polygons should work well
with only small adjustments. However, in cases where the polygons are spread over
multiple tiles without intersecting the boundaries (or even have multiple unrelated
tiles between them), algorithms assuming single polygons will start to break down.
One such example would be Portugal and the Azores Islands, where both are part
of the same Multipolygon collection but can be rendered several tiles apart. (See
figure 3.4.)

Addressing this issue will require more complicated algorithms and will also
lead to a reduction in efficiency when compared to the more optimal situation
of only having single polygons. However, it is necessary both to comply with the
SFA specification and because a lot of real world cases require multiple geometries.
As such, the algorithms in section 4 are considered for both the general case of
multiple geometries and special cases where that requirement can be dropped.

3.4 Data Completeness
One particular challenge connected to using tiles for data transmission is ensuring
that the complete features are assembled. For example, when one has loaded and
concatenated all the feature segments of a particular feature that are available
in the currently loaded tiles, one may still not have assembled the entire feature.
(That is, parts of the feature are outside the currently visible map window and
therefore the currently loaded tiles as well.) This is of significance if one wishes
to do GIS operations such as calculating total area, creating buffer areas, and more.

In the context of the SFA standard, this is also problematic. The standard
states[28]: “All Geometry classes described in this standard are defined so that

24 Stud.techn. Robert Patrick Victor Nordan

3 Challenges with Vector Tile Generation

Figure 3.3: Illustration of The United Kingdom, notice how it is composed of many
different geometries.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

25

3 Challenges with Vector Tile Generation

Figure 3.4: Illustration of Portugal, notice how it is composed of many different geome-
tries which are more than one tile apart. (See the tile structure outlined in neighbouring
countries for comparison.)

instances of Geometry are topologically closed, i.e. all represented geometries in-
clude their boundary as point sets”. This means that (as one might naturally
assume) that a feature and the connected geometry must include all parts of the
relevant geometry. So if one doesn’t have all the relevant tiles loaded and used
for concatenating features, then the assembled feature will not be identical to the
transmitted feature and will also violate the SFA standard.

However, it is debatable whether data completeness is a goal in and of itself.
For GIS operations, it is probably vital to have the complete data set. On the other
hand, if all that is needed is displaying of the data, with for example highlighting
and name display of areas the user hovers the mouse over, then data completeness
is not necessary for a good user experience. In fact, it might make the user experi-
ence worse by spending a lot of time pulling in tiles and stitching together feature
segments that will not be seen by the user. For example, if the user was zoomed
in to look at the border between Russia and Finland, the considerable time and
computing power required to download and assemble the entire outline of Russia
at that zoom level would be a complete waste.

A possible intermediate solution would be to implement a variant of “lazy

26 Stud.techn. Robert Patrick Victor Nordan

3 Challenges with Vector Tile Generation

loading” where geometries are initially assembled only from current tiles, and are
reassembled with information from additional tiles if the user tries to perform a
GIS operation on the feature.

Some of the algorithms suggested in section 4 are only applicable in the special
case where data completeness does not need to be guaranteed, whilst others can be
used in both cases. For those which can be employed in both cases, a comparison
will be made.

3.5 Unique Feature Identification
The algorithms described in section 4 require each original feature to have a unique
identification assigned to it, as the easiest way for a computer to determine whether
two segments belong together is if they have matching IDs. This ID could be a
number, some sort of hash or any other uniquely identifying characteristic. (Pos-
sibly a combination of several characteristics that can be used to uniquely identify
it.)

However, such IDs are not required to comply with the Simple Features Ac-
cess standard (Part 1, Common Architecture)[28], while the SFA standard Part 2
(SQL Option) does require unique keys for every feature. Therefore, all compliant
spatial databases will have unique IDs available[29], but not all data storage types
will. For example, GeoJSON files are not required to have unique keys. (Although
obviously they can have if desired.)

In other words, one cannot expect the data that is to be tiled to have unique
IDs, although commonly it will have. As such, the tiler must have a mechanism
for assigning unique IDs to features (through for example a numbering or hashing
scheme) but should respect any existing unique IDs as they will likely have more
semantic meaning. For reasons of efficiency, it would be preferable if the source
data had been prepared by assigning sensible IDs before handing it to the tiling
program.

3.6 Rendering & Concatenation Order
One issue related to the questions of multiple geometries and data completeness
is when to start rendering the data in the browser. For traditional raster tile,
this is not an issue: Because they have no topological considerations, each tile can
be rendered as soon as it has been received. The same is true of simple vector

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

27

3 Challenges with Vector Tile Generation

tile implementations that do not consider topology. But when you are stitching
together feature segments from several different tiles, you need to wait until they
are all received before the final feature can be assembled. In the meantime, users
are getting impatient because they want to see results fast. Again, this depends
somewhat on the use case. Users waiting to do GIS tasks might have more patience
than users looking for a quick overview.[60]

There are several options for how one could handle the question for rendering
time:

Wait for all tiles The simplest solution is simply to wait for all tiles to be loaded
and then concatenate and render their contents. This option ensures the best
data completeness but may cause the user long periods of waiting.

Progressive Concatenate and render features as soon as possible from the cur-
rently available tiles, and when new tiles arrive with more feature sections,
re-render the feature. Will give the map the appearance of “growing” while
the user watches, leading to less impatience. [61] However, this approach is
somewhat inefficient, as features have to be concatenated and re-rendered
several times as new tiles come in. This may again adversely affect the time
it takes to reach a completed map.

Quick render & re-render As a kind of middle ground, it could be useful to
render each tile as soon as it arrives without doing any concatenation, and
when all tiles are loaded proceed with concatenating and re-rendering fea-
tures. In this fashion, users quickly get to see something on the screen,
which is then improved upon once all tiles are loaded. (Whilst avoiding the
inefficiencies of the progressive approach.)

The order of concatenation and rendering may affect the performance of the
algorithms discussed in section 4, but does not require changes to the actual algo-
rithms.

28 Stud.techn. Robert Patrick Victor Nordan

4 Potential Data Structures & Algorithms

4 Potential Data Structures & Algorithms
In the following section, a number of different potential data structures are pre-
sented with basic descriptions and algorithms for implementing them. Where pos-
sible, they will be considered for both the general case of features with multiple
geometries and the special case where features only have continuous geometries.
(For example, road networks or grid overlays.) Possible strengths and weaknesses
such as ease of implementation, algorithmic efficiency and data completeness are
considered and presented.

4.1 Global Feature Search
A simple and intuitive solution is to iterate over every tile, and every feature,
and then searching every other tile for matching feature segments. They can be
matched by comparing feature IDs (as mentioned in section 3.5) and creating
unions of those features that have identical IDs. One could probably describe this
as a naive solution, but being naive in the algorithmic sense of the term does not
have to mean it has poor performance, simply that it is the most immediately
obvious solution.

It would appear that [22] uses this method for finding concatenation targets, so
it obviously works in practice. They did however not mention alternative methods,
and used it on a three by three tile group, which is rather small. Therefore, one
can not claim that [22] makes a thorough examination of the tile concatenation
aspect and it is still valuable to explore this method and compare it with other
possible methods.

4.1.1 Tile Specification

• Each feature must have a unique identifying ID. Typically, and this is also
preferable, a unique ID will already exist in the geographic data being used
as the source for tiling. If the source does not carry unique IDs, an ID must
be assigned to each feature by the tile generation program.

• That ID must be provided to every section of the feature rendered on a tile.

4.1.2 Construction & Concatenation Algorithms

The construction algorithm is extremely simple, and is the same for both the
special and general cases:

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

29

4 Potential Data Structures & Algorithms

• If IDs are not pre-assigned: Generate a unique ID for each feature. (May
be generated by combining several attributes to create a unique key or by
assigning a number.)

• Include the ID in the feature representation on each tile created.

In the general case, the concatenation algorithm is quite simple:

Create a list F of completed features. (That is, features that have been com-
pletely reconstructed from their constituent tiles.)
for each available tile do

for each feature segment on the tile do
if the feature segment’s ID is listed in F then Move to the next feature

segment.
else

Check every other tile for matching segments and add them to a list.
Create a union of the feature segments when all available tiles have

been checked.
Draw the feature and add it to F.

end if
end for

end for
Concatenating the tiles in the special case can be solved in several ways, for

example the general case algorithm would work correctly in the special case. How-
ever, there may be more efficient ways of solving the problem in the special case.
A algorithm which is presumably more efficient is presented here:

Create a list F of completed features. (That is, features that have been com-
pletely reconstructed from their constituent tiles.)
for each available tile do

for each feature segment on the tile do
if The feature segment’s ID is listed in F then Move to the next feature

segment.
else

Create a list S for feature segments to be assembled and add the first
known segment.

if The feature segment intersects any of the tile boundaries then
Recursively check all tiles that share a boundary intersecting the

feature, and add all feature segments with matching IDs to S.
end if

30 Stud.techn. Robert Patrick Victor Nordan

4 Potential Data Structures & Algorithms

Assemble all the feature segments to a feature by creating a spatial
union of the segments in S.

Draw the feature and add it to F.
end if

end for
end for
Both of these algorithms assume all the needed tiles having been completely

downloaded and would therefore need to be rerun several times for new tiles in a
progressive rendering style such as the one discussed in section 3.6.

4.1.3 Probable Advantages

Simple implementation This system is simple to implement on both the server
and the client.

Little extra server work If IDs have been preassigned, there is no extra work
for the server, otherwise only a minor amount of extra work.

Little extra data transmission Again, if IDs have been preassigned there is no
extra data being transmitted and otherwise only very little extra.

Should perform well in the special case With the special case constraints on
the data, the algorithm can be made to be quite efficient.

4.1.4 Probable Disadvantages

Can’t guarantee data completeness This method does not have any informa-
tion on whether there are more tiles with relevant feature sections that have
not been loaded yet.

Inefficient in the general case Examining every feature on every tile many
times over does not scale well.

4.2 Edge Pointers
A possible solution is to equip every produced feature segment with additional
information on which other tiles the other feature segments reside. Then when a
new feature segment is encountered, all of the segments can be pulled together and
assembled straight away by following these pointers. However, including pointers
to every single other tile which contains a feature segment could in some cases
lead to the pointer information being many times larger than the actual feature

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

31

4 Potential Data Structures & Algorithms

information. (For example, if you look at a large country at a high level of zoom
there will be very many tiles to point to.) Therefore it is probably more sensible
to include pointers to the nearest tiles with corresponding feature segments and to
recursively follow the trail of pointers. That way it is also possible to stop follow-
ing the trail if continuing requires downloading new tiles and that is not desirable,
without the overhead of including pointers to every single tile.

4.2.1 Tile Specification

• Each feature must have a unique identifying ID. Typically, and this is also
preferable, a unique ID will already exist in the geographic data being used
as the source for tiling. If the source does not carry unique IDs, an ID must
be assigned to each feature by the tile generation program.

• That ID must be provided to every section of the feature rendered on a tile.

• For each feature section there must also be four pointers to the nearest tiles
in each direction (North/Up, East/Right, South/Down, West/Left)

– The pointer consists of the tile address relative to the current tile ad-
dress. For example: ”N : -1, 1”. (See section 3.2 for more on tile
addressing.)

– When the feature section is the outermost in some direction (there are
no more tiles to point to in that direction), the pointer has a null value.

4.2.2 Construction & Concatenation Algorithms

In order to utilise edge pointers, an extra step must be added to the construction
of each tile. This algorithm is a method of finding neighbouring tiles containing
parts of the same feature, and is based on the concept of an equilateral cross with
arms bent at right angles. In this cross, the arms are iteratively lengthened until
the tile area at the end of an arm in a particular direction either strikes a part
of the feature or exits the bounding box for the feature. See figure 4.1 for an
illustration of the concept.

In practice, most searches will result in a hit or a bounding box exit on the
very first tile checked, but the algorithm is equipped to handle any amount of
distance between component geometries in a feature. For special cases with only
single geometry features, the algorithm will always result in an immediate hit or
exit without any particular performance penalties when compared to a naive check

32 Stud.techn. Robert Patrick Victor Nordan

4 Potential Data Structures & Algorithms

Figure 4.1: Illustration of the edge pointer generation algorithm. The image on the
left shows how the algorithm moves through the potential tiles within the bounding box
of a feature. The image on the right gives an example of how the algorithm stops when
it encounters a tile containing a feature section. Note how the SW pointer does not
encounter any suitable tiles (resulting in a null pointer), and the fact that there are
several more feature segment tiles within the bounding box that are not discovered when
searching from this tile. (They are instead discovered when searching from the tiles that
were discovered in this round of searches.)

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

33

4 Potential Data Structures & Algorithms

of the nearest neighbour tiles.

for each tile do
for each feature do

for each direction N,E,S,W do
Create boolean variables continue col and continue row and set them

to be true.
create column and row counters X and Y, initialised to 0.
while continue col is true do

Increment the column counter X and set continue row to be true.
Create a new search tile bounding box with a centre that is the

original tile’s position plus X and Y times a tile width.
if the search tile’s bounding box is within the feature bounding

box then
Set continue col to false.

end if
if The search tile intersects the feature’s geometry then

Return X and Y
end if
while continue row is true do

Increment the row counter Y
Create a new search tile bounding box with a centre that is

the original tile’s position plus X and Y times a tile width.
if The search tile’s bounding box is within the feature bound-

ing box then
Set continue row to false.

end if
if The search tile intersects the feature’s geometry then

Return X and Y
end if

end while
end while

end for
Return (no hits have been made).null

end for
end for

The concatenation algorithm is predictably simple, using a recursive method
that can simply be described as following the trail of edge pointers.

Create a list F of completed features. (That is, features that have been com-

34 Stud.techn. Robert Patrick Victor Nordan

4 Potential Data Structures & Algorithms

pletely reconstructed from their constituent tiles.)
for each available tile do

for each feature segment on the tile do
if the feature segment’s ID is listed in F then Move to the next feature

segment.
else

if the edge pointers are null then Move to the next feature segment.
end if
Create a list S of feature segments
for each edge pointer in the feature segment do

if the edge pointers is null then Move to the next edge pointer.
else if the linked segment is not in S then

Add the linked segment to S.
Check all of its edge pointers and follow them in the same way.

end if
end for
Concatenate all the segments in S.
Draw the feature and add it to F.

end if
end for

end for

4.2.3 Probable Advantages

Can guarantee data completeness This method is able to guarantee data com-
pleteness by collecting every relevant tile, even if it requires that tile to be
downloaded.

Equal efficiency in the general case and special cases The algorithm is iden-
tical for both cases and therefore gives the same efficiency.

4.2.4 Probable Disadvantages

More work on the server The server has to do more work to generate the tiles
than with other solutions, although this can be negated through the use of
caching.

More data to be transmitted Each feature has more data added to it, and
this adds up when all the features are taken into account.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

35

4 Potential Data Structures & Algorithms

4.3 Central Feature Registry
Instead of providing the needed information to assemble the tiles with the tiles,
as with the edge pointer concept, one could use a central registry that informs
the client of every constituent tile belonging to a feature at every zoom level. For
example, the client could, when encountering a new feature, look up the entry
for that feature and learn which tiles this feature is divided among. It could then
go directly to those tiles to collect the feature segments and create a union of them.

In this way one avoids the need for relative tile addressing algebra like with
the edge pointers, but one must find a way to create and maintain the registry as
well as allow access to it from the client. As transferring a large file with all this
information in it before sending the actual tiles would rather defeat the purpose
of a tile-based solution, it would probably be implemented as a database that the
client application can make calls to for more information.

4.3.1 Tile Specification

The tile specification is simple and exactly the same as in the Global Search
approach.

• Each feature must have a unique identifying ID. Typically, and this is also
preferable, a unique ID will already exist in the geographic data being used
as the source for tiling. If the source does not carry unique IDs, an ID must
be assigned to each feature by the tile generation program.

• That ID must be provided to every section of the feature rendered on a tile.

4.3.2 Construction & Concatenation Algorithms

The algorithm to construct this system is simple but probably time consuming,
however since it must be done in advance that disadvantage can be negated by
caching.

Create a database of features and their tiles
for each tile do

for each feature do
if The feature exists in the database then Continue to the next feature.
end if
Get the bounding box for the feature
Calculate every tile that intersects with he bounding box of the feature

36 Stud.techn. Robert Patrick Victor Nordan

4 Potential Data Structures & Algorithms

Add the tile addresses to the database.
end for

end for
The algorithm for concatenation is even simpler:

Create a list F of completed features. (That is, features that have been com-
pletely reconstructed from their constituent tiles.)
for each available tile do

for each feature segment on the tile do
if The feature segment’s ID is listed in F then Move to the next feature

segment.
else

Check the database for any other tiles containing segments
Check all the listed tiles and create a list of segments
Create a union of all the segments.
Draw the feature and add it to F.

end if
end for

end for

4.3.3 Probable Advantages

Can guarantee data completeness This method is able to guarantee data com-
pleteness by collecting every relevant tile, even if it requires that tile to be
downloaded.

Equal efficiency in the general case and special cases The algorithm is iden-
tical for both cases and therefore gives the same efficiency.

4.3.4 Probable Disadvantages

More work on the server The server has to do a fair amount of work to gen-
erate the feature database.

Mandatory caching of all tiles Because the file has to know the locations and
tile allocation of every feature, every tile must be pre-rendered and cached
before the application can go live. This means that the common practice
of rendering only higher levels of the tile pyramid and rendering the lower
levels on demand can not be used.

More communication overhead When the client needs to communicate with
a server to look up every feature in the registry, there will be a lot of com-

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

37

4 Potential Data Structures & Algorithms

munication overhead. (Especially when using HTTP requests.) This can
probably be mitigated somewhat by using the WebSockets technology in
HTML 5. [62]

Unnecessary in the special case In the special case this method can safely be
considered overkill.

4.4 Probabilistic Matching
Previous methods have relied on some sort of authoritative source of information
to determine the relations between feature segments. However, it is also possible
to make a radical departure from the assumption that relations must be prop-
erly verified. Could it perhaps be enough for some use cases that the segments
of feature probably fit together? In the special case, when there are no multiple
geometries, it might well be possible to simply estimate whether to features in
neighbouring tiles belong together.

By checking which tile edges intersect a feature and then checking which fea-
ture intersects the opposing tile edge in the same places, one can establish a likely
match between feature segments.

4.4.1 Tile Specification

The tile specification is the simplest of them all, as no extra data is required at
all.

4.4.2 Construction & Concatenation Algorithms

As the tile specification is so simple, it follows that there are no extra steps in the
construction process.

The concatenation algorithm is more complex, requiring more calculation and
estimation than any other alternatives.

Create a list F of completed features. (That is, features that have been com-
pletely reconstructed from their constituent tiles.)
for each available tile do

for each feature segment on the tile do
if The feature segment’s ID is listed in F then Move to the next feature

segment.

38 Stud.techn. Robert Patrick Victor Nordan

4 Potential Data Structures & Algorithms

else
Create a list S for feature segments to be assembled and add the first

known segment.
if The feature segment intersects any of the tile boundaries then

if The opposing tile edge is intersected in the same place then
Create a separate list that contains tile addresses that have

been visited
Recursively check all tiles that share a boundary intersecting

the feature to see if they have similar intersections and add segments & tile
addresses to the lists

end if
end if
Assemble all the feature segments to a feature by creating a spatial

union of the segments in S.
Draw the feature and add it to F.

end if
end for

end for

4.4.3 Probable Advantages

Requires no extra data transmission There is no extra data transmission. In
fact, the data does not even require a unique ID.

Requires no extra work on the server The server does not have any extra
tasks to complete when sending the data, making a suitable for a situation
without caching.

4.4.4 Probable Disadvantages

Will only work in the special case Spatially continuous lines or polygons are
required for this method to work, so features with multiple geometries are
excluded. Many real world scenarios such as the geography of nations with
major islands would not work. On the other hand, simpler scenarios may
work well.

Can not guarantee data completeness or correctness Since knowledge of the
features is limited to the already downloaded tiles, one can not know which
tiles may contain further feature segments. Furthermore, since the matching
is based on estimation and not checked against IDs, the matching might not
even be correct.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

39

4 Potential Data Structures & Algorithms

Places a higher workload on the client With this method, all the work in-
volved in matching feature segments is left to the client. It is probable that
the calculations involved in performing the matching might be more resource
intensive then those used on the client in the previous three methods.

4.5 Combined Approaches
It could also be possible to develop combined approaches where two or more of
the proposed methods are combined in some fashion. The easiest way would be
to implement for example the specialised global search algorithm and the edge
pointer algorithm in one client, and set some sort of configuration signal that tells
the client which algorithm to use for a given vector tile set.

Another method could be to provide ways for the client to detect what kind
of data it was operating on. For example, one could combine the specialised and
generalised global search algorithms by keeping track of not just which features
had been assembled but also which tiles they were assembled from. That way, if
the program came over a new tile with that feature that hadn’t been used as a
source earlier, it would know to start using the general algorithm for completeness.

40 Stud.techn. Robert Patrick Victor Nordan

5 Application Architecture

5 Application Architecture
The prototype application, like most internet map applications, consists of two
central components. One is the server side component which generates tiles and
provides complementing services such as caching, while the other is the client side
component which allows the client to reassemble the tiles and use them in a slippy
map.[63] It too will typically provide complementing services such as compositing
of several layers, annotations and so on. See figure 5.1 for an illustration of the
application structure.

Figure 5.1: Illustration of server-client interaction. The map controller makes tile
requests to the server, which then either fetches the tile from the cache or orders the tile
provider to produce the tile and cache it. The returned tiles are then processed through
the tile concatenator and the results are placed on the map.

For reasons of expedience, it was decided to build upon existing applications so
that time could be spent researching and implementing methods of tile topology
preservation rather than ”reinventing the wheel” by spending time implement-
ing all the basic aspects of tile servers and slippy map applictions. Based on the
research described in section 1.4 the most suitable candidates were found and used.

Polymaps and Tilestache (see section 1.5.2) were chosen as the basis for the
prototype, primarily for three reasons: Firstly, together they make a well func-
tioning application for simple vector tiles without topological consistency, and

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

41

5 Application Architecture

secondly they are both open source, making it easy to work with and alter them
where necessary. Thirdly, Tilestache was seen as easier to extend and less tightly
coupled to a specific data source. They were enhanced for the purposes of this
project both by pairing them with new components and by making small changes
to them, which are detailed in the next sections.

5.1 Server Side Application

Tilestache is a relatively new tile server application, intended to create a modern
alternative to the popular web map caching application Tilecache. (The naming
is a play on words referring to Tilecache.)[64, 65] It provides both tile generation
and caching in one, directly from the relevant data source by employing various
libraries to handle data access. It does not provide any other services like WMS
or WFS.

It is written in the Python programming language, so once all the dependen-
cies are installed it should run on any major operating system.[64] It is licensed
under the permissive 3-clause BSD licence, which allows modification, use and re-
distribution for any purpose. [64, 66] As such, it is well suited to be adapted for
academic purposes because it can be both modified and freely used without any
further restrictions. [67]

During the course of the work conducted extending Tilestache, the author of
this report discovered three bugs, all of which have been reported to the upstream
project. One of them was reported along with a patch fixing the bug which has
since been accepted and incorporated into the upstream Tilestache source code.[68]

5.1.1 Extensions

Tilestache is built to be extendable by simply creating new components, and then
telling Tilestache to use that new component by referencing it in the configuration
file. Since Python is not a compiled language it is sufficient to write a text file
with Python code that implements all the methods that are expected of the kind
of component being replaced. This is so called ”duck typing”, named after the
old adage that if something swims like a duck, and quacks like a duck, it prob-
ably is a duck. [52, 69] In this context, if a component implements the methods
expected of a duck component, it will be treated as a duck component just like if
it was part of the core program. (Regardless of whether it actually is a duck or
a cleverly disguised dragon making the appropriate noises.) In that fashion the
program does not have to be recompiled, and one can avoid making any changes

42 Stud.techn. Robert Patrick Victor Nordan

5 Application Architecture

to the program itself when trying out new features that may potentially be broken.

In this case the component being added is a new tile provider that calculates
edge pointers for each feature on a tile, and appends them to the relevant fea-
ture data being transmitted for the tile. It is essentially an extended version of
Tilestache’s existing vector tile provider, in other words all the code from there
was copied and then changed to fit the new purpose. (See appendices C and D
for more about which files have been modified.) The implemented algorithm is
described in section 4.2.

5.1.2 Tile Transfer Format

The file format used for transferring tiles from the standard vector tile provider in
Tilestache is GeoJSON, a simple format that is natively understood by Polymaps
and many other pieces of software.[51, 43] As such it was logical to use it for the
tiles generated by the edge pointer extension as well. The following is an example
of how a typical GeoJSON tile might look when enhanced with edge pointer infor-
mation for each feature. This tile represents a small part of the north-western-most
tip of Iceland.

{
” type ” : ” Fea tu r eCo l l e c t i on ” ,
” f e a t u r e s ” : [{

” geometry ” : {
” type ” : ” Polygon ” ,
” coo rd ina t e s ” : [[

[
−16.549679877363268 ,
66.51326044169886

] ,
[

−16.527779 ,
66.64828036827288

] ,
[

−16.100330428882376 ,
66.51326044169886

] ,
[

−16.17187499845066 ,

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

43

5 Application Architecture

66.51326044169886
] ,
[

−16.549679877363268 ,
66.51326044169886

]
]]

} ,
” type ” : ” Feature ” ,
” p r o p e r t i e s ” : {

”SUBREGION” : 154 ,
”NAME” : ” I c e l and ” ,
”AREA” : 10025 ,
”REGION” : 150 ,
”LON” : −18.480000 ,
”ISO3 ” : ” ISL ” ,
”ISO2 ” : ” IS ” ,
”FIPS ” : ”IC ” ,
”UN” : 352 ,
”LAT” : 64 .764000 ,
”POP2005 ” : 295732

} ,
” edgepo inte r ” : [

[nu l l , n u l l] ,
[1 , −1] ,
[0 , −1] ,
[nu l l , n u l l]

]
}]
}

However, it’s worth noting that while GeoJSON is a simple and human-readable
format, it is not necessarily the only possible way of encoding vector tile informa-
tion. Since this thesis work has been concerned with exploring relative advantages
and disadvantages of different approaches, absolute speed has not been a con-
cern and therefore possible optimisations or more compressed formats have not
been explored. For more information on creating vector tile solutions optimised
for greater speed, please see [70], a master thesis project conducted by another
NTNU student at the same time as this one.

44 Stud.techn. Robert Patrick Victor Nordan

5 Application Architecture

5.1.3 Cache

Tilestache includes a variety of different cache options that can be configured
through the settings file. (And of course, new cache types can be implemented
if desirable.) For the purposes of the tests performed here the cache used is the
most simple cache, the hard disk cache. (Cache data is stored in a plain folder
structure on the disk.) Considering that the test scenarios were executed with only
one user and the fact that the test computer used a high performance Solid State
Disk (SSD), this cache can be considered to be plenty fast enough. (See appendix
F for more information on the test computer.)

5.2 Client Side Application

As described in section 1.4.2, Polymaps is a relatively new JavaScript framework
for web mapping applications, making use of SVG and HTML 5 elements. One of
its core creators and maintainers is also the creator and maintainer of Tilestache,
so naturally there is good compatibility between the two. It is also licensed under
the same BSD licence, which brings with it the same advantages for academic
purposes.[71]

Unlike Tilestache, Polymaps is not a stand-alone application but a library de-
signed to be used within a web browser environment. As such, even when you
want to use it completely without any additions you would still at the very least
need to create a HTML page that invokes the library to create a map window.
For the tests described in this report, a number of different HTML pages were
created that invoke the library with different input, as well as the modifications
and additions described in the next section.

It is important to note that this client side application is merely a prototype,
and is built upon a library framework that was not originally intended to handle
features spanning multiple tiles. Therefore there can be some visual errors, espe-
cially when panning and zooming the map because the underlying code operates
purely on a tile-by-tile basis and does not recognise when a feature has been ex-
tended to span several tiles. (When the first tile of the feature is moved off-screen,
the whole feature may be removed as is seen in figure 5.2.) This error is acceptable
in the prototype context as it is purely visual and does not affect the mechanics
of finding matching segments and concatenating them, which is the focus of this
research. In any future implementations of a concatenating vector tile system,
however, the framework should be designed from the ground up in order to avoid
this issue as well as the issues described in section 5.2.4.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

45

5 Application Architecture

Figure 5.2: Illustration of tile removal errors. In this example the UK, Sweden and
Kaliningrad (Russia) have been removed from the map because the first tile they were
concatenated from has been moved out of the map view. (The view was originally centred
further north.)

5.2.1 Modifications & Supporting Code

Unlike Tilestache, Polymaps does not have any mechanism for easily inserting ex-
tensions and new features. Therefore it was necessary to make some modifications
to the core code, although they were kept as small as possible. Mainly all the new
code and functionality for tile concatenations was written in separate JavaScript
files (two files in common for all the tests, and one file for each test) which then
communicated with the Polymaps code through exposed interfaces, some of which
were created by the changes to Polymaps. See appendix E for more information
on which files have been modified.

The changes to the Polymaps code were designed to expose information to the
outside code that otherwise would have been hidden. Previously the Polymaps
code only exposed an event that was triggered when a tile completes loading, but
with the changes it also exposes events for when tiles are requested for download
and for the eventuality that a download request is cancelled. The supporting code
uses these to keep a tally of how many tiles have been requested and how many
tiles have been delivered. When the two numbers are equal, it calls to the relevant
concatenation algorithm for the test. The concatenation function then uses and
modifies the SVG information created by Polymaps to sew the tiles together.

Another modification to Polymaps is the addition of row and column numbers

46 Stud.techn. Robert Patrick Victor Nordan

5 Application Architecture

to every SVG tile that is generated. This is so that tile concatenation algorithms
like the edge pointer algorithm can work by calculating the tile and row numbers
of the next tile to add feature segments from, and then look it up.

5.2.2 Rendering & Concatenation Order

As explored in section 3.6, there are several ways the order of rendering and con-
catenating tiles can be ordered. In the prototype, the ”quick render & re-render”
method has been chosen. This is partly because it has good performance, and
partly because it is simple to implement on top of the rendering methods used
by Polymaps. Finally, it also gives the user visual feedback on which tiles and
features are changed by the concatenation.

5.2.3 Integrated Web Server

By default, Tilestache comes with an integrated Web Server Gateway Interface
(WSGI) web server named Werkzeug[64] that handles tile requests from clients.
WSGI is a common Python interface for allowing programs to handle requests
from web servers, where the WSGI server passes requests through to the relevant
program. Since Werkzeug also can handle simple file serving, the configuration
has been modified for this project. It has been set up so that all requests starting
with a specified folder name are diverted and handled as simple file requests, while
the rest are passed through to Tilestache. In this fashion one can serve both the
test web pages using Tilestache and the tiles from Tilestache from the same server,
making the prototype easier to set up and maintain.

For any evolution from prototype to a full production-ready application, it
might be advantageous to split these areas of responsibility and deploy separate,
full-featured web application servers.

5.2.4 Issues With Polygon Union

When one has gathered together all of the constituent feature segments that make
up a feature, a new polygon needs to be created as the union of all the segments.
This new polygon will then replace all of the segments. However, as it turns out,
there does not appear to be any JavaScript libraries dealing with the issue of poly-
gon clipping, of which polygon union is a subcategory.

The authors of [22] give a rough outline their method for creating polygon
unions, but do not provide any concrete algorithm examples or implementation

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

47

5 Application Architecture

code. Therefore it could only be used as a guideline in the author’s attempts to
explore polygon union, rather than provide a ready-made solution.

Polygon clipping is an area that has seen a fair amount of research and has a
number of well-known algorithms. [72, 73, 74] However, these algorithms can be
quite complex to implement and therefore most users tend to make use of one of
a number of popular libraries implementing one of these algorithms.[75] None of
these implementations, as far as the author of this report has been able to ascer-
tain, are made in JavaScript.

The State of Polygon Clipping in the Browser Attempts have been made
by the author of this report to use automatic source code translation of two im-
plementations of well-known algorithms ([76, 77]) to JavaScript using suitable
tooling[78, 79], but as they use constructs and value types that are not immedi-
ately translatable to JavaScript, these attempts failed. Therefore a robust polygon
clipping library will have to be implemented from scratch in JavaScript.

The reasons why nobody yet has implemented this functionality in JavaScript
can only be speculated on, but might be as simple as that no one has had a large
enough need for polygon clipping inside the browser to make it worth the rather
considerable effort required to implement it. Another reason may be that one
is afraid the required calculations would be too expensive to perform in a web
browser environment, or a combination of both. For example, the ESRI ArcGIS
API for Microsoft Silverlight described in section 1.4 allows for polygon clipping
operations by submitting them to the ArcGIS Server application as a REST call
to be calculated using existing ArcGIS functionality, and then receiving the re-
sults. But considering the expected continuing increase in processing power in
computers[80] as well as the continual improvement of JavaScript Virtual Ma-
chines in web browsers[81], it would be natural to assume that the question of
expensive calculations could resolve itself.

Another possible reason for the lack of JavaScript implementations of union
operations might ironically enough be that the need for them has been identi-
fied. The proposal for the next version of the SVG standard (version 2) calls for
union and intersection operations to be available as standard SVG features[82],
meaning that they would have to be implemented by the browser makers. Being
implemented in native code by the browser makers would probably result in better
execution speed than JavaScript, so between that and the aforementioned large
amounts of effort to implement polygon clipping it might well be more tempting to

48 Stud.techn. Robert Patrick Victor Nordan

5 Application Architecture

wait for the next SVG standard to be implemented. On the other hand, the SVG2
recommendation is not expected to be finalised before August 2013[83], so there is
a considerable intermediate period where implementing a JavaScript version would
be useful.

Degenerate Cases and How They Relate to Vector Tiles Another com-
plicating issue that is unique to the vector tile question, is the so called degenerate
case. A degenerate case occurs when the vertex of one polygon lies exactly on the
edge of another polygon, or when two vertexes lie on another edge such that the
edges from two polygons exactly overlap. (As seen in figure 5.3.) Since all our
vector tiles have an overlap exactly on the edge between tiles as a result of the
way they’ve been divided up, every single case is a so called degenerate case. Far
from being an exception, it is the rule.

Figure 5.3: Illustration of degenerate vertex edges. Note how the two polygons have
overlapping edges.

The problem is that many of the simpler and more well known polygon clip-
ping algorithms treat degenerate cases as rare exceptions, which are treated in
non-deterministic ways. (Typically by moving the vertex a marginal distance in

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

49

5 Application Architecture

some direction.)[73, 74] Care must therefore be taken to implement an algorithm
which handles degenerate edges in a deterministic fashion, such as [75] or [84].

Pseudo-Union Solutions In summary, implementing a general polygon clip-
ping solution in JavaScript that suits the needs of this project is a fairly large
challenge which probably could be the subject of an academic examination in it-
self. Therefore, due to the time constraints placed on this project implementing
a true union operation is not feasible. Instead, one has turned to ”pseudo-union”
solutions which are described in the following section. Three possible solutions
were considered, of which one was selected.

One quick approach was to appropriate a piece of open source code designed
to click together pieces of a jigsaw puzzle[85], and adopt it to work with the vector
tiles. It met with moderate success, where a lot of tiles were properly clipped,
but unfortunately there were a lot of artefacts and small changes to polygon out-
lines as seen in figure 5.4. Because these problems were an inherent result of the
different nature of jigsaw puzzles and geographic data, further development on
this approach was abandoned. However, it was not a total waste as this method
creates approximate results and spends a presumably similar amount of time on
processing as a real solution, and is therefore of use for testing purposes.

The second approach attempted was to take lessons from the general polygon
clipping algorithms of [75] and [74] along with the approach outlined by [22], and
implement a simplified, non-general polygon union algorithm by making use of the
known conditions in the tile solution. By limiting the algorithm to only have to
deal with tile edge cases, one might be able to make do with less complex process-
ing. Again, this met with only partial success. There were some correct unions,
but also a lot of artefacts and problems that occurred whenever geographic entities
had overlapping edges that were parallel or near parallel with a tile edge. (Using a
set of polygons for every country in the world to test with, this became especially
obvious with international borders that had been drawn along geographic lines of
constant latitude or longitude.) It is quite possible that this algorithm eventually
could be developed into a functional solution, and when implementing a vector tile
application it would probably be wise to consider if a specialised algorithm could
grant performance benefits compared to a general algorithm. However, within the
time frame of the project, it did not seem viable to make a working solution with
this approach so it was abandoned.

The final approach, which has been implemented in the prototype, is the sim-

50 Stud.techn. Robert Patrick Victor Nordan

5 Application Architecture

Figure 5.4: Illustration of errors in experimental union. Some tile edges have not been
properly removed, while a lot of small changes to polygons have destroyed the geographic
integrity of the data.

plest solution of them all. In SVG, geometries are defined by text-based draw-
ing path instructions in which a sequence of control characters and coordinates
describe how the theoretical ”brush” painting on the screen should move and
draw.[86] Since these instructions can include several independent polygons, join-
ing together the paths of two different SVG objects is a simple as adding the
drawing instructions from them both together. The major disadvantage is that
this is not a true union, and the tile edge lines are still drawn. But if one sets
the polygon fill and edge colours to be the same, they will visually appear as one
single feature. (As seen in figure 5.5.)

While it is far from ideal to use this kind of pseudo-union, the union operation
itself is merely the result of the concatenation algorithms which are the focus of
this report doing their job. Therefore working to achieve a proper union was con-
sidered less of a priority, and this solution is good enough to visually verify the
results of the concatenation algorithms.

5.2.5 Automatic Tester

In order to perform the speed tests discussed in section 6, a simple automatic test-
ing system was implemented. The pages that require testing make a call to the

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

51

5 Application Architecture

Figure 5.5: Illustration of pseudo-union in practice. When outlines and fills are differ-
ent colours, tile edges are visible, as with Sweden. When outlines and fills are the same
colour, there are no visible tile edges within the feature, as with Norway.

52 Stud.techn. Robert Patrick Victor Nordan

5 Application Architecture

testing set-up function, which launches an alert window asking the user to enter
the number of iterations to run. It will then, for as many iterations as required,
select a random location and zoom level on the map to move to, measure the time
it takes to load the tiles and then the time it takes to concatenate the tiles. After
all the iterations are completed, it will present the timing results as a plain text
report in the browser that the user can save to disk.

The testing set-up function takes as input a bounding box for which area the
random movements are to be performed in, the zoom levels to move between, and
the total number of iterations. It actually performs one more iteration than the
user requests, because the first set of movements is not recorded due to it poten-
tially being comprised by the extra processing required when setting up the client.

5.2.6 Demonstration Applications

In addition to the principle demonstrations and the testing applications, two
demonstrations of vector tile possibilities have been designed. One of them shows
the possibilities of using vector tile layers on top of traditional raster tile layers as
a means of conveying additional information. In this case by creating highlightable
polygons with extra information over roads and buildings, as seen in figure 5.6.
The other displays a purely vector tile based map, showing how raster tiles can be
done away with entirely. (As seen in figure 5.7.)

The data set used for this has been fetched from OpenStreetMap. The user
may notice that roads being highlighted don’t seem to cover the entire length of
the road, but more typically a piece of road extending to the next intersection.
This is a result of the underlying data structure in OpenStreetMap, as can be seen
by observing the differing OSM id numbers on each section.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

53

5 Application Architecture

Figure 5.6: Illustration of a combined raster & vector application. Seen here is an area
from the centre of town in Trondheim.

Figure 5.7: Illustration of a pure vector tile application. Seen here is an area from the
centre of town in Trondheim, with roads, buildings and railway lines drawn on the map.

54 Stud.techn. Robert Patrick Victor Nordan

6 Experimental Design

6 Experimental Design
The objective of the experimentation is to develop a set of timing data that can
be used to compare relative characteristics of the proposed solutions against each
other. This data will be useful when considering whether a priori assumptions
about the strengths and weaknesses of the solutions were correct or not.

It is important to stress that the results of the experiment are strictly relative,
and as such can not be used for an absolute determination of execution speeds.
Absolute speeds depend on such factors as the data being used, the machine the
tests are being run on, and the maturity of the code being run.[87] Since the code
being run is only a prototype with emphasis placed on ease of implementation
rather than speed and optimisations, there is a definite room for improvement in
absolute speed. Furthermore, the author cannot guarantee that the implementa-
tion of the algorithms is completely optimal or error free. This will also affect
absolute speed, but assuming that inadequacies are evenly distributed the relative
speed will still give valuable indications.

6.1 Data Structures & Algorithms Selected for Testing
The following solutions have been selected for testing:

• Global Search, general case

• Global Search, special case

• Edge Pointers

These solutions were selected based on the author’s judgement of them likely
being the best solutions, with regards to the weaknesses and strengths discussed in
section 4. The selected solutions will also give an indication of whether choosing
one solution for all situations or customising based on situation is wisest.

The Central Feature Registry concept was decided against because the complex
implementation coupled with the large amounts of extra requests meant that it,
in the author’s opinion, probably was a less efficient solution than the ones selected.

The Probabilistic Matching solution was left out because of the experiences
earned from creating a prototype implementation of it. It follows from the algo-
rithm that the concatenation has at least as many steps as the special case Global

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

55

6 Experimental Design

Search algorithm, and the same constraints. Using a probabilistic determination
instead of a simple ID check essentially guarantees that the concatenation is less
efficient. Coupled with the fact the the extra communication overhead from trans-
mitting a feature ID is small and that developers quite often will have use of it
anyway (such as for lazy loading or exposing feature information to the user), im-
plementing Probabilistic Matching was not worth the effort. The implementation
was therefore abandoned before it was completed.

6.2 Test Cases
Two different data sets were chosen for test runs in order to investigate perfor-
mance in both the general case of multiple geometries per feature and the special
case of single geometry features. Both are included in the attached files for this
report, see appendix C for more details.

6.2.1 General Case - Multiple Geometries

As all the examples in section 3.3 demonstrating the challenges of multiple geome-
tries use the geography of nations, it is natural to use a data set with countries for
testing multiple geometries. The selected data source is a shapefile of the world in
the typical web map pseudo-Mercator projection, showing the whole world except
the poles. (As seen in figure 6.1.) It is included in Tilestache as the data source
for a demonstration of the raster tile layer provider, so it was simple to re-purpose
it.

The map data has a low resolution which means that the map is best viewed at
relatively low zoom levels. This is perfectly suitable for the purpose of visualising
nations, and causes no particular problems for multi-geometry concatenation trials.

6.2.2 Special Case - Single Geometries

For the single geometry case a source file had to be obtained. While roads have
been used as an example of single-geometry data, the choice fell on building out-
lines because they are polygons, which raises more interesting challenges. The
data used is taken from a shapefile extract of OpenStreetMap building outline
data for Norway[88], which was then edited in Quantum GIS to restrict the data
to a specific region with a high density of buildings. The area selected is the
historic centre of Trondheim, which has a high density of buildings as well as a

56 Stud.techn. Robert Patrick Victor Nordan

6 Experimental Design

Figure 6.1: Illustration of the general case data set, as rendered in Quantum GIS.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

57

6 Experimental Design

useful mix of small and large ones. (As seen in figure 6.2.) The data model used
by OpenStreetMap for building outlines[89] along with the nature of buildings en-
sures that all polygons are simple, with one set of geometry per feature. (Note that
the OpenStreetMap data model does not actually adhere to the Simple Features
specification, having only the simpler constructs.[90])

Figure 6.2: Illustration of the special case data set, as rendered in Quantum GIS.

In contrast to the general case data set, this data set has a high resolution and
is therefore best viewed at a high level of zoom. Again, the zoom factor should
not cause any problems, as the size of tiles relative to each other is the same.

58 Stud.techn. Robert Patrick Victor Nordan

6 Experimental Design

6.3 Testing Patterns
With three algorithms to test on two data sets, of which one pattern can only be
used on one of the data sets, there are in total five combinations of algorithms and
data sets to test. In addition, there are three different implementation variations
to test so that they can be contrasted against each other:

Simple pseudo-union, not cached Running a test completely without cache
will highlight differences in tile production time between methods.

Simple pseudo-union, cached A test with caching will give indications as to
how much of the tile delivery time is construction and how much is transport
time. For the cached tests all tiles are ”seeded”, which is to say they are
generated previously and placed in the cache.

Jigsaw experimental union, cached While the experimental union currently
gives incorrect union results (see section 5.2.4), it does exact a construction
time penalty that probably lies close to that experience by a proper union
operation. Running this test will give indications as to how large tile union
processing time is compared to the collecting of feature components.

In total that adds up to fifteen different tests to be run. Each of them will be
run for a thousand iterations in order to achieve a sound statistical foundation for
conclusions.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

59

7 Results & Discussion

7 Results & Discussion

7.1 Algorithmic Execution Speed Analysis
The following is an asymptotic analysis of the algorithms used for concatenation,
based on their descriptions from section 4. There are four variables that affect the
runtime performance of these algorithms: The first is n, denoting the number of
tiles involved in the concatenation operation. The second is s, which is a mea-
sure of how many feature segments there are per feature to be concatenated. This
number is obviously not possible to define exactly, instead one might use a average
number. Likewise, the third and fourth variables f and k, denoting the number
of features available to concatenate and the number of points in each feature seg-
ment, are only estimations of the average value.

Since s, f and k are sizes that do not grow towards∞, they can be disregarded
when describing the asymptotic growth of the function as n goes towards∞. They
are included, however, because it may be useful information in a typical usage sce-
nario such as where one needs to concatenate a screen full of tiles. In that case n
might only be around 30, and s, f and k may have an effect. Note that even then,
s and f will be smaller than n, meaning that n is likely still the dominant factor,
although k may begin to rival it.

7.1.1 Generalised Global Search

Since the generalised global search algorithm will check every single available
tile, the value of s does not actually matter. The algorithm goes through ev-
ery tile, checking for features that have not yet been concatenated. For each of
those, another full traversal of tiles is performed. This gives a growth function
of Θ(n · f · n) = Θ(fn2). Generalised for when n moves towards ∞, it becomes
simply Θ(n2).

7.1.2 Specialised Global Search

The specialised algorithm shares the first step, but does not perform a full traversal
of all tiles for each new feature it starts assembling. Instead, it investigates neigh-
bours for connections, which depends on the complexity of the feature segment
being investigated. This results in a growth function of Θ(n·f ·4·s·k) = Θ(4fkns).
Generalised for when n moves towards ∞, it becomes simply Θ(n). This proves
that theoretically, the specialised version of the algorithm should be more efficient.

60 Stud.techn. Robert Patrick Victor Nordan

7 Results & Discussion

7.1.3 Edge Pointers

Like the specialised global search algorithm, this algorithm does all full traversal
of all tiles for unconcatenated features but restricts the secondary search. In this
case it is done through preprepared edge pointers, eliminating the question of the
feature segment’s complexity. This results in a growth function of Θ(n · f · 4 · s) =
Θ(4fns). Generalised for when n moves towards ∞, it also becomes simply Θ(n).

7.1.4 Summary

We see that all the algorithms share the common first step of traversing every
tile looking for unassembled features to work with, resulting in a common lower
bound of Ω(n). We also see that the generalised global search in theory will per-
form worse than the two others, who are equivalent. However, this is only when n
goes towards∞, which is not particularly relevant in a user scenario concatenating
one screen full of tiles at a time. Since the other factors come into play at this
level, performing timing tests to ascertain their behaviour is still necessary.

7.2 Timing Results
The following tables present timing results from all of the executed tests. The
time spent running tests was about a half an hour for each test, totalling seven
and a half hours not counting time spent on stalls. Please see appendix C for
the full data files containing more detailed information from each test run. Before
the tests were run, the computer was unplugged from the network and restarted,
and all extraneous applications were shut down to ensure that as few factors as
possible could affect the timing results. (See appendix F for more details on the
computer used for the tests.)

Sometimes the test runs would stall due to the random movement (being truly
random) requesting a position that resulted in the same tiles as previously down-
loaded being requested. Since they were already in place, no downloads would be
made and the concatenation procedure would not be triggered, thus preventing the
test from moving on. This was rectified by manual observation and intervention,
when the screen was seen to have no movement for an extended period of time a
manual movement was performed so that the test runner would recover from the
stall. The timing measurements that were adversely affected by these stalls have
been removed from the collected data. Please refer to table 7.1 for information on
how many usable timing results were recorded for each test run.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

61

7 Results & Discussion

Test Run No Cache Cache Exp. Union, Cache
General data, global search 1000 1000 1000
General data, edge pointers 998 999 999
Special data, general global search 999 999 1000
Special data, special global search 1000 999 1000
Special data, edge pointers 998 999 999

Table 7.1: Number of usable samples from all test runs.

7.2.1 Download Times

Test Run No Cache Cache Exp. Union, Cache
General data, global search 1886.506 342.757 323.664
General data, edge pointers 3344.753 269.642 314.751
Special data, general global search 463.933 259.825 302.563
Special data, special global search 497.536 300.790 354.355
Special data, edge pointers 604.595 370.071 423.282

Table 7.2: Mean download time from all test runs.

Test Run No Cache Cache Exp. Union, Cache
General data, global search 4573971.922 537211.982 28735.845
General data, edge pointers 21044065.587 30669.565 23414.019
Special data, general global search 160109.760 16986.289 20923.510
Special data, special global search 1514362.221 28689.280 38400.984
Special data, edge pointers 402006.378 48011.691 58571.772

Table 7.3: Download time variance from all test runs.

Test Run No Cache Cache Exp. Union, Cache
General data, global search 2138.685 732.948 169.517
General data, edge pointers 4587.381 175.127 153.0164
Special data, general global search 400.137 130.332 144.650
Special data, special global search 1230.594 169.379 195.962
Special data, edge pointers 634.040 219.116 242.016

Table 7.4: Standard deviation of download time from all test runs.

62 Stud.techn. Robert Patrick Victor Nordan

7 Results & Discussion

0

50

100

150

200

250

300

350

400

450

0 410 820 1230 1640 2050

Fr
eq

ue
nc

y

Tile download times in milliseconds

Figure 7.1: Histogram of all 3998 download times for special data set, cached. Collected
from four test runs with identical circumstances.

The astute observer will notice that the histogram in figure 7.1 shows signs
of not being normally distributed, with a pronounced positive skew resulting in
a large concentration to the left and a long tail on the right.[91] In order to test
that assertion, we can perform Geary’s test, a statistical test designed to test for
normality that is simple and works well on large sets of data. [92, 93]

U =

√
π
2

∑n

i=1 |Xi−X̄|
n√∑n

i=1(Xi−X̄)2

n

(7.1)

Geary’s test (equation 7.1) examines the ratio between two common estimators
for the standard deviation, σ. The denominator is a reasonable estimator regard-
less of if the data set is normal or not, whilst the numerator is only good when the
distribution is normal. If the distribution is not normal, the numerator will often
underestimate or overestimate σ causing the value of U to change. As such, if the
value of U differs considerably from 1.0 this indicates a non-normal distribution.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

63

7 Results & Discussion

U =

√
π
2

441591.8649
3998√

109346243.5878
3998

= 0.8371

Referring to the table in [94], it would indeed appear that this distribution is
not normally distributed. (For full calculations, see the attached spreadsheet files
listed in appendix C.) This is likely a consequence of the simple fact that the act
of downloading tile data has a natural limit: Download time can not be less than
zero. It is possible that the distribution might have been normal if tile download
time uniformly was so large that the mean was much further away from zero and
near-zero download times never occurred. Implications of the non-normal distri-
bution are further discussed in section 7.3

Looking at the relevant tables (7.2 to 7.4) we can begin to discern some pat-
terns. As expected, the time for download is in all cases larger when it is uncached
then when it is cached. Similarly, uncached download times for the edge pointer
solution are always larger than uncached download times for the unmodified vector
tile constructor, which is to be expected due to the additional processing on the
server.

An initially more surprising result is that the edge pointer solution when cached
appears to have a smaller download time for the general case than the unmodified
vector tiles, as this is contrary to the logical conclusion that they must be slightly
larger dues to the extra data they carry. The same trait is not visible on the
download data for the special case. However, examining the variance and stan-
dard deviation shows that in all cases of cached downloads, the means are within
one standard deviation of each other. This could indicate that the difference is
in fact so small that a much larger sample size is needed to be able to detect it
properly.

The two sets of cached download time for the two variations of union should
in theory have identical means and variances, yet the data shows they have not.
Again, each mean is within one standard deviation of the other means. It would
seem that because of the non-normal distribution of download time results, a few
results along the heavy tail of the distribution have a great influence on the means.
This is indicated by the high variance of results. Increasing the sample size of the
tests would probably narrow down the discrepancy between the recorded means.
(When n goes towards ∞, the means should converge.)

64 Stud.techn. Robert Patrick Victor Nordan

7 Results & Discussion

At the sample sizes used in this study it is hard to discern a statistically signif-
icant difference in cached download times between the edge pointer solution and
the unmodified vector tile solution. However, this is in fact a result in itself: One
can expect the average user to make a lot fewer than one thousand map move-
ments, so from the user perspective there would be no perceptible difference in
download times. This is a characteristic that is worth noting.

7.2.2 Concatenation Times

Test Run No Cache Cache Exp. Union, Cache
General data, global search 52.392 52.148 316.831
General data, edge pointers 57.902 59.188 328.904
Special data, general global search 180.538 51.283 92.384
Special data, special global search 49.752 42.230 77.412
Special data, edge pointers 35.014 35.686 67.889

Table 7.5: Mean concatenation time from all test runs.

Test Run No Cache Cache Exp. Union, Cache
General data, global search 3401.496 5035.972 348302.225
General data, edge pointers 3497.092 5970.868 344861.598
Special data, general global search 53360.756 6355.470 15506.761
Special data, special global search 4818.931 2058.191 8346.677
Special data, edge pointers 1428.762 1443.065 7557.478

Table 7.6: Concatenation time variance from all test runs.

Test Run No Cache Cache Exp. Union, Cache
General data, global search 58.322 70.965 590.171
General data, edge pointers 59.136 77.271 587.249
Special data, general global search 231.000 79.721 124.526
Special data, special global search 69.419 45.367 91.360
Special data, edge pointers 37.799 37.988 86.934

Table 7.7: Standard deviation of concatenation time from all test runs.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

65

7 Results & Discussion

0

100

200

300

400

500

600

0 160 320 480 640 800

Fr
eq

ue
nc

y

Tile concatenation times in milliseconds

Figure 7.2: Histogram of all 1999 concatenation times for special data set, cached,
concatenated with specialised global search algorithm and pseudo-union. Collected from
two test runs with identical circumstances.

0

10

20

30

40

50

60

70

80

90

0 330 660 990 1320 1650

Fr
eq

ue
nc

y

Tile concatenation times in milliseconds

66 Stud.techn. Robert Patrick Victor Nordan

7 Results & Discussion

Figure 7.3: Histogram of 999 concatenation times for special data set, cached, concate-
nated with specialised global search algorithm and experimental union. Collected from a
single test run.

Once again, we observe apparently non-normal distributions. Checking with
Geary’s test like before we find that this interpretation is correct and that they
indeed are non-normal. (Figure 7.2 has a U of 0.7662, and figure 7.3 has a U of
0.8883)

Figure 7.2 illustrates concatenation time with the pseudo-union method, and is
therefore as close an estimate to the cost of the actual feature reassembly algorithm
as we can get. It shows that the actual discovery of related tiles is fairly quick.
By contrast, notice how figure 7.3 not only shows a lot larger use of time, but also
bears a close resemblance to the download time histogram in figure 7.1. This is a
possible indication of covariance between the tile’s complexity (and therefore its
download size) and the time needed to create a union.

The time expenditure for the experimental union is generally higher than for
the pseudo-union. Time spent on concatenation with the experimental union is
also noticeably larger on the general data set compared to the special data set,
as might be expected considering that the general data set is more complex. It is
worth noticing the high variance and standard deviation here, indicating that tiles
with complex content require a processing time that is so large that it profoundly
affects the mean time.

A lesson to take from the contrast in timing results between pseudo-union and
the experimental proper union is that for application usage it is the actual merg-
ing of the tiles that takes the most time, not finding which tiles are to be used as
sources for the merging.

The timing numbers indicate that the specialised global search is more efficient
than the general global search on the special data set, which is as expected. Fur-
thermore, the edge pointer solution outperforms even the specialised global search.
This is also in line with expectations. However, for the general data set the edge
pointers appear to have performed slightly worse than the global search solution.
This result was not as expected, but might be related to the longer chains of edge
pointers in a multiple geometry environment and the way the chains are investi-
gated. Again, both means are well within one standard deviation of each other,
indicating that the differences might be down to chance.

Like with the download times, at the number of samples used it is somewhat

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

67

7 Results & Discussion

difficult to make accurate statements about the differences between the different
methods due to the large variance induced by the non-normal distribution. Still, it
would appear that it is not possible to point out any solution that is better under
any circumstance. Beyond that it seems that from a user perspective it would
be difficult to perceive any marked difference between the global search and edge
pointer solutions in terms of execution speed. (Especially when both are dwarfed
by the time spent on proper merging in the general case.) This is also a valuable
lesson insofar as it means that the choice of method can be informed by other
considerations than execution speed.

7.3 Non-Normality of Tile Loading & Concatenation Time
Distributions

As it was discovered in section 7.2, vector tile generation, download and concate-
nation operations do not follow a normally distributed probability curve. This
has implications for any attempts to predict the behaviour of such a solution, for
example when trying to determine characteristics of a system’s behaviour under
load. One aspect is that when one needs to compare logged timing results, one
can not apply many of the standard statistical tests that engineers often resort to,
and must therefore determine other tests that may be suitable. Another aspect
is that when modelling future behaviour, a suitable kind of distribution must be
found.

The normal distribution is the most common distribution for naturally occur-
ring variations, and is widely used in statistical modelling for engineering purposes.
It provides a pleasingly elegant model, and there a lot of common statistical tests
available for working with such distributions. However, there is no law of nature
demanding that phenomena adhere to a normal distribution, and in this case there
are factors that make other distributions a better fit.

All of the tile loading and concatenation time data has a natural lower limit of
zero, since tiles cannot be delivered before they are requested. In itself this is does
not have to be incompatible with normal distributions, but only if the process takes
so much longer than zero that it never comes into the question. This is clearly not
the case for vector tile solutions, where in fact paring down times as close to zero
as possible is the goal. The collected data also reveals an interesting fact about
vector tiles, namely that the majority of them are either empty or contain a single
feature segment. (Typically a square segment from a larger feature at high zoom
levels.) These simple tiles take an accordingly small amount of time to process.

68 Stud.techn. Robert Patrick Victor Nordan

7 Results & Discussion

Only a few tiles are actually highly complex, taking much longer time to deliver.

Several related distributions were considered as possible fits for the collected
data, including gamma, log-normal and Weibull distributions. Using a distribution-
fitting library[95] for the R programming language (an language designed for sta-
tistical tasks[96]), maximum likelihood estimations were performed against the
measured data sets for each of the candidate distributions. The estimated fit with
the lowest standard error was for a gamma distribution, see figure 7.4 for a graphi-
cal representation of how well the fitted distribution corresponds with the data set.

f(x;α, β) =

 1
βαΓ(α)x

α−1e
−x
β , x > 0

0, elsewhere
(7.2)

Γ(α) =
∫ ∞

0
xα−1e−x, dx (7.3)

The gamma distribution is often applied to queuing theory and reliability
problems[92] where x must be larger than zero. It is often used for modelling time-
to-arrival problems, and as such should be a good fit for modelling tile download
times. The values for α and β, (see equations 7.2 and 7.3 for the gamma distri-
bution density function), have been determined by the program to be 3.17522 and
0.01056, with standard errors of 0.130781 and 0.000467, respectively.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

69

7 Results & Discussion

Empirical and theoretical distr.

data

D
e
n
s
it
y

0 500 1000 1500

0
.0

0
0
0

0
.0

0
1
0

0
.0

0
2
0

0 200 400 600 800 1000

0
5
0
0

1
0
0
0

1
5
0
0

 QQ−plot

theoretical quantiles

s
a
m

p
le

 q
u
a
n
ti
le

s

0 500 1000 1500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Empirical and theoretical CDFs

data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PP−plot

theoretical probabilities

s
a
m

p
le

 p
ro

b
a
b
ili

ti
e
s

Figure 7.4: Estimated fit of Gamma distribution to the special case, experimental union
data.

7.3.1 Implications

The gamma distribution does not have any implications other than that com-
monly used statistical tests intended for normal distributions cannot be used. It
is an important observation precisely because using statistical methods meant for
normal distributions would have produced erroneous predictions that could have
adversely affected decision making. Apart from that, gamma distributions are per-
fectly functional for making predictions about probabilities of tile delivery time.
(There are some statistical tests that can be applied to non-normal distributions,

70 Stud.techn. Robert Patrick Victor Nordan

7 Results & Discussion

but they are uncommon and belong to advanced subjects in statistics which the au-
thor, quite frankly, does not have a good enough knowledge of to effectively apply.)

One important question regarding the collected data and fitted distribution is
this: Are the results really applicable for a real-life production application? No
actual user will be moving completely randomly around the map, making navi-
gational jumps that are not possible when using a standard slippy map interface.
Instead, their use might typically be clustered around a single area within a limited
amount of zoom levels. (Meaning that all requests would be for tiles of similar
complexity.)

For predicting the tile load incurred by a single user, the answer is most likely
that the collected data is not particularly accurate. However, for predicting the
total load coming from a large number of users, it is quite likely relevant. A large
number of users will be looking at different things, creating a spread of tile requests
that more closely resemble a random distribution. Therefore the data is useful for
planning the capacity of a multi-user application.

One hypothesis worth noting, which requires further research to verify, is that
actual users will probably make fewer requests for sparsely detailed areas such as
the middle of the ocean than a random process does. (Likewise, they might make
more requests for densely detailed areas such as population centres.) In such a
case, the distribution of results would probably be less positively skewed with a
smaller concentration on the left and possibly a more pronounced right hand tail.
It would however still likely adhere to a gamma distribution.

7.4 Feasibility of GIS Operations
As explained in section 1.1.3, there already exists a standardised system for doing
GIS work on vector data transmitted over the internet, namely WFS and WFS-T.
If one was to consider using a vector tile solution for similar tasks, as opposed to
simply viewing the data, there are a number of issues to consider. The prototype
work that has been performed addresses some of them, while others to greater or
lesser extent are left for future research to consider.

7.4.1 Data Completeness

If one is to be able to perform GIS analysis on geographic features, one must be
sure that one has acquired the entire feature first. The prototype has demon-

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

71

7 Results & Discussion

strated that using edge pointers is a viable method of ensuring that all the data
needed to completely reassemble a feature is collected before assembly is done. The
prototype has not actually implemented the downloading action required to ac-
quire new sections, but it does recognise when there are missing pieces of a feature.

If one was to implement such forced downloading of tiles with missing feature
segments, it would likely introduce a significant delay for the tile concatenation
operations. This is because one would have to wait for needed tiles to finish down-
loading before one could finish assembly. (Provided none of the downloaded tiles
point to further tiles that need to be downloaded!) It is in other words perfectly
feasible, but may incur a reduction in performance as seen from the user’s per-
spective.

7.4.2 Projection & Distortions

As noted in section 1.2, the EPSG:3857 ”WGS 84 / Pseudo-Mercator” projection
is the most commonly used projection in tiling systems, and is also the one used in
the prototype. This is for reasons of expediency and compatibility with raster tile
providers like OpenStreetMap. EPSG:3857 is quite well suited for visualisation of
geographic data in a user context where absolute precision is not required. This
is primarily because it is able to project all areas of the world (except the poles)
with relatively good accuracy, and is easy to use in a quadratic addressing system
like tiling systems use.

The downside of using this projection is the compromises that have to be made.
In other to easily encompass the entire world, EPSG:3857 sees the world as a per-
fect sphere, something it is not. While this is an acceptable assumption at small
scales, it is not as well suited for larger scales. Because of this distortions of up to
800 meters in position and 0.7 % in scale may arise.[21] For proper GIS work one
needs a projection that allows a minimal amount of distortion in the area one is
interested in.

In Norway, the Universal Transverse Mercator (UTM) system is commonly
used. UTM is divided into zones where each zone has an acceptably low distortion
for a given geographic area. (For example UTM zone 32 works well in western and
central Norway.) But outside of this zone distortion increases to an unacceptable
level, which is why a single UTM zone projection can not be used for a global map.

Therefore, if one is to used a vector tile system for GIS work, one must abandon
the EPSG:3857 projection and select a projection that is suitable for the area of

72 Stud.techn. Robert Patrick Victor Nordan

7 Results & Discussion

interest. Per the WMTS, any projection can be used for a tiling service as long as
the server provides the client with a definition of the scale set used for addressing
with that projection. As such, a tile server can specify for example the UTM32
projection for a set of tiles, thus providing good accuracy within a relatively small
area. The corresponding downside is the inability to use said tile server for a global
application, and incompatibility with tile servers such as OpenStreetMap meaning
they can not be used as a background layer.

7.4.3 Preservation of Data Integrity

For GIS work it is paramount that the data is correct, and this becomes more of
a challenge when the data has been assembled from many different sections. How
does one know that the union operations have performed flawlessly and recreated
the exact feature that was the source for all the segments transmitted through
tiles? The prototype does not do any work on such verification due to the incom-
plete implementation of unions, but it is a question that must be considered.

One possible method is to implement some sort of hashing or checksum oper-
ation that creates a short and unique fingerprint of the feature. That fingerprint
could then be transmitted with the fragments on each tile, and after the union
operation a new fingerprint could be created and compared to the original. The
extra data transmission would be minimal, and the hashing operation on the server
would be inconsequential due to caching. However, depending on how complex the
hashing operation is, it might cause a noticeable delay in the union operations.

Another issue is what to do if there is a mismatch between the provided and
the generated fingerprint. Potentially, one could try rerunning the union opera-
tion with altered parameters (such as starting from a different tile), or one could
download a fresh copy of the entire feature in a manner akin to requests from a
WFS server. (One could simply provide a WFS interface to the same data set.)

7.4.4 Data Upload

Provided the issues in the previous sections have been taken care of, the data
can be manipulated using various GIS operations. How does one then upload the
changed data to the server? One option is to once again cut the data into tiles
and send them up to the server for reassembly. However, this certainly seems like
an unnecessarily complex method, involving replication of server functionality on
the client as well as client functionality on the server and creating time consuming

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

73

7 Results & Discussion

intermediary steps.

Continuing along that line of thought, it would be more sensible to upload the
entire feature in one chunk. In other words, exactly like the way WFS-T handles
data upload. It might well be a good idea to provide a WFS-T interface to the
data store and make use of that for data upload in order to avoid reinventing the
wheel.

74 Stud.techn. Robert Patrick Victor Nordan

8 Conclusions

8 Conclusions

8.1 Observations
Through the tests that have been run, insights have been gained about the per-
formance of the tested solutions. This has provided useful knowledge that can be
contrasted with the a priori assumptions made about them.

8.1.1 Generalised Versus Specialised Methods

The testing has demonstrated that specialised methods can indeed have advan-
tages over a general method. (The specialised global search performed better than
the generalised global search on a special data set.) However, it turned out that
using the edge pointer method provided even better results on the special data
set. This indicates that implementing different algorithms for special and general
data sets may not be worthwhile.

8.1.2 Importance of Added Data

The timing results indicate that adding a small amount of extra data, such as for
edge pointers, is inconsequential compared to the amounts of data transmitted
for a feature. The extra transmission burden disappears against the ”background
noise” of the varying sizes of feature data being transmitted, meaning there is no
discernible difference between edge pointer tiles and unmodified tiles when exam-
ining transmission time. This is of course dependent on the data being cached,
as generating edge pointer tiles still requires a large premium of time. With that
requirement fulfilled, the developer can disregard small differences in data trans-
mission size as a factor when choosing between topology preservation methods.

8.1.3 Importance of Caching

It can be concluded that using a cache to deliver tiles has a major impact on on
tile delivery time in all cases. Furthermore, in those cases where extra processing
is performed on the server, such as for edge pointers, caching has an even greater
effect as regards delivery time reduction. With caching enabled, the difference in
delivery time between methods is for all intents and purposes eliminated. This
leaves the developer free to choose between topology preservation methods based
on other merits than generation time.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

75

8 Conclusions

8.2 Recommendations
Based on the knowledge gathered during this project, some recommendations can
be made for future reference.

8.2.1 Choice of Methods

There is no definite winner among the proposed methods for topology preservation,
as the results show that performance varies depending on the circumstances. In
general, the most important factor determining performance is caching, not which
of the tested methods is employed. Because of this, other factors can be taken into
consideration.

Therefore, the author sees using edge pointers as the most promising method
for preservation of topology in vector tile applications. (With the important pro-
viso that caching must be employed in order to negate the increased tile generation
time.) This is because using edge pointers allows the application to guarantee data
completeness, while having broadly similar performance to a global search method.
By using the edge pointer method and employing a correct union method (which
is left for future work, see section 9) it should be quite possible to create a vector
tile solution that complies with the SFA.

8.2.2 Utility for GIS Operations

It is quite possible to create a GIS tool using vector tiles, taking into account the
issues raised and remedies proposed in section 7.4. However, the added complex-
ity that entails, along with the probable need to run a WFS server in parallel,
makes it an impractical suggestion. In the author’s opinion, using vector tiles for
GIS applications is less suitable than using a plain WFS server and client. Vector
tile solutions are best suited for visualisation, interactivity and providing added
information about features.

76 Stud.techn. Robert Patrick Victor Nordan

9 Future Work

9 Future Work
There are several avenues of future work which may be pursued in relation to
the subjects covered in this thesis, some of which are mentioned here. They con-
sist both of further development of the concepts explored in this thesis as well as
concepts that have been omitted as a result of prioritisation (such as speed) and
concepts that have appeared during the course of the thesis work (such as tile load
distributions).

9.1 Further Development, Speed & Compactness

As this report has concerned itself with topology and data integrity rather than
execution speed, there are likely large gains to be made in speed and efficiency.
This applies equally to the server side and the client side applications, as they both
were purely prototype implementations. The prototype is not well-suited for fur-
ther development as it essentially is a modification of an existing product, bringing
with it inherent flaws. Therefore developing a new vector tile application from the
ground up, taking into account the experience gained from this prototype, would
be a suitable goal for further academic work. (See also the next two subsections.)

At the same time as this work was performed, another master thesis study
has been performed at NTNU, looking into the potential for increasing speed and
efficiency in web maps through using vector tiles.[70] It would probably be very
helpful to combine the experience gained from both reports when designing a new
vector tile application.

9.1.1 Polygon Union in JavaScript

One major challenge left unsolved by this report is the issue of polygon union, as
detailed in section 5.2.4. Therefore, a suitable extension of the work done here
would be to continue working on methods of performing accurate polygon unions
in JavaScript. It is probable that these methods will be implemented in browsers
when the SVG 2 standard has been finalised, but until then something is needed to
bridge the gap. Another viable academic project might be to get involved with the
standards process and work on implementing union features for SVG in the major
open source browsers ahead of the standard finalisation. In either case, the major
academic challenge would be working on creating the most optimised approach to
polygon clipping in a possibly resource-constrained environment. (For web users,

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

77

9 Future Work

the execution speed is the most important factor.)

One could also go for a more specialised route, and work on a union method
that was specifically adapted for vector tile applications. Both the work performed
for this report and the work done in [22] would be good starting points for such
an approach.

9.1.2 GIS Enhancements

As noted in section 7.4, making a GIS solution using vector tiles is probably fea-
sible but might not be practical. An avenue of research could be to investigate
these conclusions more closely, to see if it really is impractical or not. At any rate,
subjecting issues like upload methods, access to underlying data, integrity checks
and so on to a more rigorous investigation might yield valuable insights that can
be applied in other settings as well.

9.2 Tile Load Distributions
As discovered through the testing performed during this project, tile loading times
have a gamma distribution. However, this was during synthetic tests with random
movements. An interesting angle that could be investigated further is looking at
real-life tile load situations with human users. Both tile load times from individual
users and tile load times aggregated over many users would be helpful in pointing
out usage patterns, and would be helpful to confirm or deny the distribution pat-
terns discovered during the synthetic testing.

Probably the greatest challenge with such a project is the scale of the exper-
iment. One would need many different users, and they would also have to be
simply using the system for self-defined tasks. Inviting volunteers to complete a
series of goals would not work, as it would effectively predetermine their usage
patterns. One possible solution would be to approach some larger entity offering
map services and request a cooperation for the purpose of collecting anonymous
usage data.

78 Stud.techn. Robert Patrick Victor Nordan

References

References
[1] S. Putz, “Interactive information services using world-wide web hypertext,”

Computer Networks and ISDN Systems, vol. 27, no. 2, pp. 273 – 280, 1994.
Selected Papers of the First World-Wide Web Conference.

[2] T. Berners-Lee, “Www: past, present, and future,” Computer, vol. 29, pp. 69
–77, oct 1996.

[3] M. Peterson, “Twenty years of the world wide web: Perspectives on the in-
ternet transition in cartography,” in Proceedings of the 25th International
Cartographic Conference, Paris, France, July 3-8, 2011., 2011.

[4] J. Sample and E. Ioup, Tile-based geospatial information systems: principles
and practices. Springer-Verlag New York Inc, 2010.

[5] Open Geospatial Consortium, “OpenGIS Web Map Server Interface Imple-
mentation Specification 1.3.0,” 2006.

[6] J. Garrett, “Ajax: A new approach to web applications,” 2005.

[7] S. Liu and L. Palen, “The new cartographers: Crisis map mashups and the
emergence of neogeographic practice,” Cartography and Geographic Informa-
tion Science, vol. 37, no. 1, pp. 69–90, 2010.

[8] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
Pervasive Computing, IEEE, vol. 7, no. 4, pp. 12–18, 2008.

[9] L. Vincent, “Taking online maps down to street level,” Computer, vol. 40,
pp. 118 –120, dec. 2007.

[10] M. Rost, H. Cramer, N. Belloni, and L. Holmquist, “Geolocation in the mo-
bile web browser,” in Proceedings of the 12th ACM international conference
adjunct papers on Ubiquitous computing, pp. 423–424, ACM, 2010.

[11] C. Grier, S. T. King, and D. S. Wallach, “How i learned to stop worrying and
love plugins,” in In Web 2.0 Security and Privacy, 2009.

[12] A. Taivalsaari and T. Mikkonen, “The web as an application platform: The
saga continues,” in Software Engineering and Advanced Applications (SEAA),
2011 37th EUROMICRO Conference on, pp. 170–174, IEEE, 2011.

[13] P. Lubbers, B. Albers, and F. Salim, Pro HTML5 Programming. Springer,
2011.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

79

References

[14] I. Heywood, S. Cornelius, and S. Carver, An Introduction to Geographical
Information Systems. Essex, UK: Pearson Education Limited, 3. ed., 2006.

[15] L. D. Cola, “The use of a raster data structure to summarize a point pattern.”
(available online at https://en.wikipedia.org/wiki/File:The_use_of_
a_raster_data_structure_to_summarize_a_point_pattern.gif), 2011.

[16] Open Geospatial Consortium, “OpenGIS Feature Service Implementation
Specification 1.3.0,” 2010.

[17] Open Geospatial Consortium, “OpenGIS Web Map Tile Service Implementa-
tion Specification 1.0.0,” 2010.

[18] M. Worboys and M. Duckham, GIS - A Computing Perspective. CRC Press,
2. ed., 2004.

[19] P. Přidal and P. Žabička, “Tiles as an approach to on-line publishing of
scanned old maps, vedute and other historical documents,” e-Perimetron,
vol. 3, no. 1, pp. 10 –21, 2008.

[20] E. Hazzard, OpenLayers 2.10 Beginner’s Guide. Packt Publishing, 1. ed.,
2011.

[21] H. Butler, C. Schmidt, D. Springmeyer, and J. Livni, “EPSG:3857.” (available
online at http://www.spatialreference.org/ref/sr-org/6864/), 2012.

[22] V. Antoniou, J. Morley, and M. Haklay, “Tiled vectors: A method for vector
transmission over the web,” in Web and Wireless Geographical Information
Systems (J. Carswell, A. Fotheringham, and G. McArdle, eds.), vol. 5886 of
Lecture Notes in Computer Science, pp. 56–71, Springer Berlin / Heidelberg,
2009. 10.1007/978-3-642-10601-9 5.

[23] B. Campin, “Use of vector and raster tiles for middle-size scalable vector
graphics’ mapping applications,” in SVGOpen 2005, 2005.

[24] Stackexchange.com, “How to create vector polygons at the
same amazing speeds giscloud is able to render them?.” (avail-
able online at http://gis.stackexchange.com/questions/
15240/how-to-create-vector-polygons-at-the-same-amazing%
2Dspeeds-giscloud-is-able-to-ren), 2012.

[25] Robert Nordan and others, “Conversations between the author and employees
of Norkart Geoservice AS,” January 2012.

80 Stud.techn. Robert Patrick Victor Nordan

https://en.wikipedia.org/wiki/File:The_use_of_a_raster_data_structure_to_summarize_a_point_pattern.gif
https://en.wikipedia.org/wiki/File:The_use_of_a_raster_data_structure_to_summarize_a_point_pattern.gif
http://www.spatialreference.org/ref/sr-org/6864/
http://gis.stackexchange.com/questions/15240/how-to-create-vector-polygons-at-the-same-amazing%2Dspeeds-giscloud-is-able-to-ren
http://gis.stackexchange.com/questions/15240/how-to-create-vector-polygons-at-the-same-amazing%2Dspeeds-giscloud-is-able-to-ren
http://gis.stackexchange.com/questions/15240/how-to-create-vector-polygons-at-the-same-amazing%2Dspeeds-giscloud-is-able-to-ren

References

[26] OpenLayers user mailing list, “Giscloud showing tons of vectors features
on web browser.” (available online at http://osgeo-org.1560.n6.nabble.
com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%
2Dtd3913621.html), 2012.

[27] Open Geospatial Consortium, “Leaflet features.” (available online at http:
//www.opengeospatial.org/ogc/process), 2012.

[28] Open Geospatial Consortium, “OpenGIS R© Implementation Standard for Ge-
ographic information - Simple feature access - Part 1: Common architecture,”
2010.

[29] Open Geospatial Consortium, “OpenGIS R© Implementation Standard for Ge-
ographic information - Simple feature access - Part 2: SQL option,” 2010.

[30] Adobe Inc., “Adobe flash player 11 - tech specs.” (available online at https:
//www.adobe.com/products/flashplayer/tech-specs.html), 2012.

[31] Techcrunch.com, “ios market share up from 26% in q3 to 43% in oc-
t/nov 2011.” (available online at http://techcrunch.com/2012/01/09/
ios-marketshare-up-from-26-in-q3-to-43-in-octnov-2011/), 2012.

[32] Microsoft Inc., “Silverlight overview.” (available online at http://msdn.
microsoft.com/en-us/library/bb404700%28v=vs.95%29.aspx), 2012.

[33] ESRI, “Cots gis: The value of a commercial geographic information system,”
white paper, ESRI, 2002.

[34] ESRI, “Which api should i use: Javascript, flex, or sil-
verlight?.” (available online at http://events.esri.com/
uc/QandA/index.cfm?fuseaction=answer&conferenceId=
DD02CFE7-1422-2418-7F271831F47A7A31&questionId=3992), 2012.

[35] ESRI, “Arcgis api for silverlight.” (available online at http://help.arcgis.
com/en/webapi/silverlight/), 2012.

[36] OpenScales team, “Openscales - documentation.” (available online at http:
//openscales.org/documentation/index.html), 2012.

[37] Microsoft Inc., “Microsoft support lifecycle - internet explorer 6.” (available
online at http://support.microsoft.com/lifecycle/?LN=en-us&x=5&y=
6&p1=2073), 2012.

[38] Caniuse.com, “When can i use....” (available online at http://caniuse.com/
#cats=HTML5), 2012.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

81

http://osgeo-org.1560.n6.nabble.com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%2Dtd3913621.html
http://osgeo-org.1560.n6.nabble.com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%2Dtd3913621.html
http://osgeo-org.1560.n6.nabble.com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%2Dtd3913621.html
http://www.opengeospatial.org/ogc/process
http://www.opengeospatial.org/ogc/process
https://www.adobe.com/products/flashplayer/tech-specs.html
https://www.adobe.com/products/flashplayer/tech-specs.html
http://techcrunch.com/2012/01/09/ios-marketshare-up-from-26-in-q3-to-43-in-octnov-2011/
http://techcrunch.com/2012/01/09/ios-marketshare-up-from-26-in-q3-to-43-in-octnov-2011/
http://msdn.microsoft.com/en-us/library/bb404700%28v=vs.95%29.aspx
http://msdn.microsoft.com/en-us/library/bb404700%28v=vs.95%29.aspx
http://events.esri.com/uc/QandA/index.cfm?fuseaction=answer&conferenceId=DD02CFE7-1422-2418-7F271831F47A7A31&questionId=3992
http://events.esri.com/uc/QandA/index.cfm?fuseaction=answer&conferenceId=DD02CFE7-1422-2418-7F271831F47A7A31&questionId=3992
http://events.esri.com/uc/QandA/index.cfm?fuseaction=answer&conferenceId=DD02CFE7-1422-2418-7F271831F47A7A31&questionId=3992
http://help.arcgis.com/en/webapi/silverlight/
http://help.arcgis.com/en/webapi/silverlight/
http://openscales.org/documentation/index.html
http://openscales.org/documentation/index.html
http://support.microsoft.com/lifecycle/?LN=en-us&x=5&y=6&p1=2073
http://support.microsoft.com/lifecycle/?LN=en-us&x=5&y=6&p1=2073
http://caniuse.com/#cats=HTML5
http://caniuse.com/#cats=HTML5

References

[39] OpenLayers team, “Frequently asked questions about the openlayers
project.” (available online at http://trac.osgeo.org/openlayers/wiki/
FrequentlyAskedQuestions), 2012.

[40] H. Kraus, “Mapnik metawriter.” (available online at https://github.com/
mapnik/mapnik/wiki/MetaWriter), 2012.

[41] CloudMade, “Leaflet features.” (available online at http://leaflet.
cloudmade.com/features.html), 2012.

[42] Cartagen team, “Cartagen wiki home.” (available online at https://github.
com/jywarren/cartagen/wiki), 2012.

[43] SimpleGeo Inc., “Polymaps documentation.” (available online at http://
polymaps.org/docs/), 2012.

[44] SimpleGeo Inc., “Polymaps statehood example.” (available online at http:
//polymaps.org/ex/statehood.html), 2012.

[45] D. Oehlman, “Tile5 - html5 mobile mapping.” (available online at http://
www.tile5.org/), 2012.

[46] D. Oehlman, “The future of tile5.” (available online at http://www.tile5.
org/news/the-future-of-tile5.html), 2012.

[47] GIS Cloud Ltd., “GIS Cloud Features.” (available online at http://www.
giscloud.com/features/), 2012.

[48] GIS Cloud Ltd., “GIS Cloud’s HTML5 Vector Map Engine Demo.” (available
online at http://www.giscloud.com/map/284/africa), 2012.

[49] D. Ravnic, “Re: GisCloud showing tons of vectors features on Web
Browser .” (available online at http://osgeo-org.1560.n6.nabble.
com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%
2Dtp3913621p3913639.html), 2011.

[50] R. Fielding and J. Gettys and J. Mogul and H. Frystyk and L. Masinter and
P. Leach and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1.”
(available online at https://tools.ietf.org/html/rfc2616#section-9.
5), 1999.

[51] H. Butler, M. Daly, A. Doyle, S. Gillies, T. Schaub, and C. Schmidt, “The
GeoJSON Format Specification,” 2008.

82 Stud.techn. Robert Patrick Victor Nordan

http://trac.osgeo.org/openlayers/wiki/FrequentlyAskedQuestions
http://trac.osgeo.org/openlayers/wiki/FrequentlyAskedQuestions
https://github.com/mapnik/mapnik/wiki/MetaWriter
https://github.com/mapnik/mapnik/wiki/MetaWriter
http://leaflet.cloudmade.com/features.html
http://leaflet.cloudmade.com/features.html
https://github.com/jywarren/cartagen/wiki
https://github.com/jywarren/cartagen/wiki
http://polymaps.org/docs/
http://polymaps.org/docs/
http://polymaps.org/ex/statehood.html
http://polymaps.org/ex/statehood.html
http://www.tile5.org/
http://www.tile5.org/
http://www.tile5.org/news/the-future-of-tile5.html
http://www.tile5.org/news/the-future-of-tile5.html
http://www.giscloud.com/features/
http://www.giscloud.com/features/
http://www.giscloud.com/map/284/africa
http://osgeo-org.1560.n6.nabble.com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%2Dtp3913621p3913639.html
http://osgeo-org.1560.n6.nabble.com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%2Dtp3913621p3913639.html
http://osgeo-org.1560.n6.nabble.com/GisCloud-showing-tons-of-vectors-features-on-Web-Browser%2Dtp3913621p3913639.html
https://tools.ietf.org/html/rfc2616#section-9.5
https://tools.ietf.org/html/rfc2616#section-9.5

References

[52] M. Migurski, “TileStache API.” (available online at http://tilestache.
org/doc/), 2012.

[53] Google Inc., “Google summer of code.” (available online at https://code.
google.com/soc/), 2012.

[54] Nokia Inc., “Nokia maps 3d webgl (beta).” (available online at http://
maps3d.svc.nokia.com/webgl/index.html), 2012.

[55] Khronos Group, “WebGL Specificatio nVersion 1.0,” 2011.

[56] F. A. Krueger, “Nokia 3d map tiles.” (available online at http://idiocode.
com/2012/02/01/nokia-3d-map-tiles/), 2012.

[57] M. Bertolotto and M. J. Egenhofer, “Progressive transmission of vector map
data over the world wide web,” Geoinformatica, vol. 5, pp. 345–373, Dec.
2001.

[58] P. Corcoran, P. Mooney, A. Winstanley, and M. Bertolotto, “Effective vec-
tor data transmission and visualization using html5,” in Proceedings of the
GISRUK 2011 Portsmouth, England, April 2011.

[59] R. Weibel, “Generalization of spatial data: Principles and selected algo-
rithms,” Algorithmic foundations of geographic information systems, pp. 99–
152, 1997.

[60] M. Fiedler, C. Eliasson, P. Arlos, S. Eriksén, and A. Ekelin, “Quality of
experience and quality of service in the context of an internet-based map
service,” technical report, Blekinge Institute of Technology, 2008.

[61] M. Fiedler, C. Eliasson, P. Arlos, S. Eriksén, and A. Ekelin, “Mapping service
quality – comparing quality of experience and quality of service for internet-
based map services,” in Proceedings of the 30th Information Systems Research
Seminar in Scandinavia IRIS 2007, 2007.

[62] M. Taraldsvik, “Exploring the future: is html5 the solution for gis applications
on the world wide web?,” technical report, NTNU, 2011.

[63] Z. Liu, M. Pierce, G. Fox, and N. Devadasan, “Implementing a caching and
tiling map server: a web 2.0 case study,” in Collaborative Technologies and
Systems, 2007. CTS 2007. International Symposium on, pp. 247 –256, may
2007.

[64] M. Migurski, “TileStache Readme.” (available online at https://github.
com/migurski/TileStache), 2012.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

83

http://tilestache.org/doc/
http://tilestache.org/doc/
https://code.google.com/soc/
https://code.google.com/soc/
http://maps3d.svc.nokia.com/webgl/index.html
http://maps3d.svc.nokia.com/webgl/index.html
http://idiocode.com/2012/02/01/nokia-3d-map-tiles/
http://idiocode.com/2012/02/01/nokia-3d-map-tiles/
https://github.com/migurski/TileStache
https://github.com/migurski/TileStache

References

[65] J.-G. Sanz-Salinas and M. Montesinos-Lajara, “Current panorama of the
foss4g ecosystem,” Novatica, vol. X, no. 2, pp. 43–51, 2009.

[66] Open Source Initiative, “List of Approved Open Source Licenses.” (available
online at http://www.opensource.org/licenses/alphabetical), 2011.

[67] J. Willinsky, “The unacknowledged convergence of open source, open access,
and open science,” First Monday [Online], vol. 10, August 2005.

[68] R. Nordan and M. Migurski, “Closed pull request: Fixed topology errors in
sample data (world merc.shp).” (available online at https://github.com/
migurski/TileStache/pull/39), 2012.

[69] J. Spolsky and B. Eckel, “Strong typing vs. strong testing,” in The Best
Software Writing I, pp. 67–77, Apress, 2005. 10.1007/978-1-4302-0038-3 11.

[70] M. Taraldsvik, “The future of web-based maps: can vector tiles and HTML5
solve the need for high-performance delivery of maps on the web?.” (available
online at https://github.com/meastp/efficientvectortiles), 2012.

[71] Michael Migurski, “Polymaps license.” (available online at https://github.
com/simplegeo/polymaps/blob/master/LICENSE), 2012.

[72] M. K. Agoston, Clipping, ch. 3. Springer, 2005.

[73] B. R. Vatti, “A generic solution to polygon clipping,” Commun. ACM, vol. 35,
pp. 56–63, July 1992.

[74] G. Greiner and K. Hormann, “Efficient clipping of arbitrary polygons,” ACM
Trans. Graph., vol. 17, pp. 71–83, Apr. 1998.

[75] F. Mart́ınez, A. J. Rueda, and F. R. Feito, “A new algorithm for computing
boolean operations on polygons,” Computers & Geosciences, vol. 35, no. 6,
pp. 1177 – 1185, 2009.

[76] A. Johnson, “Clipper.” (available online at http://sourceforge.net/
projects/polyclipping/), 2012.

[77] F. Mart́ınez, A. J. Rueda, and F. R. Feito, “An algorithm for computing
Boolean operations on polygons.” (available online at http://wwwdi.ujaen.
es/˜fmartin/bool_op.html), 2012.

[78] A. Zakai, “Emscripten.” (available online at http://emscripten.org/), 2012.

[79] K. Gadd, “JSIL - .Net to Javascript Compiler.” (available online at http:
//jsil.org/), 2012.

84 Stud.techn. Robert Patrick Victor Nordan

http://www.opensource.org/licenses/alphabetical
https://github.com/migurski/TileStache/pull/39
https://github.com/migurski/TileStache/pull/39
https://github.com/meastp/efficientvectortiles
https://github.com/simplegeo/polymaps/blob/master/LICENSE
https://github.com/simplegeo/polymaps/blob/master/LICENSE
http://sourceforge.net/projects/polyclipping/
http://sourceforge.net/projects/polyclipping/
http://wwwdi.ujaen.es/~fmartin/bool_op.html
http://wwwdi.ujaen.es/~fmartin/bool_op.html
http://emscripten.org/
http://jsil.org/
http://jsil.org/

References

[80] M. Bohr, “Moore’s law in the innovation era,” vol. 7974, p. 797402, SPIE,
2011.

[81] C. Severance, “Javascript: Designing a language in 10 days,” Computer,
vol. 45, pp. 7 –8, feb. 2012.

[82] W. S. W. Group, “SVG2 Resolutions.” (available online at http:
//www.w3.org/Graphics/SVG/WG/wiki/SVG2_Resolutions#Keep_
constructive_geometry_operations_in_Vector_Effects_and_see_
if_it.27s_possible), 2012.

[83] W. S. W. Group, “SVG2 Roadmap.” (available online at http://www.w3.
org/Graphics/SVG/WG/wiki/Roadmap), 2012.

[84] D. H. Kim and M.-J. Kim, “An extension of polygon clipping to resolve degen-
erate cases,” Computer-Aided Design & Applications, vol. 3, no. 1-4, pp. 447
–456, 2006.

[85] R. Hill, “Jigsaw Puzzle by Raymond Hill: A HTML5 canvas based jigsaw
puzzle.” (available online at http://www.raymondhill.net/puzzle-rhill/
jigsawpuzzle-rhill.php), 2012.

[86] Dahlström, E., et al. (eds), “Scalable Vector Graphics (SVG) 1.1 (Second
edition). World Wide Web Consortium Recommendation.” (available online
at http://www.w3.org/TR/SVG11/), 2011.

[87] E. Weyuker and F. Vokolos, “Experience with performance testing of software
systems: issues, an approach, and case study,” Software Engineering, IEEE
Transactions on, vol. 26, pp. 1147 –1156, dec 2000.

[88] Geofabrik GmbH, “Download OpenStreetMap Extracts - Europe.” (available
online at http://download.geofabrik.de/osm/europe/), 2012.

[89] OpenStreetMap Contributors, “Area.” (available online at https://wiki.
openstreetmap.org/wiki/Area), 2012.

[90] OpenStreetMap Contributors, “The Future of Areas/Simple Features.” (avail-
able online at https://wiki.openstreetmap.org/wiki/The_Future_of_
Areas/Simple_Features), 2012.

[91] NIST/SEMATECH, “Nist/sematech e-handbook of statistical methods.”
(available online at http://www.itl.nist.gov/div898/handbook/), 2012.

An Investigation of Potential Methods for Topology Preservation in
Interactive Vector Tile Map Applications

85

http://www.w3.org/Graphics/SVG/WG/wiki/SVG2_Resolutions#Keep_constructive_geometry_operations_in_Vector_Effects_and_see_if_it.27s_possible
http://www.w3.org/Graphics/SVG/WG/wiki/SVG2_Resolutions#Keep_constructive_geometry_operations_in_Vector_Effects_and_see_if_it.27s_possible
http://www.w3.org/Graphics/SVG/WG/wiki/SVG2_Resolutions#Keep_constructive_geometry_operations_in_Vector_Effects_and_see_if_it.27s_possible
http://www.w3.org/Graphics/SVG/WG/wiki/SVG2_Resolutions#Keep_constructive_geometry_operations_in_Vector_Effects_and_see_if_it.27s_possible
http://www.w3.org/Graphics/SVG/WG/wiki/Roadmap
http://www.w3.org/Graphics/SVG/WG/wiki/Roadmap
http://www.raymondhill.net/puzzle-rhill/jigsawpuzzle-rhill.php
http://www.raymondhill.net/puzzle-rhill/jigsawpuzzle-rhill.php
http://www.w3.org/TR/SVG11/
http://download.geofabrik.de/osm/europe/
https://wiki.openstreetmap.org/wiki/Area
https://wiki.openstreetmap.org/wiki/Area
https://wiki.openstreetmap.org/wiki/The_Future_of_Areas/Simple_Features
https://wiki.openstreetmap.org/wiki/The_Future_of_Areas/Simple_Features
http://www.itl.nist.gov/div898/handbook/

References

[92] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability & Statistics
for Engineers & Scientists. Upper Saddle River, NJ, USA: Pearson Education
International, eighth ed., 2007.

[93] R. D’Agostino, “Simple compact portable test of normality: Geary’s test
revisited.,” Psychological Bulletin, vol. 74, no. 2, p. 138, 1970.

[94] R. Geary, “Moments of the ratio of the mean deviation to the standard devi-
ation for normal samples,” Biometrika, vol. 28, no. 3/4, pp. 295–307, 1936.

[95] M. L. Delignette-Muller, R. Pouillot, J.-B. Denis, and C. Dutang, fitdistrplus:
help to fit of a parametric distribution to non-censored or censored data, 2012.
R package version 0.3-4.

[96] R. Ihaka and R. Gentleman, “R: A language for data analysis and graphics,”
Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. pp. 299–
314, 1996.

[97] Creative Commons, “Attribution-noncommercial-sharealike 2.5 canada
(cc by-nc-sa 2.5).” (available online at https://creativecommons.org/
licenses/by-nc-sa/2.5/ca/), 2012.

86 Stud.techn. Robert Patrick Victor Nordan

https://creativecommons.org/licenses/by-nc-sa/2.5/ca/
https://creativecommons.org/licenses/by-nc-sa/2.5/ca/

APPENDIX

A Project Assignment

87

B Trying Out the Prototype
There are two methods available for trying out the prototype, of which the online
demo is the easiest. However, should one wish to try out different data sets or
other such changes, then one must run the demo locally.

B.1 Online Demonstration
The prototype application has been set up to run on a server belonging to the De-
partment of Geomatics, where it is accessible to the general public. The address
to visit it is http://geomatikk.hopto.org:8080/static/index.html, where the
user is presented with a index page showing all the available demonstrations and
tests.

The author can not guarantee the uptime of the server, as it may be subject
to service interruptions and outages outside of his control. (This being a mas-
ter thesis, the author will be leaving the university by the middle of June 2012.)
However, if the server is not responding you can contact the author and he will
attempt to rectify the situation to the best of his abilities.

B.2 Running the Prototype Locally
In order to run the prototype you must first obtain the program code either from
the electronic attachment to this report, or from the public source code repos-
itory at https://github.com/robpvn/Vector-Tile-Research. The prototype
has been set up to be run on a Unix-like system, but should in theory be possible
to set up on a Windows system with a bit more effort. (This has not been tested.)
In addition there are a number of dependencies that must be installed on your
computer for Tilestache to work. These are detailed in the Tilestache readme, and
are repeated here for simplicity.

pip Python module installer Installed through a method detailed in the Tilestache
readme, used for installing other modules.

ModestMaps A Slippy Map library, installed through pip.

Python Imaging Library (PIL) A helper library for image operations, installed
through pip.

91

http://geomatikk.hopto.org:8080/static/index.html
https://github.com/robpvn/Vector-Tile-Research

Werkzeug A compact application server for running the prototype, installed
through pip.

Mapnik A raster tile rendering engine, installable following instructions from
http://mapnik.org/download

GDAL with Python bindings Used for data access and manipulation in the
vector tile provider, installable following instructions from http://trac.
osgeo.org/gdal/wiki/DownloadingGdalBinaries

In order to run the prototype, navigate to the root directory of the prototype
and run this command:

PYTHONPATH=”[The f u l l path to the root d i r e c t o r y] ” \
. / s c r i p t s / t i l e s t a c h e−s e r v e r . py

Then you should be able to point your web browser to http://127.0.0.1:
8080/static/index.html and access the same index page as in the online demon-
stration.

B.2.1 Trying the Experimental Union

If you wish to try out the experimental union mode using jigsaw code, you must
have the git source control program installed and then run the following command
in the root folder of the prototype:

g i t checkout improved union j igsawcode

Then you can start the server as usual. In order to change back to the normal
pseudo-union, run this command:
g i t checkout master

92

http://mapnik.org/download
http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
http://trac.osgeo.org/gdal/wiki/DownloadingGdalBinaries
http://127.0.0.1:8080/static/index.html
http://127.0.0.1:8080/static/index.html

C Electronic Attachments
This is a list of files that are included in the electronic attachment to the report,
which is available from NTNU’s DAIM system along with the PDF version of the
report.

”Prototype Source Code” folder This is the complete source code for the pro-
totype, with contributions by the author as described in appendices D and
E. See appendix B for more information on how to use the prototype.

”Timing Results” folder This folder contains one subfolder for each test vari-
ation, which each contain raw text files with test result data as well as
spreadsheets used for organising the data and extracting statistics.

”R Calculations” folder This folder contains the data sources and scripts used
to calculate the statistical distribution fitting that was used to determine the
kind of distribution the test data followed.

”Plots” folder This folder contains the data sources and scripts used to generate
the histogram plots used in the report.

”Report Source” folder This folder contains the LATEX source files used to gen-
erate the report.

93

D Tilestache Modifications
The Tilestache set-up is, as mentioned in section 5.1, basically an unaltered Tilestache
set-up with some extensions added in. The following is a list of exactly which files
have been changed, with addresses relative to the root folder of the prototype.

The ”static” folder This folder, and all of its subfolders, have been added in
order to integrate test applications and demonstrations with the Werkzeug
web server. In this way all of the demo applications could be served from
the same server application as the tiles.

scripts/tilestache-server.py The script that starts the Werkzeug server, mod-
ified to allow serving of files from the ”static” folder.

TileStache/Goodies/Providers/EdgePointerGeoJSON.py & Arc.py These
extension files have been added in order to provide the edge pointer tile func-
tionality.

tilestache.cfg The Tilestache configuration file, changed to include the example
data providers used in testing.

94

E Polymaps Modifications
As outlined in section 5.2, Polymaps was not as easily modifiable as Tilestache.
Therefore, changes had to be made to the core code of Polymaps in addition to
the inclusion of accompanying code. The following list shows the changes made to
Polymaps and new files that were included. In the prototype, all of these files are
located in the ”static” folder.

polymaps modified.js This is the original Polymaps, with the necessary changes
for signalling integrated. All changes are marked in the source code with
”RPVN”.

common functions.js This file contains all the common functions used by ev-
ery example to manage things like triggering concatenation, and is tightly
coupled to polymaps modified.

worldtiles.js (in every subfolder) Every example has its own file containing
the actual concatenation algorithm, which is unique to each type of solution.

tester.js This file contains the code for driving all the tests, which each individual
test calls into.

raphael-min.js RaphaelJS is an external library used by common functions to
simplify some SVG manipulations.

jigsawpuzzle-rhill-3.js (When the experimental union features are checked out)
This is the external code used for jigsaw puzzle solving, adapted to polygon
union.

95

F Test Computer Specifications
These are the specifications of the computer used in the tests described in section
7.2. It is the author’s personal computer, a five year old Dell D830 laptop computer
with some upgraded components. The disk storage and Random Access memory
(RAM) are competitive with a modern computer, but the Central Processing Unit
(CPU) and the Graphics Processing Unit (GPU) are not. This means that caching
performance is completely comparable to a modern computer, but tile generation,
concatenation and drawing might not be. As mentioned in section 6, one must
only consider the relative performance of algorithms against each other, not the
absolute execution time.

CPU Intel Core 2 Duo T7100 @ 1.80GHz

RAM 4 GB DDR-RAM

GPU Nvidia Quadro NVS 140M, 512 MB integrated video memory

Storage Intel SSD 320 Series, 120GB

Operating System 64-bit OpenSUSE Linux, version 11.4

96

G Licences

G.1 Application
The prototype is based on, and makes use of, a number of different open source
projects. These licences are listed here, and can be viewed in their entirety at the
referenced web sites.

Tilestache 3-Clause BSD Licence[66]

Polymaps 3-Clause BSD Licence[66]

RaphaelJS MIT Licence[66]

Jigsawpuzzle-rhill Creative Commons Attribution-Noncommercial-Share Alike
2.5 Canada License[97] The software is free to use for non-commercial projects,
provided a link is provided to the author’s website. (http://www.raymondhill.
net/)

All changes and additions beyond those listed are the author’s own work.
They are hereby licenced under the 3-Clause BSD licence, in the same fashion
as Tilestache and Polymaps.

G.2 Project Report
Unless otherwise agreed (as with the delivery of the report to the university
for evaluation), the report is licenced under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported Licence, as available from https://
creativecommons.org/licenses/by-nc-sa/3.0/. The work can be shared and
built upon, but only non-commercially and with attribution like this:

Robert Nordan

rpvn@robpvn.net

http://www.robpvn.net

97

http://www.raymondhill.net/
http://www.raymondhill.net/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

	Title Page
	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Background & Related Work
	Interactive Browser Based Maps
	Plug-ins Versus HTML & JavaScript
	Raster Maps
	Vector Maps

	Tiling
	Tiling in Vector Maps

	Simple Feature Access Specification
	Current Browser Based Map Frameworks
	Plug-in Based Frameworks
	HTML & JavaScript Based Frameworks

	Current Vector Tiling Implementations
	GIS Cloud
	Polymaps & TileStache
	Mapnik Metawriter
	Nokia Maps 3D

	Project Goals
	Motivation
	Project Outline
	Desired Outcome

	Challenges with Vector Tile Generation
	Generalisation
	Tile Sectioning & Overlap
	Features With Multiple Geometries
	Data Completeness
	Unique Feature Identification
	Rendering & Concatenation Order

	Potential Data Structures & Algorithms
	Global Feature Search
	Tile Specification
	Construction & Concatenation Algorithms
	Probable Advantages
	Probable Disadvantages

	Edge Pointers
	Tile Specification
	Construction & Concatenation Algorithms
	Probable Advantages
	Probable Disadvantages

	Central Feature Registry
	Tile Specification
	Construction & Concatenation Algorithms
	Probable Advantages
	Probable Disadvantages

	Probabilistic Matching
	Tile Specification
	Construction & Concatenation Algorithms
	Probable Advantages
	Probable Disadvantages

	Combined Approaches

	Application Architecture
	Server Side Application
	Extensions
	Tile Transfer Format
	Cache

	Client Side Application
	Modifications & Supporting Code
	Rendering & Concatenation Order
	Integrated Web Server
	Issues With Polygon Union
	Automatic Tester
	Demonstration Applications

	Experimental Design
	Data Structures & Algorithms Selected for Testing
	Test Cases
	General Case - Multiple Geometries
	Special Case - Single Geometries

	Testing Patterns

	Results & Discussion
	Algorithmic Execution Speed Analysis
	Generalised Global Search
	Specialised Global Search
	Edge Pointers
	Summary

	Timing Results
	Download Times
	Concatenation Times

	Non-Normality of Tile Loading & Concatenation Time Distributions
	Implications

	Feasibility of GIS Operations
	Data Completeness
	Projection & Distortions
	Preservation of Data Integrity
	Data Upload

	Conclusions
	Observations
	Generalised Versus Specialised Methods
	Importance of Added Data
	Importance of Caching

	Recommendations
	Choice of Methods
	Utility for GIS Operations

	Future Work
	Further Development, Speed & Compactness
	Polygon Union in JavaScript
	GIS Enhancements

	Tile Load Distributions

	References
	Appendix
	Project Assignment
	Trying Out the Prototype
	Online Demonstration
	Running the Prototype Locally
	Trying the Experimental Union

	Electronic Attachments
	Tilestache Modifications
	Polymaps Modifications
	Test Computer Specifications
	Licences
	Application
	Project Report

